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Abstract

This paper studies how the distribution of income across consumers affects inno-
vation by affecting the demand for new goods. Within a model with non-homothetic
preferences, we show that inequality is more likely to be harmful for innovation when
innovations become more incremental, but that it is more likely to be beneficial when
the size of the population is increased. The model is extended to a multi-country
setting in which it is shown that inequality affects the number of patent flows (ap-
plications of patents that are already granted elsewhere) towards a country in the
same way as it affects innovation. In an empirical analysis based on a large panel
data set from PATSTAT, we find that inequality is more likely to increase and less
likely to decrease international patent flows towards a country the larger the size of
the population and the lower GDP of the country is. These results are in line with
the model predictions and robust to the inclusion of many control variables.
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1 Introduction

This paper analyzes, both from a theoretical and empirical perspective, how the distri-
bution of income across consumers affects innovation by affecting the demand for new
goods. Innovation is the main driving force of long run growth and most governments
are heavily involved in redistributing income in order to reduce the level of inequality.
With income inequality on the rise in many developed countries (see for example Piketty,
2014), it is therefore important to understand how inequality and innovation are related.

The motivation for this paper is that rich and poor households differ with respect to
their consumption pattern and that rich households consume a larger variety of goods than
poorer ones. This is for example shown in empirical studies conducted by Jackson (1984)
and Falkinger and Zweimüller (1996). Using data from the US consumer expenditure
survey, Kiedaisch (2016) shows that there is also a strong positive association between
a more narrowly defined variety of “innovative” goods purchased by a household and
household expenditures. When a new innovative good is more likely to be purchased by
a rich household, the demand for it and the incentives to invent it therefore depend on
the distribution of income.

In order to better understand the effect of inequality on innovation, we analyze a
product variety model based on Föllmi and Zweimüller (2016) in which households either
consume or do not consume a particular good, and in which rich households consume a
larger variety of goods than poorer households. There are fixed costs of innovating and
innovations lead to cost reductions that transform competitively supplied non-innovative
into monopolistically supplied innovative goods. Households differ with respect to income
and there is free entry into R&D. Within this setting, the incentives to innovate depend
on the number of households that purchase an innovative good and also on their will-
ingness’ to pay for the good. In equilibrium, poor households spend all their income on
innovative mass consumption goods while rich households also purchase some luxurious
non-innovative (service) goods (in Appendix A2, an extension is analyzed in which all
households first purchase some non-innovative basic need goods like food before they start
purchasing innovative goods and non-innovative luxuries. As long as most households are
rich enough to purchase all basic need goods, the results remain the same).

The prices of innovative goods are inversely related to the number of households
that purchase them in equilibrium. This implies that progressive transfers among poor
households who spend all their income on innovative goods shift demand towards sectors
with lower markups and thereby reduce the incentives to innovate and the number of
innovations that are carried out. An reduction in inequality can therefore stiffle innovation
through such price effects. When, however, income is redistributed from a rich household
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who spends additional income on non-innovative luxuries to a poorer “mass consumer”,
this increases the demand for innovative goods and the incentives to innovate.

Whether or not a progressive transfer between two randomly drawn households in-
creases or decreases innovation depends on the endogenous fraction of households that
spend all their income on innovative goods. This fraction increases when the size of the
population increases (for a given total income), when innovations lead to larger cost re-
ductions, and when total income decreases. The reasons for this are the following: due to
the presence of substitutable non-innovative goods, innovators are restricted in their price
setting power and can maximally charge a limit price. When the size of the population
increases, an innovator selling at the limit price can break even by selling one unit of the
innovative good to a smaller fraction of the population. When cost reductions are larger,
the limit price increases and innovators can also break even by selling to a smaller fraction
of the population. In both cases, the fraction of households that only consume innovative
goods in equilibrium increases. When total income increases, overall more innovations
are carried out and the marginal innovation is of lower value. This implies a lower limit
price, forcing innovators to sell to a larger fraction of the population in order to break
even. Taken together, these effects imply that a progressive (inequality-reducing) trans-
fer between two randomly drawn households is less likely to encourage or more likely to
discourage innovation the larger the size of the population is, the larger the size of the
cost reductions of innovations are, and the lower total income is.

The model is extended to a multi-country setting with two types of fixed costs: Fixed
costs of invention (that are borne only once), and country-specific fixed costs of (subse-
quent) patenting or technology adoption. In this setting, inventors only pay the fixed
costs of patenting or adoption when there is sufficient demand for an innovative good in
a particular country (it is assumed that there is no parallel trade). In equilibrium, some
countries endogenously emerge as “frontier” countries in which R&D is undertaken and
others are “follower” countries in which only a fraction of the global stock of inventions
get patented. When an innovation undertaken and patented in one country also gets
subsequent patent protection in another country, a patent flow occurs between the two
countries. The model predicts that inequality in a follower country is more likely to be
good and less likely to be bad for the number of international patent flows towards this
country the larger the size of the population, the larger the cost saving of the innovation,
and the lower total income in this country is.

The qualitative (interaction) effects that inequality has on international patent flows
towards a country are therefore the same as those that inequality has on innovation in
the closed economy model. By empirically analyzing how inequality affects international
patent flows we therefore hope to be able to infer how inequality affects innovation, at
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least in a qualitative way.
From an empirical perspective, studying patent flows has the following advantages:

while the incentives to innovate might be driven by the demand coming from several
countries and not only the country of invention, a patent flow towards a single country
usually only occurs if the profitability in this country is sufficiently large. There is there-
fore a clearer definition of the relevant market. Moreover, we can study the variation in
patent flows originating from the same set of technologies and do not need to compare
heterogeneous innovations across countries. Furthermore, we believe that it is unlikely
that a patent flow towards a country affects the level of inequality there (reverse causal-
ity) as technologies might diffuse towards countries independently of whether they are
(subsequently) patented there (see Appendix A3).

Based on raw-data from the PATSTAT data-base on patents of invention in the man-
ufacturing sector within 1980-2013, we study the behavior of international patent-flows
from a country of origin (frontier-country) to a different country (adopting-country) with
respect to the implications of the claimed theoretical channel.

Using a rich set of control variables, and considering five different measures of in-
equality (Gini coefficients pre- and post-taxes as well as top income shares) yielding to
estimation samples of approximately 1,8 - 2,9 million observations, we find a strong sta-
tistical pattern supporting the theoretical predictions. This is confirmed by four different
estimators of the conditional expectation of patent-flows parametrized by an exponential
mean model.

For a quantitative assessment of our estimation results, using a sample of 67 countries
from 1980-2013, we may predict the incidence of a positive marginal effect of an increase
in inequality for all empirically observed combinations of population and GDP over these
countries as destinations and all points in time. We estimate the probabilities that
an increase in inequality increases patent flows to be roughly 0.57 when inequality is
measured in terms of Gini post-tax, 0.53 when it is measured in terms of Gini pre-tax,
and 0.26, 0.23, and 0.11 when it is measured in terms of the top-10%, top-5%, and top-1%
income share.

In an extension of the model, we find that strengthening patent protection makes
it more likely that inequality increases (and less likely that it decreases) innovation.
Measuring the strength of patent protection by the Ginarte-Park index, we indeed find
this predicted positive interaction between patent protection and the effect of inequality
on patent flows in our empirical analysis.
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2 Related Literature (to be added)

The theoretical model builds on the analysis of Föllmi and Zweimüller (2016) who analyze
the effect of inequality on growth in an endogenous growth model. The present model
is static (i.e. there are only two periods), but, unlike Föllmi and Zweimüller (2016)
considers the more general case where the size of the population can vary and where
the value of the marginal innovation can depend on the number of innovations that have
already been carried out. While Föllmi and Zweimüller merely show that inequality
can be either beneficial or harmful for growth (depending on whether price or market
size effects dominate), the present model shows that inequality is more likely good or
less likely bad for innovation the larger the size of the population and the lower total
income is. Moreover, we extend the model to an international setup in order to derive
empirically testable implications, while Föllmi and Zweimüller (2016) only consider the
case of a closed economy and do not undertake any empirical analysis.

3 Model

In this section we develop the theoretical model.

3.1 Preferences

All households have the same utility function given by

U = f(C) +D (1)

where C =

R N

j=0 cjdj denotes the variety of innovative goods and D =

R1
n=0 cndn the

variety of non-innovative goods consumed. Goods are indivisible and households are
assumed to be satiated with a particular good after consuming one unit of it. Therefore,
households either consume one or zero units of any good (i.e. cj 2 {0; 1} and cn 2 {0; 1}).
While there is an infinite variety of producible non-innovative goods1, only the endogenous
measure N of innovative goods can be produced. It is assumed that f(C) is a continuous
function satisfying @f(C)

@C
> 0, @2f(C)

@C2 < 0, @f(C)
@C

���
C=0

= 1 and lim

C!1
@f(C)
@C

> c
⌦ , where

0 < c
⌦ < 1 (the latter is an assumption on cost parameters which is explained further

below). These assumptions imply that the utility derived from consuming an additional
innovative good lies (weakly) below that of consuming an additional non-innovative good
(which is constant) and that the former falls in the measure C of innovative goods that

1The analysis would be the same if there was instead only one divisible non-innovative good the
quantity of which entered linearly into household’s utility.
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a household consumes2. The more innovative goods a household consumes the less it
therefore values each single one of them relative to a non-innovative good. The analysis
is, however, also carried out for the case in which the marginal utility from consuming
innovative goods is constant, i.e. in which @2f(C)

@C2 = 0 and @f(C)
@C

= 1 holds for all values
of C).

3.2 Endowments, technology, and market structure

Labor is the only production factor. The total labor endowment in terms of efficiency
units is given by Y and the size of the population by L. Households are assumed to differ
with respect to their labor productivities and a household of type ✓ is endowed with
y(✓) = ✓ Y

L
efficiency units of labor. The type ✓ therefore indicates the labor endowment

of the household divided by the average labor endowment in the economy (both measured
in efficiency units). The variable ✓ is distributed with density g(✓) and cdf G(✓) in the
interval between ✓ < 1 and ¯✓ > 1. As ✓ = y(✓)L

Y
and Y = L

R ✓̄

✓
y(✓)g(✓)d✓, the condition

R ✓̄

✓
✓g(✓)d✓ = 1 must hold.
For a given distribution G(✓) an increase in Y implies that all labor endowments y(✓)

increase proportionally (i.e. an increasing scale transformation), while an increase in the
size of the population L implies that all labor endowments are reduced proportionally
(i.e. a decreasing scale transformation).

In order to produce one unit of a non-innovative good, ⌦ units of labor are required,
while only c < ⌦ units are required in order to produce one unit of an innovative good.
While the technology to produce non-innovative goods is in the public domain, innovative
(low-cost) goods first need to be invented: The fixed costs F in terms of labor need to
be paid in order to invent one innovative good j.

This set-up might be interpreted in the following way: Innovations transform non-
innovative goods (e.g. traditional manufacturing goods or personal services) into inno-
vative goods (e.g. modern manufacturing goods) that can be supplied at lower marginal
cost (due to the use of automation). The assumption that f(C) is a concave function
is supposed to capture effects that might also arise in a more complicated (and less
tractable) setup in which innovations are heterogenous with respect to their cost saving
potential and in which the cost reduction of the marginal innovation falls in the measure
N of innovations that are carried out.

Innovators obtain patents on their inventions that allow them to exclude others from
using their technologies. Labor markets are assumed to be competitive and the wage rate
for one efficiency unit of labor is normalized to one. There is free entry into R&D.

2Innovative goods are therefore only consumed if their price is sufficiently low (see below).
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3.3 Consumption choices

As the blueprints for non-innovative goods are in the public domain, they are sold at
the marginal cost pn = ⌦. Denoting the (per unit) price of innovative good j by pj, the
budget constraint of a household with income y is given by

y =

Z N

j=0

cj(y)pjdj +

Z 1

n=0

cn(y)⌦dn (2)

with the left hand side denoting income3 and the right hand side the expenditures
on innovative (first term) and non-innovative (second term) goods. Maximizing utility
(equation (1)) subject to this budget constraint leads to the following optimal consump-
tion rules of a household with income y, where the Lagrange multiplier �(y) denotes
the marginal utility of income and zj(y) (zn(y)) the willingness to pay for an innovative
(non-innovative) good of the corresponding household:

cj(y) =

8
<

:
1 if pj 

⇣
1

�(y)

⌘
@f(C(y))
@C(y) ⌘ zj(y)

0 if pj > zj(y)

cn(y) =

8
>>><

>>>:

1 if pn = ⌦ < 1
�(y) ⌘ zn(y)

1 or 0 if ⌦ = zn(y)

0 if ⌦ > zn(y).

Households therefore consume a good when their willingness to pay exceeds (or is
equal to) its price and do not consume it otherwise. While zj(y) and zn(y) coincide when
a household does not consume any innovative good (as zj(y) = zn(y)

@f(C(y))
@C(y) = zn(y)

when C(y) = 0 due to the assumption that @f(C)
@C

���
C=0

= 1), the willingness to pay
for innovative goods (zj(y)) falls short of that for non-innovative goods (zn(y)) once a
household consumes a positive variety C(y) of innovative goods, and the more so, the
larger this variety is (this is because @f(C)

@C
falls in C). Due to the assumption that

lim

C!1
@f(C)
@C

> c
⌦ , households always prefer innovative to non-innovative goods when both

are sold at marginal cost, i.e. when pn = ⌦ and when pj = c. In equilibrium, zj(y) and
zn(y) weakly increase in income y and rich households consume some goods that poorer

3Due to free entry into R&D, net profits of innovators are equal to zero, implying that labor is the
only source of income.
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households do not consume.
The inventor of innovative good j can only earn positive profits and break even if the

price pj lies above the marginal production costs c. Given that all innovative goods are
sold at prices that are low enough for consumers to prefer them to non-innovative goods
(this must be the case in equilibrium), households first consume the cheapest innovative
goods and then spend their incremental income on more and more expensive innovative
goods (in equilibrium, these goods are sold at different prices when households differ
with respect to the variety of innovative goods that they consume). Only households
with y > ŷ who are rich enough to purchase one unit of each of the N innovative goods
also purchase some non-innovative goods (that are sold at price ⌦). The varieties C(y)

of innovative goods and D(y) of non-innovative goods consumed by a household with
income y are therefore given by:

C(y) =

8
<

:

R N

j=0 cj(y)dj if y  ŷ

N if y > ŷ

D(y) =

8
<

:
0 if y  ŷ

y�
RN
j=0 pjdj

⌦ if y > ŷ

When income lies below the threshold ŷ, C(y) rises in household income, so that, in
line with the empirical evidence, richer households purchase a larger variety of innovative
goods than poorer ones.

In Appendix A2 an extension is discussed in which there are some basic need goods
(like food) which households purchase before they start spending money on innovative
and other non-innovative (service) goods. The qualitative results of the analysis remain
similar in such a more general setup.

3.4 Equilibrium price structure

An innovator selling innovative good j sets the price p(j) in order to maximize profits.
As all innovative goods are symmetric and as there is free entry into R&D, profits ⇡(j)

must be the same for all innovators and equal to F , the fixed costs of undertaking R&D,
in equilibrium. This gives the free entry condition
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⇡(j) = F (3)

Let us define ˆ✓ ⌘ ŷ
Y
L

, so that households of type ✓ < ˆ✓ only consume a subset of the

existing N innovative goods while households of type ✓ > ˆ✓ consume all N innovative
goods and some non-innovative goods. In the following, the case is considered in which
✓ has positive density g(✓) in the interval

⇥
✓; ¯✓

⇤
and in which ✓ < ˆ✓ < ¯✓ holds, implying

that there is a positive measure of households of both types (i.e. ✓ < ˆ✓ holds for some of
them and ✓ > ˆ✓ for others).

As households differ with respect to income and the variety of innovative goods that
they consume, not all innovators can sell to the same number of households in equilibrium.
In order to guarantee equal profits for all innovators, the equilibrium price structure has
to be such that innovators selling to more households sell at a lower price. As only richer
households consume the more expensive goods, we can denote the price of the innovative
good that is consumed by all households of type ✓ � ˆ✓, but not by poorer households,
by p(✓). Profits of the firm selling at price p(✓) to the number L(1�G(✓)) of households
are then given by

⇡(✓) = L(1�G(✓)) (p(✓)� c) (4)

Setting these profits equal to the R&D costs F (equation (3)) allows to derive

p(✓) = c+
F

L(1�G(✓))
(5)

Prices therefore rise in the marginal production costs c and in the R&D costs F and
fall in the market size L(1�G(✓)).

3.5 Solving for the equilibrium

The innovator that sells to all households of type ✓ � ˆ✓ sets the limit price at which the
household of type ✓ =

ˆ✓ is indifferent between purchasing the most expensive innovative
good at price p( ˆ✓) and purchasing a non-innovative good at price pn = ⌦, implying that
p(ˆ✓) = zj(ˆ✓) = ⌦

@f(C(✓̂))

@C(✓̂)
must hold4. Inserting this into equation (5) and taking into

account that C(

ˆ✓) = N , i.e. that the household of type ˆ✓ consumes one of each of the
existing N innovative goods, the free entry condition can be written in the following way:

✓
⌦

@f(N)

@N
� c

◆
L(1�G(

ˆ✓)) = F (6)

4As mentioned above, the case is considered in which there is a positive density g(✓̂) of households of
type ✓ = ✓̂.
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When the limit price p(ˆ✓) = ⌦

@f(N)
@N

increases due to an increase in the price (i.e. the
production costs) ⌦ of non-innovative goods or due to a reduction in N (that implies
an increased usefulness of the marginal innovative good relative to non-innovative goods
as @f(N)

@N
falls in N), the innovator needs to sell to less individuals L(1 � G(

ˆ✓)) in order
to break even and the equation is satisfied for a larger value of ˆ✓. When the size of the
population L increases (taking total income and the limit price as given), the free entry
condition is also satisfied for a larger value of ˆ✓ as the innovator can break even by selling
one unit of the good to a smaller fraction of the population (i.e. to all households of type
✓ � ˆ✓) if there are overall more households.

The budget constraint of a household of type ✓ < ˆ✓ is given by

✓
Y

L
=

Z ✓

q=✓

p(q)dC(q) (7)

where dC(q) indicates the density of innovative goods sold at price p(q). Differentiating
with respect to ✓ gives Y

L
= p(✓)dC(✓). Solving for dC(✓) and integrating gives the variety

of innovative goods consumed by the household as

C(✓) =
Y

L

Z ✓

q=✓

1

p(q)
dq (8)

Inserting p(q) from equation (5), the equilibrium number of innovative goods can be
derived as

N = C(

ˆ✓) =
Y

L

Z ✓̂

q=✓

1

p(q)
dq =

Y

L

Z ✓̂

q=✓

L(1�G(q))

cL(1�G(q)) + F
dq (9)

In Figure 1 this equation is plotted as curve “BC” (“budget constraint”) and together
with equation (6) (curve “FE’ (“free entry”)) it determines the equilibrium values of N
and ˆ✓.

Proposition 1. a): Suppose that ✓ is distributed with positive support in the range ✓ 
✓  ¯✓, where ✓ (0  ✓ < 1) is a sufficiently small and

¯✓ > 1 is a sufficiently large exoge-

nous parameter. A unique equilibrium then always exists if

⇣
⌦

⇣
lim

N!1
@f(N)
@N

⌘
� c

⌘
L > F

holds.

b): A progressive transfer among households of type ✓ < ˆ✓ reduces N , while a pro-

gressive transfer from a household of type ✓ > ˆ✓ to a household of type ✓  ˆ✓ increases

N . Transfers between households of types ✓ > ˆ✓ do not affect N .

c): ˆ✓ increases in ⌦ and in L and decreases in Y (when

@f(C)
@C

= 1 8C,

ˆ✓ is independent

of Y ). Therefore, a progressive transfer between two randomly drawn households is the

less likely to increase N (and the more likely to reduce N) the larger L and ⌦ are and the

lower Y is (when

@f(C)
@C

= 1 8C, the effects that the transfer has on N are independent of
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Y ). N depends positively on Y and ⌦ and negatively on c and F (the effects of L on N

and of F and c on

ˆ✓ can be either positive or negative).

Proof. See appendix A1

Part b) of this proposition contains the main result of Föllmi and Zweimüller (2016)
that a reduction in inequality can either increase or decrease innovation (they study a
dynamic setup and analyze the effect of inequality on growth, assuming that @f(C)

@C
= 18

holds). This part implies that a progressive transfer from a randomly drawn household
from the top x percent of the population to a randomly drawn household from the bottom
1 � x percent of the population is less likely to reduce N the smaller x is and that it
(weakly) reduces N when x is sufficiently small5. This implies that reducing inequality
by reducing the income share of the x percent richest households is less likely to reduce
N the smaller x is and (weakly) increases N when x is sufficiently small. Part c) provides
the basis for the main theoretical contribution of this paper. When inequality is measured
using a standard Lorenz consistent measure like the Gini coefficient or the coefficient of
variation, it falls when a progressive transfer takes place, but does not depend on the size
of the population L or on total income Y when the distribution G(✓) of household types
remains unchanged. Because of that, Proposition 1 implies the following:

Corollary 1. a):Suppose that the conditions from Proposition 1a hold. Reducing in-

equality is then the more likely to decrease (and the less likely to increase) the number of

innovations N the larger the size of the population L, the larger the limit price parameter

⌦, and the smaller total income Y is (when

@f(C)
@C

= 1 8C, the effect of inequality on N

does not depend on Y ).

b): Reducing the income share of the richest x percent of the households is the less

likely to reduce N the smaller x is and (weakly) increases N when x is sufficiently small.

The intuition behind this result is the following: Whether redistributing income from
a rich to a poor household encourages innovation depends on the consumption pattern
of both types of households. When both only purchase innovative goods, a progressive
transfer reduces the total number of innovations by shifting demand towards the less

5This can be derived in the following way: Let us define the household type at the x’th percentile
of the distribution by ✓

x

, so that G(✓
x

) = 1 � x holds. When x is small so that ✓

x

> ✓̂ holds, such a
progressive transfer increases N when it is received by a household of type ✓ < ✓̂ and leaves N unchanged
when it is received by a household of type ✓ > ✓̂. When x is so large that ✓

x

< ✓̂ holds, the transfer
increases N when it originates from a household of type ✓ > ✓̂, but reduces N when it originates from a
household the type of which lies in the interval between ✓

x

and ✓̂. Such a progressive transfer is therefore
less likely to reduce (and in the case where ✓

x

< ✓̂ also more likely to increase) N the smaller ✓̂ � ✓

x

is,
i.e. the smaller x is.
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exclusive goods that are sold at lower markups6. Due to this price effect a reduction in
inequality can therefore reduce innovation.

