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Abstract: The rapid economic growth, the exodus from rural to urban areas, and the associated
extreme urban development that occurred in China in the decade of the 2000s have severely
impacted the environment in Beijing, its vicinity, and beyond. This article presents an innovative
approach for assessing mega-urban changes and their impact on the environment based on the
use of decadal QuikSCAT (QSCAT) satellite data, acquired globally by the SeaWinds scatterometer
over that period. The Dense Sampling Method (DSM) is applied to QSCAT data to obtain reliable
annual infrastructure-based urban observations at a posting of ~1 km. The DSM-QSCAT data,
along with different DSM-based change indices, were used to delineate the extent of the Beijing
infrastructure-based urban area in each year between 2000 and 2009, and assess its development
over time, enabling a physical quantification of its urbanization which reflects the implementation of
various development policies during the same time period. Eventually, as a proxy for the impact of
Beijing urbanization on the environment, the decadal trend of its infrastructure-based urbanization
is compared with that of the corresponding tropospheric nitrogen dioxide (NO2) column densities
as observed from the Global Ozone Monitoring Experiment (GOME) instrument aboard the second
European Remote Sensing satellite (ERS-2) between 2000 and 2002, and from the SCanning Imaging
Absorption SpectroMeter for Atmospheric CHartographY aboard of the ESA’s ENVIronmental
SATellite (SCIAMACHY /ENVISAT) between 2003 and 2009. Results reveal a threefold increase of the
yearly tropospheric NO2 column density within the Beijing infrastructure-based urban area extent in
2009, which had quadrupled since 2000.

Keywords: dense sampling method; Beijing; urbanization; change indices; tropospheric NO2 columns

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) Working Groups (WG) II and III
recognize that a large fraction of greenhouse gases from power generation, industry, transportation,
and consumption can be attributed to human settlements [1]. Due to the rapid growth of urban
populations, and associated infrastructure, cities are becoming increasingly vulnerable to both climate
change, which may exacerbate both natural and man-made hazards [2–4], and pollution [5,6].
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The economic boom that took place in rapidly developing countries, such as those observed
in China and India in the 2000s, and the associated great exodus from rural to urban areas, has led
to a rapid and extreme urban development that has affected the environment not only in the urban
vicinity, but also at regional [7,8] and, perhaps, global scales [9]. Nevertheless, major gaps exist in
the assessment of the impact of urbanization on the environment at multiple spatial and temporal
scales; mostly because of the difficulty of consistently estimating the extent and typology of urban
areas through time and space [10] and the subsequent, and often biased, distribution of environmental
monitoring stations [11,12].

Indeed, administrative extents of urban areas are often defined differently and inconsistently
both within and among countries, which may not be representative of the underlying physical
infrastructure [13]. Furthermore, the use of moderate spatial resolution optical remote sensing
data, such as multi-temporal and globally available Landsat Enhanced Thematic Mapper Plus
(ETM+) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,
to consistently estimate the type and extent of urban areas over space and time has proven to be a
substantial challenge due to the presence of clouds, a recurrent phenomenon in tropical regions [14],
the considerable intraurban and interurban spectral heterogeneity [15], and the spectral similarity
among many impervious surfaces and their surrounding natural environments [16,17]. While
high spatial resolution optical data can resolve individual components of the urban mosaic [18],
such data are only available for small areas at irregular points in time [19]. Similarly, the
National Oceanic and Atmospheric Administration (NOAA) Defense Meteorological Satellite
Program Operational Line Scanner (DMSP-OLS) and the Suomi National Polar-Orbiting Partnership
(NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) night light data present a number of
well-known limitations precluding their use to solely distinguish between different urban typologies
and quantitatively assessing the horizontal and vertical growth of urban areas over space and
time [20–22]. Synthetic aperture radar (SAR) data, which could potentially be used to consistently
map infrastructure-based urban areas [23], are generally not collected globally over regular time
intervals—with partial exceptions represented by the Shuttle Radar Topography Mission (SRTM) [24],
which collected global SAR data in February 2000, and the TanDEM-X satellite, which collected global
SAR data in 2011–2012 [25]. Very high-resolution spotlight SAR [26] and Lidar data [27] have been
successfully used to map infrastructure-based urban areas at a meter or even sub-meter resolution,
but their coverage is extremely limited in both space and time [27].

In this study, an innovative approach for consistently and quantitatively assessing
infrastructure-based urbanization over space (i.e., horizontal and vertical urbanization/urban growth)
and time, and its impact on the environment, is demonstrated for Beijing as a case study (Figure 1).
Such an approach is based on the use of (i) decadal level L1B Ku-Band (at the frequency of 13.4 GHz
and wavelength of 2.24 cm) radar backscatter data, collected by the SeaWinds scatterometer aboard the
QuikSCAT satellite (henceforth referred to as QSCAT data) [28], and (ii) decadal tropospheric nitrogen
dioxide (NO2) column densities, retrieved from the Global Ozone Monitoring Experiment (GOME)
spectrometer on the European Remote Sensing Satellite 2 (ERS-2) [29,30] and the SCanning Imaging
Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the European Space
Agency’s (ESA) ENVIronmental SATellite (ENVISAT) [31].

