Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

Visualization software for 3D trabecular bones as a support for a diagnostic process
a critical application of the Trident methodological framework

Octave, Michaél; Piedigrosso, Johan

Award date:
1997

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/2983593f-daa4-401e-ba04-d8fc75f3c7ae

Facultés Universitaires Notre-Dame de la Paix
Institut d'Informatique
Rue Grandgagnage, B-5000 Namur

Visualization software for 3D
trabecular bones as a
support for a diagnostic process :

A critical application of the
TRIDENT methodological framework
by
Michael Octave and Johan Piedigrosso

Thesis submitted in fulfilment of the requirements for the degree of
Master of Computer Science

Michael Octave
Johan Piedigrosso

Academic year 1996 - 1997

Visualization software for 3D trabecular bones as a support for a diagnostic
process : A critical application of the TRIDENT methodological framework

Authors : Michael OCTAVE
Johan PIEDIGROSSO

Director : Dr Francois BODART, FUNDP, Belgium
Co-Director : Dr Tony S. KELLER, UVM, USA

Training period : Musculo-skeletal Lab

Mechanical Engineering College,
University of Vermont,
Colchester Avenue,

Burlington, VT 05405, USA.

Abstract :

The object of this thesis is to design and develop a Windows NT application for visualizing 3D
objects, and particularly 3D representations of trabecular bones as a support for a diagnostic process.
This application i1s aimed to be used by advanced users, in a research environment. It has been
developed in the Mechanical Engineering Department of the University of Vermont, Burlington, VT,
USA. This application is actually divided in two main programs, the first one is called 3D Surface
Maker and is dedicated to create 3D representation of trabecular bones ; the second one is called
3D Viewer and is able to display several 3D objects, to rotate, transform and cut these objects.

Résumé :

Le but de ce mémoire est de développer une application Windows NT de visualisation d'os en 3D, et
particulierement leur représentation 3D comme aide au diagnostic. Cette application est dédiée a des
utilisateurs expérimentés, dans un environnement de recherche. Il a été développé dans le
Département d'Ingénierie Mécanique de I'Université du Vermont, & Burlington, VT, USA. Cette
application comporte deux programmes distincts, 3D Surface Maker qui crée les fichiers sur les os et
3D Viewer qui permet l'affichage simultané de plusieurs objets 3D, la rotation, et autres

transformations.

Kevwords : 3D, imaging, C++, TRIDENT, HCI, interactive object.

Thanks

We want to give special thanks to people who helped us during our training
and the preparation and the redaction of our thesis. We spent about six months
in the Musculo-skeletal Lab of the Mechanical Engineering College,

in the University of Vermont, at Burlington, Vermont, USA.

Thanks to Dr Bodart and Dr Keller, our advisers,

who helped us to make clear the way we had to work,

Thanks to Dr Vanderdonckt, Mr Leheureux and Mr Leclercq for their invaluable advice,
Thanks to Dr Sullivan for the time he spent and Pascal Goossens for his advise,

Thanks to Mark, Rakesh, John, Michael L., Julie, Blanche, Anne and Michael G.

at the UVM and in Burlington. Their friendship and their fabulous welcome

made our training period a very rich professional and personal experience,

Thanks to Sophie for her support, her good advise and her patience,

Johan and Michael.

Table of Contents

TRANKS ettt 5
TADIE OF COMLBIILS ...ttt eeee ettt ettt e e e ettt e e e e e st e e e e ete e e e e b eeeeeanieeeas 7
Table Of FLZUIES ...t 9
TaAbIE OF TADIES ... e 12
Table Of PSEUAO-COAESoiiiiiiiiiiiii e 12

INtrodUCHION....ccciiiiiiiiiiiiiiiiiiiiiir e s aaa e s 13

PART I: The visualization Processcccuiiiiiiiiiininniiennennneee. 15

Chapter 1 : VisualiZationcccceiviiiiiiiiiiiiiiiiiiiiiicniiiicc et ssan s 17
1. Definition and OTTZINScceieiiiiiiiiiieiee e e e ettt e e ettt e e e e s ae e e e e s ettateeeeeeeeestasssreeeeas 18
2 APDIICALIONS .ot 19
3. Imaging, Computer Graphics and VisSualiZationoooiiiiiiiiiiiiiiiiiiiieeeceeeeee e 19

Chapter 2 : Description of the process for the visualization program..........ccceeeveeiiinieennnnnee. 21
L TIEEOAUCTION L. 22
B 3 PSSP PP RSP 23
3. DISPLAY FEATUIES ...vviieie ittt 33
4. VTK Process - SUrface CONSIITUCLION ...c.uvviieiit coiieiiiiiiiiie ettt 39
5. VOIUME CONSLIUCTIONutitiieiiiiiiit ettt ettt e e ettt ettt e e e e et e et e e enbeb e e eeee s 54
6. 3D Viewer - A vISUQlIZation PrOZIAM . ..uiiiiuiiiiieiiiiiiieee sttt ettt te et iee e e e eieee e 56
7 CONCIUSION. .t ettt ettt e e 74

Chapter 3 : 3D graphics technical considerations..........cccccovvuvviiiiniiiiiiiiiiicnninicniecnee, 77
Lo OPEIGL. . e e e 77
2. The graphics RATAWATIEooiiiiiiiiiiiii e 78

PART II : A critical application of the TRIDENT methodological framework. ..81

Chapter 4 : First Dimension : Graphical User Interface Specifications..........cccocceevvuveriunennne 83
L INErOAUCTION ..t 83
2. TaSK MANALYSIS" . ittt et 84
3. Expressing the product of the task analysiS..........ccoociiiiiiiiiiiiiiiinie 104
A, CONCIUSION . .ttt et e et 134

Chapter S : Second dimension : Presentation Design From Ergonomic Rules.................... 139
L TNEEOAUCTION L 139
2. PU IAENUIICATION 1.ttt et 140
3. WiIndows 1dentifICatION.uiiiiiiiiiiiii e 141

B AT S B CHION et 152

5. Transformation of the AIOS INt0 CTOSoeviiiiiiiiiiiiii e 165

6. CIOs placement and manual edition of the presentationcccveviviiiieriiieeeieee, 166

7. Using an Expert System for Automatic Generation of User Interface...............ccccccoiniinn 176

B COMCIUSION . 1.ttt ettt e e e 179
Chapter 6 : Third dimension : The software architecture derivation.........ccecccovvuviinnniennn. 183

L INEEOAUCLION 1ottt ettt et e e 183

2. Architecture theoretical deSCITPLIONuiiiiiiiiiiiiiiii et 183

3. Hierarchi€s CONSIIUCION. ... ittt ittt ee ittt ettt e ettt e e e 187

O G0 1 1ed L1 (0] D OO P P PR PPPPRRPPI 207
(61372101 753 /R G0 1 T4 13 15 T0) o VO PP 211
Reference BOOKSccuuuuuiiiiiiiiiiiiiiisnnsssssssssssssssssssssssssssssssssnees 215
APPEIAICES coviiiiiiiiiiiiiiiiiiititrr s s aabaa s e s s s s s sssees 218
Appendix 1 : Object Model for VTKccccccciriiiiiiiniiiiiiiiiiieiniseeessssmmmmene 219
Appendix 2 : Quantitative Computed Tomographycccccovviiiiiiniiiininniiiiininn, 223
Appendix 3 : Magnetic Resonance Imagingcccvvvevinniiiiniiiiniinninniennenneen. 225
Appendix 4 : Main ClASSES ...c.ovviiviiiiuiiiieiiiiiiiiiiiiiiiieeereiiiiiieeessissmrsseesssssssssssesssssssssns 227
APPENdixX S : VRIVMIL ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicceensssseesnsssessssssssssssnssessssssssssssssssssssssssses 241

Figure 1-1:
Figure 2-1:
Figure 2-2 :
Figure 2-3 :
Figure 2-4 :
Figure 2-5 :
Figure 2-6:
Figure 2-7 :
Figure 2-8 :
Figure 2-9 :
Figure 2-10

Figure 2-11:
Figure 2-12:
Figure 2-13 :
Figure 2-14 :
Figure 2-15:
Figure 2-16:
Figure 2-17 :
Figure 2-18 :
Figure 2-19 :
Figure 2-20 :
Figure 2-21 :
Figure 2-22 :
Figure 2-23 :
Figure 2-24 :
Figure 2-25:
Figure 2-26 :
Figure 2-27:
Figure 2-28 :
Figure 2-29 :
Figure 2-30 :
Figure 2-31:
Figure 2-32:
Figure 2-33:
Figure 2-34 :
Figure 2-35:
Figure 2-36:

Figure 2-37
Figure 2-38
Figure 2-39
Figure 2-40

Figure 2-41

Table of Figures

Connections between Imaging, Computer graphics and Visualization
Process Scheme

Reading files in the whole process

A 10x10 two-dimensional image array.

Two two-dimensional arrays are seen as a three dimensional array
Image Acquisition System

A typical file format

Displaying images in the whole process

Conversion from 12-bit values to 8-bit values

A 12-bit converted in 8-bit image and its corresponding histogram
: A slice of a trabecular bone

Depth shading method applied to 50 slices

5 slices (left) and 10 slices (right) depth shading images

Base image as displayed with simple depth shading

Three other views of the object shown in Figure 2-13

Cube sides

The VTK surface construction in the whole process

Cell type specification

A drawing and its mesh representation (22 nodes)
Approximation of a curved surface using polygonal facets [WATT96]
Contouring a 2D image with a isovalue of 5

Sixteen different marching squares cases

Fifteen cases for marching cubes algorithm

Construction of a cube with two slices

A dialog box with a histogram (from 3D Surface Maker)

Skin (a) and bones (b) selected regions

CT slice through a human head and its corresponding position
Contouring a CT scan and contouring bones only

Marching cubes applied to two slices. (a) Top view. (b) Side view
Mesh and rendered surfaces

Dynamic Model applied to a basic visualization program

Data flow diagram for the visualization process

Volume mesh construction in the whole process

A surface mesh (a) and a volume mesh from 3dmesh (b)

3D Viewer and its position in the whole visualization process

A scene within its near and far planes

Translation (a), Scaling (b) and Rotation (c) transformations

: Light spectrum

: Ambient (a), diffuse (b) and specular (c) lights

: Working with specular light

: Light positions

: The surface normal

9

t
= L o

o= Mo Mo N NNV, RV UG O N0 U S S S S S S ST U S
O\U\u\-!:-uaoooo\xox-b.mrooooooo\xo\u]pw&ﬁﬁ‘ééé’é&ﬁﬁéﬂggﬁfgﬁaﬁww

Figure 2-42 :
Figure 2-43 :
Figure 2-44 :
Figure 2-45 :
Figure 2-46:
Figure 2-47 :

Figure 2-48
Figure 2-49
Figure 3-1:
Figure 4-1
Figure 4-2 :
Figure 4-3 :
Figure 4-4 :
Figure 4-5 :
Figure 4-6 :
Figure 4-7 :
Figure 4-8 :
Figure 4-9 :

Figure 4-10 :

Figure 4-11

Figure 4-12:
Figure 4-13 :
Figure 4-14 :
Figure 4-15 :

Figure 4-16

Figure 4-17 :
Figure 4-18 :
Figure 4-19 :
Figure 4-20 :
Figure 4-21:
Figure 4-22:
Figure 4-23 :
Figure 4-24 :
Figure 4-25 :

Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4 :
Figure 5-5
Figure 5-6 :
Figure 5-7 :
Figure 5-8 :
Figure 5-9
Figure 5-10
Figure 5-11

Defining vertices order as clockwise and counter-clockwise
Two views for the same document [MSDEV96]

3D Viewer interface with multiple views

Top, rear and right cutting planes

Cutting planes

3D Viewer and an exported file in Netscape®

: Description of modules dependencies

: The whole visualization process

Rasterization for 2 lines [WATT93]

: The toolbox metaphor.

Microsoft Word seen as a toolbox

The diagram of goal and sub-goal decomposition of the 3D visualization task
The diagram of goal and sub-goal decomposition of the management of the scene sub-task
The diagram of goal and sub-goal decomposition of the management of the objects sub-task
The ERA model

Graphical conventions for ACG

Parallel functions

ACG "Creation of a new scene"

ACG "Selection of the current scene”

: ACG "Removing of the current scene”

ACG "Changing the parameters of the scene"

ACG "Geometrical transformation of all the objects in the scene"

ACG "Cutting a part of the scene"

ACG "Management of the lights"

: ACG "Saving into VRML format"

ACG "Addition of an object into the current scene"

ACG "Selection of the current object”

ACG "Removal of the current object from the current scene"

ACG "Changing the name of the current object"

ACG "Getting information about an object"

ACG "Changing the color of the current object”

ACG "Changing the type of visualization of the current object"

ACG "Showing the current object axis"

ACG "Showing the current object box"

Structure of the presentation

Window WO

Windows identification for the PU 1

Windows identification for the PU 2

: Windows identification for the PU 3

Windows identification for the PU 4
Windows identification for the PU 5
Windows identification for the PU 6

: Windows identification for the PU 7

: Windows identification for the PU 8
: Windows identification for the PU 9

67
68
68
69
69
71
74
75
79

—_— = =
O IV O 00 00 00 0 X
S O O 0N A~

—_
%)
O 9 o —

fa—

e T = —_—
[N SO T SO I O N S I S I O R)
~N O O W

—_ =
[SO I O]
~N

—_
[o <N el

—_
O

L S S —y —
£ D D O ot
S O o O

142
142
143
143
144
145
146
147
147
148

Figure 5-12:

Figure 5-13
Figure 5-14

Figure 5-15:

Figure 5-16

Figure 5-17 :
Figure 5-18 :
Figure 5-19:
Figure 5-20:
Figure 5-21:
Figure 5-22:
Figure 5-23 :
Figure 5-24 :
Figure 5-25:
Figure 5-26 :

Figure 5-27

Figure 5-28:
Figure 5-29 :
Figure 5-30:
Figure 5-31:
Figure 5-32:
Figure 5-33:
Figure 5-34 :
Figure 5-35:
Figure 5-36:
Figure 5-37:
Figure 5-38:
Figure 5-39 :
Figure 5-40 :
Figure 5-41:
Figure 5-42:
Figure 5-43:

Figure 6-1:
Figure 6-2 :
Figure 6-3 :
Figure 6-4 :
Figure 6-5 :
Figure 6-6 :
Figure 6-7 :

scene”
Figure 6-8 :
Figure 6-9 :
Figure 6-10
Figure 6-11
Figure 6-12

Windows identification for the PU 10 148

: Windows identification for the PU 11 149
: Windows identification for the PU 12 149
Windows identification for the PU 13 150
: Windows identification for the PU 14 151
Windows identification for the PU 15 151
Windows identification for the PU 16 152
Window W1-2 166
Window W4-1 167
Window W5-1 168
Window W5-2 168
Window W5-3 169
Window W6-1a (standard window) 170
Window W6-1b (Advanced options) 170
Window W7-1 171
: Window WS§-1 171
Window W8-2 172
Window W9-1 172
Window W9-2 173
Window W10-1 173
Window W11-1 173
Window W12-1 174
Window W 13-1 174
Window W14-1 175
Window W15-1 175
Window W16-1 176
Dialog box excerpt from 3D Viewer 177
Dialog box proposed by SEGUIA 178
Another way to place CIOs to add meaning 178
A single line for each option 179
Permanent window : solution 1 180
Permanent window : solution 2 180
Generic scheme of the architecture model 185
Control objects hierarchy 186
Hierarchy of functional objects for the tool "Creation of a new scene" 188
Hierarchy of functional objects for the tool "Selection of the current scene" 188
Hierarchy of functional objects for the tool "Removal of the current scene" 189
Hierarchy of functional objects for the tool "Specifying the parameters of the current scene" 189
Hierarchy of functional objects for the tool "Geometrical transformation of all the objects in the current
190
Hierarchy of functional objects for the tool "Cutting a part of the current scene" 190
Hierarchy of functional objects tor the tool "Management of the lights" 190
: Hierarchy of functional objects for the tool "Saving into VRML format" 191
: Hierarchy of functional objects for the tool "Addition of an object into the current scene” 191
192

: Hierarchy of functional objects for the tool "Selection of the current object”

[l

Figure 6-13 : Hierarchy of functional objects for the tool "Removal of the current object from the current scene” 192

Figure 6-14 : Hierarchy of functional objects for the tool "Changing the name of the current object" 192
Figure 6-15 : Hierarchy of functional objects for the tool "Getting information about an object" 193
Figure 6-16 : Hierarchy of functional objects for the tool "Changing the color of the current object" 193
Figure 6-17 : Hierarchy of functional objects for the tool "Changing the type of visualization of the current object" 193
Figure 6-18 : Hierarchy of functional objects for the tool "Showing the current object axis" 194
Figure 6-19 : Hierarchy of functional objects for the tool "Showing the current object box" 194
Figure 6-20 : Primary hierarchy of control objects relative to the task : one occurrence of CO-W0 195
Figure 6-21 : Primary hierarchy of control objects relative to the task : several occurrences of CO-WO0 196
Figure 6-22 : Pietri network for inter-PU dialog specification 209
Figure 7-1 : The toolbox model 211
Figure 7-2 : Development process for a toolbox model based application 212
Figure 7-3 : Common dialog box based application 213

Table of Tables

Table 4-1 : Parameters relative to the interactive task. 131
Table 4-2 : Parameters relative to the users stereotypes. 131
Table 4-3 : Parameters relative to the workplace. 133
Table 4-4 : Parameters relative to the users stereotypes 136
Table 5-1: AIOs selection for alphanumeric data inputs 154
Table 5-2 : AIOs selection for boolean data inputs 154
Table 5-3 : AIOs selection for integer data inputs 154
Table 5-4 : AIOs selection for elementary data inputs 155
Table 5-5 : Transtormation of the AIOs into CIOs 165

Table of Pseudo-Codes

Pseudo-code 2-1 : Display the first side of the selected region 38
Pseudo-code 2-2 : Display the left side of the selected region 38
Pseudo-code 2-3 : Marching squares algorithm 44

12

Introduction

We spent six months at the University of Vermont, in USA to develop a Windows NT
application for 3D visualization of trabecular bones. This program was written in Visual
C++ using several graphics libraries. At present, this program is used in the Musculo-
skeletal lab of the Mechanical Engineering Department of the UVM.

This application is actually made of two different programs, the first one is called
3D Surface Maker and is dedicated to create 3D representations of objects, in this case
pieces of trabecular bones, the second one is called 3D Viewer and is able to display

several 3D objects, to rotate, transform, light and cut them.
This thesis is divided into two main parts :

First, we describe the visualization process, which includes description of images and
how to display them, a summary of the Visualization Toolkit implemented by Schroeder,
Martin and Lorensen, a 3D graphics library called OpenGL, a description of all 3D
graphics principles needed in a basic 3D application and finally, a brief description of

the 3D Viewer architecture.

The second part is aimed at carrying out an a posteriori and critical application of the
TRIDENT methodological framework developed at the University of Namur for the
design of 3D Viewer, an interactive program. It is supposed to help to realize a non
observed and weakly structured task (a diagnosis task). The program has the
particularity of having permanent windows, case never handled with the methodology so
far. Furthermore, a continuous comparison of this program with a toolbox is brung to

the fore.

Finally we have tried to adapt the TRIDENT approach for the development of
applications, not necessarily 3D imaging ones, but with same characteristics as

3D Viewer : weakly structured task and permanent window.

13

PART 1
The visualization process

The whole process of visualization is detailed in this part. We first
develop the concept of visualization, its definition and origins, its
applications and the distinction between Imaging, Computer graphics

and Visualization.
Then we develop the process of the programs we wrote, in order to

explain basics of imaging and visualization and few technical

considerations.

15

Chapter 1 : Visualization

Visualization is an exploding domain at this time. It is being more anc
more used in so many different fields, and it is mainly thanks to
advances in computer hardware and software technology. Computers
are working faster and faster, graphic cards include special 3D chips
for spatial transformations and memory is becoming cheaper and
cheaper.

Even personal computers offer power to allow 3D graphics to
everyone. New releases of Windows, such as Windows 95 and
Windows NT support 3D graphics, with API' such as OpenGL® and

allow easy programming and power of workstations.

' Application Program Interface: a set of libraries.
2 Open Graphics Library. See below for more details.

17

Chapter 1 : Visualization

1. Definition and origins

As [SCHROEDEROY6] says, "we view visualization and visual computing as nothing less than
a new form of communication. All of us have long known the power of images to convey
information, ideas, and even feelings. Recent trends have brought us 2D images and graphics
as evidenced by the variety of graphical user interfaces and business plotting software. But
3D images have been used sparingly, and often by specialists using specialized systems. Now
it is changing". The goal now is to extend current communication schemes, and to include 3D
graphics in the communication, as it is for words, mathematical symbols and 2D images.

Visualization : "The act or process of interpreting in visual terms or of putting into visual
form" [Webster’s Ninth New Collegiate Dictionary]. The expression of complicated relations
and equations is one magnificent step — insight gained from these relations is another. Today,
computers with graphics can be used to produce representations of data from a number of

perspectives and to characterize natural phenomena with increasing clarity and usefulness.
""Mathematicians couldn’t solve it until they could see it !" [Science Digest, January, 1986,

p. 491.

Visualization has different terminology. Scientific visualization is the field in computer science
that includes the user interface, the representation of data, the processing algorithms and the
visual representation. Data representation is more general than scientific representation, since
it goes beyond the field of the scientists and engineers. Such data sources include financial,
marketing or business data. It is now broad enough to include statistical methods and other
standard data analysis techniques [ROSENBLOEMO94]. A new trend of visualization is
emerging now and is usually called information visualization, which ranges from the display of
file/directory structure on a computer to the hyper-text documents on the World Wide Web.

The origin of visualization as a formal discipline dates to the 1987 NSF report Visualization in
Scientific Computing [MCCORMICKS7], but this field grown rapidly with many conferences,
and the IEEE Visualization which is now well established, but the real origins are much older,
around the eighteenth century with the arrival of statistical graphics even if it really exploded

since the computer era.

18

Chapter 1 : Visualization

2. Applications

The most famous application of the visualization is probably medical imaging, because it is
probably the most impressive, because it can show the «inside » of the human body for
example. Medical imaging is based on different techniques which will be described more
precisely in a later chapter, but we can mention the X-ray Computed tomography (CT) and the
Magnetic Resonance Imaging (MRI). Both these techniques are ways for data acquisition and
allow the capture of the internal anatomy of a living patient.

But the medical imaging is far away from being the only visualization application. The
television and movies industry uses the computer visualization in more and more movies, such
as Jurassic Park or the last Walt Disney’s Toy Story movie.

The engineers also use the visualization in CAD applications like in the automobile domain or
in the fluid simulation systems.[SCHROEDER96]

3. Imaging, Computer Graphics and Visualization

There is confusion surrounding the difference between imaging, computer graphics and
visualization. According to [SCHROEDERY96], we use the following definitions to set the
differences :

* Imaging, or image processing, is the study of 2D pictures, or images. This includes
techniques to transform (e.g. rotate, scale, ..), extract information from, analyze and enhance
images.

e Computer graphics is the process of creating images using a computer. This includes both
2D paint and draw techniques as well as more sophisticated 3D drawing (or rendering)
techniques.

* Visualization is the process of exploring, transforming, and viewing data as images (or other
sensory forms) to gain understanding and insight into the data.

As we can see, all these definitions are linked together, and we can summarize it like shown in

Figure 1-1.

19

Chapter 1 : Visualization

Computer

graphics ——outputs——p Images

- p| Visualization |——uses——-p

Figure 1-1 : Connections between Imaging, Computer graphics and Visualization

Images are usually the results of computer graphics, whereas the visualization uses computer
graphics and their techniques to produce images. One can note that images can be the input
data for the visualization process. The main differences between visualization and computer

graphics are

1.

)

Visualization is most of the time in three dimensions. It doesn’t mean it doesn’t work
with data of two dimensions or lower, but it serves best for higher dimensions. We can for
example easily imagine what a two-dimension array would look like with an image
(computer graphics) but it is usually rather hard to understand a three-dimensional image
representing the evolution of sales for the next year for ten different products.

Visualization concerns itself with data transformation. The meaning of the data is
enhanced by the perpetual transformation of the information (rotations, zooming, ...)
Visualization requires high interactivity with the user, for all the processes of creating,

transforming and viewing data.

In other words, one can say that visualization is an activity that encompasses the process of
exploring and understanding data. [SCHROEDER96]

2(0)

Chapter 2 : Description of the process for
the visualization program

The process described below is the way the programs we developed are
actually working. — This chapter explains the whole process of
visualization in the case of the Musculoskeletal System, however, it can
be applied to any kind of data, as long as this one is in the right
format.

This process includes data acquisition, data display, volume

computation and visualization process in itself.

21

Chapter 2 : Description of the process for the visualization program

1. Introduction

The process starts from images. These images come from different kind of data acquisition
such as Magnetic Resonance or Computer Tomography (§2.2 Images). Once these images arc
entered into computer the goal is to display them. Data is displayed on the computer screen and
the user can select a region he is interested in (§2.3 Display features). The display features
were used in our program in order to display MR’ as well as scanned images. The selection
and three-view features were also implemented to give better idea of the shown image.

The selected region is finally saved as a VTK file* and the opportunity to display three different
views of the same object is given to the user. The smaller region selected is then processed
with filters and specials algorithms for 3D surface construction. A mesh file, that is, a net of
points and lines is then created and can be used in any 3D program such as CAD’ (§2.4. VTK
Process - Surface construction). Using the library, we developed a straightforward small

program to avoid script editions®.

The next step is to fill the surface created with VTK to build a volume, which is carried out
with a UNIX-based program (§2.5 Volume construction). This program was written by John
Sullivan [SULLIVANO9S5] and is command-line oriented. The only problem we found out was
the incompatibility between all different files we handled. A volume mesh file is created and
can be compared with the initial 3D surface mesh.

3 Magnetic Resonance Imaging. See below for details.

* Visualization Toolkit. This is the library developed by [SCHROEDER96] which we used for this part.
Itincludes a lot of algorithms and will be detailed later in this chapter.

* Computer Aided Design

% The 3D Surface Maker program we developed is based on VTK library but is written in the Visual
C++ environment which is much more powerful than the script language provided with VTK.

22

Chapter 2 : Description of the process for the visualization program

Images

v

Display features

v

VTK process |

(Surface construction)

v

Volume construction

3D Viewer
(Visualization)

Figure 2-1 : Process Scheme

A decision is then necessary to accept or reject the volume mesh, depending on the quality of
the 3D volume mesh. Indeed, 3D Viewer allows several surfaces and volumes to be displayed
in the same time and in the same coordinate system, so they can be compared (82.6
3D Viewer, a visualization program). If the volume seems to fit to the initial surface, the
volume mesh is kept and can be used for numerical analysis. 3D Viewer was fully developed in
Visual C++ for 5 months at the University of Vermont. A whole section will be dedicated to
graphics to describe first basics of the components of 3D graphics such as lights or colors then
we will describe briefly a graphic library on which we based to develop 3D Viewer and we will
close this section with a description of the architecture of the software. Each step shown in

Figure 2-1 corresponds to a section in this chapter.

2. Images

This section will develop basics of images and their source. Then we will briefly talk about file
formats since it was and remains a problem between programs and particularly the one we

[\
98]

Chapter 2 : Description of the process for the visualization program

wrote. Finally we will discuss the problem of trabecular bones since it is the problem we
looked into. We will show different images of trabecular bones and show how visualization can
help a diagnostic. As shown in Figure 2-2, the goal of this section in the whole chapter is to

Binary file Read the
slices

read files, and particularly binary files.

Display features

vtk Process
(Surface construction)

Volume construction

v

3D Viewer
(Visualization)

Figure 2-2 : Reading files in the whole process

2.1 Two-dimensional image arrays - Raster data

A two-dimensional image array is simply a matrix of n columns of m rows, where each element
is a point that can be of any color. Figure 2-3 shows an example of a two-dimensional image
array [SCHROEDER96].

Figure 2-3 : A 10x10 two-dimensional image array.

A raster format breaks an image into a grid of equally-sized pieces, called pixels, and records
color information for each pixel [JASC96]. In Figure 2-3, every square is a pixel, some are

24

Chapter 2 . Description of the process for the visualization program

black and the others are white. In that case, the image is only black and white, so each pixel is
1-bit encoded (0 is black and 1 is white). The more colors used, the more bit needed to encode
each pixel. The problem of files encoding will be discussed later.

2.1.1 Voxel Data Sources

When you are talking about two-dimensional images, each element is called pixel. In 3D world,
any element that is part of a 3D object is called a voxel [WATT93], [SCHROEDER96]. Voxcl
stands for volumetric pixel. These voxels are usually built as a sequence of two-dimensional
images, and therefore are seen as three-dimensional arrays, as shown in Figure 2-4.

NN

FEENREEEEE

Figure 2-4 : Two two-dimensional arrays are seen as a three dimensional array

In medical imaging, data are usually acquired as two-dimensional images, but more and more
software are at present developed to build a 3D view of multiple 2D images. One of the
algorithms used to achieve a 3D view — The Marching Cubes Algorithm [LORENSENS7] —
will be discussed later. This section will explain the main three ways of data acquisition in
medical domain. They are Quantitative Computed Tomography, Magnetic Resonance Imaging
and Quantitative Serial Sectioning. It is based on [BRIGGS95].

A. Quantitative Computed Tomography

Computer Tomography (CT) was first developed for intracranial imagery in the late 1960's by
Godfrey Hounsfield. Since then major technical advances have resulted in substantial
improvements in image quality and a marked reduction in scanning time. Tomography has been
used extensively in diagnostic radiology prior to the introduction of CT. The structures in the
tomographic plane remain in focus while those in planes above and below are blurred out. CT
and tomography differ in that CT has the ability to detect more subtle differences in the
absorption and attenuation of x-rays than is possible with tomography [BRIGGS95].

For more details on CT, see Appendix 2. [BRIGGS95]

25

Chapter 2 : Description of the process for the visualization pro gram

B. Magnetic Resonance Imaging

Medical Resonance Imaging (MRI) has rapidly become widely discussed regarding its influence
on medical imaging. For more details on how Magnetic Resonance (MR) signals arc gencrated
and detected, how an image is formed, what general sorts of tissue properties can influence the
signals and thereby give rise to tissue contrast and how the machine parameters can be used to
manipulate the tissue contrast observed in the image, see Appendix 3. [BRIGGS95]

C. Quantitative Serial Sectioning

(QSS) This method is using a camera to digilize sections at a reasonable resolution, which
usually range from 256X256 pixels at a resolution of 0.2mm (i.e. 5 pixels every millimeter).
Trabecular bones images used in our programs are generally coming from this kind of data
acquisition. Since this kind of data acquisition is mainly used in the Musculo-skeletal lab of

Tony Keller, we will develop more precisely the way it works.

1. Specimen preparation

Human lumbar spines are harvested during routine autopsies. Some 9mm x 9mm x 9mm cubic
cancellous bone specimens are prepared from the vertebral centrum using a low-speed diamond
saw. Selection of the samples is regionally random. However, the vertebral regions that have
apparent defects in the continuity of trabeculae due to blood vessels and bone diseases are
avoided. Bone specimens are irrigated with 0.9% saline during machining and following

technical testing, and are stored frozen at -30°C.

The bone specimens are thawed at room temperature for two hours before mechanical testing.
Using a MTS 858 Bionix™ test system, each specimen is nondestructively loaded in
compression (€ mx = 1%) along three orthogonal axes corresponding to the superior-inferior
(SI), anterior-posterior (AP), and medial-lateral (ML) axis. The surfaces of stainless-steel load
platens are polished to a surface flatness of 2 pm cm™ and lubricated prior to testing each
specimen. Load and displacement are recorded at 1 kHz using a Nicolet™ 430 digital
oscilloscope. Displacement are measured by means of crosshead movement and are corrected
for the test machine compliance. A stress-strain analysis program was developed to correct the
recorded displacement, and to determine the elastic modulus, E£. Elastic modulus is computed
from the slope of the stress-strain curves using a strain range of 0.1 - 0.8%.

After mechanical testing, the bone marrow is removed from the specimens using a high
pressure water jet and defatted with several acetone washes and rinses. The marrow-free
samples are then dried in a furnace at 100°C for 1 hour, and weighted on a Mettler AE 163
(Hightstown, NJ) analytical balance. Apparent dry density of the specimens is calculated as the
ratio of the dry weight to the cube volume, the latter measured using a caliper (+ 0.025mm).

26

Chapter 2 : Description of the process for the visualization program

Specimens are then bleached using 3% hydrogen peroxide, embedded in black-colored
polyester resin and centrifuged at 1000 rpm. The centrifuge process facilitates infiltration of
the polyester resin into the pores of the cancellous bone samples. [GOOSSENS95]

Imaging process

In order to obtain a detailed understanding of the bulk variations in bone structurc, bone
specimens are serially sliced along the superior-inferior axis every 20 pm/pixel using a
Reichert-Jung® polycut E microtome. At an image resolution of 20 pm/pixel, 16-bit color
video images of each sectioned surface are recorded using an image acquisition and analysis
system. This image system shown in Figure 2-5 consists of a CCD camera and a Pentium P120
computer with a TARGA™ 16 graphic board and a MIPS program. The TARGA board is able
to convert the image of the CCD camera into a digital screen display of 510 x 480 pixels with
32,768-color resolution. A total of 250 planar digital images spanning 5 mm in depth for each
specimen are obtained producing a 3D 16-bit image array comprised of approximately 50
million 20-pm voxels. For the remaining cancellous bone specimens, only the orthogonal
surfaces are imaged. The 16-bit images are thresholded into white (bone) and black (marrow)
binary images. [GOOSSENS95]

Dual screen display system

CCD video camera

Control monitor

Specimen to capture Targa 16 frame grabber and Pentium P120 computer using MIPS

Figure 2-5 : Image Acquisition System

27

Chapter 2 : Description of the process for the visualization program

2.1.2 File format and sizes

One of the main problems with imaging files is their size. Assuming for example a file of
512X512 pixels, where every pixel is encoded with 12 bits. The size of this file, without any
header, will be 524,288 bytes — because even though each pixel is 12-bit encoded, it must be
saved in 2-byte words. Of course, recent developments in data compression have allowed to
drastically reduce the size of files, however, it remains a serious conccrn. So far, many medical
images are still not compressed, to make data exchange casier, cven i they must have a

particular format.

The format of a file is very important, because it allows interchange of files between people and
programs. Each file should include a header and a data section. The header usually includes a
file format version, a description of data (number of bit per pixel, x and y dimensions, ..) and
the structure of data (e.g. the data may be compressed or not). The data is then added, and can
be in several groups. For example, with a 3D object, all the points describing an object are
defined first, followed by the connections between these points. A model of a file format is

shown in Figure 2-6.

Header

Data

Figure 2-6 : A typical file format

Files coming from MRI or CT scans are usually made up of many slices, representing
two-dimensional images. These files are structured as shown in Figure 2-6. The header
includes the number of bits per pixel and the width and length of the image. Every pixel is then
stored in 2 bytes, because it is encoded in 12 bits, describing a gray-scale value ranging from 0
to 4095, one after the other. The number of bit per pixel is particularly important when it has
to be displayed. For example, let us take an image of 12 bits par pixel, one pixel being stored in
2 bytes. All the values in data file are ranging from 0 to 4095. But one could say every pixel is
using 16 bits, but ranging also from O to 4095. In the first case, every single value ranging from
0 to 4095 represents one and only one gray-scale value, but in the second case, values from 0
to 15 represent the same gray-scale value because 16-bit value stores 16 times more

information then 12-bit value.

28

Chapter 2 : Description of the process for the visualization program

Files we used coming from QSS are 1-bit value pixels. It means they are storing black and
white images. Moreover, the whole set of slices is stored in the same file, so they can be huge.
The format of these files is different, because they are storing a particular set of data, trabccular
bones. Instead of storing every pixel of the image, it is only storing the coordinates of white
pixels (value = 0). So if one takes a look at the file, he will find sets of thrcc values :
(slice_number, x_coordinate, y_coordinate). Even if that format does not nced any specilic
delimiter bctween each slice (because of the slice_number parameter), the size of the file is
much bigger, because of redundant information. Indeed, for every 2 values, a third one is

stored, which takes a third more room.

2.2 Trabecular bones

This section is based on an article written by T. Keller and T. Hansson. Some paragraph have
been shortened but the interested reader can consult [KELLER95] for more details.

2.2.1 Introduction

Osteoporosis, which is characterized by a reduction in skeletal bone mass and concomitant
change in skeletal structure, produces an increased risk of fracture in patients and thus has a
devastating effect in terms of morbidity, mortality and cost of health in our increasing senile
population. Osteoporosis affects both the appendicular and axial skeleton of adults, and is a
well recognized public health problem of increasing proportions. Over 1.2 million fractures
occur in the United States each year, including over 500,000 cases of vertebral fracture, and
200,000 cases of hip fractures, one third to one-half of which occur in women over the age of
65. In the United States, the personal and medical costs associated with osteoporotic fractures
are expected to increase dramatically in the next two decades, since the number of individuals
over the age of 65 has been predicted to double by the year 2010 (1983 United States census).

A close association between bone mineral loss due to osteoporosis and the risk of fracture has
been clearly established. Skeletal structures, such as the vertebral bodies and proximal femur,
which are compromised primarily of trabecular bone appear to be particularly at risk. Thus,
development of clinical diagnostic tools sensitive enough to identify imminent fracture or
collapse of vertcbral bodies and other weight-bearing tissues is essential. Until these tools are
developed, the ability of a clinician to clearly evaluate a patient's bone status, prevent
osteoporosis or determine the effect of therapeutic treatments is severely limited.

Chapter 2 : Description of the process for the visualization program

2.2.2 Epidemiology

The aging skeleton is characterized by a gradual loss mass which decreases bone strength (force
or stress at failure) and increases fracture risk. A more rapid loss of bone mass occurs in
post-menopausal women, and collectively these processes are referred to as primary
osteoporosis. At present time the precise etiology osteoporosis is unknown. Because ol
increase morbidity and immobility produced by hip fractures, many epidemiological studies of
osteoporosis have focused on hip fractures. Until recently, vertebral fractures were deemed to
be of lower incidence and concern than hip fractures. There are, however, no reason why
increases in the incidence of hip fractures should not reflect a similar increasing incidence of
osteoporotic spine fractures. A recent Swedish study found that 43 % of the subjects who had
a hip fracture also had one or more vertebral fractures of an osteoporotic type
(ZETTERBERGY90]. Of note, is the fact that the prevalence of osteoporosis seems to have
become more and more common, particularly in industrialized countries. This increase is partly
explained by the fact that populations in most industrialized countries are growing older but
also by an increased risk. The osteoporotic vertebral fracture is probably the most frequent of
all fragility fractures, particularly if every vertebral fracture in the spine is considered.

Vertebral fracture is about four times more common in women than in men and the risk for a
vertebral fracture has been found to increase almost exponentially with age. The frequency of
osteoporotic vertebral fracture also increases during menopause in women. From this point on
there is a steady increase in vertebral fracture frequency throughout life. In this respect, the
vertebral fragility fractures differs from fractures of the distal radius. The prevalence of the
latter increases at the same age as the vertebral fracture, but levels out after 60-65. An
interesting recent finding is that the increase in risk for a fragility fracture between 1985 and
1991 was almost twice as high for men as for women [ZETTERBERG94]. Depending on the
age groups studied (40 to 80+ years), the prevalence of osteoporotic vertebral fractures varies

from 5% to somewhat over 50%.

Radiographically detectable compression fractures of the spine for most clinicians has verified
the presence of osteoporosis or bones fragility. Without any known pathomorphological
aberrations distinguishing osteoporotic bone from non-osteoporotic bone tissue, the fracture
itself defines pathology. Since the occurrence of a fracture is not only the result of the
mechanical properties of the bone, but is also a function of the fracturing trauma, both factors
must be considered when defining osteoporosis. In the presence of a patient with a recent
fracture, knowing nothing or very little about the patients bone quality or the forces involved in
the trauma, the most practical way for clarifying whether a fracture is osteoporotic or not, is
Harold Frost's criteria of the "everyday trauma". Frost stated that a fracture occurring as a

30

Chapter 2 : Description of the process for the visualization program

consequence of an everyday trauma indicates that the patient has osteoporosis or bone fragility.
Even if the technology today allows us to determine, for example, the amount of bone mineral
in different parts of the human skeleton we still lack practical techniques for measuring the
fracture generating forces. Therefore the "everyday trauma" definition is still a practical

measure for estimating bone fragility [FROST93].

