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abstract

Biological vision incorporates intelligent coop-
eration between the sensory and the motor sys-
tems, which is facilitated by the development
of motor skills that help to shape visual infor-
mation that is relevant to a specific vision task.
In this paper, we seek to explore an approach
to active vision inspired by biological systems,
which uses limited constraints for motor strate-
gies through progressive adaptation via an evo-
lutionary method. This kind of approach gives
freedom to artificial systems in the discovery
of eye movement strategies that may be useful
to solve a given vision task, but are not known
to us. In the experiment sections of this pa-
per, we use this type of evolutionary active vi-
sion system for more complex natural images in
both 2D and 3D environments. To further im-
prove the results, we experiment with the use
of pre-processing the visual input with both
Uniform Local Binary Patterns (ULBP, Ojala
et al. , 2002) and Histogram of Oriented Gra-
dients (HOG, Dalal and Triggs, 2005) for clas-
sification tasks in the 2D and 3D environments.
The 3D experiments include application of the
active vision system to object categorisation
and indoor vs outdoor environment classifica-
tion. Our experiments are conducted on the
iCub humanoid robot simulator platform.

1 Introduction

Active vision is the process of exploring a vi-
sual scene to obtain relevant features for sub-
sequent meaningful and intelligent processing.
Such visual systems require a form of control,
and are intelligently guided to only those areas
that have relevant and valuable information to
the task at hand. Vision is not a passive pro-
cess as has been known in conventional com-
puter vision (see Ojala et al. , 2002; Belongie et
al. , 2002), but is action dependent (see Avra-
ham and Lindenbaum , 2010; Kagan and Hafed
, 2013). In most traditional computer vision,
the local image sample does not guide the scan-
ning process, but instead use an exhaustive
search (e.g window sliding method, Osuna et
al. , 1997). However, research shows that the
use of action in perception can reduce the com-
putational cost of vision tasks, and at the same
time simplify very difficult tasks (see Nolfi ,
1998; Tsotsos , 1992; Mirolli et al. , 2010;
Kato and Floreano , 2001). Consequently, as
action has been shown to be an integral part
of perception, the challenge in developing ac-
tive vision models is finding intelligent action
strategies that will enhance the vision task at
hand (Croon , 2008).

In some models the assumption made is that
vision is an iterative process of state estimation
and the selection of relevant actions (Denzler
and Brown , 2002; Borotschnig et al. , 1999).
However, in this work we present an active vi-
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sion system that has the following properties:
(i) it uses limited assumptions or constraints
for its action strategy (eye movement); and (ii)
it does not need any kind of ground truth for
the eye control. This is because such assump-
tions or ground truth may not allow the model
to discover strategies that are not known to the
designer but may exist in biological agents. We
have therefore chosen an evolutionary adaptive
model used in the field of evolutionary robotics
for the control of active vision (see Tuci , 2014;
Marocco and Floreano , 2002, for similar meth-
ods). This technique delegates the strategies
used for eye movement to the adaptation pro-
cess of the evolutionary method. Also, given
the strong dependency between eye movements
and perception, we also investigated two pre-
processing techniques (ULBP, Ojala et al. ,
2002) and (HOG, Dalal and Triggs, 2005).
We have chosen ULBP and HOG because they
are simple to implement as well as their use-
fulness as feature descriptors in many com-
puter vision applications, such as face recog-
nition (Ahonen et al. , 2006) and object de-
tection (Stefanou and Argyros , 2012). The
novelty of our framework is not only in the
problems that are solved and methods that are
used (pre-pocessing techniques), however, it is
the novelty of these problem domains in the
investigated active vision systems (evolution-
ary active systems); and the originality in the
combination of existing pre-processing meth-
ods (ULBP and HOG) with the active vision
system.

Therefore our research objectives are:

(i) To use evolutionary active vision systems
in more complex scenes and environments for
categorisation tasks.

(ii) To improve the performance of the cat-
egorisation tasks through pre-processing tech-
niques.

We further list the contributions in this pa-
per below.

1. This type of active vision system (evolu-
tionary method) is used for more complex
images taken from the camera of the iCub
robot.

2. We demonstrate the effectiveness of the
active vision system in a more realistic set-
ting for 3D object categorisation using the
humanoid robot iCub) platform.

3. We extend the applicability of the system
to the 3D environment for indoor and out-
door environment classification task using
the iCub platform.

4. We extend the system with pre-processing
using Uniform Local Binary Pat-
terns (ULBP, Ojala et al. , 2002) in
both 2D and 3D environment categorisa-
tion tasks.

5. We further extend the system with pre-
processing using Histogram of Oriented
Gradients (HOG Dalal and Triggs, 2005))
for classification tasks in the 2D and 3D
environments.

In the next sections, we first briefly review
active vision systems, then describe our system
and experimental methods, followed by results,
discussion and finally conclusions.

2 Active Vision Models

Various active vision models have been pro-
posed in the literature that select their actions
(eye movements) in different ways and mostly
for a specific task. For instance, there are mod-
els for detecting edges (e.g. Kass et al. , 2008),
for controlling the gaze of a simulated fish (e.g.
Terzopoulos and Rabie , 1995) and for detect-
ing an object in a visual scene (e.g. Minut and
Mahadevan , 2001). However, there are also
others that are instances of a more general ap-
proach such as the probabilistic approach (see
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Vidal-Calleja et al. , 2010; Guerrero et al. ,
2010; Dame and Marchand , 2013; Davison ,
2005) and adaptive approach (see Mirolli et al.
, 2010; Kato and Floreano , 2001; Croon , 2008;
Tuci , 2014).

The central aim of the probabilistic models is
to reduce uncertainty in the world state. It re-
gards active vision as a series of iterative steps
of state estimation and action selection, and
therefore uses a pre-determined probabilistic
framework for action selection. All the proba-
bilistic models have one thing in common: they
take action with the goal of reducing uncer-
tainty in the belief state.

On the other hand, adaptive approaches do
not use assumptions or pre-determined frame-
work for their action (eye movement) strategy,
but they are progressively adapted in order to
optimise the performance of the task at hand.
That aside, there are additional predefined at-
tributes which also impose some limitations,
such as the choice of the controller (e.g neu-
ral network) and the optimisation technique.
However, in this model the goal is not to pre-
determine what the active vision system does
internally.

Our approach (evolutionary active vision)
is an instance of the adaptive approach that
makes use of fewer assumptions for its eye
movement, by delegating the matter to the
adaptation process of the evolutionary method
for neural network control.

2.1 Evolutionary Active Vision Sys-
tem

Various evolutionary active vision systems
have been investigated based on the complex-
ity of the controller. For instance, there are
those that rely solely on sensory-motor coor-
dination and are also known as reactive sys-
tems. These reactive systems are not common
in most vision tasks because of their complex-
ity. For example, Nolfi and Marocco (2000)

evolved an active vision system in which mobile
robots were able to visually discriminate be-
tween different landmarks. Similarly, Schembri
and Belardinelli (2015) implemented an ac-
tive vision system using a simple 3-layer feed-
forward neural network controller evolved with
a genetic algorithm. The goal of the agent was
to hit as many small circles as possible and to
avoid the big ones over the course of a lifetime.
The common features shared by these systems
was that, despite their very simple architecture
they were able to use their intelligent sensory-
motor coordination to select sensory patterns
that were favourable to the given vision tasks.

More complex systems have been developed
that have a form of memory determined by the
recurrent connections or feedback provided in
the controllers, that may include hidden lay-
ers (see Kato and Floreano , 2001; Marocco
and Floreano , 2002). The evolved active vi-
sion system described in (Kato and Floreano ,
2001) autonomously discriminates between dif-
ferent shapes irrespective of their locations and
sizes. The controller of the system has a very
simple discrete time recurrent neural network
architecture, with no hidden nodes, and was
evolved by a genetic algorithm. The system
exhibited a behavioural strategy of exploring
different areas of the shapes in order to en-
hance the categorisation task.

In the same vein, Marocco and Floreano
(2002) extended the simple active vision model
in (Kato and Floreano , 2001) for a navigation
problem posed for a mobile robot equipped
with a pan and tilt camera. The evolved robots
were able to navigate an arena by exhibiting a
behaviour where they select simple visual fea-
tures and maintain the edge between the floor
and the wall in sight of the camera. The com-
mon theme with these active vision systems
is that even though the controllers have very
reduced internal states in the form of only re-
current connections or memory feedback, by
their dynamic interactions with the environ-
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ment, they were able to generate behaviours
that allowed them to exploit regularities in
ways appropriate to the vision tasks.

There are also active vision systems that
have more complex internal states, such as
those that are provided by Continuous Time
Recurrent Neural Networks (CTRNN, see
Mirolli et al. , 2010; Croon , 2008; Lanihun
et al. , 2014). In this case, in addition to the
recurrent connections, the neurons also have
some dynamics that realises internal states.
For instance, Mirolli et al. (2010) used an
active vision system with a 3-layer CTRNN,
which was evolved by a genetic algorithm. The
active vision system was given the task of cat-
egorising five types of italic letters (‘l’, ‘u’, ‘n’,
‘o’, ‘j’) of five different sizes, with a variation of
±10% and ±20% with respect to the interme-
diate size. The movement of the artificial eye
was controlled by motor neurons of the output
units, which determined the eye displacement
per time step, in order to capture relevant in-
put features for the neural network controller.
The system was rewarded only for its ability to
discriminate between the shapes of the letter
and left free to determine how to explore the
visual scene. Subsequent analysis based on the
best individual of all replications of the evolu-
tionary run showed that the agent was able to
solve the problem by: (i) using sensory-motor
co-ordination to generate behaviours that al-
lowed the agent to experience visual regular-
ities in different categorical contexts; and (ii)
integrating perceptual and motor information
over time.

