
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Visualization software for 3D trabecular bones as a support for a diagnostic process

a critical application of the Trident methodological framework

Octave, Michaël; Piedigrosso, Johan

Award date:
1997

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/2983593f-daa4-401e-ba04-d8fc75f3c7ae

Facultés Universitaires Notre-Dame de la Paix

Institut d'Informatique

Rue Grandgagnage, B-5000 Namur

Visualization software for 3D

trabecular bones as a

support for a diagnostic process :

A critical application of the

TRIDENT methodological framework

by

Michael Octave and Johan Piedigrosso

Thesis submitted in fulfilment of the requirements for the degree of
Master of Computer Science

Michael Octave
Johan Piedigrosso

Academic year 1996 - 1997

Visualization software for 3D trabecular bones as a support for a diagnostic

process : A critical application of the TRIDENT methodological framework

Authors : Michael OCTAVE
Johan PIEDIGROSSO

Director: Dr Francois BODART, FUNDP, Belgium
Co-Director : Dr Tony S. KELLER, UVM, USA

Training period : Musculo-skeletal Lab
Mechanical Engineering College,
University of Vermont,
Colchester A venue,
Burlington, VT 05405, USA

Abstract:

The abject of this thesis is to design and develop a Windows NT application for visualizing 3D
abjects, and particularly 3D representations of trabecular bones as a support for a diagnostic process.
This application is airned to be used by advanced users, in a research environment. It has been
developed in the Mechanical Engineering Department of the University of Vermont, Burlington, VT,
USA. This application is actually divided in two main programs, the first one is called 3D Surface
Maker and is dedicated to create 3D representation of trabecular bones ; the second one is called
3D Viewer and is able to display several 3D abjects, to rotate, transform and eut these abjects.

Résumé:

Le but de ce mémoire est de développer une application Windows NT de visualisation d'os en 3D, et
particulièrement leur représentation 3D comme aide au diagnostic. Cette application est dédiée à des
utilisateurs expérimentés, dans un environnement de recherche. Il a été développé dans le
Département d'Ingénierie Mécanique de l'Université du Vermont, à Burli11gton, VT, USA. Cette
application comporte deux programmes distincts, 3D Surface Maker qui crée les fichiers sur les os et
3D Viewer qui permet l'affichage simultané de plusieurs objets 3D, la rotation, et autres
transfonnations.

Kevwords: 3D, imaging, C++, TRIDENT, HCI, interactive object.

3

Thanks

W e want to give special thanks to people who helped us during our training
and the preparation and the redaction of our thesis. We spent about six months

in the Musculo-skeletal Lab of the Mechanical Engineering College,
in the University of Vermont, at Burlington, Vermont, USA.

Thanks to Dr Bodart and Dr Keller, our advisers,
who helped us to make clear the way we had to work,

Thanks to Dr Vanderdonckt, Mr Leheureux and Mr Leclercq for their invaluable advice,
Thanks to Dr Sullivan for the time he spent and Pascal Goossens for his advise,

Thanks to Mark, Rakesh, John, Michael L., Julie, Blanche, Anne and Michael G.
at the UVM and in Burlington. Their ftiendship and their fabulons welcome

made our training period a very rich professional and personal experience,
Thanks to Sophie for her support, her good advise and her patience,

Johan and Michael.

s

Table of Contents

Thanks ... 5
Table of Contents 7
Table of Figures ()
Table of Tables 12
Table of Pseudo-Codes 12

Introduction .. 13

PART I : The visualization process .. 15

Chapter 1 : Visualization ... 17
1. Definition and origins 18
2. Applications 19
3. Imaging, Computer Graphies and Visualization 19

Chapter 2 : Description of the process for the visualization program 21
1. Introduction 22
2. Itnages 23
3. Display features 33
4. VTK Process - Surface construction 39
5. Volutne construction 54
6. 3D Viewer - A visualization program 56
7. Conclusion 7 4

Chapter 3 : 3D graphies technical considerations ... 77
1. OpenGL 77
2. The graphies hardware 78

PART II : A critical application of the TRIDENT methodological framework . .. 81

Chapter 4 : First Dimension : Graphical User Interface Specifications 83
1. Introduction 83
2. Task "analysis" 84
3. Expressing the product of the task analysis 104
4. Conclusion 134

Chapter 5 : Second dimension : Presentation Design From Ergonomie Rules 139
1. Introduction 139
2. PU identification .. 140
3. Windows identification 141

7

4. AIOs selection 152
5. Transformation of the AIOs into CIOs 165
6. CI Os placement and manu al edition of the presentation 166
7. Using an Expert System for Automatic Generation of User Interface 176
8. Conclusion 179

Chapter 6: Third dimension : The software architecture derivation 183
1. Introduction 183
2. Architecture theoretical description 183
3. Hierarchies construction 187
4. Conclusion 207

Chapter 7: Conclusion ... 211

Reference Books .. 215

Appendices ... 218

Appendix 1 : Object Model for VTK .. 219
Appendix 2 : Quantitative Computed Tomography .. 223
A ppendix 3 : Magnetic Resonance Imaging ... 225
Appendix 4 : Main classes ... 227
Appendix 5 : VRlVIL .. 241

8

Table of Figures

Figure 1-1: Connections between Imaging, Computer graphies and Visualization

Figure 2-1 : Process Scheme

Figure 2-2 : Reading files in the whole process

Figure 2-3 : A lOx 10 two-dimensional image array.

Figure 2-4 : Two two-dimensional arrays are seen as a three dimensional array

Figure 2-5 : Image Acquisition System

Figure 2-6 : A typical file format

Figure 2-7 : Displaying images in the whole process

Figure 2-8 : Conversion from 12-bit values to 8-bit values

Figure 2-9: A 12-bit converted in 8-bit image and its corresponding histogram

Figure 2-10 : A slice of a trabecular bone

Figure 2-11 : Depth shading method applied to 50 slices

Figure 2-12: 5 slices (left) and 10 slices (right) depth shading images

Figure 2-13 : Base image as displayed with simple depth shading

Figure 2-14: Three other views of the object shown in Figure 2-13

Figure 2-15 : Cube sides

Figure 2-16 : The VTK surface construction in the whole process

Figure 2-17 : Cell type specification

Figure 2-18 : A drawing and it, mesh representation (22 nodes)

Figure 2-19: Approximation of a curved surface using polygonal facets [WATT96]

Figure 2-20 : Contouring a 2D image with a isovalue of 5

Figure 2-21 : Sixteen different marching squares cases

Figure 2-22 : Fifteen cases for marching cubes algorithm

Figure 2-23 : Construction of a cube with two slices

Figure 2-24: A dialog box with a histogram (from 3D Surface Maker)

Figure 2-25 : Skin (a) and bones (b) selected regions

Figure 2-26 : CT slice through a human head and its corresponding position

Figure 2-27 : Contouring a CT scan and contouring bones only

Figure 2-28 : Marching cubes applied to two slices. (a) Top view. (b) Side view

Figure 2-29 : Mesh and rendered surfaces

Figure 2-30 : Dynamic Mode! applied to a basic visualization program

Figure 2-31 : Data flow diagram for the visualization process

Figure 2-32 : Volume mesh construction in the whole process

Figure 2-33 : A surface mesh (a) and a volume mesh from 3dmesh (b)

Figure 2-34 : 3D Viewer and its position in the whole visualization process

Figure 2-35 : A scene within its near and far planes

Figure 2-36: Translation (a), Scaling (b) and Rotation (c) transformations

Figure 2-37 : Light spectrum

Figure 2-38: Ambient (a), diffuse (b) and specular (c) lights

Figure 2-39: Working with specular light

Figure 2-40 : Light positions

Figure 2-41 : The surface normal

9

20

23

24

24

34

35

35

36
36

37

37

38

38

40

40

41

41

43

43

44

45

46

47

48

48

49

49

52

53

54

56

57

58

58

63

64

65

65

66

Figure 2-42 : Defining vertices order as clockwise and counter-clockwise

Figure 2-43 : Two views for tl1e same document [MSDEV96]

Figure 2-44 : 3D Viewer interface wit11 multiple views

Figure 2-45 : Top, rear and right cutting planes

Figure 2-46 : Cutting planes

Figure 2-47 : 3D Viewer and an exported file in Netscape®

Figure 2-48 : Description of modules dependencies

Figure 2-49 : The whole visualization process

Figure 3-1 : Raslerization for 2 Iines [W A TT93]

Figure 4-1 : The loolbox metaphor.

Figure 4-2 : Microsoft Word seen as a toolbox

Figure 4-3 : The diagram of goal and sub-goal decomposition of the 3D visualization task

Figure 4-4 : The diagram of goal and sub-goal decomposition of t11e management of the scene sub-task

Figure 4-5 : The diagram of goal and sub-goal decomposition of the management of tlle objects sub-task

Figure 4-6 : The ERA mode!

Figure 4-7 : Graphical conventions for ACG

Figure 4-8 : Parallel fonctions

Figure 4-9 : ACG "Creation of a new scene"

Figure 4-10 : ACG "Selection of the current scene"

Figure 4-11 : ACG "Removing of tlle current scene"

Figure 4-12: ACG "Changing the parameters of the scene"

Figure 4-13 : ACG "Geometrical transfonnation of ail t11e objects in tlle scene"

Figure 4-14 : ACG "Cutting a part of t11e scene"

Figure 4-15 : ACG "Management of the Iights"

Figure 4-16: ACG "Saving into VRML format"

Figure 4-17 : ACG "Addition of an object into tlle current scene"

Figure 4-18 : ACG "Select.ion of t11e current object"

Figure 4-19 : ACG "Removal of tlle current object from t11e current scene"

Figure 4-20 : ACG "Changing the name of t11e current object"

Figure 4-21 : ACG "Getting infonnation about an object"

Figure 4-22: ACG "Changing tlle color of tlie current object"

Figure 4-23 : ACG "Changing the type of visualization of the current object"

Figure 4-24: ACG "Showing the current object axis"

Figure 4-25 : ACG "Showing tlie current object box"

Figure 5-1 : Structure of tlle presentation

Figure 5-2 : Window W0

Figure 5-3 : Windows identification for tlle PU 1

Figure 5-4 : Windows identification for the PU 2

Figure 5-5 : Windows identification for t11e PU 3

Figure 5-6 : Windows identification for the PU 4

Figure 5-7 : Windows identification for the PU 5

Figure 5-8 : Windows identification for t11e PU 6

Figure 5-9 : Windows identification for the PU 7

Figure 5-1 0 : Windows identification for t11e PU 8

Figure 5- I 1 : Windows identification for t11e PU 9

67

68

68

69

69

71

74

75

79

84

84

87

88

89

106

120

121

122

1 22

122

123

124

125

126

126

127

127

127

128

128

129

129

129

130

140

142

142

143

143

1 44

145

146

147

147

148

Figure 5-12: Windows identification for the PU 10

Figure 5-13 : Windows identification for the PU 11

Figure 5-14: Windows identification for tl1e PU 12

Figure 5-15 : Windows identification for the PU 13

Figure 5-16 : Windows identification for tl1e PU 14

Figure 5-17 : Windows identification for tl1e PU 15

Figure 5-18: Windows identificalion for tl1e PU 16

Figure 5-19: Window W l-2

Figure 5-20: Window W4-1

Figure 5-21 : Window W5-1

Figure 5-22: Window W5-2

Figure 5-23: Window W5-3

Figure 5-24 : Window W6-la (standard window)

Figure 5-25 : Window W6- lb (Advanced options)

Figure 5-26: Window W7-1

Figure 5-27 : Window W8-1

Figure 5-28 : Window W8-2

Figure 5-29 : Window W9-1

Figure 5-30: Window W9-2

Figure 5-31: Window W l0-1

Figure 5-32 : Window W ll-1

Figure 5-33: Window W12-1

Figure 5-34: Window W l3-l

Figure 5-35: Window W14-1

Figure 5-36: Window Wl5-1

Figure 5-37: Window W16-1

Figure 5-38 : Dialog box excerpt from 3D Viewer

Figure 5-39 : Dialog box proposed by SEGUIA

Figure 5-40 : Another way to place CIOs to add meaning

Figure 5-41 : A single line for each option

Figure 5-42 : Permanent window : solution 1

Figure 5-43 : Permanent window : solution 2

Figure 6-1 : Generic scheme of the architecture mode!

Figure 6-2 : Control objects hierarchy
Figure 6-3 : Hierarchy of functional objects for t11e tool "Creation of a new scene"

Figure 6-4: Hierarchy of functional objects for tlle tool "Selection of tl1e current scene"

Figure 6-5 : Hierarchy of functional objects for the tool "Removal of t11e current scene"

Figure 6-6 : Hierarchy of functional objects for tlle tool "S pecifying the parameters of tlle current scene"

148

149

149

150

15 l

15 1

15 2

166

167

168

168

169

170

170

171

171

172

172

173
173
173
174

174

175

175

176

177

178

178

179

180

180

185

186

188

188

189

189

Figure 6-7 : Hierarchy of functional objects for t11e tool "Geometrical transformation of ail t11e objects in tlle current

scene" 190

Figure 6-8 : Hierarchy or functional objects for t11e tool "Cutting a part of the current scene"

Figure 6-9 : Hierarchy of functional objects for tl1e tool "Management of ù1e lights"

Figure 6-10: Hierarchy or functional objects for t11e tool "Saving into VRML format"

Figure 6-11 : Hierarchy of functional objects for ù1e tool "Addition of an object into ù1e current scene"

Figure 6-12 : Hierarchy or functional objects for ù1e tool "Selection of tl1e current object"

l l

190

190

191

.191

192

Figure 6-13 : Hierarchy of functional object, for the tool "Removal of the current object from the current scene" 192
Figure 6-14: Hierarchy of functional objects for the tool "Changing the name of the current object" 192

Figure 6-15 : Hierarchy of functional objects for the tool "Getting information about an object" 193

Figure 6-16: Hierarchy of functional objects for the tool "Changing the color of the current object" I 93
Figure 6-17 : Hierarchy of functional objects for the tool "Changing the type of visualization of the current object" 193

Figure 6-18: Hierarchy of functiona.I objects for the tool "Showing t11c current object axis" 194

Figure 6-19: Hierarchy of functional objects for the tool "Showing the current object box" 194
Figure 6-20: Primary hierarchy of control objects relative to t11e task: one occurrence of CO-W0 195
Figure 6-21 : Primary hierarchy of control objects relative to the task : several occurrences of CO-W0 I 96
Figure 6-22 : Pietri network for inter-PU dialog specification 209

Figure 7-1 : The toolbox mode! 211

Figure 7-2: Development process for a toolbox model based application 212
Figure 7-3 : Common dialog box based application 213

Table of Tables

Table 4-1 : Parameters relative to t11e interactive task.

Table 4-2 : Parameters relative to the users stereotypes.

Table 4-3 : Parameters relative to t11e workplace.

Table 4-4 : Parameters relative to t11e users stereotypes

Table 5-1 : AIOs selection for alphanumeric data inputs

Table 5-2 : AIOs selection for boolean data inputs

Table 5-3 : AIOs selection for integer data inputs

Table 5-4 : AIOs selection for elementary data inputs

Table 5-5 : Transformation of t11e AIOs into CIOs

Table of Pseudo-Codes

Pseudo-code 2-1 : Dis play t11e first side of ù1e selected reg ion

Pseudo-code 2-2 : Display t11e left side of the selected region

Pseudo-code 2-3 : Marching squares algorit11m

12

131

131

133

136

154

154

154

155

165

38

38

44

Introduction

We spent six months at the University of Vermont, in USA to deve!op a Windows NT
application for 3D visualization of trabecular bon es. This pro gram was written in Visua/
C++ using several graphies libraries. At present, this program is used in the Musculo
skeletal !ab of the Mechanical Engineering Department of the UVM.

This application is actually made of two different programs, the jïrst one is called
3D SUJface Maker and is dedicated to create 3D representations of abjects, in this case
pieces of trabecular bones; the second one is called 3D Viewer and is able to di.splay
several 3D objects, to rotate, transform, light and eut them.

This thesis is divided into two main parts:

First, we describe the visualization process, which includes description of images and
how to display them, a summmy of the Visualization Toolkit implemented by Schroeder,
Martin and Lorensen, a 3D graphies libra1y called OpenGL, a description of al! 3D
graphies principles needed in a basic 3D application and jïnally, a brief description of
the 3D Viewer architecture.

The second part is aimed at carrying out an a posteriori and critical application of the
TRIDENT methodological framework developed at the University of Namur for the
design of 3D Viewer, an interactive program. It is supposed to help to realize a non
observed and weakly structured task (a diagnosis task). The pro gram has the
particularity of having permanent windows, case never handled with the methodology so
far. Furthermore, a continuous comparison of this program with a toolbox is brung to
the fore.

Finally we have tried to adapt the TRIDENT approach for the development of
applications, not necessarily 3D imaging ones, but with swne characteristics as
3D Viewer : weakly structurecl task and permanent window.

13

PARTI

The visualization process

The whole process of visualization is detailed in this part. We jïrst

develop the concept of visualization, its definition and origins, its

applications and the distinction between Imaging, Computer graphies

and Visiwlization.

Then we develop the process of the programs we wrote, in order to

explain basics of imaging and visualization and few technical

considerations.

15

Chapter 1 : Visualization

Visualization is an exploding domain at this time. It is being more one/
more used in so many dijferent fields, and it is main/y thanks to
advances in computer hardware and software technology. Computers
are working j'aster and .f'aster, graphie cards include ::,]Jecial 3D chips
for spatial transformations and menwry is becoming cheaper and
cheaper.

Even persona! computers offer power to allow 3D graphies to
eve,yone. New releases of Windows, such as Windows 95 and
Windows NT support 3D graphies, with API1 such as OpenGL2 and
allmv easy prograrnming and power of workstations.

1 Application Pro gram Interface: a set of libraries.
2 Open Graphies Library. See below for more details.

17

Chapter 1 : Visualization

1 . Definition and origins

As [SCHROEDER96] says, "we view visualization and visual computing as nothing /ess th(ln
a new form of communication. All of us have long known the power of images to com'ev
information, ideas, and even feelings. Recent trends have brought us 2D images and graphies
as evidenced by the variety of graphical user inte,faces and business plotting software. But
3D images have been used sparingly, and open by specialists using SïJecialized systems. Now
it is changing". The goal now is to extend current communication schemes, and to include 3D
graphies in the communication, as it is for words, mathematical symbols and 2D images.

Visualization : "The act or process of inte,preting in visual terms or of putting into visual
form" [Webster 's Ninth New Collegiate Dictionary]. The expression of complicated relations
and equations is one magnificent step - insight gained from these relations is another. Today,
computers with graphies can be used to produce representations of data from a number of
perspectives and to characterize natural phenomena with increasing clarity and usefulness.
"Mathematicians couldn't solve it until they could see it ! " [Science Digest, January, 1986,
p. 49].

Visualization has different terminology. Scienti{ic visualization is the field in computer science
that includes the user interface, the representation of data, the processing algorithms and the
visual representation. Data representation is more general than scientific representation, since
it goes beyond the field of the scientists and engineers. Such data sources include financial,
marketing or business data. It is now broad enough to include statistical methods and other
standard data analysis techniques [ROSENBLOEM94]. A new trend of visualization is
emerging now and is usually called information visualization, which ranges from the display of
file/directory structure on a computer to the hyper-text documents on the World Wide Web.

The origin of visualization as a formal discipline dates to the 1987 NSF report Visualization in
Scientific Computing [MCCORMICK87] , but this field grown rapidly with many conferences,
and the IEEE Visualization which is now well established, but the real origins are much older,
around the eighteenth century with the arrival of statistical graphies even if it really exploded
since the computer era.

18

Chapter 1 : Visualization

2. Applications

The most famous application of the visualization is probably medical imaging, because it is
pro bably the most impressive, because it can show the « inside » of the human body for
example. Medical imaging is based on different techniques which will be dcscribed more
prccisely in a later chapter, but we can mention the X-ray Computed tomography (CT) and the
Magnetic Resonance Imaging (MRI). Both these techniques are ways for data acquis ition and
allow the capture of the internal anatomy of a living patient.

But the medical imaging is far away from being the only visualization application. The
television and movies industry uses the computer visualization in more and more movies , such
as Jurassic Park or the last Walt Disney ' s Toy S tory movie.
The engineers also use the visualization in CAD applications like in the automobile domain or
in the fluid simulation systems. [SCHROEDER96]

3. Imaging, Computer Graphies and Visualization

There is confusion surrounding the difference between imaging, computer graphies and
visualization. According to [SCHROEDER96] , we use the following defmitions to set the
diff erences
• Imaging, or image processing, is the s tudy of 2D pictures, or images . This includes

techniques to transform (e. g. rotate, scale, . .) , extract information from, analyze and enhance
images.

• Computer graphies is the process of creating images using a computer. This includes both
2D paint and draw techniques as well as more sophisticated 3D drawing (or rendering)
techniques.

• Visualization is the process of exploring, transforming, and viewing data as images (or other
sensory forms) to gain understanding and insight into the data.

As we can see, ail these defmitions are linked together, and we can summarize it like shown in
Figure 1 - 1 .

1 9

Visual ization

Chapter 1 : Visualization

uses---;� .. Computer
t t . -ou pu s

graphies
I mages

- - - - - - - - - - - - - - - - i nputs - .

Figure 1-1 : Connections between Imaging, Computer graphies and Visualization

Images are usually the results of computer graphies, whereas the visualization uses computer
graphies and their techniques to produce images. One can note that images can be the input
data for the visualization process. The main di1Jerences between visualization and computer
graphies are
1 . Visualization is most of the time in three dimensions. It doesn' t mean it doesn't work

with data of two dimensions or lower, but it serves best for higher dimensions. We can for
example easily imagine what a two-dimension array would look like with an image
(computer graphies) but it is usually rather hard to understand a three-dimensional image
representing the evolution of sales for the next year for ten different products.

2. Visualization concerns itself with data transformation. The meaning of the data is
enhanced by the perpetual transformation of the information (rotations, zooming, . . .)

3 . Visualization requires high interactivity with the user, for ail the processes of creating,
transforming and viewing data.

In other words, one can say that visualization is an activity that encompasses the process of
exploring and understanding data. [SCHROEDER96]

20

Chapter 2 : Description of the process for

the visualization program

The process described below is the way the programs we developed are
actually working. This chapter explains the whole process of
visualization in the case of the Musculoskeletal System, however, it can
be applied to any kind of data. as long as this one is in the right
format.

This process includes data acquisition, data display, volume
computation and visualization process in itself.

21

Chapter 2 : Description of the process for the visualization pro gram

1 . Introduction

The process starts from images. These images corne from different kind of data acquisition
such as Magnetic Resonance or Computer Tomography (§2.2 Images). Once these inrnges arc
entered into computer the goal is to display them. Data is displayed on the computer screen and
the user can select a region he is interested in (§2.3 Display features). The display features
were used in our program in order to display MR13 as well as scanned images. The selection
and three-view features were also implemented to give better idea of the shown image.

The selected region is finally saved as a VTK file4 and the opportunity to display three different
views of the same abject is given to the user. The smaller region selected is then processed
with filters and specials algorithms for 3D surface construction. A mesh file, that is, a net of
points and lines is then created and can be used in any 3D program such as CAD5 (§2. 4. VTK
Process - Surface construction). Using the library, we developed a straightforward small
pro gram to avoid script editions6

.

The next step is to fill the surface created with VTK to build a volume, which is carried out
with a UNIX-based program (§2. 5 Volume construction). This program was written by John
Sullivan [SULLIV AN95] and is command-1.ine oriented. The only problem we found out was
the incompatibility between ail different files we handled. A volume mesh file is created and
can be compared with the initial 3D surface mesh.

3 Magnetic Resonance Imaging. See below for details.
4 Visualization Toolkit. This is the library developed by [SCHROEDER96] which we used for this part.
It includes a lot of algorithms and will be detailed later in this chapter.
5 Computer Aided Design
6 The 3D Surface Maker program we developed is based on VTK library but is written in the Visual
C++ environment which is much more powerful than the script language provided with VTK.

22

Chapter 2 : Description of the process for the visualization pro gram

Images

+
Display features

+
VTK process

(Surface construction)

i

Volume construction

+
3D Viewer

(Visua lization)

Figure 2-1 : Process Scheme

A decision is then necessary to accept or reject the volume mesh, depending on the quality of
the 3D volume mesh. Indeed, 3D Viewer allows several surfaces and volumes to be displayed
in the same tirne and in the same coordinate system, so they can be compared (§2. 6
3D Viewer, a visualization program). If the volume seems to fit to the initial surface, the
volume rnesh is kept and can be used for nurnerical analysis. 3D Viewer was fully developed in
Visual C++ for 5 months at the University of Vermont. A whole section will be dedicated to
graphies to describe first basics of the cornponents of 3D graphies such as lights or colors then
we will describe briefly a graphie library on which we based to develop 3D Viewer and we will
close this section with a description of the architecture of the software. Each step shown in
Figure 2-1 corresponds to a section in this chapter.

2. Images

This section will develop basics of images and their source. Then we will briefly talk about file
formats since it was and remains a problem between prograrns and particularly the one we

23

Chapter 2 : Description of the process for the visualization pro gram

wrote. Finally we will discuss the problem of trabecular bones since it is the problem we
looked into. We will show different images of trabecular bones and show how visualization can
help a diagnostic. As shown in Figure 2-2, the goal of this section in the whole chapter is to
read files, and particularly binary files.

Display fealures

vtk Process
(Suriace construction)

Volume construction

30 Viewer
(Visualization)

Binary file

Figure 2-2 : Reading files in the whole process

2.1 Two-dimensional image arrays - Raster data

Read lhe
slices

A two-dimensional image array is simply a matrix of n columns of m rows, where each element
is a point that can be of any color. Figure 2-3 shows an example of a two-dimensional image
airny [SCHROEDER96] .

Figure 2-3 : A 10x10 two-dimensional image array.

A raster format breaks an image into a grid of equally-sized pieces, called pixels, and records
color information for each pi,xel [JASC96]. In Figure 2-3, every square is a pi,xel, some are

24

Chapter 2 : Description of the process for the visualization pro gram

black and the others are white. In that case, the image is only black and white, so each pixel is
1-bit encoded (0 is black and 1 is white). The more colors used, the more bit needed to encode
each pixel. The problem of files encoding will be discussed later.

2.1 . 1 Voxel Data Sources

When you are talking about two-dimensional images, each element is called pixel. In 3D world,
any element that is part of a 3D object is called a voxel [WATT93] , [SCHROEDER96] . Yoxcl
stands for volumetric pixel. These voxels are usually built as a sequence of two-dimensional
images, and therefore are seen as three-dirnensional arrays, as shown in Figure 2-4.

Figure 2-4 : Two two-dimensional arrays are seen as a three dimensional array

In medical imaging, data are usually acquired as two-dimensional images, but more and more
software are at present developed to build a 3D view of multiple 2D images. One of the
algorithms used to achieve a 3D view - The Marching Cubes Algorithm [LORENSEN87] -
will be discussed later. This section will explain the main three ways of data acquisition in
medical domain. They are Quantitative Computed Tomography, Magnetic Resonance Imaging
and Quantitative Serial Sectioning. It is based on [BRIGGS95] .

A . Quantitative Computed Tomography

Computer Tomography (CT) was first developed for intracranial imagery in the late 1960's by
Godfrey Hounsfield. Since then major technical advances have resulted in substantial
improvements in image quality and a marked reduction in scanning time. Tomography has been
used extensively in diagnostic radiology prior to the introduction of CT. The structures in the
tomographie plane remain in focus while those in planes above and below are blurred out. CT
and tomography differ in that CT has the ability to detect more subtle differences in the
absorption and attenuation of x-rays than is poss ible with tomography [BRIGGS95] .
For more details on CT, see Appendix 2. [BRIGGS95]

25

Chapter 2 : Description of the processfor the visualization pro gram

B. Magnetic Resonance lmaging

Medical Resonance Imaging (MRI) has rapidly become widely discussed regarding its influence
on medical imaging. For more details on how Magnetic Resonance (MR) signals arc gcncratcd
and detected, how an image is formed, what general sorts of tissue properties can influence the
signals and thereby give rise to tissue contrast and how the machine parameters can be uscù to
manipulate the tissue contrast observed in the image, see Appendix 3. [BRIGGS95 j

C. Quantitative Serial Sectioning

(QSS) This method is using a camera to digitize sections at a reasonable resolution, which
usually range from 256X256 pixels at a resolution of 0.2mm (i.e. 5 pixels every millimetcr).
Trabecular bones images used in our programs are generally coming from this kind of data
acquisition. Since this kind of data acquisition is mainly used in the Musculo-skeletal lab of
Tony Keller, we will develop more precisely the way it works.

1 . Spec i men preparation

Human lumbar spines are harvested during routine autopsies. Sorne 9mm x 9mm x 9mm cubic
cancellous bone specimens are prepared from the vertebral centrum using a low-speed diamond
saw. Selection of the samples is regionally random. However, the vertebral regions that have
apparent defects in the continuity of trabeculae due to blood vessels and bone diseases are
avoided. Bone specirnens are irrigated with 0.9% saline during machining and following
technical testing, and are stored frozen at -30°C.

The bone specirnens are thawed at room temperature for two hours before rnechanical testing.
Using a MTS 858 Bionix™ test system, each specimen is nondestructively loaded in
compression (E max = 1 %) along three orthogonal axes corresponding to the superior-inferior
(SI), anterior-posterior (AP) , and medial-lateral (ML) axis. The surfaces of stainless-steel load
platens are polished to a surface flatness of 2 µm cm-1 and lubricated prior to testing each
specimen. Load and displacement are recorded at 1 kHz using a NicoletTM 430 digital
oscilloscope. Displacement are measured by means of crosshead movement and are corrected
for the test machine compliance. A stress-strain analysis program was developed to correct the
recorded displacement, and to determine the elastic modulus, E. Elastic modulus is computed
from the slope of the stress-strain curves using a strain range of 0. 1 - 0.8%.

Aiter mechanical testing, the bone marrow is removed from the specirnens using a high
pressure water jet and defatted with several acetone washes and rinses. The marrow-free
sarnples are then dried in a furnace at 1 00°C for 1 hour, and weighted on a Mettler AE 1 63
(Hightstown, NJ) analytical balance. Apparent dry density of the specimens is calculated as the
ratio of the dry weight to the cube volume, the latter rneasured using a caliper (± 0.025mm).

26

Chapter 2 : Description of the process for the visualization pro gram

Specimens are then bleached using 3% hydrogen peroxide, embedded in black-colored
polyester resin and centrifuged at 1000 rpm. The centrifuge process facilitates infùtration of
the polyester resin into the pores of the cancellous bone samples. [GOOSSENS951

2. lmag ing process

In order to obtain a detailed understanding of the bulk variations m bone structure , bonc
specimens are serially sliced along the superior-inferior axis every 20 µm/pixel using a
Reichert-Jung® polycut E microtome. At an image resolution of 20 µm/pixel, 16-bit color
video images of each sectioned surface are recorded using an image acquisition and analysis
system. This image system shown in Figure 2-5 consists of a CCD camera and a Pentium P l 20
computer with a TARGA™ 16 graphie board and a MIPS program. The TARGA board is able
to convert the image of the CCD camera into a digital screen display of 510 x 480 pixels with
32,768-color resolution. A total of 250 planar digital images spanning 5 mm in depth for each
specimen are obtained producing a 3D 1 6-bit image array comprised of approximately 50
million 20-µm voxels. For the remaining cancellous bone specirnens, only the orthogonal
surfaces are imaged. The 16-bit images are thresholded into white (bone) and black (marrow)
binary images. [GOOSSENS95]

Dual screen display system

CCD video camera
Control monitor

/

!
Specimen to capture Targa 16 frame grabber and Pentium P l20 computer using MIPS

Figure 2-5 : Image Acquisition System

27

Chapter 2 : Description of the process for the visualization pro gram

2. 1.2 File format and sizes

One of the main problems with imaging files is their size. Assuming for example a file of
512X512 pixels, where every pixel is encoded with 12 bits. The size of this file, without any
header, will be 524,288 bytes - because even though each pixel is 12-bit encoded, it must be
saved in 2-byte words. Of course, recent developments in data compression have allowcd to
drastically reduce the size of files, however, it remains a serious conccrn. So far, many mcdical
images are still not compressed, to make data exchange casier, cven if they must have a
particular format.

The format of a fùe is very important, because it allows interchange of files between people and
programs. Each file should include a header and a data section. The header usually includes a
file format version, a description of data (number of bit per pixel, x and y dimensions, . .) and
the structure of data (e.g. the data may be compressed or not). The data is then added, and can
be in several groups. For example, with a 3D object, all the points describing an object are
defined first , followed by the connections between these points. A model of a file format is
shown in Figure 2-6.

Header

Data

Figure 2-6 : A typical file format

Files coming from MRI or CT scans are usually made up of many s!ices, representing
two-dimensional images. These files are structured as shown in Figure 2-6. The header
includes the number of bits per pixel and the width and length of the image. Every pixel is then
stored in 2 bytes, because it is encoded in 12 bits, describing a gray-scale value ranging from 0
to 4095, one after the other. The number of bit per pixel is particularly important when it has
to be displayed. For example, let us take an image of 12 bits par pixel, one pixel being stored in
2 bytes. Ali the values in data file are ranging from O to 4095. But one could say every pixel is
using 16 bits, but ranging also from O to 4095. In the first case, every single value ranging from
0 to 4095 represents one and only one gray-scale value, but in the second case, values from 0
to 15 represent the same gray-scale value because 16-bit value stores 16 times more
information then 12-bit value.

28

Chapter 2 : Description of the process for the visualization pro gram

Files we used coming from QSS are 1 -bit value pixels. It means they are storing black and
white images. Moreover, the whole set of slices is stored in the same file, so thcy can be huge.
The format of these files is different, because they are storing a particular set of data , trabccular
bones. Instead of storing every pixel of the image, it is only storing the coordinates of white
pixels (value = 0). So if one takes a look at the file, he will find sets of thrce values :
(slice_number, x_coordinate, y_coordinate) . Even if that format does not nced any specific
delimiter between each slice (because of the slice_number parameter), the size of the lïlc is
much bigger, because of redundant information. Indeed, for every 2 values, a third one is
stored, which takes a third more room.

2.2 Trabecular bones

This section is based on an article written by T. Keller and T. Hansson. Sorne paragraph have
been shortened but the interested reader can consult [KELLER95] for more details.

2.2.1 Introduction

Osteoporosis, which is characterized by a reduction in skeletal bone mass and concomitant
change in skeletal structure, produces an increased risk of fracture in patients and thus has a
devastating effect in terms of morbidity, mortality and cost of health in our increasing senile
population. Osteoporosis affects both the appendicular and axial skeleton of adults, and is a
well recognized public health problem of increasing proportions. Over 1 .2 million fractures
occur in the United States each year, including over 500,000 cases of vertebral fracture, and
200,000 cases of hip fractures, one third to one-half of which occur in women over the age of
65. In the United States, the persona! and medical costs associated with osteoporotic fractures
are expected to increase dramatically in the next two decades, since the number of individuals
over the age of 65 has been predicted to double by the year 2010 (1 983 United States census).

A close association between bone minerai loss due to osteoporosis and the risk of fracture has
been clearly established. Skeletal structures, such as the vertebral bodies and proximal femur,
which are compromised primarily of trabecular bone appear to be particularly at risk. Thus,
development of clinical diagnostic tools sensitive enough to identify imminent fracture or
collapse of vertebral bodies and other weight-bearing tissues is essential. Until these tools are
devcloped, the ability of a clinician to clearly evaluate a patient's bone status, prevent
osteoporosis or determine the effect of therapeutic treatments is severely limited.

29

Chapter 2 : Description of the process for the visualization pro gram

2.2.2 Epidenùology

The aging skeleton is characterized by a gradual loss mass which decreases bone strcngth (force
or stress at failure) and increases fracture risk. A more rapid loss of bone mass occurs in
post-menopausal women, and collectively these processes are referrcd to as primary
osteoporosis. At present time the precise etiology osteoporosis is unknown. Bccausc of
increase morbidity and immobility produced by hip fractures, many epidemiological studies of
osteoporosis have focused on hip fractures. Until reccntly, vertebral fractures wcrc dccrncd to
be of lower incidence and concern than hip fractures. There are, however, no reason why
increases in the incidence of hip fractures should not reflect a sirnilar increasing incidence of
osteoporotic spi.ne fractures. A recent Swedish study found that 43 % of the subjects who had
a hip fracture also had one or more vertebral fractures of an osteoporotic type
[ZETTERBERG90] . Of note, is the fact that the prevalence of osteoporosis seems to have
become more and more common, particularly in industrialized countries. This increase is partly
explained by the fact that populations in most industrialized countries are growing older but
also by an increased risk. The osteoporotic vertebral fracture is probably the most frequent of
all fragility fractures, particularly if every vertebral fracture in the spine is considered.

Vertebral fracture is about four times more common in women than in men and the risk for a
vertebral fracture has been found to increase alrnost exponentially with age. The frequency of
osteoporotic vertebral fracture also increases during menopause in women. From this point on
there is a steady increase in vertebral fracture frequency throughout file. In this respect, the
vertebral fragility fractures differs from fractures of the distal radius. The prevalence of the
latter increases at the same age as the vertebral fracture, but levels out after 60-65. An
interesting recent finding is that the increase in risk for a fragility fracture between 1985 and
199 1 was almost twice as high for men as for women [ZETTERBERG94]. Depending on the
age groups studied (40 to 80+ years) , the prevalence of osteoporotic vertebral fractures varies
from 5% to somewhat over 50%.

Radiographically detectable compression fractures of the spi.ne for most clinicians has verified
the presence of osteoporosis or bones fragility. Without any known pathomorphological
aberrations distinguishing osteoporotic bone from non-osteoporotic bone tissue, the fracture
itself defines pathology. Since the occurrence of a fracture is not only the result of the
mechanical properties of the bone, but is also a function of the fracturing trauma, both factors
must be considered when defining osteoporosis. In the presence of a patient with a recent
fracture, knowing nothing or very little about the patients bone quality or the forces involved in
the trauma, the most practical way for clarifying whether a fracture is osteoporotic or not, is
Harold Frost's criteria of the "everyday trauma". Frost stated that a fracture occurring as a

30

Chapter 2 : Description of the process for the visualization pro gram

consequence of an everyday trauma indicates that the patient has osteoporosis or bone fragility.
Even if the technology today allows us to determine, for example, the amount of bone mineral
in different parts of the human skeleton we still lack practical techniques for measuring the
fracture generating forces. Therefore the "everyday trauma" definition is still a practical
measure for estimating bone fragility [FROST93].

Without any distinct differences between the bone tissue in the osteoporotic versus the normal
subject there are, however, apparent difficulties in assessing the lirnits for normality. Sincc
dernineralization of the human skeleton is usually a more or less continuous process from
relatively early in life, weakening of the skeleton is a part of normal file and aging. An
osteoporotic or fragility fracture occurs in those subjects in which the demineralization
progresses to a level where the spine or other parts of the skeleton no longer can resist an
everyday trauma. In many subjects with spinal osteoporosis the vertebrae may becorne so
dernineralized that they can not resist the spinal loads accompanying everyday file. Since the
amount of bone minerai in combination with the loading conditions determine the occurrence of
a fracture, a subject with a lavv amount of bone minerai, but no j,·acture, has osteopenia. A.
subject with a low amount of bone minera! and a fracture sustained during a minor "everyday"
trauma is likely to have osteoporosis.

2.2.3 Basic bone physiology

Bone is a two-phase, porous, directional composite material, comprised of hydroxypatite
(inorganic or mineral phase) and collagen (organic phase). In the normal adult skeleton,
hydroxyapatitie constitutes approximately 2/3 of the weight or about 50% of the volume of dry
bone tissue. Bone composition can be described by several histologie variables, including
mineral content, porosity and density. The density (mass/volume) may refer to either the wet
or dry bulk density (mass per unit volume of a region of bulk bone). Bone devoid of pores has
a tissue density or specific gravity of approxirnately 2g/cm3 • Bulk density or apparent density
(Pa) , however is a mesure of both the porosity and minerai content of bone and range from <
0. 1 g/cm3 to approximately 2.0 g/cm3 .

Ail of these histologie variables have been used to describe the composition of bone. From a
morphological point-of-view, two principal types of bone are recognized: cortical and
cancellous. In the adult skeleton, both cortical and cancellous bone have roughly the same
amount of minera! except in metabolic diseases such as osteogenesis impe1jecta for which the
minera! content is significantly reduced. Cortical or "compact" bone is generally distinguished
from cancellous or trabecular bone by its lower porosity (<30% pores by volume) and higher
apparent density (> 1 .7 g/cm3), and is most prevalent in the shafts of long bones. The ends of

3 1

Chapter 2 : Description of the process for the visualization pro gram

long bones and the axial skeleton (spi.ne) are comprised primarily of trabecular bones, which in
the case of the axial skeleton has a porosity greater that 70 % or an apparent density less than
0.6 g/cm3

• By virtue of its inherent porosity, trabecular bone has an extremely complex
structure or "architecture". Decreases in bone mass associated with aging, inactivity and
menopause have profound effects on the architecture of trabecular bone. Collectivcly, the
changes or "adaptations" in skeletal mass are architecture are referred to as modcling and
remodeling processes.