First, the Dense Sampling Method (DSM), developed at the Jet Propulsion Laboratory of the
National Aeronautics and Space Administration [19], is applied to QSCAT slice data to obtain reliable
annual physical infrastructure-based urban observations at 1-km posting. The DSM-processed QSCAT
data (henceforth referred to as DSM data) are then used to (i) estimate the extent of the Beijing
infrastructure-based urban area in each year of the 2000s, (ii) distinguish among different urban
typologies, and (iii) define four different DSM-based indices enabling a quantitative assessment of
land cover and intra-urban changes over time. Ultimately, to evaluate the impact of the Beijing
infrastructure-based urbanization on the environment in terms of air pollution, its decadal urbanization
trend is compared with that of the corresponding tropospheric nitrogen dioxide (NO2) column densities.
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2006 [32]) and represents a prominent example of rapid urbanization in a strongly emerging 
economy. During the same period, Beijing’s economic growth was accompanied by the development 
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Figure 1. Schematic overview of the approach used for assessing Beijing infrastructure-based
urbanization over space and time and its impact on the environment.

2. Study Area

Beijing (Figure 2) has experienced rapid economic growth in the past two decades (the city’s
gross domestic product increasing from 28.49 billion CNY in 1986 to 787 billion CNY at the end of
2006 [32]) and represents a prominent example of rapid urbanization in a strongly emerging economy.
During the same period, Beijing’s economic growth was accompanied by the development of its urban
area, which was planned through three urban Master Plans in 1982, 1992, and 2004 [33].

Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 25 

 

urbanization trend is compared with that of the corresponding tropospheric nitrogen dioxide (NO2) 
column densities. 

 
Figure 1. Schematic overview of the approach used for assessing Beijing infrastructure-based 
urbanization over space and time and its impact on the environment. 

2. Study Area 

Beijing (Figure 2) has experienced rapid economic growth in the past two decades (the city’s 
gross domestic product increasing from 28.49 billion CNY in 1986 to 787 billion CNY at the end of 
2006 [32]) and represents a prominent example of rapid urbanization in a strongly emerging 
economy. During the same period, Beijing’s economic growth was accompanied by the development 
of its urban area, which was planned through three urban Master Plans in 1982, 1992, and 2004 [33]. 

 
Figure 2. Beijing geographical setting: (a) location of the Beijing Municipality Area (dark gray area) 
and (b) Beijing administrative units [34]. Coordinates refer to Geographic Coordinate System World 
Geodetic System (GCS WGS) 1984. 

Figure 2. Beijing geographical setting: (a) location of the Beijing Municipality Area (dark gray area)
and (b) Beijing administrative units [34]. Coordinates refer to Geographic Coordinate System World
Geodetic System (GCS WGS) 1984.

The city’s development has been characterized by two primary phases that can be distinguished
based on their urban growth rate and mechanism. In particular, the period 1996–2001 was characterized



Remote Sens. 2020, 12, 652 4 of 24

by strong development along roads, followed by new city developments, and limited growth in areas
around the city, while the period 2001–2006 experienced the highest development in riverside areas,
followed by development in the city, and an increase of roadside built-up areas [35].

Furthermore, the urban development within the Beijing Municipality Area was significantly
different from the that detailed in the plan. Indeed, during the two planning periods of 1983–1993 and
1993–2005, more urban development was carried out outside the planned urban growth boundaries
than within [10]. Nowadays, Beijing Municipality covers a total area of 16,410 km2 with a population
of about 21.5 million [36], which is almost twice that of 1976 [33]–this coincided with the number of
vehicles increasing from 0.82 to more than 3.5 million since 1994 [37].

The simultaneous increase of vehicles and industrial activities has significantly increased
the sources of emissions of both volatile organic compounds and NOx (NO+NO2). Since 1998,
Beijing adopted a series of measures in an effort to both control and decrease air pollution [32].
However, even though some air quality improvements were achieved by the end of the 1990s, air
pollution worsened again during the 2000s due to the impressive growth rate that characterized the
same period [7].

Beijing is also surrounded by three other highly populated, urbanized, and industrialized provinces,
with four large cities having between 3.3 and 9.1 million inhabitants [7], which are considered significant
contributors in the deterioration of Beijing’s air quality [8,37,38].

3. Materials and Methods

3.1. QSCAT Data and Dense Sampling Method for Urban Observations

Level L1B Ku-Band QSCAT data, available through the NASA Jet Propulsion Laboratory Physical
Oceanography Distributed Active Archive Center (PO.DAAC; https://podaac.jpl.nasa.gov/dataset/
QSCAT_LEVEL_1B_V2), were continuously collected between July 19th, 1999 and November 22nd,
2009 by the SeaWinds scatterometer.

The data were collected using a scanning pencil-beam antenna across a large swath (as wide
as 1800 km) over Earth’s surface, as the QuickSCAT satellite moved along drifting orbits around
the Earth [39]. QSCAT data present a number of clear advantages, with respect to other remote
sensing-based datasets, for providing consistent physical infrastructure-based urban observations
without gaps in time or space [19,21]. Indeed, (i) QSCAT data have a daily coverage of about 90%
of Earth’s surface regardless of cloud coverage or level of light, (ii) QSCAT backscatter responses
are dependent on the number, size, and construction materials of buildings and other structures
(e.g., higher backscatter for more structures, larger and taller buildings, and stronger construction
materials such as steel versus wood), and (iii) QSCAT drifting orbits allow the azimuth diversity in the
backscatter measurements at each targeted area to detect the presence of buildings and other structures
regardless of their directional alignment. Furthermore, QSCAT backscatter measurement is accurate
to 0.2 dB (3-σ); [40], which is equivalent to approximately 1.57% in root-mean-square error, enabling
QSCAT to detect large and rapid, as well as small and slow, environmental changes [41].