By way of further example, Croon (2008)
developed an active vision model that uses
CTRNNs for a car-driving simulation. Un-
like the active vision system in (Mirolli et al.
, 2010), the system had a modular structure
of two CTRNNs, i.e. one controlling the eye
movement and the other for controlling the
movement of a simulated car. The output
units of the eye controller determined the vi-

sual features that were extracted as the car
moved through a simulated road per time step,
which formed the corresponding inputs to the
two controllers. The task of the agent was to
drive over a simulated track as quickly as pos-
sible, while avoiding various obstacles on the
way. The controller parameters were optimised
with a genetic algorithm. Subsequent analysis
showed that the system used the gaze shifts:
(i) to find relevant features that contributed to
successful driving; (ii) to keep relevant features
in sight; and (iii) to avoid disruptive visual in-
puts while driving.

The common trend among these systems
that used more complex internal states was
that the increased complexity helped the sys-
tem to generate more complex dynamics for in-
tegrating sensory-motor information over time.

However, our work is different from the pre-
viously mentioned evolutionary approaches in
the following respects:

1. We aim to show the plausibility of bio-
logical active vision systems in complex
artificial systems using our evolutionary
method for categorisation tasks. As such,
we have extended our method for categori-
sation to more realistic natural 2D images
and to 3D environments using a humanoid
robot platform.

2. We investigated two pre-processing tech-
niques commonly used in computer vision,
i.e. HOG (Dalal and Triggs, 2005) and
ULBP (Ojala et al. , 2002), so as to
show how active vision can be enhanced
by low level processing (Magnussen , 2000;
Le Meur et al. , 2004; Diamant , 2008).

3 Methods

The active vision framework is inspired by the
model in (Mirolli et al. , 2010) and is supple-
mented with the continuous neural network up-
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date equations illustrated in (Tuci , 2014). We
have built our framework on their periphery-
only architecture, Fig. 1, which gave the best
performance among all the architectures exper-
imented with in (Mirolli et al. , 2010). We
extend this framework for classification in 2D
and 3D using the iCub humanoid robot plat-
form (Tsagarakis et al. , 2007), and further
used pre-processing to enhance the categorisa-
tion tasks.

Figure 1: The neural network architecture.
The number in the boxes is the number of neu-
rons and N is the number of object categories.

The active vision system autonomously
takes an input from a visual scene restricted
by the active window. The visual stimuli are
processed by a visual extraction method and
are mapped by an evolved neural network con-
troller to gaze shifts and classification units.
In the output layer, 2 of the neurons deter-
mine the movement of the eye per time step
either in x and y directions in the 2D experi-
ments, or pan and tilt in the 3D experiments.
The other output neurons are for labelling the
N possible categories. It also has 5 internal
neurons, 2 neurons representing copies of acti-
vation values of the gaze shifts and N clas-

Figure 2: A simple illustration of the iCub vi-
sion kinematics (image from (Leitner et al. ,
2017)).

sification units from the previous time step.
The visual extraction module is processed by
either a grey-scale averaging method as used in
(Mirolli et al. , 2010) or pre-processing tech-
niques such as HOG (Dalal and Triggs, 2005)
or ULBP (Ojala et al. , 2002) are adopted.
The gaze shifts which enhance the performance
of the task are determined by the visual fea-
tures, previous gaze shifts/categorisation out-
puts at time t− 1, and/or the internal state of
the controller.

3.1 The Robot

We use the iCub humanoid robot plat-
form (Tsagarakis et al. , 2007) for the im-
plementation in the 3D experiments. How-
ever, we use a simple iCub simulator described
in (Tuci , 2016). This is to minimise the com-
putational overhead that would have been in-
volved in using the original iCub simulator for
our evolutionary method. The iCub eye con-
trol has 3 degrees of freedom (DOF), for ver-
gence, pan and tilt (Fig. 2). However, because
of the computational complexity, we only make
use of 2 degrees of freedom for the right eye
(pan and tilt). Also for simplicity and be-
cause of the computational overhead, we ex-
clude head, neck and other proprioceptive in-
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formation from our experiments.
In each time step of every trial in the evolu-

tionary run, we calculate the tilt (Tiltstep, see
Eq. 1) and pan (Panstep, see Eq. 2) by map-
ping the outputs O1 and O2 (with range 0 to
1) to the range [−2.5◦,+2.5◦] as follows:

Tiltstep = (O1 − 0.5) ∗MAXstep (1)

Panstep = (O2 − 0.5) ∗MAXstep (2)

where MAXstep = 5◦ is the maximum step
for the pan and tilt. The pan and tilt are then
updated using:

Tiltnew = Tiltnew−1 + Tiltstep (3)

Pannew = Pannew−1 + Panstep (4)

The updated pan and tilt are then nor-
malised back to the range [0, 1], representing
the range from the lower and upper limit for
each angle, and fed back into the network us-
ing:

Tiltinput =
Tiltnew − Tiltlow limit

Tilthigh limit − Tiltlow limit
(5)

Paninput =
Pannew − Panlow limit

Panhigh limit − Panlow limit
(6)

To map the output pan and tilt onto the
iCub we use the Denavit-Hartenberg conven-
tion, with the tilt being link 6 and the pan be-
ing link 7 in the kinematic chain (i.e. Tiltnew =

Table 1: Table showing the link parameters a,
d, α, θ of the iCub right eye (for the tilt i=6
and pan i=7), where a and d are in millimetres,
and α and θ are in radians.

θ6 and Pannew = θ7). The full set of link pa-
rameters (Table 1) are used to calculate the
forward kinematics for the iCub right eye.

3.2 Adaptive Tasks

Here we present the details of the tasks solved
by the evolved active vision system. First, we
investigate categorising natural images of ob-
jects taken from the iCub camera, and evaluate
the impact of the pre-processing techniques.
Secondly, we move to a 3D iCub simulator and
evaluate the system for 3D object categorisa-
tion. In 3D object categorisation, the visual
field often covers much of the object in a sin-
gle time-step, making the active behaviour less
essential. So in our final experiment we in-
vestigate indoor/outdoor categorisation, where
scene exploration is essential to achieving the
task.

3.2.1 iCub images Categorisation

In this experiment we use the grey-scale av-
eraging for the more complex natural images
taken from the camera of the iCub, as com-
pared to artificially generated hand-written
italic-letter images used in (Mirolli et al. ,
2010). We further tested the proposed feature
extraction methods, i.e. ULBP (Ojala et al.
, 2002) and HOG (Dalal and Triggs, 2005) to
investigate the impact on the performance of
the active vision system.

The original images are coloured, and of
size 320 × 240 pixels of five different objects,
namely: soft toy, TV remote control, micro-
phone, board wiper, and hammer. The data-set
consists of 350 images divided into two folds
for training and validation. The first fold of 7
different sizes for each object varying between
[−20%, 20%] with respect to the original size;
and each of these is given 5 different orienta-
tions varying between [−4, 4] degrees with re-
spect to the original orientation. The second
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fold also of 7 different sizes varying between
[−30%, 30%] of the original size; and each of
these rotated by 5 different orientations vary-
ing between [−9, 9] degrees with respect to the
original orientation. We used a larger range of
scale and orientation in the second fold so as to
make the categorisation task more challenging.

The original coloured images are first con-
verted into grey-scale. We then evaluate the
agent for 350 trials, and at the beginning of
each trial: (i) one of the 175 images (in a fold)
is presented to each individual (i.e. network
weights set according to the genes); (ii) the
state of the internal neurons of the agent’s con-
troller is initialised to 0.0; and (iii) the eye is
initialised in a random position within the cen-
tral third of the image. During the 100 time
steps of each trial, the agent is left free to ex-
plore the image.

Also, in order to terminate trials when the
active window of (50× 50 pixels) no longer in-
cludes any part of the object for three consec-
utive time steps, we use a Canny Edge Detec-
tor (Canny , 1986) to detect the edges in each
image presented. A rectangular mask is set on
the object in the image, and every white (edge)
pixel outside the boundary of the rectangular
mask are set to black. Through this means,
we are able to get edge images that are black
outside object boundaries, and objects of white
and black. Fig. 3 shows the grey-images, and
the images after setting the rectangular masks
on the Canny Edge Detector processed images.
It should be noted that the above processing
is only used to terminate each trial after the
active window has lost focus on the object for
more than 3 consecutive time steps and as a
result time is saved during training. The input
vector into the neural network is obtained from
the grey-images processed by the visual extrac-
tion methods (grey-scale, ULBP or HOG), and
the copies of the movement and categorisation
units at previous time step t− 1.

Figure 3: Pictures showing the images of the
objects, from left to right: soft toy, TV remote
control, microphone, board wiper and ham-
mer. Top row, the greyscale images. Bottom
row, the images after processing with Canny
edge detection and a masking rectangle.

3.2.2 3D Object Categorisation

This experiment is designed to investigate how
a simulated agent (the iCub) can exploit its
eye movement to improve object categorisa-
tion and how this categorisation capability can
be further improved with pre-processing tech-
niques. The agent is situated in a 3D environ-
ment in-front of a coloured object on a coloured
table against a black background (Fig. 4).

We chose four objects; a sphere, cube, cone
and torus, in which the stimuli have similar
appearance, rendering the categorisation task
more challenging. The four different coloured
objects are presented to the agent for categori-
sation one at a time. (Fig. 4).