2.2.4 Vertebral strength

The spi.ne is a weight bearing structure which, besides protecting the spinal cord and offering
exceptional flexibility and range of motion, must continually support the weight of the torso
and head. Together with everyday activities, these structures must support to a significant
degree, axial compressive forces on the vertebrae and intervening dise tissues. In the L l -L4
lumbar spi.ne this amounts to approxirnately 50-60% of the subjects body weight.
Consequently, numerous investigators have examined the axial, compressive strength properties
of cadaveric human thoracolumbar vertebrae. Ultimate strength values ranging from about 1 to
15 kN have been recorded in these experimental studies, most of which have examined tissues
frorn more age subjects (eg. > 40 years). To which extent the inability to obtain specimens
representative of the entire population has influenced these strength values is hard to estimate.
However, it is reasonable to assume that the compressive strength of vertebrae is grossly
underestirnated for ages below 50 years. Experimentally, as well as clinically, large variations
in bone strength have made it very difficult to define a specific threshold or even a range with
which to differenciate normal bone from osteoporotic bone. The latter also requires knowledge
of the physiologie forces and stresses which act on the vertebral structures.

2.2.S Vertebral morphology

Although non invasive measures of bone density are now considered the most effective method
known for predicting fracture risk, these techniques appear to be only about 70% accurate.
Presumably, other material features of bone and supporting structures are needed to explain the
additional 30% of causes of fracture risk. The additional factors play a greater role in the spi.ne,
making bone density less predictable in the spine than in other regions of the skeleton which are
comprised of more dense bone. Trabecular bone researchers currently attribute the
unexplainable variation in mechanical properties to differences in the morphological features of
this tissues.

32

Chapter 2 : Description of the process for the visualization program

In vertebrae, large variations in trabecular density and mechanical properties have been noted
within adjacent regions separated by only a few millimeters [KELLER89] , [KELLER92] . Five
morphological distinct regions of trabecular bone are found in the vertebral centrum : a
superior, l st transitional, center, 2nd transitional and inferior level. The superior and inferior
sections each occupy approximately 30-35% of the total segment height and exhibit patterns of
orientation distinct from the center and transitional sections. The transitional and middk
portions of the centrum consisted primarily of the plate-like trabeculae forrning a closcd cc!!
structure in contrast to the superior and inferior sections of the centrurn which consistcd
primarily of rod-like trabeculae fonning an open cell structure. Trabecular bone structure is
more dense in the inferior and superior sections than in the central sections of the lumbar
centrum. Plate-like trabeculae are associated with the central regions of less dense bone. The
central, plate-like regions of the lumbar spine, therefore, appear to be somewhat unique in
terms of it trabecular architecture. The functional significance of this finding remains to be
detennined.

The complex organization and distribution of vertebral trabeculae and trabeculae in other
regions of the skeletal support the generally accepted hypothesis that function directly
influences the structure and strength of bone, a relationship known as Wolffs Law
[WOLFF1892] . From a mechanical engineering standpoint, trabecular bone behaves sirnilarly
to porous engineering materials due to its cellular structure and large energy absorption
capabilities. The distribution of trabecular bone density and mechanical properties within
vertebrae varies along the axis and within the cross section of vertebrae. Some investigators
have reported a variable or heterogenic distribution of trabecular bon tissue physical and
mechanical properties for the vertebral centrum [KELLER89] , [KELLER92] , [KELLER93] .
Most o f these studies have noted that anterior regions of the vertebral centrum are generally
less dense and less strong than posterior regions. Keller and associates [KELLER92] noted
that the superior and inferior regions of lumbar vertebrae are denser than the central and
transitional regions.

3. Display features

Once data has been digitized and read into the computer, it has to be displayed on the screen.
This section will explain how a binary file, and a set of two-dimensional images can be
displayed on a monitor. The first part will describe the way to display a gray-scale image, using
the uscful bits from an image, the second one, an easy method called Depth shading. The third
part will explain the selection process of an area in the image and the usefulness of the
visualization in the selection process. Technical considerations will be discussed in Chapter 3.

33

Chapter 2 : Description of the process for the visualization pro gram

Figure 2-7 shows the goal of the current section and its contribution in the whole process of
visualization .

3.1 Gray-scale Images

Images

vtk Process
(Surface construction)

Volume construction

30 Viewer
(Visualization)

Display image
in depth
shadinq

Display of the
Selection of a _____ 3 sides of the
smaller region object

Figure 2-7 : Displaying images in the whole process

Gray-scale images are images where every pixel value is a gray level, that is, a color between
black and white. Although the number of gray-scales is infinite (as well as the number of real
numbers between O and 1) , they are usually encoded in 8-bit or 1 2-bit values. In the first case,
every pixel is stored in one byte and can take 256 different gray levels and in the second one, it
can take 4096 different values (usually encoded in 2 bytes). Once an image is being read,
depending on how many bit per pixel there are, one or two bytes are read and converted into
gray scales. On a common PC, the largest gray scale is 256, so a 1 2-bit value has to be
« shrunk » to 8-bit, with a small loss of precision, as shown in Figure 2-8.

34

Chapter 2 : Description of the process for the visualization pro gram

Figure 2-8 : Conversion from 12-bi t values to 8-bi t values

The conversion is applied for every pixel of the file, and displayed on the screen. This method
is used for every gray-scale image, when it is to be shown on the screen, for display purpose.
For example, it is used in our program 3D Surface Maker to display CT scan images when an
iso-value (cf. Marching Cubes Algorithm) has to be selected using a histograrn. A histograrn
represents the distribution of the gray-scale values in an image, as shown in Figure 2-9.

(a)

11 :.i

� \�, ·;.,,,;,)� •........ ,
0 4W6

(b)

Figure 2-9 : A 12-bit converted in 8-bit image7 and its corresponding histogram

The problem of the iso-value and the histogram will be discussed more precisely in Marching
Cubes Algorithm section.

3.2 Depth shading

The method explained below fits over sets of 1 -bit slices, if they have to be stacked and look
like a 3D object. It has been used in our program 3D Surface Maker to display a set of slices
read from a binary file, because they have to be displayed in the same tirne.
Every slice looks like in Figure 2-10 . The image is exactly as it is shown, because it is a 1-bit
file, with only black and white dots. Most of pi,'<els are black which means that the current
bone is very porous.

7 CT scan or the head, from a set of 93 slices.

35

Chapter 2 : Description of the process for the visualization pro gram

Figure 2-10 : A slice of a trabecular bone8

To display a set of these slices, and to be sure the resulting image looks like a volume, we use a
very simple method called depth shading. lt is based on a principle stating that far objects are
seen darker then close objects. So an easy way to have a set of slices look like a volume, every
slice stacked is given a gray-scale value between O and 255, 0 being black and 255 being white.
Every white pixel of slice i wi.11 be "painted" with the color ci corresponding to the following
fonnula :

c = i_ . 255 where n is the total number of slices.
1 11

The result of applying this method to a 50 slice volume is shown in Figure 2- 11.

Figure 2-1 1 : Depth shading method applied to 50 slices

Many other methods can be used instead, but this one was chosen for its simplicity of use. The
more slices there are, the more realistic the image looks like. For example, let us compare two
images, the first one with 5 slices and the second one with 10 slices. Because there are not
enough slices to have "good" shading, one can usually see the di.fferent gray levels, as shown in
Figure 2- 1 2.

8 Trabecular bone, section of 7.00 x 6.20 mm

36

Chapter 2 : Description of the processfor the visualization program

Figure 2-12 : 5 slices (left) and 10 slices (right) depth shading images

3.3 Selecting a region / a subregion

The next step in the process is to select a region in the whole set of slices, because this set can
be huge, speaking in tenns of number of pixels. For example, the file from which the above
images are extracted is 7mm x 6.2mm x 4.02mm, and in term of pixels, 350 x 310 x 201 pixels
that is 21,808,500 pi.,'<els ! The region can of course be set up by the user for any value ranging
in [l , max_x_p ixels] , [l , max_y_p ixe l s] and [1, max_z_p ixel s] , which ailows to select
the whole file.

The process of selecting a "good" region is very important, but the depth shading method is not
enough, because it does not ailow to see ail sides of the selected region without a preliminary
process. Due to the format of the file, this one could not be read another way to display ail
sides in the reasonable time, so we use another method to display 3 sides of a selected region,
as shown in Figure 2-13 and Figure 2-14. As the selected region is a set of voxels, it can be
seen as a volume, where each view is one of its side. The three views shown in Figure 2-14 are
the three sides of the cube shown in Figure 2-15.

Figure 2-13 : Base image as displayed with simple depth shading

37

Chapter 2 : Description of the process for the visualization pro gram

Figure 2-14 : Three other views of the object shown in Figure 2- 13

i,Pi'-------{ (a) � (b) (c)

Figure 2-15 : Cube sides

The simplest method to display si.des has been used : first, ail the pixels for the selected region
are read and kept in memory into a matrix, say Mijk• The order to display the main image is
ex plain in the Pseudo-code 2- 1 :

f o r (k = z_min ; k < z_max ; k++)

for (j = y_min ; j < y_max ; j ++)

for (i = x_max ; i > x_min ; i - -)

D i sp l ay (i , j , Ge tDep thShadedColor (M [z]))

Pseudo-code 2-1 : Display the first side of the selected region

The above code displays ail the selected region, where pixels with a low z value are displayed
first - and so displayed in darker gray levels -, and the greater z value, the lighter gray level.

The way to display any other si.de of the selected region is to set the parameters (i, j and k) in
different order. For example, the left side (Figure 2- 1 5a) is displayed using Pseudo-code 2-2:

for (i = x_max ; i > x_min ; i - -)

for (j y_min ; j < y_max ; j + +)

for (k = z_min ; k < z_max ; k++)

D i sp l ay (i , j , GetDepthShadedCo l or (M [z]))

Pseudo-code 2-2 : Display the left side of the selected region

38

Chapter 2 : Description of the process for the visualization pro gram

3.4 Importance of 3D visualization

As explained above, depth shaded images give the illusion of volume and thereforc the user
can figure how porous a femur is, when speak:ing in terms of bones. The fact of giving thrcc
different views of an object confirms the opinion the diagnostic mak:er could have. Howcvcr,
the next step is to allow the user to rotate freely the object, to manipulate it in any direction, tn
change colors or make a surface translucent in order to really have a good opinion. But Lhis
cannot be done with data structured as pixels images are and this is why the next step is to
transform the pixels images into a mesh, a net of points connected together. These images arc
sometimes called vector images because they are made of points in a 3D space and where lines
are vectors.

4. VTK Process - Surface construction

The abject of this section is to explain how to build a surface made of lines and points - a mesh
- out of a set of 2D images. This means a transformation from one representation (a set of
pixels) to another one (lines and points in space), and this cannot be donc without
approximation. In order to explain basics of 3D graphies, we need to give some definitions.
This section is divided in three different parts. First, we define some concepts which are
commonly used in 3D domain. These definitions are particularly necessary to understand the
second part of this section which explains the Marching Cubes algorithm. The third part of this
section explains the VTK toolkit library we used to develop the program.

Figure 2- 1 6 shows the place and contribution of the VTK surface construction in the whole
process of visualization.

39

Chapter 2 : Description of the process for the visualization pro gram

4.1 De/initions

Images

l
Display features

l

l

I
Volume construction

3D Viewer
(Visualization)

Filters
• smoothing
• decimation

Vlk process

Figure 2-16 : The VTK surface construction in the whole process

Surface Mesh
file

There are a lot of useful concepts that could be defined below, however only fow of thern are

necessary to understand basics. A way to develop thern is to analyze thern frorn the smallest to

the most complex one.

A vertex is a single point in a 3D space. According to [SCHROEDER96] , it is a 0D cell, used

synonymously with point or node. (Figure 2- 1 7a)

A line is cornposed with two linked vertices. (Figure 2- 17b)

Three vertices always define one single triangle (Figure 2- 17 c) and four of them, when the y do

not belong to the same plane, define a tetrahedron. (Figure 2- l 7d)

••-------• (b)

Figure 2-17 : Cell type speciflcation

A mesh is a general tenn for any composition of vertices and lines. An exarnple of a rnesh is

shown in Figure 2- 1 8 .

40

Chapter 2 : Description of the process for the visualization prograrn

Figure 2-18 : A drawing and its mesh representation (22 nodes)

Figure 2- 1 8 shows a drawing and its mesh representation, after a transformation (usually

contouring the drawing). Any drawing, in 2D or in 3D, can be transformed into its mesh

representation. The mesh representation is also called the polygonal representation.
[WATT96] defines the polygonal representation as the classic form in three-dirnensional

graphies, where an abject is represented by a mesh of polygonal facets . In the general case, an

abject possesses curved surfaces and the facets are an approximation to such a surface (see

Figure 2- 1 8 and Figure 2- 19)

'%::::t:2'?if::U':::::::::::::::::::::::h
\,i1ill1i1/!:111:i!:iii//l111i!!!::11i!:i/i!/iiili/ii/!�1

-
. .

.

Figure 2-19 : Approximation of a curved surface using polygonal facets [W ATT96]

4.2 A1arching Cubes Algorithm

4.2.1 Problem

Initially, a set of 2D images represents a 3D volume that can be seen as a parallelepiped full of

pixels. An example is shown in Figure 2-4. The problem is the same as in two dimensions. As

long as we deal with pixels images, we cannot enlarge or shrink the images without losing

precision or piece of data. The idea is to transform the set of pixels into a mesh that can be

rnanipulated easily with mathematical fonctions while the precision is not changed. Briefly, the

4 1

Chapter 2: Description of the process for the visualization pro gram

Marching Cube Algorithm [LORENSEN87] builds a surface mesh from a set of following
slices depending on an intensity value called the isovalue. It uses at least two slices at a rime,
and try to find a contour for each of them. Finally, it connects both contours which becomes
the mesh.

4.2.2 Marching Cubes

The Marching cubes algorithm described below was first explained by W.E. Lorensen in
[LORENSEN87]. First, we will detail the algorithm, then we will discuss about the importance
of the isovalue and the help brought by the histogram. To ease the understanding of the
algorithm, we will first detail the algorithm of marching squares, which works for 2D images
only.

A. Algorithm

The first step in the marchi11g squares algorithm is to proceed to contouring for each slice. This
step is very important because it selects what will be part of the mesh and what will be rejected
according to a color value, the isovalue. Indeed, when we see a color picture the eyes can
easily separate similarly colored areas. The process of contouring works in the same way.
Many examples are well known like weather maps where different colors mean different
temperatures or topographical maps where different colors mean different elevation in relation
to the sea level. In medical imaging, different colors correspond to different body tissues like
skin, bones or other organs. We understand better why this process is very important
particularly if we want to study bones or skin. The condition is to have the right isovalue. We
will discuss that problem in the next paragraph.

Let us consider the 2D grid in Figure 2-20 representing a piece of an image where values are
pixel color and let us decide we want to separate values above and below pixel color 5. The
problem lies in the fact that pixels color values of 5 are not present everywhere so we
sometirnes need to interpolate. The easiest method is to linearly interpolate so when the
contour must cross an edge where values are O and 10 at its two endpoints with a contour line
of five, the contour will cross in the midpoint of the edge. Figure 2-20 shows in light gray the
contour line for contour value of 5, the dashed line shows the contour line for an isovalue of 4.

Once all the points on the edges are generated, they have to be connected. The marching
squares algorithm uses the method "divide and conquer" technique. This method presupposes
that each cell can be crossed by a finite number of ways. The different cases are summarized in
Figure 2-21 where the dark vertices represent a value above the contour value.

42

Chapter 2 : Description of the processfor the visualization pro gram

0,------',----'r---'-\

Figure 2-20 : Contouring a 2D image with a isovalue of 5

To better understand the way the Marching Cubes Algorithm works, let us find out how it
would work with the example in Figure 2-20. Each intersection of the Unes represent a pixel
where the color value is shown above. Colors of pixel O (left top most) and pixel 1 (next one
on the right) are both below the isovalue 5, so they are ignored. Proceeding this way, ail pixels
in the Une are ignored. However, in the second Une, between pixels of color 3 and 6, the
isovalue of 5 lies near 6, exactly at 213rd between pixel of value 3 and 6. In the same way,
between the two lines, the same isovalue goes between pixels of color 6 and 1, exactly at 4/5°1

between theses pixels. The algorithm runs from one pixel to another one until it has built up
the full contour.
The number of cases in Figure 2-21 depends on the number of vertices per cell (a cell is a
square made of 4 vertices and 4 Unes, like any of the 16 squares in Figure 2-20 or in Figure 2-
21) and the number of inside/outside relationships a vertex can have with respect to the contour
value. A vertex is considered inside, respectively outside, a contour if its scalar value is larger
than, respectively lower than, the value of the contour Une. In the present case we have 4
vertices per cell and each vertex can be either inside or outside the contour which gives 24

possibilities.

Figure 2-21 : Sixteen different marching squares cases

Each case can be encoded using 4 bits according to the state of every vertex. The algorithm
computes for each cell the 4-bit value and uses the 16 cases lookup table to know which case to
use. When the right case is selected the location of the contour Une is computed by

43

Chapter 2 : Description of the process for the visualization pro gram

interpolation. The algorithm processes a cell and then marches to the next one. After ail cells
are visited , the contour is completed .

We summarize the algorithm in Pseudo code 2-3. [SCHROEDER96]

For a l l c e l l s

Select a c e l l

Calcu l a t e the ins ide / outs ide s ta t e o f each vertex

o f the ce l l

Create an index by s to ring the binary s tate o f

each vertex i n a s epara te bi t

Use the index to look up the topo l ogical s tate o f

the c e l l in a case t abl e .

Calculate the contour loca t i ons for each edge in

the case t able

Pseudo-code 2-3 : Marching squares algorithm

The 3D version of the marching squares is the marching cubes . Instead of 16 cases there are 28

cases, i .e. 256 possibilities. However, using rotations and mirroring, we can reduce this
number to 1 5 cases summarized in Figure 2-22.

Figure 2-22 : Fifteen cases for marching cubes algorithm

Each cube is the result of the superposition of two slices as shown in Figure 2-23,

44

Chapter 2 : Description of the process for the visualization pro gram

Figure 2-23 : Construction of a cube with two slices

Each slice corresponds to a 2D image like in Figure 2-20. The algorithm processes two slices
at a time. It starts with the first two slices and "marches" through the cubes generated by the
pixels in the two slices. When ail points have been connected, the algorithm takes the third
slice and processes it with the second one, and so on for the next ones until the last one. When
all the slices have been processed, the surface mesh is ready.

B. ISO lntensity Value

As we have seen in the previous paragraph, the isovalue is very important and two slightly
different values can give two very different meshes. The example shown in Figure 2-20 shows
the different results with isovalue of 5 and 4. The gray line shows the contour value for an
isovalue of 5, the dashed line represents a contour line for an isovalue of 4. We can easily
imagine the problem in the medical irnaging domain. In 12 bit images where values can range
from 0 to 4095 t he selection of the right isovalue can be very complex. A good mesh
representing an organ or bone depends on the selection of the right isovalue.

45

Chapter 2 : Description of the process for the visualization pro gram

C. Histogram

The histograrn can help to select a proper isovalue. According to the [AHC86], a histogram is
"a graphie representation of a ji"equency distribution in which the wiclths of co11tig1wus
vertical bars are proportional to the class wiclths of the variable and the heights of thf! /Jars
are proportional to the class ji"equencies. " In imaging do main, each class usually corrcsponJs
to a color or a range of colors, and the height of each bar reprcsents the numbcr nf pixels
painted with this color in the image. The histogram can then be useful when it is visually
connected to the image it represents. For example, one should be allowed to click with his
mouse in the image and the program should show in the histogram the pixel value and so the
total number of so-colored pixels. On the other hand, a single click in the histogram should
show ail pixels corresponding to the selected value in the image. Figure 2-24 shows a screen
capture of a dialog box using a histogram.

D:\FILES\CPP\,DATA\30 Oata\half.1 . · Ef

:r:•:•:•>.-.-Z•»»m.·.-:

.-

., ·.·.S❖:•:·.·.·.•·"'•:•.·.·.·;1lllllllllli1!llllllllilli/ll1llllllll1llilllll�lll[li r11�,1�iliilliliillll�llilll!lil!I

' !

î : 1 -

�--
Figure 2-24 : A dialog box with a histogram (from 3D Surface Maker)

The upper left part of the dialog box represents the image, in this case, a CT scan image from a
human skull. The bottom left part shows the corresponding histogram, where we can observe
three different peaks. The first one starting from the left corresponds to the black part of the
image, which is not useful since out of the skull. The program allows to start the histogram
from any value in the allowed range, so it is possible to skip this part.
The second peak corresponds to the soft part of the skull, that is, the brain, the blood and other
tissues. The third one, which is not very visible, corresponds to the bones and is more spread.
The usefulness of the histogram is straightforward. If we want to apply the marching cubes
algorithm in order to retrieve the bones structure of a set of slices, we use the histogram to
display the distribution of the colors, then we select the right value corresponding to the bones

46

Chapter 2 : Description of the process for the visualization program

(in Figure 2-24, the value 1150 corresponds to the soft tissues, so the algorithm will keep
hones) and we run the algorithm with the selected isovalue. This is particularly interesting
hecause two set of slices may have different values for extracting bones. Figure 2-25 shows the
selected regions for an isovalue in the peak corresponding to the soft tissues and for an isovaluc
in the peak corresponding to the bones.

(a) (b)

Figure 2-25 : Skin (a) and bones (b) selected regions

In the images at the upper left part of the dialog boxes, the light grayed parts corresponds to
the pixel values ranging from -10% to + 10% around the isovalue. In the 3D Surface Maker
program, these regions appear in yellow.

4.2.3 A whole example

This paragraph summarizes the current section. The below example is based on a slice set from
[SCHROEDER96] and ail images have been made from 3D Surface Maker, the program we
wrote.

Slice set
Each slice is part of a set of 93 slices taken from a child skull, from the neck to the middle of
forehead every 1. 5 mm. The following image (Figure 2-26) is an excerpt of this set and was
ta.ken perpendicularly to the spine approximately through the middle of the nose.

47

Chapter 2 : Description of the process for the visualization pro gram

Figure 2-26 : CT slice through a human head and its corresponding position

Contouring
As explained above, each slice is contoured and then the algorithm is performed between
several slices. The contouring for the previous slice is shown in Figure 2-27a.

(a) (b)

Figure 2-27 : Contouring a CT scan and contouring bones only

According to the isovalue, only a small part of the contours will remain in the next step. If we
want to retrieve bones out of the image, we get the result shown in Figure 2-27b.

48

Chapter 2 : Description of the processfor the visualization program

Mesh

The connections between each image are then produced thanks to the Marching Cubes
algorithrn, as shown in Figure 2-28 for two slices (Slice 45 and slice 46).

Figure 2-28 : Marching cubes applied to two slices. (a) Top view. (b) Side view

One can observe the triangles defining the surface created between the two slices.
The whole 3D surface is presented in Figure 2-29. Left image is the mesh surface and the right
one is the rendered surface (see the below Rendering section for more details).

Figure 2-29 : Mesh and rendered surfaces

49

Chapter 2 : Description of the process for the visualization pro gram

4.3 The Visualization Toolkit

This section will describe one toolbox that can be used to develop graphical and irnaging
software. There are many toolboxes available but we decided to use the Visualization Toolkit
[SCHROEDER96] for several reasons. First, this library is free and its code as well as
documentation are available from anywhere on the Web9 • Secondly, the toolkit is platform
independent so a program written on a PC can also run on a UNIX-based machine 1 0

• This is
particularly interesting when developing medical imaging software because UNIX machines
such as Silicon Graphies workstations are much more powerful speaking in tenns of processor
as well as graphical devices.

The V TK toolkit is also written in object oriented code C++ which is very fast and worldwide
spread. The library itself is object oriented written, with abstract classes and derived classes
organized in three categories : common library, graphies library and irnaging library. The
common library handles basic operations and objects, like Vertices, Points, Polygons, but also
the Marching cubes algorithm, the Bitmaps and mathematical fonctions. The graphies library
handles graphical transformations, füters, cameras, lighting, . . . Finally, the irnaging library is a
new library introduced in 1997 particularly designed to help in image processing. We will
describe the object 01iented of the VTK toolbox and the rende1ing process.

4.3.1 Object oriented

As we already said, the visualization toolkit which we will call VTK from this tirne onwards is
object oriented. Below we will briefly desc1ibe the objects structure.

A. Overview

Object oriented software systems are more and more chosen when deciding for a development
design. They are more modular, easier to maintain and to upgrade and easier to explain and to
understand. On the other hand, they require more rigor and methodology but these are
qualities needed when developing complex programs. Visualization is an example of a complex
program, ever evolving which requires never-ending modifications of the existing system. As

9 http://www.cs.rpi.edu/-martink
10 This is true as long as the program does not call any proprietary functions. For example, VTK library
supports basic functions to handle windows but these methods no longer work when they are migrated to
another system. Especially, high level functions such as Microsoft Foundation Classes provided with
Visual C++ are not working with X-Window and consequently is not compatible. However, it is
possible to develop a full y functional program working on both systems.

50

Chapter 2 : Description of the process for the visualization pro gram

[SCHROEDER96] says, "a good software design should be robust, understandable,
extendible, modulor, maintainable and reusable" .

We can explain these tenns as follow : [SCHROEDER96] and [DUBOIS96]
• A robust system would handle exceptional conditions and would behave as expected cvcn

when used under different circumstances, an understandable system would allow anyonc
different from the implementor to use the program. This means the program should be
logical and follow ergonomie rules for example.

• An extendible system is a system carrying out old tasks while accepting to perform new
ones. This should be done without too many changes in the existing code since the more
changes are made, the more errors are introduced.

• A modular system means fonctions without or with few relationships are not gathered in
same modules and therefore minimizes changes in different modules. They should share
name conventions and protocoles.

• A maintainable system should be thought while designing and developing a software.
• The reusability of programs reduces the work of adding new features whereas the design of

such a reusable software is usually difficult and takes extra time.

"In computer Science, an object is an abstract entity that embodies the characteristics of a
real-world object. [. . .] Objects are the result of a programming methodology rather than a
language" [FAISON94]

These objects encapsulate properties and behavior of the entities within a system. Each
abject has an identity which distinguishes it from other abjects. The major difference between
conventional and object-oriented system is the way they approach data abstraction.
Conventional systems limit abstraction to data typing where object-oriented system create
abstraction for both data typing and methods applied to the data. Inheritance is a mechanism
that eases the addition of new classes when these classes are very similar. This involves a
hierarchical classification of the system we want to develop.

The VTK can be described with the Object Modeling Technique (OMT) developed at General
Electric and explained in [RUMBAUGH9 1] . This model uses three models to specify an
object-oriented design: an abject model, a dynamic model and a functional model. These three
models are described below and an example is given for each model.

B. The abject mode/

The object model identifies each object in the system, shows its properties and the
reltationships with other abjects. Each object is represented with a rectangle where its name is

51

Chapter 2 : Description of the process for the visualization pro gram

at the top, then ail the attributes are listed. Finaily ail methods are shown. Relations between
abjects are cailed associations and are shown with lines connecting relating abjects. Like in the
Entity-Relation Model, relations can have different cardinalities 1 1 and association can be labeled
with roles1 2 [BODART93] . Appendix l shows the Object Model for VTK.

C. The dynamic mode/

Where the object model describes the static part of a system, the dynamic moclel dctails the
sequence of events and time dependencies of the system. This is speciaily useful to design
control system and user interfaces where dialog boxes foilow other ones in a particular ordcr.
The way the visualization toolkit was written has limited sequence and control aspects,
however, a visualization program, using VTK or any other graphies toolbox is mainly based on
this mode!, as it will be discussed later. Figure 2-30 shows a basic example of a visualization
program.

Star!

Displaying a wireframe
object

Displaying a rendered
object

Figure 2-30 : Dynamic Model applied to a basic visualization program

Each oval in the diagram represent a state where an arrow shows a transition from one state to
another. Once the pro gram starts, the display type is set at "wireframe" . If one changes this
type of display, the object is displayed as a points cloud. If the display type is changed again,
the object will be shown as a rendered surface . Changing the display type once more would
show the object as in the first step.

D. The functional mode/

The functional mode! shows fiows in the system, how data move through the system. The
graphical representation of the functional mode! is cailed the data t1ow diagram. Its major

1 1 One-to-one, one-to-many and many-to-many.
1 2 Roi es are names gi ven to associations and are used to further describe the nature of the association

52

Chapter 2 : Description of the process for the visualization pro gram

components are data sources and processes. Data sources are shown by rectangles and
processes are represented by ellipses. The visualization process of the programs we wrote is
presented in Figure 2-31 in the data flow diagram representation. It has been detailed in the
Visualization Process section. One can observe the different data representations, slices,
triangles, polygons and pixels and the different two ways to display the objects, either the
surface or the volume objects.

CT/MRI/QS
sectioning

Triangles

Write Surface

Sl ices Select a region

Volume Rendering

Triangles

Triangles Triangle File

Polygons

Polygons�Polygons

Pixels

vtk Filter

Image shown
on screen

Surface ta Volume
process

Volume Rendering

Figure 2-31 : Data flow diagram for the visualization process

4.3.2 Volume rendering with VTK

The process of generating images with computers is called rendering [SCHROEDER96] .
[W ATT93] defines rende ring as the collection of operations necessary to project a view of an

object or a scene onto a view swface. Indeed, the main problem with 3D graphies is that we
want to display a 3D object onto a 2D surface screen. There are many types of rendering
ranging from simple depth shading method (see above) to sophisticated 3D techniques.

53

Chapter 2 : Description of the process for the visualization pro gram

5. Volume construction

Figure 2-32 shows the place of the volume construction in the wholc process.

5.1 Overview

Images

Display features

vtk Process
(Surlace construction)

3D Viewer
(Visualizalion)

Surlace To Volume Mesh
Volume Sullivan's 1------------.i File

program

Figure 2-32 : Volume mesh construction in the whole process

Once the surface has been built, and in order to use numerical analysis, we apply another
algorithm written by [SULLIV AN95] . This algorithm takes place ù1 a command-line pro gram
called 3dmesh which runs under UNIX. This is one of the main reasons for which we had to
develop 3D Viewer. Indeed 3D Viewer allows fùes created with 3D Surface Maker (usù1g
Marching Cubes Algorithm) and the ones created with 3dmesh to be displayed in the same tin1e
and in the same scene1 3

. This operation allows to compare results of 3dmesh with its ù1puts,
since there is no other validation process to check results from 3dmesh. This section describes
briefly the program 3dmesh émd its main fonctions.

The mesh gencration method is divided ù1to several steps. The user enters the boundary
geometry, composed of linc segments, at the desfred boundary resolution. Nodes are deployed

13 See below : The scene and the planes in 3D Viewer - A visualization program

54

Chapter 2 : Description of the process for the visualization pro gram

in the domain by offsetting the initial array of nodes located on the boundary inside inward
along vectors normal to the boundary geometry and processing the resulting new points to
determine new nodal locations. These new nodal locations are offset initiating another cycle.
This sequence of offset-process-offset continues until nodes are deployed throughout the
domain.

Finally, an element connection via Delaunay triangulation is applied to produce the final rncsh.
The tenn layer is used to describe a set of points that are related by their similar depth toward
the interior of the domain from the boundary. The term points is used to refer to the discrete
offset locations in a layer before the locations are processed to determine their final locations.
Nodes are the final, processed locations that make up the actual mesh . A row is represented
by line segments which connect the points in a layer to form a continuons closed loop(s). The
layer of nodes upon which the offsetting process is currently performed is the active layer and
the resulting offset point locations is called a new layer. The active layer is referred to as the
parent of the new layer. A complete cycle of offsetting an active layer to create a new layer
and processing the new layer to determine nodal locations is referred to as a step . At the end of
each step the new layer is ready to becorne the parent layer for the next step. Portions of the
dornain in which nodes have been deployed are referred to as meshed regions. Those regions in
which no nodes have been deployed are unmeshed.

Initially, the unmeshed domain consists of the entire region within the geometric boundary.
Following an offset step, the new layer of nodal locations forms a new interior boundary
surrounding a new domain of unrneshed space. This new boundary layer, and the unmeshed
domain are conceptually and structurally identical to the original boundary and domain and may
be passed trough the offset process again to form yet another layer of nodes. The process is
repeated in sequence until the shape of the new offset layer converges in the interior and the
domain is filled with nodes. During offsetting, the shape of the new offset layer will not be the
same as that of its parent layer or of the original boundary. The mesh density fonction gives
local control over the deployment. Additionally, offsetting along vectors normal to curved
boundaries causes convergence in concave regions and divergence in convex regions. These
factors coupled with loop intersections change the shape of the working layer.
A sequence of tests which increase in computational complexity are used during the offsetting
process. Neighbor distance tolerance checking is followed by an angle tolerance check with a
loop intersection check performed thereafter. This test sequence rectifies each new layer to
ensure an appropriate node deployrnent in the domain. [SULLIV AN95]

55

Chapter 2 : Description of the process for the visuàlization pro gram

5.2 Examples

The images shown below are exerpt from our program, 3D Viewer.

(a) (b)

Figure 2-33 : A surface mesh (a) and a volume mesh from 3dmesh (b)

6. 3D Viewer - A visualization program

3D graphies are two-dimensional images on a fiat computer screen that provide the illusion of
depth, the third dimension. The object of this chapter is not to define ail 3D concepts in order
to allow the reader to manipulate them or to develop a 3D program but to be able to
understand the main concepts used in this thesis. In the critical application of the TRIDENT
methodology in the next chapter these concepts are used a lot, that is the reason why we think
an overview can be useful. This chapter is divided in three parts : Main principles section - or

56

Chapter 2 : Description of the process for the visualization pro gram

3D basics - describes the main parts in 3D graphies, the scene, lights, colors, . . . The second
section will describe the architecture of the visualization program.

Figure 2-34 shows the visualization process and contribution of 3D Viewer in this proccss.

Images

Display features

vtk Process
(Surface construction)

Volume construction

3D Viewer

No

Mesh
representation

Figure 2-34 : 3D Viewer and its position in the whole visualization process

6.1 Main principles

Graphies
transformations

This section intends to explain the main components of a basic 3D program. Indeed, every
so-called 3D program must include a scene, should include geometric transformations such as
rotations or scaling, colors and lights. We will also talle about views and cutting planes which
seem to be very important in visualization problems.

6.1.1 The scene and the planes

The scene is the first step when building a 3D graphies program. It is where the objects are
displayed and usually physically corresponds to the screen or the window in a multiple-window
environment. Bcsidcs the o bjects contained in the scene, the latter contains two important
objects called far plane and near plane, as shown in Figure 2-35.

57

Chapter 2 : Description of the process for the visualization pro gram

Figure 2-35 : A scene within its near and far planes

Near plane

Near plane is the plane situated between the position of the viewer (i.e. the eye) and the scene,
and any object that is situated between the near plane and the eye is not shown on the screen.

Far plane

Far plane is the plane situated at the end of the scene and from which any object situated further
is not shown.

6.1 .2 The geometric transformations

Geometric transformations are useful if modifications on the objects are needed. For example,
the object shown on the screen can hide something behind i.tself and we may want to rotate it to
check up. The most common transformations in 3D graphies are Rotation, Scaling and
Translation. Since 3D graphies are made of vertices, and each vertex is made of 3 coordinate
points, the obvious way to handle these transformations is to work with matrices. These
transformations are summarized in Figure 2-36 .

..... •·····/······/1\�
+--.�-.-. ... //

.f-: ----+--+<>"

(a) (b) (c)

Figure 2-36 : Translation (a), Scaling (b) and Rotation (c) transformations

58

Chapter 2 : Description of the process for the visualization program

Transformation matrices [SCHROEDER96] , [WATT93] and [WRIGHT96]

Using matrix notations, a point P is transformed under
• translation as P' = P + T
• scaling as P' = PS
• rotation as P' = PR

(2- 1)

where T, S and R are respectively a vector of translation, a matrix of scalc factor and a matrix
of rotation. This works fine as long as we are working with simple 3D objects without any
perspective considerations. Indeed, to give perspective effects, we need to add a fourth
element. So where a Cartesian point is defined as P = (x, y, z), a point represented in its
homogeneous coordinates is defined by a four element vector (x, y, z, w) [SCHROEDER96]
[W ATI93]. Therefore, any transformation matrix will be 4 X 4 matrix.

The conversion between Cartesian coordinates and homogeneous coordinates is given by (2-2)

(2-2)

Object translation
Translating an object can be useful when one wants to move it from one place to another, for
example to superpose objects or on the other side to show two superposed objects. To create
a transformation matrix that translates a point (x, y, z) in Cartesian space by the vector (tx, ty,
t2) we need to build the translation matrix

1 0 0 tx

0 1 0 ty Tr = 0 0 1 t z
(2-3)

0 0 0 1

and then multiply it with the homogeneous coordinate (x11, Y11, z11, w1J We don't need to set a
value for w, which controls perspective aspect but we can set it at a value of 1 (no perspective
effect).

The translation of only one or two axis is possible when setting the other values to O. For
example, to translate on the X axis only, ty and t2 are worth O in the matrix TT shown in (2-3)
The translated point (x', y', z') in homogeneous coordinates is obtained as shown in (2-4).

59

Chapter 2 : Description of the process for the visualization program

x' l 0 0 tx X

y ' 0 l 0 t
v

=
z 0 0 l t , z

w' 0 0 () l l

Using (2-2) to get the Cartesian coordinates, we have the right result :
x' = X + lx

y ' = y + ty
z' = z + tz

Object scaling

(2-4)

(2- 5)

Scaling an object can be useful in two cases . First of ail, it has the same effect as zooming since
one can shrink or enlarge the object to fit its needs. Secondly, scaling can be useful when
working with multiple objects and these ones are not the same size or the same scale.

Let's take a point (x, y, z) and apply a scaling factor of (sx , Sy, s2) . The transformation matrL'< is

S'r () () ()

0 sY O 0
Ts =

() 0 sz O
(2-6)

0 0 0 1

Just like with translation, the new point is obtained as shown in (2-7)
x ' s

x
0 0 0 X

y ' 0 Sy 0 0
=

'7 ' 0 0 sz 0 z �-
w' 0 0 0 l 1

and using (2-2), the Cartesian coordinates are :
1 X = Sx X

y' = Sy y
z' = S2 Z

Note that scaling only on one or two axis is also possible by setting Si to value 1 .

Rotation of an object

(2-7)

(2-8)

Rotating an object can be useful to check all sides of the object. Since ro tation is a little bit
more complicated than the o ther two transformation aboves , we will describe ro tation around

60

Chapter 2 : Description of the process for the visualization pro gram

one axis at a time.
To rotate an abject around the X axis by angle 8 we use the matrix TR,

1 () 0 ()

0 cos 8 sin e 0
TR =

X 0 - sin 8 cos 8 0

0 0 0 1

TR and TR rotation matrices are shown in (2- 10)
)' ;:

cos8 () - sin 8 0 cos8 sin e
0 1 0 0 - sin 8 cos8

TR =
y sin e 0 cos 8 0 ' TR = ' 0 0

0 0 0 1 0 0

() 0

0 0

1 0
0 1

The matrices in (2- 10) correspond to the three equations systems shown in (2-1 l a,b and c)

{·::: ;ose + z sin 8
z ' = -y sin 8 + z cos8

{
x:= x cos8 - z sin 8
y = y

z' = x sin 8 + z cos8

{
x '= X COS8 + y sin 8
y ' = x sin 8 - y cos8
z ' = z

(2-9)

(2- 10)

(2- l l a)

(2- 11 b)

(2- l lc)

The global transformation matrix corresponds to a transformation of the axis x-y-z to a new
axis x'-y'-z'. We assume the axis x makes the angles (8x·x, 8x'y, 8x•z) around the axis x-y-z.
Similarly, the y' axis makes angles (8y•x, 8y'y, 8y•z) and z' makes the angles (8z·x, 8z'y, 8z·z) .

We finally obtain the following matrix
cose x 'x cose x 'y cose x 'z 0

cos e y 'x cose y 'y cos8 y 'z 0
TR =

cos8 �·x cose z 'y cos8 ,., 0
(2-12)

0 0 0 1

6 1

Chapter 2 : Description of the process for the visualization pro gram

Combinations of transformations
The previous transformations (scaling, translation and rotation) can be combined to represcnt
ail type of transformations simultaneously. For example, a translation matrix M1 applied to a
point and then a rotation matrix M2 applied to the result is represented in (2- 13)

x' 1 0 0 t, X

y ' 0 1 0 t_l'
7

1 0 0 1 t. z ,_,

w ' 0 0 0 1 w

x" cos8x'x cos8x'y
y" cos8y'x cos 8y ·y
z Il cos8 ,,x cos8 z'y

w Il 0 0

or in the algebraic form
X' = T • X
X " = R · X'

cos ex'z

cos8y 'z

COS 8 z'z

0

0

0
0

1

x'
y '
z

w '

With matrix multiplication, we can have it simplified as shown in (2- 15)
X" = R · T - X'

(2- 1 3)

(2- 14)

(2- 15)
However the user has to keep in mind the computational aspect of matrix multiplication (O(n2))

for every point to transform !

6.1.3 The (objects) color

Color has now ail its importance. Ail computers are sold with high quality 16 million color
monitors and nobody could work anymore with a black and white word processor or
spreadsheet. It is even more true when talking about computer graphies.

A. Importance of co/or in visualization

Visualization is based on showing, displaying abjects on a screen in order to help to understand
problems, to get quick idea or to support a decision. A quick look into an array of numbers is
easier when negative numbers are shown in red for example. In medical imaging, bones and
soft tissues are more easily distinguished when bones are shown in one color (e.g. gray) and
soft tissues in another. This is one reason for which we decided to ailow to change color for
any object in the program, i.e. any abject in the scene, any axis or any bounding box.