Without any distinct differences between the bone tissue in the osteoporotic versus the normal
subject there are, however, apparent difficulties in assessing the limits for normality. Since
demineralization of the human skeleton is usually a more or less continuous process [rom
relatively early in life, weakening of the skeleton is a part of normal life and aging. An

osteoporotic or fragility fracture occurs in those subjects in which the demineralization
progresses to a level where the spine or other parts of the skeleton no longer can resist an
everyday trauma. In many subjects with spinal osteoporosis the vertebrae may become so
demineralized that they can not resist the spinal loads accompanying everyday life. Since the
amount of bone mineral in combination with the loading conditions determine the occurrence of
a fracture, a subject with a low amount of bone mineral, but no fracture, has osteopenia. A
subject with a low amount of bone mineral and a fracture sustained during a minor "everyday"

trauma is likely to have osteoporosis.

2.2.3 Basic bone physiology

Bone is a two-phase, porous, directional composite material, comprised of hydroxypatite
(inorganic or mineral phase) and collagen (organic phase). In the normal adult skeleton,
hydroxyapatitie constitutes approximately 2/3 of the weight or about 50% of the volume of dry
bone tissue. Bone composition can be described by several histologic variables, including
mineral content, porosity and density. The density (mass/volume) may refer to either the wet
or dry bulk density (mass per unit volume of a region of bulk bone). Bone devoid of pores has
a tissue density or specific gravity of approximately 2g/cm’. Bulk density or apparent density
(pa), however is a mesure of both the porosity and mineral content of bone and range from <

0.1 g/cm’ to approximately 2.0 g/cm”.

All of these histologic variables have been used to describe the composition of bone. From a
morphological point-of-view, two principal types of bone are recognized: cortical and
cancellous. In the adult skeleton, both cortical and cancellous bone have roughly the same
amount of mineral except in metabolic diseases such as osteogenesis imperfecta for which the
mineral content is significantly reduced. Cortical or "compact" bone is generally distinguished
from cancellous or trabecular bone by its lower porosity (<30% pores by volume) and higher
apparent density (> 1.7 g/cm’), and is most prevalent in the shafts of long bones. The ends of

31

Chapter 2 : Description of the process for the visualization program

long bones and the axial skeleton (spine) are comprised primarily of trabecular bones, which in
the case of the axial skeleton has a porosity greater that 70 % or an apparent density less than
0.6 g/cm’. By virtue of its inherent porosity, trabecular bone has an extremely complex
structure or "architecture". Decreases in bone mass associated with aging, inactivity and
menopause have profound effects on the architecture of trabecular bone. Collectively, the
changes or "adaptations" in skeletal mass are architecture are referred to as modcling and

remodeling processes.
2.2.4 Vertebral strength

The spine is a weight bearing structure which, besides protecting the spinal cord and offering
exceptional flexibility and range of motion, must continually support the weight of the torso
and head. Together with everyday activities, these structures must support to a significant
degree, axial compressive forces on the vertebrae and intervening disc tissues. In the L1-L4
lumbar spine this amounts to approximately 50-60% of the subjects body weight.
Consequently, numerous investigators have examined the axial, compressive strength properties
of cadaveric human thoracolumbar vertebrae. Ultimate strength values ranging from about 1 to
15 kN have been recorded in these experimental studies, most of which have examined tissues
from more age subjects (eg. > 40 years). To which extent the inability to obtain specimens
representative of the entire population has influenced these strength values is hard to estimate.
However, it is reasonable to assume that the compressive strength of vertebrae is grossly
underestimated for ages below 50 years. Experimentally, as well as clinically, large variations
in bone strength have made it very difficult to define a specific threshold or even a range with
which to differenciate normal bone from osteoporotic bone. The latter also requires knowledge
of the physiologic forces and stresses which act on the vertebral structures.

2.2.5 Vertebral morphology

Although non invasive measures of bone density are now considered the most effective method
known for predicting fracture risk, these techniques appear to be only about 70% accurate.
Presumably, other material features of bone and supporting structures are needed to explain the
additional 30% of causes of fracture risk. The additional factors play a greater role in the spine,
making bone density less predictable in the spine than in other regions of the skeleton which are
comprised of more dense bone. Trabecular bone researchers currently attribute the
unexplainable variation in mechanical properties to differences in the morphological features of

this tissues.

32

Chapter 2 : Description of the process for the visualization program

In vertebrae, large variations in trabecular density and mechanical properties have been noted
within adjacent regions separated by only a few millimeters [KELLERS9], [KELLER92]. Five
morphological distinct regions of trabecular bone are found in the vertebral centrum : a
superior, 1% transitional, center, 2™ transitional and inferior level. The superior and inferior
sections each occupy approximately 30-35% of the total segment height and exhibit patterns ol
orientation distinct from the center and transitional sections. The transitional and middle
portions of the centrum consisted primarily of the plate-like trabeculae [orming a closed ccll
structure in contrast to the superior and inferior sections of the centrum which consisted
primarily of rod-like trabeculae forming an open cell structure. Trabecular bone structure is
more dense in the inferior and superior sections than in the central sections of the lumbar
centrum. Plate-like trabeculae are associated with the central regions of less dense bone. The
central, plate-like regions of the lumbar spine, therefore, appear to be somewhat unique in
terms of it trabecular architecture. The functional significance of this finding remains to be

determined.

The complex organization and distribution of vertebral trabeculae and trabeculae in other
regions of the skeletal support the generally accepted hypothesis that function directly
influences the structure and strength of bone, a relationship known as Wolff's Law
(WOLFF1892]. From a mechanical engineering standpoint, trabecular bone behaves similarly
to porous engineering materials due to its cellular structure and large energy absorption
capabilities. The distribution of trabecular bone density and mechanical properties within
vertebrae varies along the axis and within the cross section of vertebrae. Some investigators
have reported a variable or heterogenic distribution of trabecular bon tissue physical and
mechanical properties for the vertebral centrum [KELLERS&9], [KELLER92], [KELLER93].
Most of these studies have noted that anterior regions of the vertebral centrum are generally
less dense and less strong than posterior regions. Keller and associates [KELLER92] noted
that the superior and inferior regions of lumbar vertebrae are denser than the central and

transitional regions.

3. Display features

Once data has been digitized and read into the computer, it has to be displayed on the screen.
This section will explain how a binary file, and a set of two-dimensional images can be
displayed on a monitor. The first part will describe the way to display a gray-scale image, using
the useful bits from an image, the second one, an easy method called Depth shading. The third
part will explain the selection process of an area in the image and the usefulness of the
visualization in the selection process. Technical considerations will be discussed in Chapter 3.

33

Chapter 2 : Description of the process for the visualization program

Figure 2-7 shows the goal of the current section and its contribution in the whole process of

visualization.

Images

Display image) Display of the
in depth Selection of a | 3 sides of the
shading smaller region object

k

—
vtk Process
(Surface construction)

Volume construction

3D Viewer
(Visualization)

Figure 2-7 : Displaying images in the whole process

3.1 Gray-scale Images

Gray-scale images are images where every pixel value is a gray level, that is, a color between
black and white. Although the number of gray-scales is infinite (as well as the number of real
numbers between 0 and 1), they are usually encoded in 8-bit or 12-bit values. In the first case,
every pixel is stored in one byte and can take 256 different gray levels and in the second one, it
can take 4096 different values (usually encoded in 2 bytes). Once an image is being read,
depending on how many bit per pixel there are, one or two bytes are read and converted into
gray scales. On a common PC, the largest gray scale is 256, so a 12-bit value has to be
« shrunk » to 8-bit, with a small loss of precision, as shown in Figure 2-8.

34

Chapter 2 . Description of the process for the visualization program

0

1

2 Q
s 1
14 2
15 3
16 4
17

T
255
4095

Figure 2-8 : Conversion from 12-bit values to 8-bit values

The conversion is applied for every pixel of the file, and displayed on the screen. This method
is used for every gray-scale image, when it is to be shown on the screen, for display purpose.
For example, it 1s used in our program 3D Surface Maker to display CT scan images when an
iso-value (cf. Marching Cubes Algorithm) has to be selected using a histogram. A histogram
represents the distribution of the gray-scale values in an image, as shown in Figure 2-9.

: b
2 hH
i1 5
¥ Bricisennet’ T e ok

E 4045

() (b)

Figure 2-9 : A 12-bit converted in 8-bit image’ and its corresponding histogram

The problem of the iso-value and the histogram will be discussed more precisely in Marching

Cubes Algorithm section.

3.2 Depth shading

The method explained below fits over sets of 1-bit slices, if they have to be stacked and look
like a 3D object. It has been used in our program 3D Surface Maker to display a set of slices
read from a binary file, because they have to be displayed in the same time.

Every slice looks like in Figure 2-10. The image is exactly as it is shown, because it is a 1-bit
file, with only black and white dots. Most of pixels are black which means that the current

bone is very porous.

TCT scan of the head, from a sel of 93 slices.

Chapter 2 : Description of the process for the visualization program

Figure 2-10 : A slice of a trabecular bone®

To display a set of these slices, and to be sure the resulting image looks like a volume, we use a
very simple method called depth shading. 1t is based on a principle stating that far objects are
seen darker then close objects. So an easy way to have a set of slices look like a volume, every
slice stacked is given a gray-scale value between 0 and 255, 0 being black and 255 being white.
Every white pixel of slice i will be "painted" with the color ¢; corresponding to the following

formula :

¢ = L 555 where n is the total number of slices.
n

The result of applying this method to a 50 slice volume is shown in Figure 2-11.

Figure 2-11 : Depth shading method applied to 50 slices

Many other methods can be used instead, but this one was chosen for its simplicity of use. The
more slices there are, the more realistic the image looks like. For example, let us compare two
images, the first one with 5 slices and the second one with 10 slices. Because there are not
enough slices to have "good" shading, one can usually see the different gray levels, as shown in
Figure 2-12.

$ Trabecular bone, section of 7.00 x 6.20 mm

Chapter 2 : Description of the process for the visualization program

Figure 2-12 : 5 slices (left) and 10 slices (right) depth shading images

3.3 Selecting a region / a subregion

The next step in the process is to select a region in the whole set of slices, because this set can
be huge, speaking in terms of number of pixels. For example, the file from which the above
images are extracted is 7mm x 6.2mm x 4.02mm, and in term of pixels, 350 x 310 x 201 pixels
that is 21,808,500 pixels ! The region can of course be set up by the user for any value ranging
in [1, max_x_pixels],[1, max_y_pixels] and [l, max_z_pixels], which allows to select
the whole file.

The process of selecting a "good" region is very important, but the depth shading method is not
enough, because it does not allow to see all sides of the selected region without a preliminary
process. Due to the format of the file, this one could not be read another way to display all
sides in the reasonable time, so we use another method to display 3 sides of a selected region,
as shown in Figure 2-13 and Figure 2-14. As the selected region is a set of voxels, it can be
seen as a volume, where each view is one of its side. The three views shown in Figure 2-14 are

the three sides of the cube shown in Figure 2-15.

Figure 2-13 : Base image as displayed with simple depth shading

37

Chapter 2 : Description of the process for the visualization program

Figure 2-14 : Three other views of the ob ject shown in Figure 2-13

—"(a) — L—"(b) /(C)

Figure 2-15 : Cube sides
The simplest method to display sides has been used : first, all the pixels for the selected region

are read and kept in memory into a matrix, say Mijx. The order to display the main image is
explain in the Pseudo-code 2-1:

for (k = z_min; k < z_max; k++)
for (j = y_min; j < y_max; j++)
for (i = x_max; 1 > x_min; 1i--)

Display (i, 7,

GetDepthShadedColor (M[z]))

Pseudo-code 2-1 : Display the first side of the selected region

The above code displays all the selected region, where pixels with a low z value are displayed
first — and so displayed in darker gray levels —, and the greater z value, the lighter gray level.

The way to display any other side of the selected region is to set the parameters (i, j and k) in
different order. For example, the left side (Figure 2-15a) is displayed using Pseudo-code 2-2:

for (i = x_max; i > x_min; 1i--)
for (j = y_min; j < y_max; Jj++)
for (k = z_min; k < z_max; k++)

Display (i, j, GetDepthShadedColor(M([z]))

Pseudo-code 2-2 : Display the left side of the selected region

38

Chapter 2 : Description of the process for the visualization program

3.4 Importance of 3D visualization

As explained above, depth shaded images give the illusion of volume and therefore the uscr
can figure how porous a femur is, when speaking in terms of bones. The fact of giving three
different views of an object confirms the opinion the diagnostic maker could have. Howecver,
the next step is to allow the user to rotate freely the object, to manipulate it in any direction, to
change colors or make a surface translucent in order to really have a good opinion. But this
cannot be done with data structured as pixels images are and this is why the next step is to
transform the pixels images into a mesh, a net of points connected together. These images arc
sometimes called vector images because they are made of pointsin a 3D space and where lines

are vectors.

4. VTK Process - Surface construction

The object of this section is to explain how to build a surface made of lines and points — a mesh
— out of a set of 2D images. This means a transformation from one representation (a set of
pixels) to another one (lines and points in space), and this cannot be done without
approximation. In order to explain basics of 3D graphics, we need to give some definitions.
This section is divided in three different parts. First, we define some concepts which are
commonly used in 3D domain. These definitions are particularly necessary to understand the
second part of this section which explains the Marching Cubes algorithm. The third part of this
section explains the VTK toolkit library we used to develop the program.

Figure 2-16 shows the place and contribution of the VTK surface construction in the whole

process of visualization.

39

Chapter 2 : Description of the process for the visualization program

Images
v
Display features
Filters
- smoothing
- decimation

v

Surface Mesh
file

Vik slice files Vik process

v

Volume construction

v

3D Viewer
(Visualization)

Figure 2-16 : The VTK surface construction in the whole process

4.1 Definitions

There are a lot of useful concepts that could be defined below, however only few of them are
necessary to understand basics. A way to develop them is to analyze them from the smallest to
the most complex one.

A vertex is a single point in a 3D space. According to [SCHROEDER96], it is a OD cell, used
synonymously with point or node. (Figure 2-17a)

A line is composed with two linked vertices. (Figure 2-17b)

Three vertices always define one single triangle (Figure 2-17c) and four of them, when they do

not belong to the same plane, define a tetrahedron. (Figure 2-17d)

) © —® (b)

(c) (d)
Figure 2-17 : Cell type specification

A mesh is a general term for any composition of vertices and lines. An example of a mesh is

shown in Figure 2-18.

40

Chapter 2 : Description of the process for the visualization prograrn

Figure 2-18 : A drawing and its mesh representation (22 nodes)

Figure 2-18 shows a drawing and its mesh representation, after a transformation (usually
contouring the drawing). Any drawing, in 2D or in 3D, can be transformed into its mesh
representation. The mesh representation is also called the polygonal representation.
[(WATTO96] defines the polygonal representation as the classic form in three-dimensional
graphics, where an object is represented by a mesh of polygonal facets. In the general case, an
object possesses curved surfaces and the facets are an approximation to such a surface (see
Figure 2-18 and Figure 2-19)

Figure 2-19 : Approximation of a curved surface using polygonal facets [WATTY6]

4.2 Marching Cubes Algorithm

4.2.1 Problem

Initially, a set of 2D images represents a 3D volume that can be seen as a parallelepiped full of
pixels. An example is shown in Figure 2-4. The problem is the same as in two dimensions. As
long as we deal with pixels images, we cannot enlarge or shrink the images without losing
precision or piece of data. The idea is to transform the set of pixels into a mesh that can be
manipulated easily with mathematical functions while the precision is not changed. Briefly, the

41

Chapter 2 : Description of the process for the visualization program

Marching Cube Algorithm [LORENSENS7] builds a surface mesh from a set of following
slices depending on an intensity value called the isovalue. It uses at least two slices at a time,
and try to find a contour for each of them. Finally, it connects both contours which becomes

the mesh.
4.2.2 Marching Cubes

The Marching cubes algorithm described below was first explained by W.E. Lorensen in
(LORENSENS7]. First, we will detail the algorithm, then we will discuss about the importance
of the isovalue and the help brought by the histogram. To ease the understanding of the
algorithm, we will first detail the algorithm of marching squares, which works for 2D images

only.

A. Algorithm

The first step in the marching squares algorithm is to proceed to contouring for each slice. This
step is very important because it selects what will be part of the mesh and what will be rejected
according to a color value, the isovalue. Indeed, when we see a color picture the eyes can
easily separate similarly colored areas. The process of contouring works in the same way.
Many examples are well known like weather maps where different colors mean different
temperatures or topographical maps where different colors mean different elevation in relation
to the sea level. In medical imaging, different colors correspond to different body tissues like
skin, bones or other organs. We understand better why this process is very important
particularly if we want to study bones or skin. The condition is to have the right isovalue. We

will discuss that problem in the next paragraph.

Let us consider the 2D grid in Figure 2-20 representing a piece of an image where values are
pixel color and let us decide we want to separate values above and below pixel color 5. The
problem lies in the fact that pixels color values of 5 are not present everywhere so we
sometimes need to interpolate. The easiest method is to linearly interpolate so when the
contour must cross an edge where values are 0 and 10 at its two endpoints with a contour line
of five, the contour will cross in the midpoint of the edge. Figure 2-20 shows in light gray the
contour line for contour value of 5, the dashed line shows the contour line for an isovalue of 4.

Once all the points on the edges are generated, they have to be connected. The marching
squares algorithm uses the method "divide and conquer” technique. This method presupposes
that each cell can be crossed by a finite number of ways. The different cases are summarized in
Figure 2-21 where the dark vertices represent a value above the contour value.

42

Chapter 2 : Description of the process for the visualization program

1 “3*& 3

Figure 2-20 : Contouring a 2D image with a isovalue of 5

To better understand the way the Marching Cubes Algorithm works, let us find out how it
would work with the example in Figure 2-20. Each intersection of the lines represent a pixel
where the color value is shown above. Colors of pixel O (left top most) and pixel | (next one
on the right) are both below the isovalue 5, so they are ignored. Proceeding this way, all pixels
in the line are ignored. However, in the second line, between pixels of color 3 and 6, the
isovalue of 5 lies near 6, exactly at 2/3" between pixel of value 3 and 6. In the same way,
between the two lines, the same isovalue goes between pixels of color 6 and 1, exactly at 4/5"
between theses pixels. The algorithm runs from one pixel to another one until it has built up
the full contour.

The number of cases in Figure 2-21 depends on the number of vertices per cell (a cell is a
square made of 4 vertices and 4 lines, like any of the 16 squares in Figure 2-20 or in Figure 2-
21) and the number of inside/outside relationships a vertex can have with respect to the contour
value. A vertex is considered inside, respectively outside, a contour if its scalar value is larger
than, respectively lower than, the value of the contour line. In the present case we have 4
vertices per cell and each vertex can be either inside or outside the contour which gives 2*

possibilities.

3 5 6 7 8

~

| . \

Figure 2-21 : Sixteen different marching squares cases

Each case can be encoded using 4 bits according to the state of every vertex. The algorithm
computes for each cell the 4-bit value and uses the 16 cases lookup table to know which case to
use. When the right case is selected the location of the contour line is computed by

43

Chapter 2 : Description of the process for the visualization program

interpolation. The algorithm processes a cell and then marches to the next one. After all cells
are visited, the contour is completed.

We summarize the algorithm in Pseudo code 2-3. [SCHROEDER96]

For all cells
Select a cell
Calculate the inside/outside state of each vertex
of the cell
Create an index by storing the binary state of
each vertex in a separate bit
Use the index to look up the topological state of
the cell in a case table.
Calculate the contour locations for each edge in
the case table

Pseudo-code 2-3 : Marching squares algorithm

The 3D version of the marching squares is the marching cubes. Instead of 16 cases there are 2°
cases, i.e. 256 possibilities. However, using rotations and mirroring, we can reduce this
number to 15 cases summarized in Figure 2-22.

1 2 3
4 5 6
7 8 9
BI=
> Z
10 11 12
5
N\
BA 1 14 47 15
T ')

Figure 2-22 : Fifteen cases for marching cubes algorithm

Each cube is the result of the superposition of two slices as shown in Figure 2-23.

44

Chapter 2 : Description of the process for the visualization program

Slice k+1 £

Slice k

k] pixel
EL

1

Figure 2-23 : Construction of a cube with two slices

Each slice corresponds to a 2D image like in Figure 2-20. The algorithm processes two slices
at a time. It starts with the first two slices and "marches" through the cubes generated by the
pixels in the two slices. When all points have been connected, the algorithm takes the third
slice and processes it with the second one, and so on for the next ones until the last one. When
all the slices have been processed, the surface mesh is ready.

B. ISO Intensity Value

As we have seen in the previous paragraph, the isovalue is very important and two slightly
different values can give two very different meshes. The example shown in Figure 2-2() shows
the different results with isovalue of 5 and 4. The gray line shows the contour value for an
isovalue of 5, the dashed line represents a contour line for an isovalue of 4. We can easily
imagine the problem in the medical imaging domain. In 12 bit images where values can range
from O to 4095 the selection of the right isovalue can be very complex. A good mesh

representing an organ or bone depends on the selection of the right isovalue.

45

Chapter 2 : Description of the process for the visualization program

C. Histogram

The histogram can help to select a proper isovalue. According to the [AHCS86], a histogram 1s
"a graphic representation of a frequency distribution in which the widths of contiguous
vertical bars are proportional to the class widths of the variable and the heights of the bars
are proportional to the class frequencies." In imaging domain, each class usually corresponds
to a color or a range of colors, and the height ol each bar represents the number of pixels
painted with this color in the image. The histogram can then be uselul when it is visually
connected to the image it represents. For example, one should be allowed to click with his
mouse in the image and the program should show in the histogram the pixel value and so the
total number of so-colored pixels. On the other hand, a single click in the histogram should
show all pixels corresponding to the selected value in the image. Figure 2-24 shows a screen

capture of a dialog box using a histogram.

Figure 2-24 : A dialog box with a histogram (from 3D Surface Maker)

The upper left part of the dialog box represents the image, in this case, a CT scan image from a
human skull. The bottom left part shows the corresponding histogram, where we can observe
three different peaks. The first one starting from the left corresponds to the black part of the
image, which is not useful since out of the skull. The program allows to start the histogram
from any value in the allowed range, so it is possible to skip this part.

The second peak corresponds to the soft part of the skull, that is, the brain, the blood and other
tissues. The third one, which is not very visible, corresponds to the bones and is more spread.
The usefulness of the histogram is straightforward. If we want to apply the marching cubes
algorithm in order to retrieve the bones structure ol a set of slices, we use the histogram to
display the distribution of the colors, then we select the right value corresponding to the bones

46

Chapter 2 : Description of the process for the visualization program

(in Figure 2-24, the value 1150 corresponds to the soft tissues, so the algorithm will keep
bones) and we run the algorithm with the selected isovalue. This is particularly interesting
because two set of slices may have different values for extracting bones. Figure 2-25 shows the
selected regions for an isovalue in the peak corresponding to the soft tissues and for an isovaluc

in the peak corresponding to the bones.

DAFILES\CPPADATA\ID Datathalfl

(a) (b)
Figure 2-25 : Skin (a) and bones (b) selected regions

In the images at the upper left part of the dialog boxes, the light grayed parts corresponds to
the pixel values ranging from -10% to +10% around the isovalue. In the 3D Surface Maker

program, these regions appear in yellow.
4.2.3 A whole example

This paragraph summarizes the current section. The below example is based on a slice set from
[SCHROEDERDY96] and all images have been made from 3D Surface Maker, the program we

wrote.

Slice set
Each slice is part of a set of 93 slices taken from a child skull, from the neck to the middle of

forehead every 1.5 mm. The following image (Figure 2-26) is an excerpt of this set and was
taken perpendicularly to the spine approximately through the middle of the nose.

47

Chapter 2 : Description of the process for the visualization program

Figure 2-26 : CT slice through a human head and its corresponding position

Contouring
As explained above, each slice is contoured and then the algorithm is performed between
several slices. The contouring for the previous slice is shown in Figure 2-27a.

(a) (b)
Figure 2-27 : Contouring a CT scan and contouring bones only

According to the isovalue, only a small part of the contours will remain in the next step. If we
want to retrieve bones out of the image, we get the result shown in Figure 2-27b.

48

Chapter 2 : Description of the process for the visualization program

Mesh
The connections between each image are then produced thanks to the Marching Cubes
algorithm, as shown in Figure 2-28 for two slices (Slice 45 and slice 46).

8

RV R

‘ /"'f:‘f}":‘&,-—w V‘j"‘l{ 5

Figure 2-28 : Marching cubes applied to two slices. (a) Top view. (b) Side view

One can observe the triangles defining the surface created between the two slices.
The whole 3D surface is presented in Figure 2-29. Left image is the mesh surface and the right
one is the rendered surface (see the below Rendering section for more details).

Figure 2-29 : Mesh and rendered surfaces

49

Chapter 2 : Description of the process for the visualization program

4.3 The Visualization Toolkit

This section will describe one toolbox that can be used to develop graphical and imaging
software. There are many toolboxes available but we decided to use the Visualization Toolkit
[SCHROEDERY96] for several reasons. First, this library is free and its code as well as
documentation are available from anywhere on the Web’. Secondly, the toolkit is platform
independent so a program written on a PC can also run on a UNIX-based machine'. This is
particularly interesting when developing medical imaging software because UNIX machines
such as Silicon Graphics workstations are much more powerful speaking in terms of processor

as well as graphical devices.

The VTK toolkit is also written in object oriented code C++ which is very fast and worldwide
spread. The library itself is object oriented written, with abstract classes and derived classes
organized in three categories : common library, graphics library and imaging library. The
common library handles basic operations and objects, like Vertices, Points, Polygons, but also
the Marching cubes algorithm, the Bitmaps and mathematical functions. The graphics library
handles graphical transformations, filters, cameras, lighting, ... Finally, the imaging library is a
new library introduced in 1997 particularly designed to help in image processing. We will
describe the object oriented of the VTK toolbox and the rendering process.

4.3.1 Object oriented

As we already said, the visualization toolkit which we will call VTK from this time onwards is

object oriented. Below we will briefly describe the objects structure.

A. Overview

Object oriented software systems are more and more chosen when deciding for a development
design. They are more modular, easier to maintain and to upgrade and easier to explain and to
understand. On the other hand, they require more rigor and methodology but these are
qualities needed when developing complex programs. Visualization is an example of a complex
program, ever evolving which requires never-ending modifications of the existing system. As

? http://www.cs.rpi.edu/~martink

" This is true as long as the program does not call any proprietary functions. For example, VTK library
supports basic functions to handle windows but these methods no longer work when they are migrated to
another system. Especially, high level functions such as Microsoft Foundation Classes provided with
Visual C++ are not working with X-Window and consequently is not compatible. However, it is
possible to develop a fully functional program working on both systems.

50

Chapter 2 : Description of the process for the visualization program

[SCHROEDERY96] says, "a good software design should be robust, understandable,

extendible, modular, maintainable and reusable".

We can explain these terms as follow : [SCHROEDER96] and [DUBOIS96]

e A robust system would handle exceptional conditions and would behave as expected cven
when used under different circumstances, an understandable system would allow anyonc
different from the implementor to use the program. This means the program should be
logical and follow ergonomic rules for example.

e An extendible system is a system carrying out old tasks while accepting to perform new
ones. This should be done without too many changes in the existing code since the more
changes are made, the more errors are introduced.

¢ A modular system means functions without or with few relationships are not gathered in
same modules and therefore minimizes changes in different modules. They should share
name conventions and protocoles.

* A maintainable system should be thought while designing and developing a software.

e The reusability of programs reduces the work of adding new features whereas the design of
such a reusable software is usually difficult and takes extra time.

"In computer Science, an object is an abstract entiry that embodies the characteristics of a
real-world object. [...] Objects are the result of a programming methodology rather than a
language" [FAISON94]

These objects encapsulate properties and behavior of the entities within a system. Each
object has an identity which distinguishes it from other objects. The major difference between
conventional and object-oriented system is the way they approach data abstraction.
Conventional systems limit abstraction to data typing where object-oriented system create
abstraction for both data typing and methods applied to the data. Inheritance is a mechanism
that eases the addition of new classes when these classes are very similar. This involves a

hierarchical classification of the system we want to develop.

The VTK can be described with the Object Modeling Technique (OMT) developed at General
Electric and explained in [RUMBAUGHO91]. This model uses three models to specify an
object-oriented design: an object model, a dynamic model and a functional model. These three
models are described below and an example is given for each model.

B. The object model

The object model identifies each object in the system, shows its properties and the
reltationships with other objects. Each object is represented with a rectangle where its name is

51

Chapter 2 : Description of the process for the visualization program

at the top, then all the attributes are listed. Finally all methods are shown. Relations between
objects are called associations and are shown with lines connecting relating objects. Like in the
Entity-Relation Model, relations can have ditferent cardinalities'' and association can be labeled
with roles' [BODART93]. Appendix | shows the Object Model for VTK.

C. The dynamic model

Where the object model describes the static part of a system, the dynamic model dctails the
sequence of events and time dependencies of the system. This is specially useful to design
control system and user interfaces where dialog boxes follow other ones in a particular order.
The way the visualization toolkit was written has limited sequence and control aspects,
however, a visualization program, using VIK or any other graphics toolbox is mainly based on
this model, as it will be discussed later. Figure 2-30 shows a basic example of a visualization
program.

Start

Displaying a wireframe
object
Displaying a points cloud
object
Displaying a rendered
object

Figure 2-30 : Dynamic Model applied to a basic visualization program

Each oval in the diagram represent a state where an arrow shows a transition from one state to
another. Once the program starts, the display type is set at "wireframe". If one changes this
type of display, the object is displayed as a points cloud. If the display type is changed again,
the object will be shown as a rendered surface. Changing the display type once more would
show the object as in the first step.

D. The functional model

The functional model shows flows in the system, how data move through the system. The
graphical representation of the functional model is called the data flow diagram. Its major

"' One-to-one, one-to-many and many-to-many.
12 . Lo . . . Lo
Roles are names given to associations and are used to further describe the nature of the association

52

Chapter 2 : Description of the process for the visualization program

components are data sources and processes. Data sources are shown by rectangles and
processes are represented by ellipses. The visualization process of the programs we wrote is
presented in Figure 2-31 in the data flow diagram representation. It has been detailed in the
Visualization Process section. One can observe the different data representations, slices,
triangles, polygons and pixels and the different two ways to display the objects, either the
surface or the volume objects.

CT/MRIQS !__,snces Select a region Stices @
sectioning
Internal representation of slices
Marching Cubes
(Surface extraction)

Triangles Triangles

Write Surface
Polygons

A////
Polygon File |——Polygons 4 Read Polygons Polygons:
~

_ _—

Image shown
on screen

Triangles—»] Triangle File (—Triangles

Volume Rendering

Pixels

Image shown
on screen

Figure 2-31 : Data flow diagram for the visualization process

4.3.2 Volume rendering with VT'K

The process of generating images with computers is called rendering [SCHROEDER96].
[WATTO3] defines rendering as the collection of operations necessary to project a view of an
object or a scene onto a view surface. Indeed, the main problem with 3D graphics is that we
want to display a 3D object onto a 2D surface screen. There are many types of rendering
ranging from simple depth shading method (see above) to sophisticated 3D techniques.

53

Chapter 2 : Description of the process for the visualization program

5. Volume construction

Figure 2-32 shows the place of the volume construction in the whole process.

Images

Display features

vtk Process
(Surface construction)

Surface To Volume Mesh
Volume Sullivan's File
program

3D Viewer
(Visualizalion)

Figure 2-32 : Volume mesh construction in the whole process

5.1 Overview

Once the surface has been built, and in order to use numerical analysis, we apply another
algorithm written by [SULLIVANOS5]. This algorithm takes place in a command-line program
called 3dmesh which runs under UNIX. This is one of the main reasons for which we had to
develop 3D Viewer. Indeed 3D Viewer allows files created with 3D Surface Maker (using
Marching Cubes Algorithm) and the ones created with 3dmesh to be displayed in the same time
and in the same scene'’. This operation allows to compare results of 3dmesh with its inputs,
since there is no other validation process to check results from 3dmesh. This section describes

briefly the program 3dmesh and its main functions.

The mesh generation method is divided mto several steps. The user enters the boundary

geometry, composed of linc segments, at the desired boundary resolution. Nodes are deployed

B See below : The scene and the planes in 3D Viewer - A visualization program

54

Chapter 2 : Description of the process for the visualization program

in the domain by offsetting the initial array of nodes located on the boundary inside inward
along vectors normal to the boundary geometry and processing the resulting new points to
determine new nodal locations. These new nodal locations are offset initiating another cycle.
This sequence of offset-process-offset continues until nodes are deployed throughout the

domain.

Finally, an element connection via Delaunay triangulation is applied to produce the final mesh.

The term layer is used to describe a set of points that are related by their similar depth toward
the interior of the domain from the boundary. The term points is used to refer to the discrete
offset locations in a layer before the locations are processed to determine their final locations.
Nodes are the final, processed locations that make up the actual mesh. A row is represented
by line segments which connect the points in a layer to form a continuous closed loop(s). The
layer of nodes upon which the offsetting process is currently performed is the active layer and
the resulting offset point locations is called a new layer. The active layer is referred to as the
parent of the new layer. A complete cycle of offsetting an active layer to create a new layer
and processing the new layer to determine nodal locations is referred to as a step. At the end of
each step the new layer is ready to become the parent layer for the next step. Portions of the
domain in which nodes have been deployed are referred to as meshed regions. Those regions in

which no nodes have been deployed are unmeshed.

Initially, the unmeshed domain consists of the entire region within the geometric boundary.
Following an offset step, the new layer of nodal locations forms a new interior boundary
surrounding a new domain of unmeshed space. This new boundary layer, and the unmeshed
domain are conceptually and structurally identical to the original boundary and domain and may
be passed trough the offset process again to form yet another layer of nodes. The process is
repeated in sequence until the shape of the new offset layer converges in the interior and the
domain is filled with nodes. During offsetting, the shape of the new offset layer will not be the
same as that of its parent layer or of the original boundary. The mesh density function gives
local control over the deployment. Additionally, offsetting along vectors normal to curved
boundaries causes convergence in concave regions and divergence in convex regions. These
factors coupled with loop intersections change the shape of the working layer.

A sequence of tests which increase in computational complexity are used during the offsetting
process. Neighbor distance tolerance checking is followed by an angle tolerance check with a
loop intersection check performed thereafter. This test sequence rectifies each new layer to
ensure an appropriate node deployment in the domain. [SULLIVAN9S]

55

Chapter 2 : Description of the process for the visualization program

5.2 Examples

The images shown below are exerpt from our program, 3D Viewer.

(a) (b)

Figure 2-33 : A surface mesh (a) and a volume mesh from 3dmesh (b)

6. 3D Viewer - A visualization program

3D graphics are two-dimensional images on a flat computer screen that provide the illusion of
depth, the third dimension. The object of this chapter is not to define all 3D concepts in order
to allow the reader to manipulate them or to develop a 3D program but to be able to
understand the main concepts used in this thesis. In the critical application of the TRIDENT
methodology in the next chapter these concepts are used a lot, that is the reason why we think
an overview can be useful. This chapter is divided in three parts: Main principles section — or

56

Chapter 2 . Description of the process for the visualization program

3D basics — describes the main parts in 3D graphics, the scene, lights, colors, ... The second

section will describe the architecture of the visualization program.

Figure 2-34 shows the visualization process and contribution of 3D Viewer in this process.

Images

Display features

vtk Process
(Surface construction)

Volume construction

Mesh i
‘ Graphics
30 Viewer L—"ipr;maﬁo‘n lransfo?mations
“————
New mesh
Yes—— representation

No

Figure 2-34 : 3D Viewer and its position in the whole visualization process

6.1 Main principles

This section intends to explain the main components of a basic 3D program. Indeed, every
so-called 3D program must include a scene, should include geometric transformations such as
rotations or scaling, colors and lights. We will also talk about views and cutting planes which

seem to be very important in visualization problems.

6.1.1 The scene and the planes

The scene is the first step when building a 3D graphics program. It is where the objects are
displayed and usually physically corresponds to the screen or the window in a multiple-window
environment. Besides the objects contained in the scene, the latter contains two important

objects called far plane and near plane, as shown in Figure 2-35.

57

Chapter 2 : Description of the process for the visualization program

angle of view

<1

eye

Objet of the scene

Near plane

Figure 2-35 : A scene within its near and far planes

Near plane

Near plane is the plane situated between the position of the viewer (i.e. the eye) and the scene,

and any object that is situated between the near plane and the eye is not shown on the screen.

Far plane

Far plane is the plane situated at the end of the scene and from which any object situated further

is not shown.
6.1.2 The geometric transformations

Geometric transformations are useful if modifications on the objects are needed. For example,
the object shown on the screen can hide something behind itself and we may want to rotate it to
check up. The most common transformations in 3D graphics are Rotation, Scaling and
Translation. Since 3D graphics are made of vertices, and each vertex is made of 3 coordinate
points, the obvious way to handle these transformations is to work with matrices. These
transformations are summarized in Figure 2-36.

A4

|
(a)

Figure 2-36 : Translation (a), Scaling (b) and Rotation (c) transformations

Chapter 2 : Description of the process for the visualization program

Transformation matrices [SCHROEDERY6], [WATT93] and [WRIGHTY6]

Using matrix notations, a point P is transformed under

e translationas P'=P+ T (2-1)

e scalingas P'=PS

e rotationas P'=PR
where T, S and R are respectively a vector of translation, a matrix of scale lactor and a matrix
of rotation. This works fine as long as we are working with simple 3D objects without any
perspective considerations. Indeed, to give perspective effects, we need to add a fourth
element. So where a Cartesian point is defined as P = (x, y, z), a point represented in its
homogeneous coordinates is defined by a four element vector (x, y, z, w) [SCHROEDER96]
(WATT93]. Therefore, any transformation matrix will be 4 X 4 matrix.

The conversion between Cartesian coordinates and homogeneous coordinates is given by (2-2)

Xy h Zy
X = — y = "Y‘_‘ 7, = = (2'2)
Wi Wi Wi

Object translation

Translating an object can be useful when one wants to move it from one place to another, for
example to superpose objects or on the other side to show two superposed objects. To create
a transformation matrix that translates a point (x, y, z) in Cartesian space by the vector (ty, t,

t,) we need to build the translation matrix

1 0 0 1,
01 0 ty]

=1y 01 t, (2-3)
000 I

and then multiply it with the homogeneous coordinate (xn, Yn, Zn, Win). We don't need to set a
value for w, which controls perspective aspect but we can set it at a value of 1 (no perspective
effect).

The translation of only one or two axis is possible when setting the other values to 0. For

example, to translate on the X axis only, t, and t, are worth O in the matrix Tt shown in (2-3)
The translated point (x', y', z') in homogeneous coordinates is obtained as shown in (2-4).

59

Chapter 2 : Description of the process for the visualization program

1 [1 00 r][x

y' 01 0 #]|»

21710 01]z (24)
w100 0 1T

Using (2-2) to get the Cartesian coordinates, we have the right result :

X =X+ L (2-5)
Y =y+y

Z=z+t

Object scaling

Scaling an object can be useful in two cases. First of all, it has the same effect as zooming since
one can shrink or enlarge the object to fit its needs. Secondly, scaling can be useful when
working with multiple objects and these ones are not the same size or the same scale.

Let's take a point (x, y, z) and apply a scaling factor of (s, Sy, S;). The transformation matrix is

s 0 0 0
0 s, O
7;, = ! (2_6)
0 0 s, 0
0 0 1
Just like with translation, the new point is obtained as shown in (2-7)
X' (s, 0 0 O] [x]
y' 0 s, 00
Y2 , |y 2-7)
Z 0 0 s, O]z
w' | 0 0 0 1]]1
and using (2-2), the Cartesian coordinates are :
X' '=8:X (2-8)
y' =38y
7 =8,2

Note that scaling only on one or two axis is also possible by setting s; to value 1.

Rotation of an object
Rotating an object can be useful to check all sides of the object. Since rotation is a little bit

more complicated than the other two transformation aboves, we will describe rotation around

60

Chapter 2 : Description of the process for the visualization program

one axis at a time.
Torotate an object around the X axis by angle 6 we use the matrix 7, :
B 0 0 0
0 cos® sinB® O

TR*: 0 —sin® cos® 0 (2-9)

0 0 0 1

T, and T, rotation matrices are shown in (2-10)

"cos® 0 —sin® O] " cos® sin® 0O 0
0 1 0 0 —-sinB cos® 0O O
T =\sin0 0 cos8 0" 0 0 10 @-10)
0 0 0 L | 0 0 0 1]
The matrices in (2-10) correspond to the three equations systems shown in (2-11a,b and c)
x'=x
y'=cos0+zsin6 (2-11a)
Z'=—ysinB+zcosH
Xx'=xcosO—zsinBO
y'=y (2-11b)
Z'=xsinB+ zcosO
x'=xcosB+ ysin®
y'=xsinf®—ycos6 (2-11c)
z'=z

The global transformation matrix corresponds to a transformation of the axis x-y-z to a new
axis x-y-z'. We assume the axis x makes the angles (Oy, Oy, Oy,) around the axis x-y-z.