The agent is evaluated for 48 trials in which
each of the four objects (sphere, cube, cone and
torus) is presented to the iCub agent 12 times;
and each trial lasted 100 time steps.

At the beginning of each trial: (i) each ob-
ject is uniformly randomly scaled with a vari-
ation of [-10%,10%] to the original size, and
uniformly randomly rotated within the range
[−10◦, 10◦] on the y axis; (ii) the state of the
internal neurons of the agent’s controller is ini-
tialised to 0.0; and (iii) the eye is initialised
in each quadrant of the iCub gaze-space, but
randomly located in each initialisation within
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Figure 4: Pictures showing the iCub agent pre-
sented with the four objects: top left, cone;
top right, sphere; bottom left cube and bot-
tom right torus. On the top right of the scene
shows the objects from the iCub view.

a quadrant, and with the object within the
eye view. During each time step of a trial,
we calculate the panstep and tiltstep and nor-
malise their updates and input as propriocep-
tive feedback (paninput, and tiltinput) along
with the categorisation outputs at the previ-
ous time step into the network. In each trial
the eye is left to freely explore the environ-
ment; however, in order to save time and im-
prove exploration, a trial is terminated when
the eye (pan or tilt) reached the iCub pan limit
([-0.523616, 0.523616] radians) or tilt limit ([-
0.663243, 0.314177] radians) for three consec-
utive time steps. In each trial, the agent’s eye
perceives each object presented with visual ex-
traction from grey-scale averaging (Mirolli et
al. , 2010), ULBP (Ojala et al. , 2002) or
HOG (Dalal and Triggs, 2005).

3.2.3 Indoor-Outdoor Environment
Categorisation

In this experiment, the agent is situated in var-
ious 3D indoor and outdoor environments.

The environments are represented with 20
texture images, which were downloaded from

Figure 5: Pictures showing the iCub agent in
the outdoor environment (left) and outdoor en-
vironment (right). Top right shows the envi-
ronments from the iCub view.

Google’s image database (Google Images ,
2017). The texture images are dynamically
mapped to the interior of a 3D sphere contain-
ing the iCub (Fig. 5). Half of the images repre-
sented indoor environments and the other half
were outdoor environments. The entire data-
set of 20 texture images representing the en-
vironments are divided into 2-equal halves for
training and validation sets for a 2-fold cross-
validation. The rotation of the environment
ensures that the agent is always seeing differ-
ent part of the environment in any given trial.
The visual information perceive with the retina
is processed with one of the visual extraction
methods, i.e. grey-scale averaging, ULBP or
HOG.

The agent is evaluated for 20 trials, and at
the beginning of each trial: (i) the agent is sit-
uated in an environment (outdoor or indoor)
that is randomly rotated within the range
[−40◦, 40◦] on the z axis with a uniform dis-
tribution, and subsequently, the agent uses its
pan and tilt movement to explore the environ-
ment in each time step.; (ii) the states of the
internal neurons of the agent’s controller are
initialised to 0.0; and (iii) the eye is initialised
in each quadrant of the iCub gaze-space, al-
though randomly located in each initialisation
within a quadrant. Also, in each time step of a
trial, the panstep and tiltstep values are calcu-
lated and their normalised updates are input as
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(paninput, and tiltinput) as proprioceptive feed-
back along with the categorisation outputs at
previous time step into the network. In each
trial, the eye is left to freely explore the en-
vironment; however, in order to save time and
improve exploration, a trial is terminated when
the eye (pan or tilt) reached the iCub pan limit
([-0.523616, 0.523616] radians) or tilt limit ([-
0.663243, 0.314177] radians) for three consec-
utive time steps.

3.3 Neural Network Controller

The gaze control model is a 3-layer continu-
ous neural network architecture: (i) an input
layer, whose vector size is determined by the vi-
sual feature extraction method, and a copy of
the motor/gaze control units and classification
units at the previous time step; (ii) recurrent
hidden layer units; and (iii) an output layer
of motor/gaze control units and classification
units. The activations of the input neurons
are normalised between 0 and 1, however with
0 representing a fully white visual field, while 1
represents fully black for the 2D grey-scale (as
it was done in (Mirolli et al. , 2010)). A ran-
dom value with a uniform distribution within
the range of [-0.05,0.05] is added to the input
activation values in each time step, in order to
take into account that sensor data are subject
to noise.

The values of the input, hidden, and output
neurons are updated using equations 7, 8 and
9 respectively:

yi = gIi; i = 1, ..., n− 1 (7)

τiẏi = −yi +
j=k−1∑
j=1

wjiσ(yj +βj); i = n, ..., k−1

(8)

yi =
j=k−1∑
j=n

wjiσ(yj + βj); i = k, ..., u (9)

In these equations, using terms derived from
an analogy with real neurons, yi represents the
cell potential, g is a gain factor, τi the decay
constant. Ii (with i = 1, ..., n−1) is the activa-
tion of the ith input neuron. Neurons n, ..., k−1
and k, ..., u are the hidden and output neurons
respectively. wji is the weight of the synap-
tic connection from pre-synaptic neuron j to
post-synaptic neuron i. βj is the bias term and
σ(yj + βj) is the firing rate, where σ(x) is the
sigmoid function. All input neurons share the
same bias βI , and the same holds for all output
neurons βO. The decay constants, bias terms,
weights and gain factor are genetically spec-
ified network parameters. We approximated
the dynamics of differential equation 8 using
the standard forward Euler method with an
integration time step ∆T = 0.1. In the next
section, we discuss the three methods that are
used for processing visual stimuli inputs into
the neural network controller.

3.3.1 Visual Feature Extraction

The following methods are used to extract the
visual stimuli for the neural network controller
in all the experiments in this paper: the grey-
scale averaging method (Mirolli et al. , 2010),
ULBP (Ojala et al. , 2002) and HOG (Dalal
and Triggs, 2005).

We allowed the active vision to dynamically
select an area to be processed per time step and
then used one of the visual extraction meth-
ods to process the pixels within the active win-
dow. As such, we still keep to our philosophy
of an active vision model that does not pro-
cess the entire image but instead allows the
system to actively select features through the
dynamic interaction of sensory-motor compo-
nents (Croon , 2008).

9



Figure 6:
Original active
window area of
soft-toy object
grey-image.

Figure 7: The
active window
area after grey-
scale averaging
method was
applied.

Grey-scale averaging

In the grey-scale averaging method, the
coloured image is first converted to a grey-scale
image.

The active vision model then takes visual in-
put from a window of s × s pixels extracted
from the grey-image of m × m in each time
step. The window is sub-divided into k × k
input cells and the average value calculated in
each cell, resulting in k2 visual inputs.

Fig. 6 shows an example active window grey-
scale image patch (i.e. soft toy image) and
Fig. 7 shows the average pixels of the active-
window that were input into the neural net-
work.

Active Uniform Local Binary Patterns
method

ULBP is an extension of Local Binary Pat-
terns (LBP Ojala et al. , 1996) that consid-
ers only uniform patterns. The basic LBP ap-
proach considers the 8 neighbours of each pixel
in a fixed rotational order and assigns 0 or 1

to a bit string if the central pixel intensity is
larger or smaller than its neighbour. This pro-
duces an 8-bit unsigned integer for each pixel,
and histograms of these values over different
regions have proved effective in various com-

Figure 8: Active-ULBP histograms of the cells
of the active window, and the concatenated
histograms.

puter vision tasks. Many extensions of the ba-
sic LBP approach have been considered, here
we use uniform LBPs. Uniform patterns of tex-
ture units are those that have a maximum of
2 bit-wise transitions, i.e. from 0 to 1. For
instance, in an eight-circle neighbourhood tex-
ture unit, bit patterns 00000000 (0 transition),
00110000 (2 transitions) are uniform patterns,
while non-uniform patterns such as 00010100

(4 transitions) and 00101010 (6 transitions)
are not. In ULBP, there is a separate out-
put label for each uniform pattern and one
output label for all the non-uniform patterns.
Thus, the number of output labels for the map-
ping of patterns P is P (P − 1) + 3. For in-
stance, ULBP produces 59 output labels for
an eight-neighbourhood texture unit and 243
for 16 circular neighbourhood sampling points
(Pietikainen et al. , 2011; Tapia et al. , 2014).

However, because of the peculiar nature of
active vision systems and the computational
cost of evolutionary methods in training, we
have implemented the ULBP method so that
it will be suitable for the model. For instance,
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all forms of pre-processing have to be done
within the active window (retina region) per
time step, instead of processing the entire im-
age. We also have to use a considerably re-
duced number of cells (4 cells). We therefore
prefer to term it Active-Uniform Local Binary
Patterns (Active-ULBP), because of its adop-
tion to the Active Vision System. The Active-
ULBP algorithm is implemented as follows:

1. An image is presented to the active vision
model in each trial of the evolutionary run.

2. In each time step of a trial:

(a) a Gaussian blur function is used to re-
duce the noise within the active window
(retina region); (b) the retina region is di-
vided into 4 cells and a histogram of uni-
form patterns of size 59 is constructed for
each cell; (c) the histogram of each cell is
normalised with an L2−norm scheme; (d)
the normalised histograms of all cells are
concatenated to form a feature vector of
size 236; (e) the feature vector is combined
with the copies of the movement and cat-
egorisation output units at the previous
time step which formed the input vector
for the neural network.

Fig. 8 shows the histograms and the concate-
nated histograms of the 4-cells of the active-
window of a patch of the soft-toy image for the
Active-ULBP method.

