

PhD-FSTC-3-2007

Faculté des Sciences, de la Technologie et de la Communication, Université du Luxembourg
Institut d’Informatique, Université de Namur (FUNDP)

THÈSE

Soutenue le 20/09/2007 à Luxembourg

En vue de l’obtention des grades académiques de

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG
EN INFORMATIQUE

&
 DOCTEUR DE L’UNIVERSITÉ DE NAMUR EN SCIENCES

par

Gilles PERROUIN
Né le 30 Novembre 1978 à Rennes, France

ARCHITECTING SOFTWARE SYSTEMS USING MODEL

TRANSFORMATIONS AND ARCHITECTURAL
FRAMEWORKS

Jury de thèse

Prof. Dr. Pascal BOUVRY, Président, Université du Luxembourg, Luxembourg
Prof. Dr. Jean-Luc HAINAUT, Président Suppléant, Université de Namur (FUNDP),
Belgique
Prof. Dr. Jean-Marc JÉZÉQUEL, Rapporteur, Université de Rennes I / IRISA, France
Dr. Frank VAN DER LINDEN, Rapporteur, Philips Medical Systems, Pays-Bas
Prof. Dr. Pierre-Yves SCHOBBENS, Expert Invité, Université de Namur (FUNDP),
Belgique
Dr. Olivier BIBERSTEIN, Expert Invité, Université des Sciences Appliquées de Berne,
Suisse
Dr. Eric DUBOIS, Expert Invité, CITI CRP Henri Tudor, Luxembourg
Prof. Dr. Nicolas GUELFI, directeur de thèse, Université du Luxembourg, Luxembourg
Prof. Dr. Patrick HEYMANS, co-directeur de thèse, Université de Namur (FUNDP),
Belgique

ii

If a man does not know to what port he is steering, no wind is favorable to him.
Seneca, Roman dramatist, philosopher, & politician (5 BC - 65 AD)

iv

REMERCIEMENTS 1

Ayant été surnommé “marin de la thèse” en faisant référence tant à mes loisirs nautiques qu’à
ma capacité à faire faire le gros dos face aux tempêtes qu’une université en construction ne
manque pas de générer, je vais employer cette métaphore maritime pour remercier tous ceux
qui ont m’ont permis de partir et de revenir à bon port. En effet, une thèse est comparable à
une circumnavigation de quelques années sur le vaste océan de la recherche ; on espère y trouver
un certain nombre de terres vierges ou de portions inexplorées de continents déjà connus et de
rentrer au port avec un journal de bord suffisamment détaillé pour qu’un jury de navigateurs
chevronnés y trouve intérêt...

Je tiens tout d’abord à remercier mon armateur, le professeur Nicolas Guelfi, qui en supervisant
cette aventure m’a offert un grand choix d’océans à explorer sur la planète du génie logiciel, en
perpétuelle quête de nouvelles aventures, me permettant de revenir au port avec un bon nombre
d’idées pour de futures explorations. Il m’a aussi donné les moyens de ces explorations et a fait
en sorte que de nouvelles soient possibles.

Qu’il me soit permis de remercier mes co-armateurs, les professeurs Eric Dubois et Patrick Hey-
mans. Le premier pour avoir initialement suivi l’aventure et avoir validé mes différents points
de route. Le second pour avoir si gentiment accepté de reprendre l’aventure en cours de route
et d’avoir si fortement contribué à la qualité du journal de bord ainsi que d’avoir copieusement
fourni la bibliothèque du bord (qu’il va falloir envisager d’agrandir rapidement...).

Je tiens aussi à remercier les membres jury, qui par leur commentaires et leurs conseils ont permis
d’importants amendements au journal de bord. En particulier, les professeurs Jean-luc Hainaut
et Pascal Bouvry pour avoir accepté de présider la défense privée à Namur et la publique à
Luxembourg, le professeur Jean-Marc Jézéquel pour avoir relu et commenté le journal de bord
en détails.
I would like to thank Dr. Frank van der Linden for having accepted to review this thesis.
Je voudrais aussi remercier le professeur Pierre-Yves Schobbens pour avoir gentiment accepté
de participer dans le jury à la dernière minute.

Au cours d’une telle navigation, on rencontre aussi un certain nombre de marins plus aguerris
qui acceptent d’échanger avec vous un peu de leur science marine. En particulier, je tiens à re-
mercier le professeur Olivier Biberstein pour m’avoir permis de maintenir le cap, dans les calmes
comme dans les tempêtes et de m’avoir si chaleureusement accueilli dans sa “taverne” de marin
suisse. Je voudrais aussi remercier les docteurs Shane Sendall et Giovanna Di Marzo Serugendo

1 SOME ACKNOWLEDGMENTS HAVE BEEN WRITTEN IN ENGLISH TO THANK NON FRENCH-
SPEAKING PEOPLE.

vi

pour leur contributions au projet FIDJI qui initia cette aventure ainsi que pour leur support.

Il y a aussi les camarades de bordée du projet FIDJI partageant le même armateur mais suivant
leur route sur d’autres navires. Je tiens à remercier et à souhaiter bon vent à Benôıt Ries et
Cédric Pruski : je souhaite que vous aussi puissiez trouver le cap du port très bientôt. Je tiens
à remercier Paul Sterges, notre ex-ingénieur en chef pour avoir assuré de manière efficace la
logistique et le fonctionnement de la compagnie de navigation durant ce projet.

Je tiens à remercier les “nouveaux” membres de la compagnie de navigation Marcos Da Silveira
et Jacques Klein pour leurs intéressantes discussions et leur support. Merci aussi à Jörg Kienzle
pour sa “funitude” fort agréable lorsque les nuages noirs de s’amoncelaient et que la rédaction
du journal de bord se faisait plus difficile.

I would like to thank my colleagues at the laboratory of advanced systems for interesting dis-
cussions and nice social events.

Je tiens aussi à remercier mes amis de mon club d’aviron (la société des régates messines) pour
m’avoir appris la subtile différence existant entre galérer et ramer et avoir ainsi contribué a la
santé physique et mentale nécessaire à l’accomplissement d’une telle navigation. Merci à mes
camarades de train, Elizabeth et Nelly dont le crayon vert a permis de ne pas (trop) insulter
Shakespeare...

Je suis redevable de mes amis rencontrés avant cette aventure. Un grand merci au club d’astro-
nomie de Sévérac ainsi qu’a Sébastien en particulier pour m’avoir fait partagé depuis le lycée son
goût de la navigation sur les océans de la recherche. Je tiens à remercier mes amis ingénieurs,
Rémi et Florence, Geobert et Valérie, Pierre et DP ainsi que Josselin pour m’avoir rappelé qu’il
peut parfois y avoir une vie en dehors du quotidien de marin et avoir assuré la logistique de mes
escales parisiennes. Maintenant que je touche au but, j’espère avoir l’occasion de vous voir plus
souvent autour d’un bon verre.
Je voudrais saluer tout spécialement Chloë qui, telle un phare dans la nuit, m’a éclairé de son
humour et de sa joie de vivre. Et tout marin sait à quel point il est réconfortant d’apercevoir
un phare quand le vent frâıchit et la mer déferle. Un grand merci à toi.

Enfin, toute cette aventure n’aurait pas été possible sans le soutien de mes parents qui ont
toujours veillé à ce que le bateau soit bien entretenu et que je n’affale pas les voiles alors que le
découragement m’entrainait vers ses brumes assassines. Un immense merci à vous.

RÉSUMÉ

Les applications logicielles sont devenues indispensables dans un grand nombre d’activités hu-
maines et se sont répandues grâce à l’avènement des réseaux (ADSL, WIFI, GSM...) ou de
l’informatique nomade (ordinateurs portables, assistant digitaux personnels, téléphones mobiles
etc.) qui ont rendu l’interaction avec des systèmes informatiques possible en presque tout lieu.
Cet état de fait a engendré à la fois une grande complexité pour la conception de ces systèmes
distribués et de grandes attentes de la part des clients de ces systèmes, préoccupés principa-
lement par les qualités et temps de réalisation des applications logicielles exécutées par ces
systèmes ainsi que les coûts qui en découlent. Il est donc nécessaire d’améliorer nos méthodes
de développement afin de faire face à ces nouveaux défis.

D’une part, l’ingénierie dirigée par les modèles (IDM), en permettant la description d’applica-
tions logicielles à divers niveaux d’abstraction et en générant certains de leurs éléments via la
transformation de modèles, s’attaque à la complexité intrinsèque de ces systèmes et réduit leur
temps de développement ainsi que celui de maintenance. D’autre part, l’approche de ligne de
produits accélère la réutilisation logicielle en proposant le développement d’applications basées
sur un ensemble de composants communs dans un domaine déterminé. Ainsi, lorsque ceux-ci
sont conçus avec soin, il est possible de satisfaire simultanément des critères de qualité et de
temps de développement. Les méthodes qui ont été construites sur le paradigme de ligne de
produits se sont principalement attachées à décrire les points communs et les différences parmi
les composants qui seront réutilisés par les applications membres de lignes de produits.

Néanmoins, un logiciel doit très souvent répondre à un besoin qui émane d’un utilisateur parti-
culier. Il est donc nécessaire de prendre en compte ses attentes qui sont parfois spécifiques à cet
utilisateur et il n’est ni possible ni souhaitable de définir et de supporter celles ci dans l’ensemble
de composant réutilisables à partir desquels les applications sont dérivées. Certaines méthodes
orientées lignes de produits proposent des approches pour la dérivation de produits par trop
restrictives qui excluent de manière indue des produits qui, bien que pouvant être développés à
partir des composants de la ligne de produits, n’ont pas été envisagés lors de sa définition, ce qui
nous prive donc de la possibilité d’adresser facilement les exigences spécifiques des utilisateurs. Si
quelques méthodes reconnaissent la nécessité de prendre en compte ces exigences particulières,
elles ne fournissent aucune solution systématique pour intégrer ces exigences dans le cycle de
développement d’un produit.
Cette thèse s’attache à la définition d’une méthode plus souple pour le développement d’appli-
cations dans le contexte de ligne de produits qui s’appuie sur une combinaison de l’approche
IDM avec les “frameworks” orientés-objet. Le domaine ciblé par cette méthode est celui des
applications de ventes enchères sur Internet qui est un domaine non-critique pour lequel une
grande variabilité dans les scenarii d’utilisation est requise.

La première partie de cette thèse introduit les concepts de base de notre méthode nommée
FIDJI. En particulier, nous définissons la notion de framework architectural comme un ensemble

viii Résumé

de modèles permettant la description cohérente des divers constituants d’analyse et de concept
d’une ligne de produits. Cette entité est ensuite instanciée par le biais de transformations de
modèles. Nous décrivons ensuite les principes méthodologiques qui ont déterminé les choix des
modèles du framework architectural ainsi que l’instanciation flexible de produits encadré par
des contraintes définies sur les modèles du framework architectural.

La seconde partie de cette thèse présente en détail les phases de définition des charges, d’ana-
lyse et de conception de la méthode FIDJI. Tout d’abord, un modèle de définition de ligne de
produits est introduit permettant la définition des charges de manière informelle en se basant
sur des variations de cas d’utilisation et un dictionnaire de données et encadré par des règles
méthodologiques simples. Nous définissons ensuite la phase d’analyse comme un raffinement de
la phase de découverte des charges en proposant la modélisation des concepts du domaine à
l’aide de diagrammes UML 2.0 ainsi que l’enrichissement des cas d’utilisation par des expres-
sions OCL (Object Constraint Language). Au niveau de l’analyse, nous démontrons comment un
certain degré de flexibilité peut être obtenu au niveau du cycle de vie des évenements échangés
entre le système et ses acteurs via l’utilisation de variables d’états. La phase de design s’intéresse
principalement à l’aspect architectural, en proposant un modèle de composants basé sur UML
2.0 permettant la description de styles architecturaux structurant le framework architectural.
Des profiles UML 2.0 définissant les éléments de modèles utilisés, leurs conditions d’application
ainsi que des règles de cohérence et de traceabilité pour les modèles d’analyse et de conception
sont proposés. Le processus méthodologique, commun aux phases d’analyse et de conception,
consiste en l’écriture d’un programme de transformation de modèles permettant d’instancier le
framework architectural tout en étant guidé par des contraintes d’instanciation qui définissent
de manière souple les frontières de la ligne de produits.

Enfin, la dernière partie de cette thèse s’intéresse à l’application concrète de la méthode FIDJI.
Une étude de cas appartenant au domaine des applications e-commerce est détaillée, illustrant
ainsi les modèles FIDJI. Nous montrons en particulier comment écrire le programme de trans-
formations à partir d’opérations de transformation prédéfinies ainsi que la raison d’être et l’uti-
lisation des contraintes guidant le processus d’instanciation au coeur de la méthode.

ABSTRACT

Software systems have become essential to many human activities and have proliferated thanks
to various hardware innovations such as mobile computing (laptops, personal digital assistants,
mobile phones) and networks (DSL, WIFI, GSM, etc.) enabling interactions between users and
computer systems in virtually any place. This situation has created both a great complexity for
such distributed systems to be designed and great expectations (mainly concerned with quality,
time and induced costs of the software) from the users of these systems, requiring improvements
in software engineering methods in order to meet these challenges.

On the one hand, Model Driven Engineering (MDE), by allowing the description of software
systems through abstractions and deriving useful system artifacts, harnesses inherent complex-
ity of software systems and reduces time-to-market via model transformations. On the other
hand, software product lines foster software reuse by proposing to develop applications based
on a set of common assets belonging to a particular domain. Thus, when product line assets are
carefully designed, both quality and time-to-market requirements can be achieved. Development
methods that have resulted from the product line paradigm generally focus on defining common
and variable assets to be reused by product line members. However, they hardly address the
development of applications from the product line assets in a systematic way. Furthermore,
those considering it propose automated but rather inflexible approaches that unnecessarily ex-
clude products which, although addressable by product line assets, have not been explicitly
envisioned during product line definition. If in some domains — in particular, those including
hardware constraints and/or critical features — it is possible to fully determine the products
that are part of the software product line, in the other cases, an initial set of products can only
be considered assuming that the customers’ requests will be met by this set. We believe that this
assumption is false in general and this thesis examines the research question which consists in
proposing a set of models and a product line development method to offer more flexibility while
deriving products in order to seamlessly address customers’ requests. The domain we consider
is that of web e-bartering systems.

This thesis strives to propose a trade-off between automated and unsupported product deriva-
tion by providing a model-driven product line development method that allows developers to
define product line members by transforming a coherent and layered set of product line models.
Moreover, constraints on the possible transformations have to be specified in order to determine
which products cannot be derived both for functional and technical reasons.

The first part of this thesis introduces the foundational concepts of our FIDJI method. In par-
ticular, it describes the notion of architectural framework as a set of models defining product
line assets at analysis and design levels and which is instantiated in order to obtain product
line members thanks to model transformations. This part then describes key methodological
principles driving the choice of architectural framework models and how flexibility in product

x Abstract

derivation can be achieved and controlled by constraints defined over the set of architectural
framework models.

The second part of this thesis is devoted to requirements elicitation, analysis and design phases
of the method. For requirements elicitation, a specific product line template is defined to allow
for the description of a software product line in an informal manner via use case variants and
data dictionaries. The analysis phase refines requirements elicitation by allowing the precise
description of domain concepts in terms of UML models as well as functionalities in terms of use
cases completed by OCL expressions. Variability is ensured through the use of state variables
in OCL expressions which enable a wide variety of scenarios to be implemented in the product.
Constraints indirectly define product line boundaries by preventing certain instantiations from
being made. The design phase focuses on the architectural design of the architectural frame-
work and describes it in terms of interacting components structured via architectural styles.
Analysis and design models are supported by UML profiles defining the constructs offered by
the FIDJI method, their usage conditions as well as traceability and consistency rules ensuring
model correctness. The methodological process for both analysis and design consists in writing
a transformation program, validated over the aforementioned constraints, that will instantiate
the architectural framework to obtain a viable product line member.

The last part of the thesis deals with the practical application of the method. A case study
belonging to the e-commerce domain illustrates the FIDJI method in detail and a simple archi-
tectural framework is defined for this purpose. In particular, we show how the transformation
program is created from predefined transformation operations dedicated to FIDJI models and the
rationale and usage of constraints controlling the instantiation of the architectural framework.

CONTENTS

1. Introduction . 1

1.1 Motivations . 1

1.2 Research Problem . 4

1.3 Development Context . 4

1.4 Thesis Context . 5

1.5 Contribution . 6

1.5.1 Domain Engineering . 6

1.5.2 Application Engineering . 7

1.6 Document Organization . 8

Part I Concepts 11

2. Background . 13

2.1 Model Driven Engineering . 13

2.1.1 On the Power of Models . 13

2.1.2 Model Transformation . 16

2.1.3 MDE Approaches . 20

2.1.4 Model Traceability . 22

2.1.5 Model Consistency . 23

2.1.6 Model Impact Analysis . 24

2.2 Unified Modeling Language . 26

2.2.1 Introduction . 26

2.2.2 Metamodel . 26

2.2.3 Overview . 27

2.2.4 Structural Modeling . 28

2.2.5 Behavioral Modeling . 29

2.2.6 Making the UML precise: OCL . 34

xii Contents

2.2.7 Profiles . 37

2.3 Software Architecture . 41

2.3.1 Definition . 41

2.3.2 Architectural Views . 42

2.3.3 Architectural Styles . 43

2.3.4 Architecture Description Languages . 45

2.3.5 Describing Architectures with UML/OCL 47

2.3.6 Enterprise Architecture Frameworks . 48

2.4 Software Product Lines . 51

2.4.1 Introduction . 51

2.4.2 Domain Engineering . 52

2.4.3 Product Derivation . 62

2.5 Object-Oriented Frameworks . 66

2.5.1 Definition . 66

2.5.2 Instantiation . 67

2.5.3 Documentation . 68

2.6 Development methods . 71

2.6.1 Fusion/Fondue . 71

2.6.2 Rational Unified Process . 76

2.6.3 Catalysis . 77

2.6.4 KoBra . 79

3. FIDJI Concepts . 81

3.1 Architectural Frameworks . 81

3.1.1 Motivations . 81

3.1.2 Definition . 84

3.1.3 Architectural Framework Instantiation . 85

3.2 Methodological Overview . 88

3.2.1 Scope . 88

3.2.2 Driving Principles . 89

3.2.3 Process Overview . 90

3.3 Research Method . 94

3.3.1 Framework-based Development . 94

3.3.2 Model Transformation . 94

3.3.3 Method . 95

Contents xiii

Part II FIDJI: A Methodology for Distributed Systems 97

4. Requirements Elicitation and Analysis . 99

4.1 FIDJI Prescriptions for SPL Requirements Elicitation 99

4.1.1 REQET Overview . 99

4.1.2 DOMET . 99

4.1.3 UCET . 99

4.1.4 REQET Usage and Validation . 100

4.2 FIDJI Analysis Model . 103

4.2.1 Domain Model . 103

4.2.2 Use Case Model . 106

4.2.3 Operation Model . 112

4.2.4 Analysis Instantiation Constraints . 114

4.2.5 FIDJI Analysis Profile . 115

4.3 Transitioning from Requirements Elicitation to Analysis 118

4.3.1 Traceability . 118

4.3.2 Relating Variability Information . 119

4.4 Product Elicitation and Analysis . 120

4.4.1 Define Product . 120

4.4.2 Instantiate architectural framework Analysis Layer 120

5. Architecture & Design . 123

5.1 Requirements for Design Models . 123

5.2 Design Models . 124

5.2.1 Structural Modeling . 124

5.2.2 Behavioral Modeling . 130

5.3 Transitioning From Analysis to Design . 139

5.4 Design Profile . 140

5.4.1 Core Profile . 140

5.4.2 Architectural Styles . 142

5.5 Design Process . 144

5.5.1 Identifying Concerned Design Elements 144

5.5.2 Writing Design Instantiation Program . 144

5.5.3 Updating Behaviors . 145

5.5.4 Assessing Impact . 145

xiv Contents

Part III FIDJI in Practice 147

6. Case Study . 149

6.1 Product Line Requirements Elicitation . 149

6.1.1 Overview . 149

6.1.2 REQET-based SPL Description . 150

6.2 Architectural Framework Analysis Layer . 155

6.2.1 Domain Model . 155

6.2.2 Use Case Model . 158

6.2.3 Operation Model . 165

6.2.4 Traceability between LuxDeal Elicitation and Analysis 168

6.2.5 Instantiation Constraints . 169

6.3 Architectural Framework Design Layer . 171

6.3.1 GAM . 171

6.3.2 ISM . 171

6.3.3 PSM . 172

6.3.4 Traceability between Analysis and Design 174

6.3.5 Design Instantiation Constraints . 175

6.4 Product Derivation . 176

6.4.1 Analysis . 176

6.4.2 Design . 180

6.5 Deriving another Product . 181

6.6 Towards FIDJI validation . 186

6.6.1 Initial Experiment . 186

6.6.2 Validation Criteria . 188

6.6.3 Validation Protocol . 189

Part IV Concluding Chapters 191

7. Conclusion . 193

8. Perspectives . 195

8.1 General Considerations . 195

8.1.1 Formalization . 195

8.1.2 Model Transformation . 196

Contents xv

8.1.3 Towards Tool Support . 197

8.1.4 Method Process Model . 199

8.2 Specific Issues . 201

8.2.1 Requirements Elicitation and Analysis . 201

8.2.2 REQET . 201

8.2.3 FIDJI Analysis . 201

8.2.4 FIDJI Design . 203

8.3 Long-term Perspectives . 205

8.3.1 SPL-Based Testing . 205

8.3.2 Architectural Framework Life-cycle . 205

xvi Contents

LIST OF TABLES

2.1 Gomaa Use Case Template [Gom04] . 58

2.2 Fusion & Fondue Models (adapted from [SBS04, LGL02]) 75

4.1 DOMET Contents . 100

4.2 UCET Contents . 101

4.3 Relationships between Use Case Variation Type and Variant Type 102

4.4 Domain Dictionary . 106

4.5 FIDJI Analysis Stereotypes . 115

5.1 FIDJI Core Design Profile Stereotypes . 141

5.2 Stereotypes for the Layer Architectural Style . 142

5.3 Stereotypes for the N-Tiered Architectural Style 143

5.4 Stereotypes for the Pipe and Filter Architectural Style 144

6.1 DOMET for LuxDeal . 150

6.2 Domain Data Dictionary for LuxDeal . 156

6.3 LuxDeal Data Dictionary . 167

xviii List of Tables

LIST OF FIGURES

2.1 Relationships between Model, Metamodel and System 15

2.2 Model Transformation Concepts (adapted from [CH06]) 19

2.3 UML Four-Layer Metamodeling Hierarchy (from [OMG07a]) 27

2.4 UML 2.1.1 Packages (from [OMG07a]) . 28

2.5 UML Behavioral Packages . 30

2.6 Use Cases Diagram Example (Source: UML 2.0 Specification) 31

2.7 A Sequence Diagram Example (From [OMG07b]) 32

2.8 A Communication Diagram Example (from [OMG07b]) 32

2.9 A State Machine Diagram (from [OMG07b]) . 33

2.10 Activity Diagram for a Workflow (from [OMG07b]) 35

2.11 Extension Example (from [OMG07b]) . 38

2.12 An EJB Home Interface (From [OMG07b]) . 38

2.13 SPEM Stereotypes . 39

2.14 SPEM Stereotypes Notation . 40

2.15 4+1 Views for Software Architecture (Adapted from [Kru03]) 44

2.16 ADM Phases (from [Gro06]) . 49

2.17 Domain Engineering and Application Engineering Processes [vdL02] 52

2.18 FODA’s Notation . 53

2.19 An Example of a PLUC (From [FGLN04]) . 57

2.20 Halmans and Pohl Notation [HP03] . 59

2.21 Gomma Notation for Use Cases . 59

2.22 Generic Use Case Diagram [JM02] . 60

2.23 Generic Use Case Template [JM02] . 60

2.24 Fondue Models and their Inter-Relationships (From [SBS04]) 74

2.25 RUP Phases & Iterations ([Kru03]) . 77

3.1 Architectural Framework Layers . 85

3.2 Architectural Framework instantiation . 87

xx List of Figures

3.3 Product Line Variation . 91

3.4 FIDJI “Stairs” Process . 93

4.1 Domain Diagram . 105

4.2 Use Case Component Sign In . 109

4.3 The FIDJI Analysis profile . 115

4.4 FIDJI Analysis Model Structure . 116

5.1 HelloWorld Internal Structure Model . 129

5.2 HelloWorld Parts Structure Model . 131

5.3 A Pipe and Filter Example . 135

5.4 KerMeta Code for HelloWorldBean . 138

5.5 FIDJI Design Models Structure . 140

6.1 LuxDeal Domain Diagram . 157

6.2 The LuxDeal Use Case Diagram . 158

6.3 Use Case Component SignIn . 160

6.4 Use Case Component CreateItem . 161

6.5 Use Case Component CreateItem . 162

6.6 Use Case Component BrowseOffers . 164

6.7 Use Case Component ValidateDeal . 165

6.8 GAM for LuxDeal SPL . 172

6.9 ItemManager ISM . 173

6.10 ItemManager PSM . 174

6.11 proLux Domain Diagram . 178

6.12 ProLux Create Item Use Case Component . 179

6.13 goodLux Domain Diagram . 182

6.14 goodLux BrowseOffers Use Case Component . 183

1. INTRODUCTION

1.1 Motivations

Software engineering is about defining, specifying and resolving interesting (i.e useful) problems
using computers. Almost since software engineering emerged, software engineers have had to
cope with the famous “software crisis”, challenging their abilities to provide satisfactory solutions
(i.e. software applications) within a reasonable time. In 1972, Dijkstra gave his views [Dij72] on
the problem; at the beginning, programmers’ task mainly involved finding tips to take optimal
advantage of the hardware then available and it was believed that their problems would be easily
solved through more powerful hardware. Such hardware swiftly appeared but things got worse;
indeed, due to its sophistication, hardware became more difficult to program efficiently. Thus,
reasons for crisis are not only to be found in technology but are also inherent to the problems
being addressed. Furthermore, hardware popularization also implies greater expectations from
software customers.

Unsurprisingly, in 2007, software engineering is still going through a crisis. Technology offerings
and customer needs have kept complicating the definition, specification and implementation of
systems, most of which are currently distributed. To address the current version of the “software
crisis”, solutions are required which meet the following objectives:

• Reducing software lifecycle time: The fact that nowadays software is part of every
business and is necessary to fulfill its productivity goals raises customer expectations to
an unprecedented level. Like any product, it has to be developed on schedule and within
the budget initially allocated (software projects seldom respect both schedule and budget
constraints) and to fulfill its purpose,

• Responding to Technological Changes: Technological changes impact the IT industry
more than any other industry due to the constant progress made by semiconductor industry
in terms of computing power and miniaturization. Software should be engineered both in
order to exploit hardware facilities during its creation and to facilitate migration from one
computing platform to another during its maintenance;

• Accommodating to requirements changes: Partly as a consequence of the previous
point and together with the global competition that forces companies to increase their
agility and adaptability, requirements for a given software application constantly evolve;

• Harnessing software complexity: As noted by Easterbrook and Nuseibeh [EN04], there
is a complex interaction between humans and the software they are using, shaping each
other in a non-predictable way. Therefore capturing this interaction is inherently difficult
(“complexity of purpose” [EN04]). Furthermore, technological changes have enabled vari-
ous computing platforms to cooperate in the same information system thanks to network
availability. Though it provides a more flexible and visible system to its users (such as

2 1. Introduction

mobile access, VPN), analysis, design, implementation and maintenance are more difficult
to perform. And, as stated earlier, these systems are becoming common and crucial to
companies’ productivity, there is hence an urgent need to improve the ways we deal with
this complexity.

Fortunately, 25 years after Dijkstra’s analysis, the software engineering community has devel-
oped some innovations that are enabling engineers to tame the inherent complexity of modern
systems and to develop them more rapidly. Among them, this thesis identifies model driven en-
gineering, software product lines, object-oriented frameworks, software architecture and methods
as mainstays to define an approach capable to address the aforementioned challenges.

As we have seen, the main problem software engineers are faced with is complexity; whether
accidental (i.e. related to a particular technology we are using to develop systems) or essential
(related to the problem to solve). One possible approach to deal with complexity is the use of
models. Models have been used in various engineering disciplines such as civil engineering or
anatomy to reason about the system to be built or to be analyzed. Models provide a view of the
system from a certain perspective, that is they concentrate on some relevant aspects of the system
while abstracting others. Therefore, models are easier to read and facilitate the understanding
of the system. In contrast to civil engineering, software models can also be used to actually build
the system by transforming them from requirements to system implementation. This way of
building systems, stemming from formal refinement techniques, is actually emerging in various
areas of software under the generic denomination of Model Driven Engineering (MDE) thanks
to standardized modeling languages such as the Unified Modeling Language (UML) and generic
model transformation techniques and tools. MDE-based approaches also promote the notion of
“platform independence” as a solution to perpetuate software design decisions with respect to
technological changes; abstract models of a system can be freed from any information about the
technology that will be actually used to develop the system. Technology-dependent concrete
models can be generated thanks to model transformation and via separate models describing
the target platform.

The concept of Software Product Line (SPL) is based upon the idea of “product families” in-
troduced by Parnas [Par76]: instead of considering applications individually, we should group
them in sets and reuse some of the functionality of the existing members to develop new ones.
SPL approaches leverage product families by proposing to develop common assets (that may be
factored from previous applications in the set) that are deliberately designed to be reused to
form applications. Successful SPL approaches minimize time-to-market by providing the neces-
sary descriptions, process and tools to systematically reuse these assets in an effective manner.
Software product lines are developed along two intertwined processes: domain engineering which
deals with the elaboration, design and maintenance of reusable assets and application engineer-
ing which addresses the reuse of such assets in order to build SPL members.
Since the 90s, several models and development methodologies have been devised to address soft-
ware product lines. They mainly focus on defining commonalities and variabilities offered by
SPL assets. This definition is often mixed with the definition of the assets themselves; method-
ologically, it imposes that all the variations for the possible SPL members are known beforehand
which is a very difficult task and often results in the definition of a huge number of variants
which are tricky to manage. Furthermore, this set of variants does not guarantee that it will
cover application specific requirements, requiring a SPL evolution. As mentioned above, one of
the modern challenges of software engineering is to keep up with requirements changes. Having
to change a given SPL according to the needs of a particular application is neither desirable

1.1. Motivations 3

methodologically (because a SPL must evolve to address the needs that will be shared by a great
number of its members, not one) nor realizable in practice without seriously affecting develop-
ment productivity.
The way a SPL member is obtained from the SPL assets, a process known as product deriva-
tion [ZJ06], is barely covered by existing SPL approaches. Existing approaches either configure
products based on a selection of variants or generate the product via model transformations.
Due to the coupling between asset and variant definition, these approaches lack flexibility by
covering only the defined variants and place the application developer in a delicate position as
he must address features that are not present in the SPL.

Object-Oriented Frameworks, since their definition in 1988 by Ralf Johnson [JF88], have con-
siderably improved software development by providing proved solutions to recurrent problems
(patterns) and maximizing application reuse. An object-oriented framework is composed of a
number of generic classes implementing core functionalities of a given application area or domain
(e.g. numerical calculus, multi-tiered J2EE applications...). These classes are then specialized
(using object inheritance) by developers to implement specific functionality of an application
pertaining to that domain. Frameworks are accompanied by documentation that can take vari-
ous forms and usually details the technicalities of each service (its purpose and how to use it).
Developing an application with a framework implies having a deep understanding of the frame-
work to be able to specialize the framework efficiently while preserving its quality attributes
(portability, performance, security, correctness with respect to its requirements...). However,
existing framework documentation does not ease framework understanding because it generally
provides information at the detailed design and implementation levels that cannot be exploited
easily by software analysts and architects. Indeed, they need to have clear descriptions of the
framework’s functionalities as well as an overall view of framework’s architecture (i.e. its ar-
chitecture) to assess framework functionalities and qualities regarding those required by the
application to be developed with the framework. Moreover, specializing a complex framework
manually is a time-consuming process and may violate framework assets if developers do not
have a sufficient understanding of the framework architecture.

Software architecture, although being studied since the 60s, has been gaining momentum in
both academia and industry for more than 10 years. This momentum is motivated by the afore-
mentioned complexity of modern software such as object-oriented frameworks introduced in
the previous paragraph. Software architecture proposes to organize software systems in coarse-
grained structures grouping computation in coherent units (components), offering and requiring
services to and from other units (ports or interfaces) and together determining the overall sys-
tem’s behavior via well-identified links (connectors). Therefore, software architecture can be
seen as an abstraction of its design, thus facilitating its understanding and allowing the early
assessment and enforcement of certain qualities of the system through architectural patterns or
styles.

Finally, software development methods were introduced to address the aforementioned software
complexity and software development time. Indeed, by dividing the work to be accomplished in
small chunks, called phases, and by defining clear transitions between them, software develop-
ment methods guide software development stakeholders (analysts, architects, programmers...)
from requirements to maintenance. They allow a better understanding of the job to be done
in each phase and a better predictability of the whole development process. Furthermore, de-
velopment methodologies systematize the development process by providing specific techniques

4 1. Introduction

and tools for each phase resulting in an increased overall efficiency. The key value of a software
development method resides in the embedded core paradigm(s) (i.e. SPL, MDE...) and on the
way these paradigms are combined in order to provide software engineers with guidelines that
are precise enough to enable them to produce quality software and flexible enough to adapt
to the constantly evolving requirements issued by customers. Unfortunately, although certain
development methods such as Fusion [CAB+94] put the emphasis on the explicit definition of
the development phases and on the traceability between artifacts produced, they do not pro-
vide the level of adaptability required by software engineers to meet customer expectations. In
addition, iterative methods such as RUP [Kru03] define general processes and supplied models
require adaptation and expertise to be successful. Besides, as we mentioned above, product line
development methods do not really succeed in combining flexibility and support with respect to
product derivation.

1.2 Research Problem

The research problem addressed by this thesis is that of addressing complexity and flexibility in
product line development. Compared to single product development which is already complex
as we have seen above, SPL-based development makes the situation more complicated given
that it is necessary to define and manage variability throughout the development of the domain
assets and provides ways to resolve this variability and support product analysts and designers
while performing application engineering.

More specifically, this thesis addresses the issue of defining a SPL development method with the
following characteristics:

• Simplicity: The proposed method should offer simple models to facilitate core assets and
products elicitation, analysis and design;

• Flexibility: The proposed method should be able to handle unforeseen products in an
efficient way;

• Uniformity & Integration: In order to be supportive enough for application developers,
the proposed method should be uniform in the variability mechanism it offers and provide
an integrated set of models.

1.3 Development Context

The FIDJI method developed in this thesis is intended for a category of distributed software
systems which have motivated the method’s founding principles detailed in Chapter 3 and its
modeling language detailed in Chapters 4 and 5. This category has the following characteristics:

• Web-oriented: The Internet has migrated from the passive presentation of static HTML
pages to fully featured applications such as webmails, word-processing, spreadsheets, mul-
timedia applications and Web 2.0 [O’R05] will prompt the development of richer web ap-
plications/services. Such kind of applications are characterized by user interfaces (which
can be accessed via different devices such as computers, mobile phones...) separated from
business logic and distribution at the server level (data servers, application servers, etc.);

1.4. Thesis Context 5

• Customer-oriented: The FIDJI methodology targets applications that are developed
in the context of a contract with a particular customer who will define requirements.
This greatly differs from software that is supplied in “boxes” and whose requirements
responsibility is totally ensured by the supplier;

• Reactive: As a consequence of the first point, the software we consider is reactive [HP85];
it continuously reacts to stimuli sent by actors (human or other systems);

• Middleware-based: Web-based applications over dedicated middleware or component
platforms such as J2EE [Sun06] and .NET [Mic06a, RR02] which handle some issues
related to distribution such as concurrency. Therefore, our modeling language does not
take into account such issues since they may be redundant or conflict with middleware on
which the architectural framework will be implemented;

• Non Critical: Although one of the goals of the method is to model and develop software
rigorously, systems considered are not safety-critical (i.e. they cannot endanger lives in
case of failure) and, in case of failure, financial consequences will be at a reasonable level
(in particular, we consider e-bartering applications that is based on items exchanged rather
than real currencies). This corresponds to the state of the practice in web-based application
domain;

• Software Product Line Based: FIDJI assumes a product line based development ap-
proach. This has motivated our notion of architectural framework (see below) and some
hypotheses on the development process.

1.4 Thesis Context

The concepts defined in this thesis have been derived from the results of a research project, called
FIDJI (scientiFic engIneering of Distributed Java applIcations). This project was carried out
at the University of Luxembourg from 2001 to 2004. The main objective of this research was to
define a method as well as a dedicated tool support to perform the design and implementation of
distributed Java applications. The project’s core team was composed of three engineers (Benôıt
Ries, Paul Sterges and Gilles Perrouin) supervised by Professor Nicolas Guelfi. In addition to
this core team, some external experts (Dr. Olivier Biberstein, Dr. Shane Sendall and Dr. Gio-
vanna Di Marzo Serugendo) brought their contribution to the project and the disseminate of
helped to disseminate its results. In the late stages of the project, the team was completed by
trainees and one engineer assisting in the development of the tool support and case study.

The research method followed during the FIDJI project was to adapt formal refinement [Ser99,
SG98] ideas applied to CO-OPN models [Bib97] to a more pragmatic development approach.
On the one hand, selecting UML as the main modeling language for the method facilitates the
adoption of the method by the software engineering community. On the other hand, thanks to
its collaboration (from 2001 to 2003) with Rational (now IBM/Rational) the FIDJI team could
evaluate research ideas with respect to real needs and had internal access of their UML case tool
(XDE, now replaced by the architect tool suite [IBM06]) to develop tool support for the method.

This research project has contributed in various areas of software engineering in order to define an
integrated development approach. The main contribution consists of having defined the notion of
architectural framework as a combination of object-oriented framework with MDE concepts and

6 1. Introduction

its implementation [GS02b, GR02, GRS03a]. Application development was supported by model
transformations for which transformation languages were defined [GPR+03, SPGB03]. Finally,
a process [GP02, GP04] was defined to guide developers while applying the FIDJI approach.
Gilles Perrouin was particularly involved in transformational and methodological aspects of the
research project.

1.5 Contribution

Considering the aforementioned research problem and building on the experience acquired during
the FIDJI project, we were able to contribute to SPL-based development at the domain and
application engineering levels.

1.5.1 Domain Engineering

This thesis makes the following contributions to the existing state-of-the-art in SPL domain
engineering. First, at the requirements elicitation level, we define an informal template devoted
to software product lines description, in order to organize variability information at this level;
in particular the template proposes to list the variable domain concepts and to describe SPL
scenarios with use case variants.

Second, by outlining the natural synergy between software product lines and object-oriented
frameworks concepts, we form the notion of architectural framework as a layered set of models
that describe SPL assets at the requirements analysis (or late requirements) and architecture
design levels. The implementation level is achieved by an object-oriented framework though this
work does not cover this level explicitly. By leveraging the abstraction level in which object-
oriented frameworks are documented, architectural framework models allow to ease the design
and to improve the understanding of a particular object-oriented framework. They are also the
starting point of application engineering.

Third, we detail the architectural framework concept by providing a metamodel, mainly based
on a dedicated UML 2.0 profile, that fully defines the constructs that have to be used in order to
model an architectural framework at the requirements analysis and design levels of abstraction.
At the analysis level, we refine domain concepts elicited in the aforementioned template in terms
of UML 2.0 class diagram. SPL scenarios are detailed under the form of sequences of operations
forming single units of behavior and declaratively specified in OCL 2.0. For each use case, a use
case component is defined in order to show structural elements (domain concepts and UML 2.0
primitive types) necessary to fully specify the use case in OCL 2.0. At the design level, we offer
a component-based approach allowing to model the architecture of the architectural framework
with predefined architectural styles. This approach uses UML 2.0 composite structures as well
as an action language to define detailed design of architectural framework components. FIDJI’s
modeling language elements are chosen according to the following criteria: simplicity, concise-
ness, precision and flexibility.

Simplicity has determined the choice of our modeling constructs which stem from widely-used
notations (such as use cases to describe requirements) and well-known UML elements. This
facilitates a quick adoption of the method by software engineers. Furthermore, conciseness is

1.5. Contribution 7

achieved by rational selection of a small set of constructs.
The precision issue is tackled using the Object Constraint Language (OCL) which adds the rigor
of a logic language to UML 2.0 metamodeling constructs. In particular, OCL is used to clarify
analysis scenarios, declaratively specify analysis operations, define component interactions at
the design level and to define rules specifying how FIDJI’s metamodel shall be used.

As for flexibility, we have defined the following principles:

• Adaptable Behavior Definition: SPL asset behavioral definitions at the analysis and
design levels are controlled by the use of state variables which permit to enforce mandatory
behaviors while allowing a complete freedom to analysts and designers in other cases;

• Separate variability from asset models: Such a separation allows to focus on the
structure/behavior of the SPL assets and make asset reuse in novel ways easier;

• Defining SPL Boundaries by Restriction: Rather than striving to specify all the pos-
sible variants of SPL assets, we only focus on avoiding those that are considered “harmful”
for the SPL either for functional or technical reasons. Such restrictions are defined for
each architectural framework layer in a separate model and expressed in terms of OCL
constraints.

1.5.2 Application Engineering

As we outlined above, current approaches to SPL development partly fail to support the appli-
cation engineering process both in a flexible and supportive way. This thesis proposes to remedy
this issue via a generative mechanism.

Our approach to application engineering is founded on the instantiation of the architectural
framework defined during domain engineering. The architectural framework instantiation process
is supported by model transformations and have been designed to meet simplicity, flexibility and
methodological support requirements during application engineering.

We achieve the simplicity requirement via two means. First, we benefit from the separation
of variability description from asset modeling to allow a direct reuse of asset models. Second,
model transformations supporting architectural framework instantiation, declaratively defined in
OCL and packaged in libraries dedicated to the transformation (creation, destruction, update)
of the model elements conforming to the FIDJI metamodel, are combined in an imperative
setting to form an instantiation program. Both FIDJI tailored transformations and well-known
imperative syntax of the transformation language proposed contribute to an easier writing of
the instantiation program.

We ensure flexibility by letting the product engineers define their own instantiation programs
and thus create the products according to product customers’ needs rather than relying on rigid
domain assets and decision models proposed by a number of traditional SPL approaches. This
freedom of action is controlled by a set of instantiation constraints defined at the domain engi-
neering level in order to ensure that the product to be built observes SPL boundaries. In fact,
variability resolution simply consists in validating the instantiation program against instantia-
tion constraints.

8 1. Introduction

Finally, we provide a method to assist developers in the instantiation of the architectural frame-
work. This is a waterfall process that defines, for each of the architectural framework layers,
tasks that have to be completed in order to construct product models for these layers as well
as how transitions can be made between the different application models (analysis and design)
according to the architectural framework layers.

1.6 Document Organization

This dissertation is divided in three parts; the first (chapters 2 and 3) is devoted to the basic
concepts pertaining to the FIDJI method; the second one (chapters 4 and 5) the method in a
detailed manner, while the third part (chapter 6) illustrates FIDJI in practice. Finally, the last
part (chapters 7 and 8) concludes the thesis and discusses some open research questions related
to the FIDJI method. An overview of each chapter is given below.

Chapter 2 sets out the main concepts (such as object-oriented frameworks, MDE, software prod-
uct lines) this thesis relies upon as well as development methods that inspired the FIDJI method.

Chapter 3 contains a high-level description of the contribution brought by the FIDJI method.
Firstly, the notion of architectural framework is defined. Then, a general overview of the method
is given, highlighting its objectives and the general instantiation process of an architectural
framework.

Chapter 4 delves deeper into FIDJI requirements elicitation and analysis phases. It is divided
into three parts:

• The first part defines a template for the description of software product lines at the require-
ments elicitation level. This template is based on the documentation of domain concepts
used and use cases defining the functionalities of the SPL members. A mechanism for
documenting commonalities and variabilities is also provided as well as a set of simple
methodological tips to write and validate SPL descriptions;

• The second part defines the analysis models proposed by the method. It explains how
domain concepts can be precisely defined in terms of UML classes and use cases enriched
with UML component diagrams and OCL expressions for a detailed view on the scenarios
available to SPL members. It also introduces state variables as the key notion to ensure
flexibility in the elaboration of SPL scenarios;

• Finally, the last part is dedicated to the methodological rules governing both the elabo-
ration and use of the FIDJI requirements elicitation and analysis models as well as the
activities required in order to instantiate the analysis layer of the architectural framework
thereby deriving the analysis of SPL members.

Chapter 5 delineates the FIDJI design phase. In particular, it shows how UML 2.0 constructs
can be used to describe the software architecture of an architectural framework according to
styles and how to its design is to be detailed in terms of internal structures and behavioral
models. We also describe the architectural framework instantiation process at this level and
how traceability with the analysis phase is achieved.

1.6. Document Organization 9

Chapter 6 illustrates the FIDJI method in practice. A case study belonging to the e-commerce
domain details both models and method usage; in particular, we demonstrate concretely how
the product is derived using model transformations and architectural framework instantiation
constraints.

The final part of the thesis concludes and outlines future work; Chapter 7 concludes the disser-
tation and Chapter 8 presents open challenges related to the FIDJI approach and their possible
solutions. This includes providing dedicated tool support for modeling and transforming FIDJI
models, formalization and perspectives on software product line testing and evolution.

10 1. Introduction

Part I

CONCEPTS

2. BACKGROUND

Abstract

In this chapter we explore the various innovations that have transformed the soft-
ware engineering field over the last years. These innovations offer the opportunity
to present both concepts and related work upon which FIDJI is based. Section 2.1
explains how models can be used to overcome complexity and to reduce development
time thanks to transformations. Section 2.2 sketches the latest constructs of the Uni-
fied Modeling Language (UML), now in its version 2.0, which will be used as a base
for FIDJI models. Section 2.4 describes the concepts and current approaches to prod-
uct line development and Section 2.5 advocates frameworks as a natural approach to
support product lines. Finally, Section 2.6 describes development methods exploit-
ing the aforementioned innovations and which have strongly influenced the FIDJI
process.

2.1 Model Driven Engineering

In this Section, we discuss the notion of “Model Driven Engineering” (MDE) [Ken02] 1 as a
software development approach that is based on two main “pillars”: models and transformation.

2.1.1 On the Power of Models

We mentioned in the introduction that one of the toughest challenges for the software engineer-
ing community is the inherent complexity of modern software systems. As noted in [FPB87,
GSCK04], there are two types of complexity:

• Essential Complexity: essential complexity belongs to the problem being solved; it
is related to the number of features used to analyze the problem and the interactions
among them. As essential complexity is inherent to the problem, it cannot be reduced or
eliminated. However, knowledge in the problem area helps to describe the problem more
easily as we will see in Section 2.4;

• Accidental Complexity: accidental complexity is related to the solution space; it is
dependent on the number of artifacts (code, configuration files, external software such
databases etc.) that have to be composed together for the implemented software to solve
the problem. Accidental complexity is highly dependent on the technology used to imple-
ment the solution: for instance component technologies such as J2EE [Mic05] require the

1 We define this notion in its general acceptation and independently of any standard/trademark. See “MDE
Flavors” for an overview of specific MDE approaches. Model Driven Software Development (MDSD) and
Model Driven Development (MDD) are also used as synonyms even if the latter has a more industrial and
“OMG-based” connotation.

14 2. Background

creation of several interfaces in order to ensure the correct management of components
within the application server or assembly languages which may turn out to be impractical
to implement graphical user interfaces. Therefore, accidental complexity can be efficiently
faced by making the appropriate choices concerning techniques used to develop software.

In both cases, complexity is generated by the great number of elements and their cross-cutting
links existing either in the problem space or the solution space. In order to be manageable,
we need to reduce this number of elements and focus on the important points rather than de-
tails. This is exactly the purpose of abstraction [GW92]: “abstraction is the mapping from
one representation of a problem to another which preserves certain desirable properties and
which reduces complexity”. In the solution space, abstractions have been used in the field of
programming languages [Sha84] ranging from assembly languages — which in the 1950’s gave
a simpler view on machine code by organizing it via mnemonic names rather than operation
codes — to object-oriented languages that meaningfully help the programmer to organize both
structural and behavioral information constituting software. In the problem space, abstractions
have been embedded in formal specification languages; examples of such abstractions are sets
(VDM [Jon86], Z [Spi92]) or abstract data types which can be described via abstract machines
(B [Abr96]) or algebraic specifications (CO-OPN/2 [Bib97], CASL [Egi02]).

In software engineering, an approach, focused on providing ways to effectively represent, define
and use abstractions for any part of a software system, is centered on the use of models. Several
definitions of the notion of model have been given; in [OMG05f], a model “is an abstraction
of the physical system, with a certain purpose”, in [Sei03], a model “is a set of statements
about some system under study (SUS)”, finally Bézivin and Gerbé state that “A model is a
simplification of a system built with an intended goal in mind” [BG01]. We believe that each
of these definitions captures only one aspect of the notion of model and this notion should have
a broader interpretation. For example, we share Favre’s critical view [Fav04b] about the first
definition; a system does not need to be physical to be modeled, other system sorts can be
considered and, in this dissertation, we will consider distributed software systems which are non
physical. The second definition interprets a statement as “some expression about the SUS that
may be considered true or false” which we again find a bit too restrictive so we will consider
any expression and not only boolean ones. The last definition considers “simplification” and
“abstraction” as synonymous and imposes that a model answers the same questions as the
system. In fact, the set of questions addressable by a model is necessarily a subset of the
questions that can be asked to the actual system as the model abstracts some details; this
abstraction is done with a certain intent (we will call it purpose), for example to describe the
static organization of the system. As a result we give our view on what a model is, which is in
essence a combination of the aforementioned definitions:

Definition 1 (Model) A model is a set of statements defining an abstraction of a system (or
the problem addressed by that system) under study and fulfilling a particular purpose.

As noted by Bézivin [Béz05], models have been used for ages in various scientific disciplines
including biology, economy, house building or geography in which the use of maps is common
practice.
The set of statements expressed in a model typically uses a set of predefined modeling con-
structs and constraints restricting statement usage. It is the role of a metamodel to define these
constructs (i.e. their abstract syntax) and constraints; without a metamodel, models cannot
be built so that they can be validated or processed by tools. For example, the JAVA language

2.1. Model Driven Engineering 15

specification [GJSB05] acts as a metamodel; it describes how all JAVA programs (playing the
role of models here) have to be written to be valid and transformed in bytecode. According to
our definition of model, a metamodel can be defined as follows:

Definition 2 (Metamodel) A metamodel is a model whose modeled system/problem under
study is a set of models and whose purpose is the definition of their abstract syntax.

Relationships between a system, its representation as a model and the metamodel have been
studied in [Fav04a, BBB+05] and summarized in Figure 2.1:

• µ: Designates the “is a model of” relationship. This characterizes the mapping between
the system (“the reality”) and its abstraction defined in the model,

• ∈: Is the classical “belongs to” relationship used in set theory,

• χ: This relationship indicates a conformity between a model and its metamodel. A model
conforms to its metamodel if and only if it uses the constructs defined by the metamodel
and it satisfies the guidelines and constraints applied to them. Or, to put it differently,
a model conforms to to a metamodel if and only if it belongs to the set of models this
metamodel is a model of.

Set of
Models

Metamodel µ

Model

System Under Study

Fig. 2.1: Relationships between Model, Metamodel and System

It should be noted that since metamodels are models, they conform to metamodels (meta-
metamodels, indeed) and we can recursively form a hierarchy of models in which each model

16 2. Background

plays the role of a metamodel for a set of models and vice versa. There is no universal rule which
specifies where this hierarchy should be stopped, hence modeling language designers provide the
number of levels they find useful.

Simply providing a metamodel is not sufficient to use models; it also needed to describe what is
the meaning of the individual metamodel constructs as well as their composition. This is the role
of semantics to provide this information. Actually, as explained by Harel and Rumpe [HR04],
models semantics is defined by providing a mapping between of the syntactical constructs into
a semantic domain. For example, to provide a semantics for the following statement “2+2”,
it is necessary to map “2” to to the semantics domain of natural numbers and “+” as the
function returning the sum (in standard arithmetics) of two naturals. We need this informa-
tion to be able to interpret model statements for any useful purpose (here computing the result).

As we have already seen, both a metamodel and its associated semantics are required to fully
build, validate and understand models. In the following, we will call modeling language de-
scriptions that give such information. Depending on their purposes, modeling languages may
propose textual or graphical constructs which are formally defined (formal syntax and semantics)
or semi-formally defined (well-defined syntax but semantics defined in natural language). The
first category is well adapted for reasoning (proofs, model checking etc.) and code generation.
The second category is more accessible (as mathematical skills are required to understand them)
and yielded general purpose modeling languages such as UML [OMG05f, OMG05d] that will be
described in Section 2.2. This semi-formal positioning of the modeling approach is the one that
has been chosen for the FIDJI methodology and will be further discussed in Chapter 3.

Models are useful in themselves to describe systems by abstracting them and focusing on some
of their aspects. However, alone, they do not distinguish from the current practice for doc-
umenting software systems. Founding a software development approach centered on models
implies that they are not only considered as description artifacts but that they are also used
for its construction; models should be treated as first-class citizens [BFJ+03]. Tough, models
are not software systems; they need to be processed by computer-based tools in order to derive
other useful models and some of the artifacts composing a real software system. The ability to
control this generative process is called model transformation and is at the heart of model-driven
processes [SK03, GLR+02].

2.1.2 Model Transformation

According to Kleppe et al. [KBW03] the concept of model transformation can be defined as
follows: “A transformation is the automatic generation of a target model from a source model,
according to a transformation definition. A transformation definition is a set of transformation
rules that together describe how a model in the source language can be transformed into a model
in the target language. A transformation rule is a description of how one or more constructs
in the source language can be transformed into one or more constructs in the target language.”
Here, it could be noticed, as stated in [MCG04], that a transformation definition may involve
several source models and/or target models either to perform model merging (several source
models and one target model) or generate multiple models from one (which is quite current
when we generate low level artifacts from higher level ones). We give the following definitions:

Definition 3 ((model) transformation) A transformation is a model characterizing the

2.1. Model Driven Engineering 17

automatic generation of one or more target models from one or more source models.

Definition 4 (transformation operation) A transformation operation consists in
describing how one or more constructs in the source language can be transformed into one or
more constructs in the target language.

Definition 5 (transformation definition) A transformation definition is a set of
transformation operations, assembled together in accordance with a particular transformation
language, which describe how one or more source models are transformed into one or more
target models.

Definition 6 (transformation language) A transformation language is a modeling language
for transformation definitions.

Figure 2.2 summarizes model transformation concepts. Over the years, a number of model
transformations approaches have been developed and several taxonomies have been proposed to
organize them [SK03, MCG04, CH06]. Our aim here is not to detail all these taxonomies but
to provide a coarse description of the various model transformation approaches.

Firstly, model transformations vary in their support for different source and target languages.
Endogenous transformations are processing models defined with the same modeling language
while exogenous transformations link different source and target languages. Another distinction
that should be made is between vertical and horizontal transformations: the former processes
models at different abstraction levels (e.g. consider a transformation that transforms a design
model into code). The latter operates at the same abstraction level (refactoring is a typical exam-
ple). As noted by Mens et al. [MCG04], there is no correlation between endogenous/exogenous
and vertical/horizontal; we can change the abstraction level within the same language (refine-
ment) and keep the same abstraction level while changing language (language translation).

Secondly, model transformations vary in the approach followed by the language in which these
transformations are defined. The three types of approaches declarative, imperative and hybrid.

Declarative approaches to model transformation are based on the following principle: trans-
formation rules are composed of two main parts; Left Hand-Side (LHS) and Right-Hand Side
(RHS). The LHS describes the elements of the source language (that need to be bound to specific
model elements while applying a concrete transformation) which will be processed by the rule.
The RHS describes the elements that will replace in the target language the ones defined in the
LHS. This category is supported by three mechanisms:

• Functional programming: Any transformation can be regarded as function that pro-
duces some result from some input. There are few approaches supporting this mechanism,
including UMLAUT [HJGP99] which has been discontinued for more imperative trans-
formation approaches and metamodel transformation experiments with F# [BCRP05],
a functional language inspired from Caml [Ler05] and ported to the Microsoft’s .NET
platform [Mic06a];

18 2. Background

• Logic programming: Logic programming languages have interesting functionalities with
respect to model transformation, such as query mechanisms, backtracking or constraint
propagation. Logic programming-based approaches define transformations in terms of
formulas satisfaction. If source model elements can satisfy premises (LHS) of a set of for-
mulas, they are matched and processed so that they comply with the logical consequences
(RHS) of these formulas. General purpose logic languages such as PROLOG have been
used [Whi02, GLR+02] but some approaches [PVJ02, CMSD04] uses the Object Con-
straint Language (OCL) [OMG05e] (see Section 2.2.6) to specify model transformation
(see Section 2.2) in a declarative manner 2;

• Graph transformation: Graph transformation approaches follow a scheme similar to
logic programming but use graphs instead of formulas; the binding of the LHS is based
on graph pattern matching and matched elements are replaced by the graph defined in
the RHS part of the rule. Graph transformation has a well-founded theoretical back-
ground [Roz97] and several implementations exist both in academics and industry; ATOM3

[dLV02], VIATRA2 [BV06], FUJABA [NNZ00], BOTL [BM03], MOLA [KBC05] and
GREAT [AKL03] to name but a few.

Declarative approaches have sound theoretical bases (lambda calculus for functional program-
ming, first-order logic or graph theory) and some of them are now mature (graph transformation
especially). However, two issues arise with regard to declarative approaches. First, declarative
approaches are usually non-deterministic; several parts may appear to match the LHS and, by
default, transformation rules can be executed in any order. Graph transformation approaches
(FUJABA, MOLA, VIATRA, GREAT) have been complemented with means for defining trans-
formation sequencing visually. However, they do not scale properly in the case when transfor-
mation rules have to be combined in nested loops. The second issue is related with the technical
skills required to define transformations; because of their theoretical background, functional
and logic programming are not very popular amongst software engineers who tend to prefer
object-oriented and imperative languages.

Imperative approaches concentrate on building the target model (or language) rather than char-
acterizing it. This involves writing transformations in general purpose programming languages
and libraries provided by tool vendors; Compuware OptimalJ [Com06] or IBM Rational Archi-
tect [IBM06] are examples of such approaches. Other approaches include the addition of imper-
ative constructs to OCL; MTL [VJ04] and its successor Kermeta [MFJ05] fall in this category.
Imperative approaches are generally more accessible to software engineers since they use a sim-
ilar syntax as the programming languages they know. However, general purpose programming
languages sometimes provide too low-level constructs for model manipulation and transforma-
tion, yielding long transformation programs. Imperative OCL-based approaches cope with this
problem since OCL natively supports model navigation.