Similarly, the y' axis makes angles (Byy, 0., 6,,) and z' makes the angles (Ozx, 2y, 022).

We finally obtain the following matrix :
cosB,, cosO,., cosB. O

cosO,.. cosB,, cosb,, 2-12)

R

0
cosB., cosb,, cosB.. 0O
0 0 0 L

61

Chapter 2 : Description of the process for the visualization program

Combinations of transformations

The previous transformations (scaling, translation and rotation) can be combined to represcnt
all type of transformations simultaneously. For example, a translation matrix M; applied to a
point and then a rotation matrix M, applied to the result is represented in (2-13)

X1 1 0 0 ¢1]]x

Ry

y' 010 tol]y

1710 01 2]z
_w'ﬁ _O 0 0 1 W

N

"x"] [cosb,, cos6,, cosB,. Of[x"] @-13)
y" cosB,, cosB, cosB. Of|)
2|~ cos6,, cosb, ~cosB,. 0 |z

W' 0 0 0 L [w

or in the algebraic form :

X'=T-X (2-14)

XH:R‘XI

With matrix multiplication, we can have it simplified as shown in (2-15)
X'=R-T-X (2-15)
However the user has to keep in mind the computational aspect of matrix multiplication (O(n?))

for every point to transform !
6.1.3 The (objects) color

Color has now all its importance. All computers are sold with high quality 16 million color
monitors and nobody could work anymore with a black and white word processor or
spreadsheet. It is even more true when talking about computer graphics.

A. Importance of colorin visualization

Visualization is based on showing, displaying objects on a screen in order to help to understand
problems, to get quick idea or to support a decision. A quick look into an array of numbers is
easier when negative numbers are shown in red for example. In medical imaging, bones and
soft tissues are more easily distinguished when bones are shown in one color (e.g. gray) and
soft tissues m another. This is one reason for which we decided to allow to change color for
any object in the program, i.e. any object in the scene, any axis or any bounding box.

B. Components of the color

Color is a wavelength of light that is visible to the human eye.[WRIGHT96]. Wavelengths of

62

Chapter 2 : Description of the process for the visualization program

visible light range from 390 nanometers for violet to 720 nanometers for red, this range being
usually called the spectrum. Figure 2-37 shows the light spectrum ranging from violet to red

going through blue, green and yellow.

Purple Blue Green Yellow Red

390 nm 720nm

Figure 2-37 : Light spectrum

Computers use two different methods in coding color. The first one is called RGB and
represents colors based on their red, green and blue intensities. It can be seen as a 3
dimensional space with red, green and blue axes. The second method is called HSV for hue,
saturation and value (brightness). We used the RGB model because it is implemented in most

of programming languages.
6.1.4 Lights

Lights are very important in a scene, when displaying an object. In fact, this is probably the
most important thing in the process of displaying an object. Indeed, if there is no light, the
object will be black, and as [SCHROEDERY96] says, this object will be rather uninformative.

[SCHROEDERY96] and [WRIGHT96] agree that the reason that lights are so important is that
the interaction between the emitted light and the surfaces of the objects defines what we see.
Beside colors, lights bring other effects such as shininess or shading and make the objects look
more realistic. When dealing with lights in a program like in 3D Viewer, one has to work with
a lot of parameters which are not always easy to tune. The light that illuminates an object is
often composed of ditferent light components, the ambient, the diffuse and the specular ones.
Once the type of light has been chosen, the right position has to be set, in the three-dimensional

space

A. Parameters of the light

1. The ambient parameter

[WRIGHTO96] defines an ambient light as a light that does not come from any particular
direction. It comes from a source, e.g. a bulb, but the rays have bounced so many around the
room that they become directionless. A consequence of this is that objects hit by ambient light

are evenly lit on all surfaces.

63

Chapter 2 : Description of the process for the visualization program

2. The diffuse parameter
A diffuse light comes from a particular direction but is reflected evenly off a surface
(WRIGHTO96], but the surface will be brighter if the angle made by the light rays with the
object is closer to 90° than to 0°.

3. The specular parameter

Specular light is directional as diffuse light, but is reflected sharply and in a particular dircction.
A specular light tends to cause a bright spot on the surface and rays are parallel. Common
examples are the sun or a laser beam. Figure 2-38 shows examples of ambient light, diffuse

light and specular light.

(a) (b) (c)

Figure 2-38: Ambient (a), diffuse (b) and specular (c) lights

The effect of specular light is shown in Figure 2-39, where the object, a body trunk, is
displayed in 3D Viewer interface. The first image corresponds to all lights off, the second one,
to one light on, where its specular component is set to 0, the third one, the specular component
set to 128 and the last one, the specular component is set to 255 (maximum value). Usually,
light components are defined in RGB components, however, we decided to define the specular
component in gray scales, because the specular component acts like a shininess component.
Specular, diffuse and ambient parameters are components of lights but can appear in different
values. Therefore, a light can be composed of only one or two components.

64

Chapter 2 : Description of the process for the visualization program

Figure 2-39: Working with specular light

4. The position of a light

The light position can be important when showing a complex object where parts of it are
shadowed by other parts of the object. The position of a light is a coordinate in 3D space, i.e.
(x1, yi, z1). However, an effect can be given if one wants to give the impression of a light
coming from infinite, like the sun. The far parameter creates a light where all rays are parallel
but where the direction has to be specified. Figure 2-40 shows the same object where the light
position has changed. The position of the light is represented by a black dot. The new position
of the light allows the user to see the right part of the human body face.

Figure 2-40 : Light positions

B. Material properties
As [WRIGHT96] explains, lights arc only part of the equation. Objects have a color, and an
object color means that this object reflects this color and absorbs the others. For example, a
red car reflects most of the red component of the light, and absorbs most of the others. In
most of cases, a white light hits the objects and therefore they appear in their "real" color, but a

65

Chapter 2 : Description of the process for the visualization program

blue ball in a dark room illuminated with a yellow light would appear in black because the ball
would absorb the yellow component. So objects have also properties like lights. As
[WRIGHTY6] says, we have to talk in terms of reflective properties for ambient, dilfusc and
specular light sources. Determining the specular aspect of an object amounts to determine how
the object reflects the specular component of the light. Likewise, determining thc ambicnt or
the diffuse aspect of an object amounts to determine how the ambient or diffusc components ol
the light are reflected by the object. [WRIGHT96] suggests however to consider ambient and
specular components being equal.

So when defining an object we have to specify its "reaction” to lights. For example, setting the
shininess of an object will lead the object to reflect more or less light. The transparency can be
a very useful tool when working with a composite object. For example, making the skin
transparent can help visualize bones through the skin while keeping an eye on it, in order to see

external damage.

C. Surface Normal

When the 3D representation of a piece of trabecular bone is visualized as a surface made up of
plain triangles, the notion of normal to a surface is important if lighting is used. The normal
to a surface determined by 3 vertices of a triangle helps to determine the angle of reflexion of a
light ray reflecting on the surface at one point. (Figure 2-41)

Normal
ry

Figure 2-41 : The surface normal

The normal to a surface is a vector perpendicular to the surface and having a direction. When a
light ray is touching the surface at one point, with an angle & with the normal, the light ray is
reflected by the surface and the reflected ray has an angle ¢« with the normal. The direction of
the normal is an important characteristic since in the case of triangles, it determines which side
reflects the light rays. If the normal of a triangle belonging to a surface is going to the outside
of the object and the normal of another triangle of the same surface is going to the inside of the

66

Chapter 2 : Description of the process for the visualization program

object, then an observer outside the object will see some triangles reflecting light and some

others reflecting nothing (because they are reflecting light inside the object).

So all normals should go outside the objects. It is the reason why all triangles should be
defined in the same way in a file (clockwise or counter-clockwise) because the way a triangle is
determined has an influence on the normal direction (see Figure 2-42). The first triangle is
defined as triangle (a, c, b), 1.e. in clockwise order, and the other is defined as triangle (a, b,
¢), 1.e. in counter-clockwise order. In our program, the user has the opportunity to change the
convention (clockwise or counter-clockwise) depending on the convention used in a particular
file containing the surface description of objects so the program computes the normal for each
triangle in the right direction [WRIGHTO96], [WATT93].

a a
.'N

C

Clockwise Counter-clockwise

Figure 2-42 : Defining vertices order as clockwise and counter-clockwise

6.1.5 Views

The view of the scene 1s exactly what we see when we look at the window. It allows to see the
scene between the near plane and the far plane. [SCHROEDER96] uses the term of camera
when speaking about the view, since we can imagine a camera moving around an object and
what we actually see is what we would see on a TV screen. Multiple views of the same object
can be very useful, as lights and colors. Figure 2-43 shows the principle of a multiple view
program. The program owns only one document (data) but is able to show it in different ways.
A word processor for example would show in the first view the text in the way it would be
printed, and another view that would be the text without any formatting, to increase the speed.

Indeed, the user can visualize the same object {rom the front side and the rear side in the same
time. 3D Viewer doesn't limit the number of views, and every view can even receive diflerent
attributes, such as a different color or a different position in the 3D space (i.e. operations like

rotation, translation and scaling can be applied to any view independently)

67

Chapter 2 : Description of the process for the visualization program

Document v
= View 1

Figure 2-43 : Two views for the same document [MSDEVY6]

Figure 2-44 shows the interface of 3D Viewer where the same object is displayed in two
different windows with a different position in space and a different type of display (mesh and
rendered surface).

Figure 2-44 : 3D Viewer interface with multiple views

6.1.6 Cutting planes

Cutting plane is the last important feature we included in 3D Viewer. A cutting plane is a plane
that cuts an object — or more often the whole scene — and removes everything that is above or

68

Chapter 2 : Description of the process for the visualization program

beneath, depending on settings. This feature allows to view inside an object that would be
usually closed. We allow up to 6 different cutting planes, one for each side of the scene. Each
of these planes can be manually set with a position in the scene, an angle, and different
parameters allowing to show or not the plane, to cut or not the part of the scene.

Figure 2-45 shows the scene as shown in Figure 2-35 and three of the six cutting planes
available. The top cutting plane can be lowered from its initial position to the initial position ol
the bottom cutting plane; the right cutting plane can be slid from its initial position to the initial
position of the left cutting plane; the rear cutting plane can be pulled from its initial position to

the initial position of the front cutting plane; and so on.

Figure 2-45 : Top, rear and right cutting planes

Figure 2-46 shows the same object (a small piece of bone of 2mm x 2mm x 2mm) displayed in
3D Viewer. The first image is the normal object, one cutting plane is showed in the second
image and the plane cuts the half top of the third image.

Figure 2-46 : Cutting planes

6.2 Program architecture.

As explained in [DUBOIS96], we will explain the architecture of the program, and especially
the modularization which we think is enough to understand main parts of the program and how

69

Chapter 2 : Description of the process for the visualization program

they work together. First we will detail briefly main modules developed in 3D Viewer then we
will show how they communicate and interact. Each module interface can be found in
Appendix 4.

6.2.1 Main modules

The modularization has been done following two principles of cohesion :

e cach module contains functions having same semantic or sharing same properties

e cach module is object oriented

In future each module will be called an object because all of them actually are objects.

A. CScene

This is the most important object in the program. It contains™ all the objects to be drawn, all
parameters of the scene, such as lights, cuttings planes and far and near planes. This object is
one of the biggest because the interface part of the object contains more than hundred functions
allowing to change these parameters. Among these functions — also called methods — is the
DrawScene" function which is called most of the time after each use of a dialog box allowing
to change parameters. For example, when the dialog box for rotation is showed up and new
parameters are entered, the scene has to be redrawn to take new changes in account.

B. CcCuttingPlane

This object contains properties and methods for each of the six planes. Each plane is defined
according to an equation which can be modified through a dialog box into the program. This
object was one of the most difficult to write because of its complexity and poverty of
documentation.

C. CLight

Like CCuttingPlane, this object contains properties and methods to describe each of the eight
lights. As explained in the previous section, each light has ambiante, diffuse and specular
properties and can be set at any spatial position and any color.

D. CReadMeshFile

The goal of this object is to read any kind of data, whatever it is a binary or an ASCII file, and
transmits data read to the scene as a new object. Many functions appear the same even if they

" contains or points to
® This function corresponds to the semantic function "Display(Scene)" in the second part of this text.

70

Chapter 2 : Description of the process for the visualization program

are not and this object could have been developed using inheritance to reduce the code and to

increase reusability.

E. CConverter

This object reads and writes binary and ASCII files to keep compatibility betwwen diffcrent
applications such as 3D Viewer and 3dmesh for example.

F. VRMLMaker
This object saves the scene and creates a VRML'® file which can be read by any web browser if
the Live 3D plug-in is installed. We think that data interchange in the future will increase
thanks to the web and an easy way to help this interchange is to allow to save in a worldwide
recognized format such as VRML. Figure 2-47 shows the 3D viewer interface and the
Netscape interface with the same object exported as VRML.

Figure 2-47 : 3D Viewer and an exported file in Netscape®'"’

' Virtual Reality Modeling Language, a language that allows to create 3D web sites, by Mark Pesce and
Tony Parisi in 1994 [WRIGHT96]. See Appendix 5 for more details.
" Netscape, (Netscape Communications Corporation), a world-wide web brower, including Live3D

plugin.

71

Chapter 2 : Description of the process for the visualization program

G. CDisplayBinary

This object loads a 1-bit binary image, displays it, allows the user to select a smaller rcgion and
saves it in the right format for a VTK process. This object is mainly bascd on a program
written by Tony Keller is BASIC and was adapted in order to work under Windows.

H. IHM modules

These objects linking the scene with the new parameters are divided according to the rules
explain in the TRIDENT methodology application. Indeed, there are about 15 dialog boxes,
each of them corresponding to an object since it is the way Visual C++ works when creating a

new dialog box.

I. CGLWorkApp

This module corresponds to the Windows application.

J. CGL WorkDoc

This object contains all methods and properties that correspond to the document. It is part of
the MFC (Microsoft Foundation Class) and is defined as a class providing the basic
functionality for user-defined document classes. A document represents the unit of data that the
user typically opens with the File Open command and saves with the File Save command
[MSDEV96]. In our case, the document will use the scene — typically, it owns a pointer to
the scene — and allows to add and remove objects, counts the number of views available for

the same scene.

K. CGLWorkView

[MSDEV96] says the CView'® class provides the basic functionality for user-defined view
classes. A view is attached to a document and acts as an intermediary between the document
and the user: the view renders an image of the document on the screen or printer and interprets
user input as operations upon the document. This object contains parameters proper to each
view, for example, its color, its spatial position, default values for dialog boxes, such as rotation
increase value, and the state of the view (rotating of not). Each CGLWorkView has a method
to access the document in order to change properties of the scene. The methods listed in
Appendix 4 correspond to the reaction to a menu. Their names are self-explaining and
correspond to the concatenation of each word in the menu.

¥ CView is the base class, and CGLWorkView inherits of its properties. CView is part of MFC.

72

Chapter 2 : Description of the process for the visualization program

L. CMainFrame

m.

According to [MSDEV96], the CMDIFrameWnd" class provides the functionality of a
Windows Multiple Document Interface (MDIQO) frame window, along with attributes for
managing the window. The CMainFrame object correspond to the main window. Each

window corresponding to a view will be a CMainFrame object.

CintList and CObjectList

These objects handle lists, which are data structure. Methods allow adding, removing and

finding objects in the lists.

6.2.2 Dependencies between modules

According to [DUBOIS96], the previous modules are to be classified into 5 classes. At the top
level of the hierarchy we find the functionality modules. At level 4 are usually feund HCI*' and
printing modules and level 3 contains data and data structures. Level 2 is dedicated to
middle-ware modules such as DBMS* or Client/Server modules. Bottom level contains
operating system modules. However, because the program is highly HCI and graphics
oriented, and because the development is partially based on the TRIDENT methodology, we
inverted level 5 and 4. HCI level is now top-level and functionality modules are are level 4.

Description of dependencies is shown in Figure 2-48.

¥ CMDIFrameWnd is the base class for CMainFrame.

A Multiple Document Interface allows more than one document to be open in the same time. MDI is
different from a multiple view documents which allows multiple windows to be open in the same time
but representing the same document.

*! Human Computer Interface

*2 Databas Management Systems

Chapter 2 : Description of the process for the visualizatio

11 program

CGLWorkApp

T—

T

1]

CGLWorkView

Y

CGLWorkDoc at

CScene M

—

!

1HM CMainFrame l

Clights

CcCutlingPlanes

h

CReadMeshFite

CCenverter I [VRMLMaker

Clnttist

Figure 2-48 : Description of modules dependen

7. Conclusion

This section is intented to summarize the whole process of visualization in the way we were

asked to implement it. Figure 2-49 is showing the whole proce

rectangle on the figure below corresponds to a section in this chapter. It is important to note

that the rectangles outside of the grayed regions are not included i

but depend a lot on the results of the latter. With regard to the numerical analysis, it is in fact a

strength analysis with a specialized software which take as inp
3D Surface Maker or 3dmesh.

74

cies

ss in detail. Each grayed

n the visualization process

ut mesh files created by

Chapter 2 : Description of the process for the visualization program.

Images

Display

VTK surface
construction

Volume
construction

3D Viewer

Binary file

Read the

slices

Display image)
in depth

shadina

Selection of a

Display of the
3 sides of the

smaller region

obiect

Filters
- smoothing
- decimation

Vik slice files

Vik process

Surface To

program

Volume Sullivan's

File

Volume Mesh

3D Viewer

i representation

Mesh

Graphics
transformations

Figure 2-49 : The whole visualization process

New mesh

CAD
————

Other
programs

Numerical

representation

75

1 analysis

Chapter 3 : 3D graphics technical
considerations

1. OpenGL

1.1

The goal of this section is not to detail OpenGL neither to give a course on how to use it, but
simply give main advantages of an easy to use, portable and powerful graphics library.
OpenGL and VTK are two different graphics libraries, where VTK is one level higher. Indeed,
the lowest layer of VTK is OpenGL, and this is a reason for which VTK is portable in many

cases.

What is OpenGL ?

[WRIGHTO96] defines OpenGL as a software interface to graphics hardware, a 3D graphics
and modeling library that is extremely portable and very fast. OpenGL is relatively new on
the market but seems to gain more and more following [WRIGHT96]. The advantage is that is
was launched by the big graphics company in the world, Silicon Graphics, Inc. (SGI). These
computers have more equipment than any other PC, especially optimized hardware for display
of graphics. This hardware includes ultra-fast matrix transformations (see above, Matrix
transformations). The word "Open" in OpenGL means that the library is open to the other
computers, allowing easy adaptability to other platforms or operating systems. Indeed, the new
release of Windows NT (NT 4.0) is including OpenGL, which means that any OpenGL-based
program can run faster under Windows NT, especially if the computer owns a OpenGL

compatible graphic card®

Features of OpenGL are enormous and it is not possible to even list them here. However, we
will just point out most important ones. Of course OpenGL supports basics of 3D graphics,

2 " M " . > .
3 See "Graphics hardware" section for more details.

77

Chapter 3 : 3D graphics technical considerations

1.2

like lights, colors, cutting planes and matrix transformations but allows texture mapping®,
working with predefined complex objects like spheres or cylinders, giving visual effects like

fog.

Portability

Portability for a powerful library is very important. A pure OpenGL program written in C++
under UNIX can be ported on a PC and run immediately without any change. The link between
the code and the graphic card is made through the operating system. Under Windows NT and
Windows 93, this link is made through two important dynamic libraries, OPENGL32.DLL and
GLU32.DLL which are required to run any program based on OpenGL. The disadvantage, in
our eyes, in that OpenGL does not include any high level functions that manage dialog boxes
which makes quite impossible to develop a fully portable application.

2. The graphics hardware

2.1

2.2

Overview

Conditions to deal with graphics (not only 3D graphics) is to have a powerful computer
because of underlying computations, a good graphic card (supporting one or more 3D
standard) and a monitor. We are not going to talk about power of computers which would be
out of the scope of this text, but we think that basics of how computer data are displayed on a

monitor screen can be interesting.

Rasterization

[WRIGHTO96] defines rasterization as the process of converting projected primitives and
bitmaps into pixels. Figure 3-1 shows the result of rasterization for two lines. These lines are
made of 2 points at their ends but to be displayed, these lines have to be converted into pixels.
The grid shown in Figure 3-1 corresponds to a piece of the screen, where each square is a pixel.
The grayed rectangles are what will be actually showed on the screen. This process is done
anytime when a user draws a line with a drawing program such as Paint Brush or CorelDraw.

* Texture mapping is fitting pictures, images ona 3D object. A cube can be covered with a bitmap (an
2D image) to give a more realistic aspect. A example of texture mapping is computer games like
DOOM where walls are covered with textures giving desired atmosphere. [WRIGHT96]

78

Chapter 3 : 3D graphics technical considerations

Figure 3-1 : Rasterization for 2 lines [WATT93]

Another characteristic of raster devices like computer screens or laser printers is their
resolution [SCHROEDERD96]. A laser printer for example is able to draw up to 600 pixels on
one inch length (600 dpi) where an old matrix printer barely reach 50 dpi. A computer screen
usually has a resolution of 80 pixels per inch, which allows about 1000 pixels wide by 800
pixels high.

2.3 Graphic boards

The graphic board is the interface between a computer and a monitor, and most of them now
include 3D graphics acceleration, special chips to perform computation in place of the main
processor [BYTEO0896]. Graphic boards are linked with monitors and they have to share same
capabilities in order to work at best. Owning a very good and power graphic board with a poor
quality monitor is no use, and the opposite is also true.

These graphics boards are always equipped with memory which must be at least equal to the
memory necessary to display the all screen. For example, with a resolution of 800x600 pixels,
where each pixel is 16-bit encoded, 960000 bytes are required, that is, a one-megabyte memory

graphic board is enough.

79

PART II

A critical application of the
TRIDENT methodological
framework.

During the design and development process of our program 3D Viewer
(a prototype of a 3D visualization program), we did not use the
TRIDENT methodology learned during our studies. The airn of this
chapter is to carry out a critical application of the TRIDENT
methodological framework described in [BODART95a] for the
development of the 3D Viewer software human-computer interface and
software architecture. We would like to find out where it presents
weaknesses for the development of 3D medical imaging applications
or applications with the same characteristics since it is primarily
destined to design business oriented software. We point out that, to
simplify the analysis, we will not talk about the possibility of different

views of a scene that was implemented in the program.

The TRIDENT ethodological framework is presented along 5
dimensions : (1) forming the user interface specifications from the
output of the task analysis, (2) guiding the presentation design from
ergonomic rules, (3) deriving the software architecture from the task
analysis and the presentation components, (4) forming high level
dialogue specifications from the output of the task analysis and (5)
reducing the methodological framework to a specification framework.
We will analyze the first three dimensions in the next chapters.

81

Chapter 4

First Dimension :
Graphical User Interface Specifications

1. Introduction

The task analysis is the very first step to the methodology. Before beginning with the analysis
itself we have to correctly define the task. It consists in visualizing objects in three dimensions
with different shapes, different positions, different colors... with the intention of helping the
users to pose a diagnosis on these objects that are, in our case, pieces of trabecular bones. So it
is a decision support task that comes within the scope of a bigger task that consists of a
strength analysis of the elements previously listed. For more precision about this subject, see
Chapter 2 : Description of the process for the visualization program. It is important not to
confuse this task with the one that simply consists in displaying objects and where the only aim
is the visualization itself. Our program could also be used for this purpose.

Since we did not observe the task and because we know nothing about the mental process of
posing a medical diagnosis, we must presume the task. That is what we call a "prescribed
task". The consequence of this fact, is that we can not analyze it. In view of the fact that the
result of task analysis is useful for further steps in the TRIDENT methodology (derivation of
the interaction styles , construction of the software architecture...) it is necessary to suppose

some users' behaviors.

In [GOOSSENS93], the system implemented is presented as a toolbox where the user is able to
use tools without specified order. We can also consider that the toolbox metaphor is suited to
3D Viewer because the task is weakly structured : it is prescribed and it is a decision making
task. The same remark as in [GOOSSENS95] can be pointed out concerning the obvious
necessity to use some tools before the others. For example, it is possible to manipulate an
object if and only if it is previously loaded into a scene. Figure 4-1 is showing the tool box

83

Chapter 4 : First Dimension - Graphical User Interface Specifications

metaphor where each tool correspond to functionality made available by the program and the
house correspond the a scene (central element) on which the tools are applied. Figure 4-2
shows the same metaphor applied to Microsoft Word word processor (it actually works for all
word processors !). The document is the central element and grammar, spelling, ... are the
tools that can be applied to this document.

Figure 4-1 : The toolbox metaphor.

» P — Paragraph

MS-Word
Document
Import/Export -
e

{)

Figure 4-2 : Microsoft Word seen as a toolbox

2. Task '""analysis"

The task "analysis" will be performed as follow : (1) the decomposition of the task into goals
and sub-goals, (2) the decomposition into procedures, (3) the identification of the objects of the
task, (4) the specification of the parameters relative to the task, (5) the description of the users
stereotype and (6) the description of the environment where the task will be realized.

Task : to visualize 3D objects (pieces of bone...) with the intention of posing a diagnosis.

&4

Chapter 4 : First Dimension - Graphical User Interface Specifications

Role : scientific searcher.
Context : experiment.
Organization : University of Vermont, Musculoskeletal Research Lab.

2.1 Goals and sub-goals decomposition

The goals and sub-goals identified below are not coming from the observation ol a task. They
are rather the wishes expressed by our co-promoter in the United States, T. Keller.

Each goal and sub-goal has been labeled as this :

e (p) : preparation goal or sub-goal,

e (t) : transformation goal or sub-goal,

e (s) : selection goal or sub-goal.

The decomposition into goals and sub-goals is defined below :

1. Visualize objects with the intention of posing a diagnosis (t)
1.1. Manage the scenes (t)
1.1.1. Create a new scene (t)

1.1.1.1. Create the scene (t)
1.1.1.2. Make the new scene the current scene (p)
1.1.1.1. Add an object into the new scene (t)

1.1.2. Select the current scene (t)
1.1.3. Remove the current scene (t)
1.1.4. Specify parameters of the current scene (t)

1.1.4.1. Specify the background color of the current scene (t)
1.1.4.2. Specify the size of the current scene (t)

1.1.4.3. Turn antialiasing25 on/off (t)

1.1.4.4. Turn culling face®® on/off (t)

1.1.4.5. Turn counterclockwise sorting on/off (t)

1.1.4.6. Specify the shading method (t)

» Antialiasing : an algorithm to remove the distracting effects of point sampling a signal in the digital
domain. (Real 3D, http://www.real3D.com)

* When culling face parameter is on the system does not compute hidden surfaces. This improves
response speed.

85

Chapter 4 : First Dimension - Graphical User Interface Specifications

12.

1.1.5. Geometrically transform all the objects of the current scene (t)

1.1.5.1. Rotate along the longitude (t)
1.1.5.2. Translate horizontally (t)
1.1.5.3. Change the scale (t)

1.1.6. Cut a part ol the current scene (t)

1.1.6.1. Choose the cutting planes (s)
1.1.6.2. Setting the cutting planes (p)
1.1.6.3. Show the cutting planes (p)
1.1.6 4. Cut the current scene (t)

1.1.7. Manage the lights (t)

1.1.7.1. Choose the lights (s)
1.1.7.2. Set the lights (p)
1.1.7.3. Turn the lights on/off (t)

1.1.8. Save the current scene in a VRML format (t)
Manage the objects of the current scene (t)
1.2.1. Add an object into the current scene (t)

1.2.1.1. Read the surface or the volume (t)

1.2.1.2. Give a name to the object (p)

1.2.1.3. Make the new object the current object (p)
1.2.1.4. Display the object in the current scene (p)

1.2.2. Select the current object (s)

1.2.3. Remove the current object from the current scene (t)
1.2.4. Change the name of the current object (t)

1.2.5. Getinformation about the current object (t)

1.2.5.1. Get the display type (s)

1.2.5.2. Get the number of tetrahedrons (s)
1.2.5.3. Get the number of triangles (s)
1.2.5.4. Get the number of vertices (s)
1.2.3.5. Get the file name (s)

1.2.6. Change the color of the current object (t)

1.2.6.1. Specify the object's color parameters (p)
1.2.6.2. Apply the color changing (t)

86

Chapter 4 . First Dimension - Graphical User Interface Specifications

1.2.7. Change the type of visualization of the current object (t)

1.2.7.1. Choose a type of visualization (s)
1.2.7.2. Apply the type of visualization changing (t)

1.2.8. Show the current object axis (t)

1.2.9. Show the cuirent object box (t)

The diagram of the goals and sub-goals decomposition is shown in Figure 4-3, Figure 4-4 and

Figure 4-5.
Visualize 3D objects
with the intention
of posing a
diagnosis (t)

ana on Manage the
ge (;i - objects of the
scenes current scene (t)

Figure 4-3 : The diagram of goal and sub-goal decomposition of the 3D visualization task

2.2 Procedures identification

The decomposition into goals and sub-goals shows us clearly that the main goal assigned to the
task is composed of 2 sub-goals. Each of them is assigned to a sub-task :

e The management of the scenes

e The management of the objects

In this section, we are facing an inconvenience. The decomposition into procedures is aiming at
showing how a process works. In our case, there is no predetermined order in the
visualization process. As soon as the first object is loaded into the scene, any of the sub-tasks

— for example cutting a part of the scene, changing the color of the object... or even adding a
new object into the scene — can be carried out at any time. As already said, we call this the
toolbox metaphor. They are two reasons why there is no process brought to the tere. First of
all, the task that will be performed by the application is new and we did not observed it. We

&7

Chapter 4 : First Dimension - Graphical User Interface Specifications

need to analyze how the system is used by the users and, with the time, it will probably be
possible to bring a certain process to the fore. One way to do this is to add hidden functions
into the application aimed at writing into a file the sequence of actions executed by the user and
then to carry out statistical analysis on this file. Secondly, by nature, the task is decision making

oriented and this means that it is weakly structured.

Remove the
current scene
(t)

Create a new
scene (t)

Manage the
scenes (t)

current scene
(t)

Select the specify

parameters of

f

Create the
scene (t)

Make the new

il

Spscify the
background colour
of the current

) current scens (t)

Geometrically
transform all the
objects of the
cuzrent scene (t)

the

Rotate along the
longitude (t)

(Comtn

)

cut a part of
the current
scene (t}

>,_

Choose the
cutting planes
(s)

Save the current
scene in a VRML
format (t)

Manage the
lighting (t}
Choose the
lights (s)

(St

scene the scene (t) " sSet the Set the
e e
current scene Translate cutting planes lights (p)
Ind Specify the size horizontally (p)
of the current (t)
Add an object scene (t) Show the " turn the
into the new
scene () Chanqe the cutting planes lighta on/off
Turn scale (t) (p) (e)
anti-aliasing
on/off (t)

Y

Cut the
current scene
(t)

Turn culling
face on/off
(t)

Turn
counterclockwise
sorting on/off (t)

N

Specify the
shading method
(t)

\(

Figure4-4: The diagram of goal and sub-goal decomposition of the management of the scene
sub-task

2.2.1 The management of the scenes

A. Creation of a new scene

current_scene < Create_New_Scene ()
object_file_name ¢ Ask (user)

current_object <~ Load_Object (object_file_name)
Add_Object (current_scene, current_object)

88

Chapter 4 : First Dimension - Graphical User Interface Specifications

Select_Current_Object (current_scene, current_object)

new_name < Ask (user)
Change_Name (current_scene, current_object, new_name)

Display (current_scene)
B. Selection of the current scene

current_scene < Ask (user)
current_object ¢~ Get_Current_Object (current_scene)

Manage the
objects of the
current scene (t)

Change the name
of the current

object (t)
show the
current object show the
axis (t) cuxrent object
box (t}

Remove the current
object from the

current scene (t)

Get information
about the current
object (t)

>._

Select the
curxent object

Add an object
into the current
scene (t)

Change the color
of the current
object (t)
Specify the
object's color
parameters (p)

(

(2)

(s)
Read the surface
or the volume

(t) (
Give a name to
the object (p)
Get tha number
of triangles
(s)
Get the file
name (s)

Get the
display type
(s)

Apply the
color changing
(t)

Get the number
of tetrahedrons

(s)

Make the new
object the current
object (p)

Get the number
of vertices
(s)

Display the
object in the
current scene (p)

55)(

(e
(Bt

Change the type of
visualization of
the current object

}
}

Choose a type of
visualization
(s)

Apply the type
of visualization
changing (t)

Figure4-5 : The diagram of goal and sub-goal decomposition of the management of the ob jects

sub-task

C. Removal of the current scene

new_current_scene ¢~ Remove_Scene (current_scene)
current_scene < new_current_scene
current_object - Get_Current_Object (current_scene)

&9

Chapter 4 : First Dimension - Graphical User Interface Specifications

D. Specifying the parameters of the current scene

scene_color < Ask (user)
Change_Background_Color (current_scene, scene_color)
near_plane < Ask (user)

Change_Near_Plane (current_scene, near_plane)
view_angle < Ask (user)

Change_View_Angle (current_scene, view_angle)
shading_method < Ask (user)
Change_Shading_Method (current_scene, shading_method)
antialiasing <~ Ask (user)

IF (antialiasing = TRUE)

THEN Turn_Antialiasing_On (current_scene)
ELSE Turn_Antialiasing_Off (current_scene)
END IF

culling_face « Ask (user)

IF (culling_face = TRUE)

THEN Turn_Culling_Face_On (current_scene)
ELSE Turn_Culling_Face_Off (current_scene)
END IF

counter_clockwise_sorting «— Ask (user)

IF (counter_clockwise_sorting = TRUE)

THEN Sort_Counter_Clockwise (current_scene)
ELSE Sort_Clockwise (current_scene)

END IF

Display (current_scene)

E. Geometrical transformations of all the objects in the current scene

transformation_choice ¢ Ask (user)
// there are 3 transformations available : rotation, translation, scaling
IF (transformation_choice = "ROTATION")
THEN
Get_Current_Rotation (current_scene, angle_x, angle_y, angle_z)
rotation_x ¢« Ask (user)
rotation_y < Ask (user)
rotation_z ¢« Ask (user)
Rotate (current_scene, angle_x + rotation_x, angle_y + rotation_y, angle_z + rotation_z)
END IF

90

Chapter 4 : First Dimension - Graphical User Interface Specifications

IF (transformation_choice = "TRANSLATION")
THEN
translation_method < Ask (user)
IF (translation_method = "BEST FIT")
THEN
Get_Current_Translation (current_scene, "BEST FIT", pos_x, pos_y, pos_z)
X_translation < Ask (user)
y_translation ¢« Ask (user)
z_translation <« Ask (user)
Translate (current_scene, "BEST FIT", pos_x + x_translation, pos_y + y_translation, pos_z
+ y_translation)
END IF
IF (translation_method = "ABSOLUTE")
THEN
Get_Current_Translation (current_scene, "ABSOLUTE", pos_x, pos_y, pos_z)
x_translation ¢« Ask (user)
y_translation «— Ask (user)
z_translation ¢« Ask (user)
Translate (current_scene, "ABSOLUTE", pos_x + x_translation, pos_y + y_translation,
pos_z + y_translation)
END IF
IF (translation_method = "RELATIVE")
THEN
Get_Current_Translation (current_scene, "RELATIVE", pos_x, pos_y, pos_z)
x_translation ¢« Ask (user)
y_translation <~ Ask (user)
z_translation ¢« Ask (user)
Translate (current_scene, "RELATIVE", pos_x + x_translation, pos_y + y_translation,
pos_z + y_translation)
END IF
END IF
IF (transformation_choice = "SCALING")
THEN
Get_Current_Scale (current_scene, cur_x_scale, cur_y_scale, cur_z_scale)
maintain_global_aspect_ratio «— Ask (user)
IF (maintain_global_aspect_ratio = TRUE)
THEN

91

Chapter 4 : First Dimension - Graphical User Interface Specifications

x_y_z_scale ¢« Ask (user)
Change_Scale (scene, cur_x_scale * x_y_z_scale, cur_y_scale * x_y_z_scale, cur_z_scale *
X_y_z_scale)
ELSE
x_scale «— Ask (user)
y_scale ¢« Ask (user)
z_scale < Ask (user)
Change_Scale (current_scene, cur_x_scale * x_scale, cur_y_scale * y_scale, cur_z_scale *
z_scale)
END IF
END IF
Display (current_scene)

F. Cutting of a part of the current scene

0
nxn

We will first notice that the sign put behind a variable name means that several values can

be put inside that variable. To illustrate, let's take the first variable "cutting_plane_choice*". At
the first line, this variable is assigned one ore more values.

cutting_plane_choice* « Ask (user)
// there are 6 cutting planes available : top, bottom, right, left, front or back plane
IF ("TOP" € cutting_plane_choice™)
THEN
height_percentage « Ask (user)
x_angle < Ask (user)
z_angle < Ask (user)
cutting_plane - Define_Cp ("TOP", height_percentage, x_angle, z_angle)
show « Ask (user)
IF (show = TRUE)
THEN
color « Ask (user)
size ¢« Ask (user)
grid ¢ Ask (user)
IF (grid = TRUE)
THEN
number_of_wires «— Ask (user)
Display_Cp (current_scene, cutting_plane, color, size, "WIRES", number_of_wires)

92

Chapter 4 : First Dimension - Graphical User Interface Specifications

ELSE
translucence_percentage ¢~ Ask (user)
Display_Cp (current_scene, cutting_plane, color, size, "TRANSLUCENCE",
translucence_percentage)
END IF
END IF
cut < Ask (user)
IF (cut = TRUE)
THEN Cut_Scene (current_scene, cutting_plane)
END IF
END IF

IF ("BOTTOM" € cutting_plane_choioe*)
THEN
height_percentage < Ask (user)
x_angle < Ask (user)
z_angle « Ask (user)
cutting_plane «— Define_Cp ("BOTTOM", height_percentage, x_angle, z_angle)
show « Ask (user)
IF (show = TRUE)
THEN
color ¢« Ask (user)
size ¢« Ask (user)
grid < Ask (user)
IF (grid = TRUE)
THEN
number_of_wires «— Ask (user)
Display_Cp (current_scene, cutting_plane, color, size, "WIRES", number_of_wires)
ELSE
translucence_percentage «— Ask (user)
Display_Cp (current_scene, cutting_plane, color, size, "TRANSLUCENCE",
translucence_percentage)
END IF
END IF
cut < Ask (user)
IF (cut = TRUE)
THEN Cut_Scene (current_scene, cutting_plane)
END IF

93

Chapter 4 : First Dimension - Graphical User Interface Specifications

END IF

IF ("RIGHT" € cmting_plane_choice*)
THEN
length_percentage < Ask (user)
y_angle - Ask (user)
z_angle « Ask (user)
cutting_plane - Define_Cp ("RIGHT", length_percentage, y_angle, z_angle)
show ¢« Ask (user)
IF (show = TRUE)
THEN
color « Ask (user)
size < Ask (user)
grid <~ Ask (user)
IF (grid = TRUE)
THEN
number_of_wires < Ask (user)
Display_Cp (current_scene, cutting_plane, color, size, "WIRES", number_of_wires)
ELSE
translucence_percentage - Ask (user)
Display_ Cp (current_scene, cutting_plane, color, size, "TRANSLUCENCE",
translucence_percentage)
END IF
END IF
cut ¢~ Ask (user)
IF (cut = TRUE)
THEN Cut_Scene (current_scene, cutting_plane)
END IF
END IF
IF ("LEFT" € cutting_plane_choice*)
THEN
length_percentage < Ask (user)
y_angle <~ Ask (user)
z_angle < Ask (user)
cutting_plane - Define_Cp ("LEFT", length_percentage, y_angle, z_angle)
show « Ask (user)
IF (show = TRUE)
THEN

94

Chapter 4 : First Dimension - Graphical User Interface Specifications

color « Ask (user)
size < Ask (user)
grid ¢« Ask (user)
IF (grid = TRUE)
THEN
number_of wires <~ Ask (user)
Display_Cp (current_scene, cutting_plane, color, size, "WIRES", number_ol__wires)
ELSE
translucence_percentage <~ Ask (user)
Display_Cp (current_scene, cutting_plane, color, size, "TRANSLUCENCE",
translucence_percentage)
END IF
END IF
cut < Ask (user)
IF (cut = TRUE)
THEN Cut_Scene (current_scene, cutting_plane)
END IF
END IF