B. Components of the color

Color is a wavelength of light that is visible to the human eye. [WRIGHT96]. Wavelengths of

62

Chapter 2 : Description of the process for the visualization progrmn

visible light range from 390 nanometers for violet to 720 nanometers for red, this range being
usually called the spectrwn. Figure 2-37 shows the light spectrum ranging from violet to red
going through blue, green and yellow.

Purple Blue Green Yellow Red

390 nm 720nm

Figure 2-37 : Light spectrum

Computers use two different methods in coding color. The first one is called RGB and
represents colors based on their red, green and blue intensities. It can be seen as a 3
dimensional space with red, green and blue axes. The second method is called HSV for hue,
saturation and value (brightness) . We used the RGB model because it is implemented in most
of programming languages .

6.1 . 4 Lights

Lights are very important in a scene, when displaying an object. In fact, this is probably the
most important thing in the process of displaying an object . Indeed, if there is no light, the
object will be black, and as [SCHROEDER96] says, this object will be rather uninformative.
[SCHROEDER96] and [WRIGHT96] agree that the reason that lights are so important is that
the interaction between the emitted light and the surfaces of the abjects defines what we see.
Beside colors, lights bring other effects such as shininess or shading and make the objects look
more realistic. When dealing with lights ù1 a program like in 3D Viewer, one has to work with
a lot of parameters which are not always easy to tune. The light that illumù1ates an object is
often composed of different light components, the ambient, the diffuse and the specular ones.
Once the type of light has been chosen, the right position has to be set, in the three-dùnensional
space

A. Parameters of the /ight

1 . The amb ient parameter

[WRIGHT96] defü1es an ambient light as a light that does not come from any particular
direction. It comes from a source, e.g. a bulb, but the rays have bounced so many around the
room that they become directionless. A consequence of this is that objects hit by ambient light
are evenly lit on all surfaces.

63

Chapter 2 : Description of the process for the v isualization pro gram

2. The d iffuse parameter

A diffuse light cornes from a particular direction but is reflected evenly off a surface
[vVRIGHT96] , but the surface will be brighter if the angle made by the light rays with the
object is closer to 90° than to 0°.

3. The specular parameter

Specular light is directional as diffuse light, but is reflected sharply and in a particular direction.
A specular light tends to cause a bright spot on the surface and rays are parallel. Cornmon
examples are the sun or a laser beam. Figure 2-38 shows examples of ambient light, diffuse
light and specular light.

� j /
✓

--..

--+- ---..
(a) (b) (C)

Figure 2-38: Ambient (a), diffuse (b) and specular (c) Iights

The effect of specular light is shown in Figure 2-39, where the object, a body trunk, is
displayed in 3D Viewer interface. The first image corresponds to all lights off, the second one,
to one light on, where its specular component is set to 0, the third one, the specular component
set to 128 and the last one, the specular component is set to 255 (maximum value). Usually,
light components are defined in RGB components, however, we decided to define the specular
component in gray scales, because the specular component acts like a shininess component.
Specular, diffuse and ambient parameters are components of lights but can appear in different
values. Therefore, a light can be composed of only one or two components.

64

Chapter 2 : DescnJJtion of the process for the visualization progrmn

Figure 2-39: Working with specular light

4. The position of a l ight

The light position can be important when showing a complex object where parts of it are
shadowed by other parts of the object. The position of a light is a coordinate in 3D space, i.e.
(x1 , y,, z,). However, an effect can be given if one wants to give the impression of a light
coming from infinite, like the sun. The for parameter creates a light where ail rays are parallel
but where the direction has to be specified. Figure 2-40 shows the same object where the light
position has changed. The position of the light is represented by a black dot. The new position
of the light allows the user to see the right part of the human body face.

Figure 2-40 : Light positions

B. Material properties

As [WRIGHT96] explains, lights arc only part of the equation. Objects have a color, and an
object color means that this object reflects this color and absorbs the others. For example, a
red car reflects most of the red component of the light, and absorbs most of the others. In
most of cases, a white light bits the objects and thcrefore they appear in their "real" color, but a

65

Chapter 2 : Description of the process for the visualization pro gram

blue ball in a dark room illurninated with a yellow light would appear in black because the ball
would absorb the yellow component. So objects have also properties like lights. As
[WRIGHT96] says, we have to talk in terms of reflective properties for ambient, diffuse and
specular light sources. Deterrnining the specular aspect of an object amounts to de termine how
the object ret1ects the specular cornponent of the light. Likewise, determining the ambient or
the diffuse aspect of an object arnounts to determine how the ambient or diffuse components of
the light are reflected by the object. [WRIGHT96] suggests however to consider ambicnt and
specular components being equal.

So when defining an object we have to specify its "reaction" to lights. For exarnple, setting the
shininess of an object will lead the object to reflect more or less light. The transparency can be
a very useful tool when working with a composite object. For example, making the skin
transparent can help visualize bones through the skin while keeping an eye on it, in order to see
external damage.

C. Surface Normal

When the 3D representation of a piece of trabecular bone is visualized as a surface made up of
plain triangles, the notion of normal to a surface is important if lighting is used. The normal
to a surface determined by 3 vertices of a triangle helps to determine the angle of reflexion of a
light ray reflecting on the surface at one point. (Figure 2-41)

Normal

Figure 2-41 : The surface normal

The normal to a surface is a vector perpendicular to the surface and having a direction. When a
light ray is touching the surface at one point, with an angle a with the normal, the light ray is
reflected by the surface and the reflected ray has an angle a with the normal. The direction of
the normal is an important characteristic since in the case of triangles, it determines which side
reflects the light rays. If the normal of a triangle belonging to a surface is going to the outside
of the object and the normal of another triangle of the same surface is going to the inside of the

66

Chapter 2 : Description of the process for the visualization pro gram

object, then an observer outside the object will see some triangles retlecting light and some
others reflecting nothing (because they are reflecting light inside the object).

So all normals should go outside the objects. It is the reason why all triangles should be
defined in the sarne way in a file (clockwise or counter-clockwise) because the way a triangle is
determined has an int1uence on the normal direction (see Figure 2-42). The first triangle is
defined as triangle (a, c, b) , i.e. in clockwise order, and the other is defined as triangle (a, b,

c), i.e. in counter-clockwise order. In our program, the user has the opportunity to change the
convention (clockwise or counter-clockwise) depending on the convention used in a particular
file containing the surface description of objects so the program computes the normal for each
triangle in the right direction [WRIGHT96] , [W A TT93].

a a

C

C

Clnckwise Counter-clockwise

Figure 2-42 : Defining vertices order as clockwise and counter-clockwise

6. 1 . 5 Views

The view of the scene is exactly what we see when we look at the window. It allows to see the
scene between the near plane and the far plane. [SCHROEDER96] uses the term of camera
when speaking about the view, since we can imagine a camera moving around an object and
what we actually see is what we would see on a TV screen. Multiple views of the same object
can be very useful, as lights and colors. Figure 2-43 shows the principle of a multiple view
prograrn. The program owns only one document (data) but is able to show it in different ways.
A word processor for exarnple would show in the first view the text in the way it would be
printed, and another view that would be the text without any formatting, to increase the speed.

Indeed, the user can visualize the same object from the front side and the rear s ide in the same
time. 3D Viewer doesn't lirnit the number of views, and every view can even receive different
attributes, such as a different color or a different position in the 3D space (i.e. operations like
rotation, translation and scaling can be applied to any view independently)

67

Chapter 2 : Description of the process for the visualization pro gram

Document

D ___ : �ew 1

□ l;e. ,

Figure 2-43 : Two views for the same document [MSDEV96]

Figure 2-44 shows the interface of 3D Viewer where the same object is displayed in two
different windows with a different position in space and a different type of display (mesh and
rendered surface).

Figure 2-44 : 3D Viewer interface with multiple views

6.1.6 Cutting planes

Cutting plane is the last important feature we included in 3D Viewer. A cutting plane is a plane
that cuts an object - or more often the whole scene and removes everything that is above or

68

Chapter 2 : Description of the process for the visualization pro gram

beneath, depending on settings. This feature allows to view inside an abject that would be
usually closed. We allow up to 6 different cutting planes, one for each side of the scene. Each
of these planes can be manually set with a position in the scene, an angle, and different
parameters allowing to show or not the plane, to eut or not the part of the scene.

Figure 2-45 shows the scene as shown in Figure 2-35 and three of the six cutting planes
available. The top cutting plane can be lowered from its initial position to the initial position of
the bottom cutting plane; the right cutting plane can be slid from its initial position to the initial
position of the left cutting plane; the rear cutting plane can be pulled from its initial position to
the initial position of the front cutting plane; and so on.

Figure 2-45 : Top, rear and right cutting planes

Figure 2-46 shows the same object (a small piece of bone of 2mm x 2mm x 2mm) displayed in
3D Viewer. The first image is the normal abject, one cutting plane is showed in the second
image and the plane cuts the half top of the third image.

6.2 Program architecture.

, '

···••·•
::): i: < •.. �)

.1,
❖

-- } {}

Figure 2-46 : Cutting planes

As explained in [DUBOIS96] , we will explain the architecture of the program, and especially
the modularization which we think is enough to understand main parts of the pro gram and how

69

Chapter 2 : Description of the process for the visualization pro gram

they work together. First we will detail briefly main modules developed in 3D Viewer then we
will show how they communicate and internet. Each module interface can be found in
Appendix 4.

6.2 .1 Main modules

The modularization has been done following two ptinciples of cohesion
• each module contains fonctions having same semantic or sharing same properties
• each module is object oriented
In future each module will be called an abject because all of them actually are objects.

A. CScene

This is the most important object in the program. It contains14 ail the objects to be drawn, ail
parameters of the scene, such as lights, cuttings planes and far and near planes. This object is
one of the biggest because the interface part of the object contains more than hundred fonctions
ailowing to change these parameters. Among these fonctions - also cailed methods is the
DrawScene 1 5 fonction which is cailed most of the tune after each use of a dialog box ailowir1g
to change parameters. For example, when the dialog box for rotation is showed up and new
parameters are entered, the scene has to be redrawn to take new changes in account.

B. CCuttingPlane

This object contains properties and methods for each of the six planes. Each plane is defü1ed
according to an equation which can be modified through a dialog box into the program. This
object was one of the most difficult to write because of its complexity and poverty of
documentation.

C. CLight

Like CCuttir1gPlane, this object contair1s properties and methods to describe each of the eight
lights. As explair1ed ir1 the previous section, each light has ambiante, diffuse and specular
properties and can be set at any spatial position and any color.

D. CReadMeshFile

The goal of this object is to read any kind of data, whatever it is a bir1ary or an ASCII füe, and
transmits data read to the scene as a new object. Many fonctions appear the same even if they

1 4 , · contcuns or pomts to
15 11tis function corresponds to the semantic function "Display(Scene)" in the second part of this text.

70

Chapter 2 : Description of the process for the visualization pro gram

are not and this object could have been developed using inheritance to reduce the code and to
increase reusability.

E. CConverter

This object reads and writes binary and ASCII fùes to keep compatibility betwwen diffcrent
applications such as 3D Viewer and 3dmesh for example .

F. VRMLMaker

This object saves the scene and creates a VRML 1 6 file which can be read by any web browser if
the Live 3D plug-in is installed. We think that data interchange in the future will increase
thanks to the web and an easy way to help this interchange is to allow to save in a worldwide
recognized format such as VRML. Figure 2-47 shows the 3D viewer interface and the
Netscape inte1face with the same object exported as VRML.

:,;,3ov,ewer-Face1 erm . • . · • ll!!lfil�

;IJ,Netsrope•[fileWJD'./FLES/CPP/DATN!acel w�J . . . : . . - - : .• . . • S!I��

Figure 2-47 : 3D Viewer and an exported file in Netscape®17

16 Virtual Reality Modeling Language, a languagc that allows to create 3D web sites, by Mark Pesce and

Tony Parisi in 1 994 [WRIGHT96]. See Appendix 5 for more details.
17 Netscapc, (Netscape Communications Corporation), a world-wide web brower, incluciing Live3D

plugin.

7 1

Chapter 2 : Description of the process for the visualization pro gram

G. CDisplayBinary

This object loads a 1-bit binary image, displays it, allows the user to select a sma11er rcgion and
saves it in the right format for a VTK process. This object is mainly bascd on a program
written by Tony Keller is BASIC and was adapted in order to work undcr Windows.

H. /HM modules

These objects linking the scene with the new parameters are divided according to the rulcs
explain in the TRIDENT methodology application. Indeed, there are about 15 dialog boxes,
each of them corresponding to an object since it is the way Visual C++ works when creating a
new dialog box.

/. CGL WorkApp

This module corresponds to the Windows application.

J. CGL WorkDoc

This object contains ail methods and properties that correspond to the document. It is part of
the MFC (Microsoft Foundation Class) and is defined as a class providing the basic
functionality for user-defined document classes. A document represents the unit of data that the
user typically opens with the File Open command and saves with the File Save command
[MSD EV96] . In our case, the document will use the scene - typically, it owns a pointer to
the scene - and allows to add and remove objects, counts the number of views available for
the same scene.

K. CGL WorkView

[MSDEV96] says the CView1 8 class provides the basic functionality for user-defined v1ew
classes. A view is attached to a document and acts as an intermediary between the document
and the user: the view renders an image of the document on the screen or printer and interprets
user input as operations upon the document. This object contains parameters proper to each
view, for example, its color, its spatial position, default values for dialog boxes, such as rotation
increase value, and the state of the view (rotating of not). Each CGLWorkView bas a method
to access the document in order to change properties of the scene. The methods listed in
Appendix 4 correspond to the reaction to a menu. Their names are self-explaining and
correspond to the concatenation of each word in the menu.

1 8 CView is the base class, and CGLWorkView inherits of its properties. CView is part of MFC.

72

Chapter 2 : Description of the process for the visualization pro gram.

L. CMainFrame

According to [MSDEV96], the CMDIFrameWnd 1 9 class provides the functionality of a
Windows Multiple Document Interface (MDI20

) frame window, along with attributes for
managing the window. The CMainFrame object correspond to the main window. Each
window con-esponding to a view will be a CMainFrame object.

M. ClntList and CObjectList

These objects handle lists, which are data structure. Methods allow adding, rcrnovmg and
finding objects in the lists.

6.2.2 Dependencies between modules

According to [DUBOIS96] , the previous modules are to be classified into 5 classes. At the top
level of the hierarchy we find the functionality modules. At level 4 are usually found HCI2 1 and
printing modules and level 3 contains data and data structures. Level 2 is dedicated to
rniddle-ware modules such as DBMS22 or Client/Server modules. Bottom level contains
operating system modules. However, because the program is highly HCI and graphies
oriented, and because the development is partially based on the TRIDENT methodology, we
inverted level 5 and 4. HCI level is now top-level and functionality modules are are level 4.
Desciiption of dependencies is shown in Figure 2-48.

19 CMDIFrameWnd is the base class for CMainFrame.
20 A Multiple Document Interface allows more than one document to be open in the same time. MDI is
different from a multiple view documents which allows multiple windows to be open in the same time
but representing the same document.
2 1 Human Computer Interface
22 Databas Management Systems

73

Chapter 2 : Description of the processfor the visualization pro gram

CGLWorl<App

CMainFrame

CUghts

------- -�----- CCuttingPlanes

CObjactUst ClntUst

VRMLMakar

Figure 2-48 : Description of modules dependencies

7. Conclusion

This section is intented to summarize the whole process of visualization in the way we were
asked to implement it. Figure 2-49 is showing the whole process in detail. Each grayed
rectangle on the figure below corresponds to a section in this chapter. It is important to note
that the rectangles outside of the grayed regions are not included in the visualization process
but depend a lot on the results of the latter. With regard to the numerical analysis, it is in fact a
strength analysis with a specialized software which take as i11put mesh files created by
3D Surface Maker or 3dmesh.

74

Chapter 2 : Description of the process for the visualization pro gram.

Images

Display

VTK surface
construction

Volume
construction

30 Viewer

Surface To
Volume Su\livan's

program

Figure 2-49 : The whole visualization process

75

CAD

Other
programs

1 . OpenGL

Chapter 3 : 3D graphies technical

considerations

The goal of this section is not to detail OpenGL neither to give a course on how to use it , but

simply give main advantages of an easy to use, portable and powerful graphies library.

OpenGL and VTK are two different graphies libraries, where VTK is one level higher. Indeed,

the lowest layer of VTK is OpenGL, and this is a reason for which VTK is portable in many

cases.

1.1 What is OpenGL ?

[WRIGHT96] defines OpenGL as a software inte,faee to graphies hardware, a 3D graphies

and modeling library that is extremely portable and ve1y fast. OpenGL is relatively new on

the market but seems to gain more and more following [WRIGHT96] . The advantage is that is

was launched by the big graphies company in the world, Silicon Graphies, Inc. (SOI) . These

computers have more equipment than any other PC, especially optimized hardware for display

of graphies . This hardware includes ultra-fast matrix transformations (see above, Matrix

transformations) . The word "Open" in OpenGL means that the library is open to the o ther

computers, allowing easy adaptability to o ther platforms or operating systems. Indeed, the new

release of Windows NT (NT 4.0) is including OpenGL, which means that any OpenGL-based

program can run faster under Windows NT, especially if the computer owns a OpenGL

compatible graphie card23
.

Features of OpenGL are enormous and it is not possible to even list them here. However, we

will just point out most important ones. Of course OpenGL supports basics of 3D graphies,

23 Sec "Graphies hardware" secUon for more details.

77

Chapter 3 : 3D graphies technical considerations

like lights, colors, cutting planes and matrix transformations but allows texture mapping24
,

working with predefined complex objects lik:e spheres or cylinders, giving visual effects like
fog.

1.2 Portability

Portability for a powerful library is very important. A pure OpenGL program written in C++
under UNIX can be ported on a PC and run immediately without any change. The link bctwecn
the code and the graphie card is made through the operating system. Under Windows NT and
Windows 95, this link is made through two important dynamic libraries, OPENGL32.DLL and
GLU32.DLL which are required to run any program based on OpenGL. The disadvantage, in
our eyes, in that OpenGL does not include any high level functions that manage dialog boxes
which makes qui.te impossible to develop a fully portable application.

2. The graphies hardware

2. 1 Overview

Conditions to deal with graphies (not only 3D graphies) is to have a powerful computer
because of underlying computations, a good graphie card (supporting one or more 3D
standard) and a monitor. We are not going to talk about power of computers which would be
out of the scope of this text, but we think that basics of how computer data are displayed on a
monitor screen can be interesting.

2.2 Rasterization

[WRIGHT96] defines rasterization as the process of converting projected primitives and
bitmaps into pixels. Figure 3- 1 shows the result of rasterization for two lines. These lines are
made of 2 points at their ends but to be displayed, these lines have to be converted into pixels.
The grid shown in Figure 3-1 corresponds to a piece of the screen, where each square is a pixel.
The grayed rectangles are what will be actually showed on the screen. This process is done
anytime when a user draws a line with a drawing program such as Paint Brush or CorelDraw.

24 Texture mapping is fitting pictures, images on a 3D object. A cube can be covered with a bitmap (an
2D image) to give a more realistic aspect. A example of texture mapping is computer games like
DOOM wherc walls are covercd with textures giving desired atmosphere. [WRIGHT96]

78

Chapter 3 : 3D graphies technical consiclerations

Figure 3-1 : Rasterization for 2 l ines [WATT93]

Another characteristic of raster devices like computer screens or laser printers is their
resolution [SCHROEDER96] . A laser printer for example is able to draw up to 600 pixels on
one inch length (600 dpi) where an old matrix printer barely reach 50 dpi. A computer screen
usually has a resolution of 80 pixels per inch, which allows about 1000 pixels wide by 800
pixels high.

2.3 Graphie boards

The graphie board is the interface between a computer and a monitor, and most of them now
include 3D graphies acceleration, special chips to perform computation in place of the main
processor [BYTE0896]. Graphie boards are linked with monitors and they have to share same
capabilities in order to work at best. Owning a very good and power graphie board with a poor
quality monitor is no use, and the opposite is also true.

These graphies boards are always equipped with memory which must be at least equal to the
memory necessary to display the ail screen. For example, with a resolution of 800x600 pixels,
where each pixel is 16-bit encoded, 960000 bytes are required, that is, a one-megabyte memory
graphie board is enough.

79

PART II

A critical application of the

TRIDENT methodological

framework.

During the design and development process of our pro gram 3D Viewer
(a prototype of a 3D visualization program), we did not use the
TRIDENT methodology learned during our studies. The airn of this
chapter is to cany out a critical application of the TRIDENT
methodological framework described in [BODART95a] for the
development of the 3D Viewer software hwnan-computer inte1 face and
software architecture. We would like to find out where it presents
weaknesses for the development of 3D medical ùnaging applications
or applications with the swne characteristics since it is primarily
destined to design business oriented software. We point out that, to
simplify the analysis, we will not talk about the possibility of chjferent
views of a scene that was implemented in the pro gram.

The TRIDENT rnethodological framework is presented along 5
dimensions : (1) forming the user inte1face specifications j,'om the
output of the task analysis. (2) guiding the presentation design from
ergonomie ru les, (3) deriving the software architecture from the task
analysis and the presentation components, (4) fonning high Level
dialogue specifications fron1 the output of the task analysis and (5)
reducing the methodological frwnework to a specification frwnework.
We will analyze the jïrst three dimensions in the next chapters.

81

Chapter 4

First Dimension :

Graphie al User Interface Specifications

1 . Introduction

The task analysis is the very first step to the methodology. Before beginning with the analysis
itself we have to correctly define the task. It consists in visualizing objects in three dimensions
with different shapes, different positions, different colors ... with the intention of helping the
users to pose a diagnosis on these objects that are, in our case, pieces of trabecular bones. So it
is a decision support task that cornes within the scope of a bigger task that consists of a
strength analysis of the elements previously listed. For more precision about this subject, see
Chapter 2 : Description of the process for the visualization program. It is important not to
confuse this task with the one that simply consists in displaying objects and where the only aim
is the visualization itself. Our pro gram could also be used for this purpose.

Since we did not observe the task and because we know nothing about the mental process of
posing a medical diagnosis, we must presume the task. That is what we call a "prescribed
task". The consequence of this fact, is that we can not analyze it. In view of the fact that the
result of task analysis is useful for further steps in the TRIDENT methodology (derivation of
the interaction styles , construction of the software architecture . . .) it is necessary to suppose
some users' behaviors.

In [GOOSSENS95] , the system implemented is presented as a toolbox where the user is able to
use tools without specified order. We can also consider that the toolbox metaphor is suited to
3D Viewer because the task is weakly structured : it is prescribed and it is a decision making
task. The same remark as in [GOOSSENS95] can be pointed out concerning the obvions
necessity to use some tools before the others. For example, it is possible to manipulate an
object if and only if it is previously loaded into a scene. Figure 4- 1 is showing the tool box

83

Chapter 4 : First Dinzension - Graphical User Interface Specifications

metaphor where each tool correspond to functionality made available by the program and the
house correspond the a scene (central element) on which the tools are applied. Figure 4-2
shows the same metaphor applied to Microsoft Word word processor (it actually works for ail
word processors !) . The document is the central element and grammar, spelling, . . . are the
tools that can be applied to this document.

2. Task "analysis"

� �

Figure 4-1 : The toolbox metaphor.

Import/Export

MS-Ward
Document

Figure 4-2 : Microsoft Word seen as a toolbox

The task "analysis" will be performed as follow : (1) the decomposition of the task into goals
and sub-goals, (2) the decomposition into procedures, (3) the identification of the objects of the
task, (4) the specification of the parameters relative to the task, (5) the description of the users
stereotype and (6) the description of the environment where the task will be realized.

Task : to visualize 3D objects (pieces of bone . . .) with the intention of posing a diagnosis.

84

Chapter 4 : First Dimension - Graphical User Inte1face Specifications

Role : scientific searcher.
Context : expeiiment.
Organization : University of Vermont, Musculoskeletal Research Lab.

2.1 Goals and sub-goals decomposition

The goals and sub-goals identified below are not coming from the observation of a task. They
are rather the wishes expressed by our co-promoter in the United States, T. Keller.
Each goal and sub-goal has been labeled as this
• (p) preparation goal or sub-goal,
• (t) transformation goal or sub-goal,
• (s) selection goal or sub-goal.

The decornposition into goals and sub-goals is defined below

1 . Visualize abjects with the intention of posing a diagnosis (t)

1 . 1 . Manage the scenes (t)

1 . 1 . 1 . Create a new scene (t)

1 . 1 . 1 .1. Create the scene (t)
1 . 1 . 1 .2. Make the new scene the current scene (p)
1 . 1 . 1 .1. Add an object into the new scene (t)

1 . 1 . 2. Select the ctment scene (t)

1 . 1.3. Rernove the current scene (t)

1 . 1 .4. Specify parameters of the current scene (t)

1 . 1 . 4.1. Specify the background color of the current scene (t)
1 . 1 . 4.2. Specify the size of the cmrnnt scene (t)
1 . 1 . 4.3. Tum antialiasing25 on/off (t)
1 . 1 . 4. 4. Tum culling face26 on/off (t)
1 . 1 . 4. 5. Turn counterclockwise sorting on/off (t)
1 . 1 .4.6. Specify the shading rnethod (t)

25 Antialiasing : an algorithm to remove the distracting effects of point sampling a signal in the digital
domain. (Real 3D, http://www.real3D.com)
26 When culling face parameter is on the system does not compute hidden surfaces. This improves
response speed.

85

Chapter 4 : First Dimension - Graphical User Inte,face Specijications

1.1.5. Geometrically transform all the objects of the current scene (t)

1.1. 5. l . Rotate along the longitude (t)
1. 1. 5.2. Translate horizontally (t)
1. 1.5. 3. Change the scale (t)

l . l .6. Cut a part of the current scene (t)

1. 1. 6. 1. Choose the cutting planes (s)
1. 1.6.2. Setting the cutting planes (p)
1. 1. 6.3. Show the cutting planes (p)
1. 1. 6.4. Cut the current scene (t)

1. 1.7. Manage the lights (t)

1. 1.7. l . Choose the lights (s)
1. 1.7.2. Set the lights (p)
1.1.7.3. Turn the lights on/off (t)

1.1.8. Save the current scene in a VRML format (t)

1.2. Manage the objects of the current scene (t)

1.2.1. Add an object into the current scene (t)

1.2.1. 1. Read the surface or the volume (t)
1.2. 1.2. Give a name to the object (p)
1.2. 1.3. Make the new object the current object (p)
1.2.1.4. Display the object in the current scene (p)

1.2.2. Select the current object (s)

1.2.3. Remove the current object from the current scene (t)

1.2.4. Change the name of the current object (t)

1.2.5. Get information about the current object (t)

1.2.5. 1. Get the display type (s)
1.2.5.2. Get the number of tetrahedrons (s)
1.2.5.3. Get the number of triangles (s)
1.2.5.4. Get the number of vertices (s)
1.2.3.5. Get the file name (s)

1.2.6. Change the color of the current object (t)

1.2.6. 1. Specify the object's color parameters (p)
1. 2.6.2. Apply the color changing (t)

86

Chapter 4 : First Dimension - Graphical User Inte,face Specifications

1.2.7. Change the type of visualization of the current object (t)

1.2.7 . 1. Choose a type of visualization (s)
1.2.7 .2. Apply the type of visualization changing (t)

l .2.8. Show the current object axis (t)

l . 2.9. Show the cmTent object box (t)

The diagrnrn of the goals and sub-goals decornposition is shown in Figure 4-3, Figure 4-4 and
Figure 4-5.

Manage the

scenes { t)

Vi sua l i z e 3 D obj ects

with the intent ion

of posing a

diagnos i s { t)

Manage the

obj ects of the

current scene { t)

Figure 4-3 : The diagram of goal and suh-goal decomposition of the 3 D visualization task

2.2 Procedures identification

The decomposition into goals and sub-goals shows us clearly that the main goal assigned to the
task is composed of 2 sub-goals. Each of them is assigned to a sub-task
• The management of the scenes
• The management of the objects

In this section, we are facing an inconvenience. The decomposition into procedures is aiming at
showing how a process works. In our case, there is no predetermined order in the
visualization process. As soon as the first object is loaded into the scene, any of the sub-tasks
- for example cutting a part of the scene, changing the color of the object . . . or even adding a
new object into the scene - can be carried out at any time. As already said, we call this the
toolbox rnetaphor. They are two reasons why there is no process brought to the fore. First of
all, the task that will be perforrned by the application is new and we did not observed it. We

87

Chapter 4 : First Dimension - Graphical User Interface Specijïcations

need to analyze how the system is used by the users and, with the tirne, it will probably be
possible to bring a certain process to the fore. One way to do this is to add hidden fonctions
into the application aimed at writing into a file the sequence of actions executed by the user and
then to carry out statistical analysis on this file. Secondly, by nature, the task is decision making
oriented and this means that it is weakly structured.

Remove the

current scene

(t)

Create the

scene (t)

Make the new

scene the

current scene

Add an abj ect

into the new

scene { t)

o f the current

scene { t)

Specify the aize

of the current

scene { t)

Turn

anti-aliasing

on/off { t)

Turn culling

face on/off

(t)

Turn

counterclockwis e

sorting on/off (t)

Specify the

shading method

(t)

Geometrically

transform all the

objecta of the

current scene { t)

Rotate along the

longitude (t)

Translate

horizontally

(t)

Change the

scale { t)

Choose the

cutting planes

(s)

Set the

cutting planes

(p)

Show the

cutting planes

(p)

eut the

current scene

(t)

Choose the

lights (a }

S e t the

lights (p l

Turn the

lighta on/off

(t)

Figure 4-4 : The diagram of goal and sub-goal decomposition of the management of the scene
sub-task

2.2. 1 The management of the scenes

A. Creation of a n ew scene

current_scene � Create_New_Scene ()
object_file_name � Ask (user)
current_object � Load_Object (object_file_name)
Add_Object (current_scene, current_object)

88

Chapter 4 : First Dimension - Graphical User Intaface Specifications

Select_ Current_ Object (current_scene, cmTent_object)
new_narne � Ask (user)
Change_Narne (current_scene, current_object, new_name)
Display (ctment_scene)

B. Se/ection of the current scene

current_scene � Ask (user)
current_object � Get_Current_Object (current_scene)

Change the lldll\e

of the current

object (t)

current abject

axis (t)

Manage th•

abjects of the

Add an obj ect

into the current

scene { t)

current abject

(s)

about the current

abject { t)

Read the surface

or the volwne

(t)

G i ve a n4.JI\ 8 to

the abject (p)

Mo.ke the new

obj ect the current

obj ect (p)

Display the

obj ect in the

current scene { p)

Get the

di splay type

(•)

Get the nurnber

of tetrahedrons

(•)

Get the nwnber

of triangles

(•)

Get the nurnber

of vertic•s

(s)

Get th• file

� (s)

of the current

abject (t)

Specify the

abject I s color

para.mat ers (p}

Apply the

color changing

(t)

Remove the current

abject from the

change the type of

visualization of

the current obj ect

(t)

choose 4 type of

vlsualization

(s)

Apply the type

of visualiza.tion

changing (t)

Figure 4-5 : The diagram of goal and sub-goal decomposition of the management of the objects
sub-task

C. Remo val of the current scene

new _current_scene � Rernove_Scene (current_scene)
current_sccnc � new _current_scene
current_objcct � Get_Current_Object (current_sccne)

89

Chapter 4 : First Dimension - Graphical User Inte1face Specifications

D. Specifying the parameters of the current scene

scene_color f-- Ask (user)
Change_Background_Color (current_scene, scene_color)
near_plane f-- Ask (user)
Change_Near_Plane (current_scene, near_plane)
view_angle f-- Ask (user)
Change_ View_Angle (current_scene, view_angle)
shading_method f-- Ask (user)
Change_Shading_Method (current_scene, shading_method)
antialiasing f-- Ask (user)
IF (antialiasing = TRUE)
TREN Turn_Antialiasing_ On (current_scene)
ELSE Turn_Antialiasing_Off (current_scene)
END IF
culling_face f-- Ask (user)
IF (culling_face = TRUE)
TREN Turn_Culling_Face_On (current_scene)
ELSE Turn_Culling_Face_Off (current_scene)
END IF
counter_clockwise_sorting f-- Ask (user)
IF (counter_clockwise_sorting = TRUE)
TREN Sort_ Co un ter_ Clockwise (current_scene)
ELSE Sort_Clockwise (current_scene)
END IF
Display (etment_scene)

E. Geometrical transformations of ail the abjects in the current scene

transformation_choice f-- Ask (user)
Il there are 3 transformations available : rotation, translation, scaling
IF (transformation_choice = "ROTATION")
TREN

Get_ Current_Rotation (cmTent_scene, angle_x, angle_y, angle_z)
rotation_x f-- Ask (user)
rotation_y f-- Ask (user)
rotation_z f-- Ask (user)
Rotate (etment_scene, angle_x + rotation_x, angle_y + rotation_y, angle_z + rotation_z)

END IF

90

Chapter 4 : First Dimension - Graphical User Interface Specifications

IF (transformation_choice = "TRANSLATION")
THEN

translation_method f-- Ask (user)
IF (translation_method = "BEST FIT")
THEN

Get_Current_Translation (current_scene, "BEST FIT" , pos_x, pos_y, pos_z)
x_translation f-- Ask (user)
y _translation f-- Ask (user)
z_translation f-- Ask (user)
Translate (current_scene, "BEST FIT" , pos_x + x_translation, pos_y + y_translation, pos_z
+ y _translation)

END IF
IF (translation_method = "ABSOLUTE")
THEN

Get_Cunent_Translation (current_scene, " AB SOLUTE" , pos_x, pos_y, pos_z)
x_translation f-- Ask (user)
y _translation f-- Ask (user)
z_translation f-- Ask (user)
Translate (current_scene, "ABSOLUTE" , pos_x + x_translation, pos_y + y_translation,
pos_z + y _translation)

END IF
IF (translation_method = "RELATIVE")
THEN

Get_Cunent_Translation (current_scene, "RELATIVE" , pos_x, pos_y, pos_z)
x_translation f-- Ask (user)
y _translation f-- Ask (user)
z_translation f-- Ask (user)
Translate (current_scene, "RELATIVE" , pos_x + x_translation, pos_y + y _translation,
pos_z + y _translation)

END IF
END IF

IF (transfonnation_choice = "SCALING")
THEN

Get_Current_Scale (current_scene, cur_x_scale, cur_y_scale, cur_z_scale)
maintain_global_aspect_ratio f-- Ask (user)
IF (maintain_global_aspect_ratio = TRUE)

THEN

91

Chapter 4 : First Dimension - Graphical User Inte1face Specifications

x_y_z_scale f- Ask (user)
Change_Scale (scene, cur_x_scale * x_y _z_scale, cur_y _scale * x_y _z_scale, cur_z_scale *
x_y _z_scale)

ELSE
x_scale f- Ask (user)
y _se ale f- Ask (user)
z_scale f- Ask (user)
Change_Scale (current_scene, cur_x_scale * x_scale, cur_y_scale * y_scale, cur_z_scalc *
z_scale)

END IF
END IF
Display (current_scene)

F. Cutting of a part of the current scene

We will first notice that the sign " * " put behind a variable name means that several values can

be put inside that variable. To illustrate, let's take the first variable "cutting_plane_choice *". At
the first line, this variable is assigned one ore more values.

cutting_plane_choice * f- Ask (user)
Il there are 6 cutting planes available : top, bottom, right, left, front or back plane

IF ("TOP" E cutting_plane_choice *)
THEN

height_percentage f- Ask (user)
x_angle f- Ask (user)
z_angle f- Ask (user)
cutting_plane f- Define_ Cp ("TOP" , height_percentage, x_angle, z_angle)
show f- Ask (user)
IF (show = TRUE)
THEN

color f- Ask (user)
size f- Ask (user)
grid f- Ask (user)
IF (grid = TRUE)
THEN

number_of_ wires f- Ask (user)
Display_Cp (current_scene, cutting_plane, color, size, "WIRES" , number_of_wires)

92

Chapter 4 : First Dimension - Graphical User Interface Specifications

ELSE
translucence_percentage f- Ask (user)
Display_Cp (current_seene, cutting_plane, eolor, s1ze, "TRANSLUCENCE",
transl ucence _percen tage)

END IF
END IF
eut f- Ask (user)
IF (eut = TRUE)
THEN Cut_Seene (current_scene, cutting_plane)
END IF

END IF
IF ("BOTTOM" E cutting_plane_ehoice *)
THEN

height_percentage f- Ask (user)
x_angle f- Ask (user)
z_angle f- Ask (user)
cutting_plane f- Define_Cp ("BOTTOM", height_percentage, x_angle, z_angle)
show f- Ask (user)
IF (show = TRUE)
THEN

color f- Ask (user)
size f- Ask (user)
grid f- Ask (user)
IF (grid = TRUE)
THEN

number_of_wires f- Ask (user)
Display_Cp (current_scene, cutting_plane, eolor, size, "WIRES", number_of_wires)

ELSE
translucence_percentage f- Ask (user)
Display_Cp (current_scene, cutting_plane, color, s1ze, "TRANSLUCENCE",
transl ucence _percen tage)

END IF
END IF
eut f- Ask (user)
IF (eut = TRUE)
THEN Cut_Scene (current_scene, eutting_plane)
END IF

93

Chapter 4 : First Dimension - Graphical User lnte1face Specijïcations

END IF

IF ("RIGHT" E eutting_plane_ehoice *)
THEN

length_pereentage f- Ask (user)
y _angle f- Ask (user)
z_angle f- Ask (user)
cutting_plane f- Define_Cp ("RIGHT", length_percentage, y_angle, z_angle)
show f- Ask (user)
IF (show = TRUE)
THEN

eolor f- Ask (user)
size f- Ask (user)
grid f- Ask (user)
IF (grid = TRUE)
THEN

number_of_wires f- Ask (user)
Display _Cp (emTent_seene, eutting_plane, color, size, "WIRES", number_of_wires)

ELSE
translueenee_pereentage f- Ask (user)
Display _ Cp (eurrent_seene, eutting_plane, eolor, size, "TRANSLUCENCE",
translucenee_percentage)

END IF
END IF
eut f- Ask (user)
IF (eut = TRUE)
THEN Cut_Seene (eurrent_seene, eutting_plane)
END IF

END IF

IF ("LEFT" E eutting_plane_ehoice *)
THEN

length_pereentage f- Ask (user)
y_angle f- Ask (user)
z_angle f- Ask (user)
eutting_plane f- Define_Cp ("LEFT", length_percentage, y_angle, z_angle)
show f- Ask (user)
IF (show = TRUE)
THEN

94

Chapter 4 : First Dimension - Graphical User Interface Specifications

color f-- Ask (user)
size f-- Ask (user)
grid f-- Ask (user)
IF (grid = TRUE)
THEN

number_of_ wires f-- Ask (user)
Dis play _Cp (ctment_scene, cutting_plane, col or, size, "WIRES", number_of_ wircs)

ELSE
translucence_percentage f-- Ask (user)
Display_Cp (current_scene, cutting_plane, color, s1ze, "TRANSLUCENCE" ,
translucence_percentage)

END IF
END IF
eut f-- Ask (user)
IF (eut = TRUE)
THEN Cut_Scene (current_scene, cutting_plane)
END IF

END IF

IF ("FRONT" E cutting_plane_choice *)
THEN

depth_percentage f-- Ask (user)
x_angle f-- Ask (user)
y _angle f-- Ask (user)
cutting_plane f-- Define_Cp ("FRONT", depth_percentage, x_angle, y_angle)
show f-- Ask (user)
IF (show = TRUE)
THEN

color f-- Ask (user)
size f-- Ask (user)
grid f-- Ask (user)
IF (grid = TRUE)
THEN

number_of_wires f-- Ask (user)
Display_Cp (current_scene, cutting_plane, color, size, "WIRES", number_of_wires)

ELSE
translucence_percentage f-- Ask (user)

95

Chapter 4 : First Dimension - Graphical User Inte1face Specifications

Display _ Cp (eurrent_scene, cutting_plane, eolor, size, "TRANSLUCENCE",
translueence_pereentage)

END IF

END IF

eut � Ask (user)
IF (eut = TRUE)

THEN Cut_Scene (current_scene, cutting_plane)
END IF

END IF

IF ("BACK" E cutting_plane_choice *)
THEN

depth_percentage � Ask (user)
x_angle � Ask (user)
y _angle � Ask (user)
cutting_plane � Define_Cp ("BACK", depth_percentage, x_angle, y_angle)
show � Ask (user)
IF (show = TRUE)

THEN

color � Ask (user)
size � Ask (user)
grid � Ask (user)
IF (grid = TRUE)

THEN

number_of_wires � Ask (user)
Display _Cp (current_scene, cutting_plane, color, size, "WIRES" , number_of_ wires)

ELSE

translucence_percentage � Ask (user)
Display_Cp (current_scene, cutting_plane, color, s1ze, "TRANSLUCENCE",
transl ucence _percen tage)

END IF

END IF

eut � Ask (user)
IF (cud = TRUE)

THEN Cut_Scene (current_seene, cutting_plane)
END IF

END IF

Dis play (current_seene)

96

Chapter 4 : First Dimension - Graphical User Interface Specijïcations

G. Management of the lights

working_with_lights t-- Ask (user)
IF (working_ with_lights = TRUE)
THEN

FOR EACH light_i DO
Il They are maximum 8 lights available, each one identijïed by a nwn/Jer (/ight_i)

on t-- Ask (user)
IF (on = TRUE)
THEN

color t-- Ask (user)
specular_component t-- Ask (user)
far t-- Ask (user)
IF (far = TRUE)
THEN

x_direction t-- Ask (user)
y _direction t-- Ask (user)
z_direction t-- Ask (user)
Turn_Light_On (current_scene, light_i, color, specular_component, "FAR",
x_direction, y _direction, z_direction)

ELSE
x_position t-- Ask (user)
y_position t-- Ask (user)
z_position t-- Ask (user)
Turn_Light_On (current_scene, light_i, color, specular_component, "NEAR",
x_position, y _position, z_position)

END IF
END IF
ELSE Turn_Light_ Off (cmTent_scene, light_i)

END FOR
ELSE

Turn_All_Lights_ Off (current_scene)
END IF
Display (current_scene)

H. Saving into VRML format

vrml_file_name t-- Ask (user)
Save_To_ Vrml (current_scene , vrml_file_name)

97

Chapter 4 : First Dimension - Graphical User lnto/ace Specijïcations

2.2.2 The management of the objects

A. Addition of an object into the current scene

object_file_name f- Ask (user)
current_object f- Load_Object (object_file_name)
Add_ Object (current_scene, current_object)
Select_ Curren t_ Objec t (curren t_scene, current_ abject)
new_name f- Ask (user)
Change_Name (current_scene, current_object, new_name)
Display (current_scene)

B. Select ion of the current object

object_name f- Ask (user)
current_object f- Get_Object (current_scene, object_name)
Select_Current_Object (current_scene, current_object)

C. Remo val of the current objet from the current scene

confirmation f- Ask (user)
IF (confirmation = TRUE)
THEN

new_current_object f- Remove_Object (current_scene, current_object)
current_object f- new _current_object
Select_Current_Object (current_scene, current_object)
Display (current_scene)

END IF

D. Changing the name of the current object

new_name f- Ask (user)
Change_Name (current_scene, current_object, new_name)

E. Getting information about an object

object_name f- Ask (user)
abject f- Get_Object (current_scene, object_name)
number_of_vertices f- Get_Number_Of_ Vertices (current_scene, abject)
file_name f- Get_File_Name (current_scene, object)
visualization_type f- Get_ Visualization_ Type (current_scene, object)
IF (visualization_type = "TRIANGLES")

98

Chapter 4 : First Dimension - Graphical User Interface Specifications

THEN number_of_elements f-- Get_Number_Of_Triangles (current_scene, object)
END IF
IF (visualization_type = "TETRAHEDRONS")
THEN number_of_elements f-- Get_Number_Of_Tetrahedrons (current_scene, object)
END IF
IF (visualization_type = "POINTS CLOUD")
THEN number_of_elements f-- 0
END IF

F. Changing the co/or of the current object

color f-- Ask(user)
specular_component f-- Ask(user)
shininess f-- Ask(user)
translucence r Ask(user)
Change_Color (current_scene, current_object, color, specular_component, shininess,
translucence)
Display (current_scene)

G. Changing the type of visua/ization of the current object

visualization_type f-- Ask(user)
Il There are 3 types of visualization : points cloue/, triangles or tetrahedrons
Change_ Visualization_Type (etment_scene, current_object, visualization_type)
Display (cmTent_scene)

H. Showing the current object axis

show f-- Ask(user)
IF (show = TRUE)
THEN

color f-- Ask(user)
length r Ask(user)
move_ with_object r Ask(user)
Show _Axis_On (current_scene, current_object , color, length, move_ with_object)

ELSE
Show _Axis_ Off (current_scene, current_object)

END IF
Display (cLment_scene)

99

Chapter 4: First Dimension - Graphical User Interface Specifications

/. Showing the current object box

show f--- Ask(user)
IF (show = TRUE)
THEN

color f--- Ask(user)
size f--- Ask(user)
Show_Box_On (current_scene, ctment_object, color, size)

ELSE
Show_Box_Off (current_scene, current_object)

END IF
Display (current_scene)

2.3 Identification of the objects of the task

From the decomposition into procedures, we notice that there are seven important objects. The
scene contains objects, each of them being made of points defined in a three dimensional space
represented by the scene. Each object has a name, some material properties - i.e. color
properties : specular component of the color, shininess . . . 27

- and is stored in a file. There are
several file formats but, in general, they ail contain a set of points - the coordinates - called
also vertices and a set of connectivities - lines between two points. The connectivities either
represent triangles for a surface or tetrahedrons for a volume (Cf. Chapter 2 : Description of
the process for the visualization pro gram). The objects can be displayed as a surface mesh, as a
volume mesh or as a points cloud.