Finally, recent model transformation languages recognizing the qualities and drawbacks of both
declarative and imperative approaches propose to mix the above categories. Much effort has
been devoted to supporting declarative and imperative styles in the Object Management Group
(OMG) standard for model transformation called Query/View/Transformations (QVT being
shortened for) [OMG05b] (see Section 2.2). Indeed, hybrid rules permit to add imperative code
in the RHS to cope with the issue of specifying declaratively the target model completely. The

2 Note that in this case, OCL needs to be combined with a logical language such as PROLOG or supported in
a graph transformation engine to be implemented declaratively. Otherwise it should be seen as “sugar” at
the syntactic level.

2.1. Model Driven Engineering 19

hybrid approach to model transformation lies at the heart of the FIDJI approach for product
derivation (see Section 2.4) and will be presented in Chapter 3.

Transformation
Language

Transformation
Definition

Source
Metamodel

Target
Metamodel

TransformationSource
Model

Target
Model

Transformation
Engine

Conforms to Conforms to Conforms to

Conforms to

Executes

Reads Writes

Refers to Refers to

Fig. 2.2: Model Transformation Concepts (adapted from [CH06])

20 2. Background

2.1.3 MDE Approaches

In the following we summarize some of the most popular model driven engineering approaches
which have had a significant impact with regard to popularizing MDE concepts in the software
engineering field.

Model Integrated Computing (MIC)

Introduced in 1997 by Sztipanovits et al [SK97], MIC is centered on the development of Do-
main Specific Modeling Languages (DSML); these languages define modeling constructs that
are tailored to the specific needs of a particular domain. For example, a car manufacturer may
be interested in modeling the assembly process in order to optimize plant throughput or mil-
itary applications that must comply with hard real-time constraints. The MIC comprises the
following steps:

• Designing a Domain Specific Modeling Language (DSML): this step allows engineers to
create a language that is tailored to the specific needs of the application domain. Tools
able to interpret instances of this language (i.e. models of the application) must also be
created;

• This language is then used to construct domain models of the application;

• Lastly, the transformation tool interprets domain models to build executable models for a
specific target platform,

This approach is currently supported by a modeling environment [AKL03] including a tool for
designing DSMLs (GME) and a model transformation engine based on graph transformations
(GREAT).
Another approach builds on the same idea: multi-paradigm modeling. It consists in integrat-
ing different modeling languages in order to provide an accurate description of complex sys-
tems and simulate them. The approach is supported by the ATOM3 graph transformation
engine [VdLM02].

Software Factories

“Software Factories” [GSCK04] represent the Microsoft’s view on MDE. They are built upon
the “factory” metaphor in which development can be industrialized using a well-organized chain
of software development tools enabling product generation by adapting and assembling stan-
dardized parts. A software factory use a combination of DSMLs to model systems at various
abstraction levels and provide transformations between these levels. Naturally, the languages
and tools required for efficient development vary depending on the application type considered;
this is why software factories adopt a development approach based on software product lines
(see Section 2.4). A particular software factory will be tailored to support the development of a
well-identified set of products.

All the activities of a software factory are defined with respect to what is called a software factory
schema. A software factory schema is a directed graph where the nodes represent particular
aspects (called viewpoints) of the system to be modeled and edges represent the transformations

2.1. Model Driven Engineering 21

occuring between them. In particular, viewpoints provide the definition of the DSMLs to be
used to create model of the viewpoints, development processes supporting model creation, model
refactoring patterns, constraints imposed by other viewpoints (that help ensuring consistency
between viewpoints) and finally any artifact assisting the developer in the implementation of
models based on viewpoints. The transformations between viewpoints are mostly supported
in an hybrid or imperative way through templates, recipes and wizards that are integrated
as extensions to the Visual Studio .NET 2005 CASE tool [Mic06b]. Though appealing, the
definition of a different language to model each particular concern of a system raises problems
in terms of consistency, especially with respect to semantics [BDP07].

Model Driven Architecture (MDA)

Model Driven Architecture was introduced in 2000 by the OMG [SO00] in order to cope with
the so-called “middleware proliferation problem”: various middleware implementations based on
different component technologies (.NET [Mic06a, RR02], J2EE [Sun06] and CORBA [OMG06a])
are available today. The choice for a particular technology is not immutable and some environ-
mental changes may require that an application be moved from one platform to another, gener-
ating high maintenance and evolution costs and affecting design decisions made for a particular
platform. According to MDA terminology, a platform is “a set of subsystems and technologies
that provide a coherent set of functionality through interfaces and specified usage patterns,
which any application supported by that platform can use without concern for the details of
how the functionality provided by the platform is implemented” [OMG03b]. A platform can
be generic, e.g. a platform providing object orientation, or specific, such as CORBA or .NET.
MDA proposes a three-layer modeling architecture applying a strict separation of concerns in
order to capitalize design decisions at a higher abstraction level:

• CIM: Computation Independent Model. This model is used to define the business concepts
that are currently in place within a particular company and which will be supported by the
software to develop. Thus, it is not a model of the software itself but it enables to elicit its
requirements by providing information on its environment and explicit shared vocabulary
useful in the domain;

• PIM: Platform Independent Model. This model gives the description of the working
system while abstracting technology-related issues. This model is hence designed to be
reusable amongst several platforms;

• Platform Model: Details a particular platform in order to implement applications with
or on top of it.

• PSM: Platform Specific Model. The platform specific model gives details of the executable
system. This is the result of one or more transformation(s) taking a PIM and a platform
model as inputs.

The above models are intended to be implemented with OMG standards including UML [OMG05f]
(see Chapter 2.2) that acts as general purpose modeling notation (possibly extended to describe
PSMs) XMI [OMG05a] to enable model interoperability amongst various CASE tools, and the
recently adopted QVT [OMG05b] for model transformations.

22 2. Background

2.1.4 Model Traceability

The complete description of a software system may comprise numerous models, expressed in
different languages, covering all the phases of its development from early requirements (natural
language documents) to implementation (code). When developing a system, it is important to
provide information about how these models relate to each other and means to follow one of
system’s features from its description as a requirement to its implementation. Such means is
known as Traceability [Pal97]. Thus, traceability amongst models is essential to ensure that
design artifacts validate their specifications to preserve consistency amongst models and to
support software evolution.
Traceability approaches use three techniques: links, rules and model transformation.

Links

In [RJ01], Ramesh and Jarke performed an in-depth analysis of requirements traceability prac-
tice across several companies. In particular, they distinguish low-end users who are primarily
interested in tracing requirements for compliance verification and change management from
high-end ones who capture discussions, decisions and rationale relevant for requirements specifi-
cations. Based on this distinction, they provided metamodels for both kinds of users. In [Let02],
Letelier proposes a metamodeling approach for requirements traceability based on UML. This
metamodel allows to relate requirements (either in textual form or as UML use cases) to test
specifications or other UML models. Traceability links are typed and support the dimensions
of traceability identified by Ramesh and Jarke (requirements, rationale, allocation and test);
modifies and responsibleOf identify the stakeholder in charge of the element, validatedBy
attaches a requirement specification to a test specification, while verifiedBy relates a test spec-
ification to a UML specification that should comply to this test. Finally, assignedTo determines
the UML model that satisfies a requirement. Other metamodels for traceability have also been
proposed [Dic02, Kel05].

Pons and Kustsche [PK04] propose an approach focused on formalizing traceability links in the
context of refinement of UML models. Their approach applies to UML classes and use cases.
They basically consider two types of links: specialization and decomposition. Links formalization
is carried out by means of OCL pre/postconditions (see Section 2.2) and supported by a case
tool embedded in the Eclipse environment.

Rules

In [ZSPMK02], a rule-based approach for relating commercial texts, use case structured texts,
object models is presented. Rules are described in XML [BPSM+06] and are used to automati-
cally generate traceability links that match these rules. Traceability link types permit to match
overlapping elements (in relation to the same feature), to create a commercial statement via use
cases or to require a particular feature in the object model.
In [PG96], a formal graph-based approach is embedded in a tool called TOOR. In contrast
with commercial requirements tracing tools [Tel07, IBM07], TOOR allow the user to define an
axiomatic semantics with new link types.

2.1. Model Driven Engineering 23

Model Transformation

Model transformation is another means to ensure traceability amongst evolving models. In [Jou05],
Jouault distinguished internal traceability from external one. Internal traceability is established
in order to perform the actual transformation and does not persist after its execution. External
traceability is explicitly kept after the transformation has been completted. He then provided
a mechanism to generate a traceability model (conforming to a simple metamodel) by means
of additional rules expressed in the ATL [JK05] transformation language. QVT [OMG05b] (see
Section 2.2) models traceability implicitly at the declarative level and in terms of trace classes
at the imperative level. More complete discussions about traceability and MDE can be found
in [CH06, ARNRSG06].

2.1.5 Model Consistency

As we have seen, models are used to describe a particular viewpoint (this will be discussed
further in Section 2.3) or aspect of a system and in dependence thereon, constructs offered by
its metamodel may vary. DSMLs have promoted this idea to its extremes but even in approaches
where one single language is used, several viewpoints have to be modeled (structural, behavioral,
physical etc.). In such a context, the problem of consistency inside and between models is
unavoidable. The concept of consistency has its roots in formal methods and can be defined as
the fact that all statements regarding the system are true at the same time or, more simply,
there is no contradiction.

Consistency Classification

In [EB04], Elaasar and Briand provided a classification of consistency types. They identified the
following categories:

• Syntax vs. Semantics: Syntactic rules can be expressed in a formal language relating
metamodel elements. Semantic rules refer to the meaning of elements. As noted in [SC02],
a syntactic rule has a meaning that is induced by the semantics of the language primitives
and their composition (which may be formal if the syntactic rule is expressed in a formal
language);

• Static vs. Dynamic: Static rules can be verified without executing or interpreting the
model, otherwise they are dynamic;

• Intra-model vs. Inter-model: Intra-model rules refer to the syntax of model elements
with respect to their metamodel definitions (conformance relationship). Inter-model syn-
tactic rules are defined between different models and can take the form of traceability links
or model transformations. Naturally, the same distinction can be made at the semantic
level;

• Multi-level: Consistency rules can also be organized according to their source abstraction
level: modeling language syntax and semantics, extension of the language, methodology,
etc.;

• Nature of Error: Finally, this last category deals with the different issues covered by
consistency rules. It can be a contradiction, an incompleteness or an ambiguity.

24 2. Background

Detection and Resolution of Inconsistencies

Syntactic rules need to be defined to automatically detect and resolve inconsistencies in models.
Three paths can be followed:

• Formalizing Semantics: As we have seen, semi-formal languages have a well-defined
syntax but variable or imprecise semantics. In order to express consistency rules with
more accuracy, (a part of) the language semantics can be formalized. However, rules are
highly dependent on formalization completeness and on the semantics used;

• Using a Constraint Language: Another approach consists in using a formal constraint
language able to express consistency rules. This allows to rely on the semantics provided
by this formal constraint language for the purpose of the consistency rules and does not
force a complete formalization of the modeling language to which consistency rules apply;

• Translating Models in a Formal Language: The last path to follow consists in trans-
lating models conforming to the semi-formal language into formal models and in expressing
rules as described in the first path.

In the FIDJI method, our approach to model consistency is based on the second category for its
simplicity and flexibility. Our consistency rules are syntactic (expressed in OCL) are relevant
for intra/inter models, and cover various levels such as the extension of the UML metamodel
on which FIDJI relies and the method. In addition, some consistency rules are also defined in
order to ensure traceability between FIDJI models. We will detail them in dedicated sections of
Chapters 4 and 5.

2.1.6 Model Impact Analysis

Impact analysis has been defined by Bohner et al. [BA96] as “the process of identifying the
potential consequences (side-effects) of a change, and estimating what needs to be modified to
accomplish a change”. In [BLY06], Briand et al. introduced two categories of impact analy-
sis: Horizontal Impact Analysis (HIA) and Vertical Impact Analysis (VIA). HIA corresponds
to changes at a particular abstraction level and has been addressed by the authors in earlier
works [BLO03, BLOS06] while VIA is focused on impact analysis across different abstraction
levels. HIA and VIA are related to each other; a horizontal change performed on a particular
abstraction level impacts elements both at the same level and at a lower level.

Naturally, to be able to estimate the consequences of a model transformation applying to an
element, impacted elements must be identifiable. Consequently, model traceability is a prereq-
uisite to model impact analysis. In order to support VIA, Briand et al. have first introduced a
new metamodel for traceability in UML. This metamodel particularly defines the Refinement
metaclass which is central to the vertical impact analysis reasoning. Refinements are conforming
to the template consisting of a general description of the refinement and user intent, a list of
required atomic changes, constraints and traceability links in OCL. The impact analysis strategy
is as follows: it uses two models (the original and the refined one), identifies the refinements on
the basis of the differences between the two models and uses the definition of traceability links
in the refinement templates to generate the list of impacted model elements. A similar approach
is applied to perform HIA.

2.1. Model Driven Engineering 25

However it shall be noted that both HIA and VIA depend on the taxonomy of refinement or
changes; therefore thy must be applied on a reasonable number of case studies in order to obtain
an efficient set of changes that can be applied to a given model. Furthermore, the set containing
all the impacted elements within a model may be huge; they can be grouped according to a
notion of distance [BLOS06].

The FIDJI method focuses on controlling HIA during the product derivation process via con-
straints. These constraints inhibit product derivations whose an impact on the models offered
by the SPL is too important, or represent consistency rules that have to be satisfied by the
newly derived models. We will give more details on HIA in Chapters 4 and 5.

26 2. Background

2.2 Unified Modeling Language

In this Section, we introduce the Unified Modeling Language (UML) [OMG05f], which is the
most widely used modeling language in the software engineering community. We also describe
the Object Constraint Language [OMG05e] (OCL) which allows to clarify UML semantics.

2.2.1 Introduction

The UML is the result of a standardization effort that begun in 1994 when Grady Booch and Jim
Rumbaugh started to unify their respective object-oriented modeling methods: Booch [Boo94]
and Object Modeling Technique (OMT) [RBP+91]. Later in 1995, Ivar Jacobson added his work
on Object Oriented Software Engineering (OOSE) [JCJO92] method. This standardization
effort was motivated by the desire to federate the development of these notations that were
independently evolving towards the same ideas and trying to stabilize the marketplace in order
to improve tool support. The first unified versions — UML 0.9 and 0.91 — were released in
1996, and under the aegis of the Object Management Group (OMG), a request for proposal was
issued. Finally, at the end of 1997, the first UML specification (1.0) was adopted by the OMG.
Since, it has evolved along several revisions into the current 2.1.1 [OMG07b] version 3 adopted
in February 2007. In this section, we will focus on this last version.

2.2.2 Metamodel

The UML specification is based on a four-layer object-oriented metamodeling hierarchy which
is depicted in Figure 2.3:

• M3 or MOF: The M3 layer is called metametamodel. The Meta-Object Facility (MOF)
[OMG06b] is a model manipulation framework designed to define modeling languages.
The MOF is comprised of a set of modeling constructs shared by a variety of languages
(CWM [OMG03a],UML) and a library of model manipulation operations facilitating the
definition of new languages and model handling in CASE tools;

• M2: The M2 layer includes the UML metamodel. It is comprised of two parts, i.e. the
infrastructure [OMG07a] whose constructs are directly adapted from the MOF and the
superstructure embedding concrete syntax of constructs used to form actual application
models;

• M1: The M1 layer is composed of models defined by users;

• M0: M0 elements are objects as present in the memory of a computer running the system.

Note instanceOf relationships between layers; indeed, they correspond to a particular example
of the χ relationship (see Section 2.1) since an instance of an element belonging to a particular
layer has to conform to its metaelement (characteristics, properties, constraints...) defined in
the immediately upper layer. Throughout this dissertation, we will be particularly interested in
using and extending metaclasses at the M2 level.

3 Throughout this dissertation, we refer to “UML 2” when speaking about features that are common to all
versions of the specification since the 2.0 release and to “UML 1.x” when concerning previous revisions.
Referring to the language in the general, the term UML will be used. When we need to refer to a construct
in a specific version, we mention its version number explicitly.

2.2. Unified Modeling Language 27

Fig. 2.3: UML Four-Layer Metamodeling Hierarchy (from [OMG07a])

2.2.3 Overview

The UML 2 specification is comprised of loosely related packages of constructs focusing on
a particular aspect of the system definition. This package decomposition aims at providing
modularity to modelers since they only have to focus on the constructs in one given package —
and possibly to import depending packages — according to their needs. Figure 2.4 gives the top
level packages of the specification. Some of the most important ones are presented below:

• Classes: This package contains the most basic constructs of the language. In particular,
it includes Class and Classifier metaclasses as the fundamental modeling concepts in
UML and all the necessary constructs to form an object-oriented hierarchy (whole/part
relationship, inheritance, etc.);

• Use Cases: This package provides the necessary concepts to model use cases [JCJO92]
in UML and their relationships (see Section 2.2.5 below);

• Components: The “Components” package extends and improves the UML 1.x notion of
Component. More specifically, it permits to define systems at a high abstraction level as a
“wiring” of components connected together via provided and required interfaces;

28 2. Background

• Composite Structures: This package extends the above notion of components by offer-
ing them the possibility to own an internal structure detailing their structure and behavior;

• Interactions: This package provides constructs to model information exchange between
model elements. The most used constructs are probably those allowing to define sequence
diagrams which are a sophisticated version of Message Sequence Charts (MSCs) [IT04].

Fig. 2.4: UML 2.1.1 Packages (from [OMG07a])

In the following, we describe the UML 2 metaclasses that are of interest for the FIDJI method
developed in this thesis. We will discuss them in more detail later when needed.

2.2.4 Structural Modeling

As mentioned above, constructs for structural modeling are defined in the Classes, Components
and Composite structures packages. Constructs contained in the Classes package are used
to define class diagrams, which are widely known and used to design systems therefore, these
constructs will not be detailed here. Instead, we prefer to focus on the innovations offered
by UML 2 to model software architectures and in particular to the component-and-connector
viewpoint, which will be presented in Section 2.3:

• Components: Components are specializations of classes and therefore have attributes and
operations, but are also associated with provided and required interfaces. Components are
also allowed to have an internal structure comprised of properties that in turn describe
sets of instances of particular classes. Finally, components may own ports that formalize
their interaction points;

2.2. Unified Modeling Language 29

• Connectors: Connectors which are either assembly connectors that connect the required
interface of a first component to the provided interface of a second component, or delegation
connectors that link the ports of a component to its internal parts;

• Interfaces: Interfaces can be considered as contracts that components must comply with.
An interface is either provided or required. It is provided when it describes a set of func-
tionalities offered by a component. It is required when it describes a set of functionalities
that a component expects from its environment;

• Ports: Ports specify a distinct interaction point between the component it belongs to and
its environment or between the (behavior of the) component and its internal parts. Ports
may specify required and provided interfaces for the component in which they are defined.
A behavior port is a special port type that sends all the incoming requests to the classifier
in which the port resides, rather than to its internal parts;

• Classes: Classes represent the constituents which form the internal structure of compo-
nents. These are not used in general-purpose class diagrams, but in composite structure
diagrams, showing how the required and provided interfaces of a component delegate to
or from its internal parts via the corresponding ports. Usually, the composite structure
diagrams do not contain the classes themselves, but sets regrouping their instances in the
form of properties.

A significant part of the models offered by the FIDJI method is based either directly or indirectly
(by extending the metamodel, as specified in Section 2.2.7) on these constructs. Chapters 4 and 5
will define their purpose and use in detail.

2.2.5 Behavioral Modeling

The UML 2 specification offer a wide range of constructs for behavioral modeling which are
organized in the packages shown on Figure 2.5.

Use Cases

Use cases were introduced by Jacobson [JCJO92] in order to elicit software requirements in a
way that is meaningful for non-technical stakeholders. The main idea is to describe informally
the usage of the system with respect to a given goal. This usage is described in terms of in-
teractions (or scenarios specifying information exchanged) between one or more actors and the
system. We will describe in Section 2.4 how these scenarios can be captured in the context of
software product lines.

The UML notation focuses on the definition of actors, use case goals and relationships between
use cases. Figure 2.6 shows a concrete example. Use cases are represented by ovals in which
use case goals are given as a short active verb phrase. Actors are represented by stylized men
whose names refer to the roles they play in the use cases. Associations assign actors to multiple
use cases and define their multiplicities. Finally, relationships between use cases can be of the
following types:

• Extend: An extension is used when a behavior defined in a another use case can be added,
possibly conditionally, to a given use case. Use case extension is shown as an arrow with
the <<extend>> keyword;

30 2. Background

Fig. 2.5: UML Behavioral Packages

• Include: The inclusion relationship is used when the behavior of the included use case
is embedded in the behavior of the including use case. It is shown as an arrow with the
<<include>> keyword;

• Generalization: Generalization can be used between actors (with the same semantics as
that defined for classes) or between use cases, where elements of the general use case are
available to specify the behavior of each specific use case. It uses the same notation as for
generalization defined for structural elements, represented by a line with a hollow triangle
pointing on the general element.

FIDJI uses a restricted version of use case diagrams because of the unclear semantics of some
of its relationships. This will be discussed in Chapter 4.

Interactions

Interactions are used to define interprocess communication between structural elements (such
as classes or components). They may also be used to define scenarios for use cases. One key
construct to model interactions is Message. A message can refer to an operation call on a
class, data sent asynchronously (instances of Signal) or relate to the creation or destruction of
elements. Messages are defined between lifelines (instances of Lifeline metaclass) which rep-
resent individual participants in the interactions. Within an interaction, the message sequence

2.2. Unified Modeling Language 31

Fig. 2.6: Use Cases Diagram Example (Source: UML 2.0 Specification)

is of particular importance as it helps to understand the situation. For that reason, messages
are generally numbered or laid out in such a way that the message sequence appears clearly.
From the semantics perspective, UML 2 interaction can be formalized using a trace-based se-
mantics [Har03]. From the syntactic perspective, UML 2 offers two major diagrams to define
interactions: sequence diagrams and communication diagrams. Sequence diagrams are exten-
sions of Message Sequence Charts (MSC) [IT04]; in particular, a sequence diagram allows to
model variations in the message sequence via dedicated operators applying on the messages and
defined within an instance of CombinedFragment. These operators allow to model alternatives
and optional messages, loops, unauthorized messages, strict and weak sequencing and few oth-
ers. An example of such a construct is shown in Figure 2.7: depending on the value of variable
x, two message sequences are possible.

Communication diagrams (called collaboration diagrams in UML 1.x) can be thought as a sim-
plified form of sequence diagrams that do not use combined fragments. An example is shown
on Figure 2.8.

The UML 2 specification notices that, typically, interactions do not model the “complete story”.
Indeed, there are some legal traces that may not be contained in the interaction models. How-
ever, as stated in the specification, some projects require that all the traces be modeled, which
is unrealistic from our point of view. Furthermore, even though rich graphical notations for
scenarios such as those proposed by UML in sequence diagrams or Damm and Harel’s Life Se-
quence Charts (LSCs) [DH01] are expressive enough to precisely define the major interactions
(and undesired ones), provided notation is rather cumbersome in complex cases. These two
points have motivated our alternative approach to model interactions, which will be introduced
in Chapter 4.

32 2. Background

Fig. 2.7: A Sequence Diagram Example (From [OMG07b])

Fig. 2.8: A Communication Diagram Example (from [OMG07b])

State Machines

State machines are used to express the behavior a system part. They can also be used to define
the protocol (usage) of an entity by means of modeling its interface’s behavior. UML state

2.2. Unified Modeling Language 33

machines are derived from Harel’s statecharts formalism [Har87]. A state machine is a graph
in which nodes are called “states” (instance of the State metaclass) and whose directed edges
are formed with “transitions” (Transition’s instances) explaining how to switch from one state
to another. A state usually models a situation characterized by the satisfaction of a usually
implicit invariant-based condition. This invariant can be static such as the value of a variable
or dynamic such as the process of executing some behavior. There are two specific states: the
initial state which represents a starting point of the state machine — no incoming transition —
and the final state in which no more transitions are possible. The transition from one state to
another is caused by an event that can be associated with a guard condition (that is evaluated
before the transition is fired) and an expression defining the behavior to execute if the guard
evaluates to true.
Figure 2.9 depicts an example of state machine defining the behavior of a telephone. States
are shown as rounded rectangles while arrows represent transitions. The main state of the
telephone object, Active, is started when a user lifts the receiver and proceeds to DialTone
sub-state thanks to the transition that has been automatically fired from an initial sub-state
(filled dot). DialTone is a dynamic state and do/play dial tone indicates that the dial tone
should be played continuously until a digit is entered (dial digit(n)). There are two main
ways to exit from the Active state. The first one consists in using the terminate event which
proceeds to the final state of the whole state machine. The second one and the most common
simply consists in hanging up, then the telephone switches to the Idle state.

Fig. 2.9: A State Machine Diagram (from [OMG07b])

34 2. Background

In order to model how a classifier has to be used in a high-level fashion, a special kind of state
machines called protocol state machines have been defined. Their main difference with the clas-
sic state machines (qualified as behavioral) is that they do not model the internal effects when
transitions are fired.

State machines allows to fully model classifier behavior in UML and have a well-founded seman-
tics that is often defined in terms of finite state automata. However, more than communication
diagrams, state machines require to model quite exhaustively all the states and transitions be-
tween them, which can be a difficult task due to the number of states and transitions to consider.
They are also more demanding with regard to the skills required to carefully model them.

Actions

Actions are the most fundamental units of behavior in the UML 2 specification. An action takes
a set of inputs and transform it into a set of outputs. They are embedded in behaviors which
provide their executing context and inputs. Actions model either operation calls and signals sent
or read/write operations on UML features (variable assignment, etc.). The Actions package
includes the source constructs to define languages that enable UML models to be executable.
We will make use of such an action language in Chapter 5.

Activities

The Activities package focuses on providing constructs to model business processes. Activities
have, for a long time, been associated to state machines’ semantics. UML 2 provides a new
semantics for actions based on token passing. Still, activities and actions syntax contains some
commonalities. Activity diagrams describe the internal behavior of UML classifiers as a sequence
of activities (composed of lower level actions) coordinated in a procedural flow. Thus, they are
suitable to define algorithms in a high-level manner.
Figure 2.10 shows an activity diagram example concerning a reimbursement workflow; the path
through the workflow is determined via guard conditions on transitions. Unfilled white diamonds
show choices (if semantics in programming languages) and the vertical bar is used to denoted
forked outgoing edges (duplicate tokens).

Depicting a complex algorithm with an activity diagram can be quite fastidious. Therefore, in
the FIDJI method, we have chosen a textual format to define the behavior of design elements
(see “intra-component modeling” in Chapter 5).

2.2.6 Making the UML precise: OCL

Object Constraint Language [OMG05e](OCL) is a typed formal language influenced by the
IBM Syntropy method [CD94]. It has been developed in order to provide a means to define
constraints on UML models, which is less ambiguous than natural language and does not require
any mathematical knowledge. OCL is side-effect free; its expressions can only observe model
elements’ values, their evolution and messages exchanged between elements. Therefore it is not
a programming language that can be used to implement algorithms. However, it can be used to
specify assumptions holding at each state of the system thus clarifying its behavior. OCL can
be used for a wide range of purposes including:

2.2. Unified Modeling Language 35

Fig. 2.10: Activity Diagram for a Workflow (from [OMG07b])

• Structural Constraints: This is the most common application of OCL. Such constraints
are used in structural diagrams to define constraints on model elements (such as the
attribute age of the class Adult that cannot be below 18) or to specify guards in behavioral
diagrams and thus determine alternatives as part of a decision;

• Model Navigation and Query: Due to its alignment with the UML 2 metamodel and
its syntax inspired from SQL [CO93], OCL is a preferred language to retrieve access to
model elements in a model following paths determined by relationships;

• Behavior Specification: OCL allows to specify a behavior by defining a special type of
constraints on UML behavioral elements that must be satisfied before (preconditions) and
after (postconditions) its execution. As of the 2.0 version, it is also possible to include in
these expressions the set of messages (operations calls or asynchronous data) received by
a particular object. Thus, it is possible to model interactions between UML elements as
we will show in Chapter 5;

It should be noted that OCL is also used for its navigation and declarative behavior specification
abilities in model transformation languages such as ATL [JK05], KerMeta [MFJ05] and obviously
the QVT specification [OMG05b].

Context

All OCL expressions are attached to a UML model element providing the application context
of these expressions. This context is provided just after the keyword Context in the expression.
Hence, to limit the attribute age of class Adult instances, it should be written:
Context MyApp::Adult inv: self.age >= 18
MyApp designating the namespace (that is either the Package or Classifier containing the
context model element) in which the element is to be found. Expressions can also be defined in
a UML diagram; depending on the case tool used to define diagrams, there are various possible
notations. In general, expressions are bracketed (i.e. between { and }) either in a special

36 2. Background

placeholder in the model element or in a separate comment attached to the element. In both
cases, we do not have to make the context explicit since it is provided by the element to which
the constraint is attached.

Structural Constraints

Structural constraints are mainly used to define invariants. Invariants must be true for all the
instances of a Classifier during system operation. These constraints are qualified by the
keyword inv. The preceding paragraph showed an example of such an invariant definition. The
keyword self refers to the object designated by the context.

Model Navigation

OCL provides constructs to browse UML models by accessing to elements which follow the rela-
tionships they have with the context; associations between elements are treated the same way as
element properties (such as attributes for a class), by using the keyword “.”. As the navigation
over a model results in a collection of elements almost systematically, OCL includes a library of
operations to work with collections (-> should precede any invocation of such an operation):

Context MyPackage inv:
self.ownedMember->select(e|e.oclIsTypeOf(Class))->size()<= 10

This invariant prevents the class-typed contents of MyPackage from having a cardinality greater
than 10.

Behavior Specification

An element behavior can be specified in OCL by constraining the element state before and after
behavior execution. The global element state can be characterized either using its variable values
or with the messages received by the element. The pre keyword allows to list the constraints
that must be satisfied before the execution of a behavior so that the resulting behavior has
an interpretable meaning. The post keyword is following by assumptions about the changes
occurred after behavior execution:

Context MyInteger::divide(Integer a, Integer b):Integer
pre: b <> 0
post: result = a/b

In this case, the precondition prevents the denominator of the division operation from being
null. The postcondition states what the result should be (result refers to an operation result
and is of the same return type as that of the operation). If the operation being defined has
no-side effect — it is called a query operation — the keyword body can be used to define the
algorithm of the operation.

The second mechanism allows to model messages received by a given classifier. It is comprised
of two OCL operators ^ (spelled out as hasSent) and ^^ (spelled out as message and returning

2.2. Unified Modeling Language 37

instances of the special OCLMessage type). The first one refers to a particular message that has
been sent to a classifier:

Context Subject::hasChanged()
post:observer^update(?: Integer,?:Integer)

This postcondition evaluates to true of the message update has been sent to observer with two
parameters of type Integer. Parameters types are optional and can be used to disambiguate
the message if several operations update exist. The operator message is used to retrieve en
entire collection of message and to perform query on them:

Context Subject::hasChanged()
post:let mseq: Sequence(OCLMessage) = observer^^update(?: Integer,?:Integer) in
mseq->forAll(m|m.hasReturned())

This postcondition checks on all update messages that have been sent during the lifetime of
hasChanged() if they have finished their execution. OCL also provides the ability to express con-
dition on message return (such has the return value of an operation call) via the hasReturned()
operation offered by OCLMessage.

2.2.7 Profiles

We mentioned above that the design of UML 2 was driven by a need for modularity enabling
the modelers to focus on the relevant constructs rather than having to inherit from the whole
language. However, in certain situations, and despite the huge number of metaclasses offered by
the language, the latter needs to be extended. These situations typically include the description
of a particular platform (in the MDA sense) with which the modeled software will interact or
the specialization of the language constructs in order to support a particular method. The
OMG standard provides two manners to extend the UML. The first one consists in using MOF
mechanisms to add new metaclasses to the language, and is referred to as a “first-class” extension
mechanism. This approach has two main drawbacks. First of all, it is necessary to understand
the UML language as a whole in order to properly define the new metaclasses. Secondly, the
resulting language is a derivation of the original language which does not longer adhere to the
UML specification and is unlikely to be supported by CASE tools. The second approach to
UML extension is more “lightweight”: it consists in simply extending the existing metaclasses
via UML profiles [FV04] and [OMG07b] (Chapter 18). In the remainder we present the main
constructs used to define UML profiles.

Stereotypes

A stereotype is a metaclass that extends the existing metaclasses of the metamodel. It is a
specialization of Class from which it borrows the notation with the keyword <<stereotype>>
placed above its name. Moreover, a stereotype is related to the metaclass it extends via the
Extension construct which is a kind of Association. Figure 2.11 shows an example of such
an extension; the stereotype <<Bean>> will be applied to all the components (thanks the to
the required constraint, when the constraint is missing, the application of an instance of this

38 2. Background

stereotype on the instance of the extended metaclass is optional) defined at the model level (M1)
for which this profile is applied.

Fig. 2.11: Extension Example (from [OMG07b])

As any other kind of class, stereotypes may have properties. These properties are referred to as
tag definitions. At the model level, these properties are instantiated and are called tag values.

Constraints

In addition to stereotypes and tag definitions, constraints may be added to a profile. These
constraints typically enforce the restrictions to the metamodel defined by this profile. Pro-
file constraints may be expressed either in natural language or in OCL, though the latter is
preferable because of its precision and the possibility for these constraints to be enforced in
OCL-aware modeling tools. Constraints can refer to the stereotypes themselves or to the ex-
tended metaclasses; in order to identify the base metaclass in an OCL expression, Extension
instances respect a particular naming scheme for their roles: the metaclass end role name is
base_ followed by the metaclass name and the stereotype end role name is extension_ followed
by the stereotype name. Thus in the example depicted Figure 2.12, the fact that a Home interface
shall not have attributes would be expressed as follows:

Context Home inv no_att:
self.baseInterface.ownedAtrributes()->size()=0

Profile

All the elements constituting a full profile (stereotypes, tag definitions, constraints) are gath-
ered in a Profile which is a specialization of Package. A profile is always linked to a reference
metamodel such as UML; indeed, profiles are just extensions of the base metamodel and cannot
modify it differently than by defining stereotypes that have more features and constraints than
their base metaclasses. A profile can be applied to a model via the ProfileApplication rela-
tionship. The same profile can be applied to several packages and a model package can apply
several profiles (provided there is no name conflict between stereotypes). The application of a
profile on a model is meant to be reversible: when the profile is removed, all the stereotypes
and their features are removed from the formerly stereotyped model elements but the elements
themselves are kept with the features they inherit from the metaclass of which they are instances.

Fig. 2.12: An EJB Home Interface (From [OMG07b])

2.2. Unified Modeling Language 39

An example: SPEM

A significant number of UML profiles have been developed to address various needs such as
software architecture [Kas00, ZIKN01], middleware platforms [OMG04, OMG05g] or systems
engineering [OMG06c]. In these paragraphs, we present the Software Engineering Process Meta-
model (SPEM) [OMG05c] dedicated to the description of software processes and which will be
used in Chapter 3 to define the steps of the FIDJI methodology. This profile is currently aligned
on 1.x versions of UML and a revision of UML 2 is currently ongoing. Figure 2.13 depicts the
base stereotypes defined in SPEM. In the following, we will focus on the most useful ones for
our purposes.

Fig. 2.13: SPEM Stereotypes

One of the key notions of the SPEM profile is <<Activity>>. An activity represents a high-
level working unit of a method lifecycle. An activity can be further decomposed in steps. It has
input and output parameters which respectively represent the artifacts needed to perform this
activity and the artifacts produced during the execution of the activity.
Pieces of work produced and consumed by activities are all instances of the <<WorkProduct>>
stereotype. Work products are associated with <<WorkProductKind>> which further defines
the type. Two sub-stereotypes of <<WorkProduct>> are defined:

• <<UML Model>> refers to any sort of UML model;

40 2. Background

• <<Document>> refers to any document which can be an informal description of a system
or a low-level technical artifact such as a configuration file.

Finally, <<Guidance>> is a sort of comment that provides more information on a model el-
ement, in particular on the way this element can be derived or constrained; it can be a UML
profile, a model transformation, an algorithm, etc. The graphical icons associated with these
stereotypes are depicted on Figure 2.14.

Work Product

UML Model

Activity

Document

Guidance

Fig. 2.14: SPEM Stereotypes Notation

2.3. Software Architecture 41

2.3 Software Architecture

2.3.1 Definition

Software architecture has been an important topic in the academic software engineering research
for more than 10 years — while its main concepts were defined in the 60s — but appeared as
a major industrial issue only a few years ago. Why this sudden interest? Indeed, this field
gained momentum when software systems became so big and complex that it became necessary
to define new concepts to understand them and larger engineering teams to actually build them.
In [Kaz01], Rick Kazman explains why architecture is crucial to software-intensive systems:

• “Communication among stakeholders”: Due to the complexity and size of modern software
systems, numerous skills are required to complete a project successfully. These skills are
supported by analysts, UI designers, core programmers, performance engineers, testers
including people that will set up the hardware on which the project will run and obviously
the customer of the project. All stakeholders need to understand and communicate about
the project in order to agree on the major decisions that impact their particular skills and
interest;

• “Early design decisions”: Software architecture represents the earliest artifact on the “so-
lution” side (the “problem” side being addressed by requirements engineering techniques)
of the project; as a result, it is also the first artifact on which project’s numerous qualities
such as flexibility, performance or portability can be assessed;

• “Transferable abstraction of a system”: Software architecture represents a relatively small
and abstract amount of information about how a system is structured and how its com-
ponents work together. This abstraction (software architecture description of a system
can be seen as part of a PIM level in an MDA approach) makes it easy to transfer a
software architecture description across systems sharing similar requirements especially in
a software product line context (see Section 2.4).

Now that we have analyzed the rationale behind software architecture, we can give its definition.
Over the years, many definitions of software architecture have been proposed which have been
gathered by the Software Engineering Institute 4 at Carnegie Mellon University. As software
architecture is an abstract notion, these definitions vary greatly depending on the focus of their
authors and their level of detail. In this dissertation, we will retain the following definition
which, we believe, synthesizes the essence of software architecture:

Definition 7 (Software Architecture) ‘‘The software architecture of a program or
computing system is the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and the relationships among
them.” [BCK03]

The following remarks could be pointed out regarding this definition. Firstly, software elements
may be of diverse nature: tasks, processes, functions. Secondly, there can be more than one
structure for a given system. By “structure” the authors mean a particular organization of
elements; depending on its purpose (run-time processes, module organization), this structure
may relate the same elements differently. Structure models are called “views” [CBB+02] and

4 http://www.sei.cmu.edu/architecture/definitions.html

http://www.sei.cmu.edu/architecture/definitions.html

42 2. Background

form together the system architecture. Though, none of them can claim to represent “the”
architecture of the system. Thirdly, the “externally visible properties” refer to the assumptions
(services, performance, etc.) which can be formulated about the elements and every detail of
these elements that is not part of the “visible properties” should be omitted, thus revealing the
abstract nature of architectural descriptions. Finally, as stated in the rationale above, software
architecture is about defining relationships between elements inasmuch as they participate in
the visible properties of the system: choosing a particular network protocol between one server
and their clients has repercussions in terms of performance, reliability and security of the whole
system. Since architectures are structures of software elements, every implemented system has
an architecture. However, without any architectural description either being explicitly defined
during the development of the system or being recovered via reverse engineering techniques,
nobody can understand the architecture of a system and assess its benefits and/or pitfalls.

2.3.2 Architectural Views

First of all, we need to explain the notion of view sketched above. The IEEE made a valu-
able clarification and effort in their Recommended Practice for Software Architecture descrip-
tion [IEE00]:

• View: A view is defined as “a representation of a whole system from the perspective of
a related set of concerns.” This definition inspired Clements et al.’s work on the docu-
mentation of architectural views [CBB+02]. It is worth mentioning here that a view is a
complete model of the system with respect to a particular focus; a simple analogy is to
consider a view as the result of looking at the system with filter glasses;

• Viewpoint: A viewpoint is a “specification of the conventions for constructing and using
a view.” In our modeling terminology, a viewpoint is a modeling language for a view and
defines the perspective (i.e. the type of properties of the system) its associated view must
exhibit and how. Viewpoints include rationales which motivate their use in a particular
context.

Secondly, we have mentioned that one of the motivations for architectural description is to allow
stakeholders to express their concerns about the software system, those concerns being described
in terms of views conforming to their respective viewpoints. As a consequence, there is not a
predetermined set of viewpoints that fits every system; viewpoints rather depend on the kind
of concerns identified by stakeholders and the development context (application domain and
methodology). As a result, several sets of viewpoints for architectural description have been
developed [Kru95, BCK03, Zac87, IEE00]. One of the best known approaches is called “4+1”
and has been developed by Kruchten [Kru95]. The viewpoints offered by this approach are the
following (see Figure 2.15):

• Logical: The logical viewpoint addresses the functional requirements of a system by
offering constructs for the major packages, components and classes that compose system
functionality;

• Process: The process viewpoint focuses on system run-time processes and the way they
interact. It offer constructs to model qualities such as parallelism, concurrency or fault
tolerance;

2.3. Software Architecture 43

• Implementation: The implementation viewpoint offers constructs for software modules
such as source code files, executables or data files;

• Deployment: The deployment viewpoint depicts how the various components and ex-
ecutables are mapped to the underlying platforms (middleware, OS, etc.) or hardware
nodes (servers, sensors);

• Use Case: Finally, the use case viewpoint, though not pertaining explicitly to the archi-
tectural level, propose to model the key scenarios used to drive and validate architectural
development.

These viewpoints have been used for the architectural description of systems developed accord-
ing to the Rational Unified Process (see Section 2.6) and use subsets of the Unified Modeling
Language (see next section) to provide their constructs. Bass et al. propose to organize their
architectural structures (modeled as views) according to the following viewpoints:

• Module: The module viewpoint focuses on the description of system implementation
elements. It proposes to address issues such as functionality implemented by modules,
inter-module dependencies as well as dependencies with other software, composition and
inheritance amongst modules. This viewpoint is rather close to the logical viewpoint
presented here before;

• Component-and-Connector: The component-and-connector viewpoint addresses sys-
tem decomposition in terms of components (which are the main units of computation)
and connectors (communication paths amongst components). Issues addressed here are
the interactions between major components, their potential replication, shared data, etc.
;

• Allocation: This viewpoint focuses on the definition of deployment properties and is close
to the deployment viewpoint of the 4+1 approach.

As noted by Bass et al. [BCK03], in addition to selecting the relevant viewpoints for the de-
scription of a software architecture, mappings exhibiting the relationships between views have
to be provided. The reason for these mappings is that all the views model the same system
and therefore may have some elements in common. It is therefore important to document these
commonalities in order to increase the understanding about the architecture as an “unified con-
ceptual whole”. We may add, on a technical perspective, that ignoring these relationships may
yield inconsistencies (e.g. setting distinct properties which cannot be satisfied at the same time
for a single element) that will lead to implementation issues. In fact this issue is simply an
instance of the model consistency issues presented in Section 2.1.

2.3.3 Architectural Styles

Though every system architecture is different, it often addresses common problems for which
known and proved solutions exist. Therefore, it is valuable to reuse these solutions when design-
ing the architecture of a system as guides for its development and to ensure that certain qualities
are met. This is the purpose of architectural styles or patterns: “An architectural pattern is a
description of element and relation types together with a set of constraints on how they may
be used” [BCK03]. Numerous styles have been developed [SC97, AAG95]. Amongst them, the
most popular are the following:

44 2. Background

Logical
View

Deployment
View

Implementation
View

Process
View

End User
Functionality

Programmers
Software Management

System Integrators
Performance
Scability
Throughput

System Engineering
System Topology
Delivery, Installation
Communication

Analysts,
Testers
Behavior

Use Case
View

Fig. 2.15: 4+1 Views for Software Architecture (Adapted from [Kru03])

• client-server: This is the most commonly used style in distributed systems. It comprises

2.3. Software Architecture 45

a server element whose role is to provide services to several clients connected to it using a
specific communication protocol;

• pipe-and-filter: This style is used in data intensive systems in which information have
to be processed throughout the system. This style comprises elements that process in-
formation (“filters”) and send it through “pipes” to other filters. A concrete application
example of such a style is the combination of several UNIX commands through pipes;

• layered: The layered style [FO85, LS79] is a hierarchical decomposition of elements in
which the (n+1)th level of elements is only depending on the nth level. This style is endorsed
in network protocol descriptions (OSI reference model [Zim80]) or in middleware-based
applications in which middleware depends on lower layers containing operating system
and networks protocol implementations to provide service to the application developers;

• N-tier: N-tier architectural style can be seen as a generalization of the client-server one
with multiple servers. Server components are grouped according to their purpose (appli-
cation servers, database servers, etc.).

Note that architectural styles may be employed in more coarse-grained reusable architectural
structures, i.e. reference architectures which are a standard organization of software elements
that cooperatively solve a particular problem. Their usage is particularly fruitful in the context
of product lines (see Section 2.4) in which reference architectures are used to build a set of
related products.

2.3.4 Architecture Description Languages

In order to support the description of software architectures, several dedicated modeling lan-
guages were designed. Although there are great variations in their syntax, semantics and appli-
cation range (distributed systems, real-time and embedded systems...), there are all based on a
limited number of core concepts, which are the following:

• Components: “Components are the locus of computation and state.” [SDK+95]. Com-
ponents can be as large as an entire subsystem or as small as a method and are directly
supported by code units at the implementation level. One particular characteristic of
components is that their interactions with other components are clearly identified via
connectors and fulfill a contract as specified by their interfaces. Thus, a component repre-
sents a reusable unit of behavior that may be replaced by another fulfilling a compatible
contract;

• Connectors: Connectors model the relationships between components; they are the
“pipes” in the pipe-and-filter style. Unlike components, there is not direct link between
a connector and its implementation which may be performed via various mechanisms;
remote procedure calls, publish-subscribe, etc;

• Roles: Roles are entities attached to connectors which represent a participant in the
interaction modeled by the connector. For example, a pipe contains two roles, i.e. one for
reading and one for writing;

• Interfaces or Ports: An interface is a set of interaction points between a connector
and the other components and/or connectors attached to it. As such, they represent the

46 2. Background

“externally visible properties” of the software elements targeted by the software architec-
ture definition. Interfaces allow to connect components which provide some services to
other components that require them through connectors. They are hence a key notion for
reasoning on software architectures.

Architecture Description Languages (ADLs) have been designed to satisfy specific requirements
thus inducing a great variability in the constructs (both at the syntactical and semantic level)
they are offer and the significant number of ADLs that have been developed. A complete survey
of ADLs has been carried out in [MT00]. In the remainder of this section, we focus on the two
most relevant ones with respect to our methodological context, ACME and WRIGHT.

Even though not being explicitly designed as an ADL [MT00], one of the most popular lan-
guages is ACME [GMW97]. Its main purpose is to be an interchange language i.e. to support
mapping between ADLs by factorizing software architecture concepts and to facilitate exchange
of architectural specifications between tools. ACME supports the structural definition of com-
ponents, connectors ports and roles. ACME provides both a textual and graphical notation
for these constructs. Additionally, a set of properties can be defined for components and con-
nectors; these properties are used to attach additional information (such as boolean specifying
the maximum number for roles of a connector or a pointer to an additional specification of the
component’s behavior). The whole architecture description in ACME can be associated with a
set of constraints expressed in first-order logic. These constraints can either be used to specify
invariants that have to be enforced in the implementation or as rules which guide design but
may be violated if necessary.
ACME is supported by a comprehensive tool support [CMU07].

WRIGHT [All97] is one of the rare languages that focus on describing the behavior of the
architectures in addition to their structure. At the structural level, notations for components,
ports, connectors and roles are provided. Indeed, these abstractions are types that can be
parameterized in order to support architectural styles or product lines (see Section 2.4) more
easily. But the most important contribution of WRIGHT is its formal semantics to model the
behavior, which implies that WRIGHT specifications can be analyzed. The formalization used
here is a subset of the process algebra CSP [Hoa85] which is used to model both component
internal behavior and component interactions (called architectural connection) [AG97]. The aim
of this approach was to define connectors behavior between components in terms of interacting
protocols, that is the behavioral description of the following elements:

• Roles: Roles represent the interaction points of connectors to which interacting compo-
nents have to be attached. Therefore, their behavior should be fulfilled by the behavior of
the components involved in the interaction;

• Glue: The glue determines the coordination between the roles, such as the sequence of the
events exchanged (that is, in the GAM, the sequence of operation calls and their returns).

WRIGHT’s formal basis allows to precisely define the events exchanged through a connector
both independently (i.e. being defined in a style) and in the context of a particular architectural
description by matching roles to component ports.

2.3. Software Architecture 47

2.3.5 Describing Architectures with UML/OCL

As we have seen above, ADLs natively support architectural concepts and often include formal-
ized syntax, semantics and tool support. However, they tend to be so specialized and numerous
that they were not an instant hit with the industrial software engineering community. From a
methodological point of view, using such languages is an issue because users need first to be
trained, which hampers the adoption of a method using these languages.
The increasing popularity of UML has led software architecture experts to consider this lan-
guage as an opportunity to model software architectures [MRRR02]. However, UML 1.x has
for long suffered from a lack of native architectural support (unsatisfactory constructs to define
architectural components and connectors). To overcome this issue, several extensions to the
language have been provided, generally provided in terms of profiles [Kas00, ZIKN01, KCSS02].
As presented in Section 2.2, UML 2.x has integrated some architectural concepts to the language
(see “Structural Modeling”). These constructs form a reasonable basis to defined an ADL based
on UML 2. However, there are still some issues to address before using UML 2 as a mainstream
ADL:

• Connector modeling: Though present, the “connector” construct is rather poor; it does
not allow to directly add some information, neither about its structure (such as the size
of a buffer in a pipe) nor about its behavior;

• Architectural styles modeling: As noted by Zdun and Avgeriou [ZA05], there is no
dedicated support for architectural styles in UML. A way to model them has to be found
precisely.

Ivers et al [ICG+04] proposed three strategies to improve connectors in UML 2.0:

• Using associations: A UML association can be used instead of a connector. However,
as such, it does not really differ from the UML 2.0 connector construct and does not allow
neither to model attribute nor to attach semantic information;

• Using UML association classes: If the connector is modeled as an association, it is
possible to attach an association class to it. This permits to model attributes and behavior
associated to this connector. However, this strategy is inconvenient from a visual point of
view and may yield confusion in roles modeling;

• Using classes: As a variant of the previous strategy, classes may be used to represent
connectors. This removes the visual clutter caused by the use of association classes. How-
ever, this also removes the distinction between connectors and classes. One solution would
be to define a stereotype with a specific graphical representation but it is likely to be
unsupported by UML case tools.

A more precise approach to detail component interactions consists in employing OCL. In [Car03],
Cariou presented such an approach in the context of component interactions in UML collab-
orations. The key point of this approach is the concept of medium. A medium can be seen
as an abstract component devoted to the component interactions and is modeled as a UML
collaboration. A medium is specified via views and using the following notations:

• Collaboration Diagram: Describes the elements involved in the interaction as well as
the sequence of the operations called;

48 2. Background

• OCL: OCL is used to define constraints on the medium and the behavior (via pre/post
conditions) of offered and required operations. OCL is used as much as possible to maxi-
mize precision and consistency amongst views;

• State Diagrams: State diagrams are used to specify synchronization aspects thus com-
pleting information provided in the collaboration diagram.

In order to generalize the use of OCL for interaction modeling, Cariou proposed two extensions
to the language. The first one, caller, allows to refer to the instance that has called a given
operation and is used in pre/post conditions of operations. The second one, oclCallOperation,
allows to specify if a given operation has been called.
The interaction approach we will propose in Chapter 5 will be completely based on OCL and
will take advantage of OCL 2.0’s OCLmessage construct, thus making Cariou’s second extension
obsolete.

Currently, a few efforts are under way to address the specific problem of modeling architectural
styles in UML 2.0 [ZA05, PM03]. Both approaches are based on profiling to extend the UML
metamodel through stereotypes and OCL constraints. We will integrate in our design profile
defined in Chapter 5 some examples of well-known architectural styles, which are relevant for
the FIDJI method.

2.3.6 Enterprise Architecture Frameworks

We have mentioned above that a software architecture description contains a number of different
views. In order to facilitate architectural description and sharing amongst stakeholders within a
particular organization, viewpoints have to be selected and related to each other, then guidelines
to model software architectures according to these viewpoints have to be provided. This is the
role of an Enterprise Architecture Framework (EAF) to provide such information:

Definition 8 (Enterprise Architecture Framework) An enterprise architecture
framework is a tool which can be used to develop a broad range of different architectures. It
should describe a method for designing an information system in terms of a set of building
blocks, and for showing how the building blocks fit together. It should contain a set of tools and
provide a common vocabulary. It should also include a list of recommended standards and
compliant products that can be used to implement the building blocks [Gro06].

Several EAFs have been developed 5 in order to perform architectural description in various
domains (defense, IT, etc.). In the following, we will focus on the three most relevant.

DODAF

The Department of Defense Architectural Framework (DoDAF) [Gro04]. DoDAF decomposes
an architecture description in the the following views:

• Operational View (OV): The purpose of this view is to provide a description of the tasks
and activities supporting the mission addressed by the system. This view is comprised
of textual and graphical elements describing tasks and activities as well as information
exchanged between them;

5 http://www.opengroup.org/architecture/togaf8-doc/arch/

2.3. Software Architecture 49

• Systems View (SV): The system view defines all the elements and their interconnections
supporting the mission defined by the operational view;

• Technical Standards View (TV): The technical standards view details how the differ-
ent system parts may be arranged (giving for example a set of standards to follow) and
technology evolution that may affect the architecture.

Additionally, a fourth view (called “All-Views” (AV)) provides the linkage between the other
views by establishing a common vocabulary, and information on the system context (scope,
purpose, intended users, etc.).

These elements are complemented by a set of principles and guidelines to document architectures
with DoDAF in a stepwise manner and by information on how to integrate the different views.

TOGAF

The Open Group Architecture Framework (TOGAF) is more focused on processes than on pro-
viding detailed architecture viewpoints. Indeed, TOGAF defines a process, called Architecture
Description Method (ADM), covering all architecture description phases from vision to evolu-
tion. The high-level process is shown in Figure 2.16.

Fig. 2.16: ADM Phases (from [Gro06])

Each of the phases are decomposed in well-identified sub-steps. Artifacts composing the ar-
chitecture are developed as a result of each phase and may be modified in a later phase (the

50 2. Background

process is iterative not waterfall). TOGAF is meant to be integrated with other architecture
frameworks that provide detailed architectural artifacts.

Zachman Framework

The Zachman framework was introduced by John Zachman in 1987 [Zac87] and is considered as
the first and one of the most complete EAF to date. The framework is comprised of 36 views
organized in a table:

• Perspectives: Perspectives form table rows. Identified perspectives are: Planner (which
position the product in its environment), Owner (business processes to be implemented
by the product), Designer (logical view on the system structure and behavior), Builder
(technical description of the system’s artifacts), Subcontractor (low-level artifacts: data
model, configuration files etc.) and Functioning Enterprise (represents the user concern in
the system);

• Dimensions: Dimensions form table columns and are designed to cover to a particular
aspect of the system. Dimensions are the following: Data (What?), Function (How?),
Network (Where?), People (Who?), Time (When?), Motivation (Why?).

In order to be general, Zachman’s framework neither prescribes any specific languages to repre-
sent views in the cells nor provide any methodological guidelines to define architecture according
to the framework. As noted by Pereira and Sousa [PS04], this approach has both pros and cons.
Although the Zachman’s framework is adaptable to any development methodology with any
modeling language supporting the description of views, it provides no guidance to architects to
model views.

Even though EAFs are interesting structures because they define a set of views that are relevant
to a particular context, we think that their will to be modeling language independent (none of the
EAFs above explicitly define the viewpoints their views should conform to) unavoidably raises
two issues. At the methodological level, architecture development guidelines are condemned
to be very general as they cannot rely on metamodeling elements to define how integration
between the different views has to be achieved. At the technical level, there is no possibility to
validate conformity pf an architectural description with its EAF since consistency rules cannot be
checked against. This issue is currently being tackled by CASE tool vendors who provide specific
extensions to model EAFs (for example, NoMagic MagicDraw CASE tool [NoM07] includes a
plugin to model DoDAF compliant architectures).

2.4. Software Product Lines 51

2.4 Software Product Lines

In this section, we present the notions supporting the concept of Software Product Line (SPL)
which provides the research context of the FIDJI method.

2.4.1 Introduction

The concept of software product line 6 has its origins in the program families approach in-
troduced by Parnas [Par76]. However, it drew attention of the software engineering commu-
nity when software begun to be integrated massively in families of hardware products, cellular
phones [MH05] being the most known, but several other areas, such as automotive systems,
aerospace or telecommunication are also targeted by software product lines 7.

As we mentioned in Chapter 1, the fundamental idea on which software product lines rely
is to reuse a base of managed software artifacts to systematically define, design, build and
maintain a set of related products in a given domain. This idea is captured by Clements and
Northrop [CN01] and we will use their definition of SPL throughout this dissertation:

Definition 9 (Software Product Line) a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed way.

Thus, adopting a SPL approach implies to perform two intertwined activities, i.e. Domain
Engineering and Application Engineering. Domain engineering deals with the “ common set of
core assets” serving as a base to develop features “that satisfy the specific needs of a particular
market segment or mission”. An asset is “a description of a partial solution (such as a component
or design document) or knowledge (such as a requirements database or test procedures) that
engineers use to build or modify software products” [Wit96]. Assets need to be carefully defined,
built and managed. The first step is to identify the “particular market segment or mission” which
resides in a domain [BCD+00]:

Definition 10 (Domain) An area of knowledge or activity characterized by a set of concepts
and terminology understood by practitioners in that area.

Domain engineering starts with a domain analysis phase that identifies commonalities and vari-
abilities amongst SPL members. In this dissertation, we will adopt the following definitions
(adapted from [CHW98, WL99]) for commonality and variability:

Definition 11 (Commonality) A property held uniformly across all the members of the SPL.

Definition 12 (Variability) A property about how members of a SPL differ from each other.

6 For historical and geographical reasons, US terminology “product lines” was called “product families” in
Europe and was corresponding to distinct yet related communities, holding different research conferences
(Software Product Line Conference in the US and Product Family Engineering in Europe). Recently, these
communities decided to merge these research events under the generic name “software product line confer-
ence” name. Therefore, we decided to keep this terminology.