IF ("FRONT" e cutting_plane_choice*)
THEN
depth_percentage < Ask (user)
x_angle <~ Ask (user)
y_angle <~ Ask (user)
cutting_plane «— Deftine_Cp ("FRONT", depth_percentage, x_angle, y_angle)
show <« Ask (user)
IF (show = TRUE)
THEN
color ¢« Ask (user)
size < Ask (user)
grid <~ Ask (user)
IF (grid = TRUE)
THEN
number_of wires «— Ask (user)
Display_Cp (current_scene, cutting_plane, color, size, "WIRES", number_of_wires)
ELSE
translucence_percentage <— Ask (user)

95

Chapter 4 : First Dimension - Graphical User Interface Specifications

Display_Cp (current_scene, cutting_plane, color, size, "TRANSLUCENCE",
translucence_percentage)
END IF
END IF
cut ¢« Ask (user)
IF (cut = TRUE)
THEN Cut_Scene (current_scene, cutting_plane)
END IF
END IF
IF ("BACK" e cutting_plane_choice*)
THEN
depth_percentage - Ask (user)
x_angle < Ask (user)
y_angle ¢~ Ask (user)
cutting_plane ¢« Define_Cp ("BACK", depth_percentage, x_angle, y_angle)
show ¢« Ask (user)
IF (show = TRUE)
THEN
color ¢« Ask (user)
size ¢ Ask (user)
grid <~ Ask (user)
IF (grid = TRUE)
THEN
number_of_wires < Ask (user)
Display_Cp (current_scene, cutting_plane, color, size, "WIRES", number_of_wires)
ELSE
translucence_percentage ¢~ Ask (user)
Display_Cp (current_scene, cutting_plane, color, size, "TRANSLUCENCE",
translucence_percentage)
END IF
END IF
cut ¢« Ask (user)
IF (cud = TRUE)
THEN Cut_Scene (current_scene, cutting_plane)
END IF
END IF
Display (current_scene)

96

Chapter 4 . First Dimension - Graphical User Interface Specifications

G. Management of the lights

working_with_lights <— Ask (user)
IF (working_with_lights = TRUE)
THEN
FOR EACH light iDO
// They are maximum 8 lights available, each one identified by a number (light_i)
on ¢— Ask (user)
IF (on = TRUE)
THEN
color ¢— Ask (user)
specular_component ¢— Ask (user)
far «— Ask (user)
IF (far = TRUE)
THEN
x_direction ¢« Ask (user)
y_direction ¢~ Ask (user)
z_direction ¢— Ask (user)
Turn_Light_On (current_scene, light_i, color, specular_component, "FAR",
x_direction, y_direction, z_direction)
ELSE
X_position ¢— Ask (user)
y_position ¢— Ask (user)
z_position ¢~ Ask (user)
Turn_Light On (current_scene, light_i, color, specular_component, "NEAR",
X_position, y_position, z_position)
END IF
END IF
ELSE Turn_Light_Off (current_scene, light_i)
END FOR
ELSE
Turn_All_Lights_Off (current_scene)
END IF
Display (current_scene)

H. Saving into VRML format

vrml_file_name < Ask (user)

Save_To_Vrml (current_scenc, vrml_file_name)

97

Chapter 4 : First Dimension - Graphical User Interface Specifications

2.2.2 The management of the objects

A. Addition of an object into the current scene

object_file_name ¢« Ask (user)

current_object <~ Load_Object (object_file _name)
Add_Object (current_scene, current_object)
Select_Current_Object (current_scene, current_object)
new_name < Ask (user)

Change_Name (current_scene, current_object, new_name)
Display (current_scene)

B. Selection of the current object

object_name < Ask (user)
current_object - Get_Object (current_scene, object_name)
Select_Current_Object (current_scene, current_object)

C. Removal of the current objet from the current scene

confirmation <~ Ask (user)
IF (confirmation = TRUE)
THEN
new_current_object ¢~ Remove_Object (current_scene, current_object)
current_object ¢~ new_current_object
Select_Current_Object (current_scene, current_object)
Display (current_scene)
END IF

D. Changing the name of the current object

new_name < Ask (user)
Change_Name (current_scene, current_object, new_name)

E. Getting information about an object

object_name ¢« Ask (user)

object <~ Get_Object (current_scene, object_name)

number_of_vertices - Get_Number_Of_Vertices (current_scene, object)
file_name ¢« Get_File_Name (current_scene, object)

visualization_type ¢— Get_Visualization_Type (current_scene, object)

IF (visualization_type = "TRIANGLES")

98

Chapter 4 : First Dimension - Graphical User Interface Specifications

THEN number_of_elements «— Get_Number_Of_Triangles (current_scene, object)
END IF

IF (visualization_type = "TETRAHEDRONS")

THEN number_of_elements <— Get_Number_Of_Tetrahedrons (current_scene, object)
END IF

IF (visualization_type = "POINTS CLOUD")

THEN number_of elements ¢« 0

END IF

F. Changing the color of the current object

color ¢ Ask(user)

specular_component ¢~ Ask(user)

shininess «- Ask(user)

translucence < Ask(user)

Change_Color (current_scene, current_object, color, specular_component, shininess,
translucence)

Display (current_scene)

G. Changing the type of visualization of the current object

visualization_type « Ask(user)

// There are 3 types of visualization : points cloud, triangles or tetrahedrons
Change_Visualization_Type (cuirent_scene, current_object, visualization_type)
Display (current_scene)

H. Showing the current object axis

show « Ask(user)
IF (show = TRUE)
THEN
color ¢~ Ask(user)
length <~ Ask(user)
move_with_object <~ Ask(user)
Show_Axis_On (current_scene, current_object, color, length, move_with_object)
ELSE
Show_Axis_Off (current_scene, current_object)
END IF
Display (current_scene)

99

Chapter 4 : First Dimension - Graphical User Interface Specifications

I. Showing the current object box

show « Ask(user)
IF (show = TRUE)
THEN
color « Ask(user)
size ¢« Ask(user)
Show_Box_On (current_scene, current_object, color, size)
ELSE
Show_Box_Off (current_scene, current_object)
END IF
Display (current_scene)

2.3 Identification of the objects of the task

From the decomposition into procedures, we notice that there are seven important objects. The
scene contains ob jects, each of them being made of points defined in a three dimensional space
represented by the scene. Each object has a name, some material properties — 1e. color
properties : specular component of the color, shininess... >— and is stored in a file. There are
several file formats but, in general, they all contain a set of points — the coordinates — called
also vertices and a set of connectivities — lines between two points. The connectivities either
represent triangles for a surface or tetrahedrons for a volume (Cf. Chapter 2 : Description of
the process for the visualization program). The objects can be displayed as a surface mesh, as a

volume mesh or as a points cloud.

The scene contains both cutting planes and lights. The cutting planes permit the user to see
inside objects and help them to have a better idea of the shape of this object. There are six
cutting planes corresponding to the six sides of the volume defined by the scene, each one with
a name and a number of characteristics : the way they appear on screen — translucid or grid
plane — , the transparency percentage in the case of a translucid plane or the number of wires
for a grid plane, a color, the size — percentage of the size of one side of the scene. A cutting
plane can be visible, i.e. that we can see the grid or translucid plane on the screen. It can also be
active or not. When it is, you don't see the cut part on the screen. Each cutting plane is situated
at a distance percentage from the side of the scene it is belonging to and has two angles with
this side. If both angles are equal to zero, the cutting plane is parallel to the side.

" See Lights in Chapter 2 : Description of the process for the visualization progran

100

Chapter 4 : First Dimension - Graphical User Interface Specifications

The lights components®® interact with the objects color components® and give more reality to
the scene. With good lights and objects material parameters setting you can better evaluate the
shape of the objects. There are up to eight lights allowed in the scene. One light can be far in
which case its direction has to be specified. When it is near, the light position in the scene has
to be specilied. A light can be turned on or off and is defined with a color and the specular

component of the color.

The scene has some characteristics : the background color and an angle of view in the vertical
direction. Anti-aliasing and culling face can be performed or not. (See note 25 p.85 and note 26
p.85)It's possible to decide that, in the case of objects made up of triangles, the points that
compose these triangles are sorted in a clockwise or in a counter-clockwise way. It is possible
to carry out geometrical transformations — scaling, translation and rotation — on the scene.
The transformations apply to all the objects that are contained in the scene. So the scene is also
characterized by the scaling state, the translation state and the rotation state.

2.4 Parameters relative to the task

We will specify the parameters relative to the task as explained in detail in
[VANDERDONCKT93a]. Seven parameters will be "analyzed" : (1) the prerequisite needed to
perform the task, (2) the productivity of the task, (3) the existence of an objective environment,
(4) the practicability of the objective environment reproducibility, (5) the structuration of the
task, (6) the importance of the task and (7) the complexity of the task.

The "3D visualization with the intention of posing a diagnosis" task is performed before the
numerical analysis task and plays a role as a support to the decision process. As already said, it
1s a task we did not observed. As a consequence, we cannot analyze the seven parameters. All

that we can do, it is just presume them.

2.4.1 Prerequisite

The user needs only some basic knowledge of the Microsoft Windows 95 or NT environment
and the ability to manipulate a mouse. About the concepts used in the program such as the
color properties of the object, lighting properties of the lights... we think that the learning
period should be short since the result of the application of these concepts is directly visible on

the screen. As a consequence, it is normal to presume that the prerequisite is low.

e

See Lights in Chapter 2 : Description of the process for the visualization program
¥ See The (objects) color in Chapter 2 : Description of the process for the visualization program

101

Chapter 4 : First Dimension - Graphical User Interface Specifications

2.4.2 Productivity

We presume that the productivity should be moderate because the goal of the program is that
the users do not waste time with manipulations that are irrelevant to the task [ulfillment and, on
the other hand, there is no performance constraint. Indeed, imagine that the user wants to have
an idea about the inside of a piece of trabecular bone. He would like to see if it is [ull or if there
arc many holes. In this case, he will manipulate at least a cutting plane, configurc it as casily as
possible — its relative position from one side of the scene, its slope with this side of the scene...
I he needs to cut the piece of bone at an accurate position, he can display the cutting plane to
help him to position the cutting plane. When the cutting plane is not well placed, the user can
configure it again from the last position.

2.4.3 Objective environment

The environment exists under a form that the user can directly manipulate. He can observe a
piece of bone directly with his eyes, surely through a microscope, he can cut them to see inside,
he can adjust lights to help him to better estimate the shape of the piece... Therefore we think

that the objective environment is existent.
2.4.4 Environment reproductibility

The environment reproducibility is practicable. The objective environment exists and can be
reproduced in our application. The scene displays, in our case, pieces of bone because the
mental decision process is based on the visual aspect of these objects. The notion of light is
present. We can also cut a part of a scene and as a consequence, cut the piece of bone that is

inside the scene.

2.4.5 Task structuration

We can not tell how the mental process of posing a diagnosis on a a piece of bone is structured.
Since it is a decision making task, we think it is not well structured. In view of the fact that the
visualization of the objects is aiming at helping the user to pose a diagnosis on these objects, we
presume that the structuration of this task should be low. Furthermore, we did not observed the
task, so how could we impose a structuration on it ? It is the reason why we decided to use the
toolbox model (see Figure 4-1).

102

Chapter 4 : First Dimension - Graphical User Interface Specifications

2.4.6 Task importance

Again, we can't tell the importance of the task. Since we have been asked to write an

application to help to perform the task, we suppose that its importance should be high.

2.4.7 Task complexity

As regards the manipulation we did not want the task to be complex. Only the manipulation of
the mouse and the manipulation of the keyboard are necessary to use the program. In the point
of view of the intellectual complexity, it is impossible for us to give any idea. Is posing a
diagnosis on the quality of a piece of bone easy or not ? As a consequence, we do not take risks

and we presume that the task complexity is moderate.

2.5 Users stereotype description

Just as the specification of the parameters relative to the task, the description of the users
stereotype will be performed as explained in detail in [VANDERDONCKT93a]. Four
parameters will be inspected : (1) the users' experience in carrying out the task, (2) the users'
experience in using information systems, (3) the users' motivation and finally (4) the users'

experience in the use of complex interaction means.

We recognize only one sort of users. They are researchers in biomedical engineering and are
experts on the use of computerized systems more complicated than the 3D Viewer. Even if the
3D visualization task with the intention of posing a diagnosis is new in the scientific experiment
process, these users will learn easily and rapidly to use the system that will help to carry out the

task.

2.5.1 Experience of the task

We can not tell how many times the users already analyzed pieces of trabecular bones without
the use of a 3D visualization software. On the other hand, we think that they never carried out
the task with the help of a 3D visualization program. It is the reason why we suppose that their

experience of the task is elementary.

2.5.2 Experience of systems

Their experience of information systems is rich. The users' experience level of the use of an

information system is the one of an expert.

103

Chapter 4 : First Dimension - Graphical User Interface Specifications

2.5.3 Motivation

We suppose that their motivation is high. The task belongs to a scientific experiment process

whose results are interesting [or them.
2.5.4 Experience of complex interaction means

The users' experience of the use of complex interaction means is considercd as rich. They have
at least a great ability in using keyboards and mice. They are also able to use scicntilic scanners,

cameras and other interaction means.
2.6 Environment description

We will describe the environment or workplace still in function of what is explained in
(VANDERDONCKT93a]. We are going to consider two parameters : (1) the type of
processing and (2) the capacity of processing.

2.6.1 Processing type
We have been asked to implement the software so that it works under Windows 95 and NT
operating system which are multi-processing environments. While they are working with the
visualization process, users can also carry out other tasks such as volume or surface creation.

They can also work on numerical analysis or can do whatever task they want to perform. In

conclusion the type of treatment is multi-processing.

2.6.2 Processing capacity

We think that the treatment capacity is moderate to high except for enormous files where it
can take seconds to realize any operation and where most of the CPU resources are used.

3. Expressing the product of the task analysis

The task analysis leads to four next steps : (1) the construction of the entity-relationship model,
(2) the identification of the the semantic [unctions of the application, (3) the composition of the

104

Chapter 4 : First Dirnension - Graphical User Interface Specifications

3.1

activity chaining graph and (4) the derivation of the dialogue attributes with the interaction

styles.

Entity-relationship model

The entity-relationship model is explained in detail in [BODARTY5a]. The entitics arce
represented by rectangles with the entity name on top of them and the list of entity attributcs
following the name. When an attribute is identifying an entity, it is underlincd. The relations
between entities are represented by hexagons with the relation name on top of them and can
have attributes. Each entity linked to another one by a relation plays a role which has a name
and cardinalities. On this model we added the notion of ISA-relation, represented by a triangle
connecting an entity to a specialization of it. The cutting plane, for example, which is
represented by en entity entitled "CUTTING_PLANE" is specialized in "FRONT_BACK_CP",
entity that represents the front or back cutting planes. The "FRONT_BACK_CP" entity inherits
the attributes of the "CUTTING_PLANE" entity. Figure 4-6 shows the diagram. We are now
going to specify the integrity constraints.

Constraint 1 : CP_Transparency of SHOWING_CP has a value if and only if CP_Grid of
CUTTING_PLANE is false.

Constraint 2 : CP_Wires of SHOWING_CP has a value if and only if CP_Grid of
CUITTING_PLANE is true.

Constraint 3: LT _Coordinates of LIGHT represent the direction of the rays of the light if
and only if LT _Far of LIGHT is true else they represent the position of the same
light.

Constraint 4 : If CP_Name of CUTTING_PLANE = "BACK" or "FRONT" then
CUTTING_PLANE is a FRONT_BACK_CP

Constraint 5 : If CP_Name of CUTTING_PLANE = "LEFT" or "RIGHT" then
CUTTING_PLANE s a LEFT_RIGHT_CP

Constraint 6 : if CP_Name of CUTTING _PLANE = "TOP" or "BOTTOM" then
CUTTING_PLANE isaTOP_BOTTOM_CP

105

Chapter 4 : First Dimension - Graphical User Interface Specifications

AXIS BOX

Box_Color
Box_Size

i-

] Axis_Color
Axis_Length
Axis_Move

— Is axie of 1s_box_of
< XIS
FRONT BACK_CP_| LEFT RIGHT_CP TOP BOTTOM CP -
FBCP_DepthPerc TRCP Lontbon e i —_— 8 .
A _LengthPen: TBCP_HeightPen: SHOWING_BOX
FBCP_XAngle LRCP_Y Angle T'BCP_X::ﬁglctn SHOWING_AXIS
FBCP_YAngle LRCP_ZAngle TBCP.ZAngle e — y
N Hasbox
Has_axjs OBJECT
Qi la
OBJ_Nanx:
CURRENT_OBJECT 0-1 ONJ_FileNanx —_— o TRIANGLE
Is_ourrent _object_of ~— OBI_Color .. ON TRIANGLES_COMP >——c ! IRL1J
OBJ_Specular Is_composed_of onprose 34 TRLId
SHOWING_CP 85;‘_13_hmmcss |
g};:g(;l“ Has_current_object OB}) 343)
CP_Grid . ls_mn;;oscdpl
CP_Transparency : —_—
" Is_contained_d'
_ CP_Witcs SCENE 4 < TRIETS_COMP >
. s isive RaET] S
CUTTING_PLANE s SC_NearPlanc COMPOSITION
b Nam : SC_BackgCol -
e — Shows_ep | SC_ViewAngle - oiN
i: CP_Nane -1 SC_ShadingMethod ! Constitute

Contain

Cu™—, SC_Antiliasing
CUTTING SC_CullingFace / o
<—k& % SC_CCLKWS«t onq\vox

Is_Cut_by ~—_] SC_Scaling
caling
] o _YScaling
LIGHT . -g{ SC_ZScaling TETRAHEDRON O-N
1T)d s_lighted_by SC_Translation R - 44 TE 0 Constitute ™
LT_Specular 0- SC_XTrans!] Is_composed_of
LT_Color i SC_YTransl d: 1d
LT_Far —Light_vp SC_ZTransl
LT_ceecdinales SC_Angle
LT XPos SC_Xangle
LT_YPos SC_YAngle
LT_ZPos SC_ZAngle
id: LT Id id: SC_Id

Figure 4-6 : The ERA model

106

Chapter 4 : First Dimension - Graphical User Interface Specifications

3.2 Identification of the semantic functions

The semantic functions are directly coming from the procedures identified in Section 2.2. That is
to say there is no abstraction mechanism (actions = functions) becausc we do not know the task
we did not observed and, carrying out the task analysis a posteriori, we tend to think of the
actions in term of computer functions. We will list the procedures with the functions they are using
and give a description of these functions, among others their relation with the ERA mode! (Figure

4-6).
3.2.1 Creation of a new scene

e Create_New_Scene ()

Goal : Create a new scene and give it default attributes.
Input 2/
Output : The scene newly created.

Description : The function creates an occurrence of the SCENE entity, updates its SC_Id
attribute with the identifier of the scene and updates all the other attributes with

default values.

e Load_Object (file_name)

Goal : Create a new object and give it default attributes.
Input : Thename of the connectivities and the nodes files.
Output : The object newly created.

Description : The function creates an occurrence of the OBJECT entity, updates its OBj_Id
attribute with the identifier of the object, updates its OBj_FileName attribute with
object_file_name and updates all the other attributes with default values. It reads
the connectivities (file_name.elm) file and the nodes file (file_name.nod), and
constructs the objects. The last action means that it creates as many occurrences
of the POINT entity as there are nodes in the object_file_name.nod file, updates
each attribute with the values contained in the file.

If the files contain the definition of the surface mesh of the object it creates as
many occurrences of the TRIANGLE entity as there are triangles defined in the
file_name.elm file, updates their attribute, constructs the necessary
TRI_PTS_COMP and TRIANGLES_COMP relations.

If the files contain the definition of the volume mesh of the object it creates as
many occurrences of the TETRAHEDRONS entity as there are tetrahedrons

107

Chapter 4 : First Dimension - Graphical User Interface Specifications

defined in the file_name.elm file, updates their attribute, constructs the necessary
TETRA_PTS_COMP and TETRAHED_COMP relations.

Add_Object (scene, object)

Goal

Input
Output
Description

Goal

Input
Output
Description

Add an object into a scene.

The scene and the object.

The scene modified.

The function creates a new occurrence of the COMPOSITION relation between
the scene occurrence of the SCENE entity and the object occurrence ol the

OBJECT entity.

Select_Current_Object (scene, object)

Select an object as being the current one in the scene.

The scene and the object.

The scene modified.

The function eventually destroys the only CURRENT_OBJECT relation and
creates a new occurrence of the CURRENT_OBJECT relation between the scene
occurrence of the SCENE entity and the object occurrence of the OBJECT entity.

Change_Name (scene, object, name)

Goal

Input
Output
Description

o Display (scene)

Goal

Input
Output
Description

Change the name of an object contained in a scene.

The scene, the object and the new name.

The scene modified.

The function updates the OBj_Name attribute of the object occurrence of the
OBJECT entity, which Is_contained_by the scene occurrence of the SCENE

entity, with name.

Display the scene into a window on the screen.
The scene (a logical description).

/
The function interprets the ERA model into drawing primitives and executes these

primitives.

3.2.2 Selection of the current scene

Get_Current_Object (scene)

Goal

Get the current object contained in a scene.

108

Chapter 4 : First Dimension - Graphical User Interface Specifications

Input : The scene.
Output : The current object contained in the scene.
Description : The function returns the occurrence of the OBJECT entity that

is_current_object_of the scene occurrence of the SCENE entity.

3.2.3 Removal of the current scene

s Remove_Scene (scene)

Goal : Remove a scene.

Input : The scene.

Output ¢ Another scene.

Description : The function destroys all the occurrences of all the entities and all the relations

that are in connection with the scene occurrence of the SCENE entity and returns
another occurrence of the SCENE entity.

e Get_Current_Object (scene)
See item "2. Selection of the current scene” of this section.

3.2.4 Specifying the parameters of the current scene

e Change_Background_Color (scene, color)

Goal : Change the background color of a scene.
Input : The scene and the background color value.
Output : The scene modified.

Description : The function updates the SC_BackgCol attribute of the scene occurrence of the
SCENE entity with the color.

e Change_Near_Plane (scene, near_plane)

Goal : Change the near plane value of a scene.

Input : The scene and the near plane value (between 1 and 20).

Output : The scene modified.

Description : The function updates the SC_NearPlane attribute of the scene occurrence of the

SCENE entity with the near_plane.

e Change_View_Angle (scene, view_angle)

Goal : Change the view angle value of a scene.
Input : The scene and the view angle value (between 10 and 120).
Output : The scene modified.

109

Chapter 4 : First Dimension - Graphical User Interface Specifications

Description

The function updates the SC_ViewAngle attribute of the scene occurrence of the
SCENE entity with the view_angle.

Change_Shading_Method (scene, shading_method)

Goal

Input
Output
Description

Change the shading method used in a scene.

The scenc and the shading method (flat or smooth).

The scene modified.

The function updates the SC_ShadingMethod attribute of the scene occurrence of
the SCENE entity with the shading_method.

Turn_Antialiasing_On (scene)

Goal

Input
Output
Description

Turn the anti-aliasing method on in a scene.

The scene.

The scene modified.

The function updates the SC_AntiAliasing attribute of the scene occurrence of the
SCENE entity with the value TRUE.

Turn_Antialiasing_Off (scene)

Goal

Input
Output
Description

Turn the anti-aliasing method off in a scene.

The scene.

The scene modified.

The function updates the SC_AntiAliasing attribute of the scene occurrence of the
SCENE entity with the value FALSE.

Turn_Culling_Face_On (scene)

Goal

Input
Output
Description

Turn the culling face method on in a scene.

The scene.

The scene modified.

The function updates the SC_CullingFace attribute of the scene occurrence of the
SCENE entity with the value TRUE.

Turn_Culling_Face_Off (scene)

Goal

Input
Output
Description

Turn the culling face method off in a scene.

The scene.

The scene modified.

The function updates the SC_CullingFace attribute of the scene occurrence of the
SCENE entity with the value FALSE.

110

Chapter 4 : First Dimension - Graphical User Interface Specifications

o Sort_Counter_Clockwise (scene)

Goal : Turn the counter clockwise sorting method on in a scene.
Input : The scene.
Output : The scene modified.

Description : The function updates the SC_CCLKWSort attribute of the scene occurrcnee ol the
SCENE entity with the value TRUE.

e Sort_Clockwise (scene)

Goal : Turn the counter clockwise sorting method on in a scene.

Input : The scene.

Output . The scene modified.

Description : The function updates the SC_CCLKW.JSoit attribute of the scene occurrence of the

SCENE entity with the value FALSE.

e Display (scene)
See item "1. Creation of a new scene" of this section.

3.2.5 Geometrical transformations of all the objects in the current scene

e Get_Current_Rotation (scene, angle_x, angle_y, angle_z)
Goal ¢ Return the current angles of all the objects in the scene between their initial and
their present positions.
Input : The scene.
Output : The three angles along the X, Y and Z axis.
Description : The function returns the SC_XAngle, SC_YAngle and SC_ZAngle attributes of the
scene occurrence of the SCENE entity.

¢ Rotate (scene, angle_x, angle_y, angle_z)

Goal : Rotate all the objects in the scene from their very first position .
Input : The scene and the three angles along the X, Y and Z axis.
Output ¢ The scene modified.

Description : The function updates the SC_XAngle, SC_YAngle and SC_ZAngle attributes of
the scene occurrence of the SCENE entity with respectively angle_x, angle_y and

angle_z.
e Get_Current_Translation (scene, method, pos_x, pos_y, pos_z)

Goal : Return the current position of all the objects in the scene (the values returned

depends on the method choosen).

111

Chapter 4 : First Dimension - Graphical User Interface Specifications

Input
Output

Description

The scene and the translation method (best fit, absolute or relative)

The three positions along the X, Y and Z axis.

The function returns the SC XTransl, SC_YTransl and SC_ZTransl attributes of
the scene occurrence of the SCENE entity depending on the method chooscn.

e Translate (scene, method, pos_x, pos_y, pos_z)

Goal
Input

Output
Description

Translate all the objects in the scene from their very first position.

The scene, the translation method and the three positions along the X, Y and Z
axis.

The scene modified.

The function updates the SC_XTransl, SC_YTransl and SC_ZTransl attributes of
the scene occurrence of the SCENE entity with respectively pos_x, pos_y and
pos_z, whose values depend on the method chosen.

o Get_Current_Scale (scene, scale_x, scale_y, scale_z)

Goal

Input
Output
Description

Return the current scaling percentage of all the objects in the scene.

The scene.

The three scaling percentages along the X, Y and Z axis.

The function returns the SC_XAngle, SC_YAngle and SC_ZAngle attributes of the
scene occurrence of the SCENE entity.

o Change_Scale (scene, scale_x, scale_y, scale_z)

Goal

Input
Output
Description

e Display (scene)

Change the scale of all the objects in the scene from their very first size.

The scene and the three scaling percentages along the X, Y and Z axis.

The scene modified.

The function updates the SC_XAngle, SC_YAngle and SC_ZAngle attributes of
the scene occurrence of the SCENE entity with respectively scale_x, scale_y and

scale_z.

See item "1. Creation of a new scene" of this section.

3.2.6 Cutting of a part of the current scene

e Define_Cp (cutting_plane_name, distance_percentage, anglel, angle2)

Goal
Input

Define a cutting plane.

The cutting plane type (top, bottom, left, right, front or back), the distance
percentage from one side of the scene and the two angles between the cutting
plane and the side of the scene.

112

Chapter 4 : First Dimension - Graphical User Interface Specifications

Output : The cutting plane.

Description : The function creates a new occurrence of the CUTTING _PLANE entity, updates
its CP_Name attribute with cutting_plane_name.
If CP_Name is "front" or "back", the CUTIING_PLANE cntity is a
FRONT_BACK_CP entity and the function updates its FBCP_DepthPerc
attribute with distance_percentage, it updates its FBCP_XAngle attributc with
anglel and it updates its FBCP_YAngle attribute with angle2.
If CP_Name is 'left" or ‘"right", the CUTTING_PLANE cnlily is a
LEFT_RIGHT_CP entity and the function updates its LRCP_DepthPerc attribute
with distance_percentage, it updates its LRCP_YAngle attribute with anglel and
it updates its LRCP_ZAngle attribute with angle2.
If CP_Name is "top" or "bottom", the CUTTING_PLANE entity is a
TOP_BOTTOM_CP entity and the function updates its TBCP_DepthPerc
attribute with distance_percentage, it updates its TBCP_XAngle attribute with
anglel and it updates its FBCP_ZAngle attribute with angle2.

Display_Cp (scene, cutting_plane, color, size, display_type, value)

Goal : Display the cutting plane into the scene.
Input : The scene and the cutting plane previously defined.
Output : The scene modified.

Description : The function creates an occurrence of the SHOWING_CP relation between the
cutting_plane occurrence of the CUTTING_PLANE entity and the scene
occurrence of the SCENE entity, updates the CP_Color attribute with color,
updates the CP_Size attribute with size, updates the CP_Grid attribute with
display_type.

If CP_Grid is true, the function updates the CP_Wires attribute with value that
and forget the CP_Transparency attribute.

If CP_Grid is false, the function updates the CP_Transparency attribute with
value and forget the CP_Wires attribute.

Cut_Scene (scene, cutting_plane)

Goal : Cutapartof the scene the scene.

Input : The scene and the cutting plane previously defined.

Output ¢ The scene modified.

Description : The function creates an occurrence of the CUTTING relation between the

cutting_plane occurrence of the CUTTING_PLANE entity and the scene
occurrence of the SCENE entity.

Display (scene)

113

Chapter 4 . First Dimension - Graphical User Interface Specifications

See item "1. Creation of a new scene" of this section.

3.2.7 Management of the lights

Turn_Light_On (scene, light_id, color, specular_component, far, x, y, z

Goal
Input

Output
Description

Turn a light on in a scene.

The scene, the light identifier (maximum eight lights), the color, the specular
component, the far paremeter. If far is true, the last threc inputs arc the light
direction else they represent the light position.

The scene modified.

The function creates an occurrence of the LIGHT entity, updates the LT _[d
attribute with light_id, updates the LT _Color attribute with color, updates the
LT Specular attribute with specular_component, updates the LT_Far attribute
with far, updates the LT XPos attribute with x, updates the LT YPos attribute
with y and updates the LT _ZPos attribute with z. It creates a LIGHTING relation
between this occurrence of the LIGHT entity and the scene occurrence of the
SCENE entity.

Turn_Light_Off (scene, light_id)

Goal

Input
Output
Description

Turn a light of a scene off.

The scene and the light identifier (maximum eight lights).

The scene modified.

The function destroys the occurrence of the relation between the LIGHT entity
whose LT _Id attribute corresponds to light_id and the scene occurrence of the
SCENE entity. It also destroys this occurrence of the LI GHT entity itself.

Turn_All_Lights_Off (scene)

Goal

Input
Output
Description

Display (scene)

Turn all the lights of a scene off.

The scene.

The scene modified.

The function destroys all the occurrences of the relation between the LIGHT
entity and the scene occurrence of the SCENE entity. It also destroys all the
occurrences of the LIGHT entity themselves.

See item "1. Creation of a new scene" of this section.

114

Chapter 4 : First Dimension - Graphical User Interface Specifications

3.2.8 Saving into VRML format

e Save_To_VRML (scene, file_name)

Goal Save the scene description into a VRML format file.

Input The scene and the file that will contain the scene description.

Output /

Description The function translates the scene description into a VRML hierarchy ol primitives

and saves the result in the file whose name is file_name.

3.2.9 Addition of an ob ject into the current scene

Load_Object (file_name)
See item "1. Creation of a new scene'

of this section.

e Add _Object (scene, object)

See item " 1. Creation of a new scene'

of this section.

e Select_Current_Object (scene, object)
See item " 1. Creation of a new scene" of this section.

e Change_Name (scene, object, name)

See item "1. Creation of a new scene" of this section.

e Display (scene)

See item "1. Creation of a new scene” of this section.

3.2.10 Selection of the current ob ject

e Get_Object (scene, object_name)

Goal Retrieve the current object in a scene in function of his name
Input The scene and the object name.

Output The current object of the scene.

Description The function returns the occurrence of the OBJECT

Is_current_object_of the scene occurrence of the SCENE entity.

Select_Current_Object (scene, object)
See item " 1. Creation of a new scene" of this section.

entity

that

Chapter 4 : First Dimension - Graphical User Interface Specifications

3.2.11 Removal of the current objet from the current scene

¢ Remove_Object (scene, object)

Goal : Remove an object from a scene.
Input : The scene and the object.
Output . The scene modified and another object.

Description : The function destroys the object occurrence of the OBJECT entity that
Is_contained_by the scene occurrence of the SCENE entity and it destroys all the
occurrences of the relations that connect this occurrence of the OBJECT enlily Lo
other entities. Moreover, it destroys all the occurrences of the following entities
— and the occurrences of the relations between them — that are in relation with
this occurrence of the OBJECT entity : AXIS, BOX, TRIANGLE, POINT and
TETRAHEDRON. The function returns another occurrence of the OBJECT
entity. The precondition to the function is the fact that there must be at least two

objects in the scene.

o Select_Current_Object (scene, object)
See item "1. Creation of a new scene" of this section.

e Display (scene)
See item "1. Creation of a new scene" of this section.

3.2.12 Changing the name of the current object

e Change_Name (scene, object, name)
See item " 1. Creation of a new scene" of this section.

3.2.13 Getting information about an object

o Get_Object (scene, object_name)
See item "10. Selection of the current object” of this section.

e Get_Number_Of Vertices (scene, object)

Goal ¢ Retrieve the number of nodes of a specific object in a scene.
Input : The scene and the object.
Output : The number of nodes that make up the object.

Description : The function returns the number of occurrences of the POINT entity that
Constitute the occurrences of the TETRAHEDRON entity, themselves Composing

116

Chapter 4 : First Dimension - Graphical User Interface Specifications

the object occurrence of the OBJECT entity and this entity Being_contained_by
the scene occurrence of the SCENE entity.

Or it returns the number of occurrences of the POINT entity that Constitute the
occurrences of the TRIANGLE entity, themselves Composing the object
occurrence of the OBJECT entity and this entity Being_contained _by the scene
occurrence of the SCENE entity.

e Get_File_Name (scene, object)

Goal : Retrieve the name of the files that contain the description of a specific object in a
scene.

Input : The scene and the object.

Output : The name of the file.

Description : The function returns the OBj_FileName attribute of the object occurrence of the

OBJECT entity that Is_contained_by the scene occurrence of the SCENE entity.

e Get_Visualization_Type (scene, object)

Goal : Retrieve the type of visualization used to display a specific object in a scene.
Input : The scene and the object.

Output : The visualization type ("Filled Surface", "Mesh" or "Points Cloud").

Description : The function returns the OBj_DispType attribute of the object occurrence of the

OBJECT entity that Is_contained_by the scene occurrence of the SCENE entity.

e Get_Number_Of Triangles (scene, object)

Goal : Retrieve the number or elements (triangles) that compose a specific object in a
scene.

Input : The scene and the object.

Output : The number of triangles.

Description : The function returns the number of occurrences of the TRIANGLES_COMP
relation between the occurrences of the TRIANGLE entity and the object
occurrence of the OBJECT entity that Is_contained_by the scene occurrence of
the SCENE entity.

o Get_Number_Of Tetrahedrons (scene, object)

Goal ¢ Retrieve the number or elements (tetrahedrons) that compose a specific object in a
scene.

Input : The scene and the object.

Output : The number of tetrahedrons.

Description : The function returns the number of occurrences of the TETRAHED_COMP
relation between the occurrences of the TETRAHEDRON entity and the object

117

Chapter 4 : First Dimension - Graphical User Interface Specifications

occurrence of the OBJECT entity that Is_contained_by the scene occurrence of
the SCENE entity.

3.2.14 Changing the color of the current ob ject

o Change_Color (scene, object, color, specular, shininess, translucence)

Goal : Change the color properties of a specific object in a scene.

Input : The scene, the object, the color, the specular component, the shininess percentage
and the translucence percentage.

Output : The scene modified.

Description : The function updates the following attributes of the object occurrence of the

OBJECT entity that Is_contained_by the scene occurrence of the SCENE entity :
OBj_Color attribute with color, OBj Specular attribute with specular,
OBj_Shininess attribute with shininess and OBj_Transluc attribute with

translucence.

e Display (scene)
See item "1. Creation of a new scene" of this section.

3.2.15 Changing the type of visualization of the current ob ject

e Change_Visualization_Type (scene, object, visualization_type)

Goal : Change type of display of a specific object in a scene.

Input : The scene, the object and the type of display ("Filled Surface", "Mesh" or "Points
Cloud").

Output : The scene modified.

Description : The function updates the OBj_DispType attribute of the object occurrence of the
OBJECT entity that /s_contained_by the scene occurrence of the SCENE entity

with visualization_type.

e Display (scene)

See item "1. Creation of a new scene" of this section.

3.2.16 Showing the current object axis

e Show_Axis_On (scene, object, color, length, move)

Goal : Display an axis with a specific object in a scene.

118

Chapter 4 : First Dimension - Graphical User Interface Specifications

Input

Output
Description

The scene, the object, the axis color, the axis length and a parameter that tell il the
axis move or not with the object.

The scene modified.

The function creates an occurrence of the AXIS entity and an occurrence ol the
SHOWING_AXIS relation that connects the previous entity with the object
occurrence of the OBJECT entity that Is_contained_by the scene occurrence of
the SCENE entity. It updates the following attributes of the occurrence of the
AXIS entity : Axis_Color with color, Axis_Length with length and Axis_Move

with move.

Show_Axis_Off (scene, object)

Goal

Input
Output
Description

Display (scene)

Display a specific object in a scene without its axis.

The scene and the object.

The scene modified.

The function destroys the occurrence of the SHOWING_AXIS relation that
connects the object occurrence of the OBJECT entity that Is_contained_by the
scene occurrence of the SCENE entity with the occurrence of the AXIS entity.
Moreover, it destroys the occurrence of the AXIS entity.

See item "1. Creation of a new scene" of this section.

3.2.17 Showing the current object box

Show_Box_On (scene, object, color, size)

Goal

Input
Output
Description

Display a box with a specific object in a scene.

The scene, the object, the box color, and the box size.

The scene modified.

The function creates an occurrence of the BOX entity and an occurrence of the
SHOWING_BOX relation that connects the previous entity with the object
occurrence of the OBJECT entity that Is_contained_by the scene occurrence of
the SCENE entity. It updates the following attributes of the occurrence of the
BOX entity : Box_Color with color and Box_Size with size.

Show_Box_Off (scene, object)

Goal
Input
Output

Display a specific object in a scene without its box.
The scene and the object.
The scene modified.

119

Chapter 4 : First Dimension - Graphical User Interface Specifications

Description : The function destroys the occurrence of the SHOWING_BOX relation that
connects the object occurrence of the OBJECT entity that Is_contained by the
scene occurrence of the SCENE entity with the occurrence of the BOX entity.

Moreover, it destroys the occurrence of the BOX entity.

e Display (scene)
Seeitem "1. Creation of a new scene" of this section.

3.3 Composition of the Activity Chaining Graph (ACG)

In this section is described the dynamic aspect of the task with an activity chaining graph which
"expresses the information flow between functions to be executed for achieving the main goal
associated with an interactive task" as explained in detail in [BODART95a). To simplify and
because we see our application as a toolbox, an activity chaining graph is constructed for each

elementary sub-task.

The syntax legend of such a graph is explained in Figure 4-7.

Function (computer processing).

ITF@—, Function with multiple triggering.
j External information in input or output of a function.

@ External information in multiple occurences

T - Internal information in input or output of a function.

R R Repeated internal information

No link OR.
(AND.
((Exclusive OR (XOR).

Figure 4-7 : Graphical conventions for ACG

120

Chapter 4 : First Dimension - Graphical User Interface Specifications

The rectangles represent semantic functions, that is to say functions that carry out a process. In 2D
or 3D imaging applications, some functions do not realize a process but are simply used to display
a result. These functions are called service functions and "Display (scene)" is an example ol such a
function. The problem we faced, was to decide how to represent the service [unctions. Two

possibilities exist. Either we do not represent them explicitly but their result — the display — arc
visualized by an external information or we represent them by a rectangle — like the semantic
functions — and their result by an external information. We decided to used the sccond option

because we think that service functions are central elements in visualization applications.

The ACG model used in this text is different from the one usually used in the TRIDENT
methodology in the sense that it accepts messages to be the result of several functions. In Figure
4-8, both functions a and b are parallel. The message obtained is either the result of only one of

them or the result constructed at the same time by both functions.

Function a :

Function b

Figure 4-8 : Parallel functions

In most of the activity chaining graphs you will see the internal message Current_Scene and some
other messages Current_Scene', Current_Scene"... The first one represents a description of the
scene currently used. The others represent the same scene but modified. So, Current_Scene" is
Current_Scene' modified and Current _Scene'is Current_Scene modified. If Current Scene' is the
last version of the current scene modified in an ACG, then it becomes Current_Scene — the
current scene in use — in another ACG. The same explanation stands for Current_Object and
Current_Object’, Current_Object"...