However, an important limitation of the raw QSCAT data is represented by their low spatial
resolution—about 25 km in azimuth by 37 km in range [28], which is clearly inadequate to delineate and
monitor inter-annual changes in intraurban areas. To overcome this limitation, DSM is used to increase
the spatial resolution of the QSCAT data, at the expense of their temporal resolution (by reducing the
latter from daily to annual), and thus to enable their use for assessing urbanization and its effect on
multiple environmental matrices [13,41–44].

https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_1B_V2
https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_1B_V2
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Here, DSM is summarized to provide a basic understanding of the DSM data used in this study.
At each location, with original QSCAT data densely compiled annually and posted at 30 arc seconds
(approximately 1 km at the equator) in latitude and longitude (World Geodetic System 84; WGS84),
a mathematical transform, called the Rosette Transform is applied to calculate an ensemble average of
measured QSCAT backscatter values, (dB), using Equation (1):

σ0 =
1
N

N∑
i=1

σ0(φi, ti) = σ0M +< (1)

where N is the total number of scatterometer footprints centered at the considered location, and σ0(φi, ti)

is the backscatter value measured at time ti and azimuth direction φi of each footprint. In (1), σ0M is
the mean part obtained by the Rosette Transform, and< represents the residual from the zero-mean
fluctuating part of the radar backscatter.

For a target like an urban area, having certain persistent characteristics over time whilst transient
perturbations occur (e.g., new/less structures, traffic, rain, snowfall, etc.), σ0M tends to a significant and
stable value while< becomes small with sufficiently large number of samples [19]. Thus, for each
considered location, by sacrificing the temporal resolution of the QSCAT data over a long time period
(over a year, for instance) in order to collect a sufficient number of samples, it is possible to (i) obtain a
stable value for the mean part, and (ii) characterize the perturbations represented by the fluctuation
term by an Index of Variability, IV, using Equation (2):

IV = 1 + (δ/σ0) (2)

where σ0 (dB) is the linearized ensemble average of measured QSCAT backscatter values, and δ (dB) is
the linearized standard deviation of σ0 (dB) [19].

Thus, each DSM dataset is produced from a rectangular array of points, uniformly gridded at 30 arc
seconds in latitude and in longitude (GCS-WGS84), with each point containing a stable σ0 value and
the associated IV. Here, QSCAT data acquired in the 2000s are used to generate annual DSM σ0 and IV
gridded datasets of the study area (Figures 3 and 4, respectively) bounded by latitudes 39.375◦S–40.5◦N
and longitudes 115.75◦E–117.25◦E. In Figure 3 (and in subsequent figures), the “filtered” Beijing
1994–1995 stable night light-based extent [20], obtained using a 10% detection frequency threshold to
include only persistent lights from the city while excluding gas flares and ephemeral events such as
fires, is used as a common and consistent spatial reference. This is to better visualize the spatiotemporal
change of the Beijing DSM-based urban area extent (see also Section 4.1). Refer to Figure S1, available in
the Supplementary Materials, to visually compare annual DSM-based urban area extents against the
corresponding intercalibrated stable night light data [45] for each year in the 2000s.

Beyond the capability of delineating boundaries demarcating DSM-based urban and rural/natural
areas, σ0 values can also be used to (i) distinguish among different intra-urban typologies, such as
city cores (including commercial and industrial centers) with larger building volume and residential
areas with lower building volume, and (ii) monitor their changes over time (see Section 4.2). This is
because the value of σ0 in urban areas is dependent on the 3D building volume, with a consistent
linear relationship over a large dynamic range without a saturation problem [27]. It is noted that the
capability of DSM data to capture physical urban patterns has been validated both in two-dimensional
(2D) extent [46] and in three-dimensional (3D) building volume [27].
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Figure 4. Annual DSM IV gridded dataset of the study area, from 2000 to 2010, with a posting of 30 arc
seconds (GCS WGS 1984). The “filtered” Beijing 1994–1995 stable night light extent [20] (black contour)
is overlaid on all datasets as a common and consistent spatial reference area.

3.2. Tropospheric NO2 Columns

Tropospheric NO2 column densities can be measured from space using the Differential Optical
Absorption Spectroscopy (DOAS) Method [47]. The data used in this study, representing tropospheric
NO2 column densities averaged annually and posted at 7.5 arc minutes (approximately 14 km at the
equator), are derived from GOME [29] for 2000–2002 and SCIAMACHY [31] for 2003–2009 [48].