7 For an overview of famous software product lines, consult SEI’s SPL Hall of Fame: http://www.sei.cmu.

edu/productlines/plp_hof.html

http://www.sei.cmu.edu/productlines/plp_hof.html
http://www.sei.cmu.edu/productlines/plp_hof.html

52 2. Background

Effective management of variability [vGBS01] is key to success for software product lines; it
determines how flexibly new members of a given SPL can be obtained and defines SPL bound-
aries. Various mechanisms have been proposed to model and achieve it at various abstraction
levels (requirements elicitation and design levels principally) [SvGB05]; we will summarize some
of them in Section 2.4.2.

Clements and Northrop’s definition also mentions that the “set of software-intensive systems”
is developed “from a common set of core assets in a prescribed way”. This specific activity is
known as application engineering or product derivation [ZJ06, DSB05].

Definition 13 (Product Derivation) A complete process of constructing products from the
domain assets.

We will discuss the available techniques for product derivation in Section 2.4.3. As we mentioned
earlier, domain engineering and product derivation are intertwined, the former providing core
assets that are “consumed” by the latter wheb building applications. As a result of the product
derivation task, feedback on specific products can be acquired and used to improve SPL core
assets as shown in Figure 2.17.

Fig. 2.17: Domain Engineering and Application Engineering Processes [vdL02]

2.4.2 Domain Engineering

In this section, we present the current approaches that support domain engineering within soft-
ware product lines. We have grouped these techniques according to their purpose, i.e. focusing
on defining domain assets at the requirements and design levels.

Requirements

There are two popular techniques to define software product lines requirements: Feature Mod-
eling and Use Cases.

2.4. Software Product Lines 53

Feature Modeling

Several definitions of the notion of feature can be found in the research literature. The most
general was given by Kang et al. in [KCH+90]: “a prominent or distinctive user-visible aspect,
quality or characteristic of a software system or systems”. Czarnecki and Eisenecker focus on
the SPL variants: “a system property that is relevant to some stakeholder and is used to capture
commonalities or discriminate among systems in a family” [CE00]. Finally, Bosch emphasizes on
system behavior: “a logical unit of behavior that is specified by a set of functional and quality
requirements” [Bos00]. We will retain the definition given by Czarnecki and Eisenecker because
we believe that it is crucial to capture commonalities and variabilities at an early stage of SPL
development.

Variability amongst features is typically depicted using a feature diagram [TH03]. According
to their definition, feature diagrams often constitutes trees (though some notations allow ad-
ditional relationships which formally make feature diagrams graphs) composed of nodes and
directed edges. The tree root represents a feature which is progressively decomposed using
mandatory, optional, alternative (exclusive-OR features) and OR-features. In feature diagrams,
mandatory features are features which are always included in every product. Feature that are
not necessarily included in every product are qualified as variables. Variation points are features
that have at least one direct variable subfeature (i.e. as one of its children).

The first feature diagram notation was introduced by Kang et al. in the context of their “Feature-
Oriented Domain Analysis” method [KCH+90]. It has a very simple syntax which makes it easy
to use as shown in Figure 2.18.

Fig. 2.18: FODA’s Notation

Depending on researchers’ view on the concept of feature, FODA feature diagrams were found
to lack of expressiveness. Therefore several extensions (in addition to variations of the concrete
syntax) were added to the original notation. In [CHE05b], Czarnecki et al. detailed these
extensions which are described below:

• Feature Cardinalities: Features can be annotated with cardinalities, such as [1..] or

54 2. Background

[3..3]. Mandatory and optional features can be considered as special cases of features
with the cardinalities [1..1] and [0..1], respectively. Feature cardinalities were motivated
by a practical application [CBUE02]. In addition, Riebisch et al. [RBSP02] proposed
cardinalities (conforming to UML notation) in order to generalize the concept of feature
grouping (by specifying the number of features one can select in a set);

• Attributes: Attributes were introduced by Czarnecki et al. [CBUE02] as a way to rep-
resent a choice of a value from a large or infinite domain such as integers or strings. An
elegant way to model attributes is to allow a feature to be associated with a type, such as
integer or string. A collection of attributes can be modeled as a number of subfeatures,
where each is associated with the desired type;

• Relationships: Several authors (Griss et al [GFdA98], van Gurp et al. [vGBS01]) pro-
posed to extend feature models with different kinds of relationships such as consists-of or
is-generalization-of which are usually used in entity relationships or UML class diagrams.
For example, van Gurp et al. [vGBS01] use an “or specialization” and “xor specialization”
to define the binding time. Binding time occurs when this feature has to be chosen (design,
compilation, run-time...);

• Feature categories and annotations: FORM distinguishes among context, represen-
tation and operational features. Other kinds of feature categorization exist. Griss et
al [GFdA98] propose several layers of features according to their abstraction level (see
Section 2.4.3) and Czarnecki et al. [CHE05b] propose to include also a fine-grained cate-
gorization amongst project stakeholders (such as analysts, architects, etc.). In addition,
annotations to feature diagrams were proposed to model relationships [KCH+90] or con-
straints [BTRC05, GFdA98, KKL+98];

• Modularization: A feature diagram may contain one or more special leaf nodes, each
representing a separate feature diagram. This mechanism allow to break up large diagrams
into smaller ones and to reuse common parts in several places. This is an important
mechanism because, in practice, feature diagrams often become too large to be considered
in their entirety [CHE05b].

In addition to these conceptual extensions, feature diagrams vary in their concrete syntax;
most of them are specific but, for instance Gomaa [GS02a, Gom04] uses UML. In consequence,
understanding the characteristics of all feature modeling languages is not easy and interoper-
ability between different notations (which are not always precisely defined) may be error-prone.
In [SHT06], Schobbens et al. proposed a generic approach, called Free Feature Diagram (FFD),
able to express abstract syntax and semantics for most feature modeling languages in a formal
way. This approach was initially designed to compare the expressiveness of various feature mod-
eling languages but may also be used as a basis for tool support or, as illustrated in [GP06], use
its abstract syntax and semantics to be independent of any particular feature modeling language.
FFD proposes the following operators to represent variants:

• andn: Evaluates to true if all the n (n ∈ N∗ n represents the operator’s arity) subfeatures
for a feature exist in the final product (mandatory features). orn and xorn are defined the
same way: at least one (resp. exactly one) of their n subfeature(s) is selected in the final
product;

• optn: Always evaluates to true (optional semantics);

2.4. Software Product Lines 55

• vpn(i..j): (n, i, j ∈ N∗ and j > i) evaluates to true if at least i and at most j subfeatures
are selected for the product. Indeed, this last operator conveys the semantics of all the
aforementioned operators [SHT06], however, in practice, “classic” operators may be easier
to use;

• Two binary operators are defined to express dependencies between features: mutex for
mutually exclusive features (|) and requires (=⇒) for compulsory dependencies between
features.

Use Cases

Use Cases [JCJO92, Coc01] are a popular notation to describe requirements of a software system
in such a way that the final user can understand and modify these descriptions. Use Cases
capture functional and non-functional requirements in terms of scenarios relating how the actors
interact with the system. They are hence excellent candidates to perform the elicitation of a
SPLbehavior. In addition to UML notation for use cases presented in Chapter 2.1, use cases
are mainly described using textual descriptions which typically comprise use case name, actors
involved, pre/post-conditions, flow of events, exceptions or possible alternatives in the flow.
These textual descriptions are written in natural language but may be completed with more
formal languages as shown in [Rus97, GL00]. We will detail our approach to rigorous use cases
in Chapter 4, Section 4.2), which is based on a template. Various templates have been given
([Coc01, Lar02] just to name a few) organizing the above information differently.
Standard use case constructs can be used to represent variability amongst use cases:

• UML Use Cases Modeling Elements: As explained in [Gom04], Gomaa illustrates
the use of extend relationship, extensions points and include relationship. The extend
relationship can be used to simplify the expression of complex alternative behaviors. More-
over, an extension point [OMG05f] allows to differentiate variants by enabling to specify
guard conditions. The include relationship can be used to specify optional use cases: for
example the optional use case “print receipt” may include the mandatory one “Withdraw
Cash” in the context of an ATM system;

• Textual Templates: Textual templates propose fields to document alternatives and ex-
tensions (which can be used to document optional scenarios).

However, use cases were initially meant to describe scenarios of a single system, not a collec-
tion of systems differentiated by variants. As noted by Halmans and Pohl [HP03] as well as
Trigaux and Heymans [TH03], there are major shortcomings with this approach. In the UML
representation it is difficult to distinguish between an alternative behavior which represents a
variant in the SPL and a behavior which is part of the use case (it can be a list of choices given
to the user part of common behavior of the SPL) not related to any variability identified by
the SPL requirements process. In textual representations, the ad-hoc description of variability
(by just annotating use case descriptions) may become unclear. Therefore, several extensions
were proposed to extend both textual and UML-based use case notations in order to improve
variability support amongst software product lines. These extensions are summarized in the
following.

In [BNT02], Biddle et al. introduced a first approach to facilitate use case reuse: the possibility
to embed parameters anywhere within the textual description of the use case. They also designed

56 2. Background

a tool, called Ukase, acting as repository for use case description and facilitating their edition.
This approach is not specific to product lines.
In [FGJ+03, FGLN04], Fantechi et al. define an approach, called Product Lines Use Cases
(PLUC), to extend use cases with the explicit description of variability. In particular, they
propose to add tags to model variants in the use case text which have to be substituted by the
actual value for a given product. A special clause at the end of the use case completely define
the tag (i.e its type and possible values). Figure 2.19 illustrates the use of these tags. There are
three types of tags:

• Alternative: indicates that it is possible to choose the actual value for the tag from a
predefined set of values, each of them depending on a condition (exclusive-OR semantics);

• Optional: indicates that the actual value is chosen indifferently from a set of values;

• Parametric: indicates that the actual value depends on a condition specified with if then else
constructs related to the other use case tags values. This type differs from the alternative
type since it allows more than one variant to be chosen [FGLN04].

There are also extensions of the UML notation for variability support. In [HP03], Halmans and
Pohl extend the standard UML notation for use case diagrams and define new minimal graphical
notations, depicted in Figure 2.20. These constructs allow to specify the following:

• Variation points: variation points are represented using the include relationship followed
by a triangle. A variation point is said mandatory if at least one of its variants is required
(shown in this case with a filled triangle) and optional if the variants can be selected or
not without any restriction.

• Variants: variants are represented with the stereotype <<variant>> and they are always
associated with a variation point. Relationships between a variation point and its variants
are are depicted like trees and annotated with cardinalities indicating the minimum number
of variants which have to be selected for this relationship and the maximum number of
variants which can be selected for it.

Gomaa [Gom04, GS02a] also defined graphical extensions to use case diagrams using stereotypes:

• <<kernel>>: distinguish the use cases that must be supported in all products (manda-
tory);

• <<alternative>>: distinguish the use case for which a choice must be made;

• <<optional>>: define use cases required by some but not all members; of the family.
This distinction is given by a specific condition associated with optional use cases.

These stereotypes are used in combination with the relationships that can be defined to relate
UML use cases as shown in Figure 2.21.

Some authors promote a hybrid approach to use case modeling in which both textual and UML
use case diagrams are combined. In [JM02], John and Muthig define generic use case diagrams
and generic textual use cases:

• Concerning the generic use case diagrams (Figure 2.22), they are divided into two parts: a
first part that is mandatory for all products and a second part that vary amongst products;

2.4. Software Product Lines 57

Fig. 2.19: An Example of a PLUC (From [FGLN04])

• Concerning Generic Textual Use Cases (Figure 2.23), they describe variant text fragments
and variant in the scenario using XML-like tags <variant> and </variant>;

• Variant use cases are instantiated during application engineering. The instantiation process
is guided by a decision model, which captures the motivation and interdependencies of
variation points. The decision model can also describe whether a use case is optional or
whether it is alternative.

In addition to his graphical extensions, Gomaa [Gom04] also proposes an additional textual
template for use cases as shown in Table 2.1.

Integrating Features with Use Cases

It may be interesting to combine feature diagrams and use cases, the former providing a clear
overview of the variations handled within the SPL while the latter provides a more fine-grained

58 2. Background

Use case name Each use case is given a name. The name should
be the goal as a short active verb phrase.

Reuse Cate-
gory

Specifies whether the use case is kernel, optional,
or alternative.

Summary Describes the use case in one or two sen-
tences.(i.e. a longer statement of the use case
goal).

Actors Names all the actors that participate in the use
case, starts with the primary actor and is fol-
lowed by the secondary ones.

• Primary actor: name (actor who initiates
the use case);

• Secondary actor: name (actor who may
participate in the use case).

Dependency Describes whether the use case depends on other
use cases, e.g. whether it includes or extends
another use case.

Preconditions Specifies one or more conditions that must be
true at the start of the use case.

Description Textual description taking the form of actor in-
puts, followed by system responses. The system
is treated as a black box, that is, interest is taken
in system responses not in the internals or the
processes used. The main scenario defines a par-
tial order for the set of operations related to the
possible products.

Alternatives This section provides a description for the alter-
native branches of the main sequence.

Variation
points

Description of the variation points which can be
handled directly in the use case by indicating the
name, the functionality type (optional, manda-
tory alternative, optional alternative), the lines
of the use case description concerned and a de-
scription of the variation point in natural Eng-
lish. If the variation point is too large then one
should consider extending the use case with the
mechanisms presented in the beginning of this
section.

Postcondition Identifies the condition that is always true at
the end of the use case if the main sequence has
been followed.

Outstanding
Questions

This section documents questions about the use
cases for discussion with the users.

Tab. 2.1: Gomaa Use Case Template [Gom04]

2.4. Software Product Lines 59

Fig. 2.20: Halmans and Pohl Notation [HP03]

Fig. 2.21: Gomma Notation for Use Cases

description of product behavior via scenarios. In [GFdA98], Griss et al. integrate both ap-
proaches in order to extend their method with a domain analysis phase (see also Section 2.4.3).
Use cases are simple text descriptions (with no information on variability) that are linked to
features of the feature model.
In [vdML02], Van der Maßen and Lichter present an extension to the UML 1.4 metamodel for
modeling variability within use case diagrams:

• VariationPoint is a metaclass specializing ExtensionPoint and is associated with a use
case. It contains a list of relationships stereotyped as <<alternative>>. Alternative
has a parameter choice which consists of pairs of conditions and use cases;

60 2. Background

Fig. 2.22: Generic Use Case Diagram [JM02]

Fig. 2.23: Generic Use Case Template [JM02]

• Options are modeled via an <<option>> stereotyped relationship. If the option requires

2.4. Software Product Lines 61

a condition to be chosen, the authors recommend to use the standard Extend relationship.

In addition, they use feature diagrams (according to the FODA notation) in a second step (after
use case modeling) to capture the common and variable structural characteristics of the domain.

The approach for integrating feature models with use case diagrams has been generalized in the
concept of Orthogonal Variability Modeling (OVM) [PBvdL05]. OVM promotes the principle
that variability should be modeled as a first class artifact in a specific feature modeling lan-
guage and related to domain engineering models via traceability links. This allows a consistent
definition of variability at any abstraction level and a reduced size and complexity of domain
engineering models. The FIDJI method also builds on that principle although it uses a notation
and an application engineering process which are different from those.

SPL Architecture and Design

Even though the research community has carried out in-depth studies on addressing SPL re-
quirements resulting in the approaches and models described above, architecture and design for
SPL have not been studied as intensively. Some authors [GSCK04, BCK03, Bos00] notice that
a SPL software architecture has some similarities with a single product software architecture
and relies on component modeling techniques and patterns presented in Section 2.3. Concerning
variable parts of the architecture, they propose models and methodological guidelines in order
to identify variations points and support them via object oriented approaches.

Some authors go beyond these general considerations by providing detailing architecture and
design models for software product lines. In an approach called FORM [KKL+98], Kang et al.
have extended their FODA approach [KCH+90] to support other phases of SPL development.
The authors propose to organize feature models in several layers: capabilities (functional and
non-functional requirements), operating environment (platform attributes such as operating sys-
tem or network context), domain technologies and implementation techniques (low-level details)
each corresponding to a different perspective stakeholders may have on the system. These fea-
ture models are then mapped onto architectural models which comprises a “subsystem model”
(static architecture) mapping capabilities, a “process model” mapping behavioral aspects, and
a “module model” providing a detailed view on each of the system components and in which
all feature model types are mapped to. General engineering principles (such as separation of
concerns, information hiding or layering) are given to facilitate mapping between feature models
and architecture in the domain engineering phase.

Gomaa [Gom04] proposes to apply <<kernel>>, <<optional>> and <<variant>> stereo-
types to UML class diagrams in order to design the static architecture. The dynamic part of the
architecture is mainly modeled via communication diagrams and state machines. Concerning
communication diagrams, they directly depend on variability types (kernel, optional or vari-
ant) of the use cases they detail; kernel and optional are modeled the same way as for single
product development (one communication diagram per kernel/optional use case) while variant
communication diagrams are depicted either as extensions of the kernel ones or as a commu-
nication diagrams showing only new optional/variant features. In both cases, variants depend
on guard conditions attached to the message defined between objects of the communication di-
agram. Concerning state machines, variability is modeled either via inheritance (one inherited

62 2. Background

state machine for each variant class) or via parameterization, where variability is modeled via
boolean guards in state machine transitions.

Atkinson and Muthig [MA02] propose a metamodel for variability management. It is mainly
based on the definition of the stereotype <<variant>> that is used both for structural dia-
grams (class diagrams) and behavioral diagrams (communication and activity). In addition, a
textual decision model defines the rules and relationships between variants to support product
derivation. These models have been integrated in the KoBra [ABB+02] methodology that we
will present in Section 2.6.

Ziadi et al. [ZHJ03] have defined a UML 2.0 profile to model variability in class and sequence dia-
grams. Concerning class diagrams, the following stereotypes have been defined: <<optional>>
which refers to classes that can be omitted in products, <<variation>> which is defined on
an abstract class to model a variation point, and <<variant>> which is used to annotate
the class that can be chosen at a given variation point (variants are related to variation points
via generalization relationships). Similar stereotypes for optionality and variation points are
defined in order to define optional/variant lifeline and interactions (which contain a sequence of
messages). In addition, <<virtual>> is used to annotate interactions that can be redefined
in each product of the SPL. The profile is supported by a set of well-formedness rules that are
expressed in OCL. In [ZJ06], Ziadi and Jézéquel propose a formalization (in terms of algebraic
specifications) of their approach concerning sequence diagrams.

We believe that documenting variability within domain engineering models (both at the require-
ments analysis or late requirements and design levels) complicates the development of domain
engineering models and limits flexibility in application engineering. We will elaborate on this
issue in Chapter 3 and will define an original way to describe variability that support a more
flexible product derivation process.

2.4.3 Product Derivation

Currently available approaches to support product derivation can roughly be organized in two
main categories, according to the derivation technique used: configuration and transformation.

Product Derivation by Configuration

Product Configuration or software mass customization [Kru02, Kru06] originates from the idea
that product derivation activities should be based on the parameterization of SPL core assets
rather than focusing on how individual products can be obtained. Indeed, the final goal of
product configuration is to avoid any application engineering activity, considered as harmful.
When all SPL members can be completely characterized — which is both difficult to achieve and
overly restrictive in the scope of the FIDJI method — an automated derivation process can be
devised. In this context, product derivation relies on selecting product features according to the
variants offered by the product line requirements description. Then, a configuration tool (called
configurator) selects and assembles core assets automatically according to a decision model. This
decision model contains the necessary constraints and traceability information in order for the
configuration tool to make the right decision to generate a viable particular product.

2.4. Software Product Lines 63

Several configuration-based approaches [CHE05b, GFdA98, KKL+98] for product derivation
based their decision models on feature models. We have seen above that Kang et al. [KKL+98]
extended the FODA approach in order to support the description of domain assets at the design
level. Their derivation process starts with requirements phase in which similar features to the
features desired by a given customer are selected in the layers proposed (capabilities, operating
environment, domain technologies and implementation techniques). Due to mapping between
feature models and architecture as well as design artifacts, selecting on feature diagram results
in an already configured design model for the product.

This idea of configuring feature models at various abstraction levels is also explored in [CHE05b]
through the concept of “staged configuration”: every time the user makes a choice in the feature
model (such as selecting a particular feature or refining a cardinality), a new feature model is
computed according to user choice at a lower stage. For a single product, the final stage will be
such that once the variability being resolved, only one configuration corresponds to that feature
model. Similarly to Kang et al.’s approach, feature models can also be separated according to
some user-defined criteria but Czarnecki et al. go further by giving a complete formalization of
their approach [CHE05a]. In order to perform the actual configuration of the product, Czarnecki
and Antkiewicz [CA05] map feature models to UML activity and class diagrams via annotations.
Annotations are represented visually on classes and activities with a color scheme (which can be
kept tractable by carefully splitting diagrams) together with constraints mapped from original
feature models and driving the configuration. In this approach, the staged configuration of
feature models presented above results in the corresponding configuration of activity and class
diagrams thus completing the product specification.
Product configuration based on feature modeling has also received commercial tool support such
as Pure::Variants [Pur06] which provide a complete feature modeling environment integrated
with IBM Eclipse IDE or BigLever GEARS [Big06] whose particularity is to act as a “bridge”
between several product lines to configure a particular product.

There are also configuration approaches that do not base their decision model on feature model
(or at least not in the usual FODA/FFD sense.
In [KWH05], Krebs et al. propose a decision model (called “Common Applicable Model” ab-
breviated to CAM) that relates features to their realizing software and hardware assets and the
contextual information which provides additional constraints in a single model. This model is
processed by tools [HWG00, G9̈5] capable to infer (using a structure-based approach to con-
figuration [WKHM04] to plan configuration tasks and logical reasoning techniques to process
constraints) some of the software artifacts required to build the product. In order to support
changes in SPL scope or core assets, the CAM needs to evolve. In [KWH04], change operations
have been introduced in order to transform the CAM; these operations can be basic, such as
adding a parameter value or deleting a concept or complex, i.e. composed of several other oper-
ations in a predefined order. These operations are useful to make the SPL evolve: adding new
artifacts (and relationships between them), removing existing ones, defining new constraints,
etc. This decision model is part of the ConIPF [HWK+06] methodology, stemming from a Eu-
ropean research project aiming at validating product configuration in an industrial context.

Van Ommering [vO02] has designed an architecture description language called Koala to de-
fine the product architecture based on a pool of components that may be reused from different
product lines (this approach, called “product population”, is used with Philips TVs, DVD play-
ers/recorders etc.). Koala models offer, at the domain engineering level, the possibility to define
expressions to connect components (“switches”) or to define parameters that will be grouped

64 2. Background

in the required interfaces (“diversity interfaces”) of a given component. Product Derivation is
performed by assigning values for parameters and switches, then a compiler will automatically
configure the product according to these values.

PuLSE-I [BGMW00] uses decision models realized during a domain analysis phase called PuLSE-
CDA [BMW99]; the “product line” model contains multiple workproducts and the relationships
among them as well as commonality and variability information. The “Domain Decision Model”
attaches decisions to variants using meta-attributes on workproducts; decisions act as rules (that
may depend on other decisions already made) which guide in selecting variants. Therefore, when
all the decisions have been made, the configured domain model corresponds to the specification
of a single product. The same mechanism is used at the architectural level (which also owns
“architecture” and “ architecture decision” models). It should be noted that PuLSE-I has envi-
sioned the fact that some of the SPL assets might not correspond or fail to fully implement the
product. In this case, additional elements have to be modeled manually and integrated with the
configured model of the product.

Product Derivation by Transformation

We believe that MDE techniques, by providing models as useful abstractions to understand assets
and transformations able to use them as first-class artifacts for product generation, has clearly a
major role to play in SPL engineering [GP04] and product derivation, especially through model
transformation. This point of view is shared by several researchers [GSCK04, ZJ06, HMPOS04,
KMHC05]. As we have shown in Section 2.1, MDE is still — and, to a lesser extent, academic
research on software product lines — in its infancy in numerous domains. Therefore, most of
the work currently addressing the synergy between SPL and MDE is currently ongoing. We
examine the current transformation-based approaches in the remaining of this section.

In [HMPOS04], a conceptual model for SPL engineering aligned with MDA models is presented.
A requirements view (CIM level, called “product line model”) of the product line is described us-
ing UML 2.0 use cases. Individual products are specified in the “product model” (CIM level and
subset of the product line model), which takes the form of an actor having association relation-
ships with some of the product line uses cases and may be related to non-functional properties
described as stereotyped classes. Core assets (PIM level, called “system family model”) are
described in terms of UML 2.0 composite structures diagrams extended with variations points
described via stereotypes. A QVT transformation relates elements of the product line model
to those of the system family model. The actual product derivation takes the form of a partly
automated transformation that takes the product and system family model as inputs to output
an instantiated version of the system family model, called “Product/System Model” which is
also a PIM. Finally product implementation is obtained after several refinements at the PSM
level.

In [KMHC05], Kim et al. analyze the respective shortcomings of SPL engineering and MDA,
and propose an overview of a complete method integrating both approaches. In particular, for
product derivation, the authors propose to instantiate, via MDA transformation mechanisms, a
framework embodying core assets on the basis of a decision model and according to the variants
selected for a specific product. Then, for application parts which are not implemented in the
framework, an integration phase takes place, resulting in a single product model at the PIM

2.4. Software Product Lines 65

level. This model may be refined to obtain the PSM and ultimately application in a similar way
to Haugen et al. [HMPOS04].

Finally, the most comprehensive transformation approach to product derivation can be found
in [ZJ06]. Unlike the other approaches that cover the whole SPL engineering activities, Ziadi
and Jézéquel put the emphasis on product derivation at the design level both for static and
behavioral aspects. Static models are described in terms of UML class diagrams extended with
the UML profile we have presented above (see “SPL Architecture and Design”). The derivation
process uses a decision model taking the form of a design pattern to display the variants avail-
able for each product. In a first derivation step, variants are selected in this model and relevant
classes are automatically selected. In the second and third steps, unused variants are removed
and the model is optimized. The derivation process is described in an imperative pseudo-code
format supported by the MTL transformation language. Behavioral derivation is based on the
synthesis of state machines from scenarios that have been algebraically formalized at the do-
main engineering level. First, variability is resolved by interpreting the algebraic expressions on
a decision model that defines the choice made for each variation point. The synthesis process
generates “flat” state machines from individual sequences and then combines them so that they
map sequence diagrams with combined fragments.

Both automated transformation and configuration approaches require that a decision model be
fully defined, implying that all variation points are fully known, which may not meet customers’
expectations. PuLSE-I [BGMW00] has envisioned the possibility that additional features might
be developed but provides no support for them. The FIDJI product derivation process enables
product engineers to define their own variation points by directly transforming the domain
engineering artifacts in a controlled way. We will describe this approach in Chapter 3.

66 2. Background

2.5 Object-Oriented Frameworks

In this section, we describe the notion of object-oriented framework which is one of the pillars
of modern software development. We specifically insist on relating object-oriented frameworks
concepts to those of software product lines. We then introduce the more recent concept of
enterprise architecture framework as a way to structure object-oriented framework artifacts.

2.5.1 Definition

Object-Oriented Frameworks have emerged from the need to provide better reuse artifacts than
class libraries initially provided with object-oriented languages [Dah68]. In particular, the ob-
jective was to reuse a more coarse-grained solution than a particular functionality embodied
into a class. Early examples of object-oriented frameworks are related to the Smalltalk-80 lan-
guage [GR83]; one of the most famous examples is the Model View Controller (MVC) that
smalltalk provided for user interface management.

Several definitions exist for object-oriented frameworks [JF88, FS97, Szy98]. In this thesis, we
will use the definition of object-oriented framework given by Johnson and Foote [JF88]:

Definition 14 (Object-Oriented Framework) An object-oriented framework is a set of
classes that embodies an abstract and reusable design for solutions to a family of related
problems in a particular domain.

Considering this definition, it is obvious that object-oriented frameworks and software product
lines are related to each other: “solutions to a family of related problems” can be understood
as different members of a SPL and “abstract and reusable design” may easily be related to the
notion of SPL core assets. As discussed by Tourwé (see [Tou02], Chapter 2), an object-oriented
framework design captures structural and behavioral relationships amongst its classes. In or-
der to achieve reusable and sound structural organization of classes, object-oriented frameworks
heavily rely on design patterns [GHJV95] which are proven solutions to recurrent problems.
However, object-oriented frameworks are more concrete than design patterns, and combine
several instances of different patterns to form a highly specialized solution. Concerning be-
havior, a distinction have to be made between object-oriented frameworks and class libraries;
indeed, object-oriented frameworks own a specific thread of control while class libraries do not.
Therefore, an object-oriented framework can be seen as a partial application that will be ex-
tended in the context of a particular development as defined by Fayad and Schmidt [FS97].
In [Pre95, Pre00], Pree introduced the notion of “spots” to conceptualize object-oriented frame-
work flexibility; frozen spots represent parts of an object-oriented framework that are fixed and
cannot be adapted while developing an application with it. Hot spots, for their part, describe
parts of a framework that can be extended for a specific application as needed; this is the process
of instantiation that will be discussed below. Hot spots are typically defined in terms of ab-
stract classes and interfaces while frozen spots may involve concrete classes as well. Drawing an
analogy with product line concepts, frozen spots correspond to commonalities while hot spots
correspond to variabilities in the domain addressed by the SPL.

Over the years, various object-oriented frameworks have been developed in several domains.
For instance, Fayad and Johnson gathered in [FJ00] object-oriented frameworks belonging to

2.5. Object-Oriented Frameworks 67

the following domains: manufacturing, distributed systems, networks and telecommunication.
Object-oriented frameworks can also be categorized according to the abstraction level in which
they provide their functionality. For example, Fayad and Johnson [FJ00] defined the following
levels:

• System Infrastructure: object-oriented frameworks in this category typically provide
solutions for accessing hardware resources, implementing user interfaces (JAVA SWING
[HWL+02]), supporting network protocols or are provided with programming languages
(Microsoft .NET framework [RR02]...);

• Middleware Integration: object-oriented frameworks in this category address interac-
tions between components within a distributed setting. This includes CORBA related
frameworks (Borland Visibroker [Bor], IONA Orbix [ION]), J2EE containers (IBM Web-
Sphere [IBM], BEA Weblogic [BEA]) or web-services (Apache Axis [Fou], etc.);

• Enterprise Application: object-oriented frameworks in this category provide core busi-
ness functionality in a broad domain range. In the e-business domain, examples include the
discontinued IBM San Francisco project [RCB98] or commercial frameworks for enterprise
resource planning such as SAP [Her05].

Naturally, these levels are connected: a middleware integration object-oriented framework may
use a system infrastructure level providing low-level network functionality and an enterprise ap-
plication level may need the service of distributed component technologies to provide distributed
functionality on heterogeneous platforms and networks.

2.5.2 Instantiation

An object-oriented framework only offers an abstract and/or partial design to an application.
We need to complete it with specific code in order to complete to the final application. This
activity is called instantiation [Tou02]:

Definition 15 (Object-Oriented Framework Instantiation) Deriving an application
from an existing framework is called instantiating (or specializing) that framework. A concrete
application derived from a given framework is called an instance, an instantiation or a
specialization of that framework.

In accordance with the analogy drawn earlier, if an object-oriented framework implements core
assets for a SPL, then object-oriented framework instantiation represents the actual process of
product derivation. The instantiation process is realized by completing hot spots, which can be
done in two ways [Pre00]:

• Inheritance-based instantiation: in this approach, we use the inheritance mechanism
of object-oriented languages to extend classes (which are most of the time abstract in hot
spots) and override methods (which are often called hook methods because they form the
interaction points between object-oriented frameworks and application behaviors). Do-
ing so requires that developers have access and understand the object-oriented framework
implementation. This is why object-oriented frameworks providing inheritance-based hot
spots are said to be white-box [JF88]. A white box object-oriented framework is proac-
tive [Bos00]; it calls the various parts of the application according to its thread of control.
From the application viewpoint, it realizes an inversion of control [JF88] also known as
the Hollywood Principle: “Don’t call us we will call you”;

68 2. Background

• Composition-based instantiation: in this approach, the final application behavior is
obtained by different class compositions. Thus, in this case, the application developer
does not need to know all object-oriented framework implementation details but just the
way classes can be combined (through the knowledge of their interfaces, for example).
Therefore, object-oriented frameworks providing composition-based hot spots are said to
be black-box [JF88]. Indeed, these different class combinations can bee seen as parame-
terizations of the object-oriented framework requiring less application development effort
since the work amounts to providing sound combinations of object-oriented framework
classes instead of extending them. Black-box object-oriented frameworks can be thought
as white-box ones which have matured so that class extensions are forming default and
concrete behavior and are integrated in the object-oriented framework.

As noted in [Bos00, Pre00], no real object-oriented framework is entirely white-box or black-
box; in general, object-oriented frameworks combine both approaches where most stable parts
are reused via composition and some are specialized via inheritance. The same applies for
control, the object-oriented framework calls some parts of the application while the application
controls some classes of the object-oriented framework. With respect to SPL concepts, we can
relate the compositional object-oriented framework instantiation to the configuration approach
(Van Ommering product population approach [vO02] is an example) while the inheritance-based
instantiation is more in alignment with transformation approaches (Ziadi and Jézéquel [ZJ06]).

2.5.3 Documentation

Depending on abstraction level (system, middleware and enterprise application) and how their
domain is scoped, object-oriented frameworks can form quite large class infrastructures. How-
ever, as noted in Chapter 2 of Tom Tourwé thesis [Tou02], design patterns typically introduce
extra abstractions and indirections between object-oriented framework artifacts that are difficult
to understand. Therefore, application developers need a sound documentation providing them
with design guidelines on how to instantiate the object-oriented framework. It should be noted
that this documentation can be active: in addition to providing guidelines for application devel-
opers, they may also provide technique to actually instantiate the object-oriented framework.
In the remaining paragraphs we sketch some of the most common approaches to object-oriented
framework documentation.

Documentation approaches can be divided in black-box and white-box ones, addressing different
purposes. Black-box approaches provides guidance on how to instantiate the object-oriented
framework while ignoring design and implementation details:

• Examples: Examples are the simplest way to document an object-oriented framework.
They are predefined instantiations of an object-oriented framework the developer can re-
view to understand object-oriented framework design and possibly adapt those examples
as needed;

• Cookbooks: A cookbook [Joh92, Pre95, FPR00] is a collection of recipes to instantiate
the various hot spots of an object-oriented framework. Recipes usually give an intent
(e.g. adapting the behavior of a particular class), a description of the classes involved
(“ingredients” to apply the cooking metaphor) and steps to follow in order to instantiate
the hot spots. Recipes can be systematically structured using a use case-like format called
reuse case [BGK98];

2.5. Object-Oriented Frameworks 69

• Task-based: Task-based approaches can be seen as an active version of recipes. Recipes
are embedded in integrated environments that automatically guide the developer when he
instantiates the object-oriented framework by showing which tasks have been completed
and which remain to complete to finalize instantiation. Examples of this kind of environ-
ment includes FRED [HHK+01a, HHK+01b] or Ortigosa and Campo HiFi tool [OC00];

• Constraints: Another way to help developers instantiating an object-oriented framework
is to provide them with logical constraints avoiding misuse. In [HHR04], Hou et al. de-
scribe a language called Framework Constraint Language (FCL) that is able to ensure
that the properties governing the instantiation of an object-oriented framework are veri-
fied. FCL is based on first-order logic and has a type system that covers object-oriented
model basics (classes, methods and variables as well as inheritance relationships). This
language was initially designed to operate with C++ based object-oriented frameworks
but has recently been extended and renamed to Structural Constraint Language (SCL)
to also support JAVA programs [HH06]. Moreover, tool support has been designed in the
eclipse environment. The toolset works as follows: from source code, it extracts a base
of facts through syntactic and semantic passes of the compilers. Then, it checks whether
the boolean formulas composing the FCL specification are satisfied. We will extend this
approach at the requirements and design levels as a support to control product derivation
and document SPL variability (see Chapter 3).

On the contrary, white-box-based documentation is concerned with the implementation details
of object-oriented frameworks and includes:

• Patterns: As we mentioned above, object-oriented frameworks embody a great number of
design patterns that need to be understood in order to perform object-oriented framework
instantiation. In [BJ94], Beck and Johnson propose a template for documenting design
patterns comprising preconditions to be fulfilled before the pattern application, descrip-
tion of the problem, constraints on its application (i.e. trade-offs to be made between
performance and flexibility) and a brief summary of the solution. This template is then
exemplified in the HotDraw object-oriented framework. This format was accompanied
with diagrams showing class structures and their mutual interactions with each other (an-
cestors of UML class and sequence diagrams) and code realizing their usage as illustrated
in [GHJV95]. In [Tou02], Tom Tourwé proposes to use “metapatterns” (which can be
thought as abstraction of design patterns) to define transformations in the object-oriented
framework that can both be used for its instantiation or evolution. These transforma-
tion are specified in a logic programming language before being implemented in an object
programming language;

• Interfaces: Interface contracts [Mey92] provide the specification of obligations for a class
as well as invariants in isolation [BD99]. A careful documentation of class interfaces is one
step towards instantiation support as shown in [Vil03];

• Exemplars: In [GM95], the authors propose to document object-oriented frameworks in
a top-down fashion by providing instantiation of their abstract classes through exemplars;
for each abstract class, at least one concrete class has to be provided. This documenta-
tion is provided by means of a visual object-oriented modeling language supported by a
modeling tool. Once the user has selected the desired exemplar, he can then adapt it to
its application by changing the concrete classes;

70 2. Background

• UML Profiles: Several UML profiles have been elaborated to [FTV02, FPR00, SA02].
The most exhaustive work in this field is the UML-F profile [FPR00]. This profile allows
to specify hot spots and frozen spots. UML-F is based on the extension of two UML 1.4
diagrams: class diagrams and sequence diagrams. For class diagrams, the notation pro-
vides constructs for specifying which classes and methods can be adapted (and the kind of
adaptation statically via inheritance or dynamically via class-loading) and those that are
fixed, as well as overriding and inheritance relationships between modeling elements. For
sequence diagrams, UML-F supports the definition of alternative scenarios, loops amongst
methods and objects (such a construct is now available in the last UML 2.0 specification).
In summary, the UML-F profile provides a notation to model commonalities and variabili-
ties in object-oriented frameworks. Some constructs of these profiles can be related to the
work realized in product line modeling with UML [ZHJ03, Zia04].

As a remainder of analogy with software product lines, white-box documentation refers to the
problem of modeling commonalities and variabilities in domain engineering models while black-
box techniques focus on assisting product derivation. Therefore, similarly to instantiation tech-
niques, a combination of both approaches have to be used in order to inform developers on the
object-oriented framework’s design and to help them develop products efficiently. As we have
seen, MDE provides means to describe systems at various abstraction levels and transformation
techniques to generate those systems. Thus, object-oriented framework documentation and in-
stantiation can be treated uniformly, resulting in increased understanding and productivity of
developers, if we combine the concept of object-oriented framework with MDE. Achieving this
combination is one of the main contributions of this thesis and will be presented in Chapter 3.

2.6. Development methods 71

2.6 Development methods

In this section, we explore the development methods that are of interest for the FIDJI method
described in this thesis. We will particularly emphasize on the analysis and design phases of the
methods considered since they lie within to the scope addressed by FIDJI.

2.6.1 Fusion/Fondue

Fusion

Fusion [CAB+94] is an object-oriented development method having its origins in the OMT [RBP+91]
and Booch [Boo94] methods. It consists of a waterfall process organized in three phases: analy-
sis, design and implementation. Each phase is supported by graphical and textual notational
elements and guidelines to construct models with those elements and transition to the next
phase. In addition to the notational elements provided for each phase, Fusion emphasizes on
the necessity to build and use a data dictionary : it is a central repository of definitions listing
the terms and concepts used for the development of the system.

Analysis

The analysis phase treats the system under study as a black-box focusing on its interaction with
the environment. Realizing the analysis phase of a system with Fusion involves building the
object model, system object model and interface model.

The role of the object model is to define the domain of the problem addressed by the system. It is
composed of classes (which instances are objects) and relationships between them. Classes have
attributes of primitive types such as Integer, Boolean, String and Enumeration but cannot be a
class. These classes do not have any operation; indeed, at the analysis level, we are interested
in the data and processing required to model the problem at the system level. For example, a
requirement for an e-banking system can be formulated as follows: “the system should be able to
update my balance”. At this point, it is not relevant to determine which class will be responsible
for handling this requirement. This responsibility will be attributed during the design phase.
The object model is represented graphically in an extended form of the Entity-Relationship
model [Che76] and allows a class to have an internal structure representation.

The system object model is a subset of the object model that defines the boundary between the
system and its environment. This boundary is shown as a dashed curve on an object model.

The interface model focuses on describing the system behavior. This behavior is described in
terms of input/output events and the changes they may cause in the system state. A system
is modeled as a reactive entity that interacts with other reactive entities called agents, which
can be either human users or hardware or software systems. Communication between a system
and the set of agents forming it environment is enabled through events which are instantaneous
and atomic units of communication. Input (from an agent to the system) and output (from the
system to an agent) events are sent asynchronously i.e. the sender does not wait for a response

72 2. Background

to the event it has sent. The event can be accompanied with data values and objects. When
a system receives an event, it can cause a state change and event outputs. An input event
and its effect on a system is called a system operation. At any point in time, only one system
operation can be active. In order to determine the interface of the system, i.e. the set of system
operations it can respond to and the set of events it can output, Fusion offers, as an option, to
model sequence of events between agents and the system with timeline diagrams (a simplified
form of sequence diagrams without alternatives, hence several timeline diagrams are required to
detail a scenario) completed with textual descriptions (but not as structured as use cases).
The interface model is comprised of two models: operation model and life-cycle model.

The operation model “specifies system operations declaratively by defining their effect in terms
of change of state and events that are output” [CAB+94]. In fact, system operations are modeled
as black boxes with preconditions and postconditions. The operation model is constituted of
textual descriptions following an operation schemata composed of the following fields:

• Operation: A unique identifier for a system operation;

• Description: Description of the operation in natural language;

• Reads: List displaying variables the operation may access but not change. They can refer
to an object, attribute or relationship belonging to the system object model;

• Changes: List showing variables the operation may change. They can come from an
object, an attribute or a relationship belonging to the system object model. The keyword
new indicates that the system operation introduces a new object in the system state;

• Sends: All the agents and the events the operation may send to them. For each agent,
the list of events that can be sent to it is enclosed in curly brackets;

• Assumes: A boolean precondition formulated in natural language on the system state;

• Result: Postcondition of the operation. The keyword initial (respectively final) indicates
a value before operation invocation (respectively on completion). This postcondition is also
composed of the description the events that are output.

The life-cycle model is composed of expressions that “describe the allowable sequences of inter-
actions that a system may participate in over its lifetime” [CAB+94]. These expressions follow
a regular-expression approach [DDQ78].

Models offered by Fusion at the analysis level cover static and behavioral aspects of a system
and are detailed enough to provide a precise and concise description of system functionality
while maintaining an acceptable level of accessibility with a mix of simple graphical and textual
notations. However, two main remarks can be made.

First, Fusion does neither have any requirements elicitation phase (requirements are assumed to
be written by a customer and provided to the software supplier. And nowadays, requirements
elicitation is more the result of an interactive process between a software supplier and its cus-
tomer) nor provide any way to link analysis models to software requirements. This is an issue
especially for the determination of the system object model which defines the system bound-
aries. We believe that the link between requirements elicitation and analysis should be made

2.6. Development methods 73

explicit in order to assess system functionality with respect to customer expectations. FIDJI
places scenarios (described as extended use cases) at the center of the analysis process and link
them to a general description of the product line commonalities and variabilities.

Second, we argue that, for a non-trivial system, capturing all possible sequences of system
operations is difficult if not impossible because it forces the analyst to reason on all the states
in which the system can be in order to define Fusion life-cycle model. FIDJI partitions life-cycle
reasoning within scenarios so that the set of states to consider is greatly reduced. Furthermore,
we do not ultimately seek to synthesize the global life-cycle of operations for the SPL products
but focus on the mandatory and unauthorized scenarios.

Design

The aim of the Fusion design phase is to provide a concrete object-oriented structure of the
abstract specifications produced during analysis of the system. In particular, it states ’how’ the
system is implemented, that is, it provides the algorithmic information necessary to fulfill the
goals declaratively described in the operation model and assigns this information to concrete
classes satisfying the abstract description of the system object model. The design phase is based
on building the following elements: object interaction graphs, visibility graphs, class descriptions
and inheritance graphs.

The first step of the design phase is to describe how the abstract behavior of the operation
model is supported. This is done by describing the messages exchanged between objects. For
each system operation, an object interaction graph is constructed defining the objects involved
and how they communicate. The notation for object interaction graphs is composed of boxes
(representing design objects involved) and arrows for message passing (these graphs are the
ancestors of UML 2 communication diagrams). Amongst the objects involved in an object in-
teraction graph, one is responsible for handling the request to invoke a system operation: the
controller. Therefore, in order to be complete, each object interaction graph should have an iden-
tified controller responsible for performing each system operation defined in the operation model.

The second step of the design phase precises the accessibility between objects in order for them
to satisfy the communication described in the object interaction graph. This is the purpose of
the visibility graphs to provide such descriptions. In particular, a visibility graph identifies the
following elements for each class:

• Objects the class needs to reference;

• Appropriate kinds of references to these objects. These references can be permanent or
dynamic (depicted by plain or dashed arrows between boxes), defining exclusive or shared
access for client objects, bound (i.e. deleted if the related object is deleted) or not, and
lastly mutable over the time or not.

The final step of the design phase is to fully describe classes with their attributes and methods
as well as inheritance relationships. Class description follows a textual template, while the in-
heritance graph distinguishes, via filled and empty triangle, generalizations that are incomplete
(they may be new classes that specialize a particular class) or complete (the set of subclasses

74 2. Background

partition the superclass). This mechanism is also found in UML via the GeneralizationSet
construct [OMG05f].

Fusion does not provide any means to model system architecture, the method directly proceeds
to detailed design. As we have seen, architecture modeling is crucial to understand large and
complex systems and to ensure that they will achieve certain qualities using architectural styles.
In a discontinued effort, HP proposed an enhancement to Fusion, called Fusion 2.0 [HP98], which
includes an architecture development phase based on the definition of component architecture
and architectural styles usage. However, they do not provide detailed modeling constructs to
define such elements.

Fondue

Fondue [SBS04, Sen02] is a derivation of Fusion which uses UML (2.0) models. Figure 2.24
shows the models offered by the method.

Fig. 2.24: Fondue Models and their Inter-Relationships (From [SBS04])

Table 2.2 shows the correspondence between Fusion and Fondue models as well as the UML ele-
ments used. Fondue explicitly links analysis models to use case description which helps to drive
the determination of the environment model. Moreover, Fondue has particularly contributed to
behavior precision thanks to OCL. Preconditions and postconditions of the operation model are
specified with OCL which gives a more formal description of the conditions on the system state
while still being easy to read [Sen02]. FIDJI also uses OCL for system operations and proposes
for the fusion life-cycle model to formalize use case descriptions via OCL pre/postconditions and
state variables. This has the advantage, over the protocol model, not to be exhaustive about
the chronological event order.
Partial tool support for Fondue was developed: firstly, a compiler to validate syntax and check
OCL expressions for operation schemas was proposed [Gup01]. Secondly, a metamodel for Fon-

2.6. Development methods 75

due integrated to the UML CASE tool Borland Together in order to assist the edition of Fondue
models was built more recently [LGL05].

Fusion Model Fondue Model Fondue UML Nota-
tion

Object Model Domain Model Class Diagram
System Object Model Concept Model Class Diagram
(Scenarios: text) Use Case Model Use Case Diagram &

Descriptions
Interface Model Environment Model Collaboration Diagram
(Scenarios: Timeline
Diagrams)

Scenarios Sequence Diagram

Life Cycle Model Protocol Model Protocol State Ma-
chines

Operation Model Operation Model Operation Schema +
OCL

Object Interaction
Graph

Interaction Model Collaboration Diagram

Visibility Graph Dependency Model Class Diagram
Inheritance Graph Inheritance Model Class Diagram
Class Description Design Class Model Class Diagram

Tab. 2.2: Fusion & Fondue Models (adapted from [SBS04, LGL02])

Fondue has also been extended in a method, called “Enterprise Fondue” [SS03], that integrates
separation of concerns [TOHSMS99], aspect oriented programming [Kic96], component-based
software engineering [Szy98] and model-driven architecture. Enterprise Fondue is organized in
five layers:

• Component-based layer: Describes an organization of the system in terms of business
components and relationships among them;

• Concern-based layer: Once business components have been identified, the fondue mod-
els are used to actually define them completely;

• Technology-dependent layer: Contains business components models refined for a par-
ticular technology (CORBA,J2EE) thanks to UML profiles;

• Platform-dependent layer: Models of the technology-dependent layers are enriched
with specific information on the platform offered by a given vendor (e.g. BEA and IBM
for J2EE application servers);

• Language-dependent layer: Contains the application code in which the various con-
cerns covered in the second layer are weaved using aspect-oriented programming tech-
niques.

Enterprise Fondue follows a waterfall process and all the layers described above are related
through of model transformations.

76 2. Background

Fondue and Enterprise Fondue make contributions to the Fusion method at the analysis and
design levels. These contributions use UML as a standard modeling notation, OCL for precision,
and recent achievements in component engineering to address the complexity inherent to the
architecture and design of distributed systems. However, these works having been carried out
independently, there is no clear integration of these contributions in the fondue process. Fur-
thermore, Enterprise Fondue does not detail the modeling language provided with the method
and transformations proposed to generate the successive layers.

2.6.2 Rational Unified Process

The Rational Unified Process (RUP) [Kru03] is a derivation of a generic process called the
Unified Software Development Process [JBR99] and uses UML as its main modeling language.
RUP stems from the idea that it is risky to get “everything right” before going to the next
phase and that the cost of an early error is so high when tackled at the end of the development
process that it should be minimized. Therefore, RUP proposes to divide the development process
in iterations. Each iteration can been seen as a waterfall model passing through all software
engineering activities (requirements, design...) thus allowing to accommodate a change in any
of these activities in the next iteration. Iterations are grouped in phases which characterize the
emphasis that should be put on the various activities depending on the overall progress of the
development project (see Figure 2.25). RUP identifies four phases:

• Inception: This phase focuses on establishing a business case of the system: i.e. all the
entities that interact with the system and the nature of these interactions. The outcome of
this phase includes informal description of the system functionality (summary use cases),
financial and risk assessment documents, project glossary and initial development plan of
the system;

• Elaboration: The role of the elaboration phase is to have a complete understanding of
the software. This entails the creation of a requirement model (80 % of all use cases should
be present) a software architecture description, prototypes, a development plan, revised
risk and business case. In particular, the architectural description of the system may be
built with UML according to the renowned “4+1” views [Kru95];

• Construction: The construction phase concerns the main development of the product
together with its careful testing and its accompanying user manual;

• Transition: Finally, the transition phase involves deployment, maintenance activities for
the product.

It should to be noted that in addition to iterating within a particular phase, the four phases can
be enacted incrementally as noted by Sommerville [Som04]. Each run through the four phases
is called a cycle and produces a software generation. Kruchten [Kru03] also mentions that these
cycles may overlap (the transition phase of one cycle may include the inception and elaboration
phases of the next cycle).

RUP is not prescriptive in the models it offers. For example, while the 4+1 approach led
Kurchten to define RUP as an architecture-centric processs [Kru03], no specific notation — if
we except the fact that RUP as a whole is based on UML as it primary modeling language — is
provided to natively support these viewpoints. In his vision of RUP, Larman [Lar02] uses UML
packages to organize system architecture in terms of layers and partitions. Other diagrams

2.6. Development methods 77

Fig. 2.25: RUP Phases & Iterations ([Kru03])

are used to provide their internal structure and behavior (class and interactions), and major
decisions concerning architecture rationale are captured in the Software Architecture Document
(SAD). However this notation fails to describe relationships between components and hence does
not support the modeling of component-and-connector views.
Furthermore, RUP is a very general process framework and needs to be adapted to a particular
organization; depending on the size and type of the project all artifacts do not need to be built
(see chapter 17 in [Kru03] and [Lar02]). Furthermore, although the RUP process gives a set
of good software engineering practices, it does not transform them in useful modeling elements
accompanied with concrete building guidelines. Therefore, quality of the method depends on
the adaptation done to apply it in concrete developments.

2.6.3 Catalysis

Catalysis [DW99] is an component-based development method that uses UML and relies on the
following three principles:

• Abstraction: In Catalysis, abstraction is used in two ways. The first one aims at provid-
ing descriptions of the system uncluttered of any details that would not be relevant at a
given stage of the development of a system. The second one strives at prioritizing choices
made about the system throughout its development; thus, it is possible to make design
decisions before coding and to reuse some of them without considering low-level issues
such as the particular technology in which the system will be implemented. The various
Catalysis models corresponding to a particular development phase are then obtained via
refinement techniques;

• Precision: Abstraction, however, does not necessarily means unclarity. Catalysis’ authors

78 2. Background

claim that precision is related with the capability of a model to be refutable and to provide
traceability amongst artifacts;

• Pluggable Parts: Catalysis emphasizes on building systems via the assembly or adap-
tation of components with well-defined interfaces. Component reuse should occur at each
phase of the system development, i.e. from requirements to code.

Catalysis does not propose a particular development process but rather a set of patterns to apply
the method depending on a particular context. Patterns are ordered according to the develop-
ment phase of the system they apply to. Catalysis identifies the following major development
phases:

• Business: Understanding the terms used by the stakeholders of the system (dictionary),
capturing business rules and constraints independently of the software solution to be pro-
vided. A business model is generally composed of class diagrams for concepts, OCL in-
variants for constraints and use cases (specified using OCL pre/postconditions) detailing
business actions. All these elements are informally described in a dictionary;

• Component Specification: The goal of this phase is to declaratively describe the be-
havior of each system component. It typically involves building a “type model” that is
refined from the business model. This type model hence contains objects and actions
but is complemented with a statechart detailing the acceptable flow of events the com-
ponent can handle, use case descriptions and user interface descriptions in the form of
storyboards [LM96];

• Component Design: A detailed design of the system is made in order to satisfy the type
model. This involves building or reusing existing components and assembling them in a
well defined architecture. Catalysis proposes a “Component-Port-Connector” model which
is quite similar to the component and connector viewpoint; ports define the provided and
required interfaces of components, while connectors are dedicated to message passing or
operation calls. Connectors are typed and it is possible to specify their behavior in terms
of OCL pre/post-conditions connecting two or more ports.

A specific combination of patterns composes a “route”. Catalysis provides basic routes to de-
velop a system form scratch, to reengineer one or to handle legacy components. These routes are
just examples; depending on the context, every organization can define its own route through
the method by wisely combining individual patterns amongst phases. In addition, Catalysis
authors state that the process is nonlinear, iterative and parallel. For example, a reengineering
context may involve building type models form existing components design while defining the
business model for the new system. The last step would be to combine type models in a single
type model and use it to refine the business model.

Therefore, Catalysis is as flexible as the Rational unified process but provides, thanks to refine-
ment clearer relationships between the artifacts of the systems. However, Catalysis is not an
integrated method if we compare it to Fusion; we have to choose amongst the different routes
in order to form a complete development process. We believe that, in order to be practical, a
development method should offer a unique process (“route”) adapted to the state of the prac-
tice in a given domain guiding software engineers from early requirements to design, as well
as a modeling language, which elements are tailored to describe the information required for
each step of the method. Furthermore relationships between these elements have to be clearly
mentioned.

2.6. Development methods 79

2.6.4 KoBra

KoBra [ABM00, ABB+02] is a product line development method that is an object-oriented
derivation of the PuLSE approach presented in Section 2.4. Korbra builds on the same synergy
that we outlined in Section 2.5 between product lines and object-oriented frameworks concepts.
The fundamental concept of the KoBra approach is the Kobra Component or “Komponent” 8

that is assembled with other komponents to form a framework on which individual products will
be developed. A komponent is described at two abstraction levels:

• Specification: Specification models define the externally visible properties of the kompo-
nent. They include a structural model in the form of an UML class digram that exposes
the class and operations available at the interface of the komponent, a functional model
described as Fusion operation schemata specifying individual operation behavior and a
behavioral model using UML statechart notation describing how the komponent react to
external stimuli. In addition, a decision model adopting a tabular notation describes the
effect a particular choice has on the aforementioned models;

• Realization: Realization models detail komponent internal design in terms of interaction
models, structural model and activity model. Interaction models describe the concrete
realization of each operation specified in the functional model and use either UML collab-
oration diagrams or sequence diagrams to do so. A structural model describes the internal
komponent architecture as a refinement of the structural specification model: new classes
may be introduced and some specification classes may be detailed. The activity model
gives a process-oriented view on each of the komponent’s operations and may also be used
to elaborate interaction models. Finally, the decision model at the realization level is an
extension of the specification level.

The domain engineering activity (called framework engineering in KoBra) firstly establishes a
“context realization” model of the framework. This model is composed of a class diagram show-
ing the komponents involved in the framework, a list of processes supported by the framework
and further detailed with activity diagrams, and a decision model that is relating questions to
be asked to the product customer to variability proposed in the business processes. This model
can be thought as a realization model of the “root” komponent of the framework used to initiate
the KoBra process. From this realization model, the specification model of each of the sub-
komponents is defined, then refined into a new realization model which forms the basis for new
subkomponents in a recursive manner. The recursion stops when there is no new subkomponent
to define. Thus, the development of the framework can be compared to the development of a
tree whose child komponents participate in the realization of their parents.
In addition to this top-down approach, a bottom-up approach, called “extreme harvesting” has
been proposed [HA04]. It is based on the retrieval of components (available in a given source
such as Internet) based on method signature for syntax and test cases for semantics. Extreme
harvesting and KoBra integration are shown in [AH04].

The application engineering activity basically consists in assembling an application (or parts of
it) from the framework. Application models follow the same language as the framework mod-
els but, in the former, variability is completely resolved. Application models may also contain
specific features that are not provided by the framework but required for a particular product.

8 In the remainder of the thesis, we will write komponents to refer to KoBra Component

80 2. Background

Application engineering comprises two steps: application context realization and framework in-
stantiation. The realization of the application context takes place between a customer who is
interested in a type of application provided by a software vendor and a consultant of this ven-
dor. During his interaction with the customer, the consultant progressively makes decisions that
meet the customer requirements in the framework realization models according to the decision
model. If a choice cannot be made with he help of the customer, the framework models are left
partially instantiated. If none of the proposed alternatives for that decision point suit the cus-
tomer, the specific requirements for that decision point are modeled explicitly. The alternative
that is the closest to this requirement will be used as input for that modeling activity so that
we only need to model differences between what is provided, what is required, and the corre-
sponding realization for that alternative can act as a guide for the design activity. When all the
decisions are made, the customer carefully checks the application context model and validates it.