Active Histogram of Oriented Gradients
method

The HOG descriptor was originally developed
by Dalal and Triggs (2005) for describing edges
and gradients over a local image region using
a sliding window over an entire image. It com-
putes histograms over dense grids of uniformly
spaced cells and normalises contrast for im-
proved performance. In their work Dalal and

Figure 9: Active-HOG histograms of the active
window image patch and the concatenated his-
tograms.

Triggs (2005) used HOG as a feature descrip-
tor for pedestrian recognition data and used a
Linear Support Vector Machine as the classifier
for the normalised histogram features.

The fundamental idea is that object appear-
ance and shape over a local region can be char-
acterised very well with intensity gradients dis-
tribution. The image window is divided into
small spatial cells over dense grids. Histograms
are computed for the cells and contrast nor-
malised to form the feature sets.

However, in the adoption of HOG in our
model we considered two major factors: (i)
the computational complexity of the pre-
processing, since evolving a neural network will
only be practicable with lower dimensional fea-
ture vectors; and (ii) suitability for the active
vision concept, which processes a part of the
image scene at each time step. Consequently,
the HOG used in our model is a very simple
version of the original algorithm and we prefer
to call it Active-Histogram of Oriented Gradi-
ents (Active-HOG) because of its adoption to
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the Active Vision System. We list the com-
plete steps of the Active-HOG algorithm ap-
plied each time step below:

1. compute the gradients for each pixel in the
active window in x and y direction i.e dx
and dy

2. divide the active window into 2 × 2 cells
giving a total of 4 cells;

3. in each cell compute gradient magnitudes
as
√
dy2 + dx2 and gradient directions as

Θ = arctan( dydx);

4. quantize gradient orientations into 9 bins
with a bin size of 40 degrees of orientation
space between 0− 360 degrees;

5. add magnitude into each bin;

6. concatenate all histograms into a feature
descriptor of dimension 4 cells × 9 bins
giving a feature vector of size 36;

7. normalise the feature vector with L2 −
norm, i.e. V = V

||V || ;

8. input a normalised feature vector into the
neural network along with the copies of
motor and categorisation outputs from the
previous time step.

Fig. 9 shows the concatenated histograms of
a patch of the soft toy image of the Active-
HOG method.

3.4 Evolutionary Algorithm

The free parameters of the agent’s neural
controller are adapted through an evolution-
ary algorithm using roulette wheel selection
scheme (see Goldberg , 1999). The initial pop-
ulation for each generation of the evolution-
ary process consists of 100 or 60 randomly-
generated genotypes (for 2D and 3D experi-
ments respectively); sampled from a uniform

distribution in the range [0, 1], each encoding
the free parameters of the corresponding neu-
ral controller, which includes all the connec-
tion weights, gain factors, biases, and the time
constants of the hidden neurons. In order to
generate the phenotypes, weights and biases
are linearly mapped in the range [−10, 10] and
[−5, 5] respectively, while the time constants
are exponentially mapped into [10−1, 101.8] for
the 2D and into [10−1, 102.2], for the 3D exper-
iments, with the lower bounds corresponding
to the integration step-size used to update the
controller. Generations following the first are
produced by a combination of selection with
elitism, recombination and mutation (Gold-
berg , 1999). For each new generation, the
genotype with the highest fitness value (“the
elite”) from the previous generation is retained
unchanged. The remaining 99 and 59 geno-
types of the new generation for both 2D and
3D tests are formed by randomly selecting two
genotypes from the older generation from the
best 70 and 50 genotypes using roulette wheel
selection, and a new genotype is created by
combining the genetic material of these two old
genotypes with a probability of 0.3 with cross-
over point selected during the recombination.
Mutation which entails that a random Gaus-
sian offset is applied to each real-valued com-
ponent encoded in the genotype is done with
the probability of 0.05 in the 2D and 0.04 in the
3D. The mean is 0 and its standard deviation
is 0.1.

3.5 Fitness Function

In each trial of the evolutionary adaptation
process, the artificial eye (active window) is
left to freely explore the visual scene in the
first part of the trial. The task of the active
vision agent is to correctly classify an object
when it has explored the image for a sufficient
length of time, that is during the second half
of a trial.
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The agent is evaluated by the by the fitness
function F as used in (Mirolli et al. , 2010),
and is comprised of two components: the first,
F1 (t, c) rewards the agent’s ability to rank the
correct category higher than the other cate-
gories; the second, F2 (t, c) rewards the ability
to maximise the activation of the correct unit
while minimising the activations of the wrong
units, with both terms given equal weighting:

F =

T∑
t=1

C∑
c=S

(0.5 ∗ F1 (t, c) + 0.5 ∗ F2 (t, c))

T ∗ (C − S)
(10)

F1 (t, c) = 2−rank(t,c) (11)

F2 (t, c) = 0.5 ∗ yt,cr +
∑
w∈W

(
1− yt,cw

)
∗ 0.5

N − 1

(12)
where F1 (t, c) and F2 (t, c) are the values of

the two fitness components at time step c of
trial t, rank (t, c) is the ranking of the activa-
tion of the categorisation corresponding to the
correct category (that is, from 0, meaning the
most activated and l, meaning the least acti-
vated: where l is 1 less than number of cate-
gories), yt,cr is the activation of the output cor-
responding to the current (correct) category,
yt,cw is the activation output of the wrong cat-
egory w at trial t and time step c (where W
is the set of wrong categories). N is the num-
ber of categories, T is the number of trials, C
is the number of time steps in a trial and S
is the time step in which we start to compute
fitness.

3.6 Implementation

Due to the high cost of evolving the main pa-
rameters of the neural network and evaluating
each phenotype for multiple trials and time-
steps, we employ a parallel computing cluster.

We use High-Performance Computing Wales
infrastructure (Super Computing Wales, see
SCW , 2019)). The Message Passing Interface
(MPI) (Gropp et al. , 1999) is used to par-
allelise the implementation using a root and
individual sub-processes. Each individual runs
its evaluation as a separate process and the re-
spective fitness is communicated to the root
process, which in turn carries out the evolu-
tion and subsequent generation of a new set of
controllers.

4 Results

In this section, we present the results and anal-
ysis for all the experiments in the 2D and
the 3D environments (i.e. object and indoor-
outdoor categorisation). First, we present the
fitness graphs for all runs and the best run
for each visual extraction method. Second, we
show the results of the re-evaluation tests. In
all experiments, categorisation performance is
based on the percentage of times in which the
categorisation unit corresponding to the cor-
rect category is the most activated in all trials
of the re-evaluation.

For each experiment we statistically com-
pare the 3 extraction methods.

To compare the three techniques, we apply
ANOVA tests, with a p-value<0.05 and a more
stringent p-value<0.01. Where a significant
difference is detected, further pairwise evalu-
ation of the three possible pairs is performed
using t-tests. Bonferroni correction is used in
the t-tests to account for the greater chance of
a significant result occurring by chance among
the three methods.

To further evaluate the dynamic behaviour
of the systems, we use the Modified Geometric
Seperability Index (MGSI), for a quantitative
behavioural analysis. The Geometric Separa-
bility Index (GSI) was originally proposed by
Thornton (1998), while the MGSI is a mod-
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ified version of the GSI and was proposed by
Mirolli et al. (2010). The GSI computes the
percentage rate at which the nearest pattern
of each experienced pattern belonged to the
same category; however the MGSI is more de-
manding in that it takes into account not only
the nearest neighbour but all the stimuli be-
longing to the same category. We chose to use
this more demanding measure because the na-
ture of our problem is very similar to that of
(Mirolli et al. , 2010). The MGSI is defined by
the equation below:

MGSI(P ) =

∑
s∈P

∑
n∈Ns

ICs(n)

|Cs|

|P |
Which is defined as the average proportion

of patterns belonging to the same category,
that are in the |Cs| nearest patterns (computed
from Euclidean distance), where |Cs| repre-
sents the total number of patterns in the same
category as pattern s. Where P is the set com-
prising all the patterns, |P | is the cardinality of
the set P , Cs is the set of all patterns belonging
to the same category as pattern s (s does not
belong to Cs), Ns is the set of the |Cs| patterns
nearest to pattern s, and ICs (n) is the indica-
tor function of set Cs, that returns 1 if n is in
set Cs and 0 otherwise. If the system is intelli-
gently guiding the visual system we would hope
to see an increase in the MGSI over time dur-
ing the evaluation, indicating that it is moving
to locations that improve the discrimination
ability (Ferrauto et al. , 2009; Tuci et al. ,
2010).

4.1 2D iCub Images

This section presents the results of the three
methods of visual representation for active vi-
sion on 2D images from the iCub camera. In
the 2D experiment, we performed 20 evolution-
ary runs, with 10 runs for each fold of the 2-
fold cross validation and each evolutionary run

Figure 10: 2D iCub images: The fitness
graphs of the best evolutionary runs of the
three visual extraction methods in the 2-fold
cross-validation.

Figure 11: 2D iCub images: Shows the
graph of the mean (average) of all fitness in
each generation of the 3000 generations for
20 evolutionary runs and their positive (+ve
stdev) and negative (-ve stdev) standard devi-
ation in each generation for the three methods
of visual extraction.

lasted 3000 generations. We then re-evaluated
the best genotypes of the last 1000 generations
of the evolutionary runs for the categorisation
task for the three methods of visual extrac-
tion. This is simply because the last 1000 gen-
erations should have a relatively higher fitness
pattern than the other generations and as a re-
sult yield better performance in the categori-
sation tasks.

The best performing genotype in each run
for all the evolutionary runs are presented and
used in our statistical analysis.
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Figure 10 (for the best runs) shows that
fitness patterns for the three methods improve
over all generations, while the grey-scale and
Active-ULBP show greater improvement than
the Active-HOG.