When income is, however, redistributed from a rich household who already consumes
one of each of the invented innovative goods and spends additional income on non-
innovative goods to a poor household who only consumes innovative goods, this increases
innovation through a market size effect: As the price setting power of firms supplying
innovative goods is restricted due to the presence of substitutable non-innovative goods,
inventing an innovative good is only worthwhile if sufficiently many households are rich
enough to purchase it. A reduction in inequality therefore increases innovation when it
leads to an increase of the number of goods for which there is “mass consumption” and
when it reduces the consumption of a minority of rich households who’s (incremental)
demand has no effect on the incentives to innovate. Whether a reduction in inequal-
ity increases or reduces innovation therefore depends on the consumption pattern of the
affected households as this determines whether the price or the market size effect domi-
nates.

When the size of the population increases, innovators can break even when they sell to
a lower fraction of the population, implying that a larger fraction of the households (i.e. all
of type ✓ < ˆ✓) spend all their income on innovative goods in equilibrium. This implies that
the price effect becomes the dominating one for a larger fraction of households, making
it less likely that a reduction of inequality stimulates innovation (and more likely that
it reduces innovation). When the price ⌦ of non-innovative goods increases, innovators
can charge a larger limit price and can break even if they sell to a smaller fraction of the
population. It is then also less likely that a reduction in inequality stimulates innovation
as the market size effect becomes less relevant.

When total income increases, the value of the marginal innovation decreases (when
@2f(C)
@C2 < 0 holds) and the limit price falls. This implies that innovators need to sell to

a larger fraction of the population in order to break even. As a larger fraction of the
population then spends some income on non-innovative goods in equilibrium, the market
size effect becomes more relevant and it becomes more likely that a reduction in inequality
is good (and less likely that it is bad) for innovation. When @f(C)

@C
= 1 8C holds so that

the value of the marginal innovation is independent of the number C of innovative goods
consumed, the limit price is independent of total income and so is the effect of inequality
on innovation.

It should be noted that the total number of innovations N is not simply a function of
6When a progressive transfer occurs, it reduces the number of innovative goods consumed by the rich

household less than it increases the number of these goods consumed by the poor household (as the
latter purchases goods at lower prices). This increases the overall production costs of firms supplying
innovative goods, implying that fewer firms find it profitable to undertake R&D.
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the number of households with an income larger than a certain threshold in this setup,
but that it depends on the whole distribution of income. The reason for this is that this
distribution endogenously determines the equilibrium price structure of innovative goods,
implying that the willingness to pay of a household for a new good not only depends on
this household’s income, but on the prices of all other goods and therefore on the incomes
of all other households.

3.6 International Context

The previous analysis considered a closed economy. When innovations are public goods,
i.e. when the fixed costs of undertaking R&D have to be born only once, it is, however,
likely that the incentives to innovate in one country do not only depend on the product
demand and the extent of inequality within this country, but also on the demand for
the innovations coming from other countries. In order to empirically test the predictions
of the model, one therefore needs to overcome the difficulties involved in defining the
market that is relevant for innovators. A further problem is that innovations might differ
considerably across countries (in terms of usefulness for consumers, cost saving potential,
or R&D costs), making it difficult to isolate the effect of inequality on innovation by simply
comparing innovation rates in different countries. In order to get around these problems,
the model is extended to an international context and a particular feature of the patent
system is used: as no globally valid patents are granted, inventors only obtain patent
protection in the countries in which they apply for it. As there are fixed costs associated
with country-specific patent applications, we can therefore observe variation in patenting
for given innovations across well-defined markets. The model is then used to show that
this variation in patenting across countries should depend in the same qualitative way on
the level of inequality within countries as innovation does in the simple closed economy
setting. This result motivates our empirical analysis in which we study international
patent applications in order to get around the problems that are associated with directly
studying innovation outcomes. In the following, the model setup is described. There are
M countries indexed by s. The size of the population of country s is given by Ls and the
total endowment with efficiency units of labor by Ys. Household types ✓s in country s are
distributed according to the density function gs(✓s) with positive support on the interval
✓s < ✓s  ¯✓s. Preferences are given by equation 1 and are assumed to be the same in all
countries. The cost parameters in country s are given by cs and ⌦s.

There are two types of fixed costs associated with innovation: In order to invent a
generic innovative good, the invention costs R > 0 in terms of labor have to be incurred.
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These costs are assumed to be the same in all countries7 and there is free entry into the
invention business. In order to adapt a generic invention to the particular conditions of
a country s and in order to obtain patent protection on this good there, the additional
fixed costs Fs > 0 in terms of labor from country s have to be incurred. These fixed
adoption costs consists of direkt patent application costs, translation costs, or other costs
that can for example arise when a good needs to be modified in order to be compatible
with local standards. Therefore, Fs can be country-specific.

If an inventor does not patent an invention in country s, there is free entry into the
imitation business, implying that a competitive fringe of firms can supply imitates of the
good at marginal cost once the fixed costs of adoption, Fs, have been sunk. Anticipating
this, no firm without patent protection finds it worthwhile to pay these fixed costs, as
doing so would not allow to earn any positive profits ex post. When an inventor obtains
patent protection in country s, other firms are prevented from supplying the same good
there and transferring the technology might become worthwhile. This implies that only
countries in which a particular innovative good j is protected by a patent can have access
to this good in equilibrium.

An alternative scenario without technology adoption costs in which an invention can
be freely adopted and supplied at marginal cost when it is not protected by a patent is
analyzed in Appendix A3. When all (or most) households are rich enough to purchase
all non-patented goods, the main predictions of the model remain the same in this case8.
Whether or not patent applications are associated with a transfer of technology or merely
an extraction of monopoly rents therefore does not seem to matter much for the effect of
inequality on patenting.

It is assumed that trade costs are sufficiently large to make it unprofitable to ship
an innovative good to a country in which it is not profitable to patent it. Moreover,
it is assumed that parallel trade is prohibited for patented innovations, allowing patent
holders to charge different prices in different countries. These assumptions that limit the
role of trade are made in order to keep the analysis simple and tractable. As it is is
likely that trade relations between countries affect patenting decisions in the real world,
we nevertheless control for trade flows in our empirical analysis and show that including
these does not affect our (qualitative) results.

When the measure Ns of innovative goods are invented in country s, the global mea-
sure of inventions (the “world technological frontier”) is given by N =

PM
s=1 Ns. In

country s, the subset Vs  N of all available inventions are patented.
7This assumption is made in order to obtain the simplest possible equilibrium in which no goods need

to be traded across countries.
8A welfare analysis can, however, lead to different conclusions in both cases

13



3.6.1 Equilibrium

As adopting already invented goods is cheaper than inventing and adopting new ones
and as all innovative goods are symmetric, inventing can only be profitable if there is
at least one “frontier” country in which all the globally available inventions are adopted,
i.e. in which Vs = N holds. In other “follower” countries, only a fraction of the globally
available innovations might, however, be adopted, i.e. Vs < N might hold. Within this
setting, whether a country is a frontier or a follower country is endogenously determined
and depends on the relative profitability of its market (which is a function of different
parameters, in particular Ys and Ls).

In a follower country in which Vs < N holds, inventors must be indifferent between
applying and not applying for patent protection. This is the case if their ex post profits
from selling their good in such a country s are equal to the fixed costs Fs of adoption. As
these fixed costs consist of labor from country s and as, due to the lack of parallel trade,
the optimal prices charged by patent holders only depend on local demand conditions, the
equilibrium in a country in which Vs < N holds is similar to the one in the basic closed
economy studied above. The only difference is that the endogenous number of innovations
N is now replaced by the endogenous number of (international) patent applications Vs

and that the fixed costs F of innovating are replaced by the fixed costs Fs of adoption
(note that a situation in which more inventions are globally available than are adopted
in a certain country is similar to one of “free entry” into adoption). Because of this, Vs

depends in the same way on the parameters in country s as in the closed economy and the
results of Proposition 1 can be directly applied with N replaced by Vs. When innovations
are randomly adopted from the world technology frontier, the probability that a given
invention is patented in country s is then given by Vs

N
.

If there is only one “frontier” country in which Vs = N holds and in which sufficient
profits can be earned in excess of the adoption costs in order to make R&D worthwhile,
the world technology frontier N is pinned down by the parameters of this country like in
the closed economy model studied above. When some of the innovations patented in this
frontier country are also patented in other “follower” countries in which Vs < N holds,
this does not affect the profitability of R&D as no net profits are derived from obtaining
patent protection in those follower countries. If there are H > 1 frontier countries in
which Vs = N holds, the following free entry condition needs to hold in each of these
countries:

HX

s=1

(⇡s � Fs) = R

This implies that the world technological frontier N is a function of the parameters
in all these H frontier countries. As R&D costs R are assumed to be the same in all
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countries, firms are indifferent about where to undertake the R&D. Consequently, the
equilibrium can be considered in which each frontier country undertakes the level of
R&D that coincides with the “net profit income” Ns(⇡s �Fs) derived in this country and
in which no profit income needs to be transferred across countries (note that profits net
of all fixed costs are equal to zero due to free entry into R&D).

While innovations are symmetric in the model, they are not symmetric in the real
world, where some are clearly more likely to be adopted and patented abroad than oth-
ers. This might be due to technological features of particular innovations, their value, or
different (trade) relations between the country of invention (or first patent application)
and the country of adoption. While the model would become much more complicated
to solve if it would explicitly allow for heterogeneous innovations or trade, some hetero-
geneity can nevertheless be introduced in a simple way: as inventors are in equilibrium
indifferent about whether or not to adopt their invention in a country in which Vs < N

holds, we can assume that the probability that a particular invention is patented in such
a country does not only depend on the relation between Vs and N , but also on other (not
modelled) characteristics of the technology, characteristics of the country of invention (or
first patent application) and characteristics of the (trade) relationship between the coun-
try of invention and the country of adoption. Formally, the probability Qjkl of innovative
good j invented (or first patented) in origin country s = k to be patented (adopted) in
destination country s = l is given by

Qjkl = h(Vl, N, zjkl)

where zjkl is a vector of variables specific to the innovation, the origin and the desti-
nation country and where @h(Vl,N,zjkl)

@Vl
> 0 and @h(Vl,N,zjkl)

@N
< 0 holds. When a group i of

innovations which all share the same characteristics zikl (including the country of origin)
is considered, Qikl simply denotes the fraction of these innovations that gets patented in
destination country l. In the following, Qikl is denoted as the "patent flows" from country
k to country l occurring for technology i. As the relation between Vl and the parameters
of the adopting country l is the same as in Proposition 1 (with Vl replaced by N), we can
state the following proposition

Proposition 2. Suppose that the conditions from Lemma 1a hold in a follower country

l in which Vl < N holds.

a): A reduction in inequality Il in country l is the more likely to decrease (and the

less likely to increase) patent flows Qikl from origin country k to destination country l

for technology i the larger the population size Ll and the limit price parameter ⌦l are and

the lower total income Yl is.
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Formally,

@E
⇣ @Qjkl

@Il

⌘

@Ll
> 0,

@E
⇣ @Qjkl

@Il

⌘

@⌦l
> 0 and

@E
⇣ @Qjkl

@Il

⌘

@Yl
< 0 hold (in the case where

@f(C)
@C

= 1 8C,

@E
⇣ @Qjkl

@Il

⌘

@Yl
= 0), where E

⇣
@Qjkl

@Il

⌘
denotes the average (expected) change in

Qjkl over all possible regressive transfers (of given size) between household pairs due to

which inequality might be increased.

Moreover, Qikl depends positively on Yl and ⌦l, negatively on the cost parameters

cl, Fl and negatively on the world technological frontier N (the effect of Ll on Qikl is

ambiguous).

b): b): Reducing the income share of the richest x percent of the households is less

likely to reduce EQikl the smaller x is and increases EQikl when x is sufficiently small.

It should be noted that the proposition can also be directly applied to the total number
of innovations from technology i getting patented in l.

This proposition shows that inequality in country l affects patent applications in this
country in the same qualitative way in which inequality affects innovation in the closed
economy. Empirically studying how patent applications across countries depend on the
level of inequality might therefore allow to make inferences about how inequality affects
innovation.

3.7 Extensions

3.7.1 Non-innovative basic need goods

In the model above, poor households spend all their income on innovative goods and
only rich households also purchase some non-innovative goods. In Appendix A2, an
extension is analyzed in which there are some non-innovative “basic need goods” like food9

which all households consume before they start consuming innovative goods. When all (or
most) households are rich enough to purchase all of these basic need goods, the qualitative
results of the analysis stay the same.

3.7.2 Limited strength of patent protection

This section analyzes how the effect of inequality on innovation depends on the strength
of patent protection, modeling the latter as either patent breadth or a varying probability
of enforcement.

Suppose that once a technology is patented and adopted in a country, imitators can
still enter the market as long as their imitates are sufficiently worse compared to the
patented innovation. The breadth of patent protection then determines how much

9According to many empirical studies, the budget share on food falls in household income. This is
called “Engel�s law” and referrs to Engel (1857)
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worse imitates have to be compared to a patented innovaton in order not to infringe on
the patent10. In this case, reducing the breadth of patent protection has the same effect as
reducing the limit price parameter ⌦ as it restricts the price setting power of innovators.
A smaller patent breadth therefore leads to a reduction in ˆ✓ and makes it less likely that
inequality is good for innovation and more likely that it is bad for innovation.

Suppose now that instead of the breadth of patent protection the probability of
patent enforcement is varied: Let us assume that inventors who have already paid the
fixed costs Fl to patent their innovation in country l only obtain patent protection there
with probability �l and are imitated with probability 1 � �l. In the case of imitation,
there is Bertrand competition and the price falls to the marginal costs cl, implying zero
profits. Studying the simple case in which @f(C)

@C
= 1 8C, the free entry condition in

country l is then given by

�l (⌦l � cl)Ll(1�G(

ˆ✓l)) = Fl

Consequently, ˆ✓l depends positively on �l. This is because an increase in �l allows a
firm that sells at the limit price ⌦l to still break even if it sells to fewer households when
the patent is enforced.

As consumers prefer to purchase the cheap innovative goods on which patents are
not enforced, they only consume patented innovative goods when they are rich enough to
purchase one of each of the (1��l)Vl competitively supplied goods. Let us only consider
the simple case in which all households are rich enough to purchase some patent protected
goods11. A regressive transfer among households of type ✓il < ˆ✓l then still increases Vl,
while a regressive transfer from a household of type ✓il < ˆ✓l to a household of type ✓il > ˆ✓l

still reduces Vl (the proof resembles that provided in Appendix A2). Because of that, an
increase in patent enforcment �l in country l makes it more likely that inequality is good
and less likely that it is bad for patent applications in this country (as it increases ˆ✓l).

Summing up, the following proposition holds:
10This could be modelled in the following way: suppose that consumers consider an imitated good to

be of equal value as a non-innovative good (independently of how many innovative goods they consume).
Then, the breadth of patent protection would determine a lower bound P on production costs of imitated
goods below which imitators would infringe on the patents of innovators. Consequently, the new limit
price for innovators would be given by P

@f(N)
@N

if B < ⌦ holds.
11This is the case if ✓

l

Yl
Ll

> c

l

(1��
l

)V
l

holds. Given that parameters are such that an equilibrium
with V

l

> 0 exists when �
l

= 1 holds (sufficient conditions for that are stated in Lemma 1a), continuity
of the BC and the FE curve in �

l

imply that this inequality is satisfied in equilibrium when �
l

is
sufficiently large (the BC curve is given by V

l

= Yl
Ll

R b
✓l

q=
cl(1��l)VlLl

Yl

Ll(1�G(q))
cl�lLl(1�G(q))+F

dq, where cl(1��l)VlLl

Yl

indicates the level of ✓
l

above which households start consuming patent protected goods, and where the
integrand is derived from the new free entry condition p(✓

l

) = c

l

+ Fl
�l(1�G(✓l))Ll

(that replaces equation
5)).
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Proposition 3. In both cases analyzed in this section, strengthening patent protection in

a destination country l makes it more likely that inequality in this country increases (and

less likely that it decreases) patent applications there.

Formally,

@E
⇣ @�jkl

@Il

⌘

@Pl
> 0 holds when Pl indicates the strength of patent protection in

country l.

Kiedaisch (2016) studies an endogenous growth version of this model. Looking at
the case of two income groups (that are both rich enough to purchase all non-patented
goods), he also finds that reducing patent breadth or increasing the probability of patent
expiration makes it less likely that inequality is good for growth. Taking transitional
dynamics into account, he, moreover, shows that strengthening patent protection might
not always increase growth when it leads to changes in the level of inequality. As we
control for the level of inequality in our empirical analysis, we do not consider such
additional effects here.

4 Empirical Analysis

In the following empirical part, we want to confront the theoretical predictions as stated in
Proposition 2 and Proposition 3 with data. We therefore examine the comparative statics
results implied by the theoretical discussion in the previous section, at the level of a single
technology i initially patented in country k and patent protection extended to country l

at time t. We therefore consider a sample of follower countries in which a positive amount
of patented innovations from abroad is observed. Thus we only consider technologies for
which a subsequent patent application is filed in at least one other country.

We then look at the variation in patent flows given characteristics of the origin and
destination countries and the technologies i. As we consider panel-data, some combina-
tions ikl surface repeatedly over time. We consider such repeated filings as indicative of
a higher probability that the technology truly enters the foreign market.

4.1 Design and Estimation

We parametrize the conditional expectation of the measure of international patent-flows
Qiklt given explanatory variables Ciklt taking on value ciklt

E(Qiklt|ciklt 2 Ciklt) = exp(⌘iklt) (10)
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with the parameter

⌘iklt = cTiklt↵ (11)

a linear index in the elements of vector ciklt and conformable coefficient vector ↵. We
parametrize this index as

⌘iklt = ◆T �iklt + zTiklt� + xT
lt� (12)

where xlt contains realizations of the theoretically motivated variables of interest with
conformable coefficient vector � 2 ↵, ziklt contains further control variables (with accord-
ing parameters collected in � 2 ↵), and ◆T �iklt = �i+�k+�l+�t represent effects specific to
the according dimension of variation of patent-flows Qiklt. As the continuum of possible
technologies is infinite, we consider unique technologies i as the incidental dimension of
the data, whereas the other dimensions of variation are considered as fixed strata of ori-
gin, destination, and time. We will therefore assume that �i = �o+i, where �o is a fixed
effect over a finite set of broad economic sectors, and i is innovation-specific. We will
assume that i = 0 or if non-zero it is a random variable exogenous with respect to the
elements of (ziklt, xlt) and with conditional expectation set to zero. In the latter case we
can ensure valid inference by according clustering of standard-errors.12 In a robustness
check below, we will allow for �i 6= �o and �i correlated with elements of (ziklt, xlt) via i.

4.1.1 Theoretical Relationship

As measures of a country’s population and income we use Llt =log(POPlt) (the logarithm
of a follower country’s population) and Ylt =log(GDPlt) (the logarithm of a follower
country’s GDP), respectively. For a Lorentz-consistent measure of inequality Ilt, the
empirical relationship implied by the result as stated Proposition 2 is

xT
lt� = �1Ilt + �2Ilt log(POPlt) + �3Ilt log(GDPlt), (13)

where we would expect that �2 > 0, �3 < 0, and �1 7 0.
To consider the theoretical prediction of Proposition 3 we add an additional interaction

term in a measure of patent protection (Bl in the proposition) and inequality. For the
coefficient on this interaction, �4, we would in addition expect that �4 > 0.

In order to study how inequality affects patent flows according to (13), we can calculate
12Or as we will apply in the light of a generated regressor in an additional robustness exercise below,

we may estimate a bootstrap-confidence interval by a resampling with replacement form over varying
instances of i (o) with a fixed klt.
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the decision boundary of a positive versus a negative partial effect of inequality, that is

d(Ilt) = {(POPlt, GDPlt) : @x
T
lt�/@Ilt = 0}, (14)

i.e. all combinations of population and GDP for which the marginal effect of inequality
is exactly zero. If we want to include another variable – as for exploring Proposition 3 –
we accordingly obtain a decision surface with coordinates population, GDP, and amount
of patent protection.

4.1.2 Estimation

The exponential conditional mean model exp(⌘iklt) motivates estimation of a generalized
linear model (GLM) as introduced in Nelder and Wedderburn (1972), Wedderburn (1974),
and McCullagh and Nelder (1983). Considering one-parameter exponential families for
the conditional distribution of the dependent variable given explanatory variables, the
conditional mean of interest can be estimated consistently even if the assumed distri-
butional model is mis-specified (see Gourieroux et. al; 1984). Conditional distributions
within this class that are consistent with the support of the conditional mean of patent-
flows are the Poisson-distribution, the one-parameter Gamma-distribution, and the nega-
tive binomial distribution using the quadratic mean parametrization (NB2). As a further
approach motivated by the exponential relationship in (12) we may log-transform the
dependent variable and apply linear least squares (or a gaussian GLM with an identity
instead of the logarithmic link as is employed here). However, this is a model for a trans-
formed relationship and as implied by Jensen’s inequality we may interpret the resulting
conditional expectation as lower bound on the conditional expectation for the original
relationship.

To compare among a set of different estimated econometric models for the conditional
expectation of interest we refer to in- and out-of-sample fit. To assess in-sample fit we
look at the squared correlation among the true and the fitted values for each model.
To measure out-of-sample fit – i.e. how well any fitted regression would perform when
predicting a new data-point on the dependent variable from observed values of the ex-
planatory variables – we compute the cross-validation-error.

