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“What do I know, or think I know, from my own experience

and not by literary osmosis? An honest answer would be:

‘Not much, and I am not too sure of most of it’. ”

Dean Acheson

in J. Cornfield’s “A statistician’s apology”.
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développés me sont chers. Malgré la distance et le temps qui passe, c’est un vrai bonheur de vous
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Introduction The notion of centrality — Depth

1 The notion of centrality — Depth

1.1 The origins – Multivariate medians

The notion of center of an object, be it a set of observations, a physical object or a random variableX,

is difficult to define. Whether definitions refer to a point, pivot or axis around which anything rotates

or revolves1, therefore being inseparable from the notion of symmetry itself, or to the middle point,

as the point or part that is equally distant from all points, sides, ends or surfaces of something2

there is no canonical way to define it. All definitions, however, agree on the importance of distance

or geometry in the construction of such notion.

From a mathematical point of view, many such notions of center—of a random variable X having

distribution P , say—were defined in the univariate case and an abundant literature of so-called

univariate location measures exists. The most canonical notion, of course, is the mean or expectation

E[X] =
∫
xdP (x). However, due to the high sensitivity of this particular location functional, it

is often advocated that, should the focus be put on broader and more robust applicability, the

competing notion of median presents much more appeal. Indeed, it is a well-known fact that,

although it suffices to have a single point contaminating a data set and going to infinity to force the

mean to do the same, the median will require, by contrast, 50% of the data to be moved to infinity

before it does as well.

The geometry of the quadratic distances that underline the definition of the mean (that, al-

ternatively, can be defined as the location minimizing the functional x 7→ E[(X − x)2]) makes it

particularly amenable to generalization in higher dimensions. This is the reason why theory based

upon the multivariate Gaussian distribution has been dominating multivariate analysis for a long

time.

The median of a random variable X, denoted Med(X), is defined through the cumulative dis-

tribution as the point mP such that P
[
X ≤ mP

]
≥ 1/2 and P

[
X ≥ mP

]
≤ 1/2. Accordingly,

the median Med(X(n)) of a dataset X(n) = {X1, . . . , Xn} ⊂ R will be defined by substituting the

empirical distribution on X(n), P (n) say, to P .

The lack of natural ordering in Rd prevents a straightforward extension of the latter definitions,

so that one may wonder what the appropriate analogues in two or more dimensions are. Regardless

of the notion employed, there are, however, certain properties these notions should definitely have,

the first of which being, as in the univariate case, robustness3. Another such condition is that, under

symmetry, the (multivariate) median should coincide with the symmetry center. In the univariate

case, the notion of symmetry presents no ambiguity (a random vector X is symmetric about µ

if X − µ
d
= µ − X, where

d
= denotes equality in distribution) and univariate location measures

typically coincide under symmetry. This is not necessarily so in higher dimensions as symmetry can

be generalized in many ways, see Section 1.3 for details.

Extending the concept of median to the multivariate setup (or a similar approach that consists

in ordering multivariate observations) has generated numerous publications over the past few years;

1Harrap’s Dictionnary of Contemporary English.
2ibidem.
3Many tools for measuring robustness exist. A classical way to compare robustness of location measures is through

their breakdown point (see Hodges (1967) for the univariate definition and Hampel (1971) more generally). See also
Section 2.4.

2



Introduction The notion of centrality — Depth

see, for example, Barnett (1976) or Hettmansperger et al. (1992) for a review about how to order

multivariate data, and Donoho & Gasko (1987) or Small (1990) for a comprehensive summary of

existing multivariate analogues of the median at that time.

The naive4 attempt to take the componentwise median (first used by Hayford (1902) for geo-

graphical considerations) showed that, despite some encouraging robustness properties, very poor

performances were to be expected, particularly in the case of highly correlated univariate compo-

nents. To add on this drawback, this vector of medians is not equivariant under rotation or arbitrary

affine transformation of the data (see, for example, Bickel, 1964; Barnett, 1976), so that the way of

measuring the data will have a strong impact on the outcome of the procedure (which is of course

to be avoided).

To improve on this definition, many authors independently considered the spatial median5 as

a natural generalization of the univariate median in different situations, see, e.g. Gini & Galvani

(1929), Scates (1933) and Haldane (1948).

Definition 1.1. Let X be a random vector having distribution P on Rd. The spatial median of X

is the location µ̂µµS(P ) ∈ Rd that minimizes EP
[
||X−µµµ||

]
, where ||.|| denotes the standard Euclidian

norm.

Note that the distribution P may be that of the empirical distribution P (n) of n i.i.d. data points

X1, . . . ,Xn sharing the same distribution P . Locating the spatial median, in that case, amounts to

finding the solution of

µ̂µµ(n) = arginfµµµ∈Rd

n∑
i=1

||Xi −µµµ||.

This problem, for which there now exist plenty of algorithmic solutions (see, for example, Vardi

& Zhang, 2001), is actually far much older than the introduction of the multivariate median. Indeed,

minimizing a weighted sum of the Euclidian distances from m points in Rd was already known, in

industrial applications, as the optimal location problem of Weber (1909). The problem actually goes

back to Fermat in the seventeenth century (for m = 3 and equal weights) but was only generalized

to its actual form by Simpson (1750) (see Kuhn, 1973). It is interesting to note that Kemperman

(1987), following the same idea, discussed the median of a finite measure on an arbitrary Banach

space and proved, under strict convexity of the underlying space and provided the distribution is

not supported on a straight line, uniqueness of the resulting location functional6.

A different celebrated and closely related instance, replacing the expected absolute deviation with

expected volume of a simplex, is the simplicial volume median from Oja (1983). Let S(x1, . . . ,xd+1)

denote the (closed) convex hull of x1, . . . ,xd+1 ∈ Rd and ∆S its volume.

Definition 1.2. Let P be a distribution on Rd and α > 0. The simplicial volume location functional

of X of order α is the location µ̂µµαSV (P ) ∈ Rd that minimizes µµµ 7→ E
[
{∆S(X1, . . . ,Xd,µµµ)}α

]
, where

X1, . . . ,Xd are i.i.d. P . The simplicial volume median is µ̂µµ1
SV (P ).

4Actually, the second-in-order naive approach, if one considers the poorly defined tentative extension through the
cdf, defining “a” median as a location m such that P [X ≤m] ≥ 1/2 and P [X ≥m] ≤ 1/2.

5The denomination mediancenter is used in Gower (1974) and the first reference as a “spatial median” can be
found in Brown (1983).

6Uniqueness in the Euclidian case of Rd was treated by Milasevic & Ducharme (1987). This is in strict contrast
with the univariate case where uniqueness does not hold in general.

3



Introduction The notion of centrality — Depth

Another technique was introduced in Barnett (1976) (see also the comment by Plackett, 1976)

and Green (1981), where the authors suggested “peeling” the distribution. A somewhat similar

approach based on nested sets can be found in Eddy (1982, 1985). A multivariate median of a

dataset is obtained by sequentially suppressing the observations lying on the boundary of the convex

hull of the data and taking the mean of the innermost layer. Note, however, that this construction

does not allow to define a multivariate median for a generic distribution P as it does not have any

population equivalent.

Based on univariate measures of outlyingness, Stahel (1981) and, independently, Donoho (1982)

used projection pursuit ideas to generalize the univariate weighted location estimator of Mosteller

& Tukey (1977) and defined the robust location estimator (that we describe in the sample case for

simplicity) µ̂µµW (X(n)) =
∑
wiXi/

∑
wi where the weights wi = w(rd(Xi; X

(n))) are decreasing as a

function of the outlyingness measure

rd(x; X(n)) = max
||u||=1

|u′x−Med(u′X(n))|
MAD(u′X(n))

. (1.1)

Here, MAD(X(n)) = Med(|X(n)−Med(X(n))|) denotes the median absolute deviation of the dataset

X(n) = {X1, . . . ,Xn}. The related projection median was studied in Tyler (1994).

Definition 1.3. Let X be a random vector having distribution P on Rd. The projection median of

X is

µ̂µµPr(P ) = arginfµµµ∈Rd argsupu∈Sd−1

∣∣u′µµµ−Med(u′X)
∣∣

MAD(u′X)
,

where Sd−1 = {x ∈ Rd : x′x = 1} denotes the unit sphere in Rd.