The scene contains both cutting planes and lights. The cutting planes permit the user to see
inside objects and help them to have a better idea of the shape of this object. There are six
cutting planes corresponding to the six sides of the volume defined by the scene, each one with
a name and a number of characteristics : the way they appear on screen - translucid or gr.id
plane - , the transparency percentage in the case of a translucid plane or the number of wires
for a gr.id plane, a color, the size - percentage of the size of one side of the scene. A cutting
plane can be visible, i.e. that we can see the grid or translucid plane on the screen. It can also be
active or not. When it is, you don't see the eut part on the screen. Each cutting plane is situated
at a distance percentage from the side of the scene it is belonging to and has two angles with
this side. If both angles are equal to zero, the cutting plane is parallel to the side.

27 See Lights in Cliapter 2 : Description oft/ie processfor tl!e visualization pro gram

100

Chapter 4 : First Dimension - Graphical User Inte1face Spec1fïcatio11s

The lights components28 internet with the objects color components29 and give more reality to
the scene. With good lights and objects material parameters setting you can bettcr evaluate the
shape of the objects. There are up to eight lights allowed in the scene. One light can be far in
which case its direction has to be specified. When it is near, the light position in the scene has
to be specified. A light can be turned on or off and is defined with a color and the specular
component of the color.

The scene has some characteristics : the background color and an angle of view in the vertical
direction. Anti-aliasing and culling face can be performed or not. (See note 25 p .85 and note 26
p. 85)It's possible to decide that, in the case of objects made up of triangles, the points that
compose these triangles are sorted in a clockwise or in a counter-clockwise way. It is possible
to carry out geometrical transformations - scaling, translation and rotation - on the scene.
The transformations apply to ail the objects that are contained in the scene. So the scene is also
characterized by the scaling state, the translation state and the rotation state.

2.4 Parameters relative to the task

We will specify the parameters relative to the task as explained m detail 111

[V ANDERDONCKT93a] . Seven parameters will be "analyzed" : (1) the prerequisite needed to
perform the task, (2) the productivity of the task, (3) the existence of an objective environment,
(4) the practicability of the objective environment reproducibility, (5) the structuration of the
task, (6) the importance of the task and (7) the cornplexity of the task.

The "3D visualization with the intention of posing a diagnosis" task is performed before the
numerical analysis task and plays a role as a support to the decision process. As already said, it
is a task we did not observed. As a consequence, we cannot analyze the seven parameters. Ail
that we can do, it is just presume them.

2.4.1 Prerequisite

The user needs only some basic knowledge of the Microsoft Windows 95 or NT environment
and the ability to manipulate a rnouse. About the concepts used in the prograrn such as the
color properties of the object, lighting properties of the lights . . . we think that the learning
period should be short since the result of the application of these concepts is directly visible on
the screen. As a consequence, it is normal to presume that the prerequisite is Iow.

28 Sec Lights in Clwpter 2 : Description of the processfor the visualization progra111
29 See The (objects) col or in Chapter 2 : Descnj1tio11 of the processfor the visualiz.ation progra111

10 1

Chapter 4 : First Dimension - Graphical User lnte1face Specifïcations

2.4.2 Productivity

We presume that the productivity should be moderate because the goal of the program is that
the users do not waste time with manipulations that are irrelevant to the task fulfillment and, on
the other band, there is no performance constraint. Indeed, imagine that the user wants to have
an idea about the inside of a piece of trabecular bone. He would like to see if it is full or if there
arc many holes. In this case, he will manipulate at least a cutting plane, configure it as casily as
possible - its relative position from one side of the scene, its slope with this side of the scene ...
If he needs to eut the piece of bone at an accurate position, he can display the cutting plane to
help him to position the cutting plane. When the cutting plane is not well placed, the user can
configure it again from the last position.

2 .4.3 Objective environment

The environment exists under a form that the user can directly manipulate. He can observe a
piece of bone directly with his eyes, surely through a microscope, he can eut them to see inside,
he can adjust lights to help him to better estima te the shape of the piece ... Therefore we think
that the objective environment is existent.

2 .4 .4 Environment reproductibility

The environment reproducibility is practicable. The objective environment exists and can be
reproduced in our application. The scene displays, in our case, pieces of bone because the
mental decision process is based on the visual aspect of these objects. The notion of light is
present. We can also eut a part of a scene and as a consequence, eut the piece of bone that is
inside the scene.

2.4.5 Task structuration

We can not tell how the mental process of posing a diagnosis on a a piece of bone is structured.
Since it is a decision making task:, we think it is not well structured. In view of the fact that the
visualization of the objects is aiming at helping the user to pose a diagnosis on these objects, we
presume that the structuration of this task should be Iow. Furthermore, we did not observed the
task, so how could we impose a structuration on it ? It is the reason why we decided to use the
toolbox model (see Figure 4-1).

102

Chapter 4 : First Dimension - Graphical User Inte1face Specifications

2.4.6 Task importance

Again, we can't tell the importance of the task. Since we have been asked Lo writc an
application to help to perform the task, we suppose that its importance should be high.

2.4. 7 Task complexity

As regards the manipulation we did not want the task to be complex. Only the manipulation of
the mouse and the manipulation of the keyboard are necessary to use the program. In the point
of view of the intellectual complexity, it is impossible for us to give any idea. Is posing a
diagnosis on the quality of a piece of bone easy or not ? As a consequence, we do not take risks
and we presume that the task complexity is moderate.

2.5 Users stereotype description

Just as the specification of the parameters relative to the task, the description of the users
stereotype will be perforrned as explained in detail in [V ANDERDONCKT93a]. Four
parameters will be inspected : (1) the users' experience in carrying out the task, (2) the users'
experience in using information systems, (3) the users' motivation and finally (4) the users'
expeiience in the use of complex interaction means.

We recognize only one sort of users. They are researchers in biomedical engineering and are
experts on the use of computerized systems more complicated than the 3D Viewer. Even if the
3D visualization task with the intention of posing a diagnosis is new in the scientific experirnent
process, these users will learn easily and rapidly to use the system that will help to carry out the
task.

2.5.1 Experience of the task

We can not tell how many times the users already analyzed pieces of trabecular bones without
the use of a 3D visualization software. On the other hand, we think that they never carried out
the task with the help of a 3D visualization prograrn. It is the reason why we suppose that their
experience of the task is elementary.

2.5.2 Experience of systems

Their experience of information systems is rich. The users' experience level of the use of an
information system is the one of an expert.

1 03

Chapter 4 : First Dimension - Graphical User Inte1face Specijïcations

2.5.3 Motivation

We suppose that their motivation is high. The task belongs to a scientific experiment process
whose results are interesting for them.

2.5.4 Experience of complex interaction means

The users' experience of the use of complex interaction means is considercd as rich . They have
at least a great ability ù1 usù1g keyboards and mice. They are also able to use scicntific scanners,
cameras and other interaction means.

2. 6 Enviromnent description

We will describe the environment or workplace still m fonction of what is explamed ù1
[V ANDERDONCKT93a]. We are gomg to consider two parameters : (1) the type of
processing and (2) the capacity of processing.

2.6. 1 Processing type

We have been asked to implement the software so that it works under Wù1dows 95 and NT
operatù1g system which are multi-processing environrnents. While they are workù1g with the
visualization process, users can also carry out other tasks such as volume or surface creation.
They can also work on numerical analysis or can do whatever task they want to perforrn. In
conclusion the type of treatment is multi-processing.

2.6.2 Processing capacity

We thmk that the treatment capacity is moderate to high except for enormous fùes where it
can take seconds to realize any operation and where most of the CPU resources are used.

3. Expressing the product of the task analysis

The task analysis leads to four next steps : (1) the construction of the entity-relationship model,
(2) the identification of the the semantic functions of the application, (3) the composition of the

104

Chapter 4 : First Ditnension - Graphical User lnte,face Specijïcations

activity chaining graph and (4) the derivation of the dialogue attributes with the interaction
styles.

3.1 Entity-relationship mode[

The entity-relalionship model is explained in detail in [BODART95a]. The cnlitics arc
represented by rectangles with the entity name on top of them and the list of entity attributcs
following the name. When an attribute is identifying an entil y, it is underlined. The relations
between entities are represented by hexagons with the relation name on top of them and can
have attributes. Each entity linked to another one by a relation plays a role which has a name
and cardinalities. On this model we added the notion of ISA-relation, represented by a triangle
connecting an entity to a specialization of it. The cutting plane, for example, which is
represented by en entity entitled "CUTTING_PLANE" is specialized in "FRONT_BACK_CP" ,
entity that represents the front or back cutting planes. The "FRONT_BACK_CP" entity inherits
the attributes of the "CUTTING_PLANE" entity. Figure 4-6 shows the diagram. We are now
going to specify the integrity constraints.

Constraint 1 : CP _Transparency of SHOWING_CP has a value if and only if CP _Grid of
CUTTING_PLANE is false.

Constraint 2 : CP _Wires of SHOWING_CP has a value if and only if CP _Grid of
CUTTING_PLANE is true.

Constraint 3 : LT_Coordinates of l!GHT represent the direction of the rays of the light if
and only if LT_Far of LIGHT is true else they represent the position of the same
light.

Constraint 4 : If CP _Nmne of CUTTING_PLANE = " BACK" or "FRONT" then
CUTTING_PLANE is a FRONT_BACK_CP

Constraint 5 : If CP _Nmne of CUTTING_PLANE = "LEFT" or "RIGHT" then
CUTTING_PLANE is a LEFT_RIGHT_CP

Constraint 6 : if CP _Nmne of CUTTING_PLANE = "TOP" or "BOTTOM" then
CUTTING_PLANE is a TOP _BOTTOM_CP

105

FRO!'.'T BACK_CP FBCP _IkplhPcrc FBCP _XAngk FBCP_YAngk

Chapter 4 : First Dimension - Graphical User Inte1face Specifications

I.EFT RIGHT CP 1.RCP_LcngthPcrc LRCP _ YAngle LRCP _ ZAngle

UGHf

TOP BOTTOM CP TBCP _HeightPcrc TBCP _X.A..ngle TBCP_ZAngk

e

.6 Sllows_':P · l
�

eut CUITING ·6 Is_Cut_by
� O· 0-�s_lîsJlkd_by UJd LT_Specu\ar LT Color LT-Far !-----Light_up LT =coordinatcs LT_XPos LT_ YPos LT_ZPos id: LT_Id

AXIS A"<..is Color A-..:is=Length I A"cis_Movc �- l ls_a.'tÎS_of
SHOWING_A.).1$

.j

CURRENr _ OBJECT ����l�ect_of
Has_CUITl'llt_object

SCENE SU<l SC NearPJ,111<: SC=B.1cKgCoJ SC_Vîi:wA.ngk sc_Shad.ingMdhod SC_Antialiasing SC_Cullinif�
SC CCLKWSoct SC=Scaling SC_X&aling SC_YS.:alrng SC_ ZScaling
SC Tr.inslation Sc À"fransl

se -)'Transi SC=ZTransl SC_Ansk SC_XA.ngk SC_YAn_gk SC_ZA.ngk id: SC_Id

l ·

�Uai0<d_by
l � Conlain

Figure 4-6 : The ERA model

1 06

Û·, �---- HJs._box OBJECT llBi.l<1 OBJ_Nam: ONJ FikNank' OBI-Color OB(Specular OBJ Shininess OBj�Trnns.luc OBj_DispJ'ypi! id: OBj_Id

Oi l Con.1ose

O•N

BOX B0.1:_Color Bo.'_Siu

TRL<\.'\'GLES_COMP O·l Con•'(>SC

TETRAHE)RON IEilUd 4.4 Con&lll� � O.N Is_conl)o:,cd_ f id: TETR_Id

TRIANGLE IRLW id:TR!Jd
313 ls_corrposcd_of

TRI_PTS _ COMP
OIN Cousulu�

f'()[NT l'.Lli Pt XCoOfd Pt-YCoord Pl�ZCoord k:LPT_Id

Chapter 4 : First Dimension - Graphical User Inte1face Specijïcations

3.2 ldentijïcation of the semantic functions

The semantic functions are directly coming from the procedures identified in Section 2.2. That is
Lo say there is no abstraction mechanism (actions = functions) because wc do no l know the task
wc did not observed and, carrying out the task analysis a posteriori, wc tend to Lhink of Lhc
actions in term of computer fonctions. We will list the procedurcs with the fonctions thcy arc using
and give a description of thcse functions, arnong others their relation with the ERA modcl (Figure
4-6).

3.2. 1 Creation of a new scene

• Create_New_Scene ()
Goal Create a new scene and give it default attributes.
Input

Output

Description

/
The scene newly created.
The fonction creates an occurrence of the SCENE entity, updates its SC_Id
attribute with the identifier of the scene and updates ail the other attributes with
default values.

• Load_Object (file_name)
Goal Create a new object and give it default attributes.
Input The name of the connectivities and the nodes files.
Output The object newly created.
Description The fonction creates an occurrence of the OBJECT entity, updates its OBj_Id

attribute with the identifier of the object, updates its OBj_FileName attribute with
object_jïle_name and updates ail the other attributes with default values. It reads
the connectivities (file_name.elm) file and the nodes file (file_name.nod) , and
constructs the abjects. The last action means that it creates as many occurrences
of the POINT entity as there are nodes in the objectJile_name.nod file, updates
each attribute with the values contained in the file.
If the files contain the definition of the surface mesh of the object it creates as
many occurrences of the TRIANGLE entity as there are triangles defined in the
file_name.elm file, updates their attribute, constructs the necessary
TRI_PTS_COMP and TRIANGLES_COMP relations.
If the files contain the defmition of the volume mesh of the object it creates as
many occurrences of the TETRAHEDRONS entity as there are tetrahedrons

107

Chapter 4 : First Dimension - Graphical User Inteiface Specijtcations

defined in the file_name.elm file, updates their attribute, constructs the necessary
TETRA_PTS_COMP and TETRAHED_COMP relations.

• Add_O/Jject (scene, object)
Goal Add an object into a scene.
Input The scene and the object.
Output

Description

The scene modified.
The fonction creates a new occurrence of the COMPOSITION relation bclwccn
the scene occurrence of the SCENE entity and the object occurrence of the
OBJECT entity.

• Select_Current_Object (scene, object)
Goal Select an object as being the current one in the scene.
Input The scene and the object.
Output The scene modified.
Description The fonction eventually destroys the only C URRENT_OBJECT relation and

creates a new occurrence of the CURRENT_OBJECT relation between the scene
occurrence of the SCENE entity and the object occurrence of the OBJECT entity.

• Change_Name (scene, abject, name)
Goal Change the name of an object contained in a scene.
Input

Output

Description

• Display (scene)
Goal

Input

Output

Description

The scene, the object and the new name.
The scene modified.
The fonction updates the OBj_Name attribute of the object occurrence of the
OBJECT entity, which Is_contained_by the scene occurrence of the SCENE
entity, with name.

Display the scene into a window on the screen.
The scene (a logical desciiption).
/
The fonction interprets the ERA model into drawing primitives and executes these
primitives.

3.2.2 Selection of the current scene

• Get_Current_Object (scene)
Goal : Get the current object contained in a scene.

1 08

Input

Output

Description

Chapter 4 : First Dimension - Graphical User Interface Specijïcations

The scene.
The current object contained in the scene.
The function returns the occurrence of the OBJECT entity that
is_current_object_of the scene occmTence of the SCENE entity.

3.2.3 Removal of the current scene

• Remove_Scene (scene)

Goal Remove a scene.
The scene.
Another scene.

Input

Output

Description The fonction destroys ail the occurrences of ail the entities and all the relations
that are in connection with the scene occurrence of the SCENE entity and returns
another occurrence of the SCENE entity.

• Get_Current_Object (scene)

See item "2. Selection of the current scene" of this section.

3. 2. 4 Specifying the parameters of the current scene

• Change_Background_Color (scene, color)

Goal Change the background color of a scene.
Input

Output

Description

The scene and the background color value.
The scene modified.
The fonction updates the SC_BackgCol attribute of the scene occurrence of the
SCENE entity with the color.

• Change_Near_Plane (scene, near _plane)

Goal Change the near plane value of a scene.
Input The scene and the near plane value (between 1 and 20).
Output The scene modified.
Description The fonction updates the SC_NearPlane attribute of the scene occurrence of the

SCENE entity with the near_J>lane.

• Change_Vinv_Angle (scene, view_angle)

Goal Change the view angle value of a scene.
Input The scene and the view angle value (between 1 0 and 120).
Output The scene modified.

1 09

Description

Chapter 4 : First Dimension - Graphical User lnte,face Specijïcations

The fonction updates the SC_ ViewAngle attribute of the scene occurrence of the
SCENE entity with the view_angle.

• Change_S!wcling_Method (scene, shading_method)
Goal Change the shading method used in a scene.
Input The scenc and the shading method (flat or smooth).
Output

Description

The scene modified.
The fonction updates the SC_SlwdingMethod attribute of the scene occurrence of
the S CENE entity with the shading_method.

• Turn_Antialiasing_On (scene)
Goal Turn the anti-aliasing method on in a scene.
Input The scene.
Output The scene modified.
Description The fonction updates the SC_AntiAliasing attribute of the scene occurrence of the

SCENE entity with the value TRUE.

• Turn_Antialiasing_Off (scene)
Goal Turn the anti-aliasing method off in a scene.
Input

Output

Description

The scene.
The scene modified.
The function updates the SC_AntiAliasing attribute of the scene occurrence of the
SCENE entity with the value FALSE.

• Turn_Culling_Face_On (scene)
Goal Turn the culling face method on in a scene.
Input

Output

Description

The scene.
The scene modified.
The fonction updates the SC_CullingFace attribute of the scene occurrence of the
S CENE entity with the value TRUE.

• Turn_Culling_Face_Ojf (scene)
Goal Turn the culling face method off in a scene.
Input

Output

Description

The scene.
The scene modified.
The fonction updates the SC_CullingFace attribute of the scene occurrence of the
SCENE entity with the value FALSE.

110

Chapter 4 : First Dimension - Graphical User Inte1face Specijïcations

• Sort_Counter_Clockwise (scene)
Goal Turn the counter clockwise sorting method on in a scene.
Input The scene.
Output
Description

The scene modified.
The fonction updates the SC_CCLKWSort attribute of the scene occurrence or the
SCENE entity with the value TRUE.

• Sort_Clockwise (scene)
Goal Turn the counter clockwise sorting method on in a scene.
Input
Output
Description

• Display (scene)

The scene.
The scene modified.
The fonction updates the SC_CCLKWSort attribute of the scene occurrence of the
SCENE entity with the value FALSE.

See item "1. Creation of a new scene" of this section.

3.2.5 Geometrical transformations of all the objects in the current scene

• Get_Current_Rotation (scene, angle_x, angle_)!, angle_z)
Goal Return the current angles of ail the objects in the scene between their initial and

their present positions.
Input
Output
Description

The scene.
The three angles along the X, Y and Z axis.
The fonction returns the SC_XAngle, SC_YAngle and SC_ZAngle attributes of the
scene occurrence of the SCENE entity.

• Rotate (scene, angle_x, angle_y, angle_z)
Goal Rotate all the objects in the scene from their very first position .
Input
Output
Description

The scene and the three angles along the X, Y and Z axis.
The scene modified.
The fonction updates the SC_XAngle, SC_YAngle and SC_ZAngle attributcs of
the scene occurrence of the SCENE entity with respectively angle_/<,, angle_y and
angle_z.

• Get_Current_Trans/ation (scene, method, pos_x, pos�'>'• pos_z)
Goal Return the current position of all the objects in the scene (the values returned

depends on the method choosen).

1 1 1

Chapter 4 : First Dimension - Graphical User lnte,face Specifications

Input

Output

Description

The scene and the translation method (best fit, absolute or relative)
The three positions along the X, Y and Z axis.
The fonction returns the SC_XTransl, SC_YTransl and SC_ZTransl attributes of
the scene occurrence of the SCENE entity depending on the method chooscn.

• Translate (scene, method, pos_x, pos_y, pos_z)
Goal Translate all the objects in the scene from their very first position.
Input The scene, the translation method and the three positions along the X, Y and z

axis.
Output

Description

The scene modified.
The fonction updates the SC_XTransl, SC_YTransl and SC_ZTransl attributes of
the scene occurrence of the SCENE entity with respectively pos_x, pos_y and
pos_z, whose values depend on the method chosen.

• Get_Current_Sca/e (scene, scale_;>.:, scale_y, scale_z,)
Goal Return the current scaling percentage of all the objects in the scene.
Input The scene.
Output The three scaling percentages along the X, Y and Z axis.
Description The fonction returns the SC_XAngle, SC_YAngle and SC_ZAngle attributes of the

scene occurrence of the SCENE entity.

• Change_Scale (scene, scale_x, scale _ _y, scale_z)
Goal Change the scale of all the objects in the scene from their very first size.
Input The scene and the three scaling percentages along the X, Y and Z axis.
Output

Description

• Display (scene)

The scene modified.
The fonction updates the SC_XAngle, SC_YAngle and SC_ZAngle attributes of
the scene occurrence of the SCENE entity with respectively scale_x, scale_y and
scale_z.

See item " 1. Creation of a new scene" of this section.

3.2.6 Cutting of a part of the current scene

• Define_Cp (cutting_plane_name, distance_ percentage, angle], angle2)
Goal Define a cutting plane.
Input The cutting plane type (top, bottom, left, right, front or back) , the distance

percentage from one side of the scene and the two angles between the cutting
plane and the side of the sccne.

112

Chapter 4 : First Dimension - Graphical User Inte1face Specifications

Output

Description

The cutting plane.
The fonction creates a new occurrence of the CUTIJNG_PLANE entity, updates
its CP _Nmne attribute with cutting_plane_name.

If CP _Nmne is "front" or "back", the CUTIING_PLANE cntity 1s a
FRONT_BACK_CP entity and the function updates its FBCP _DepthPerc

attribute with distance_JJercentage, it updates its FBCP _XAngle attrihutc with
angle 1 and it updates its FBCP _y Angle attribute with angle 2.
If CP _Neune is "left" or "right", the CUTTING_PLANE cntity 1s a
LEFT_RIGHT_CP entity and the function updates its LRCP _DepthPerc attribute
with distance_percentage, it updates its LRCP_YAngle attribute with angle] and
it updates its LRCP _ZAngle attribute with angle2.

If CP _Name is "top" or "bottom", the CUTTING_PLANE entity is a
TOP _BOTTOM_CP entity and the fonction updates its TBCP _DepthPerc

attribute with distance_JJercentage, it updates its TBCP _XAngle attribute with
angle] and it updates its FBCP _ZAngle attribute with angle2 .

• Di,splay_Cp (scene, cutting_ plane, color, size, display_type, value)

Goal Display the cutting plane into the scene.
Input

Output

Description

The scene and the cutting plane previously defined.
The scene modified.
The fonction creates an occurrence of the SHOWING_CP relation between the
cutting_JJlane occurrence of the CUTTING_PLANE entity and the scene

occurrence of the SCENE entity, updates the CP _Color attribute with color,

updates the CP _Size attribute with size, updates the CP _Grid attribute with
dis play _type.

If CP _Grid is true, the fonction updates the CP __ Wires attribute with value that
and forget the CP _Transparency attribute.
If CP _Grid is false, the fonction updates the CP _Transparency attribute with
value and forget the CP_ Wires attribute.

• Cut_Scene (scene, cutting_JJ/ane)

Goal Cut a part of the scene the scene.
Input

Output

Description

• Display (scene)

The scene and the cutting plane previously defined.
The scene modified.
The fonction creates an occurrence of the CUTTING relation between the
cutting_JJ/ane occurrence of the CUTTING_PLANE entity and the scene

occurrence of the SCENE entity.

1 1 3

Chapter 4 : First Dimension - Graphical User lnte,jètce Specijïcations

See item "1. Creation of a new scene" of this section.

3.2.7 Management of the lights

• Turn_Light_On (scene, light_id, color, specu/ar_component, jètr, x, y, z)
Goal Turn a light on in a scene.
Input The scene, the light identifier (maximum eight lights), the color, the spccular

component, the far paremeter. If far is true, the last threc inputs arc the light
direction else they represent the light position.

Output

Description

The scene modified.
The function creates an occurrence of the LIGHT entity, updates the LT_ld
attribute with light_id, updates the LT_Color attribute with color, updates the
LT_Specular attribute with specular_component, updates the LT_Far attribute
with jàr, updates the LT_XPos attribute with x, updates the LT_YPos attribute
with y and updates the LT_ZPos attribute with z . It creates a LIGHTING relation
between this occurrence of the LIGHT entity and the scene occurrence of the
SCENE entity.

• Turn_Light_Off (scene, light_id)
Goal Turn a light of a scene off.
Input

Output

Description

The scene and the light identifier (maximum eight lights).
The scene modified.
The fonction destroys the occurrence of the relation between the LIGHT entity
whose LT_ld attribute corresponds to light_id and the scene occurrence of the
S CENE entity. It also destroys this occurrence of the LJGHT entity itself.

• Turn_All_Lights_Off (scene)
Goal

Input

Output

Description

• Display (scene)

Turn all the lights of a scene off.
The scene.
The scene modified.
The fonction destroys ail the occurrences of the relation between the LIGHT
entity and the scene occurrence of the SCENE entity. It also destroys ail the
occurrences of the LIGHT entity themselves.

See item " 1. Creation of a new scene" of this section.

l 1 4

Chapter 4 : First Dimension - Graphical User Inte1face Specifications

3.2.8 Saving into VRML format

• Save_To_ VRML (scene, fïle_name)

Goal Save the scene description into a VRML format file.
Input

Output

Description

The scene and the file that will contain the scene description.
/
The function translates the scene descrip tion into a VRML hierarchy or primi t ives
and saves the result in the file whose name i sfïle_name.

3.2.9 Addition of an object into the current scene

• Load_Object (Jile_name)

See item " 1. Creation of a new scene" of this section.

• Add_Object (scene, abject)

See item "1. Creation of a new scene" of this section.

• Select_Current_Object (scene, abject)

See item "1. Creation of a new scene" of this section.

• Change_Name (scene, abject, nwne)

See item "1. Creation of a new scene" of this section.

• Display (scene)

See item " 1. Creation of a new scene" of this section.

3.2. 10 Selection of the current object

• Get_Object (scene, object_ncune)

Goal Retrieve the current object in a scene in fonction of bis name
Input The scene and the object name.
Output The nment object of the scene.
Description The fonction returns the occurrence of the OBJECT entity that

Is_current_object_of the scene occurrence of the SCENE entity.

• Select_Current_Object (scene, abject)

See item " l . Creation of a new scene" of this section.

1 1 5

Chapter 4 : First Dimension - Graphical User Inteiface Specifications

3.2. 1 1 Removal of the current objet from the current scene

• Remove_Object (scene, abject)
Goal Remove an object from a scene.
Input The scene and the object.
Output

Description

The scene modified and another object.
The fonction destroys the abject occurrence of the OBJECT entity that
Is_contained_by the scene occurrence of the SCENE entity and it destroys all the
occurrences of the relations that connect this occurrence of the OBJECT entity to
other entities. Moreover, it destroys ail the occurrences of the following entities
- and the occurrences of the relations between them - that are in relation with
this occurrence of the OBJECT entity : AXIS, BOX, TRIANGLE, PO/NT and
TETRAHEDRON. The function returns another occurrence of the OBJECT
entity. The precondition to the function is the fact that there must be at least two
objects in the scene.

• Select_Current_Object (scene, abject)
See item " l . Creation of a new scene" of this section.

• Display (scene)
See item " 1 . Creation of a new scene" of this section.

3.2.12 Changing the name of the current object

• Change_Name (scene, abject, name)
See item " 1. Creation of a new scene" of this section.

3.2.13 Getting information about an object

• Get_Object (scene, object_name)
See item " l O. Selection of the current object" of this section.

• Get_Number_OJ_ Vertices (scene, abject)
Goal Retrieve the number of nodes of a specific object in a scene.
Input The scene and the object.
Output

Description

The number of nodes that ma.ke up the object.
The function returns the number of occurrences of the PO/NT entity that
Constitute the occurrences of the TETRAHEDRON entity, themselves Composing

1 1 6

Chapter 4 : First Dimension - Graphical User Interface Specifications

the object occurrence of the OBJECT entity and this entity Being_contained_by
the scene occurrence of the SCENE entity.
Or it returns the nurnber of occurrences of the POINT entity that Constitute the
occurrences of the TRIANGLE entity, thernselves Composing the object
occurrence of the OBJECT entity and this cntity Being_contained_bv the scene
occurrence of the SCENE entity.

• Get_File_Name (scene, object)
Goal Retrieve the narne of the files that contain the description of a specific object in a

scene.
Input

Output

Description

The scene and the object.
The narne of the file.
The fonction returns the OBj_FileName attribute of the object occurrence of the
OBJECT entity that Is_contained_by the scene occurrence of the SCENE entity.

• Cet_ Visualization_Type (scene, object)
Goal Retrieve the type of visualization used to display a specific object in a scene.
Input The scene and the object.
Output The visualization type ("Filled Surface" , "Mesh" or "Points Cloud").
Description The fonction returns the OBj_DispType attribute of the abject occurrence of the

OBJECT entity that Is_contained_by the scene occurrence of the SCENE entity.

• Get_Number_Of_Triangles (scene, object)
Goal Retrieve the nurnber or elements (triangles) that compose a specific object in a

scene.
Input

Output

Description

The scene and the object.
The number of triangles.
The function returns the nurnber of occurrences of the TRIANGLES_COMP
relation between the occurrences of the TRIANGLE entity and the object
occurrence of the OBJECT entity that Is_contained_by the scene occurrence of
the SCENE entity.

• Get_Number_Of _Tetrahedrons (scene, object)
Goal Retrieve the number or elcments (tetrahedrons) that compose a specific object in a

scene.
Input

Output

Description

The scene and the object.
The number of tetrahedrons.
The fonction returns the nurnber of occurrences of the TETRAHED_COMP
relation between the occurrences or the TETRAHEDRON entity and the object

1 17

Chapter 4 : First Dimension - Graphical User lnte,face Specifications

occurrence of the OBJECT entity that Is_contained_by the scene occurrence of
the SCENE entity.

3.2. 1 4 Changing the color of the current object

• Change_Color (scene , object, color, specular, shininess, translucence)
Goal Change the color properties of a specific abject in a scene.
Input

Output

Description

• Display (scene)

The scene, the abject, the color, the specular component, the shininess pcrccntagc
and the translucence percentage.
The scene modified.
The function updates the following attributes of the abject occurrence of the
OBJECT entity that ls_contcâned_by the scene occurrence of the SCENE entity
OBj_Color attribute with color, OBJ_Specular attribute with specular,
OBj_Shininess attribute with shininess and OBJ_Transluc attribute with
translucence.

See item "1. Creation of a new scene" of this section.

3.2. 1 5 Changing the type of visualization of the current object

• Change_ Visualization_Type (scene, object, visualization_type)
Goal Change type of display of a specific abject in a scene.
Input The scene, the abject and the type of display ("Filled Surface", "Mesh" or "Points

Cloud").
Output

Description

• Display (scene)

The scene modified.
The fonction updates the OB}_DispType attribute of the abject occurrence of the
OBJECT entity that ls_contained_by the scene occurrence of the SCENE entity
with visualization_type.

See item "1. Creation of a new scene" of this section.

3.2.16 Showing the current object axis

• Show_Aâs_On (scene, object , color, length, move)
Goal : Dis play an axis with a specific abject in a scene.

l 18

Chapter 4 : First Dimension - Graphical User Inte1face Specifi.cations

Input

Output
Description

The scene, the object, the axis color, the axis length and a parameter that tell if the
axis move or not with the object.
The scene modified.
The function creates an occurrence of the AXIS entity and an occurrence or the
SHOWING_AXIS relation that connects the previous entity with the objl'ct
occurrence of the OBJECT entity that Is_contained_by the scene occurrence or
the SCENE entity. I t updates the following attributes of the occurrence o r t he
AXIS entity : Axis_Color with color, Axis_Length with length and Axis_MO\'<'
with move .

• Show _Axis_Off (scene, object)
Goal Display a specific object in a scene without its axis.
Input The scene and the object.
Output
Description

• Display (scene)

The scene modified.
The fonction destroys the occurrence of the SHOWING_AXIS relation that
connects the abject occurrence of the OBJECT entity that Is_contained_by the
scene occurrence of the SCENE entity with the occurrence of the AXIS entity.
Moreover, it destroys the occurrence of the AXIS entity.

See item " 1 . Creation of a new scene" of this section.

3.2.17 Showing the current abject box

• Show_Box_On (scene, object, color, size)
Goal Display a box with a specific object in a scene.
Input
Output
Description

The scene, the object, the box color, and the box size.
The scene modified.
The fonction creates an occurrence of the BOX entity and an occurrence of the
SHOWING_BOX relation that connects the previous entity with the abject
occurrence of the OBJECT entity that Is_contained_by the scene occurrence of
the SCENE entity. It updates the following attributes of the occurrence of the
BOX entity : Box_Co!or with co!or and Box_Size with size.

• Show_Box_Ojf (scene, abject)
Goal Display a specific object in a scene without its box.
Input
Output

The scene and the object.
The scene modified.

1 19

Chapter 4 : First Dimension - Graphical User Inte1face Specijïcations

Description The fonction destroys the occurrence of the SHOWING_BOX relation that
connects the object occurrence of the OBJECT entity that ls_contained_bv the
scene occurrence of the SCENE entity with the occurrence of the BOX entity.
Moreover, it destroys the occurrence of the BOX entity.

• Display (scene)
See item " 1. Creation of a new scene" of this section.

3.3 Composition of the Activity Chaining Graph (ACG)

In this section is described the dynamic aspect of the task with an activity chaùüng graph which
"expresses the information jlow between functions to be executed for achieving the main goal
associated with an interactive task" as explained in detail in [BODART95a]. To simplify and
because we see our application as a toolbox, an activity chaining graph is constructed for each
elementary sub-task.

The syntax legend of such a graph is explained in Figure 4-7.

W.___ _ ___,

c=J

□

' ,- _
. ' .

No link

(

((

Function (computer processing).

Function with multiple triggering.

External information in input or output of a fonction.

External information in multiple occurences

Internal infonnation in input or output of a fonction.

Repeated interna! information

OR.

AND.

Exclusive OR (XOR).

Figure 4-7 : Graphical conventions for ACG

1 20

Chapter 4 : First Dimension - Graphical User Inte1face Specifications

The rectangles represent sernantic functions, that is to say fonctions that carry out a process. In 2D
or 3D irnaging applications, sorne fonctions do not realize a process but are simply used to display
a result. These functions are called service jL111ctions and "Display (scene) " is an example o f such a
fonction. The problem we faced, was to decide how to represent the service functions. Two
possibilities exist. Either we do not represent them explicitly but their result - the ùisplay - arc
visualized by an external information or we represent them by a rectangle - like the semantic
fonctions - and their result by an external information. We decided to useù the secnnù option
because we think that service fonctions are central elements in visualization applications.

The ACG model used in this text is different from the one usually used in the TRIDENT
rnethodology in the sense that it accepts messages to be the result of several functions. In Figure
4-8, both functions a and b are parallel. The message obtained is either the result of only one of
them or the result constructed at the same time by both fonctions.

Function a

Function b

Figure 4-8 : Parallel functions

In most of the activity chaining graphs you will see the internai message Current_Scene and sorne
other messages Current_Scene ', Current_Scene " . . . The first one represents a description of the
scene currently used. The others represent the same scene but modified. So, Current_Scene " is
Current_Scene ' modified and Current_Scene ' is Current_Scene modified. If Current_Scene " is the
last version of the current scene modified in an ACG, then it becomes Current_Scene - the
current scene in use - in another ACG. The same explanation stands for Current_Object and
Current_Object ', Current_Object" . . .

The internal messages Current_Scene, Current_Scene ', Current_Scene " . . . are logical descriptions
of the current scene. We mean that they represent the data structure of the current scene. On the
other hand, the external message Scene that is the output of the Display fonction represents the
physical description of the scene, that is to say what the users see on the screen.

3.3.1 Creation of a new scene

Figure 4-9 is showing the ACG for the sub-task "Creation of a new scene" .

1 2 1

Chapter 4 : First Dimension - Graphical User lnte1face Specifications

Load_ Object

Current_Sccnc"

Add_Object ' Cnrrent Sccne' ' ' - '

Figure 4-9 : ACG "Creation of a new scene"

3.3.2 Selection of the current scene

Figure 4-10 is showing the ACG for the sub-task "Selection of the current scene" .

Sccne_ Choicc Select_ Currcnt_Sccnc

Figure 4-10 : ACG "Selection of the current scene"

3.3.3 Removal of the current scene

Figure 4- 11 is showing the ACG for the sub-task "Removing of the current scene" .

Select_ Current_Sccne �

- - - - - - - - -
: Current_Object --◄----11 Get_Current_Object j ,..◄---: Cnrrent_Scene' :--�--�

Figure 4-1 1 : ACG "Removing of the current scene"

3.3.4 Specifying the parameters of the current scene

Figure 4- 1 2 is showing the ACG for the sub-task "Changing the parameters of the scene".