The framework instantiation activity takes the application context model as input and sub-
sequently performs all the decisions in the subkomponents that are connected to the context
realization of the framework. Unresolved points are fed back to the consultant who will re-
solve them either with the customer or with the developers. In addition, customer-specific
requirements will be implemented and integrated into the application model. They can also be
integrated to the framework if it is believed that these requirements could be useful for several
customers.

Thanks to its recursive komponent structure, Kobra provides an integrated metamodel and
a well defined process covering SPL domain engineering. Concerning application engineering,
no automatable support is defined, especially regarding features that are not provided by the
framework and derivable with the help of the decision model. FIDJI contributes to this point
by defining a flexible instantiation process (see Chapter 3). Furthermore, FIDJI offers more
accuracy in the modeling process through the systematic use of OCL.

3. FIDJI CONCEPTS

Abstract

This chapter performs a critical analysis of the software engineering innovations
presented in the previous chapter and introduces the solutions provided by the FIDJI
method in a high-level manner. First, we forge our notion of architectural framework
by combining models and existing OO frameworks. We then explain its instantia-
tion mechanism by means of model transformations controlled via instantiation con-
straints. Section 3.1.1 presents the current issues in existing object-oriented frame-
work development practices that have motivated the introduction of the architectural
framework concept. Section 3.1.2 defines this concept and presents its constituents
that will be detailed in Part II. Section 3.1.3 presents the approach for architec-
tural framework instantiation. Second, Section 3.2 introduces the FIDJI methodol-
ogy which activities are organized around the architectural framework instantiation.
Finally, Section 3.3 describes the research method followed to develop this thesis.

3.1 Architectural Frameworks

3.1.1 Motivations

The Framework Reuse Problem

As we showed in Chapter 2, object-oriented frameworks are very popular in software engineering
and are the key to successful code reuse. In particular, object-oriented framework-based devel-
opment which proposes the systematic reuse of a code infrastructure is appropriate to product
line development approaches where core assets are reused according to their commonalities and
variabilities [BCS00]. Conversely, gains in application development time and quality generated
by the reuse of the same infrastructure of assets make the cost of building an object-oriented
framework acceptable. Hence, we believe that any SPL-based development approach should
be based on the reuse of an object-oriented framework that is extended by application devel-
opers. However, non-trivial object-oriented frameworks contain a huge number of classes that
are generally difficult to understand. Moreover, application developers have some difficulties to
identify the appropriate classes to extend first, which may lead to mis(re)use of object-oriented
framework assets thus violating framework design benefits (such as encapsulation or use of a
particular design pattern [GHJV95]). Experimental evidence [KRW05] gathered from university
student projects showed that framework reuse problems can be divided in four major categories
(209 issues were analyzed but 46 were left out because of irrelevance or lack of information):

• Mapping (38 issues): This category is about finding the appropriate implementation
modules in the framework that come up with an abstract solution to the problem. Typical
concerns include: “What should I use to represent...?” or “How do I express...?”;

82 3. FIDJI Concepts

• Understanding functionality (60 issues): This category contains the highest number
of issues. These issues are related to the specific understanding of the inner workings of
the framework classes. Questions include: “How does...work?” or “Where is...defined/
created/ called?”;

• Understanding interactions (48 issues): This category relates to the communication
between classes of the framework: “Where should I put...?”. This category is important
because a misunderstanding of interactions between classes can lead to issues somewhere
else in the framework that are really difficult to trace and solve;

• Understanding the framework architecture (17 issues): This category is about
instantiating the framework in a particular application with disregard for its high-level
architectural properties (which are enforced by design patterns for example). Although
the authors claim that it may have no short-term effect, we believe that the essence of
a framework being in the particular architecture it provides (which distinguishes it from
a library), it is hence crucial that the application developer be aware of the impact an
architectural change implies on his application.

This study is interesting because, as the authors point it, it shows what are the current challenges
in framework-based development and that they are not all addressed by current techniques for
framework documentation exposed in Chapter 2. In fact, each of these techniques is focused
on one particular issue. For example, the use of patterns tackles the mapping problem and
architecture-oriented programming [HHV+01] helps in understanding functionality by providing
tasks to follow in order to specialize framework hot spots. However, the authors claim that
understanding key interactions in the framework deserves further research. Indeed, if we look
at the software engineering phases in which these categories of problems reside we observe that
the following ones are involved:

• Analysis: Mapping problems relate to matching requirements analysis of an application
to the solutions a framework provides;

• Architecture: It is necessary to have a global view of what framework components are
doing and how they interact to understand its key interactions;

• Design: Details of a specific object-oriented framework functionality have to be known
to use it satisfactorily.

Therefore, we are convinced that it is necessary to have a broad vision on framework reuse
problems because they refer to different phases of software development and a framework docu-
mentation technique that will be able to solve all problems does not exists. As the authors of the
above study mentioned, it is important to combine different techniques in order to solve these
problems as a whole and not individually. This reasoning constitutes the starting point of our
reflections on enhancing the notion of object-oriented framework to build the one of architectural
framework by combining an object-oriented framework with models and transformations. In the
following sections, we explain to what extent models and transformations can be of interest to
address the aforementioned framework reuse issue before giving our definition of architectural
framework.

Models for Framework Understanding

Within the categories identified by Kirk et al. in the preceding section, we can notice that
three of them are related to framework understanding at various levels of detail. For example,

3.1. Architectural Frameworks 83

“mapping” and “understanding the framework architecture” are symptomatic of abstraction
level mismatches: in both cases, developers try to find high-level information such as abstract
description of the functionality offered by the framework (that has to be mapped with the gen-
eral description of the solution they require for their application) or have a quick overview of the
framework architecture in low-level artifacts such as code or accompanying documentation that
typically do not provide this information. Hence, application developers are forced to infer this
information from these low-level artifacts which is a time-consuming and error-prone task. In
fact, this inferring activity may result in different conclusions about framework design than those
originally drawn and implemented by framework developers. Several reverse-engineering tech-
niques address understanding of an object-oriented framework by exploiting its interfaces [Vil03]
or by recognizing the design patterns [KP03, GAK99] used. In fact, these techniques raise the
abstraction level to ease understanding.
In Chapter 2, we promoted the use of models to describe systems at various abstraction levels.
Therefore, quite naturally, we advocate that models should be employed at any abstraction
level to ease understanding and reuse of object-oriented frameworks and improve the quality of
their documentation. It should be noted that it is a general statement, in this thesis we will
concentrate on requirements analysis, and architecture levels.

Transformations for Framework Instantiation

Understanding an object-oriented framework is a prerequisite to the development of an applica-
tion based on it. The next step is to extend object-oriented framework assets and to complete
them with application-specific code. This completion may involve a significant number of classes
to create depending on the technology chosen (for example, J2EE EJB technology involves the
creation of several interfaces for each EJB) and the design patterns used (which sometimes makes
necessary to create additional classes to achieve reuse and flexibility). Automated techniques
for framework instantiation provided by active cookbooks, tasks or metapattern transformations
provide assistance only for the implementation phase of the application, not for its requirements
analysis. We believe that model transformation is of paramount importance to automate part
of the object-oriented framework instantiation.
In particular, we support the reuse of SPL assets at a particular abstraction level by means of
horizontal transformations. In a SPL context, this implies using these transformations to imple-
ment variability mechanisms and select what particular assets of the product line will be present
in the product i.e performing product derivation. In this thesis, we will particularly focus on
them as a mean to support a flexible product line development process as initially presented
in [GP06].

Object-Oriented Frameworks and Software Product Lines

In a part of Chapter 2, we explained the natural relationship between object-oriented frameworks
and SPL concepts, both focusing on building and reusing common assets and providing vari-
ability mechanisms to support the development of different products. Although these concepts
are similar, they do not address the same abstraction levels; object-oriented framework-based
variability mechanisms (such as inheritance or composition) are focused on the actual imple-
mentation of variability while a SPL also requires to be identified and modeled at requirements
and design levels. For example, feature models and use case variants are used for requirements
elicitation while configuration scripts support product deployment. Various mechanisms have
been proposed to cope with variability at all stages of SPL development [HP03, SvGB05] and

84 3. FIDJI Concepts

which have to be selected carefully carefully when performing domain engineering.

However, industrial research [BFG+01, DSB04] has shown that selecting variability mechanisms,
although having a great impact in terms of flexibility and performance (at implementation stage),
is frequently done arbitrarily. Furthermore, the same research states that the interaction be-
tween such mechanisms at various levels has not been sufficiently studied. Therefore, just like
there is an abstraction mismatch between information present in an object-oriented framework
and that required to readily understand it, there is also a mismatch between variability mecha-
nisms hindering their smooth combination.
We believe that constraints enabling the definition of restrictions on product derivation amongst
abstraction levels represent a way to integrate variability mechanisms in a coherent manner [GP06].

3.1.2 Definition

The preceding paragraphs motivated the need to compose models, transformations and object-
oriented frameworks to facilitate SPL-based development. This need led us to define the term
architectural framework as follows:

Definition 16 (Architectural Framework) A layered set of reusable models characterizing
core assets devoted to the specification and realization of a specific SPL. Layers include core
assets definition, design and implementation as an object-oriented framework.

The “architectural” qualifier refers to early work on the FIDJI method [GP02, GP04] (see
Section 3.3 below).
We also assign a generic meaning to these “reusable models”; they normally include UML
models, but also use case textual descriptions or code implementation etc.

Figure 3.1 illustrates a general overview of the layers composing an architectural framework.
Each layer corresponds to a particular abstraction level and contains elements designed to be
reused in an identified phase of product development. Each layer provides models and ap-
propriate instantiation constraints to support the instantiation of the architectural framework
models into product models. In addition, layers are connected by traceability links (expressed
as dependencies in Figure 3.1).

The purpose of the analysis layer is to specify the functionalities offered as well as the concepts
handled by the architectural framework. It refines SPL requirement elicitation documents and
provides the necessary predefined transformations to build the products initially defined at the
requirement elicitation level as well as constraints preventing invalid products from being devel-
oped. Chapter 4 describes in details the modeling language defined by FIDJI for this layer as
well as transformation operations supporting product derivation available at this level.

The role of the design layer is to expose how the architectural framework achieves functionalities
specified at the analysis level. This includes the explicit definition of the architectural framework
structure as well as the algorithms supporting the behavior defined declaratively at the analysis
level. Similarly to the analysis layer, transformation operations support product derivation and
constraints ensuring that the intrinsic qualities of the architecture are kept. These elements will
be detailed in Chapter 5.

3.1. Architectural Frameworks 85

Analysis

Design

Implementation

SPL Requirements

Derivation
Constraints

Derivation
Constraints

Models

Models

Object-Oriented
Framework Guidelines

Fig. 3.1: Architectural Framework Layers

The implementation layer is the translation of the design layer in a particular programming
language. It comprises an object-oriented framework along with the necessary documentation
to complete product implementation.

3.1.3 Architectural Framework Instantiation

Overview

Architectural framework instantiation has the same goal as that of an object-oriented framework:
to support the actual derivation of a product. The main difference is the instantiation scope:
an object-oriented framework supports only product implementation whereas an architectural
framework supports other artifacts (requirements analysis, design...) depending on the layers it
provides.

Definition 17 (Architectural Framework Instantiation) Process which consists in
deriving product models by reusing architectural framework layers. Layer reuse is supported via

86 3. FIDJI Concepts

model transformations and is controlled via constraints keeping some of the architectural
framework’s important qualities and ensuring adequacy of the derived product with respect to
the SPL’s definition.

If an architectural framework provides all the layers from requirements to implementation and
deployment, then the process of architectural framework instantiation is synonymous with “ap-
plication engineering” or “product derivation” concepts in SPL engineering (see Chapter 2,
Section 2.4). Figure 3.2 depicts the relationships between architectural framework layers and
application models:

• Requirements Elicitation: The requirement elicitation document of a product is a
combination of both SPL features and informal description gathered from the product
customer (FIDJI addresses SPL-based development in which products are requested and
validated by customers. See Section 1.3 below);

• Analysis: Product analysis is obtained by reusing the architectural framework analysis
layer by means of model transformation and validated against architectural framework
analysis constraints;

• Design: The same applies for the design layer. Analysis models, by selecting or not
particular architectural framework assets imply that their design should or should not
be made available at the design level. Constraints provided at the design level take into
account possible choices by means of conditional constraints,

• Implementation: Similarly, instantiation of an object-oriented framework depends on
design choices. For example, in a task-based documented object-oriented framework, some
of the tasks may be invalidated because they are corresponding to unused portions of the
object-oriented framework for that particular application.

Instantiation by Transformation

As we already mentioned, we use model transformations to instantiate product models from
architectural framework layers. Indeed, architectural framework instantiation is actually per-
formed by the execution of an instantiation program.

Definition 18 (Instantiation Program) An instantiation program is a combination of
model transformation operations applying to a given architectural framework and supporting its
instantiation.

Our approach to model transformation is to define a library of transformation operations tailored
to work closely with the architectural framework layers: for each layer, a dedicated package
containing appropriate transformation operations to operate on layer models is provided, thus
facilitating their use by the product developer. Each transformation operation is defined in
a declarative way by means of OCL pre/postconditions. These operations are then combined
imperatively in an instantiation program using basic programming language constructs. This
instantiation program uses OCL capabilities to query the FIDJI models (which are mainly
based on UML) and imperatively construct the target model using operations of the library.

3.1. Architectural Frameworks 87

AF Analysis

AF Design

AF Implementation

SPL Requirements
Elicitation

Derivation
Constraints

Derivation
Constraints

Models

Models

Object-Oriented
Framework Documentation

Product Analysis

Models

Product Design

Models

Product Implementation

Product
Implementation

Product Requirements
Elicitation

Model
Transformations

Model
Transformations

OO Framework
instantiation support

User Requirements
Elicitation

Fig. 3.2: Architectural Framework instantiation

In addition to simplifying the query mechanism on UML models, such an approach is also
easily interoperable with other OCL-based tools which are likely to rapidly increase as the QVT
standard is becoming more popular. The library of transformation operations will be illustrated
for analysis and design phases of the FIDJI methodology in chapters 4 and 5. The concrete use
of the language will be demonstrated in Chapter 6.

Instantiation Constraints

The purpose of constraints is to place restrictions on the products that can be defined via an
instantiation program. They can be seen as a generalization to the analysis and design layers of
the Structural Constraint Language proposed by Hou et al. [HHR04]. Constraints are expressed
in OCL and state which parts of the architectural framework must be reused for all the products
of a given SPL or which parts cannot be adapted by the instantiation program. Constraints are
of two kinds:

• Invariants on model elements: This category of constraints specifies which model

88 3. FIDJI Concepts

elements must (or must not) be part of the instantiated product model;

• Invariants on transformation operations: Alternatively, it is also possible to express
constraints using operations on a given set of elements. For example, one it is possible to
prevent adding elements in a given asset. Although this category is semantically equivalent
to the first since they can be rewritten as standard invariants using the postconditions
specifying their behavior, it offers a more concise way to express architectural framework
constraints.

We will exemplify the usage of constraints in our case study in Chapter 6.

Instantiation Validation

For each layer of the architectural framework, an instantiation program is developed. The first
step is to validate program syntax according to the rules given by the instantiation language.
The main step consists in generating the product model by executing the instantiation program.
Then, we have to check the newly instantiated product model against instantiation constraints.
If they are satisfied, an impact analysis step takes place in order to evaluate changes to be
undertaken in elements depending on those concerned involved in the architectural framework
instantiation. If the constraints are not satisfied, the newly product model is discarded and the
instantiation program has to be rewritten.

3.2 Methodological Overview

3.2.1 Scope

FIDJI intends to be a general product line development methodology targeting the kind of
application characterized in Chapter 1. However, there are three points that the method does
not cover:

• Scoping: FIDJI does not provide any process for identifying the initial boundaries of
the system and assumes that this preliminary activity has been completed using goal
models [Lam01] and/or product line scoping techniques [DS99, CN01] in order to define
this initial set in an abstract way and prioritize system goals;

• User Interface: Web applications have particular characteristics concerning their user
interfaces which may greatly vary depending on the technology used to implement them
and the hardware constraints affecting their display: nowadays, it is often required that web
applications be displayed on various computing devices such as mobile phones and PDAs.
FIDJI does not explicitly consider the specification and design of such user interfaces
although our analysis model allows to capture information to be displayed by the user
interface of a product;

• Implementation: We mentioned above that the implementation of an architectural
framework is supported by an object-oriented framework. FIDJI does not define a specific
approach for object-oriented framework instantiation but rather relies on existing tech-
niques. We will give a few considerations about their suitability with respect to the FIDJI
process in Chapter 8.

3.2. Methodological Overview 89

3.2.2 Driving Principles

Syntactic Reduction & Semantic Precision

In [AR03], Astesiano and Reggio report their experience with applying formal methods on
industrial-sized projects. They argue that a development method should be distinguished from
the formalism being usied and the relationships between methods, formalisms and their en-
gineering contexts should be made explicit. In particular, they have come up with the idea
of “well-founded software development method” consisting in analyzing current software engi-
neering practices and their problems, providing some formal foundations if needed and improve
these practices on this base while hiding formalization details to users. They have exemplified
this approach on the RUP methodology, first remarking that the formalism used here (UML)
was not rigorous enough, and that this methodology gives so many choices to their users that
inexperienced ones may be confused about these options. Then, they have devised a “tight and
precise” approach with the following goals in mind:

• To use only semantically sound constructs (i.e. that can be formalized easily);

• To have better means for making the modeling decisions;

• To restrict produced artifacts as to allow consistency management in the construction and
checking phase.

While the FIDJI models presented in this thesis are not given a full semantics, FIDJI pursues the
preceding goals by selecting relevant UML constructs with respect to the method’s scope. These
constructs are extended through a UML profile that also clarifies their use via OCL constraints.
The question of formalizing FIDJI models will be discussed in Chapter 8.

Flexible Product Derivation

In Chapter 2, Section 2.4.3 we presented the current product derivation techniques which, from
our point of view, lack flexiblity whatever their approach is (configuration or transformation).
By “flexibility”, we mean the possibility to address products that were not explicitly planned
by product line designers. This situation is summarized in Figure 3.3: “Green” applications like
A fall within the scope of the product line and are targeted by current techniques. “Orange”
applications do not fall strictly within the product line scope; i.e they are not directly derivable
from the decision model though sharing many features with green applications. For example,
consider an order form in an e-commerce application; on the domain engineering side designers
have specified that the price of an item would be represented by an integer number. An “orange”
application may require that the price be entered in full for improved security. Finally “red”
applications represent products that go far beyond the scope of the product line.

We claim that “orange” applications should be supported by a product line development ap-
proach because even if they do not observe the original product line definition and implemen-
tation, they are believed (by SPL designers) to respect SPL intent and can benefit from most
of the existing assets offered by this SPL. However, current techniques show quite substantial
approaches to support these applications:

90 3. FIDJI Concepts

• Configuration approaches: These approaches have no other choice than re-engineering
part of the product line, i.e. introducing the new assets to support the variant and to
modify the decision model accordingly. In ConIPF [HWK+06], a specific support via
change operations is provided to update the decision model;

• Transformation approaches: None of the surveyed transformation approaches provides
specific support on this point. In a similar way, the assets and/or the decision model would
have to be modified.

In both cases, it is necessary to modify part of the product line to support product-specific
assets. This is detrimental, especially due to the fact that the SPL has to evolve even though
the changes required for a product does not correspond to a large number of customer requests.
Over a long time, the SPL may contain a lot of useless features thus complicating its manage-
ment. As we noted in Chapter 2, several SPL methods based on configuration (Pulse-I, Van
Ommering’s product population) cope with the problem of providing methodological support for
product-specific features. However, this is a kind of textual methodological support and there
is no technical means to assist the product developer in the derivation process.

This issue motivated our architectural framework instantiation mechanism; instead of explicitly
modeling the variability in product line models, we allow the architectural framework to be
instantiated via transformations defined by the product analyst/designer, who can accommodate
application-specific requirements provided he respects the constraints — which play the role of
a decision model — that ensure that the derivation is resulting in an “orange” application. In
fact, these constraints indirectly specify the boundary (shown as a dashed oval in Figure 3.3)
between applications that can be efficiently built with this this SPL and applications that would
require either a modification of the product line or a specific single product development.

Traceability Management

FIDJI acknowledges the importance of tracing model artifacts during the software development
process. It plays an important role both for architectural framework modeling and instantiation.
We use the following techniques to ensure vertical and horizontal traceability:

• Links: The definition of vertical traceability amongst architectural framework layers is
provided via links. To trace UML elements, we use constructs which are already available
in the UML specification (see Chapter 5, Section 5.3). Concerning non-UML elements, we
have defined a special textual template to document them (see Chapter 4, Section 4.3),

• Instantiation programs: As we have seen in Chapter 2, model transformation is one
of the mechanisms allowing traceability construction. Therefore, horizontal traceability
is a by-product of the application of the instantiation programs (as this thesis does not
prescribe a particular transformation language/toolset at the technical level, we will not
explain traceability bindings).

3.2.3 Process Overview

FIDJI bases its process on the instantiation of an architectural framework as presented in Chap-
ter 3.1. It is a “stairs” (Figure 3.4) process which is indeed a “waterfall” [Roy70] development

3.2. Methodological Overview 91

Product Line Acceptable Variation

C

B

A

Extended Product Line Border

Original Product Line

Variation Relation

Fig. 3.3: Product Line Variation

model. Many criticisms have been formulated about this process model so we need to state our
rationale clearly here. The waterfall process model is composed of phases that cover the whole
development scope and are validated before the next phase can begin. If problems are found
in the next phase with artifacts of the previous one, an iteration is made in order to go back
to the problematic phase, to fix the problems, to revalidate it etc. Sommerville [Som04] states
that the main disadvantage of the waterfall process model is the premature freezing of some
parts of the product that occurs after a small number of iterations (due to the cost associated
with producing and validating documents as well as reworking these iterations involve). This
may result in a product that does not correspond to customer expectations since his voice is
discarded early in the process. As we saw in Chapter 2, RUP designers insist on the risk of
freezing a phase before proceeding to another; the later a fault is found, the higher the price is
to fix it. Therefore, as noted by Sommerville [Som04], this kind of process should only be used
when requirements of the software to be produced are well-understood as well as when the risks
incurred as a result of designing and implementing such a system are well-known.

Surprisingly, the FIDJI method’s requirements and scope correspond to the application context
of the waterfall approach.
First, the waterfall process is the simplest of all the process models which satisfies our simplicity
requirement. Furthermore, the waterfall process model allows model integration in a seamless
way which is also one of the characteristics FIDJI has to support.
Second, in a SPL approach, most product requirements are well-understood since they have been
carefully defined and analyzed according to a particular market and to be valuable enough to
develop reusable assets supporting them. Moreover, design and implementation risks are largely
reduced by the (re)use of an architectural framework since it provides a core architecture and its

92 3. FIDJI Concepts

implementation (in the form of an object-oriented framework) on which all products are based.
The flexibility concern may seem more problematic to handle with such a process since it in-
duces some risks concerning customer-specific requirements. However, these risks can be reduced
by defining instantiation constraints that would prevent high-risk products (i.e. products that
need substantial transformations of the key architectural framework assets that would threaten
architectural framework qualities) to be obtained from the architectural framework. Addition-
ally, customer-specific requirements should represent a small part of the set of requirements
pertaining to the product. In a different situation, the product to be developed would not
match the architectural framework’s scope and consequently, a strategic decision would have
to be made (update of the architectural framework, use of another architectural framework or
consider specific implementation, etc.). However, some reasons may motivate evolutions of the
method process. They will be discussed in Chapter 8.

Figure 3.4 presents the FIDJI process as a SPEM activity diagram. The process is composed
of the following activities: Define Product, Write the analysis derivation program, Write the
design derivation program and Build product :

• Define Product : In this activity, requirements elicitation of the product is performed with
respect to the product line definition expressed following a template called REQET [GP06,
GGMP06]. It consists in resolving the variability offered by the SPL by selecting the
required scenarios and concepts for the product and complementing them if necessary. We
describe this activity as well as the template used in Chapter 4, Section 4.1;

• Instantiate the architectural framework Analysis Layer : This activity consists in perform-
ing the analysis of the product, by reusing the analysis models of the architectural frame-
work that will be detailed in Chapter 4. This includes the identification of concerned
architectural framework analysis elements, writing and validation of the instantiation pro-
gram and impact evaluation;

• Instantiate the architectural framework Design Layer : In a similar manner, product design
relies on the same steps applied to design elements of the architectural framework. The
architectural framework design model as well as the steps required to perform instantiation
of the architectural framework will be provided in Chapter 5;

• Build Product : Once the design has been performed, the product needs to be built reusing
the object-oriented framework supporting the implementation layer of the architectural
framework. The FIDJI process provides no specific methodological support for this ac-
tivity, instead it builds on existing object-oriented framework documentation techniques
presented in Chapter 2, Section 2.5.3.

3.2. Methodological Overview 93

Re
qu

ire
me

nts
Eli

cit
ati

on
An

aly
sis

De
sig

n
Im

ple
me

nta
tio

n

SP
L R

eq
uir

em
en

tsDe
fin

e p
rod

uc
t

Pr
od

uc
t

Re
qu

ire
me

nts

AF
 An

aly
sis

Mo

de
ls

Pr
od

uc
t

An
aly

sis

Mo
de

ls
Ins

tan
tia

te
AF

An

aly
sis

 La
ye

r

AF
 D

es
ign

Mo

de
ls

 In
sta

nti
ate

 AF

De
sig

n L
ay

er
Pr

od
uc

t
De

sig
n

Mo
de

ls

AF
 Im

ple
me

nta
tio

n
Ar

tifa
cts

Bu
ild

 Pr
od

uc
t

Pr
od

uc
t

Im
ple

me
nta

tio
n

AF
 An

aly
sis

Ins

tan
tia

tio
n

Co
ns

tra
int

s

AF
 D

es
ign

Ins

tan
tia

tio
n

Co
ns

tra
int

s

AF

Im
ple

me
nta

tio
n

Gu
ide

lin
es

Fig. 3.4: FIDJI “Stairs” Process

94 3. FIDJI Concepts

3.3 Research Method

The ideas presented in this chapter result from the experience acquired during the FIDJI project
and literature review performed in chapter 2. In this section, we explain how these ideas are
born by recalling and analyzing the contributions of the FIDJI project. These contributions
pertain to three research domains: framework-based development, model transformation and
methodology.

3.3.1 Framework-based Development

Our early notion of architectural framework erected during the FIDJI project [GP02]. We
wanted to emphasize on documenting object-oriented framework architectures (hence the “ar-
chitectural” qualifier) in order to understand the framework and to instantiate applications
from it. This notion was concretely implemented in the J2EE Architectural FrAmewoRk (JA-
FAR) [GS02b, GR02, GRS03a] which was dedicated to the development of e-barter applications.
This experience has allowed us to validate the suitability of using such an entity in the develop-
ment process of SPL members (see Chapter 6, Section 6.6).
Due to its design and implementation focus, JAFAR did not include detailed models for require-
ments description (this was limited to UML use cases, which could be omitted when performing
application development). However, as mentioned previously by Kirk et al. [KRW05], it is nec-
essary to understand the framework at various abstraction levels. Based on that remark and on
the lack of requirements models in JAFAR, we decided to extend the research scope to require-
ments engineering.

3.3.2 Model Transformation

In order to support application development with JAFAR, we used model transformation to
generate detailed design and implementation from high-level design models. We defined a visual
model transformation language [GPR+03] and implemented it as a tool called MEDAL [GRS03b]
on top of the Rational XDE platform, thus improving its already existing transformation mech-
anism. An individual transformation was modeled as a UML class diagram connecting the XDE
model elements actually performing the transformation and its parameters calculated by evalu-
ating OCL queries. Transformations were combined using activity diagrams. The language was
supported by a UML profile. Thanks to the OCL facilities of Rational XDE, we were able to
define constraints to check conformance of transformation definitions with respect to the UML
profile.

Research work on model transformation then focused on improving the transformation language
that was heavily dependent on the XDE transformation mechanism. Our new proposition was
called Visual Model Transformation (VMT) [SPGB03] and was based on a graph transformation
approach thus allowing to separate the UML elements to match (specified at the M2 level and
completed with OCL constraints) and the definition of the transformation. The right hand side
could be completed with Java statements in order to ease transformation definition.

However, there is one reason that led us to reconsider our transformation approach in the
context of this thesis. As a pragmatic approach, FIDJI tries to rely upon standards to promote

3.3. Research Method 95

and support its adoption in the industrial context. The QVT [OMG05b] specification, which
is now the OMG standard for model transformation, is essentially based on a textual and
OCL-based language. Several other model transformation languages such as ATL [JK05] and
Kermeta [FDVF06] follow a similar approach.

3.3.3 Method

As we have mentioned in the introduction of this dissertation, the initial FIDJI process originated
from formal refinement approaches and from the Fusion method [CAB+94]. This motivated our
initial framework instantiation approach in which it was only possible to add information (either
by specializing classes or creating new elements in predefined placeholders). As this approach
did not allow any other variation than those explicitly defined and supported in JAFAR, it
suffered from the same inflexibility as the approaches discussed in Section 3.2.

Our approach to supporting flexible product derivation via horizontal model transformation has
its roots in architectural reconciliation [AGP05]. This approach was based on the fact that when
a software application evolves, it is usually only its code that changes and not its higher-level
models (requirements and architecture). This situation has generated the “architectural ero-
sion” [MEG03] issue; models do not reflect the actual software implementation anymore and the
implementation does not enforce architectural qualities anymore. Architectural reconciliation
first consists in recovering architectural models from the actual code (using reverse engineering
techniques). Then the recovered model is compared with respect to the “ideal” architectural
model derived from requirements. On the basis of that comparison, the software architect makes
some decisions (he “reconciles” the two models) which result in a third model. Reconciliation de-
cisions were recorded in terms of OCL constraints defined over UML 2.0 architectural elements.
These constraints can then be used to derive horizontal model transformations generating the
reconciled model.
From a methodological perspective, product derivation at a given abstraction level can be seen
as a reconciliation between an “ideal” model stemming from customer requirements and the
existing architectural framework model (which is not recovered in this case). The reconciliation
takes place in writing an instantiation program that takes into account the “ideal” model and
instantiation constraints in order to obtain the model of the actual SPL member.

As we have mentioned in Chapter 2, object-oriented frameworks impose the operation life-cycle
to the applications that are based on them (“Hollywood” principle). JAFAR was no exception
to this principle. Thus, the operation life-cycle of a particular SPL member was primarily
determined by the architectural framework and the various approaches discussed to describe
operation life-cycle could have been used in the FIDJI project (this issue has not been explored,
though). Allowing flexible product derivation therefore implies that operation life-cycle can
be modified in unpredictable ways in order to support one particular product. This situations
makes the existing approaches for life-cycle descriptions (regular expressions proposed by Fusion
in particular) intractable. This issue has motivated the elaboration of state variables.

96 3. FIDJI Concepts

Part II

FIDJI: A METHODOLOGY FOR DISTRIBUTED

SYSTEMS

4. REQUIREMENTS ELICITATION AND

ANALYSIS

Abstract

In this Chapter, we define the requirements elicitation and analysis phases of
the FIDJI method. As in any SPL-based development method, a distinction can be
made between domain engineering and application engineering. Sections 4.1 and 4.2
present domain engineering models supporting the description of a SPL and the ar-
chitectural framework analysis layer, respectively. Section 4.4 is devoted to the def-
inition of FIDJI application engineering steps yielding the final analysis model of a
SPL member.

4.1 FIDJI Prescriptions for SPL Requirements Elicitation

4.1.1 REQET Overview

In this Section, we describe a template, initially defined in [GP06, GGMP06] and called RE-
Quirements Eliciation Template (REQET), to elicit informally SPL requirements. The objective
of this template is to share knowledge about software product lines and prepare a detailed analy-
sis with the FIDJI method. This template puts the emphasis on documenting variants in order
to have a clear idea of the structural and behavioral variations amongst the different products.
This information will then be used to define the analysis constraints guiding the derivation of
a product as we mentioned in Chapters 3.1 and 3.2. The REQET template provides two sec-
tions: DOMain Elicitation Table (DOMET) used to define concepts of the domain and Use Case
Elicitation Template (UCET) describing product behavior.

4.1.2 DOMET

The role of the DOMET is to provide the necessary information to understand all the possible
variants concerning data (domain concepts) amongst SPL members. It takes the form of a
“data dictionary” à la Fusion depicted using a tabular notation as shown on Table 4.1 below.
An example is given chapter 6, Table 6.1.

4.1.3 UCET

As we mentioned in Chapter 2, use cases are an interesting approach to elicit software product
lines requirements. The use case elicitation template builds on the popular template given by
Cockburn [Coc01, Coc] and extends it with the “reuse category” approach [Gom04] applied to

100 4. Requirements Elicitation and Analysis

Concept Name Var Type Description Dependencies
Give the name of
a Concept

Give the Variation Type. It
represents the level of varia-
tion the concept can have:

• Mand : represents a con-
cept that is mandatory
in all members of the
SPL,

• Alt : represents one of
the alternative concepts
that has to be chosen in
a given product.

• Opt : represents an op-
tional concept that may
be omitted.

Give a textual de-
scription of the
concept

Describe all the
dependencies
that can show
up within this
concept.

Tab. 4.1: DOMET Contents

use cases and the use case variants notations proposed by Fantechi et al [FGJ+03, FGLN04]. In
particular, two levels of variability for use cases are proposed:

• The availability of the use case itself may vary depending on the product. The “variation
type” field, which is equivalent to the variation type for uses cases mentioned above, states
whether a use case is mandatory Mand, optional Opt or alternative Alt. In the alternative
case, other possibilities to choose from are given as use case identifiers within braces,

• Within a particular use case, some steps of the scenarios may vary from one product to
another. To describe these variants, we employ Fantechi et al.’s notation and fully describe
them (their types and if they concern data or behavior) in a dedicated field of the UCET.

All the UCET fields are defined in Table 4.2. Examples of UCET descriptions are given in
Chapter 6.

4.1.4 REQET Usage and Validation

In the following, we give some advice on how to efficiently fill the template and some informal
rules to check consistency of REQET-based descriptions.

When willing to use REQET for a SPL, one question raises up spontaneously; shall we describe
use cases first and then fill the domain table or the opposite? Traditionally SPL description
begins with a “domain engineering” phase that identifies SPL concepts and then requirements
are formed on the basis of those concepts. In REQET the situation is a bit different since
our domain table includes the type of variation for each concept that can be devised from use
cases variants (see next paragraph). Moreover, it is likely that use case writing yields new SPL
concepts that were not identified beforehand (unless domain engineering forces to use only the
concepts it identified: it is a bit too inflexible to follow such an approach at the requirements

4.1. FIDJI Prescriptions for SPL Requirements Elicitation 101

ID An identification tag of the form UCXX (where X is
a digit), useful for referencing UCs within variants.

Use case name Each use case is given a name. The name should be
the goal as a short active verb phrase

Var. Type Specify whether the use case is mandatory (Mand),
optional (Opt), or alternative (Alt) add the alterna-
tives here.

Description Describe the use case, one or two sentences (i.e. a
longer statement of the use case goal).

Actors Name all the actors that participate in the use case.
Start with the primary actor and continue with sec-
ondary actors.

• Primary actor: name (It is the actor that initi-
ates the use case)

• Secondary actor: name (is the actor that may
participate in the use case)

Dependency Describe whether the use case depends on other use
cases; e.g. whether it includes another use case.

Preconditions Specify one or more conditions that must be true at
the start of the use case.

Postconditions Identify the condition that is always true at the end of
the use case if the main sequence has been followed.

Main scenario Textual description taking the form of the input from
the actor, followed by the response of the system. The
system is treated as a black box, that is, dealing with
what the system does in response to the actors inputs,
not the internals or how it does it. The main scenario
defines a partial order over the set of operations of the
possible products.

Alternatives of
the main sce-
nario

This section provides the description of the alterna-
tive branches of the main sequence. Each branch must
state if the main goal is achieved (that is the postcon-
dition satisfied)

Non-Functional Specify non-functional properties (like security, effi-
ciency, reliability, scalability, etc.) related to the use
case.

Variation
points de-
scription

Describe here the introduced variation points and
their dependencies in the use case V1,..., Vn. Variants
have a type (Mand,Alt,Opt) and a concern: data or
behavior. Moreover when using a variant parentheses
may be use to indicate a default value. For optional
variants, a special value, null, is defined when the
option has not been selected.

Tab. 4.2: UCET Contents

102 4. Requirements Elicitation and Analysis

elicitation level). Hence we suggest a path where the two activities (filling the domain table and
writing use cases) overlap greatly:

1. List preliminary SPL domain concepts and define them in the table,

2. Write use cases on the basis of the table and update them if needed,

3. Adjust concept variation types according to the consistency rules given in the next para-
graphs.

Although it is possible to omit some common functionality in the SPL (use cases are not ex-
haustive about the behavior of a system) we impose that all identified variable concepts and
behaviors are described. Following other SPL development phases (analysis, design) will help
to discover details of the products that already belong to the SPL and to handle variants but
not to find new variants that may be omitted at the requirements elicitation level. Furthermore
it is important when working with customers of the SPL members that we figure out useful
variants using a particular scoping technique. Naturally, products will not be limited to this set
of identified variation points, new variation points can be obtained via our product instantiation
mechanism.

While writing a DOMET description, we should be particularly careful about the following
points:

• Name Conflict: one should ensure that two different concepts do not have the same name
as it may yield mismatches in the products. This error is easy to avoid in short DOMET
descriptions but may be more subtle in long ones,

• Dependencies Problems: When we rate concepts via dependencies in the fourth column of
the DOMET, we need to think about the impact they have on the SPL as a whole. For
example, assume that a concept A requires a concept B and cannot be used together with
concept C. If B requires C, all products needing to have the concept A can not satisfy the
dependencies defined in the DOMET. This kind of problems may be difficult to find and
solve if there are many inter-related concepts.

We also have to consider the relationship that exists between a use case variant (concerning
concepts or behavior) and the variation type of the owning use case. For instance, a concept
that is used obligatorily in an optional use case will not become mandatory for the whole SPL.
Table 4.3 determines how variable elements should be handled with respect to the reuse category
for the use case.

hhhhhhhhhhhhhhhhhhhhVariant type

UC Variation Type
Mand Alt Opt

Mand Mand Alt Opt
Alt Alt Alt Opt
Opt Opt Opt Opt

Tab. 4.3: Relationships between Use Case Variation Type and Variant Type

4.2. FIDJI Analysis Model 103

Finally, one should also ensure consistency between concepts in the domain table and their
usage in the use cases variants. For instance the same concept can be used in a use case with an
optional meaning and in another with an alternative one. This raises an issue in the DOMET
because there is only one variation type allowed in this table. In order to build such a table we
should take into account the “strongest usage” of the concept. Strongest usage means for us
having the following (natural) order: Mand > Alt > Opt, so that a concept that is obligatorily
used in a use case and optionally in another will get a mandatory one in the DOMET. Thus,
the DOMET provides useful information for core assets designers who will quickly identify the
concepts they have to provide in their design. Concerning alternative concepts used in several
use cases, one has to mention the various alternatives prefixed by the use case id for a better
traceability in the dependencies column.

4.2 FIDJI Analysis Model

The FIDJI analysis model is used both to fully describe the analysis layer of an architectural
framework and to describe the analysis of a product that has been instantiated from this ar-
chitectural framework. This section is devoted to the domain engineering usage of that model.
The FIDJI analysis model is composed of the following sub-models:

• Domain Model: defines precisely concepts manipulated by use cases and operations,

• Use Case Model: extends and refines the use cases described at requirements elicitation
time. Its purposes is to express the architectural framework’s behavior in terms of sequence
of operations,

• Operation Model: specifies in detail each operation: informal description, parameters,
return values and pre/postconditions.

4.2.1 Domain Model

FIDJI domain model extends the DOMET by providing more detailed descriptions of the con-
cepts manipulated at the analysis level. In particular it considers two kinds of entities:

• Concept: At the FIDJI analysis level, a “concept” represents a fundamental piece of data
in the system, e.g. a user account storing name, surname and password to log into an
e-commerce system.

• Signal: Here a signal is used to define information exchanged while the system interacts
with its actors. It can represents the return of a value to the user after the execution
of an operation or it can be used to “emulate” user interfaces (FIDJI does not provide
any specific model to describe user interfaces, interested reader is referred to [MRP95])
by simply defining the content (fields, forms etc.) a screen may show as a response to an
actor’s action.

We use a class diagram notation to represent concepts and signals. Concepts are mapped to
classes and may show attributes but excludes any possibility to attach behavioral information
such as operations (which are detailed in Section 4.2.3). We believe that separating data and
behavior at the analysis level helps the analyst focusing on the “what” of these elements rather

104 4. Requirements Elicitation and Analysis

than delving too quickly in preliminary design. Some analysis concepts are representation of
an external actor in the system; for instance the UserAccount concept is the representation
in the system of a human actor. In order to model such a relationship (that will be useful to
precisely model interaction between the considered the system and its actors), we make use of
a technique, initially proposed by Sendall and Strohmeier [SS01], which consists in defining a
special association stereotyped as <<id>> connecting the concept with the actor it maps to.
Signals follow the UML 2.0 notation for the Signal metaclass (see section 13 “Common Behav-
ior” of the specification [OMG05f]); they are represented as classes stereotyped with <<Signal>>.
Figure 4.1 presents the domain diagram of the LuxDeal case study detailed in Chapter 6.

4.2. FIDJI Analysis Model 105

L
u

x
D

e
a

l D
o

m
a

in

U
s
e
rA

c
c
o

u
n

t

-a
d
d
re

s
s
 : S

trin
g

-c
ity

 : S
trin

g
-c

o
u
n
try

 : S
trin

g
-e

m
a
il : S

trin
g

-p
a
s
s
w

o
rd

 : S
trin

g
-s

e
c
re

tN
u
m

b
e
r : S

trin
g

-s
ta

te
 : S

trin
g

-s
ta

tu
s
 : S

trin
g

-u
id

 : S
trin

g
-lo

g
in

 : S
trin

g
-z

ip
 : S

trin
g

-n
a
m

e
 : S

trin
g

-s
u
rn

a
m

e
 : S

trin
g

<
<

s
ta

te
>

>
-is

U
s
e
rS

ig
n
e
d
In

 : b
o
o
le

a
n
 =

 fa
ls

e

<
<

s
ig

n
a
l>

>

U
p

d
ateO

fferD
etailsF

o
rm

-o
ffe

r : O
ffe

r

<
<

s
ig

n
a
l>

>

D
ealD

etails

-o
ffe

r : O
ffe

r
-p

ro
p
o
s
a
ls

 : P
ro

p
o
s
a
l [*]

-s
ta

rtD
a
te

 : S
trin

g
-s

ta
tu

s
 : S

trin
g

-v
is

ib
ility

 : V
is

ib
ility

<
<

s
ig

n
a
l>

>

N
ew

P
ro

p
o

salF
o

rm

-b
e
lo

n
g
in

g
s
 : Ite

m
 [*]

-e
x
p
ira

tio
n
D

a
te

 : S
trin

g
-c

o
m

m
e
n
t : S

trin
g
 [*]

<
<

s
ig

n
a
l>

>

O
fferD

etailsD
isp

lay

-c
re

a
tio

n
D

a
te

 : S
trin

g
-e

x
p
iry

D
a
te

 : S
trin

g
-d

e
s
c
rip

tio
n
 : S

trin
g

-title
 : S

trin
g

-ite
m

s
 : Ite

m
 [*]

Ite
m

-d
e
s
c
rip

tio
n
 : S

trin
g
 [*]

-title
 : S

trin
g

-e
s
tim

a
te

d
V

a
lu

e
 : flo

a
t

-s
ta

tu
s
 : S

trin
g

-ty
p
e
 : Ite

m
T

y
p
e

<
<

s
ig

n
a
l>

>

createItem
F

o
rm

-title
 : S

trin
g

-d
e
s
c
rip

tio
n
 : S

trin
g
 [*]

-e
s
tim

a
te

d
V

a
lu

e
 : flo

a
t

-c
a
te

g
o
ry

 : C
a
te

g
o
ry

<
<

s
ig

n
a
l>

>

C
reateO

fferF
o

rm

-d
e
s
c
rip

tio
n
 : S

trin
g

-title
 : S

trin
g

-s
ta

tu
s
 : S

trin
g

-e
x
p
iry

D
a
te

 : S
trin

g
-ite

m
s
 : Ite

m
 [*]

O
ffe

r

-c
re

a
tio

n
D

a
te

 : S
trin

g
-e

x
p
iry

D
a
te

 : S
trin

g
-d

e
s
c
rip

tio
n
 : S

trin
g

-title
 : S

trin
g

-ite
m

s
 [*]

P
ro

p
o

s
a
l

-c
o
m

m
e
n
t : S

trin
g
 [*]

-b
e
lo

n
g
in

g
s
 [1

..*]

<
<

s
ig

n
a
l>

>

W
elco

m
eD

isp
lay

<
<

s
ig

n
a
l>

>

M
essag

eD
isp

lay

-m
e
s
s
a
g
e
 : S

trin
g

<
<

s
ig

n
a
l>

>

S
ig

n
In

F
o

rm

-lo
g
in

 : S
trin

g
-p

a
s
s
w

o
rd

 : S
trin

g

D
e
a
l

-v
is

ib
ility

 : V
is

ib
ility

-s
ta

rtD
a
te

 : S
trin

g
-s

ta
tu

s
 : S

trin
g

<
<

e
n
u
m

e
ra

tio
n
>

>

V
is

ib
ility

p
riv

a
te

p
u
b
lic

<
<

e
n
u
m

e
ra

tio
n
>

>

Ite
m

T
y
p

e

-b
e
lo

n
g
in

g
-w

is
h

<
<

e
n
u
m

e
ra

tio
n
>

>

C
a
te

g
o

ry

B
u
s
in

e
s
s

M
u
s
ic

S
p
o
rt

<
<

s
ig

n
a
l>

>

O
ffersD

isp
lay

-o
ffe

rs
 : O

ffe
r [*]

<
<

s
ig

n
a
l>

>

D
ealsD

isp
lay

-d
e
a
ls

 : D
e
a
l [*]

M
e
m

b
e
r

O
ffe

rO
w

n
e
r

-s
e
lle

r

*

P
ro

p
B

e
lo

n
g
in

g
s

-b
e
lo

n
g
in

g
s

1
..*

D
e
a
lS

rc
O

ffe
r -o

ffe
r

1

1 D
e
s
ire

d
Ite

m
s

-w
is

h
e
s

1
..*

D
e
a
lP

ro
p

-p
ro

p
o
s
a
ls

1
..*

1

O
ffe

re
d
Ite

m
s

-b
e
lo

n
g
in

g
s

1
..*

-b
id

d
e
r

1

Ite
m

O
w

n
e
r

-u
s
e
r

1

-ite
m

s

*

<
<

id
>

>
1

-re
p
re

s
e
n
ts

1

Fig. 4.1: Domain Diagram

106 4. Requirements Elicitation and Analysis

The domain diagram gives a “flat” description of the data manipulated by the operations of
the analysis model. However it does not give the rationale of these concepts and signals. We
propose to define a domain dictionary which is inspired from Fusion data dictionary (while
Fusion uses a single dictionary and extends its columns upon need, we prefer to use several
dedicated dictionaries for concision) to capture data rationale. The purpose of the domain
dictionary is to explain informally the meaning of the concepts and data elements which are used
in the analysis specification of the system. We use a tabular notation as shown in Table 4.4.

Name Kind Use Cases Description
Concept or Signal
name

[Concept/Signal]; states
whether the element is used
to refer a concept of the
application such as a user
having name, surname and
address or whether it is used
for the specification of a
communication between an
actor and the system

list of the use
case(s) manipu-
lating the signal
(not available for
Concepts)

Description of the
element in nat-
ural language

Tab. 4.4: Domain Dictionary

4.2.2 Use Case Model

Motivations

The role of the use case model is to refine the UCET-based description by precisely modeling
interactions between actors and the system. Although giving a partial view on the allowable
scenarios of the system (all allowable interactions can be be derived from the operation model
introduced in Section 4.2.3) it helps understanding the important scenarios offered by the prod-
uct line. From a methodological perspective there are also useful to facilitate the discovery and
elaboration of the system operations. Our use case model is based on textual use cases extended
with UML and OCL to achieve the following goals:

• To state the conditions that must hold before the execution of the use case scenario an
the conditions that must hold after its execution,

• To describe the behavior of each step of the scenario thus complementing precisely textual
behavioral description. We model these steps by means of OCL postconditions and by
using the new OCL 2.0 [OMG05e] message operator,

• To define state variables that can be used to define guard conditions over the course of
events without requiring to explicitly model it,

• Finally, we gather in a use case component diagram the definition of the signature of all
the operations supporting the use case behavior as well as the depiction of UML elements
on which OCL expressions are defined.

Template

We will base our use case descriptions on the following template which is a subset of the one
given by Cockburn [Coc01, Coc]; in our context, we will focus on system functionality first and

4.2. FIDJI Analysis Model 107

leaving details about project management issues and use cases relationships (that can be shown
more easily in a graphical manner as we will illustrate it on the use case diagram later in this
section).

Use Case: UCNN (NN: two digits) : <The name should be the goal as a short
active verb phrase>
—————————————————————–
CHARACTERISTIC INFORMATION
Goal in Context: <longer statement of the goal if needed>
Scope: <System considered as black box under design>
Preconditions: <(Partial) State of the system required before goal execution>
<text and OCL 2.0 precondition>
Success End Condition: <(Partial) State of the system if goal successful>
<text and OCL 2.0 postcondition>
Failed End Condition: <(Partial) State of the system if goal abandoned>
<text and OCL 2.0 postcondition>
Primary Actor: <primary actor name>
Secondary Actors: <secondary actor names or descriptions>
Trigger: <event enabling the use case;
<text and OCL 2.0 postcondition>
—————————————————————–
MAIN SUCCESS SCENARIO
<Describe here the main steps, using text and OCL 2.0 pre/postconditions>
<text have the following form: <step#>.<action description>
—————————————————————–
ALTERNATIVES
<Describe here alternative steps (prefixed by the altered step number followed by
the action description) of the main scenario, using text
and OCL 2.0 pre/postconditions>

OCL Expressions

We use OCL 2.0 expressions in order to detail more precisely use case pre/postconditions and
scenarios. Both OCL constraints and pre/postcondition are used. Warmer and Kleppe [WK03]
documented the usage of OCL 2.0 in use cases in showing how pre/postconditions can be em-
ployed to precise the global pre/postconditions of a use case. However, at the analysis level it is
important to detail the interactions between the system considered and its actors. As we do not
consider any specific interaction language to describe such interactions, we need another way to
specify them. The answer is to be found in the OCL 2.0 specification itself; as we mentioned
in Chapter 2, the isSent and message operators are used to specify either the call to an op-
eration of the system or the sending of a signal. Consequently we use this construct at each
step of the main scenario as well as for the alternative scenarios and the triggering condition.
These expressions provide a precise description of the usage of the system operations that are
declaratively specified in the operation model (see 4.2.3).

All the interactions (modeled via isSent and message operators in OCL) defined in the context
of a use case are asynchronous; both system and actors do not wait for the other part to respond.

108 4. Requirements Elicitation and Analysis

In fact the interaction sequences are not based on time but on conditions: the next step can
occur if and only if its precondition is satisfied (see “Instantaneous and Asynchronous Execution
of Operations” below).

State Variables

OCL Expressions presented in the previous paragraph are useful to define the interactions be-
tween actors(s) of use case and the considered system. We often need having to refer to a
previous state of the system to define the current behavior to be specified for a step, e.g. check-
ing if an user has successfully logged in the system prior to show him his account details. As
shown in Chapter 2, OCL 2.0 does not support the expression of fine-grained temporal con-
straints and researchers extended the language to support temporal logic constructs. However,
these approaches requires change in the OCL specification both at the syntactic and semantic
level. In order to cope with this issue we introduce state variables as a lightweight means to
store information that could affect the event sequence (branching between the main scenario
and alternative(s)) or the precondition of an individual scenario step. From a methodological
perspective, defining state variables locally for a scenario is easier than defining a state machine
for the whole use case. State machines can be constructed by using the information provided in
the operation model (see Section 4.2.3).

Use case may need to share state variables in order to specify dependencies between their se-
quences or to access to a state information that is needed by several use cases (e.g. if a user is
logged in). Therefore, we both need to define state variables globally or locally. Global state
variables are defined as concept attributes in the domain diagram. In order to distinguish them
from the other attributes of the concept there are stereotypes as <<state>> within the domain
diagram. Local state variables are gathered in a dedicated classifier within the specification of
a use case component (see below). For example, state variable isUserAuthenticated, which
evaluates to true if the user has successfully entered his credentials in the system, is likely to be
defined as an attribute of the UserAccount concept while loginAttempts which is a variable
restricting the number of times a user can fail to enter his credentials before its account get
deactivated, will probably only be defined in the context of the Sign In use case.

The value of a state variable may be changed via a system operation (see Section 4.2.3) which
also used them to express guards on its preconditions and thus restrict the possible sequences of
interactions within the system. Hence, state variables represent a concise means for the analyst
to specify a wide variety of scenarios (all those that are tolerated by operation preconditions)
without having to explicit them.

It has to be noted that though state variables may be reused at the design and implementation
level to actually control methods (operations implementations), they do not exclude another
approach (such as the raising of exceptions in a given programming language) to be used.
We will illustrate the possible usages of state variable in the FIDJI analysis model in Chapter 6.

Use Case Components

We introduced above our extension of textual use cases with OCL 2.0 expressions. However,
as stated in chapter 2, OCL expressions need to have a context to be meaningful. Textual use

4.2. FIDJI Analysis Model 109

<<UCComponent>>

SignIn

userAcc : UserAccount

<<signal>>

SignInForm

-login : String
-password : String

<<signal>>

WelcomeDisplay

<<signal>>

MessageDisplay

-message : String

ISignIn

+authenticate(login, password) : boolean
+signInRequest()

Fig. 4.2: Use Case Component Sign In

cases are not part of the UML 2.0 specification and therefore are not directly related to any
UML element that could provide a suitable context for the OCL expressions. This problem has
been outlined by Warmer et al. [WK03]: the context of OCL expressions is not clear since it is
difficult to consider the whole system as a type on which we can base expressions. Moreover in
the case of a large system including several nested packages this would induce quite huge OCL
expressions that would browse the complete system, which is also discouraged by the authors.
To overcome this problem, Warmer and Kleppe [WK03] suggest to define the UML types used
in expressions at the use case level and provide a class diagram fully describing these elements.
We extend this approach by associating an UML 2.0 component, called use case component, to
every use case defined in the use case model:

Definition 19 (Use Case Component) A use case component is a UML 2.0 component
that contains all the elements (concepts, signals and operation signatures) necessary for the
complete specification of OCL expressions defined within a use case. It also provides their
evaluation context.

As we mentioned in Chapter 2, UML 2.0 component notation is principally used to model
architecture and design artifacts. However, similarly to domain concepts which are not design
classes, use case components are abstract; they are not executable as is and are not prescribing
any design choice. In order to distinguish them from more common usages of the notation, use
case components are all stereotyped with <<UCComponent>>. UML 2.0 components have a
packaging ability [OMG05f]; this allows, from a practical perspective, to embed the textual use
case description within its associated use case component and ease its management in a UML
case tool. Figure 4.2 depicts a use case component associated to a use case performing users
sign in on an e-commerce website.

Parts

110 4. Requirements Elicitation and Analysis

Parts in use case components represent the following information:

• Analysis concepts handled in the use case; e.g. userAcc in Figure 4.2,

• Data exchange between actors and subject of a use case. Data asynchronously output by
the system (see also Section 4.2.3) is modeled as UML 2.0 Signal metaclass instances, e.g.
MessageDisplay and WelcomeDisplay in Figure 4.2,

• State variables defined for this use case (here loginAttempts).

As a graphical convention, we use the standard notation for parts (i.e. a solid rectangle with the
name of the property and its type) that are shared amongst several use cases and we exposes
the full definition using the class notation for parts that are defined specifically in the context
of this use case. Only domain concepts can be shared (e.g. UserAccount) whereas signals are
defined only for a single use case. The complete specification of all concepts and signals is to be
found in the domain model (Section 4.2.1).

State variables defined in the context of a specific use case are gathered in a special class
stereotyped as <<UCControl>>. They are accessible to OCL expressions through this class. As
we already mentioned use case components provide the context for OCL expression to evaluate;
by default, the context of OCL expressions defined in the textual use cases is the one of the use
ace component that is associated to this particular use case.

Interfaces

Use case components provides interfaces. These interfaces give the signatures of all the system
operations that are employed by the use case to provide its functionality. Operations signatures
shown on the use case component diagram must be compatible with their full specification in
the operation model (see Section 4.2.3).

Use Case Diagram

As pointed out by Cockburn and Larman [Lar02], writing use cases means writing text, which is
the heart of use-case descriptions. However relating dependencies between use cases and actors
in a textual form as proposed in existing use case templates does not give a concise view on them.
As we presented it in Chapter 2, UML 2.0 offers a diagrammatic notation to give a high-level
view on use cases and their relationships to actors and other use-cases. Recall that according
to the UML specification, the following metaclasses expressing relationships between use cases
are available: extends, includes, generalize.
The UML specification states the rationale of extends relationship as: “This relationship is
intended to be used when there is some additional behavior that should be added, possibly
conditionally, to the behavior defined in another use case (which is meaningful independently
of the extending use case).” [OMG05f]. In our context, there are two usages in which Extends
could be used:

• Documenting alternative Scenarios: the “additional behavior” can be considered as an
alternative scenario possibly triggered by the value of a condition. Furthermore it is
added that “the extending use case typically defines behavior that may not necessarily

4.2. FIDJI Analysis Model 111

be meaningful by itself.” Hence it could be as well included in the extended use case.
Our textual template already provides means to express alternative scenarios as well as
triggering conditions by means of OCL expressions,

• Handling SPL variants: the other possible usage is to express SPL variants as proposed
in [Gom04, HP03]. As we adopt a generative approach, the handling of such variants is
realized through sub-transformation programs and controlled by constraints.