GOME and SCIAMACHY tropospheric NO2 observations (expressed as 1015 molec/cm2) are
available through the University of Bremen IUP DOAS data archive (http://doas-bremen.de/no2_from_
gome.htm and http://doas-bremen.de/no2_tropos_from_scia.htm, respectively) and can be successfully
used to observe the temporal evolution of tropospheric NO2 columns worldwide [49–51]. It is important
to note that although the uncertainty of absolute values for individual NO2 observations may be
considerable, uncertainty is significantly reduced when averaging over a long period such as one
year [52]. Furthermore, since many sources of uncertainty are systematic, relative values such as those

http://doas-bremen.de/no2_from_gome.htm
http://doas-bremen.de/no2_from_gome.htm
http://doas-bremen.de/no2_tropos_from_scia.htm
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used in this study, representing the variation of tropospheric NO2 column densities over time, have an
even lower uncertainty, which is estimated to be around 15% over China [48].

4. Results and Discussion

4.1. Beijing Urban Extent

Although values of σ0 are expected to be high within urban areas, where structures are located
(e.g., houses, factories, shopping malls, skyscrapers, road network, etc.), in some cases it may be
difficult to distinguish high-backscatter urban areas from high-backscatter natural areas such as forests
or snowcapped mountain peaks [53]. Thus, backscatter values need to be combined with IV values
to delineate the actual extent of infrastructure-based urban areas. Indeed, due to the anisotropy of
structures, which behave as radar corner reflectors aligned in a certain azimuth direction, the angular
variability of the backscatter is typically larger in urban areas than in natural environments where
scatterer orientations are more random and scattering effects are mostly incoherent [19].

Hence, co-registered DSM σ0 and IV gridded datasets can be combined to correctly identify grid
cells characterized by the presence of structures. This can be done by identifying (i) an appropriate
σ0 threshold value to select all grid cells potentially representing urban areas (i.e., all grid cells
characterized by backscatter values higher than the considered σ0 threshold), and (ii) an IV threshold
value to exclude cells with high-backscatter natural targets from previously selected all grid cells
(i.e., to exclude all grid cells characterized by backscatter values higher than the considered σ0 threshold
but lower IV values than the considered IV threshold). In this study, to delineate the extent of the
Beijing urban area in each year from 2000 to 2009, each annual DSM σ0 gridded dataset (Figure 3) is
used in combination with the decadal (2000–2009) DSM IV gridded dataset representing how much
change occurred within each grid cell during the entire decade (Figure 5).
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seconds (GCS WGS 1984). The black contour represents the “filtered” Beijing 1994–1995 stable night
light extent [20].

For each year, the decadal (2000–2009) DSM IV gridded dataset, is used instead of the corresponding
annual DSM IV dataset, to better distinguish between high backscatter grid cells representing urban
areas and high backscatter grid cells representing natural/rural areas. By using stable decadal IV
values, it is possible to identify a set of potential urban (SIV) versus natural/rural grid cells for each
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year, and then use the above-the-threshold σ0 value to determine the actual urban grid cells in each
annual SIV. It is noted that a natural/rural grid cell in 2000 not becoming urban will have a low decadal
IV value, while a natural/rural grid cell becoming urban at some point will have a higher decadal IV
value. On the contrary, the decadal IV value for a grid cell that was urban from the beginning will be
high. Thus, the role of IV is to detect grid cells that are already urban or may become urban; for those
pixels that can be urban, DSM σ0 is used to monitor annual urban change throughout the 2000s.

To identify the optimal threshold values for σ0 and decadal IV, both thresholds were iteratively
adjusted by comparing the result from each iteration with high-resolution Landsat images of the
city of Wuhan (China)—used as a test case for calibrating and validating the urban classification
algorithm [27,43]. The annual results (Figure 6), obtained using an optimal σ0 threshold of –8.0 dB and
decadal IV threshold of 2.0, show that the Beijing infrastructure-based urban area (i) is much smaller
than the 1994–1995 stable night light extent in the early 2000s (i.e., 2000–2003) due to the well-known
blooming effect [22], (ii) becomes comparable to it in the mid-2000s (i.e., 2004–2006), and (iii) finally
sprawls well beyond it in the late 2000s (i.e., 2007–2009).
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The urban expansion was extensive in the city’s southeastern sector and to a lesser degree in
the northern districts of Huairou and Miyun. The presence of mountainous areas in the western and
northwestern parts of the study area restricted the urban expansion in these directions.

The gridded DSM-based urban area extent datasets in Figure 6 and the ASPHAA algorithm [54]
were then used to calculate the surface of the Beijing urban area extent in each year of the 2000s and its
corresponding annual growth (Table 1).

Table 1. Surface of the Beijing DSM-based urban area extent in each year of the 2000s and its
corresponding annual growth.