4.2 Dependent Variable

To construct a measure of patent-flows we utilize information comprised in the PATSTAT-
database.13 We extract priority applications for the years 1980-2013 of granted patents of

13The PATSTAT database is published by the European Patent Office and contains world-wide data
on patents. The analysis proposed in this paper is based upon its 2015 Autumn Edition.
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invention as according to Article 4 of the Paris Convention of the Protection of Industrial
Property 1883, that are followed by a subsequent filing at a different patent-office, i.e.
any initial application that is being claimed as a priority elsewhere within 1980-2013. 14

15

A raw-patent-flow occurs if a priority-fling filed at one patent-authority is found within
a subsequent filing at a different patenting-authority in a year.16 We measure the timing
of a patent-flow as the year when the priority is cited at the level of the receiving-office.17

We consider subsequent filings as arising after the Paris Convention and the Patent Co-
operation Treaty 1970 (PCT).18 Both, the Paris Convention and the PCT experienced
substantive amendments by the end of the year 1979 motivating our restriction of atten-
tion to periods since 1980. In our raw-data, a share of roughly 86.7% of all subsequent
filings is due to Paris Convention direct filing, whereas the rest are PCT applications.19

Having obtained raw-patent-flows, we aggregate those for distinct combinations of
technology i, origin k, destination l and year t. To measure distinct technologies i we
refer to distinct PATSTAT DOCDB-families. Alternatively, we consider different family-
definitions by means of a single-priority-family – where each distinct priority filing is con-
sidered as a distinct technology – and the extended patent-family definition INPADOC.
We normalize the size of each technology to one such that in case a technology consists of
several priorities each subsequent application of a single priority enters with a fractional
weight. At the level of the subsequent filing one or two priorities may be referred to

14In PATSTAT such priorities can be identified by their absence from table TLS204_APPLN_PRIOR and
INTERNAT_APPLN_ID in table TLS201_APPLN being 0, together with the information on granting status
contained in table TLS201_APPLN. (Artificial or replenished observations are excluded)

15Due to data-availability for the explanatory variables introduced below, the most recent year included
in the analysis is 2013.

16As an alternative measure of geographical location one might consider the nationality of the inven-
tor(s) (cf. Eaton et. al. 2006). We decided to follow the view that the relevant market of protection is
more likely associated with the location of the patent office.

17We consider this as in-line with the different timing structures between priority date and the date
when a subsequent application faces at the level of a national office for Paris Convention direct-filing
an PCT-filings (entering their national phase), respectively. Thus any considerations with respect to
strategically exploiting the different timing-structures by the applicant to optimize provisional patent
protection are then assumed to occur previous to the patent-flow facing in the data.

18In PATSTAT such observations are found by matching the content of the variable PRIOR_APPLN_ID
in table TLS204_APPLN_PRIOR to the variable APPLN_ID for those observations previously identified as
priority filings; their APPN_KIND is either “A" for Paris Convention subsequent filings or ‘W" for PCT.
Note that this refers to PCT filings as the enter their national phase.

19As compared to direct filing, PCT filing provides the applicant a longer period of provisional patent
protection and costs occur at a later point in time. PCT filing is generally more expensive than direct
filing, but is usually more cost efficient when protection in several foreign countries shall be obtained
simultaneously. Hence, large international companies might be more likely to file after the PCT, whereas
SMEs might be more likely to follow the direct filing strategy of the Paris Convention. The Paris Con-
vention has wider country-coverage than the PCT, and accordingly for some countries patent protection
can only be obtained by direct filing at all. Moreover – which is also a widely used strategy in practice –
international patent protection can also be applied for simultaneously after both international treaties.
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as prior art, and in such a case a fractional flow from each priority is considered. Thus
for several raw-patent-flows within a fixed combination of iklt the dependent variable is
defined as

Qiklt =

X

g2iklt

I{g 2 iklt}wfamily
g(ik) ⇤ wciting

g(lt) := Qw
iklt

with
P

g2ik w
family
g(ik) = 1 and

P
g2lt w

citing
g(lt) = 1 and I is the indicator function. For a single-

priority-family wfamily
g(ik) = 1, whereas a DOCDB- or INPADOC-patent-family can consist of

more than one priority-filing which can also be attached to several countries and therefore
we choose

wfamily
g(ik) = 1/“No. of priorities the family consists of”

for a priority that belongs to family i and was filed in k. Observe that for the single-
priority-family the combination of i and k is necessarily fixed, and a technology cannot
be distributed across several countries of origin. Analogously, for the weight attached to
the destination in case more than one – in the data we observe at most two – priority is
cited

wciting
g(lt) = 1/“No. of priorities cited”

where
P

g2lt w
citing
g(lt) = 1 for given destination l and year t. We may motivate the chosen

uniform weights as the maximum entropy weights that are least informative about the im-
portance of each innovation in that bundle.20 As an alternative strategy we also consider
an unweighted definition of the dependent variable as Qiklt =

P
g2iklt I{g 2 iklt} := Qu

iklt.
As we will see below, the Qw

iklt has a smoother empirical distribution with less mass points
as compared to Qu

iklt.

4.2.1 Descriptive Statistics for Dependent Variable

Following the previous descriptions there are several ways of defining the dependent vari-
able. To convince the critical reader that we may just consider one out of them, we briefly
illustrate the high overlap in patterns as suggested by several different definitions (as ac-

20Thus at the level of the priority the following cases can occur: (a) one-priority family or (b) multiple
priority family, and at the level of the receiving office for the subsequent filing either (c) one priority
cited or (d) two priorities are cited can occur, yielding to 2 x 2 distinct constellations. For (a) with (c)
this yields to w

family
g(ik) = 1 and w

citing
g(lt) = 1, for (a) with (d) w

family
g(ik) = 1 and w

citing
g(lt) = 1/2, for (b) with (c)

for e.g. a family consisting of 3 priorities wfamily
g(ik) = 1/3 and w

citing
g(lt) = 1, and for (b) with (d) again for the

example with 3 priorities w

family
g(ik) = 1/3 and w

citing
g(lt) = 1/2. Then for all distinct iklt observed we sum-up

over all instance s for a fixed combination iklt, e.g. for a given family i consisting of 4 priorities filed at
the same origin k out of which 3 are cited by a PCT-application and 2 are cited by a Paris-Convention
filing at the same destination l in the same year t and the subsequent applications do not cite any other
priorities outside of the family, then Q

iklt

= 3/4 + 1/2 = 1.25.
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cording to three distinct family definitions and whether a weighted or and unweighted
count is considered). Moreover, we vary the set of subsequent filings considered: (1)
Paris-Convention and PCT subsequent filings, (2) only Paris-Convention filings, and (3)
whether to include regional subsequent-applications directly except for calculating the
weights of the weighted count.

Figure 2 highlights patent-flows as according to the resulting 3⇥ 2⇥ 3 distinct defini-
tions of the dependent variable, each at the aggregate level of distinct NACE2 Divisions
of manufacturing, of countries of origin and destination, and time as surfacing in the data.
The stars plots shown there visualize the relative size of each category (NACE2 Divisions,
countries of origin and destination, years) with respect to the 18 distinct patent-flow mea-
sures as compared to all other categories. Different measures of the dependent variables
are represented by different colors. What is highlighted there is a strong overlap in pat-
terns, no matter which type of family definition is considered, no matter if PCT and
Paris-Convention filings are considered together or whether or not regional applications
are excluded. Without loss of generality, we will focus on non-regional subsequent ap-
plications according to the Paris Convention and the PCT in the following. These are
represented by the radii of the variables A and B (weighted and unweighted count for the
single-priority-family), G and D (weighted and unweighted count for the DOCDB-family),
and M and N (weighted and unweighted count for the INPADOC-family).

Figure 3 plots the relative frequencies of the selected variables (in logs), and Table
1 supplements this information by a summary of descriptive statistics. The numbers of
observations on data on the dependent variable is approximately 3.7 mio observations
for each definition. The reported first and second moments show that relative to a
Poisson-distributed random variable, the unweighted counts are over-dispersed whereas
the fractional counts are under-dispersed. The over-dispersion of the unweighted count
may be accounted to many entries equal to one and two in the data whereas the fractional
counting smooths the mass-points a bit.

To motivate our later employed empirical specification of the fixed effects, we present
an ANOVA for the log-transformed measures of patent-flows in Table 2. As indicated by
the reported mean-squares, variation over different divisions of manufacturing as repre-
sented by �o above explains most of total variation, and variation over countries of desti-
nation (�l) second most. Variation over origins and time (�k and �t) is less pronounced.
Moreover, for the weighted count variation over origins has a higher mean-square as
variation over time, which holds for the weighted count vice versa.

We conclude that the patterns of variation in the dependent variable for different
family-definitions are highly similar. In the sequel, we will therefore concentrate at the
DOCDB-family as the entity defining distinct innovations, and will retain the other def-
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initions for robustness checks.21

[Figure 2, Figure 3, Table 1, Table 2]

4.3 Explanatory Variables

4.3.1 Inequaltiy

A measure of inequality Ilt with good data availability is the Gini coefficient measuring
the deviation of a country’s income distribution from perfect equality. It takes on values
on [0, 1] with a value of 1 implying that one member of the population gets all the income
whereas all others get none. A very rich data-set qualitatively oriented towards the
gold standard of the Luxembourg Income Study on post- and pre-tax Gini coefficients
(GINInetlt and GINImarketlt below) is provided by the Standardized World Income and
Inequality data-base (Solt, 2016; SWIID).22 The most recent year covered by the SWIID
is 2013.

As a different measure of inequality we use top-income shares. The World Wealth and
Income Database (WID; Piketty et. al) provides rich time-series-country-data on income
and wealth statistics predominantly constructed from tax records. From this data-base
we use information on top-10%, top-5%, and top-1% income shares (TOP10%-sharelt,
TOP5%-sharelt, and TOP1%-sharelt as referred to below). As compared to the Gini
coefficient, top-income shares immediately highlight whether inequality is attributable
to a small rich class. Country-year-coverage for the WID is worse than for the SWIID,
and especially poor for the years from 2013 onwards. As according to the latest period
covered by the SWIID, we retain the period 2013 for top-income shares but drop future
periods.

In Figure 4 we assess the ten distinct marginal relationships that exist among these
five inequality measures whenever they are simultaneously observed for a destination l

and year t surfacing in our data. The top-income-shares are almost linearly related when
considering the three binary relations, and a similar pattern holds for GINInetlt and
TOP1%-sharelt. Between GINInetlt and TOP5%-sharelt, and GINInetlt and TOP10%-
sharelt share there is an inverse U-shaped relationship between inequality post-taxes and
high incomes. Qualitatively this tells us that high levels of inequality post-taxes are most
likely accompanied by high top-1% incomes and comparably little mass below at top-10%
and top-5% quantiles of the income distribution. Moreover, the observed pattern for the

21Further results for the analysis presented below using the other definitions of the level of the innova-
tion i for defining the dependent variable are available from the authors upon request and will be made
available in the Online Appendix to this paper.

22As the SWIID-data were constructed by multiple imputation, point measures of pre- and post-tax
Gini coefficients are constructed by averages over all MI-estimates as reported by Solt.
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Gini coefficients pre- and post taxes (GINInetlt vs. GINImarlt in the figure) indicate that
for high levels of inequality (approx. > 0.45) there is almost a one-to-one relationship
between the Gini coefficients pre- and post-taxes, whereas for low levels of inequality
previous to taxes, the reduction in inequality at the level post-taxes is much larger in
order of magnitude. Qualitatively, this means that countries in our sample that have
low levels of inequality previous to taxes redistribute income more equally post-taxes as
compared to countries with a high level of inequality among market incomes initially.

[Figure 4]

4.3.2 Population and GDP

Measures of population and real GDP are obtained from the World Bank’s World De-
velopment Indicators (WDI).23 As both variables have strictly positive support, we log-
transform them. We will refer to the log of the destination’s population and GDP at time
t by log(POPlt) and log(GDPlt) as introduced above, and use log(POPkt) and log(GDPkt)
when the origin-country is referred to, respectively. We consider the latter two variables
as controls for characteristics of the origin-country of the patent-flow, interpretable as
measures of economic size.

In Appendix B we provide some further results on pair-wise correlations among in-
equality measures and GDP and population in our data, respectively.24

4.3.3 Measures of Patent Value, Costs, and Strength of Patent Protection

There is common sense in the empirical literature that the number of citations a given
patent, or a bundle thereof respectively, receives mirrors the economic value of inventions
(see Trajtenberg, 1990; Harhoff et. al. 1999; Harhoff et al., 2003; Hall et al., 2005;
Abrams and Akcigit; 2013). The study of Trajtenberg (1990) suggests that the social
value of an invention is positively correlated with the incidence of subsequent citations.
The results presented in Harhoff et. al. (2003) suggest that the number of references to
the patent literature as well as the citations a patent receives are positively related to
its value. Hall et. al (2005) consider how the market value of the firm as the holder of
the patent responds positively to patent citations. More recently, Abrams and Akcigit

23The WDI-series references are SP.POP.TOTL (population) and NY.GDP.MKTP.CN.
24As indicated above, we confirm that there are positive correlations among all inequality measures.

Moreover, the correlation of the share of the top-1% incomes with, population, GDP, and GDP per capita,
respectively, are not estimated significantly different from zero, otherwise there is a positive correlation
among top-5% and top-10% incomes with population and GDP, whereas there is a negative correlation
between Gini coefficients with GDP per capita. This means, that for our data rich countries are likely
to have a low level of inequality in terms of Gini coefficients, but a comparably high top-5%/top-10%
income share.
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(2013) have pointed at an inverted U-shaped relationship between the value of a patent
and a patent’s lifetime citations, though a positive correlation between lifetime citations
and patent-value is confirmed.25

To construct a measure of the value of a technology, we construct a set of five variables
measuring the spreading-out of subsequent applications at different points in time and
over space: (1) A variable counting the number of a technology’s previous subsequent
applications up to time t, (2) another variable counting the number of contemporane-
ous applications of a technology at time t, (3) a variable using (1) normalized by the
technology’s age, (4) a variable counting the number of different destination countries
where a technology has already been filed at in t, and finally (5) a variable counting the
number of distinct countries where there is a subsequent application for the technology
simultaneously in a year t. Technologies are therefore measured by any unique priority
in case the single-priority-family is applied, or at the aggregate level of the DOCDB- or
INPADOC-patent-family as recorded in PATSTAT, respectively.26 In either case, all of
the five variables are highly positively correlated, and after log-transforming them, we
extract the first principal component which accounts for roughly 80% of the total variance
and use it as a measure of patent-value, PATVALit. As is favourable for interpretability,
all of the five variables show a positive loading on the first PC. Further information and
estimation output is provided in the appendix.

As a further potential correlate of a technology’s value in terms of the human capital
equivalent required to produce the invention, we consider its number of inventors. For the
single-priority-family definition of a technology this information is contained in PATSTAT
as the number of inventors recorded with the priority filing. For the aggregate family-
definitions we use the sum of inventors behind the bundle of unique priorities cited with
a subsequent application. As this variable has strictly positive support, we apply a log-
transformation that we will refer to by log(NOINVENTORSi).27

To take account of the heterogeneous structure of cost associated with making a
technology within different branches of the manufacturing industry, we include a set of
indicator variables �o for the NACE2 Division within which the patent-flow occurs (cf.
above), and a set of indicator variables �l for the destination of the patent-flow accounting
for heterogeneous fee-structures among patent-offices. Since a major cost factor of foreign
patent-extensions are due to translation cost, we include an indicator variable from the
CEPII of whether the origin and the destination of the patent-flow share the same official

25They attribute this non-monotonicity to filing purposes that are strategic versus productive, where
only in the latter case a positive correlation of citations and patent-value occurs.

26For multi-priority families with different filing years, the average age is considered as the age of
family, i.e. innovaiton.

27Raw-observations with inconsistent inventor information were dropped from our analysis.
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language (COMLANGkl).
As a measure of patent rights in the foreign market where protection of the innova-

tion is desired, we employ the index suggested in Ginarte and Park (1997), and updated
by Park (2008). The index measures the extent of coverage of patent protection pro-
vided by a country’s legal system, provisions of loss protection, enforcement mechanisms,
the duration of protection, and membership in international patent agreements. Allred
and Park (2007) find a positive relationship between strong IPR protection and foreign
patenting. Aghion et. al. (2013) find a positive relationship between R&D intensity and
patent protection as measured by the Ginarte-Park-Index. The Ginarte-Park-Index takes
on values between zero and five, where higher values indicate stronger IPR protection,
and its most current version the time span 1960-2010 with a measurement period of ev-
ery five years. To construct data on an annual basis for the period 1980-2013, we firstly
linearly interpolate each country-specific time-series on an annual grid, and then apply
country-wise local linear regression to obtain predictions for the years 2011 until 2013.
We will refer to this interpolated and extended variable as GP-INDEXlt below.

4.3.4 Inventive and Imitative Capacity of Destination Country

One motivation of patenting abroad is the aim to protect one’s innovation on the local
market from imported imitations (Eaton and Kortum, 1996; Grupp and Schmoch, 1999;
Peeters and van Pottelsberghe, 2006).

As a measure of the capacity of a destination country l to imitate the set of innovations
it imports from to the origin k at time t we construct a technological similarity index
TECHSIMklt in the spirit of Jaffe (1986). The variable measures the proximity of two
countries’ technological profiles of exported patents in a year t, and is constructed by
calculating the share of exported patents in each NACE2-Division for each country to
then obtain the inner product of the two vectors as associated with a pair of countries
kl. This variable will equal 1 for countries with exactly the same distribution of patents
across classes, and 0 for countries with no patents in the same classes.

As another proxy of a destination country’s inventive or imitative capacity we employ
a measure of scientific output per capita based on raw-data extracted from the WDI.28

To construct this measure, we add one the number one to each entry for the number of
scientific and technical journal articles in the raw-data and then divide by the country’s
population. Since the resulting variable has strictly positive support, we apply the log-
transformation. We will refer to this variable below by log(ARTpclt).

28The original variables from the WDI are IP.JRN.ARTC.SC and SP.POP.TOTL (as used above).
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4.3.5 Trade and Distance

Slama (1981), Park (2003), Eaton et al. (2004), as well as Harhoff et. al. (2009)
highlight the role of distance with an indication of a potentially negative elasticity on their
respective patenting measure. Distance may be negatively related to costs of monitoring
the patent, managing business contacts or enforcing patent-law, or simply be related to
cultural distance. We therefore use a measure of the distance between two countries’
capital cities obtained from the CEPII. We log-transform this series and include the
variable log(DISTANCEij) in the regressions below.

Though the theoretical model abstracts from trade it has been examined as a deter-
minant of patenting activity previously in the literature: Bosworth (1984) studies in- and
out-flows of patent applications to and from the UK, and finds that exports from the UK
to a foreign country have a positive effect on UK patenting-activity abroad, whereas im-
ports from abroad have no significant effect on patenting-activity originating from foreign
countries to the UK. His findings have been confirmed by Yang and Kuo (2008). Autor
et. al. (2016) examine the relationship of US innovations in the manufacturing sector to
import competition from China, and conclude a negative effect from raising imports on
patenting activity.

To take account of the potential role of trade as an alternative determinant of patent-
flows, we employ a measure of bilateral trade between a pair of countries kl at time t that
is constructed from data on exports and imports as provided by the DOTS data pub-
lished by the IMF. Bilateral trade is therefore measured as the sum of half-importer and
half-exporter flows. We use a log-transformed version log(TRADEkl) as an explanatory
variable in the regressions below.

Moreover, in order to construct a robustness exercise for the empirical findings de-
rived in this paper by allowing for potential endogeneity of trade we make use of a set
of additional variables that provide exclusion restrictions with respect to the potentially
endogenous regressor. Therefore, we consider variables standardly employed in the empir-
ical gravity literature (cf. Santos Silva and Tenreyro, 2006): A binary variable indicating
colonial ties (COLONYkl, a contiguity-dummy (CONTIGkl), a dummy equal to one if the
countries ever were the same country (SMCTRYkl) – all taken from the CEPII, indicator
variables for whether two countries share a regional trade agreement (RTAklt) and a com-
mon currency (COMCURklt) both from de Sousa (2012). Moreover we add measures for
two countries’ bilateral size log(SIZEklt) = log(GDPkt + GDPlt) and differences in rela-
tive factor endowments RELFACklt = abs[log(GDPpckt) - log(GDPpclt)] where GDPpc
stands for real GDP per capita.
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4.3.6 Further Control Variables

Finally, we add a set of further control variables: Measures of net-FDI in- and out-
flows as a share of GDP at time t at the level of the destination- and origin-country
(FDI-Inflowskt, FDI-Inflowslt, FDI-Outflowskt, and FDI-Outlowslt below; cf. MacGarvie,
2005), controls for the investment share in both countries at time t (INVSHAREkt

and INVSHARElt below) The raw-data stem from the WDI29, and measures of ratio-
nal forward-looking expectations about GDP in origin and destination log(GDPk(t+1)),
log(GDPl(t+1)), log(GDPk(t+2)), and log(GDPl(t+2) below). Finally, we construct a mea-
sure of dissimilarity in the level of globalization for origin and destination at time t from
raw-data provided by the KOF on the globalization index suggested in Dreher (2006).
The original index consists of three sub-indices for a country’s economic, social, and po-
litical globalization. We construct the employed dissimilarity-measure as the Euclidean
distance between two countries in a given year in terms of these three coordinates. We
log-transform the obtained distance and refer to this variable by log(DISSIMIklt) below.

4.3.7 Estimation Samples

According to data availability on the distinct measures of inequality, and the other ex-
planatory variables, and as based on the DOCDB-patent-family-specific definitions of the
dependent variable, we define the estimation samples as summarized in Table 3. We will
refer to the samples where we observe GINInetlt and GINImarlt as the SWIID-samples,
and to the samples where we observe top-income-shares (TOP10%-sharelt, TOP5%-
sharelt, and TOP1%-sharelt) we refer to as the WID-samples.

We define two different sets of explanatory variables contained in ziklt: A baseline set
of regressors ziklt = z0iklt and an extended set of regressors ziklt = (z0iklt, z

1
iklt). Therefore,

the baseline set of regressors contains the following variables,

z0iklt = [ log(GDPkt), log(GDPlt), log(POPkt), log(POPlt), GP-INDEXlt,

PATVALit, TECHSIMklt, COMLANGlt, log(DISTlt), log(TRADEklt)]

and besides the variables contained in z0iklt, the extended set of regressors in addition
29These refer to the WDI variables BX.KLT.DINV.WD.GD.ZS, BM.KLT.DINV.WD.GD.ZS and

NE.GDI.TOTL.ZS.
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includes the following variables

z1iklt = [log(DISSIMIklt), log(NOINVENTORSi), log(ARTpclt), FDI-Inflowskt,

FDI-Inflowslt, FDI-Outflowskt, FDI-Outlowslt, INVSHAREkt, INVSHARElt,

log(GDPk(t+1)), log(GDPl(t+1)), log(GDPk(t+2)), log(GDPl(t+2))].

As referred to in Appendix B we have applied missing value imputation for the variables
extracted from the WDI assuming missingness at random.