The internal messages Current_Scene, Current_Scene', Current_Scene'... are logical descriptions
of the current scene. We mean that they represent the data structure of the current scene. On the

other hand, the external message Scene that is the output of the Display function represents the
physical description of the scene, that is to say what the users see on the screen.

3.3.1 Creation of a new scene

Figure 4-9 is showing the ACG for the sub-task "Creation of a new scene".

121

Chapter 4 : First Dimension - Graphical User Interface Specifications

' 1
Create_New_Scene f———p Current_Scene \
' -7 - S

Add_Object Ly Current_Scene’

'File_Name P Load_Object (—p' Current_Object

Object_Name

Change_Name Current_Scene” g— Sefect_Current_Object |,)

A 4

> Current_Scene”' —p! pisplay jc/mi\l

Figure 4-9 : ACG "Creation of a

3.3.2 Selection of the current scene

new scene'’

Figure 4-10 is showing the ACG for the sub-task "Selection of the current scene".

M Select_Current_Scene }—p Current_Scene r-)

Get_Current_Object —» Current_Object '

Figure 4-18 : ACG "Selection of the

3.3.3 Removal of the current scene

current scene''

Figure 4-11 is showing the ACG for the sub-task "Removing of the current scene".

! Current_Ob ject ~4—__{ Get_Current_Object }4——— Current_Scene'

Figure 4-11 : ACG "Removing of the

3.3.4 Specifying the parameters of the current scene

Figure 4-12 is showing the ACG for the sub-task "Changing

122

current scene'’

the parameters of the scene".

Chapter 4 : First Dimension - Graphical User Interface Specifications

Background_Color

L_,/——});
View_Angle

>l

Change_Background_Color p——————

Change_View_Angle l[

[/ P{ Turn_Anti_Aliasing_On}—-——-—————

‘=‘L’I‘urn*Anti_Aliasing~0ffj

' r
' Current_Scene — g | ;-

((:: Turn_Culling_Face_On }—-—— . Current_Scenc'
:: Turn_Culling_Face_Off !————— ¢

g Display
((» Sort_Counter_Clockwise]————-—

B| Sort_Clockwise m
Change_Near_Plane }-————
Ll

» Change_Shading_Method —
Shading_Method

Figure 4-12 : ACG ""Changing the parameters of the scene"’

3.3.5 Geometrical transformation of all the ob jects in the current scene

Figure 4-13 is showing the ACG for the sub-task "Geometrical transformation of all the objects in
the scene".

123

Chapter 4 : First Dimension - Graphical User Interface Specifications

Cur_Angle_X

Get_Current_Rotation‘l——? gur_inglle_;’
ur_Angle_

Rotate

Cur_Pos_X
Cur_Pos_Y
Cur_Pos_Z

—5{ Get_Current_Translation

f

Translation_Type

Current_Scene'

Display

N
Scene

I’P

. Current_Scene -]

Translate

Trans_X
Trans_Y
Trans_Z7

»| Change_Scale

Cur_Scale_X
Cur_Scale Y
Cur_Scale_Z

Scale_X
Scale_ Y
Scale_Z

\./__\

_P[Get_Current_Scale

Figure 4-13 : ACG ""Geometrical transformation of all the objects in the scene"

3.3.6 Cutting a part of the current scene

Figure 4-14 is showing the ACG for the sub-task "Cutting a part of the scene". We will explain
more in depth the four inputs for the function "define_cp". Parameter "Scene_type" specify which
of the six cutting planes has to be used. Therefore it can take up to six different values : "TOP",
"BOTTOM", "LEFT", "RIGHT", BACK" and "FRONT'. The meaning of the other three
parameters depends on which value has been chosen. We will review each of the six possible
values and explain what are the meaning of the other parameters.

If the Scene_type value is "TOP", the parameter "distance" means the distance percentage
between the top cutting plane and the top of the scene. In this case, angle_1 represents the angle
between this cutting plane and the top of the scene along the x axis and angle_2 represents the
angle between them along the z axis. If the Scene_type value is "BOTTOM", the three parameters
have the same meaning as above but they concern the bottom cutting plane and the bottom side of

the scene.

If the Scene_type value is "LEFT", the parameter "distance" means the distance percentage
between the left cutting plane and the left boundary of the scene. In this case, angle_1 represents

124

Chapter 4 : First Dimension - Graphical User Interface Specifications

the angle between this cutting plane and the left boundary of the scene along the y axis and
angle_2 represents the angle between them along the z axis. If the Scene_type value is "RIGHT",
the three parameters have the same meaning as above but they concern the right cutting plane and
the right boundary of the scene.

If the Scene_type value is "BACK", the parameter "distance" means the distance pcrcentage
between the back cutting plane and the back boundary of the scene. In this case, angle_!
represents the angle between this cutting plane and the back boundary of the scene along the x axis
and angle_2 represents the angle between them along the y axis. If the Scene_type value is
"FRONT", the three parameters have the same meaning as above but they concern the front
cutting plane and the front boundary of the scene.

=1

Number_Of Wires

Translucence

Il Display_Cp

+ Current_Scene |

Scene_Type
Current_Scene'

Angle_1 Define_Cp S '1 L

Angle 2

Display

Cut_Scene

Cut A
l Scene]

Figure 4-14 : ACG "Cutting a part of the scene"

3.3.7 Management of the lights

Figure 4-15 is showing the ACG for the sub-task "Management of the lights".

125

Chapter 4 : First Dimension - Graphical User Interface Specifications

Light_Id
Color | \j - ------ ,
Specular_Comp Current_Scene',

, Current_Scene «

Bl Ay

Pl Turn_Light_Off

Display

4
Scene

#‘{ Turn_All_Lights_Off

Figure 4-15 : ACG '"Management of the lights"'

3.3.8 Savinginto VRML format

Figure 4-16 is showing the ACG for the sub-task "Saving into VRML format".

' SHVC_TO_VRI\‘IL P VRI\’IL_F“C_S:’IVC(I

Figure 4-16 : ACG ''Saving into VRML format"

.
, Current_Scene !
'

3.3.9 Addition of an ob ject into the current scene

Figure 4-17 is showing the ACG for the sub-task "Addition of an object into the current scene".

126

Chapter 4 : First Dimension - Graphical User Interface Specifications

Add_Object ._._’: Current_Scene' |

Change_Name Current_Scene” ‘g— Select_Current_Object] ;)

L__p Current_Scene"* Display ——)Ls_i"f_\]

Figure 4-17 : ACG "Addition of an objectinto the current scene"

3.3.10 Selection of the current object

Figure 4-18 is showing the ACG for the sub-task "Selection of the current object".

Get_Object ' Current_ Ob‘]ect>\‘
, Current Se ef‘e‘: ;’1 Select_Current_Object }—) Current_Scene',

Figure 4-18 : ACG ''Selection of the current ob ject'

3.3.11 Removal of the current object from the current scene

Figure 4-19 is showing the ACG for the sub-task "Removal of the current object from the current
scene".

' Current_ODbject
, Current_Scene

' Current Scene

Remove_ODb ject K< Zj Select_Current_ODbject
Current Ob]ect'

' Scene |g Display 4_._.__:Current_Scene":<___.__.

Figure 4-19 : ACG "Removal of the current ob ject from the current scene"

Confirmation

127

Chapter 4 : First Dimension - Graphical User Interface Specifications

3.3.12 Changing the name of the current object

Figure 4-20 is showing the ACG for the sub-task "Changing the name of the current object".

Change_Name —3 Current_Scene' |

P L
'

Current_Scene °
! Current_Ob ject,

Figure 4-20 : ACG "Changing the name of the current ohject"

3.3.13 Getting information about an object

Figure 4-21 is showing the ACG for the sub-task "Getting information about an object".

Get_Object

{ ! l Get_Number_Of_Vertices }__’{;Vumbel'_Of;VertivxiJ
P
[;! Get F ile_Namel 'I Flle_N’__Jame Number_Of_Ttriangles

, ' »l
, Current_Scene £ »{ Get_Number_Of_Triangles

. 71

[Frae]

Points Cloud

{ L I Get_Visualization_Type #’
»i

-
{ Z} Get_Number_Of_Tetrahedrons l

v

Number_Of_Tetrahedrons

Figure 4-21 : ACG "Getting information about an object"

128

Chapter 4 : First Dimension - Graphical User Interface Specifications

3.3.14 Changing the color of the current object

Figure 4-22 is showing the ACG for the sub-task "Changing the color of the current object".

Color
Specular_Comp
Shininess

.........

Change_Color f—-—) Current_Scene'—pf Display —‘P{\fc/ﬂi]

Translucence

: Current_Object
+ Current_Scene |,

Figure 4-22 : ACG "Changing the color of the current ohject"

3.3.15 Changing the type of visualization of the current object

Figure 4-23 is showing the ACG for the sub-task "Changing the type of visualization of the
current object".

Visualization_Type

Change_Visualization_Type }-—V Current_Scene' . pisplay —M

' Current_Object -
» Current_Scene |

Figure 4-23 : ACG ""Changing the type of visualization of the current object"
3.3.16 Showing the current object axis

Figure 4-24 is showing the ACG for the sub-task "Showing the current object axis".

Color
Length
Move

Show_Axis_On

. Current_Scene' | Display Scene
Show_Axis_Ol'fl/v~ T

+ Current_Object
! Current_Scene .

Figure 4-24 : ACG "Showing the current object axis"

129

Chapter 4 : First Dimension - Graphical User Interface Specifications

3.3.17 Showing the current object box

Figure 4-25 is showing the ACG for the sub-task "Showing the current object box".

Color
Size

* Current_ODb ject’

. Current_Scene .

Show_Box_On

Show_Box_Off

)
Current_Scene' P

Display ——»LSC/CIEJ

Figure 4-25 : ACG "Showing the current ob ject box"

3.4 Derivation of dialogue attributes

Five dialogue attributes will be analyzed as explained in [VANDERDONCKT93a] : (1) the
dialogue control, (2) the dialogue sequencing, (3) the dialogue mode, (4) the functions triggering

mode and (5) the metaphor.

The dialogue attributes are usually derived from a simple interaction style or several interaction
styles combined together, themselves being determined with the help of tables of correspondence
between the parameters relative to the task, the users stereotypes, the working environment and
the interaction styles advocated. Before going on with the specification of the dialogue attributes,
we will therefore pick up one or several suitable interaction styles for our application 3D Viewer

with the tables of correspondence defined in [VANDERDONCKT93a].

3.4.1 Interaction styles derivation

Prerequisite | Productivity | Ob jective Environment Task Task Task
environment reproductibility structuration | importance complexity
low moderate existent practicable low high moderate
Natural X X
language
Command X X X
language
Interrogation X X
language
Questions/ X X X
answers
Function X X
keys

130

Chapter 4 : First Dimension - Graphical User Interface Specifications

Menu X X

selection

Form X X X X X
filling

Multi- X X X X X X
windows

Direct X X X X X X
manipulation

Iconic X X X X
interaction

Table 4-1 : Parameters relative to the interactive task.

Task experience Systems Motivation Complex interaction

experience means experience

elementary rich high rich

Natural X

language

Command X X X

language

Interrogation X

language

Questions/ X X

answers

Function X
keys

Menu

selection

Form
filling

Multi-

windows

Direct

manipulation

Iconic

interaction

Table 4-2 : Parameters relative to the users stereotypes.

131

Chapter 4 : First Dimension - Graphical User Interface Specifications

Processing type Processing capacity

multi-processing moderate to high

Natural

language

Command
language

Interrogation

language

Questions/
answers

Function X X
keys
Menu X X
selection
Form X X
filling
Multi- X X
windows
Direct X X
manipulation
Iconic X X

interaction

Table 4-3 : Parameters relative to the workplace.

The three interaction styles derived from the analysis of the tables of correspondence (Table 4-1,
Table 4-2 and Table 4-3) that are the best to use in our case are the mudti-windows, the form
filling and the direct manipulation. However, during the implementation of the software, we have
chosen, besides the quoted interaction styles, the menu selection. These choices will be justified

below.

The menu selection suits very well for cases where the application is the metaphor of a toolbox.
No determined process exists. The users create their own process ad-hoc during the use of the
program. The menu selection represents the selection of tools in the toolbox.

The forms filling corresponds to the parameters settings of the tools used. For example, if the user
decides to work with lights — a tool —, he will be asked to select the lights he wants to use and
to determine their characteristic (color components, position, shininess...).

The multi-windows interaction style is used to show different views of the same scene or to show
different scenes at the same time. The advantage of multi-view has been discussed in Chapter 2 :

132

Chapter 4 : First Dimension - Graphical User Interface Specifications

Description of the process for the visualization program. As for the direct manipulation, it will be
used to rotate all the object of a scene, but is not implemented yet. We are now going to derive the

dialogue attributes.
3.4.2 Dialogue control

This attribute answers to the question "who controls the dialogue ?". The dialogue control is
variable. In general it is internal. That is the case, for example, for the selection of menus where
only the allowed menu items are proposed to the user. The other menu items are automatically
grayed by the application. Likewise it is internal, inside a sub-task. Nevertheless it is external when
the user goes from a window to another, each one containing a view of the same scene or a

different scene.

3.4.3 Dialogue sequencing

This attribute answers to the question "how many dialogues is it possible to control at the samne
time ?". The dialogue sequencing is for the most part mono-thread hierarchic and sometimes it
is multi-thread multi-programmed. Indeed, the dialogue sequencing is mono-thread hierarchic
because the actions are organized hierarchically and only a part of the actions accessible at some
point are made available by the interface. It is the case for the menu selection and the dialog boxes
selection. However we are also considering that the sequencing can be multi-thread
multi-programmed when several windows of the same scene or different scenes are displayed on
the screen. When an object in a scene is rotating in a way and at a certain rotation speed, at the
same time, another object could rotate in another window, in another way and at another rotation

speed.

3.4.4 Dialogue mode

This attribute answers to the question "how are the dialogues controlled ?". The dialogue mode is
asynchronous. Inside each sub-task, the order of actions execution and the order of data capture
are not determined. As for some sub-tasks, the dialogue mode is sequential. For example, before
changing the name of an object, the latter has to be loaded into a scene (cf. Figure 4-20). At the
interactive task level, the dialogue mode is also asynchronous as suggested by the toolbox model.

3.4.5 Functions triggering mode

This attribute answers to the question "who triggers the functions ?". We remember that we
distinguished two types of functions : the semantic functions and the service ones. Whatever their

133

Chapter 4 : First Dimension - Graphical User Interface Specifications

type, the functions triggering mode is displayed explicit manual. There will always be a
command button or an icon on the toolbar that will permit to trigger such a function or such other
function. The goal is to give the user the possibility to control the progress of the task because
they are experts. Moreover, the kind of task based on the toolbox model suggests this function
triggering mode. We point out that some functions will have an automatic manual triggering mode
as it is the case with the selection of the current object after being loaded into a scene.

3.4.6 Metaphor

This attribute answers to the question "what the application is the metaphor of ?". The metaphor
is mixed. On the one hand it is based on the conversation when the user must fill in the forms,
when he has to choose the sub-task to carry out... On the other hand it is based on the universe
when speaking of the representation of a scene on the computer screen where real objects (pieces
of bones, muscles, fat...) are shown, where cutting planes are visible, where lights have visible

results...

4. Conclusion

4.1 Critic

We remind you that we did not observe the task and that we know nothing about the mental
process of posing a medical diagnosis, what the application is the support of. Our approach was
first the design of a prototype of a 3D visualization application without any methodology and then
a validation of the prototype with the TRIDENT methodology. Nevertheless we have found the
following task characteristics :

o Prescribed (not observed).

« Decision support.

As a consequence, the task is weakly structured and no process is determined. It is the reason why -
the application that helps to carry out the task is based on the toolbox metaphor (Cf. Figure 4-1 :
The toolbox metaphor.). The user uses the tool he wants in function of the result he wants;
nothing is imposed.

Accordingly, we have chosen — before using the TRIDENT methodology — the following

interaction styles :

134

Chapter 4 : First Dimension - Graphical User Interface Specifications

e Menu selection - tool selection.
o Form filling - parameters setting of the tool.
e Multi-windows - displaying of several scenes.

o Direct manipulation — direct manipulation of the scene.

The last interaction style is not implemented yet. We point out that the interaction styles werc
derived only in function of the sort of task and the imposed work environment (Windows 95 and

NT), not in function of the users stereotypes.

In the thesis we applied the first dimension of the TRIDENT methodology as a validation mean of
the interaction styles we have chosen. We have derived the following interaction styles from the
task "analysis" suggested by the TRIDENT methodological framework (which takes into account
the users stereotypes who are considered as experts) :

e Form filling

e Multi-windows

o Direct manipulation
Here, because the task is prescribed, "analysis" rather means "supposition”.

Since most of the interaction styles we have chosen are the same as the one derived from the task
analysis, is the task analysis still useful in the case of weakly structured tasks ? To answer to this
question we are going to see if we derive the same interaction styles from the task analysis by
considering users who are beginners in using computers and who are not a lot motivated. Table
4-4 1s showing the interaction styles derived in function of the users stereotypes

By taking into account Table 4-1, Table 4-2, Table 4-3 and Table 4-4, we notice that the suitable
interaction styles proposed by the task analysis are

o Form filling

e Multi-windows

e Direct manipulation
That is the same as the one when the users are experts. Whatever the users, does the weakly
structured sort of task suggest the use of the form filling, multi-windows and direct manipulation
interaction styles 7 The answer to this question should be validated on a greater number of

applications.

135

Chapter 4 : First Dimension - Graphical User Interface Specifications

Task experience Systems Motivation Complex interaction
experience means experience
elementary elementary weak elementary
Natural X
language
Command
language
Interrogation
language
Questions/ X X X
answers
FFunction X X X
keys
Menu X X X
selection
Form X X X
filling
Multi- X X X
windows
Direct X X
manipulation
Iconic X X
interaction

Table 4-4 : Parameters relative to the users stereotypes

Is the menu selection a good choice ? We consider that, seen the toolbox model, the application is
assimilated to the toolbox and the menu selection allows the user to select a tool in the toolbox.
Again, more analysis is necessary to be able to answer to the question.

4.2 TRIDENT methodology enrichment

The TRIDENT methodology does not take charge of weakly structured tasks (prescribed and/or
decision support). So when we are facing such a task, we advise not to apply the task analysis as
suggested by the methodology. We are proposing an approach that is based on the TRIDENT
methodology, that takes into account the weakly structured type of task and that ends up with the
ACG.

I. Decompose the task into goals and sub-goals. The result is the same hierarchy of goals and
sub-goals as obtained with the TRIDENT methodology.

136

Chapter 4 : First Dimension - Graphical User Interface Specifications

Consider the application that will help to carry out the task as a toolbox. So, in the
preceding hierarchy, identify the tools and the central element on which the tools are
applied. The rule of tools identification is "one tool by sub-task of the interactive task". In
our case, the seventeen tools peculiar to each sub-task are :

e The tool of a new scene creation

o The tool of the current scene selection

e The tool of the current scene removal

o The tool of the current scene parameters setting.

o The tool of geometrical transformations of all the objects in the current scene

o The tool of cutting a part of the current scene

e The tool of management of the lights

e The tool of saving into VRML format

o The tool of a new object addition into the current scene

e The tool of the current object selection

e The tool of the current objet removal from the current scene

o The tool of the current object name changing

o The tool of getting information about an object

e The tool of the cuirent object color changing

o Thetool of the current object type of visualization changing

e The tool of the current object axis showing

o The tool of the current object box showing
The central elements identified are the scenes containing 3D objects (i.e. pieces of trabecular

bones...).

Identify the procedures as in the TRIDENT methodology. A procedure is a "combination of
actions on objects that results into a particular state of the activity domain",
[BODART95a). In the case of prescribed task, actions can directly represent semantic
functions, that is to say no abstraction is performed because there is no task analysis and
when elaborating the procedures we directly think in term of computer functions (Cf. step
35).

Identify the objects of the task from the decomposition into procedures (Cf. the TRIDENT
methodology) and establish the ERA model.

Identify the semantic and the service (help, display... : see Chapter 4, Section 3.3) functions

that are abstractions of the actions contained in the procedures identified above. When the

task is prescribed, it is possible that actions are directly mapped into functions — that is to

137

Chapter 4 : First Dimension - Graphical User Interface Specifications

say there is no abstraction mechanism — because we directly consider the actions as
computer functions during the procedures identification.

6. Compose the ACGs — the rule : "one ACG by tool identified in the goals and sub-goals
hierarchy" — that use the semantic and service functions identified above. The ACGs are
the same as the one used in the TRIDENT methodology except that it is possible to
represent parallel functions (see Figure 4-8) that work towards a common result. It should
be possible to aggregate all the ACGs into only one ACG. The ACGs will be used for the
presentation unit and the windows identification (see Chapter 5) and for the construction of

the functional hierarchy (see Chapter 6).

7. We suggest to use of the following interaction styles :

e Menu selection - tool selection.
e Form filling — parameters setting of the tools.
e Multi-windows - displaying of several windows, each one containing the

central element on which the tools are applied. In our
application, the central elements are the scenes; in word
processor applications, the central elements are the text
documents.

» Direct manipulation — direct modification of the central elements contained in the
windows. For example, in 3D viewer, the direct
manipulation should consist in rotating all the objects in a
scene; in a word processor, the direct manipulation is used
for selecting a string.

We insist on the fact that the interaction styles proposed are only a suggestion that should be

validated on a big number of applications helping to perform weakly structured tasks.

8. Derive the dialogue attributes.

138

Chapter 5
Second dimension :
Presentation Design From Ergonomic Rules

1. Introduction

The presentation design will be done by following the systematic approach explained in
[BODART95a] and summarized in Figure 5-1. This approach uses the following concepts :
concrete interaction object (CIO), abstract interaction object (AIO), window, presentation unit
(PU). The particularity of the TRIDENT methodology is the continuity between each step of the
development process. Here, the continuity is materialized by the use of the activity chaining graphs
and the user interfaces requirements defined at previous dimension. Moreover, the design of the

presentation will be guided by ergonomic rules.

139

Chapter S : Second dimension - Presentation Design From Ergonomic Rules

Ln 1-n

< Simple interaction ob ject > < Composite interaction object >
1-n
v I-n

< Simple interaction ob ject >

Figure 5-1 : Structure of the presentation

We will design the presentation by following the five steps suggested by the systematic approach :
(1) the identification of the PUs, (2) the identification of the windows, (3) the selection of AIQOs,
(4) the transformation of the AIOs into CIOs and fmally (5) the CIOs placement and the manual
edition of the presentation.

2. PU identification

As explained in [BODART95a), "each sub-task of the interactive task is mapped into a
presentation unit". Each sub-task of the interactive task corresponds in fact to a particular tool in
the toolbox model. So, in our case, each tool of the toolbox is mapped into a presentation unit.

We have identified the following presentation units :

e PUI — Creation of a new scene.

e« PU2 - Selection of the current scene.

« PU3 — Removal of the current scene.

e« PU4 - Specifying the parameters of the current scene.

« PUS — Geometrical transformation of all the objects in the current scene.
e« PU6 — Cutting a part of the current scene.

140

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

e PU7T — Management of the lights.
e PUS — Saving into VRML format.
« PU9 — Addition of an object into the current scene.

« PUI0—> Selection of the current object.

« PUII-> Removal of the current object from the current scene.

« PUI2—> Changing the name of the current object.

« PUI3—> Getting information about an object.

« PUIl4—> Changing the color of the current object.

« PUIS— Changing the type of visualization of the current object.
« PUI16— Showing the current object axis and/or box.

We point out that the two sub-tasks "showing the current object axis" and "showing the current
object bounding box", materialized by two different chaining graphs, will be gathered into a
common presentation unit (PU 16). We do so because they play the same role : they help the user
to better understand the size and position of the objects.

3. Windows identification

The windows identification approach, discussed in [BODARTO95a] and [TAES94], consists in
having each sub-graph materializing a presentation unit corresponding to a partition of this
sub-graph. These partitions correspond to windows. For the sixteen presentation units identified in

the previous section, we will identify their windows.

None of the five criteria (minimal, maximal, input/outpout, functional and free) examined in
[TAES94] are used to identify the windows inside each presentation unit.

Instead, an elimination method is prefered and consists in three steps. First of all, if the
presentation unit is containing the following three elements linked together by arrows (see Figure
5-2), they will be grouped together inside the same window WO :

mnn

e The hidden message "Current_scene':

e The function "Display"

e The visible message "Scene"
The identification of this window is justified by the fact that each time the scene is modified (for
example an object color has changed) it must be displayed. The next step consists in identifying
standard windows (“open file" window or "save file" window) that encloses external messages
representing file names. It is the case for the windows W1-2 in PU 1, W8-1 in PU 8 and W9-1 in

141

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

PU 9 (see below). The identification of these windows is justified by the software engineering rule
of reusability and by the ergonomic rule of inter-applications coherence. In the final step, all the
external messages that are left are gathered in only one window as long as the window is not to

much overloaded.

' Current_Scene'"' ___y Display _"\Sc/cnc—‘l

Figure 5-2 : Window W0

3.1 Windows identification for the PU 1

We have identified the following logical windows concerning the PU 1 (creation of a new scene) :
e WI-1 - Open_object_file_1
e WI-2 - Change_current_object_name_1

e WO - Display_scene
Figure 5-3 is showing the identification of the windows contained in the first presentation unit.
The window W1-1 is a standard one already defined in a Windows 95 library.

I Create_New_Scene [~

j File_Name

Load_Object

Object_Name

Wi-2

Change_Name |« Current_Scene'

» Current_Scene Display

Wwo

Figure 5-3 : Windows identification for the PU 1

142

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

3.2 Windows identification for the PU 2

We have identified the following logical window concerning the PU 2 (selection of the current
scene) :
o W2-1 - Select_current_scene

Figure 5-4 is showing the identification of the window contained in the second presentation unit.

Select_Current_Scene —~3, Current_Scene

Scene_Choice

Get_Current_Object |—

W2-1

Figure 5-4 : Windows identification for the PU 2

3.3 Windows identification for the PU 3

We have identified the following logical window concerning the PU 3 (removal of the current
scene) :

e W3-1 — Remove_current_scene

Figure 5-5 is showing the identification of the window contained in the third presentation unit. As
you can observe, there is no external message.

e P S ot

&+ Current_Scene Remove_Scene

Select_Current_Scene

—1 Get_Current_Object

Current_Scene’ '

W3-1

Figure 5-5 : Windows identification for the PU 3

3.4 Windows identification for the PU 4

We have identified the following logical windows cohcerning the PU 4 (specifying the parameters
of the current scene) :

e W4-1 — Choose_scene_parameters
« WO - Display_scene
Figure 5-6 is showing the identification of the windows contained in the fourth presentation unit.

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

Background_Color

| Change_Background_ColorJ\

Rl

| View_Anglel

N Change_View_Angle L

Turmn_Anti_Aliasing_On]rt

> Turn_Anti_Aliasing_Off

i

{ Current_Scene' '

Display [:

* Turn_Culling_Face_On

% Turn_Culling_Face_Off

}{Sort_Counter_C]ockWise -

Sort_Clockwise

wo

Change_Near_Plane

Change_Shading_Method

I Shading_Method

W4-1

Figure 5-6 : Windows identification for the PU 4

3.5 Windows identification for the PU 5

We have identified the following logical windows concerning the PU S5 (geometrical
transformation of all the objects in the current scene) :

e W5-1 - Rotate_scene

e W52 Translate_scene

e W53 — Scale_scene

« WO - Display_scene

Figure 5-7 is showing the identification of the windows contained in the fifth presentation unit.
Even if the users are experts, we did not want to overload the window too much. It is the reason
why we decided to use three windows, each one for a particular geometrical transformation,
instead of only one for all the transformations.

144

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

Cur_Angle X
Cur_Angle_Y
Cur_Angle_7Z

__,' Get_Current_Rotation

Rotate

Cur_Pos_X
Cur_Pos_Y
Cur_Pos_Z

—~—P Get_Current_Translation |-

! Current_Scene' '
a

.
* Current_Scene |

Translate

Trans_X
Trans_Y
Trans_7.

| Scale_XYZ

——r—-}{ Get_Current_Scale

Change_Scale

Cur_Scale X
Cur_Scale_Y
Cur_Scale Z |

' Scale_X |
Scale Y |
Scale Z |

WS-3

Figure 5-7 : Windows identification for the PU S

3.6 Windows identification for the PU 6

We have identified the following logical windows concerning the PU 6 (cutting a part of the
current scene) :

o W6-1 - Define_cutting_planes

« WO - Display_scene

Figure 5-8 is showing the identification of the windows contained in the sixth presentation unit.

145

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

Translucence |

Number_Of_Wires

rtey e

Current_Scene

2

Scene_Type k

Distance
Angle_1
Angle_2

Il Define_Cp

Scene

W6-1 W0

Figure 5-8 : Windows identification for the PU 6

3.7 Windows identification for the PU 7

We have identified the following logical windows concerning the PU 7 (management of the lights)

e W7-1 — Define_lights
e WO - Display_scene

Figure 5-9 1s showing the identification of the windows contained in the seventh presentation unit.

146

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

"FAR"

Turn_Light_On

Light_Id
Color :
Specular_Comp |

o L R L

Current_Scene' !

Current_Scene «—f

Turn_Light_Off [| Display

Scene

Turn_All_Lights_Off

w0

Ww7-1

Figure 5-9 : Windows identification for the PU 7

3.8 Windows identification for the PU 8

We have identified the following logical windows concerning the PU 8 (saving into VRML
format) :

o« WS-1 - Save_ VRML format

e W82 — VRML _file_saved_message

Figure 5-10 is showing the identification of the windows contained in the eighth presentation unit.
The window W&-1 is a standard one already defined in a Windows 95 library.

VRMIL._File_Savec

Save_To_VRML [¢

Current_Scene |

Ww8-2

W8-1

Figure 5-10 : Windows identification for the PU 8

147

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

3.9 Windows identification for the PU 9

We have identified the following logical windows concerning the PU 9 (addition of an object into
the current scene) :

e WO-1 — Open_object_file_2

e« W92 > Change_current_object_name_2

e WO - Display_scene

Figure 5-11 is showing the identification of the windows contained in the ninth presentation unit.
The window W9-1 is a standard one already defined in a Windows 95 library.

] Current_Scene'.

Add_Object

File_Name

Load_Object . Select_Current_Object

i W9-1
-1 Object_Name
= W9-2

Change_Name

Scene

L' Current_Scene' 1 Display

WwWo

Figure 5-11 : Windows identification fer the PU 9

3.10 Windows identification for the PU 10

We have identified the following logical windows concerning the PU 10 (selection of the current
object) :

e WIO-1 — Select_current_object

Figure 5-12 is showing the identification of the windows contained in the tenth presentation unit.

| Object_Name

Get_Object F Current_Object

o

+ Current_Scene

Select_Current_Object

W10-1

Figure 5-12 : Windows identification for the PU 10

148

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

3.11 Windows identification for the PU 11

We have identified the following logical windows concerning the PU 11 (removal of the current
object from the current scene) :

e WII-1 — Remove_current_object
« WO - Display_scene

Figure 5-13 is showing the identification of the windows contained in the eleventh presentation
unit.

it i S e

: Current_Object
'* Current_Scene

Remove_Object

“’ Scene

Figure 5-13 : Windows identification for the PU 11

3.12 Windows identification for the PU 12

We have identified the following logical windows concerning the PU 12 (changing the name of the
current object) :

e WI12-1 — Change_current_object_name_3
e WI2-2 — Current_object_name_changed_message
Figure 5-14 is showing the identification of the windows contained in the twelfth presentation unit.

Change_Name Current_Scene' .

3 Current_Scene ,
1 Current_Object

Wi2-1

Figure 5-14 : Windows identification for the PU 12

149

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

3.13 Windows identification for the PU 13

We have identified the following logical windows concerning the PU 13 (getting information
about an object) :

e WI3-1l — Getting_object_information

Figure 5-15 is showing the identification of the windows contained in the thirteenth presentation
unit.

Object_Name |

Get_Object

Get_Number_Of_Vertices | Number_Of_Vertices I i

Get_File_Name -

: Number_Of_Ttriangles

Current_Scene | Get_Number_Of_Triangles

3

Get_Visualization_Type ¢ Points Cloud

| Get_Number_Of_Tetrahedrons

Number_Of_Tetrahedrons

W13-1

Figure 5-15 : Windows identification for the PU 13

3.14 Windows identification for the PU 14

We have identified the following logical windows concerning the PU 14 (changing the color of the
current object) :

e Wli4-1 — Define_current_object_properties
o WO - Display_scene

150

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

Figure 5-16 is showing the identification of the windows contained in the fourteenth presentation
unit.

Color
Specular_Comp

. Shininess

Translucence

Change_Color Display Scene

¢ Current_Object &
", Current_Scene

Wi14-1

Figure 5-16 : Windows identification for the PU 14

3.15 Windows identification for the PU 15

We have identified the following logical windows concerning the PU 15 (changing the type of
visualization of the current object) :

e WIS-1 - Define_current_object_visualization_type

e WO - Display_scene

Figure 5-17 is showing the identification of the windows contained in the fifteenth presentation

unit.

‘ Visualization_Type

Current_Objec
Current_Scene

5 Current_Scene'

Change_Visualization_Type

Display ’

wo

Wi1s-1

Figure 5-17 : Windows identification for the PU 15

3.16 Windows identification for the PU 16

We have identified the following logical windows concerning the PU 16 (showing the current
object axis and/or box) :

e WI16-1 — Define_current_object_axis_and_or_box

151

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

« WO - Display_scene
Figure 5-18 is showing the identification of the windows contained in the sixteenth presentation

unit.

Color
Length
Move

S

how_Axis_On

FolE 5L x Show_Axis_Off b
i Current_Object |)‘

7+ Current_Scene N
‘ ;‘f:“r;.— R ¢/

, Current_Scene’

Display Scene

% Show_Box_Off

wo

{Show_Box_Onf-=

W16-1

Figure 5-18 : Windows identification for the PU 16

4. AIOs selection

At this point we have to decide which types of windows (physical windows, dialog boxes or
panels) will stand for the logical windows identified at the previous section. Within each window
we have to select the abstract interaction objects that will correspond to each information in
input/output and the one that will correspond to each function. At the end we will obtain a

hierarchy of AIOs.

Except the main application window and the one that will contain the graphical representation of
the scenes WO0), all the other windows will be dialog boxes. Windows W1-1, W9-1 (opening an
object file) and W8-1 (saving into VRML format) are dialog boxes already defined in Windows

95.

"The selection of AIOs is based on a set of selection rules, themselves being based on empirically
validated cognitive principles and established conventions" [BODART95a]. Table 5-1, Table 5-2,
Table 5-3 and Table 5-4 are showing selection rules used to choose correct AIOs respectively for
alphanumeric data inputs, boolean data inputs, integer data inputs and elementary data inputs and

152

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

are coming from [VANDERDONCKT93b]. To be able to interpret these tables, here are the

abbreviations used :

e Cont — continuous domain
« Exp — expandable domain
e Fr - data frequency in a list
e Lg — item current length
e Lm — maximal length of an alphanumeric item
o Nutil - user experience level
e Nvc - number of values to choose
e« Npo — number of possible values
e« Npv — number of principal values
e Nsv — number of secondary values
e Pref — user's preference for selecting a data
e Tm - maximal number of items in a list
e Va -5 antagonist values
Domain Nve § Nsv | Exp Npo Lg AlO
Unknown <= Lm | Single-line editbox
Unknown > Lm Multiple-line editbox
Mixed (2, 3] Radio-button with Npo items
+ single-line edit box
Mixed (4, 7] Radio-button with Npo items
+ single-line edit box
+ group box
Mixed l [8, Tm] Drop-down combination box
Mixed [Tm+1, 2 TM] Scrolling combination box
Mixed > 2TM Drop-down scrolling combination box
Known 1 =0 |No (2, 3] Npo check boxes
Known 1 =0 |No (4,7 Npo check boxes
+ group box
Known > 1 =0 |No (8, Tm] List box
Known > 1 =0 |No [Tm+1,2TM] | <= Lm | Scrolling listbox
Known > 1 =0 |No (Tm+1,2 TM] |> Lm Drop-down scrolling list box
Known > 1 =0 {No > 2TM Drop-down scrolling list box
Known > 1 =0 |Yes <= Lm | Combination box
Known > 1 =0 |Yes > Lm Drop-down combination box
Known > 1 >0 <= Lm | List box
Known > 1 > 0 > Lm Drop-down list box
Known =1 > 0 List box
Known =1 =0 |Yes Combination box
Known =1 =0 |No (2, 3] Radio-button with Npo items

153

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

Known =1 =0 |No [4, 7] Radio-button with Npo items
Known + group box
Known =1 =0 |No [8, Tm] List box
Known =1 =0 |No [Tm+1, 2 TM] Scrolling list box
Known =1 =0 |[No > 2TM Drop-down scrolling list box
Table 5-1 : AIOs selection for alphanumeric data inputs
Pomain Va Orientation AlIO
known Yes Vertical Vertical switch
known Yes Horizontal Horizontal switch
known Yes Circular Two-valued dial
known Yes Undefined Horizontal switch
known No Check box
Unknown | No Check box
Table 5-2 : AIOs selection for boolean data inputs
Nsy Exp | Cont Npo Precision { Orientation AIO
>0 List box
=0 Yes Combination box
=0 No No (2, 3] Radio-button with Npo items
=0 No No 4, 71 Radio-button with Npo items
+ group box
=0 No No (8, Tm] Listbox
=0 No No [Tm+1, 2 Tm)] Scrolling list box
=0 No No > 2 Tm Drop-down scrolling list box
=0 No Yes (1, 10] Low Vertical Scroll bar
=0 No Yes (1, 10] Low Horizontal Scale
=0 No Yes (1, 10] Low Circular Pie diagram
=0 No Yes (1, 10] Low Undefined Scale
=0 No Yes (1, 10] High Vertical Vertical thermometer
=0 No Yes [1,10] High Horizontal Horizontal thermometer
=0 No Yes (1, 10] High Circular Dial
=0 No Yes (1, 10] High Undefined Horizontal thermometer
=0 No Yes (11, Tm)] High Spin button
=0 No Yes (11, Tm] Low Scale
=0 No Yes > Tm High Spin button
=0 No Yes > Tm Low Vertical Scroll bar
=0 No Yes > Tm Low Horizontal Scale
=0 No Yes > Tm Low Circular Dial
=0 No Yes > Tm Low Undefined Scale

Table 5-3 : AIOs selection for integer data inputs

154

Chapter 5 . Second dimension - Presentation Design From Ergonomic Rules

Type Domain Va Lg Npo Nutil AIO
Hour <=5 | Spin button
Hour > 5 Profiled single-line edit box
Date <=5 | Spin button
Date > 5 Profiled single-line edit box
Boolean Yes Radio-button
Boolean No Check box
Graphic Radio icon
Integer Unknown Single-line edit box
Integer Mixed Drop-down combination box
Integer Known (2, 7] Radio-button
Integer Known (8, Tm] Drop-down list box
Integer Known > Tm Spin button
Real Unknown Profiled single-line edit box
Real Mixed Drop-down combination box
Real Known Drop-down listbox
Alphanumeric | Unknown <= Lm Single-line edit box
Alphanumeric | Unknown > Lm Multiple-line edit box
Alphanumeric | Mixed Drop-down combination box
Alphanumeric | Known Drop-down list box

We will now review all the windows, specify their properties and select the right AIOs they will
contain taking into account the tables of selection rules presented above. For each AIO, we will
determine its properties. Since software ergonomics rules are belonging to our culture, there are
few differences between the AIOs we have selected during the program implementation without
the help of any table and the one proposed by the tables shown above. Nevertheless, some minor
modifications have to be made to the currently designed presentation, among others concerning

Table 5-4 : AIOs selection for elementary data inputs

the ergonomic rule of intra-application coherence.

4.1 Logical window Wé

The logical window "Display_scene" is represented by a physical window entitled "Scene" and has

the following characteristics :

modeless, sizable, minimizable, maximizable and movable. It

contains no AJIOs since its only purpose is to display a view of a scene.

4.2 Logical window WI1-1

The logical window "Open_object_file_1" is represented by a dialog box entitled "File Open" and

has the following characteristics :

modal, non-sizable, non-minimizable, non-maximizable and

155

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

movable. 1t is a standard "open file" dialog box already defined by Windows 95 and contained in
one of its libraries. It should at least contain these three AIOs :

e Asingle-line edit box to enter the file name.

e An "Ok" command button to confirm.

e A "Cancel” command button to cancel the process.