The generalize relationship is not specific to use case and defines inheritance between all UML
classifiers. Between use cases in our context the semantics of this relationship is not clear; is
it an overriding of the system operations sketched in the use case component diagrams and
fully defined in the operation model (Section 4.2.3) ? Or as proposed in [Iso04], is it part of the
behavior of the generalized use case that is simulated by the generalizing use case ? Consequently
in alignment with our approach to use only semantically clear subset of the UML metamodel, we
decided not to allow generalization relationships between use cases. The includes relationship
has a more clear semantics; it imposes that the included use case behavior is inserted in the
behavior of the including use case. This is useful to decompose some behavior in smaller pieces
thus minimizing the size of some use case descriptions. In this case, it is mandatory that a
reference to the included use case component is present in the including use case component;
this allows OCL expressions of the included uses cases to benefit from the context of the including
one and in the including one to refer the system operations offered by the included use case.

Actor Multiplicity & Identification

As we have seen, actor multiplicities can be specified in the use-case diagram. The use case
diagram shows the actor(s) who interact with this specific use case. This actor may send or
receive events as specified in the OCL statements accompanying use case steps. As a shortcut we
will use the names of the actors directly because it is more significant in an use case description.
However if one needs to checks this OCL constraints formally, the name of an actor must be
replaced by attribute.represents (see Section 4.2.1) where attribute is an attribute of the
use case component of the type of the class that pertain to an <<id>>-stereotyped association
with the concerned actor type in the domain model.

The following use case is excerpt of the case use case model of our case study detailed in Chap-
ter 6. It exemplifies the various model elements we defined above for use-case modeling:

Use Case: UC01: Sign In
—————————————————————–
CHARACTERISTIC INFORMATION
Goal in Context: A member signs in the application in order to access to the application
main’s services.
Scope: LuxDeal
Preconditions: Member is not signed in:
pre: userAcc.isUserSignedIn=false
Success End Condition: Member is signed in:+
post: userAcc.isUserSignedIn=true
Failed End Condition: Member is not signed in:
post: userAcc.isUserSignedIn=false
Primary Actor: Member
Secondary Actors: None.+

112 4. Requirements Elicitation and Analysis

Trigger: User requests to sign in;
post: self^signInRequest()
—————————————————————–
MAIN SUCCESS SCENARIO

1. Member is presented a sign in form:
post: sender^SignInForm(login,password)

2. Member enters his credentials in the form,

3. Member authenticates himself to the system;
post: self^authenticate(login,password)

4. If member’s credentials are correct, Member is displayed a welcome screen:
post: Let m:OCLMessage = SignIn^^authenticate(login,password)->first() in
m.hasReturned() and (m.result()=true) implies
sender^WelcomeDisplay and userAcc.isUserSignedIn=true

—————————————————————–
ALTERNATIVES
4a. if user credentials are incorrect and the session have not expired the user is invited to retry:

• Member is informed that his credentials are incorrect:
pre: Let m:OCLMessage = self^^authenticate(login,password)->first() in
m.hasReturned() and m.result()=false
post: sender^SignInDisplay(login,password)

• user retries:
post: self^authenticate(login,password)

• the main sequence continues then normally starting from step 4

4.2.3 Operation Model

The purpose of the operation model is to define the effects of the system operations:

Definition 20 (System Operation) A system operation represents a single unit of behavior
offered by a use case and called by an actor.

The operation model takes the form of a textual template declaratively specifying operation
behavior in terms of OCL pre/postconditions.

Template

Operation Name: <name of operation>

Related Use Case: <the use case the operation relates to>

Description: <natural language description of the operation>

4.2. FIDJI Analysis Model 113

Parameters:

1. <parameter name> typeOf: <parameter type>

Sends:

1. <signal name> to <actor>

Preconditions: Natural language and OCL statements,

Postconditions: Natural language and OCL statements.

Instantaneous and Asynchronous Execution of Operations

FIDJI operations follows an atomic execution scheme as proposed in the Fusion [CAB+94]
method; there is no way to see the sequence of changes made to system states starting from
the satisfaction of the preconditions to the satisfaction of the postconditions, we consider that
the operation executes instantaneously and that, at any point in time there is only one oper-
ation that is active. Hence, there is no issue in concurrent access to shared variables problem
within operations since they are processed in “zero-time” sequentially. Though unrealistic, this
semantics allows to focus on the individual behavior of operation and avoids concurrency issues
thus simplifying the analysis model, which is in line with the FIDJI requirements. Furthermore,
the technology targeted by the FIDJI method at the implementation level, J2EE EJBs [Mic05],
relies on container implementations or third party software (such as relational databases) to
support concurrency.
However, as noted by Sendall [Sen02], this semantics does not help to design the system so
that these conditions can be actually satisfied in a distributed manner. Hence, he extended the
operation model to support shared access to resources for concurrent executions of operations
and proposed means to ensure synchronization. The approach consists in defining special tags
to be added on OCL pre/postconditions as well the definition of clauses allowing to state which
variables are shared. In this approach, atomicity is confined to variable updates rather than on
the operation as a whole. Such an extension can be considered in future work on the FIDJI
method. However, to be fully valuable, the semantics of this extension has to be formalized
(possible formalization of the FIDJI models will be discussed in Chapter 8).

We mentioned in Section 4.2.2, that interactions between actors and the system were asynchro-
nous. Hence an operation does not have a return type (which would includes that the actor
actually “waits” for the return value), but may send signals to the calling actor (as well as to
other actors) as specified by the “Sends” clause in the operation template.

Pre/Postconditions

The OCL standard [OMG05e] states that “the purpose of a precondition is to specify the con-
ditions that must hold before the operation executes”. It is the responsibility of the analyst to
define scenarios so that the operation cannot be called if its precondition is not satisfied. At the
design level, one can devise a fault tolerance mechanism (such as exception raising) that prevent
the execution of the operation behavior if its precondition is not met.
The situation is different for postconditions: “The purpose of a postcondition is to specify the

114 4. Requirements Elicitation and Analysis

conditions that must hold after the operation executes”. This means that it is the responsibility
of the operation to ensure the that the conditions hold and hence part of its contract.

It is sometimes useful to refer to the sender of a message to, for instance, send a signal back to
him. However, in OCL the OCLMessage construct do not provide this functionality (at least at
the M1 layer in the UML metamodeling hierarchy). In [SS01], Sendall and Strohmeier suggest
to employ the keyword sender to alleviate this problem, in our operation specifications we use
it.

Operation Model and Life-cycle

We have defined the use case model in order to provide a partial yet practical on view on
the system’s life-cycle (allowable sequence of operations). But reasoning about the life-cycle
can also be done in the operation model, since state variables are also used to express operation
preconditions and postconditions. Examining these conditions would allow to reconstruct all the
possible sequences of operations of the system. However this number is huge and it is not the
intent of the FIDJI method to model them explicitly. But reconstructing only a partial sequence
related to the specific behavior of an operation; this helps analysts to discover dependencies
between operations and designers to implement them. Naturally, reconstructing these sequences
“by hand”, though possible for small sequences may become unmanageable for larger sequences.
Providing a systematic approach to life-cycle reconstruction is linked with the formalization of
the FIDJI models which is one of the important perspectives envisioned in Chapter 8.

4.2.4 Analysis Instantiation Constraints

As instantiation constraints are defined in OCL, they can only apply to the elements of the
analysis model that are defined in UML:

• Domain Diagram: constraints on this diagram allow to specify which concept(s) should be
obligatorily reused or if their attributes may be altered,

• Use Case Diagram: constraints defined on this diagram are interesting to control the reuse
of use cases in their entirety. For example, architectural framework developers may wish
that a particular use case is present in all the products instantiated form the architectural
framework (mandatory or “kernel” use case),

• Use Case Component Diagram: constraints defined on this kind of diagrams allow for a
fine tuning of the use case reuse: operation(s) considered as mandatory, alteration of some
parameters etc.

We will give concrete examples of such constraints in Chapter 6. The scope of application of
constraints go beyond the diagram on which they are defined: for example defining a concept
as mandatory via an invariant also impacts the use case component (and operations) that use
this concept and hence should satisfy the invariant. Furthermore, the application of the well-
formedness rules of the analysis profile (Section 4.2.5), implicitly generates new constraints form
the original ones: e.g. the satisfaction of the rules which states that all operations present in
the use case components should be further detailed in the operation model imposes that an
operation defined as mandatory at the use case component level should also be reused at the
operation model level. This situation is one example of impact analysis that we will address in
Section 4.4.

4.2. FIDJI Analysis Model 115

4.2.5 FIDJI Analysis Profile

In this section we gather the specific modeling elements used in our analysis model in the form
of an UML 2.0 profile, and give their associated well-formedness rules.

Profile

Figure 4.3 sums up the stereotypes used in FIDJI analysis models and table 4.5 describes the
purpose of each stereotype.

<<stereotype>>

id

[Association]
<<stereotype>>

UCComponent

[Component]

<<stereotype>>

UCControl

[Classifier]

<<stereotype>>

state

[Property]

<<metaclass>>

Association

<<metaclass>>

Property

<<metaclass>>

Component
<<metaclass>>

Classifier

Fig. 4.3: The FIDJI Analysis profile

Stereotype Name Base Metaclass Description
<<UCComponent>> Component Use Case Component

<<state>> Property Used in Domain concept and
use case components to store
information about the state of
the system to be used in OCL
expressions

<<UCControl>> Classifier Classifier gathering state vari-
ables for a given use case com-
ponent

<<id>> Association Relates an external actor to
its system representation

Tab. 4.5: FIDJI Analysis Stereotypes

Well Formedness Rules

In this section we explicit the well formedness rules that apply to the FIDJI analysis modeling
elements. These rules are given both in English and OCL when possible. They are also organized
according to the sub-model (domain, use case and operation) to which they apply. In Figure 4.4,
we recall here the structure of the FIDJI Analysis Model in order to give OCL expressions
context:

In order to ease writing of OCL expressions concerning stereotyped model elements, we define
the following query operation that retrieves all the stereotypes associated to a given metaclass:

116 4. Requirements Elicitation and Analysis

Analysis Model (ANAM)

Operation Model (OPM) Use Case Model (UCM) Domain Model (DOM)

Fig. 4.4: FIDJI Analysis Model Structure

Class::allStereotypes():Set{Stereotypes}
pre: --none
post: result = self.extension.ownedEnd.type

Global Rules

WFR-1 All the operations signatures present in the interfaces of the use components in the use
case model must be fully defined as operations in the operation model.

WFR-2 All the parameters and signals sent by system operations must have been defined in the
domain model (not expressible in OCL).

Domain Model

WFR-3 Concepts are not allowed to own any kind of behavior:
context ANAM::DOM inv:
self.ownedType->select(c|c.oclIsKindOf(Class)).Feature
->select(f|f.oclIsKindOf(BehavioralFeature))->isEmpty()

WFR-4 All the concepts and signals depicted in the domain diagram must be present in the domain
dictionary (not expressible in OCL).

WFR-5 All the properties of concepts and signals must have a type:
context ANAM::DOM inv:
self.ownedType->select(c|c.oclIsKindOf(Classifier))->forAll(c|
c.attribute->forAll(p|p.type->notEmpty()))

4.2. FIDJI Analysis Model 117

Use Case Model

WFR-6 The only relationship that is tolerated between use cases is inclusion:
context ANAM::UCM inv:
let rel: self.ownedElement->select(r|r.oclIsKindOf(Relationship)
and r.relatedElement->forAll(e|e.oclIsTypeOf(UseCase))) in
rel->forAll(r|r.oclIsTypeOf(Include))

WFR-7 There must not be more than one classifier with stereotype “UCControl” per use case
component:

context ANAM::UCM inv:
self.ownedType->select(c|c.oclIsTypeOf(Component))->
forAll(c|c.ownedType.oclAsType(Class)->allStereotypes()->
select(s|s.name=’UCControl’)->size()<=1)

WFR-8 Within an <<UCControl>> stereotyped classifier, the only allowed model element are
properties stereotyped by <<state>>:

context UCControl inv:
self.base_Classifier.attribute->forAll(p|p.oclAsType(Class)->allStereotypes()->
forAll(s|s.name=’state’))

118 4. Requirements Elicitation and Analysis

4.3 Transitioning from Requirements Elicitation to Analysis

In this section, we explain how can REQET-based descriptions described in Section 4.1 be linked
with FIDJI analysis models. Establishing these traceability links is of primary interest for do-
main engineers who need to build a FIDJI analysis models satisfying a SPL elicited with the
help of the REQET template.

4.3.1 Traceability

Before addressing traceability amongst REQET and FIDJI analysis model elements, we need to
assume a well-formed template description according to the hints given in Section 4.1.4. Because
REQET-based descriptions are more abstract than FIDJI analysis descriptions, there are one-
to-many relationships amongst them. In this context, we cannot apply UML-based traceability
approaches presented in Chapter 2 since REQET is not based on UML. Furthermore, as we
work at the domain engineering level here, traceability links only need to be established once
for a given SPL. Hence we propose to document traceability information manually via tuples of
the form:

< eREQET , {eFIDJI1 . . . eFIDJIn} >

Where eREQET is designating a REQET-based element (use case or domain concept) and
eFIDJI1 . . . eFIDJIn are elements belonging to the FIDJI analysis model of an architectural
framework. We do not provide any way to define types for these traceability relationships;
indeed, two types are implicitly defined:

• Use Cases: This kind of tuples relates UCET-based descriptions with FIDJI analysis use
cases. In this case, members of the tuples are use case identifiers,

• Concepts: These tuples relate concepts described in the DOMET with those explicated in
the domain dictionary at the analysis level. Members of these tuples are simply concept
names.

These tuples are provided in a textual file. Furthermore, in order to validate traceability infor-
mation the following well-formedness rules are defined:

WFR-9 All UCET-based use cases must be involved in a use case traceability tuple with FIDJI
analysis use cases.

WFR-10 All the members of the DOMET must be part of a concept traceability tuple.

Note that these rules are not bijective; there are usually more than one analysis element in
the tuple. Two reasons explain this matter of fact. Firstly, as we highlighted in Section 4.1,
REQET-based description do not strive to be exhaustive but rather concentrate on documenting
variability in the SPL elicitation requirements. Thus, some common elements may be omitted
in the description and discovered at the analysis level. Secondly, the abstraction gap between
requirements elicitation and analysis implies that some elements may be required at the analysis
level to provide detailed specification of a particular functionality that are irrelevant at the
elicitation level.

4.3. Transitioning from Requirements Elicitation to Analysis 119

4.3.2 Relating Variability Information

As we have mentioned above, the FIDJI method specifies variability in terms of instantiation
constraints in the analysis and design layers of the architectural framework supporting a given
SPL. Therefore completing traceability between REQET-based descriptions and FIDJI analy-
sis models means also encoding variability information of the DOMET and UCET in terms of
instantiation constraints. We can use the traceability format given above to identify analysis
elements that are concerned by a given variation. First, we define instantiation constraints
for analysis concepts corresponding to mandatory and alternative DOMET concepts. Optional
concepts do not deserve instantiation constraints unless they are depending on other element
that are not optional (in that case the dependencies column of the DOMET should help in
the elaboration of such constraints). Use case variations are processed the same way. Second
variation point descriptions defined within a particular use case have to be treated specifically;
for example an optional sub-scenario in a mandatory use case will imply that at the analysis
level that if the use case should be present in the product some of its operations may be omitted.

As we illustrated in the previous section, the implementation of variants of the SPL is done via
the instantiation program. Hence, in order to assist application engineers in the writing of the
instantiation program, domain engineers may provide sub-transformation programs realizing
the implementation of the variants identified in the REQET-based description and traced in
the analysis layer via the above mechanism. However, this is an optional practice; application
engineers are free to use the transformation operations they wish to instantiate the architectural
framework’s analysis layer. In both cases, the instantiation will be controlled by the consistency
rules defined between REQET variants and their implementation via transformation primitives
at the analysis level.

120 4. Requirements Elicitation and Analysis

4.4 Product Elicitation and Analysis

In this section, we provide the necessary methodological rules to perform the elicitation and
analysis on the basis of an architectural framework conforming to the models presented above.

4.4.1 Define Product

As illustrated on the SPEM model depicted in Figure 3.4, the FIDJI process begins with the
“Define Product” task at the requirements elicitation level. The definition of a product involves
two stakeholders; the customer of the product line member to be developed and the product
analyst. In first place, the product analyst resolves the appropriate variation points while pro-
ducing the product description (which follows a similar template) in accordance with the client.
Then, he adds new concepts and use cases which correspond to product specific requirements
that are not present in the SPL description. Finally, the product requirements are checked
against REQET validation rules presented in Section 4.1 and validated by the customer.

4.4.2 Instantiate architectural framework Analysis Layer

Identifying Concerned Elements

The first step to accomplish in the architectural framework analysis layer instantiation activity
is the identification of the architectural framework analysis layer elements that are necessary
to build the product analysis model. Concept names and use case identifiers present in the
product description are compared for matching with the first element of the traceability tuples
introduced in the previous section. When both the product element and the tuple match, thus
meaning that this element was initially present in the REQET-based description of the SPL,
the set of analysis elements concerned by this product requirement is obtained via the second
member of the tuple. By performing the union of these sets we can identify the analysis ele-
ments that will be used as source of the model transformation operations in the instantiation
program. Note that the matching procedure can be skipped if the product analyst is realizing
both requirements elicitation and analysis of the product because he may already know which
elements have been directly copied from the REQET-based description to elicit the product.

Writing and Validating the Analysis Instantiation Program

The second step is the writing of the instantiation program in itself. It takes the following
inputs:

• The product description,

• The set of architectural framework analysis elements identified trough the traceability
links,

• The optional (sub)-instantiation program(s) performing the instantiation of analysis ele-
ments according to the variability information found in the REQET-based description of
the SPL (see previous section),

4.4. Product Elicitation and Analysis 121

• The analysis instantiation constraints which informs the analyst on the restrictions apply-
ing to the architectural framework analysis layer and on the transformation operations he
may not use.

There is no specific order to write the analysis instantiation program, though the program will be
evaluated imperatively. The product description is used to create at the analysis level elements
corresponding to requirements that are specific to the product and therefore not present in the
architectural framework. Depending on the availability of predefined transformation operations,
the product analyst may use them to perform the instantiation of analysis elements identified
via the traceability links. Throughout the whole writing of the program, the product analyst
should consult the instantiation constraints as a guide to help him instantiate the architectural
framework correctly.

Once the program is written (examples of program syntax and transformation operations are
given in Chapter 6), it has to be validated over the instantiation constraints presented in Sec-
tion 4.2.4.

Assessing and Resolving Impact

Once the analysis instantiation program has been validated, the actual generation of the product
analysis model can be performed. The last step is to evaluate and resolve impact on elements
which depend on the transformed architectural framework analysis layer ones. Impacted ele-
ments can be discovered by examining the following issues:

• UML metamodel and FIDJI profile unconformity: At the analysis level, derived use case
component diagram may violate either UML or FIDJI analysis profile well-formedness
rules; therefore the derived model may need be updated consequently,

• Inconsistencies with other depending analysis models: The removal of an operation from
a derived use case component involves that its description in the operation model is no
longer valid; FIDJI analysis profile constraints cover this kind of issues,

• Impacted Elements: In addition to the preceding point, a change on a particular attribute
of a concept or parameter of an operation may have consequences on the other depending
elements (even if the whole model is conforming to UML metamodel and FIDJI analysis
profile).

122 4. Requirements Elicitation and Analysis

5. ARCHITECTURE & DESIGN

Abstract

In this chapter, we present the architecture and design phase of the FIDJI method.
This chapter is structured in a similar manner as the previous one; Section 5.1
presents the requirements of the design models with respect to the analysis phase and
the FIDJI process. Section 5.2 presents the models used for the static and behavioral
modeling of the architectural framework design layer. Section 5.4 presents the archi-
tecture and design profile as well as rules for validating design models. Section 5.3
gives the traceability information with respect to analysis. Finally, Section 5.5 gives
the methodological guidelines to perform architectural framework instantiation at the
design level.

5.1 Requirements for Design Models

The role of the design phase is to define the “how” of a particular system; that is, the decom-
position the system in structures (i.e. its architecture as we seen in Chapter 2, Section 2.3) as
well as the detailed behavior of these structures. Naturally this “how” is related to the “what”
of the analysis phase; one needs to understand how the requirements defined in the analysis
are mapped to software elements that will constitute the software system. With respect to our
analysis phase, we have identified the following characteristics for the design phase to provide:

• Flexible Product Derivation: At the design level, some mechanisms must be provided
to ensure the same level of controlled flexibility to reuse models as did state variables and
use cases at the analysis level and provide adequate support to guide product developers
in the instantiation of the architectural framework,

• Architectural Support: These models should be able to expose the system architecture
clearly. In particular, it should be able to describe architectural styles implemented by the
object-oriented framework at the code level,

• Behavior: Design models should be able to describe the algorithms realizing operations
that have been defined in the operation model.

124 5. Architecture & Design

5.2 Design Models

In this section we present the design models offered by the FIDJI method. We illustrate them
through an example which is a sophisticated form of “Hello World” that was implemented as a
sample application of the JAFAR architectural framework [GR02, GS02b, GRS03a].

5.2.1 Structural Modeling

The structural model consists of three sub-models: the global architecture model, the internal
structure model, and the parts specification model.

Global Architecture Model (GAM)

The role of the GAM is to give a high level description of the structural architecture of the ar-
chitectural framework according to the component-and-connector viewpoint. Methodologically,
the elaboration of this model corresponds to the architectural phase of the design process, while
the subsequent models are dedicated to lower level description of individual components at the
design level.

Components

In the GAM, we focus on the “externally visible” properties of components and their interaction
with other components through connectors, ports and interfaces. Similarly to KoBra kompo-
nents [ABB+02], FIDJI components form a tree-like containment hierarchy in which the whole
system is seen as a root component which is decomposed in more fine grained components. We
consider three kinds of component:

• Primitive Components: primitive components are simple components that do not own
other components and can be designed directly in terms of classes, operations and rela-
tionships among them. They are the leaves of the containment tree,

• Compound Components: Compound components are larger structures that own a
sub-component decomposition; they are forming intermediate nodes of the containment
hierarchy which own decomposition in sub-components. Such a decomposition can either
result from the application of a particular architectural styles or the will to modularize the
internals of component so that its architecture description, design and implementation is
facilitated. In order to distinguish them from primitive components they are annotated
with <<compound>> stereotype,

• Root Component: The root component is a special type of compound component which
is a at the top of the containment hierarchy. The root component plays the role of the
context realization model in KoBra. The boundaries of the root component defines the
boundaries of the system and its interfaces are formed with the interfaces of use case
component defined at the analysis level. This helps ensuring traceability between analysis
and design layers of the architectural framework as we will discuss it in Section 5.3. The
root component is annotated with the stereotype <<root>>.

5.2. Design Models 125

As noted by Ivers et al. [ICG+04], there are two ways of representing components in UML 2.0:
using instances of the metaclass Class (from the StructuredClasses package) and using in-
stances of the Component metaclass. The only significant differences between these constructs
is that components can own additional elements (as we have seen it for use case components in
Chapter 4) such as deployment descriptors and have the ability to be supported via technology-
specific profiles such as the ones for EJB. As the FIDJI method targets applications developed
with the help of such technologies we chose to model our components thanks to the Component
metaclass. As an additional incentive, Ivers et al. [ICG+04] also remark that connectors may be
documented with classes which may induce some confusion.
In the GAM we do not model the internal structures of individual components explicitly, (it is
the role of the ISM and PSM); internal structures are reserved for compound and root com-
ponents and are represented in separate component diagrams showing their decomposition in
sub-components.

Ports

As we saw in Chapter 2, Section 2.2, an UML 2.0 ports specify distinct interaction points between
a classifier and its environment or between the behavior of the classifier and its internal parts.
The main use of ports in the GAM is to to encapsulate lower-level design patterns characterizing
the interaction of the component with its parts/interfaces and whose details are not relevant in
this model. Consequently the types of ports (which are classes responsible for the application of
the design pattern) are not shown in the GAM; they will be given in the ISM and PSM. Ports
are optional in this model.

Connectors

Since we do not show the internal structure of the components in the GAM, the only kind
of UML connectors is the assembly connectors linking provided interfaces/ports with required
interfaces/ports. It is important to carefully model the connectors at this level for the following
two reasons. First, connectors participates in the architectural qualities and the decisions that
have been made for their definition strongly influence design. Second, precise modeling of
assembly connectors can be done only within the GAM, because ISM and PSM are focusing on
detailing the components internal details and not interactions with their environment.

Interfaces

Interfaces in the GAM are modeled differently depending on the kind of components they are
attached to:

• Compound/primitive components: In these components interfaces are modeled within
an architectural connection [AG97] (supported in UML as an assembly connector) using
our OCL-based approach that will be detailed in Section 5.2.2,

• Root component: Provided interfaces of the root component correspond to the interfaces
of the use case components modeled at the analysis level. They can be modeled either
using the complete UML notation for interfaces or in terms of “lollipops” to reduce visual

126 5. Architecture & Design

clutter. Required interfaces (corresponding to services provided by external systems) need
to be defined completely since they will not be detailed in the other design models.

Modeling architectural styles with the GAM

As the GAM provides a high-level overview of an architectural framework architecture and
design, it can describe the architectural styles which affect its overall structure and guaranties
that certain qualities are met in instantiated SPL members. We will integrate constructs allowing
to model architectural styles in our design profile (see Section 5.4).

We have selected the following architectural styles that we found relevant with respect to the
component-and-connector viewpoint, GAM’s purpose and FIDJI method: pipe-and-filter, lay-
ered style, N-tier.

The layered style, which have been already mentioned several times, divides the system in com-
municating layers. In the strict variant of the pattern, a component of the layer N is only
allowed to communicate with adjacent layers (N-1 or N+1). The flexible variant allows layers to
communicate arbitrarily which may possibly lead to a too loose hierarchy that eventually will
limit the interest of decomposing the system in layers. Therefore we propose to model only the
strict variant. In order to do so, we suggest to use the <<layer>> architectural primitive defined
in [ZA05]; it is an extension of the UML Package metaclass which has a tag definition indicating
the number of the layer in the hierarchy. An OCL constraint enforce the strict variant rule. In
middleware-based architecture descriptions, there can be a huge number of assembly connectors
and interfaces characterizing the interactions between two components. In order to keep this
situation tractable within the GAM, we introduce the notion of <<abstractConnector>> as
an extension of the the Connector metaclass that gathers all the connections in a single one.
The <<abstractConnector>> connects two <<abstractInterface>> which can be understood
as the union of the interfaces participating in the connection. The abstract connector is also
useful when we do not want to detail a complex path of components and connectors; in this
usage it has the same semantics as the “virtual connector” defined in [ZA05].

The N-tiered style is typical of web-based architectures and can be seen as a generalization
of the client-server one. It relies on the separation of the GUI, business logic and data. For
example J2EE-based applications are a good example of N-tiered (here N=3) architectures using
JSP and HTML for the GUI tier, EJB session beans for business logic and Relational Database
Management Systems (RDBMS) to store data defined in the entity beans. Additional tiers can
be added to provide caching mechanisms between business logic and RDBMS. The N-tiered style
differs from the “layer” style in the sense that the decomposition is not hierarchical and based
on the abstraction level of components but rather functional or physical; tiers help to identify
the physical nodes on which will be running the components they own. We model this style
similarly to the “layer” style via the stereotype <<Tier>>.
We will give concrete examples of modeling architectural styles in Section 5.2.2.

Internal Structure Model (ISM)

The role of the internal structure model is to exhibit the internals of each individual component
that has been abstractly modeled in the GAM. It represents the first level of structural design of

5.2. Design Models 127

components. The second will be covered in the parts structure model. The ISM is mainly based
on the UML 2.0 notational elements that are found in the Composite Structures package. We
detail the ISM constructs in the following paragraphs.

Ports

Ports are the first elements to deal with when elaborating the ISM because they represents the
“entry point” to the component’s internal elements. There are two cases:

1. Port Refinement. In this case, ports for this component have already been defined in
the GAM. The refinement consists in attributing a type (i.e. a class) to all ports of the
component,

2. Port addition. We have mentioned that ports are optional in the GAM. In the ISM, it
may be necessary to create some new ports to detail the interaction between provided and
required interfaces and the internal parts of the component.

In both cases, we require that at least one port is present for each component and that each
port has a type. Although ports can be refined, no port defined in the GAM can be removed in
the ISM. Port types are completely described in the parts structure model.

Parts

Parts refer to classifiers’ instances which are participating in the design of the component and
attached via connector the component’s ports. There are fully detailed in the parts structure
model.

Connectors

Connectors have two roles in the ISM:

1. Call or provide methods to components’ interfaces. We use delegation connectors to con-
nect parts to ports and therefore to describe how provided interfaces are designed across
the component parts or to require some methods form other components,

2. Links between parts. Parts may require the participation of other parts to fulfill their
functionality; we use instances of Connector (from InternalStructures package) in order
to relate parts.

Figure 5.1 shows the internal structure of the HelloWorld component:

• Interface IHelloWorld is the main provided interface to clients of this component; it offers
sayHello and sayBonjour methods (which respectively add Hello and Bonjour before
user entered name). Interface IDelegate is defined within the framework and should be
implemented by “delegate” classes (see below) in order to perform initialization tasks,

128 5. Architecture & Design

• Port pHDel is providing IHelloWorld interface. Its type, HelloWorldDelegate, is a class
that handle requests to HelloWorld service according to the “business delegate” pat-
tern [ACM01]. This pattern suggests to create an intermediate class that handles clients
requests and perform various tasks not directly related to the service functionality which
is implemented in the beans. Delegate classes minimize the coupling between client re-
quests and EJB design thus facilitating changes. HelloWorldDelegate needs access to
several other classes to implement its functionality; connectors to anonymous instances of
ServiceInvocation, ServiceInvocationResult and DelegateHelper. Finally the busi-
ness part of the interface (i.e. displaying “hello” or “bonjour” before an user given name)
is delegated to HelloWorldBean which is a session bean that actually realizes the service
behavior.

Parts Structure Model (PSM)

The role of the parts structure model is to fully define all the parts that are sketched in the
internal structure model. Hence, it completes the static description of components in a fine-
grained way. Similarly to the ISM, it is attached to a single component. The PSM plays the
roles of the inheritance, dependency and design class models in Fondue (however as Fondue is
not component-based, their models concerns the whole system ad not only a component) and
the structural realization model for KoBra komponents.

The graphical notation offered by the PSM is based on UML 2.0 class diagrams. We detail the
particular usage of these UML constructs in the following paragraphs.

Classifiers

Classifiers include the full specification of their attributes (name, type and visibility) as well as
method signatures (name return type and parameters). Each class in the PSM should correspond
to one part abstractly defined in the ISM. There are some classes (such as the architectural
framework ones) that are not owned by the component itself; they are also fully specified but
we require that their explicit owning package be given.

Relationships

Relationships amongst classifiers are important since they determine the features that have to
be provided for a classifier and the features it needs to access via other classifiers and how.
These relationships can be of the following kinds:

• Inheritance: Inheritance relationships allow the determination of a classifier type and
therefore the attributes and methods it gets from its parent(s). In addition, it may over-
ride methods (or implement them in the case of the realization of an interface) and/or add
attributes and methods in order to fulfill its parent(s) contract and/or add new features.
Graphically, inheritance relationships can take various notations: they can be instances of
Generalization (classical “is-a” relationships), InterfaceRealization or can be mod-
eled in a indirect way via stereotypes; e.g. in the EJB component model, the application

5.2. Design Models 129

<
<

com
ponent>

>

H
ello

W
o

rld

<
<

E
JB

S
essionB

ean>
>

 : H
ello

W
o

rld
B

ean

 : S
erviceIn

vo
catio

n
R

esu
lt

 : S
erviceIn

vo
catio

n

 : D
eleg

ateH
elp

er

pH
D

el : H
elloW

orldD
elegate

ID
eleg

ate
(JA

F
A

R
−

reverse.lu.uni.jafar2.platform
.core.baseinterfaces)

+
initialize(jndiN

am
e : S

tring) : void

IH
ello

W
o

rld

+
sayH

ello(context : IC
ontext, nam

e : S
tring) : S

tring
+

sayB
onjour(context : IC

ontext, nam
e : S

tring) : S
tring

<
<

d
e
le

g
a
te

>
>

Fig. 5.1: HelloWorld Internal Structure Model

of the <<EJBSessionBean>> stereotype will inform the designer that the class will have
to implement session bean methods and therefore realize the SessionBean interface. If
J2EE stereotypes are supported within a UML case tool, this link may even be defined
automatically at the code level. The role of such relationships is equivalent to Fusion
inheritance graphs,

130 5. Architecture & Design

• Association: Association relationships identify the classifiers that are needed by a given
classifier to perform its contract. We require that the relevant classifiers should be modeled
as associations rather than attributes. Classifier attributes should primarily concern prim-
itive types. In some cases, to avoid visual clutter, classifiers belonging to a well identified
library (such as J2EE) can be modeled as attributes,

• Dependency: Dependency relationships concern indirect links between model elements.
For example, they may involve interface realizations that are handled by the J2EE con-
tainer rather than by a statement in the implementation code.

Figure 5.2 shows the parts structure model for HelloWorld component. It illustrates the various
kinds of relationships discussed above: This diagram shows how port pHDel type, represented
by class HelloWorldDelegate, indirectly provides the HelloWorld services (sayBonjour and
SayHello) via the interface HelloWorld. This interface is indirectly realized (a J2EE container
will ensure the mapping at run-time) by HelloWorldBean (hence the dependency relationship
rather than a direct inheritance).

5.2.2 Behavioral Modeling

The role of the behavioral models is to describe how the various elements defined in the structural
models interact and therefore support the behavior of the operations defined in the analysis
models. More specifically, we distinguish two cases for behavioral modeling: inter-component
modeling, whose purpose is to detail the behavior of the assembly connectors defined within the
GAM and intra-component modeling which consists in describing the internal behavior of an
individual component.

Inter-Component Model

We mentioned above that the main motivation for the GAM was to describe the overall archi-
tecture of the system and the architectural styles used to form it. In particular, the empha-
sis is put on the interactions between components, the other models presenting their internal
details. As presented in Chapter 2, Section 2.4, existing approaches to model component in-
teractions in the the context of SPL are using collaboration diagrams (Fusion [CAB+94], Fon-
due [SBS04], KoBra [ABM00], Gomaa’s PLUS method [Gom04]) or sequence diagrams (Ziadi
and Jézéquel [ZJ06]). However, as noted by Zdun and Avgeriou [ZA05] there are two issues in
modeling architectural styles with UML.
Firstly, the UML language does not support natively architectural styles such as the pipe-and-
filter style. Yet, we have provided solutions to alleviate this problem based on UML extensions.
The second and most important point is related to the flexibility issue we dealt with at the
analysis level; architectural styles do not define unique solutions but implicitly induce a solution
space for recurring problems. Even if UML provides some mechanisms (e.g. the fragments that
can be employed in sequence diagrams) can be used as parameters to the style to describe sev-
eral solutions, the fact that architectural styles are often described informally hinders a direct
translation in a parametric solution.
This motivates our will to provide an interaction mechanism between components that provide
the necessary flexibility to describe architectural styles and interactions to be reused by the
application developer to define the architecture of its product. In alignment with our analysis
phase of Chapter 4, our goal is to provide a OCL-based approach similar to the one we proposed
to complement use case descriptions (which are also interactions but between an actor and the

5.2. Design Models 131

D
e

le
g

a
te

H
e
lp

e
r

(
J
A
F
A
R
-
r
e
v
e
r
s
e
.
l
u
.
u
n
i
.
j
a
f
a
r
2
.
p
l
a
t
f
o
r
m
.
c
o
r
e
.
h
e
l
p
e
r
s
.
d
e
l
e
g
a
t
e
h
e
l
p
e
r
)

-
_
g
e
t
E
v
e
n
t
H
a
n
d
l
e
r
(
)

:

I
E
v
e
n
t
H
a
n
d
l
e
r

<
<
c
o
n
s
t
r
u
c
t
o
r
>
>
+
D
e
l
e
g
a
t
e
H
e
l
p
e
r
(
)

+
i
n
s
t
a
n
c
i
a
t
e
E
j
b
(

j
n
d
i
N
a
m
e

:

S
t
r
i
n
g
,

h
o
m
e
I
n
t
e
r
f
a
c
e

:

C
l
a
s
s

)

:

O
b
j
e
c
t

+
f
i
r
e
M
e
t
h
o
d
C
a
l
l
e
d
(

s
e
r
v
i
c
e
I
n
v
o
c
a
t
i
o
n

:

S
e
r
v
i
c
e
I
n
v
o
c
a
t
i
o
n

)

:

b
o
o
l
e
a
n

+
f
i
r
e
M
e
t
h
o
d
C
o
m
p
l
e
t
e
d
(

s
e
r
v
i
c
e
I
n
v
o
c
a
t
i
o
n
R
e
s
u
l
t

:

S
e
r
v
i
c
e
I
n
v
o
c
a
t
i
o
n
R
e
s
u
l
t

)

:

v
o
i
d

<
<
E
J
B
S
e
s
s
i
o
n
B
e
a
n
>
>

H
e

llo
W

o
rld

B
e

a
n

<
<
c
o
n
s
t
r
u
c
t
o
r
>
>
+
H
e
l
l
o
W
o
r
l
d
B
e
a
n
(
)

+
e
j
b
A
c
t
i
v
a
t
e
(
)

:

v
o
i
d

+
e
j
b
P
a
s
s
i
v
a
t
e
(
)

:

v
o
i
d

+
e
j
b
R
e
m
o
v
e
(
)

:

v
o
i
d

<
<
s
e
t
t
e
r
>
>
+
s
e
t
S
e
s
s
i
o
n
C
o
n
t
e
x
t
(

s
e
s
s
i
o
n
C
o
n
t
e
x
t

:

S
e
s
s
i
o
n
C
o
n
t
e
x
t

)

:

v
o
i
d

+
e
j
b
C
r
e
a
t
e
(
)

:

v
o
i
d

+
s
a
y
H
e
l
l
o
(

n
a
m
e

:

S
t
r
i
n
g

)

:

S
t
r
i
n
g

+
s
a
y
B
o
n
j
o
u
r
(

n
a
m
e

:

S
t
r
i
n
g

)

:

S
t
r
i
n
g

ID
e

le
g

a
te

(
J
A
F
A
R
-
r
e
v
e
r
s
e
.
l
u
.
u
n
i
.
j
a
f
a
r
2
.
p
l
a
t
f
o
r
m
.
c
o
r
e
.
b
a
s
e
i
n
t
e
r
f
a
c
e
s
)

+
in

itia
liz

e
(jn

d
iN

a
m

e
 : S

trin
g
) : v

o
id

IS
e
rv

ic
e

(
J
A
F
A
R
-
r
e
v
e
r
s
e
.
l
u
.
u
n
i
.
j
a
f
a
r
2
.
p
l
a
t
f
o
r
m
.
c
o
r
e
.
b
a
s
e
i
n
t
e
r
f
a
c
e
s
)

IH
e
llo

W
o

rld

+
s
a
y
H

e
llo

(c
o
n

te
x
t : IC

o
n
te

x
t, n

a
m

e
 : S

trin
g
) : S

trin
g

+
s
a
y
B

o
n
jo

u
r(c

o
n

te
x
t : IC

o
n
te

x
t, n

a
m

e
 : S

trin
g

) : S
trin

g

H
e
llo

W
o

rld
D

e
le

g
a

te

+
s
a
y
H
e
l
l
o
(

c
o
n
t
e
x
t

:

I
C
o
n
t
e
x
t
,

n
a
m
e

:

S
t
r
i
n
g

)

:

S
t
r
i
n
g

+
i
n
i
t
i
a
l
i
z
e
(

j
n
d
i
N
a
m
e

:

S
t
r
i
n
g

)

:

v
o
i
d

+
s
a
y
B
o
n
j
o
u
r
(

c
o
n
t
e
x
t

:

I
C
o
n
t
e
x
t
,

n
a
m
e

:

S
t
r
i
n
g

)

:

S
t
r
i
n
g

S
e

s
s

io
n

C
o

n
te

x
t

(
J
2
E
E

1
.
4
.
j
a
v
a
x
.
e
j
b
)

<
<

g
e

tte
r>

>
+

g
e

tE
J
B

L
o

c
a
lO

b
je

c
t() : E

J
B

L
o

c
a
lO

b
je

c
t

<
<

g
e

tte
r>

>
+

g
e

tE
J
B

O
b
je

c
t() : E

J
B

O
b
je

c
t

<
<

g
e

tte
r>

>
+

g
e

tM
e

s
s
a
g

e
C

o
n
te

x
t() : M

e
s
s
a
g
e
C

o
n
te

x
t

H
e

llo
W

o
rld

+
s
a
y
H

e
llo

(n
a
m

e
 : S

trin
g

) : S
trin

g
+

s
a
y
B

o
n
jo

u
r(n

a
m

e
 : S

trin
g

) : S
trin

g
H

e
llo

W
o

rld
H

o
m

e

+
c
re

a
te

() : H
e

llo
W

o
rld

<
<
E
J
B
R
e
a
l
i
z
e
R
e
m
o
t
e
>
>

<
<
E
J
B
R
e
a
l
i
z
e
L
o
c
a
l
H
o
m
e
>
>

-
_
h
e
l
l
o
W
o
r
l
d

-
s
e
s
s
i
o
n
C
o
n
t
e
x
t

-
_
d
e
l
e
g
a
t
e
H
e
l
p
e
r

Fig. 5.2: HelloWorld Parts Structure Model

system). This goal is pursued for methodological grounds; use of a similar notation at the
analysis and design layers reduces the learning curve of the method and facilitate the transition
between FIDJI models.
Our general approach to interactions modeling is to adapt Allen and Garlan’s architectural con-

132 5. Architecture & Design

nection [AG97] to OCL-based descriptions. In the context of assembly connectors used in the
GAM, the roles are played respectively by provided and required interfaces or ports, while the
“glue” refers to a particular interaction between components. The remaining paragraphs explain
how OCL can be used in place of WRIGHT in order to model role and glue behavior.

Role Modeling

Modeling role behavior corresponds to the way provided or required operations of components
have to be called (i.e. their protocol). Individual behavior of operations is being ensured by the
internal structure of the component providing these operations. Roles are modeled as operations
having no parameter and which are attached to connector behavior (see “Connector Modeling”).
The definition of a role protocol is based on the elaboration of an OCL postcondition describing
non-deterministically the sequence of UML messages (operation calls and signals) that have to
be satisfied in the interaction with another component. As for the analysis phase, the main
technique used to constrain temporally message exchange is via the definition of state variables
that are defined at the interface level. Yet the way to handle them differs; in the analysis phase
we used state variable as guards in the preconditions of each use case step. This is not possible
here so we rely on the if ... then ... else ... endif OCL block to specify such guards.
Note that it is also possible to define local state variables in the pre/postconditions via the
let ... in construct.

The hasSent OCL operator requires that the recipient of the message is identified in order
to be defined properly. While modeling of a single role there is always one role that is not
directly identified. Indeed, two symmetrical situations occur depending on the kind of role
being modeled:

• provided: Specification of operation calls to a provided interface are straightforward.
However, we need a way to identify the interface or port that issued the call in order
to specify a response (either synchronously via a return message or asynchronously via
a Signal). We propose to introduce a special variable, requirer, to map the requiring
interface or port in the interface behavioral specification,

• required: Similarly for required interfaces or ports, the variable provider designates the
interface or port that provide services to this interface.

While modeling a connector role, we do not know the exact operations that will be provided or
required by components through their ports and interfaces. There are two reasons to not having
already such information:

1. Method: Our approach to architecture and design is top-down; we are going from the
most abstract (the internal structure of the <<root>> component modeled as a GAM)
to the most concrete (detailed design of individual components). Therefore we model
component interactions without having specified their interfaces. In fact roles will act as
guides for their design (see “Intra-Component Model”);

2. Architectural Styles Modeling: In order to support the definition of architectural
styles, we need to model roles independently of a particular architectural connection.

5.2. Design Models 133

However, we need to make assumptions about the provided and required ports or interfaces (as
identified by provider and requirer keywords) in order to model role behavior correctly. Hence
we propose to define virtual operations. These operations define the minimum behavior that
actual ports or interfaces should support in order to take part in an architectural connection. The
context owning virtual operations is provided by the provider and requirer keywords. Hence
virtual operations can be defined in the connector behavior via OCL pre/postconditions using
such context. Virtual operations may either be directly used as part of component interfaces
while they are designed or as guides to choose an existing component (in the case where the
architectural framework design layer is built from pre-existing components). We will elaborate
further on this point (see “Intra-Component Model”).

Connector Modeling

Assembly connectors in the GAM may convey a specific information about the connection. For
example, in the pipe and filter architectural style, one may specify if the interaction between
two interfaces has to be secured or at a lower level, the nature of information exchanged (bi-
nary/ASCII streams) or the pipe buffer behaves if it is full. Zdun and Avgeriou [ZA05] proposed
to attach OCL constraints (invariants) to model connector semantics. However they do not con-
sider complex connector in their approach and modeling a sophisticated “pipe” with a buffer
can be difficult using just invariants and may not be informative enough for designers and de-
velopers. Therefore we wish to reuse our interaction mechanism to model the connector’s detail.

Until very recently (February 2007) and as opposed to numerous architecture description lan-
guages that treat connector behavior the same way as components, it was not possible to attach
behaviors to UML connectors. Strategies such as the use of structured classes whose interfaces
would match the provided and required interfaces of components have been proposed by Ivers
et al. [ICG+04] to overcome this lack. The latest revision of the UML 2 specification (version
2.1.1) [OMG07b], now includes the possibility to describe connector behavior through an associ-
ation called contract referencing any subtype of Behavior defined in the Connector metaclass.
As a consequence, we have to define a Behavior instance defining the inner features (both
structural and behavioral) of a connector and use OCL the same way we did for interfaces, i.e.
as a postcondition defining the protocol of the messages exchanged. The Behavior metaclass
factorizes all the common behaviors that can be modeled by the UML 2 specification such as
state machines, sequence diagrams etc. Given the concerns we expressed about those above we
chose to use OpaqueBehavior instances instead. Such instances are indeed modeled as UML
classes which have pre/postconditions. We can thus apply our OCL based interaction approach
through this mechanism.

“Gluing”

“Gluing” represents the actual formation of the connection in a particular model, that is how
the separately modeled interfaces of components can be glued via an assembly connector. There
are two options to perform the gluing process, applying a predefined connector type or defining
a specific connector.

134 5. Architecture & Design

Applying a Predefined Connector Type

We devised above a mechanism to model assembly connector semantics without explicitly refer-
ring to components’ interfaces. This allows to define connector types that are crucial when deal-
ing with architectural styles. Gluing a connector type to actual components’ interfaces/ports
requires first that roles defined in the connector description match with components’ inter-
faces/ports descriptions. Then, ports/interface protocols and connector “glue” have to be veri-
fied for consistency. Concerning the first point, one has to find a matching interface operation
for each virtual operation involved in the role specification and determine their compatibility.
At the syntactical level operations should be matched according to parameters and return types
in their signatures. It does not mean that operation signatures are exactly the same; the set
of parameter types of the virtual operation has to be a subset of the set of the actual interface
operation parameters and return types. At the semantic level, compatibility means that the sate
defined by the postcondition of the virtual operation should be one of the states reachable by
the actual operation. This deliberately loose notion of compatibility between operations fosters
flexibility and reuse by allowing already existing operations to fulfill several roles.

The second step is to check if the newly matched operations can be combined according to the
connector glue. The key point to examine is the preconditions of the operations of the interfaces
which may exhibit certain state variables requiring or preventing some operation sequences from
being defined. Here also, the connection of the interfaces/ports may allow many more operation
sequences than the ones defined by the connector glue; this is not a problem provided that the
connector glue sequences are a subset of the interfaces connection possible sequences.
Once these two steps completed, one should obtain a complete description of the connector with
all the virtual operations as well as provider and requirer replaced by the actual values of the
interfaces/ports of components.

Defining a Specific Connector

Not all connectors are part of a style, sometimes one needs to create a specific connector to
attach components. In this case, roles are directly modeled with the actual interfaces operations
of the components. Hence, there is no matching of individual operations. Definition of the
connector glue is similar to the predefined connector case and focuses on the elaboration of a
postcondition that respects the authorized combination of interface operations.

Note that in both cases, the usage of state variables and the fact that OCL does not provide
any means to specify operation sequences allow for a great number of possibility for architec-
tural connections between components, which is a good thing at the domain engineering level.
Naturally, there it is still possible to be more restrictive at the application engineering level by
defining instantiation constraints inhibiting some connections.

An Example

Figure 5.3 exemplifies our approach on a pipe-and-filter system defined by the Pf-Sample root
component. It consists of a simple “pipe” connector that use a buffer and two filters; Filter1
send data through the connector while Filter2 process data. The assembly connector is realizing

5.2. Design Models 135

<<Root>>

Pf−Sample

 : Filter2 : Filter1

<<opaque>>

PipeSpec

−buffer : byte"*"
−max_size : int
−isBufferReadable : boolean = false

+read(bytes : int) : byte"*"
+write(bytes : byte"*") : int
<<Role>>+provider() : boolean
<<Role>>+requirer() : boolean

<<Pipe>>

simple−pipe

Fig. 5.3: A Pipe and Filter Example

the pipe via PipeSpec. This class consists of a data buffer whose size is constrained by the
max_size, and two operations for reading and writing on the buffer. We impose that write
have been called at least once prior to read on the buffer (using the “state variable” approach).
We do not handle concurrent read/write in this example. The following constraints define more
precisely this behavior.

context PipeSpec inv:
buffer->size() <= max_size

context PipeSpec::provider(): boolean -- provider role
post: let m: OCLMessage = provider^^getData(length)-> first() in
m.hasReturned() and m.result().oclIsTypeOf(Sequence(Byte))
and m.result()->size() = length
and self^write(m.result())

context PipeSpec::requirer() : boolean -- requirer role
post: let data : OCLMessage = self^^read(length) in
data.hasReturned()
and requirer^processData(data.result())

context PipeSpec::read(length : Integer): Sequence(Byte)
post: if buffer->size() <= length and isBufferReadable then
buffer = buffer@pre->excludesAll(buffer->subSequence(buffer->size()-length,
buffer->size()))
and result = buffer else
buffer->isEmpty() and result = buffer
endif

context PipeSpec::write(bytes: Sequence(Byte)): Integer
post: if bytes->size() <= max_size- buffer->size() then

136 5. Architecture & Design

buffer = buffer@pre->prepend(bytes) and result = bytes->size()
and isBufferReadable = true
else
buffer = buffer@pre->prepend(bytes->subSequence(buffer->size(),max_size))
and result = max_size- buffer->size()
and isBufferReadable = true

Here we also assume two virtual operations. One is getData, which returns an amount of raw
data whose length in bytes is given as a parameter. The other is processData which refers to
particular data processing operated by Filter2:

context provider::getData(size): Sequence(Byte)
post: result->size() = size

context requirer::processData(data: Sequence(Byte))
post: -- none

Finally, the following OCL postcondition details the pipe connector interactions.

context PipeSpec
post: provider^getData(length)
and let mpro : OCLMessage = self^^provider()->first() in
let mreq : OCLMessage = self^^requirer()->first() in
mpro.hasReturned() and mreq.HasReturned() and
mpro.result() = mreq.result = true

With respect to the approach of Allen and Garlan [AG97], the above postconditions may be
seen as the “glue” for an individual connector.

Intra-Component Model

The role of the intra-component model is to detail the behavior of the individual components
parts and interfaces. Therefore it is related at the structural level with the ISM and PSM. We
distinguish two cases depending on the element being modeled:

• Ports/Interfaces: Ports and interfaces represent the interaction points of components
with their environment and are used to form the actual connection between compo-
nents in the GAM. Therefore, we use the same OCL dialect for modeling the behavior
of ports and interfaces as the one used for connectors. This eases matching between com-
ponent interfaces and connector roles (see “Gluing” above). More specifically, we use
pre/postconditions to describe individually each operation of the interface while a post-
condition defined on the whole interface specifies its protocol,

• Parts: Parts contribute together to the realization of the behavior specified by ports and
interfaces. We put the emphasis on the definition of algorithms that will be implemented
in the implementation layer.

5.2. Design Models 137

As we have seen in Chapter 2, the UML specification provides the action semantics approach
proposing an abstract syntax for defining behaviors either by using the predefined notation for
activity diagrams and state machines or by using a specific action language. Our approach is
to use an action language that has a textual syntax so that it is accessible to programmers
performing component implementation but that is not a full-fledged programming language in
order to abstract irrelevant details and to focus on method algorithms.

We chose KerMeta [MFJ05, FDVF06] to give a high-level description of the behavior of the
methods present in classes composing the internal structure of a component. This choice is
motivated by its ability to describe and manipulate UML models (based on a restriction of
MOF), its operations over collections (which are close to the ones proposed by the standard
OCL library) and its comprehensive tool support which provides syntax highlighting, model
visualization and a compiler to actually run KerMeta programs and make models executable.
As an example, Figure 5.4 depicts the KerMeta code for the HelloWorldBean as entered in
its dedicated editor. HelloWorldBean implements the business logic of the component (i.e.
returning a string of characters consisting of a greetings sentence followed by the name of the
user inputted as parameter).

Note that KerMeta, though executable, is not suitable to implement the final code of the classes
and methods composing components’ internals. Indeed, it is not equipped to address the acci-
dental complexity of the JAVA/J2EE platform; KerMeta environment does not provide access
to the standard J2EE libraries and therefore cannot realize the indirect relationships between
beans and their interfaces or the communication mechanisms between beans. This is not a prob-
lem, however. From a methodological point of view we believe that we need to address essential
complexity and resolve accidental complexity at the implementation level (which is currently not
supported by the FIDJI method). Additionally, it is possible to call JAVA code from KerMeta
programs [FDVF06].

138 5. Architecture & Design

Fig. 5.4: KerMeta Code for HelloWorldBean

5.3. Transitioning From Analysis to Design 139

5.3 Transitioning From Analysis to Design

In this section we explain how we can trace models developed during the analysis with the design
models. Indeed, the main purpose of the design phase is to distribute the behavior modeled in
terms of use case and operation descriptions to the actual components of the system. A naive
approach would be to use the use case components as the basis to derive architecture and de-
sign components on a one-to-one relationship. Such an approach is problematic mainly because
preoccupations differ at the analysis and design phase: analysis is concerned with the overall
functionality of the system while the architecture and design phase strives to find the best lo-
cal arrangement of the physical components of the system. Thus, it is straightforward that a
one-to-one relationship cannot be established between use case component and architecture and
design ones.

Since the behavior developed at the analysis level concerns the overall system and its interactions
with the outside (use case actors), it appears that the root component is an excellent candidate
to ensure traceability between requirements and architecture. The root component’s provided
interfaces have to be the same than the ones provided by the use case component at the analysis
level. Ports providing root component’s interfaces have to ensure that the interactions defined
at the analysis level are satisfied at the design level. Note that root component’s ports do not
implement interfaces directly (there cannot be behavior port since the root component role is
to define the boundaries of the system not to implement its behavior) but delegate it to parts.
This delegation, which characterizes traceability of system operations throughout the design, is
modeled at the syntactical and semantic levels. At the syntactical level, We use the UML 2.0
delegation connector notation to relate ports of the root component to parts realizing part or
whole of the provided interface behavior. At the semantic level, as ports can be typed by classes
it is possible to give their operational semantics in terms of KerMeta code.
But ensuring traceability between analysis and design does not only concern system operations
and their realization at the design level; concepts have also to be traced. In order to trace
an analysis concept as one or more classes at the design level, we propose to use the special
stereotype <<refine>> defined by the UML 2.1.1 specification [OMG07b]. This construct is
a stereotype based on the <<abstraction>> dependency. This construct is more focused on
relating elements at different abstraction levels than the more general <<trace>>, therefore it
has been preferred in FIDJI.

140 5. Architecture & Design

5.4 Design Profile

This section consists of two parts; the core profile which defines the stereotypes and well-
formedness rules for the FIDJI design models and the “architectural styles” part which illustrates
how styles discussed in this chapter can be supported via UML 2.0 extension mechanisms.

5.4.1 Core Profile

The core profile describes the particular component types that are defined to perform FIDJI-
based designs and the well-formedness rules to validate design models and to ensure transition
between analysis and design. Similarly to the analysis profile, we provide the structure of the
design model in order to ease the context definition of well-formedness rules. This structure is
depicted on Figure 5.5.

Design

ISM PSMGAM

Fig. 5.5: FIDJI Design Models Structure

The GAM package contains all the components of the system as well as a class diagram representing
their interaction and textual description related to assembly connector behavior. The ISM and
PSM packages defines the internal structure and parts structure models, respectively. As we have
mentioned in Section 5.2.1, the ISM consists of components that expose the same externally
visible properties as the GAM components; therefore some well-formedness rules are shared by
the two packages (for the sake of concision we will not repeat the whole OCL expressions if only
their contexts change, we will only mention the contexts concerned by this rule sharing). The
PSM contains the full definition (in terms of classes) of the types of properties exhibited as parts
in the ISM components.

Stereotypes

Table 5.1 summarizes the core design profile stereotypes:

Well-Formedness Rules

WFR-11 Every Component defined in the GAM must have a corresponding component in the ISM
that has the same externally visible properties (port names and interfaces):

Context Design::GAM inv:
let comp: Set(Component) = self.ownedType->
select(c|c.oclIsTypeOf(Component)) in
comp->forAll(c|self.nestingPackage.ISM.ownedType->
exists(ci|c.name = ci.name and c.provided = ci.provided

5.4. Design Profile 141

Stereotype Name Base Metaclass Description
<<compound>> Component Compound components have

an internal structure whose
(some or all) parts are typed
by components.

<<role>> Operation Identifies an operation that
represents a role in the behav-
ioral description of an assem-
bly connector.