122

Chapter 4 : First Dimension - Graphical User Interface Specifications

Background_Color

Change_ View_Angle 1-----------1

,___.....,_______ Turn_Anti_Aliasing_ Off 1----i======I

: Current_Scene
Turn_Culling_Face_On , Current_Scene' '

Turn_ Culling_Face_ OIT

1---�-----IIM Sort_ Counter_ Clockwise

Change_Shading_Method
Shading_Method

Figure 4-12 : ACG "Changing the parameters of the scene"

3.3.5 Geometrical transformation of ail the objects in the current scene

Figure 4-13 is showing the ACG for the sub-task "Geometrical transformation of ail the objects in
the scene".

1 23

Chapter 4 : First Dimension - Graphical User Interface Specifications

, Current_Scene ,

Cur_Angle_X

Get_ Current_Rotation ,__ _ _, Cur _Angle_ y
Cur_Angle_Z

--- Get_ Current_Translation Cu r_Pos_X

Translation_Type

Cur_Scale_Z

Angle_X
Angle_Y
Angle_Z

Scale_X
Scale_ Y
Scale_Z

Figure 4-13 : ACG "Geometrical transformation of ail the objects in the scene"

3.3.6 Cutting a part of the current scene

Figure 4-14 is showing the ACG for the sub-task "Cutting a part of the scene". We will explain
more in depth the four inputs for the fonction "define_cp". Pararneter "Scene_type" specify which
of the six cutting planes has to be used. Therefore it can take up to six different values : "TOP",
"BOTTOM", "LEFT' , "RIGHT', BACK" and "FRONT' . The rneaning of the other three
pararneters depends on which value has been chosen. We will review each of the six possible
values and explain what are the rneaning of the other parameters.

If the Scene_type value is "TOP", the parameter "distance" means the distance percentage
between the top cutting plane and the top of the scene. In this case, angle_l represents the angle
between this cutting plane and the top of the scene along the x axis and angle_2 represents the
angle between them along the z axis. If the Scene_type value is "BOTTOM", the three parameters
have the same meaning as above but they concern the bottom cutting plane and the bottom side of
the scene.

If the Scene_type value is "LEFT", the parameter "distance" means the distance percentage
between the left cutting plane and the left boundary of the scene. In this case, angle_l represents

124

Chapter 4 : First Dimension - Graphical User Inte,jace Specifications

the angle between this cutting plane and the left boundary of the scene along the y axis and
angle_2 represents the angle between them along the z axis. If the Scene_type value is "RIGHT",
the three pararneters have the same rneaning as above but they concern the right cutting plane and
the right boundary of the scene.

If the Scene_type value is "BACK", the pararneter "distance" rneans the distance pcrccntagc
between the back cutting plane and the back boundary of the scene. In this case, angle_ 1
represents the angle between this cutting plane and the back boundary of the scene along the x axis
and angle_2 represents the angle between thern along the y axis. If the Scene_type value is
"FRONT", the three parameters have the sarne rneaning as above but they concern the front
cutting plane and the front boundary of the scene.

Scene_Typc
Distance
Angle_l Define_Cp

Figure 4-14 : ACG "Cutting a part of the scene"

3.3.7 Management of the lights

Current_Scene'

Figure 4- 15 is showing the ACG for the sub-task "Management of the lights".

1 25

Chapter 4 : First Dimension - Graphical User lnteiface Specifications

Z_Pos

x_dir
y_dir

Light_Id
Color

Specular _ Comp

Turn_Light_Off

�------- Turn_All_Lights_Off

- - - - - - - -
Current_Scene' :

Figure 4-15 : ACG "Management of the lights"

3.3.8 Saving into VRML format

Figure 4- 1 6 is showing the ACG for the sub- task "Saving into VRML format".

Save_To_ VRML VRML_File_Savecl

: Cunent_Scene •

Figure 4-16 : ACG "Saving into VRML format"

3.3.9 Addition of an object into the current scene

Figure 4- 17 is showing the ACG for the sub-task "Addition of an object into the cmTent scene" .

126

Chapter 4 : First Dimension - Graphical User Interface Specifications

i - - - - - - - -

, Current_Scene :
r..à.r------,

Add_Object Current_Sccnc' :

Current_Scenc"

Figure 4-17 : ACG "Addition of an object into the current scene"

3.3.10 Selection of the current object

Figure 4- 18 is showing the ACG for the sub-task "Selection of the cmTent object" .

- - - - - - - - t

Get_Object : Current_Object

: Current_Scene' :

Figure 4-18 : ACG "Selection of the current object"

3.3.11 Removal of the current object from the current scene

Figure 4- 19 is showing the ACG for the sub-task "Removal of the current object from the current
scene".

' Current_Object ,
: Current_Scene

Confirmation
Remove_Object

' Current Scene' ' - '

: Current_Object'
Select_ Current_ 0 b ject

Figure 4-19 : ACG "Removal of the current object from the current scene"

127

Chapter 4 : First Dimension - Graphical User Interface Specifications

3.3. 12 Changing the name of the current object

Figure 4-20 is showing the ACG for the sub-task "Changing the name of the current object".

, Current_Scene •
: Current_ Object ,

- - - - �

Change_Name ' Current_Scene' :

Figure 4-20 : ACG "Changing the name of the current object"

3.3. 13 Getting information about an object

Figure 4-21 is showing the ACG for the sub-task "Getting information about an object".

t - - - •

Object ,

Get_Number_Of_ Vertices Number_Of_ Vertices

Number_Of_Ttriangles

: Curren t_Scene _ _,____,_�-------------

Get_ Visualiza lion_ Type

��------------- Get_Number_Of_ Tetrahedrons

Number_ Of_ Tetrahedrons

Figure 4-21 : ACG "Getting information about an object"

128

Chapter 4 : First Dimension - Graphical User Interface Specijïcations

3.3.14 Changing the color of the current object

Figure 4-22 is showing the ACG for the sub-task "Changing the color of the current object" .

Color
Specular_Comp

Shininess

: Current_Object '
' Current_Scene :

Change_Color

Figure 4-22 : ACG "Changing the color of the current object"

3.3. 1 5 Changing the type of visualization of the current object

Figure 4-23 is showing the ACG for the sub-task "Changing the type of visualization of the
current object".

Visualization_ Type

: Current_Ohject '
, Currcnt_Scene

Change_ Visualization_ Type

Figure 4-23 : ACG "Changing the type of visualization of the current object"

3.3.16 Showing the current object axis

Figure 4-24 is showing the ACG for the sub-task "Showing the current object axis".

Color
Length ,___�..------�
Movc Show_Axis_On

, Cul'l'Cllt_Object :
' Currcnt Sccne ,
1 ,- - - -

Show _Axis_ OIT

Figure 4-24 : ACG "Showing the current object axis"

1 29

Chapter 4 : First Dùnension - Graphical User Interface Specifications

3.3.17 Showing the current object box

Figure 4-25 is showing the ACG for the sub-task "Showing the cun-ent object box" .

Color
Sizc

' Currcnt_Objcct '
: Currcnt_Sccnc : Show_Box_Off

Figure 4-25 : ACG "Showing the current object box"

3.4 Derivation of dialogue attributes

Five dialogue attributes will be analyzed as explained in [V ANDERDONCKT93a] : (l) the
dialogue control, (2) the dialogue sequencing, (3) the dialogue mode, (4) the functions triggering
mode and (5) the metaphor.

The dialogue attributes are usually derived from a simple interaction style or several interaction
styles combined together, themselves being determined with the help of tables of correspondence
between the parameters relative to the task, the users stereotypes, the working environment and
the interaction styles advocated. Before going on with the specification of the dialogue attributes,
we will therefore pick up one or several suitable interaction styles for our application 3D Viewer
with the tables of correspondence defined in [V ANDERDONCKT93a] .

3.4.1 Interaction styles derivation

Prerequisite Productivity Objective Environment Task Task Task
environment reproductibility structuration importance complexity

low moderate existent practicable low high moderate

Natural X X X
language

Command X X X X
language

Interrogation X X X
language

Questions/ X X X
answers

Function X X X
keys

130

Chapter 4 : First Dimension - Graphical User Inte1face Specifications

Menu X X X

selection

Form X X X X X X

filling

Multi- X X X X X X

windows

Direct X X X X X X

manipulation

Iconic X X X X X

interaction

Table 4-1 : Parameters relative to the interactive task.

Task experience Systems Motivation Complex interaction

experience rneans experience

elementary rich high rich
Natural X

language

Command X X X

Ianguage

Interrogation X

language

Questions/ X X

answers

Function X

keys

Menu

selection

Form

filling

Multi-

windows

Direct

manipulation

Iconic

interaction

Table 4-2 : Parameters relative to the users stereotypes.

131

Chapter 4 : First Dimension - Graphical User lnteiface Specifications

Processing type Processing capacity

m ulti-processing moderate to high

Natural
language
Command
language
Interrogation
Ianguage
Questions/
answers
Function X X

keys
Menu X X

selection
Form X X

filling
Multi- X X

windows
Direct X X

manipulation
Iconic X X

interaction

Table 4-3 : Pararneters relative to the workplace.

The three interaction styles derived from the analysis of the tables of correspondence (Table 4- 1 ,
Table 4-2 and Table 4-3) that are the best to use in our case are the multi-windows, the form
Jilling and the direct manipulation. However, during the implementation of the software, we have
chosen, besides the quoted interaction s tyles, the menu selection. These choices will be justified
below.

The menu selection suits very well for cases where the application is the metaphor of a toolbox.
No determined process exists . The users create their own process ad-hoc during the use of the
program. The menu selection represents the selection of tools in the toolbox.

The forms filling corresponds to the parameters settings of the tools used. For example, if the user
decides to work with lights - a tool -, he will be asked to select the lights he wants to use and
to determine their characteristic (color components , position, shininess . . .) .

The multi-windows interaction style is used to show different views of the same scene or to show
different scenes at the same time. The advantage of multi-view has been discussed in Chapter 2 :

1 32

Chapter 4 : First Dimension - Graphical User Interface Specijïcations

Description of the process for the visualization pro gram. As for the direct manipulation, it will be
used to rotate ail the object of a scene, but is not irnplemented yet . We are now going to derive the
dialogue attributes.

3.4.2 Dialogue control

This attribute answers to the question "who contrais the dialogue ?". The dialogue control is
variable. In general it is internai. That is the case, for example, for the selection of menus where
only the allowed menu items are proposed to the user. The other menu items are automatically
grayed by the application. Likewise it is interna!, inside a sub- task. Nevertheless it is external when
the user goes from a window to another, each one containing a view of the same scene or a
diff erent scene.

3.4.3 Dialogue sequencing

This attribute answers to the question "how many dialogues is it possible to control at the same
time ?" . The dialogue sequencing is for the most part mono-thread hierarchic and sometirnes it
is multi-thread multi-programmed. Indeed, the dialogue sequencing is mono-thread hierarchic
because the actions are organized hierarchically and only a part of the actions accessible at some
point are made available by the interface . It is the case for the menu selection and the dialog boxes
selection. However we are also considering that the sequencing can be multi-thread
multi-programmed when several windows of the same scene or different scenes are displayed on
the screen. When an object in a scene is ro tating in a way and at a certain rotation speed, at the
same tirne, another object could rotate in another window, in another way and at another rotation
speed.

3.4.4 Dialogue mode

This attribute answers to the question "how are the dialogues contro!led ?". The dialogue mode is
asynchronous. Inside each sub-task, the order of actions execution and the order of data capture
are not detennined . As for some sub- tasks, the dialogue mode is sequential. For example, before
changing the name of an object, the latter has to be loaded into a scene (cf. Figure 4-20) . At the
interactive task level, the dialogue mode is also asynchronous as suggested by the toolbox model.

3.4.5 Functions triggering mode

This attribute answers to the question "who triggers the functions ? " . We remember that we
distinguished two types of functions : the semantic functions and the service ones. Whatever their

133

Chapter 4 : First Dimension - Graphical User Interface Specifications

type, the functions triggering mode is displayed explicit manual. There will always be a
command button or an icon on the toolbar that will permit to trigger such a fonction or such other
fonction. The goal is to give the user the possibility to contrai the progress of the task because
they are experts. Moreover, the kind of task based on the toolbox model suggests this function
triggering mode. We point out that some fonctions will have an automatic manual triggering mode
as it is the case with the selection of the current abject after being loaded into a scene.

3.4.6 Metaphor

This attribute answers to the question "what the application is the metaphor of ?". The metaphor
is mixed. On the one hand it is based on the conversation when the user must fill in the fonns,
when he has to choose the sub-task to carry out. . . On the other hand it is based on the universe
when speaking of the representation of a scene on the computer screen where real abjects (pieces
of bones, muscles, fat. . .) are shown, where cutting planes are visible, where lights have visible
results . . .

4. Conclusion

4. 1 Critic

We remind you that we did not observe the task and that we know nothing about the mental
process of posing a medical diagnosis, what the application is the support of. Our approach was
first the design of a prototype of a 3D visualization application without any methodology and then
a validation of the prototype with the TRIDENT methodology. Nevertheless we have found the
following task charactelistics

• Prescribed (not observed).
• Decision support.

As a consequence, the task is weakly structured and no process is determined. It is the reason why
the application that helps to carry out the task is based on the toolbox metaphor (Cf. Figure 4- 1
The toolbox metaphor.). The user uses the tool he wants in fonction of the result he wants;
nothing is imposed.

Accordingly, we have chosen - before usmg the TRIDENT methodology - the fo llowing
interaction styles

134

Chapter 4 : First Dimension - Graphical User lnte,face Specifi.cations

• Menu selection ➔ tool selection.
• Fonn filling ➔ parameters setting of the tool.
• Multi-windows ➔ displaying of several scenes.
• Direct manipulation ➔ direct manipulation of the scene.

The last interaction style is not implemented yet. We point out that the interaction styles werc
derived only in fonction of the sort of task and the irnposed work environment (Windows 95 and
NT), not in fonction of the users stereotypes.

In the thesis we applied the first dimension of the TRIDENT methodology as a validation mean of
the interaction styles we have chosen. We have derived the following interaction styles from the
task "analysis" suggested by the TRIDENT methodological framework (which takes into account
the users stereotypes who are considered as experts)

• Fonn filling
• Multi-windows
• Direct manipulation

Here, because the task is prescribed, "analysis" rather means "supposition".

Since most of the interaction styles we have chosen are the same as the one derived from the task
analysis, is the task analysis still useful in the case of weakly structured tasks '? To answer to this
question we are going to see if we derive the same interaction styles from the task analysis by
considering users who are beginners in using computers and who are not a lot motivated. Table
4-4 is showing the interaction styles derived in function of the users stereotypes

By taking into account Table 4- 1, Table 4-2, Table 4-3 and Table 4-4, we notice that the sui.table
interaction styles proposed by the task analysis are

• Fonn filling
• Multi-windows
• Direct manipulation

That is the same as the one when the users are experts. Whatever the users, does the weakly
structured sort of task suggest the use of the form filling, multi-windows and direct manipulation
interaction styles '? The answer to this question should be validated on a greater number of
applications.

135

Chapter 4 : First Dimension - Graphical User Interface Specifications

Task experience System� Motivation Complex interaction

experience means experience

elementary elementary weak elementary

Natural X

language

Command

language

Interrogation

language

Questions/ X X X

answers

Function X X X

keys

Menu X X X

selection

Form X X X

filling

Multi- X X X

windows

D irect X X

manipulation

Iconic X X

interaction

Table 4-4 : Parameters relative to the users stereotypes

Is the menu selection a good choice ? We consider that, seen the toolbox model, the application is
assimilated to the toolbox and the menu selection allows the user to select a tool in the toolbox.
Again, m ore analysis is necessary to be able to answer to the question.

4.2 TRIDENT methodology enrichment

The TRIDENT methodology does not take charge of weakly structured tasks (prescribed and/or
decision support) . So when we are facing such a task, we advise not to apply the task analysis as
suggested by the methodology. We are proposing an approach that is based on the TRIDENT
methodology, that takes into account the weakly structured type of task and that ends up with the
ACG.

1 . Decompose the task into goals and sub-goals. The result is the same hierarchy of goals and
sub-goals as obtained with the TRIDENT methodology.

136

Chapter 4 : First Dimension - Graphical User lnteiface Specifications

2. Consider the application that will help to carry out the task as a toolbox. So, in the
preceding hierarchy, identify the tools and the central element on which the tools are
applied. The rule of tools identification is "one tool by sub-task of the interactive task" . In
our case, the seventeen tools peculiar to each sub-task are

• The tool of a new scene creation
• The tool of the current scene selection
• The tool of the ctment scene removal
• The tool of the current scene parameters setting.
• The tool of geometrical transformations of all the abjects in the current scene
• The tool of cutting a part of the current scene
• The tool of management of the lights
• The tool of saving into VRML format
• The tool of a new object addition into the current scene
• The tool of the current object selection
• The tool of the current objet removal from the current scene
• The tool of the current object name changing
• The tool of getting information about an object
• The tool of the crnTent object color changing
• The tool of the current object type of visualization changing
• The tool of the current object axis showing
• The tool of the current object box showing

The central elements identified are the scenes containing 3D abjects (i.e. pieces of trabecular
bones . . .).

3. Identify the procedures as in the TRIDENT methodology. A procedure is a "combination of
actions on abjects that results into a particular state of the activity domain" ,
[BODART95a] . In the case of prescribed task, actions can directly represent semantic
functions, that is to say no abstraction is performed because there is no task analysis and
when elaborating the procedures we directly think in term of computer functions (Cf. step
5).

4. Identify the abjects of the task from the decomposition into procedures (Cf. the TRIDENT
methodology) and establish the ERA model.

5. Identify the semantic and the service (help, display . . . : see Chapter 4, Section 3. 3) functions
that are abstractions of the actions contained in the procedures identified above. When the
task is prescribed, it is possible that actions are directly mapped into fonctions - that is to

137

Chapter 4 : First Dimension - Graphical User Interface Specifications

say there is no abstraction mechanism - because we directly consider the actions as
computer fonctions dming the procedures identification.

6. Compose the ACGs - the rule : "one ACG by tool identified in the goals and sub-goals
hierarchy" - that use the semantic and service functions identified above. The ACGs are
the same as the one used in the TRIDENT methodology except that it is possible to
represent parallel functions (see Figure 4-8) that work towards a common result. It should
be possible to aggregate all the ACGs into only one ACG. The ACGs will be used for the
presentation unit and the windows identification (see Chapter 5) and for the construction of
the functional hierarchy (see Chapter 6).

7. We suggest to use of the following interaction styles :
• Menu selection
• Form filling
• Multi-windows

• Direct manipulation -7

tool selection.
parameters setting of the tools.
displaying of several windows, each one containing the
central element on which the tools are applied. In our
application, the central elements are the scenes; in word
processor applications , the central elements are the text
documents.
direct modification of the central elements contained in the
windows. For example, in 3D viewer, the direct
manipulation should consist in rotating all the abjects in a
scene; in a word processor, the direct manipulation is used
for selecting a string.

We insist on the fact that the interaction styles proposed are only a suggestion that should be
validated on a big number of applications helping to perform weakly structured tasks.

8. Derive the dialogue attributes.

138

Chapter 5

Second dimension :

Presentation Design From Ergonomie Rules

1 . Introduction

The presentation design will be done by following the systematic approach explained in
[BODART95a] and summarized in Figure 5- 1 . This approach uses the following concepts :
concrete interaction object (CIO), abstract interaction object (AIO), window, presentation unit
(PU). The particularity of the TRIDENT methodology is the continuity between each step of the
development process. Here, the continuity is materialized by the use of the activity chaining graphs
and the user interfaces requirements defined at previous dimension. Moreover, the design of the
presentation will be guided by ergonomie rules.

139

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

Interactive task
1-n

1-n

Presentation unit
1-n

1-n

Simple interaction object

1-n

Composite interaction objcct
1-n

1-n

Simple interaction objcct

Figure 5-1 : Structure of the presentation

We will design the presentation by following the five steps suggested by the systematic approach :
(1) the identification of the PUs, (2) the identification of the windows, (3) the selection of AIOs,
(4) the transformation of the AIOs into CIOs and finally (5) the CIOs placement and the manual
edition of the presentation.

2. PU identification

As explained in [BODART95a], "each sub-task of the interactive task is mapped into a
presentation unit" . Bach sub-task of the interactive task corresponds in fact to a particular tool in
the toolbox model. So, in our case, each tool of the toolbox is mapped into a presentation unit.
We have identified the following presentation units

• PU 1
• PU 2
• PU 3
• PU 4
• PU 5
• PU 6

➔

➔

➔

➔

➔

➔

Creation of a new scene.
Selection of the current scene.
Removal of the ctment scene.
Specifying the parameters of the current scene.
Geometrical transformation of all the objects in the current scene.
Cutting a part of the cmTent scene.

140

•
•
•
•
•
•
•
•
•
•

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

PU 7 ➔
PU 8 ➔
PU 9 ➔
PU 1 0 ➔
PU 11 ➔
PU 1 2 ➔
PU 1 3 ➔
PU 1 4 ➔
PU 15 ➔
PU 16➔

Management of the lights.
Saving into VRML format.
Addition of an object into the current scene.
Selection of the ctment object.
Removal of the current object from the current scene .
Changing the name of the current object.
Getting infonnation about an object.
Changing the color of the ctment object.
Changing the type of visualization of the current object.
Showing the current object axis and/or box .

We point out that the two sub-tasks "showing the current object axis" and "showing the current
object bounding box", materialized by two different chaining graphs, will be gathered into a
common presentation unit (PU 1 6). We do so because they play the same role : they help the user
to better understand the size and position of the objects.

3. Windows identification

The windows identification approach, discussed in [BODART95a] and [TAES94] , consists in
having each sub-graph materializing a presentation unit corresponding to a partition of this
sub-graph. These partit ions correspond to windows. For the sixteen presentation units identified in
the previous section, we will identify their windows.

None of the fi.ve criteria (minimal, maximal, input/outpout, functional and free) examined in
[TAES94] are used to identify the windows inside each presentation unit.
Instead, an elirnination method is prefered and consists in three steps. First of ail, if the
presentation unit is containing the following three elements linked together by arrows (see Figure
5 -2) , they will be grouped together inside the same window W0

• The hidden message "Current_scene "· · · ""
• The fonction "Display"
• The visible message "Scene"

The identification of this window is justified by the fact that each tune the scene is modified (for
example an object color has changed) it must be displayed. The next step consists i.t1 identifyi.t1g
standard windows ("open file" window or "save file" window) that encloses external messages
representing file names. It is the case for the windows W l -2 m PU 1 , W8- l in PU 8 and W9- l m

141

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

PU 9 (see below). The identification of these windows is justified by the software engineering rule
of reusability and by the ergonomie rule of inter-applications coherence. In the final step, ail the
external messages that are left are gathered in only one window as long as the window is not to
much overloaded.

' Current Scene" ' ' - Display

Figure 5-2 : Window WO

3. 1 Windows identification for the PU 1

We have identified the following logical windows concerning the PU 1 (creation of a new scene) :
• W 1- 1 ➔ Open_object_file_l
• Wl -2
• WO

Change_current_object_name_l
Dis play _scene

Figure 5-3 is showing the identification of the windows contained in the first presentation unit.
The window W 1- 1 is a standard one already defined in a Windows 95 library.

wo

Figure 5-3 : Windows identification for the PU 1

142

Chapter 5 : Second dimension - Presentation Design Froni Ergonomie Rules

3.2 Windows identification for the PU 2

We have identified the following logical window concerning the PU 2 (selection of the current
scene)
• W2- 1 Select_cmTent_scene
Figure 5-4 is showing the identification of the window contained in the second presentation unit.

Scenc_Choice

W2-1

Figure 5-4 : Windows identification for the PU 2

3.3 Windows identification for the PU 3

We have identified the following logical window concerning the PU 3 (removal of the current
scene)
• W3- 1 Remove_current_scene
Figure 5-5 is showing the identification of the window contained in the third presentation unit. As
you can observe, there is no external message.

W3-1

Figure 5-5 : Windows identification for the PU 3

3.4 Windows identification for the PU 4

We have identified the following logical windows concerning the PU 4 (specifying the parameters
of the current scene)
• W4- 1
• wo

Choose_scene_parameters
Display _scene

Figure 5-6 is showing the identification of the windows contained in the fourth presentation unit.

143

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

wo

W4-1

Figure 5-6 : Windows identification for the PU 4

3.5 Windows identification for the PU 5

We have identified the following logical windows concerning the PU 5 (geometrical
transformation of all the objects in the current scene)
• W5-1 ➔ Rotate_scene
• W5-2
• W5-3
• vVO

Translate_scene
Scale_scene
Display_scene

Figure 5 -7 is showing the identification of the windows contained in the fifth presentation unit.
Even if the users are experts, we did not want to overload the window too much. It is the reason
why we decided to use three windows, each one for a particular geometrical transformation,
instead of only one for all the transformations.

144

Chapter 5 : Second dimension - Presentation Design From Ergonomie Ru/es

· Current_Scene

Figure 5-7 : Windows identification for the PU 5

3. 6 Windows identification for the PU 6

We have identified the following logical windows concerning the PU 6 (cutting a part of the
cmTent scene)
• W6- 1 ➔
• wo ➔

De fine_ eu tting_planes
Display _scene

Figure 5-8 is showing the identification of the windows contained in the sixth presentation unit.

1 45

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

W6-1 wo

Figure 5-8 : Windows identification for the PU 6

3. 7 Windows identification for the PU 7

We have identified the following logical windows concerning the PU 7 (management of the lights)

• W7- 1 � Define_Iights
• WO � Display _scene
Figure 5-9 is showing the identification of the windows contained in the seventh presentation unit.

146

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

W7-1 WO

Figure 5-9 : Windows identification for the PU 7

3. 8 Windows identification for the PU 8

vVe have identified the following logical windows concermng the PU 8 (saving into VRML
format) :
• W8- 1 Save_ VRML_fonnat
• W8-2 VRML_file _saved_message
Figure 5- 10 is showing the identification of the windows contained in the eighth presentation unit.
The window W8- 1 is a standard one already defined in a Windows 95 library.

W8-1

Figure 5-10 : Windows identification for the PU 8

1 47

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

3.9 Windows identification for the PU 9

We have identified the following logical windows concerning the PU 9 (addition of an object into
the current scene)
• W9- 1 ➔ Open_object_file_2
• W9-2 ➔ Change_current_object_name_2
• W0 ➔ Display_scene
Figure 5- 11 is showing the identification of the windows contained in the ninth presentation unit.
The window W9- l is a standard one already defined in a Windows 95 library.

Figure 5-11 : Windows identification for the PU 9

3. 10 Windows identification for the PU 10

We have identified the following logical windows concerning the PU 1 0 (selection of the current
object) :
• W l 0- 1 ➔ Select_current_object
Figure 5 -12 is showing the identification of the windows contained in the tenth presentation unit.

Wl0-1

Figure 5-12 : Windows identification for the PU 10

148

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

3. 11 Windows identification for the PU 11

We have identified the following logical windows concerning the PU 1 1 (removal of the current
object from the current scene)
• W l l - 1 ➔ Remove_ctment_object
• WO ➔ Display _scene
Figure 5- 13 is showing the identification of the windows contained in the eleventh presentation
unit.

wo

Figure 5-13 : Windows identification for the PU 1 1

3. 12 Windows identification for the PU 12

We have identified the following logical windows concerning the PU 12 (changing the name of the
current object)
• W 12- 1 ➔ Change_current_object_name_3
• W 12-2 ➔ Current_object_name_changed_message
Figure 5- 14 is showing the identification of the windows contained in the twelfth presentation unit.

W12-1

Figure 5-14 : Windows identification for the PU 12

149

Chapter 5 : Second dimension - Presentation Design From Ergonomie Ru/es

3. 13 Windows identification for the PU 13

We have identified the following logical windows concerning the PU 13 (getting information
about an object)
• W 13- 1 ➔ Getting_object_information
Figure 5- 15 is showing the identification of the windows contained in the thirteenth presentation
unit.

W13-1

Figure 5-15 : Windows identification for the PU 13

3.14 Windows identification for the PU 14

We have identified the following logical windows concerning the PU 14 (changing the color of the
current object)
• W14- l ➔
• wo ➔

Define_current_object_properties
Dis play _scene

150

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

Figure 5- 16 is showing the identification of the windows contained in the fourteenth presentation
unit.

W14-1

Figure 5-16 : Windows identification for the PU 14

3. 15 Windows identification for the PU 15

We have identified the following logical windows conceming the PU 15 (changing the type of
visualization of the current abject)
• W 15-1 ➔ Define_cun-ent_object_ visualization_type
• WO ➔ Dis play _scene
Figure 5- 17 is showing the identification of the windows contained in the fifteenth presentation
unit.

W lS-1

Figure 5-17 : Windows identification for the PU 15

3. 16 Windows identification for the PU 16

We have identified the following logical windows concemrng the PU 16 (showing the current
object axis and/or box)
• W 16-1 ➔ Define_current_object_axis_and_or_box

151

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

• wo Display _scene
Figure 5-18 is showing the identification of the windows contained in the sixteenth presentation
unit.

W16-1

Figure 5-18 : Windows identification for the PU 16

4. AIOs selection

At this point we have to decide which types of windows (physical windows, dialog boxes or
panels) will stand for the logical windows identified at the previous section. Within each window
we have to select the abstract interaction objects that will correspond to each information in
input/output and the one that will correspond to each function. At the end we will obtain a
hierarchy of AIOs.

Except the main application window and the one that will contait1 the graphical representation of
the scenes W0), ail the other wit1dows will be dialog boxes. Windows W l - 1, W9- l (openit1g an
o bject file) and W8- l (saving into VRML format) are dialo g boxes already defined in Wit1dows ·
95.

" The selection of AIOs is based on a set of selection rules, themselves being based on empirically
validated cognitive principles and established conventions" [BODART95a]. Table 5-1, Table 5-2,
Table 5-3 and Table 5-4 are showing selection rules used to choose correct AIOs respectively for
alphanumeric data inputs, boolean data inputs, integer data inputs and elementary data inputs and

152

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

are coming from [V ANDERDONCKT93b] . To be able to interpret these tables, here are the
abbreviations used
• Cont ➔ continuous domain
• Exp ➔ expandable domain
• Fr ➔ data frequency in a list
• Lg ➔ item current length
• Lm ➔ maximal length of an alphanumeric item
• Nutil ➔ user experience level
• Nvc ➔ number of values to choose
• Npo ➔ number of possible values
• Npv ➔ number of principal values
• Nsv ➔ number of secondary values
• Pref ➔ user's preference for selecting a data
• Tm ➔ maximal number of items in a list
• Va ➔ antagonist values

Domain Nvc Nsv Exp Npo Lg AIO

Unknown <= Lm Single-line edit box

Unk'Tiown > Lm Multiple-line edit box

Mixed [2, 3] Radio-button with Npo items

+ single-Iine edit box

Mixed [4, 7] Radio-button with Npo items

+ single-line edit box

+ group box

Mixed [8, Tm] Drop-down combination box

Mixed [Tm+ l , 2 TM] Scrolling combination box

Mixed > 2 TM Drop-down scrolling combination box

Known > 1 = 0 No [2, 3] Npo check boxes

Known > I = 0 No [4, 7] Npo check boxes

+ group box

Known > I = 0 No [8, Tm] List box

Known > 1 = 0 No [Tm+l , 2 TM] <= Lm Scrolling list box

Known > 1 = 0 No [Tm+ l , 2 TM] > Lm Drop-down scrolling list box

Known > 1 = 0 No > 2 TM Drop-down scrolling list box

Known > I = 0 Yes <= Lm Combination box

Known > I = 0 Yes > Lm Drop-down combination box

Known > 1 > 0 <= Lm List box

Known > I > 0 > Lm Drop-down list box

Known = 1 > 0 List box

Known = I = 0 Yes Combination box

Known = 1 = () No [2, 3] Radio-buuon with Npo items

1 53

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

Known == 1 == 0 No [4, 7] Radio-button with Npo items

Known + group box

Known == 1 == 0 No [8, Tm] List box

Known == 1 == 0 No [Tm+l , 2 TM] Scrolling list box

Known == 1 == 0 No > 2 TM Drop-down scrolling list box

Table 5-1 : AIOs selection for alphanumeric data inputs

Domain Va Orientation AIO

known Yes Vertical Vertical switch

known Yes Horizontal Horizontal switch

known Yes Circular Two-valued dial

known Yes Undefined Horizontal switch

known No Check box

Unknown No Check box

Table 5-2 : AI Os selection for boolean data inputs

Nsv Exp Cont Npo Precision Orientation AIO

> 0 List box

== 0 Yes Combination box
== 0 No No [2, 3] Radio-button with Npo items
= 0 No No (4, 7) Radio-button with Npo items

+ group box
== 0 No No (8, Tm) List box
== 0 No No [Tm+l , 2 Tm] Scrolling list box
== 0 No No > 2 Tm Drop-down scrolling list box
= 0 No Yes [1 , 1 0] Low Vertical Scroll bar
= 0 No Yes [l , 1 0] Low Horizontal Scale
== 0 No Yes [1 , 1 0] Low Circular Pie diagram
== 0 No Yes (1 , 1 0] Low Undefined Scale
== 0 No Yes (1 , 1 0] High Vertical Vertical thermometer

== 0 No Yes (1 , 1 0] High Horizontal Horizontal thermometer
== 0 No Yes [l , 1 0] High Circular Dial
== 0 No Yes [1 , 1 0] High Undefined Horizontal t11ermometer
= 0 No Yes [1 1 , Tm] High Spin button
== 0 No Yes [1 1 , Tm] Low Scale
= 0 No Yes > Tm High Spin button
= 0 No Yes > Tm Low Vertical Scroll bar
== 0 No Yes > Tm Low Horizontal Scale
== 0 No Yes > Tm Low Circular Dial

== 0 No Yes > Tm Low Undefined Scale

Table 5-3 : AI Os selection for integer data inputs

154

Chapter 5 : Second dimension - Presentation Design Front Ergonomie Rules

Type Domain Va Lg Npo Nutil AIO

Hour <= 5 Spin button

Hour > 5 Profiled single-line edit box

Date <= 5 Spin button

Date > 5 Profiled single-line edit box

Boolean Yes Radio-button

Boolean No Check box

Graphie Radio icon

Integer Unknown S ingle-line edit box

Integer Mixed Drop-down combination box

Integer Known [2, 7) Radio-button

Integer Known (8, Tm] Drop-down list box

Integer Known > Tm Spin button

Real Unknown Profiled single-line edit box

Real Mixed Drop-down combination box

Real Known Drop-down list box

Alphanumeric Unknown <= Lm S ingle-line edit box

Alphanumeric Unknown > Lm Multiple-line edit box

Alphanumeric Mixed Drop-down combination box

Alphanumeric Known Drop-down list box

Table 5-4 : AI Os selection for elementary data inputs

We will now review ail the windows, specify their properties and select the right AIOs they will
contain ta.king into account the tables of selection rules presented above. For each AIO, we will
determine its properties. Since software ergonomies rules are belonging to our culture, there are
few differences between the AIOs we have selected during the program implementation without
the help of any table and the one proposed by the tables shown above. Nevertheless, some minor
modifications have to be made to the currently designed presentation, among others concerning
the ergonomie rule of intra-application coherence.

4. 1 Logical window WO

The logical window "Display_scene" is represented by a physical window entitled "Scene" and has
the following characteristics : mode!ess, sizable, minimizable, maximizable and movable. It
contains no AI Os since its only purpose is to display a view of a scene.

4.2 Logical window Wl-1

The logical window "Open_object_file_l " is represented by a dialog box entitled "File Open" and
has the following characteristics : modal, non-sizab!e, non-minimizable, non-maximizable and

155

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

movable. It is a standard "open file" dialog box already defmed by Windows 95 and contained in
one of its libraries. It should at least contain these three AI Os :
• A single-line edit box to enter the file name.
• An "Ok" command button to confirm.
• A "Cancel" command button to cancel the process.

4.3 Logical window Wl-2

The Iogical window "Change_current_object_name_l " is represented by a dialog box entitled
"Change object name" and has the following characteristics modal, 11011-sizable ,
non-minimizable, non-maximizable and movable. It contains the following AIOs
• A single-line edit box to enter the name of the new object. Its default value is the string "New

Object #x" where #x stands for the number of the object. For example, if the object is the fifth
to be loaded into the scene, #x will be equal to 5.

• An "Ok" command button to accept the new name.
• A static text labeled "You inserted a new object. In order to continue, you must give it a

name".

4.4 Logical window W2-l

The logical window "Select_current_scene" 1s represented only by a menu item entitled
"Window". The scene can also be selected as the current one by clicking on the window
containing this scene.

4.5 Logical window W3-l

The logical window "Remove_current_scene" has no external information. It's the reason why
there is no window, dialog box or panel that represents this logical window. Only a click with the
mouse on the cross on the upper right corner or a click on a menu item on the upper Ieft of the
window containing the current scene will destroy this window.

4. 6 Logical window W4-l

The logical window "Choose_scene_parameters" is represented by a dialog box entitled "Scene
options" and has the following characteristics : nwdal, non-sizable, 11011-minimizable,
non-maximizable and movable . It contains the following AI Os
• A spin button to choose the near-plane (an integer between 1 and 20).
• A spin button to choose View angle or field of view (an integer between 10 and 1 20).
• A group box entitled "Size" to gather the previous two spin buttons because they share the

same semantic.
156

Chapter 5 : Second dimension - Presentation Design Froni Ergonomie Ru/es

• A radio button to choose the flat shading method.
• A radio button to choose the smooth shading method.
• A group box entitled "Shading Method" to gather the previous two radio buttons because they

share the same semantic.
• A radio button to choose the clockwise vertices sorting method.
• A radio button to choose the counter-clockwise vertices sorting method.
• A group box entitled "Vertices Sorting Method" to gather the previous two radio buttons

because they share the same semantic.
• A "Change . . . " command button to call the window that permits to change the background

color of the scene.
• An icon to show the nment backgroud color.
• A group box entitled "Background Color" to gather the previous two AIOs because they share

the same semantic.
• A check box to select the antialiasing option or not.
• A check box to select the culling face option or not.
• A group box entitled "Other" because they can not be placed anywhere else and in order to

keep symmetry in the dialog box presentation.
• An "Ok" command button to accept the new parameters of the scene.
• A "Cance l " Command button to keep the old parameters of the scene.

4. 7 Logical window WS"l

The logical window "Rotate_scene" is represented by a dialog box entitled "Set angles" and has
the following characteristics : modal, non-sizable , non-minimizable, non-maximizable and
movable . It contains the following AI Os
• A spin button to choose the value of the new angle of the abjects along the x axis.
• A spin button to choose the value of the new angle of the abjects along the y axis.
• A spin button to choose the value of the new angle of the abjects along the z axis.
• A group box entitled "New Angles" to gather the previous three spin buttons because they

share the same semantic.
• A single-fine edit box to show the value of the curent angle of the objects along the x axis.

The user can't modify this edit box.
• A single-fine edit box to show the value of the curent angle of the objects along the y axis.

The user can't modify this edit box.
• A single-fine edit box to show the value of the curent angle of the objects along the z axis. The

user can' t modify this edit box.
• A group box entitled "Current Angles" to gather the previous three single-line edit boxes

because they share the same semantic.

1 57

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

• An "Ok" command button to accept the parameters and to perform the rotation.
• A "Cancel" Command button not to perform the rotation and keep the angles of all the objects

at their current values.
• An "Initial view" conunand button to set the objects of the scene at their very first rotation

angle.

4.8 Logical window WS-2

The logical window "Translate_scene" is represented by a dialog box entitled "Translate" and has
the following characteristics : nwdal, non-sizable, non-minimizable, non-maximizable and
movable . It contains the following AIOs
• A spin button to choose the value of the new position of the abjects along the x axis.
• A spin button to choose the value of the new position of the abjects along the y axis.
• A spin button to choose the value of the new position of the abjects along the z axis.
• A group box entitled "New Position" to gather the previous three spin buttons because they

share the same semantic.
• A single-line edit box to show the value of the curent position of the abjects along the x axis.

The user can 't modify this edit box.
• A single-fine edit box to show the value of the curent position of the abjects along the y axis.

The user can't modify this edit box.
• A single-fine edit box to show the value of the curent position of the abjects along the z axis.

The user can't modify this edit box.
• A group box entitled "Current Positions" to gather the previous three single-line edit boxes

because they share the same semantic.
• A radio button to choose the best fit translation method.
• A radio button to choose the absolute translation method.
• A radio button to choose the relative translation method.
• A group box entit led "Method" to gather the previous three radio buttons because they share

the same semantic.
• An "Ok" command button to accept the parameters and to perform the translation.
• A "Cancel" Command button not to perform the translation and keep the abjects at their

current position values.
• A "Center" command button to center all the abjects in the middle of the scene.

4.9 Logical window WS-3

The logical window "Scale_scene" is represented by a dialog box entitled "Set Scale" and has the
following characteristics : modal, non-sizable , non-minimizable, non-maximizable and movable. It
contains the following AIOs

158

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

• A spin button to choose the value of the new scale percentage of the objects along the x axis.
• A spin button to choose the value of the new scale percentage of the objects along the y axis.
• A spin button to choose the value of the new scale percentage of the objects along the z axis.
• A check box to maintain the global aspect ratio or not.
• A group box entitled "Change aspect ratio" to gather the previous four AI Os bec a use they

share the same semantic.
• A single-fine edit box to show the value of the curent scale percentage of the objects along the

x axis. The user can't modify this edit box.
• A single-fine edit box to show the value of the curent scale percentage of the objects along the

y axis. The user can't modify this edit box.
• A single-fine edit box to show the value of the curent scale percentage of the objects along the

z axis. The user can't modify this edit box.
• A group box entitled "Current Aspect Ratio" to gather the previous three single-li.ne edit boxes

because they share the same semantic.
• An "Ok " command button to accept the parameters and to perform the scaling.
• A "Cancel " Command button not to perform the scaling and keep the objects at their current

scale percentage values.