4.3 Logical window WI1-2

The logical window "Change_current_object_name_1" is represented by a dialog box entitled

"Change object name" and has the following characteristics : modal, non-sizable,

non-minimizable, non-maximizable and movable. It contains the following AIOs :

* A single-line edit box to enter the name of the new object. Its default value is the string "New
Object #x" where #x stands for the number of the object. For example, if the object is the fifth
to be loaded into the scene, #x will be equal to 5.

* An "Ok" command button to accept the new name.

* A static text labeled "You inserted a new object. In order to continue, you must give it a

name".

4.4 Logical window W2-1

The logical window "Select_current_scene" is represented only by a menu item entitled
"Window". The scene can also be selected as the current one by clicking on the window
containing this scene.

4.5 Logical window W3-1

The logical window "Remove_current_scene” has no external information. It's the reason why
there is no window, dialog box or panel that represents this logical window. Only a click with the
mouse on the cross on the upper right corner or a click on a menu item on the upper left of the

window containing the current scene will destroy this window.

4.6 Logical window W4-1

The logical window "Choose_scene_parameters" is represented by a dialog box entitled "Scene
options" and has the following characteristics : modal, non-sizable, non-minimizable,
non-maximizable and movable. It contains the following AIOs :
® A spin button to choose the near-plane (an integer between 1 and 20).
* A spin button to choose View angle or field of view (an integer between 10 and 120).
* A group box entitled "Size" to gather the previous two spin buttons because they share the

same semantic.

156

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

A radio button to choose the flat shading method.

A radio button to choose the smooth shading method.

A group box entitled "Shading Method" to gather the previous two radio buttons because they
share the same semantic.

A radio button to choose the clockwise vertices sorting method.

A radio button to choose the counter-clockwise vertices sorting method.

A group box entitled "Vertices Sorting Method" to gather the previous two radio buttons
because they share the same semantic.

A "Change..." command button to call the window that permits to change the background
color of the scene.

An icon to show the current backgroud color.

A group box entitled "Background Color" to gather the previous two AIOs because they share
the same semantic.

A check box to select the antialiasing option or not.

A check box to select the culling face option or not.

A group box entitled "Other" because they can not be placed anywhere else and in order to
keep symmetry in the dialog box presentation.

An "Ok" command button to accept the new parameters of the scene.

A "Cancel" Command button to keep the old parameters of the scene.

4.7 Logical window W5-1

The logical window "Rotate_scene" is represented by a dialog box entitled "Set angles" and has

the following characteristics : modal, non-sizable, non-minimizable, non-maximizable and

movable. It contains the following AIOs :

A spin button to choose the value of the new angle of the objects along the x axis.

A spin button to choose the value of the new angle of the objects along the y axis.

A spin button to choose the value of the new angle of the objects along the z axis.

A group box entitled "New Angles" to gather the previous three spin buttons because they
share the same semantic.

A single-line edit box to show the value of the curent angle of the objects along the x axis.
The user can't modify this edit box.

A single-line edit box to show the value of the curent angle of the objects along the y axis.
The user can't modify this edit box.

A single-line edit box to show the value of the curent angle of the objects along the z axis. The
user can't modify this edit box.

A group box entitled "Current Angles" to gather the previous three single-line edit boxes
because they share the same semantic.

157

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

An "Ok" command button to accept the parameters and to perform the rotation.

A "Cancel" Command button not to perform the rotation and keep the angles of all the objects
at their current values.

An "Initial view" comumand button to set the objects of the scene at their very [irst rotation

angle.

4.8 Logical window W5-2

The logical window "Translate_scene" is represented by a dialog box entitled "Translate" and has
the following characteristics : modal, non-sizable, non-minimizable, non-maximizable and

movable. It contains the following AIOs :

A spin button to choose the value of the new position of the objects along the x axis.

A spin button to choose the value of the new position of the objects along the y axis.

A spin button to choose the value of the new position of the objects along the z axis.

A group box entitled "New Position" to gather the previous three spin buttons because they
share the same semantic.

A single-line edit box to show the value of the curent position of the objects along the x axis.
The user can't modify this edit box.

A single-line edit box to show the value of the curent position of the objects along the y axis.
The user can't modify this edit box.

A single-line edit box to show the value of the curent position of the objects along the z axis.
The user can't modify this edit box.

A group box entitled "Current Positions" to gather the previous three single-line edit boxes
because they share the same semantic.

A radio button to choose the best fit translation method.

A radio button to choose the absolute translation method.

A radio button to choose the relative translation method.

A group box entitled "Method" to gather the previous three radio buttons because they share
the same semantic.

An "Ok" command button to accept the parameters and to perform the translation.

A "Cancel" Command button not to perform the translation and keep the objects at their
current position values.

A "Center" command button to center all the objects in the middle of the scene.

4.9 Logical window W5-3

The logical window "Scale_scene" is represented by a dialog box entitled "Set Scale" and has the
following characteristics : modal, non-sizable, non-minimizable, non-maximizable and movable. It

contains the following AIOs :

158

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

A spin button to choose the value of the new scale percentage of the objects along the x axis.
A spin button to choose the value of the new scale percentage of the objects along the y axis.
A spin button to choose the value of the new scale percentage of the objects along the z axis.
A check box to maintain the global aspect ratio or not.

A group box entitled "Change aspect ratio" to gather the previous four AIOs because they
share the same semantic.

A single-line edit box to show the value of the curent scale percentage of the objects along the
x axis. The user can't modify this edit box.

A single-line edit box to show the value of the curent scale percentage of the objects along the
y axis. The user can't modify this edit box.

A single-line edit box to show the value of the curent scale percentage of the objects along the
z axis. The user can't modify this edit box.

A group box entitled "Current Aspect Ratio" to gather the previous three single-line edit boxes
because they share the same semantic.

An "Ok" command button to accept the parameters and to perform the scaling.

A "Cancel" Command button not to perform the scaling and keep the objects at their current

scale percentage values.

4.10 Logical window W6-1

The logical window "Define_cutting_planes” is represented by a box entitled "Cutting Planes" and
has the following characteristics : modal, non-sizable, non-minimizable, non-maximizable and

movable. 1t contains the following AIOs :

A list box to choose which cutting plane to set the parameters. It should contain the following
alphanumeric elements : "Bottom plane", "Front Plane", "Left plane", "Rear plane", "Right
plane", and "Top plane".

A check box to show the cutting plane or not.

A check box to cut the scene or not.

A spin button to choose the value of the distance percentage between the cutting plane and the
limit plane of the scene.

A spin button to choose the value of the angle between the cutting plane and the limit plane of
the scene along the x axis.

A spin button to choose the value of the angle between the cutting plane and the limit plane of
the scene along the y axis.

A spin button to choose the value of the angle between the cutting plane and the limit plane of
the scene along the z axis.

A group box entitled "Planes Parameters" to gather the previous seven AIOs because they

share the same semantic.

159

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

A "Pick..." command button to call the window that permits to change the color of the cutting
plane.

An icon to show the current cutting plane color.

A group box entitled "Other" to gather the previous two AIOs because they share the same
semantic.

An "Ok" command button to accept the parameters and to perform the cutting planes.

A "Cancel" Command button to keep the scene as it was before (no cutting plane has
changed).

A "Default” Command button to set the parameters of all the cutting planes with default
values (no active cutting plane, no visible cutting planes, default color...).

An "Advanced >>" Command button to show the same window but bigger and with more
AlIOs onit.

This dialog box is expandable. When the "Advanced >>" Command button is pushed by the user,
the same dialog box becomes bigger and contains more AIOs concerning advanced options. We
will consider that it is another dialog box than the previous one that appear on the screen. The first
"Cutting Plane" dialog box that is already described will be identified by W6-1a when the second
window, the one that will be described below, will be identified by W6-1b.

Dialog box W6-1b has the same characteristics and the same AIOs as dialog box W6-1a except
that the " Advanced >>" Command button of the latter window is replaced by :

An "<< Advanced" Command button to show the same window but smaller and with less

AlOs on it.

Moreover, dialog box W6-1b has the following AIOs that dialog box W6-1a has not :

A radio button to choose the wireframe visual aspect of the cutting plane.

A spin button to choose the number of wires the plane should have (value between 0 and 100).
A radio button to choose the translucent visual aspect of the cutting plane.

A spin button to choose the translucence percentage the plane should have.

A spin button to choose the size of the plane (a percentage of the scene size).

A group box entitled "Advanced" to gather the previous five AIOs because they share the

same semantic.

4.11 Logical window W7-1

The logical window "Define_lights" is represented by a dialog box entitled "Lighting" and has the
following characteristics : modal, non-sizable, non-minimizable, non-maximizable and movable. It

contains the following AIOs :

A list box to choose which light to set the parameters of. It should contain the folowing

alphanumeric elements : "Light 1", ..., "Light 2".
160

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

e A check box to turn the light on or off.

e A group box entitled "Available Lights" to gather the previous two AIOs because they share
the same semantic.

e A "Pick..." command button to call the window that permits to change the color of the light.

e Anicon to show the light color.

e A spin button to choose specular component of the light (value between 0 and 255).

e Anicon to show the light specular component.

e A group box entitled "Light Components” to gather the previous four AIOs because they share
the same semantic.

o A single-line edit box to enter the light position or the light direction along the x axis.

e Asingle-line edit box to enter the light position or the light direction along the y axis.

e A single-line edit box to enter the light position or the light direction along the z axis.

* A check box to decide if the light is far or near to the objects.

e A group box entitled "Light Position" to gather the previous four AIOs because they share the
same semantic.

e A check box to durn the all the light off or to enable the lighting effects.

* An "Ok" command button to accept the parameters and to perform the lighting.

e A "Cancel” Command button to keep the scene as it was before (no light has changed).

e A "Default" Command button to parametrize all the lights with default values (no active light,
default color...).

4.12 Logical window W8§-1

The logical window "Save_ VRML_format" is represented by a dialog box entitled "Save File" and
has the following characteristics : modal, non-sizable, non-minimizable, non-maximizable and
movable. Tt is a standard "save file" dialog box already defined by Windows 95 and contained in
one of its libraries. It should at least contain these three AIOs :

e A single-line edit box to enter the file name.

e An "Ok" command button to save the file.

e A "Cancel" command button to cancel the process.

4.13 Logical window W8§-2

The logical window "VRML_file_saved_message" is represented by a dialog box entitled
"Exporting in VRML" and has the following characteristics : modal, non-sizable,
non-minimizable, non-maximizable and movable. It contains the following AIO :

e A Progression indicator to show the current state of the file saving.

161

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

4.14 Logical window W9-1

The logical window "Open_object_file_2" is represented by a dialog box entitled "File Open" and
has the following characteristics : modal, non-sizable, non-minimizable, non-maximizable and
movable. It is a standard "open file" dialog box already defined by Windows 95 and contained in
one of its libraries. It should at least contain these three AIOs :

e A single-line edit box to enter the file name.

e An "Ok" commend button to confirm.

e A "Cancel" command button to cancel the process.

4.15 Logical window W9-2

The logical window "Change_current_object_name_2" is represented by a dialog box entitled

"Change object name" and has the following characteristics : modal, non-sizable,

non-minimizable, non-maximizable and movable. It contains the following AIOs :

e A single-line edit box to enter the name of the new object. Its default value is the string "New
Object #x" where #x stands for the number of the object. For example, if the object is the fifth
to be loaded into the scene, #x will be equal to 5.

* An "Ok" command button to accept the new name.

e A static text labeled "You inserted a new object. In order to continue, you must give it a

name".

4.16 Logical window W10-1

The logical window "Select_current_object" is represented by a dialog box entitled "Select an
object" and has the following characteristics : modal, non-sizable, non-minimizable,
non-maximizable and movable. It contains the following AIOs :

e A list box to choose which object to select as the current one. The list box contains all the

names of the objects present in the scene.

e A group box entitled "Objects" that enclose the previous list box to give it a title.

e An "Ok" command button to accept the new current object.

* A "Cancel" Command button to keep the old current object.

4.17 Logical window WI11-1

The logical window "Remove_current_object” is represented by a dialog box entitled "Remove
current object” and has the following characteristics : modal, non-sizable, non-minimizable,
non-maximizable and movable. It contains the following AIOs :

e A static text labeled "Are you sure you want to remove object the current object ?".

162

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

e A "Yes" command button to process the deletion of the current object.

e A "No" command button to cancel the deletion process.

4.18 Logical window WI12-1

The logical window "Change_current_object_name_3" is represented by a dialog box entitled
"Change Object Name" and has the following characteristics : modal, non-sizable,

non-minimizable, non-maximizable and movable. 1t contains the following AIOs :
e Asingle-line edit box to enter the new name of the current object.

e An "Ok" command button to accept the new name.

* A "Cancel" command button to keep the old name.

4.19 Logical window WI13-1

The logical window "Getting_object_information" is represented by a dialog box entitled "Objects

infos" and has the following characteristics : modal, non-sizable, non-minimizable,

non-maximizable and movable. 1t contains the following AIOs :

e A list box to choose the object we need information for. The list box contains all the names of
the objects present in the scene.

e A group box entitled "Select an object” that encloses the previous list box to give it a title.

e A single-line edit box to show the value of the number of elements (tetrahedrons or triangles)
of the object. The user can't modify this edit box.

e A single-line edit box to show the value of the number of vertices of the object. The user can't
modify this edit box.

e A single-line edit box to show the display type (mesh, filled surface or points cloud) of the
object. The user can't modify this edit box.

e A single-line edit box to show the file name of the object. The user can't modify this edit box.

* A group box entitled "Mesh" to gather the previous four single-line edit box because they
share the same semantic.

* A "Close" command button to close the window when the user has read the information he

needs.

4.20 Logical window W14-1

The logical window "Define_current_object_properties" is represented by a dialog box entitled
"Object Properties" and has the following characteristics : modal, non-sizable, non-minimizable,
non-maximizable and movable. It contains the following AIOs :

e A check box to decide if the object surface is transparent or not.

e A spin button to choose the transparency percentage.

163

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

e A group box entitled "Transparency” to gather the previous two AIOs because they share the
same semantic.

® A "Pick.." command button to call the window that permits to change the color of the object.

e Anicon to show the current object color.

e A spin button to choose the specular component (gray levels between 0 and 255).

e A spin button to choose the shininess percentage.

e A group box entitled "Colors" to gather the previous four AIOs because they share the same
semantic.

e An "Ok" command button to accept the new properties of the object.

e A "Cancel” command button to keep the old properties of the object.

e A "Default" Command button to set the parameters of all the object properties with default
values (no transparent surface, default color...).

4.21 Logical window WI15-1

The logical window "Define_current_object_visualization_type" is represented by a dialog box

entitled "Display" and has the following characteristics : modal, non-sizable, non-minimizable,

non-maximizable and movable. It contains the following AIOs :

* A radio button to choose the filled surface (triangles) display type.

e A radio button to choose the mesh (tetrahedrons) display type.

* A radio button to choose the points cloud display type.

e A group box entitled "Surface display" to gather the previous three radio buttons because they
share the same semantic.

* An "Ok" command button to accept the new visualization type.

e A "Cancel" command button to keep the old visualization type.

* A "Default” Command button to choose the default visualization type.

4.22 Logical window WI16-1

The logical window "Define_current_object_axis_and_or_box" is represented by a dialog box
entitled "Axis and box" and has the following characteristics : modal, non-sizable,
non-minimizable, non-maximizable and movable. It contains the following AIOs :

e A check box to decide if an axis has to be shown or not with the current object.

® A check box to decide if the axis has to move or not with the current object.

e A "Pick.." command button to call the window that permits to change the color of the axis.

e Anicon to show the color of the current object axis.

e A spin button to choose the axis length percentage (percentage of the object size).

164

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

e A group box entitled "Axis Properties" to gather the previous five AIOs because they share the
same semantic.

e A check box to decide if a box has to be shown or not with the current object.

o A "Pick..." command button to call the window that permits to change the color of the box.

e Anicon to show the color of the current object box.

e A spin button to choose the box size percentage (percentage of the object size).

e A group box entitled "Box Properties" to gather the previous four AIOs because they share

the same semantic.

5. Transformation of the AIOs into CIOs

Each AIO identified in the previous section will be connected to a concrete interactive object
coming from the Microsoft Windows 95 environment. All the CIOs obtained in this part will be
used to physically design the dialog boxes. The conversion table from AIOs to CIOs is shown in

Table 5-5.

AlOs CIOs
Spin button Spin button
Icon Icon
Command button Push button
Check box Check box
Group box Group box

Radio button

Radio button

Single-line edit box

Single line entry field

List box

List box

Static text

Static text

Progression indicator

Progression indicator

Drop-down list box

Drop-down list box

Modeless dialog box

Modeless dialog box

Modal dialog box

Modal dialog box

Table 5-5 : Transformation of the AIOs into CIOs

Chapter 5 : Second dimension - Presentation D esign From Ergonomic Rules

6. CIOs placement and manual edition of the presentation

In this section we will show all the windows and dialog boxes that are currently implemented in
our application. The CIOs placement was manually done. A word about the placement strategy :

The mnemonic terms are unique and displayed if available.

The CIOs are arranged in an logical and aesthetic ways.

Except for the dialog boxes where only output information is displayed, all the other windows
must have an "Ok" push button and a "Cancel" push button.

If possible, windows should have a "Default" push button to set default values to input CIOs.
The push buttons are, if possible, placed horizontally, on the right side of the dialog box.
Every CIO must have a label.

Each CIO concerning the color or its specular component must be represented by a push
button calling a standard Windows 95 window that help the user to choose the color and by an

icon showing the current color used.

These are the screenshots of the windows designed with Microsoft Visual C++. The windows
shown below were initially created during our training period in Tony Keller's lab but they were
modified taking into account the presentation design suggested by the TRIDENT methodology.

6.1 Window WI-2 : Change_Current_Object_Name_1

Mew Object 2

Figure 5-19 : Window W1-2

The window shown in Figure 5-19 is displayed when an object is opened. It allows to give the

object a name different from a single number. For example, one object can be "Surface mesh" and

another one in the same scene "Volume mesh".

166

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

6.2 Window W4-1 : Choose_Scene_parameters

Figure 5-20 : Window W4-1

The window shown in Figure 5-20 allows to set parameters for the scene, as the position of far

and near planes.

167

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

6.3 Window W5-1 : Rotate_Scene

Figure5-21 : Window W5-1

The window shown in Figure 5-21 allows the user to rotate the scene. The new angle is set in the
first part of the window, the second one shows the current position from the axis.

6.4 Window W5-2 : Translate_Scene

Figure 5-22 : Window W5-2

168

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

As for W5-1, this window allows to change the position of the object. The current position is
shown in the second part of the dialog box. The bottom right group box corresponds to the
method that can be used. (Figure 5-22)

6.5 Window W5-3: Scale Scene

Figure 5-23 : Window W5-3

The window shown in Figure 5-23 allows to change the aspect of the objects. While "Maintain
Global Aspect" button is checked, X, Y and Z scales are set together, otherwise, it is possible to
change aspect ratio for X, Y and Z axes separately.

6.6 Window W6-1 : Define_Cutting_Planes

169

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

Figure 5-24 : Window W6-1a (standard window)

Front plane
Left plane
Rear plane
Fight plane
Top plane

Figure 5-25 : Window W6-1b (Advanced options)

170

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

The two windows shown in Figure 5-24a and Figure 5-25 correspond to the dialog box allowing
to change parameters for cutting planes (see Chapter Visualization). There are actually two
windows, one for common parameters, and a second one with advanced parameters.

6.7 Window W7-1: Define_Lights

Figure 5-26 : Window W7-1

The window shown in Figure 5-26 allows to set parameters for lights. Up to 8 lights can be set
simultaneously, and for each, the color, specular component and position can be set.

6.8 Window W8-1: Save_VRML_Format

Figure 5-27 : Window W8§-1

171

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

n30

The window shown in Figure 5-27 is the common dialog "Save As"”" where the type of file is

"VRML Files" (See Appendix 5 for details)

6.9 Window W8-2 : VRML_file_saved_message

Figure 5-28 : Window W8§-2

The window shown in Figure 5-28 is displayed when saving the VRML file.

6.10 Window W9-1 : Open_Object_File 2

Project

Figure 5-29 : Window W9-1

The window W9-1 as shown in Figure 5-29 corresponds to the common dialog "Open File" dialog

window.

* This dialog box as well as "Open File" as Common Dialogs provided with Windows 95 and Windows
NT. Unfortunately, screen captures were made under the French release of Windows 95.

172

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

6.11 Window W9-2 : Change_Current_Object_Name_2

Figure 5-30 : Window W9-2

The window shown in Figure 5-30 is displayed when a new object is inserted in the scene.

6.12 Window WI10-1 : Select_Current_Object

Figure 5-31 : Window W10-1

Figure 5-31 shows the window allowing to select an object from the scene and to make it the
current object.

6.13 Window WI11-1: Remove_Current_Object

emwe Cuirent:Objec

Figure 5-32 : Window W11-1

The window shown in Figure 5-32 is displayed when the menu item "Remove Current Object” is
activated.

173

Chapter S : Second dimension - Presentation Design From Ergonomic Rules

6.14 Window WI12-1: Change_Current_Object_Name_3

Figure 5-33 : Window W12-1

The window shown in Figure 5-33 is displayed when the menu item "Rename Current Object” is
activated.

6.15 Window WI13-1 : Getting_Object_Information

Figure 5-34 : Window W13-1

The window shown in Figure 5-34 displays all objects from the scene. Once an object is selected
in the list box, information is displayed.

174

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

6.16 Window WIi4-1 : Define_Current_Object_Properties

Figure 5-35 : Window W14-1

Figure 5-35 shows the window that allows to set properties like transparency and color.

6.17 Window W15-1 : Define_Current_Object_Type

Figure 5-36 : Window W15-1

The window W15-1 shown in Figure 5-36 allows to change the visualization type (rendered
surface, mesh or points cloud).

6.18 Window W16-1 : Define_Current_Object_Axis_and_or_Box

175

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

Figure 5-37 : Window W16-1

The window shown in Figure 5-37 allows to display or not axis and/or bounding box.

7. Using an Expert System for Automatic Generation of User Interface.

We used below a program called SEGUIA [SEGUIA97] to validate our dialog boxes. The
process has not been conducted for all of them since most of them are simple and the result would
be the same. We have chosen the "Cutting planes" dialog box because it offers a lot of different
control interactive objects (CIOs). The dialog box shown in Figure 5-38 was manually designed
under Microsoft Developer Studio (The software that allows to develop C++ code as well as
resources like dialog boxes) and was included in 3D Viewer. Figure 5-39 shows a dialog box
created by SEGUIA. The same parameters as in the first dialog box were given to SEGUIA, and

in many respects, they are similar.

176

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

Pear plane
Right plane
op plane

i WA A

Figure 5-38 : Dialog box excerpt from 3D Viewer

Indeed, parameters like translation, angle and number of gridlines are represented by the same
CIOs in both dialog boxes (spin button) because the range of acceptable values is wide. However,
several differences appear. For example, available planes are not represented the same way. We
list them into a list box but SEGUIA uses radio buttons. The use of radio buttons matches with
ergonomic rules that state that when the domain is known, and the number of possible values
range from 4 to 7, the radio buttons are to be used. [VANDERDONCKT93b].

These radio buttons could have been placed in a more significant way, as shown in Figure 5-40,
but on the other hand it overloads the interface. The grouping of objects is also slightly different.
Since the number of elements is not to high, only one dialog box was created where we decided to
create a small one with only basic parameters and an other one with basic and advanced

parameters.

177

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

—Plane

@ Front O Rear
OtLeft ORight
OTop (O Bottom

~Basic parameters

. =
Translation : % [] Show the cutting plane

X angle : degrees []Remove the cutpart
Y angle : degrees Color: ¢
Z angle : degrees

-Advanced parameters
@ Wireframe (O Transparent

Number of gridlines : (0-100)
Level of transparency : (0-100)

Size of plane : ‘ . % of the object size

Figure 5-39 : Dialog box proposed by SEGUIA

The group box including the single semantic element "Color" was included in the group box

"Basic parameters" when using SEGUIA.

Figure 5-40 : Another way to place CIOs to add meaning

Another big difference is that SEGUIA, as well as TRIDENT, does not take into account linked
elements. For example, in Figure 5-38, when the radio button "wireframe" is checked, the linked
CIOs "Number of gridlines :" label , the spin button and the "(0-100)" label are activated, and the
CIOs relative to Transparency are deactivated. SEGUIA does not include such a semantic and
therefore this semantic is not represented in the dialog box. The conversation dimension should
include the description of the activation and deactivation of the CIOs. Another way to place these

178

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

CIOs is shown in Figure 5-41. This way eases the understanding since parameters corresponding
to each radio button are on a single line. This line is actually a sentence that can be easily

understood, but the linked elements still remain undefined.

Figure 5-41 : A single line for each option

Another interesting difference is the way buttons are placed. SEGUIA aligned all buttons in
relation to the "Pick..." button instead of aligning them along the right side of the dialog box.

This a posteriori utilization of the TRIDENT methodological ergonomic rules’ for CIOs
placement proves that it is necessary to keep these rules in mind when designing an interface,
especially when speaking about the number of elements in a set (and the problem of choosing the
right CIO), but this also brings to the fore some gaps in TRIDENT and SEGUIA like the problem
of linked elements. However, the TRIDENT framework and SEGUIA work fine for most of the

dialog boxes.

8. Conclusion

8.1 Critic

We remind you that most sub-tasks of the interactive task consist in modifying the current scene
and in displaying it when the modification is done. As sub-tasks are linked to tools (Cf.
Chapter 4), the last sentence can be transformed in : each time a tool has been applied to a scene,
the latter must be displayed. It is the reason why in most of the ACGs — the ones that modify the

current scene — you find the three elements shown in Figure 5-2.

Concretely, these elements are represented by a physical window whose content is the graphical

representation of the scene. The problem we faced was to choose how to logically gather them :

e Within a presentation unit (PUQ), independently of the rest of the ACGs (Figure 5-42). In this
case, in the dialogue specification (fourth dimension), it must be specified that this PU is called

' SEGUIA uses these rules to build the interface
179

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

just after most of the other PUs. This PU has only one window (WO0) that encompasses the
three elements.

e Within a window (WO0) which is contained by a presentation unit (PUj), the last one having
other windows (Figure 5-43). In the dialogue specification, it must be specified that this

window is called just after most of the other windows.

. Current_Scene’

> Display Scene

Wi Wwo

PUj PUO

Figure 5-42 : Permanent window : solution 1

k rm:;:-:{s—%.; EE Y L O
! Current_Scene'

£
e

Display

Wwo

PUj

Figure 5-43 : Permanent window : solution 2

We opted for the second solution because it emphasizes the sub-task task progression :
1. Parameters setting and application of the chosen tool (W1i).
2. Displaying of the new scene (WO).

As explained in [BODARTO95a], each sub-task of the interactive task is mapped into a presentation
unit — in our case, that is the same as saying that each tool is mapped into a presentation unit —.
So, in most of the presentation units, there is the same logical window WO. The solution we have
chosen (Figure 5-43) and this principle can pose us a problem during the control objects hierarchy
construction (Cf. Chapter 6) among others about the hierarchy of control objects relative to
windows. The control object relative to the window WO (CO-WO0) will be the child of several
parent control objects. The problem will be analyzed more in depth in Chapter 6.

A way to avoid the last question was to choose the first solution (Figure 5-42) : a presentation
unit with only one logical window that contains the three elements quoted above. The control
object relative to the window WO would be the child of only the control object relative to the
unique presentation unit (PUQO) containing this window. We are convinced that this solution is only

180

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

useful to solve that problem but we would lost semantic about the sub-tasks. In our opinion, most
of the sub-tasks consist in modifying the current scene and, then, displaying the modified scene.

This window WO identified in the presentation units is physically implemented as a permanent
window where only the content is displayed each time the scene has been modified. The
TRIDENT methodology has not yet proved itself with regard to applications with permanent
windows as it is the case for word processors, spreadsheet applications, drawing programs,
conception support software's... We are going to enrich the methodology by taking into account

the presence of permanent windows in some applications. To generalize, we define the concept of
central element as being the content of a permanent window on which tools made available by the
application are applied by the users. We illustrate the concept of central element for some

software's :
e Word processor - text document.
e Spreadsheet program — spreadsheet.
e Drawing program - drawing sheet.

The user can manipulate several scenes, each one contained in a different physical permanent
windows. That is what we call a MDI (Multiple Documents Interface) application. So the logical
window WO represents in fact the occurrence of the window displaying the current scene.

8.2 TRIDENT methodology enrichment

We are still considering the case of a weakly structured task and we presume that the task analysis
has been done beforehand, with as result the ACGs, each of them corresponding to a sub-task of
the interactive task (i.e. to a tool from the toolbox). Moreover, we suppose that the application
has at least a central element on which tools are applied. The presentation design will be based on
the one proposed in the TRIDENT methodology.

1. Identify the presentation units (PUs). The identification criterion is one PU per sub-task. It is
the same as saying one PU per tool or one PU per ACG. A semantic grouping of several
ACGs into a PU can be made (Cf. the PU 16 that groups the ACGs 16 and 17, second

dimension).

2. Inside each PU, identify the logical windows. We suggest an elimination method of windows
identification. First identify the permanent window (in our case WO0) that will have the
central element. Then group the other messages and functions inside logical windows. It is
possible to choose one of the identification criteria proposed in [TAES94] to apply on the
rest of the presentation unit.

181

Chapter 5 : Second dimension - Presentation Design From Ergonomic Rules

For each logical window, identify the AIOs. First of all, select the window (physical
window, dialog box or panel) that will stand for the logical window currently analyzed.
Usually, the tools parameters setting will be done via dialog boxes whereas the permanent
windows with the central elements will be represented by physical windows. Secondly, if the
window does not display the central element, select the right AIOs for each external
information in input or output of functions in the logical window. The selection will be
applied in function of AIOs selection tables (Cf. Table 5-1, Table 5-2 and Table 5-3),
created according to principles of cognitive psychology.

Transform of the AIOs into CIOs.
Place CIOs.

Edit manually the presentation.

182

Chapter 6
Third dimension :
The software architecture derivation

1. Introduction

Again, we apply the third dimension of the TRIDENT methodological framework a posteriori of
the program implementation. The object of this part is to see if it is possible to automatically
derive an architecture skeleton for our program as it is the case for business oriented software’s.
The architecture should respect quality criteria : high internal cohesion, weak coupling and
independent components. We will follow the steps suggested by [BODART95a] and

[BODART95b].

We will (1) theoretically describe the architecture elements and explain how to derive them. Then

(2) we will try to establish the architecture for our software.

2. Architecture theoretical description

The architecture consists in a hierarchy that should match the following assumptions :

e "Each hierarchy element should be derived — directly or indirectly — from task analysis",
[BODARTO95b].

* "Autonomy — as perfect as possible —, which is similar to separation, should coexist
between elements representing application components and user interface (UI) components.
At the level of UI components, this autonomy is prolonged between components realizing the
conversation (the dynamic behavior) and components realizing presentation (static
appearance)", [BODARTI95b].

183

Chapter 6 : Third dimension - The software architecture derivation

The autonomy required is possible for business oriented applications where there is no semantic
role for the interaction objects. The question we raised was : "does this autonomy still exists in 3D
Viewer software ?". We first answered that this autonomy was possible with regard to elements
concerning the tools (i.e. the dialog boxes and their interaction objects) — if we compare the
application to a toolbox — where the interaction objects have no semantic role like it is the cuasc
for business-oriented applications. As far as the permanent windows are concerned, we thought
that the autonomy was not achievable because the content of thesc windows (the picces of bones,
their color, their position, the scene characteristics...) had a semantic role for the users. We went
the wrong way. The right question that we should have asked is : "have the contents of the
permanent windows an effect on the program behavior ?". That is to say does the way a scene is
composed influence the number of tools made available by the software, the way the program
permits the users to set them or the way dialogues are carried out ? In fact there was a
misunderstanding about the notion of semantic role.

At first sight we interpreted this notion as a "semantic role for the user" whereas it must be
interpreted as a "semantic role for the application". The semantic role for the user means that the
user’s behavior depends upon the content of the permanent window which is generally true for any
AIO whereas the semantic role for the program means that the application behavior relies on the
permanent window content. In our case, whatever the scene looks like or is tuned, the program
behavior remains the same. We illustrate the presentation and the functional autonomy by
comparing the permanent window with an AIO : the edit box. The edit box is an AIO with as
content a string. The permanent window is an AIO with as content a scene. The string of the edit
box can be the input or the output of a function that is independent from the edit box presentation.
Similarly, the scene of the permanent window is the output of the Display function (see
Chapter 4), which is independent from the physical window that contains the scene. So, the
necessary autonomy is achieved.

The hierarchy model, composed of three generic classes, is presented in Figure 6-1 taken from

[BODART95b], where :

e (O stands for Control Objects class. It is a generic class which decomposes itself into
different types of COs that manage the dialogue and assures that the application data structure
is independent from the presentation one. 7

e AO stands for Application Objects class. It is a generic class which can not be decomposed
and its elements represent the functions of the application.

e IO stands for Interaction Object class. It is a generic class which decomposes itself into two
types of Ols : the application dependent CIOs that translate the input/output information for
functions and the application independent CIOs that are induced from the dialogue.

184

Chapter 6 : Third dimension - The software architecture derivation

2.1

2.2

=)
~OIRO

Figure 6-1 : Generic scheme of the architecture model

The rules about the behavior of the three object classes are identical and, also, identical
relationships link any pair of these objects in the hierarchy. Each object is an agent (Cf.
[BODARTO95b]) and the "uses" relationship that is materialized by an arrow from a parent object

to a child object means that :

o The parent object uses the primitives associated to a child object in order to get the needed
information for the next interaction step.

o The child object sends events corresponding to significant steps of its behavior to the parent

object.

We will now review each objects hierarchy and explain more in depth how they are constructed.
When all the hierarchies are complete, the final step consists in integrating all of them in only one
hierarchy that represents the global architecture skeleton proposed by the TRIDENT
methodology. For legibility reasons, we will not integrate them in this text.

Application Objects (A0)

Each function in the ACG has a corresponding application object. The AO should be implemented
in an object oriented language and there should be an AO for each function of the application. In
the hierarchy, each AO is always the child object of only one control object that is responsible for
carrying out the function to which it corresponds.

Control Objects (CO)

Each step in the presentation composition has a corresponding control object and the COs are
organized in a hierarchy shown in Figure 6-2. The presentation composition is presented in this
way : windows are identified, they are dynamically linked into PUs and these PUs realize the
context for execution of the interactive task. The COs hierarchy is constructed in function of the
steps brought to the fore just above. The following are the control objects identified in the

hierarchy :

e CO-TI : COcorresponding to the interactive task.

CO-PU : CO corresponding to the presentation units.

185

Chapter 6 : Third dimension - The software architecture derivation

« CO-W : COcorresponding to the windows.

CO-Fc : CO corresponding to the application functions.
Each control object linked to an application function (CO-Fc) is the child object of a control object
connected to the window (CO-W) that contains the CIOs used to trigger these function.

(coar)

1-n

(co-ru

Figure 6-2 : Control objects hierarchy

2.3 Interaction Objects (10)

The presentation is structured into simple and composite I0s. Composite 10s (I0-Comp, Figure
6-2) are the CIOs corresponding either to windows (like dialog boxes, physical windows or
panels) or to simple 10s grouping (child dialog boxes, group boxes). The composite 10s use
simples IOs, which constitute the presentation interface. They are input-output interaction objects
(IO0-V/O, Figure 6-2) like edit box, radio buttons... or they are presentation induced interaction
objects (I0-P, Figure 6-2) like push buttons, icons... The IOs can be selected by an expert system
in function of several parameters and correspond to CIOs proposed by specific physical
environment such as MS-Windows and others. Every IO is a child of a window object control
(CO-W).

186

Chapter 6 : Third dimension - The software architecture derivation

3. Hierarchies construction

In this dimension, the continuity of the TRIDENT methodology is materialized by the use of the
task analysis, the ACG and the presentation content. The following objects of the three kinds has

to be created :

A control object corresponding to the interactive task (CO-IT)
A control object corresponding to each presentation unit (CO-PUy, ..., CO-PU,))

A control object corresponding to each window of each presentation unit (CO-PU{Wy, ...,
CO-PUW,, ..., CO-PU, Wy, ..., CO-PU, W)
A control object for each function in the ACG (CO-Fc)

An interaction object for each input/output information for all functions (I0-1/0)
An interaction object for each presentation induced object (I0-P)

3.1 Primary hierarchy of functional objects (CO-Fc)

To construct this hierarchy, the ACG obtained from the task analysis is needed. "Each function in
the ACG is mapped onto a functional CO with "uses" relationships between them according to
the special property : the primary hierarchy of function COs is quite the inverse hierarchy of the
ACG", as explained in [BODARTO95b]. Since the ACGs were created by distinguishing tools, the
hierarchy will be built by distinguishing the same tools.

3.1.1 Creation of a new scene

Figure 6-3 is showing the primary hierarchy of functional objects for the tool "Creation of a new

scene'".

187

Chapter 6 : Third dimension - The software architecture derivation

Display

y

Change_Name

Select_Current_Object

Add_Object

o«

Create_New_Scene Load_Object

Figure 6-3 : Hierarchy of functional objects for the tool ""Creation of a new scene"

3.1.2 Selection of the current scene

Figure 6-4 is showing the primary hierarchy of functional objects for the tool "Selection of the

current scene".

Get_Current_Object

A

Select_Current_Scene

Figure 6-4 : Hierarchy of functional ob jects for the tool ''Selection of the current scene"

3.1.3 Removal of the current scene

Figure 6-5 is showing the primary hierarchy of functional objects for the tool "Removal of the
current scene".

188

Chapter 6 : Third dimension - The software architecture derivation

Get_Current_Object l

v
l Select_Current_Scene]

A 4
‘ Remove_Scene !

Figure 6-5 : Hierarchy of functional objects for the tool '"Removal of the current scene"

3.1.4 Specifying the parameters of the current scene

Figure 6-6 is showing the primary hierarchy of functional objects for the tool "Specifying the

parameters of the current scene”.

Display

—-———,b{ Change_Background_ColorJ

———————-}[Change_View_Angle l

—--————>{ Turn_Anti_Aliasing_On l
——-——————)L’I‘xlm_Anti_Aliasing#Off i
——————P{ Turn_Culling_Face_On]
————PLTum_Culh’ng,Face_Oﬂ' I
r-———————bi SoxLCounter_Clockwise]

:“ Sort_Clockwise (
———-—,b! Change_Near_Plane ’

——-—--——,b; Change_Shading_Method i

Figure 6-6 : Hierarchy of functional objects for the tool ''Specifying the parameters of the current
scene"

3.1.5 Geometrical transformation of all the objects in the current scene

Figure 6-7 is showing the primary hierarchy of functional objects for the tool "Geometrical

transformation of all the objects in the current scene".

189

Chapter 6 : Third dimension - The software architecture derivation

Display

VE
(E:t/ ITranslate

v \

Get_Current_Rotation

Change_Scale

Get_Current_Translation l Get_Current_Scale l

Figure 6-7 : Hierarchy of functional ob jects for the tool ''Geometrical transformation of all the ob jects
in the current scene'

3.1.6 Cutting a part of the current scene

Figure 6-8 is showing the primary hierarchy of functional objects for the tool "Cutting a part of the
current scene".

Cut_Scene

Display_Cp

Define_Cp

Figure 6-8 : Hierarchy of functional objects for the tool ''Cutting a part of the current scene"

3.1.7 Management of the lights

Figure 6-9 is showing the primary hierarchy of functional objects for the tool "Management of the
lights".

Display

(Tu rn_Light_On l [rTu rn_Light_Off I (Tu m_All_Lights_Off

Figure 6-9 : Hierarchy of functional objects for the tool ''Management of the lights"

190

Chapter 6 : Third dimension - The software architecture derivation

3.1.8 Saving into VRML format

Figure 6-10 is showing the primary hierarchy of functional objects for the tool "Saving into VRML
format".

Save_To_VRML

Figure 6-10 : Hierarchy of functional objects for the tool ''Saving into VRML format"

3.1.9 Addition of an object into the current scene

Figure 6-11 is showing the primary hierarchy of functional objects for the tool "Addition of an
object into the current scene".

Display

y

Change_Name

Select_Current_Object

Add_Object

Load_ODb ject

Figure 6-11 : Hierarchy of functional objects for the tool ''Addition of an object into the current
scene''

3.1.10 Selection of the current object

Figure 6-12 is showing the primary hierarchy of functional objects for the tool "Selection of the
current object".

191

Chapter 6 : Third dimension - The software architecture derivation

Select_Current_ODb ject

A 4
Get_ODbject

Figure 6-12 : Hierarchy of functional ob jects for the tool ''Selection of the current object"

3.1.11 Removal of the current object from the current scene

Figure 6-13 is showing the primary hierarchy of functional objects for the tool "Removal of the
current object from the current scene".