Also, observing standard deviation from the
mean for the three methods in (Figure 11), one
can deduced that all three methods produce a
best fitness that is very close to the mean in
the first few generations; however larger de-
viations are observed in the remaining gen-
erations. Moreover, Active-HOG exhibits a
larger deviation from the mean at an earlier
stage than the other two methods. Overall,
the fitness patterns of all runs seems to be
closer to the mean for the Active-ULBP than
for the other two methods, especially from ap-
proximately 700 generations onwards. By con-
trast, the fitness patterns for the grey-scale and
Active-HOG methods are very similar. This
suggests that the fitness patterns for all runs
of the Active-ULBP in general seem to progres-
sively improve in all generations as compared
to the other two visual extraction methods.

In the re-evaluation, a total of 700 trials were
done, with each image of each fold (175 images)
presented 4 times to the agent with a random
initial eye position in each trial.

The results of revaluation are presented in
Table 2 for the best performing genotypes (20
genotypes) in all evolutionary runs (20 runs)for
the three visual extraction methods.

The ANOVA shows a significant difference

Table 2: 2D iCub images: The statistics of
the best performing re-evaluated genotypes (20
genotypes) in all runs for each visual extraction
methods.

between the three methods (p=0.0106), Ta-
ble 3. Further evaluation with Bonferroni cor-
rected t-tests shows a significant difference be-
tween the Active-ULBP and the Active-HOG,
but not between the grey-scale and either of
the other two methods (Table 4). The good
performance of Active-ULBP, though not sig-
nificantly better than the grey-scale, may lend
support to ULBP as an effective feature de-
scriptor for texture information. The perfor-
mance of Active-HOG also shows that it can
be an effective feature representation for im-
ages characterised by some level of structural
information.

Also, we computed the MGSI of the best
performing re-evaluated evolved genotypes (3
genotypes) for all three visual extraction meth-
ods for 1750 trials during which the agent ex-
periences the five different categories (i.e. soft
toy, remote control set, microphone, board
wiper and hammer) of the 35 different samples
for each category, 10 times each with different
initial eye positions. For each type of visual
extraction method of the sensory patterns the
MGSI has been calculated for each of the 100
time steps of a trial (Figure 12).

The results show that the MGSI increase for
all visual extraction methods and for all ob-
jects, i.e. the system moves away from very
ambiguous to less ambiguous stimuli. The
MGSI never reached a value of 1, so the sys-
tem never managed to discover completely un-
ambiguous stimuli for any of the visual extrac-
tion methods. The Active-ULBP method gen-
erates less ambiguous stimuli (i.e. the high-
est peak in the MGSI graph) than the grey-

Table 3: 2D iCub images: The results of the
ANOVA test.
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scale and Active-HOG methods, however grey-
scale is more consistent. For the Active-HOG,
the system did not exhibit as great a tendency
to move towards less ambiguous stimuli when
compared with the other two methods. For
some objects, the system managed to generate
less ambiguous patterns than for other objects.
This means the system produced more discrim-
inative patterns for those objects than for oth-
ers. On the whole in the 2D experiments, the
MGSI results indicates that system used some
form of eye movements in improving the cate-
gorisation tasks.

4.2 3D Object Categorisation

We performed 6 evolutionary runs for each of
the visual extraction methods, and each run
was for 5000 generations.

However, in this experiment, we assessed
the performance of the system using the best
evolved genotypes of 100 consecutive genera-
tions that had a relatively higher and more
stable fitness pattern as compared to the other
generations in all evolutionary runs. This dif-
fers from the 2D experiment, where we took
a more systematic approach by re-evaluating
the best genotypes of the last 1000 genera-
tions. The number of genotypes chosen for re-
evaluation has been reduced in order to keep
the re-evaluation time within reasonable lim-
its, considering the high computational costs
of the 3D experiments.

Figure 13 shows that the fitness pattern
of the three methods of visual extraction gen-
erally goes up in all generations of the best

Table 4: 2D iCub images: The significant
test results using a paired t-test with test con-
ditions of (p-value<0.05) and (p-value<0.01).

evolutionary runs for the three methods, with
that of Active-HOG showing more improve-
ment than the other two.

Also, comparing the pattern of fitness of all
runs of the three visual extraction methods
(Figure 14), one can observe that the mean
fitness pattern of the Active-HOG is gener-
ally higher than that of the other two meth-
ods in all generations of the evolutionary runs,
while that of the grey-scale is a bit higher than
that of the Active-ULBP. This suggest that
Active-HOG fitness values over all generations
in all evolutionary runs are generally higher
than those of the other two methods.

In the re-evaluation, the system was tested
on the four categories of object used in the
training by randomly scaling and rotating each
object presented in a trial. The objects were
randomly scaled within the range [-15%, 15%]
relative to their original size and rotated in the
range [−10◦, 10◦] on the y axis, with a uniform
distribution. A total of 200 trials were per-
formed, with each object presented 50 times to
the agent in all trials and the eye was initialised
in each quadrant of the iCub gaze space.

The re-evaluated best 100 genotypes, shows
that the best performance was by the Active-
HOG method, followed by the grey-scale
method and then the Active-ULBP (Table 5).
Statistical evaluation of these results using
ANOVA (Table 6) shows a highly significant
difference between the results (p = 0.0004).
Further investigation using pairwise, Bonfer-
roni corrected t-tests (Table 7) shows a signif-

Table 5: 3D object categorisation: The
statistics of the best performing re-evaluated
genotypes (6 genotypes) in all runs for each
visual extraction methods.
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icantly better performance of the Active-HOG
method than both of the other 2 methods.

The fact that Active-HOG performed better
than grey-scale and Active-ULBP in the 3D
object classification scenario may be due to the
more structural nature of object categorisation
problem. This boosts the credentials of HOG
as an effective feature descriptor for applica-
tions that involve structures, e.g. object detec-
tion (Zaytseva et al. , 2012) and human recog-
nition (Dalal and Triggs, 2005). The fact that
Active-ULBP also demonstrated good perfor-
mance, though not as good as the ggrey-scale,
may also provides further evidence of ULBP as
an effective feature descriptor in many applica-
tions (Pietikainen et al. , 2011; Tapia et al. ,
2014).

The MGSI has been computed for the best
performing re-evaluated evolved genotypes (3
genotypes) for the three visual extraction
methods in all evolutionary runs. This was
done for 200 trials during which the agent ex-
perienced the stimuli from the four categories
(i.e. sphere, cube, cone, and torus), where each
object was uniformly and randomly scaled be-
tween [10%, -10%] to the original size and ro-
tated within the range [−10◦, 10◦] relative to
the original orientation with 50 different initial
eye positions. For each type of visual extrac-
tion method using the sensory patterns, the
MGSI was computed for each of the 100 time
steps of a trial (Fig. 15).

The MGSI increased for grey-scale, showing
that the system moved away from very ambigu-
ous to more discriminative stimuli but showed
only modest improvement for the Active-

Table 6: 3D object categorisation:The re-
sults of the anova test

ULBP. The Active-HOG generated less am-
biguous stimuli than grey-scale and Active-
ULBP but generally did not show improve-
ment over time and even deteriorated in the
case of cone object, and also exhibited oscilla-
tory behaviour in most time steps for all the
objects. This might have been due to the re-
duced ambiguity provided by the Active-HOG
stimuli from the start, and, as such, there
was not much need in this case to use the
eye movements to reduce ambiguity. On the
whole in the 3D object classification experi-
ments, the active vision system showed some
form of movements in improving the discrim-
inative tasks, but Active-HOG seems not to
evolve movement strategies because it did very
well in the early stages of the evolution.

4.3 3D Environment Categorisation

We performed 12 evolutionary runs, i.e. 6 runs
for each of the 2-fold cross-validation, and each
run lasted for 5000 generations. However, in
the re-evaluation, we assessed the performance
of the system using the best evolved genotypes
of 100 consecutive generations that had a rela-
tively higher and more stable fitness pattern as
compared to the other generations in all evolu-
tionary runs as was mentioned in the previous
section for the 3D object categorisation.

The fitness graphs of the best evolutionary
runs (Figure 16) and all runs (Figure 17)
for all three visual extraction methods shows
that they exhibit a common fitness pattern in
which fitness growth reached close to the op-

Table 7: 3D object categorisation: The
significant test results using a paired t-test
with test condition of (p-value<0.05) and (p-
value<0.01)
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tima value of 1.0 in the early stage of the evo-
lutionary run from about generation 1000.

The early convergence to optimal solutions
of the three visual extraction methods as re-
flected in the training may be due to the sys-
tem formulating easy solutions to the prob-
lem because of the small number of images
used and trials that were done in order to
reduce the time complexity of the evolution-
ary method. Therefore, the importance of the
re-evaluation is to test the robustness of the
model by introducing more variability into the
system. For examples, changing the initial po-
sition of the eye in each trial, rotations of the
environment/stimuli and increasing the num-
ber of trials. This is not possible in the evo-
lutionary runs because of computational cost.
For this reason, the complexity of the problem
was in the generalisation of the skills learned
by the evolved genotypes to unseen images cou-
pled with the additional variability introduced
in the re-evaluation.