4. 10 Logical window W6-1

The logical window "Define_cutting_planes" is represented by a box entitled "Cutting Planes" and
has the following characteristics : modal, non-siz.able, non-1ninimiz.able, non-maxi,niz.able and
movable . It contains the following AIOs
• A list box to choose which cutting plane to set the parameters. It should contain the following

alphanumeric elements : "Bottom plane" , "Front Plane" , "Left plane" , "Rear plane" , "Right
plane" , and "Top plane".

• A check box to show the cutting plane or not.
• A check box to eut the scene or not.
• A spin button to choose the value of the distance percentage between the cutting plane and the

limit plane of the scene.
• A spin button to choose the value of the angle between the cutting plane and the limit plane of

the scene along the x axis.
• A spin button to choose the value of the angle between the cutting plane and the lirnit plane of

the scene along the y axis.
• A spin button to choose the value of the angle between the cutting plane and the linüt plane of

the scene along the z axis.
• A group box entitled "Planes Parameters" to gather the previous seven AIOs because they

share the same semantic.

1 59

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

• A "Pick . . . " command button to call the window that permits to change the color of the cutting
plane.

• An icon to show the current cutting plane color.
• A group box entitled "Other" to gather the previous two AlOs because they share the same

semantic.
• An "Ok" command button to accept the parameters and to perform the cutting planes.
• A "Cancel" Command button to keep the scene as it was before (no cutting plane has

changed).
• A "Default " Command button to set the parameters of all the cutting planes with default

values (no active cutting plane, no visible cutting planes, default color . . .).
• An "Advanced > > " Command button to show the same window but bigger and with more

AIOs on it.

This dialog box is expandable. When the "Advanced >>" Command button is pushed by the user,
the same dialog box becomes bigger and contains more AlOs concerning advanced options. We
will consider that it is another dialog box than the previous one that appear on the screen. The first
"Cutting Plane" dialog box that is already described will be identified by W6- l a when the second
window, the one that will be described below, will be identified by W6- l b.

Dialo g box W 6-1 b has the same characteristics and the same AI Os as dialo g box W 6-1 a except
that the " Advanced >>" Command button of the latter window is replaced by :
• An "<< Advanced" Command button to show the same window but smaller and with less

AIOs on it.
• Moreover, dialog box W6- lb has the following AIOs that dialog box W6- la has not :
• A radio button to choose the wireframe visual aspect of the cutting plane.
• A spin button to choose the number of wires the plane should have (value between O and 100) .

• A radio button to choose the translucent visual aspect of the cutting plane.
• A spin button to choose the translucence percentage the plane should have.
• A spin button to choose the size of the plane (a percentage of the scene size).
• A group box entitled "Advanced" to gather the previous five AlOs because they share the

same semantic.

4. 11 Logical window W7-1

The logical window "Defme_lights" is represented by a dialog box entitled "Lighting" and has the
following characteristics : modal, non-sizable, non-minimizable, non-maximizable and movable . It
contains the following AIOs :
• A List box to choose which light to set the parameters of. It should contain the folowing

alphanumeric elements : "Light l " , ... , "Light 2".
1 60

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

• A check box to turn the light on or off.
• A group box entitled "Available Lights" to gather the previous two AIOs because they share

the same semantic.
• A "Pick . . . " command button to call the window that permits to change the color of the light.
• An icon to show the light color.
• A spin button to choose specular component of the light (value between O and 255).
• An icon to show the light specular component.
• A group box entitled "Light Components" to gather the previous four AI Os because they share

the same semantic.
• A single-line edit box to enter the light position or the light direction along the x axis.
• A single-line edit box to enter the light position or the light direction along the y axis.
• A single-line edit box to enter the light position or the light direction along the z axis.
• A check box to decide if the light is far or near to the objects.
• A group box entitled "Light Position" to gather the previous four AIOs because they share the

same semantic.
• A check box to dum the all the light off or to enable the l ighting effects.
• An "Ok" command button to accept the parameters and to perform the lighting.
• A "Cancel" Conunand button to keep the scene as it was before (no light bas changed).
• A "Default" Command button to parametrize ail the lights with default values (no active light,

default color .. .).

4. 12 Logical window W8-l

The logical window "Save_ VRML_format" is represented by a dialog box entitled "Save File" and
has the following characteristics : nwdal, non-sizable, non-minimizable, non-maximizable and
movable. It is a standard "save file" dialog box already defined by Windows 95 and contained in
one of its libraries. It should at least contain these three AI Os
• A single-line edit box to enter the file name.
• An "Ok" command button to save the file.
• A "Cancel" c01mnand button to cancel the process.

4. 13 Logical window WB-2

The logical window "VRML_file_saved_message" 1s represented by a dialog box entitled
"Exporting in VRML" and has the following characteristics : modal, non-sizable,

non-minimizable, non-maximizable and movable. It contains the following AIO :
• A Progression indicator to show the current state of the file saving.

161

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

4. 14 Logical window W9-l

The logical window "Open_object_file_2" is represented by a dialog box entitled "File Open" and
has the following characteristics : modal, non-sizable, non-minùnizable, non-maximizable and
movable . It is a standard "open file" dialog box already defmed by Windows 95 and contained in
one of its libraries. It should at least con tain these three AI Os
• A single-line edit box to enter the file name.
• An "Ok" commcmd button to confirm.
• A "Cancel" command button to cancel the process.

4.15 Logical window W9-2

The logical window "Change_current_object_name_2" is represented by a dialog box entitled
"Change object name" and has the following characteristics modal, non-sizable,
non-minimizable, non-maximizable and movable. It contains the following AIOs :
• A single-fine edit box to enter the name of the new object. Its default value is the string "New

Object #x" where #x stands for the number of the object. For example, if the object is the fiJth
to be loaded into the scene, #x will be equal to 5.

• An "Ok" command button to accept the new name.
• A static text labeled "You inserted a new object. In order to continue, you must give it a

name".

4.16 Logical window WJ0-1

The logical window "Select_current_object " is represented by a dialog box entitled "Select an
object" and has the following characteristics nwdal, non-sizable, non-minimizable,
non-maximizable and movable. It contains the following AIOs :
• A List box to choose which object to select as the current one. The list box contains ail the

names of the objects present in the scene.
• A group box entitled "Objects" that enclose the previous list box to give it a title.
• An "Ok" command button to accept the new current object.
• A " Cancel" Command button to keep the old cmTent object.

4. 17 Logical window Wll-1

The logical window "Remove_current_object" is represented by a dialog box entitled "Remove
c.urrent object " and has the following characteristics : modal, non-sizable, non-minimizable,
non-maximizable and movable. It contains the following AIOs
• A static text labeled "Are you sure you want to rem ove object the cmTent object ? " .

1 62

Chapter 5 : Second dimension - Presentation Design Froni Ergonomie Rules

• A "Yes " command button to process the deletion of the current object.
• A "No " command button to cancel the deletion process.

4. 18 Logical window W12-1

The logical window "Change_current_object_name_3" is represented by a dialog box entitlcd
"Change Object Name" and has the following characteristics : ,nodal, 11011 -siz.oble ,
non-minùnizable, 11011-maximizable and movoble. l t contains the following AIOs
• A single-fine edit box to enter the new name of the current object.
• An "Ok" command button to accept the new name.
• A "Cancel" command button to keep the old name.

4. 19 Logical window Wl3-1

The logical window "Getting_object_information" is represented by a dialog box entitled "Objects
infos" and has the following characteristics : modal, 11011-sizable, non-minùnizable,
non-maximizable and nwvable. lt contains the following AIOs
• A list box to choose the object we need information for. The list box contains ail the names of

the objects present in the scene.
• A group box entitled "Select an object" that encloses the previous list box to give it a title.
• A single-line edit box to show the value of the number of elements (tetrahedrons or triangles)

of the object. The user can't modify this edit box.
• A single-fine edit box to show the value of the number of vertices of the object. The user can't

modify this edit box.
• A single-fine edit box to show the display type (mesh, filled surface or points cloud) of the

object. The user can't modify this edit box.
• A single-fine edit box to show the file name of the object. The user can't modify this edit box.
• A group box entitled "Mesh" to gather the previous four single-line edit box because they

share the same semantic.
• A "Close " command button to close the window when the user has read the information he

needs.

4.20 Logical window W14-1

The logical window "Define_current_object_properties" is represented by a dialog box entitled
"Object Properties" and has the following characteristics : modal, 11011-sizable, non-minimizable ,
non-maximizable and 1novable. lt contains the following AIOs
• A check box to decide if the object surface is transparent or not.
• A spin button to choose the transparency percentage.

1 63

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

• A group box entitled "Transparency" to gather the previous two AlOs because they share the
same semantic.

• A "Pick ... " command button to call the window that permits to change the col or of the object.
• An icon to show the current object color.
• A spin button to choose the specular component (gray levels between O and 255).
• A spùi button to choose the shininess percentage.
• A group box entitled "Colors" to gather the previous four AIOs because they share the same

semantic.
• An "Ok " command button to accept the new properties of the object.
• A "Cancel " command button to keep the old properties of the object.
• A "Default " Command button to set the parameters of ail the object properties with default

values (no transparent surface, default color . . .) .

4.21 Logical window WJS-1

The logical window "Define_current_object_ visualization_type" is represented by a dialog box
entitled "Display" and has the following characteristics : modal, non-sizable, non-minimizable,
non-maximizable and movable. It contains the following AIOs
• A radio button to choose the filled surface (triangles) display type.
• A radio button to choose the mesh (tetrahedrons) display type.
• A radio button to choose the points cloud display type.
• A group box entitled "Surface display" to gather the previous three radio buttons because they

share the same semantic.
• An "Ok " command button to accept the new visualization type.
• A "Cancel " command button to keep the old visualization type.
• A "Default " Command button to choose the default visualization type.

4.22 Logical window Wl6-1

The logical window "Define_current_object_axis_and_or_box" is represented by a dialog box
entitled "Axis and box" and has the following characteristics : modal, non-sizable,
non-minùnizable, non-maximizable and movable. lt contains the following AIOs :
• A check box to decide if an axis has to be shown or not with the current object.
• A check box to decide if the axis has to move or not with the current object.
• A "Pick ... " command button to call the window that permits to change the color of the axis.
• An icon to show the col or of the current object axis.
• A spin button to choose the axis length percentage (percentage of the object size).

164

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

• A group box entitled "Axis Properties" to gather the previous five AIOs because they share the
same semantic.

• A check box to decide if a box has to be shown or not with the current abject.
• A "Pick . . . " command button to call the window that permits to change the color of the box.
• An icon to show the color of the current abject box.
• A spin button to choose the box size percentage (percentage of the abject size).
• A group box entitled "Box Properties" to gather the previous four AIOs because they share

the same semantic.

5. Transformation of the AIOs into CIOs

Each AIO identified in the previous section will be connected to a concrete interactive abject
coming from the Microsoft Windows 95 environment. Ali the CIOs obtained in this part will be
used to physically design the dialog boxes. The conversion table from AIOs to CIOs is shown in
Table 5-5.

AIOs CIOs
Spin button Spin button

Icon Icon
Command button Push button

Check box Check box
Group box Group box

Radio button Radio button
Single-line edit box Single line entiy field

List box List box
Static text Static text

Progression indicator Progression indicator
Drop-down list box Drop-down list box

Modeless dialog box Modeless dialog box
Modal dialog box Modal dialog box

Table 5-5 : Transformation of the AIOs into CI Os

1 65

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

6. CIOs placement and manual edition of the presentation

In this section we will show ail the windows and dialog boxes that are currently implemented in

our application. The CIOs placement was manually done. A word about the placement strategy :

• The mnemonic terms are unique and displayed if available.
• The CIOs are arranged in an logical and aesthetic ways.

• Except for the dialog boxes where only output information is displayed, all the other windows

must have an " Ok" push button and a "Cancel " push button.
• If possible, windows should have a "Default" push button to set default values to input CIOs.
• The push buttons are, if possible, placed horizontally, on the right side of the dialog box.

• Every CIO must have a label.
• Each CIO concerning the color or its specular component must be represented by a push

button calling a standard Windo ws 95 window that help the user to choose the color and by an

icon showing the current color used.

These are the screenshots of the windows designed with Microsoft Visual C++. The windows

shown below were initially created during our training period in Tony Keller's lab but they were

modified taking into account the presentation design suggested by the TRIDENT methodology.

6. 1 Window Wl-2 : Change_Current_Object_Name_l

Change Néw Objeët Ne.me " . ' · ' · ~g

Figure 5-19 : Window Wl-2

The window shown in Figure 5- 1 9 is displayed when an object is opened. It allows to give the

object a name different from a single number. For example, one object can be "Surface mesh" and

another one in the same scene "Volume mesh" .

1 66

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

6.2 Window W4-1 : Choose_Scene_parameters

Scene Options . Ej

Figure 5-20 : Window W4-1

The window shown in Figure 5-20 allows to set parameters for the scene, as the position of far
and near planes.

167

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

6.3 Window WS-1 : Rotate_Scene

Set Angles ...

Figure 5-21 : Window W5-l

The window shown in Figure 5-21 allows the user to rotate the scene. The new angle is set in the
first part of the window, the second one shows the current position from the axis.

6.4 Window WS-2 : Translate_Scene

Translate: .. : · · . · · · .
.

· · . · : · 13

Figure 5-22 : Window W5-2

168

Chapter 5 : Second dimension - Presentation Design Froni Ergonomie Rules

As for W5- 1 , this window allows to change the position of the object . The current position is
shown in the second part of the dialog box. The bottom right group box corresponds to the
method that can be used. (Figure 5-22)

6. 5 Window WS-3 : Scale Scene

Set Scale... Ef

Figure 5-23 : Window WS-3

The window shown in Figure 5-23 allows to change the aspect of the objects. While "Maintain
Global Aspect" button is checked, X, Y and Z scales are set together, otherwise, it is possible to
change aspect ratio for X, Y and Z axes separately.

6. 6 Window W6-1 : Define_Cutting_Planes

169

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

·· · · · · · · · · ·· · · · · · · · · · · · · ······ · · · · · · · · · · · · · · · · · ··· · · · · · · · · · · - - · · · · · · ·······•.•·· ··· · · · ······· ··· · · · · · · ···· · · ··· · · · · ·.· • - · · · ·

Cutting planes · · la

Figure 5-24 : Window W6-la (standard window)

Cutting planes . . · · . · · ,· · · · il

Figure 5-25 : Window W6-lb (Advanced options)

170

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

The two windows shown in Figure 5-24a and Figure 5-25 correspond to the dialog box allowing
to change parameters for cutting planes (see Chapter Visualization) . There are actually two
windows, one for common parameters, and a second one with advanced parameters.

6. 7 Window W7-1 : Define_Lights

Figure 5-26 : Window W7-1

The window shown in Figure 5-26 allows to set parameters for lights. Up to 8 lights can be set
simultaneously, and for each, the color, specular component and position can be set.

6. 8 Window W8-1 : Save_VRML_Format

Enregistrer sous · · ' · · · · · . . , · · " .IWJl'a

Figure 5-27 : Window W8-1

17 1

Chapter 5: Second dimension - Presentation Design From Ergonomie Rules

The window shown in Figure 5-27 is the common dialog "Save As"30 where the type of file is
"VRML Files" (See Appendix 5 for details)

6. 9 Window W8-2 : VRil1LJile_saved_message

Exporting in VBML · . , · · · c' fi

Figure 5-28 : Window WS-2

The window shown in Figure 5-28 is displayed when saving the VRML file.

6.10 Window W9-1 : Open_Object_File_2

�- - · - - - - - - - - - - - - - - - · - · • · - · · ·

Figure 5-29 : Window W9-1

The window W9-1 as shown in Figure 5-29 corresponds to the common dialog "Open File" dialog
window.

30 This dialog box as well as "Open File" as Common Dialogs provided with Windows 95 and Windows

NT. Unfortunately, screen captures were made under the French release of Windows 95 .

172

Chapter 5 : Second dimension - Presentation Design From Ergononûc Rules

6. 11 Window W9-2 : Change_Current_Object_Name_2

Change Object Name . · : fi

Figure 5-30 : Window W9-2

The window shown in Figure 5-30 is displayed when a new object is inserted in the scene.

6.12 Window WJ0-1 : Select_Current_Object

Select an abject... . . . · li

Figure 5-31 : Window Wl0-1

Figure 5-3 1 shows the window allowing to select an object from the scene and to make it the
current object.

6. 13 Window Wll-1 : Remove_Current_Object

Remove Current Obiect , · · • , · .. · · · 13

Figure 5-32 : Window Wll-1

The window shown in Figure 5-32 is displayed when the menu item "Remove Current Object" is
activated.

173

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

6.14 Window Wl2-1 : Change_Current_Object_Name_3

Change New Object Name El

Figure 5-33 : Window Wl2-1

The window shown in Figure 5-33 is displayed when the menu item "Rename Current Object " is
activated.

6.15 Window WJJ-1 : Getting_Object_Information

Objects Infos... · · . . . Ei

Figure 5-34 : Window W13-l

The window shown in Figure 5-34 displays ail abjects from the scene. Once an object is selected
in the list box, information is displayed.

174

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

6. 16 Window W14-1 : Define_Current_Object_Properties

Objeêt Rrope'rties:.: · · · · · . · l'j

Figure 5-35 : Window W14- 1

Figure 5-35 shows the window that allows to set properties like transparency and color.

6. 17 Window WJS-1 : Define_Current_Object_Type

. ,
::

Figure 5-36 : Window W15- 1

The window W l 5- l shown in Figure 5-36 allows to change the visualization type (rendered
surface, mesh or points cloud).

6. 18 Window W16-1 : Define_Current_Object_Axis_and_or _Box

175

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

Figure 5-37 : Window W16-1

The window shown in Figure 5-37 allows to display or not axis and/or bounding box.

7. Using an Expert System for Automatic Generation of User Interface.

We used below a program called SEGUIA [SEGUIA97] to validate our dialog boxes. The
process has not been conducted for ail of them since most of them are simple and the result would
be the same. We have chosen the "Cutting planes" dialog box because it offers a lot of different
control interactive abjects (CIOs) . The dialog box shown in Figure 5-38 was manually designed
under Microsoft Developer Studio (The software that allows to develop C++ code as well as
resources lik:e dialog boxes) and was included in 3D Viewer. Figure 5-39 shows a dialog box
created by SEGUIA. The same parameters as in the first dialog box were given to SEGUIA, and
in many respects, they are similar.

176

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

: · : : · · · ··· : · · · · · · · : · · · · · · · : · · · · · · · · · · · : : : · · · ; : : · · · · · · · · · · · · · · · - · . · · · · · · · · · · · · ·-· · · · · · · .

Cutting planes ·; · . . · . · · !rd

Figure 5-38 : Dialog box excerpt from 3D Viewer

Indeed, pararneters like translation, angle and number of gridlines are represented by the sarne
CIOs in both dialog boxes (spin button) because the range of acceptable values is wide. However,
several differences appear. For example, available planes are not represented the same way. We
list thern into a list box but SEGUIA uses radio buttons. The use of radio buttons matches with
ergonomie rules that state that when the dornain is known, and the nurnber of possible values
range frorn 4 to 7, the radio buttons are to be used. [VANDERDONCKT93b] .

These radio buttons could have been placed in a more significant way, as shown in Figure 5-40,
but on the other hand it overloads the interface. The grouping of abjects is also slightly different.
Since the number of elements is not to high, only one dialog box was created where we decided to
create a small one with only basic parameters and an other one with basic and advanced
pararneters.

177

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

Pla.ne-----�
@ Front

Q Left

Q Top

Ü Rea.r

Ü Right

0 Bottom

1 ::::;f;:r;:@w.:fü:�':M�
11:1:::1:l!n�ï�ri::::�
il,fi!�Jfaf

Ba.sic pa.rame�te_r_s =:;::::::::-------- -----�

Trnnslation : / IIJ %

X a.ngle : IIJ d e grees

Y a.ngle :

Z angle :

1 degrees
;::=��
'-----"1=· ; d e g re e s

0 Show the cutting p lane

0 Rem ove the eut part

Color : 1::::::::::::mffü\!)!;fI:::1

Adva.nced pa.rameters---------------,

(!) Wirefra.me 0 Trans p arent

Number of gr id l ines 1 (0-1 00)
';:::.===:::- ::

Level of tra.nspa.rency : ._J -----"ti1,...:'. (0-1 00)

Size of plane : j�_-1_: % of the abj e ct s ize

Figure 5-39 : Dialog box proposed by SEGUIA

The group box including the single semantic element "Color" was included 111 the group box
"Basic parameters" when using SEGUIA.

Figure 5-40 : Another way to place CI Os to add meaning

Another big difference is that SEGUIA, as well as TRIDENT, does not take into account linked
elements. For example, in Figure 5-38, when the radio button "wireframe" is checked, the linked
CIOs "Number of gridlines : " label , the spin button and the " (0- 100) " label are activated, and the
CIOs relative to Transparency are deactivated. SEGUIA does not include such a semantic and
therefore this semantic is not represented in the dialog box. The conversation dimension should
include the description of the activation and deactivation of the CI Os. Another way to place these

178

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

CIOs is shown in Figure 5-41. This way eases the understanding since parameters corresponding
to each radio button are on a single line. This line is actually a sentence that can be easily
understood, but the linked elements still remain undefined.

Figure 5-41 : A single line for each option

Another interesting difference is the way buttons are placed. SEGUIA aligned ail buttons 111

relation to the "Pick ... " button instead of aligning them along the right side of the dialog box.

This a posteriori utilization of the TRIDENT methodological ergonomie rules31 for CIOs
placement proves that it is necessary to keep these rules in mind when designing an interface,
especially when speaking about the number of elements in a set (and the problem of choosing the
right CIO), but this also brings to the fore some gaps in TRIDENT and SEGUIA like the problem
of linked elements. However, the TRIDENT framework and SEGUIA work fine for most of the
dialog boxes.

8. Conclusion

8. 1 Critic

We remind you that most sub-tasks of the interactive task consist in modifying the current scene
and in displaying it when the modification is done. As sub-tasks are linked to tools (Cf.
Chapter 4), the last sentence can be transformed in : each time a tool bas been applied to a scene,
the latter must be displayed. It is the reason why in most of the ACGs - the ones that modify the
current scene - you find the three elements shown in Figure 5-2.

Concretely, these elements are represented by a physical window whose content is the graphical
representation of the scene. The problem we faced was to choose how to logically gather them
• Within a presentation unit (PU0) , independently of the rest of the ACGs (Figure 5-42). In this

case, in the dialogue specification (fourth dimension), it must be specified that this PU is called

31 SEGUIA uses these rules to build the interface

179

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

just after most of the other PUs. This PU has only one window (W0) that encompasses the
three elements.

• Within a window (W0) which is contained by a presentation unit (PUj), the last one having
other windows (Figure 5-43). In the dialogue specification, it must be specified that this
window is called just after most of the other windows.

Wi WO

PUj PUO

Figure 5-42 : Permanent window : solution 1

Wi wo
PUj

Figure 5-43 : Permanent window : solution 2

We opted for the second solution because it emphasizes the sub-task task progression :
1. Parameters setting and application of the chosen tool (Wi).
2. Displaying of the new scene (W0).

As explained in [BODART95a] , each sub-task of the interactive task is mapped into a presentation
unit - in our case, that is the same as saying that each tool is mapped into a presentation unit -.
So, in most of the presentation units, there is the same logical window W0. The solution we have
chosen (Figure 5-43) and this principle can pose us a problem during the control objects hierarchy
construction (Cf. Chapter 6) among others about the hierarchy of control objects relative to
windows. The control o bject relative to the window W0 (CO-W0) will be the child of several
parent control objects. The problem will be analyzed more in depth in Chapter 6.

A way to avoid the last question was to choose the first solution (Figure 5-42) : a presentation
unit with only one logical window that contains the three elements quoted above. The control
object relative to the window W0 would be the child of only the control object relative to the
unique presentation unit (PU0) containing this window. We are convinced that this solution is only

180

Chapter 5 : Second dimension - Presentation Design Froni Ergonomie Rules

useful to solve that problem but we would lost semantic about the sub-tasks. In our opinion, most
of the sub-tasks consist in modifying the current scene and, then, displaying the modified scene.

This window WO identified in the presentation units is physically implemented as a permanent
window where only the content is displayed each time the scene has been modified. The
TRIDENT methodology has not yet proved itself with regard to applications with permanent
windows as it is the case for word processors, spreadsheet applications, drawing programs,
conception support software's . . . We are going to enrich the methodology by taking into account
the presence of permanent windows in some applications. To generalize, we define the concept of
central element as being the content of a permanent window on which tools made available by the
application are applied by the users. We illustrate the concept of central element for sorne
software's

• Word processor ➔
• Spreadsheet program ➔
• Drawing program ➔
•

text document.
spreadsheet.
drawing sheet.

The user can manipulate several scenes, each one contained in a different physical permanent
windows. That is what we call a MDI (Multiple Documents Interface) application. So the logical
window WO represents in fact the occurrence of the window displaying the cunent scene.

8.2 TRIDENT methodology enrichment

We are still considering the case of a weakly structured task and we presume that the task analysis
has been done beforehand, with as result the ACGs, each of thern corresponding to a sub-task of
the interactive task (i.e. to a tool from the toolbox). Moreover, we suppose that the application
has at least a central element on which tools are applied. The presentation design will be based on
the one proposed in the TRIDENT methodology.

1. Identify the presentation units (PUs). The identification criterion is one PU per sub-task. It is
the same as saying one PU per tool or one PU per ACG. A semantic grouping of several
ACGs into a PU can be made (Cf. the PU 16 that groups the ACGs 16 and 17, second
dimension).

2. Inside each PU, identify the logical windows. We suggest an elirnination method of windows
identification. First identify the permanent window (in our case WO) that will have the
central element. Then group the other messages and fonctions inside logical windows. It is
possible to choose one of the identification criteria proposed in [TAES94] to apply on the
rest of the presentation unit.

181

Chapter 5 : Second dimension - Presentation Design From Ergonomie Rules

3. For each logical window, identify the AJOs. First of ail, select the window (physical
window, dialog box or panel) that will stand for the logical window currently analyzed.
Usually, the tools parameters setting will be done via dialog boxes whereas the permanent
windows with the central elements will be represented by physical windows. Secondly, if the
window does not display the central element, select the right AJOs for each external
information in input or output of functions in the logical window. The selection will be
applied in function of AJOs selection tables (Cf. Table 5- 1, Table 5-2 and Table 5-3),
created according to principles of cognitive psychology.

4. Transform of the AIOs into CI Os.

5. Place CIOs.

6. Edit manually the presentation.

182

Chapter 6

Third dimension :

The software architecture derivation

1 . Introduction

Again, we apply the third dimension of the TRIDENT methodological framework a posteriori of
the program implementation. The object of this part is to see if it is possible to automatically
derive an architecture skeleton for our program as it is the case for business oriented software's.
The architecture should respect quality criteria : high internal cohesion, weak coupling and
independent components. We will follow the steps suggested by [BODART95a] and
[BODART95b].

We will (1) theoretically describe the architecture elements and explain how to derive them. Then
(2) we will try to establish the architecture for our software.

2. Architecture theoretical description

The architecture consists in a hierarchy that should match the following assumptions
• "Each hierarchy element should be derived - directly or indirectly - j,'om task analysis" ,

[BODART95b] .
• "Autonomy - as pe1ject as possible -, which is similar to separation, should coexist

between elenients representing application components and user interface (UJ) components.
At the level of UI components, this autonomy is prolonged between compcments realizing the
conversation (the dynamic behavior) and components realizing presentation (static
appearance)" , [BODART95b].

183

Chapter 6 : Third dimension - The software architecture derivation

The autonomy required is possible for business oriented applications where there is no semantic
role for the interaction abjects. The question we raised was : "does this autonomy still exists in 3D
Viewer software ?". We first answered that this autonomy was possible with regard to elements
concerning the tools (i.e. the dialog boxes and their interaction abjects) - if we compare the
application to a toolbox - where the interaction abjects have no semantic role like it is the case
for business-oriented applications. As far as the permanent windows are concerned, wc thought
that the autonomy was not achievable because the content of thesc windows (the picccs of boncs,
their color, their position, the scene characteristics . . .) had a semantic role for the users. We wcnt
the wrong way. The right question that we should have asked is : "have the contents of the
permanent windows an effect on the pro gram behavior ?". That is to say does the way a scene is
composed influence the number of tools made available by the software, the way the program
permits the users to set them or the way dialogues are carried out ? In fact there was a
misunderstanding about the notion of semantic role.

At first sight we interpreted this notion as a "semantic role for the user" whereas it must be
interpreted as a "semantic role for the application". The se man tic role for the user means that the
user' s behavior depends upon the content of the permanent window which is generally true for any
AJO whereas the semantic role for the program means that the application behavior relies on the
permanent window content . In our case, whatever the scene looks like or is tuned, the program
behavior remains the same. We illustrate the presentation and the functional autonomy by
comparing the permanent window with an AJO : the edit box. The edit box is an AJO with as
content a string. The permanent window is an AIO with as content a scene. The string of the edit
box can be the input or the output of a fonction that is independent from the edit box presentation.
Similarly, the scene of the permanent window is the output of the Display fonction (see
Chapter 4) , which is independent from the physical window that contains the scene. So, the
necessary autonomy is achieved.

The hierarchy model, composed of three generic classes, is presented in Figure 6- 1 taken from
[BODART95b] , where :
• CO stands for Control Objects class. It is a generic class which decomposes itself into

different types of COs that manage the dialogue and assures that the application data structure
is independent from the presentation one.

• AO stands for Application Objects class. It is a generic class which can not be decomposed
and its elements represent the fonctions of the application.

• 10 stands for Interaction Object class. It is a generic class which decomposes itself into two
types of Ols : the application dependent CIOs that translate the input/output information for
fonctions and the application independent CIOs that are induced from the dialogue.

184

Chapter 6 : Third dimension - The software architecture derivation

Figure 6-1 : Generic scheme of the architecture mode!

The rules about the behavior of the three object classes are identical and, also, identical
relationships link any pair of these objects in the hierarchy. Each object is an agent (Cf.
[BODART95b]) and the "uses" relationship that is materialized by an arrow from a parent object
to a child object means that :
• The parent object uses the primitives associated to a child object in order to get the needed

information for the next interaction step.
• The child object sends events corresponding to significant steps of its behavior to the parent

object.

We will now review each objects hierarchy and explain more in depth how they are constructed.
When ail the hierarchies are complete, the final step consists in integrating ail of them in only one
hierarchy that represents the global architecture skeleton proposed by the TRIDENT
methodology. For legibility reasons, we will not integrate them in this text.

2. 1 Application Objects (AO)

Bach fonction in the ACG has a corresponding application object. The AO should be implemented
in an object oriented language and there should be an AO for each fonction of the application. In
the hierarchy, each AO is always the child object of only one control object that is responsible for
can-ying out the fonction to which it corresponds.

2.2 Control Objects (CO)

Bach step in the presentation composition has a corresponding control object and the COs are
organized in a hierarchy shown in Figure 6-2. The presentation composition is presented in this
way : windows are identified, they are dynamicaily link:ed into PUs and these PUs realize the
context for execution of the interactive task. The COs hierarchy is constructed in function of the
steps brought to the fore just above. The foilowing are the control objects identified in the
hierarchy

• CO-TI
• CO-PU

CO corresponding to the interactive task.
CO corresponding to the presentation uniL<;.

185

Chapter 6 : Third dimension - The software architecture derivation

• CO-W : CO corresponding to the windows.
• CO-Fe : CO corresponding to the application fonctions.
Each control object linked to an application fonction (CO-Fe) is the child object of a control object
connected to the window (CO-W) that contains the CIOs used to trigger these fonction.

CO-IT

1-n

0-n

Figure 6-2 : Control objects hierarchy

2.3 Interaction Objects (JO)

The presentation is structured into simple and composite IOs. Composite IOs (10-Comp, Figure
6-2) are the CIOs corresponding either to windows (like dialog boxes, physical windows or
panels) or to simple IOs grouping (child dialog boxes, group boxes). The composite IOs use
simples IOs, which constitute the presentation interface. They are input-output interaction objects
(IO-I/0, Figure 6-2) like edit box, radio buttons . . . or they are presentation induced interaction
objects (10-P, Figure 6-2) like push buttons, icons . . . The IOs can be selected by an expert system
in fonction of several parameters and correspond to CIOs proposed by specific physical
environment such as MS-Windows and others. Every 10 is a child of a window object control
(CO-W).

186

Chapter 6 : Third dimension - The software architecture derivation

3. Hierarchies construction

In this dimension, the continuity of the TRIDENT methodology is materialized by the use of the
task analysis, the ACG and the presentation content. The following objects of the three kinds has
to be created
• A control object corresponding to the interactive task (CO-IT)
• A control object corresponding to each presentation unit (CO-PU1 , . .. , CO-PU11)

• A control object corresponding to each window of each presentation unit (CO-PU1W1 , . . . ,
CO-PU1Wm, , CO-PU11W1, , CO-PU11Wp)

• A control object for each fonction in the ACG (CO-Fe)
• An interaction object for each input/output infonnation for all fonctions (I0-1/0)
• An interaction object for each presentation induced object (10-P)

3. 1 Primary hierarchy of functional abjects (CO-Fe)

To construct this hierarchy, the ACG obtained from the task analysis is needed. "Each function in
the ACG is mapped onto a functional CO with "uses" relationships between them according to
the special property : the primary hierarchy of function COs is quite the inverse hierarchy of the
ACG" , as explained in [BODART95b]. Since the ACGs were created by distinguishing tools, the
hierarchy will be built by distinguishing the same tools.

3. 1.1 Creation of a new scene

Figure 6-3 is showing the primary hierarchy of functional objects for the tool "Creation of a new
scene".

187

Chapter 6 : Third dimension - The software architecture derivation

Display

Figure 6-3 : Hierarchy of functional objects for the tool "Creation of a new scene"

3.1.2 Selection of the current scene

Figure 6-4 is showing the prirnary hierarchy of functional objects for the tool "Selection of the
current scene".

Get_ Current_Object

Select_ Current_Scene

Figure 6-4 : Hierarchy of functional objects for the tool "Selection of the current scene"

3.1.3 Removal of the current scene

Figure 6-5 is showing the prirnary hierarchy of functional objects for the tool "Rernoval of the
current scene" .

188

Chapter 6 : Third dimension - The software architecture derivation

Get_ Current_Objcct

Select_ Currcnt_Scene

Remove_Scene

Figure 6-5 : Hierarchy of functional objects for the tool "Removal of the current scene"

3.1.4 Specifying the parameters of the current scene

Figure 6-6 is showing the primary hierarchy of functional objects for the tool "Specifying the
parameters of the current scene".

Display

1------.i Change_Backgronnd_ Co!or

,___ ______ Sort_Clockwise

1---------<- Change_N ear_Plane

�-----,,.. Change_Shading__l\,Iethod

Figure 6-6 : Hierarchy of functional objects for the tool "Specifying the parameters of the current

scene"

3. 1.5 Geometrical transformation of ail the objects in the current scene

Figure 6-7 is showing the primary hierarchy of functional objects for the tool "Geometrical
transformation of all the objects in the cu1Tent scene".

1 89

Chapter 6 : Third dimension - The software architecture derivation

Rotate

Get_ Currcnt_Rotation Gct_ Current_ Translation Get_ Current_Scale

Figure 6-7 : Hierarchy of functional objects for the tool "Geometrical transformation of ail the object-,
in the current scene"

3. 1 .6 Cutting a part of the current scene

Figure 6-8 is showing the prirnary hierarchy of functional objects for the tool "Cutting a part of the
current scene".

Figure 6-8 : Hierarchy of functional objects for the tool "Cutting a part of the current scene"

3. 1. 7 Management of the lights

Figure 6-9 is showing the prirnary hierarchy of functional objects for the tool "Management of the
lights".

Figure 6-9 : Hierarchy of functional objects for the tool "Management of the l ights"

190

Chapter 6 : Third dimension - The software architecture derivation

3. 1 .8 S aving into VRML format

Figure 6- 10 is showing the primary hierarchy of functional abjects for the tool "Saving into VRML
format".

Save_To_ VRML

Figure 6-10 : Hierarchy of functional objects for the tool "Saving into VRML format"

3. 1 .9 Addition of an object into the current scene

Figure 6-1 1 is showing the primary hierarchy of functional abjects for the tool "Addition of an
object into the current scene".

Display

Load_Object

Figure 6-1 1 : Hierarchy of functional objects for the tool "Addition of an object into the current
scene"

3. 1 . 10 Selection of the current object

Figure 6- 1 2 is showing the primary hierarchy of functional abjects for the tool "Selection of the
current abject" .

1 9 1

Chapter 6 : Third dimension - The software architecture derivation

S elect_ Current_ Object

Get_Object

Figure 6-12 : Hierarchy of functional ohjects for the tool "Selection of the current object"

3. 1 . 1 1 Removal of the current object from the current scene

Figure 6-13 is showing the primary hierarchy of functional objects for the tool "Removal of the
current abject from the current scene".

Display

Select_Current_Obj ect

Rernove_Object

Figure 6-13 : Hierarchy of functional objects for the tool "Removal of the current object from the
current scene"

3. 1 . 12 Changing the name of the current object

Figure 6-14 is showing the primary hierarchy of functional abjects for the tool "Changing the name
of the current abject".

1 Change_Narne 1

Figure 6-14 : Hierarchy of functional objects for the tool "Changing the name of the current object"

3. 1 . 13 Getting information about an object

Figure 6-15 is showing the primary hierarchy of functional o bjects for the tool "Getting
information about an abject".

1 92

Chapter 6 : Third dùnension - The software architecture derivation

Get_Number_ Of_ Triangles Get_Number_ Of_ Tetrahedrons

Figure 6-15 : Hierarchy of functional objects for the tool "Getting information about an object"

3.1.14 Changing the color of the current object

Figure 6-16 is showing the primary hierarchy of functional o bjects for the tool "Changing the color
of the current object" .

Display

Change_Color

Figure 6-16 : Hierarchy of functional objects for the tool "Changing the color of the current object"

3.1.15 Changing the type of visualization of the current object

Figure 6-17 is showing the primary hierarchy of functional objects for the tool "Changing the type
of visualization of the current object".

Display

Change_ Visualiz.ation_ Type

Figure 6-17 : Hierarchy of functional objects for the tool "Changing the type of visualization of the
current object"

193

Chapter 6 : Third dimension - The software architecture derivation

3. 1.16 Showing the current object axis

Figure 6- 18 is showing the primary hierarchy of functional objects for the tool "Showing the
current object axis" .

Figure 6-18 : Hierarchy of functional objects for the tool "Showing the current object axis"

3.1.17 Showing the current object box

Figure 6- 1 9 is showing the primary hierarchy of functional objects for the tool "Showing the
ctment object box" .

Figure 6-19 : Hierarchy of functional objects for the tool "Showing the current object box"

3.2 Primary hierarchy of control objects relative to the task (CO-IT, CO-PU and CO-W)

Figure 6-21 is showing the primary hierarchy of control objects relative to the task "visualization
of 3D objects with the intention of posing a diagnosis" . We faced a problem with the permanent
window W0 that is present in most of the presentation units and, as a consequence, the control
object relative to this window (CO-W0) is a child of several parents. Should this control object be
in the hierarchy in as many occurrences as there are occurrences of the permanent window W0 in
the presentation units ? We imagined that it was possible to represent the control object CO-W0 in
a unique occurrence with "uses" links between the control objects relative to the presentation units
the window is belonging to and the unique occurrence of the control object CO-W0 (Cf. Figure 6-
20). Nevertheless, in Figure 6-21 this control object is represented several times to make the
hierarchy legible.

1 94

Chapter 6 : Third dim.ension - The sopware architecture derivation

Another problem bas appeared : when to create an occurrence of the control object CO-W0
relative to an occurrence of the permanent window W0 ? The TRIDENT methodology does not
tackle the problem of objects creation and deletion. It was presumed that an object was created by
bis parent object when it was used for the first time and it was destroyed by the same parent object
when it was no longer used. The problem with the control object relative to the permanent
window is coming from the fact that it is used by several parent objects. Which one of thcm is
responsible for the creation and the deletion of the occurrences of this control object ? In our case,
the CO-PUl parent object is in charge of creating new occurrences of the CO-WO object and
CO-PU3 is responsible for the deletion of these occurrences previously created.

We are going to enrich the hierarchy by adding objects creation and deletion constraints when the
objects are children of several parents (multi-parents objects) :
• Constraint 1 : CO-PUI is responsible for the creation of occurrences of CO-W0.
• Constraint 2 : CO-PU3 is responsible for the deletion of occurrences of CO-W0.
These constraints only specify which control objects are responsible for the creation and deletion
of multi-parents objects but nothing is said about when these operations are carried out.

C.0.-1.T.

O.C.-P.U. n

COW1-1 COW2-1 COW3-1 cow,-,.1

...; cow 1 -2 / ...; cow2-2 / � COW3•2 I � cow,-,.2 1

...; COW 1·3 I ...; COW2·3 I

...; COW2·4 I

cowo

Figure 6-20 : Primary hierarchy of control objects relative to the task : one occurrence of CO-W0

195

Chapter 6: Third dimension - The software architecture derivation

CO-PU!