Display

v

Select_Current_ODbject

v

Remove_ODbject

Figure 6-13 : Hierarchy of functional ob jects for the tool '"Removal of the current ob ject from the
current scene"’

3.1.12 Changing the name of the current object

Figure 6-14 is showing the primary hierarchy of functional objects for the tool "Changing the name
of the current object".

Change_Name

Figure 6-14 : Hierarchy of functional ob jects for the tool ""Changing the name of the current object"

3.1.13 Getting information about an object

Figure 6-15 is showing the primary hierarchy of functional objects for the tool "Getting
information about an object".

192

Chapter 6 : Third dimension - The software architecture derivation

Get_Number_Of_Triangles LGct__Number__OLTetrahedrons

Get_TFile_Name

Get_Number_Of_Vertices

(Get_Visualization_Type

Get_Object

Figure 6-15 : Hierarchy of functional objects for the tool "'Getting information about an ob ject'

3.1.14 Changing the color of the current object

Figure 6-16 is showing the primary hierarchy of functional objects for the tool "Changing the color
of the current object".

Display

A 4
Change_Color

Figure 6-16 : Hierarchy of functional objects for the tool '"Changing the color of the current ob ject"

3.1.15 Changing the type of visualization of the current object

Figure 6-17 is showing the primary hierarchy of functional objects for the tool "Changing the type
of visualization of the current object".

Display

A 4
Change_Visualization_Type

Figure 6-17 : Hierarchy of functional ob jects for the tool "'Changing the type of visualization of the
current ob ject"

Chapter 6 : Third dimension - The software architecture derivation

3.1.16 Showing the current object axis

Figure 6-18 is showing the primary hierarchy of functional objects for the tool "Showing the

current object axis".

Display

T~

Show_Axis_Off

Show_Axis_On

Figure 6-18 : Hierarchy of functional objects for the tool '"Showing the current ob ject axis"'

3.1.17 Showing the current object box

Figure 6-19 is showing the primary hierarchy of functional objects for the tool "Showing the

current object box".

Display

N

Show_Box_On Show_Box_Off

Figure 6-19 : Hierarchy of functional objects for the tool '""Showing the current ob ject box"'

3.2 Primary hierarchy of control objects relative to the task (CO-IT, CO-PU and CO-W)

Figure 6-21 is showing the primary hierarchy of control objects relative to the task "visualization
of 3D objects with the intention of posing a diagnosis". We faced a problem with the permanent
window WO that is present in most of the presentation units and, as a consequence, the control
object relative to this window (CO-WO) is a child of several parents. Should this control object be
in the hierarchy in as many occurrences as there are occurrences of the permanent window W0 in
the presentation units ? We imagined that it was possible to represent the control object CO-W0 in
a unique occurrence with "uses" links between the control objects relative to the presentation units
the window is belonging to and the unique occurrence of the control object CO-WO (Cf. Figure 6-
20). Nevertheless, in Figure 6-21 this control object is represented several times to make the

hierarchy legible.

194

Chapter 6 : Third dimension - The software architecture derivation

Another problem has appeared : when to create an occurrence of the control object CO-WO
relative to an occurrence of the permanent window WO ? The TRIDENT methodology does not
tackle the problem of objects creation and deletion. It was presumed that an object was created by
his parent object when it was used for the first time and it was destroyed by the same parent object
when it was no longer used. The problem with the control object relative to the permanent
window is coming from the fact that it is used by several parent objects. Which one of them is
responsible for the creation and the deletion of the occurrences of this control object ? In our case,
the CO-PUI parent object is in charge of creating new occurrences of the CO-WO object and
CO-PU3 is responsible for the deletion of these occurrences previously created.

We are going to enrich the hierarchy by adding objects creation and deletion constraints when the
objects are children of several parents (multi-parents objects):

e Constraint 1 : CO-PUI is responsible for the creation of occurrences of CO-WO0.

e Constraint 2 : CO-PU3 is responsible for the deletion of occurrences of CO-WO0.

These constraints only specify which control objects are responsible for the creation and deletion
of multi-parents objects but nothing is said about when these operations are carried out.

(ooruz) (oorus)

—»| Cow1-1 | | COW2-1 -—¥{ cCowa-1 | —»| CoWni |
-—>{ COW1-2 —»{ COW2-2 — —»{ cown2
o] | o]

—®1 COW2-4

v
sl cowo |

Figure 6-20 : Primary hierarchy of control objects relative to the task : one occurrence of CO-W(

195

Chapter 6 : Third dimension - The software architecture derivation

/ CO-IT

| (CO-PU1
\Ncw_sccne_crcnlion

—3 CO-WI-1: Open_
object_file_1

— CO-W1-2: Change_
current_object_name_

—Jp CO-WO0 : Display_scene

CO-PU2
Cnrrent_scenc_selection
CO-W2-1: Select _

current_scene

CO-PU3
Current_scene_removal
CO-W3-1: Remove_

current_scene

CO PU4
Cnrrent_scene_parameters_
w(lmg

CO-W4-1 : Choose_
scene_parameters

CO-WO0 : Displny_sccne

{ CO-PUS
Current_scene_geometrical

_transformations

l—‘» CO-Ws-2: Translate scene
—P» CO-W3-1 : Rotate_scene
|—3» CO-W5-3 : Scal e scene
L—J CO-WO0: Display_scene

diagnosis_support_visualization

CO-PU6
Current_scene
N _cutting
— CO-W6-1 : Define_
cutting_planes
——pp CO-WO : Display_scene

Co-ru7
Lights_management

3 CO-W7-1 : Deline_lights
L—§ CO-WO0 : Display_scene

CO-PUS
VRML_file_savin

CO-WS-1: Save_
VRML_format

CO-W8-2: VRML_file_
saved_message

CO-ru9
Object_addition

3> CO-W9-1: Open_

ob ject_file_2
object_name_2

L—J» CO-WO : Display_scene

Cco-pPUIO
Current_object_

selection

L—P CO-W10-1 : Select _

current_ob ject

CO-PULL

P Currvent_object_|
\ removal

— CO-W11-1 : Remove_
current_ob ject

—~—3» CO-WO : Display_scene

—$ CO-W9-2: Change_current_

CO-PUI2
Current_object_
naming
CO-W12-1: Change_

current_object_name_3

CO-PUI3
Ob ject_information
_getting

CO W13-1: Getting_
obJect information

' CO-PUL4
Current_object_color_

changing

CO-WI14 : Deline_current _
ob ject_properties

CO-WO0 : Display_scene -

CO-PUIS
Current_object_visualization

_changing

——} CO-WI15-1 : Deline_current _
ob ject_visualization_type

- CO-WO : Display_scene

CO-PU16
Currenl obJecl axis_box

—J» CO-W16-1: Deline_current_
ob ject_axis_and_or_box

-3 CO-WO : Display_scene

Figure 6-21 : Primary hierarchy of control ob jects relative to the task : several occurrences of

CO-W0

196

Chapter 6 : Third dimension - The software architecture derivation

3.3 Primary hierarchy of interaction objects (10-1/0, 10-P)

In this section is described the primary hierarchy of interaction objects. To facilitate the
comprehension, the hierarchy will be decomposed for each window of the application. The name
of each AIO begins with one of the prefixes listed below to help to identify which AIO it is.

. CHX — Check box.
J CMN — Cascading menu.
. DBX — Dialog box.
. DLB — Drop-down list box.
o EBX — Single-line edit box.
. FOD — File open standard dialog box.
J FSD — File save standard dialog box.
. GBX — Group box.
. ICO — Icon.
J ITEM — Menu item.
. LBL — Static text.
. LBX — List box.
. MNB — Menu bar.
. PBT — Command button.
. PRO — Progression indicator.
J RBX — Radio button.
. SPB — Spin button.
. TLB — Toolbox.
. WIN — Window.
3.3.1 Main window
WIN_MainWindow
MNB_Main Window
CMN_File
ITEM_Open
ITEM_Close
ITEM_Export
ITEM_EXxit
CMN_View

197

Chapter 6 : Third dimension - The software architecture derivation

ITEM_ Toolbar
ITEM_ Status Line
ITEM_ QuickTools
ITEM_ Objects Toolbar
CMN_Objects
ITEM _ Select_Objects
ITEM _ Change_Name
ITEM _ Object_Type
ITEM _ Axis_and_Box
ITEM _ Object_Properties
CMN_Scene
ITEM _ Add_Object
ITEM _ Remove_Object
ITEM _ Background_Color
ITEM _ Set_Angle
ITEM _ Set_Scale
ITEM _ Translate
ITEM _ Cutting_Planes
ITEM _ Lights
ITEM _ Options
CMN_ Window
ITEM _ New_Window
ITEM _ Cascade
ITEM _ Tile
ITEM _ Arrange_Icons
ITEM_window_name_1

ITEM_window_name_n

CMN_Help
ITEM _ About_3D_ Viewer
ITEM _ Data_Information
TLB_Shortcut_Tools
PBT_Show_ Current_Object_Axis
PBT_Rotate_Scene_Along_Y_Axis
PBT_Rotate_Scene_Along_X_Axis
PBT_Rotate_Scene_Along_7Z_Axis
PBT Initial Rotation_State
PBT_Change_Current_Object_Color

198

Chapter 6 : Third dimension - The software architecture derivation

PBT_Turn_Light_On_Off
PBT_Translate_Scene_Right
PBT_Translate_Scene_Left
PBT_Zoom_Scene_In
PBT_Zoom_ Scene_Out
TLB_Non_Shortcut_Tools :
PBT_Add_Object
PBT_Continuous_Rotation_Speed_Increase
PBT_Continuous_Rotation_Speed_Decrease
PBT_Change_Current_Object_Color
PBT_Manage_The_Lights
PBT_Manage_Current_Object_Axis
PBT_Manage_Scene_Translation
PBT_Manage_Scene_Scaling
PBT_Manage_Scene_Rotation
PBT_Create_New_Current_Scene_View
TLB_Current_Object
DLB_Current_Object
PBT_Remove_Current_Object
PBT_Rename_Current_Object
PBT_Add_New_Object

We bring to the fore that the ITEM_ window_name_1, ..., ITEM_window_name_n menu items
from the CMN_ Window menu are in fact the names of the different permanent windows that exist
at a certain point. They allow users the select the current permanent window on which they want

to work.
3.3.2 Window "Display_scene' (W0)
The only element of the interaction objects hierarchy for the window containing the scene s :
WIN_WO0
3.3.3 Window "Open_object_file_1'" (W1-1)
FOD_W1-1
EBX_ File_ Name

PBT Ok
PBT_ Cancel

199

Chapter 6 : Third dimension - The software architecture derivation

The interaction objects hierarchy for the window WI-1 is not complete. Standard open file
windows usually have more AIOs but are listed in the hierarchy only the most necessary one.

3.3.4 Window "Change_current_object_name_1" (W1-2)

DBX_WI1-2
EBX_New_Object_Name
PBT_Ok
PBT_Cancel

3.3.5 Window "Select_Current_Scene' (W2-1)

There is no interaction objects hierarchy for this logical window since it is only represented by an
ITEM_Window_Name_i menu item from the CMN_Window_ menu.

3.3.6 Window ""Remove_current_scene' (W3-1)

There is no interaction objects hierarchy for this logical window since there is no AIO representing

this logical window.
3.3.7 Window "Choose_scene_parameters' (W4-1)

DBX_W4-1

GBX_Size
SPB_Near_Plane
SPB_View_Angle

GBX_Shading_Method
RBX_Flat_Shading
RBX_Smooth_Shading

GBX_Vertices_Sorting_Method
RBX_Clockwise_Sorting
RBX_Counter_Clockwise_Sorting

GBX_Background_Color
PBT_Pick_Background_Color
ICO_Background_Color

GBX_Other

200

Chapter 6 : Third dimension - The software architecture derivation

CHX_Antialiasing
CHX_Culling_Face
PBT_Ok
PBT Cancel

3.3.8 Window '"Rotate_scene' (W5-1)

DBX_WS5-1

GBX_New_Angles
SPB_New_X_Angle
SPB_New_Y_Angle
SPB_New_Z_Angle

GBX_Current_Angles
EBX_Current_X_Angle
EBX_Current_Y_Angle
EBX_Current_7Z_Angle

PBT_Ok

PBT_ Cancel

PBT Initial View

3.3.9 Window '""Translate_scene' (W5-2)

DBX_WS5-2

GBX_New_Position
SPB_New_X_Position
SPB_New_Y_ Position
SPB_New_Z Position

GBX_Current_Position
EBX_Current_X_Position
EBX_ Current_Y_Position
EBX_Current_Z_Position

GBX_ Translation_Method
RBX_Best_Fit
RBX_Absolute
RBX_Relative

PBT Ok

PBT_Cancel

PBT_Center

201

Chapter 6 : Third dimension - The software architecture derivation

3.3.10 Window ''Scale_scene' (W5-3)

DBX_W5-3

GBX_New_Scale
SPB_New_X_Scale
SPB_New_Y_Scale
SPB_New_Z Scale
CHX_Keep_Aspect_Ratio

GBX_Current_Scale
EBX_Current_X_Scale
EBX Current_Y Scale
EBX_ Current_7Z_Scale

PBT_Ok

PBT_Cancel

3.3.11 Window ""Define_cutting_planes' (W6-1a and W6-1b)

DBX_W6-1a

GBX_Planes_Parameters
DLB_Cutting_Plane
CHX_Show_Cutting_Plane
CHX_Cut_Scene
SPB_Distance
SPB_X_Angle
SPB_Y_Angle
SPB_Z_Angle

GBX_Other
PBT Pick_ Plane_ Color
ICO_Plane_Color

PBT_Ok

PBT_ Cancel

PBT_Default

PBT_Advanced >>

DBX_W6-1b
GBX_Planes_Parameters
DLB_Cutting_Plane
CHX_Show_Cutting_Plane

202

Chapter 6 : Third dimension - The software architecture derivation

CHX_Cut_Scene
SPB_Distance
SPB_X_Angle
SPB_Y_Angle
SPB_Z_Angle

GBX_Other
PBT_Pick_Plane_Color
ICO_Plane_Color

GBX _Advanced
RBX_Wireframe_Plane
SPB_Number_Of_Wires
RBX_ Translucent_Plane
SPB_Translucence_Percentage
SPB_Plane_Size

PBT_Ok

PBT_ Cancel

PBT_Default

PBT_<<_Advanced

3.3.12 Window ''Define_lights' (W7-1)

DBX_W7-1

GBX_Lights
DLB_Lights
CHX_On/off

GBX_Components
PBT_Pick_Light_Color
ICO_Light_Color
SPB_Specular_Component
ICO_Specular_Component

GBX_Position
EBX_Light_X_Position/direction
EBX_Light_Y_Position/direction
EBX_Light_Z_Position/direction
CHX_Near

CHX_AIl_Lights_Off

PBT_Ok

PBT_Cancel

PBT_Delault

203

Chapter 6 : Third dimension - The software architecture derivation

3.3.13 Window "'Save_VRML_format' (W8-1)

FSD_W8§-1
EBX File Name
PBT_Ok
PBT_Cancel

The interaction objects hierarchy for the window WS§-1 is not complete. Standard save file
windows usually have more AIOs but are listed in the hierarchy only the most necessary one.

3.3.14 Window "VRML_file_saved_message' (W8-2)
DBX_ W8-2

PRO_File_Saving
PBT_ Cancel

3.3.15 Window ""Open_object_file_2'" (W9-1)
DBX_WO9-1
EBX_File_Name

PBT_ Ok
PBT Cancel

The interaction objects hierarchy for the window WO9-1 is not complete. Standard save file
windows usually have more AIOs but are listed in the hierarchy only the most necessary one.
3.3.16 Window '""Change_current_object name_2'" (W9-2)
DBX_W9-2
EBX_Object_Name

PBT_Ok
PBT_ Cancel

3.3.17 Window "Select_current_object" (W10-1)
DBX W10-1

204

Chapter 6 : Third dimension - The software architecture derivation

GBX_Objects
LBX_Objects

PBT_Ok

PBT_Cancel

3.3.18 Window '"Remove_current_object' (W11-1)

DBX_WIlI-1
LBL_Confirmation
PBT Yes
PBT_No

3.3.19 Window ""Change_current_object_name_3" (W12-1)

DBX_W12-1
EBX_Object_Name
PBT_Ok
PBT_Cancel

3.3.20 Window " Getting_object_information'' (W13-1)

DBX_W13-1

GBX_Objects
LBX_Obijects

GBX_Mesh
LBX_Obijects
EBX_Number_ Of_ Elements
EBX_ Number_Of Vertices
EBX_Display_Type
EBX_Object_Name

PBT_Close

3.3.21 Window "'Define_current_object_properties' (W14-1)

DBX_W14-1
GBX_Transparency
CHX_Object_Transparent
SPB_Translucence_Percentage

205

Chapter 6 : Third dimension - The software architecture derivation

GBX_Colors
PBT_Pick_Object_Color
ICO_Object_Color
SPB_Specular_Component
SPB_Shininess_Percentage

PBT_Ok

PBT_Cancel

PBT Default

3.3.22 Window ''Define_current_object_visualization_type'' (W15-1)

DBX_WI15-1

GBX_Surface_Display
RBX_Filled_Surface
RBX_Mesh
RBX_Points_Cloud

PBT_Ok

PBT_Cancel

PBT_Default

3.3.23 Window ''Define_current_object_axis_and_or_box" (W16-1)

DBX_W16-1

GBX_Axis
CHX_Show_Axis_On/Off
CHX_Move_Axis_On/Off
PBT_Pick_Axis_Color
ICO_Axis_Color
SPB_Axis_Length

GBX_Box
CHX_Show_Box_On/Off
PBT_Pick_Box_Color
ICO_Box_Color
SPB_Box_Size

206

Chapter 6 : Third dimension - The software architecture derivation

4. Conclusion

4.1 Critic

From the a posteriori application of the third dimension on our application, we noticed that the
permanent window identified in previous dimension as WO and present in several presentation
units gave rise to two important questions :

e Is there an independence between the permanent window (i.e. the user interface) and the
elements representing the application components (i.e. the functions) ?

e In the control objects hierarchy, is it possible to have a control object (in this case CO-W0), the
control object relative to WO) being the child of several parent control objects (the CO-PUs,
the control objects relative to the presentation units). If so, which parent objects are responsible
for the creation and the deletion of occurrences of the child object ?

The first question already discussed in Section Architecture theoretical description is important
because the way the TRIDENT methodology establishes a software architecture is based on the
assumption that there is an autonomy between elements representing application components and
user interface components. We have explained that this autonomy was achieved because the

content of the permanent window — that is to say the scene embodying pieces of trabecular bones
or other objects — does not modify the program behavior and we have made a comparison
between the permanent window represented by the physical window AIO and the edit box AIO to
point out that this permanent window AIO is independent from the "Display" function which has
as output parameters the content of the permanent window (see Architecture theoretical

description section above).

The second question arose f'roﬁl the fact that in almost all the PUs — they are corresponding to
tools — identified in the second dimension, we have identified a common window WO.
Consequently, because of the construction approach of the hierarchy of control objects suggested
in Figure 6-2, the control object relative to WO is the child of several control objects, each one
corresponding to a presentation unit encompassing WO0. It seems that there is no problem for the
CO-WO to be linked with "uses" relations to several CO-PUs. We have decided, in this text, to
represent as many occurrences of the object CO-WO as it is linked to a parent object (Figure 6-
21) just for a legible representation of the hierarchy. Such a control object should, in principle, be
represented in only one occurrence connected with as many “* uses ” links as it has parents.

Since it is accepted that an object can be multi-parents (i.e. having several parents), the question of
its creation and deletion comes in mind. In the TRIDENT methodology, we always presume that
an object is created by its parent when it is used for the first time and it is deleted by the same
parent when it is no longer used. In the case of multi-parents object the problem is coming from

207

Chapter 6 : Third dimension - The software architecture derivation

the fact that we do not know which object is responsible for the creation or the deletion of them. It
is the reason why we added creation and deletion constraints to the hierarchy. See Primary
hierarchy of control objects relative to the task (CO-IT, CO-PU and CO-W) section for an
example of such constraints. Any object can be responsible for the creation and/or deletion of a
multi-parents objects even if it is not the parent of the object it is creating and/or deleting. In the
same idea, the object that is responsible for the deletion of a multi-parent object is not necessarily
the one that is responsible for the creation of the same object.

The architecture used at the present time (cf. Figure 2-48) is different from the one suggested by
the application of the TRIDENT methodology. The advantages of establishing an architecture as
proposed by the third dimension of the TRIDENT methodology are the one quoted in
[BODART95a] and [BODART95b] :

e High internal cohesion

o Weak coupling

o Independent components

Furthermore, all the designers of interactive applications using the TRIDENT methodological
framework will use the same architecture skeleton. It is a way to standardize the architectures and
this facilitates them to quickly understand the structure of applications made by other designers

using the same methodology.

We did not develop the fourth dimension of the TRIDENT methodological framework for two
main reasons. First, we looked into it and we did not find anything that could be a problem in
relation to applications helping to perform weakly structured tasks and having permanent
windows. Secondly, we think that it would have drastically increased the number of pages
(because of the great number of presentation units and dialog boxes) without bringing interesting
things. However, we do not mean that the fourth dimension is no use.

Nevertheless, we show in Figure 6-22 how the inter-PU dialog would look like for an application
with n PUs. Each UP (which corresponds to a tool) is connected with all the other PUs. When
we look into the toolbox model shown in Figure 4-1 and we compare it with the structure of the
Petri network shown in Figure 6-22, we notice a great similarity. Indeed, the user takes a tool in
the menu, then he fills up the parameters in the dialog box corresponding to the selected tool, and
finally the tool is applied to the central element of the permanent window and the user has a new
opportunity to select any other tool. The behavior would be exactly the same with a toolbox,
where the worker would select the right tool and would apply it to the object he manipulates.
Then he would put his tool back into his toolbox and would maybe use another tool.

208

Chapter 6 : Third dimension - The software architecture derivation

O- UP1 |« UPn 40)

cis

Figure 6-22 : Pietri network for inter-PU dialog specification

4.2 TRIDENT methodology enrichinent

The third dimension of the TRIDENT methodology can be applied to automatically derive an
architecture skeleton for software having the following characteristics :
e They help to carry out a weakly structured type of task (prescribed and/or decision making)
e They have at least one permanent window
e They are based on the toolbox model
[f the following assumption is verified :
e The content of the permanent window(s) has no influence on the program behavior, has no
semantic role.
When the last assumption is not verified, the hypothesis of autonomy between the presentation
components and the application components is not respected and so, we cannot tell if it is still

possible to automatically generate an architecture.
We suggest the same approach as in the TRIDENT methodology with few modifications :

1. Construct the primary hierarchies of functional objects (CO-Fc). The rule o f construction is :
each function in the ACGs is mapped onto a functional CO. These COs are linked with a
"uses” relationships according to this property : the CO-Fc hierarchy is quite the inverse
hierarchy of the ACG. In the first dimension enrichment, we have suggested to establish an
ACG for each identified tool. As a consequence, there are as many hierarchies of functional

objects as there are ACGs.

2. Construct the primary hierarchy of control objects relative to the task by following the steps

suggested by Figure 6-2:
209

Chapter 6 : Third dimension - The software architecture derivation

e A CO-IT for the interactive task

e A CO-PU for each presentation unit

e A CO-W foreach window
It is possible to represent a multi-parents object. In this case it has to be linked with "uses"
relationship to each parent it has and creation/deletion constraints have to be added. These
constraints specify which control objects are responsible for the creation and/or the deletion

of the multi-parent objects.

Construct the primary hierarchies of interaction objects. The rule is: one hierarchy by

window.

Aggregate all the hierarchies into a unique one. For more information see [BODARD95b].

210

Chapter 7 : Conclusion

From a critical analysis of the TRIDENT methodological framework applied to a 3D visualization
program as a support for diagnosis process, we finally enlarged this critic at a higher level
Indeed, we enlarged the scope for applications corresponding to weakly structured tasks and
owning at least one permanent window. We have tried to adapt the TRIDENT methodology for
the conception of such applications.

This conclusion is divided in three main parts. First, the toolbox model is confirmed for such a
kind of applications, then the probable link between weakly structured tasks and applications
based on a permanent window is discussed and we finally summarize the TRIDENT
methodological framework with enhancements for the design of applications supporting weakly

structured tasks and having permanent windows.

The toolbox model, as explained above, seems to suit very well for weakly structured tasks and
especially for 3D graphics applications. Indeed, these applications use a central element where
each functionality is considered as a tool acting or working on the central element, as shown in

Figure 7-1.

Starting point Display Exit point
permanent N
window and T
central object

Figure 7-1 : The toolbox model

This model is especially useful when speaking in terms of modifications or enhancements in the
application code. Adding a new tool, removing an obsolete or unused tool or modifying an
existing tool is almost straightforward as long as it is independant from the other tools.

211

Chapter 7 : Conclusion

The conception and implementation approach of our program is essentially based on this
characteristic (toolbox model). Since we did not know the task, neither the requirements, which
would be difficult to develop a "standard” management program, we started developing a
prototype including the central element, in our case, the scene and the objects. Then we added
functionality as users were needing them. Actually, the order in which functionality were added is
not important, since each one is independent {rom the other ones. The process of devcloping such

an application is summarized in Figure 7-2.

Prototype with
central » Functlionality 1 Functionality 2 [—— ... ——{ Functionality n
element

—— version 1 ———
version2 —

version 3

version n+1

Figure 7-2 : Development process for a toolbox model based application

As it has been discussed in previous chapters, our application, like many different programs as
word processors or drawing programs, has a very different characteristic from the common
management programs which is its permanent windows. The question we asked is to know if
there is or not a link between these permanent, central windows and the weak structure of the
task. We said that we have not been able to analyze the task, but we do know that visualization is
not a structured task. At any time during this process, we need to see the result of the previous
action (feedback), and we then decide the next action to perform. This systematic, necessary
feedback justifies a permanent window where the temporary result of modifications and actions
applied to the central element can be consulted to allow the user to evaluate progress state of the
task, once again, because this one is not predefined and not known. Let us imagine a second that
this process would be structured. This would result in a different presentation of the program.
Where we have a scheme as shown in Figure 7-1 for unstructured tasks, we would have what is

shown in Figure 7-3 for a structured task.

The model shown in Figure 7-3 corresponds to an application where the user enters a whole set of
parameters, such as rotation angle, color, ... and where the image is finally displayed. We could
imagine that such a process could be used by a very experienced engineer, however, we think that
it would prevent him from seeing the impact of each parameter which is very important when
tuning the right image. Moreover, since each image is different from another one, settings for an
image could not suit for another one. So we think that the permanent window has a strong
relation with the structure of the task of visualization as a support for diagnostic.

212

Chapter 7 : Conclusion

Display result
window

A 4

Params 2 Params 3 [————|

Params 1

Figure 7-3 : Common dialog box based application

Of course, there are a lot of other software that support unstructured tasks, like word processors
for typing a letter, or CAD programs for designing new houses. For these programs, we also find
a permanent window, the white sheet or the house. A way to structure tasks performed by these
programs would be to restrict the domain, and that what is done with word processors. For
example, the Curriculum Vitae Assistant provided with Microsoft Word® is a restriction of the
domain "Typing a document". It provides a set of dialog boxes asking a series of questions,
ranging from the name and forename of the person to the accomplished studies and hobbies. Then
the assistant makes up the data into pages and presents a ready-to-print document, following the
model shown in Figure 7-3. We could imagine the same for a company which sells 50 different
styles of houses, where the buyer can select the number of rooms, the kind of main door, color of
windows, ... and the CAD program would just ask the set of parameters and then builds the house

according to the requirements.

However, these programs have to take into account that these conception or decision making
tasks are not well defined and that people can change their mind. In such cases, these program
should anyway include a set of tools to allow the user to change few details. So we really think
that concepts of permanent window and weakly structured tasks are very close. However, more
studies are to be conducted to confirm or not the link.

We did not follow step by step the TRIDENT methodological framework when developing the
programs because of the time it would have required. However, we applied it a posteriori, and in
many respects, the application fits to the framework, but we remarked several differences which
are relative to the weakly structured type of the task. We pointed out these differences and tried
to solve or propose ideas of solutions. Hereby, we summarized the framework that we suggest to
follow when developing applications where the task is weakly structured, that includes a

permanent window containing a central element.

1* dimension : Task analysis
Identify the task, goals and sub-goals
Deduct tools from sub-goals and the central elements on which the tools are applied.
Identify procedures
Identify objects and semantic functions from procedures
Build Actions Chaining Graphs

213

Chapter 7 : Conclusion

2" dimension : Presentation design
Identify Presentation Units (1 Presentation Unit =1 tool)
Identify Windows (Identification criterion : elimination)
AIO selection :
1 tool = 1 dialog box
Central element = Physical window if the central element has to be displayed
Transformation from AIO to CIO
CIO placement
Manual edition of the presentation
3 dimension : Software architecture derivation
Construct the primary hierarchies of functional objects (one per ACG)
Construct the primary hierarchy of control objects relative to the task (multi-parents
objects are allowed)
Construct the primary hierarchies of interaction objects
Aggregate all the hierarchies into a unique one
4" dimension : Dialogue specification
Specification of the inter-UP dialogue
Specification of the inter-windows dialogue
Specification of the intra-windows dialogue

We insist that this approach we propose is only based on the analysis of one single case :
3D Viewer. It should be validated on more cases to prove feasible or not.

214

Reference Books

[BODART93] Bodart, F. & Pigneur, Y., "Conception assistée des systémes d'information”,
MIPS, 1993.

[BODART95a] Bodart, F. & Hennebert, A-M. & Leheureux, J.-M. & Provot, 1. &
Vanderdonckt, J. & Zucchinetti, G., "Dimensions clé pour une méthodologie de développement

d'applications interactives", Namur, 1995.

[BODARTI95b] Bodart, F. & Hennebert, A.-M. & Leheureux, J.-M. & Provot, I. & Sacre, B. &
Vanderdonckt, J., "Towards a Systematic Building of Software Architecture . the TRIDENT

Methodological Guide", Namur, 1995.

[BRIGGS9S] Briggs, T. L., Computed Body Tomography and Magnetic Resonance Imaging,
MCSP, January 1995.

[BYTEO896] BYTE, 3-D for everyone, McGraw-Hill Companies, Inc., October 1996.
[DUBOIS96] Dubois, E., Class notes, FUNDP, 1996.

[FAISON94] Faison, T., Borland C++ 4 Object Oriented Programming, Third Edition, SAMS
Publishing, 1994.

[FROST93] Frost, H.M., Suggested fundamental concepts in skeletal physiology, Calc Tiss Int,
Vol. 52, pp. 1-4, 1993.

[GOOSSENS95] Goossens, P. and Wauthier, B., The trabecular bone and morphological
Analysis System.: a research and an Educational Training System for Students, Mémoire,
FUNDP, 1995.

[JASC96] JASC Inc., http://www jasc.com, Paint Shop Prov. 4.10, 1996.

(KELLERD95] Keller, T.S. and Hanson, T., Osteoporosis of the spine, University of G&teborg,
Sweden and University of Vermont, VT, USA, Revision 1, 1995.

(KELLERS89] Keller, T.S., Hanson, T., Abram, A.C., Spengler, D.M., Panjabi, M.M., Regional
variations in the compressive properties of lumbar vertebral trabeculae: Effect of disc

215

degeneration, Spine, 1989, Vol. 14, pp. 1012-1019.

(KELLER92] Keller, T.S., Moeljanto, E., Main, J.A., Spengler, D.M., Distribution and
orientation of bone in the human lumbar vertebral centrum, J Spinal Disorders, 1992, Vol. 5, pp

60-74.

(KELLER93] Keller, T.S., ZIV, 1., Moeljanto, E., Spengler, D.M., Interdependance of lumbar
disc and subdiscal bone properties: A report of the normal and degenerated spine, J Spinal
Disorders, 1993, Vol. 6, pp. 103-113.

(LECHARLIERO9S] Lecharlier, B., Class notes, FUNDP, 1995.

[LORENSENS87] Lorensen, W. E. and Cline, H. E., Marching Cubes: A High resolution 3D
Surface Construction Algorithm, Computer Graphics, 1987.

[MCCORMICKS87] McCormick, B.H., DeFanti, T.A. and Brown, M.D., Visualization in
Scientific Computing”, Report of the NSF Advisory Panel on Graphics, Image Processing and
Workstations, 1987.

[MEYERS&8] Meyer, B., Object-Oriented Software Construction, Prentice Hall International,
1988.

[MSDEV96] Programming in Visual C++, MFC 4.0, Class Library Référence, Microsoft 1996.

[PICKOVER90] Pickover, C. A., Computers, patterns, chaos and beauty, St. Martin's Press,
1990.

[ROSENBLOEMY4] Rosenbloem, L. et al., Scientific Visualization Advances and Challenges,
Harcourt Brace & Company, London, 1994.

(RUMBAUGH91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. And Lorensen, W.,
Object-Oriented Modeling and Designing, Prentice Hall, 1991.

[SCHROEDER96] Schroeder, W., Martin, K. And Lorensen, B., The Visualization Toolkit, an
object oriented approach to 3D Graphics, Prentice Hall, 1996.

[SEGUIA97] Systeme Expert pour la Génération d’une "User Interface” Automatique,
Vanderdonckt, J., Conception assistée de la présentation d’une IHM ergonomique pour une
application de gestion hautement interactive, These de doctorat, FUNDP, July, 9%, 1997.

[(SULLIVAN9S] Sullivan, J. M. and Zhang, J.Q., Adaptive Mesh Generation Using a Normal
Offsetting Technique, University of Vermont, VT, USA and Baystate Technologies, MA, USA,
1995.

216

[TAES94] Taes, F. & Equipe TRIDENT, "Téche interactive de l'enregistrement d'un bon de

commande", Etude de cas, Namur, December 1994,

[VANDERDONCKT93a] Vanderdonckt, J., "Sujet : Révision du document concernant la
dérivation de style(s) d'interaction", rapport de la réunion TRIDENT du 3/11/93, Namur,

novembre 1993.

[VANDERDONCKT93b] Vanderdonckt, J., "A Corpus of Selection Rules for Choosing
Interaction Objects", TRIDENT project, Technical report, Namur, August 1993.

[VRMLSGI] VRML : Basics, SGI Inc., http://vrml.sgi.com/basics/, 1997.

(WATTO93] Watt, A., 3D Computer Graphics, Second edition, Addison Wesley, 1993.
[(WOLFF1892] Wolff, J., Das Destez der Transformation der Knochen, Hirschwald, Berlin, 1892.
[WRIGHT96] Wright, R.S. Jr. and Sweet, M., OpenGL Superbible, Waite Group Press, 1996.

[ZETTERBERGY0] Zatterberg, C., Mannius, S., Mellstrom, D. Et al., Osteoporosis and back
pain in the elderly. A controlled epidemologic and radographic study, Spine, Vol. 15, pp.
783-786, 1990.

(ZETTERBERGY4] Zatterberg, C., Sjostedt, A, Ziden, L. et al., Epidemiology of kip fractures in
Goteborg, Sweden, 1940-1991, Scandinavian Orthopaedic Association, Proceeding of the 47"
Assembly, Reykjavik, Iceland, June 8-11. Acta Orthop Scand 1994; 65(suppl260)30.

Dictionaries

[AHDS86] The American Heritage Dictionary and Electronic Thesaurus, 1986.
The Collins Electronic Dictionary, 1992.

HARRAP’S Dictionary, 1993.

217

Appendices

Appendix 1 : Object Model for VTK

1. The global Object Model

vtkObject
vtkCell vtkDataSet vikRefCount vtkSource (vikMapper vikWriter [vtkRenderer

2. The vtkCell Object Model

vikCell

1 l
vtkVoxel vikHe xahedron vtkLine vikVertex
vtkPolygon vikPolyLine vtkPolyVeitex vikQuad
vikPixel vikTetra vikTriangle vikTriangleStrip
3. The vtkDataSet Object Model
vtkDataSet

A

!

vtkPointSet

vikStructuredData

| | |]

vtkStructuredPoints vlkStrucluredGriiJ vtkUnstructuredGrid vtkPolyData

219

4. The vtkRefCount Object Model

vtkRelCount

vtkPoints

vikCellArray

vikCellList

vitkLinkList

vikScalars

vtkVectors

vtkNormals

vtkTCoords

AN

vikFloatScalars

vtkFloatPoints

5. The vtkSource Object Model

vtkFloatVectors

vtkFloatNormals

vtkFloatTCoords

vtkSource

A

vtkStructuredGridSource

vtkStructuredPointsSource

vtkStructuredGridSource

vikPolySource

vtkUnstructuredGridReader

vtkVoxelReader

vtkPLOT3DRead

vtkConeSource

6. The vtkFilter Object Model

220

vikFilter

1

[[[!

vikStructured

vikPolyFilter vikDataSelFilter | | vikStructuredPointsFilter s vikPointSetFilter
GridFilter
vtkUnstructured A A
GridFilter
vikStructuredPoints ToStructuredPointsFilter vikPointSetToPointSetFilter
vtkPolyToPolyFilter
vtkSweptFilter vikWarpVector
vtkShrinkPolyData
l ! I I
vikDataSetToDataSet vikDataSetToUns ; vtkDataSetT oStructured
Filter tructuredGridFilte vikDataSetToPolyFilter PointsFilter
i? vtkDataSetToStructuredGridFilter
1
vikElevationFilter vikShrinkFilter vikContourFilter vtkimplicitModeler

221

Appendix 2 : Quantitative Computed Tomography

The Physical Basis of CT
The ability of CT to detect tiny differences in the x-ray attenuation properties of tissue to be

visualized comes from 3 factors:

1. Signal : Noise ratio of the data acquisition in CT is less than in conventional radiography due

to a greater number of x-ray photons per resolution and the detector utilized exhibiting less

noise than radiographic film.

Scattered radiation is reduced in CT as the beam of radiation is narrowly collimated.

3. The method of image reconstruction is unique in CT in that the filtered back projection
provides images that are unencumbered by super-imposed underlying and overlying structures

o

that are recorded in conventional tomography.
A narrow beam of x-rays scans across the subject to be imaged in a linear fashion. While
traversing the subject the non-absorbed rays are detected by some form of radiation detector that
scans synchronously with the beam.
This sequence is repeated at different angles around the subject.
The data acquired consists of a series of "profiles" that reflect the attenuation properties of the
subject scanned at different angles.
From these profiles a transverse section of the subject can be constructed.

Generation of the CT Image
The ability of the CT scanner to reproduce the morphology of the assessed structure in the

reconstructed image depends on the number of physical measurements taken per unit area.
Analytical determinations have established that the sampling "frequency" in reproducing a
structure must be at least 2 to 3 times as fine as the expected resolution of the image. In CT this
requires suitable linear and angular sampling by the X-ray beam. To achieve this two
configurations are used in the majority of CT scanners:-

« Rotate - Rotate
The X-ray tube and the array of detectors rotate synchronously about the patient to be imaged.

« Rotate - Stationary Detector Array
Detectors are arranged in a stationary ring encircling the patient and the X-ray tube rotates

around the patient.

The data is then converted by a computer applied algorithm into an "image" that can be displayed
as an optical image. CT scanners also incorporate the ability to magnify a portion of the image -

zooming.
Such a process does not improve the resolution of the CT image but may render some details

more perceptible.

223

The CT Image
The image generated represents a slice of selected thickness. This is achieved by collimating the
beam of X-rays produced; the thickness usually is between 2mm and lcm depending on the
requirements of each clinical study.
The unit most widely used in expressing the attenuation of X-rays in a CT image is known as the
"Hounsfield Unit". The unit is defined as:

1000Uw

W

U -

where U is the attenuation coefficient of X-rays of the tissue imaged and Uw is the attenuation
coefficient of water. Positive values represent tissues with attenuation values higher than that of

water and negative values lower.
As the CT image is recorded in digital form it is relatively easy to apply a number of manipulations

to improve the perceptibility of potentially diagnostic information. These include adjustment of the
window width and level, magnifying a region of interest or producing sagittal or coronal images.

224

Appendix 3 : Magnetic Resonance Imaging

Generation and Detection of MRI Signals
Stable nuclei that possess an odd number of protons have the property of a magnetic moment.

Therefore if the subject is placed in a strong, uniform magnetic field the effect is that the subject is
magnetized very slightly. The magnetic property of the proton has two so-called spin states - one
of these positions is lower in energy and more than half are in this stable position. It takes a certain

amount of time for polarization to occur. For a simple liquid such as water the process is purely

exponential. Tissue water does much the same thing but can have multiple behavior owing to the

possibility of varying physiochemical states.