Year Surface of Urban Area Extent Annual Growth (with Respect to the Previous Year)

No. of Grid Cells km2 km2 %

2000 1676 1104.83
2001 2002 1319.74 214.9 19.5
2002 2423 1597.23 277.5 21.0
2003 2906 1915.55 318.3 19.9
2004 3477 2291.79 376.2 19.6
2005 3759 2477.53 185.7 8.1
2006 4432 2920.76 443.2 17.9
2007 5035 3317.93 397.2 13.6
2008 5999 3952.85 634.9 19.1
2009 6282 4139.33 186.5 4.7

The surface of Beijing’s DSM-based urban area extent quadrupled in the 2000s, with an increase of
3035 km2 between 2000 and 2009, corresponding to an average annual increase of 337 km2. DSM-based
estimates for 2000, 2007, and 2009 were compared to other independent estimates referring to these
years. In particular, the 2000 DSM-based estimate is 6.3% bigger than the corresponding Landsat-based
estimate of 1035 km2 [55], the 2007 estimate is just 0.2% smaller than the Constructive Land area
estimate of 3325.57 km2 from the Beijing Municipal Bureau of Statistics [56], and the 2009 estimate
is 7.6% smaller than the 2009 official urban area extent of 4480 km2 that includes inner and outer
suburbs—with the remaining 12,239.9 km2 of the Beijing Municipality consisting of rural areas that
include nature reserves and lightly populated mountains [57].

While the cumulative growth of the surface of the Beijing urban area extent has an overall linear
trend in the 2000s (Figure 7), the year-to-year growth rate shows a large variability (Table 1), with an
average value of about 16% and three significant drops (Figure 8) reflecting the implementation of
different development policies during that period.
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corresponding previous year).

In particular, the first major drop observed in 2005 (of about −12% with respect to that in the
previous year) can be related to the growth reduction policy implemented in 2004 to mitigate the
increasing social pressure and discontent associated with the mega rapid urbanization that was taking
place in China [58]. The drop observed in 2007 (of about −4.5% with respect to that in the previous
year) can be associated with the decision of the Chinese government to reassess the preparation of
the 2008 Olympic Games, which led to the postponement of construction deadlines by a year [58].
Finally, the third major drop observed in 2009 (of about −14% with respect to that observed in
the previous year), in turn, can be interpreted as the inherent consequence of the Olympic-related
construction boom that occurred earlier in 2008.

4.2. DSM-Based Change Indices

As mentioned in Section 3.1 and seen in Figure 3, for each year, the corresponding DSM σ0 gridded
dataset can be used to identify the inner core of Beijing (light-gray to red/light-orange), representing a
well-established urban area with dense housing and tall buildings, its urban/suburban area (yellow to
green) transitioning into its greater outskirt area with sparse houses (cyan), and the surrounding natural
environment (blue). One can clearly observe the significant expansion and build-up characterizing the
Beijing core with high backscatter [21] and the distinct concentric sprawl representing Beijing’s urban
development during the 2000s [10,59].

Thus, annual DSM σ0 gridded datasets can also be used to monitor changes over time, both within
urban areas and in their rural/natural surroundings. To this end, to quantitatively investigate these
changes, four different DSM-based indices, described in the following subsections, were developed.

4.2.1. Surface Change Indices

Two different Surface Change Indices were developed to identify grid cells changing or remaining
stable in both urban and rural/natural areas over time. The most simple and intuitive index, computed at
the grid cell level and expressed in decibel (dB), is represented by the difference between the 2009 and
2000 DSM σ0 grid cell values. This index is calculated using Equation (3)

∆σ0 = σ0(2009) − σ0(2000) (3)

where σ0(2009) and σ0(2000) represent the DSM σ0 value in each grid cell in 2009 and 2000, respectively.
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The Surface Change Index ∆σ0 describes the total change which occurred between 2000 and 2009
(Figure 9). High positive values primarily indicate highly urbanized areas while negative values
are likely associated with significant urban decay (e.g., demolition and/or abandonment) and/or
environmental degradation (e.g., deforestation leading to denuded land). The ∆σ0 gridded dataset
(Figure 9) shows larger changes both in the inner core of Beijing and in the urbanized area around
it (i.e., the area corresponding to the grid cells classified as nonurban in 2000 and as urban in 2009).
Low values of ∆σ0 indicate that the rural/natural surroundings remained relatively stable in the
2000–2009 time period.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 25 

 

4.2. DSM-Based Change Indices 

As mentioned in Section 3.1 and seen in Figure 3, for each year, the corresponding DSM 𝜎ത 
gridded dataset can be used to identify the inner core of Beijing (light-gray to red/light-orange), 
representing a well-established urban area with dense housing and tall buildings, its urban/suburban 
area (yellow to green) transitioning into its greater outskirt area with sparse houses (cyan), and the 
surrounding natural environment (blue). One can clearly observe the significant expansion and 
build-up characterizing the Beijing core with high backscatter [21] and the distinct concentric sprawl 
representing Beijing’s urban development during the 2000s [10,59]. 

Thus, annual DSM 𝜎ത gridded datasets can also be used to monitor changes over time, both 
within urban areas and in their rural/natural surroundings. To this end, to quantitatively investigate 
these changes, four different DSM-based indices, described in the following subsections, were 
developed. 

4.2.1. Surface Change Indices 

Two different Surface Change Indices were developed to identify grid cells changing or remaining 
stable in both urban and rural/natural areas over time. The most simple and intuitive index, 
computed at the grid cell level and expressed in decibel (dB), is represented by the difference between 
the 2009 and 2000 DSM 𝜎ത grid cell values. This index is calculated using Equation (3) ∆𝜎ത = 𝜎ത(2009) − 𝜎ത(2000) (3)

where 𝜎ത(2009)  and 𝜎ത(2000)  represent the DSM 𝜎ത  value in each grid cell in 2009 and 2000, 
respectively. 