A classical requirement for location estimators/functionals is the affine-equivariance property.

Property 1.4. Let X be a random vector on Rd having distribution P and µ̂µµ(P ) be a multivariate

location functional. Then µ̂µµ(.) : P → Rd is said to be affine-equivariant if µ̂µµ
(
PAX+b

)
= Aµ̂µµ(P ) + b,

where PAX+b denotes the distribution of AX + b for the d× d invertible matrix A and b ∈ Rd.

As it turns out, both Definitions 1.2 and 1.3 satisfy Property 1.4. This is not the case for

Definition 1.1 for a non-orthogonal matrix A in general. This is the reason why Chakraborty

& Chaudhuri (1996, 1998) and Chakraborty et al. (1998) proposed a data-driven transformation-

retransformation technique turning the spatial median into an affine-equivariant location functional.

A similar approach was adopted in Hettmansperger & Randles (2002), where the initial data is first

standardized using Tyler’s M-estimator of scatter (Tyler, 1987).

1.2 Existing notions – Depth functions

Many of the definitions introduced in the previous section share a common construction. Indeed,

most of them define a multivariate median (in Rd) as a location optimising some criterion, that, in

some sense, reflects the centrality of a point x with respect to the underlying distribution. This

motivated the development of general ways to measure centrality via depth functions. Such mappings

provide, in turn, new multivariate medians. They also—and contrary to the naive approach to

multivariate location that looks only for the most central point—allow for (i) comparing relative

centrality of two locations and, consequently, (ii) providing a center-outward ordering (that would,

in turn, make possible the definition of multivariate quantiles, see Serfling, 2002b).

4



Introduction The notion of centrality — Depth

More precisely, letting P denote the class of distributions over the Borel sets B ∈ Bd of Rd, a

depth function is a mapping D(.,.) : Rd × P → R : (x, P ) 7→ D(x, P )7 that, intuitively, associates

with any location x a value reflecting its centrality with respect to distribution P . Several recent

reviews on data depth include Liu et al. (2006) (and in particular the introductive chapter by

Serfling, 2006a), Cascos (2009), Romanazzi (2009), Mosler (2012) or the theoretical approach from

Zuo & Serfling (2000a).

Many such mappings have been introduced in the literature and are now described in their

population version. We present here these functions in historical order of introduction, starting

with the two seminal examples of halfspace depth and simplicial depth.

• Halfspace Depth: The earliest notion of depth dates back to Tukey (1975) (see also Tukey,

1977). Initially introduced as a tool to picture the data, the halfspace depth became increas-

ingly popular and was quickly widely used in many procedures, due to its numerous useful

properties and its intuitive interpretation.

In the univariate case, the median (of some distribution with cdf F ) is univocally characterized

as the location maximizing D(x, F ) = min
(
F (x), 1 − F (x−)

)
, where F (x−) denotes the left-

sided limit of F at x. Generalizing this last quantity to the multivariate case, the halfspace

depth of x ∈ Rd is defined as the “minimal” probability of any closed halfspace containing x8.

Definition 1.5. Let x ∈ Rd. Let X be a random vector on Rd with distribution P ∈ P. The

halfspace depth of x with respect to P is

DH(x, P ) = inf
u∈Sd−1

P
[
u′(X− x) ≥ 0

]
.

Germ of this definition, in the bivariate case and only interested in the associated multivariate

median, can be traced back to Hotelling (1929). The halfspace depth is actually a special case

of particular applications used in economic game theory called “index functions”; see Small

(1987). Rousseeuw & Ruts (1999) cover many of the properties of halfspace depth.

• Simplicial Depth: Another characterization of the median serves as foundation for this

depth, first introduced in Liu (1987, 1988) and thoroughly developed in Liu (1990). For

X1 and X2 two i.i.d. observations with common cdf F , the median Med(F ) is the location

with the highest probability to be covered by the random segment X1X2. More precisely,

Med(F ) = arg maxxD(x, F ), where D(x, F ) = P
[
x ∈ X1X2

]
= 2F (x)(1 − F (x−)). Seeing

X1X2 as the convex hull of the set {X1, X2}, it is therefore natural to introduce the following

definition.

Definition 1.6. Let x ∈ Rd and P ∈ P. The simplicial depth of x with respect to P is

DS(x, P ) = P
[
x ∈ S(X1, . . . ,Xd+1)

]
,

where S(x1, . . . ,xd+1) still stands for the simplex with vertices x1, . . .xd+1 and X1, . . . ,Xd+1

are i.i.d. random vectors with common distribution P .

• Majority Depth: This restricted depth notion (probably due to its high computational costs

and its lack of sound theoretical properties) was introduced in Singh (1991) and further studied

7Some rare depth functions will only be defined for a subset of P.
8Note that the bivariate halfspace depth of a point is equivalent to the sign test statistic of Hodges (1955).
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and used in Liu & Singh (1993). Let x1, . . . ,xd in Rd be in general position, so that they

determine a unique hyperplane Hx1,...,xd containing them. Let HP
x1,...,xd

denote the closed

halfspace with boundary Hx1,...,xd that carries a P -probability ≥ 1/2.

Definition 1.7. The majority depth of x ∈ Rd with respect to the continuous distribution

P ∈ P is defined by

DMaj(x, P ) = P
[
x ∈ HP

X1,...,Xd

]
,

where X1, . . . ,Xd is a random sample from P .

In the univariate case, this last expression boils down to DMaj(x, F ) = 1/2 + min(F (x), (1 −
F (x−)). This last expression, again, is maximized at the median.

• Projection Depth: Liu (1992) turned the outlyingness measure (1.1) used in the Sta-

hel/Donoho location estimator into a proper depth function. The general version of projection

depth we now present was introduced in Zuo & Serfling (2000a).

For X a random vector on Rd having distribution P and u ∈ Sd−1, let P[u] denote the

distribution of u′X. Let µ(P ) and σ(P ) be univariate location and scale functionals.

Definition 1.8. Let x ∈ Rd and X be a random vector with distribution P ∈ P. The

projection depth of x with respect to P is defined by

DP (x, P ) =
(

1 + sup
u∈Sd−1

|u′X− µ(P[u])|
σ(P[u])

)−1
.

Classical choices of location and scale include µ(P[u]) = E[u′X] and σ(P[u]) = Var[u′X] or

µ(P[u]) = Med(P[u]) and σ(P[u]) = MAD(P[u]). The latter choices, as already noticed in

Donoho & Gasko (1992), of course lead to more robust procedures (see Section 2.4).

A more general version of projection depth, defined for observations that are no longer vectors

in Rd but rather tensors, was introduced in Hu et al. (2011).

• Mahalanobis Depth: In the same work, Liu (1992) suggested to use the Mahalanobis dis-

tance to the mean (Mahalanobis, 1936) as a measure of outlyingness to develop the correspon-

ding depth function (in the same spirit as projection depth above). The Mahalanobis distance

between two points x and y in Rd with respect to the positive definite matrix M (chosen to

be the standard covariance matrix Cov(P ) in Liu, 1992) is dM(x,y) =
[
(x−y)′M(x−y)

]1/2
.

Liu & Singh (1993) pointed out the lack of robustness of the resulting function and the fact

that it may fail to achieve maximality at the center of certain symmetric distributions. A

more general version goes as follows.

Let µµµ(P ) and ΣΣΣ(P ) denote some affine-equivariant location and scatter functionals. Recall

that a scatter functional ΣΣΣ(.) is affine-equivariant whenever ΣΣΣ(PAX+b) = AΣΣΣ(PX)A′ for any

invertible d× d matrix A and d-vector b.

Definition 1.9. Let x ∈ Rd and P ∈ P. The Mahalanobis depth of x with respect to P is

defined by

DMah(x, P ) =
(

1 + d2
ΣΣΣ(P )(x,µµµ(P ))

)−1
.

The required affine-equivariance of µµµ(P ) and ΣΣΣ(P ) will allow, in turn, the depth function to

be affine-invariant (see Section 1.3). Plugging in robust estimators of location and scatter

provides a robust depth measure.
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• Zonoid Depth: This slightly different notion of depth (of an L2, rather than L1, nature) was

introduced in Koshevoy & Mosler (1997). For X a random vector with distribution P on Rd

having finite expectation, define the zonoid α-trimmed regions (α ∈ (0, 1]) as

Dα
Z(P ) =

{∫
Rd

xg(x)dP (x)
∣∣∣g : Rd → [0,

1

α
] measurable and

∫
Rd
g(x)dP (x) = 1

}
.