According to these two specification we observe samples ranging from 1,842,972 to
2,874,437 observations, where the SWIID-samples have richer country-coverage as com-
pared to the WID-samples. This information is summarized in Table 3. The SWIID-
samples cover 49-53 distinct origin-countries, and 49-50 distinct destinations. The WID-
samples cover 47-50 different origins of patent flows and just 17-20 distinct destinations.
A full list of country-coverage by sample, origin and destination is given in Appendix B.
For the SWIID-samples these numbers refer to 60 (59) distinct countries for the baseline
(extended) specification on explanatory variables. For the WID-samples and the base-
line (extended) set of control variables there are 51 (48) distinct countries for inequality
measure TOP1%-sharelt, 51 (49) for TOP5%-sharelt and TOP10%-sharelt, respectively.

For all samples considered, we observe patent-flows and the explanatory variables over
23 out of 24 NACE2 Divisions and for each year in 1980-2013.

[Table 3]

4.4 Estimation Results

To assess the empirical implications of the main theoretical results as stated in Corollary
1, by testing the sign restrictions on the coefficients �2 and �3 in the relationship stated
in equation (13), Tables 4.1-4.5 and Tables 5.1-5.4 contain the estimation results for the
weighted count Qw

iklt when controlling for the baseline and the extended set of explanatory
variables, respectively. Tables 6.1-6.5 contain a more condensed presentation when using
the unweighted count of patent-flows ( Qu

iklt as defined above) instead.30 In these tables,
we provide two sorts of inference: Once we cluster standard errors at the level of the
innovation i, and once we cluster at the level of the NACE2 Division.

For both SWIID-samples we obtain a statistically highly robust result in favor of what
is predicted by Corollary 1: We would not reject that �2 > 0 and that �3 < 0 for 40
out of 40 different regressions (cf. Tables 4.1-4.2, 5.1-5.2, 6.1-6.2) at a significance level

30Robustness checks when considering a different family-defintion (single priority and INPADOC),
that will be made available in the Online Appendix to this paper, suggest a qualitatively similar pattern
of results as is suggested for the results presented here.
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of 0.01 (for either type of inference). For the WID-samples, we find a consistent pattern
in favor of the theoretical prediction of Corollary 1 when looking at the top-1% income
shares as measure of inequality (cf. Tables 4.5, 5.5, and 6.5, respectively). Significance
of the interaction of TOP1%-sharelt ⇤ log (GDPlt) as captured by the coefficient �3 is
not alway given when clustering at the level of the NACE2 Division. For top-10%- and
top-5% income shares (TOP10%-sharelt and TOP5%-sharelt; cf. Tables 4.3-4.4, 5.3-5.4,
and 6.3-6.4) the results are a bit ambiguous regarding the significance/sign of �3. The
pattern �1 < 0 and �2 > 0 from above is also strongly supported here.31 Moreover, we
find a highly robust pattern of a negative main-effect of inequality, i.e. �1 < 0, and the
order of magnitude of the estimated coefficients on the main effect is substantive.

Looking at, e.g., Table 4.1, as we would expect for a correctly specified conditional
mean function, the sign and the orders of magnitude of the estimated coefficients for the
linear index hardly vary over different models (log-linear, Poisson, negative Binomial, and
Gamma). The same pattern generally holds true for all the presented results.

Performing model comparison, the results suggest that for Tables 4.1-4.5 and 5.1-5.5
the log-linear model has the lowest CV error for predicting the underlying dependent
variable for a new data-point, and also yields the highest correlation among true and
fitted values of the underlying dependent variable for the extended specification (Tables
5.1-5.5). For the baseline specification (Tables 4.1-4.5) the correlation among fitted and
true values for the estimated conditional mean is higher for the non-linear models where
with respect to both criteria the Poisson model performs best, followed by the negative
binomial, and last the Gamma model. Nevertheless, the three non-linear regressions
are very close in the quality of fit. Comparing among the baseline (Tables 4.1-4.5) and
the extended (Tables 5.1-5.5) specification of explanatory variables, the fit is improved
– especially for the linear model – when adding the further regressors. Looking at the
other definition of the dependent variable (Tables 6.1-6.5) the log-linear model always
has the best fit. The correlation among the fitted and true values of Qu

iklt is higher as
compared to using Qw

iklt, but the CV error is smaller for the weighted count. As we will
extrapolate from the sample of destination-countries used for estimation in an exercise
presented below, good out-of-sample performance is desired most.

Let us briefly consider what the suggested large negative main effect of inequality
means quantitatively. Suppose that -log(POPlt)�2 = log(GDPlt)�3, then looking at he
log-linear models if one would decrease inequality by 0.01 this would imply that patent-
flows would on average increase by 8.6% for the Gini coefficient post-tax (Table 4.1),
7.3% for the Gini coefficient previous to taxes (Table 4.2), 12.5% for the top-10% income

31As stated above in Corollary 1 in case of a constant utility from consuming an additional innovative
good (i.e. @f(C)/@C = 1 8C) the interaction of inequality and income vanishes.
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share (Table 4.3), for the top-5% income share by 14.5% (Table 4.4), and 16.3% for the
top-1% income share (Table 4.5), as suggested by weighted count dependent variable and
the baseline set of regressors, and according increases of 11.8% (Table 6.1, left column),
7.2% (Table 6.2, left column), 11.4% (Table 6.3, left column), 13.9% (Table 6.4, left
column), and 17.7% (Table 6.5, left column), respectively, for the unweighted count as
the dependent variable. For the extended set of control variables and the weighted count
we estimate according increases in patent flows due to a decrease in inequality by 0.01
of 11.8% (Table 5.1), 8.6% (Table 5.2), 10.4% (Table 5.2), 11.8% (Table 5.4), and 16.9%
(Table 5.5), respectively, and of 16.2% (Table 6.1, right column), 9.1% (Table 6.2, right
column), 8.4% (Table 6.3, right column), 9.2% (Table 6.4, right column), and 12.4%
(Table 6.5, right column), respectively, for the unweighted count.

[Tables 4.1-4.5, Tables 5.1-5.5, Tables 6.1-6.5]

4.4.1 Inequality and Patent Protection

According to Proposition 2 we would expect that inequality and the level of patent
protection in the destination-country interact positively, i.e. a negative effect of inequality
on innovation is decreasing with the level of patent protection increasing. Using the same
set of specifications as above, we add an interaction term of patent protection (GP-
INDEXlt) and the employed measure of inequality. We present the according estimation
results for the SWIID- and the WID-samples in Tables 7.1-7.5 utilizing the weighted
count as the dependent variable. The results suggest a robust pattern in favor of the
theoretically predicted relationship. Like above, the results for the unweighted count are
qualitatively similar, and will be made available in the Online Appendix. Again we would
pick the log-linear and the Poisson models as the best models.

[Tables 7.1-7.5]

4.4.2 The Effect of Inequality on Patent Flows

For a quantitative assessment of the estimation results presented above, we construct a
sample of 184 countries where we observe GDP and population for the year 2015. For
115 countries thereof, are also covered by the index of patent protection as provided
by Ginarte and Park (2008). Analogously to above, we use non-parametric time-series
regression to predict the value of the index for 2015. A complete list of all countries
included in the prediction exercises presented here is given in Appendix B1.

In Figure 5 we plot the decision boundary of a zero marginal effect of inequality (d(Ilt)
as defined above in equation (14)) for the estimated log-linear models and the extended
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set of regressors (Tables 6.1-6.5, second columns) along with other contour lines. The
dependent variable is therefore measured on logarithmic scale. The blue and red dots
indicate whether a decrease or an increase in inequality would stimulate patent flows and
the according country-names are abbreviated by their ISO2 codes.

Translating the displayed pattern of a positive versus a negative effect of inequality
in these countries on patent flows, we calculate the probability of a positive effect of an
increase in inequality over the underlying 184 countries. For the estimates derived from
the SWIID-samples we obtain probabilities of approx. 0.58 and 0.42 for inequality in
terms of the Gini coefficient pre- and post-tax, respectively. For the estimates derived
from the WID-samples, we calculate probabilities of approx. 0.17, 0.14, and 0.03 for
inequality measured by top- 10%-, top-5%-, and top-1%-shares, respectively.

In Figure 6 we plot the decision boundary of a zero marginal effect as function of
GDP, population and the level of patent protection as based on the estimation results
for the log-linear model and the extended set of control variables (Tables 7.1-7.5, second
columns) for a sample of 115 countries and data for the year 2015. From this sample, and
for the estimates derived from the SWIID-samples we obtain probabilities of a positive
effect of an increase in inequality on patent-flows from approx. 0.73 and 0.49 for inequality
in terms of the Gini coefficient pre- and post-tax, respectively. For the estimates derived
from the WID-samples, we find according probabilities of approx. 0.06, 0.05, and 0.03
for inequality measured by top- 10%-, top-5%-, and top-1%-shares, respectively.

What pattern is highlighted by the previous two prediction exercises is that inequality
post-taxes is too low for a majority of countries to maximize patent flows, and that in-
equality in terms of top-income-shares is too high for a majority of countries to maximize
patent flows. Whereas a high level of patent protection being guaranteed by a country’s
institutions nets out some of the negative effect of inequality in terms of the Gini coef-
ficient, even a high level of patent protection cannot change the negative effect that an
increase in top-income inequality has on patent flows (outside of an incremental range).

[Figure 5, Figure 6]

4.5 Robustness Checks

4.5.1 The Role of Trade

In this robustness check we want to assess whether the results presented above are sensi-
tive to the role of trade. The results presented above in Tables 4.1-4.5 and 5.1-5.5 quite
robustly indicate a small positive or a zero effect of trade on patent-flows. In a naive
check, we simply drop trade from each of the specifications and find virtually no sensi-
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tivity on the estimates of the coefficients �1, �2, and �3. A condensed summary of these
results is contained in Appendix B4.

Moreover trade could be endogenous. For a sensitivity analysis when log(TRADEklt)
is allowed to be endogenous in the regression presented in Tables 4.1-4.5 and 5.1-5.5 we
apply a control function approach inspired by Wooldridge (1997). Therefore, we firstly
regress log(TRADEklt) at the country-pair-time level on the additional instruments from
above, i.e. [log(GDPpckt), log(GDPpclt), RTAklt, COMCURklt, SMCTRYkl, COLONYkl,
CONTIGkl, log(SIZEklt), RELFACklt], and then predict the residual from this regression
for all observations in the estimation sample, ûklt. This initial regression is based on
23,301 country-pair-time observations with a linear R2 of 0.4422.

This residual is then regressed on all the explanatory variables included in the main
equation (i.e. on xklt, the additional controls ziklt, and the fixed-effects dummies). The
estimated residual from the second regression, v̂iklt is then used as a control function
that we add to the explanatory variables. In an alternative exercise that can be found in
Appendix B4, we estimate the residual for the first regression by an additive model where
the relationship of trade and the instruments is an additive function of non-parametrically
estimated functions of each of the explanatory variables. The results presented in the
main text are insensitive to using the less-restrictive model.

For inference in the light of the generated regressor v̂iklt, we re-estimate ûiklt, v̂iklt, and
the coefficients of interest over 50 replications from a a clustered bootstrap where for each
replication a sample with replacement is drawn form clusters defined by broad sectors
j (thus any combination of iklt is retained for a sampled cluster j). For a significance
level ↵, we then compute a two-sided bootstrap-confidence interval as e.g. for ˆ�1 by
[2

ˆ�1�q⇤1�↵/2, 2
ˆ�1�q⇤↵/2], where q⇤ is the respective quantile of the bootstrap distribution.

As suggested by the results in Tables 8.1-8.5 the conclusions derived here are not sensitive
to the role of trade, and we would not change the conclusion from above that patent-flows
are likely to be increasing or unaffected by the level of bilateral trade among origin- and
destination, where at least a negative effect seems very unlikely for our study. However,
there are unobservables correlated with trade that have a small negative effect on patent-
flows.

[Tables 8.1-8.5]

4.5.2 The Role of Unobserved Heterogeneity

4.5.3 Further Robustness Checks

[TO BE ADDED]
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5 Conclusion

This paper has analyzed how inequality can affect innovation through the channel of de-
mand. The two main theoretical results that come out of this analysis are that inequality
is more likely beneficial for innovation the larger the size of the population is for a given
income and the larger (in terms of cost savings) the innovation step sizes are. We found
empirical evidence in line with these model predictions.

Gordon (2016) has argued that there is currently a period of secular stagnation because
(unlike in the past) there is a lack of big breakthrough innovations. At the same time,
inequality has been increasing in many developing countries. As our analysis suggests
that inequality is more likely harmful for innovation the smaller the innovation step sizes
are, it therefore provides a possible explanation for the recent slowdown in productivity
growth. By increasing the demand for new innovative goods, a more equal distribution
of income might therefore, ceteris paribus, lead to more innovation.
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Tables and Figures

Figure 1
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Figure 2. Di↵erent definitions of the dependent variable and patterns of patent-flows over NACE2

Manufacturing Divisions, countries of origin and destination, and time

Legend: A. . . unweigted count over PCT- & Paris-Convention subsequent filings without regional applications single-

priority-family, B. . .weighted count over PCT- & Paris-Convention subsequent filings without regional applications single-

priority-family, C. . . unw. count over Paris-Convention subsequent filings without regional applications single-priority-

fam., D. . .w. count over Paris-Convention subsequent filings without regional applications single-priority-fam., E. . . unw.

count over PCT- & Paris-Convention subsequent filings including regional applications single-priority-fam., F. . .w. count

over PCT- & Paris-Convention subsequent filings including regional applications single-priority-fam., G. . . unw. count

over PCT- & Paris-Convention subsequent filings without regional applications DOCDB-fam., (legend continued on next

page)
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Legend continued: H. . .w. count over PCT- & Paris-Convention subsequent filings without regional applications

DOCDB-fam., I. . . unw. count over Paris-Convention subsequent filings without regional applications DOCDB-fam.,

J. . .w. count over Paris-Convention subsequent filings without regional applications DOCDB-fam., K. . . unw. count

over PCT- & Paris-Convention subsequent filings including regional applications DOCDB-fam., L. . .w. count over PCT-

& Paris-Convention subsequent filings including regional applications DOCDB-fam., M. . . unw. count over PCT- &

Paris-Convention subsequent filings without regional applications INPADOC-fam., N. . .w. count over PCT- & Paris-

Convention subsequent filings without regional applications INPADOC-fam., O. . . unw. count over Paris-Convention

subsequent filings without regional applications INPADOC-fam., P. . .w. count over Paris-Convention subsequent filings

without regional applications INPADOC-fam., Q. . . unw. count over PCT- & Paris-Convention subsequent filings including

regional applications INPADOC-fam., R. . .w. count over PCT- & Paris-Convention subsequent filings including regional

applications INPADOC-fam.
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Figure 3. Frequency distributions of patent-flows based on PCT- & Paris-Convention subsequent

filings from national applications

Legend: SINGLE-PRIORITY-FAMILY UNWEIGHTED (A above), SINGLE-PRIORITY-FAMILY WEIGHTED (B

above), DOCDB-FAMILY UNWEIGHTED (G above), DOCDB-FAMILY WEIGHTED (H above), INPADOC-FAMILY

UNWEIGHTED (M above), INPADOC-FAMILY WEIGHTED (N above)
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Table 3. Estimation samples with respect to di↵erent inequality measures

SWIID-samples WID-samples

Gini pre- & post-tax top-10%-share top-5%-share top-1%-share

BASELINE
Observations 2,874,437 1,919,377 1,913,219 1,931,973
Innovations 1,336,544 1,189,422 1,189,189 1,191,443
NACE2 Divisons 23 23 23 23
Origins 53 50 50 50
Destinations 50 17 17 20
Periods of time 1980-2013 1980-2013 1980-2013 1980-2013

EXTENDED
Observations 2,737,773 1,842,972 1,837,315 1,855,458
Innovations 1,278,296 1,138,413 1,138,206 1,140,416
NACE2 Divisons 23 23 23 23
Origins 49 47 47 47
Destinations 49 17 17 20
Periods of time 1980-2013 1980-2013 1980-2013 1980-2013
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Table 4.1. Results baseline specification for SWIID Gini pre-tax (dep. var. Qw
iklt)

Log-linear(1)/(2) Poisson(1)/(2) Neg. bin.(1)/(2) Gamma(1)/(2)

GINInetlt �8.206⇤⇤⇤/⇤⇤⇤ �8.252⇤⇤⇤/⇤⇤⇤ �9.340⇤⇤⇤/⇤⇤⇤ �9.815⇤⇤⇤/⇤⇤⇤

(0.214) (0.265) (0.237) (0.227)
log(POPlt)*GINInetlt 0.688⇤⇤⇤/⇤⇤⇤ 0.731⇤⇤⇤/⇤⇤⇤ 0.793⇤⇤⇤/⇤⇤⇤ 0.810⇤⇤⇤/⇤⇤⇤

(0.014) (0.017) (0.015) (0.015)
log(GDPlt)*GINInetlt �0.100⇤⇤⇤/⇤⇤⇤ �0.122⇤⇤⇤/⇤⇤⇤ �0.124⇤⇤⇤/⇤⇤⇤ �0.119⇤⇤⇤/⇤⇤⇤

(0.003) (0.004) (0.003) (0.003)
log(GDPkt) 0.044⇤⇤⇤/⇤⇤⇤ 0.042⇤⇤⇤/⇤⇤⇤ 0.041⇤⇤⇤/⇤⇤⇤ 0.040⇤⇤⇤/⇤⇤⇤

(0.002) (0.003) (0.003) (0.003)
log(GDPlt) 0.051⇤⇤⇤/⇤⇤⇤ 0.060⇤⇤⇤/⇤⇤⇤ 0.061⇤⇤⇤/⇤⇤⇤ 0.058⇤⇤⇤/⇤⇤⇤

(0.001) (0.002) (0.002) (0.002)
log(POPkt) �0.618⇤⇤⇤/⇤⇤⇤ �0.280⇤⇤⇤/⇤⇤ �0.254⇤⇤⇤/⇤⇤ �0.245⇤⇤⇤/⇤⇤

(0.014) (0.018) (0.016) (0.015)
log(POPlt) �0.010 0.087⇤⇤⇤/ 0.048⇤⇤⇤/ 0.029⇤⇤/

(0.009) (0.011) (0.010) (0.010)
GP-INDEXlt 0.039⇤⇤⇤/⇤⇤⇤ 0.045⇤⇤⇤/⇤⇤⇤ 0.046⇤⇤⇤/⇤⇤⇤ 0.045⇤⇤⇤/⇤⇤⇤

(0.001) (0.002) (0.001) (0.001)
PATVALit 0.057⇤⇤⇤/⇤⇤⇤ 0.082⇤⇤⇤/⇤⇤⇤ 0.076⇤⇤⇤/⇤⇤⇤ 0.073⇤⇤⇤/⇤⇤⇤

(0.000) (0.000) (0.000) (0.000)
TECHSIMklt �0.429⇤⇤⇤/⇤⇤ �0.516⇤⇤⇤/⇤⇤⇤ �0.383⇤⇤⇤/⇤⇤⇤ �0.306⇤⇤⇤/⇤⇤

(0.042) (0.054) (0.048) (0.046)
COMLANGlt �0.015⇤⇤⇤/⇤ �0.002 �0.006⇤⇤⇤/ �0.010⇤⇤⇤/

(0.001) (0.001) (0.001) (0.001)
log(DISTlt) 0.011⇤⇤⇤/⇤ 0.011⇤⇤⇤/ 0.010⇤⇤⇤/ 0.010⇤⇤⇤/

(0.001) (0.001) (0.001) (0.001)
log(TRADEklt) 0.020⇤⇤⇤/⇤⇤⇤ 0.023⇤⇤⇤/⇤⇤⇤ 0.023⇤⇤⇤/⇤⇤⇤ 0.023⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)

�2 NACE2 Division 61005.8 ⇤⇤⇤/⇤⇤⇤ 57569.8 ⇤⇤⇤/⇤⇤⇤ 62510.3 ⇤⇤⇤/⇤⇤⇤ 63751.9 ⇤⇤⇤/⇤⇤⇤

�2 Origin 16934.3 ⇤⇤⇤/⇤⇤⇤ 9975.1 ⇤⇤⇤/⇤⇤⇤ 11266.4 ⇤⇤⇤/⇤⇤⇤ 11775.9 ⇤⇤⇤/⇤⇤⇤

�2 Destination 255791.2 ⇤⇤⇤/⇤⇤⇤ 206635.4 ⇤⇤⇤/⇤⇤⇤ 241413.9 ⇤⇤⇤/⇤⇤⇤ 254262.6 ⇤⇤⇤/⇤⇤⇤

�2 Time 5283.3 ⇤⇤⇤/⇤⇤⇤ 4241.2 ⇤⇤⇤/⇤⇤⇤ 5355.6 ⇤⇤⇤/⇤⇤⇤ 5868.6 ⇤⇤⇤/⇤⇤⇤

Corr(true,fitted) 0.5091 0.5486 0.5465 0.5450
CV error 0.1367 0.4115 0.4130 0.4142
(1)/(2) indicates assumption maintained for inferecne: (1) clustering at the level of the innovation (distinct PATSTAT DOCDB

families), and (2) clustering at the level of the NACE2 Division. ⇤⇤⇤, ⇤⇤ , and ⇤ indicate significance at 0.01, 0.05, and 0.1,

respectively. Every regression includes a constant.
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Table 4.2. Results baseline specification for SWIID Gini post-tax (dep. var. Qw
iklt)

Log-linear(1)/(2) Poisson(1)/(2) Neg. bin.(1)/(2) Gamma(1)/(2)

GINImarlt �7.068⇤⇤⇤/⇤⇤⇤ �6.740⇤⇤⇤/⇤⇤⇤ �7.012⇤⇤⇤/⇤⇤⇤ �7.041⇤⇤⇤/⇤⇤⇤

(0.147) (0.181) (0.161) (0.154)
log(POPlt)*GINImarlt 0.653⇤⇤⇤/⇤⇤⇤ 0.680⇤⇤⇤/⇤⇤⇤ 0.673⇤⇤⇤/⇤⇤⇤ 0.650⇤⇤⇤/⇤⇤⇤

(0.010) (0.013) (0.011) (0.011)
log(GDPlt)*GINImarlt �0.138⇤⇤⇤/⇤⇤⇤ �0.163⇤⇤⇤/⇤⇤⇤ �0.152⇤⇤⇤/⇤⇤⇤ �0.139⇤⇤⇤/⇤⇤⇤