N cw_sccne_creation

CO-W!-1 : Open_

object_file_l

CO-W!-2 : Change_

eu rren t _ obj cet_ na me_

CO-W0 : Display_scene

CO-PU2

Cnrrent_scenc_sclection

CO-W2-1 : Select

current_scene

CO-PU3

C urren t _ sc en e_rcmo val

CO-W3-1: Remove_

current_scene

CO-PU4

Cnrrent_scenc_parameters_

setting

CO-W4-l : Choose_

scene_parametcrs

CO-W0 : Display_sccne

CO-PUS

Current_scenc_geometrical
transfonnations

CO-WS-2 : Translate scene

CO-WS-1 : Rotate_scene

CO-WS-3 : Scal e _scene

CO-W0 : Display _scene

CO-IT

d ingnosis_support_ visualization

CO-PU6

1------ Current_scenc

_cutting

CO-W6-l : Define

cutting_planes

CO-W0 : Display _scene

CO-PU7

CO-W7-I : Define_lights

CO-W0 : Display_scene

CO-PUS

CO-WS-1 : Save_

VRML_fornrnt

CO-WS-2 : VRML_file_

savcd_message

CO-W9-l : Open_

object_file_2

CO-W9-2 : Change_current_

object_name_2

CO-W0 : Display_scene

CO-PUJO

CO-W!0-1 : Select

current_object

removal

CO-W l l -1 : Remove_

current_object

CO-W0 : Display_scene

CO-PU12

nnming

CO-Wl2-1 : Change_

eu rrcn t _ o bj cc t _name _ 3

CO-PU!3

1------11� Object_information
_gett ing

CO-W l3-l : Getling_

objcct _i11fornmtio11

CO-PU!.J 1----- Current_objcct_color_

changing

CO-Wl4 : Define_current

object_properties

CO-W0 : Display_scene

CO-PUIS

Current_ object_ visunli'J..af ion
_changing

CO-WIS-1 : Dcline_current

object_ Yisualization_type

CO-W0 : Display_scene

CO-PU16

Current_object_axis_box

CO-WJ6-1 : Dclinc_current_

object_axis_a nd_or_box

CO-W0 : Display_scene

Figure 6-21 Primary hierarchy of control objects relative to the task several occurrences of
CO-WO

1 96

Chapter 6 : Third dimension - The software architecture derivation

3.3 Primary hierarchy of interaction objects (I0-1/0, 10-P)

In this section is described the primary hierarchy of interaction objects. To facilitate the
comprehension, the hierarchy will be decomposed for each window of the application. The name
of each AIO begins with one of the prefixes listed below to help to identify which AIO it is.

• CHX ➔ Check box.
• CMN ➔ Cascading menu.
• DBX ➔ Dialog box.
• DLB ➔ Drop-down list box.
• EBX ➔ Single-line edit box.
• FOD ➔ File open standard dialog box.
• FSD ➔ File save standard dialog box.
• GBX ➔ Group box.
• ICO ➔ Icon.
• ITEM ➔ Menu item.
• LBL ➔ Static text.
• LBX ➔ List box.
• MNB ➔ Menu bar.
• PET ➔ Command button.
• PRO ➔ Progression indicator.
• RBX ➔ Radio button.
• SPB ➔ Spin button.
• TLB ➔ Toolbox.
• WIN ➔ Window.

3.3.1 Main window

WIN_Main Window
MNB_Main_ Window

CMN_File
ITEM_Open
ITEM_Close
ITEM_Export
ITEM_Exit

CMN_View

197

Chapter 6 : Third dimension - The software architecture derivation

ITEM_ Toolbar
ITEM_ Status Line
ITEM_ QuickTools
ITEM_ Objects Toolbar

CMN_Objects
ITEM _ Select_Objects
ITEM Change_N ame
ITEM _ Object_Type
ITEM _ Axis_and_Box
ITEM _ Object_Properties

CMN_Scene
ITEM _ Add_Object
ITEM _ Remove_Object
ITEM _ B ackground_Color
ITEM _ Set_Angle
ITEM _ Set_Scale
ITEM _ Translate
ITEM _ Cutting_Planes
ITEM _ Lights
ITEM _ Options

CMN_ Window
ITEM _ New_ Window
ITEM _ Cascade
ITEM _ Tile
ITEM A1Tange_Icons
ITEM_ window _name_l

ITEM_ window _name_n

CMN_Help
ITEM About_3D_ Viewer
ITEM _ Data_Information

TLB Shortcut_Tools
PBT _Show_ Current_ Object_Axis
PBT _Rotate_Scene_Along_ Y _Axis
PBT _Rotate_Scene_Along_ X_Axis
PBT_Rotate_Scene_Along_Z_Axis
PBT _Initial_Rotation_State
PBT _Change_Current_Object_Color

1 98

Chapter 6 : Third dimension - The software architecture derivation

PBT _ Tum_Light_ On_ Off
PBT _Translate_Scene_Right
PB T _ Translate _Scene _Left
PBT _Zoom_Scene_In
PBT_Zoom_ Scene_Out

TLB _N on_Shortcut_ Tools
PBT_Add_Object
PBT_Continuous_Rotation_Speed_Increase
PB T_ Con tinuous_Rotation_Speed_Decrease
PBT_Change_Current_Object_Color
PBT_Manage_ The_Lights
PBT _Manage_ Current_ Object_Axis
PBT_Manage_Scene_ Translation
PBT_Manage_Scene_Scaling
PBT_Manage_Scene_Rotation
PBT_Create_New_Current_Scene_ View

TLB _ Current_ Object
DLB_Current_Object
PBT _Rem ove_ Current_ Object
PBT_Rename_Current_Object
PBT_Add_New_Object

We bring to the fore that the ITEM_window_name_l , . . . , ITEM_►vindow_name_n menu items
from the CMN _ Window menu are in fact the names of the different permanent windows that exist
at a certain point. They allow users the select the current permanent window on which they want
to work.

3.3.2 Window "Display_scene" (W0)

The only element of the interaction objects hierarchy for the window containing the scene is

WIN_W0

3.3.3 Window "Open_object_file_l" (Wl-1)

FOD_Wl -1
EBX_File_N arne
PBT_Ok
PBT_Cancel

199

Chapter 6 : Third dimension - The software architecture derivation

The interaction objects hierarchy for the window W l - 1 is not complete. Standard open file
windows usually have more AIOs but are listed in the hierarchy only the most necessary one.

3.3.4 Window "Change_current_object_name_l " (Wl-2)

DBX_W l -2
EBX_New_Object_Name
PBT_Ok
PBT_Cancel

3.3.5 Window "Select_Current_Scene" (W2-1)

There is no interaction objects hierarchy for this logical window since it is only represented by an
ITEM_ Window _Name_i menu item from the CMN_ Window_ menu.

3.3.6 Window "Remove_current_scene" (W3-l)

There is no interaction objects hierarchy for this logical window since there is no AIO representing
this logical window.

3.3.7 Window "Choose_scene_parameters" (W4-1)

DBX_W4- 1
GBX_Size

SPB_Near_Plane
SPB_ View_Angle

G BX_Shading_Method
RBX_Flat_Shading
RBX_Smooth_Shading

GBX_ Vertices_Sorting_Method
RBX_Clockwise_Sorting
RBX_ Co un ter_ Clockwise_Sorting

GBX_Background_Color
PBT_Pick_Background_Color
ICO _Background_ Col or

GBX_Other

200

Chapter 6 : Third dimension - The software architecture derivation

CHX_Antialiasing
CHX_ Culling_Face

PBT_Ok
PBT_Cancel

3.3.8 Window "Rotate_scene" (WS-1)

DBX_W5- l
GBX_New_Angles

SPB_New_X_Angle
SPB_New_Y_Angle
SPB_New_Z_Angle

GBX_ Cunent_Angles
EBX_ Ctment_X_Angle
EBX_CutTent_ Y_Angle
EBX_ Current_Z_Angle

PBT_Ok
PBT_Cancel
PBT_Initial_ View

3.3.9 Window "Translate_scene" (WS-2)

DBX_WS-2
GBX_New _Position

SPB _New _X_Position
SPB _New_ Y _Position
SPB _New _Z_Position

GBX_ CrnTent_Position
EBX_ Current_X_Position
EBX_ Current_ Y _Position
EBX_ Current_Z_Position

GBX_ Translation_Method
RBX_Best_Fit
RBX_Absolute
RBX_Relative

PBT_Ok
PBT_Cancel
PBT_Center

20 1

Chapter 6 : Third dimension - The software architecture derivation

3.3.10 Window "Scale_scene" (WS-3)

DBX_W5-3
GBX_New Scale

SPB_New_X_Scale
SPB_New _ Y _Scale
SPB_New _Z_Scale
CHX_Keep_Aspect_Ratio

GBX_Current_Scale
EBX_ Current_X_Scale
EBX_ Current_ Y _Scale
EBX_ Current_Z_Scale

PBT_Ok
PBT_Cancel

3.3.1 1 Window "Define_cutting_planes" (W6-la and vV6-lb)

DBX_W6- l a
GBX_Planes_Parameters

DLB_Cutting_Plane
CHX_Show _ Cutting_Plane
CHX_ Cut_Scene
SPB_Distance
SPB_X_Angle
SPB_Y_Angle
SPB_Z_Angle

GBX_Other
PBT_Pick_Plane_Color
ICO_Plane_Color

PBT_Ok
PBT_Cancel
PBT_Defaul t
PBT _Advanced_>>

DBX_W6- l b
GBX_Planes_Parameters

DLB_Cutting_Plane
CHX_Show _ Cutting_Plane

202

Chapter 6 : Third dimension - The software architecture derivation

CHX_ Cut_Scene
SPB_Distance
SPB_X_Angle
SPB_ Y _Angle
SPB_Z_Angle

GBX_Other
PBT _Pick_Plane_ Color
ICO_Plane_Color

GBX_Advanced
RBX_ Wireframe _Plane
SPB_Number_Of_ Wires
RBX_ Translucent_Plane
SPB_ Translucence_Percentage
SPB_Plane_Size

PBT_Ok
PBT_Cancel
PBT_Default
PBT_ <<_Advanced

3.3. 12 Window "Define_lights" (W7-1)

DBX_W7- 1
GBX_Lights

DLB_Lights
CHX_On/off

GBX_Components
PBT _Pick_Light_Color
ICO _Light_ Color
SPB_Specular_Component
ICO _S pecular_ Corn ponen t

GBX_Position
EBX_Light_X_Position/direction
EBX_Light_ Y _Position/direction
EBX_Light_Z_Position/direction
CHX_Near

CHX_All_Lights_Off
PBT_Ok
PBT_Cancel
PBT_Default

203

Chapter 6 : Third dimension - The software architecture derivation

3.3.13 Window "Save_ VRML_format" (W8-1)

FSD_ W8- 1
EBX_File_N ame
PBT_Ok
PBT_Cancel

The interaction objects hierarchy for the window W8- l is not complete. Standard save file
windows usually have more AIOs but are listed in the hierarchy only the most necessary one.

3.3.14 Window "VRML_file_saved_message" (W8-2)

DBX_W8-2
PRO_File_Saving
PBT_Cancel

3.3.15 Window " Open_object_file_2" (W9-1)

DBX_W9- 1
EBX_File_N ame
PBT_Ok
PBT_Cancel

The interaction objects hierarchy for the window W9- l is not complete. Standard save file
windows usually have more AI Os but are listed in the hierarchy only the most necessary one.

3.3.16 Window "Change_current_object_name_2" CW9-2)

DBX_W9-2
EBX_ Object_N ame
PBT_Ok
PBT_Cancel

3.3.17 \-Vindow "Select_current_object" (Wl0-1)

DBX_Wl 0- 1

204

Chapter 6 : Third dimension - The software architecture derivation

GBX_Objects
LBX_ Objects

PBT_Ok
PBT_Cancel

3.3. 18 Window " Remove_current_object" (Wll - 1)

DBX_W l l - 1
LBL_ Confirmation
PBT_Yes
PBT_No

3.3. 19 Window "Change_current_object_name_3" (W12- 1)

DBX_Wl 2- 1
EBX_ Object_N ame
PBT_Ok
PBT_Cancel

3. 3.20 Window " Getting_object_information" (W13-1)

DBX_W1 3- 1
GBX_Objects

LBX_Objects
GBX_Mesh

LBX_Objects
EBX_N umber_ Of_Elements
EBX_Number_Of_ Vertices
EBX_Display _ Type
EBX_ Object_N ame

PBT_Close

3.3.21 Window "Define_current_object_properties" CW14-1)

DBX_Wl4- 1
GBX_ Transparency

CHX_ Object_ Transparent
SPB _ Trans lucence _Percentage

205

Chapter 6 : Third dimension - The software architecture derivation

GBX_Colors
PBT _Pick_ Object_ Col or
ICO _ Object_ Col or
SPB_Specular_Component
SPB_Shininess_Percentage

PBT_Ok
PBT_Cancel
PBT_Default

3.3.22 '1Vindow "Define_current_object_ visualization_type" (WlS-1)

DBX_ W15- 1
GBX_Surface_Display

RBX_Filled_Surface
RBX_Mesh
RBX_Points_ Cloud

PBT_Ok
PBT_Cancel
PBT_Default

3.3.23 Window "Define_current_object_axis_and_or_box" (W16-1)

DBX_W16- l
GBX_Axis

CHX_Show _Axis_ On/Off
CHX_Move_Axis_On/Off
PBT _Pick_Axis_Color
ICO _Axis_ Col or
SPB _Axis_Length

GBX_Box
CHX_Show _Box_ On/Off
PBT_Pick_Box_Color
ICO_Box_Color
SPB_Box_Size

206

Chapter 6 : Third dimension - The software architecture derivation

4. Conclusion

4. 1 Critic

From the a posteriori application of the third dimension on our application, we noticed that the
permanent window identif:ied in previous dimension as W0 and present in several presentation
units gave rise to two important questions
• Is there an independence between the permanent window (i.e. the user interface) and the

elements representing the application components (i.e. the fonctions) ?
• In the control abjects hierarchy, is it possible to have a control object (in this case CO-Wü, the

control object relative to W0) being the child of several parent control abjects (the CO-PUs,
the control abjects relative to the presentation units). If so, which parent abjects are responsible
for the creation and the deletion of occurrences of the child object ?

The first question already discussed in Section Architecture theoretical description is important
because the way the TRIDENT methodology establishes a software architecture is based on the
assumption that there is an autonomy between elements representing application components and
user interface components. We have explained that this autonomy was achieved because the
content of the permanent window - that is to say the scene embodying pieces of trabecular bones
or other objects - does not modify the program behavior and we have made a comparison
between the permanent window represented by the physical window AIO and the edit box AIO to
point out that this permanent window AIO is independent from the "Display" fonction which bas
as output parameters the content of the permanent window (see Architecture theoretical

description section above).

The second question arose from the fact that in almost ail the PUs - they are corresponding to
tools - identified in the second dimension, we have identified a common window W0.
Consequently, because of the construction approach of the hierarchy of control objects suggested
in Figure 6-2, the control object relative to W0 is the child of several control abjects, each one
corresponding to a presentation unit encompassing W0. lt seems that there is no problem for the
CO-W0 to be linked with "uses" relations to several CO-PUs. We have decided, in this text, to
represent as many occurrences of the object CO-WO as it is linked to a parent object (Figure 6-
2 1) just for a legible representation of the hierarchy. Such a control object should, in principle, be
represented in only one occurrence connected with as many · ' uses " links as it has parents.
Since it is accepted that an object can be multi-parents (i.e. having several parents), the question of
its creation and deletion cornes in mind. In the TRIDENT methodology, we always presume that
an object is created by its parent when it is used for the first tune and it is deleted by the same
parent when it is no longer used. In the case of multi-parcnts object the problem is coming from

207

Chapter 6 : Third dimension - The software architecture derivation

the fact that we do not know which object is responsible for the creation or the deletion of them. It
is the reason why we added creation and deletion constraints to the hierarchy. See Prinwry
hierarchy of contrai abjects relative to the task (CO-IT, CO-PU and CO-W) section for an
example of such constraints. Any object can be responsible for the creation and/or deletion of a
multi-parents objects even if it is not the parent of the object it is creating and/or deleting . In the
same idea, the object that is responsible for the deletion of a multi-parent object is not necessarily
the one that is responsible for the creation of the same object.

The architecture used at the present time (cf. Figure 2-48) is different from the one suggested by
the application of the TRIDENT methodology. The advantages of establishing an architecture as
proposed by the third dimension of the TRIDENT methodology are the one quoted in
[BODART95a] and [BODART95b]

• High internal cohesion
• Weak coupling
• Independent components

Furthermore, ail the designers of interactive applications using the TRIDENT methodological
framework will use the same architecture skeleton. It is a way to standardize the architectures and
this facilitates them to quickly understand the s tructure of applications made by o ther designers
using the same methodology.

We did not develop the fourth dimension of the TRIDENT methodological framework for two
main reasons. First, we looked into it and we did not find anything that could be a problem in
relation to applications helping to perforrn weakly structured tasks and having permanent
windows . Secondly, we think that it would have drasticaily increased the number of pages
(because of the great number of presentation units and dialog boxes) without bringing interesting
things. However, we do not mean that the fourth dimension is no use.

Nevertheless , we show in Figure 6-22 how the inter-PU dialog would look like for an application
with n PUs. Each UP (which corresponds to a tool) is connected with ail the o ther PUs. When
we look into the toolbox model shown in Figure 4- 1 and we compare it with the s tructure of the
Petri network shown in Figure 6-22, we notice a great sirnilarity. Indeed, the user takes a tool in
the menu, then he fiils up the parameters in the dialog box corresponding to the selected tool, and
fmaily the tool is applied to the central element of the permanent window and the user has a new
opportunity to select any other tool. The behavior would be exactly the same with a toolbox,
where the worker would select the right tool and would apply it to the object he manipulates.
Then he would put his tool back into his toolbox and would maybe use another tool.

208

Chapter 6 : Third dimension - The software architecture derivation

Figure 6-22 : Pietri network for inter-PU dialog specification

4.2 TRIDENT methodology enrichment

The third dimension of the TRIDENT methodology can be applied to automatically derive an
architecture skeleton for software having the following characteristics

• They help to carry out a weakly strnctured type of task (prescribed and/or decision making)
• They have at least one permanent window
• They are based on the toolbox model

If the following assumption is verified
• The content of the permanent window(s) has no influence on the program behavior, has no

semantic role.
When the last assumption is not verified, the hypothesis of autonomy between the presentation
components and the application components is not respected and so, we cannot tell if it is still
possible to automatically generate an architecture.
We suggest the same approach as in the TRIDENT methodology with few modifications

1 . Construct the primary hierarchies of functional objects (CO-Fe). The rule o f construction is :
each fonction in the ACGs is mapped onto a functional CO. These COs are linked with a
"uses" relationships according to this property : the CO-Fe hierarchy is quite the inverse
hierarchy of the ACG. In the first dimension enrichment, we have suggested to establish an
ACG for each identified tool. As a consequence, there are as many hierarchies of functional
objects as there are ACGs.

2. Construct the primary hierarchy of control objects relative to the task by following the steps
suggested by Figure 6-2:

209

Chapter 6 : Third dimension - The software architecture derivation

• A CO-IT for the interactive task
• A CO-PU for each presentation unit
• A CO-W for each window

It is possible to represent a multi-parents object. In this case it has to be linked with "uses"
relationship to each parent it has and creation/deletion constraints have to be added. These
constraints specify which control abjects are responsible for the creation and/or the deletion
of the multi-parent objects.

3. Construct the primary hierarchies of interaction objects. The rule 1s : one hierarchy by
window.

4. Aggregate all the hierarchies into a unique one. For more information see [BODARD95b].

210

Chapter 7 : Conclusion

From a critical analysis of the TRIDENT methodological framework applied to a 3D visualization
program as a support for diagnosis process, we finally enlarged this critic at a higher level.
Indeed, we enlarged the scope for applications corresponding to weakly structured tasks and
owning at least one permanent window. We have tried to adapt the TRIDENT methodology for
the conception of such applications.

This conclusion is divided in three main parts. First, the toolbox model is confirmed for such a
kind of applications, then the probable link between weakly structured tasks and applications
based on a permanent window is discussed and we finally summarize the TRIDENT
methodological framework with enhancements for the design of applications supporting weakly
structured tasks and having permanent windows.

The toolbox model, as explained above, seems to suit very well for weakly structured tasks and
especially for 3D graphies applications. Indeed, these applications use a central element where
each functionality is considered as a tool acting or working on the central element, as shown in
Figure 7-1.

Starting point Display

permanent

window and

central object

Figure 7-1 : The toolbox model

Exit point

This model is especially useful when speaking in terms of modifications or enhancements in the
application code. Adding a new tool, removing an obsolete or unused tool or modifying an
existing tool is almost straightforward as long as it is independant from the other tools.

2 1 1

Chapter 7 : Conclusion

The conception and implementation approach of our program 1s essentially based on this
characteristic (toolbox model) . Since we did not know the task, neither the requirements, which
would be difficult to develop a " standard" management program, we started developing a
prototype including the central element, in our case, the scene and the abjects. Then we added
functionality as users were needing them. Actually, the order in which functionality were added is
not important, since each one is independent from the other ones . The process of devcloping such
an application is summarized in Figure 7-2.

Prototype with
central ,___ __ Functionality 1
element

- version 1 --
----- version 2 -----

Functionality 2

--------- version 3 ---------

Functionality n

------------- version n+ 1 -------------

Figure 7-2 : Development process for a toolbox model based application

As it has been discussed in previous chapters, our application, like many different programs as
word processors or drawing programs, has a very different characteristic from the common
management programs which is its permanent windows. The question we asked is to know if
there is or not a link between these permanent, central windows and the weak structure of the
task. We said that we have not been able to analyze the task, but we do know that visualization is
not a structured task. At any time during this process , we need to see the result of the previous
action (feedback), and we then decide the next action to perform. This systematic , necessary
feedback justifies a permanent window where the temporary result of modifications and actions
applied to the central element can be consulted to allow the user to evaluate progress state of the
task, once again, because this one is not predefined and not known. Let us imagine a second that
this process would be structured . This would result in a different presentation of the program.
Where we have a scheme as shown in Figure 7- 1 for unstructured tasks, we would have what is
shown in Figure 7-3 for a structured task.

The model shown in Figure 7-3 corresponds to an application where the user enters a whole set of
parameters, such as rotation angle, color, . . . and where the image is finally displayed. We could
imagine that such a process could be used by a very experienced engineer, however, we think that
it would prevent hirn from seeing the impact of each parameter which is very important when
tuning the right image. Moreover, since each image is different frorn another one, settings for an
image could not suit for ano ther one. So we think that the permanent window has a strong
relation with the structure of the task of visualization as a support for diagnostic.

2 12

Chapter 7 : Conclusion

Params 1 � Params 2 � Params 3 � Display result

window

Figure 7-3 : Common dialog box based application

Of course, there are a lot of other software that support unstructured tasks, like word processors
for typing a letter, or CAD prograrns for designing new houses. For these programs, we also find
a permanent window, the white sheet or the house. A way to structure tasks performed by these
programs would be to restrict the domain, and that what is done with word processors. For
example, the Curriculum Vitae Assistant provided with Microsoft Word® is a restriction of the
domain "Typing a document". It provides a set of dialog boxes asking a series of questions,
ranging from the name and forename of the person to the accomplished studies and hobbies. Then
the assistant makes up the data into pages and presents a ready-to-print document, following the
model shown in Figure 7-3. We could imagine the same for a company which sells 50 different
styles of ho uses, where the buyer can select the number of rooms, the kind of main door, color of
windows, . . . and the CAD pro gram would just ask the set of parameters and then builds the bouse
according to the requirements.

However, these programs have to take into account that these conception or decision making
tasks are not well defined and that people can change their mind. In such cases, these program
should anyway include a set of tools to allow the user to change few details. So we really think
that concepts of permanent window and weakly structured tasks are very close. However, more
studies are to be conducted to confirm or not the link.

We did not follow step by step the TRIDENT methodological framework when developing the
programs because of the tune it would have required. However, we applied it a posteriori, and it1
many respects, the application fits to the framework, but we remarked several differences which
are relative to the weakly structured type of the task. We pointed out these differences and tried
to solve or propose ideas of solutions. Hereby, we summarized the framework that we suggest to
follow when developing applications where the task is weakly structured, that includes a
permanent window containing a central element.

l st dimension : Task analysis
Identify the task, goals and sub-goals
Deduct tools from sub-goals and the central elements on which the tools are applied.
Identify procedures
Identify objects and semantic fonctions from procedures
Build Actions Chaining Graphs

2 1 3

Chapter 7 : Conclusion

2nd dimension : Presentation design
Identify Presentation Units (1 Presentation Unit = 1 tool)
Identify Windows (Identification criterion : elimination)
AIO selection :

1 tool = 1 dialog box
Central element = Physical window if the central element has to be displayed

Transformation from AIO to CIO
CIO placement
Manual edition of the presentation

3rd dimension : Software architecture derivation
Construct the primary hierarchies of functional objects (one per ACG)
Construct the primary hierarchy of control objects relative to the task (multi-parents

objects are allowed)
Construct the primary hierarchies of interaction objects
Aggregate all the hierarchies into a unique one

4rd dimension : Dialogue specification
Specification of the inter-UP dialogue
Specification of the inter-windows dialogue
Specification of the intra-windows dialogue

We insist that this approach we propose is only based on the analysis of one single case
3D Viewer. It should be validated on more cases to prove feasible or not.

2 14

Ref erence Books

[BODART93] Bodart, F. & Pigneur, Y., "Conception assistée des systèmes d 'ù1f'ormation" ,

MIPS, 1 993.

[BODART95a] Bodart, F. & Bennebert, A.-M. & Leheureux, J. -M. & Provot, I. &
Vanderdonckt, J. & Zucchinetti, G., "Dimensions clé pour une méthodologie de développement

d 'applications interactives" , Namur, 1 995.

[BODART95b] Bodart, F. & Bennebert, A.-M. & Leheureux, J.-M. & Provot, I. & Sacre, B. &
Vanderdonckt, J. , "Towards a Systematic Building of Software Architecture : the TRIDENT

Methodological Guide" , Namur, 1 995.

[BRIGGS95] Briggs, T. L., Computed Body Tomography and Magnetic Resonance Jmaging,

MCSP, January 1 995.

[BYTE0896] BYTE, 3-D for everyone, McGraw-Bill Companies, Inc. , October 1996.

[DUBOIS96] Dubois, E., Class notes, FUNDP, 1 996.

[FAISON94] Faisan, T., Borland C++ 4 Object Oriented Progranuning, Third Edition, SAMS
Publishing, 1 994.

[FROST93] Frost, B.M., Suggested fundamental concepts in skeletal physiology, Cale Tiss Int,
Vol. 52, pp. 1 -4, 1 993.

[GOOSSENS95] Goossens, P. and Wauthier, B. , The trabecular bone and morphological

Analysis System. : a research and an Educational Training Systeni for Students, Mémoire,
FUNDP, 1 995.

[JASC96] JASC Inc., http://www.jasc.com, Paint Shop Pro v. 4. 1 0, 1 99 6.

[KELLER95] Keller, T.S. and Banson, T., Osteoporosis of the spine, University of Goteborg,
Swedcn and University of Vermont, VT, USA, Revision 1 , 1 995.

[KELLER891 Keller, T.S. , Banson, T., Abram, A.C., Spengler, D.M., Panjabi, M.M. , Regional

variations in the compressive properties of lumbar vertebral trabeculae: Ejfect of dise

215

degeneration, Spine, 1989 , Vol. 14, pp. 1012- 1019.

[KELLER92] Keller, T.S. , Moeljanto, E. , Main, J.A. , Spengler, D.M., Distribution and
orientation of bone in the hwnan lumbar vertebral centrum, J Spinal Disorders, 1992, Vol. 5 , pp
60-74.

[KELLER93] Keller, T.S. , ZIV, I. , Moeljanto, E. , Spengler, D.M. , lnterdependance of /umbar
dise and subdiscal bone properties: A report of the normal and degenerated spine, J Spinal
Disorders, 1993, Vol. 6, pp. 103- 113.

[LECHARLIER95] Lecharlier, B., Class notes, FUNDP, 1995.

[LORENSEN87] Lorensen, W. E. and Cline, H. E., Marching Cubes: A High resolution 3D
Swface Construction Algorithm, Computer Graphies, 1987.

[MCCORMICK87] McCormick, B.H., DeFanti, T.A. and Brown, M.D. , Visua!ization in
Scientific Computing" , Report of the NSF Advisory Panel on Graphies, Image Processing and
Workstations, 1987.

[MEYER88] Meyer, B. , Object-Oriented Sofnvare Construction, Prentice Hall International,
1988.

[MSDEV96] Programming in Visual C++, MFC 4.0, Class Library Référence, Microsoft 1996.

[PICKOVER90] Pickover, C. A. , Computers, patterns, chaos and beauty, St. Martin's Press,
1990.

[ROSENBLOEM94] Rosenbloem, L. et al. , Scientific Visualization Advances and Challenges,
Harcourt Brace & Company, London, 1994.

[RUMBAUGH91] Rumbaugh, J. , Blaha, M. , Premerlani, W., Eddy, F. And Lorensen, W.,
Object-Oriented Modeling and Designing, Prentice Hall , 199 1.

[SCHROEDER96] Schroeder, W. , Martin, K. And Lorensen, B . , The Visualization Toolkit, an
abject oriented approach ta 3D Graphies, Prentice Hall, 1996.

[SEGUIA97] Système Expert pour la Génération d'une "User Interface" Automatique,
Vanderdonckt, J. , Conception assistée de la présentation d'une IHM ergonomique pour une
application de gestion hautement interactive, Thèse de doctorat, FUNDP, July, 9t\ 1997.

[SULLIV AN95] Sullivan, J. M. and Zhang, J.Q. , Adaptive Mesh Generation Using a Normal
Ojj:l'etting Technique, University of Vermont, VT, USA and Baystate Technologies, MA, USA,
1995.

2 16

[T AES94] Taes, F. & Equipe TRIDENT, " Tâche interactive de l 'enregistrement d 'un bon de

commande" , Etude de cas, Namur, December 1 994.

[V ANDERDONCKT93a] Vanderdonckt, J., "Sujet : Révision du document concernant la

dérivation de style(s) d 'interaction" , rapport de la réunion TRIDENT du 3/ 1 1/93, Namur,
novembre 1 9 93.

[V ANDERDONCKT93b] Vanderdonckt, J . , "A C01pus of Selection Ru/es for Choosing

Interaction Objects" , TRIDENT project, Technical report, Namur, August 1 993.

[VRMLSGI] VRML : Basics, SGI Inc. , http ://vrml.sgi.com/basics/, 1997.

[W ATT93] Watt, A., 3D Computer Graphies, Second edition, Addison Wesley, 1993.

[WOLFF1 892] Wolff, J., Das Destez der Transformation der Knochen, Hirschwald, Berlin, 1 892.

[WRIGHT96] Wright, R.S. Jr. and Sweet, M., OpenGL Superbible, Waite Group Press, 1 996.

[ZETTERBERG90] Zatterberg, C. , Mannius, S. , Mellstrom, D. Et al. , Osteoporosis and back

pain in the elderly. A controlled epidemologic and radographic study, Spine, Vol. 1 5, pp.
783-786, 1 990.

[ZETTERBERG94] Zatterberg, C . , Sjostedt, Â, Ziden, L. et al. , Epide1niology of kip fractures in

Goteborg, Sweden, 1 940-1991 , Scandinavian Orthopaedic Association, Proceeding of the 4ih

Assembly, Reykjavik, Iceland, June 8- 1 1 . Acta Orthop Scand 1 994; 65(suppl260)30.

Dictionaries

[AHD86] The American Heritage Dictionary and Electronic Thesaurus, 1 986.

The Collins Electronic Dictionary, 1 992.

HARRAP'S Dictionary, 1 993.

2 17

Appendices

Appendix 1 · Object Model for VTK

1 . The global Object Model

vtkObject

vtkCell vtkDataSet vtkRefCount vtkSource vtkMapper vtkWriter vtkRenderer

2. The vtk:Cell Object Model

vtkCell

vtkVoxel vtkline vtkVertex

vtkPolygon vtkPolyline vtkPolyVertex vtkOuad

vtkPixel vtkîetra vtkîriangle vtkT riang leStrip

3 . The vtk:DataSet Object Model

vtkDataSet

vtkStructuredData vtkPointSet

vtkStructuredPoints vtkStructuredGrid vtkUnslructuredGrid vtkPolyData

2 1 9

4. The vtkRefCount Object Model

vtkRefCount

vtkPoints vtkCellArray vtkCelllist vtklin klist

vtkScalars vtkVectors vtkNormals vtkTCoords

vtkFloatVectors vtkFloatNormals vtkFloatTCoords

vtkFloa!Points

5. The vtkSource Object Model

vtkSou rce

vtkStructu redGridSou rce vtkStructu redPointsSou rce vtkStructu redGridSou rce vtkPolySource

vtkUnstructu redGridReader vtkVoxelReader vtkPLOT3DRead vtkConeSou rce

6. The vtkFilter Object Model

220

vtkFilter

vtkDalaSelFiller vtkSlructuredPoinlsFiller

vtkUnstructured
GridFilter

vtkStructured
GridFiller

vtkStrucluredPoinlsToStructuredPointsFilter vtkPointSetToPointSetFilter
vtkPolyToPolyFilter

vtkShrinkPolyDala

vtkDalaSetToDalaSet
Filler

vtkElevationFilter

vtkSweplFilter

vtkDataSetToPolyFilter

vtkDalaSetToStructuredGridFilter

vtkShrinkFilter vtkContourFilter

22 1

vtkDalaSetT oSlructured
PointsFilter

vtklmplicilModeler

Appendix 2 : Quantitat ive Com puted Tomography

The Physical Basis of CT
The ability of CT to detect tiny differences in the x-ray attenuation properties of tissue to be
visualized cornes from 3 factors:
1. Signal : Noise ratio of the data acquisition in CT is less than in conventional radiography due

to a greater number of x-ray photons per resolution and the detector utilized exhibiting less
noise than radiographie film.

2. Scattered radiation is reduced in CT as the beam of radiation is na1Towly collimated.
3. The method of image reconstruction is unique in CT in that the filtered back projection

provides images that are unencurnbered by super-imposed underlying and overlying structures
that are recorded in conventional tornography.

A narrow bearn of x-rays scans across the subject to be imaged in a linear fashion. While
traversing the subject the non-absorbed rays are detected by sorne forrn of radiation detector that
scans synchronously with the bearn.
This sequence is repeated at different angles around the subject.
The data acquired consists of a series of "profiles" that reflect the attenuation properties of the
subject scanned at different angles.
Frorn these profiles a transverse section of the subject can be constrncted.

Gene ration of the CT Image
The ability of the CT scanner to reproduce the morphology of the assessed structure in the
reconstructed image depends on the number of physical measurernents taken per unit area.
Analytical determinations have established that the sarnpling "frequency" in reproducing a
structure must be at least 2 to 3 times as fine as the expected resolution of the image. In CT this
requires suitable linear and angular sampling by the X-ray bearn. To achieve this two
configurations are used in the majority of CT scanners: -
• Rotate - Rotate

The X-ray tube and the mny of detectors rotate synchronously about the patient to be imaged .
• Rotate - Stationary Detector A1Tay

Detectors are arrànged in a stationary ring encircling the patient and the X-ray tube rotates
around the patient.

The data is then converted by a computer applied algorithm into an "image" that can be displayed
as an optical image. CT scanners also incorporate the ability to magnify a portion of the image -
zoommg.
Such a process does not improve the resolution of the CT image but may render some details
more perceptible.

223

The CT Image
The image generated represents a slice of selected thickness. This is achieved by collimating the
beam of X-rays produced; the thickness usually is between 2mm and l em depending on the
requirements of each clinical study.
The unit most widely used in expressing the attenuation of X-rays in a CT image is known as the
"Hounsfield Unit". The unit is defined as:

l O00Uw
u - ---

where U is the attenuation coefficient of X-rays of the tissue imaged and Uw is the attenuation
coefficient of water. Positive values represent tissues with attenuation values higher than that of
water and negative values lower.

As the CT image is recorded in digital forrn it is relatively easy to apply a number of manipulations
to improve the perceptibility of potentially diagnostic information. These include adjustrnent of the
window width and level, magnifying a region of interest or producing sagittal or coronal images.

224

Appendix 3 : Magnet ic Resonance lmag ing

Generation and Detection of MRI S ig nais
Stable nuclei that possess an odd number of protons have the property of a magnetic moment.
Therefore if the subject is placed in a strong, uniform magnetic field the effect is that the subject is
rnagnetized very slightly. The magnetic property of the proton has two so-called spin states - one
of these positions is lower in energy and more than half are in this stable position. It takes a certain
arnount of time for polarization to occur. For a simple liquid such as water the process is purely
exponential. Tissue water does much the same thing but can have multiple behavior owing to the
possibility of varying physiochemical states.
The time constant that is the rneasure of the rate of the exponential polarization is known as the:

SPIN-LATTICE RELAXATION TIME or Tl

The Resonance Condit ion
The presence of the applied magnetic field forces a precessional motion on the magnetization
owing to the spin property of the nuclei. The frequency of the processional motion is the magnetic
resonance frequency and is proportional to the strength of the applied magnetic field. This
oscillating field can be presented as a voltage if a coil of wire is placed with its axis perpendicular
to the field. This oscillating
voltage can then be amplified and the MR signal thereby received. To increase sensitivity the
receiver
coil is tuned to be narrowly resonant at the precessional frequency.
To induce an observable signal in the receiver coil a transverse component of the magnetism needs
to exist. To accomplish this another coil tuned to the resonance frequency is placed orthogonal to
both the axes of the first tuned coil and the magnetic field direction.
The signal does not last forever, it decays exponentially.
This time constant is called the

SPIN- SPIN RELAXATION TIME or T2

For an ideal simple liquid the two t i.tne constants T l and T2 are equal; they are never equal in
tissue.

Magnetic Relaxation
The two allowed states for the proton in the presence of the main magnetic field differ in energy,
one being more energetically stable than the other - this state being most likeable to all protons.
At the point that the magnetic field is turned off the nuclei are at an elevated energy state. After a
transrnitter pulse a srnall amount of energy is absorbed by the nuclei. This energy is re-emitted
duri.t1g relaxation to equilibriurn i.t1 the form of heat to the surroundi.t1gs - T l . T2 is where energy
is transforred between the protons but does not leave the spin ensemble as a whole. This occurs
due to small perturbations i.t1 the frequency of procession, with these perturbations bei.t1g different

225

for different protons.
As tirne progresses the protons move less and less in unison and the signal that is induced ù1 the
receiver coil becomes weaker.

Signal Processing

The signal induced ù1 the receiver coil is amplified, filtered and the data sent to a computer where
a spectrum is obtained by a system of Fourier transformation.

Tissue Differences a nd Image Contrast

Small differences ù1 tissue properties lead to visible differences ù1 MR signals. A large body of data
exists that suggests that the single most consistent contributor to o bserved differences ù1
relaxation times of protons in tissue is differences with total water content of the tissues.
T 1 and T2 both ù1crease with ù1creasù1g water content - there are other contributing factors ù1
relaxation times such as transition metal ions which have strong magnetic properties.
Each tissue type is lik:ely to have contributions from these and other mechanisms ù1 differing
proportions.

MRI allows the formation of a wide variety of transverse, sagittal and coronal ùnages of normal
and ab normal anatomy through the use of weak interactions of stable magnetic atomic nuclei.