While this definition may seem obscure, it is interesting to note that, for P a continuous dis-

tribution, Dα
Z(P ) =

{
EP [X1U (X)] : U ∈ Bd, P [U ] = α

}
, where 1A(x) denotes the indicator

function on the set A. In the univariate case, it therefore holds Dα
Z(F ) = [Q−α , Q

+
α ], where Q−α

(resp., Q+
α ) is the (P -)gravity center of the lower (resp., upper) tail with probability α.

Definition 1.10. Let x ∈ Rd and let P ∈ P have finite expectation. The zonoid depth of x

with respect to P is

DZ(x, P ) = sup{α : x ∈ Dα
Z(P )},

should x ∈ Dα
Z(P ) for some α ∈ (0, 1], 0 otherwise.

It is clear that 0 ≤ Dα
Z(x, P ) ≤ 1. Furthermore, it holds that D1

Z(P ) = {E[X]}, so that the

zonoid depth function is uniquely maximized at the expectation.

• Simplicial volume Depth: Zuo & Serfling (2000a) generalized the multivariate median

from Oja (1983) into a depth function. Let ∆S(X1, . . . ,Xd+1) denote the volume of the

d-dimensional simplex.

Definition 1.11. Let x ∈ Rd and P ∈ P. The simplicial volume depth of x with respect to

P of order α ≥ 1 is

Dα
SV (x, P ) =

(
1 + E

[
(∆S(x,X1, . . . ,Xd))

α
])−1

,

where X1, . . . ,Xd+1 are i.i.d. random vectors with common distribution P .

Standardizing the simplicial volume with (det(ΣΣΣ(P )))1/2, for some affine-equivariant scatter

functional ΣΣΣ(P ), ensures affine-invariance of the resulting depth function.

• Lp Depth: Introduced in Zuo & Serfling (2000a) in its general version, this notion uses general

ways to measure distance via the Lp norm (recall that, for vectors xi = (xi1, . . . , xid)
′ ∈ Rd,

i = 1, 2, ||x1 − x2||p =
(∑d

j=1(x1j − x2j)
p
)1/p

).

Definition 1.12. Let x ∈ Rd and X be a random vector with distribution P ∈ P. The Lp

depth of x in X is

DLp(x, P ) =
(

1 + E
[
||x−X||p

])−1
.

Despite its name, this depth function remains of a “spatial” nature (as only the p-distance—

and not a power of it—is used in the expectation). In particular, the deepest point of the L2

depth is the spatial median from Definition 1.1. It is also common to use the standardized L2

depth, defined as D
L̃2(x, P ) = (1 + E[dCov(P )(x,X)])−1.

• Spatial Depth: There exists some confusion between the L2 depth introduced above and

the depth function proposed in Vardi & Zhang (2000), where the authors actually proposed a

7
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canonical way to associate to any multivariate median µ̂µµ(.) : P → Rd a depth function (quite

the reverse direction from the usual one that defines a multivariate median as the point with

maximum depth).

Definition 1.13. Let x ∈ Rd and P ∈ P. Let µ̂µµ(.) be a multivariate median. The associated

depth Dµ̂µµ(x, P ) of x with respect to P is 1− w(x) where

w(x) = inf
{
η
∣∣ µ̂µµ(P ηx) = x

}
is the smallest incremental mass η at location x needed for x to become the median of the

resulting mixture P ηx = (ηδx + P )/(1 + η), where δx denotes the point mass at x.

Provided that the multivariate median is such that µ̂µµ(P ) = y as soon as P [{y}] ≥ 1/2,

the resulting depth function is nonnegative and well defined for all x ∈ Rd. Taking µ̂µµ as

in Definition 1.1 gives rise to the spatial depth DSp(x, P ), the properties of which were only

partially explored.

• Spatial rank Depth: Gao (2003) suggested the use of spatial ranks to define a depth notion.

Let S(x) = (x/||x||)1Rd0
(x) be the multivariate sign function. The spatial rank of x with

respect to the random vector X having distribution P ∈ P is R(x, P ) = E
[
S(X− x)

]
.

Definition 1.14. Let x ∈ Rd and P ∈ P. The spatial rank depth of x with respect to P is

DSR(x, P ) = 1− ||R(x, P )||2.

In the same spirit, Serfling (2002a) used the spatial quantiles from Chaudhuri (1996) to define

an associate spatial (quantile) depth function.

• Spherical Depth: The proposed depth concept from Elmore et al. (2006) provides a good

balance between computational tractability and sound statistical properties in any dimension.

Definition 1.15. Let x ∈ Rd and P ∈ P. The spherical depth of x with respect to P is

DSpher(x, P ) = P
[
x ∈ S(X,Y)

]
,

where X and Y are independent and P -distributed and S(X,Y) = {x : ||x− (X + Y)/2|| ≤
||X−Y||/2} denotes the unique, closed random hypersphere for which the segment XY forms

a diameter.

A transformation-retransformation method (in the spirit of Chakraborty et al., 1998) produc-

ing affine-invariant version of this depth is also proposed in the same paper. Note that this

concept (on the contrary to what its denomination may imply) does not apply to directional

data (see Section 2.10 for more details about “directional depths”).

• Lens Depth: Related to the spherical depth, the proposal from Liu & Modarres (2011) has

been recently introduced and thoroughly studied. Let L(X,Y) denote the intersection of the

two closed balls with radius ||X−Y||, centered at X and Y, respectively. Again, substituting

Mahalanobis distances to the Euclidian ones will allow for an affine-invariant concept.

Definition 1.16. Let x ∈ Rd and P ∈ P. The lens depth of x with respect to P is

DL(x, P ) = P
[
x ∈ L(X,Y)

]
,

where X and Y are independent and P -distributed.
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A few other depth functions were defined elsewhere in the literature but were not considered in

the list above because they do not meet one of the following natural requirements: (i) Although

locating the center of a data set is important, the notion of depth should be defined as generally

as possible and should, in particular, be able to deal with continuous distributions P . (ii) The

argument is actually valid the other way around as depth should not be only limited to the latter

type of distributions. (iii) Finally, depth functions that, even under the strongest hypothesis of

symmetry on the distribution (that is, in circumstances where the center can be unequivocally

defined) may fail to assign maximal value to the symmetry center should not be considered.

The incriminated depth functions were the likelihood/probing depth from Fraiman et al. (1997)

and Fraiman & Meloche (1999), the interpoint distance depth from Lok & Lee (2011) (see also

Bartoszyński et al., 1997) or the convex hull peeling depth and the proximity depth (also known as

Delaunay depth) from Hugg et al. (2006).

1.3 Statistical depth functions – A paradigmatic approach

Each definition in the previous section has its own advantages and drawbacks (depending, also, on

the objectives at hand), so that one might find it difficult to know which depth function to use.

To discriminate between the many depth definitions, Zuo & Serfling (2000a) stated four desirable

properties that depth functions should ideally satisfy. Without loss of generality, only non-negative

and bounded functions are considered. The four properties are

(P1) affine-invariance: The depth of a point x ∈ Rd should not depend on the underlying coordinate

system nor on the scales used;

(P2) Maximality at center : For a symmetric distribution, the depth function should attain its

maximum value at the center of symmetry;

(P3) Monotonicity relative to deepest point : For a distribution possessing a unique deepest point,

the depth of a point x ∈ Rd should be decreasing as x moves away along any ray from that point;

(P4) Vanishing at infinity : The depth of a point x ∈ Rd should converge to zero as ||x|| approaches

infinity.

The notion of symmetry used in Property (P2), although defined unambiguously in the univariate

case, may differ from one concept to another. They include, in decreasing order of generality,

-Halfspace symmetry : A random vector X is halfspace symmetric about µµµ if P [H] ≥ 1/2 for any

closed halfspace containing µµµ,

-Angular symmetry : A random vector X is angularly symmetric about µµµ if (X − µµµ)/||X − µµµ|| d=
(µµµ−X)/||X−µµµ||, where

d
= denotes equality in distribution,

-Central symmetry : A random vector X is centrally symmetric about µµµ if X−µµµ d
= µµµ−X, and

-Spherical symmetry : A random vector X is spherically symmetric about µµµ if (X−µµµ)
d
= O(X−µµµ)

for any orthogonal matrix O.