(0.002) (0.003) (0.003) (0.003)
log(GDPkt) 0.045⇤⇤⇤/⇤⇤⇤ 0.043⇤⇤⇤/⇤⇤⇤ 0.041⇤⇤⇤/⇤⇤⇤ 0.041⇤⇤⇤/⇤⇤⇤

(0.002) (0.003) (0.003) (0.003)
log(GDPlt) 0.077⇤⇤⇤/⇤⇤⇤ 0.090⇤⇤⇤/⇤⇤⇤ 0.083⇤⇤⇤/⇤⇤⇤ 0.076⇤⇤⇤/⇤⇤⇤

(0.001) (0.002) (0.002) (0.001)
log(POPkt) �0.629⇤⇤⇤/⇤⇤⇤ �0.294⇤⇤⇤/⇤⇤ �0.271⇤⇤⇤/⇤⇤ �0.263⇤⇤⇤/⇤⇤

(0.014) (0.018) (0.016) (0.015)
log(POPlt) 0.073⇤⇤⇤/ 0.176⇤⇤⇤/⇤⇤⇤ 0.163⇤⇤⇤/⇤⇤ 0.154⇤⇤⇤/⇤⇤

(0.009) (0.011) (0.010) (0.009)
GP-INDEXlt 0.023⇤⇤⇤/⇤⇤⇤ 0.028⇤⇤⇤/⇤⇤⇤ 0.026⇤⇤⇤/⇤⇤⇤ 0.025⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
PATVALit 0.057⇤⇤⇤/⇤⇤⇤ 0.082⇤⇤⇤/⇤⇤⇤ 0.076⇤⇤⇤/⇤⇤⇤ 0.073⇤⇤⇤/⇤⇤⇤

(0.000) (0.000) (0.000) (0.000)
TECHSIMklt 0.102⇤/ 0.062 0.134⇤⇤/ 0.160⇤⇤⇤/

(0.042) (0.055) (0.049) (0.046)
COMLANGlt �0.015⇤⇤⇤/⇤ �0.002 �0.006⇤⇤⇤/ �0.010⇤⇤⇤/

(0.001) (0.001) (0.001) (0.001)
log(DISTlt) 0.011⇤⇤⇤/⇤⇤ 0.011⇤⇤⇤/ 0.011⇤⇤⇤/⇤ 0.010⇤⇤⇤/⇤

(0.001) (0.001) (0.001) (0.001)
log(TRADEklt) 0.021⇤⇤⇤/⇤⇤⇤ 0.024⇤⇤⇤/⇤⇤⇤ 0.024⇤⇤⇤/⇤⇤⇤ 0.024⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)

�2 NACE2 Division 61012.5 ⇤⇤⇤/⇤⇤⇤ 57620.5 ⇤⇤⇤/⇤⇤⇤ 62513.3 ⇤⇤⇤/⇤⇤⇤ 63750.3 ⇤⇤⇤/⇤⇤⇤

�2 Origin 16773.4 ⇤⇤⇤/⇤⇤⇤ 9907.9 ⇤⇤⇤/⇤⇤⇤ 11115.4 ⇤⇤⇤/⇤⇤⇤ 11603.0 ⇤⇤⇤/⇤⇤⇤

�2 Destination 239709.3 ⇤⇤⇤/⇤⇤⇤ 198516.0 ⇤⇤⇤/⇤⇤⇤ 234879.9 ⇤⇤⇤/⇤⇤⇤ 249108.2 ⇤⇤⇤/⇤⇤⇤

�2 Time 5091.8 ⇤⇤⇤/⇤⇤⇤ 4464.3 ⇤⇤⇤/⇤⇤⇤ 5327.4 ⇤⇤⇤/⇤⇤⇤ 5597.1 ⇤⇤⇤/⇤⇤⇤

Corr(true,fitted) 0.5090 0.5487 0.5467 0.5452
CV error 0.1367 0.4114 0.4130 0.4141

(1)/(2) indicates assumption maintained for inferecne: (1) clustering at the level of the innovation (distinct PATSTAT DOCDB

families), and (2) clustering at the level of the NACE2 Division. ⇤⇤⇤, ⇤⇤ , and ⇤ indicate significance at 0.01, 0.05, and 0.1,

respectively. Every regression includes a constant.
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Table 4.3. Results baseline specification for WID top-10%-share (dep. var. Qw
iklt)

Log-linear(1)/(2) Poisson(1)/(2) Neg. bin.(1)/(2) Gamma(1)/(2)

TOP10%-sharelt �11.771⇤⇤⇤/⇤⇤⇤ �14.057⇤⇤⇤/⇤⇤⇤ �12.707⇤⇤⇤/⇤⇤⇤ �11.694⇤⇤⇤/⇤⇤⇤

(0.230) (0.301) (0.273) (0.259)
log(POPlt)*TOP10%-sharelt 0.687⇤⇤⇤/⇤⇤⇤ 0.799⇤⇤⇤/⇤⇤⇤ 0.759⇤⇤⇤/⇤⇤⇤ 0.725⇤⇤⇤/⇤⇤⇤

(0.017) (0.022) (0.020) (0.019)
log(GDPlt)*TOP10%-sharelt �0.027⇤⇤⇤/ �0.016 �0.037⇤⇤⇤/ �0.051⇤⇤⇤/

(0.008) (0.010) (0.009) (0.009)
log(GDPkt) 0.057⇤⇤⇤/⇤⇤⇤ 0.057⇤⇤⇤/⇤⇤⇤ 0.055⇤⇤⇤/⇤⇤⇤ 0.054⇤⇤⇤/⇤⇤⇤

(0.002) (0.003) (0.003) (0.002)
log(GDPlt) 0.033⇤⇤⇤/⇤⇤ 0.038⇤⇤⇤/⇤⇤ 0.031⇤⇤⇤/⇤ 0.025⇤⇤⇤/

(0.003) (0.004) (0.004) (0.004)
log(POPkt) �0.907⇤⇤⇤/⇤⇤⇤ �0.609⇤⇤⇤/⇤⇤⇤ �0.597⇤⇤⇤/⇤⇤⇤ �0.593⇤⇤⇤/⇤⇤⇤

(0.015) (0.020) (0.017) (0.016)
log(POPlt) �0.055⇤⇤⇤/ 0.040⇤/ 0.050⇤⇤/ 0.058⇤⇤/

(0.016) (0.020) (0.018) (0.018)
GP-INDEXlt 0.004 0.024⇤⇤⇤/ 0.018⇤⇤⇤/ 0.013⇤⇤⇤/

(0.002) (0.003) (0.002) (0.002)
PATVALit 0.054⇤⇤⇤/⇤⇤⇤ 0.077⇤⇤⇤/⇤⇤⇤ 0.072⇤⇤⇤/⇤⇤⇤ 0.069⇤⇤⇤/⇤⇤⇤

(0.000) (0.000) (0.000) (0.000)
TECHSIMklt �1.268⇤⇤⇤/⇤⇤⇤ �1.562⇤⇤⇤/⇤⇤⇤ �1.361⇤⇤⇤/⇤⇤⇤ �1.223⇤⇤⇤/⇤⇤⇤

(0.051) (0.072) (0.065) (0.061)
COMLANGlt �0.027⇤⇤⇤/⇤⇤⇤ �0.006⇤⇤/ �0.011⇤⇤⇤/⇤ �0.015⇤⇤⇤/⇤⇤

(0.001) (0.002) (0.002) (0.002)
log(DISTlt) �0.009⇤⇤⇤/⇤⇤⇤ �0.012⇤⇤⇤/⇤⇤⇤ �0.013⇤⇤⇤/⇤⇤⇤ �0.013⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(TRADEklt) 0.005⇤⇤⇤/⇤ 0.006⇤⇤⇤/ 0.005⇤⇤⇤/ 0.005⇤⇤⇤/⇤

(0.001) (0.001) (0.001) (0.001)

�2 NACE2 Division 53188.8 ⇤⇤⇤/⇤⇤⇤ 46340.4 ⇤⇤⇤/⇤⇤⇤ 49912.3 ⇤⇤⇤/⇤⇤⇤ 50625.9 ⇤⇤⇤/⇤⇤⇤

�2 Origin 15966.4 ⇤⇤⇤/⇤⇤⇤ 8972.9 ⇤⇤⇤/⇤⇤⇤ 10335.1 ⇤⇤⇤/⇤⇤⇤ 10904.0 ⇤⇤⇤/⇤⇤⇤

�2 Destination 108584.3 ⇤⇤⇤/⇤⇤⇤ 76463.4 ⇤⇤⇤/⇤⇤⇤ 91555.9 ⇤⇤⇤/⇤⇤⇤ 97493.5 ⇤⇤⇤/⇤⇤⇤

�2 Time 15995.2 ⇤⇤⇤/⇤⇤⇤ 12800.6 ⇤⇤⇤/⇤⇤⇤ 14089.5 ⇤⇤⇤/⇤⇤⇤ 14480.1 ⇤⇤⇤/⇤⇤⇤

Corr(true,fitted) 0.5017 0.5332 0.5315 0.5301
CV error 0.1156 0.3309 0.3320 0.3328
(1)/(2) indicates assumption maintained for inferecne: (1) clustering at the level of the innovation (distinct PATSTAT DOCDB

families), and (2) clustering at the level of the NACE2 Division. ⇤⇤⇤, ⇤⇤ , and ⇤ indicate significance at 0.01, 0.05, and 0.1,

respectively. Every regression includes a constant.
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Table 4.4. Results baseline specification for WID top-5%-share (dep. var. Qw
iklt)

Log-linear(1)/(2) Poisson(1)/(2) Neg. bin.(1)/(2) Gamma(1)/(2)

TOP5%-sharelt �13.526⇤⇤⇤/⇤⇤⇤ �16.376⇤⇤⇤/⇤⇤⇤ �14.638⇤⇤⇤/⇤⇤⇤ �13.381⇤⇤⇤/⇤⇤⇤

(0.262) (0.341) (0.309) (0.293)
log(POPlt)*TOP5%-sharelt 0.884⇤⇤⇤/⇤⇤⇤ 0.993⇤⇤⇤/⇤⇤⇤ 0.948⇤⇤⇤/⇤⇤⇤ 0.914⇤⇤⇤/⇤⇤⇤

(0.019) (0.025) (0.022) (0.021)
log(GDPlt)*TOP5%-sharelt �0.101⇤⇤⇤/ �0.067⇤⇤⇤/ �0.098⇤⇤⇤/ �0.119⇤⇤⇤/

(0.011) (0.014) (0.013) (0.013)
log(GDPkt) 0.059⇤⇤⇤/⇤⇤⇤ 0.058⇤⇤⇤/⇤⇤⇤ 0.057⇤⇤⇤/⇤⇤⇤ 0.056⇤⇤⇤/⇤⇤⇤

(0.002) (0.003) (0.003) (0.002)
log(GDPlt) 0.018⇤⇤⇤/ 0.023⇤⇤⇤/ 0.015⇤⇤⇤/ 0.009⇤/

(0.003) (0.004) (0.004) (0.004)
log(POPkt) �0.894⇤⇤⇤/⇤⇤⇤ �0.593⇤⇤⇤/⇤⇤⇤ �0.582⇤⇤⇤/⇤⇤⇤ �0.579⇤⇤⇤/⇤⇤⇤

(0.015) (0.020) (0.017) (0.016)
log(POPlt) 0.046⇤⇤/ 0.144⇤⇤⇤/⇤⇤ 0.150⇤⇤⇤/⇤⇤ 0.153⇤⇤⇤/⇤⇤

(0.015) (0.019) (0.018) (0.017)
GP-INDEXlt 0.009⇤⇤⇤/ 0.032⇤⇤⇤/⇤ 0.024⇤⇤⇤/⇤ 0.019⇤⇤⇤/

(0.002) (0.003) (0.002) (0.002)
PATVALit 0.053⇤⇤⇤/⇤⇤⇤ 0.077⇤⇤⇤/⇤⇤⇤ 0.072⇤⇤⇤/⇤⇤⇤ 0.069⇤⇤⇤/⇤⇤⇤

(0.000) (0.000) (0.000) (0.000)
TECHSIMklt �1.253⇤⇤⇤/⇤⇤⇤ �1.530⇤⇤⇤/⇤⇤⇤ �1.330⇤⇤⇤/⇤⇤⇤ �1.192⇤⇤⇤/⇤⇤⇤

(0.051) (0.072) (0.064) (0.060)
COMLANGlt �0.028⇤⇤⇤/⇤⇤⇤ �0.006⇤⇤⇤/ �0.012⇤⇤⇤/⇤ �0.016⇤⇤⇤/⇤⇤⇤

(0.001) (0.002) (0.002) (0.002)
log(DISTlt) �0.011⇤⇤⇤/⇤⇤⇤ �0.013⇤⇤⇤/⇤⇤⇤ �0.014⇤⇤⇤/⇤⇤⇤ �0.015⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(TRADEklt) 0.005⇤⇤⇤/⇤ 0.004⇤⇤⇤/ 0.004⇤⇤⇤/ 0.004⇤⇤⇤/

(0.001) (0.001) (0.001) (0.001)

�2 NACE2 Division 52933.9 ⇤⇤⇤/⇤⇤⇤ 46052.3 ⇤⇤⇤/⇤⇤⇤ 49601.0 ⇤⇤⇤/⇤⇤⇤ 50305.2 ⇤⇤⇤/⇤⇤⇤

�2 Origin 15811.8 ⇤⇤⇤/⇤⇤⇤ 8878.5 ⇤⇤⇤/⇤⇤⇤ 10247.5 ⇤⇤⇤/⇤⇤⇤ 10833.3 ⇤⇤⇤/⇤⇤⇤

�2 Destination 106728.1 ⇤⇤⇤/⇤⇤⇤ 75060.1 ⇤⇤⇤/⇤⇤⇤ 89873.6 ⇤⇤⇤/⇤⇤⇤ 95784.1 ⇤⇤⇤/⇤⇤⇤

�2 Time 16087.4 ⇤⇤⇤/⇤⇤⇤ 12622.8 ⇤⇤⇤/⇤⇤⇤ 13926.9 ⇤⇤⇤/⇤⇤⇤ 14348.3 ⇤⇤⇤/⇤⇤⇤

Corr(true,fitted) 0.5022 0.5332 0.5315 0.5301
CV error 0.1153 0.3291 0.3302 0.3310

(1)/(2) indicates assumption maintained for inferecne: (1) clustering at the level of the innovation (distinct PATSTAT DOCDB

families), and (2) clustering at the level of the NACE2 Division. ⇤⇤⇤, ⇤⇤ , and ⇤ indicate significance at 0.01, 0.05, and 0.1,

respectively. Every regression includes a constant.
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Table 4.5. Results baseline specification for WID top-1%-share (dep. var. Qw
iklt)

Log-linear(1)/(2) Poisson(1)/(2) Neg. bin.(1)/(2) Gamma(1)/(2)

TOP1%-sharelt �15.104⇤⇤⇤/⇤⇤⇤ �19.828⇤⇤⇤/⇤⇤⇤ �17.175⇤⇤⇤/⇤⇤⇤ �15.301⇤⇤⇤/⇤⇤⇤

(0.413) (0.532) (0.481) (0.458)
log(POPlt)*TOP1%-sharelt 1.328⇤⇤⇤/⇤⇤⇤ 1.446⇤⇤⇤/⇤⇤⇤ 1.377⇤⇤⇤/⇤⇤⇤ 1.325⇤⇤⇤/⇤⇤⇤

(0.028) (0.036) (0.032) (0.031)
log(GDPlt)*TOP1%-sharelt �0.344⇤⇤⇤/⇤⇤⇤ �0.251⇤⇤⇤/⇤⇤ �0.295⇤⇤⇤/⇤⇤ �0.324⇤⇤⇤/⇤⇤⇤

(0.022) (0.028) (0.025) (0.024)
log(GDPkt) 0.059⇤⇤⇤/⇤⇤⇤ 0.058⇤⇤⇤/⇤⇤⇤ 0.057⇤⇤⇤/⇤⇤⇤ 0.056⇤⇤⇤/⇤⇤⇤

(0.002) (0.003) (0.003) (0.002)
log(GDPlt) 0.021⇤⇤⇤/ 0.024⇤⇤⇤/⇤ 0.017⇤⇤⇤/ 0.013⇤⇤⇤/

(0.003) (0.004) (0.004) (0.004)
log(POPkt) �0.916⇤⇤⇤/⇤⇤⇤ �0.610⇤⇤⇤/⇤⇤⇤ �0.600⇤⇤⇤/⇤⇤⇤ �0.598⇤⇤⇤/⇤⇤⇤

(0.015) (0.020) (0.017) (0.016)
log(POPlt) 0.170⇤⇤⇤/⇤⇤⇤ 0.273⇤⇤⇤/⇤⇤⇤ 0.257⇤⇤⇤/⇤⇤⇤ 0.244⇤⇤⇤/⇤⇤⇤

(0.015) (0.019) (0.017) (0.017)
GP-INDEXlt �0.001 0.024⇤⇤⇤/⇤ 0.016⇤⇤⇤/ 0.010⇤⇤⇤/

(0.002) (0.003) (0.002) (0.002)
PATVALit 0.054⇤⇤⇤/⇤⇤⇤ 0.077⇤⇤⇤/⇤⇤⇤ 0.072⇤⇤⇤/⇤⇤⇤ 0.069⇤⇤⇤/⇤⇤⇤

(0.000) (0.000) (0.000) (0.000)
TECHSIMklt �1.191⇤⇤⇤/⇤⇤⇤ �1.384⇤⇤⇤/⇤⇤⇤ �1.210⇤⇤⇤/⇤⇤⇤ �1.088⇤⇤⇤/⇤⇤⇤

(0.052) (0.072) (0.064) (0.061)
COMLANGlt �0.026⇤⇤⇤/⇤⇤⇤ �0.005⇤⇤/ �0.011⇤⇤⇤/⇤ �0.015⇤⇤⇤/⇤⇤

(0.001) (0.002) (0.002) (0.002)
log(DISTlt) �0.009⇤⇤⇤/⇤⇤⇤ �0.012⇤⇤⇤/⇤⇤⇤ �0.013⇤⇤⇤/⇤⇤⇤ �0.013⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(TRADEklt) 0.006⇤⇤⇤/⇤ 0.006⇤⇤⇤/ 0.005⇤⇤⇤/⇤ 0.005⇤⇤⇤/⇤

(0.001) (0.001) (0.001) (0.001)

�2 NACE2 Division 53759.8 ⇤⇤⇤/⇤⇤⇤ 47035.1 ⇤⇤⇤/⇤⇤⇤ 50673.7 ⇤⇤⇤/⇤⇤⇤ 51407.7 ⇤⇤⇤/⇤⇤⇤

�2 Origin 15889.8 ⇤⇤⇤/⇤⇤⇤ 8870.6 ⇤⇤⇤/⇤⇤⇤ 10232.2 ⇤⇤⇤/⇤⇤⇤ 10879.8 ⇤⇤⇤/⇤⇤⇤

�2 Destination 110042.4 ⇤⇤⇤/⇤⇤⇤ 78483.6 ⇤⇤⇤/⇤⇤⇤ 94010.8 ⇤⇤⇤/⇤⇤⇤ 100332.6 ⇤⇤⇤/⇤⇤⇤

�2 Time 14659.2 ⇤⇤⇤/⇤⇤⇤ 11438.0 ⇤⇤⇤/⇤⇤⇤ 12665.2 ⇤⇤⇤/⇤⇤⇤ 13069.4 ⇤⇤⇤/⇤⇤⇤

Corr(true,fitted) 0.5025 0.5342 0.5325 0.5312
CV error 0.1159 0.3310 0.3321 0.3329
(1)/(2) indicates assumption maintained for inferecne: (1) clustering at the level of the innovation (distinct PATSTAT DOCDB

families), and (2) clustering at the level of the NACE2 Division. ⇤⇤⇤, ⇤⇤ , and ⇤ indicate significance at 0.01, 0.05, and 0.1,

respectively. Every regression includes a constant.
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Table 5.1. Results extended specification for SWIID Gini pre-tax (dep. var. Qw
iklt)

Log-linear(1)/(2) Poisson(1)/(2) Neg. bin.(1)/(2) Gamma(1)/(2)

GINInetlt �11.173⇤⇤⇤/⇤⇤⇤ �11.421⇤⇤⇤/⇤⇤⇤ �12.276⇤⇤⇤/⇤⇤⇤ �12.546⇤⇤⇤/⇤⇤⇤

(0.206) (0.302) (0.270) (0.258)
log(POPlt)*GINInetlt 0.796⇤⇤⇤/⇤⇤⇤ 0.856⇤⇤⇤/⇤⇤⇤ 0.908⇤⇤⇤/⇤⇤⇤ 0.918⇤⇤⇤/⇤⇤⇤

(0.013) (0.019) (0.017) (0.016)
log(GDPlt)*GINInetlt �0.064⇤⇤⇤/⇤⇤⇤ �0.087⇤⇤⇤/⇤⇤⇤ �0.090⇤⇤⇤/⇤⇤⇤ �0.088⇤⇤⇤/⇤⇤⇤

(0.003) (0.004) (0.004) (0.003)
log(GDPkt) �0.018⇤/ �0.023 �0.023⇤/ �0.024⇤/

(0.009) (0.012) (0.011) (0.010)
log(GDPlt) 0.030⇤⇤⇤/⇤⇤ 0.044⇤⇤⇤/⇤⇤⇤ 0.043⇤⇤⇤/⇤⇤⇤ 0.041⇤⇤⇤/⇤⇤⇤

(0.002) (0.003) (0.003) (0.003)
log(POPkt) 0.285⇤⇤⇤/⇤⇤⇤ 0.400⇤⇤⇤/⇤⇤⇤ 0.393⇤⇤⇤/⇤⇤⇤ 0.387⇤⇤⇤/⇤⇤⇤

(0.012) (0.018) (0.016) (0.015)
log(POPlt) 0.011 0.080⇤⇤⇤/⇤ 0.051⇤⇤⇤/ 0.038⇤⇤⇤/

(0.009) (0.013) (0.011) (0.011)
GP-INDEXlt 0.029⇤⇤⇤/⇤⇤⇤ 0.021⇤⇤⇤/⇤⇤⇤ 0.028⇤⇤⇤/⇤⇤⇤ 0.030⇤⇤⇤/⇤⇤⇤