<<root>> Component The root component repre-
sents the system as a whole
and is the top-level compo-
nent of the design hierarchy

Tab. 5.1: FIDJI Core Design Profile Stereotypes

and c.required = ci.required and
ci.ownedPort->forAll(p|c.ownedPort->exists(pi|pi.name =
p.name))))

WFR-12 There is only one root component (same rule for ISM):

Context Design::GAM inv:
self.ownedType->select(c|c.oclIsTypeOf(Component)
and c.allStereotypes()->
includes(s|s.name=’Root’))->size()=1

WFR-13 The root component cannot directly own any behavior (same rule for ISM):

Context Design::GAM inv:
let root: Component = self.ownedType->
select(c|c.oclIsTypeOf(Component) and c.allStereotypes()->
includes(s|s.name=’Root’))->first()
in
not root.feature->exists(f|f.oclIsKindOf(BehavioralFeature))

WFR-14 Being the top-level element of the design component hierarchy, the root component cannot
be owned by another component (same rule for ISM):

Context Design::GAM inv:
let root: Component = self.ownedType->
select(c|c.allStereotypes()->includes(s|s.name=’Root’))
in
not root.owner.oclIsKindOf(Component)

WFR-15 Each component of the ISM must have at least one typed port:

Context Design::ISM inv:
self.ownedType->select(c|c.oclIsTypeOf(Component)->forAll(c|c.ownedPort->
exists(p|p.type->notEmpty()))

142 5. Architecture & Design

WFR-16 All parts in the ISM must be defined in the PSM:

Context Design::PSM inv:
self.ownedType->select(c|c.oclIsTypeOf(Component))->forAll(c|c.ownedAttribute->
reject(att|att.type.oclIsKindOf(PrimitiveType)) =
self.nestingPackage.ISM.ownedType->select(c|c.oclIsTypeOf(Component))->
forAll(c|c.ownedAttribute->reject(att|att.type.oclIsKindOf(PrimitiveType))

The following rule covers the relationships discussed in Section 5.3 between analysis and design
models.

WFR-17 All the interfaces designed at the analysis level should be provided by the root component:

Context Design::GAM inv:
let root: Component = self.ownedType->
select(c|c.oclIsTypeOf(Component) and c.allStereotypes()->
includes(s|s.name=’Root’))->first()
in
self.nestingPackage.nestingPackage.ANAM.UCM->select(c|
c.oclIsTypeOf(Component))->provided = root.provided

5.4.2 Architectural Styles

In the remainder, we present how the styles illustrated in this chapter can be modeled via UML
2.0 extension mechanisms. Note that these architectural styles are not part of the FIDJI method
in itself; they may be defined depending on functional and non-functional requirements of the
SPL being modeled.

Layer

Table 5.2 presents the stereotypes of the layer style.

Stereotype Name Base Metaclass Description
<<abstractConnector>> Connector Connector gathering interac-

tions between components lo-
cated in two different layers.

<<abstractInterface>> Interface An abstract interface repre-
sents the union of a compo-
nent’s interfaces in order to
support a grouped interaction
with another component.

<<layer>> Package Represents a layer. The
tagged value layerNum of type
Integer identifies the layer
number.

Tab. 5.2: Stereotypes for the Layer Architectural Style

5.4. Design Profile 143

WFR-18 An abstract connector has only two ends:

Context abstractConnector inv:
self.baseConnector.end->size() = 2

WFR-19 An abstract connector connects element located in the same layer or in adjacent ones:

Context abstractConnector inv:
let c1 : ConnectorEnd = self.baseConnector.end->first() in
let c2 : ConnectorEnd = self.baseConnector.end->last() in
(c1.role.type.package.layerNum - c2.role.type.package.layerNum).abs() < 2

WFR-20 An abstract connector connects to abstract interfaces:

Context abstractConnector inv:
self.baseConnector.end->forAll(e|e.type.oclIsTypeOf(Interface) and
e.type.allStereotypes()->includes(s|s.name = ’abstractInterface’))

N-Tiered

The N-Tiered architectural style is composed of only one stereotype as defined in Table 5.3.

Stereotype Name Base Metaclass Description
<<tier>> Package A tier provides a namespace

in order to group elements.

Tab. 5.3: Stereotypes for the N-Tiered Architectural Style

A tier is only a logical grouping of element and may have no existence in the physical system.
Therefore if some elements are directly owned by a tier rather than imported, they may be
destroyed.

WFR-21 A tier cannot own directly elements:

Context tier inv:
self.basePackage.packagedElement->isEmpty()

Pipe and Filter

We discussed this style in Chapter 2.3 and in Section 5.2.2 of this chapter in which we used this
style to illustrate architectural connection in the GAM. There are several variants of the pipe
and filter style, therefore here we focus on the commonalities between them. As a consequence
we do not give any rule covering behavior because it is difficult to find rules that are general
enough for this style. Table 5.4 presents pipe-and-filter style stereotypes.

WFR-22 A pipe connects only components that are instances of filters.

144 5. Architecture & Design

Stereotype Name Base Metaclass Description
<<pipe>> Connector Models a pipe through which

data can be exchanged.
<<filter>> Component Filters are components that

process data (such as conver-
sion) and send them through
pipes.

Tab. 5.4: Stereotypes for the Pipe and Filter Architectural Style

5.5 Design Process

In this section we explain how the above defined models constituting the design layer of the
architectural framework can be instantiated to perform the application design. In the general
FIDJI process depicted on Figure 3.4, these steps are composing the “instantiate architectural
framework design layer” activity.

5.5.1 Identifying Concerned Design Elements

The first step is to identify the architectural framework design elements that will be concerned
by the instantiation program. This is is done by examining use case components interfaces of
the product at the analysis level; by comparing them with the actual interfaces provided by
the root component in the GAM, it is possible to infer which interfaces need to be transformed
by the instantiation program. Furthermore, depending on the way delegation connectors have
been modeled between root components interfaces and its internal parts, the designer may also
determine which internal components are concerned by the transformation. This further mo-
tivate the need to carefully model traceability while designing the architectural framework as
explained in Section 5.3.

5.5.2 Writing Design Instantiation Program

Once the design elements to be transformed have been identified the instantiation program is
written according to the previous step. As opposed to the analysis models instantiation in which
no particular order is recommended, here we focus on the GAM first. GAM related instantiation
sub-steps are as follows:

• Update Root Component Interfaces: The first instruction of the design instantiation
program concerns interfaces update so that they match the interfaces provided by the
use case components of the product at the analysis level. Note that part of the analysis
instantiation program can be reused to perform this task,

• Add/Remove/Update Components: Depending on the defined delegation connectors
between the root component’s provided interfaces/ports, several components may require
to be transformed in the application models as well as their interfaces,

5.5. Design Process 145

• Resolve/Update Architectural Connections: Architectural connections may also be
updated to take into account new component functionality or “dangling connections” in
which some participating components has been removed.

At this point, some evaluation of the instantiation program against the architectural framework’s
instantiation constraints should be performed; this enables to validate the transformations in the
component hierarchy of the product with respect to architectural framework’s ones prior to work
on the components internals. Indeed, if an instantiation constraint impedes a component to be
added in the GAM, it would be a waste of effort to model its internals. Once this task completed,
additional transformations can be specified to deal with component internals of the ISM and
types defined in the PSM and the design instantiation program can be checked again against
design instantiation constraints (in the case fine-grained constraints would concern components’
internals, which is unlikely however), and the actual GAM, ISM and PSM of the product can
be created.

5.5.3 Updating Behaviors

Once the the structural design models have been created, the application designer needs to up-
date the behavior of these new models. This behavioral update follows the same order as models
creation; first, interface definitions and architectural connections are updated to accommodate
changes in components’ interactions with their environments. Then, the internal behavior of
components are given in terms of KerMeta descriptions.

5.5.4 Assessing Impact

As for the analysis phase, model transformation changing product components with respect to
the architectural framework’s components induces some impact on the untouched components.
At the structural level, the GAM is a good starting point for impact assessment because it gives
an overall view of the architecture in an abstract way therefore simplifying the identification
of impacted components. As the GAM is fully defined in UML, an horizontal impact analysis
approach as defined by Briand and Labiche [BLO03, BLOS06] can be employed; specific impact
analysis rules can be defined as specific transformation operations specified in OCL. However
has noted by Briand and Labiche [BLOS06], the fact that a given element is considered as a
result of the application of an impact analysis rule does not necessarily mean that it needs to
be changed, especially if the impact is indirect (that is depending on elements that are related
to the element being changed rather than on the changed element itself). For example in the
GAM, the modification of an assembly connector directly impacts the connected components.
Concerning indirect impact, there are two possibilities; either the structural change in the GAM
is inducing a localized behavioral change of the concerned components which is not affecting any
of their other interfaces/ports (e.g. by removing a provided operation that is used only in the
interface/port which is connected to the updated connector). The second possibility implies that
the connector update is due to a global change of the components at the behavioral level and
therefore may have a great subsequent impact. This information is not available at the GAM
level. One needs to manually check the behavior of the components involved in the change to
determine further impact. Note, that domain engineers being aware of component behavior may
define specific instantiation constraints in order to inhibit updates in the GAM that would yield
to global behavioral changes.

146 5. Architecture & Design

Part III

FIDJI IN PRACTICE

6. CASE STUDY

Abstract

In this chapter, we illustrate the FIDJI modeling language and product deriva-
tion process through a case study. This case study belongs to the e-barter domain
in which people can exchange goods and services without necessarily using money.
Section 6.1 illustrates the considered SPL called LuxDeal and exhibits its com-
monalities an variabilities. Section 6.2 gives the FIDJI analysis models specifying
this product line as well as their relationships with the REQET-based description
by tracing requirement elicitation elements and documenting variability through in-
stantiation constraints. Section 6.3 presents an excerpt of the architectural frame-
work design layer and also explains its relationship with the architectural framework
analysis layer. Section 6.4 illustrates architectural framework instantiation process
by describing how a product can be obtained. Finally, Section 6.5 explains how, based
on the previous product derivation, a new product can be quickly derived.

6.1 Product Line Requirements Elicitation

6.1.1 Overview

The SPL considered in this dissertation is called LuxDeal and belongs to the general do-
main of the web e-bartering applications and whose some members have been developed as
proofs of concept for the original FIDJI methodology [GPR04, GP02]. This kind of applications
differs from traditional auctioneering applications in that items are not paid with money but
rather exchanged against other items. Indeed a deal is initiated by a seller who defined an offer
composed of a wish list and a belonging list. Bidders make proposals which include a list of
belongings matching sellers’ wishes and a wish list. During a deal, an offer can be amended
and several proposals can be made until both parties agree. At this point the deal is concluded
and other pending proposals are discarded. Note that deal agreement differs form traditional
e-auctioneering applications in the fact that it is not the application that can determine au-
tomatically offer winner on the basis of the highest bid. In LuxDeal even if the estimated
value of the items of particular proposal is higher than another the offerer may prefer the low-
est one on the basis of the items proposed. Therefore, the attribution of the winning proposal
is transfered to the offerer. Naturally, account management features such as registration, log
in/logout and wish/belonging item management, are required to support the core functionalities
of a LuxDeal member. In the following we will not be exhaustive about all these use cases;
we will define the most relevant ones with respect to functional importance and variability.

150 6. Case Study

6.1.2 REQET-based SPL Description

DOMET

As we described in Chapter 4, Section 4.1, the DOMET is dedicated to the description of the
SPL concepts and their variants. Table 6.1 defines the concepts of the LuxDeal product line.

Concept Name Var Type Description Dependencies
Deal Mand Deal is the core concept of

the auctioneering process in
LuxDeal applications. It
gathers an initial offer and
several propositions.

Item Mand Subject of an ex-
change/sell/buy in LuxDeal
applications. Items have title
and description, an estimated
value, a reserved price (price
under which a seller will not
accept to deal). Items can
represent wishes and belong-
ing. Within an offer they can
be validated or not when the
seller and the bidder deal.

Member Mand Represents all the information
about a user of a LuxDeal -
based application.

Offer Mand An offer is the starting point
of any deal, it comprises items
(both wishes and belongings)
and creation and expiration
date.

Proposal Mand A proposal represents a re-
sponse to an offer within a
deal. Proposals are com-
posed exclusively of belong-
ings (since wishes are assumed
to match with the offer) and
are ordered.

Category Opt Category allows for gathering
items in coherent sets. A cat-
egory may own several sub-
categories (i.e. “Musical In-
struments” includes “Pianos”,
“Guitars” and “Drums”) and
an item may belong to several
(sub) categories.

Tab. 6.1: DOMET for LuxDeal

6.1. Product Line Requirements Elicitation 151

UCET

The UCET focuses on describing the behavior of the SPL members and their variants in an
abstract way via high level or summary use cases. We give below the list of the most relevant
use cases characterizing the main functionality of these members.

ID: UC01
Use case name: Sign In
Var. Type: Mand.
Description: A member signs in the application in order to access to the application’s main
services.
Actors: Member Dependency: None.
Preconditions: Member has created an account and has log in credentials (we assume a manda-
tory registration use case which is not detailed here). Member is not signed in.
Postconditions: Member is signed in.
Main scenario:

1. Member requests the application to show him a “Sign In” page,

2. The application shows a page comprised of a login form,

3. Member enters his credentials,

4. The application checks if they are valid,

5. Member is successfully signed in and the application presents the member his personalized
home page.

Alternatives to the main scenario:
3a. If the member credentials are invalid, member is invited to retry (if this alternative is
unsuccessful the main use case postcondition is not satisfied):

• Member is shown the “Sign In” page again,

• Member enters his credentials,

• The application checks if they are valid,

• If they are valid the main sequence continue starting from step 4.

Non-Functional: N/A.
Variation points description: None.

ID: UC02
Use case name: Create Item
Var. Type: Mand.
Description: A member wishes to define a new item.
Actors: Member.
Dependency: None.
Preconditions: Member is signed in.
Postconditions: A new item has been added to the member’s account.
Main scenario:

152 6. Case Study

1. Member requests to create an item,

2. The application displays a “create item” page comprised of a form,

3. Member enters title, description, [V1](category), estimated value, optional reserve price
and states whether the item is a belonging or a wish,

4. The application stores the item definition in the member portfolio.

Alternatives of the main scenario: None.
Non-Functional: N/A.
Variation points description: V1: Type: Opt Concerns: Data, this variation point concerns
an optional category which has been defined by the application owners (we do not treat category
management here) and to which an item may belong.

ID: UC03
Use case name: Create Offer
Var. Type: Mand.
Description: Member defines a new offer in the system.
Actors: Member Dependency: None.
Preconditions: Member is signed in.
Postconditions: A new offer has been created.
Main scenario:

1. Member requests the application to show him a “Create Offer” page,

2. The application shows a page comprised of a form allowing him to define an offer,

3. Member enters the offer’s title, description and expiry date,

4. Member selects a set of items representing his wishes,

5. Member selects a set of items representing his belongings,

6. Member validates,

7. The application creates the offer.

Alternatives to the main scenario: None.
Non-Functional: N/A.
Variation points description: None.

ID: UC04
Use case name: Browse Offers
Var. Type: Mand.
Description: Member wishes to consult the offers already defined in the application.
Actors: Member Dependency: None.
Preconditions: Member is signed in.
Postconditions: Member has consulted/updated offers.
Main scenario:

1. Member requests the application to browse offers,

6.1. Product Line Requirements Elicitation 153

2. The application shows the list offers defined in the application,

3. Member selects one offer,

4. The application shows offer details.

Alternatives to the main scenario: 4a. If the offer belongs to the user (this alternative has
no effect on the main use case postcondition):

V1 (The application offers the member to update offer details),

V2 (Member selects to update offer details),

V3 (Application shows a filled form with current offer information),

V4 (Member changes details and validates)

4b. If the offer does not belong to the user, the application offers the possibility to make a
proposal (see “UC05: Make a Proposal”).
Non-Functional: N/A.
Variation points description: V1: Type: Opt, Concerns: Behavior, values=The application
offers the member to update offer details
V2: Type: Opt, Concerns: Behavior. If UC04.V1 = not null then values=Member selects to
update offer details else values=null
V3: Type: Opt, Concerns: Behavior. If UC04.V2 = not null then values=Application shows a
filled form with current offer information else values=null
V4: Type: Opt, Concerns: Behavior. If UC04.V3 = not null then values=Member changes
details and validates else values=null.

ID: UC05
Use case name: Make a Proposal
Var. Type: Mand.
Description: Member responds to an offer by making a proposal.
Actors: Member Dependency: Includes UC04.
Preconditions: Member is signed in. At least one offer exists in the system. Member is
consulting the details of an offer.
Postconditions: A new proposal has been made. If this proposal is the first, a new deal has
been created.
Main scenario:

1. Member selects to make a new proposal,

2. The application shows a new proposal form,

3. Member defines proposal details (belongings) and validates,

4. The new proposal is stored in the application,

5. If the proposal is the first, a new deal is created.

154 6. Case Study

Alternatives of the main scenario: None.
Non-Functional: N/A.
Variation points description: None.

ID: UC06
Use case name: Validate a Deal
Var. Type: Mand.
Description: A member wishes to accept a proposal that has been made regarding one of its
offers.
Actors: Member Dependency: None.
Preconditions: Member is signed in. He owns at least one offer.
Postconditions: Deal has been validated.
Main scenario:

1. The Member is browsing the list of current deals concerning the offers he owns,

2. Member selects a particular deal,

3. The application is showing him deal details and full descriptions proposals that have been
made for this offer,

4. Member decides to validate one,

5. Application informs the successful bidder as well as the other participants.

Alternatives of the main scenario: None.
Non-Functional: N/A.
Variation points description: None.

6.2. Architectural Framework Analysis Layer 155

6.2 Architectural Framework Analysis Layer

As mentioned in Chapter 4, the analysis layer of the architectural framework refines REQET-
based descriptions. We will illustrate in this section how this refinement is made and how
variability is achieved via state varaibles.

6.2.1 Domain Model

Figure 6.1 depicts the domain diagram for the LuxDeal product line.

The data dictionary for the LuxDeal product line is shown on Table 6.2.

Name Kind Use Cases Description
Category Concept UC02 Category allows the classifica-

tion of Items.
CreateItemForm Signal UC02 Form allowing the member to

enter information regarding a
particular item.

CreateOfferForm Signal UC03 Form allowing the member to
enter information regarding a
particular offer.

Deal Concept UC05 Deals can be public or pri-
vate (via visibility prop-
erty) and their status indi-
cate if their are still open or
being closed to proposals.

DealDetails Signal UC05 This signal is intended to be
processed by the user inter-
face to show the details of a
deal to the member.

DealsDisplay Signal UC05 This signal is intended to be
processed by the user inter-
face to depict all the deals re-
garding the offer he owns.

Item Concept UC02 Subject of an ex-
change/sell/buy in LuxDeal
applications. Items have title
and description, an estimated
value, a reserved price (price
under which a seller will not
accept to deal). Items can
represents wishes and belong-
ing. Within an offer they can
be validated or not when the
seller and the bidder deal.

ItemType Concept UC02 Enumeration used to specify if
the item is used as a wish or
as a belonging.

156 6. Case Study

Name Kind Use Cases Description
MessageDisplay Signal UC02,UC05 This signal witnesses a gen-

eral kind of message sent to
a particular actor transmitted
through various ways (direct
displaying, e-mail, SMS etc.).

NewProposalForm Signal UC04 From allowing members to en-
ter information regarding the
creation of a proposal.

Offer Concept UC03,UC04 An offer is comprised of
wishes, belongings and is
uniquely related to a deal.

OfferDetailsDisplay Signal UC04 Signal representing the dis-
play of the details of an offer
to the member.

OffersDisplay Signal UC04 Signal representing the dis-
play of the list of offers valid
in the LuxDeal product.

Proposal Concept UC04 Proposals are representing the
response of bidders to an offer
within a Deal.

SignInForm Signal UC01 Form allowing a member of
a LuxDeal product to enter
his credentials.

UpdateOfferDetailsForm Signal UC04 Form allowing a member to
update offer details.

UserAccount Concept UC01-
UC05

This concept is used to store
all the information regarding
a member in the LuxDeal
products. Additionally, state
variable isUserSignedIn
tells whether is signed in or
not.

Visibility Concept UC05 Enumeration used to state if a
deal is public or private.

WelcomeDisplay Signal UC01 This signal corresponds to the
display of a welcome page
when the member has success-
fully signed in the LuxDeal
product.

Tab. 6.2: Domain Data Dictionary for LuxDeal

6.2. Architectural Framework Analysis Layer 157

L
u

x
D

e
a

l D
o

m
a

in

U
s
e
rA

c
c
o

u
n

t

-a
d
d
re

s
s
 : S

trin
g

-c
ity

 : S
trin

g
-c

o
u
n
try

 : S
trin

g
-e

m
a
il : S

trin
g

-p
a
s
s
w

o
rd

 : S
trin

g
-s

e
c
re

tN
u
m

b
e
r : S

trin
g

-s
ta

te
 : S

trin
g

-s
ta

tu
s
 : S

trin
g

-u
id

 : S
trin

g
-lo

g
in

 : S
trin

g
-z

ip
 : S

trin
g

-n
a
m

e
 : S

trin
g

-s
u
rn

a
m

e
 : S

trin
g

<
<

s
ta

te
>

>
-is

U
s
e
rS

ig
n
e
d
In

 : b
o
o
le

a
n
 =

 fa
ls

e

<
<

s
ig

n
a
l>

>

U
p

d
ateO

fferD
etailsF

o
rm

-o
ffe

r : O
ffe

r

<
<

s
ig

n
a
l>

>

D
ealD

etails

-o
ffe

r : O
ffe

r
-p

ro
p
o
s
a
ls

 : P
ro

p
o
s
a
l [*]

-s
ta

rtD
a
te

 : S
trin

g
-s

ta
tu

s
 : S

trin
g

-v
is

ib
ility

 : V
is

ib
ility

Ite
m

-d
e
s
c
rip

tio
n
 : S

trin
g
 [*]

-title
 : S

trin
g

-e
s
tim

a
te

d
V

a
lu

e
 : flo

a
t

-s
ta

tu
s
 : S

trin
g

-ty
p
e
 : Ite

m
T

y
p
e

-c
a
te

g
o
ry

 : C
a
te

g
o
ry

 [0
..1

]

<
<

s
ig

n
a
l>

>

N
ew

P
ro

p
o

salF
o

rm

-b
e
lo

n
g
in

g
s
 : Ite

m
 [*]

-e
x
p
ira

tio
n
D

a
te

 : S
trin

g
-c

o
m

m
e
n
t : S

trin
g
 [*]

<
<

s
ig

n
a
l>

>

O
fferD

etailsD
isp

lay

-c
re

a
tio

n
D

a
te

 : S
trin

g
-e

x
p
iry

D
a
te

 : S
trin

g
-d

e
s
c
rip

tio
n
 : S

trin
g

-title
 : S

trin
g

-ite
m

s
 : Ite

m
 [*]

<
<

s
ig

n
a
l>

>

createItem
F

o
rm

-title
 : S

trin
g

-d
e
s
c
rip

tio
n
 : S

trin
g
 [*]

-e
s
tim

a
te

d
V

a
lu

e
 : flo

a
t

-c
a
te

g
o
ry

 : C
a
te

g
o
ry

<
<

s
ig

n
a
l>

>

C
reateO

fferF
o

rm

-d
e
s
c
rip

tio
n
 : S

trin
g

-title
 : S

trin
g

-s
ta

tu
s
 : S

trin
g

-e
x
p
iry

D
a
te

 : S
trin

g
-ite

m
s
 : Ite

m
 [*]

O
ffe

r

-c
re

a
tio

n
D

a
te

 : S
trin

g
-e

x
p
iry

D
a
te

 : S
trin

g
-d

e
s
c
rip

tio
n
 : S

trin
g

-title
 : S

trin
g

-ite
m

s
 [*]

P
ro

p
o

s
a
l

-c
o
m

m
e
n
t : S

trin
g
 [*]

-b
e
lo

n
g
in

g
s
 [1

..*]

<
<

s
ig

n
a
l>

>

W
elco

m
eD

isp
lay

<
<

s
ig

n
a
l>

>

M
essag

eD
isp

lay

-m
e
s
s
a
g
e
 : S

trin
g

<
<

s
ig

n
a
l>

>

S
ig

n
In

F
o

rm

-lo
g
in

 : S
trin

g
-p

a
s
s
w

o
rd

 : S
trin

g

D
e
a
l

-v
is

ib
ility

 : V
is

ib
ility

-s
ta

rtD
a
te

 : S
trin

g
-s

ta
tu

s
 : S

trin
g

<
<

e
n
u
m

e
ra

tio
n
>

>

C
a
te

g
o

ry

B
u
s
in

e
s
s

M
u
s
ic

S
p
o
rt

M
is

c

<
<

e
n
u
m

e
ra

tio
n
>

>

V
is

ib
ility

p
riv

a
te

p
u
b
lic

<
<

e
n
u
m

e
ra

tio
n
>

>

Ite
m

T
y
p

e

-b
e
lo

n
g
in

g
-w

is
h

<
<

s
ig

n
a
l>

>

O
ffersD

isp
lay

-o
ffe

rs
 : O

ffe
r [*]

<
<

s
ig

n
a
l>

>

D
ealsD

isp
lay

-d
e
a
ls

 : D
e
a
l [*]

M
e
m

b
e
r

O
ffe

rO
w

n
e
r

-s
e
lle

r

*

P
ro

p
B

e
lo

n
g
in

g
s

-b
e
lo

n
g
in

g
s

1
..*

D
e
a
lS

rc
O

ffe
r

-o
ffe

r1

1 D
e
s
ire

d
Ite

m
s

-w
is

h
e
s

1
..*

D
e
a
lP

ro
p

-p
ro

p
o
s
a
ls

1
..*

1

Ite
m

O
w

n
e
r

-u
s
e
r

1

-ite
m

s

*

O
ffe

re
d
Ite

m
s

-b
e
lo

n
g
in

g
s

1
..*

-b
id

d
e
r

1

<
<

id
>

>
1

-re
p
re

s
e
n
ts

1

Fig. 6.1: LuxDeal Domain Diagram

158 6. Case Study

6.2.2 Use Case Model

Figure 6.2 summarizes all the use cases defined for the analysis layer.

LuxDeal

Browse Offers

Validate Deal

Create Offer

Sign In

Create Item

Member

<<include>>

<<include>>

<<include>>

<<include>>

Fig. 6.2: The LuxDeal Use Case Diagram

Use Case: UC01: Sign In
—————————————————————–
CHARACTERISTIC INFORMATION
Goal in Context: A member signs in the application in order to access to the application
main’s services.
Scope: LuxDeal
Preconditions: Member is not signed in:
pre: userAcc.isUserSignedIn=false
Success End Condition: Member is signed in:
post: userAcc.isUserSignedIn=true
Failed End Condition: Member is not signed in:
post: userAcc.isUserSignedIn=false
Primary Actor: Member
Secondary Actors: None.
Trigger: User requests to sign in;
post: self^signInRequest()
—————————————————————–
MAIN SUCCESS SCENARIO

6.2. Architectural Framework Analysis Layer 159

1. Member is presented a sign in form:
post: sender^SignInForm(login,password)

2. Member enters his credentials in the form,

3. Member authenticates himself to the system;
post: self^authenticate(login,password)

4. If member’s credentials are correct, member is displayed a welcome screen:
post: Let m:OCLMessage = SignIn^^authenticate(login,password)->first() in
m.hasReturned() and (m.result()=true) implies
sender^WelcomeDisplay and userAcc.isUserSignedIn=true

—————————————————————–
ALTERNATIVES
4a. if user credentials are incorrect and the session have not expired the user is invited to retry:

• Member is informed that his credentials are incorrect:
pre: Let m:OCLMessage = self^^authenticate(login,password)->first() in
m.hasReturned() and m.result()=false
post: sender^SignInDisplay(login,password)

• user retries:
post: self^authenticate(login,password)

• the main sequence continues then normally starting from step 4

Figure 6.3 shows the services and objects managed by this use case.

Use Case: UC02: Create Item
—————————————————————–
CHARACTERISTIC INFORMATION
Goal in Context: A member wishes to create an item.
Scope: LuxDeal.
Primary Actor: Member.
Preconditions: Member is signed in:
pre: userAcc.isUserSignedIn=true
Success End Condition: a new item has been created:
post: LuxDeal.Item.allInstances()->exists(i|i.user=userAcc and i.oclIsNew())
Failed End Condition: No new item has been created.
post: LuxDeal.Item.allInstances() = LuxDeal.Item.allInstances()@pre
Trigger: Member requests to create a new item;
post: self^createItemRequest()
—————————————————————–
MAIN SUCCESS SCENARIO

1. LuxDeal sends a create item form for display:
post: sender^createItemDisplay(description,title,estimatedValue)

2. Member fills in the form and creates the new item:
post: self^createItem(description,title,estimatedValue)

160 6. Case Study

<<UCComponent>>

SignIn

userAcc : UserAccount

<<signal>>

SignInForm

-login : String
-password : String

<<signal>>

WelcomeDisplay

<<signal>>

MessageDisplay

-message : String

ISignIn

+authenticate(login, password) : boolean
+signInRequest()

Fig. 6.3: Use Case Component SignIn

—————————————————————–
ALTERNATIVES
None.

Figure 6.4 shows the services and objects managed by this use case. By default, the LuxDeal
architectural framework analysis layer provides the possibility to store category information for
items. As we have seen in Section 6.1, category is an optional feature of the LuxDeal SPL;
indeed, product engineers will be free to keep or remove it while instantiating the architectural
framework.

Use Case: UC03: Create an Offer
—————————————————————–
CHARACTERISTIC INFORMATION
Goal in Context: A member wishes to create an offer.
Scope: LuxDeal.
Primary Actor: Member.
Preconditions: Member is signed in:
pre: userAcc.isUserSignedIn=true
Success End Condition: A new offer has been created:
post: LuxDeal.Offer.allInstances()->exists(o|o.user=userAcc and o.oclIsNew())
Failed End Condition: No new item has been created.
post: LuxDeal.Offer.allInstances()=LuxDeal.Offer.allInstances()@pre
Trigger: Member requests to create a new offer
post: self^createOfferRequest()

6.2. Architectural Framework Analysis Layer 161

ICreateItem

+createItemRequest()
+createItem(title : String, description : String, estimatedValue : float, category : Category)

<<UCComponent>>

CreateItem

userAcc : UserAccount

<<signal>>

createItemForm

−title : String
−description : String [*]
−estimatedValue : float
−category : Category

<<signal>>

MessageDisplay

-message : String

Fig. 6.4: Use Case Component CreateItem

—————————————————————–
MAIN SUCCESS SCENARIO

1. Application displays an offer form to the member:
post: sender^CreateOfferDisplay(description,title,expiryDate,wishes,belongings)

2. Member enters offer title, description, expiryDate and selects wishes and belongings,

3. Member validates his offer:
post: self^createOffer(description,title,creationDate,expiryDate,wishes,belongings)

—————————————————————–
ALTERNATIVES
None.

Figure 6.5 presents the use case component associated to “create offer”.

Use Case: UC04: Browse Offers
—————————————————————–
CHARACTERISTIC INFORMATION
Goal in Context: A member wishes to browse offers.
Scope: LuxDeal.
Primary Actor: Member.
Preconditions: Member is signed in:

162 6. Case Study

ICreateOffer

+createOffer(title : String, creationDate : String, expiryDate : String, wishes : Item [*], belongings : Item [*])
+createOfferRequest()

userAcc : UserAccount

<<UCComponent>>

createOffer

<<signal>>

CreateOfferForm

-description : String
-title : String
-status : String
-expiryDate : String
-items : Item [*]

Fig. 6.5: Use Case Component CreateItem

pre: userAcc.isUserSignedIn=true
Success End Condition: None.
Failed End Condition: None.
Trigger: Member requests to browse available offers:
post: self^browseOffersRequest()
—————————————————————–
MAIN SUCCESS SCENARIO

1. The application displays the list of available offers:
post: sender^OffersDisplay(offers)

2. Member selects one particular offer and requests to see its details:
post: self^seeOfferDetails(offer)

3. The application displays the details of one offer:
post: sender^OfferDetailsDiplay(offer)

—————————————————————–
ALTERNATIVES
4a. If the offer belongs to the member, the application enables offer update:

• Member requests to update the offer:
pre: BrowseOffersControl.isOfferOwned = true
post: self^updateOfferRequest(offer)

6.2. Architectural Framework Analysis Layer 163

• The application displays an editable screen comprised of offer information:
post: sender^UpdateOfferDetails(offer)

• Member changes details and validates:
post: self^updateOffer(offer)

4b. If the offer does not belong to the user, the application offers the possibility to make a
proposal:

• Member selects to make a new proposal:
pre: BrowseOffersControl.isOfferOwned = false
post: self^newProposalRequest()

• The application shows a new proposal form:
post: sender^NewProposalForm(belongings,epxirationDate,comment)

• Member defines proposal details (belongings) and validates:
post: self^newProposal(belongings,epxirationDate,comment)

• If the proposal is the first, a new deal is created:
post: offer.deal->isEmpty()@pre implies offer.deal->first().oclIsNew()

Figure 6.6 presents the use case component associated to “Browse Offers”. Note that we have
merged in the analysis layer UC04 and UC05 defined in the REQET-based description. This is
one of the two ways to handle use case inclusion at the analysis level; the other is to define a
state variable in one of the concepts of the domain whose value is related to the output of the use
case to be included. For instance, isUserSignedIn testifies that the member is authenticated
by the system as he completed the “Sign In” use case. Choosing one of these techniques is
mainly a matter of convenience.
In the same vein, there are two ways to model information returned by an operation in terms
of signals. Either we detail all the properties that have to be viewed/filled by the actor of the
use case (see NewProposalForm) or we pass the unique concept as a property of the signal (see
UpdateOfferDetails).

Use Case: UC05: Validate a Deal
—————————————————————–
CHARACTERISTIC INFORMATION
Goal in Context: A member
Scope: LuxDeal.
Primary Actor: Member.
Preconditions: Member is signed in:
pre: userAcc.isUserSignedIn=true
Success End Condition: One deal has been validated:
deal.status = ’validated’
Failed End Condition: No deal has been validated:
not deal.status = ’validated’
Trigger: The Member is requesting to see the list of deals regarding the offer he owns:
post: self^seeCurrentDeals()
—————————————————————–

164 6. Case Study

<<UCComponent>>

BrowseOffers

userAcc : UserAccount offer : Offer

<<UCControl>>

BrowseOffersControl

<<state>>-isOfferOwned : boolean = false
<<signal>>

UpdateOfferDetailsForm

-offer : Offer

<<signal>>

NewProposalForm

-belongings : Item [*]
-expirationDate : String
-comment : String [*]

IBrowseOffers

+browseOffersRequest()
+seeOfferDetails(offer : Offer)
+updateOffer(offer : Offer)
+updateOfferRequest()
+newProposalRequest()
+newProposal(belongings : Item [*], expirationDate : String, comment : String [*])

Fig. 6.6: Use Case Component BrowseOffers

MAIN SUCCESS SCENARIO

1. Application displays the list of current deals:
post: sender^DealsDisplay(deals)

2. Member selects a particular deal:
post: self^seeDealDetails(deal)

3. The application is showing him deal details and full descriptions proposals that have been
made for this offer:
post: sender^DealDetails(offer,startDate,status,visibility,proposals)

4. Member decides to validate one proposal:

6.2. Architectural Framework Analysis Layer 165

post: self^acceptProposal(proposal)

5. Application informs the successful bidder as well as the other participants:
post: acceptedProposal.bidder.represents^MessageDisplay(’Your proposal
has been accepted’)
post: deal.proposals.bidder->excludes(acceptedProposal.bidder)->forAll(b|
b.represents^MessageDisplay(’Your proposal has not been accepted’))

—————————————————————–
ALTERNATIVES
None.

Figure 6.7 presents the use case component associated to “Validate a Deal” use case. State
variable deal is initialized when the member selects a deal on to see its details.

acceptedProposal : Proposal

userAcc : UserAccountdeal : Deal

<<component>>

ValidateDeal

<<signal>>

DealDetails

-offer : Offer
-proposals : Proposal"*"
-startDate : String
-status : String
-visibility : Visibility

<<signal>>

MessageDisplay

-message : String

<<signal>>

DealsDisplay

-deals : Deal"*"

IValidateDeal

+seeCurrentDeals()
+seeDealDetails(deal : Deal)
+acceptProposal(proposal : Proposal)

Fig. 6.7: Use Case Component ValidateDeal

6.2.3 Operation Model

It would be too tedious to provide the full operation model here. Rather we summarize all
the operations defined at the analysis level in Table 6.3 (serving as a data dictionary for the
operation model) and give the full description of some of them in the following.

Name Related Use Case(s) Description

166 6. Case Study

Name Related Use Case(s) Description
authenticate UC01 Authenticates a member in

the system.
signInRequest UC01 Represents a member’s re-

quest to sign in in a particular
LuxDeal product. This op-
eration results in the sending
of SignInDisplay.

createItemRequest UC02 Represents a member’s re-
quest to create an item. This
call result in the display of the
CreateItemForm.

createItem UC02 This operation creates an item
according to the values passed
as parameter by the member
of a LuxDeal application.

createOfferRequest UC03 This operation represents a
request from a member to cre-
ate an offer.

createOffer UC03 This operation actually cre-
ates an offer according to its
parameter values.

browseOffersRequest UC04 This operation represents the
request of a member willing to
see the offer available in the
LuxDeal product he is us-
ing.

seeOfferDetails UC04 This operation shows the de-
tails of an offer.

udpdateOfferRequest UC04 This operation represents the
request of a member willing to
update an offer.

updateOffer UC04 This operation actually up-
dates an offer according to the
details provided by a member
of the LuxDeal product.

newProposalRequest UC04 This operation represents the
request of a member willing to
define a new proposal.

newProposal UC04 This operation perform the
actual creation of a proposal
in the context of a deal (or cre-
ates it if it does not exists yet)
based on its parameters.

seeCurrentDeals UC05 This operation represents the
request of a member willing to
see deals in progress.

6.2. Architectural Framework Analysis Layer 167

Name Related Use Case(s) Description
seeDealDetails UC05 This operation results in the

display of the details of a deal
selected by a member.

acceptProposal UC05 This operation validates a
proposal an therefore con-
cludes the deal.

Tab. 6.3: LuxDeal Data Dictionary

Operation Name: signInRequest

Related Use Case: UC01

Description: Represents a member’s request to sign in a particular LuxDeal product

Parameters: None.

Sends:

1. SignInForm to Member

Preconditions: Member is not signed in:
pre: userAcc.isUserSignedIn = false

Postconditions: Sender has been sent a “sign in” form:
post: sender^SignInForm(login,password)

Operation Name: createItem

Related Use Case: UC02

Description: This operation creates an item according to its parameters.

Parameters:

• title TypeOf String,

• description TypeOf String,

• estimatedValue TypeOf Float

• category TypeOf Category

Sends: None.

Preconditions: Member is signed in:
pre: userAcc.isUserSignedIn = true
Member has received an CreateItemForm:
pre: userAcc.represents^CreateOfferForm

168 6. Case Study

Postconditions: A new item has been created (the collection of items is assumed to be order
by creation date):
post: userAcc.items->last().oclIsNew()
The new item has been created conforming the parameters of the operations:
post: let it:Item = userAcc.items->last() in
it.title = title and it.description = description
it.estimatedValue = estimatedValue
and it.category = category

Operation Name: newProposal

Related Use Case: UC04

Description: This operation perform the actual creation of a proposal in the context of a deal
(or creates it if it does not exists yet) based on its parameters.

Parameters:

• belongings TypeOf String [*]

• expirationDate TypeOf String

• comment TypeOf String [*]

Sends: None.

Preconditions: Member is signed in:
pre: userAcc.isUserSignedIn = true

Postconditions: A new proposal has been created:
post: if offer.deal->isEmpty()@pre then offer.deal->first().oclIsNew()
else true endif
post: and offer.deal.proposals->size() = offer.deal.proposals->size()@pre + 1

6.2.4 Traceability between LuxDeal Elicitation and Analysis

In the following we illustrate our traceability document format between the REQET descrip-
tion of the LuxDeal product line and its FIDJI analysis model. Concerning domain concepts
(DOMET and domain model), tuples are the following:
<Deal,{Deal}>
<Item,{Item,ItemType}>
<Member,{UserAccount}>
<Proposal,{Proposal}>
<Category,{Category}>
Use case tuples are the following:
<UC01,{UC01}>
<UC02,{UC02}>
<UC03,{UC03}>

6.2. Architectural Framework Analysis Layer 169

<UC04,{UC04}>
<UC05,{UC04}>
<UC06,{UC05}>

6.2.5 Instantiation Constraints

As we have mentioned in Chapter 4, Section 4.3 we use textual traceability illustrated above to
define analysis instantiation constraints. First, optional concept Category and UpdateDetailsOfferForm
excluded (there is no need to define a constraint in this case), all concepts have to be kept while
deriving the domain model of a product:
context ANAM::DOM inv:
not removeConcept(self,’CreateItem’) and not removeConcept(self,’CreateOfferForm’)
... and not removeConcept(self,’WelcomeDisplay’)
removeConcept is one of the transformation operations that can be used in an instantiation
program. Its specification his as follows:
removeConcept(src:Package,conceptName:String):boolean
pre: src->select(c|c.oclIsKinfOf(Classifier))->exists(co|co.name=conceptName)
post: not src->select(c|c.oclIsKinfOf(Classifier))->exists(co|co.name=conceptName)

One might find cumbersome having to specify explicitly which concepts cannot be removed.
We have to do so because in order to validate the instantiation program these constraints are
checked on the product model; if one has defined a constraint using removeConcept() iterating
over the collection of concepts, in the product model the link with the original domain model of
the architectural framework would have been lost and the constraint would be satisfied whether
a concept was differing or not with respect to the architectural framework analysis layer.
We can observe in the UCET description of LuxDeal that all the use cases are mandatory.
Therefore all use case components have to be present in any of the products obtained via
LuxDeal architectural framework instantiation:
context ANAM::UCM inv:
not removeUCComponent(self,’SignIn’) and not removeUCComponent(self,’CreateItem’)
... and not removeUCComponent(self,’ValidateDeal’)

We might have defined this constraint by checking the existence of the use case components
without using removeUCComponent (which is defined in a similar way than removeConcept).
Actually, the choice of using a transformation operation or not depends on the conciseness of
the constraint and ease to write it.
Concerning the operation model, operations updateOfferRequest and updateOffer are op-
tional since they support the optional variant defined in UC04 of the UCET. As we have already
mentioned optional variants do not deserve particular constraint unless they are dependencies
between them which is the case here:
context ANAM::UCM::BrowseOffers inv:
let it: Interface = self.provided->first() in
not removeConcept(self,’UpdateDetailsOfferForm’) implies
not removeOp(it,’updateOfferRequest’)
and not removeOp(it,’updateOffer’)

170 6. Case Study

Instantiation constraints for the operation model are defined on the interfaces of the use case
components since the operation model is not constituted by UML model elements.

6.3. Architectural Framework Design Layer 171

6.3 Architectural Framework Design Layer

6.3.1 GAM

The (partial) GAM for the LuxDeal SPL is depicted Figure 6.8. Ports directly owned by
<<root>> component LuxDeal, such as pSignIn, are supporting the traceability with the
analysis models by providing interaction points between analysis interfaces and the components
realizing LuxDeal. They also act as “delegates” (following the business delegate pattern sketched
in Chapter 5) which allow to separate the presentation tier form the business logic.
Note that there is no one-to-one dependency between the use case components defined at the
analysis level and the components realizing them at the design level; both BrowseOffers and
CreateOffers. The use of architectural styles (not shown here) may also contribute to break
this relationship by adding additional components and indirections. In the following, we will
focus on the ItemManager component.

6.3.2 ISM

Figure 6.9 presents the internal structure model of the ItemManager component. Interface
IItemManager is the main entry point of this component and is actually realized by class
(modeled as an anonymous part) ItemManager to handle member requests and item creation.
ItemSelection part realizes the ISelectItem interface which is required by OfferManager for
offer creation. Finally, MemberService is a “helper class” which provides useful methods to ac-
cess the details of the account of a member and therefore associate items to it. This class indeed
delegates its functionality to the UserAccountManager component through IMemberService
interface.

172 6. Case Study

6.3.3 PSM

Figure 6.10 shows the part structure model for ItemManager component. Item is a refinement
at the design level of the eponymous concept at the analysis level. A more detailed design
using the J2EE platform would see Item refined as an EJB entity bean while ItemManager,

 : U
s
e
rA

c
c
o

u
n

tM
a
n

a
g

e
r

p
A

u
th

e
n
tic

a
te

d

 : N
e
g

o
tia

tio
n

M
a
n

a
g

e
r

p
N

M
a
u
th

e
n
tic

a
te

 : O
ffe

rM
a
n

a
g

e
r

p
O

M
a
u
th

e
n
tic

a
te

 : Ite
m

M
a
n

a
g

e
r

p
IT

a
u
th

e
n
tic

a
te

<
<

R
o
o
t>

>

L
u

x
D

e
a
l

p
V

a
lid

a
te

D
e
a
l

p
C

re
a
te

O
ffe

r

p
C

re
a
te

Ite
m

p
B

ro
w

s
e
O

ffe
rs

p
S

ig
n
In

IB
ro

w
s
e
O

ffe
rs

(A
n
a
ly

s
is

.U
C

M
.B

ro
w

s
e
O

ffe
rs

)

IV
a
lid

a
te

D
e
a
l

(A
n
a
ly

s
is

.U
C

M
.V

a
lid

a
te

D
e
a
l)

IC
re

a
te

O
ffe

r

(A
n
a
ly

s
is

.U
C

M
.C

re
a
te

O
ffe

r)

IC
re

a
te

Ite
m

(A
n
a
ly

s
is

.U
C

M
.C

re
a
te

Ite
m

)

IS
ig

n
In

(A
n
a
ly

s
is

.U
C

M
.S

ig
n
In

)
<

<
d
e
le

g
a
te

>
>

<
<

d
e
le

g
a
te

>
>

<
<

d
e
le

g
a
te

>
>

<
<

d
e
le

g
a
te

>
>

<
<

d
e
le

g
a
te

>
>

Fig. 6.8: GAM for LuxDeal SPL

6.3. Architectural Framework Design Layer 173

ItemSelection and MemberService would detailed as session beans.

IIte
m

M
a

n
a

g
e

r

+
c
re

a
te

Ite
m

(title
 : S

trin
g

, e
s
tim

a
te

d
V

a
lu

e
 : in

t, d
e

s
c
rip

tio
n

 : S
trin

g
 [*], ty

p
e

 : Ite
m

T
y
p

e
, c

a
te

g
o

ry
 : C

a
te

g
o

ry
)

+
c
re

a
te

Ite
m

R
e

q
u

e
s
t(re

q
u

e
s
t : R

e
q

u
e

s
t)

<
<

c
o

m
p

o
n

e
n

t>
>

Ite
m

M
a

n
a

g
e

r

 : M
e

m
b

e
rS

e
rv

ic
e

 : Ite
m

S
e

le
c

tio
n

 : Ite
m

M
a

n
a

g
e

r

 : Ite
m

T
y

p
e

 : Ite
m

p
S

e
le

c
tIte

m
 : IS

e
le

c
tIte

m

p
IT

a
u

th
e

n
tic

a
te

 : IM
e

m
b

e
rS

e
rv

ic
e

p
Ite

m
M

a
n

a
g

e
r : IIte

m
M

a
n

a
g

e
r

IM
e

m
b

e
rS

e
rv

ic
e

+
is

M
e

m
b

e
rS

ig
n

e
d

In
(m

e
m

b
e

r : M
e

m
b

e
r)

+
g

e
tM

e
m

b
e

r(m
e

m
b

e
rU

ID
 : S

trin
g

) : U
s
e

rA
c
c
o

u
n

t

IS
e

le
c

tIte
m

+
g

e
tM

e
m

b
e

rIte
m

s
(m

e
m

b
e

rU
ID

 : S
trin

g
)

+
s
e

le
c
tIte

m
(m

e
m

b
e

rU
ID

 : S
trin

g
, ite

m
 : Ite

m
) <
<

d
e
le

g
a
te

>
>

<
<

d
e
le

g
a
te

>
>

<
<

d
e
le

g
a
te

>
>

Fig. 6.9: ItemManager ISM

174 6. Case Study

Ite
m

M
a
n

a
g

e
r

+
c
re

a
te

Ite
m

R
e
q
u
e
s
t(re

q
u
e
s
t : R

e
q
u
e
s
t)

+
c
re

a
te

Ite
m

(title
 : S

trin
g
, e

s
tim

a
te

d
V

a
lu

e
 : in

t, d
e
s
c
rip

tio
n
 : S

trin
g
 [*], ty

p
e
 : Ite

m
T

y
p
e
, c

a
te

g
o
ry

 : C
a
te

g
o
ry

)

Ite
m

-title
 : S

trin
g

-e
s
tim

a
te

d
V

a
lu

e
 : in

t
-s

ta
tu

s
 : S

trin
g

-d
e
s
c
rip

tio
n
 : S

trin
g
 [*]

-ite
m

T
y
p
e
 : Ite

m
T

y
p
e

-m
e
m

b
e
rU

ID
 : S

trin
g

-ite
m

ID
 : S

trin
g

-c
a
te

g
o
ry

 : C
a
te

g
o
ry

<
<

g
e
tte

r>
>

+
g
e
tD

e
s
c
rip

tio
n
() : S

trin
g
 [*]

<
<

g
e
tte

r>
>

+
g
e
tT

itle
() : S

trin
g

<
<

g
e
tte

r>
>

+
g
e
tE

s
tim

a
te

d
V

a
lu

e
() : in

t
<

<
g
e
tte

r>
>

+
g
e
tS

ta
tu

s
() : S

trin
g

<
<

g
e
tte

r>
>

+
g
e
tIte

m
T

y
p
e
() : Ite

m
T

y
p
e

<
<

g
e
tte

r>
>

+
g
e
tM

e
m

b
e
rU

ID
() : S

trin
g

<
<

g
e
tte

r>
>

+
g
e
tIte

m
ID

() : S
trin

g
<

<
s
e
tte

r>
>

+
s
e
tT

itle
(title

 : S
trin

g
)

<
<

s
e
tte

r>
>

+
s
e
tE

s
tim

a
te

d
V

a
lu

e
(e

s
tim

a
te

d
V

a
lu

e
 : in

t)
<

<
s
e
tte

r>
>

+
s
e
tS

ta
tu

s
(s

ta
tu

s
 : S

trin
g
)

<
<

s
e
tte

r>
>

+
s
e
tD

e
s
c
rip

tio
n
(d

e
s
c
rip

tio
n
 : S

trin
g
 [*])

<
<

s
e
tte

r>
>

+
s
e
tIte

m
T

y
p
e
(ite

m
T

y
p
e
 : Ite

m
T

y
p
e
)

<
<

s
e
tte

r>
>

+
s
e
tM

e
m

b
e
rU

ID
(m

e
m

b
e
rU

ID
 : S

trin
g
)

<
<

s
e
tte

r>
>

+
s
e
tIte

m
ID

(ite
m

ID
 : S

trin
g
)

<
<

s
e
tte

r>
>

+
s
e
tC

a
te

g
o
ry

(c
a
te

g
o
ry

 : C
a
te

g
o
ry

)
<

<
g
e
tte

r>
>

+
g
e
tC

a
te

g
o
ry

() : C
a
te

g
o
ry

M
e
m

b
e
rS

e
rv

ic
e

+
g
e
tM

e
m

b
e
r(m

e
m

b
e
rU

ID
 : S

trin
g
) : U

s
e
rA

c
c
o
u
n
t

+
is

M
e
m

b
e
rS

ig
n
e
d
In

(m
e
m

b
e
rU

ID
 : S

trin
g
) : b

o
o
le

a
n

Ite
m

S
e
le

c
tio

n

+
s
e
le

c
tIte

m
(m

e
m

b
e
rU

ID
 : S

trin
g
, ite

m
 : Ite

m
)

+
g
e
tM

e
m

b
e
rIte

m
s
(m

e
m

b
e
rU

ID
 : S

trin
g
)

<
<

e
n
u
m

e
ra

tio
n
>

>

Ite
m

T
y
p

e

b
e
lo

n
g
in

g
w

is
h

<
<

e
n
u
m

e
ra

tio
n
>

>

C
a
te

g
o

ry

B
u
s
in

e
s
s

M
u
s
ic

S
p
o
rt

-ite
m

s

*

Fig. 6.10: ItemManager PSM

6.3.4 Traceability between Analysis and Design

As mentioned in Chapter 5, Section 5.3, analysis to design traceability is ensured via two mech-
anisms. The first one is realized via the interfaces of the use case components that have to
be provided by the <<root>> component. This mechanism is illustrated on the GAM shown

6.3. Architectural Framework Design Layer 175

on Figure 6.8. This approach allows to understand how the CreateItem system operation is
realized at the desingn level; by observing the GAM we can notice that ICreateItem behavior is
delegated to port pItemManager of ItemManager. In the internal structure model (Figure 6.9),
it appears that this port itself delegates this behavior to the ItemManager class fully described
in the PSM (Figure 6.10).
We do not show <<refine>> relationships between analysis concept and design classes graph-
ically, but they can be easily documented in any UML 2.1.1 compliant CASE tool. Such re-
lationships are defined between classes Item and Category of the PSM and their eponymous
analysis concepts.

6.3.5 Design Instantiation Constraints

The determination of the design instantiation constraints is based on analysis instantiation con-
straints and traceability information illustrated above. Traceability allows to determine which
elements of the design layer of the architectural framework are concerned by instantiation con-
straints. For example, by remarking the <<refine>> relationship between Item elements the
following constraint is defined:
context Design:PSM::ItemManager inv:
not removeClass(self,’Item’)

Transformation operation removeClass is defined in a very similar way as removeConcept (see
above). However not all design instantiation constraints are directly derivable from the analysis
constraints. There exist design level elements that are supporting non-functional services such
as a load-balancing mechanism or a relational database. These elements may have to be kept
in all architectural framework instantiations so that products can be viable. It is the role of
architectural framework designers to define such constraints with respect to technical issues
related to architectural framework design and implementation.

176 6. Case Study

6.4 Product Derivation

In this section, we illustrate how a particular product can be obtained via LuxDeal archi-
tectural framework instantiation. We consider a customer who is interested in a product that
support all the features supported by LuxDeal SPL. He makes the following additional re-
quirements:

• He does not want that items be organized in categories,

• He needs a more fine grained way to describe items. Indeed, he needs to distinguish
between material items (goods, which usually have a brand name) and services that are
provided by people (e.g. a piano lesson or computer trouble-shooting).

6.4.1 Analysis

Instantiation Program

The first step is to create a new UML package for the product proLux, and to copy domain and
use case models of the architectural framework in the product:
createProduct(’proLux’);
copyModel(LuxDeal::DOM,proLux::DOM);
copyModel(LuxDeal::DOM,proLux::UCM);

createProduct creates a package whose name is given as parameter and whose sub-packages
organization reflects FIDJI models. copyModel specification is given below:
copyModel(src:Model,tgt:Model):boolean
pre: none.
post: src.ownedElement->forAll(e | tgt.ownedElement->includes(e))

We have then to update the domain model of the product by removing the Category concept
which is useless in this product and add two new concepts, Good and Service:
deleteConcept(proLux::Domain,’Category’);
newConcept(proLux::Domain,’Good’);
newConcept(proLux::Domain,’Service’);
addPropToConcept(proLux::Domain,’Good’,’brand’,String);
addPropToConcept(proLux::Domain,’Service’,’provider’,String);

newConcept creates a concept whose name is given by the second parameter in the model given
by the first. The deleteConcept transformation operation has the same parameters and delete
the concept identifies by the second parameter. Finally addPropToConcept specification is given
below:
addPropToConcept(model:Model,conceptName:String,propName:String,type:Type):boolean
pre: not model->select(co|co.oclIsTypeOf(class) and co.name=conceptName)->first()
.attribute->exists(att|att.name=propName and att.datatype = type)
post: model->select(co|co.oclIsTypeOf(class) and co.name=conceptName)->first()
.attribute->exists(att|att.name=propName and att.datatype = type)

6.4. Product Derivation 177

These concepts are indeed specializations of an Item:
inherit(proLux::Domain,Item,Good);
inherit(proLux::Domain,Item,Service);
inherit transformation operation creates a generalization relationship so that the second pa-
rameter inherits from the first.

One also has to modify createItemForm so that members can enter good or service information:
addPropToConcept(proLux::Domain,’createItemForm’,’provider’,String);
addPropToConcept(proLux::Domain,’createItemForm’,’brand’,String);
addOpParameter(proLux::Domain,’createItemForm’,’isService’,Boolean);
The last parameter, isService, allows a member to state if the item to be created is a service
or not. Figure 6.11 shows the resulting domain diagram. New/updated elements are shown in
light yellow.

The use case model also has to be updated to take into account changes in the way items are
created:
addOpParameter(proLux::UCM::ICreateItem,’createItem’,’brand’,String);
addOpParameter(proLux::UCM::ICreateItem,’createItem’,’provider’,String);
addOpParameter(proLux::UCM::ICreateItem,’createItem’,’isService’,Boolean);
Figure 6.12 depicts the updated use case component.

Finally, the specification of createItem has to be updated in the operation model:

Operation Name: createItem

Related Use Case: UC02

Description: This operation creates an item according to its parameters.

Parameters:

• title TypeOf String,

• description TypeOf String,

• estimatedValue TypeOf Float,

• category TypeOf Category,

• brand TypeOf String,

• provider TypeOf String,

• isService TypeOf boolean,

Sends: None.