Let P denote the set of all distributions on Rd and PX the distribution of the random vector X.

In view of the previous requirements, Zuo & Serfling (2000a) adopted the following definition of

statistical depth function.

Definition 1.17. The bounded mapping D(.,.) : Rd×P → R+ is called a statistical depth function

if it satisfies the four following properties :

9
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(P1) for any d×d invertible matrix A, any d-vector b, any x ∈ Rd and any random vector X ∈ Rd,
D(Ax + b, PAX+b) = D(x, PX);

(P2) if µµµ is a center of (central, angular or halfspace) symmetry of P ∈ P, then it holds that

D(µµµ, P ) = supx∈Rd D(x, P );

(P3) for any P ∈ P having deepest point µµµ, D(x, P ) ≤ D((1 − λ)θθθ + λx, P ) for any x in Rd and

any λ ∈ [0, 1];

(P4) for any P , D(x, P )→ 0 as ||x|| → ∞.

Other proposals of such paradigmatic approach to depth functions have been introduced else-

where in the literature. Comparison of depth functions based on different criterions, among which

the “stochastic order preservation” was provided in Zuo (2003). Also, Dyckerhoff (2002) (see also

Mosler, 2012) did not use property (P2) but also added the technical property

(P5) upper semicontinuity : For any P ∈ P, the upper level sets Dα(P ) = {x ∈ Rd|D(x, P ) ≥ α}
are closed for all α > 0.

Under (P3), the sets Dα(P ) (commonly known as the depth regions) are nested and star-shaped

about the deepest point, should it exist. They are of particular interest, as they bring much informa-

tion about the spread, shape and symmetry of the underlying distribution (see Serfling, 2004). The

depth contours (boundary of the depth regions) even characterize, under very mild conditions, the

underlying distribution9 (see Kong & Zuo (2010) and references therein). When the depth function

D(.,.) satisfies the more stringent assumption

(P3’) Quasiconcavity : For any P ∈ P, D(., P ) is a quasiconcave function, that is, its upper level

sets Dα(P ) are convex for all α > 0,

the resulting depth function is often called a convex statistical depth function. Some depth functions

might fail to satisfy some properties for all distributions P ∈ P or, in Property (P1), for all invertible

d × d matrix A. Definition 1.17 being the most widely used in the literature, we will restrict to

Properties (P1)-(P4) to describe a statistical depth function. All depth functions (from Definition 1.5

to 1.16) introduced in the previous section are statistical depth functions in that sense, although

some restrictions may be required.

(i) Restrictions on P: Some depths (see Definitions 1.8, 1.9 and 1.10) require distribution P to

have finite (first- or second-order) moments. Furthermore, a few depth functions may fail to satisfy

one or more properties under discrete distributions. In particular, the simplicial depth DS will only

be a statistical depth function when considered as a mapping D : Rd ×Pc → R+, where Pc denotes

the set of continuous distributions on Bd. Note also that Definition 1.7 already required P to be

continuous as the halfspace HP
X1,...,Xd

may fail to be properly defined otherwise.

(ii) The symmetry used: Only few depth functions (that typically are not based on distances

but rather on halfspaces) satisfy (P2) under the broadest assumption of halfspace symmetry: DH ,

DP and DMaj. The same property holds for DL̃2 , DS and DSp under the slightly stronger assump-

tion of angular symmetry, while central symmetry is required for DSV , DZ and DL to fulfil (P2).

Maximality at center for DSpher and DSR has only be proved under the assumption of spherical

symmetry. Note also that property (P2) will be fulfilled for DMah under a symmetric distribution P

as soon as µµµ(P ) coincides with the center of (halfspace, angular or central) symmetry of P .

9Partial results on the question whether the depth function uniquely determines the underlying distribution are
available in the literature: see Struyf & Rousseeuw (1999); Koshevoy (2002, 2003); Mosler & Hoberg (2006); Hassairi
& Regaieg (2008).
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(iii) Orthogonal statistical depth functions: Some depth functions, namely DSV , DL2 , DSp,

DSpher and DL, only satisfy (P1) for orthogonal matrices. As already discussed, affine-invariant

versions are typically obtained by substituting affine-invariant distances to the Euclidian ones used

in their definition. This, however, may affect their robustness properties.

Upper semicontinuity (P5) was proved to actually hold for all the depth functions introduced

here (see Liu & Singh, 1993; Mizera & Volauf, 2002; Mosler, 2012; Gao, 2003; Elmore et al., 2006;

Liu & Modarres, 2011). Results about convexity are more sparse. (P3’) holds for DH (Rousseeuw &

Ruts, 1999) as well as for DMah, DP , DSV or DZ (see, e.g., Mosler, 2012) but does not for simplicial

depth DS .

Interestingly, Zuo & Serfling (2000a) also identified four general structures of depth functions

and derived the properties that such general functions should satisfy.

(A) Let h(x;x1, . . . ,xk) be a bounded and non-negative function measuring, in some sense,

the “closeness” of x ∈ Rd to the points x1, . . . ,xk. The corresponding Type A depth function

measures the average proximity of x to a random sample of size k and is defined by D(x, P ) =

E
[
h(x; X1, . . . ,Xk)

]
, for X1, . . . ,Xk a random sample from P .

(B) Let h(x;x1, . . . ,xk) be an unbounded non-negative function measuring the “distance” of

x ∈ Rd from the points x1, . . . ,xk. The corresponding Type B depth function is D(x, P ) =
(
1 +

E
[
h(x; X1, . . . ,Xk)

])−1
.

(C) Let O(x, P ) be a measure of outlyingness of x ∈ Rd with respect to the distribution P .

If O(x, P ) is unbounded, then the corresponding bounded Type C depth function is D(x, P ) =(
1 +O(x, P ))−1.

(D) Let C be a class of closed subsets of Rd satisfying the two conditions that (i) if C ∈ C,
then C̄c ∈ C and (ii) for C ∈ C and x ∈ C◦, there exists C1 ∈ C with x ∈ ∂C1, C1 ⊂ C◦, where

∂C, Cc, C◦ and C̄ denote, respectively, the boundary, complement, interior and closure of C. The

corresponding Type D depth function is D(x, P ; C) = infC∈C
{
P [C] : x ∈ C

}
.

2 Around location depth and beyond

Many studies and different directions of possible generalizations of the concept of (location) depth

have been provided in the past decades. From extending depth functions to other parametric or

nonparametric setups (including regression) to using depth as a tool for classification (to name but

a few), this section provides an extended look at the many fields depth has been applied to, as

well as the state-of-the-art about, among others, robustness, asymptotics or computational aspects.

Nonetheless, the first sections are devoted to a brief discussion on sample depth and the depth-based

location functionals.

2.1 Sample depth

Sample versions of any depth function D(.,.) from Section 1.2 can be obtained by replacing the

distribution of the random vector X ∼ P by the empirical distribution P (n) of the i.i.d. (having

common distribution P ) random sample X1, . . . ,Xn. This naturally leads to the finite-sample

counterpart D(n)(x) = D(x, P (n)) of D(x, P ).

11



Introduction Around location depth and beyond

An important and standard requirement (although, somewhat surprisingly, not embedded in

the paradigmatic foundations of statistical depth functions in Section 1.3) is that sample depth

converges to its population counterpart. More precisely, it is desirable that, for a depth function D

and for a fixed distribution P , almost surely as n→∞,

sup
x∈Rd

∣∣D(n)(x)−D(x, P )
∣∣→ 0. (2.1)

Strong uniform consistency of the sample depth function is of natural interest but also plays a

crucial role for other purposes, see Section 2.2. Results concerning (2.1) are available for several

depth notions. Consistency of sample halfspace depth DH was proved in Donoho & Gasko (1992),

while the same property for simplicial depth DS has been established in Liu (1990), Dümbgen (1992)

and Arcones & Giné (1993). Actually, Dümbgen (1992) proved the stronger property

sup
x∈Rd

∣∣DS(x, P ′)−DS(x, P )
∣∣ ≤ (d− 1)||P ′ − P ||H,

where ||.||H denotes the Kolmogorov-Smirnov norm with respect to the set of all intersections of d

open halfspaces in Rd.