The time constant that is the measure of the rate of the exponential polarization is known as the:
SPIN-LATTICE RELAXATION TIME or Tl

The Resonance Condition
The presence of the applied magnetic field forces a precessional motion on the magnetization
owing to the spin property of the nuclei. The frequency of the processional motion is the magnetic
resonance frequency and is proportional to the strength of the applied magnetic field. This
oscillating field can be presented as a voltage if a coil of wire is placed with its axis perpendicular
to the field. This oscillating
voltage can then be amplified and the MR signal thereby received. To increase sensitivity the

receiver
coil is tuned to be narrowly resonant at the precessional frequency.
To induce an observable signal in the receiver coil a transverse component of the magnetism needs
to exist. To accomplish this another coil tuned to the resonance frequency is placed orthogonal to
both the axes of the first tuned coil and the magnetic field direction.
The signal does not last forever, it decays exponentially.
This time constant is called the
SPIN-SPIN RELAXATION TIME or T2
For an ideal simple liquid the two time constants T1 and T2 are equal; they are never equal in

tissue.

Magnetic Relaxation
The two allowed states for the proton in the presence of the main magnetic field differ in energy,

one being more energetically stable than the other - this state being most likeable to all protons.

At the point that the magnetic field is turned off the nuclei are at an elevated energy state. After a
transmitter pulse a small amount of energy is absorbed by the nuclei. This energy is re-emitted
during relaxation to equilibrium in the form of heat to the surroundings - T1. T2 is where energy
is transferred between the protons but does not leave the spin ensemble as a whole. This occurs
due to small perturbations in the frequency of procession, with these perturbations being different

225

for different protons.
As time progresses the protons move less and less in unison and the signal that is induced in the

receiver coil becomes weaker.

Signal Processing
The signal induced in the receiver coil is amplified, filtered and the data sent to a computer where

a spectrum is obtained by a system of Fourier transformation.
Tissue Differences and Image Contrast

Small differences in tissue properties lead to visible differences in MR signals. A large body of data
exists that suggests that the single most consistent contributor to observed differences in
relaxation times of protons in tissue is differences with total water content of the tissues.

T1 and T2 both increase with increasing water content - there are other contributing factors in
relaxation times such as transition metal ions which have strong magnetic properties.

Each tissue type is likely to have contributions from these and other mechanisms in differing

proportions.

MRI allows the formation of a wide variety of transverse, sagittal and coronal images of normal
and abnormal anatomy through the use of weak interactions of stable magnetic atomic nuclei.

226

Appendix 4 : Main classes

[/HEHH AR A A AR AR SRR H AR H A H A SRS AR SRS H SRR S

/1% #
//# class CScene #
/1# #

[/HHHHHHHBHHAHHHAHHH SR HH SR H SRS H SR
class CScene
{
protected
BOOL AllCuttingPlanesOff,
AntiAliasing,
ClockWise,
CullingFace,
CuttingPlaneOn(6],
LightManipulation,
Translucence,
SceneBorder,
ShadeSmooth;
CCuttingPlane *CuttingPlaneObject;
CIntList *ObjectsHandleList;

Clight *Light[8]; // Up to 8 lights
CObjectList *Objects; // List of objects to be drawn
float FarPlane,
MaxObjectSize,
NearPlane,
Radius,
TrX, Try, Trz,
VisionField; // Champ de vision
int BackColor(3], // Couleur de fond
LightHandle (8],
NumberOfLights,
SceneBorderColor (3],
WindowHeight,
WindowWidth;
HDC WNDDeviceContext; // Window Device context
HGLRC GLRenderingContext; // OpenGL Device context
HWND ghWnd, // Parent window
LastghWnd; // LastParentWindow
BOOL bSetupPixelFormat (HDC hdc) ;
void DefineSceneBorder () ;
void DrawObjectAxis (int Handle);
void DrawObjectBox (int Handle) ;
float FindRatio(float SzX, float SzY, float SzZ, float ImportanceRatio);
HPALETTE GetOpenGLPalette (HDC hdc);
void InitializeLighting{() ;
int LoadSurfaceLines (LPCTSTR ConnectivitiesFileName, BOOL ConnectBin,

LPCTSTR CoordonatesFileName, BOOL CoordBin, int Color (3], float DeltaX, float Deltay,

float DeltaZ, float Importance);
int LoadSurfaceTriangles (LPCTSTR ConnectivitiesFileName, BOOL ConnectBin,

LPCTSTR CoordonatesFileName, BOOL CoordBin, int Color(3], float DeltaX, float Deltay,

float DeltaZ, float Importance);
int LoadVolumeLines (LPCTSTR ConnectivitiesFileName, BOOL ConnectBin,

LPCTSTR CoordonatesFileName, BOOL CoordBin, int Color([3], float DeltaX, float Deltay,
float DeltaZ, float Importance);

227

int LoadVolumeTriangles (LPCTSTR ConnectivitiesFileName, BOOL ConnectBin,
LPCTSTR CoordonatesFileName, BOOL CoordBin, int Color([3], float DeltaX, float Deltay,
float DeltaZ, float Importance);

void NormalCalculation(float Vertexl1([3], float Vertex2[3], float
Vertex3 (3], float vout([3]);

void SetNumberOfElements (int Handle, int NumElm) ;

void SetNumberOfNodes (int Handle, int NumNod) ;

void VectorNormalization(float Vector([3]);

void DrawBis () ;
public

CScene(float NearPlane, float VisionField, float MaxObjectSize, int
BackColor(3]);

~CScene () ;

void CreateCuttingPlanes (int Colour [3]);

int CreateNewLight () ;

void DeleteContext (HWND ghWnd) ;

void DrawScene() ;

void GetAmbientAndDiffuseLight (int LightHandle, int Color(3]);

void GetBackColor (int BackColor([3]);

void GetConnectivityFileInformation (LPCTSTR NodeFile, long &NumberOfNodes,
long &NumberOfElements, int &NumberOfMaterials, BOOL ConnectBin) ;

void GetCuttingPlaneAngles (int PlaneHandle, float &Anglel, float &Angle2);

void GetCuttingPlanesParameters (int Color([3], float &Ratio);

void GetCuttingPlanesTranslucence(float &Translucence, BOOL &On) ;

void GetCuttingPlanesWires (int &NrOfLines, BOOL &On) ;

float GetCuttingPlaneTranslation(int PlaneHandle) ;

void GetLightPosition(int LightHandle, float &XPos, float &YPos, float &ZPos,

BOOL &Far) ;

void GetMaxObjectDimensions (int Handle, float &Length, float &Height, float
&Depth) ;

int GetNumberOfElements (int Handle) ;

int GetNumberOfLights () ;

int GetNumberOfNodes (int Handle) ;

void GetObjectColor (int Handle, int Color([3]);

void GetObjectDeltaLoading (int Handle, float &DeltaX, float &DeltaY, float
&Deltaz) ;

float GetObjectRatio(int Handle) ;

void GetObjectRotation(int Handle, float &AngleX, float &AngleY, float
&AngleZ) ;

void GetObjectScale(int Handle, float &ScaleX, float &ScaleY, float &ScaleZ);

void GetObjectSpecular (int Handle, int Color([3], float &Shininess);

void GetObjectTranslation(int Handle, float &DeltaX, float &DeltaY, float
&DeltaZz) ;

float GetObjectTranslucence(int Handle) ;

void GetPerspectiveParameters (float &NearPlane, float &VisionField) ;

void GetRadius (float &Radius) ;

void GetSceneBorderColor (int Color(3]);

void GetSpecularLight (int LightHandle, int Color(3]);

void GetWindowDimensions (int &Width, int &Height);

BOOL IsAntiAliasingOn() ;

BOOL IsCullingFaceOn() ;

BOOL IsCuttingPlanesCreated() ;

BOOL IsCuttingPlaneOn (int PlaneHandle) ;

BOOL IsDrawLightOn(int LightHandle) ;

BOOL IsDrawSceneBorderOn() ;

BOOL IsFrontFaceCWOn () ;

BOOL IsLightOn(int LightHandle) ;

228

BOOL IsShadeSmoothOn() ;
BOOL IsShowingCuttingPlaneOn(int PlaneHandle);

BOOL IsTranslucenceOn () ;
int LoadObjectLines (LPCTSTR ConnectivitiesFileName, BOOL ConnectBin, LPCTSTR

CoordonatesFileName, BOOL CoordBin, int Color([3], float DeltaX, float DeltaY, float
DeltaZz, float Importance);

int LoadObjectPoints (LPCTSTR CoordonatesFileName, BOOL CoordBin, int
Color (3], float DeltaX, float DeltaY, float DeltaZ, float Importance);
int LoadObjectTriangles (LPCTSTR ConnectivitiesFileName, BOOL ConnectBin,

LPCTSTR CoordonatesFileName, BOOL CoordBin, int Color (3], float DeltaX, float Deltay,
float DeltaZ, float Importance);

int LoadVtkObjectLines (LPCTSTR VtkFileName, int Color (3], float DeltaX, float
DeltaY, float DeltaZ, float Importance);

int LoadVtkObjectPoints (LPCTSTR VtkFileName, int Color(3], float DeltaX,
float DeltaY, float Deltaz, float Importance);

int LoadVtkObjectTriangles (LPCTSTR VtkFileName, int Color(3], float DeltaX,

float DeltaY, float DeltaZ, float Importance);

void MakeCurrentContext (HWND ghWnd) ;

void MakeCurrentContext (HNND ghWnd, HDC hdc) ;

void ManipulateLight (BOOL Manipulation) ;

void NewContext (HWND ghWnd) ;

void NewContext (HWND ghWnd, HDC hdc);

int ProcessSelection(int xPos, int yPos);

void ReleaseCuttingPlanes () ;

void ReleaseLight (int LightHandle) ;

void ReleaseObject (int Handle) ;

void ResetAllCuttingPlanesRotation() ;

void ResetAllObjectsRotation() ;

void ResetCuttingPlaneRotation(int PlaneHandle) ;

void ResetObjectRotation(int Handle) ;

void Resize(HWND ghWnd);

void Resize(int cx, int cy);

void RotateAllCuttingPlanes (float AngleX, float AngleY, float AngleZ);

void RotateAllObjects(float AngleX, float AngleY, float AngleZ);

void RotateCuttingPlane(int PlaneHandle, float AngleX, float AngleY, float
AngleZ) ;

void RotateObject(int Handle, float AngleX, float AngleY, float AngleZ);

void SetAllObjectsScale(float ScaleX, float ScaleY, float ScaleZz);

void SetAmbientAndDiffuselLight(int LightHandle, int Color([3]);

void SetAxisParameters(int Handle, int Color(3], float Length, BOOL Move) ;

void SetBackColor (int BackColor(3]);

void SetCuttingPlaneAngles (int PlaneHandle, float Anglel, float Angle2);

void SetCuttingPlanesParameters(int Color (3], float Ratio);

void SetCuttingPlanesTranslucence(float Translucence) ;

void SetCuttingPlanesWires (int NrOfLines) ;

void SetCuttingPlaneTranslation(int PlaneHandle, float Pourcentage) ;

void SetLightPosition(int LightHandle, float XPos, float YPos, float ZPos,
BOOL Far) ;

void SetObjectBoxParameters (int Handle, int Color (3], float Size);

void SetObjectColor(int Handle, int Color(3]);

void SetObjectScale(int Handle, float ScaleX, float ScaleY, float ScaleZ);

void SetObjectSpecular (int Handle, int Color (3], float Shininess);

void SetObjectTranslucence(int Handle, float Transparency) ;

void SetPerspectiveParameters(float NearPlane, float VisionField);

void SetSceneBorderColor (int Color(3]);

void SetSpecularLight (int LightHandle, int Color(31]);

void ShowAllCuttingPlanes (BOOL Show) ;

void ShowCuttingPlane(int PlaneHandle, BOOL Show) ;

229

void ShowObjectAxis (int Handle, BOOL Show) ;
void ShowObjectBox(int Handle, BOOL Show) ;
void ShowSceneBorder (BOOL Show) ;

void TranslateAllCuttingPlanes (float DeltaX, float DeltaY, float DeltaZ);

void TranslateAllObjects (float DeltaX, float DeltaY, float DeltaZz);

void TranslateCuttingPlane(int PlaneHandle, float DeltaX, float Deltay,

DeltaZ) ;

void TranslateObject (int Handle, float DeltaX, float DeltaY, float DeltaZ);

void TurnAllCuttingPlanesOn (BOOL On) ;

void TurnAntiAliasingOn (BOOL On) ;

void TurnCullingFaceOn (BOOL On) ;

void TurnCuttingPlaneOn(int PlaneHandle, BOOL On) ;
void TurnDrawLightOn (int LightHandle, BOOL On) ;
void TurnFrontFaceCWOn (BOOL On) ;

void TurnLightOn(int LightHandle, BOOL On) ;

void TurnShadeSmoothOn (BOOL On) ;

void TurnTranslucenceOn (BOOL On) ;

void UndoMakeCurrentContext () ;

)i

[/ HEH R AR AR R AR AR AR AR R R

//# #
//# class CCuttingPlane #
//# #

Nz E LS L LS
class CCuttingPlane
{
protected
double Equation(6][4];
float Anglell[6],
Angle2(6],
AngleXRotation[6],
AngleYRotation[6],
AngleZRotation[6],
DeltaX([6],
DeltayY (6],
Deltaz(6],
Max[6],
Min(6],
Color (3],
Translucence,
Ratio;
int NumberOfWires;
BOOL ShowOn([6],
Activated[6],
WiresOn;

void DefineBackPlaneTranslucend() ;
void DefineBackPlaneWires () ;

void DefineBottomPlaneTranslucend();
void DefineBottomPlaneWires();

void DefineEquations (float Min, float Max);
void DefineFrontPlaneTranslucend() ;
void DefineFrontPlaneWires();

void DefinelLeftPlaneTranslucend() ;
void DefineLeftPlaneWires();

void DefineRightPlaneTranslucend() ;
void DefineRightPlaneWires() ;

230

void
void

public

CCutt
CCutt
void
void
void
void
void
int

float
void
float
void

&DeltaZz) ;

float
BOOL
BOOL
BOOL
void
void
void
void
void
void
void
void
void
void
void

Yi

[/ HHHHHHHH
/14
//# class
/1 #
[/ #EHH

DefineTopPlaneTranslucend() ;
DefineTopPlaneWires() ;

ingPlane(float Min, float Max, int Color([3]);
ingPlane(int Color(31]);
Activate(int PlaneHandle, BOOL Activate);
Draw(int Handle) ;
GetAngles (int PlaneHandle, float &Anglel, float &Angle2);
GetColor (float Color(31]);
GetMinMaxParameters (int PlaneHandle, float &Min, float &Max) ;
GetNumberOfwires () ;
GetRatio() ;
GetRotation(int PlaneHandle, float &AngleX, float &AngleY, float &AngleZ);
GetTranslation(int PlaneHandle) ;
GetTranslation(int PlaneHandle, float &DeltaX, float &DeltayY, float

GetTranslucence();

IsActivated(int PlaneHandle);

IsShowing (int PlaneHandle) ;

IsTranslucenceOn();

SetAngles (int PlaneHandle, float Anglel, float Angle2);
SetColor (float Color([3]);

SetMinMaxParameters(int PlaneHandle, float Min, float Max);
SetNumberOfWires (int Number) ;

SetRatio(float Ratio);
SetRotation(int PlaneHandle, float AngleX, float AngleY, float AngleZ);

SetTranslation(int PlaneHandle, float Pourcentage) ;

SetTranslation(int PlaneHandle, float DeltaX, float DeltaY, float DeltaZ);
SetTranslucence(float Translucence) ;

ShowCuttingPlane(int PlaneHandle, BOOL Show) ;

TurnTranslucenceOn (BOOL On) ;

HHHHHHHHHHHHSHHHSHASH S S S S
#
CLight #
#

iR s TR SRS S

class CLight

{
protected
float

BOOL

public
CLigh
void
void
void
void
void
void

AmbientLight[4],
DiffuseLight (4],
SpecularLight (4],
LightPos[4];
LightOn,
DrawLight;

t();

GetAmbientLight (float AmbientLight(4]) ;

GetAmbientLight (int &CRed, int &CGreen, int &CBlue) ;
GetDiffuselLight(float DiffuseLight(4]);

GetDiffuselLight (int &CRed, int &CGreen, int &CBlue) ;
GetLightPos(float LightPos([4]);

GetLightPos (float &PosX, float &PosY, float &PosZ, BOOL &Far) ;

231

void GetSpecularLight (float SpecularLight(4]);

void GetSpecularLight(int &CRed, int &CGreen, int &CBlue);
BOOL IsDrawLightOn{() ;

BOOL IsFar();

BOOL IsLighton() ;

void SetAmbientLight (int CRed, int CGreen, int CBlue) ;
void SetDiffuseLight(int CRed, int CGreen, int CBlue);
void SetLightPos (float PosX, float PosY, float PosZ, BOOL Far);
void SetSpecularLight(int CRed, int CGreen, int CBlue);
void TurnDrawLightOn (BOOL On) ;

void TurnLightOn (BOOL On) ;

}i

[/ HHH R R R R R 2

//# #
//# class CReadMeshFile #
//# #

[/
class CReadMeshFile
{

protected
long ConnectNumberOfElements,
ConnectNumberOfNodes,
CoordNumberOfNodes;
int ConnectNumberOfMaterials;
BOOL ConnectNumerotation,
CoordNumerotation;
float Coordinates[MaxFileSize] [3]; // Array of xyz coord
ifstream *ElmTextFile;
FILE *ElmBinaryFile;
void GetConnectivityHeader (char Buffer(], BOOL &Numerotation, long
&NumberOfNodes, int &NumberOfMaterials, long &NumberOfElements) ;
void GetConnectivityLine(char Buffer([], long Nodes[]);
void GetConnectivityLine(char Buffer([], BOOL Numerotation, long &L, long
NumberOfNodes, long Node[], int NumberOfMaterials, int Materiall[]) ;
void GetCoordinateHeader (char Buffer([], BOOL &Numerotation, long
&NumberOfNodes) ;

void GetCoordinateLine(char Buffer[], BOOL Numerotation, 1long &L, float &X,
float &Y, float &2);

void GetCoordinateLine(char Buffer[], float &X1, float &Y1, float &Z1l, float
&X2, float &Y2, float &22);

void GetVtkCoordinateHeader (char Buffer[], long &NumberOfNodes) ;

void GetVtkConnectivityHeader (char Buffer([], long &NumberOfElements) ;

void ReadLine(ifstream f, char Buffer[], BOOL &End) ;
public

CReadMeshFile() ;

void CloseBinaryFileElements () ;

void CloseTextFileElements () ;

void CloseVtkFile() ;

void GetBinaryNodes3 (unsigned long &Nodel, unsigned long &Node2, unsigned
long &Node3l) ;

void GetBinaryNodesd (unsigned long &Nodel, unsigned long &Node2, unsigned
long &Node3, unsigned long &Noded) ;

void GetConnectivityFileInformation(LPCTSTR NodeFile, long &NumberOfNodes,

long &NumberOfElements, int &NumberOfMaterials, BOOL ConnectBin) ;

232

void GetFileConnectivityHeader (BOOL &Numerotation, long &NumberOfNodes, int
&NumberOfMaterials, long &NumberOfElements) ;

void GetFileCoordinatesHeader (long &Numerotation, long &NumberOfNodes) ;

void GetMaxXYZCoord(float &MaxX, float &MaxyY, float &MaxZ) ;

void GetMinXYZCoord(float &MinX, float &MinY, float &MinZ);

long GetSizeConnectivity();

long GetSizeCoordinates();

void GetTextNodes3 (unsigned long &Nodel, unsigned 1long &Node2, unsigned
long &Node3l) ;

void GetTextNodesd (unsigned long &Nodel, unsigned 1long &Node2, unsigned
long &Node3, unsigned long &Noded) ;

void GetVtkNodes3 (unsigned long &Nodel, unsigned long &Node2, unsigned long
&Node3l) ;

void GetVtkNodes4 (unsigned long &Nodel, unsigned long &Node2, unsigned long
&Node3, unsigned long &Noded) ;

float GetXCoord(unsigned long Node) ;

float GetYCoord(unsigned long Node) ;

float GetZCoord(unsigned long Node) ;

void ReadBinaryFileCoordinates (LPCTSTR CoordFile);

void ReadBinaryFileElements (LPCTSTR NodeFile) ;

void ReadTextFileCoordinates (LPCTSTR CoordFile) ;

void ReadTextFileElements (LPCTSTR NodeFile) ;

void ReadVtkFileCoordinates (LPCTSTR VtkFile);

void ReadVtkFileElements () ;

Yi

WEE SRS ES TSRS ET R TR R T

/1% #
//# class CConverter #
//# #

[/ SRS R R
class CConverter
{
protected
ifstream *ITextFile;
ofstream *OTextFile;

FILE *BinaryFile;

int Number ;

void CloseInputTextFile() ;

void CloseOutputTextFile() ;

void GetConnectivityTextFileHeader (char Buffer([], BOOL &Numerotation, int
&NumberOfNodes, int &NumberOfMaterials, int &NumberOfElements) ;

void GetConnectivityTextFileLine(char Buffer([], BOOL Numerotation, int
NumberOfNodes, unsigned int Nodes [], int NumberOfMaterials, unsigned int
Materials([]);

void GetCoordinateTextFileHeader (char Buffer([], BOOL &Numerotation, int
&NumberOfNodes) ;

void GetCoordinateTextFileLine(char Buffer[], BOOL Numerotation, float &X,
float &Y, float &Z);

void ReadLine(ifstream f, char Buffer[], BOOL &End);

void SetConnectivityTextFileHeader (char Buffer[], BOOL Numerotation, int
NumberOfNodes, int NumberOfMaterials, int NumberOfElements) ;

void SetConnectivityTextFileLine(char Buffer([], BOOL Numerotation, int
NumberOfNodes, unsigned int Nodes[], int NumberOfMaterials, unsigned int Materiall[]);

void SetCoordinateTextFileHeader (char Buffer[], BOOL Numerotation, int
NumberOfNodes) ;

233

void SetCoordinateTextFilelLine(char Buffer([], BOOL Numerotation, float X,
float Y, float 2);

void WriteLine(ofstream f, char Buffer([]);
public

CConverter () ;

~CConverter () ;

void CloseBinaryFile();

void CloseTextFile();

BOOL ConvertConnectivityFileBinaryToText (LPCTSTR BinaryFile, LPCTSTR
TextFile) ;

BOOL ConvertConnectivityFileTextToBinary (LPCTSTR TextFile, LPCTSTR
BinaryFile) ;

BOOL ConvertCoordinateFileBinaryToText (LPCTSTR BinaryFile, LPCTSTR TextFile);

BOOL ConvertCoordinateFileTextToBinary (LPCTSTR TextFile, LPCTSTR BinaryFile) ;

void GetConnectivityBinaryFileHeader (int &NumberOfNodes, int
&NumberOfMaterials, int &NumberOfElements) ;

void GetConnectivityBinaryFileLine(int NumberOfNodes, unsigned int Nodes[]
int NumberOfMaterials, unsigned int Materials(]);

void GetConnectivityTextFileHeader (BOOL &Numerotation, int &NumberOfNodes,
int &NumberOfMaterials, int &NumberOfElements) ;

void GetConnectivityTextFileLine(BOOL Numerotation, int NumberOfNodes,
unsigned int Nodes[], int NumberOfMaterials, unsigned int Materials([]);

void GetCoordinateBinaryFileHeader (int &NumberOfNodes) ;

void GetCoordinateBinaryFileLine(float &X, float &Y, float &2Z);

void GetCoordinateTextFileHeader (BOOL &Numerotation, int &NumberOfNodes) ;

void GetCoordinateTextFileLine (BOOL Numerotation, float &X, float &Y, float
&2) ;

BOOL NewBinaryFile (LPCTSTR FileName) ;

BOOL NewTextFile (LPCTSTR FileName) ;

BOOL OpenBinaryFile(LPCTSTR FileName) ;

BOOL OpenTextFile (LPCTSTR FileName) ;

void ResetNumber () ;

void SetConnectivityBinaryFileHeader (int NumberOfNodes, int
NumberOfMaterials, int NumberOfElements) ;

void SetConnectivityBinaryFileLine(int NumberOfNodes, unsigned int Nodes[],
int NumberOfMaterials, unsigned int Materials|[]);

void SetConnectivityTextFileHeader (BOOL Numerotation, int NumberOfNodes, int
NumberOfMaterials, int NumberOfElements) ;

void SetConnectivityTextFileLine (BOOL Numerotation, int NumberOfNodes,
unsigned int Nodes[], int NumberOfMaterials, unsigned int Materials|[]);

void SetCoordinateBinaryFileHeader (int NumberOfNodes) ;

void SetCoordinateBinaryFilelLine(float X, float Y, float 2);

void SetCoordinateTextFileHeader (BOOL Numerotation, int NumberOfNodes) ;

void SetCoordinateTextFileLine (BOOL Numerotation, float X, float Y, float 2);

)i

[/ HEHE R AR R R AR R s R

//# #
//# class VRMLMaker #
//# #

[/ HEHE AR R AR AR AR AR AR RS R e

class VRMLMaker
{

ofstream *OTextFile;
int Indentation;

234

protected

void SetAmbientAndDiffuselLine(float CRed, float CGreen, float CBlue);

void SetAmbientAndDiffuselLine(char Buffer([], float CRed, float CGreen, float
CBlue) ;

void SetCommentLine(char Buffer(], char Comment([]);

void SetConnectivityFileLine(char Buffer([], int NumberOfNodes, unsigned int
Nodes[]);

void SetCoordinateFileLine(char Buffer[], float X, float Y, float 2);

void SetCullingLine(BOOL On) ;

void SetCullingLine(char Buffer[], BOOL On) ;

void SetFileLine(char Linel(]);

void SetFileLine(char Buffer(], char Line[]);

void SetRotationLine(float X, float Y, float Z, float Angle);

void SetRotationLine(char Buffer([], float X, float Y, float Z, float Angle);

void SetScaleline(float SX, float SY, float S2);

void SetScaleLine(char Buffer(], float SX, float SY, float SZ);

void SetSpecularColorLine(char Buffer(], float CRed, float CGreen, float
CBlue) ;

void SetSpecularColorLine(float CRed, float CGreen, float CBlue);

void SetShininessLine(float Shininess);

void SetShininessLine(char Buffer([], float Shininess);

void SetTranslationLine(float TrX, float TrY, float Trz);

void SetTranslationLine(char Buffer(], float TrX, float TrY, float TrZ);

void SetTransparencyLine(float Transparency) ;

void SetTransparencylLine (char Buffer([], float Transparency);

void SetVertexOrderingLine(BOOL ClockWise) ;

void SetVertexOrderingLine(char Buffer([], BOOL ClockWise);

void WriteLine(ofstream f, char Buffer(]);
public

VRMLMaker () ;

~VRMLMaker () ;

void BeginCoordinatel3Bloc() ;

void BeginIndexedFaceSetBloc () ;

void BeginSeparator () ;

void BeginVRMLFile(char Comment(]);

void CloseFile();

void DecrementIndentation() ;

void EndCoordinatel3Bloc() ;

void EndIndexedFaceSetBloc () ;

void EndSeparator () ;

void EndVRMLFile() ;

void IncrementIndentation() ;

BOOL NewFile (LPCTSTR FileName) ;

void SetCommentLine (char Comment([]) ;

void SetConnectivityFileLine(int NumberOfNodes, unsigned int Nodes[]);

void SetCoordinateFileLine(float X, float Y, float 2Z);

void SetCullingBloc (BOOL On) ;

void SetEmptyLine() ;

void SetMaterialBloc(float AmbientAndDiffuse([3], float Specular(3], float
Shininess, float Transparency);

void SetMaterialBloc(int AmbientAndDiffuse([3], int Specular(3], float
Shininess, float Transparency);

void SetScaleBloc(float SX, float SY, float SZ);

void SetShapeHintsBloc (BOOL ClockWise);

void SetTranslationBloc(float TrX, float TrY, float TrZ);

void SetXRotationBloc(float Angle) ;

void SetYRotationBloc(float Angle) ;

235

void SetZRotationBloc(float Angle);
Y

J/HHHHHHAHAHHAAHHH AR AR SRS A SRS H AR SRR S

/7 # #
//# class CDisplayBinary #
//# #

WWEEEEE LTS E ST LTS E LTS EETEE S
class CDisplayBinary : public CDialog
{
protected:

virtual void DoDataExchange (CDataExchange* pDX) ; // DDX/DDV support
protected:

BOOL ReadBinaryFile();

void AddCap (BOOL Beginning) ;

void DisplayArray () ;

void DumpCubeToFile() ;

void GetExtension (int Slice, char Extension(5]);

void InitBigArray() ;

void InitCubel();

void InvertRectangle(int x, int y);

void RedrawGreyRectangle() ;

void RedrawRedSquare() ;

void SaveBinaryFile();

void SavelInfoFile() ;

void SetForSelection();

void SetInPicture (int &x, int &y);

// Generated message map functions
// { {AFX_MSG (CDisplayBinary)
afx_msg void OnLButtonDown (UINT nFlags, CPoint point);
virtual void OnOK() ;

afx_msg void OnSaveslices();
afx_msg void OnOtherviews() ;
afx_msg void OnValidate();

afx_msg void OnPaint () ;

virtual BOOL OnInitDialog();
afx_msg void OnAddcap() ;

//} }AFX_MSG

DECLARE_MESSAGE_MAP ()

public:
BOOL m_Inverted; // if red square drawn
BOOL m_IsFirstPaint; // if the dlg box is to be drawn entirely

BOOL m_IsRedInverted;
BOOL m_ShowSlices;

BOOL m_AddCap;
CButton m_AddCapCtrl;
CButton m_Close;
CButton m_OtherViews;

CButton m_SaveSlices;

CButton m_Summary ;

CButton m_Validate;

CDC* Dc;

CDisplayBinary(CWnd* pParent = NULL); // standard constructor
char BigArray[512](512]; // the picture drawn

CPoint m_TopLeft;
CProgressCtrl m_Progress;

236

CStatic m_CtrlVolume;
CStatic m_Left;

CStatic m_NbSlices;
Cstatic m_Range;

CStatic m_Reading;
CStatic m_Rear;

CStatic m_Size;

CStatic m_Top;

CString FileName;

CString m_SliceFileName;
CString m_VolumeFraction;
double m_Xvalue;

double m_Yvalue;

double xdim;

double ydim;

double zdim;

enum { IDD = IDD_DISPLAYBINARY };

TCube m_Cube; // The 50x50x50 cube
unsigned int DisplayIndex;
unsigned int m_BoxSize; /! Size of the selection box (should be 50)

unsigned int StartIndex;
unsigned int StopIndex;
unsigned int xmax;
unsigned int xmin;
unsigned int ymax;
unsigned int ymin;
unsigned long m_BoneVoxels;

class CGLWorkDoc : public CDocument

(

protected:
CGLWorkDoc () ;
DECLARE_DYNCREATE (CGLWorkDoc)
int m_NbViews;
afx_msg void OnSceneAddanobiject () ;
afx_msg void OnObjectsRenameanobject () ;
afx_msg void OnObjectsSelectanobject();
afx_msg void OnObjectsRemoveobject () ;
afx_msg void OnFileMruFilel();
afx_msg void OnFileSaveAs () ;
DECLARE_MESSAGE_MAP ()

public:
BOOL m_ManipulateLights;
BOOL m_NewDocument;
CScene * m_Scene;
CString GetCurrentObjectPath() ;
CString m_ElementFile;
CString m_NodeFile;
float m_SpecularObjectShininess;
int GetNbViews () ;
int m_CurrentObject;
int m_GLObject;
int m_NewObjectNumber;
int m_ObjectColor(3];
int m_SpecularObjectColor[3];

237

Yi

TObjStruct m_ObjectNames[5];

UINT

m_NbObjects;

virtual ~CGLWorkDoc () ;

virtual BOOL OnNewDocument () ;

virtual BOOL OnOpenDocument (LPCTSTR lpszPathName) ;
virtual void Serialize(CArchive& ar);

void
void
void
void
void
void
void
void
void
void
void
void

AddObject () ;

DecrementNbViews () ;
IncrementNbViews () ;
InitObjectNamesArray () ;
InitScenePointer () ;
PackObjectsArray(int KickedObject);
RemoveCurrentObject () ;
RenameCurrentObject () ;
SetCurrentObject (int handle) ;
SetCurrentObjectDisplayType (int displayType) ;
SetCurrentObjectHandle (int handle) ;
SetupScene () ;

class CGLWorkView : public CView

{

protected:

afx_msg BOOL OnEraseBkgnd (CDC* pDC) ;
afx_msg int OnCreate (LPCREATESTRUCT lpCreateStruct);
afx_msg void OnCBNComboBoxSelChange() ;
afx_msg void OnColorsDefaultcolor() ;
afx_msg void OnColorsSetcolor();
afx_msg void OnColorsSpecularproperties();
afx_msg void OnCuttingplaneOptions|() ;
afx_msg void OnDestroy() ;

afx_msg void OnDisplayAxis();

afx_msg void OnDisplayChange() ;
afx_msg void OnDisplayLights();
afx_msg void OnHelpDatainformation() ;
afx_msg void OnMove(int x, int y);
afx_msg void OnQuickaxis();

afx_msg void OnQuickcolor();

afx_msg void OnQuicklight() ;

afx_msg void OnQuickmoveleft();
afx_msg void OnQuickmoveright () ;
afx_msg void OnQuickrestoreangle();
afx_msg void OnQuickrotatex () ;
afx_msg void OnQuickrotatey();
afx_msg void OnQuickrotatez() ;
afx_msg void OnQuickzoomin();

afx_msg void OnQuickzoomout () ;

afx_msg void OnRotateGo() ;

afx_msg void OnRotateGoFaster() ;
afx_msg void OnRotateGoSlower () ;
afx_msg void OnRotateSetangle()

'

'

afx_msg void OnRotateSetscale() ;
afx_msg void OnSceneBackgroundcolor () ;
afx_msg void OnSceneOptions/()

afx_msg void OnSceneSetangle()
afx_msg void OnSceneSetscale()
afx_msg void OnSceneTranslate(

)
238

afx_msg void OnSize(UINT nType, int cx, int cy);

afx_msg void OnSpeedFaster();

afx_msg void OnSpeedSetspeed() ;

afx_msg void OnSpeedSlower () ;

afx_msg void OnTransformTranslate() ;

afx_msg void OnUpdateRotateGo (CCmdUI* pCmdUI) ;

afx_msg void OnViewAntialiasing() ;

BYTE ColorArray(20](3];

CGLWorkView () ;

DECLARE_DYNCREATE (CGLWorkView)

DECLARE_MESSAGE_MAP ()

virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);

virtual void OnActivateView(BOOL DbActivate, CView* pActivateView, CView*
pDeactiveView) ;

virtual void OnBeginPrinting (CDC* pDC, CPrintInfo* pInfo);

virtual void OnDraw (CDC* pDC) ;

virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);

virtual void OnUpdate(CView* pSender, LPARAM 1lHint, CObject* pHint);

void InitColorArray();

public:
BOOL m_ClockWiseSorting;
BOOL m_Culling;
BOOL m_FlatShading;

BOOL m_AntiAliasing;
BOOL m_bRotate;

BOOL m_bTransparent;

BOOL m_MaintainAspect;//Must or not the aspects change together
BOOL m_ManipulateLights;
BOOL m_MoveAxis;

BOOL m_ShowAxis;

BOOL m_ShowBox;

BYTE m_CurrentQuickColor;
CGLWorkDoc* GetDocument () ;
CScene* m_Scene;

CString m_ElementFile;
CString m_NodeFile;

float m_FieldofView;

float m_NearPlane;

float m_BoxSize;

float m_CurrentXPos;

float m_CurrentYPos;

float m_CurrentZPos;

float m_MaxAxisSize;

float m_SpecularObjectShininess;
float m_TransparencyLevel;

int m_BackColor([3];
int m_ViewNumber;

int m_AngleValueCX;

int m_AngleValueCyY;

int m_AnglevValueCZ;

int m_AspectX;// Aspect ratio on X axis
int m_AspectY;// Aspect ratio on Y axis
int m_AspectZ;// Aspect ratio on Z axis
int m_AxisColor([3];

int m_AxisLength;

int m_BoxColor (3];

int m_DisplayType;

239

int
int
int
int
int
int
int

m_GLObject;
m_objectColor(3];
m_PresentLocationX;
m_PresentLocationY;
m_PresentLocationZ;
m_RotationSpeed;
m_SpecularObjectColor(3];

TCuttingPlane m_Planes([6];

TStructLight m_Lights([8];

virtual ~CGLWorkView() ;

virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
void InitComboBar();

void InitLightsArray();

void InitPlanesArray();

void
void
void
void
void
void

GetFloatValues (char Buffer[], double &x, double &y);
GetIntValues (char Buffer([], unsigned int &x, unsigned int
PrepareScene() ;

Rotate (BOOL bRotate) ;

SetupScene() ;

Tick();

240

&y) ;i

Appendix 5 : VRML

This text is exerpt from [VRMLSGI97] web pages.

VRML is a scene description language, which describes 3D environments over the Net. When you
access a URL, a "UniqueResource Locator", containing a VRML world, a file is downloaded into
your Web browser. VRML Worlds usually end with the file extention .wrl or .wrl.gz as opposed
to .html. When your browser sees a file with the .wrl file extension it tells your computer to launch

your VRML viewer.

VRML is an acronym for "Virtual Reality Modeling Language." Just as HTML (Hypertext
Markup Language) is a file format that defines the layout and content of a 2D page with links to
more information, VRML is a file format that defines the layout and content of a 3D world with
links to more information. Unlke HTML, however, VRML worlds are spacious and inherently
interactive - filled with objects that react to the user and to each other.

VRML allows for information, including links to other pieces of Web content, to be easily
represented in an interactive 3D world. VRML is scalable across platforms ranging from PCs to
high-end workstations, and soon, the Mac. VRML is also bandwidth efficient. Intricate, interactive
3D worlds can be described in worlds that are similar in size to HTML pages.

Most of the time when VRML files are large it is because of motion capture data, animation,
sound, or video, all of which will be reduced as "streaming media" becomes a reality. Straight
VRML files are actually very small, especially if special optimization steps are taken.

VRML, it's pronounced vur'mel and it's not just another plug-in. To a growing community, VRML
represents the seeds of a new Web. A Web more like the real world -- experiential, interactive,
continuous, and, of course, three dimensional. Its applications span the entire spectrum of both the
arts and the sciences. One current application of VRML is on JPL's Mars Pathfinder mission.

VRML 2.0 is transforming the Web into a medium that is less like reading a magazine and more
like real life. HTML took the Internet and made it accessible to millions of people who are
comfortable with 2D graphical user interfaces. VRML is going to take the Internet and the World
Wide Web (WWW) to the next level by making it accessible to the billions of people who would
rather watch TV than shuffle application windows. Why VRML?

We naturally organize information spatially. Think of receiving a phone call at your desk. During
the call you write down the person's phone number on a Post-It note and stick it off to your left. A
week later you go to call that person back and you think "where did I put that phone number." In

241

your mind, you picture the Post-It and look over to see that it is exactly where you left it. That is
the spatial map that we all have in our heads to keep track of this database called the world.
VRML is the key that will unlock the power of this natural ability to organize the current

chaos of the Web.

Put some order on the current 2D chaos. The current metaphor for the Web is starting to break.
Most people have a bookmark list that runs off the bottom of the page. Even if we were clever
enough to categorize the list, now it runs off the side of our screens... Also, take a peek at your
monitor, most of us have multiple application windows open and are constantly trying to shuffle
around to get to what you want. These problems are inherent to organizing information on a 2D
surface. There are only so many pixels to go around. With 3D if you need more space you simply
move forward, or you turn your head. In 3D you get infinite screen real estate for a finite number

of pixels on the monitor.

Find what you weren't looking for, but wanted anyway Real estate agents have long babbled
"location, location, location." The value of proximity is high in the real world. Locations infer
relationships that we use to organize data. Imagine taking a trip to your favorite restaurant. On
your way to the restaurant, you pass by a new bookstore. Being a book lover, this is of great value
to you and you go inside. You weren't looking for a bookstore, but finding it was a great
diversion. If you had teleported directly from your home to the restaurant, you would have never
found the bookstore. The value came from your travel and from the location of the bookstore

relative to the restaurant.

Researchers and academia have been looking at 3D for years - with the understanding that "it is
just better" said Ed McCracken, CEO of Silicon Graphics. There is no reason that the 3D
metaphors that we use in real life cannot be translated to the computer to help us get what we
want from technology. And there is no reason we should try to constrain ourselves to the accepted
2D interfaces, just because they are already in use. [VRMLSGI97]

242