The Surface Change Index ∆𝜎ത describes the total change which occurred between 2000 and 
2009 (Figure 9). High positive values primarily indicate highly urbanized areas while negative values 
are likely associated with significant urban decay (e.g., demolition and/or abandonment) and/or 
environmental degradation (e.g., deforestation leading to denuded land). The ∆𝜎ത gridded dataset 
(Figure 9) shows larger changes both in the inner core of Beijing and in the urbanized area around it 
(i.e., the area corresponding to the grid cells classified as nonurban in 2000 and as urban in 2009). 
Low values of ∆𝜎ത indicate that the rural/natural surroundings remained relatively stable in the 
2000–2009 time period. 

 
Figure 9. Gridded dataset, with a posting of 30 arc seconds (GCS WGS 1984), representing the Surface
Change Index ∆σ0 for the 2000s defined as the difference calculated subtracting the DSM ∆σ0 values for
2000 from the DSM ∆σ0 values for 2009. The black contour represents the “filtered” Beijing 1994–1995
stable night light extent [20]. The + sign marks the “hotspot” location showed in Figure 10.
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As an important capability, the ∆σ0 gridded dataset can be used to identify urbanization “hotspots”,
characterized by high values of ∆σ0, where the largest changes between 2000 and 2009 occurred due
to significant build-up. One of these urbanization “hotspots”, where many large buildings were
constructed between 2003 and 2009, is detected in the westernmost part of the province of Tongzhou
(plus sign in Figure 9) and verified with high-resolution images (Figure 10).

The second index, computed at the grid cell level and expressed in decibel per year (dB/year),
is calculated as the slope of the linear regression line obtained by plotting annual DSM ∆σ0 grid cell
values against time over all years in the 2000s. This index is calculated using Equation (4):

S(σ0) = d[F(σ0, t)]/dt (4)

where d[F(σ0, t)]/dt represents the time derivative of the linear regression function F(σ0, t) of σ ¯0 in
each grid cell.

The Surface Change Index S(σ0) describes the rate of change of the land cover throughout the
2000s. Large positive slope values primarily indicate urban development within the corresponding grid
cells, with greater slope values associated with significantly higher urban development. In contrast,
null or negative slope values indicate grid cells typically associated with the steadier rural and natural
areas surrounding Beijing.

Since S(σ0) employs all annual data in the 2000s, rather than just the difference between two
years as in (3), it has the advantage of being more stable compared to the noisier results of ∆σ0. This is
evident when looking at the urban “hotspot” located in the Tongzhou province of Beijing, where
the S(σ0) gridded dataset contains a more consistent set of very high value grid cells (i.e., red cells
in Figure 11) compared to that observed in the ∆σ0 gridded dataset, which shows an inconsistent
number of very high value grid cells (i.e., red cells) mixed with others having lower values (Figure 9 vs.
Figure 11). This result illustrates the advantage of DSM data providing observations without gaps in
time and space for rural/urban monitoring.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 25 
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Figure 11. Gridded datasets, with a posting of 30 arc seconds (GCS WGS 1984), representing the Surface
Change Index S(σ0) in the 2000s as the slope calculated from the linear regression of ∆σ0 values using
all years between 2000 and 2009. The black contour represents the “filtered” Beijing 1994–1995 stable
night light extent [20].
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The coefficient of determination R2 associated with the regression line is calculated as an additional
data product from the S(σ0) regression. Since R2 represents how well the response variable variation
can be explained by a linear model, high values of R2 indicate a consistent linear trend that can be
associated with planned urban development. Conversely, low values of R2 indicate more random
natural characteristics, with transient or intermittent variations, in areas remaining undeveloped.
The R2 gridded dataset (Figure 12) seems to confirm that the urban development in both the inner core
of Beijing and its surroundings are the results of structural build-up.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 25 
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4.2.2. Development Indices

To quantitatively assess the horizontal and vertical growth of Beijing urban areas over time,
three different DSM-based aerial indices, partitioned on the basis of different urban area extents,
were defined. First, the Urban Development Index (UDI), calculated for each year in the 2000s with
respect to 2009, represents a quantitative urbanization measure accounting for both horizontal and
vertical growth of areas identified as urban in 2009. The yearly UDI is calculated by averaging all DSM
σ0 grid cell values within the 2009 Beijing urban area extent. This index is calculated using Equation (5):

UDI(y) =
N(2009)∑

i=1

σ0i(y)/N(2009) (5)

where σ0i(y) is the DSM backscatter value (dB) of a grid cell i in the year y classified as urban in 2009,
and N(2009) is the total number of grid cells classified as urban in 2009.

As defined, UDI(y) accounts for grid cells both within and outside the urban area extent in a given
year y classified as urban in 2009. Thus, since backscatter correlates to the presence of structures [19],
UDI(y) represents the total urban growth/development integrated over the existing urban area extent,
with more and larger buildings, as well as over the nonurban areas that would become urban by 2009.
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The persistently increasing UDI(y) for Beijing from 2000 to 2009, that closely follows a linear trend
(Figure 13), indicates that in this period Beijing experienced a continuous constant urban growth,
in terms of both number and size of its physical structures. The drop observed in 2005 (Figure 8)
represents an exceptional case, as a consequence of a temporary policy change in the overall decadal
urban build-up and expansion of Beijing [58].Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 25 
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Figure 13. Yearly Urban Development Index (UDI) calculated with respect to the 2009 Beijing urban
area extent. The regression fit function (black line) is UDI = 0.3628 × y − 9.1267 where y = year − 1999,
and R2 = 0.998 that explains 99.8% of the UDI with respect to the linear trend.