Under suitable conditions on P , Liu & Singh (1993) showed that (2.1) holds for the sample

majority depth DMaj as well as for the Mahalanobis depth DMah. The same property holds true

for the sample projection depth (where the location and scatter functional used are the median

and the MAD, respectively), as well as for all Type D depth functions, see Zuo & Serfling (2000c).

Consistency of the zonoid depth is proved in Mosler (2002).

2.2 Depth-based estimators and asymptotics

As described earlier, location depth provides a measure of centrality, and is therefore an appropriate

tool that will allow to define new estimates of location. These are essentially of two types.

First, the location in Rd with maximal depth will be naturally called depth-based median. The

multivariate medians from Section 1.1 are obtained in that manner based on the depth functions

from Section 1.2 (see Definitions 1.1, 1.2 and 1.3 and their related depth in Definitions 1.12, 1.11 and

1.8). Secondly, due to the natural ordering depth provides, authors also introduced depth-weighted

L statistics, that often consists in averaging a given proportion of the “most central” points and are

therefore known as depth-based trimmed means.

Studying the asymptotics of such estimators (or these of the depth regions they are founded on)

is proving difficult, due to the complex nature of the depth function on which they are defined and

typically requires U -process theory as well as strong results on empirical processes. A brief overview

of the existing results is now provided.

Nolan (1992) established asymptotic properties of some univariate trimmed means based on

halfspace depth. Root-n consistency of the bivariate halfspace median under suitable conditions

on the underlying distribution is considered in Nolan (1999). Extension of this result to higher

dimensions (together with the asymptotic distribution—characterized through a max-min operation

of a continuous process—of the maximal regression depth estimator) was provided in Bai & He

(1999). Root-n consistency (to a functional of a Brownian motion) of the regression maximum

depth estimator was already considered in He & Portnoy (1998).

12



Introduction Around location depth and beyond

The simplicial median and simplicial volume median, as locations maximizing U -processes, are

proved to be asymptotically normal in Arcones et al. (1994) (central limit theorems for U -processes

are available in Arcones & Giné, 1993). Similar results for the simplicial volume median were actually

already available in Oja & Niimimaa (1985). Dümbgen (1992) derived the asymptotic normality of

simplicial depth-based trimmed means after establishing a central limit theorem for the associated

empirical depth process. Asymptotics of a halfspace-based trimmed mean were considered in Massé

& Theodorescu (1994).

The asymptotic behavior of the corresponding halfspace process was studied in Massé (2004)

where it was proved that it may fail to converge weakly. A necessary and sufficient condition for

the asymptotic normality of a special class of depth-based trimmed means is provided. Two other

types of L statistics were considered and studied in Massé (2009). Asymptotics of trimmed mean

estimators based on projection depth can be found in Zuo et al. (2004b).

Results for depth regions can also be found in the literature. Uniform consistency of the contours

(in the elliptical setup) under conditions on the underlying depth measure is proved in He & Wang

(1997). Root-n consistency of these contours is proved using empirical process theory and U -process

theory in Kim (2000). As a corollary, root-n consistency of a trimmed mean based on Oja’s depth

(already defined in Kim, 1992) is obtained.

A seminal paper about convergence of the depth contours and regions, related to the consistency

properties of the underlying depth functions is Zuo & Serfling (2000c).

2.3 Regression and parametric depths

The successful story of depth in location has motivated extending the concept to other parametric

setups. Several proposals exist in the regression model and a full parametric approach to the notion

of centrality has been developed in the early 2000’s.

Regression depths Parallel to the extension from the univariate to the multivariate median,

where a structural property of the one-dimensional median serves as ground to define a multidi-

mensional counterpart, alternative characterizations of (halfspace) depth are required for proper

generalisation. A first equivalence result can be found in Carrizosa (1996), where it is proved that

DH(x, P ) = inf
y∈Rd

P
({

a : |y − a| ≥ |x− a|
})
,

that is, the halfspace depth of x is the smallest probability (among all fixed choices of y) of the

set of points that are closer to x than to y. The latter equality allows extension to problems with

non-Euclidian metrics or dissimilarity measures δ(x,y) by defining the depth of an element x as

Dδ(x, P ) = inf
y
P
[
{a : δ(y,a) ≥ δ(x,a)}

]
.

Parallel extension to the (single-output) regression setup goes as follows. Given a probability mea-

sure P on Rd × R, corresponding to a multivariate random variable (X, Y )′, the depth of the

hyperplane Ha,b ≡ y = a′x + b is defined as

DReg(Ha,b, P ) = inf
(c,d)∈Rd×R

P
({

(x, y) ∈ Rd × R : |y − a′x− b| ≥ |y − c′x− d|
})
.
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Both depths above received very little attention in the literature as only few properties were explored.

Equivalently, in the sample case, Tukey depth of x can also be seen as the minimal relative

number of points that need to be removed before x ceases to be a Pareto optimum (for the distance

function f(x, .) = ||x− .||) with respect to the remaining dataset10. This motivates the celebrated

regression depth introduced in Rousseeuw & Hubert (1999), admitting the following definition in

the sample case.

Definition 2.1. The regression depth DR(Ha,b, P
(n)) of an hyperplane Ha,b with respect to the

dataset {(xi, yi), 1 ≤ i ≤ n} ⊂ Rd×R (whose empirical distribution is denoted P (n)) is the minimal

relative number of points that need to be removed to make (a, b) a non-Pareto optimum of the

residual function f : (Rd ×R)2 → R+ :
(
(a, b), (x, y)

)
→ |y−a′x− b| with respect to the remaining

dataset.

As usual, maximizing the depth function will provide a median-type estimate of regression.

Bounds on the minimal depth of this estimator are provided, for the bivariate case, in Rousseeuw &

Hubert (1999), through the construction of the “catline”, an hyperplane with minimal depth 1/3.

Although the population version of the latter definition does not seem easy to define, it will be given

as a by-product of the general tangent depth introduced below.

Parametric depth Mizera (2002) based on the same ideas of Pareto optimality a concept of

global depth, that extends location and regression depths to an arbitrary parametric model. To

describe this, consider a random d-vector X with a distribution P = Pθθθ0
in the parametric family

P =
{
Pθθθ| θθθ ∈ ΘΘΘ ⊂ Rk

}
(k may differ from d). Let (θθθ,x) 7→ Fθθθ(x) be a mapping that measures the

“quality” of the parameter value θθθ for the observation x. A natural definition of depth is

Definition 2.2. Let θθθ ∈ ΘΘΘ. The global depth of θθθ, DG(θθθ, P (n)), with respect to the empirical

distribution of the i.i.d random sample X1, . . . ,Xn with common distribution P ∈ P is the minimal

relative number of points that need to be removed before θθθ is no longer a Pareto optimum of

f(θθθ,x) = Fθθθ(x) with respect to the remaining dataset.

Now, while this definition still remains uninspiringly limited to the sample case, the following

restriction will allow a full treatment of parametric depth. Assuming that the objective function

Fθθθ(x) is differentiable and convex with respect to θθθ, it is easy to show (see Mizera (2002) for details)

that DG(θθθ, P (n)) = min||u||=1 ]{i : u′∇θθθFθθθ(Xi) ≥ 0} = DH(0k, P
(n)
∇θθθF ), where P

(n)
∇θθθF denotes the

empirical distribution of ∇θθθFθθθ(Xi), 1 ≤ i ≤ n and 0k = (0, . . . , 0)′ ∈ Rk. This amounts to looking

at the depth of 0k among the directions ∇θθθFθθθ(Xi), i = 1, . . . , n, of maximal increase of θθθ 7→ Fθθθ(x).

The following concept then typically attributes large depth to “good” parameter values, that is,

to parameter values θθθ that are close to θθθ0.

Definition 2.3. The tangent depth of θθθ with respect to P ∈ P is DT (θθθ, P ) = DH(0, P∇θθθFθθθ(X)),

where P∇θθθFθθθ(X) denotes the distribution of ∇θθθFθθθ(X) under X ∼ P .