Preconditions: Member is signed in:
pre: userAcc.isUserSignedIn = true
Member has received an CreateItemForm:
pre: userAcc.represents^CreateOfferForm

178 6. Case Study

p
ro

L
u

x
 D

o
m

a
in

U
s
e
rA

c
c
o

u
n

t

-a
d
d
re

s
s
 : S

trin
g

-c
ity

 : S
trin

g
-c

o
u
n
try

 : S
trin

g
-e

m
a
il : S

trin
g

-p
a
s
s
w

o
rd

 : S
trin

g
-s

e
c
re

tN
u
m

b
e
r : S

trin
g

-s
ta

te
 : S

trin
g

-s
ta

tu
s
 : S

trin
g

-u
id

 : S
trin

g
-lo

g
in

 : S
trin

g
-z

ip
 : S

trin
g

-n
a
m

e
 : S

trin
g

-s
u
rn

a
m

e
 : S

trin
g

<
<

s
ta

te
>

>
-is

U
s
e
rS

ig
n
e
d
In

 : b
o
o
le

a
n
 =

 fa
ls

e

<
<

s
ig

n
a
l>

>

U
p

d
ateO

fferD
etailsF

o
rm

-o
ffe

r : O
ffe

r

<
<

s
ig

n
a
l>

>

D
ealD

etails

-o
ffe

r : O
ffe

r
-p

ro
p
o
s
a
ls

 : P
ro

p
o
s
a
l [*]

-s
ta

rtD
a
te

 : S
trin

g
-s

ta
tu

s
 : S

trin
g

-v
is

ib
ility

 : V
is

ib
ility

<
<

s
ig

n
a
l>

>

createItem
F

o
rm

-title
 : S

trin
g

-d
e
s
c
rip

tio
n
 : S

trin
g
 [*]

-e
s
tim

a
te

d
V

a
lu

e
 : flo

a
t

-b
ra

n
d
 : S

trin
g

-p
ro

v
id

e
r : S

trin
g

-c
a
te

g
o
ry

 : C
a
te

g
o
ry

-is
S

e
rv

ic
e
 : b

o
o
le

a
n

<
<

s
ig

n
a
l>

>

N
ew

P
ro

p
o

salF
o

rm

-b
e
lo

n
g
in

g
s
 : Ite

m
 [*]

-e
x
p
ira

tio
n
D

a
te

 : S
trin

g
-c

o
m

m
e
n
t : S

trin
g
 [*]

<
<

s
ig

n
a
l>

>

O
fferD

etailsD
isp

lay

-c
re

a
tio

n
D

a
te

 : S
trin

g
-e

x
p
iry

D
a
te

 : S
trin

g
-d

e
s
c
rip

tio
n
 : S

trin
g

-title
 : S

trin
g

-ite
m

s
 : Ite

m
 [*]

<
<

s
ig

n
a
l>

>

C
reateO

fferF
o

rm

-d
e
s
c
rip

tio
n
 : S

trin
g

-title
 : S

trin
g

-s
ta

tu
s
 : S

trin
g

-e
x
p
iry

D
a
te

 : S
trin

g
-ite

m
s
 : Ite

m
 [*]

Ite
m

-d
e
s
c
rip

tio
n
 : S

trin
g
 [*]

-title
 : S

trin
g

-e
s
tim

a
te

d
V

a
lu

e
 : in

t
-s

ta
tu

s
 : S

trin
g

-ty
p
e
 : Ite

m
T

y
p
e

O
ffe

r

-c
re

a
tio

n
D

a
te

 : S
trin

g
-e

x
p
iry

D
a
te

 : S
trin

g
-d

e
s
c
rip

tio
n
 : S

trin
g

-title
 : S

trin
g

-ite
m

s
 [*]

P
ro

p
o

s
a
l

-c
o
m

m
e
n
t : S

trin
g
 [*]

-b
e
lo

n
g
in

g
s
 [1

..*]

<
<

s
ig

n
a
l>

>

W
elco

m
eD

isp
lay

<
<

s
ig

n
a
l>

>

M
essag

eD
isp

lay

-m
e
s
s
a
g
e
 : S

trin
g

<
<

s
ig

n
a
l>

>

S
ig

n
In

F
o

rm

-lo
g
in

 : S
trin

g
-p

a
s
s
w

o
rd

 : S
trin

g

D
e
a
l

-v
is

ib
ility

 : V
is

ib
ility

-s
ta

rtD
a
te

 : S
trin

g
-s

ta
tu

s
 : S

trin
g

<
<

e
n
u
m

e
ra

tio
n
>

>

V
is

ib
ility

p
riv

a
te

p
u
b
lic

<
<

e
n
u
m

e
ra

tio
n
>

>

Ite
m

T
y
p

e

-b
e
lo

n
g
in

g
-w

is
h

<
<

s
ig

n
a
l>

>

O
ffersD

isp
lay

-o
ffe

rs
 : O

ffe
r [*]

S
e
rv

ic
e

-p
ro

v
id

e
r : S

trin
g

<
<

s
ig

n
a
l>

>

D
ealsD

isp
lay

-d
e
a
ls

 : D
e
a
l [*]

G
o

o
d

-B
ra

n
d
 : S

trin
g

M
e
m

b
e
r

O
ffe

rO
w

n
e
r

-s
e
lle

r

*

P
ro

p
B

e
lo

n
g
in

g
s

-b
e
lo

n
g
in

g
s
1

1
..*

D
e
a
lS

rc
O

ffe
r

-o
ffe

r
1

1 D
e
s
ire

d
Ite

m
s

-w
is

h
e
s

1
..*

D
e
a
lP

ro
p
1

-p
ro

p
o
s
a
ls

1

1
..*

1

O
ffe

re
d
Ite

m
s

-b
e
lo

n
g
in

g
s

1
..*

-b
id

d
e
r

1

Ite
m

O
w

n
e
r

-u
s
e
r

1

-ite
m

s

*

<
<

id
>

>

-re
p
re

s
e
n
ts

1

1

Fig. 6.11: proLux Domain Diagram

6.4. Product Derivation 179

ICreateItem

+createItemRequest()
+createItem(title : String, description : String, estimatedValue : float, category : Category, brand : String, ...

<<UCComponent>>

CreateItem

userAcc : UserAccount

−title : String
−description : String [*]
−estimatedValue : float
−brand : String
−provider : String
−category : Category
−isService : boolean

<<signal>>

createItemForm
<<signal>>

MessageDisplay

-message : String

Fig. 6.12: ProLux Create Item Use Case Component

Postconditions: A new item has been created (the collection of items is assumed to be order
by creation date):
post: userAcc.items->last().oclIsNew()
The new item has been created conforming to the parameters of the operations:
post: let it:Item = userAcc.items->last() in
it.title = title and it.description = description
it.estimatedValue = estimatedValue
and it.category = category
and if isService = true then
it.oclIsTypeOf(Service) and it.provider = provider
else it.oclIsTypeOf(Good) and it.brand = brand
endif

180 6. Case Study

Impact Analysis and Resolution

The above paragraphs showed how the instantiation program can be defined to build the analysis
model of proLux, in removing the Category concept and adding new concepts behavior for items
creation. This program fulfills the previously defined instantiation constraints. Therefore, the
analysis model can be actually actually built for the product.
However, this model is not conform to the FIDJI profile. The product analyst has not taken
all the impact into account in his analysis program; signal createItemForm and operation
createItem still have properties whose type is Category. This model violates rule WFR-5 (see
Chapter 4) stating that all properties of signals and concepts must be typed. Furthermore, it
also violates rule WFR-1 that all concepts and signals manipulated by operations have to be
defined in the domain model. .

6.4.2 Design

The design of proLux is very similar to its analysis. Therefore we will not detail the architectural
framework design instantiation process. The first step is to copy the design layer of the archi-
tectural framework in proLux. Then, the product designer has to write transformations on the
basis of the traceability information between analysis and design: since the <<root>> compo-
nent provides the interfaces defined in the use case components one can evaluate which elements
are concerned by following delegation connectors in the GAM. In proLux, it is the ItemManager
component that is impacted. Similarly to the analysis instantiation program, transformations
to be made are dealing with the removal of the Category design class (refining the eponymous
analysis concept) and the modification of createItem method. Additionally, one has to update
the Kermeta description of this method.

6.5. Deriving another Product 181

6.5 Deriving another Product

In this section, we illustrate how we can reuse knowledge gained on the derivation of one
LuxDeal member to derive a new product. We consider another customer who, after having
reviewed proLux requirements in the software vendor products’ portfolio, would like to acquire
a similar product. He however introduces the following differences with proLux for his product
(called goodLux):

• Category management: This customer needs to have categories to organize the items’
catalogue. Additionally he requires that offer browsing can be made according to the
categories the items offered belongs to. If an offer’s items pertain to several categories,
the offer will be listed in all these categories. Finally, if all items are un-categorized, this
functionality should be disabled,

• Goods and services: This customer is interested in having only goods as a specialization
of item. He does not want his website to support services for legal reasons.

As for any product, the instantiation program’s first instructions set up the analysis models:
createProduct(’goodLux’);
copyModel(LuxDeal::DOM,goodLux::DOM);
copyModel(LuxDeal::DOM,goodLux::UCM);

Since the Category concept is already provided by the architectural framework, we do not have
to update the domain model to define this concept in goodLux. But we will need a special screen
to display offers by categories:
newSignal(goodLux::Domain,’CatOfferDisplay’);
addPropToSignal(goodLux::Domain,’CatOfferDisplay’,’offers’,Offer);
We reuse part of the instantiation program for proLux to create the concept of “good”:
newConcept(goodLux::Domain,’Good’);
addPropToConcept(goodLux::Domain,’Good’,’brand’,String);
inherit(proLux::Domain,Item,Good);
Similarly, part of the instantiation program for proLux concerned ItemForm modification is
reused:
addPropToConcept(goodLux::Domain,’createItemForm’,’brand’,String);
Figure 6.13 depicts the modified domain model. Note that we are not always aware of these
changes while updating the domain model. We can realize the need for a new concept when
updating use cases or adding a new operation.

Concerning use cases, there are two groups of transformation operations to write. The first one
consists in reusing the proLux instantiation program in order to support good creation in the
“create Item” use case:
addOpParameter(goodLux::UCM::ICreateItem,’createItem’,’brand’,String);
The second group is composed of the transformation operations performing changes in “browse
offers” to support display of offers sorted by category. First, we create a new operation
newOperation(goodLux::UCM::IBrowseOffer,’browseOffersByCategoryRequest’);
We also need to define a new state variable that will be used to enable/disable category viewing
represented by browseOffersByCategoryRequest operation. The value of this boolean is based
on the fact that there should be at least one item in one offer that pertains to a category.
Therefore this is a derived state variable:

182 6. Case Study

g
o

o
d

L
u

x
 D

o
m

a
in

U
s
e
rA

c
c
o

u
n

t

-a
d
d
re

s
s
 : S

trin
g

-c
ity

 : S
trin

g
-c

o
u
n
try

 : S
trin

g
-e

m
a
il : S

trin
g

-p
a
s
s
w

o
rd

 : S
trin

g
-s

e
c
re

tN
u
m

b
e
r : S

trin
g

-s
ta

te
 : S

trin
g

-s
ta

tu
s
 : S

trin
g

-u
id

 : S
trin

g
-lo

g
in

 : S
trin

g
-z

ip
 : S

trin
g

-n
a
m

e
 : S

trin
g

-s
u
rn

a
m

e
 : S

trin
g

<
<

s
ta

te
>

>
-is

U
s
e
rS

ig
n
e
d
In

 : b
o
o
le

a
n
 =

 fa
ls

e

<
<

s
ig

n
a
l>

>

U
p

d
ateO

fferD
etailsF

o
rm

-o
ffe

r : O
ffe

r

<
<

s
ig

n
a
l>

>

D
ealD

etails

-o
ffe

r : O
ffe

r
-p

ro
p
o
s
a
ls

 : P
ro

p
o
s
a
l [*]

-s
ta

rtD
a
te

 : S
trin

g
-s

ta
tu

s
 : S

trin
g

-v
is

ib
ility

 : V
is

ib
ility

Ite
m

-d
e
s
c
rip

tio
n
 : S

trin
g
 [*]

-title
 : S

trin
g

-e
s
tim

a
te

d
V

a
lu

e
 : flo

a
t

-s
ta

tu
s
 : S

trin
g

-ty
p
e
 : Ite

m
T

y
p
e

-c
a
te

g
o
ry

 : C
a
te

g
o
ry

 [0
..1

]

<
<

s
ig

n
a
l>

>

N
ew

P
ro

p
o

salF
o

rm

-b
e
lo

n
g
in

g
s
 : Ite

m
 [*]

-e
x
p
ira

tio
n
D

a
te

 : S
trin

g
-c

o
m

m
e
n
t : S

trin
g
 [*]

<
<

s
ig

n
a
l>

>

O
fferD

etailsD
isp

lay

-c
re

a
tio

n
D

a
te

 : S
trin

g
-e

x
p
iry

D
a
te

 : S
trin

g
-d

e
s
c
rip

tio
n
 : S

trin
g

-title
 : S

trin
g

-ite
m

s
 : Ite

m
 [*]

<
<

s
ig

n
a
l>

>

C
reateO

fferF
o

rm

-d
e
s
c
rip

tio
n
 : S

trin
g

-title
 : S

trin
g

-s
ta

tu
s
 : S

trin
g

-e
x
p
iry

D
a
te

 : S
trin

g
-ite

m
s
 : Ite

m
 [*]

<
<

s
ig

n
a
l>

>

createItem
F

o
rm

-title
 : S

trin
g

-d
e
s
c
rip

tio
n
 : S

trin
g
 [*]

-e
s
tim

a
te

d
V

a
lu

e
 : flo

a
t

-b
ra

n
d
 : S

trin
g

-c
a
te

g
o
ry

 : C
a
te

g
o
ry

O
ffe

r

-c
re

a
tio

n
D

a
te

 : S
trin

g
-e

x
p
iry

D
a
te

 : S
trin

g
-d

e
s
c
rip

tio
n
 : S

trin
g

-title
 : S

trin
g

-ite
m

s
 [*]

P
ro

p
o

s
a
l

-c
o
m

m
e
n
t : S

trin
g
 [*]

-b
e
lo

n
g
in

g
s
 [1

..*]

<
<

s
ig

n
a
l>

>

W
elco

m
eD

isp
lay

<
<

s
ig

n
a
l>

>

M
essag

eD
isp

lay

-m
e
s
s
a
g
e
 : S

trin
g

<
<

s
ig

n
a
l>

>

S
ig

n
In

F
o

rm

-lo
g
in

 : S
trin

g
-p

a
s
s
w

o
rd

 : S
trin

g

D
e
a
l

-v
is

ib
ility

 : V
is

ib
ility

-s
ta

rtD
a
te

 : S
trin

g
-s

ta
tu

s
 : S

trin
g

<
<

s
ig

n
a
l>

>

C
atO

fferD
isp

lay

-o
ffe

rs
 : O

ffe
r [*]

<
<

e
n
u
m

e
ra

tio
n
>

>

C
a
te

g
o

ry

B
u
s
in

e
s
s

M
u
s
ic

S
p
o
rt

M
is

c

<
<

e
n
u
m

e
ra

tio
n
>

>

V
is

ib
ility

p
riv

a
te

p
u
b
lic

<
<

e
n
u
m

e
ra

tio
n
>

>

Ite
m

T
y
p

e

-b
e
lo

n
g
in

g
-w

is
h

<
<

s
ig

n
a
l>

>

O
ffersD

isp
lay

-o
ffe

rs
 : O

ffe
r [*]

<
<

s
ig

n
a
l>

>

D
ealsD

isp
lay

-d
e
a
ls

 : D
e
a
l [*]

G
o

o
d

-B
ra

n
d
 : S

trin
g

M
e
m

b
e
r

O
ffe

rO
w

n
e
r

-s
e
lle

r

*

P
ro

p
B

e
lo

n
g
in

g
s

-b
e
lo

n
g
in

g
s
1

1
..*

D
e
a
lS

rc
O

ffe
r

-o
ffe

r1

1 D
e
s
ire

d
Ite

m
s

-w
is

h
e
s

1
..*

D
e
a
lP

ro
p
1

-p
ro

p
o
s
a
ls

1

1
..*

1

Ite
m

O
w

n
e
r

-u
s
e
r

1

-ite
m

s

*

O
ffe

re
d
Ite

m
s

-b
e
lo

n
g
in

g
s

1
..*

-b
id

d
e
r

1

<
<

id
>

>

-re
p
re

s
e
n
ts

1

1

Fig. 6.13: goodLux Domain Diagram

6.5. Deriving another Product 183

Context BrowseOffers::BrowseOffersControl::itemsByCat: boolean
derive: Offer.offeredItems->exists(i|not i.category.isUndefined())

The specification of newStateVarUCC is a specialization of addPropToConcept in which the cre-
ated property is stereotyped by <<state>>. We can also provide a default value:
newStateVarUCC(goodLux::UCM::BrowseOffers::BrowseOffersControl,
’itemsByCat’, boolean, false);

Figure 6.14 shows the updated version of BrowseOffers use case component.

<<UCComponent>>

BrowseOffers

userAcc : UserAccount offer : Offer

 : Offer

<<UCControl>>

BrowseOffersControl

<<state>>-isOfferOwned : boolean = false
<<state>>-itemsByCat : boolean = false<<signal>>

UpdateOfferDetailsForm

-offer : Offer

<<signal>>

NewProposalForm

-belongings : Item [*]
-expirationDate : String
-comment : String [*]

<<signal>>

CatOfferDisplay

-offers : Offer [*]

IBrowseOffers

+browseOffersRequest()
+seeOfferDetails(offer : Offer)
+updateOffer(offer : Offer)
+updateOfferRequest()
+newProposalRequest()
+newProposal(belongings : Item [*], expirationDate : String, comment : String [*])
+browseOffersByCategoryRequest()

Fig. 6.14: goodLux BrowseOffers Use Case Component

Naturally we also have to update the textual description of the modified use case component.
Here follows, the updated textual use case for “Browse Offers” and the specification of

184 6. Case Study

browseOffersByCategoryRequest.

Use Case: UC04: Browse Offers
—————————————————————–
CHARACTERISTIC INFORMATION
Goal in Context: A member wishes to browse offers.
Scope: LuxDeal.
Primary Actor: Member.
Preconditions: Member is signed in:
pre: userAcc.isUserSignedIn=true
Success End Condition: None.
Failed End Condition: None.
Trigger: Member requests to browse available offers:
post: if BrowseOffersControl.itemsByCat = false then
self^browseOffersRequest() else self^browseOffersRequest() xor
self^browseOffersByCategoryRequest()
—————————————————————–
MAIN SUCCESS SCENARIO

1. The application displays the list of available offers:
post: sender^OffersDisplay(offers) xor
sender^OffersCatDisplay(offers)

2. Member selects one particular offer and requests to see its details:
post: self^seeOfferDetails(offer)

3. The application displays the details of one offer:
post: sender^OfferDetailsDiplay(offer)

—————————————————————–
ALTERNATIVES
4a. If the offer belongs to the member, the application enables offer update:

• Member requests to update the offer:
pre: BrowseOffersControl.isOfferOwned = true
post: self^updateOfferRequest(offer)

• The application displays an editable screen comprised of offer information:
post: sender^UpdateOfferDetails(offer)

• Member changes details and validates:
post: self^updateOffer(offer)

4b. If the offer does not belong to the user, the application offers the possibility to make a
proposal:

• Member selects to make a new proposal:
pre: BrowseOffersControl.isOfferOwned = false
post: self^newProposalRequest()

6.5. Deriving another Product 185

• The application shows a new proposal form:
post: sender^NewProposalForm(belongings,expirationDate,comment)

• Member defines proposal details (belongings) and validates:
post: self^newProposal(belongings,epxirationDate,comment)

• If the proposal is the first, a new deal is created:
post: offer.deal->isEmpty()@pre implies offer.deal->first().oclIsNew()

Operation Name: browseOffersByCategoryRequest()

Related Use Case: UC04

Description: Represents a member’s request to see offer(s) by category

Parameters: None.

Sends:

1. CatOfferDisplay to Member

Preconditions: Member is signed in:
pre: userAcc.isUserSignedIn = false
Items must be organized by categories:
BrowseOffersControl.itemsByCat = true

Postconditions: Sender has been sent a “sign in” form:
post: sender^CatOfferDisplay(offers)

As for proLux, impact analysis has to be performed in order to complete the product’s analysis
models. As this task is very similar in the two products we do not illustrate it here. This section
ends the illustration of the FIDJI approach, in the next section we will discuss its validation.

186 6. Case Study

6.6 Towards FIDJI validation

In this section, we give some insights on the validation of the method presented in this thesis.
We describe first the details of an experiment carried out during the FIDJI project and then
discuss validation criteria and protocol.

6.6.1 Initial Experiment

In chapter 3, we mentioned that the FIDJI research project by implementing a concrete archi-
tectural framework and its accompanying modeling and transformation tools contributed to the
methodological thinking resulting in the approach defended by this thesis. This concrete imple-
mentation allowed us to carry out an experiment (which was actually performed in may 2002)
to perform an early validation of the general approach. Though the FIDJI process supported
by JAFAR [GRS03a, GS02b] and MEDAL [GRS03b] was different (in particular in terms of
flexibility for architectural framework instantiation), we believe that some of the findings of this
experiment are applicable to the method described in this dissertation.

The validation issues investigated by this experiment were the following:

• Assessing the learning curve of the approach: One needs to get familiar with the
architectural framework and its instantiation process in order to develop new product line
members,

• Assessing the suitability of the architectural framework functionality and tech-
nology: One needs to validate that choices made concerning architectural framework func-
tionality and technology are meaningful with respect to the SPL and foster development
time for trained developers.

To answer to such questions, we designed an experiment centered on the development of a
LuxDeal member. Categories of requirements considered for this experiment were the follow-
ing:

• Member management: The application should be able to support member registration
and sign in/out. Additionally, a member can enter a list of keywords describing items he is
interested in. Periodically, the application checks if there are offers that match members’
keywords and send a messages to possible bidders when it is the case,

• Offer management: The application should permit its members to create offers and
browse them,

• Message management: Messages are used within the negotiation process; while brows-
ing messages they have received, members can define a counter-proposal by composing a
reply message linking their own offers with the one contained in the original message.

The experiment was conducted in parallel by three different pairs of people over a period of 9
working days. The first team were composed of the JAFAR core developers (R&D engineers
Benôıt Ries and Paul Sterges) who were developing the application with JAFAR. They were also
responsible of the supervision of the experiment as well as troubleshooting (each issue encoun-
tered and tasks performed were described in a daily report). The second team (R&D engineers

6.6. Towards FIDJI validation 187

Christian Glodt and Gilles Perrouin) did not know JAFAR and had to develop the application
with it. Finally the third team (PhD student Catalin Amza and Dr. Alain Karsenty) had to
develop the application without using JAFAR, based on the technology of their choice.

For the two first teams, the process was dictated by the FIDJI approach supported by JAFAR.
It comprised the design of the application in UML 1.x and the implementation and deployment
using the FIDJI tool set (JAFAR + MEDAL). The last team was free of using or not any
software engineering process. However, they were also required to provide the design of their
application.

At the end of the experiment, the first and third teams completed the application. In the second
team, one requirement could not have been implemented (automatic matching of keywords with
offers) due to time. Problems encountered in the second team were related to a documentation
that did not give an overview of the overall instantiation process (so that it was difficult to
understand which step came next) and to the team relative inexperience in J2EE as well as
deployment bugs due to Rational XDE CASE tool (now replaced by the Software Architect
tool suite [IBM06]) on which the FIDJI toolset was relying. JAFAR experts did not encounter
any particular problem developing the LuxDeal member but collected a few suggestions to
improve the architectural framework and discovered some minor bugs.

As the functionalities of the applications were identical, their comparison was realized on quality
criteria. In particular the two first teams obtained a much more scalable and upgradeable appli-
cation than the third group: this is due for one part to the component architecture of JAFAR and
for the other part to the capability of J2EE containers embedding JAFAR. We also confirmed
empirically that model transformations helped to fight accidental complexity by generating the
EJB’s interfaces as well as additional classes required by J2EE design patterns [ACM01].
With respect to our validation issues, the following conclusions can be drawn:

• Learning curve: Model transformations play an important role on this point. Indeed,
they contributed to simplify the instantiation of JAFAR without requiring knowledge
of the full JAFAR’s design (black-box instantiation). The development method used to
instantiate the architectural framework also has a great impact on the learning curve: an
absence of a clear methodological guidance slows down the development process as the
second team experienced it,

• Architectural framework suitability: JAFAR’s functionality has been found suitable
to the kind of applications to be developed with. Modules such as account management and
predefined user interface templates saved the two first teams a lot of time. However, some
more specialized modules (such as offer/item management) would have improved JAFAR’s
reusable potential and made it a better match with respect to its domain (e-bartering).

This experiment provided an initial validation of the general approach (that is developing SPL-
based software using an architectural framework and model transformations) and did motivate
the continuation of the work presented in this PhD dissertation. The results of the aforemen-
tioned experiment are to tome extent applicable to the current FIDJI method, if we take into
account the following points. First, the FIDJI process supported by JAFAR did not include any
supported requirements engineering activity (UML use cases could be defined for the applica-
tion but were not processed by JAFAR transformations) whereas the current version provides

188 6. Case Study

detailed guidance for requirements elicitation and analysis which has not yet been evaluated
through a similar experiment. Second, in order to support the flexibility that was lacking in the
original version of the method, architectural framework instantiation is white-box and supported
through horizontal transformations while JAFAR proposes a black-box instantiation based on
vertical transformations. As we have mentioned, this may have an impact on the learning curve
of the architectural framework considered since one needs to know the architectural framework
layer considered before writing the instantiation program. It is a necessary price to pay to
achieve a convenient level of flexibility.

6.6.2 Validation Criteria

To the best of our knowledge there is no process improvement approach such as ISO 15504 [ISO06]
or CMMI [SEI06] that provides specific criteria for validating SPL-based development methods.
Furthermore, we believe that the most important issue is not to validate the FIDJI process in
itself (the waterfall process mode on which FIDJI relies has been deeply investigated) but the
impact it has on the quality of the derived products. Therefore, we will focus on seeking criteria
related to product quality.

The preceding paragraphs pinpointed two particular criteria that were investigated during our
initial experiment. Indeed, they are part of the ISO 9126 standard [ISO91] which gives a list
of interesting quality attributes (and their sub-characteristics) for product validation. They are
summarized below:

• Functionality: The sub-characteristics considered for this attribute are: suitability, ac-
curacy, interoperability and security ;

• Reliability: Relates to the ability of the software to deliver a guaranteed service provided
that certain conditions are met. Sub-characteristics for this attributes are maturity, fault
tolerance, recoverability ;

• Usability: This attribute refers to the ability of its user to learn and use the product:
understandability, learnability, operability, attractiveness;

• Efficiency: This attribute is linked with performance aspects of the software. Sub-
characteristics: time behavior, resource utilization;

• Maintainability: Deals with evolution aspects. Sub-characteristics: analyzability, change-
ability, stability, testability ;

• Portability: This attribute refers to the relationships of the product with its environment.
Sub-characteristics: adaptability, installability, co-existence, replaceability.

Thus, the “learning curve” attribute is associated to usability while “suitability of the archi-
tectural framework” is a direct sub-characteristic of functionality. As noted by Atkinson et
al. [ABB+02], there are two important attributes for SPL engineering missing in this taxonomy:

• Reusability: This attribute refers to the extent of changes required so that it fits to its
new context in the product;

6.6. Towards FIDJI validation 189

• Cost: Cost is of paramount importance and can be combined with any of the aforemen-
tioned attributes. As we mentioned in Chapter 1, its minimization (in time) is the key
motivation of software reuse techniques.

It can be argued, however, that these criteria are not primary but derived: reusability is con-
nected to maintainability and portability attributes whereas cost is related to efficiency (resource
utilization in particular).

If we recall from Chapter 1 that FIDJI is focusing on simplicity, flexibility, uniformity and
integration, we can derive the criteria suited to FIDJI’s validation. In the following we define
them as a combination of the quality attributes discussed and how the FIDJI approach influences
them:

• Reusability: There are two factors that impact this attribute. The first one is linked to
the way the architectural framework is engineered, which directly influences its change-
ability. The second one is related to the definition of the model transformations allowing
to support architectural framework changeability;

• Usability: This attribute and its sub-characteristics apply to the models offered by the
method, its process and transformation approach. It enables simplicity criterion validation;

• Flexibility: Flexibility can be evaluated by the impact it has on reusability. Indeed,
state variables and instantiation constraints will greatly influence the changeability of the
architectural framework;

• Cost: For FIDJI it is important to evaluate the cost of reusing one particular architectural
framework element with respect to developing a new one for the product. This cost
is heavily dependent on the suitability of the architectural framework for the product
considered and the suitability of the transformation approach.

6.6.3 Validation Protocol

In the following, we give a few hints on how to assess the validation criteria we have discussed
above. The first step to accomplish when designing a validation protocol is to define metrics
suitable to the criteria we would like to validate. Unfortunately, cost excepted, it is difficult to
select metrics directly. A well-known approach to identify relevant metrics is to use the “Goal-
Question-Metric” (GQM) approach [BCR94] proposed Victor Basili in the mid eighties. Basili
et al.’s approach is based on a three step refinement process:

1. Goal elicitation: The first step consists in defining a set of goals defining the purpose and
the viewpoint of the measurements to be made. Goals involve objects (artifacts, processes,
resources etc);

2. Questioning: The second step consists in defining questions whose answers will allow to
know whether a goal is achieved or not;

3. Metrics selection: The final step consists in choosing the appropriate metrics with
respect to the questions defined in the context of a particular goal.

For example considering flexibility attribute would result in the following GQM model:

190 6. Case Study

• Goal: Assess the flexibility of a given architectural framework at the analysis level;

• Question: To what extent is an architectural framework’s analysis model changeable ?;

• Metric: This part can be measured as follows: number of analysis elements for which one
or more instantiation constraints have been defined / total number of elements forming the
analysis layer. A high value of this metric indicates that it may not be easy to deviate from
the architectural framework since many elements are constrained. However, a low value
for this metric, although showing that the architectural framework is readily changeable,
can also be an indicator of lack of maturity in the SPL definition resulting in very general
architectural framework’s assets which may require significant transformations to be useful.

Naturally, there can be several questions and metrics for a goal, especially if this goal is complex.
In the following, we focus on the actual measurement of the aforementioned FIDJI validation
criteria.

To validate usability, we can use an empirical validation technique called ethnography [Mye99].
This technique consists in observing a group of people performing a particular task for a certain
period of time and collecting their feelings and behaviors. In addition to measuring attractive-
ness of the method, ethnographic studies (combined with interviews) can also provide interesting
feedback on the skills required to use the method.
We can exploit the relationships between the other criteria to proceed to their validation indi-
rectly. For instance, evaluating the cost of reusability (that is measuring the time required to
reuse a specific architectural framework asset so that it fits the product) will give insights both
on the changeability of the architectural framework and flexibility of the approach. In order to
evaluate this criteria, an experiment involving FIDJI, KoBra and ConIFP can be considered.
This experiment has three steps:

1. Initiation: In this step, a product (e.g. a LuxDeal member) is developed according to
the three approaches. Though the asset base may differ in some respects (e.g. models) we
impose that it is functionally equivalent in the three approaches. This phase will not be
monitored.

2. Construction: Slight variations in the requirement of the product member are introduced.
The new product is then redeveloped according to the three approaches. Time taken to
perform this new derivation in the three approaches will be particularly monitored,

3. Evaluation: This step proceeds to an assessment of the second phase by comparing the
time taken to derive the new product, the amount of reuse of the core assets and for FIDJI,
if the instantiation program written in the first step was useful or not.

When devising such an experiment, we must be aware of the potential biases that may result in
meaningless data. The first source of biases is human. We need to form homogeneous groups
for the three methods considered; they should have the same skills (which can be evaluated
according to their degrees) but also the same experience on the method they will work with.
Another issue is related to the conflicts of interest that can exist between roles: e.g. in the initial
FIDJI experiment, people in charge of carrying out the experiment were also contributing to
the FIDJI method inducing a high risk of bias if some measures (such as requiring that all data
is actually published) are not thoroughly observed. Particular attention should be also drawn
on quality of the documentation offered to three groups. Different methods imply variations for
each group. It is the role of the experiment designers to come up with these problems so that
the experiment can be performed in fair conditions.

Part IV

CONCLUDING CHAPTERS

7. CONCLUSION

Abstract

This chapter outlines the main contributions of the work presented in this disser-
tation and draws some conclusions about it. Research perspectives will be discussed
in the next chapter.

This thesis investigates how recent software engineering breakthroughs such as Model Driven
Engineering [Ken02], Object-Oriented Frameworks [JF88] and Software Product lines [CN01]
can be combined to devise a product line development method. More specifically, our research
was driven by two needs: addressing complexity and improving flexibility. The first need has
been addressed by providing a coherent set of models which can be used both for domain engi-
neering and application engineering as the documentation of SPL variability has been removed
from models to reduce the complexity of their definition and use. The application engineering
process, based on the use of FIDJI-dedicated model transformation operations is both simple
and supportive.
The second need has been addressed by an open notion of product line boundary that is not
rigidly defined by the set of products directly derivable from the product line assets but is simply
defined by a set of constraints on the domain assets that prevents some products to be derived
for functional and/or technical reasons. Furthermore, our application engineering approach en-
ables the product engineers to derive products that suit the needs of their customers without
requiring evolution of the whole SPL evolve and provides guidance in their task.

In Chapter 3, we introduced the notion of architectural framework as a unifying concept that is
based on the analogy between object-oriented frameworks and software product lines concepts
discussed in Chapter 2. Architectural frameworks link SPL domain engineering asset models
consistently at any abstraction level and support product derivation via model transformation
and constraints. This approach allows to separate variability description from domain asset
models, thus favouring reuse, and also to implicitly determine product-line boundaries which
spare domain engineers from the task of documenting variability exhaustively and application
engineers to be disturbed by too strict variability decision models when specifying and designing
products.
We then defined a sequence of methodological steps in order to guide the product developer
from requirements elicitation to design and explained the motivations underlying the choices of
our models used at the domain engineering level.

Chapter 4 is dedicated to the requirements elicitation and analysis phase of the methodology.
In particular, the following contributions were made:

• Requirements Elicitation Template: We defined a template to elicit software product
lines at a high abstraction level based on use case variants and an informal description of

194 7. Conclusion

the domain concepts as well as their dependencies and variabilities. We also gave a set of
methodological rules in order to manage variability information along REQET descriptions
coherently;

• Analysis Model: The analysis model we proposed extends the ones offered by Fusion
and Fondue by using the latest UML 2.0 notational elements. Moreover, it provides a fine-
grained and localized approach to life-cycle/protocol specification to the system via use
cases augmented with OCL expressions and UML 2 diagram. All these elements together
model the interactions of the system with its environment. The analysis model is supported
by an UML 2 profile that describes the elements defined in the methodology and specifies
OCL well-formedness rules for FIDJI models;

• State Variables: We introduced state variables as a way to both control system life-
cycle within a use case scenario (by defining guards expressed as OCL constraints on
these variables) and to ensure flexibility in domain engineering models (guards permit to
enforce some sub-scenarios while leaving open the others so as to facilitate requirements
accommodation);

• Product Derivation: Product derivation is ensured by architectural framework instan-
tiation of analysis models. Moreover, we showed how variability described at the require-
ments elicitation level can be mapped in terms of instantiation constraints at the analysis
level.

Chapter 5 is devoted to the design phase of the methodology. We demonstrated the suitability of
UML 2 as an architecture description language and shown how connector behavior can be mod-
eled using OCL pre/postconditions over roles. Next, this approach was then applied to define
a set of architectural styles that can be used when designing an architectural framework. This
notation is used in the first step of the design process and is linked to analysis models through
methodological rules and UML elements. We then gave additional views refining architecture
components and integrating them in a tree-like structure.

Finally, Chapter 6 exemplifies the FIDJI methodology. Through an e-commerce case study,
we gave concrete examples of the FIDJI models as well as instantiation constraints and model
transformations both for domain engineering and application engineering at the requirements
elicitation, analysis and design levels.

8. PERSPECTIVES

Abstract

This chapter explores some of the extensions that can be made to the FIDJI
method and identifies some potential research areas in the field. This chapter is di-
vided in two main sections. Section 8.1 discusses crucial points of the whole method
such as formalization of the metamodel, tool support and actual validation. Sec-
tion 8.2 delves into specific aspects of the method such as expressiveness of the use
case model at the analysis level and formalization of the connector “gluing” process.
Finally, Section 8.3 discusses a few research directions over the long term such as
SPL-based testing.

8.1 General Considerations

8.1.1 Formalization

We have mentioned in Chapter 3 that FIDJI models were motivated by precision requirements
in choosing UML 2.0 constructs that can be formalized. There are two main reasons motivating
this need:

• Analysis: FIDJI determines the allowed and unauthorized products via instantiation
constraints. For large product lines, there can be a significant number of constraints and
it is difficult to determine whether these constraints conflict (thus preventing product
derivation) or to know if a product is derivable before writing the instantiation program.
A complete formalization of FIDJI analysis models could help in answering such questions
both at the domain engineering and application engineering levels;

• Model Generation: Currently, the instantiation program only covers structural instan-
tiation of architectural framework models, their behavior requiring to be modified by the
product engineers. Giving a formal semantics to FIDJI models would be a first step to-
wards taking into account models’ behavior and would therefore complete the automated
support can be provided to the instantiation program.

At the structural level, FIDJI models are based on UML structural constructs such as Class and
Components. Instead of developing a whole new formalization of these constructs from scratch,
one possible approach is to reuse the structure proposed by Richters in his PhD thesis [Ric02].
This structure, based on set theory and first-order logic, was initially defined to provide a solid
foundation to OCL. The fundamental construct is the type signature which consists of type
names and operations defined for types. Then, elements considered in this structure are those of
a “classic” class diagram, that is classes (set of names determining types), attributes (functions
between two types), operations (n-ary functions between types), associations (set of association

196 8. Perspectives

names and a function “associates” which gives a list of related class names for a given association
name), and lastly a partial order defined over the set of classes modeling inheritance relation-
ships between classes. Naturally, this structure does not take into account UML 2.0 specific
constructs such as components, ports or connectors. However, thanks to the object-oriented
nature of the UML 2.0 metamodel, this structure can not be applied to classes of a given model
but can be applied to metaclasses of the UML specification at the M2 level.

As we mentioned above, one of the motivations for formalizing behavior is to be able to determine
if a certain combination of operations (either at the analysis or design level) is derivable with
respect to the instantiation constraints for the level considered. Obviously, the use of state
variables in operation definitions determines if an operation can be called but it may be difficult
to answer such a question if several operations are involved in modifying the same state variable.
Ideally, it would be desirable to check the possibility of such a scenario using a temporal logic
formula. Unfortunately, the OCL specification which is used to specify operation sequencing
does not allow to check for temporal logic formulas. Indeed, as stated by Kyas and De Boer
in [KdB04], the LocalSnapshot construct, defining the notion of object history in OCL (e.g.
at the analysis level, we would be interested in capturing the history of a use case component
in order to check for a particular instantiation) is only part of the language semantics and
no construct is provided to access such an history. This motivated the authors to define an
explicit construct to manage the history of an object. Other authors have also noticed the
need for extending OCL in order to support more fine-grained temporal management. Gogolla
and Ziemann [ZG03a] propose the addition of well-known temporal logic operators such as
“previous”, “next”, “always” and their derivations for past events. The whole approach is
formalized in [ZG03b] by means of Linear Temporal Logic. In [BFS02], Bradfield et al. propose
a template for OCL (by adding new kinds of conditions such as “after” and “eventually”) which
acts as an upper language layer, the lower layer being the OCL standard itself. Flake and
Mueller [FM04] define a UML profile supporting the definition of past and future properties
and base its semantics on a clocked linear temporal logic. This approach is interesting since
it enables a rapid support within CASE tools and is consistent with the OCL specification. A
more detailed discussion on these approaches can be found in [Fla03]. Cengarle and Knapp also
extended OCL using temporal operators and gave it an operational semantics in the context of
real-time applications [CK02, CK05]. All these approaches need to be evaluated with respect
to our use of OCL in order to find which is the most appropriate. Since our use of OCL which
is mainly “interaction-oriented”, an approach that would provide both temporal operators with
a trace-based semantics (such as the one presented in [CK04]) can be a solution to investigate
first. Then, we should evaluate the suitability of this semantics domain for the operation model
in order to generate UML state machines.

8.1.2 Model Transformation

Language Definition

The first point in this aspect is to provide a complete definition of the transformation language
that is only sketched in this dissertation. This concerns the syntax and semantics of the transfor-
mation language. The definition of an horizontal transformation language for product derivation
is currently being studied in the context of post-doctoral studies [GK07].

8.1. General Considerations 197

Transformation Framework

In order for FIDJI to be efficient, it is important to provide an adequate library of transfor-
mation operations that will be reused in instantiation programs. A proper balance should be
found between operations that are too general (in that case, the library of transformation oper-
ations would be reduced to create/update/delete operations working on any model element) or
too specific (in that case, instantiation program writers would be puzzled by a huge operation
library).

Vertical Transformation Support

Our model transformation language, designed to assist product analysts, architects and devel-
opers to instantiate the architectural framework, works at the horizontal level. As we have seen
in Chapter 2, it is also possible to define vertical transformations to relate and generate model
elements across different abstraction levels. In our context, the FIDJI methodology could benefit
from the definition and support of vertical transformations on the following points:

• Artifact Generation: The definition of vertical transformations between analysis and
design layers of the architectural framework (due to the textual nature of our requirements
elicitation approach, vertical transformations defined for this layer are, though possible,
less likely) may be applied on the product analysis model to generate its design model. Ver-
tical transformations may also be used as the main technique to define an implementation
phase for the methodology;

• Traceability: Currently, vertical traceability (horizontal traceability may be already re-
alized by a transformation platform supporting our transformation language) is defined
manually through textual document and UML <<trace>> links. We mentioned that
for the architectural framework it is only a minor issue since it changes only in case of
the evolution of the SPL. An individual product evolution may occur more frequently.
Vertical transformations while generating design elements can also define traceability links
automatically.

8.1.3 Towards Tool Support

In order for a methodology to be applied efficiently, a convenient tool support is necessary.
Currently, there is no tool support for the FIDJI approach as presented in this dissertation (tool
support [GRS03b, GRS03a] was developed for preliminary versions of the approach [GP02,
GP04]). This section gives some information to define such an environment which amounts
to addressing two activities; architectural framework modeling and architectural framework
instantiation support.

Architectural Framework Modeling

Models proposed by the FIDJI methodology to define architectural frameworks ease tool support
mainly because of their compliance to the latest OMG-related modeling standards such as UML
and OCL. Thus, any CASE tool supporting these standards might be used to define architectural
frameworks. Due to the maturing process of the UML 2 specification and its size, supporting

198 8. Perspectives

tools have long been awaited. Now, the specification is almost stable, some tools support the
metamodel and concrete syntax of the specification in its entirety. In particular, in order to
define an architectural framework according to the FIDJI models, the following constructs need
to be supported:

• Components and Composite Structures: These constructs are central to the FIDJI
models. They are found in the analysis models for the definition of use case components,
in the design models in the GAM and ISM. Most of the CASE tools now propose these
constructs. However, it should to be noted that they differ in the way they model these
visually, for example some tools do model the internal structure of components in separate
diagrams and therefore would fail to depict use case components and ISM-based models;

• Profiling: FIDJI models are mainly defined thanks to UML profiles. With the develop-
ment of standardized UML profiles (promoted by the MDA initiative to describe PSMs),
CASE tool vendors have significantly improved their offer for UML profiling support;

• OCL: We make intensive use of OCL either to improve descriptions (use cases in the
analysis models, connectors and role in design models, profiles) or to define and constrain
architectural framework instantiation (see below). We therefore require a certain level of
support for OCL. Depending on the CASE tool, this support varies from syntax validation
to evaluation [Bor07, IBM06, NoM07];

• Action Language: We have chosen KerMeta [MFJ05] as an action language for its simple
syntax and its object-oriented basis which make it interesting to define the behavior of
PSM classes. Therefore, tool support must be compliant to the eclipse-based KerMeta
environment.

The UML diagrams which appear in this dissertation have been realized with NoMagic’s Mag-
icDraw [NoM07] CASE tool which has the advantage to be very close to the standard in its
metamodel implementation and to provide an integrated support for profiles. Concerning OCL,
MagicDraw allows the specification of rules defined both at the meta-model level (we encoded
some of the well-formedness rules for our profiles in the tool) and model level (in this case rules
will be evaluated on model element instances) and their evaluation. Therefore, FIDJI analysis
and design profiles can be defined in MagicDraw and can be used to validate user-defined archi-
tectural framework models.

There are some FIDJI model elements that are not based on UML. This is especially true
at the analysis level: use cases and data dictionaries (domain concepts, operations...). We
already mentioned that textual use case descriptions can be embedded in the UML use case
components which they are associated to via its “packaging” facility: thus any component can
own instances of Artifact refering to any file on a physical system. Concerning data dictionaries,
tabular notations can be easily managed using a relational database whose schemas are deduced
from table columns. The traceability file linking REQET elements and analysis can also be
implemented via a table in such a database.

Architectural Framework Instantiation Support

Our approach to model transformation supporting the architectural framework instantiation
has been designed to facilitate its translation/implementation in model transformation lan-
guages/tools:

8.1. General Considerations 199

• Language Syntax: The imperative syntax of the language used to define an instantiation
program is borrowed from general purpose programming languages such as JAVA [GJSB05].
As we have seen in Chapter 2, there are transformation environments that support such
an imperative approach;

• Transformation Operations: As we have seen, transformation operations are specified
declaratively in terms of OCL pre/postcondtions. These conditions can be used to define
a library of transformations supporting the instantiation of FIDJI models. For example, in
the ATL language and engine [JK05], preconditions and postconditions can be adapted to
the ATL language (whose syntax is actually very close to OCL) to form “matched rules”
which can be called by other rules.

There are several possibilities to support the FIDJI transformation language (which is currently
seen more as a front-end enabling the seamless definition of instantiation programs but may
evolve as a transformation language on its own). Yet, we believe that in parallel with the
development of QVT [OMG05b], OCL-based hybrid languages such as ATL [JK05] will develop
and be integrated with UML modeling tools (so far only Borland’s Together has provided both
UML and QVT support) to ease architectural framework instantiation.

8.1.4 Method Process Model

We outlined in Chapter 3 that the waterfall process model was well-suited for the FIDJI method.
However, it may be interesting to consider a more incremental development process (such as
Boehm’s spiral [Boe88]). In particular, this is worthwhile for the customer-specific part of the
application; an incremental process would allow to validate several series of prototypes with the
customers before the product is finished. In order to do so we should handle the following issues:

• Partial Instantiation: The capacity to cope with a partial instantiation of the architec-
tural framework at any of its abstraction layers is a necessity;

• Partial Consistency: Since partial instantiation will induce partial product models,
partial consistency checking has to be supported.

The first issue deals with instantiation constraints; they should be designed so that partial in-
stantiation is possible. One option is to organize instantiation constraints in several categories
depending on the completion degree of the product. With such priorities, product engineers
would know which instantiation constraints have to be ensured at any time during the develop-
ment and which ones can be safely ignored in the context of a prototype.

Addressing the second issue requires a flexible approach to consistency management. Sendall
and Küster have discussed this point in [SK04]. In particular, in the context of an approach
called “model round-trip engineering”, they have identified the following steps:

• defining under what circumstances the models in question are consistent and inconsistent;

• deciding when inconsistent models should be made consistent again;

• devising a plan for reconciling the models according to the intent and expectations of the
user;

200 8. Perspectives

• applying the devised plan by reconciling the models.

Assuming that the first step has been covered by consistency rules to be applied on FIDJI
models, we need to identify consistency rules that can be omitted for prototypes and those that
must be true for any partial product. In our context, the reconciliation plan will be based on
the priority of the consistency rules violated. The last step can be performed via the definition
of a few new transformations in the instantiation program.
There is an alternative for checking all the consistency rules and then deciding which of them
can be ignored. It is possible to check only the relevant rules (as determined by the priority
of consistency rules). If this is not an issue for specific rules that may be defined in the FIDJI
profile, this can be problematic for UML consistency rules that are often automatically checked
by CASE tools. In this perspective, following an approach such as the one described in [BRpG07]
regarding differed consistency rule application is interesting.

8.2. Specific Issues 201

8.2 Specific Issues

In this section, we describe some interesting issues related to specific points of the FIDJI method.

8.2.1 Requirements Elicitation and Analysis

In this section, we discuss limitations and future research directions related to the requirements
elicitation and analysis phases of the methodology.

8.2.2 REQET

We have identified two points which deserve future work:

• Variability Global View: Currently, variants are scattered across the sub-templates
which is a tricky situation. It would be desirable to have a global view on these variants
and their relationships. Moreover, such a view would simplify internals consistency checks;

• Dependencies Nature: The nature of dependencies (inheritance, composition) in the
DOMET is deliberately left open.

Concerning the first point, we propose to add an additional viewpoint for the template to fo-
cus on showing variants globally. As we have seen in Chapter 2, feature models provide the
necessary constructs to deal with variability at the requirements elicitation level. Since all
the variability information of a REQET-based SPL description could be gathered in this view,
consistency checking amongst variants can be easier. Furthermore, thanks to the well-founded
semantics [SHTB06] of feature models, we have given in [GP06] a set of consistency rules that
can be used as guides to define SPL instantiation constraints at the analysis level.

The second point is methodological; though we believe that we should not restrict the types
of dependencies offered by REQET, a taxonomy of useful types and their impact on the whole
description may be useful to guide SPL analysts. Such a taxonomy has to be defined and vali-
dated over case studies in order to assess its usefulness.

8.2.3 FIDJI Analysis

State Variables Expressiveness at the Analysis Level

Our motivation to specify operation sequencing in the use case and operation models through
state variable has arisen from the observation that it is impossible to define all the possible
operation sequences for the system in a global manner. This led us to work at the operation
and use case step levels and to focus on mandatory and unauthorized sequences, leaving more
freedom to instantiate an architectural framework scenario for a given product. It may be
interesting to compare the expressiveness of this formalism with other existing approaches such
as UML 2.0 sequence diagrams or Fusion regular expressions (which are derivable into state
machines [CAB+94]). To do so, the semantics of the formalisms to be compared has to be
formalized first. Then expressiveness can be assessed by translating one formalism into another.

202 8. Perspectives

Answering to such a question can have important consequences at the methodological level since
it may influence the type of variability the SPL may support and as a consequence the way it is
designed.
Another interesting consequence of the answer is the possibility to translate FIDJI use cases in
terms of UML 2.0 sequence diagrams; this is maybe useful to communicate more easily with
stakeholders or to generate test cases.

Transactional Composition of Operations

In the first paragraph of Section 4.2.3, we motivated our choice for a simple view on the func-
tionality of the system based on asynchronous events and instantaneous operations à la Fu-
sion. However, in some cases, it may be useful to consider the instantaneous execution of a
sub-scenario resulting from the execution of an operation sequence. For example, consider a
registration process in an university; a prospective student submits to a dean a file describing
his previous studies as well as administrative and financial information. The dean will request
the university to register this student. The university will process the request and check with
the student’s bank whether the current amount on his account is greater than the university
registration fee. Finally, the university will inform the dean whether the registration is possible
or not, and the dean will notify the prospective student.
This process when implemented will probably comprise both synchronous (since the dean may
wait for the university to check with the bank whether the student is solvent or not) and asyn-
chronous execution of operations resulting in the intermediate system states.
Specifying this process in such a way is not permitted in the execution model we chose. One
possible workaround to this issue is to introduce a transactional concept for composing oper-
ations. The registration process shown above can be seen as a transaction embedding several
operations and executed atomically. For our execution model, a transaction will behave as if
it were a single operation whose preconditions and postconditions are derived from those as-
sociated with the operations embedded in the transaction. It may be argued that, if for the
execution model a transaction behaves as an operation and corresponds to a sub-scenario in a
use case, why not simplify the scenario and define a simple operation instead ? We think that
by using too coarse-grained operations, we would fail to capture the interactions between the
actors and the system in a useful manner; for example, in our registration process, this would
imply that there is only one interaction between the student and the dean, therefore we would
miss all the interactions between the system and the bank.

The schema for transactions is inspired by the one for operations is depicted below:

Transaction Name: <name of operation>

Description: <natural language description of the operation>

Attributes/Parameters: Union of all parameters defined for the embedded operations

Sends: Union of all signals sent by the embedded operations

Preconditions: Conjunction of all preconditions of the embedded operations

Postconditions: Conjunction of all postconditions of the embedded operations

Embedded Operations: List of the participating operations ordered as dictated by the use
case steps of the transaction

8.2. Specific Issues 203

8.2.4 FIDJI Design

Concerning the design phase of the FIDJI methodology, a few points deserve further investiga-
tion.

Gluing

As we have seen in Chapter 5, our design models support the independent modeling of archi-
tectural components and connectors (thus allowing architectural style modeling) that have to
be “glued” in the actual models of the architectural framework. Currently, this gluing process
is based on matching the virtual operations with interface operations and verifying that this
matching is compatible with the connector behavior. We have also underlined that we wanted
to have a flexible notion of compatibility in order to have a wide range of situations in which ar-
chitectural styles may be used. It might be useful to precisely define how this compatibility can
be assessed at the semantic level in order to guide SPL developers to determine the applicability
of a given architectural style. We think that formalization has clearly a role to play to achieve
such guidance. This would allow us to give precise constraints on virtual operation matching.
The first approach would be to think that these conditions are those of a formal refinement
relationship between the virtual operation and the matched component’s interface operation.
However, as demonstrated by Allen and Garlan [AG97], this is unnecessarily restrictive: there
are cases in which incompatible behavior will never be reached by a given port thus making
matching possible. Allen and Garlan described their compatibility notion by reasoning on the
traces of roles and ports. However they did not formalize their approach (they illustrate it with
a few examples) which makes it difficult to systematize in a methodological perspective.

Selection of Architectural Styles

We provided a few architectural styles that are useful for the kind of applications targeted by
the method, i.e. multitier web applications. More experience is required to actually assess
these styles with respect to the methodological context and application domain. As opposed
to design patterns which have been specialized for a particular platform such as J2EE (Alur
et al. [ACM01]), architectural styles are very general building blocks. The good side is that
this generality makes architectural styles reusable but this turns out to have a disadvantage in
that it is more difficult to choose the architectural style that is appropriate to the architectural
framework being modeled. As noted by Shaw and Clements [SC06] the relationships that exist
between a given style and the quality attributes it is supporting should be expanded. Since
quality attributes reflect a particular domain (e.g. “performance” will not have the same prior-
ity in a real-time embedded context as in the web-applications one), linking architectural styles
with the domain will also force architectural style writers to reason about the quality attributes
these styles enforce.
If we relate this to vertical transformation support, one can imagine that modeling tools will as-
sist architectural framework designers in modeling the design layer by providing transformations
that create the architecture of the architectural framework in accordance with a particular style.
This approach is already used at the design pattern level; for example, the MagicDraw CASE
tool [NoM07] supports the application of the “Gang of Four” Design patterns [GHJV95] and we
illustrated in [GP04] how a vertical transformation supporting the value object pattern [ACM01]
can be defined.

204 8. Perspectives

Implementation

Naturally, design is not the ultimate phase of a software system development, therefore, an im-
plementation phase should be provided in order to complete the methodology. The first point
is to provide a detailed design phase that takes into account the specificities of a given platform
(a platform-specific model in the MDA meaning). This can be done using of dedicated UML
profiles such as the metamodel and profile for EJB [OMG04] distributed as part of the OMG’s
Enterprise Distributed Object Computing (EDOC) profile. The second point is related to the
translation of this detailed model into the actual code of the architectural framework. One inter-
esting research direction is to study how architectural elements are mapped into code elements;
for example, a UML component may be mapped either as a JAVA class or as a package which
consists of JAVA files implementing the component. Here again, vertical transformations have
to be defined in order to assist the development process.

We have mentioned in Chapter 3 that the implementation layer of an architectural framework
contains an object-oriented framework. Concerning instantiation constraints, OCL constraints
are not suitable at this level. Moreover, constraints have to be specified directly in the imple-
mentation language. In Chapter 2, we presented Hou et al.’s [HHR04] approach for defining
instantiation constraints at the source code level. An interesting topic would be to see how
design instantiation constraints can be rewritten in the target implementation language and
possibly performed while generating architectural framework source code via vertical transfor-
mations.
Performing product derivation at this level means instantiating the object-oriented framework.
Research issues at this level should investigate whether examples of product derivations (which
correspond to the set of all previous applications developed on the basis of this architectural
framework) are sufficient to guide developers. We should determine whether it is practical to
develop the implementation directly or if a dedicated transformation language (which cannot be
based on OCL for the same reason as above) working on source code is more convenient for an
efficient and reliable object-oriented framework implementation.

8.3. Long-term Perspectives 205

8.3 Long-term Perspectives

8.3.1 SPL-Based Testing

As noted in [MvdH03], testing software product lines is different from testing “normal” software
since all its constituents do not have the same importance (e.g. when performing unit testing,
more attention should be paid to a mandatory component than to an optional one) and the
inherent variability of products makes conformance testing difficult. It is also necessary to de-
termine which assets do not need to be tested for a particular product. In the context of the
FIDJI method, two points have to be explored.

First, new techniques for testing an architectural framework have to be defined. Indeed, current
techniques [KKT06] are based on the explicit documentation of asset variability in order to
derive test scenarios. As FIDJI does not document variability in the same way, an approach
to “test by restriction” should be devised in order to ensure that the implementation of the
architectural framework does not support requirements prohibited by instantiation constraints.
Therefore, we have to explore how instantiation constraints can be combined with standard test
techniques in order to effectively test an architectural framework.

The second point refers to the reuse of test scenarios. The key idea is to define how the in-
stantiation program can be used to transform test cases of the architectural framework at the
domain engineering level into “single product test cases” at the application engineering level.
Such a mechanism would have the advantage over template-based methods [OG06] to take into
account application specific features and not only those of the domain assets.

8.3.2 Architectural Framework Life-cycle

In this dissertation, we focused on providing a metamodel for architectural framework descrip-
tion, but not on its development. In the following, we give a few research directions to manage
the whole architectural framework life-cycle.

Creation

FIDJI essentially endorses a “top down” approach to SPL-based development and the metamodel
we have given may support the definition of a SPL from requirements elicitation to design
using this approach. But not all product lines are initiated in a new company or in a fresh
branch of a company; in many cases, software product lines are identified after several successful
developments which have common features and on which the company may wish to emphasize.
At the technical level, this means that some implementation classes may have already been
factorized and reused for the development of these products thus forming the basis for an object-
oriented framework built “bottom up”. Our design model being component-based, it facilitates
the construction of the architectural framework design layer from heterogeneous components
and the use of state variables at the connector level allows to “glue” components with more
flexibility. However, more research is required to define such a reverse engineering process and
how design instantiation constraints could be derived from it.

206 8. Perspectives

Evolution

We mentioned that our instantiation approach was promoting SPL evolution as the instantia-
tion program for one product may be used to evolve the architectural framework itself. This is
interesting on account of the fact that the need for new features for the SPL generally arises
when developing a new product. Note that this evolution may be partial; indeed, only some
of the instantiation program instructions may be relevant to evolve the architectural frame-
work while the other ones are specializations that are useful only for one product. To do so, a
feature has to be traced from its description at requirements elicitation level to its realization
via transformation instructions in the analysis and design instantiation programs. In order to
manage SPL evolution more efficiently, a repository containing features and their realization
may be defined and maintained (which may also be useful to foster instantiation program reuse
during product derivation). This approach shares some similarities with the Fireworks approach
proposed by Schobbens et al. [RS04]. More research has to be done to assess the feasibility of
such an approach in practice.

Some of the evolutions performed on the architectural framework, such as bug fixes, need to
be propagated to the products. Symmetrically, the instantiation program is used to make such
a propagation. However, the instantiation program which was used to perform architectural
framework evolution may not involve the same elements are those which have been reused by
the instantiation program to derive the product. Therefore, in a first step, it is necessary to
identify the product’s model elements that are subject to evolution. This can be done either
by examining instantiation programs or by comparing horizontal traceability links generated by
them. More research is needed to define traceability approaches facilitating this comparison and
methodological ways to perform it efficiently.