Second, the Building Development Index (BDI), for each year in the 2000s, represents a quantitative
indicator of having more and/or larger structures, being built within the DSM-based urban area extent
delineated in each year (see Section 4.1). The yearly BDI is calculated by averaging, for a given year,
the values of all DSM σ0 grid cells located within the urban area extent referring to the same year.
This index is calculated using Equation (6):

BDI(y) =
N(y)∑
i=1

σ0i(y)/N(y) (6)

where σ0i(y) is the DSM backscatter value (dB) of a grid cell i classified as urban in the year y and N(y)
is the total number of grid cells classified as urban in the year y.

As defined, BDI(y) accounts only for what occurs within the urban area extent occupied by buildings
and other structures in each year, while excluding areas classified as nonurban. Thus, as expected,
in each year the value of BDI (Figure 14) is higher than the corresponding UDI value (Figure 13),
since the latter accounts for both urban and nonurban areas. Therefore, BDI(y) tracks the vertical
built-up areas more closely than UDI(y), with the latter being more representative of the general
long-term urban development. This is evident in that the BDI values in 2005 and 2006 (see ellipse in
Figure 14) are similar as a direct consequence of the curb on urban development in 2005 [58].
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Figure 14. Yearly Building Development Index (BDI) within the Beijing urban area extent of each year
in the 2000s. The regression fit function (black line) is BDI = 0.0763 × y − 6.261 where y = year − 1999,
and R2 = 0.972. The ellipse marks the BDI values for 2005 and 2006 that are similar.

The results from the combination of UDI and BDI highlight two simultaneous processes
characterizing Beijing’s urban development in the 2000s including (i) the urban expansion/sprawl due
to the transformation of nonurban to urban areas and (ii) the densification/upward height of buildings
due to increasing construction activities in already existing urban areas.

Third, the Vertical Development Index (VDI), calculated for each year in the 2000s with respect to
year 2000, represents a quantitative urbanization measure accounting for the vertical growth within
the inner core of Beijing identified as urban in 2000. The yearly VDI(y) is calculated by averaging all
DSM σ0 grid cell values within the 2000 Beijing urban area extent using Equation (7):

VDI(y) =
N(2000)∑

i=1

σ0i(y)/N(2000) (7)

where σ0i(y) is the DSM backscatter value (dB) of a grid cell i in the year y classified as urban in 2000
and N(2000) is the total number of grid cells classified as urban in 2000.

Confined within the urban extent of 2000, here referred to as the inner core of Beijing,
VDI characterizes its physical growth, between 2000 and 2009, due to more and larger structures.
As such, VDI(y) specifically tracks the mostly vertical build-up, represented by an increase in the total
building volume, within the inner core of Beijing (Figure 15).

Of all of the development indices described above, VDI(y) has that largest value in each year
of the 2000s, confirming that the internal core of Beijing contains the most and the largest build-up.
Moreover, VDI(y) has the largest rate of change (i.e., slope of the regression fit function), compared to
those of UDI and BDI, revealing the continuous and strong development of the inner core of Beijing.
Together, all of the development indices contribute to a more complete characterization of Beijing
urban change in the 2000s, from the Beijing inner core to its outward expansion.
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4.3. Beijing NO2 Pollution

Rapid urbanization and economic growth, along with the associated NOx emissions, have a key
role in the increase of tropospheric NO2 [47,49,50]. High concentrations of NO2 in the troposphere are
harmful to human health by both aggravating respiratory diseases in the short term and contributing
to onset of asthma in the long term [60].

For each year in the 2000s, Figure 16 presents satellite observations of yearly tropospheric NO2

column densities (see Section 3.2) over the study area, overlapped by the corresponding Beijing
DMS-based urban area extent (see Section 4.1).

Tropospheric NO2 column density values were low in the early 2000s while increasing markedly
between 2003 and 2009 (Figure 16), along with Beijing’s urban development during the same period.
Nevertheless, an obvious decrease can be observed in 2008 (Figure 16), corresponding to the year of the
Olympic Games. Indeed, because of the high levels of air pollution in Beijing prior to 2008, a series of
control measures were implemented to substantially reduce air pollution during the pre-Olympic and
the Olympic period [61,62]. In 2009, however, right after the Olympic year, tropospheric NO2 column
density values starkly increased again to a more serious level compared to 2007 (Figure 16).

As a quantitative assessment of tropospheric NO2 pollution, column densities (1015 molec/cm2)
are spatially averaged over the Beijing DSM-based urban area extent in 2009 for each year in the
2000s. Results clearly suggest an increasing trend of tropospheric NO2 column densities in the 2000s,
although with significant variations from year to year (Figure 17).