Tangent depth reduces to the particular cases of classical (location) halfspace depth for θθθ = x

and f(x,y) = ||x − y||, and of regression depth, for which θθθ = (a, b) and f((a, b), (x, y)) is as in

10Recall that a point x is a Pareto optimum for the function f(·, ·) with respect to some dataset A if there exists
no y such that f(y,a) ≤ f(x,a) for all a ∈ A, with a strict inequality for at least one element of A.
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Definition 2.1. Actually, any modification of the objective function F to h(F ), with h : R+ → R+

smooth and monotone increasing would lead to the same definition.

A particular example of application of tangent depth can be found in Mizera & Müller (2004),

where location-scale depth of (µ, σ) ∈ R × R+
0 with respect to the univariate distribution P is

developed, based on Definition 3.2, and explored. Interestingly, the proposed depth can be seen as

the bivariate halfspace depth of projected observations in the Poincaré plane model embedded with

the Lobachevski geometry.

Choosing appropriately the objective function (θθθ,x) 7→ Fθθθ(x) may be difficult in some setups.

Denoting Lθθθ(x) for the likelihood function, the general, likelihood-based, approach consists in tak-

ing Fθθθ(x) = − logLθθθ(x); see, e.g., Mizera & Müller (2004); Müller (2005). In the location and

regression cases considered above, it can be seen that Gaussian or tν-likelihoods lead to the half-

space and regression depth, respectively. The same result holds true for the location-scale depth

of Mizera & Müller (2004).

2.4 Robustness

It is commonly accepted in the literature that “depth functions are robust”. Although this might

in fact be a hasty shortcut, this saying holds true for many depth-based inference procedures.

Robustness of halfspace depth is well studied and many results about the breakdown point,

influence function or maximum bias are available.

Donoho & Gasko (1992) (following the seminal work in Donoho (1982)) proved that the (finite-

sample enlargement) breakdown point of the halfspace median was at least 1/(d + 1) for general

distributions, while this result could be refined to an asymptotic value as high as 1/3 for i.i.d.

random vectors with a common centrosymmetric distribution. These results were extended in Chen

(1995b), where the author provides sharp lower and upper bounds for the limiting (finite-sample as

well as population) breakdown point for general (in particular, possibly assymetric) distributions

in Rd. The results yield, in particular, that, for d = 2, the exact breakdown point of the halfspace

median is 1/3, whatever the underlying distribution may be.

Influence function, maximum bias (hence also breakdown point) and contamination sensitivity11

of the halfspace median are provided in Chen & Tyler (2002), for absolutely continuous and halfspace

symmetric distributions. Notably, the influence function is showed to be bounded (resulting in a

finite gross-error sensitivity) and, similar to the univariate median, constant along rays originating

from the center of the distribution. Interestingly, the maximum bias is showed to have a relatively

simple form, as the greatest distance between the deepest point and some depth contour (the order

of which depends on the contamination).

Influence function (and related concepts, together with other results about the shape of the

contours, among others) of halfspace depth under multivariate symmetric stable distributions are

explored in Chen & Tyler (2004) while both sample and population influence function of halfspace

depth, at any location x ∈ Rd, is derived in Romanazzi (2001). In both cases, the influence functions

are proved to be bounded (see also Wang & Serfling (2006) for the influence function in a more general

setting). Additional sensitivity analysis showed that, as intuited, inner regions are more stable.

11Defined as the limiting relative (with respect to the ε-contamination) maximum contamination bias as ε goes to
zero; see Hampel et al. (1986).
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Zhang (2002) slightly extended the concept of halfspace depth so as to use the information about

dispersion of the data and proved that the corresponding estimates keep their asymptotic breakdown

point of 1/3 (together with a consistency rate of n−1/2).

Similar results that, for most of them, extend the halfspace case, are available for other depth

functions. Results similar to those in Donoho & Gasko (1992) were obtained in Chen (1995a) for

the simplicial median, which is proved to possess a strictly positive (again, finite-sample) breakdown

point but to be less robust (at least from a breakdown point of view) than Tukey’s median. Note,

however, that Oja’s median is proved to have breakdown point 0 (at least in the bivariate case, see

Oja et al., 1990). Note also that, together with its full analysis of the halfspace depth influence

function, Romanazzi (2001) also provides the sample influence of the simplicial depth. Influence

function and maximum bias of projection depth are derived in Zuo (2003) and Zuo et al. (2004a)

(establishing asymptotic normality by the mean of the influence function for spatial, simplicial and

halfspace depth was provided in Dang et al., 2009). Estimators of multivariate location based on

the projection depth and generalizing the univariate trimmed means are introduced in Zuo (2006).

Influence function and finite-sample breakdown point are investigated, together with asymptotics of

the depth trimmed means. Breakdown point of the lens depth is derived in Liu & Modarres (2011).

A more particular study of robustness was conducted recently in Denecke & Müller (2011, 2012),

where consistency and robustness of tests (rather than estimators) based on depth are considered,

by extending to test procedures a new characterization of consistency and breakdown via the con-

centration parameter.

2.5 Classification

The use of depth in classification problems arises naturally from the fact that most classical proce-

dures compare centrality to discriminate between several populations.

The first proposed approach consisted in assigning the point that needs to be classified to the

population with respect to which it has the largest depth. This maxdepth classification procedure

was first proposed in Liu et al. (1999) and was then investigated thoroughly in Ghosh & Chaudhuri

(2005b). The same construction, using the spatial depth from Vardi & Zhang (2000), was used in

Hartikainen & Oja (2006) in their simulation study, comparing various parametric and nonpara-

metric discrimination rules. Dutta & Ghosh (2012a,b) considered maxdepth classifiers based on

projection depth or (an affine-equivariant version of) the Lp depth, respectively. Another modifica-

tion of the maxdepth approach, also based on projection depth and coping better with skewed data

has been introduced in Hubert & Van der Veeken (2010).

More recently, refinement of the maxdepth method was proposed in Li et al. (2012). The “Depth

vs Depth” (DD) classifier is introduced, that consists in constructing appropriate (polynomial)

separating curves in the scatter plot of {(D(n)
0 (Xi), D

(n)
1 (Xi)), 1 ≤ i ≤ n}12, rather than using solely

the main bisector (as it is the case for the maxdepth approach). Separating curves are chosen so as to

minimize the empirical misclassification rate on the training sample and the order of the polynomial

defining those curves is chosen by cross-validation. Further modification of the DD-classifiers, that

are computationally efficient and applicable in higher dimensions (up to d = 20), were introduced in

Lange et al. (2012). Discriminating between k ≥ 2 populations is achieved by applying an efficient

discrimination algorithm (the DDα procedure) to the k-dimensional zonoid depth plots.

12D
(n)
j (Xi) denotes here the depth of Xi with respect to the data points coming from Population j.
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Other depth-based classifiers were introduced in Mosler & Hoberg (2006); Cui et al. (2008) and

Billor et al. (2008), where the authors used, respectively, the zonoid depth, projection depth ideas

and transvariation probabilities of data depth to develop new classification procedures. Robustifi-

cation (using the depth contours) of the classification techniques based on convex hulls from Hardy

& Rasson (1982) were developed in Ruts & Rousseeuw (1996).

Link between regression depth and linear discriminant analysis was also explored in Christmann

& Rousseeuw (2001) and Christmann et al. (2002), without giving rise to a proper “depth-based”

classifier.

Results about unsupervised classification are seldom available in the literature. Using data depth

as a visualization tool, Jörnsten et al. (2002) proposed a new clustering procedure. Jörnsten (2004),

in order to analyze microarray gene expression data, introduced appropriate clustering techniques

based on the L2 depth and the Relative Data Depth plot.

2.6 Functional depth

In the past few years, the use of real time monitoring in many different fields such as stock markets,

quality control, or medicine and the increase in quantity of available data justified the development

of new statistical methods, better suited to tackle these “large dimensional” problems. In practice,

it has long been advocated (see, for example, Ramsay & Silverman, 2005; Ferraty & Vieu, 2006)

that the use of functional data is preferable to that of finite-but-large-dimensional vectors that often

would lead to computationally intensive (when possible) procedures. It is therefore quite naturally

that various concepts of depth for such data were introduced.