We re-evaluated the 100 best evolved geno-
types of the three visual extraction methods
of all evolutionary runs for 200 trials during
which the agent experienced 10 different in-
door and outdoor environments (2 classes) in
2-fold cross-validation (20 images), with each
environment uniformly and randomly rotated
within the range [−40◦, 40◦] to the original ori-
entation with 20 different initial eye positions.
We present the result of the best performing
genotypes (12 genotypes) from the 12 evolu-
tionary runs (Table 8). As shown in the table,

Table 8: 3D indoor-outdoor classifica-
tion: The statistics of the best performing re-
evaluated genotypes (12 genotypes) in all runs
for each visual extraction methods.

even though reasonable results were obtained
in the re-evaluation stage, the lowered per-
formance did not reflect the early optima fit-
ness reached by the system (grey-scale, Active-
ULBP and Active-HOG) in the evolutionary
(training) stage. Active-HOG shows the best
performance, followed by Active-ULBP and
then the grey-scale method. The ANOVA
shows a highly significant difference between
these means (Table 9) and further investiga-
tion using Bonferroni corrected t-tests shows
a significant difference between the Active-
HOG and grey-scale, but not between the other
method combinations (Table 10).

The improvement shown by Active-ULBP in
the environment categorisation problem may
be due to the fact that ULBP is a good fea-
ture descriptor for detecting local binary tex-
ture patterns in texture images (Ojala et al. ,
2002). HOG may also work well for texture im-
ages, especially if there are a lot of structures
in the images (Dalal and Triggs, 2005).

Finally for the indoor-outdoor environment
categorisation, the MGSI of the best perform-
ing re-evaluated evolved genotypes (3 geno-
types) of the three visual extraction methods of
all evolutionary runs was computed for 200 tri-
als during which the agent experienced 10 dif-
ferent indoor and outdoor environments, with
each environment uniformly and randomly ro-
tated within the range [−40◦, 40◦] to the orig-
inal orientation with 20 different initial eye
positions. For each type of visual extraction
method of the sensory patterns, the MGSI
was computed for each of the 100 time steps
(Fig. 18).

Table 9: 3D indoor-outdoor categorisa-
tion: The results of the anova test.
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The fact that the MGSI did not show much
improvement either for all conditions (visual
extraction methods) or the two environments
(indoor and outdoor) shows that the system
did not make much use of coordinated sensory-
motor control in order to disambiguate the am-
biguous visual information. This actually was
not a problem given the performance of the
three visual extraction techniques. The sys-
tem must have relied heavily on the internal
states of the controller for the integration of
sequences of experienced sensory states over
time.

5 Discussion

In this paper we have investigated three visual
extraction methods, that is, the grey-scale av-
eraging (Mirolli et al. , 2010), Uniform Lo-
cal Binary Patterns (Ojala et al. , 2002), and
Histogram of Oriented Gradients (HOG, Dalal
and Triggs, 2005), in the context of an active
vision system.

Our first objective is to show that evolution-
ary based active vision systems can work in
more complex scenes. This was demonstrated
by using the grey-scale averaging method for
more complex natural images taken from the
camera of the iCub robot, as compared to syn-
thetically generated hand-written italic-letter
images with simple white background that
were used in Mirolli et al. (2010). We also
used this grey-scale method in the 3D iCub
robot simulator platform for object categorisa-
tion and indoor-outdoor categorisation tasks.

Table 10: 3D indoor-outdoor categorisa-
tion: The significance test result using paired
t-test with test conditions of (p-value<0.05)
and (p-value<0.01).

This was a more complex scenario, when com-
pared to the (Mirolli et al. , 2010) letter
experiment and our 2D iCub images exper-
iment. In our 3D environment experiments,
the agent (i,e. iCub) was confined within the
environment, with the virtual camera located
in the right eye position, which was extended
to encourage more exploration of the scene.
For instance, in the 3D indoor-outdoor envi-
ronment categorisation experiment, the agent
could only see a small fraction of the environ-
ment at the same time, encouraging the de-
velopment of the ability to integrate sensory
information over time to complete the task.

In addition to categorisation performance,
the active vision system using the grey-scale
method was able to use sensory-motor coordi-
nation for learning in the 2D images and 3D
object categorisations. However, the system
could not use intelligent control for learning the
categorisation of the 3D outdoor-indoor envi-
ronments and might have relied heavily on the
internal states of the network, given the good
performance of the system.

The second objective is to show that this
active vision system can be further enhanced
with pre-processing techniques for categorisa-
tion tasks.

In the 2D-image categorisation experiment,
our proposed pre-processing technique, Active-
ULBP had better average performance than
the grey-scale, but was not significantly bet-
ter. However, the grey-scale had better av-
erage performance than the Active-HOG, but
also was not significantly better.

On the other hand, in the 3D object cat-
egorisation, Active-HOG showed better aver-
age performance than grey-scale, and was sig-
nificantly better. While, the grey-scale out-
performed the Active-ULBP in average perfor-
mance but was not significantly better.

Also, in the 3D indoor-outdoor environ-
ment categorisation, Active-HOG showed bet-
ter performance than the grey-scale and was
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significantly better. While, the Active-ULBP
was also better on the average than the grey-
scale, but was not significantly better.

However, the active vision system, using pre-
processing techniques has not demonstrated
much use of intelligent control in the categori-
sation tasks, as evidenced by the MGSI. The
Active-ULBP showed some evidence of intel-
ligent control in the 2D and 3D object cat-
egorisation, and no evidence in the indoor-
outdoor classification. While, Active-HOG
showed some evidence of learning in the 2D
but no significance evidence in the 3D experi-
ments.

We will further discuss in the next sections:
(i) the visual representation and active vision
categorisation tasks; (ii) dynamics of the cate-
gorisation process.

5.1 The Visual Representation and
Active Vision Categorisation
Tasks

We investigated an active vision system based
on Mirolli et al. (2010) for categorisation of
more complex 2D images and 3D objects and
indoor-outdoor environment categorisation.

All conditions in the categorisation tasks
were the same, apart from the visual extrac-
tion methods (grey-scale averaging, ULBP,
and HOG). Although, the size of visual inputs
varied significantly between grey-scale (25) and
ULBP (236), the number of inputs for HOG
(36) was closer to that of the grey-scale; which
works the best in some of the exeriments. This
implies the number of inputs was not the only
factor in the categorisation performance.

We used the iCub simulator platform as the
basis for our 3D experiments. However, be-
cause of computational complexity, we only
made use of 2 degrees of freedom for the right
eye (pan and tilt) as we are not interested in
calculating any depth information, and have
excluded the vergence. Also for simplicity and

because of the computational overhead, we ex-
cluded head, neck and other proprioceptive
information from our experiments, where ex-
tending to the neck joints introduces redun-
dancy into the degrees of freedom. For in-
stance, in the 3D object categorisation, the
objects were small enough that moving too
much would lead to the objects being lost com-
pletely. Of course, if we introduce the torso
then we could look at the object from different
view points, but this will also introduce addi-
tional computational cost for the evolutionary
method and goes well beyond the aims of this
work. The focus is therefore on the eye move-
ments alone exploring a scene.

In the experiment of object categorisation in
3D, the first challenge was the randomly varied
size and orientations in each trial, and the sec-
ond challenge was the high ambiguity of the
stimuli of the objects that were investigated
(i.e, sphere, cube, cone, and torus). Despite,
the complexity of the problem, the three vi-
sual extraction methods that were investigated
performed well.

On the other hand, the complexity of the
indoor and the outdoor environment classifica-
tion may be due to the following reasons: (i) In
contrast to the object categorisation problem
in which categorisation involves one category
of object in each trial, environment categorisa-
tion can involve many objects within the same
environment, which may or may not belong
to shared category, and each of which may be
in different spatial locations. Apart from this
structural information, there is also textural
information to be processed. (ii) The system
therefore may have to use the totality of con-
textual information within each environment
to complete the discrimination task, coupled
with random rotation in each trial.

In spite of the complexity of the problem, the
active vision system also performed well over
the course of testing for all the visual extrac-
tion methods under investigation.
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The improvement in performance of Active-
HOG in the 3D object categorisation may be
due to the more structural nature of the ob-
ject categorisation problem. Equally the good
performance of Active-HOG also in indoor-
outdoor environment categorisation may have
been due to more structural information in the
datasets. Typically, in most indoor and out-
door environments, the objects and structures
are more conspicuous. For instance, a typical
indoor environment may have conspicuous ob-
jects, such as tables, chairs, beds, and so on,
while outdoor environments may have struc-
tures, such as houses, cars, trees and the like.
On the other hand, the fact that Active-ULBP
performed well in categorisation tasks irrespec-
tive of the environmental context (2D images
or 3D indoor-outdoor) is evidence that ULBP
is a good feature descriptor for detecting pat-
terns in texture images, and a good feature de-
scriptor in many applications (Pietikainen et
al. , 2011; Tapia et al. , 2014).

5.2 Dynamics of the Categorisation
Process

The categorisation performance of an active vi-
sion system may not depend as much on the
complexity of the system design as on the ex-
tent to which the agent may use the dynamic
interaction of the sensory-motor components
to exploit regularities that pertain to the dif-
ferent categories in the sensor input-space. We
investigated the dynamics using the Modified
Geometric Separability Index (MGSI) in order
to analyse the extent to which the active vision
system used its intelligent motor control to ex-
perience sensory stimuli that could be unam-
biguously associated with a particular category
for each of the three visual extraction methods
in the input space.

In the 2D environment in particular, the
MGSI results showed that all three visual ex-
traction methods generated sensory patterns

that allowed the system to move from very
ambiguous to less ambiguous stimuli. Active-
ULBP also provided less ambiguous stimuli
(i.e. the highest peak in the MGSI graph)
than the other methods. However, grey-scale
was a little bit more consistent over time than
Active-ULBP.