(0.001) (0.002) (0.001) (0.001)
PATVALit 0.061⇤⇤⇤/⇤⇤⇤ 0.086⇤⇤⇤/⇤⇤⇤ 0.079⇤⇤⇤/⇤⇤⇤ 0.076⇤⇤⇤/⇤⇤⇤

(0.000) (0.000) (0.000) (0.000)
TECHSIMklt �0.749⇤⇤⇤/⇤⇤⇤ �0.806⇤⇤⇤/⇤⇤⇤ �0.654⇤⇤⇤/⇤⇤⇤ �0.581⇤⇤⇤/⇤⇤⇤

(0.038) (0.056) (0.050) (0.047)
COMLANGlt 0.005⇤⇤⇤/ 0.016⇤⇤⇤/⇤ 0.011⇤⇤⇤/ 0.008⇤⇤⇤/

(0.001) (0.001) (0.001) (0.001)
log(DISTlt) 0.003⇤⇤⇤/ 0.007⇤⇤⇤/ 0.005⇤⇤⇤/ 0.004⇤⇤⇤/

(0.001) (0.001) (0.001) (0.001)
log(TRADEklt) 0.014⇤⇤⇤/⇤⇤⇤ 0.021⇤⇤⇤/⇤⇤⇤ 0.019⇤⇤⇤/⇤⇤⇤ 0.017⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(DISSIMIklt) 0.003⇤⇤⇤/⇤⇤ 0.006⇤⇤⇤/⇤⇤⇤ 0.006⇤⇤⇤/⇤⇤⇤ 0.005⇤⇤⇤/⇤⇤⇤

(0.000) (0.001) (0.001) (0.001)
log(NOINVENTORSi) 0.020⇤⇤⇤/⇤⇤⇤ 0.025⇤⇤⇤/⇤⇤⇤ 0.025⇤⇤⇤/⇤⇤⇤ 0.025⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(ARTpclt) 0.036⇤⇤⇤/⇤⇤⇤ 0.045⇤⇤⇤/⇤⇤⇤ 0.043⇤⇤⇤/⇤⇤⇤ 0.041⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
FDI-Inflowskt 0.045⇤/ 0.013 0.039 0.052⇤/

(0.022) (0.031) (0.028) (0.026)
FDI-Inflowslt 0.047⇤⇤/⇤⇤ 0.037 0.057⇤⇤/⇤ 0.068⇤⇤/⇤⇤⇤

(0.016) (0.024) (0.022) (0.021)
FDI-Outflowskt �0.043 0.002 �0.033 �0.048

(0.022) (0.032) (0.029) (0.027)
FDI-Outlowslt 0.142⇤⇤⇤/⇤⇤⇤ 0.211⇤⇤⇤/⇤⇤⇤ 0.201⇤⇤⇤/⇤⇤⇤ 0.198⇤⇤⇤/⇤⇤⇤

(0.016) (0.025) (0.022) (0.021)
INVSHAREkt �0.270⇤⇤⇤/⇤⇤ �0.347⇤⇤⇤/⇤⇤ �0.326⇤⇤⇤/⇤⇤ �0.307⇤⇤⇤/⇤⇤

(0.019) (0.029) (0.025) (0.023)
INVSHARElt 0.020 0.000 0.006 0.010

(0.011) (0.018) (0.016) (0.015)
log(GDPk(t+1)) 0.004 0.007 0.005 0.004

(0.011) (0.015) (0.014) (0.013)
log(GDPl(t+1)) �0.013⇤⇤⇤/⇤⇤⇤ �0.013⇤⇤/⇤⇤⇤ �0.011⇤⇤/⇤⇤ �0.011⇤⇤/⇤⇤

(0.003) (0.004) (0.004) (0.004)
log(GDPk(t+2)) 0.049⇤⇤⇤/⇤⇤ 0.065⇤⇤⇤/⇤⇤ 0.063⇤⇤⇤/⇤⇤ 0.061⇤⇤⇤/⇤⇤

(0.009) (0.013) (0.012) (0.012)
log(GDPl(t+2)) 0.015⇤⇤⇤/⇤⇤⇤ 0.009⇤⇤⇤/⇤⇤⇤ 0.011⇤⇤⇤/⇤⇤⇤ 0.013⇤⇤⇤/⇤⇤⇤

(0.002) (0.002) (0.002) (0.002)

�2 NACE2 Division 96149.9 ⇤⇤⇤/⇤⇤⇤ 65095.6 ⇤⇤⇤/⇤⇤⇤ 73485.1 ⇤⇤⇤/⇤⇤⇤ 75637.3 ⇤⇤⇤/⇤⇤⇤

�2 Origin 27741.3 ⇤⇤⇤/⇤⇤⇤ 13534.3 ⇤⇤⇤/⇤⇤⇤ 16851.6 ⇤⇤⇤/⇤⇤⇤ 18846.0 ⇤⇤⇤/⇤⇤⇤

�2 Destination 224587.7 ⇤⇤⇤/⇤⇤⇤ 141448.2 ⇤⇤⇤/⇤⇤⇤ 167781.5 ⇤⇤⇤/⇤⇤⇤ 177864.2 ⇤⇤⇤/⇤⇤⇤

�2 Time 7960.8 ⇤⇤⇤/⇤⇤⇤ 5130.5 ⇤⇤⇤/⇤⇤⇤ 6103.1 ⇤⇤⇤/⇤⇤⇤ 6547.3 ⇤⇤⇤/⇤⇤⇤

Corr(true,fitted) 0.5652 0.5634 0.5610 0.5594
CV error 0.0988 0.4182 0.4202 0.4215

(1)/(2) indicates assumption maintained for inferecne: (1) clustering at the level of the innovation (distinct PATSTAT DOCDB

families), and (2) clustering at the level of the NACE2 Division. ⇤⇤⇤, ⇤⇤ , and ⇤ indicate significance at 0.01, 0.05, and 0.1,

respectively. Every regression includes a constant.
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Table 5.2. Results extended specification for SWIID Gini post-tax (dep. var. Qw
iklt)

Log-linear(1)/(2) Poisson(1)/(2) Neg. bin.(1)/(2) Gamma(1)/(2)

GINImarlt �8.288⇤⇤⇤/⇤⇤⇤ �8.263⇤⇤⇤/⇤⇤⇤ �8.342⇤⇤⇤/⇤⇤⇤ �8.263⇤⇤⇤/⇤⇤⇤

(0.129) (0.188) (0.167) (0.159)
log(POPlt)*GINImarlt 0.709⇤⇤⇤/⇤⇤⇤ 0.763⇤⇤⇤/⇤⇤⇤ 0.742⇤⇤⇤/⇤⇤⇤ 0.714⇤⇤⇤/⇤⇤⇤

(0.009) (0.014) (0.012) (0.011)
log(GDPlt)*GINImarlt �0.126⇤⇤⇤/⇤⇤⇤ �0.157⇤⇤⇤/⇤⇤⇤ �0.143⇤⇤⇤/⇤⇤⇤ �0.131⇤⇤⇤/⇤⇤⇤

(0.002) (0.003) (0.003) (0.003)
log(GDPkt) �0.018⇤/ �0.023 �0.023⇤/ �0.024⇤/⇤

(0.009) (0.012) (0.011) (0.010)
log(GDPlt) 0.069⇤⇤⇤/⇤⇤⇤ 0.088⇤⇤⇤/⇤⇤⇤ 0.078⇤⇤⇤/⇤⇤⇤ 0.070⇤⇤⇤/⇤⇤⇤

(0.002) (0.003) (0.003) (0.002)
log(POPkt) 0.264⇤⇤⇤/⇤⇤⇤ 0.376⇤⇤⇤/⇤⇤⇤ 0.364⇤⇤⇤/⇤⇤⇤ 0.355⇤⇤⇤/⇤⇤⇤

(0.012) (0.018) (0.016) (0.015)
log(POPlt) 0.140⇤⇤⇤/⇤⇤⇤ 0.203⇤⇤⇤/⇤⇤⇤ 0.205⇤⇤⇤/⇤⇤⇤ 0.205⇤⇤⇤/⇤⇤⇤

(0.008) (0.012) (0.011) (0.010)
GP-INDEXlt 0.012⇤⇤⇤/⇤⇤⇤ 0.005⇤⇤/ 0.009⇤⇤⇤/ 0.011⇤⇤⇤/⇤

(0.001) (0.002) (0.001) (0.001)
PATVALit 0.061⇤⇤⇤/⇤⇤⇤ 0.086⇤⇤⇤/⇤⇤⇤ 0.079⇤⇤⇤/⇤⇤⇤ 0.076⇤⇤⇤/⇤⇤⇤

(0.000) (0.000) (0.000) (0.000)
TECHSIMklt �0.189⇤⇤⇤/⇤⇤ �0.199⇤⇤⇤/⇤ �0.096 �0.066

(0.039) (0.057) (0.050) (0.047)
COMLANGlt 0.006⇤⇤⇤/ 0.017⇤⇤⇤/⇤⇤ 0.012⇤⇤⇤/ 0.009⇤⇤⇤/

(0.001) (0.001) (0.001) (0.001)
log(DISTlt) 0.004⇤⇤⇤/ 0.006⇤⇤⇤/ 0.005⇤⇤⇤/ 0.004⇤⇤⇤/

(0.001) (0.001) (0.001) (0.001)
log(TRADEklt) 0.015⇤⇤⇤/⇤⇤⇤ 0.021⇤⇤⇤/⇤⇤⇤ 0.019⇤⇤⇤/⇤⇤⇤ 0.018⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(DISSIMIklt) 0.006⇤⇤⇤/⇤⇤⇤ 0.009⇤⇤⇤/⇤⇤⇤ 0.008⇤⇤⇤/⇤⇤⇤ 0.008⇤⇤⇤/⇤⇤⇤

(0.000) (0.001) (0.001) (0.001)
log(NOINVENTORSi) 0.020⇤⇤⇤/⇤⇤⇤ 0.025⇤⇤⇤/⇤⇤⇤ 0.025⇤⇤⇤/⇤⇤⇤ 0.025⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(ARTpclt) 0.029⇤⇤⇤/⇤⇤⇤ 0.036⇤⇤⇤/⇤⇤⇤ 0.034⇤⇤⇤/⇤⇤⇤ 0.032⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
FDI-Inflowskt 0.052⇤/ 0.020 0.046 0.060⇤/

(0.022) (0.031) (0.028) (0.026)
FDI-Inflowslt 0.018/ 0.017 0.028 0.032

(0.016) (0.024) (0.022) (0.021)
FDI-Outflowskt �0.046⇤/ 0.000 �0.036 �0.052

(0.022) (0.032) (0.029) (0.027)
FDI-Outlowslt 0.154⇤⇤⇤/⇤⇤⇤ 0.214⇤⇤⇤/⇤⇤⇤ 0.195⇤⇤⇤/⇤⇤⇤ 0.189⇤⇤⇤/⇤⇤⇤

(0.016) (0.025) (0.022) (0.021)
INVSHAREkt �0.312⇤⇤⇤/⇤⇤ �0.392⇤⇤⇤/⇤⇤ �0.371⇤⇤⇤/⇤⇤ �0.350⇤⇤⇤/⇤⇤

(0.020) (0.029) (0.025) (0.023)
INVSHARElt �0.015 �0.050⇤⇤/ �0.035⇤/ �0.024

(0.011) (0.018) (0.015) (0.014)
log(GDPk(t+1)) 0.005 0.008 0.006 0.005

(0.011) (0.015) (0.014) (0.013)
log(GDPl(t+1)) �0.009⇤⇤/⇤⇤ �0.004 �0.006 �0.008⇤/⇤

(0.003) (0.004) (0.004) (0.004)
log(GDPk(t+2)) 0.049⇤⇤⇤/⇤⇤ 0.065⇤⇤⇤/⇤⇤ 0.063⇤⇤⇤/⇤⇤ 0.061⇤⇤⇤/⇤⇤

(0.009) (0.013) (0.012) (0.012)
log(GDPl(t+2)) 0.011⇤⇤⇤/⇤⇤⇤ 0.001/ 0.006⇤⇤/⇤⇤ 0.009⇤⇤⇤/⇤⇤⇤

(0.002) (0.002) (0.002) (0.002)

�2 NACE2 Division 96182.5 ⇤⇤⇤/⇤⇤⇤ 65169.8 ⇤⇤⇤/⇤⇤⇤ 73457.5 ⇤⇤⇤/⇤⇤⇤ 75593.9 ⇤⇤⇤/⇤⇤⇤

�2 Origin 27293.7 ⇤⇤⇤/⇤⇤⇤ 13354.1 ⇤⇤⇤/⇤⇤⇤ 16466.8 ⇤⇤⇤/⇤⇤⇤ 18327.5 ⇤⇤⇤/⇤⇤⇤

�2 Destination 217773.1 ⇤⇤⇤/⇤⇤⇤ 136953.4 ⇤⇤⇤/⇤⇤⇤ 164750.2 ⇤⇤⇤/⇤⇤⇤ 175824.6 ⇤⇤⇤/⇤⇤⇤

�2 Time 8232.3 ⇤⇤⇤/⇤⇤⇤ 5203.6 ⇤⇤⇤/⇤⇤⇤ 6171.8 ⇤⇤⇤/⇤⇤⇤ 6564.5 ⇤⇤⇤/⇤⇤⇤

Corr(true,fitted) 0.5653 0.5636 0.5612 0.5596
CV error 0.0987 0.4181 0.4200 0.4214

(1)/(2) indicates assumption maintained for inferecne: (1) clustering at the level of the innovation (distinct PATSTAT DOCDB

families), and (2) clustering at the level of the NACE2 Division. ⇤⇤⇤, ⇤⇤ , and ⇤ indicate significance at 0.01, 0.05, and 0.1,

respectively. Every regression includes a constant.
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Table 5.3. Results extended specification for WID top-10%-share (dep. var. Qw
iklt)

Log-linear(1)/(2) Poisson(1)/(2) Neg. bin.(1)/(2) Gamma(1)/(2)

TOP10%-sharelt �9.884⇤⇤⇤/⇤⇤⇤ �11.588⇤⇤⇤/⇤⇤⇤ �10.518⇤⇤⇤/⇤⇤⇤ �9.809⇤⇤⇤/⇤⇤⇤

(0.215) (0.343) (0.309) (0.294)
log(POPlt)*TOP10%-sharelt 0.720⇤⇤⇤/⇤⇤⇤ 0.775⇤⇤⇤/⇤⇤⇤ 0.745⇤⇤⇤/⇤⇤⇤ 0.724⇤⇤⇤/⇤⇤⇤

(0.015) (0.022) (0.020) (0.019)
log(GDPlt)*TOP10%-sharelt �0.104⇤⇤⇤/⇤ �0.079⇤⇤⇤/ �0.097⇤⇤⇤/ �0.108⇤⇤⇤/

(0.007) (0.011) (0.010) (0.009)
log(GDPkt) �0.001 �0.011 �0.010 �0.010

(0.008) (0.012) (0.011) (0.010)
log(GDPlt) 0.518⇤⇤⇤/⇤⇤⇤ 0.555⇤⇤⇤/⇤⇤⇤ 0.535⇤⇤⇤/⇤⇤⇤ 0.516⇤⇤⇤/⇤⇤⇤

(0.015) (0.024) (0.021) (0.020)
log(POPkt) 0.040⇤⇤/ 0.086⇤⇤⇤/⇤ 0.083⇤⇤⇤/⇤ 0.080⇤⇤⇤/⇤⇤

(0.014) (0.021) (0.018) (0.017)
log(POPlt) 0.162⇤⇤⇤/⇤ 0.211⇤⇤⇤/⇤⇤ 0.221⇤⇤⇤/⇤⇤ 0.225⇤⇤⇤/⇤⇤

(0.016) (0.025) (0.022) (0.021)
GP-INDEXlt 0.041⇤⇤⇤/⇤⇤⇤ 0.044⇤⇤⇤/⇤⇤⇤ 0.040⇤⇤⇤/⇤⇤⇤ 0.037⇤⇤⇤/⇤⇤

(0.002) (0.003) (0.003) (0.002)
PATVALit 0.056⇤⇤⇤/⇤⇤⇤ 0.079⇤⇤⇤/⇤⇤⇤ 0.074⇤⇤⇤/⇤⇤⇤ 0.071⇤⇤⇤/⇤⇤⇤

(0.000) (0.000) (0.000) (0.000)
TECHSIMklt �1.368⇤⇤⇤/⇤⇤⇤ �1.483⇤⇤⇤/⇤⇤⇤ �1.326⇤⇤⇤/⇤⇤⇤ �1.212⇤⇤⇤/⇤⇤⇤

(0.054) (0.079) (0.070) (0.066)
COMLANGlt 0.006⇤⇤⇤/ 0.015⇤⇤⇤/⇤ 0.011⇤⇤⇤/⇤ 0.008⇤⇤⇤/

(0.001) (0.002) (0.002) (0.002)
log(DISTlt) �0.013⇤⇤⇤/⇤⇤⇤ �0.013⇤⇤⇤/⇤⇤⇤ �0.014⇤⇤⇤/⇤⇤⇤ �0.015⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(TRADEklt) 0.003⇤⇤⇤/ 0.006⇤⇤⇤/ 0.005⇤⇤⇤/ 0.004⇤⇤⇤/

(0.001) (0.001) (0.001) (0.001)
log(DISSIMIklt) 0.006⇤⇤⇤/⇤⇤⇤ 0.007⇤⇤⇤/⇤⇤⇤ 0.006⇤⇤⇤/⇤⇤ 0.005⇤⇤⇤/⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(NOINVENTORSi) 0.013⇤⇤⇤/⇤⇤ 0.017⇤⇤⇤/⇤ 0.017⇤⇤⇤/⇤⇤ 0.017⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(ARTpclt) �0.029⇤⇤⇤/⇤⇤⇤ �0.045⇤⇤⇤/⇤⇤⇤ �0.040⇤⇤⇤/⇤⇤⇤ �0.035⇤⇤⇤/⇤⇤⇤

(0.003) (0.005) (0.004) (0.004)
FDI-Inflowskt 0.040 0.002 0.025 0.036

(0.021) (0.028) (0.026) (0.025)
FDI-Inflowslt �0.189⇤⇤⇤/⇤⇤⇤ �0.198⇤⇤⇤/⇤⇤⇤ �0.189⇤⇤⇤/⇤⇤⇤ �0.183⇤⇤⇤/⇤⇤⇤

(0.025) (0.040) (0.037) (0.035)
FDI-Outflowskt �0.026 0.010 �0.015 �0.024

(0.022) (0.031) (0.028) (0.027)
FDI-Outlowslt 0.619⇤⇤⇤/⇤⇤⇤ 0.755⇤⇤⇤/⇤⇤⇤ 0.711⇤⇤⇤/⇤⇤⇤ 0.687⇤⇤⇤/⇤⇤⇤

(0.023) (0.040) (0.036) (0.034)
INVSHAREkt �0.070⇤⇤⇤/ �0.114⇤⇤⇤/ �0.094⇤⇤⇤/ �0.079⇤⇤⇤/

(0.019) (0.030) (0.026) (0.024)
INVSHARElt 0.193⇤⇤⇤/⇤⇤ 0.134⇤⇤⇤/ 0.181⇤⇤⇤/⇤ 0.209⇤⇤⇤/⇤⇤

(0.019) (0.029) (0.026) (0.025)
log(GDPk(t+1)) 0.002 0.007 0.004 0.002

(0.011) (0.015) (0.014) (0.013)
log(GDPl(t+1)) �0.357⇤⇤⇤/⇤⇤⇤ �0.375⇤⇤⇤/⇤⇤⇤ �0.368⇤⇤⇤/⇤⇤⇤ �0.359⇤⇤⇤/⇤⇤⇤

(0.025) (0.040) (0.035) (0.033)
log(GDPk(t+2)) 0.033⇤⇤⇤/ 0.050⇤⇤⇤/ 0.048⇤⇤⇤/ 0.047⇤⇤⇤/

(0.009) (0.013) (0.012) (0.011)
log(GDPl(t+2)) �0.198⇤⇤⇤/⇤⇤ �0.209⇤⇤⇤/⇤⇤ �0.203⇤⇤⇤/⇤⇤ �0.197⇤⇤⇤/⇤⇤

(0.015) (0.024) (0.021) (0.020)

�2 NACE2 Division 74953.4 ⇤⇤⇤/⇤⇤⇤ 49139.8 ⇤⇤⇤/⇤⇤⇤ 55180.8 ⇤⇤⇤/⇤⇤⇤ 56528.5 ⇤⇤⇤/⇤⇤⇤

�2 Origin 5791.9 ⇤⇤⇤/⇤⇤⇤ 4671.0 ⇤⇤⇤/⇤⇤⇤ 5424.4 ⇤⇤⇤/⇤⇤⇤ 5749.8 ⇤⇤⇤/⇤⇤⇤

�2 Destination 100665.5 ⇤⇤⇤/⇤⇤⇤ 61000.4 ⇤⇤⇤/⇤⇤⇤ 74426.5 ⇤⇤⇤/⇤⇤⇤ 79644.7 ⇤⇤⇤/⇤⇤⇤

�2 Time 18056.7 ⇤⇤⇤/⇤⇤⇤ 12060.9 ⇤⇤⇤/⇤⇤⇤ 13668.9 ⇤⇤⇤/⇤⇤⇤ 14305.7 ⇤⇤⇤/⇤⇤⇤

Corr(true,fitted) 0.5386 0.5371 0.5353 0.5340
CV error 0.0863 0.3439 0.3451 0.3460

(1)/(2) indicates assumption maintained for inferecne: (1) clustering at the level of the innovation (distinct PATSTAT DOCDB

families), and (2) clustering at the level of the NACE2 Division. ⇤⇤⇤, ⇤⇤ , and ⇤ indicate significance at 0.01, 0.05, and 0.1,

respectively. Every regression includes a constant.
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Table 5.4. Results extended specification for WID top-5%-share (dep. var. Qw
iklt)

Log-linear(1)/(2) Poisson(1)/(2) Neg. bin.(1)/(2) Gamma(1)/(2)

TOP5%-sharelt �11.178⇤⇤⇤/⇤⇤⇤ �13.185⇤⇤⇤/⇤⇤⇤ �11.840⇤⇤⇤/⇤⇤⇤ �10.973⇤⇤⇤/⇤⇤⇤

(0.247) (0.391) (0.351) (0.332)
log(POPlt)*TOP5%-sharelt 0.887⇤⇤⇤/⇤⇤⇤ 0.948⇤⇤⇤/⇤⇤⇤ 0.917⇤⇤⇤/⇤⇤⇤ 0.896⇤⇤⇤/⇤⇤⇤