Attempt to generalize the median to the functional setup (very much in the spirit of the L2

depth) was already found in Kemperman (1987). However, the first proper instance of functional

depth, aiming at providing an equivalent notion of α-trimmed mean for functional observations,

goes back to Fraiman & Muniz (2001). A univariate functional counterpart ID(x) of any (one-

dimensional) depth D(.) is proposed, which aggregates the depth values across the domain of the

function x (assumed, without loss of generality, to be in C([0, 1]), the set of continuous functions on

the interval [0, 1]). This yields the simple definition, denoting as Pt the distribution of the function

x at time t, ID(x) =
∫ 1

0 D(x(t), Pt)dt.

Shortly after, a more graphical and “simplicial in spirit” functional depth was proposed in López-

Pintado & Romo (2005). The (partial) band depth S(j)(x) is defined as the probability that a random

band V (X1, . . . , Xj) = {(t, y)|t ∈ [0, 1],miniXi(t) ≤ y ≤ maxiXi(t)} based on j observations

entirely contains G(x), the graph of x. The band depth is then defined as SJ(x) =
∑J

j=2 S
(j)(x). A

generalized version was introduced in López-Pintado & Romo (2009) where the (generalized) band

depth now uses the proportion of the domain for which the band V (X1, . . . , Xj) contains G(x) rather

than the indicator function I
[
G(x) ⊂ V (X1, . . . , Xj))

]
. A further extension, obtained by refining

the definition of the band used, was provided in López-Pintado & Jörnsten (2007).

In López-Pintado & Romo (2011), the half-region depth is introduced, based on the hypograph

hyp(x) = {(t, y) ∈ [0, 1] × R : y ≤ x(t)} and the epigraph epi(x) = {(t, y) ∈ [0, 1] × R : y ≥ x(t)}
and defined as SH(x) = min

(
P [G(x) ⊂ hyp(x)], P [G(x) ⊂ epi(x)]

)
. Modification of the half-region

depth along the same lines of the generalized band depth is also provided.
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Both band and half-region depths are shown to provide new, computationally feasible, multi-

variate depths. The multivariate analogue of the former functional depth is also proved to be a

statistical depth function meeting the four key properties stated in Section 1.3.

Cuevas et al. (2007) also proposed four new definitions of functional depth, based on some

expected kernelized distance to the random curve X (hMode depth) or on random projections of

X (random projection depth, double random projection depth and h-modal projection depth). A

more detailed study of the functional projection depth can be found in Cuevas & Fraiman (2009). A

similar notion, also based on random projections, has been developed in Cuesta-Albertos & Nieto-

Reyes (2010).

All depths mentioned above are defined for univariate curves x ∈ C([0, 1]) only. Extensions

to multivariate functional depth, assessing centrality of multivariate curves x = (x1, . . . , xd), xj ∈
C([0, 1]), 1 ≤ j ≤ d are recent. Ieva & Paganoni (2013) aggregate univariate (modified) band depths,

weighting adequately the different components to take into account the possible correlation among

the curves. A more appropriate multivariate functional version of halfspace depth was developed in

Claeskens et al. (2012) as a tool for detecting outlying curves and was later thoroughly studied in

Hubert et al. (2012). They also studied the benefits from applying functional depth to multivariate

functions obtained from univariate ones by adding information about, among other, derivatives,

integrals or warping functions.

A comprehensive approach, extending any depth to the functional setup (or, actually to any

Banach space E) was introduced in Mosler & Polyakova (2012). The authors provided a general

class of functional depths, named Φ-depths, that, very much in the spirit of halfspace depth, define

the depth of a curve z as the smallest d-variate depth of φ(z) with respect to some projected measure

on Rd, where φ ∈ Φ, a subset of all continuous mappings from E to Rd. Properties inherited from

that of the underlying multivariate depth are also studied and a general paradigm, in the same spirit

as Zuo & Serfling (2000a) or Dyckerhoff (2004), is developed.

Depth-based classifiers have also been extended to the functional context. López-Pintado &

Romo (2006) used distances to the trimmed mean and weighted average distance to provide two

new functional classification procedures. Cuevas et al. (2007) extended the Ghosh & Chaudhuri

(2005a,b) classifiers and compared the performances of five different such generalizations. Cuesta-

Albertos & Nieto-Reyes (2008) also studied the performances of their projection-based classifier.

Recently Sguera et al. (2012) introduced the functional spatial depth and the kernelized functional

spatial depth (direct extension of the classical spatial depth) and used them to develop new classi-

fication methods. Hlubinka & Nagy (2012) introduced the K-band depth and showed how this new

notion can be applied to discriminate between two samples. Inference for functional depth through

functional band depth regions, able to analyze the structure of a collection of curves, is considered

in López-Pintado & Romo (2007).

Finally, functional outlier detection based on depth was considered in Febrero et al. (2008) to

identify abnormal nitrogen oxides emission levels. Based on a trimming technique, an iterative

procedure is used to account for possible masking effects and a bootstrap construction is applied to

determine the threshold under which a depth value of a curve would qualify it as “potential outlier”.
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2.7 Local depth

The first purpose of depth was to provide a center-outward ordering from the deepest point (the cen-

ter of the distribution) towards exterior points. Adding the classical property that depth functions

decrease along any ray issuing from the center, this generally implies that the depth regions form

convex and nested sets, which results in depth being suitable for unimodal and convexly supported

distributions only. This restriction has been noticed by various authors (see, among others, Zuo &

Serfling, 2000a; Izem et al., 2008; Lok & Lee, 2011).

In order to provide a concept flexible enough to deal with more general distributions, a few

extensions became available in the literature, under the name of local depths.

Hlubinka et al. (2010) proposed a generalised version of halfspace depth, relying on weighting non

uniformly the halfspaces appearing in Tukey’s definition, that may be considered more appropriate

for mixture of distributions or nonsymmetric distributions. Under some restrictions on the weight

function, uniform strong consistency (2.1) is proved to hold for weighted halfspace depth in Kot́ık

(2009). A similar extension, rather based on interpoint distances, was provided in Lok & Lee (2011)

and showed to respect multimodality in various data configurations. This extension has been proved

to be useful in many inference problems, including classification or confidence region construction.

Aiming first at outlier detection, Chen et al. (2009) introduced a kernelized version of spatial depth

that allows to study nonconvex distributions.

Other notions of local depth have been recently introduced in Agostinelli & Romanazzi (2011),

where the authors propose localization of both halfspace and simplicial depths. For the former,

locality is achieved by substituting finite-width slabs for halfspaces, while, in the latter case, it is

obtained by imposing a restriction on the volumes of the simplices considered.

2.8 Testing and Diagnostics

Not only does depth provide many different estimators, it has also been used extensively in testing

procedures (see, for example, Zuo & Cui, 2004). The induced center-outward ordering, together with

the natural link between depth and multivariate quantiles often provides the necessary tool to carry

out rank procedures in the multivariate context. A perfect illustration resides in the analogues of the

Wilcoxon’s rank-sum and signed-rank tests, based on the simplicial volume median (Oja, 1983) that

were introduced and thoroughly studied in Brown & Hettmansperger (1987, 1989), Hettmansperger

et al. (1992) and Hettmansperger & Oja (1994). Other rank tests based on data depth were also

suggested in Liu (1992). Initially introduced as a tool to detect overall discrepancies between two

populations, other multivariate versions of Wilcoxon’s tests were proposed in Liu & Singh (1993) (see

also Zuo & He, 2006). Similarly, Li & Liu (2004) described several nonparametric tests of location

and scale differences using the idea of the permutation tests and derived from the DD-plot. The

latter tests were, actually, already suggested in Liu & Singh (2003). Kruskal-Wallis-type tests for

multivariate multisample procedures (based on several different depths) are developed in Chenouri

& Small (2012).

Inference, based on depth, in general parametric models (not only restricted to location) has been

made possible by the notion of tangent depth (see Section 2.3). Extending the notion of likelihood

depth to that of simplicial likelihood depth, Müller (2005) derived tests for regression in gener-

alized linear models, while Wellmann et al. (2009) and Wellmann & Müller (2010b) concentrated
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on polynomial regression and multiple regression through the origin. Both procedures were proved

to be outlier robust. Simplicial tangent depth was also used in the orthogonal regression context

(Wellmann & Müller, 2010a). Consistency and robustness of simplicial likelihood depth-based test

was studied in Denecke & Müller (2012).

Using bootstrap methods, Liu & Singh (1997) designed a general methodology to determine

P-values in testing hypotheses. Also, confidence regions using depth have been developed, based

on depth regions. Yeh & Singh (1997) studied bootstrap confidence regions based on halfspace

depth. Lee (2012) used data depth as a tool to aggregate different approaches to confidence region

construction in order to provide robust confidence sets.