In the 3D object categorisation, grey-scale
was able to use sensory-motor coordination
over time to experience more discriminative
stimuli than the other two visual representa-
tion methods. Active-ULBP also showed some
slight use of motor responses in moving to less
ambiguous stimuli over time. However, even
though Active-HOG generally had less am-
biguous stimuli from the start, it was not to a
great extent able to use eye movements to ex-
perience less ambiguous sensory stimuli. The
low ambiguity of Active-HOG in most time
steps may be due to the highly structural na-
ture of the problem, and this may also have
enhanced its recognition capability. That said,
the inability to use sensory-motor coordination
to experience less ambiguous stimuli over time,
might have been due to the low ambiguity ex-
perienced by the system from the outset, and
if the system can get good results from random
eye movements it won’t tend to evolve intelli-
gent control. In this context, there was little
need to make use of eye movements to reduce
ambiguity over time.

Also, the occurrence of oscillatory behaviour
by the Active-HOG stimuli, may in part be due
to the best genotypes that were used for the
computation of the MGSI. As the use of HOG
only transforms the input pixels into a different
representation, and of itself does not perform
any classification. Hence the agent was learn-
ing to perform the classification but was not
relying much on active vision to do so. This
points to the need for further work to inves-
tigate the best combinations of representation
and active learning.

On the whole, in both the 2D and 3D ob-
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ject categorisation, grey-scale used more eye
movements than the other two methods to in-
fluence the performance of the active vision
system. Active-ULBP also showed more use of
eye movements to reduce visual ambiguity in
2D than in 3D and outperformed Active-HOG
in both environments.

On the other hand, in both indoor and out-
door environment categorisation experimental
contexts, the active vision system seems to
have relied heavily on the internal dynamics
of the neural network controller. This was be-
cause there was only a slight improvement in
the MGSI values for the three visual extraction
methods over time. Since the performance of
the three visual extraction methods was good,
the system must have used the internal states
to integrate the very ambiguous perceptual in-
formation over time. However, we are not com-
mitted to this view and this may be a subject
of future research.

Also, the probable reason for the poor learn-
ing of the active vision system as compared
to the object categorisation experiments may
be due to the different context of categorisa-
tion. In the object categorisation experiments
there was only one object to be categorised in
an image/environment, whereas in the indoor
and outdoor environment categorisations there
was more variability. For example, there were
many structures, each of varying sizes and spa-
tial locations. There were also other variables
such as texture, and some of the variables may
not be peculiar to a particular environment,
which is to say that some structures are com-
mon to both indoor and outdoor environments.
It may therefore be difficult for the system to
discover regularities that are particular to an
environment (indoor or outdoor) through dy-
namic sensory-motor interaction alone.

6 Conclusion and Future
Works

We have extended the architecture described in
(Mirolli et al. , 2010) using grey-scale averag-
ing feature extaction method to more complex
scenes for 2D object categorisation and 3D ob-
ject and outdoor-indoor environment categori-
sation.

We further sought to improve the categori-
sation performance of the active vision system
with pre-processing techniques using Uniform
Local Binary Patterns (ULBP, Ojala et al. ,
2002), and Histogram of Oriented Gradients
(HOG, Dalal and Triggs, 2005), in the 2D and
the 3D environments.

In each experiment the performance of the 3
visual extraction methods were compared sta-
tistically, and the dynamics was evaluated us-
ing the MGSI measure of separability.

The results showed a mixed picture, de-
pendent on the particular problem. For the
2D iCub images, the Active-ULBP showed
the best average performance, and was sig-
nificantly better than the other methods at
the p = 0.05 level, but not at the p =
0.01 level, and all methods showed some ev-
idence of intelligent control of the eye move-
ment in the MGSI. For the 3D object experi-
ment Active-HOG showed a significantly bet-
ter performance than the other two methods at
the stricter significance level of p = 0.01, but
seemed to require less intelligent control due to
high discrimination in the early stages of the
re-evaluation trials. For the 3D environment
experiments, again the Active-HOG showed
the best performance, significantly better than
the grey-scale method at the p = 0.01 level, but
not significantly better than the Active-ULBP
method, and the behaviour of the system ex-
hibited virtually no evidence of intelligent se-
lection of stimuli, according to the MGSI re-
sults.
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In summary, the investigation has demon-
strated that evolutionary active vision system
using greyscale averaging extraction method
can work in complex scenes. However, the
optimal choice of feature extaction technique
is highly dependent on the specific problem.
Also, the evidence for intelligent control is also
dependent on the specific problem and choice
of pre-processing, with some systems showing
good performance, but little evidence of guid-
ing the agent towards more easily discrimi-
nated stimuli. If the agent can solve the prob-
lem without intelligent movement the system
will not evolve such behaviours. Thus, we
demonstrate that simple pre-processing step
can also increase categorisation performance in
some scenarios, and that the reliance on active
control is lower as the agents (non-active) cate-
gorisation performance increases. Such under-
standing could help focus research on develop-
ing the best combination of active and non-
active components.

It should be noted that other form of be-
havioural analyses can be performed apart
from the Modified Geometric Separability In-
dex (MGSI) to understand more of the cate-
gorisation process. However, the focus of this
research paper is in investigating the impact
of representation on active learning and clas-
sification accuracy and not on underlying phe-
nomena beyond the categorisation process.

In the future, it would be interesting to eval-
uate more of the behaviours of the currently
used pre-processing techniques by using other
behavioral analyses tools, so as to understand
more of their categorisation process. Also, to
better understand the internal dynamics of the
system, neural analysis can be carried out to
understand the patterns of the neuron activa-
tion over time using the best evolved genotypes
of the three visual extraction methods used for
the MGSI in the re-evaluation stage and under
the same experimental conditions.

Similarly, one can fix the eye movement for

the outdoor-indoor environment classification,
so as know if the performance of the system
(grey-scale, ULBP and HOG) was mainly as a
result of internal states of the system. If the
performance still remains at a level compara-
ble to the system that uses adaptive eye move-
ment, it will be a further indication of systemic
reliance on the internal states of the controller
to complement sensory-motor coordination.

Furthermore, one can investigate other pre-
processing techniques for the problem at hand
to know the best combinations of representa-
tion and active learning. For example, convo-
lution neural networks have shown excellent re-
sults on object recognition and other problems
in computer vision, but adapting them and
their training to the active vision framework is
challenging, particularly due to the high com-
putational cost of the evolutionary training.
Another area for future work is to implement
the active vision system on a physical robotic
hardware platform in order to see if the system
could replicate the same level of performance
in the real system. Although, we tried to sim-
ulate the conditions of the real world as much
as possible, it is not automatic that the algo-
rithms will perform as well in the real system.

References

Ojala T, Pietikainen M, and Maenpaa T (2002)
Multiresolution gray-scale and rotation in-
variant texture classification with local bi-
nary patterns. Pattern,Analysis and Ma-
chine Intelligence, IEEE Transactions on,
24(7):971987.

Dalal N and Triggs B (2005). Histograms of
oriented gradients for human detection. In
Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Soci-
ety Conference on, volume 1, pages 886893.
IEEE.

23



Belongie S, Malik J, and Puzicha J (2002).
Shape matching and object recognition us-
ing shape contexts. IEEE transactions on
pattern analysis and machine intelligence,
24(4):509522.

Avraham T and Lindenbaum M (2010).
Esaliency (extended saliency): Meaningful
attention using stochastic image modeling.
Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 32(4):693-708.

Kagan I and Hafed Z (2013). Active vision: mi-
crosaccades direct the eye to where it mat-
ters most. Current Biology, 23(17):712-714.

Osuna E, Freund R, and Girosit F (1997).
Training support vector ma- chines: an ap-
plication to face detection. In Computer vi-
sion and pattern recognition. Proceedings.,
1997 IEEE computer society conference on,
pages 130 136. IEEE.

Tsotsos J (1992). On the relative complexity of
active vs. passive visual search. International
journal of computer vision, 7(2):127141.

Nolfi S (1998). Adaptation as a more pow-
erful tool than decomposition and integra-
tion: experimental evidences from evolu-
tionary robotics. In Fuzzy Systems Proceed-
ings, 1998. IEEE World Congress on Com-
putational Intelligence., The 1998 IEEE In-
ternational Conference on, volume 1, pages
141146. IEEE.

Mirolli M, Ferrauto T, and Nolfi S(2010). Cate-
gorization through evidence accumulation in
an active vision system. Connection Science,
22(4):331 354.

Kato T and Floreano D (2001). An evolu-
tionary active-vision system. In Evolution-
ary Computation, 2001. Proceedings of the
2001 Congress on, volume 1, pages 107114.
IEEE.

Croon G (2008). Adaptive Active Vision. PhD
thesis, Universiteit Maastricht, Gildeprint,
The Netherlands, 3.

Denzler J and Brown C (2002). Information
theoretic sensor data selection for active ob-
ject recognition and state estimation. IEEE
Transactions on Pattern Analysis and Ma-
chine Intelligence, 24(2):145157.

Borotschnig H, Paletta L, and Pinz A (1999).
A comparison of probabilistic, possibilis-
tic and evidence theoretic fusion schemes
for active object recognition. Computing,
62(4):293319.

Tuci E (2014). Evolutionary swarm robotics:
genetic diversity, task-allocation and task-
switching. In International Conference on
Swarm Intelligence, pages 98109. Springer.

Marocco D and Floreano D (2002). Active vi-
sion and feature selection in evolutionary be-
havioral systems. From animals to animats,
7:247255, 2002.