(0.017) (0.024) (0.022) (0.021)
log(GDPlt)*TOP5%-sharelt �0.169⇤⇤⇤/⇤⇤ �0.137⇤⇤⇤/⇤ �0.164⇤⇤⇤/⇤ �0.180⇤⇤⇤/⇤

(0.010) (0.015) (0.014) (0.013)
log(GDPkt) �0.004 �0.016 �0.014 �0.013

(0.009) (0.012) (0.011) (0.010)
log(GDPlt) 0.489⇤⇤⇤/⇤⇤⇤ 0.531⇤⇤⇤/⇤⇤⇤ 0.507⇤⇤⇤/⇤⇤⇤ 0.486⇤⇤⇤/⇤⇤⇤

(0.015) (0.024) (0.021) (0.020)
log(POPkt) 0.049⇤⇤⇤/ 0.101⇤⇤⇤/⇤ 0.096⇤⇤⇤/⇤⇤ 0.092⇤⇤⇤/⇤⇤

(0.014) (0.021) (0.018) (0.017)
log(POPlt) 0.270⇤⇤⇤/⇤⇤⇤ 0.329⇤⇤⇤/⇤⇤⇤ 0.332⇤⇤⇤/⇤⇤⇤ 0.332⇤⇤⇤/⇤⇤⇤

(0.015) (0.023) (0.021) (0.020)
GP-INDEXlt 0.045⇤⇤⇤/⇤⇤⇤ 0.050⇤⇤⇤/⇤⇤⇤ 0.045⇤⇤⇤/⇤⇤⇤ 0.042⇤⇤⇤/⇤⇤⇤

(0.002) (0.003) (0.003) (0.002)
PATVALit 0.056⇤⇤⇤/⇤⇤⇤ 0.079⇤⇤⇤/⇤⇤⇤ 0.074⇤⇤⇤/⇤⇤⇤ 0.071⇤⇤⇤/⇤⇤⇤

(0.000) (0.000) (0.000) (0.000)
TECHSIMklt �1.375⇤⇤⇤/⇤⇤⇤ �1.486⇤⇤⇤/⇤⇤⇤ �1.324⇤⇤⇤/⇤⇤⇤ �1.206⇤⇤⇤/⇤⇤⇤

(0.053) (0.078) (0.069) (0.065)
COMLANGlt 0.007⇤⇤⇤/ 0.016⇤⇤⇤/⇤⇤ 0.012⇤⇤⇤/⇤ 0.009⇤⇤⇤/⇤

(0.001) (0.002) (0.002) (0.002)
log(DISTlt) �0.012⇤⇤⇤/⇤⇤⇤ �0.013⇤⇤⇤/⇤⇤⇤ �0.015⇤⇤⇤/⇤⇤⇤ �0.015⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(TRADEklt) 0.002⇤⇤/ 0.006⇤⇤⇤/ 0.004⇤⇤⇤/ 0.003⇤⇤⇤/

(0.001) (0.001) (0.001) (0.001)
log(DISSIMIklt) 0.003⇤⇤⇤/⇤ 0.004⇤⇤⇤/⇤ 0.003⇤⇤⇤/⇤ 0.003⇤⇤⇤/⇤

(0.001) (0.001) (0.001) (0.001)
log(NOINVENTORSi) 0.013⇤⇤⇤/⇤⇤ 0.017⇤⇤⇤/⇤⇤ 0.017⇤⇤⇤/⇤⇤ 0.017⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(ARTpclt) �0.020⇤⇤⇤/ �0.033⇤⇤⇤/⇤⇤⇤ �0.029⇤⇤⇤/⇤⇤ �0.025⇤⇤⇤/⇤

(0.003) (0.005) (0.004) (0.004)
FDI-Inflowskt 0.042⇤/ 0.003 0.027 0.039

(0.021) (0.028) (0.026) (0.025)
FDI-Inflowslt �0.260⇤⇤⇤/⇤⇤⇤ �0.278⇤⇤⇤/⇤⇤⇤ �0.272⇤⇤⇤/⇤⇤⇤ �0.267⇤⇤⇤/⇤⇤⇤

(0.024) (0.040) (0.037) (0.035)
FDI-Outflowskt �0.025 0.011 �0.014 �0.023/

(0.022) (0.031) (0.028) (0.027)
FDI-Outlowslt 0.698⇤⇤⇤/⇤⇤⇤ 0.835⇤⇤⇤/⇤⇤⇤ 0.797⇤⇤⇤/⇤⇤⇤ 0.774⇤⇤⇤/⇤⇤⇤

(0.023) (0.039) (0.036) (0.034)
INVSHAREkt �0.037 �0.074⇤/ �0.059⇤/ �0.047

(0.019) (0.030) (0.026) (0.024)
INVSHARElt 0.264⇤⇤⇤/⇤ 0.218⇤⇤⇤/ 0.265⇤⇤⇤/⇤ 0.292⇤⇤⇤/⇤⇤

(0.018) (0.030) (0.026) (0.025)
log(GDPk(t+1)) 0.002 0.007 0.004 0.002

(0.011) (0.015) (0.014) (0.014)
log(GDPl(t+1)) �0.344⇤⇤⇤/⇤⇤⇤ �0.365⇤⇤⇤/⇤⇤⇤ �0.353⇤⇤⇤/⇤⇤⇤ �0.341⇤⇤⇤/⇤⇤⇤

(0.025) (0.040) (0.035) (0.033)
log(GDPk(t+2)) 0.038⇤⇤⇤/ 0.056⇤⇤⇤/⇤ 0.053⇤⇤⇤/⇤ 0.051⇤⇤⇤/⇤

(0.009) (0.013) (0.012) (0.011)
log(GDPl(t+2)) �0.206⇤⇤⇤/⇤⇤ �0.220⇤⇤⇤/⇤⇤ �0.216⇤⇤⇤/⇤⇤ �0.211⇤⇤⇤/⇤

(0.015) (0.024) (0.021) (0.020)

�2 NACE2 Division 74499.2 ⇤⇤⇤/⇤⇤⇤ 48701.2 ⇤⇤⇤/⇤⇤⇤ 54739.4 ⇤⇤⇤/⇤⇤⇤ 56085.0 ⇤⇤⇤/⇤⇤⇤

�2 Origin 5841.8 ⇤⇤⇤/⇤⇤⇤ 4721.3 ⇤⇤⇤/⇤⇤⇤ 5491.5 ⇤⇤⇤/⇤⇤⇤ 5823.7 ⇤⇤⇤/⇤⇤⇤

�2 Destination 101372.7 ⇤⇤⇤/⇤⇤⇤ 61510.5 ⇤⇤⇤/⇤⇤⇤ 75089.9 ⇤⇤⇤/⇤⇤⇤ 80517.1 ⇤⇤⇤/⇤⇤⇤

�2 Time 17762.0 ⇤⇤⇤/⇤⇤⇤ 11963.8 ⇤⇤⇤/⇤⇤⇤ 13521.1 ⇤⇤⇤/⇤⇤⇤ 14131.0 ⇤⇤⇤/⇤⇤⇤

Corr(true,fitted) 0.5391 0.5369 0.5350 0.5337
CV error 0.0859 0.3421 0.3433 0.3442

(1)/(2) indicates assumption maintained for inferecne: (1) clustering at the level of the innovation (distinct PATSTAT DOCDB

families), and (2) clustering at the level of the NACE2 Division. ⇤⇤⇤, ⇤⇤ , and ⇤ indicate significance at 0.01, 0.05, and 0.1,

respectively. Every regression includes a constant.
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Table 5.5. Results extended specification for WID top-1%-share (dep. var. Qw
iklt)

Log-linear(1)/(2) Poisson(1)/(2) Neg. bin.(1)/(2) Gamma(1)/(2)

TOP1%-sharelt �15.643⇤⇤⇤/⇤⇤⇤ �19.004⇤⇤⇤/⇤⇤⇤ �16.636⇤⇤⇤/⇤⇤⇤ �15.102⇤⇤⇤/⇤⇤⇤

(0.374) (0.579) (0.514) (0.485)
log(POPlt)*TOP1%-sharelt 1.299⇤⇤⇤/⇤⇤⇤ 1.410⇤⇤⇤/⇤⇤⇤ 1.359⇤⇤⇤/⇤⇤⇤ 1.324⇤⇤⇤/⇤⇤⇤

(0.023) (0.035) (0.031) (0.029)
log(GDPlt)*TOP1%-sharelt �0.298⇤⇤⇤/⇤⇤⇤ �0.251⇤⇤⇤/⇤⇤⇤ �0.298⇤⇤⇤/⇤⇤⇤ �0.327⇤⇤⇤/⇤⇤⇤

(0.019) (0.028) (0.025) (0.023)
log(GDPkt) �0.002 �0.012 �0.010 �0.010

(0.009) (0.012) (0.011) (0.010)
log(GDPlt) 0.346⇤⇤⇤/⇤⇤⇤ 0.372⇤⇤⇤/⇤⇤⇤ 0.365⇤⇤⇤/⇤⇤⇤ 0.354⇤⇤⇤/⇤⇤⇤

(0.014) (0.022) (0.020) (0.019)
log(POPkt) 0.044⇤⇤/ 0.095⇤⇤⇤/⇤ 0.091⇤⇤⇤/⇤⇤ 0.086⇤⇤⇤/⇤⇤

(0.014) (0.021) (0.018) (0.017)
log(POPlt) 0.244⇤⇤⇤/⇤⇤⇤ 0.291⇤⇤⇤/⇤⇤⇤ 0.288⇤⇤⇤/⇤⇤⇤ 0.284⇤⇤⇤/⇤⇤⇤

(0.014) (0.022) (0.020) (0.019)
GP-INDEXlt 0.045⇤⇤⇤/⇤⇤⇤ 0.054⇤⇤⇤/⇤⇤⇤ 0.048⇤⇤⇤/⇤⇤⇤ 0.043⇤⇤⇤/⇤⇤⇤

(0.002) (0.003) (0.002) (0.002)
PATVALit 0.056⇤⇤⇤/⇤⇤⇤ 0.079⇤⇤⇤/⇤⇤⇤ 0.074⇤⇤⇤/⇤⇤⇤ 0.071⇤⇤⇤/⇤⇤⇤

(0.000) (0.000) (0.000) (0.000)
TECHSIMklt �1.196⇤⇤⇤/⇤⇤⇤ �1.247⇤⇤⇤/⇤⇤⇤ �1.118⇤⇤⇤/⇤⇤⇤ �1.025⇤⇤⇤/⇤⇤⇤

(0.051) (0.077) (0.068) (0.064)
COMLANGlt 0.006⇤⇤⇤/ 0.014⇤⇤⇤/⇤ 0.011⇤⇤⇤/⇤ 0.008⇤⇤⇤/

(0.001) (0.002) (0.002) (0.002)
log(DISTlt) �0.013⇤⇤⇤/⇤⇤⇤ �0.014⇤⇤⇤/⇤⇤⇤ �0.015⇤⇤⇤/⇤⇤⇤ �0.016⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(TRADEklt) 0.002⇤⇤⇤/ 0.006⇤⇤⇤/ 0.004⇤⇤⇤/ 0.004⇤⇤⇤/

(0.001) (0.001) (0.001) (0.001)
log(DISSIMIklt) 0.004⇤⇤⇤/⇤⇤ 0.006⇤⇤⇤/⇤⇤ 0.005⇤⇤⇤/⇤⇤ 0.004⇤⇤⇤/⇤

(0.001) (0.001) (0.001) (0.001)
log(NOINVENTORSi) 0.013⇤⇤⇤/⇤⇤ 0.017⇤⇤⇤/⇤ 0.017⇤⇤⇤/⇤⇤ 0.017⇤⇤⇤/⇤⇤⇤

(0.001) (0.001) (0.001) (0.001)
log(ARTpclt) �0.057⇤⇤⇤/⇤⇤⇤ �0.073⇤⇤⇤/⇤⇤⇤ �0.066⇤⇤⇤/⇤⇤⇤ �0.061⇤⇤⇤/⇤⇤⇤

(0.003) (0.005) (0.004) (0.004)
FDI-Inflowskt 0.033 �0.005 0.020 0.031

(0.021) (0.028) (0.026) (0.025)
FDI-Inflowslt �0.314⇤⇤⇤/⇤⇤⇤ �0.318⇤⇤⇤/⇤⇤⇤ �0.316⇤⇤⇤/⇤⇤⇤ �0.313⇤⇤⇤/⇤⇤⇤

(0.024) (0.040) (0.037) (0.035)
FDI-Outflowskt �0.017 0.019 �0.006 �0.016

(0.022) (0.031) (0.028) (0.027)
FDI-Outlowslt 0.743⇤⇤⇤/⇤⇤⇤ 0.861⇤⇤⇤/⇤⇤⇤ 0.835⇤⇤⇤/⇤⇤⇤ 0.820⇤⇤⇤/⇤⇤⇤

(0.024) (0.039) (0.035) (0.034)
INVSHAREkt �0.049⇤/ �0.091⇤⇤/ �0.074⇤⇤/ �0.062⇤/

(0.019) (0.030) (0.026) (0.024)
INVSHARElt 0.013 �0.051 0.005 0.040

(0.017) (0.028) (0.025) (0.024)
log(GDPk(t+1)) 0.004 0.009 0.006 0.004

(0.011) (0.015) (0.014) (0.013)
log(GDPl(t+1)) �0.207⇤⇤⇤/⇤⇤ �0.228⇤⇤⇤/⇤⇤ �0.221⇤⇤⇤/⇤⇤ �0.213⇤⇤⇤/⇤⇤

(0.024) (0.037) (0.033) (0.031)
log(GDPk(t+2)) 0.034⇤⇤⇤/ 0.051⇤⇤⇤/ 0.048⇤⇤⇤/ 0.047⇤⇤⇤/

(0.009) (0.013) (0.012) (0.011)
log(GDPl(t+2)) �0.164⇤⇤⇤/⇤⇤ �0.159⇤⇤⇤/⇤ �0.167⇤⇤⇤/⇤ �0.169⇤⇤⇤/⇤

(0.014) (0.021) (0.019) (0.018)

�2 NACE2 Division 76872.1 ⇤⇤⇤/⇤⇤⇤ 50147.4 ⇤⇤⇤/⇤⇤⇤ 56422.4 ⇤⇤⇤/⇤⇤⇤ 57843.0 ⇤⇤⇤/⇤⇤⇤

�2 Origin 5762.8 ⇤⇤⇤/⇤⇤⇤ 4688.6 ⇤⇤⇤/⇤⇤⇤ 5474.1 ⇤⇤⇤/⇤⇤⇤ 5818.8 ⇤⇤⇤/⇤⇤⇤

�2 Destination 108616.9 ⇤⇤⇤/⇤⇤⇤ 64917.8 ⇤⇤⇤/⇤⇤⇤ 79298.8 ⇤⇤⇤/⇤⇤⇤ 85269.8 ⇤⇤⇤/⇤⇤⇤

�2 Time 16235.7 ⇤⇤⇤/⇤⇤⇤ 11014.9 ⇤⇤⇤/⇤⇤⇤ 12492.0 ⇤⇤⇤/⇤⇤⇤ 13077.5 ⇤⇤⇤/⇤⇤⇤

Corr(true,fitted) 0.5399 0.5384 0.5366 0.5353
CV error 0.0862 0.3440 0.3452 0.3461

(1)/(2) indicates assumption maintained for inferecne: (1) clustering at the level of the innovation (distinct PATSTAT DOCDB

families), and (2) clustering at the level of the NACE2 Division. ⇤⇤⇤, ⇤⇤ , and ⇤ indicate significance at 0.01, 0.05, and 0.1,

respectively. Every regression includes a constant.
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Appendix A: Theory

Appendix A1: proof of Proposition 1

Proof. a) The left hand side of equation 6 depends negatively on b✓, c and N (as @f(N)
@N

falls in N) and positively on ⌦ and L, while the right hand side rises in F . Consequently,
the FE curve in Figure 1 is downward sloping and shifts right when L or ⌦ increase or
when F or c decrease.

As the right hand side of equation 9 increases in ˆ✓ and Y and decreases in L, F and
c, the BC curve is upward sloping and shifts up (left) when Y increases or when L, F
and c decrease.

An equilibrium exists if the FE and the BC curve intersect at some point. The
BC curve is continuous, goes through the origin and is (weakly) rising. When pa-
rameters are such that at least some firms find it profitable to undertake R&D, the
FE curve continuously falls until it crosses the ˆ✓ axis at the positive value ˆ✓FE for
which (⌦� c)L(1 � G(

ˆ✓FE)) = F holds. As (1 � G(

ˆ✓)) lies between 0 and 1, the
FE curve is well defined for all values of N for which

⇣
⌦

@f(N)
@N

� c
⌘
L > F holds. As

@f(N)
@N

falls in N , the FE curve is therefore well defined for each positive value of N if⇣
⌦

⇣
lim
N!1

@f(N)
@N

⌘
� c

⌘
L > F holds. Under this condition, the FE and the BC curve

must therefore cross at some point.
The assumption that ✓ is distributed within a range 0  ✓  ✓  ¯✓, where ✓ < 1 is

sufficiently low and ¯✓ > 1 is sufficiently large is made in order to make sure that there
are always some households of type ✓i < ˆ✓ and others of type ✓i > ˆ✓. The assumption
that g(✓) > 0 holds in the whole range ✓  ✓  ¯✓ is made in order to guarantee that
there is always a positive density g(ˆ✓) of households of type ✓i = ˆ✓ purchasing the most
expensive innovative good at the limit price (if this was not the case, other equilibria can
result in which the price of the most exclusive innovative good lies below the limit price,
implying that the free entry condition is not given by equation 6 anymore. In Föllmi and
Zweimüller (2006) and Kiedaisch (2016), such “unconstrained” equilibria are analyzed).

b) The distribution of income across housholds with ✓ < ˆ✓ affects the integral on
the right hand side of equation 9:

R ✓̂

q=0
L(1�G(q))

cL(1�G(q))+F
dq ⌘ Q. The integrand L(1�G(q))

cL(1�G(q))+F
is

positive and a concave falling function of G(q). A regressive transfer among households
with ✓ < ˆ✓ implies that the cumulative distribution function G(q) flattens out in the
affected region, i.e. that its values are less dispersed. At the same time, such a regressive
transfer has no effect on

R ✓̂

q=0 G(q)dq = ˆ✓G
⇣
ˆ✓
⌘
�
R ✓̂

q=0 ✓g(q)dq (the expression on the right

hand side results from integration by parts) as it leaves the fraction G
⇣
ˆ✓
⌘

of households

with income below ˆ✓ and the total income share
R ✓̂

q=0 ✓g(q)dq of these households unaf-
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fected. Due to Jensen’s inequality, a regressive transfer among households with ✓ < ˆ✓

consequently increases the integral Q and shifts the BC curve up/left. As the transfer
does not affect the FE curve, it therefore leads to an increase in N⇤.

A transfer from a household with ✓ < ˆ✓ to a household with ✓ > ˆ✓ increases G(✓) for
some ✓ < ˆ✓ (without reducing it for other ✓ < ˆ✓) and therefore reduces the value of the
integral Q and shifts the BC curve down/right. As it does not affect the FE curve, it
therefore leads to a reduction in N⇤.

As neither the BC nor the FE curve depend on the density of households with ✓ > ˆ✓,
transfers between these types of households do not affect ˆ✓⇤ or N⇤.

c) Given how the different parameters shift the FE and the BC curves (see the proof
of part a)), it can easily be seen in Figure 1 that the equilibrium value N⇤ depends
positively on Y and ⌦ and negatively on F and c. The equilibrium value ˆ✓⇤ increases in
⌦ and L and decreases in Y . In the case where @f(C)

@C
= 1 8C, the FE curve is vertical,

implying that ˆ✓⇤ is independent of Y .
When ˆ✓⇤ increases due to an increase in ⌦ or L or due to a decrease in Y , it increases

the fraction
R ✓̂⇤

q=✓
g(q)dq of households that spend all their income on innovative goods and

therefore makes it more likely (less likely) that a regressive transfer among two households
that are randomly drawn from the distribution g(✓) affects two households of type ✓i < ˆ✓⇤

(✓i > ˆ✓⇤) and that it therefore increases (decreases) N .
Inserting equation 9 into equation 6 and implicitly differentiating the expression yields

sign
h

@✓̂
@F

i
= sign

"
�⌦

@2f(N)
@N2 � 1

(

1�G
(

✓̂
))

Y
R ✓̂
q=0

L(1�G(q))

(cL(1�G(q))+F )2
dq

#
. As @2f(N)

@N2 < 0, ˆ✓ depends

negatively on F when �@2f(N)
@N2 is small, but can depend positively on F when �@2f(N)

@N2 is
sufficiently large.

Inserting equation 9 into equation 6 and implicitly differentiating the expression yields

sign
h
@✓̂
@c

i
= sign

"
�⌦

@2f(N)
@N2 � 1

Y
R ✓̂
q=0

L(1�G(q))2

(cL(1�G(q))+F )2
dq

#
. As @2f(N)

@N2 < 0, ˆ✓ depends negatively

on c when �@2f(N)
@N2 is small, but can depend positively on c when �@2f(N)

@N2 is sufficiently
large.

In order to show that the effect of L on N can be either positive or negative, the
following example is used: suppose that @f(C)

@C
= 1 8C, that ✓ is uniformly distributed

and that ✓ = 0. Then, g(✓) = 1
✓̄

and G(✓) = ✓
✓̄
. Equation 6then yields ˆ✓ =

⇣
1� F

L(⌦�c)

⌘
¯✓,

so that @✓̂
@L

=

F ✓̄
L2(⌦�c) . Using this and equation 9 allows to derive

@N

@L
=

F ¯✓Y
⇣
1� ✓̂

✓̄

⌘

L2
(⌦� c)

h
cL

⇣
1� ✓̂

✓̄

⌘
+ F

i � Y

Z ✓̂

s=q

c
�
1� q

✓̄

�2
�
cL(1� q

✓̄
) + F

�2dq
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As the first term on the right hand side declines faster than the (absolute value of
the) second term when L grows sufficiently large, @N

@L
< 0 holds for large values of

L. As the integrand on the right hand side is declining in s, Y
R ✓̂

q=0

c
(

1� q
✓̄ )

2

(

cL(1� q
✓̄
)+F

)

2dq <

Y
R ✓̂

q=0
c

(cL+F )2
dq = Y c ✓̂

(cL+F )2
holds. This implies that @N

@L
>

F ✓̄Y
⇣
1� ✓̂

✓̄

⌘

L2(⌦�c)
h
cL

⇣
1� ✓̂

✓̄

⌘
+F

i � ✓̂
(cL+F )2

holds. Inserting ˆ✓ =

⇣
1� F

L(⌦�c)

⌘
¯✓, the right hand side of this expression is positive

when F (cL+ F )

2 > cL2
⌦ (L (⌦� c)� F ) holds, which is satisfied if L =

F
⌦�c

, i.e. if L
is set equal to its smallest possible value (below this value, ˆ✓ would become negative).
Therefore, @N

@L
can be either positive or negative.