Notable are (i) the 17.7% decrease between 2007 and 2008 (from 27.9 × 1015 in 2007 to
23.7 × 1015 molec/cm2 in 2008), and (ii) the significant 29.5% increase after the Olympic year (from 23.7 × 1015

in 2008 to 30.7 × 1015 molec/cm2 in 2009) which effectively negated the benefit from the pre-2008 air
cleanup effort.
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all datasets as a common and consistent spatial reference area.

A regression analysis between yearly UDI values and yearly tropospheric NO2 columns,
both calculated with respect to the Beijing DSM-based urban extent in 2009, is carried out to investigate
the relation between Beijing urban development and tropospheric NO2 pollution (Figure 18).

Over the 2000s, regression results indicate an increasing trend in tropospheric NO2 pollution
alongside the urbanization of Beijing, with a high correlation coefficient of 0.9063. The R2 value
of 0.821 explains 82.1% of the tropospheric NO2 column trend with respect to the Beijing urban
development trend.
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5. Conclusions

Mega-urban changes in Beijing and their impacts on the environment are assessed
consistently and quantitatively through an innovative approach using decadal QuickSCAT data
and GOME/SCIAMACHY-derived tropospheric nitrogen dioxide (NO2) columns. Annual observations
of Beijing urban area extent are based on the Dense Sampling Method (DSM) that allows a major
increase in the QSCAT data sampling, from about 25 km2 to a posting of about 1 km2, which is
appropriate to map urban extent based on the presence of buildings and other structures rather than
on the administratively defined city boundaries.



Remote Sens. 2020, 12, 652 20 of 24

Compared to independent sources in multiple years, including results obtained using a
Landsat-based method and government statistics, DSM applied to QuickSCAT data from the 2000s
enables us to:

(i) Monitor the annual growth of Beijing’s urban area extent, which quadrupled in the 2000s
with an increase of 3035 km2 between 2000 and 2009, corresponding to an average annual increase of
337 km2. DSM-based results reflect the Chinese political and policy changes affecting Beijing’s urban
development over the decade. These include the growth reduction policy implemented in 2005 and
the pollution-curbing policy adopted before the Games of the XXIX Olympiad in 2008.

(ii) Observe the significant urban expansion and built-up in Beijing, including its distinct concentric
sprawl during the 2000s. DSM backscatter values, combined with the associated Index of Variability
values, enable us to distinguish between the inner core of Beijing (representing a well-established
urban area with dense housing and tall buildings), the urban and suburban areas transitioning into
Beijing’s greater outskirt area (characterized by the presence of sparse houses), and the surrounding
natural environment.

(iii) Infer processes of urban development (e.g., expansion, densification, and vertical growth)
spanning both the inner core of Beijing and its surrounding areas using DSM-based development
indices (i.e., Urban Development Index, Building Development Index, and Vertical Development
Index). Results show large changes both in the inner urban core and urbanized areas of Beijing,
while suggesting that the rural/natural areas around Beijing remained relatively stable in the 2000–2009
time period. Given that DSM can be used to process the whole global QuikSCAT data collected in the
2000s, similar analyses could provide more details and insights on the urbanization rate and type of
urban development for the whole of China and other megacities around the world.

Furthermore, the DSM-based urban analysis allows a consistent comparison with the year-by-year
changes of tropospheric NO2 column densities measured from space. This study highlights a clear
relationship between the Beijing urban growth/development and its tropospheric NO2 pollution trend.
The comparison reveals a triple increase in the yearly tropospheric NO2 column densities spatially
averaged over the 2009 Beijing DSM-based urban extent, which quadrupled since 2000. Furthermore,
the results capture the effects of the pollution-curbing policy implemented before the Olympic year
(i.e., 2008) as well as the sharp increase in tropospheric NO2 pollution in 2009, with the latter clearly
indicating that the series of measures developed to control and decrease Beijing air pollution in
preparation for and during the Games of the XXIX Olympiad were temporary. This analysis on the
relation between tropospheric NO2 pollution and urban growth/development highlights the capability
of multi-source imaging from space to quantitatively assess urbanization impacts on the environment.

Future research will be necessary to address several limitations in current methods to (i) capture
the urban-rural transition as a gradient rather that an abrupt binary boundary while using the Index of
Variability to explicitly quantify the larger deviation from the mean value for more urbanized areas
compared to that of more rural and natural areas, (ii) delineate fine features and their change in urban
areas with the availability of high-resolution products such as the Global Urban Footprint [25] and
time-series remote sensing data such as Sentinel [63], and (iii) extent long-term urban monitoring
with future satellite missions such as the NASA-Indian Space Research Organisation (ISRO) Synthetic
Aperture Radar (SAR) Mission [64]. Nevertheless, the use of DSM-processed QSCAT data offers
a significant step toward a consistent and quantitative assessment of both horizontal and vertical
urbanization that can be used to complement other currently available remote sensing-based urban and
settlement datasets [21] obtained using different approaches and input data [25,65–67]. Multiple current
and future satellite X-band SAR missions, such as the TerraSAR-X (launched), TanDEM-X, COnstellation
of small Satellites for Mediterranean basin Observation (COSMO-SkyMed), Advanced Satellite with
New system Architecture for Observation-2 (ASNARO-2), and LOTUSat-1 and LOTUSat-2, will provide
radar backscatter global data useful for 3D urban observations at a resolution of 10–100 meters [27].
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