226

Append ix 4 : Main c lasses

1 1 #

I I # #
I l # class CScene

I l #

1 1 #

class CScene

protected
BOOL Al l Cu t tingPlanesüf f ,

Ant iAlias ing ,
ClockWi s e ,
CullingFace ,
CuttingPlaneOn [6] ,
LightManipulat ion ,
Trans lucenc e ,
SceneBorder ,
ShadeSmooth ;

CCu ttingPlane * CuttingPlaneOb j ect ;
CintL i s t
Cl ight

*Ob j ectsHandleLi s t ;
* Light (8) ; I l Up to 8 lights

CObj ectLi s t * Obj ects ;
float FarPlane ,

MaxObj ect S i z e ,
NearPlane ,
Radius ,

I l L i s t o f obj ects to be drawn

int

TrX , TrY , TrZ ,
Vi s i onFi eld ;
BackColor [3] ,
LightHandle [8] ,
NurnberOfLight s ,
SceneBorderColor [3] ,
WindowHeight ,
WindowWidth ;
WNDDeviceContext ;
GLRenderingContext ;
ghWnd,

I l Champ de vis ion
I l Couleur de fond

HDC
HGLRC
HWND

Las tghWnd ;

I l Window Device context
I l OpenGL Device context

I l Parent window
I l LastParentWindow

BOOL bSetupPixelFormat (HDC hdc } ;
void DefineSceneBorder (} ;
void DrawObj ectAxi s (int Handl e } ;
void Drawob j ectBox (int Handle } ;
float FindRatio (float S zX , float SzY , float Sz Z , float ImportanceRatio } ;
HPALETTE GetOpenGLPalette (HDC hdc } ;
void Ini tial i z eLight ing (} ;
int LoadSurfaceLines (LPCTSTR Connectivi tiesFileName , BOOL ConnectBi n ,

LPCTSTR CoordonatesFileName , BOOL CoordBi n , int Color [3] , float DeltaX , f loat DeltaY ,
f l oat Del taZ , float Importanc e } ;

int LoadSurfaceTriangles (LPCTSTR Connectivi tiesFileName , BOOL Connec tBin ,
LPCTSTR CoordonatesFileName , BOOL CoordBin , int Color (3] , float Del taX , f loat Del taY ,
float Del taZ , float Importanc e } ;

int LoadVolumeLines (LPCTSTR ConnectivitiesFileName , BOOL ConnectBin ,
LPCTSTR Coordonates F i l eName , BOOL CoordBin , int Color (3) , float Del taX , f loat DeltaY ,
float Del taZ , float Importance) ;

227

int LoadVolumeTriangl es (LPCTSTR Connectivi tiesFileName , BOOL connec tBin ,
L PCTSTR Coordona tesFileName , BOOL CoordBin , int Color [3) , float DeltaX , float DeltaY ,
f l oat Del taZ , float Impor tanc e) ;

void NormalCal cul ation (float Vertex1 [3] ,
Vertex3 [3] , float vout [3]) ;

void
void
void
void

public

S etNumberOfEl ements (int Handl e , int NumElm) ;
SetNumberOfNodes (int Handle , int NumNod) ;
Vec torNormali zation (float Vector [3]) ;
DrawBi s () ;

float Vertex2 [3] ,

CScene (float
BackCo lor [3]) ;

~CScene () ;

NearPlane , float Vi s ionF i eld , f loat MaxObj ectSi ze ,

void
int
void
void
void
void

CreateCuttingPlanes (int Colour [3]) ;
CreateNewLight () ;
Del eteCont ext (HWND ghWnd) ;
DrawScene () ;
GetAmbientAndDi f fuseLight (int LightHandl e , int Color [3]) ;
GetBackColor (int BackColor [3]) ;

float

int

void GetConnectivi tyFil einformation (LPCTSTR NodeFil e , long &NumberOfNodes ,
long &NumberOfEl ements , int &NumberOfMaterials , BOOL ConnectBin) ;

vo id GetCuttingPlaneAngles (int PlaneHandl e , f l oat &Angl el , float &Angle2) ;
void
void
void
float
void

BOOL &Far) ;
void

&Depth) ;

GetCuttingPlanes Parameters (int Color [3] , float &Ratio) ;
GetCuttingPlanesTrans lucence (float &Translucence , BOOL &On) ;
GetCuttingPlanesWires (int &NrOfLines , BOOL &On) ;
GetCuttingPlaneTranslati on (int PlaneHandl e) ;
GetLightPo s i tion (int LightHandl e , float &XPos , float &YPos , float &ZPo s ,

GetMaxObj ectDimensions (int Handl e , float &Length , float &Height , float

int GetNumberOfEl ements (int Handl e) ;
int GetNumberOfLights () ;
int GetNumberOfNodes (int Handl e) ;
void
void

&DeltaZ) ;

GetObjectColor (int Handl e , int Color [3]) ;
GetObj ectDel taLoading (int Handl e , float &DeltaX , float &Del ta Y , float

float GetObj ectRatio (int Handl e) ;
void

&AngleZ) ;
void
void
void

&DeltaZ) ;

GetObj ectRo tation (int Handl e , float &AngleX , float &Angl eY , float

GetObj ectScal e (int Handl e , float &ScaleX , float &ScaleY , float &Scal eZ) ;
GetObj ec tSpecular (int Handle , int Color [3] , float &Shinines s) ;

GetOb j ectTranslation (int Handl e , f loat &Del taX , float &Del ta Y , float

f loat GetObj ec tTrans lucence (int Handl e) ;
void
voi d
void
void
void
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

GetPerspec tiveParameter s (float &NearPlane , float &Vi sionField) ;
GetRadius (float &Radius) ;
GetSceneBorderColor (int Color [3]) ;
GetSpecularLight (int LightHandl e , int Color [3]) ;
GetWindowDimens ions (int &Width , int &Height) ;
IsAnt iAlias ingOn () ;
I sCul l ingFaceOn () ;
IsCutt ingPlanes Created () ;
I sCut tingPlaneOn (int PlaneHandle) ;
Is DrawLightOn (int LightHandl e) ;
IsDrawSceneBorderOn () ;
I sFrontFaceCWOn () ;
IsLightOn (int LightHandl e) ;

228

BOOL
BOOL

I s ShadeSmoothOn () ;
I s ShowingCut tingPlaneOn (int PlaneHandl e) ;

BOOL I s TranslucenceOn () ;
int LoadObj ectLines (LPCTSTR ConnectivitiesFileName , BOOL Connec tBin, LPCTSTR

CoordonatesFi l eName , BOOL CoordBin , int Color [3) , f loat Del taX , f loat Del taY , float
Del taZ , float Importanc e) ;

int LoadObj ectPoint s (LPCTSTR CoordonatesFileName , BOOL CoordBin , int
Color [3] , f loat Del taX, f loat DeltaY , f loat Del taZ , f loat Importance) ;

int LoadOb j ec tTriangles (LPCTSTR Connec tivi t i esFileName , BOOL Connec tBin,
LPCTSTR CoordonatesFi l eName , BOOL CoordBin , int Color [3) , f loat Del taX , float Del taY ,
float DeltaZ , f loat Importanc e) ;

int LoadVtkOb j ectLines (LPCTSTR VtkFileName , int Co lor [3) , f loat DeltaX, f loat
Del taY , float DeltaZ , f loat Importanc e) ;

int LoadVtkObj ectPoint s (LPCTSTR VtkFil eName , int Color [3) , f loat Del taX ,
f loat Del taY , f loat DeltaZ , f loat Importance) ;

int LoadVtkObj ec tTr iangles (LPCTSTR VtkFi l eName , int Col or [3] , f loat Del taX ,
f loat DeltaY , f loat DeltaZ , f loat Importance) ;

void
vo id
void
void
voi d
int
void
void
void
void
void
void
void
void
vo id
void
vo id
void

Ang l eZ) ;
vo i d
voi d
void
void
void
void
void
void
vo id
void
void

BOOL Far) ;
voi d
void
void
void
void
vo id
void
void
void
void

MakeCurrentContext (HWND ghWnd) ;
MakeCurrentCont ext (HîrJND ghWnd , HDC hdc) ;
ManipulateLight (BOOL Manipulation) ;
NewCont ext (HTrJND ghWnd) ;
NewContext (HWND ghWnd , HDC hdc) ;
Proc ess Selec t ion (int xPo s , int yPo s) ;
ReleaseCutting Planes () ;
ReleaseLight (int LightHandle) ;
Releas eObj ect (int Handl e) ;
Res etAl lCuttingPlanesRotation () ;
Res etAl lObj ects Rotation () ;
Res etCuttingPlaneRotation (int PlaneHandle) ;
Res etObj ectRo tation (int Handl e) ;
Res i z e (HWND ghWnd) ;
Resi ze (int ex , int cy) ;
Ro tateAll Cutt ingPlanes (float Ang l eX, f loat Angl eY , f loat AngleZ) ;
RotateAllObj ects (f loat AngleX, f loat Ang leY , float AngleZ) ;

RotateCuttingPlane (int PlaneHandl e , f loat AngleX, f loat AngleY , f loat

RotateObj ect (int Handl e , f loat AngleX , f loat Angl eY , f loat AngleZ) ;
S etAl lObj ects Scal e (f loat ScaleX , f loat ScaleY , f l oat ScaleZ) ;
S etAmbi entAndDi f fus eLight (int LightHandle , int Color [3)) ;
S etAxi s Parameters (int Handle , int Color [3) , f loat Length , BOOL Move) ;
SetBackColor (int BackColor [3)) ;
S etCuttingPlaneAngl es (int PlaneHandl e , f loat Ang l e l , f loat Angl e2) ;
S etCuttingPlanesParameters (int Color [3) , f loat Ratio) ;
S etCuttingPlanesTranslucence (f loat Trans lucenc e) ;
SetCuttingPlanesWires (int NrOfLines) ;
S etCuttingPlaneTrans lat ion (int PlaneHandl e , f loat Pourcentage) ;

SetLightPo s i t ion (int LightHandl e , float XPos , float YPos , float Z Pos ,

SetObj ectBoxParameters (int Handle , int Co lor [3) , f loat S i z e) ;
S etObj ectColor (int Handl e , int Color [3)) ;
S etObj ectScal e (int Handl e , f loat ScaleX , f loat ScaleY , f loat ScaleZ) ;
S etObj ectSpecular (int Handl e , int Color [3) , float Shinines s) ;
S etObj ec tTrans lucence (int Handl e , float Transparency) ;
Set PerspectiveParameters (f loat NearPlane , f loat Vis ionField) ;
SetSceneBorderColor (int Color [3)) ;
SetSpecularLight (int LightHandl e , int Color [3)) ;
ShowAll CuttingPlanes (BOOL Show) ;
ShowCuttingPlane (int PlaneHandl e , BOOL Show) ;

229

void
void
void
void
void
void

Del t aZ) ;
void
void
void
void
void
void
vo id
void
void
void
void

} ;

ShowObj ectAxis (int Handl e , BOOL Show) ;
ShowObj ectBox (int Handl e , BOOL Show) ;
ShowSceneBorder (BOOL Show) ;
TranslateAl lCuttingPlanes (f loat Del taX , f loat Del taY , float Del taZ) ;
TranslateAl l Ob j ects (float Del taX , float Del taY , f loat DeltaZ) ;
Trans lateCut t ingPlane (int PlaneHandl e , f loat Del taX , float Del taY , fl oat

Trans lateObj ec t (int Handl e , float Del taX , f loat Del taY , f loat Del taZ) ;
TurnAl l CuttingPlanesOn (BOOL On) ;
TurnAntiAl iasingOn (BOOL On) ;
TurnCull ingFaceOn (BOOL On) ;
TurnCuttingPlaneOn (int PlaneHandl e , BOOL On) ;
TurnDrawLightOn (int LightHandl e , BOOL On) ;
TurnFrontFaceCWOn (BOOL On) ;
TurnLightOn (int LightHandl e , BOOL On) ;
TurnShadeSmoo thOn (BOOL On) ;
TurnTrans lucenceOn (BOOL On) ;
UndoMakeCurrentContext () ;

/ / ## # ## # # # #

! / # #

/ / # class CCuttingPlane
/ / #

/ / #

class CCuttingPlane

(

pro tec t ed
double
f l oat

Equa tion [6] [4] ;
Anglel [6] ,

int
BOOL

void
void
void
void
void
void
void
void
void
voi d
voi d

Angle2 [6] ,
Angl eXRota t ion [6] ,
Angl eYRotation [6] ,
Angl eZRotation [6] ,
Del taX [6 J ,
DeltaY [6] ,
Del taZ [6] ,
Max [6] ,
Min (6] ,

Color (3 J ,
Trans lucence ,

Ratio ;
NumberOfWires ;
Showon [6 J ,

Activated (6] ,
WiresOn ;

DefineBackPlaneTrans lucend () ;
DefineBackPlaneWires () ;
DefineBottomPlaneTrans lucend () ;
DefineBo t tomPlaneWires () ;
DefineEquations (float Min , float
DefineFrontPlaneTrans lucend () ;
DefineFrontPlaneWi r es () ;
DefineLef t PlaneTrans lucend () ;
Def ineLeftPl aneWi res () ;
DefineRightPlaneTrans lucend () ;
DefineRightPlaneWires () ;

230

Max) ;

voi d DefineTopPlaneTrans lucend () ;
voi d DefineTopPlaneWires () ;

public :
CCutt ingPlane (f loat Min , f loat Max , int Colo r [3]) ;
CCuttingPlane (int Color [3]) ;
void Activate (int PlaneHandl e , BOOL Act ivat e) ;
void Draw (int Handl e) ;
voi d GetAngl es (int PlaneHandl e , f loat &Angl el , f loat &Angle2) ;
void GetColor (f loat Color [3]) ;
void GetMinMaxParameters (int PlaneHandl e , f loat &Mi n , f loat &Max) ;
int GetNumberOfWires () ;
float GetRati o () ;
void GetRotation (int Pl aneHandl e , float &AngleX , f loat &Angl eY , f loat &AngleZ) ;
f loat GetTrans lation (int PlaneHandl e) ;
vo id GetTrans lat ion (int PlaneHandl e , f loat &Del taX , float &Del taY , f loat

&DeltaZ) ;
float
BOOL
BOOL

GetTrans lucence () ;
I sAct ivated (int P laneHandl e) ;
I s Showing (int PlaneHandl e) ;

} ;

BOOL IsTrans lucenceOn () ;
vo id SetAngl es (int PlaneHandl e , f loat Anglel , float Angle2) ;
vo id S etColor (float Color [3]) ;
voi d SetMinMaxParameters (int PlaneHandl e , f loat Min , f loat Max) ;
vo id Se tNumberOfWires (int Number) ;
void SetRatio (float Rat io) ;
void S etRotat ion (int PlaneHandle , f loat AngleX , f loat AngleY , float Angl eZ) ;
void SetTrans lation (int PlaneHandl e , float Pourcentage) ;
void SetTranslat ion (int PlaneHandl e , float DeltaX, f loat Del taY , f loat Del taZ) ;
vo id SetTranslucence (f loat Translucence) ;
void ShowCutt ingPlane (int PlaneHandl e , BOOL Show) ;
void TurnTranslucenceOn (BOOL On) ;

/ / #

/ / # #
/ / # class CLight #

/ / # #

/ ! #

c l a s s CLight
(

protected :
f loat AmbientLigh t [4] ,

DiffuseLight [4] ,
SpecularLight [4] ,
LightPos [4] ;

BOOL Lightün ,
DrawLight ;

publ i c :
CLight () ;
void GetAmbi entLight (f loat AmbientLight [4]) ;
void GetAmbi entLight (int &CRed , int &CGreen , int &CBlue) ;
vo id GetDi f fuseLight (f loat Di f fuseLight [4]) ;
void GetDi f fu s eLight (int &CRed, int &CGreen , int &CBlue) ;
vo id GetLightPos (f loat LightPos [4]) ;
void GetLightPos (float &Po sX , f loat &PosY , float &Pos Z , BOOL &Far) ;

23 1

void
void
BOOL
BOOL
BOOL
void
void
vo id
vo id
void
void

} ;

GetSpecularLight (f loat SpecularLight [4]) ;
GetSpecularLight (int &CRed , int &CGreen , int &CBlue } ;
Is DrawLightOn (} ;
I sFar () ;
I sLightOn () ;
SetAmbi entLight (int CRed , int CGreen , int CBlue) ;
SetDi f fu s eLight (int CRed , int CGreen , int CBlue) ;
SetLightPos (f l oat PosX , float PosY , float Po s Z , BOOL Far } ;
SetSpecularLight (int CRed , int CGreen , int CBlue } ;
TurnDrawLightOn (BOOL On } ;
TurnLightOn (BOOL On } ;

1 1 # � # #

I 1 # #

I l # class CReadMeshFi l e
I l #

1 1 # # # ## ## # # # # # #

class CReadMeshFile

protected
long ConnectNumberOfEl ements ,

Connec tNumberOfNodes ,
CoordNumberOfNodes ;

int ConnectNumberOfMaterial s ;
BOOL ConnectNumero tation ,

CoordNumerotation ;
f loat Coordinates [MaxFi l eSi z e] [3] ; I l Array of xyz coord
i f s tream * ElmTextFi l e ;
FILE * ElmBinaryF il e ;

void GetConnectivi tyHeader (char Buffer [J , BOOL &Numerotat ion , long
&NumberOfNodes , int &NumberOfMaterial s , long &NumberOfElements } ;

voi d GetConnec tivi tyLine (char Buf f er [J , long Nodes []) ;
voi d GetConnectivi tyLine (char Buf f er [] , BOOL Numerotation , long &L , long

NumberOfNodes , l ong Node [J , int NumberOfMaterial s , int Mat erial []) ;
void GetCoordinateHeader (char Buf f er [J , BOOL &Numero tation , long

&NumberOfNodes) ;
voi d GetCoordinateLine (char Buf fer [J , BOOL Numerotation , long &L , float &X ,

float & Y , float &Z) ;
void GetCoordinateLine (char Buf f er [] , float &Xl , float &Yl , float &Zl , float

&X2 , float &Y2 , float &Z2) ;
void GetVtkCoordinat eHeader (char Buf f er [] , long &NumberOfNodes) ;
void GetVtkConnectivi tyHeader (char Buffer [] , l ong &NumberOfElement s) ;
void ReadLine (i f s tream f , char Buffer [J , BOOL &End) ;

publ i c
CReadMeshFi l e () ;
void
void
void
void

long &Node3) ;

Clos eBinaryFi l eElements () ;
Clos eTextFi l eE l ement s () ;
CloseVtkFi l e () ;

GetBinaryNodes 3 (unsigned long &Nodel , uns igned long &Node2 , uns igned

void GetBinaryNodes4 (unsigned long &Nodel , uns igned long &Node2 , unsigned
long &Node3 , uns igned long &Node4) ;

void GetConnecti vi tyFil einformation (LPCTSTR NodeFi l e , long &NumberOfNodes ,
long &NumberOfEl ement s , int &NumberOfMa terials , BOO1 ConnectBin) ;

232

voi d GetFi l eConnectivi tyHeader (BOOL &Numerotation , long &Numberü fNode s , int
&NumberüfMaterials , long &NumberüfElements) ;

vo id
void
void
long
long
vo id

GetFi leCoordinatesHeader (long &Numero tation , long &NumberüfNodes) ;
GetMaxXYZCoord (float &MaxX , float &MaxY , float &MaxZ) ;
GetMinXYZCoord (f loat &MinX , float &MinY , float &MinZ) ;

Get s i z eConnectivity () ;
Get S i z eCoordinates () ;

GetTextNodes 3 (uns igned long &Nodel , unsigned long &Node2 , uns igned
long &Node3) ;

vo id GetTextNodes4 (unsigned long &Nodel , unsigned long &Node2 , uns igned
long &Node3 , uns igned long &Node4) ;

vo id
&Node3) ;

GetVtkNodes 3 (uns i gned long &Nodel , uns igned long &Node2 , uns igned long

void GetVtkNodes 4 (uns igned long &Nodel , uns igned long &Node2 , unsigned long
&Node3 , unsigned long &Node4) ;

} ;

float
float
float
vo id
void
void
void
void
void

GetXCoord (uns igned long Node) ;
GetYCoord (uns igned long Node) ;
GetZCoord (unsigned long Node) ;

ReadBinaryF i l eCoordinates (LPCTSTR CoordF i l e) ;
ReadBinaryF i l eElements (LPCTSTR NodeFi l e) ;
ReadTextFil eCoordinates (LPCTSTR CoordFi l e) ;
ReadTextFileElement s (LPCTSTR NodeFi l e) ;
ReadVtkFi l eCoordinates (LPCTSTR VtkFi l e) ;
ReadVtkFi l eEl ements () ;

/ / ##

/ / # #
/ / # class CConver ter #

I l # #
! / ## # # # # # # # # # #

c l a s s CConverter

protected
i f s tream * I Text Fi l e ;
ofs tream * OTextFi l e ;
FILE * Bi naryF i l e ;
int Number ;

void CloseinputTextFil e () ;
void Clos eüutputTextF i l e () ;
vo id GetConnect i vi tyTextFil eHeader (char Buffer [] , BOOL &Numero tation , int

&NumberüfNodes , int &NumberüfMaterial s , int &NumberüfElements) ;
void GetConnec tivi tyTextFi l eLine (char Buffer [] , BOOL Numerotation , int

NumberüfNodes , uns igned int Nodes [] , int NumberüfMaterial s , uns igned int
Material s [)) ;

void GetCoordinateTextFileHeader (char Buffer [] , BOOL &Numerotation , int
&NumberüfNodes) ;

void GetCoordinateTextF i l eLine (char Buf f er [] , BOOL Numerotation , float &X ,
float &Y , float &Z) ;

vo id ReadLine (i f s tream f , char Bu f f er [] , BOOL &End) ;
void SetConnect ivi tyTextFi l eHeader (char Buf f er [] , BOOL Numerotation , int

NumberüfNodes , int NumberüfMaterial s , int NumberüfElement s) ;
void S etConnectivi tyTextFi l eLine (char Buf f er [] , BOOL Numero tat ion , int

NumberüfNodes , uns i gned int Nodes [] , int NumberüfMaterial s , uns igned int Material []) ;
void SetCoordinateTextF i l eHeader (char Bu ffer [] , BOOL Numerotat ion , int

Numberü fNodes)

233

void S etCoordina teTextF i l eLine (char Buf f er [J , BOOL Numerotation, f loat X ,
f loat Y , float Z) ;

void Wri t eLine (o f s tream f , char Buf f er []) ;

publ i c
CConverter () ;
~CConverter (} ;
void Clo s eBinaryFi l e () ;

Clos eTextFi le () ; void
BOOL

TextFile) ;
BOOL

ConvertConnectivi tyFi l eBinaryToText (LPCTSTR BinaryFi l e , LPCTSTR

ConvertConnectivi tyFil eTextToBinary (LPCTSTR TextF i l e , LPCTSTR
BinaryF i l e) ;

BOOL ConvertCoordinateFi l eBinaryToText (LPCTSTR BinaryFi l e , LPCTSTR TextFi l e) ;
BOOL Conver tCoordinateFil eTextToBinary (LPCTSTR Text Fi l e , LPCTSTR BinaryFile) ;
void GetConnec tivi tyBinaryFil eHeader (int &NumberOfNodes , int

&NumberüfMaterial s , int &NumberOfElement s) ;
void GetConnectivi tyBinaryFi l eLine (int NumberüfNodes , uns igned int Nodes [] ,

int NumberüfMaterial s , uns i gned int Mat erial s []) ;
void GetConnecti vi tyTextFi l eHeader (BOOL &Numerotation , int &NumberOfNodes ,

int &NumberOfMaterial s , int &NumberOfElements) ;
void GetConnectivi tyTextFi l eLine (BOOL Numero tation , int NumberüfNodes ,

uns igned int Nodes (J , int NumberOfMat erial s , uns igned int Material s []) ;
GetCoordinateBinaryFi l eHeader (int &NumberOfNodes) ;
GetCoordinateBinaryFi l eLine (float &X , float &Y , float & Z) ;
GetCoordinateTextFi l eHeader (BOOL &Numero tation , int &NumberüfNodes) ;

void
void
void
vo id Ge tCoordinateTextFileL ine (BOOL Nurnero tation , f loat &X , f loat &Y , float

& Z) ;
BOOL
BOOL
BOOL
BOOL
void

NewBinaryFile (LPCTSTR Fil eName) ;
NewTextFi l e (LPCTSTR Fil eName) ;
OpenBinaryF i l e (LPCTSTR Fil eName) ;
OpenTextFi l e (LPCTSTR FileName) ;
ResetNumber () ;

void SetConnect ivi tyBinaryFil eHeader (in t
NumberüfMaterial s , i n t Numberü fEl ement s) ;

NumberüfNodes , int

void SetConnectivi tyBinaryFileLine (int NumberOfNodes , uns i gned int Nodes [J ,
int NumberüfMateri als , uns i gned int Materials []) ;

void SetConnectivi tyTextFi l eHeader (BOOL Numerotation, int NumberOfNodes , int
NumberüfMaterial s , i nt NumberOfElements) ;

void S etConnectivi tyTextFileLine (BOOL Numerotati on , int NumberüfNodes ,
uns igned int Nodes (J , int NumberüfMaterials , uns igned int Materials []) ;

} ;

voi d
void
void
void

SetCoordinateBinaryFil eHeader (int NumberOfNodes) ;
SetCoordinat eBinaryF i l eLine (float X , f loat Y , f loat Z) ;
SetCoordinateTextF i l eHeader (BOOL Nurnerotation , int NumberOfNodes) ;
SetCoordinateTextF i l eLine (BOOL Numero tation , float X , f loat Y , float Z) ;

/ / # # # # # # # # # # # # ## # # # # # # # # # # # # # # # # # ## # # # # # # # # # # # # # #

/ / # #

/ / # class VRMLMaker
/ ! #

/ ! # # # # # # # # # # # # # # # # # ## # # # # # # # # # # ## # # # # # # # # # # # # ; # # #

clas s VRMLMaker

o f s tream * OTextFi l e ;
int Indentation ;

234

pro tected
void
vo id

CBlue) ;
void
void

Nodes []) ;
void
void
vo id
void
void
vo id
vo id
voi d
void
void

CBlu e) ;
void
void
void
vo id
vo id
void
void
void
void
voi d

pub l i c

S etAmbi entAndD i f fuseLine (f loat CRed , f loat CGreen , f loat CBlue) ;
SetAmbi entAndDi f fus eLine (char Buf fer [J , f loat CRed , f loat CGreen , f loat

SetCommentLine (char Buf f er [J , char Comment []) ;
SetConnectivityF i l eLine (char Buf f er [] , int NumberOfNodes , uns igned int

SetCoordinateFil eLine (char Bu f fer [] , f loat X, float Y , f loat Z) ;
SetCu l l ingLine (BOOL On) ;
SetCul l ingLine (char Buf f er [] , BOOL On) ;
SetF i l eLine (char Line []) ;
SetFil eLine (char Buffer [] , char Line [J) ;
SetRotationLine (f loat X , float Y , float Z , f loat Angle) ;
SetRotationLine (char Buf fer [] , f loat X , f loat Y , f loat Z , f loat Angl e) ;
SetScal eLine (f loat SX , f loat SY , f loat S Z) ;
SetScaleLine (char Buffer [] , f loat SX , f loat SY , f loat S Z) ;

S etSpecularColorLine (char Bu f f er [] , f loat CRed , float CGreen , f loat

SetSpecularColorLine (f loat CRed , float CGreen , f loat CBlue) ;
SetShinines s Line (f loat Shinines s) ;
SetShinine s s Line (char Bu f fe r [] , float Shinines s) ;
SetTrans lationLine (float TrX , f loat TrY , f loat TrZ) ;
SetTrans lat ionLine (char Buf fer [] , float TrX , f loat TrY , f loat TrZ) ;
Se tTransparencyLine (f l oat Transparency) ;
S etTransparencyLine (char Bu f f er [] , float Transparency) ;
SetVertexOrderingLine (BOOL ClockWi s e) ;
SetVert exOrder ingLine (char Buf fer [] , BOOL ClockWi s e) ;
Wri t eLine (o f s tream f , char Buf f er []) ;

VRMLMaker () ;
~VRMLMaker () ;
void
void
void
vo id
void
void
void
void
vo i d
vo id
void
BOOL
void
void
void
void
vo id
void

Shinines s ,
vo id

Shinines s ,
voi d
void
void
vo id
vo id

BeginCoordinate3Bloc () ;
BeginindexedFaceSetBloc () ;
BeginSeparator () ;
BeginVRMLFi l e (char Comment []) ;
CloseF i l e () ;
Decrementindentation () ;
EndCoordinate3 Bloc () ;
EndindexedFaceSetBloc () ;
EndSeparator () ;
EndVRMLFi l e () ;
Incrementindentation () ;
NewF i l e (LPCTSTR Fil eName) ;
SetCommentLine (char Comment []) ;
Se tConnec t ivityF i l eLine (int NumberOfNodes , uns igned int Nodes []) ;
SetCoordinat eF i leLine (f loat X , float Y , f loat Z) ;
SetCu l l ingBloc (BOOL On) ;
SetEmptyLine () ;

SetMaterialBloc (float Ambi entAndDi f fuse [3] ,
f loat Transparency) ;

SetMaterialBloc (int AmbientAndDi f fuse [3] ,
f loat Transparency) ;

float Specular [3] ,

int Specul ar [3] ,

S etScaleBloc (f loat SX , float SY , float SZ) ;
SetShapeHint sBloc (BOOL ClockWi s e) ;
SetTranslat ionBloc (f loat TrX , float TrY , f loat TrZ) ;
SetXRo tati onBloc (float Angl e) ;
SetYRotationBloc (f loat Angl e) ;

235

f loat

f loat

void SetZRota tionBloc (float Angl e) ;
} ;

1 1 #

1 1 # #

I l # class CDi splayBinary
I l #

1 1 #

c l a s s CDi splayBinary : publ i c CDialog

{

protec ted :
virtual void DoDa taExchange (CDataExchange* pDX) ;

protec ted :
BOOL ReadBinaryFil e (} ;
void AddCap (BOOL Beginning } ;
vo id DisplayArray () ;
void DumpCubeToFi l e (} ;
void GetExtens ion (int S l i c e , char Extens ion [5) } ;
void Ini tBigArray (} ;
void Ini tCube (} ;
void Inver tRectang l e (int x , int y) ;
vo id RedrawGreyRectangl e (} ;
void RedrawRedSquare (} ;
void SaveBinaryFi l e (} ;
void SaveinfoFi l e (} ;
void SetForSelection (} ;
voi d SetinPicture (int &x , int &y } ;

I l Generat ed mes sage map functions
l l { { AFX_MSG (CDi splayBinary)

I l DDXI DDV suppor t

a fx_msg void OnLButt onDown (UINT nFlags , CPoint point) ;
vi rtual void OnOK () ;
afx_msg void onsaveslices (} ;
afx_msg void Onüthervi ews (} ;
afx_msg void OnValidate () ;
afx_msg void OnPaint (} ;
virtual BOOL Onini tDialog () ;
afx_msg void OnAddcap (} ;
I I) } AFX_MSG
DECLARE_MESSAGE_MAP (}

publ i c :
BOOL m_Inverted ;
BOOL m_I sFirs t Paint ;
BOOL m_I sRedinverted ;
BOOL m_Showslices ;
BOOL m_AddCap ;
CBut ton m_AddCapCtrl ;
CBut ton m_Clo s e ;
CButton m_OtherVi ews ;
CBut ton m_SaveSl i c es ;
CBut ton m_Summary ;
CBut ton m_Validat e ;
CDC * De ;

I l i f red square drawn
I l i f the dlg box i s to be drawn entirely

CDi splayBinary (CWnd* p Parent NULL } ; I l s tandard cons tructor
char Bi gArray [5 1 2) [5 1 2) ; I l the pi cture drawn
CPoint m_TopLeft ;
CProgressCtrl m_Progres s ;

236

} ;

CStatic
CStatic
CStatic
CStatic
CStatic
cstati c
CStatic
CStatic

m_CtrlVolume ;
m_Le f t ;
m_NbSl i ces ;
m_Range ;
m_Reading ;
m_Rear ;
m_S i z e ;
m_Top ;

CS tring FileName ;
CString m_SliceFileName;
CStr ing m_Vo lumeFrac tion ;
double m_Xvalu e ;
double m_Yvalue ;
double xdim ;
double ydim ;
doubl e zdim;
enum (I DD = I DD_DISPLAYBINARY } ;
TCube m_Cube ; I l The 5 0x50x50 cube
uns igned int Di splayindex ;
unsigned int m_Boxsi z e ; I l S i z e o f the sel ection box (should b e 5 0)
uns igned int S tartindex ;
uns igned int S topindex ;
uns igned int xmax ;
uns igned int xmin ;
uns igned int ymax ;
uns igned int ymin ;
uns igned long m_BoneVoxel s ;

class CGLWorkDoc public CDocument

protected :
CGLWorkDoc () ;
DECLARE_DYNCREATE (CGLWorkDoc)
int m_NbViews ;
afx_ms g void OnSceneAddanob j ect () ;
afx_msg void OnObj ectsRenameanob j ect () ;
afx_ms g void OnObj ectsSel ec tanobj ect () ;
afx_msg void OnObj ectsRemoveob j ect () ;
afx_msg void OnFil eMruFi lel () ;
afx_ms g void OnFi l eSaveAs () ;
DECLARE_MESSAGE_MAP ()

public :
BOOL m_ManipulateLight s ;
BOOL m_NewDocument ;
CScene * m_Scene ;
CString GetCurrentOb j ectPath () ;
CString m_ElementFi l e ;
CS tring m_NodeFi l e ;
float m_SpecularObj ectShininess ;
int GetNbVi ews () ;
int m_CurrentObj ect ;
int m_GLObj ect ;
int m_NewObj ectNumber ;
int m_Obj ectColor [3) ;
int m_Specul arObj ec tColor [3) ;

237

} ;

TOb j S truct m_Obj ec tNames (S] ;
UINT m_Nbübj ects ;
virtual ~CGLWorkDoc () ;
virtual BOOL OnNewDocument () ;
vir tual BOOL OnOpenDocument (LPCTSTR lpszPathName) ;
virtual void S erial i z e (CArchive& ar) ;
void
void
void
void
void
void
void
void
void
void
void
void

Addübj ect () ;
DecrementNbVi ews () ;
IncrementNbVi ews () ;
Ini tObj ectNamesArray () ;
Ini tScenePointer () ;
PackObj ectsArray (int KickedObj ect) ;
RemoveCurrentOb j ect () ;
RenameCurrentOb j ect () ;
SetCurrentOb j ec t (int handl e) ;
SetCurrentObjectDisplayType (int displayType) ;
SetCurrentObj ectHandle (int handle) ;
SetupScene () ;

class CGLWorkView publ i c CVi ew

protect ed :
afx_msg BOOL OnEraseBkgnd (CDC* pDC) ;
afx_msg int OnCreate (LPCREATESTRUCT lpCreateStruc t) ;
afx_msg void OnCBNComboBoxSelChange () ;
afx_msg void OnColors Defaultcolor () ;
afx_msg vo id OnColors Setcolor () ;
afx_msg void OnColorsSpecularproperties () ;
afx_msg voi d OnCuttingpl aneOptions () ;
afx_msg voi d OnDes troy () ;
afx_msg void OnDi splayAxi s () ;
afx_ms g void OnDi splayChange () ;
afx_msg voi d OnDi splayLights () ;
afx_msg voi d OnHelpDatainformation () ;
afx_ms g void OnMove (int x , int y) ;
afx_msg void OnQui ckaxi s () ;
afx_msg void OnQuickcolor () ;
afx_msg voi d OnQui ckl ight () ;
afx_msg void OnQui ckmoveleft () ;
afx_msg void OnQui ckmoveright () ;
afx_ms g void OnQui ckres toreangl e () ;
a fx_ms g void OnQui ckro tatex () ;
afx_msg voi d OnQui ckrotatey () ;
afx_ms g void OnQui ckrotatez () ;
afx_ms g void OnQui ckzoomi n () ;
afx_msg voi d OnQuickzoomout () ;
afx_msg void OnRotateGo () ;
afx_msg void OnRo tateGoFas ter () ;
afx_ms g void OnRotateGoSlower () ;
afx_msg void OnRotateSetangl e () ;
afx_msg void OnRo tateSetscal e () ;
afx_msg void OnSceneBackgroundcolor () ;
afx_msg void OnSceneOpt ions () ;
afx_msg void OnSceneSetangl e () ;
afx_msg void OnSceneSetscal e () ;
afx_msg void OnSceneTrans late () ;

238

afx_ms g void OnS i z e (UINT nType , int ex , int cy) ;
afx_ms g voi d OnSp eedFaster () ;
afx_msg void OnSpeedSetspeed () ;
afx_msg void OnSpeedSlower () ;
afx_ms g void OnTrans formTrans late () ;
afx_msg void OnUpdateRotateGo (CCmdUI* pCmdUI) ;
afx_msg vo id OnVi ewAntialias ing () ;
BYTE ColorArray [2 0) [3) ;
CGLWorkView () ;
DECLARE_DYNCREATE (CGLWorkVi ew)
DECLARE_MESSAGE_MAP ()
virtual BOOL OnPreparePrinting (CPrintinfo* pinfo) ;
virtual vo id OnAc t ivateVi ew (BOOL bAc tivate ,

pDeact iveVi ew) ;
CVi ew* pAct ivateVi ew ,

virtual void OnBeginPrinting (CDC* pDC , CPrint info * pinfo) ;
virtual void OnDraw (CDC * pDC) ;
virtual vo id OnEndPrinting (CDC * pDC , CPrintinfo* pinfo) ;
virtual void OnUpdate (CView* pSender , LPARAM lHint , Cüb j ec t * pHint) ;
void Ini tColorArray () ;

publ i c :
BOOL
BOOL
BOOL
BOOL

m_ClockWi s eSorting ;
m_Cull ing ;
m_FlatShading ;

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BYTE
CGLWorkDoc*
CScene*
CS tring
CString

m_AntiAlias i ng ;
m_bRotate ;
m_bTransparent ;
m_MaintainAspect ; / /Must or not the aspects change together
m_ManipulateLights ;
m_MoveAxi s ;
m_ShowAxi s ;
m_ShowBox;
m_CurrentQui ckColor ;
GetDocument () ;
m_Scene ;
m_El ementFi l e ;
m_NodeFi l e ;

float m_Fi eldüfView ;
float
float
float
f loat
f loat
float
float

m_NearPlane ;
m_BoxS i z e ;
m_CurrentXPo s ;
m_currentYPo s ;
m_CurrentZPo s ;
m_MaxAxi s S i z e ;
m_SpecularOb j ectShininess ;

float m_TransparencyLevel ;
int m_BackColor [3] ;
int m_ViewNumber ;
int
int
int
int
int
int
int
int
int
int

m_Angl eValueCX ;
m_Angl eValueCY ;
m_Angl eValueCZ ;
m_AspectX ; / / Aspect ratio on X axi s
m_AspectY ; / / Aspect ratio on Y axi s
m_AspectZ ; / / Aspect ratio on Z axi s
m_AxisColor [3) ;
m_Axis Length ;
m_BoxColor [3) ;
m_Di splayType ;

239

CView*

} ;

int
int
int
int
int
int
int

m_GLObj ect ;
m_obj ectColor [3] ;
m_PresentLocationX ;
m_Pres entLocationY ;
m_Pres entLocationZ ;
m_Ro tationSpeed ;
m_SpecularObj ectColor [3] ;

TCuttingPlane m_Planes [6] ;
TStructLight m_Li ghts [8] ;
virtual ~CGLWorkView () ;
virtual BOOL PreCreateWindow (CREATESTRUCT& es) ;
voi d InitComboBar () ;
void Ini tLight sArray () ;
void Ini t PlanesArray () ;
void
void
void
void
voi d
voi d

GetFloatValues (char Buf fer [] , double &x , double &y) ;
Get intValues (char Buf f er [J , uns igned int &x, uns igned int &y) ;
PrepareScene () ;
Rotate (BOOL bRotate) ;
S etupScene () ;
Tick () ;

240

Append ix 5 : VRM L

This text is exerptfrorn [VRMLSG/97] web pages.

VRML is a scene description language, which describes 3D environments over the Net. When you
access a URL, a "UniqueResource Locator", containing a VRML world, a file is downloaded into
your Web browser. VRML Worlds usually end with the file extention .wrl or .wrl.gz as opposcd
to . html. When your browser sees a file with the .wrl file extension it tells your computer to launch
your VRML viewer.

VRML is an acronym for "Virtual Reality Modeling Language." Just as HTML (Hypertext
Markup Language) is a file format that defines the layout and content of a 2D page with links to
more information, VRML is a file format that defmes the layout and content of a 3D world with
links to more information. Unlike HTML, however, VRML worlds are spacious and inherently
interactive - filled with objects that react to the user and to each other.

VRML allows for information, including links to other pieces of Web content, to be easily
represented in an interactive 3D world. VRML is scalable across platforms ranging from PCs to
high-end workstations, and soon, the Mac. VRML is also bandwidth efficient. Intricate, interactive
3D worlds can be described in worlds that are similar in size to HTML pages.

Most of the time when VRML files are large it is because of motion capture data, animation,
sound, or video, ail of which will be reduced as "streaming media" becomes a reality. Straight
VRML files are actually very small, especially if special optimization steps are taken.

VRML, it's pronounced vur'mel and it's not just another plug-in. To a growing community, VRML
represents the seeds of a new Web. A Web more like the real world -- experiential, interactive,
continuons, and, of course, three dimensional. Its applications span the entire spectrum of both the
arts and the sciences. One current application of VRML is on JPL's Mars Pathfinder mission.

VRML 2.0 is transforming the Web into a medium that is less like reading a magazine and more
like real life. HTML took the Internet and made it accessible to millions of people who are
comfortable with 2D graphical user interfaces. VRML is going to take the Internet and the World
Wide Web (WWW) to the next level by making it accessible to the billions of people who would
rather watch TV than shuft1e application windows. Why VRML?

We naturally organize information spatially. Think of receiving a phone call at your desk. During
the call you write down the person's phone number on a Post-It note and stick it off to your left. A
week later you go to call that person back and you think "where did I put that phone number." In

24 1

your mind, you picture the Post-It and look over to see that it is exactly where you left it. That is
the spatial map that we all have in our heads to keep track of this database called the world.
VRML is the key that will unlock the power of this natural ability to organize the current
chaos of the Web.

Put some order on the current 2D chaos. The current metaphor for the Web is starting to break.
Most people have a bookmark list that runs off the bottom of the page. Even if we were clever
enough to categorize the list, now it runs off the side of our screens .. . Also, take a peek at your
monitor, most of us have multiple application windows open and are constantly trying to shuffle
around to get to what you want. These problems are inherent to organizing information on a 2D
surface. There are only so many pixels to go around. With 3D if you need more space you simply
move forward, or you turn your head. In 3D you get infinite screen real estate for a fmite number
of pixels on the monitor.

Find what you weren't looking for, but wanted anyway Real estate agents have long babbled
"location, location, location." The value of proximity is high in the real world. Locations infer
relationships that we use to organize data. Imagine taking a trip to your favorite restaurant. On
your way to the restaurant, you pass by a new bookstore. Being a book lover, this is of great value
to you and you go inside. You weren't looking for a bookstore, but finding it was a great
diversion. If you had teleported directly from your home to the restaurant, you would have never
found the bookstore. The value came from your travel and from the location of the bookstore
relative to the restaurant.

Researchers and academia have been looking at 3D for years - with the understanding that "it is
just better" said Ed McCracken, CEO of Silicon Graphies. There is no reason that the 3D
metaphors that we use in real life cannot be translated to the computer to help us get what we
want from technology. And there is no reason we should try to constrain ourselves to the accepted
2D interfaces, just because they are already in use. [VRMLSGI97]

242