BIBLIOGRAPHY

[AAG95] Gregory D. Abowd, Robert Allen, and David Garlan. Formalizing style to under-
stand descriptions of software architecture. ACM Trans. Softw. Eng. Methodol.,
4(4):319–364, 1995.

[ABB+02] Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties, Oliver Lait-
enberger, Roland Laqua, Dirk Muthig, Barbara Paech, Jürgen Wüst, and Jörg
Zettel. Component-based Product Line Engineering with UML. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[ABM00] Colin Atkinson, Joachim Bayer, and Dirk Muthig. Component-based Product
Line Development: the KobrA approach. In Proceedings of the first conference
on Software product lines : experience and research directions, pages 289–309,
Norwell, MA, USA, 2000. Kluwer Academic Publishers.

[Abr96] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, New York, NY, USA, 1996.

[ACM01] D. Alur, J. Crupi, and D. Malks. Core J2EE patterns. Prentice Hall PTR Upper
Saddle River, NJ, 2001.

[AG97] Robert Allen and David Garlan. A formal basis for architectural connection.
ACM Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.

[AGP05] Paris Avgeriou, Nicolas Guelfi, and Gilles Perrouin. Evolution Through Architec-
tural Reconciliation. Electr. Notes Theor. Comput. Sci., 127(3):165–181, 2005.

[AH04] C. Atkinson and O. Hummel. Towards a Methodology for Component-Driven
Design. In N. Guelfi, editor, RISE : rapid integration of software engineering
techniques, number 3475 in LNCS, pages 23–33, Luxembourg-Kirchberg, Luxem-
bourg, November 2004. Springer.

[AKL03] Aditya Agrawal, Gabor Karsai, and Akos Ledeczi. An end-to-end domain-driven
software development framework. In OOPSLA ’03: Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 8–15, New York, NY, USA, 2003. ACM Press.

[All97] Robert Allen. A Formal Approach to Software Architecture. PhD thesis, CMU
School of Computer Science, January 1997. CMU-SCS-97-144.

[AR03] E. Astesiano and G. Reggio. Towards a well-founded UML-based development
method. In Proceedings of the First International Conference on Software Engi-
neering and Formal Methods, pages 102–115, 2003.

[ARNRSG06] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. Model Trace-
ability. IBM Systems Journal, 45(3):515–525, 2006.

208 Bibliography

[BA96] S.A. Bohner and R.S. Arnold. An introduction to software change impact analysis.
In Software Change Impact Analysis, pages 1–26. IEEE Computer Society, 1996.

[BBB+05] Jean Bézivin, Mireille Blay, Mokrane Bouzeghoub, Jacky Estublier, and
Jean Marie Favre. As mda: Ingénierie dirigée par les modèles; rapport de synthèse.
Technical report, CNRS, Janvier 2005.

[BCD+00] Len Bass, Paul Clements, Patrick Donohoe, John McGregor, and Linda Northrop.
Fourth product line practice workshop report. Technical Report CMU/SEI-2000-
TR-002, Software Engineering Institute, 2000.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
SEI Series in Software Engineering. Addison Wesley, 2nd edition, 2003.

[BCR94] V. Basili, G. Caldiera, and H.D. Rombach. The Goal Question Metric Approach.
In Encyclopedia of Software Engineering. John Wiley & Sons, 1994.

[BCRP05] A. Boronat, JÁ Carśı, I. Ramos, and J. Pedrós. An approach for cross-model
semantic transformation on the .net framework. In Vaclav Skala and Piotr Nien-
altowski, editors, .NET conference Technologies, University of Western Bohemia,
Czech Republic, 2005.

[BCS00] Don Batory, Rich Cardone, and Yannis Smaragdakis. Object-oriented frame-
works and product lines. In P. Donohoe, editor, Proceedings of the First Software
Product Line Conference, pages 227–247, 2000.

[BD99] Greg Butler and Pierre Denommée. Documenting frameworks. In M. Fayad,
D. Schmidt, and R. Johnson, editors, Building Application Frameworks, chap-
ter 21. Wiley & Sons, 1999.

[BDP07] Frédéric Boniol, Philippe Dhaussy, and Claire Pagetti. Points de Vue et
Sémantiques Ad Hoc. In SéMO’ 07 at IDM, Toulouse, France, 2007.

[BEA] BEA. Weblogic website,. http://www.bea.com/framework.jsp?CNT=index.
htm\&FP=/content/products/weblogic/.

[Béz05] J. Bézivin. On the unification power of models. Software and Systems Modeling,
4(2):171–188, 2005.

[BFG+01] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, Henk Obbink, and
Klaus Pohl. Variability Issues in Software Product Lines. In PFE4, pages 11–19,
2001.

[BFJ+03] Jean Bézivin, Nicolas Farcet, Jean-Marc Jézéquel, Benôıt Langlois, and Damien
Pollet. Reflective model driven engineering. In UML 2003, 2003.

[BFS02] Julian C. Bradfield, Juliana Küster Filipe, and Perdita Stevens. Enriching ocl us-
ing observational mu-calculus. In FASE ’02: Proceedings of the 5th International
Conference on Fundamental Approaches to Software Engineering, pages 203–217,
London, UK, 2002. Springer-Verlag.

[BG01] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the OMG/MDA
Framework. In ASE ’01: Proceedings of the 16th IEEE international conference
on Automated software engineering, page 273, Washington, DC, USA, 2001. IEEE
Computer Society.

http://www.bea.com/framework.jsp?CNT=index.htm\&FP=/content/products/weblogic/
http://www.bea.com/framework.jsp?CNT=index.htm\&FP=/content/products/weblogic/

Bibliography 209

[BGK98] G. Butler, P. Grogono, and F. Khendek. A reuse case perspective on document-
ing frameworks. In APSEC ’98: Proceedings of the Fifth Asia Pacific Software
Engineering Conference, page 94, Washington, DC, USA, 1998. IEEE Computer
Society.

[BGMW00] Joachim Bayer, Cristina Gacek, Dirk Muthig, and Tanya Widen. Pulse-i: De-
riving instances from a product line infrastructure. In 7th IEEE International
Conference and Workshop on the Engineering of Computer Based Systems, page
237, Los Alamitos, CA, USA, 2000. IEEE Computer Society.

[Bib97] Olivier Biberstein. CO-OPN/2: An Object-Oriented Formalism for the Specifi-
cation of Concurrent Systems, PhD thesis no 2919. PhD thesis, University of
Geneva, 1997.

[Big06] BigLever. GEARS Website http://www.biglever.com/index.html, 2006.

[BJ94] Kent Beck and Ralph E. Johnson. Patterns generate architectures. In ECOOP
’94: Proceedings of the 8th European Conference on Object-Oriented Program-
ming, pages 139–149, London, UK, 1994. Springer-Verlag.

[BLO03] L. C. Briand, Y. Labiche, and L. O’Sullivan. Impact Analysis and Change Man-
agement of UML Models. In ICSM ’03: Proceedings of the International Con-
ference on Software Maintenance, Washington, DC, USA, 2003. IEEE Computer
Society.

[BLOS06] L. C. Briand, Y. Labiche, L. O’Sullivan, and M. M. Sówka. Automated impact
analysis of uml models. Journal of Systems and Software, 79(3):339–352, 2006.

[BLY06] L. C. Briand, Y. Labiche, and T. Yue. Vertical impact analysis of uml models.
Technical Report SCE-06-06, Carleton University, April 2006.

[BM03] P. Braun and F. Marschall. Transforming Object Oriented Models with BOTL.
Electronic Notes in Theoretical Computer Science, 72(3), 2003.

[BMW99] Joachim Bayer, Dirk Muthig, and Tanya Widen. Customizable domain analysis.
In GCSE ’99: Proceedings of the First International Symposium on Generative
and Component-Based Software Engineering, pages 178–194, London, UK, 1999.
Springer-Verlag.

[BNT02] Robert Biddle, James Noble, and Ewan D. Tempero. Supporting reusable use
cases. In ICSR-7: Proceedings of the 7th International Conference on Software
Reuse, pages 210–226, London, UK, 2002. Springer-Verlag.

[Boe88] Barry W. Boehm. A spiral model of software development and enhancement.
Computer, 21(5):61–72, 1988.

[Boo94] Grady Booch. Object-oriented analysis and design with applications (2nd ed.).
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994.

[Bor] Borland. Visibroker website. http://www.borland.com/us/products/
visibroker/index.html.

[Bor07] Borland. Together website. http://www.borland.com/us/products/together/
index.html, February 2007.

http://www.biglever.com/index.html
http://www.borland.com/us/products/visibroker/index.html
http://www.borland.com/us/products/visibroker/index.html
http://www.borland.com/us/products/together/index.html
http://www.borland.com/us/products/together/index.html

210 Bibliography

[Bos00] Jan Bosch. Design and Use of Software Architectures. Addison-Wesley, 2000.

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois Yergeau.
Extensible markup language (xml) 1.0. Technical report, World Wide Web Con-
sortium, 2006.

[BRpG07] Xavier Blanc, Laurent Rioux, and Marie pierre Gervais. Gestion de la cohérence
des modèles au cours de la construction. In IDM, Toulouse, France, 2007.

[BTRC05] D. BENAVIDES, P. TRINIDAD, and A. RUIZ-CORTES. Automated reason-
ing on feature models. In 17th Conference on Advanced Information Systems
Engineering, Lecture notes in computer science, pages 491–503. Springer, 2005.

[BV06] András Balogh and Dániel Varró. Advanced model transformation language con-
structs in the viatra2 framework. In SAC ’06: Proceedings of the 2006 ACM
symposium on Applied computing, pages 1280–1287, New York, NY, USA, 2006.
ACM Press.

[CA05] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template
Approach based on Superimposed Variants. In 4th international conference Gen-
erative programming and component engineering, volume 3676 of LNCS, pages
422–437. Springer-Verlag, 2005.

[CAB+94] Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena Gilchrist,
Fiona Hayes, and Paul Jeremaes. Object-Oriented Development: the Fusion
Method. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[Car03] Eric Cariou. Contribution un processus de rification d’abstractions de communi-
cation. PhD thesis, Ecole Doctorale Matisse, Université de Rennes 1, 2003.

[CBB+02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, and Judith Stafford. Documenting Software Architectures:
Views and Beyond. Addison-Wesley, 2002.

[CBUE02] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich W. Eisenecker.
Generative Programming for Embedded Software: An Industrial Experience Re-
port. In GPCE ’02: Proceedings of the 1st ACM SIGPLAN/SIGSOFT conference
on Generative Programming and Component Engineering, pages 156–172, Lon-
don, UK, 2002. Springer-Verlag.

[CD94] Steve Cook and John Daniels. Designing object systems: object-oriented modelling
with Syntropy. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[CE00] Kryztof Czarnecki and Ulrich Eisenecker. Generative programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley Publishing, 2000.

[CH06] K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation Ap-
proaches. IBM Systems Journal, 45(3):621–646, 2006.

[Che76] Peter Pin-Shan Chen. The entity-relationship model–toward a unified view of
data. ACM Trans. Database Syst., 1(1):9–36, 1976.

[CHE05a] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing Cardinality-based Fea-
ture Models and their Specialization. Software Process Improvement and Practice,
10(1):7–29, 2005.

Bibliography 211

[CHE05b] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged Configuration
through Specialization and Multilevel Configuration of Feature Models. Software
Process: Improvement and Practice, 10(2):143–169, 2005.

[CHW98] James Coplien, Daniel Hoffman, and David Weiss. Commonality and variability
in software engineering. IEEE Software, 15(6):37–45, 1998.

[CK02] Maŕıa Victoria Cengarle and Alexander Knapp. Towards OCL/RT. In FME ’02:
Proceedings of the International Symposium of Formal Methods Europe on Formal
Methods - Getting IT Right, pages 390–409, London, UK, 2002. Springer-Verlag.

[CK04] Maŕıa Victoria Cengarle and Alexander Knapp. UML 2.0 Interactions: Seman-
tics and Refinement. In Jan Jürjens, Eduardo B. Fernandez, Robert France,
and Bernhard Rumpe, editors, 3rd International. Workshop on Critical Systems
Development with UML (CSDUML ’04, Proceedings), pages 85–99. Technische
Universität München, 2004.

[CK05] Maŕıa Victoria Cengarle and Alexander Knapp. Operational Semantics of UML
2.0 Interactions. TUM-Report TUM-I0505, Technische Universität München,
München, 2005.

[CMSD04] Eric Cariou, Raphael Marvie, Lionel Seinturier, and Laurence Duchien. Ocl for
the specification of model transformation contracts. In OCL and Model Driven
Engineering (at UML 2004), 2004.

[CMU07] CMU. Acmestudio website. http://www.cs.cmu.edu/~acme/AcmeStudio/
index.html, 2007.

[CN01] Paul Clements and Linda Northrop. Software Product Lines: Practices and Pat-
terns. Addison Wesley, Reading, MA, USA,, 2001.

[CO93] Stephen J. Cannan and Gerard A.M. Otten. SQL–the Standard Handbook: Based
on the New SQL Standard (ISO 9075: 1992 (E)). McGraw-Hill, 1993.

[Coc] Alistair Cockburn. http://www.usecases.org.

[Coc01] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Professional,
2001.

[Com06] Compuware. Optimalj website. http://www.compuware.com/products/
optimalj/default.htm, 2006.

[Dah68] Ole-Johan Dahl. SIMULA 67 common base language. Norwegian Computing
Center, 1968.

[DDQ78] P.J. Denning, J.B. Dennis, and J.E. Qualitz. Machines, Languages and Compu-
tation. Prentice Hall Professional Technical Reference, 1978.

[DH01] Werner Damm and David Harel. LSCs: Breathing life into message sequence
charts. Formal Methods in System Design, 19(1):45–80, 2001.

[Dic02] J. Dick. Rich traceability. In Proceedings of the 1st International Workshop on
Traceability in Emerging Forms of Software Engineering, Edinburgh, Scotland,
2002.

http://www.cs.cmu.edu/~acme/AcmeStudio/index.html
http://www.cs.cmu.edu/~acme/AcmeStudio/index.html
http://www.usecases.org
http://www.compuware.com/products/optimalj/default.htm
http://www.compuware.com/products/optimalj/default.htm

212 Bibliography

[Dij72] Edsger W. Dijkstra. The humble programmer. Commun. ACM, 15(10):859–866,
1972.

[dLV02] Juan de Lara and Hans Vangheluwe. Atom3: A tool for multi-formalism and
meta-modelling. In FASE ’02: Proceedings of the 5th International Conference
on Fundamental Approaches to Software Engineering, pages 174–188, London,
UK, 2002. Springer-Verlag.

[DS99] Jean-Marc DeBaud and Klaus Schmid. A systematic approach to derive the scope
of software product lines. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering, pages 34–43, Los Alamitos, CA, USA, 1999.
IEEE Computer Society Press.

[DSB04] Sybren Deelstra, Marco Sinnema, and Jan Bosch. Experiences in Software Prod-
uct Families: Problems and Issues during Product Derivation. In SPLC3, pages
165–182, September 2004.

[DSB05] Sybren Deelstra, Marco Sinnema, and Jan Bosch. Product derivation in software
product families: a case study. J. Syst. Softw., 74(2):173–194, 2005.

[DW99] Desmond F. D’Souza and Alan Cameron Wills. Objects, components, and frame-
works with UML: the catalysis approach. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[EB04] M. Elaasar and Lionel C. Briand. An overview of uml consistency management.
Technical Report SCE-04-18, Carleton University, August 2004.

[Egi02] Egidio Astesiano and Michel Bidoit and Hélène Kirchner and Bernd Krieg-Brück-
ner and Peter Mosses and Donald Sannella and Andrzej Tarlecki. CASL: the
common algebraic specification language. Theor. Comput. Sci., 286(2):153–196,
2002.

[EN04] S.M. Easterbrook and B.A. Nuseibeh. What is requirements engineering? In
Fundamentals of Requirements Engineering. 2004.

[Fav04a] Jean-Marie Favre. Towards a basic theory to model model driven engineering. In
3rd Workshop in Software Model Engineering, UML 2004 Satellite Event, 2004.

[Fav04b] J.M. Favre. Foundations of Model (Driven)(Reverse) Engineering: Models.
In Dagsthul Seminar on Language Engineering for Model Driven Development,
DROPS, http://drops. dagstuhl. de/portals/04101, 2004.

[FDVF06] Franck Fleurey, Zoé Drey, Didier Vojtisek, and Cyril Faucher. Kermeta language
reference manual. Technical report, IRISA, 2006.

[FGJ+03] Alessandro Fantechi, Stefania Gnesi, Isabel John, Giuseppe Lami, and Jörg Dörr.
Elicitation of Use Cases for Product Lines. In PFE2003: 5th International Work-
shop on Software Product-Family Engineering, Lecture Notes in Computer Sci-
ence, pages 152–167, Siena, Italy, 2003. Springer.

[FGLN04] Alessandro Fantechi, Stefania Gnesi, Giuseppe Lami, and E. Nesti. A methodol-
ogy for the derivation and verification of use cases for product lines. In SPLC,
pages 255–265, 2004.

Bibliography 213

[FJ00] Mohamed E. Fayad and Ralph E. Johnson. Domain-specific application frame-
works: framework experience by industry. John Wiley & Sons, Inc., New York,
NY, USA, 2000.

[Fla03] Stephan Flake. Temporal ocl extensions for specification of real- time constraints.
In Workshop Specification and Validation of UML models for Real Time and
Embedded Systems (SVERTS’03) at UML 2003, San Fransico, CA, USA, 2003.

[FM04] Stephan Flake and Wolfgang Mueller. Past- and future-oriented time-bounded
temporal properties with ocl. In SEFM ’04: Proceedings of the Software Engi-
neering and Formal Methods, Second International Conference on (SEFM’04),
pages 154–163, Washington, DC, USA, 2004. IEEE Computer Society.

[FO85] M. Fridrich and W. Older. Helix: The architecture of the XMS distributed file
system. IEEE Software, 2(3):21–29, 1985.

[Fou] Apache Software Foundation. Axis project. http://ws.apache.org/axis/.

[FPB87] Jr. Frederick P. Brooks. No silver bullet: essence and accidents of software engi-
neering. Computer, 20(4):10–19, 1987.

[FPR00] Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe. The Uml Profile for
Framework Architectures. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

[FS97] Mohamed Fayad and Douglas C. Schmidt. Object-oriented application frame-
works. Commun. ACM, 40(10):32–38, 1997.

[FTV02] Lidia Fuentes, José M. Troya, and Antonio Vallecillo. Using uml profiles for
documenting web-based application frameworks. Ann. Softw. Eng., 13(1-4):249–
264, 2002.

[FV04] Lidia Fuentes and Antonio Vallecillo. An introduction to uml profiles. UPGRADE
(European Journal for the Informatics Professionals), V(2):6–13, April 2004.

[G9̈5] Andreas Günter. Wissensbasiertes Konfigurieren–Ergebnisse aus dem Projekt
PROKON. Infix Sankt Augustin, 1995.

[GAK99] George Yanbing Guo, Joanne M. Atlee, and Rick Kazman. A Software Architec-
ture Reconstruction Method. In WICSA1: Proceedings of the TC2 First Working
IFIP Conference on Software Architecture (WICSA1), pages 15–34, Deventer,
The Netherlands, The Netherlands, 1999. Kluwer, B.V.

[GFdA98] M. L. Griss, J. Favaro, and M. d’ Alessandro. Integrating Feature Modeling with
the RSEB. In ICSR ’98: Proceedings of the 5th International Conference on
Software Reuse, Washington, DC, USA, 1998. IEEE Computer Society.

[GGMP06] Barbara Gallina, Nicolas Guelfi, Andreea Monnat, and Gilles Perrouin. A Tem-
plate for Product Line Requirement Elicitation. Technical Report TR-LASSY-
06-08, Laboratory for Advanced Software Systems, University of Luxembourg,
2006.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

http://ws.apache.org/axis/

214 Bibliography

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, Third Edition. Addison-Wesley Professional, 2005.

[GK07] Nicolas Guelfi and Jacques Klein. SPLIT - A Software Product Line
Transformation Language. http://se2c.uni.lu/tiki/tiki-index.php?page=
SplitOverview, 2007.

[GL00] Wolfgang Grieskamp and Markus Lepper. Using use cases in executable z. In
ICFEM ’00: Proceedings of the 3rd IEEE International Conference on Formal
Engineering Methods, page 111, Washington, DC, USA, 2000. IEEE Computer
Society.

[GLR+02] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood. Transformation: The
missing link of mda. In First International Conference on Graph Transformation,
ICGT, 2002.

[GM95] Dipayan Gangopadhyay and Subrata Mitra. Understanding frameworks by ex-
ploration of exemplars. In CASE ’95: Proceedings of the Seventh International
Workshop on Computer-Aided Software Engineering, page 90, Washington, DC,
USA, 1995. IEEE Computer Society.

[GMW97] David Garlan, Robert Monroe, and David Wile. Acme: an architecture descrip-
tion interchange language. In CASCON ’97: Proceedings of the 1997 conference
of the Centre for Advanced Studies on Collaborative research, page 7. IBM Press,
1997.

[Gom04] Hassan Gomaa. Designing Software Product Lines with UML: From Use Cases
to Pattern-Based Software Architectures. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 2004.

[GP02] Nicolas Guelfi and Gilles Perrouin. Rigourous Engineering of Software Architec-
tures: Integrating ADLs, UML and Development Methodologies. In 6th Annual
IASTED International Conference on Software Engineering and Applications,
ACTA Press, pages 523–529, 2002.

[GP04] Nicolas Guelfi and Gilles Perrouin. Using Model Transformation and Architec-
tural Frameworks to Support the Software Development Process: the FIDJI Ap-
proach. In 2004 Midwest Software Engineering Conference, pages 13–22, 2004.

[GP06] Nicolas Guelfi and Gilles Perrouin. Coherent Integration of Variability Mecha-
nisms at the Requirements Elicitation and Analysis Levels. In Dirk Muthig and
Paul Clements, editors, Workshop on Managing Variability for Software Prod-
uct Lines: Working With Variability Mechanisms at 10th Software Product Line
Conference, Baltimore, MD, USA, 2006.

[GPR+03] Nicolas Guelfi, Gilles Perrouin, Benôıt Ries, Paul Sterges, and Shane Sendall.
MEDAL 1.0 Reference. Technical Report TR-CST-03-01, Luxembourg University
of Applied Sciences, December 2003.

[GPR04] Nicolas Guelfi, Cedric Pruski, and Benoit Ries. A Study of Mobile Internet
Technologies for Secure e-commerce Applications Development. In Techniques
and Applications for Mobile Commerce (TAMOCO) part of Multi-Konferenz
Wirtschaftsinformatik 2004, pages 194–203, 2004.

http://se2c.uni.lu/tiki/tiki-index.php?page=SplitOverview
http://se2c.uni.lu/tiki/tiki-index.php?page=SplitOverview

Bibliography 215

[GR83] Adele Goldberg and David Robson. Smalltalk-80: the language and its imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1983.

[GR02] Nicolas Guelfi and Benoit Ries. Using and Specializing a Pattern-Based E-
business Framework: An Auction Case Study. In 6th Annual IASTED Interna-
tional Conference on Software Engineering and Applications, ACTA Press, pages
512–522, 2002.

[Gro04] DoD Architecture Framework Working Group. Dod architecture framework ver-
sion 1.0 (volume i: Definitions and guidelines). Technical report, Department of
Defense, 2004.

[Gro06] The Open Group. Togaf v8.1.1. http://www.opengroup.org/togaf/, 2006.

[GRS03a] Nicolas Guelfi, Benôıt Ries, and Paul Sterges. JAFAR2: an Extensible J2EE
Architectural Framework for Web Applications. Technical Report TR-DIA-03-
05, Luxembourg University of Applied Sciences, December 2003.

[GRS03b] Nicolas Guelfi, Benôıt Ries, and Paul Sterges. MEDAL: A CASE Tool Extension
for Model-driven Software Engineering. In SwSTE’03 International Conference
on Software - Science, Technology & Engineering. IEEE Computer Society, 2003.

[GS02a] Hassan Gomaa and Michael Eonsuk Shin. Multiple-view meta-modeling of soft-
ware product lines. In ICECCS ’02: Proceedings of the Eighth International
Conference on Engineering of Complex Computer Systems, page 238, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

[GS02b] Nicolas Guelfi and Paul Sterges. JAFAR: Detailed Design of a Pattern-based
J2EE Framework. In 6th Annual IASTED International Conference on Software
Engineering and Applications, ACTA Press, pages 331–337, 2002.

[GSCK04] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. John
Wiley & Sons, 2004.

[Gup01] Ankur Gupta. Operation schemas syntactic and semantic analysis using
sablecc. http://lgl.epfl.ch/research/operation-schemas/report/index.
html, 2001.

[GW92] Fausto Giunchiglia and Toby Walsh. A theory of abstraction. Artif. Intell., 57(2-
3):323–389, 1992.

[HA04] O. Hummel and C. Atkinson. Extreme Harvesting: Test Driven Discovery and
Reuse of Software Components. In IEEE International Conference on Information
Reuse and Integration, pages 66–72, 2004.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Sciences of
Computer Programming, 8:231–274, 1987.

[Har03] Harald Störrle. Semantics of Interactions in UML 2.0. In International. Workshop
on Visual Languages and Formal Methods, at HCC’03, 2003.

[Her05] Jose Antonio Hernandez. SAP R/3 Handbook, Third Edition. McGraw-Hill Os-
borne Media, 2005.

http://www.opengroup.org/togaf/
http://lgl.epfl.ch/research/operation-schemas/report/index.html
http://lgl.epfl.ch/research/operation-schemas/report/index.html

216 Bibliography

[HH06] Daqing Hou and H. James Hoover. Using scl to specify and check design intent in
source code. IEEE Transactions on Software Engineering, 32(6):404–423, 2006.

[HHK+01a] Markku Hakala, Juha Hautamaki, Kai Koskimies, Jukka Paakki, Antti Viljamaa,
and Jukka Viljamaa. Annotating reusable software architectures with specializa-
tion patterns. In WICSA ’01: Proceedings of the Working IEEE/IFIP Conference
on Software Architecture (WICSA’01), page 171, Washington, DC, USA, 2001.
IEEE Computer Society.

[HHK+01b] Markku Hakala, Juha Hautamäki, Kai Koskimies, Jukka Paakki, Antti Viljamaa,
and Jukka Viljamaa. Generating application development environments for java
frameworks. In GCSE ’01: Proceedings of the Third International Conference on
Generative and Component-Based Software Engineering, pages 163–176, London,
UK, 2001. Springer-Verlag.

[HHR04] Daqing Hou, H. James Hoover, and Piotr Rudnicki. Specifying framework con-
straints with fcl. In CASCON ’04: Proceedings of the 2004 conference of the
Centre for Advanced Studies on Collaborative research, pages 96–110. IBM Press,
2004.

[HHV+01] M. Hakal, J. Hautamaki, J. Viljamaa, K. Koskimies, J. Paakki, and A. Viljamaa.
Architecture-oriented programming using fred. In 23rd International Conference
on Software Engineering (ICSE’01). IEEE Computer Society, 2001.

[HJGP99] Wai Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, and François Pennaneac’h.
Umlaut: An extendible uml transformation framework. In ASE ’99: Proceedings
of the 14th IEEE international conference on Automated software engineering,
page 275, Washington, DC, USA, 1999. IEEE Computer Society.

[HMPOS04] Øystein Haugen, B. Møller-Pedersen, J. Oldevik, and A. Solberg. An MDA-based
Framework for Model-Driven Product Derivation. In Software Engineering and
Applications, pages 709–714. ACTA Press, 2004.

[Hoa85] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1985.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In Logics and
models of concurrent systems, pages 477–498. Springer-Verlag New York, Inc.,
New York, NY, USA, 1985.

[HP98] HP. Engineering process summary. Unpublished Technical Report, January 1998.

[HP03] Günter Halmans and Klaus Pohl. Communicating the variability of a software-
product family to customers. Software and Systems Modeling, 2(1):15–36, 2003.

[HR04] David Harel and Bernhard Rumpe. Meaningful modeling: What’s the semantics
of ”semantics”? Computer, 37(10):64–72, 2004.

[HWG00] O. Hollmann, T. Wagner, and A. Günter. EngCon: A Flexible Domain-
Independent Configuration Engine. In Proc. ECAI-Workshop Configuration,
page 94, 2000.

[HWK+06] L. Hotz, K. Wolter, T. Krebs, S. Deelstra, M. Sinnema, J. Nijhuis, and J. Mac-
Gregor. Configuration in Industrial Product Families, The ConIPF Methodology.
IOS Press, 2006.

Bibliography 217

[HWL+02] Marc Hoy, Dave Wood, Marc Loy, James Elliot, and Robert Eckstein. Java Swing.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.

[IBM] IBM. Websphere website. http://www-306.ibm.com/software/websphere/.

[IBM06] IBM. Rational software architect website. http://www-306.ibm.com/software/
awdtools/architect/swarchitect/index.html, 2006.

[IBM07] IBM. Requisite pro website. http://www-306.ibm.com/software/awdtools/
reqpro/, 2007.

[ICG+04] James Ivers, Paul Clements, David Garlan, Robert Nord, Bradley Schmerl, and
Jaime Rodrigo Oviedo Silva. Documenting Component and Connector Views with
UML 2.0. Technical Report CMU/SEI-2004-TR-008, CMU Software Engineering
Institute, April 2004.

[IEE00] IEEE. Recommended Practice for Architectural Description of Software Intensive
Systems. Technical Report IEEE-std-1471-2000, IEEE, 2000.

[ION] IONA. Orbix website. http://www.iona.com/products/orbix/.

[ISO91] ISO. Software product evaluation: Quality characteristics and guidelines for their
use. Technical Report ISO/IEC 9126, ISO/IEC, Geneva, Switzerland, 1991.

[Iso04] S. Isoda. On UML2. 0s Abandonment of the Actors-Call-Use-Cases Conjecture.
Journal of Object Technology, 4(6), 2004.

[ISO06] ISO/IEC. international standard for Software Process Assessment. Technical
Report ISO/IEC TR 15504, ISO, 2006.

[IT04] ITU-T. Message sequence chart. Technical Report Z.120, International Telcom-
munication Union, April 2004.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The unified software de-
velopment process. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

[JCJO92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard.
Object-Oriented Software Engineering: A Use Case Driven Approach. Addison-
Wesley Professional, 1992.

[JF88] Ralph E. Johnson and Brian Foote. Designing Reusable Classes. The Journal of
Object-Oriented Programming, 1(2):22–35, 1988.

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Model
Transformations in Practice Workshop at MoDELS, Montego Bay, Jamaica, 2005.

[JM02] Isabel John and Dirk Muthig. Tailoring Use Cases for Product Line Modeling.
In REPL02, pages 26–32, September 2002.

[Joh92] Ralph E. Johnson. Documenting frameworks using patterns. In OOPSLA ’92:
conference proceedings on Object-oriented programming systems, languages, and
applications, pages 63–76, New York, NY, USA, 1992. ACM Press.

[Jon86] C.B. Jones. Systematic software development using VDM. Prentice Hall Interna-
tional (UK) Ltd., Hertfordshire, UK, UK, 1986.

http://www-306.ibm.com/software/websphere/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/index.html
http://www-306.ibm.com/software/awdtools/architect/swarchitect/index.html
http://www-306.ibm.com/software/awdtools/reqpro/
http://www-306.ibm.com/software/awdtools/reqpro/
http://www.iona.com/products/orbix/

218 Bibliography

[Jou05] F. Jouault. Loosely coupled traceability for atl. In Proceedings of the European
Conference on Model Driven Architecture Workshop on Traceability, Nuremberg,
Germany, 2005.

[Kas00] Mohamed Mancona Kande and alfred strohmeier. Towards a UML profile for
Software Architecture Descriptions. In Third UML Conference, volume 1939,
pages 513–527, York, UK, October 2000. LNCS.

[Kaz01] Rick Kazman. Software architecture. In Handbook of Software Engineering and
Knowledge Engineering, pages 47–68. World Scientific Publishing, 2001.

[KBC05] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model transformation lan-
guage mola. In Model Driven Architecture, number 3599 in LNCS, pages 62–76.
Springer, 2005.

[KBW03] A. Kleppe, W. Bast, and J. Warmer. Mda Explained, the Model Driven Archi-
tecture: The Model Driven Architecture: Practice and Promise. Addison-Wesley
Professional, 2003.

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, November 1990.

[KCSS02] M. Kandé, V. Crettaz, A. Strohmeier, and S. Sendall. Bridging the gap between
IEEE 1471, an architecture description language, and UML. Software and Systems
Modeling, 1(2):113–129, 2002.

[KdB04] Marcel Kyas and Frank S. de Boer. On message specification in OCL. In Frank S.
de Boer and Marcello Bonsangue, editors, Compositional Verification in UML,
volume 101 of entcs, pages 73–93. elsevier, 2004.

[Kel05] Justin Kelleher. A reusable traceability framework using patterns. In TEFSE ’05:
Proceedings of the 3rd international workshop on Traceability in emerging forms
of software engineering, pages 50–55, New York, NY, USA, 2005. ACM Press.

[Ken02] Stuart Kent. Model Driven Engineering. In IFM ’02: Proceedings of the Third
International Conference on Integrated Formal Methods, pages 286–298, London,
UK, 2002. Springer-Verlag.

[Kic96] G. Kiczales. Aspect-oriented programming. ACM Comput. Surv., 28(4es):154,
1996.

[KKL+98] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moon-
hang Huh. FORM: A Feature-Oriented Reuse Method with Domain-Specific Ref-
erence Architectures. Ann. Softw. Eng., 5:143–168, 1998.

[KKT06] Peter Kanuber, Charles Krueger, and Tim Trew, editors. Third International
Workshop on Software Product Line Testing, volume CSR 003.06. Mannheim
University of Applied Sicences - Computer Science Departement, August 2006.

[KMHC05] Soo Dong Kim, Hyun Gi Min, Jin Sun Her, and Soo Ho Chang. DREAM: A
Practical Product Line Engineering Using Model Driven Architecture. In ICITA
’05: Proceedings of the Third International Conference on Information Technology
and Applications (ICITA’05) Volume 2, pages 70–75, Washington, DC, USA,
2005. IEEE Computer Society.

Bibliography 219

[KP03] Jens Knodel and Martin Pinzger. Improving fact extraction of framework-based
software systems. In WCRE ’03: Proceedings of the 10th Working Conference
on Reverse Engineering, page 186, Washington, DC, USA, 2003. IEEE Computer
Society.

[Kru95] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw., 12(6):42–
50, 1995.

[Kru02] Charles W. Krueger. Easing the Transition to Software Mass Customization.
In PFE ’01: Revised Papers from the 4th International Workshop on Software
Product-Family Engineering, pages 282–293, London, UK, 2002. Springer-Verlag.

[Kru03] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[Kru06] Charles W. Krueger. New Methods in Software Product Line Development. In
10th International Software Product Line Conference (SPLC’06), pages 95–102.
IEEE, 2006.

[KRW05] Douglas Kirk, Marc Roper, and Murray Wood. Identifying and Addressing Prob-
lems in Framework Reuse. In 13th International Workshop on Program Compre-
hension (IWPC05), 2005.

[KWH04] T. Krebs, K. Wolzter, and L. Hotz. Mass Customization for Evolving Product
Families. In Proc. of International Conference on Economic, Technical and Orga-
nizational Aspects of Product Configuration Systems, pages 79–86, Copenhagen,
Denmark, June 28-29 2004.

[KWH05] T. Krebs, K. Wolter, and L. Hotz. Model-based Configuration Support for Prod-
uct Derivation in Software Product Families. In Mass Customization, Concepts -
Tools - Realization, pages 279–292. GITO-Verlag, 2005.

[Lam01] Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In
RE ’01: Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering (RE ’01), page 249, Washington, DC, USA, 2001. IEEE Computer
Society.

[Lar02] Craig Larman. Applying UML and Patterns : An Introduction to Object-Oriented
Analysis and Design and Iterative Development (2nd Edition). Prentice Hall PTR,
2002.

[Ler05] Xavier Leroy. The objective caml system release 3.09. Technical report, Institut
National de Recherche en Informatique et en Automatique, 2005.

[Let02] Patricio Letelier. A framework for requirements traceability in uml-based projects.
In Proceedings of the 1st International Workshop on Traceability in Emerging
Forms of Software Engineering, pages 30–41, Edinburgh, Scotland, 2002.

[LGL02] LGL. The fondue method. http://lgl.epfl.ch/research/fondue/index.
html, October 2002.

[LGL05] LGL. Fondue builder website. http://fondue.epfl.ch/, 2005.

http://lgl.epfl.ch/research/fondue/index.html
http://lgl.epfl.ch/research/fondue/index.html
http://fondue.epfl.ch/

220 Bibliography

[LM96] James A. Landay and Brad A. Myers. Sketching storyboards to illustrate interface
behaviors. In CHI ’96: Conference companion on Human factors in computing
systems, pages 193–194, New York, NY, USA, 1996. ACM Press.

[LS79] Hugh C. Lauer and Edwin H. Satterthwaite. The impact of mesa on system
design. In ICSE ’79: Proceedings of the 4th international conference on Software
engineering, pages 174–182, Piscataway, NJ, USA, 1979. IEEE Press.

[MA02] Dirk Muthig and Colin Atkinson. Model-Driven Product Line Architectures. In
2nd Software Product Line Conference, pages 110–129, San Diego, CA, USA,
2002.

[MCG04] Tom Mens, Krysztof Czarnecki, and Pieter Van Gorp. A Taxonomy of Model
Transformations. In Dagstuhl Seminar Proceedings 04101, 2004.

[MEG03] Nenad Medvidovic, Alexander Egyed, and Paul Gruenbacher. Stemming Architec-
tural Erosion by Coupling Architectural Discovery and Recovery. In STRAW’03
: Second International SofTware Requirements to Architectures Workshop at
ICSE’03, pages 61–68, Portland, OR, USA, May 2003.

[Mey92] Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.

[MFJ05] P.A. Muller, F. Fleurey, and J.M. Jézéquel. Weaving executability into object-
oriented meta-languages. In MoDELS, Lecture notes in computer science, pages
264–278. Springer, 2005.

[MH05] Alessandro Maccari and Anders Heie. Managing infinite variability in mobile
terminal software. Software: Practice and Experience, 35(6):513–537, February
2005.

[Mic05] Sun Microsystems. Jsr 220: Enterprise javabeanstm,version 3.0. Technical report,
Sun Microsystems, 2005.

[Mic06a] Microsoft. Microsoft .net webpage. http://www.microsoft.com/net/default.
mspx, 2006.

[Mic06b] Microsoft. Visual studio website. http://msdn.microsoft.com/vstudio/, 2006.

[MRP95] Alan Moore and David Redmond-Pyle. Graphical User Interface Design and
Evaluation: A Practical Process. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1995.

[MRRR02] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Rob-
bins. Modeling software architectures in the unified modeling language. ACM
Trans. Softw. Eng. Methodol., 11(1):2–57, 2002.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Transactions
on Software Engineering, 26(1):70–93, 2000.

[MvdH03] H. Muccini and A. van der Hoek. Towards Testing Product Line Architectures.
Electronic Notes in Theoretical Computer Science, 82(6), 2003.

[Mye99] Michael Myers. Investigating information systems with ethnographic research.
Commun. AIS, 2(4es):1, 1999.

http://www.microsoft.com/net/default.mspx
http://www.microsoft.com/net/default.mspx
http://msdn.microsoft.com/vstudio/

Bibliography 221

[NNZ00] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The fujaba environment. In ICSE
’00: Proceedings of the 22nd international conference on Software engineering,
pages 742–745, New York, NY, USA, 2000. ACM Press.

[NoM07] NoMagic. Magicdraw website. http://www.magicdraw.com/, March 2007.

[OC00] A. Ortigosa and M. Campo. Using incremental planning to foster application
frameworks reuse. International Journal of Software Engineering and Knowledge
Engineering, 10(4):433–448, 2000.

[OG06] Erika Mir Olimpiew and Hassan Gomaa. Customizable requirements-based test
models for software product lines. In Third International Workshop on Software
Product Line Testing, pages 17–22. Mannheim University of Applied Sciences,
2006.

[OMG03a] OMG. Common warehouse metamodel (cwm). Technical Report 2003-03-02,
OMG, March 2003.

[OMG03b] OMG. MDA Guide Version 1.01. Technical Report omg/2003-06-01, OMG, June
2003.

[OMG04] OMG. Metamodel and uml profile for java and ejb specification. Technical Report
formal/04-02-02, OMG, February 2004.

[OMG05a] OMG. MOF 2.0/XMI Mapping Specification, v2.1. Technical Report formal/05-
09-01, OMG, 2005.

[OMG05b] OMG. MOF QVT Final Adopted Specification. Technical Report ptc/05-11-01,
OMG, 2005.

[OMG05c] OMG. Software process engineering metamodel specification. Technical Report
formal/05-01-06, OMG, January 2005.

[OMG05d] OMG. UML 2.0 Infrastructure Specification. Technical Report ptc/05-07-05,
Object Management Group, July 2005.

[OMG05e] OMG. UML 2.0 OCL 2.0 specification. Technical Report ptc/05-06-06, Object
Management Group, June 2005.

[OMG05f] OMG. UML 2.0 Superstructure Specification. Technical Report formal/05-07-04,
Object Management Group, July 2005.

[OMG05g] OMG. Uml profile for corba components. Technical Report formal/05-07-06,
OMG, 2005.

[OMG06a] OMG. CORBA Component Model Specification. Technical Report formal/06-
04-01, OMG, 2006.

[OMG06b] OMG. Meta object facility (mof) core specification. Technical Report 06-01-01,
OMG, January 2006.

[OMG06c] OMG. Omg sysml specification. Technical Report ptc/06-05-04, OMG, May 2006.

[OMG07a] OMG. Unified Modeling Language Infrastructure (version 2.1.1). Technical Re-
port formal/2007-02-04, Object Management Group, February 2007.

http://www.magicdraw.com/

222 Bibliography

[OMG07b] OMG. Unified Modeling Language Superstructure (version 2.1.1). Technical
Report formal/2007-02-03, Object Management Group, February 2007.

[O’R05] Tim O’Reilly. What is web 2.0. http://www.oreillynet.com/pub/a/oreilly/
tim/news/2005/09/30/what-is-web-20.html?page=1, September 2005.

[Pal97] JD Palmer. Traceability. Software Requirements Engineering, 1997.

[Par76] D.L. Parnas. On the Design and Development of Program Families. TSE, 2(1):1–
9, 1976.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2005.

[PG96] Francisco A. C. Pinheiro and Joseph A. Goguen. An object-oriented tool for
tracing requirements. IEEE Softw., 13(2):52–64, 1996.

[PK04] Claudia Pons and R-D Kutsche. Traceability across refinement steps in uml
modeling. In 3rd Workshop in Software Model Engineering at UML, 2004.

[PM03] Jorge Enrique Pérez-Mart́ınez. Heavyweight extensions to the uml metamodel to
describe the c3 architectural style. SIGSOFT Softw. Eng. Notes, 28(3):5–5, 2003.

[Pre95] Wolfgang Pree. Design patterns for object-oriented software development. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995.

[Pre00] Wolfang Pree. Hot-spot-driven framework development. In R. J. M. Fayad and
D. Schmidt, editors, Building Application Frameworks: Object-Oriented Founda-
tions of Framework Design. Wiley & Sons, 2000.

[PS04] Carla Marques Pereira and Pedro Sousa. A method to define an enterprise ar-
chitecture using the zachman framework. In SAC ’04: Proceedings of the 2004
ACM symposium on Applied computing, pages 1366–1371, New York, NY, USA,
2004. ACM Press.

[Pur06] PureSystems. Pure::Variants Website http://www.pure-systems.com/, 2006.

[PVJ02] D. Pollet, D. Vojtisek, and J-M. Jézéquel. Ocl as a core uml transformation
language. In WITUML: Workshop on Integration and Transformation of UML
models (held at ECOOP 2002), Malaga, Spain, 2002.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-oriented modeling and design. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1991.

[RBSP02] Matthias Riebisch, Kai Bllert, Detlef Streitferdt, and Ilka Philippow. Extending
feature diagrams with uml multiplicities. In 6th Conference on Integrated Design
& Process Technology, Pasadena, California, USA, 2002.

[RCB98] B. S. Rubin, A. R. Christ, and K. A. Bohrer. Java and the ibm san francisco
project. IBM Syst. J., 37(3):365–371, 1998.

[Ric02] Mark Richters. A Precise Approach to Validating UML Models and OCL Con-
straints. PhD thesis, Universität Bremen, Fachbereich Mathematik und Infor-
matik, Logos Verlag, Berlin, BISS Monographs, No. 14, 2002.

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
http://www.pure-systems.com/

Bibliography 223

[RJ01] Balasubramaniam Ramesh and Matthias Jarke. Toward reference models for
requirements traceability. IEEE Transactions on Software Engineering, 27(1):58–
93, January 2001.

[Roy70] W. W. Royce. Managing the development of large software systems: Concepts and
techniques. In IEEE WESTCON, Los Angeles, CA, USA, 1970. IEEE Computer
Society Press.

[Roz97] G. Rozenberg, editor. Handbook of graph grammars and computing by graph
transformation: volume I. foundations. World Scientific Publishing Co., Inc.
River Edge, NJ, USA, 1997.

[RR02] Jeffrey Richter and Jeffrey Richter. Applied Microsoft .NET Framework Program-
ming. Microsoft Press, Redmond, WA, USA, 2002.

[RS04] M. Ryan and P.Y. Schobbens. Fireworks: A formal transformation-based model-
driven approach to features in product lines. In Proc. WS. on Software Variability
Management for Product Derivation-Towards Tool Support, 2004.

[Rus97] Russell R. Hurlbut. A Survey of Approaches for Describing and Formalizing Use
Cases. Technical Report XPT-TR-97-03, Expertech Ltd., 1997.

[SA02] Yasunobu Sanada and Rolf Adams. Representing design patterns and frame-
works in uml - towards a comprehensive approach. Journal of Object Technology,
1(2):143–154, July-August 2002.

[SBS04] Alfred Strohmeier, Thomas Baar, and Shane Sendall. Applying FONDUE to
Specify a Drink Vending Machine. Electr. Notes Theor. Comput. Sci., 102:155–
173, 2004.

[SC97] Mary Shaw and Paul C. Clements. A field guide to boxology: Preliminary classifi-
cation of architectural styles for software systems. In COMPSAC ’97: Proceedings
of the 21st International Computer Software and Applications Conference, pages
6–13, Washington, DC, USA, 1997. IEEE Computer Society.

[SC02] Jean Louis Sourrouille and Guy Caplat. Constraint checking in uml modeling.
In SEKE ’02: Proceedings of the 14th international conference on Software engi-
neering and knowledge engineering, pages 217–224, New York, NY, USA, 2002.
ACM Press.

[SC06] Mary Shaw and Paul Clements. The golden age of software architecture. IEEE
Softw., 23(2):31–39, 2006.

[SDK+95] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young,
and Gregory Zelesnik. Abstractions for software architecture and tools to support
them. IEEE Trans. Softw. Eng., 21(4):314–335, 1995.

[Sei03] Ed Seidewitz. What models mean. IEEE Softw., 20(5):26–32, 2003.

[SEI06] SEI. Cmmi R©for development, version 1.2. Technical report, Software Engineering
Institute, 2006.

[Sen02] Shane Sendall. Specifying Reactive System Behavior, PhD thesis no 2588. PhD
thesis, Swiss Federal Institute of Technology, 2002.

224 Bibliography

[Ser99] Giovanna Di Marzo Serugendo. Stepwise Refinement of Formal Specifica-
tions Based on Logical Formulae: from COOPN/2 Specifications to Java Pro-
grams. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Département
d’Informatique, 1999.

[SG98] Giovanna Di Marzo Serugendo and Nicolas Guelfi. Formal Development of Java
Based Web Parallel Applications. In 31st Annual Hawaii International Confer-
ence on System Sciences, Software Technology Track, pages 604–613, 1998.

[Sha84] Mary Shaw. Abstraction techniques in modern programmming languages. IEEE
Software, 1(4):10–26, 1984.

[SHT06] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. Fea-
ture diagrams: A survey and a formal semantics. In 14th IEEE International
Requirements Engineering Conference (RE’06), pages 136–145, 2006.

[SHTB06] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves
Bontemps. Feature Diagrams: A Survey and A Formal Semantics (in press). In
Proceedings of the 14th IEEE International Requirements Engineering Conference
(RE’06), Minneapolis, Minnesota, USA, September 2006.

[SK97] Janos Sztipanovits and Gabor Karsai. Model-integrated computing. Computer,
30(4):110–111, 1997.

[SK03] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and
soul of model-driven software development. IEEE Softw., 20(5):42–45, 2003.

[SK04] S. Sendall and J. Küster. Taming model round-trip engineering. In Best Practices
for Model-Driven Software Development (part of 19th Annual ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications), Van-
couver, Canada, October 2004.

[SO00] Richard Soley and OMG. Model Driven Architecture. Technical Report omg/00-
11-05, OMG, November 2000.

[Som04] Ian Sommerville. Software Engineering (7th Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2004.

[SPGB03] Shane Sendall, Gilles Perrouin, Nicolas Guelfi, and Olivier Biberstein. Supporting
Model-to-Model Transformations: the VMT approach. In MDAFA’03, 2003.

[Spi92] J. M. Spivey. The Z notation: a reference manual. Prentice Hall International
(UK) Ltd., Hertfordshire, UK, UK, 1992.

[SS01] Shane Sendall and Alfred Strohmeier. Specifying concurrent system behavior and
timing constraints using ocl and uml. In UML ’01: Proceedings of the 4th In-
ternational Conference on The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, pages 391–405, London, UK, 2001. Springer-Verlag.

[SS03] Raul Silaghi and Alfred Strohmeier. Integrating cbse, soc, mda, and aop in a
software development method. In EDOC ’03: Proceedings of the 7th International
Conference on Enterprise Distributed Object Computing, page 136, Washington,
DC, USA, 2003. IEEE Computer Society.

Bibliography 225

[Sun06] SunMicrosystems. Java Platform, Entreprise Edition (Java EE). http://java.
sun.com/javaee/index.jsp, 2006.

[SvGB05] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A taxonomy of variability
realization techniques: Research articles. Softw. Pract. Exper., 35(8):705–754,
2005.

[Szy98] Clemens Szyperski. Component software: beyond object-oriented programming.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998.

[Tel07] Telelogic. Doors website. http://www.telelogic.com/products/doors/index.
cfm, 2007.

[TH03] Jean-Christophe Trigaux and Patrick Heymans. Modelling variability require-
ments in Software Product Lines: a comparative survey. Technical Report
EPH3310300R0462 / 215315, FUNDP, November 2003.

[TOHSMS99] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton. N degrees
of separation: multi-dimensional separation of concerns. In ICSE ’99: Proceedings
of the 21st international conference on Software engineering, pages 107–119, Los
Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[Tou02] T. Tourwé. Automated Support for Framework-Based Software Evolution. PhD
thesis, Vrije Universiteit Brussel, 2002.

[vdL02] Frank van der Linden. Software product families in europe: The esaps & caf
projects. IEEE Software, 19(04):41–49, 2002.

[VdLM02] H. Vangheluwe, J. de Lara, and P.J. Mosterman. An Introduction to Multi-
Paradigm Modelling and Simulation. In AIS2002, pages 9–20, 2002.

[vdML02] Thomas van der Maßen and Horst Lichter. Modeling Variability by UML Use Case
Diagrams. In International Workshop on Requirements Engineering for Product
Lines, pages 19–25, September 2002.

[vGBS01] Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. On the Notion of Variability
in Software Product Lines. In Proceedings of the Working IEEE/IFIP Conference
on Software Architecture (WICSA’01), 2001.

[Vil03] Jukka Viljamaa. Reverse engineering framework reuse interfaces. In ESEC/FSE-
11: Proceedings of the 9th European software engineering conference held jointly
with 11th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 217–226, New York, NY, USA, 2003. ACM Press.

[VJ04] Didier Vojtisek and Jean-Marc Jézéquel. MTL and Umlaut NG: Engine and
Framework for Model Transformation. ERCIM News, 58, 2004.

[vO02] Rob van Ommering. Building product populations with software components. In
ICSE ’02: Proceedings of the 24th International Conference on Software Engi-
neering, pages 255–265, New York, NY, USA, 2002. ACM Press.

[Whi02] Jon Whittle. Transformations and software modeling languages: Automating
transformations in uml. In UML ’02: Proceedings of the 5th International Con-
ference on The Unified Modeling Language, pages 227–242, London, UK, 2002.
Springer-Verlag.

http://java.sun.com/javaee/index.jsp
http://java.sun.com/javaee/index.jsp
http://www.telelogic.com/products/doors/index.cfm
http://www.telelogic.com/products/doors/index.cfm

226 Bibliography

[Wit96] James Withey. Investment analysis of software assets for product lines. Technical
Report CMU/SEI-96-TR-010, ADA 315653, Software Engineering Institute, 1996.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Language (Second Edi-
tion). Addison-Wesley Longman Publishing Co., Inc., 2003.

[WKHM04] K. Wolter, T. Krebs, L. Hotz, and T.D. Meijler. Knowledge-based Product De-
rivation Process. In Proc. of the IFIP 18th World Computer Congress TC12 First
International Conf. on AI Applications and Innovations (AIAI2004/WCC2004),
pages 323–332, 2004.

[WL99] David M. Weiss and Chi Tau Robert Lai. Software product-line engineering: a
family-based software development process. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[ZA05] Uwe Zdun and Paris Avgeriou. Modeling architectural patterns using architec-
tural primitives. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming, systems, languages, and applications,
pages 133–146, New York, NY, USA, 2005. ACM Press.

[Zac87] John A. Zachman. A framework for information systems architecture. IBM Syst.
J., 26(3):276–292, 1987.

[ZG03a] P. Ziemann and M. Gogolla. Ocl extended with temporal logic. In M. Broy and
A. V. Zamulin, editors, Perspectives of System Informatics, Novosibirsk, July
9-12, 2003.

[ZG03b] Paul Ziemann and Martin Gogolla. An OCL extension for formulating temporal
constraints. Technical Report 1/03, Universität Bremen, 2003.

[ZHJ03] Tewfik Ziadi, Löıc Hélouët, and Jean-Marc Jézéquel. Towards a UML Profile for
Software Product Lines. In PFE2003: 5th International Workshop on Software
Product-Family Engineering, volume 3014 of Lecture Notes in Computer Science,
pages 129–139, Siena, Italy, November 2003. Springer.

[Zia04] T. Ziadi. Manipulation de Lignes de Produits en UML. PhD thesis, IFSIC,
Université de Rennes 1/IRISA, 2004.

[ZIKN01] A. Zarras, V. Issarny, C. Kloukinas, and K. Nguyen. Towards a Base UML Pro-
file for Architecture Description. In 1st ICSE Workshop on Describing Software
Architecture with UML, pages 22–26. IEEE/ACM, 2001.

[Zim80] H. Zimmermann. Osi reference model – the iso model of architecture for open
systems interconnection. IEEE TRANSACTIONS ON COMMUNICATIONS,
28(4):425–432, 1980.

[ZJ06] T. Ziadi and Jean-Marc Jézéquel. Product Line Engineering with the UML:
Deriving Products. In Families Research Book. Springer, 2006.

[ZSPMK02] A. Zisman, G. Spanoudakis, E. Perez-Minana, and P. Krause. Towards a Trace-
ability Approach for Product Families Requirements. In Proceedings of 3rd ICSE
Workshop on Software Product Lines: Economics, Architectures, and Implica-
tions, Orlando, USA, May 2002.

	Introduction
	Motivations
	Research Problem
	Development Context
	Thesis Context
	Contribution
	Domain Engineering
	Application Engineering

	Document Organization

	Part I Concepts
	Background
	Model Driven Engineering
	On the Power of Models
	Model Transformation
	MDE Approaches
	Model Traceability
	Model Consistency
	Model Impact Analysis

	Unified Modeling Language
	Introduction
	Metamodel
	Overview
	Structural Modeling
	Behavioral Modeling
	Making the UML precise: OCL
	Profiles

	Software Architecture
	Definition
	Architectural Views
	Architectural Styles
	Architecture Description Languages
	Describing Architectures with UML/OCL
	Enterprise Architecture Frameworks

	Software Product Lines
	Introduction
	Domain Engineering
	Product Derivation

	Object-Oriented Frameworks
	Definition
	Instantiation
	Documentation

	Development methods
	Fusion/Fondue
	Rational Unified Process
	Catalysis
	KoBra

	FIDJI Concepts
	Architectural Frameworks
	Motivations
	Definition
	Architectural Framework Instantiation

	Methodological Overview
	Scope
	Driving Principles
	Process Overview

	Research Method
	Framework-based Development
	Model Transformation
	Method

	Part II FIDJI: A Methodology for Distributed Systems
	Requirements Elicitation and Analysis
	FIDJI Prescriptions for SPL Requirements Elicitation
	REQET Overview
	DOMET
	UCET
	REQET Usage and Validation

	FIDJI Analysis Model
	Domain Model
	Use Case Model
	Operation Model
	Analysis Instantiation Constraints
	FIDJI Analysis Profile

	Transitioning from Requirements Elicitation to Analysis
	Traceability
	Relating Variability Information

	Product Elicitation and Analysis
	Define Product
	Instantiate architectural framework Analysis Layer

	Architecture & Design
	Requirements for Design Models
	Design Models
	Structural Modeling
	Behavioral Modeling

	Transitioning From Analysis to Design
	Design Profile
	Core Profile
	Architectural Styles

	Design Process
	Identifying Concerned Design Elements
	Writing Design Instantiation Program
	Updating Behaviors
	Assessing Impact

	Part III FIDJI in Practice
	Case Study
	Product Line Requirements Elicitation
	Overview
	REQET-based SPL Description

	Architectural Framework Analysis Layer
	Domain Model
	Use Case Model
	Operation Model
	Traceability between LuxDeal Elicitation and Analysis
	Instantiation Constraints

	Architectural Framework Design Layer
	GAM
	ISM
	PSM
	Traceability between Analysis and Design
	Design Instantiation Constraints

	Product Derivation
	Analysis
	Design

	Deriving another Product
	Towards FIDJI validation
	Initial Experiment
	Validation Criteria
	Validation Protocol

	Part IV Concluding Chapters
	Conclusion
	Perspectives
	General Considerations
	Formalization
	Model Transformation
	Towards Tool Support
	Method Process Model

	Specific Issues
	Requirements Elicitation and Analysis
	REQET
	FIDJI Analysis
	FIDJI Design

	Long-term Perspectives
	SPL-Based Testing
	Architectural Framework Life-cycle