Nolfi S and Marocco D (2000). Evolving
visually-guided robots able to discriminate
between different landmarks. In In From An-
imals to Animats 6. Proceedings of the sixth
International Conference on Simulation of
Adaptive Behavior SAB-00. Citeseer, 2000.

Morimoto G and Ikegami T (2004). Evolution
of plastic sensory-motor coupling and dy-
namic categorization. Proceedings of Arti-
cial Life IX, pages 188-193, 2004.

Magnussen S (2000). Low-level memory pro-
cesses in vision. Trends in neurosciences,
23(6):247251, 2000.

Le Meur O, Le Callet P, Barba D, Thoreau D,
and Francois E (2004). From low-level per-
ception to high-level perception: a coherent
approach for visual attention modeling. In

24



Electronic Imaging 2004, pages 284295. In-
ternational Society for Optics and Photon-
ics, 2004.

Diamant E (2008). Unveiling the mystery of vi-
sual information processing in human brain.
Brain research, 1225:171178, 2008.

Schembri M and Belardinelli M (2015).
Evolved simulated agents exhibit size con-
stancy abilities in solving an online size dis-
crimination task. In EAPCogSci, 2015.

Ahonen T, Hadid A, and Pietikainen M (2006).
Face description with local binary patterns:
Application to face recognition. IEEE trans-
actions on pattern analysis and machine in-
telligence, 28(12):20372041, 2006.

Stefanou S and Argyros A (2012). Efficient
scale and rotation invariant object detection
based on hogs and evolutionary optimization
techniques. Advances in Visual Computing,
pages 220229, 2012

kas Kass M, Witkin A, and Terzopoulos D
(1988). Snakes: Active contour models.
International journal of computer vision,
1(4):321331, 1988.

Terzopoulos D and Rabie T (1995). Animat
vision: Active vision in artificial animals. In
Computer Vision, 1995. Proceedings., Fifth
International Conference on, pages 801808.
IEEE, 1995.

Minut S and Mahadevan S (2001). A reinforce-
ment learning model of selective visual at-
tention. In Proceedings of the fifth inter-
national conference on Autonomous agents,
pages 457464. ACM, 2001.

Vidal-Calleja T and Sanfeliu A and Andrade-
Cetto J (2010). Action selection for single-
camera slam. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B (Cy-
bernetics), 40(6):15671581, 2010.

Guerrero P, Ruiz-Del-Solar J, Romero M, and
Angulo S (2010). Task-oriented probabilistic
active vision. International Journal of Hu-
manoid Robotics, 7(3):451476, 2010.

Dame A and Marchand E (2013). Using mu-
tual information for appearance-based visual
path following. Robotics and Autonomous
Systems, 61(3):259270, 2013.

Davison A (2005). Active search for real-time
vision. In Computer Vision, 2005. ICCV
2005. Tenth IEEE International Conference
on, volume 1, pages 6673. IEEE, 2005.

Nolfi S (2005). Categories formation in self-
organizing embodied agents. Handbook of
categorization in cognitive science, pages
869-889, 2005.

Pugliese F (2014). Development of categorisa-
tion abilities in evolving embodied agents: A
study of internal representations with exter-
nal social inputs. In Evolution, Complexity
and Artificial Life, pages 123134. Springer,
2014.

Nolfi S and Parisi D (1995). Evolving non-
trivial behaviors on real robots: an au-
tonomous robot that picks up objects. Top-
ics in artificial intelligence, pages 243254,
1995.

Tuci E, Massera G, and Nolfi S (2010). Active
categorical perception of object shapes in
a simulated anthropomorphic robotic arm.
IEEE transactions on evolutionary compu-
tation, 14(6):885899, 2010.

Lanihun O, Tiddeman B, Tuci E, and Shaw P
(2015). Improving active vision system cat-
egorization capability through histogram
of oriented gradients. In Conference To-
wards Autonomous Robotic Systems, pages
143148. Springer, 2015.

25



Tuci E, Nolfi S, Mirolli M, Ferrauto T and
Massera G (2009). Two examples of ac-
tive categorisation processes distributed over
time. In Proceedings of the Ninth Interna-
tional Conference on Epigenetic Robotics:
Modeling Cognitive Development in Robotic
Systems, pages 4956, 2009.

Lanihun O, Tiddeman B, Tuci E, and Shaw P
(2014). Enhancing active vision system cat-
egorization capability through uniform lo-
cal binary patterns. In Artificial Life and
Intelligent Agents Symposium, pages 3143.
Springer, 2014.

Ojala T, Pietikainen M, and Harwood D
(1996). A comparative study of texture
measures with classification based on fea-
tured distributions. Pattern recognition,
29(1):5159.

Tsagarakis N et. al. (2007). icub: the design
and realization of an open humanoid plat-
form for cognitive and neuroscience research.
Advanced Robotics, 21(10):11511175.

Leitner J et al (2017). Learning visual
object detection and localisation using
icvision. http://www.sciencedirect.com/ sci-
ence/article/pii/S2212683X13000443, 2017.
Accessed: 2017-06-28.

Tuci E (2016). The simple icub simulator used
in this journal paper. Faculty of Computer
Science University of Namur, rue Grandgag-
nage 21, 5000, Namur, Belgium.

Thornton C (1998). Separability is a learners
best friend. In 4th Neural Computation and
Psychology Workshop, London, 911 April
1997, pages 4046. Springer.

Google (2017). Google Images.
https://www.google.co.uk/imghp?hl=entab=wi

Goldberg D (1999). Genetic algorithm in
search, optimisation and machine learning.
Reading, MA. Addison-Wesley.

Canny J. A (1986). Computational Approach
To Edge Detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence,
8(6):679698.

Pietikainen M, Hadid A, Zhao G, and Aho-
nen T (2011). Local binary patterns for still
images. In Computer vision using local bi-
nary patterns, pages 13-47. Springer

Tapia J, Perez C, and Bowyer K (2014). Gen-
der classification from iris images using fu-
sion of uniform local binary patterns. In
ECCV Workshops (2), pages 751-763, .

Zaytseva E, Segui S, and Vitria J (2012).
Sketchable histograms of oriented gradi-
ents for object detection. In Iberoamerican
Congress on Pattern Recognition, pages 374-
381. Springer.

Kass M, Witkin A, and Terzopoulos D (2008).
Snakes: Active contour models. Interna-
tional journal of computer vision, 1(4):321-
331.

Super Computing Wales (2019).
https://www.supercomputing.wales/ .

Gropp, W.D., Gropp, W., Lusk, E., Skjel-
lum, A. and Lusk, A.D.F.E.E. (1999). Using
MPI: portable parallel programming with
the message-passing interface (Vol. 1). MIT
press.

Ferrauto T, Tuci E, Mirolli M, Massera G,and
Nolfi S (2009). Two examples of active cate-
gorisation processes distributed over time. In
Proceedings of the Ninth International Con-
ference on Epigenetic Robotics: Modeling
Cognitive Development in Robotic Systems,
pages 49-56.

26



Tuci E, Massera G, and Nolfi S (2010). Active
categorical perception of object shapes in
a simulated anthropomorphic robotic arm.
IEEE transactions on evolutionary compu-
tation, 14(6):885-899.

(a) Modified Geometric Separability (MGSI) of the
stimuli provided by the greyscale averaging method

(b) Modified Geometric Separability (MGSI) of the
stimuli provided by the Active-ULBP method.

(c) Modified Geometric Separability (MGSI) of the
stimuli provided by the Active-HOG method.

Figure 12: 2D iCub images: Modified Geo-
metric Separability (MGSI) of the stimuli pro-
vided by the visual extraction methods for the
2D images: an increase over time indicates the
agent is moving the system towards regions
that increase discrimination ability.

27



Figure 13: 3D object categorisation: The
fitness graphs of the best evolutionary runs of
the three visual extraction methods.

Figure 14: 3D object categorisation: Shows
the graph of the mean (average) of all fitness
in each generation of the 5000 generations for
6 evolutionary runs and their positive (+ve
stdev) and negative (-ve stdev) standard devi-
ation in each generation for the three methods
of visual extraction.

(a) Modified Geometric Separability (MGSI) of the
stimuli provided by the greyscale averaging method

(b) Modified Geometric Separability (MGSI) of the
stimuli provided by the Active-ULBP method.

(c) Modified Geometric Separability (MGSI) of the
stimuli provided by the Active-HOG method.

Figure 15: 3D object categorisation: Mod-
ified Geometric Separability (MGSI) of the
stimuli provided by three visual extraction
methods for the 3D objects: an increase over
time indicates the agent is moving the system
towards regions that increase discrimination
ability.
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Figure 16: 3D indoor-outdoor classifica-
tion: The fitness graphs of the best evolution-
ary runs of the three visual extraction meth-
ods.

Figure 17: 3D indoor-outdoor classifica-
tion: Shows the graph of the mean (average)
of all fitness in each generation of the 5000 gen-
erations for 12 evolutionary runs and their pos-
itive (+ve stdev) and negative (-ve stdev) stan-
dard deviation in each generation for the three
methods of visual extraction.

(a) Modified Geometric Separability (MGSI) of the
stimuli provided by the grey-scale averaging method

(b) Modified Geometric Separability (MGSI) of the
stimuli provided by the Active-ULBP method.

(c) Modified Geometric Separability (MGSI) of the
stimuli provided by the Active-HOG method.

Figure 18: 3D indoor-outdoor classi-
fication: Modified Geometric Separability
(MGSI) of the stimuli provided by the three vi-
sual extraction methods for the 3D indoor and
outdoor environments: An increase over time
indicates the agent is moving the system to-
wards regions that increase discrimination abil-
ity.
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