Appendix A2: Non-innovative basic need goods

Suppose that there are two types of non-innovative goods: a fixed measure B of “basic
need” goods and an infinite variety of producible “backstop” goods. While the latter are
identical to the non-innovative goods in the basic model, basic need goods are cheaper to
produce and are supplied at the marginal cost of c. They might therefore be interpreted
as previously invented innovative goods on which patents have already expired32. House-
holds therefore always prefer basic need goods to innovative goods and to backstop goods
as the latter two types of goods are sold at prices larger than c in equilibrium. House-
holds with income yi < ỹ ⌘ Bc who are so poor that they cannot afford to purchase
one unit of each basic need good (at price c) therefore spend all their income on basic
need goods. Households with yi > ỹ are, however, satiated with basic need goods as they
already consume one unit of each of them and therefore also consume other goods. The
varieties Ci of innovative goods and Gi of non-innovative goods (including basic need and
backstop goods) consumed by household i are therefore given by:

Ci =

8
><

>:

0 if yi < ỹ ⌘ Bc
R N

j=0 cijdj if ỹ < yi  ŷ

N if yi > ŷ

Gi =

8
>><

>>:

yi
c

if yi < ỹ ⌘ Bc

B if ỹ  yi  ŷ

B +

yi�Bc�
RN
j=0 pjdj

⌦ if yi > ŷ

Let us define ˜✓ ⌘ ỹ
Y
L

=

Bc
Y
L

, so that households of type ✓i  ˜✓ only consume basic need

goods, households of type ˜✓ < ✓i < ˆ✓ all basic need goods and some innovative goods and
households of type ✓i > ˆ✓ all basic need and innovative goods and some backstop goods.

32It seems plausible that past innovation efforts have mainly been directed towards basic need goods
that have already been in high demand when incomes were lower.

72



The budget constraint of a household of type ˜✓ < ✓i < ˆ✓ is given by

✓i
Y

L
= Bc+

Z ✓i

q=✓̃

p(q)dC(q) (15)

Proceeding like in the analysis of the basic model (note that p(q) is still given by equation
5) allows to derive the new BC equation as

N =

Y

L

Z ✓̂

q=✓̃

L(1�G(q))

cL(1�G(q)) + F
dq (16)

where ˜✓ =

BcL
Y

. Taking into account that the free entry condition is still given by
equation 6, we can derive:

Lemma 1. a) A unique equilibrium with positive innovation exists if the conditions from

Lemma 1a hold and if B is sufficiently small (precisely, if

BcL
Y

< G�1
⇣
1� F

(⌦�c)L

⌘
, where

G�1
(•) is the inverse of G(•)).
b): A regressive transfer from a households of type ✓i < ˆ✓ to a household of type

˜✓  ✓i < ˆ✓ increases N , while a regressive transfer from a household of type

˜✓  ✓i  ˆ✓

to a household of type ✓i > ˆ✓ reduces N . Transfer between households of types ✓i < ˜✓ and

✓i > ˆ✓ do not affect N .

c): ˆ✓ increases in L and in ⌦ and decreases in Y . A regressive transfer between two

randomly drawn households is more likely to increase and less likely to reduce N the larger

⌦ is. When ✓ � ˜✓ =

BcL
Y

(i.e. when all households are rich enough to purchase all basic

need goods, but when still ✓ < 1 holds) a regressive transfer between two randomly drawn

households is more likely to increase and less likely to reduce N the larger L and the lower

Y is. When ✓ < ˜✓, such a transfer is less likely to reduce N the larger L and the lower

Y is, but might not be more likely to increase N . (When

@f(C)
@C

= 1 8C and ✓ < ˜✓ hold, a

regressive transfer is more likely to increase N the larger Y is).

Proof. a) The FE curve remains unchanged. However, the BC curve (equation 16) does
not go through the origin now, but leaves the ˆ✓ axis at the value ˜✓ =

BcL
Y

. The two
curves therefore cross if this point lies below ˆ✓FE, the crossing of the FE curve with the
ˆ✓ axis. As ˆ✓FE is defined by the equation (⌦� c)L

⇣
1�G

⇣
ˆ✓FE

⌘⌘
= F , ˜✓ < ˆ✓FE holds

if BcL
Y

< G�1
⇣
1� F

(⌦�c)L

⌘
, where G�1

(•) is the inverse of G(•).
b) A transfer from a household of type ✓i < ˜✓ to a household of type ˜✓  ✓i < ˆ✓

decreases G(✓) for some values in the interval ˜✓  ✓ < ˆ✓ without reducing it for other
values in this interval. It therefore shifts the BC curve up/left, leading to an increase
in N⇤. As neither equation 6 nor equation 16 depend on the density of households with
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✓i < ˜✓, transfers between these types of households do not affect ˆ✓ or N . The rest of the
proof of part b) is symmetric to the proof of Lemma 1b.

c) As the right hand side of equation 16 increases in ˆ✓ and Y and decreases in L, the
BC curve is upward sloping and shifts up (left) when Y increases or when L decreases.
While the analysis is symmetric to the one in the proof of Lemma 1c when ✓ � ˜✓ holds,
the additional effect that ˜✓ =

BcL
Y

increases in L and decreases in Y comes into play in
the case where ✓ < ˜✓ holds. An increse in L and a decline in Y then increase the fraction
of households of type ✓i < ˜✓ among which regressive transfers do not have any effect on
N . Keeping ˆ✓ constant this implies a reduced likelyhood that inequality is good for N .
As an increse in L and a decline in Y still lead to an increase in ˆ✓⇤ and therefore make it
less likely that a regressive transfer among two randomly selected households is bad for
N , whether or not such a transfer is more likely good for N now depends on whether the
fraction of people of types ˜✓  ✓i < ˆ✓ (among which regressive transfers are good for N)
increases or decreases when ˆ✓ and ˜✓ both increase. This depends on the distribution of ✓
around the values ˆ✓ and ˜✓.

When @f(C)
@C

= 1 8C holds, ˆ✓ is independent of Y . As ˜✓ falls in Y , a regressive transfer
is then more likely to increase N the larger Y is.

The (qualitative) results therefore stay the same when all households are rich enough
to purchase all basic need goods and might only change in a case where sufficiently many
households are too poor to afford all basic need goods and in which changes in ˜✓ matter
more for the relation between inequality and innovation than changes in ˆ✓. Applying
Lemma 2 to the international context gives the following proposition:

Proposition 4. Suppose that the conditions from Lemma 1a and the inequality

˜✓l ⌘
BclLl
Yl

< G�1
⇣
1� Fl

(⌦l�cl)Ll

⌘
are satisfied in a follower country l in which Vl < N holds.

Then, the probability �jkl that an innovative good j invented (or first patented) in country

k is patented (adopted) in country l depends in the following way on the level of inequality

Il in country l:
@E

⇣ @�jkl
@Il

⌘

@⌦l
> 0 always holds and

@E
⇣ @�jkl

@Il

⌘

@Ll
> 0 and

@E
⇣ @�jkl

@Il

⌘

@Yl
< 0 hold when ✓l > ˜✓l.

When ✓l < ˜✓l,
@E

⇣ @�jkl
@Il

⌘

@Ll
> 0 and

@E
⇣ @�jkl

@Il

⌘

@Yl
< 0 need not hold for all distributions of

✓l.

(Suppose that

@f(C)
@C

= 1 8C. Then,

@E
⇣ @�jkl

@Il

⌘

@Yl
= 0 holds when ✓l > ˜✓l, but

@E
⇣ @�jkl

@Il

⌘

@Yl
> 0

holds when ✓l < ˜✓l).
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Appendix A3: Costless technology transfer

In the basic model, it was assumed that the fixed costs Fl of technology adoption not only
include fixed costs of patent application, but also real fixed costs of technology transfer.
This implied that no firm had an incentive to adopt a non-patented technology. Let us
now instead look at the case where Fl only consists of patent application costs and where
there are no real costs of technology adoption. Then, an innovative good that is not
patented in country l is imitated and supplied at marginal cost cl there when at least
one household is willing to purchase it. Suppose that ¯✓l

Yl
Ll

> clN holds, implying that
the income of the richest household in country l is larger than necessary to purchase one
unit of each of the globally available N innovative goods at marginal cost cl. Then, all of
the N innovative goods will be produced and supplied in country l, implying that there
is always full technology transfer. The level and distribution of income in country l then
only determines the measure Vl  N of innovative goods that are patented in the country,
but not the measure that are produced.

When innovations differred with respect to their cost savings or quality, the more
valuable ones would be patented first and an increase in Vl would imply a decrease of the
value of the marginal (and average) innovation that gets patented in country l and would
therefore imply a decrease in the limit price for this marginal innovation33. In order to
capture this mechanism without explicitly introducing heterogeneity of goods, the utility
function Ui = f(Ci)+Gi (with @2f(Ci)

@C2
i

< 0) is now interpreted in a different way: instead
of denoting the total measure of innovative goods consumed, Ci now denotes the measure
of patent-protected innovative goods consumed by household i, while the consumption of
non-patented and non-innovative goods enters the term Gi

34.
In equilibrium, there are again “frontier” countries in which Vl = N holds and follower

countries in which Vl < N holds and in which innovators must be indifferent about
whether or not to apply for patent protection. Using the notation that households of
type ✓i � ˆ✓l are rich enough to consume one unit of each of the N innovative goods

33When innovative goods differ with respect to their production costs, it can be shown that those with
lower costs end up being sold at a lower price to more households in equilibrium and earn higher profits
than those with higher costs. The limit price is therefore indeed binding for the marginal patented
innovation that has the highest costs and that is sold at the highest price to the smallest number of
households.

34As @

2
f(C)
@C

2 < 0 and @f(C)
@C

���
C=0

= 1 hold, this specification implies that households always value
non-patented innovative goods more than patent protected ones, which would not be the case if inno-
vative goods were heterogeneous and if the non-patented ones were of lower quality. This simplifying
assumption, however, does not affect the qualitative results of the analysis as long as households prefer
to purchase non-patented innovative goods at marginal cost compared to (more valuable) patented ones
at the monopoly price.
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supplied in a follower country l, the free entry condition is again given by
✓
⌦l

@f(Vl)

@Vl

� cl

◆
Ll(1�G(

ˆ✓l)) = Fl

Suppose that all households of type ✓i � ˜✓l are rich enough to consume one unit of
each of the N � Vl non-patented goods in country l. Proceeding as in Section 2.5, the
consumption of patented goods by a household of type ✓i can then be derived as

C(✓i) =
Yl

Ll

Z ✓i

q=✓̃

L(1�G(q))

cL(1�G(q)) + F
dq

As only households of type ✓i > b✓ consume all patented goods in equilibrium, we can set
C(

ˆ✓) = Vl and derive the BC curve as:

Vl =
Y

L

Z ✓̂

q=✓̃

L(1�G(q))

cL(1�G(q)) + F
dq (17)

As all non-patented goods are sold at marginal cost cl, the budget constraint of a
household of type ✓i =

˜✓l is given by ˜✓l
Yl
Ll

= cl (N � Vl), so that ˜✓l =
cl(N�Vl)Ll

Yl
. The

analysis is therefore similar to the one in Appendix B1, except for the fact that there
is now an endogenous measure N � Vl of non-patented innovative goods instead of an
exogenously given measure Bl of basic need goods.

Proposition 5. Suppose that all households in country l are rich enough to purchase one

unit of each of the non-patented innovative goods. Then, an equilibrium in which Vl < N

holds exists in a follower country l if

⇣
⌦l

⇣
@f(N)
@N

⌘
� cl

⌘
Ll > Fl, if G�1

⇣
1� Fl

(⌦L�cl)Ll

⌘
>

clNLl
Yl

(and if the left and right hand side of the inequality are sufficiently close to each

other), if Yl >
clLl

clLl+Fl
and if

cl(N�V ⇤
l )Ll

Yl
< 1 hold (the latter inequality always holds if

clNLl
Yl

< 1).

The probability �jkl that an innovative good j invented (or first patented) in country

k is patented in country l then depends in the following way on the level of inequality

Il in country l:
@E

⇣ @�jkl
@Il

⌘

@⌦l
> 0,

@E
⇣ @�jkl

@Il

⌘

@Ll
> 0 and

@E
⇣ @�jkl

@Il

⌘

@Yl
< 0 (when

@f(C)
@C

= 1 8C,

@E
⇣ @�jkl

@Il

⌘

@Yl
= 0).

Proof. Proceeding like in the proof of Lemma 1a, it can be shown that the FE curve
is well defined for each value Vl < N when

⇣
⌦l

⇣
@f(N)
@N

⌘
� cl

⌘
Ll > Fl holds and that it

crosses the ˆ✓ axis at the value ˆ✓FE = G�1
⇣
1� Fl

(⌦L�cl)Ll

⌘
. The BC curve crosses the ˆ✓

axis at the value ˆ✓BC =

clNLl
Yl

. When all households are rich enough to purchase one unit
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of each of the non-patented goods, G(

˜✓l) = 0 holds. Under this condition, the BC curve
is upward sloping (in ˆ✓ - Vl space) when Yl >

clLl
clLl+Fl

holds and downward sloping when
Yl <

clLl
clLl+Fl

holds.
As households of type ✓i > ˆ✓⇤ must be rich enough to purchase one unit of each of the

N goods at marginal cost, ˆ✓⇤ Yl
Ll

> clN must hold, implying that ˆ✓⇤ > ˆ✓BC must hold. The
only possible equilibrium is therefore the one in which Yl >

clLl
clLl+Fl

holds so that the BC
curve is upward sloping and in whichˆ✓FE > ˆ✓BC holds. An equilibrium then exists if the
FE and the BC curve cross at a value V ⇤

l < N . As the FE curve is downward sloping (or
vertical) this always happens as long as ˆ✓BC and ˆ✓FE are sufficiently close to each other.
Moreover, ˜✓l =

cl(N�V ⇤
l )Ll

Yl
< 1 must hold to guarantee that

R ✓̄

✓
✓g(✓)d✓ = 1 can hold.

As the BC curve shifts right when L increases or when Y decreases and as the FE
curve shifts right when L or ⌦ increase and when Y decreases (and does not depend on Y

when @f(C)
@C

= 1 8C holds), the equilibrium value ˆ✓⇤ again depends positively on L and ⌦

and negatively on Y (or not at all on Y when @f(C)
@C

= 1 8C holds). Proceeding like in the
proof of Lemma 1b, it can again be shown that a regressive transfer among households of
type ✓i < ˆ✓ rotates the BC curve left while a regressive transfer from households of type
✓i < ˆ✓ (who only consume innovative goods) to households of type ✓i > ˆ✓ (who consume
all N innovative goods and also some non-innovative goods) rotates the BC curve right.
Combing these results and using the same arguments used for Proposition 2 then gives
the results.

As long as all (or most) households are rich enough to purchase one unit of each of the
non-patented goods, the results from Propostion 2 are therefore robust in this alternative
setting35 . The way in which patent applications depend on the extent of inequality in
a country therefore does not seem to depend much on specific assumptions about the
transfer of technology and should be indicative of the qualitative effects that inequality
has on innovation.

The feature that the transfer of technology to a country does not depend on whether
or not an innovator patents an innovation in this country changes the welfare effects of
different policies: unlike in the case where a patent application goes along with a transfer
of technology, countries in which Vl < N holds can for example never gain from enforcing
patents in this context. The reason for that is that patents only lead to a rise in prices
and to a reduction in consumption without increasing the world technology frontier N

(as innovators do not earn any profits in excess of the patent application fees Fl when
Vl < N holds).

35When some households are so poor that they only purchase non-patented goods, issues similar to
those analyzed in Appendix B1 arise, implying that the results might then change for certain distributions
of ✓.
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Appendix B: Empirical Analysis

Appendix B1: Further Descriptives

Detailed country-lists

Table B1 contains a complete list of all countries surfacing in the SWIID- and WDI-
samples samples as origins or destinations of patent-flows. Moreover it contains a list of
the 184 (115) countries used for the predictive exercises in the main text.

[Table B1]

Correlation among inequality measures, population, and GDP

Table B2 summarizes all distinct pair-wise correlations among the inequality measures
GINInetit, GINImarit, TOP10%-sharelt, TOP5%-sharelt, and TOP1%-sharelt, respec-
tively, and the key variables log(GDPlt) and log(POPlt); we have also added a measure
of log(GDPpclt)= log(GDPlt) - log(POPlt). All inequality measures are highly positively
correlated. Except for TOP1%-sharelt we would conclude that a large population is pos-
itively correlated with inequality. Further we find that within our sample a high Gini
coefficient (pre- and post-taxes) is negatively related to a country’s GDP per capita, i.e.
inequality is likely to be higher for poorer countries in our sample.

[Table B2]

Appendix B2: Construction of Patent Value Variable

As referred to above, we construct a measure of patent-value PATVALit from five distinct
measures of the spreading out of subsequent applications from a patent-family i and as
constructed from the raw-data extracted from PATSTAT: (1) A variable counting the
number of previous subsequent applications for the family up to time t (PREVIOUSit),
(2) a variable counting the number of contemporaneous subsequent applications at time
t (CURRENTit), (3) a variable using (1) normalized by the innovation’s age where
minimum age is set to one (AVSUBit), (4) a variable counting the number of differ-
ent destination countries the family has already been filed at in t including the current
(NODESTINSit), and finally (5) a variable counting the the number of distinct countries
where patent-protection is applied for simultaneously for any member of the family in a
year t (NOSIMULTDESTINSit). We illustrate this here for the DOCDB-family definition.

Since all of these variables have strictly positive support, we log-transform each of
them. All of these measures are highly positively correlated as can be seen from Table
B3 with pairwise correlations ranging from 0.577 to 0.957.
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To reduce the number of measures, we extract the first principal component of the
correlation matrix in Table B3. The according eigenvalue accounts for a share of 79.86%
of total variation. The variable loadings of the original five variables on the the variable
PATVALit are shown in Table B4. As is convenient for interpretability, the results indicate
a positive relationship among the patent-value variable and the original five components.

Appendix B3: Missing Value Imputation for WDI-Series

To ensure the widest possible coverage of simultaneously observed instances on the de-
pendent variable and a measure of inequality by data on other explanatory variables, we
pre-process the raw-data extracted from the WDI with respect to missing values before
defining the regressors used above. In specific, the pattern of missingness faced here is
one mainly due to gaps in the time series.

Besides total population (SP.POP.TOTL) which is always observed when required,
these raw-variables include real GDP in local currency units (NY.GDP.MKTP.CN),
net-inflows and net-outflows of foreign direct investment as a share of GDP (BX.KLT.
DINV.WD.GD.ZS and BM.KLT.DINV. WD.GD.ZS), the number of technical and sci-
entific journal articles (IP.JRN. ARTC.SC), and capital formation as a share of GDP
(NE.GDI.TOTL.ZS) with the regarding WDI-internal names given in parentheses.

For these series a share of 59.97% of the raw-data is completely observed, for 18.93%
one variable has a missing entry, for 7.11% two, for 4.91% three, for 4.20% four, and for
5.34% five out of six variables have a missing entry.

For imputation we apply the missing forests algorithm suggested in Bühlman and
Stekhoven (2012). Their multiple imputation algorithm is based on iterative prediction
of the missing data form random forest models on the observed part of the data. The
pattern of missingness assumed here is that missingness does not depend on unobservables
(missingness at random). In order to exploit information in the panel structure of the
data, we run three steps of imputation: Firstly, we employ missing forests imputation
country-wise exploiting the time series variation for each country, then we apply missing
forests imputation for each point in time exploiting cross-sectional variation. In a third
step, adding the imputed values from these two exercises as additional predictors of
missingness to the original data, the missing forests algorithm is applied to impute the
missing values in the original data for all observations simultaneously. This is a practical
approach which yields a better quality of imputation for the data at hands. Each missing
forests imputation relies on 1,500 trees.

Figure B1 plots the densities of the indicated original five variables exhibiting missing-
ness versus their imputed versions. Computing the normalized root-mean-squared error,
measuring the quality of the imputation, we obtain a value of approx. 0.080 indicating
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good quality of the imputation. Moreover, we replicate the main results presented in
this paper based on the original WDI-series and do not find namable sensitivities. These
additional results can be found in the online appendix to this paper.

Appendix B4: Further Estimation Results

[TO BE ADDED]
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Table B3. Pair-wise correlations among family-forward citation measures

log(PREVIOUSit) log(CURRENTit) log(AVSUBit) log(NODESTINSit)

log(CURRENTit) 0.931⇤⇤⇤

log(AVSUBit) 0.957⇤⇤⇤ 0.911⇤⇤⇤

log(NODESTINSit) 0.688⇤⇤⇤ 0.622⇤⇤⇤ 0.655⇤⇤⇤

log(NOSIMULTDESTINSit) 0.584⇤⇤⇤ 0.696⇤⇤⇤ 0.577⇤⇤⇤ 0.871⇤⇤⇤

⇤⇤⇤ indicates significance at 0.01 applying Bonferroni adjusted inference. Correlation matrix based on 4,506,447 observa-
tions on family-citations for 1,559,877 di↵erent DOCDB-families for innovations made in 1980-2013.

Table B4. Factor loadings on first principal component

Variable loadings on PATVALit

log(PREVIOUSit) 0.468⇤⇤⇤

(0.000)
log(CURRENTit) 0.468⇤⇤⇤

(0.000)
log(AVSUBit) 0.464⇤⇤⇤

(0.000)
log(NODESTINSit) 0.423⇤⇤⇤

(0.000)
log(NOSIMULTDESTINSit) 0.410⇤⇤⇤

(0.000)

⇤⇤⇤ indicates significance at 0.01.
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Figure B1. Densities of imputed (solid) versus original data (dashed)
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