Rousseeuw & Struyf (2002, 2004) noticed that the halfspace depth of a location θθθ0 with respect

to a distribution P 13 will attain upper bound 1/2 if and only if P is angularly symmetric about

θθθ0. This result holds as well for regression, for a particular concept of regression symmetry. This

allowed the introduction of depth-based tests for symmetry in both contexts (see also Dutta et al.

(2011)). In the same vein, Ley & Paindaveine (2012) extended McWilliams’ runs test to define

bivariate central symmetry tests based on multivariate simplicial runs. Different methods for testing

various symmetry hypotheses, together with approaches for measuring the direction and magnitude

of skewness in distributions are reviewed in Serfling (2006b). Scatter measures based on depth were

also developed in Zuo & Serfling (2000b).

2.9 Computational aspects

Computing depth (except for more parametric instances such as Mahalanobis depth) has always

proved difficult. Providing computationally efficient algorithms is therefore crucial. One example

of such efficient method was introduced in Rousseeuw & Ruts (1996), where the authors developed

an algorithm computing, in the bivariate case, both halfspace and simplicial depths in O(n log n)

time, rather than the O(n2) and O(n3) steps needed for naive algorithms. Still in dimension two,

when the interest lies solely on finding the halfspace median (and not on the complete depth field),

one could for example use the methods described in Rousseeuw & Ruts (1998). One of the most

recent and efficient algorithms computing the halfspace deepest point can be found in Chan (2004).

An approximation of Tukey depth, that only takes into account a finite number of random one-

dimensional projections, has been studied in Cuesta-Albertos & Nieto-Reyes (2008). Recently,

Hallin et al. (2010) introduced efficient algorithms to compute halfspace depth contours by defining

and studying a new concept of directional multivariate quantiles based on L1 optimization ideas.

Ruts & Rousseeuw (1996), as well as Miller et al. (2003), described exact procedures computing

the (halfspace) depth contours. Rousseeuw & Struyf (1998) introduced new algorithms for com-

puting halfspace depth (and, actually, regression depth) in higher dimensions (exactly up to d = 4,

approximately for d > 4). New proposals, using cuts of convex cones with hyperplanes, were de-

veloped in Liu & Zuo (2011b). Fukuda & Rosta (2004) provided an algorithm able to compute

halfspace depth contours in arbitrary dimensions. There also exist many studies in the field of

computational geometry (see, e.a., Rafalin & Souvaine (2004); Aloupis et al. (2002)). A noticeable

proposal can be found in Bremner et al. (2008), where algorithms having running times increasing

with the depth value (and therefore well suited for outlier detection) are introduced.

13Note that P may not necessarily possess a density, but cannot put mass on the symmetry center.
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The same ideas were used again to compute exactly the projection depth at any location (Liu

& Zuo, 2011a; Liu et al., 2011). The latter algorithms can actually be used to compute efficiently

depth contours and median in the bivariate case, extending the pointwise exact computation of Zuo

& Lai (2011).

Computation of the spatial median (sometimes known as the “Fermat-Weber location problem”)

has generated a huge literature. A first proposal dates back to Weiszfeld (1937), and nontrivial

modifications were proposed in Vardi & Zhang (2001).

Computation of the zonoid depth at a given location was developed in Dyckerhoff et al. (1996).

Dyckerhoff (2000) provided the algorithm allowing for the computation of the zonoid depth regions

in dimension d = 2. Extending the computations to dimensions d > 2 was done in Mosler et al.

(2009).

Algorithms for majority depth have only been developed recently. The bivariate case is treated

in Chen & Morin (2011), while an approximation in higher dimension is provided via the procedure

introduced in Chen & Morin (2012).

2.10 Directional data

Directional data appears in several diverse domains such as ecology, meteorology, earth sciences,

or astronomy. They naturally arise in multivariate problems for which (i) the observations are

intrinsically unit vectors or in which (ii) the magnitude of the observed vector is irrelevant. Relevance

of directional data was emphasised in Mardia (1972, 1975). Absence of well-defined zero-direction,

together with the lack of natural ordering, explains why the depth approach provides a coherent

and unified framework to study such objects.

Fisher (1985) first pointed out the interest to develop a notion of spherical median as robust

alternative to existing location functionals and studied, under unimodality assumption, two spherical

analogues of the standard univariate and spatial medians. More details are available in Fisher

(1993). Similarly, Ducharme & Milasevic (1987) introduced an estimator of location for rotationally

symmetric distributions on the hyperspheres and used it to construct confidence regions for the

modal direction of a distribution on an hypersphere.

Three new definitions, that are the directional equivalents to the simplicial, halfspace and L2

depths, are provided in Liu & Singh (1992). Their interest in classification and in building confidence

region is discussed. Angular Tukey depth was already defined in Small (1987).

A more recent notion of depth has been obtained as a by-product of a new definition of quantiles

for spherical data by Ley et al. (2013). An existing spherical median θθθM (such as Fisher’s) is

used to define directional quantiles based on the projected distribution X′θθθM . The associated

depth function satisfies the four properties of Definition 1.17. Note, however, that only rotational

invariance is required in this particular setup.

Agostinelli & Romanazzi (2013) introduced new depth functions based on halfspace and simpli-

cial ideas and studied their behavior. Particular attention is paid on depth regions and dispersion

measures.
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3 Objectives and structure of the thesis

This thesis consists (besides this general Introduction) in three chapters that tackle different prob-

lems related to statistical depth. Each chapter constitutes a paper that has been accepted by, is in

revision or is in preparation for publication in an international journal.

The first chapter proposes a new classification procedure based on depth. More precisely, a k-

nearest neighbors type classifier is introduced, based on the center-outward ordering of symmetrized

versions of the dataset. Like the many procedures described in Section 2.5, and in contrast to the

standard kNN classifier, the proposed method is affine-invariant. Unlike the existing depth-based

procedures, for which Bayes consistency is achieved only for elliptical distributions, we show that our

proposal is consistent for virtually any absolutely continuous distributions (actually, under the sole

assumption that the set of discontinuity points of the associated density has Lebesgue measure zero).

Convergence of the misclassification probability to that of the Bayes classifier under this broad class

of distributions will be called nonparametric consistency, to stress the difference with the stronger

property of universal consistency of the standard (yet inappropriate) kNN procedure. Finite-sample

performances are investigated through simulations and the proposed method is showed to outperform

a natural affine-invariant version of kNN, as well as the other competing depth-based procedures

from Li et al. (2012). Illustration on two real-data examples is also provided and applicability of the

depth-based neighborhoods to density estimation and nonparametric regression is shortly discussed.

This chapter has been accepted for publication in Bernoulli.

The second chapter extends the concept of (location) depth to the more general framework of

local depth, a notion able to get rid of the limitations of its global counterpart. Our construction (in

contrast, surprisingly, to the existing notions mentioned in Section 2.7) is achieved by conditioning

the distribution to some neighborhoods. We will, actually, make use of the depth-based neighbor-

hoods introduced in the first chapter. The construction applies in a generic way to any statistical

depth function14. Also, we show that the proposed local depth concepts remain of a genuine depth

nature and measure (local) centrality at any locality level. This is in contrast with the other notions

that, for extreme localization, converge to either the density or a constant value. Two inferential

applications are proposed: first, a more general version of the maxdepth classifiers from Ghosh &

Chaudhuri (2005b) based on local depth is introduced and compared to other classical procedures.

Also, a new test for (central) symmetry is proposed (see Section 2.8 for (angular) symmetry testing

methods). The local depth construction is also extended to the regression and functional depth

contexts (see Sections 2.3 and 2.6, respectively). Many properties of the proposed depths, such

as affine-invariance, consistency of their sample version, and limit behavior under extreme locality,

are derived. Throughout the chapter, we illustrate those results and the interest of local depth

on univariate and multivariate, artificial, and real data sets. This chapter has been accepted for

publication in the Journal of the American Statistical Association.

Finally, the third chapter introduces a depth function for the shape parameter of elliptical

distributions. This parameter, a normalized version of the corresponding scatter matrix, is of interest

in many inference problems of multivariate analysis, such as principal component analysis, canonical

correlation analysis, tests of sphericity, etc. If the shape parameter is normalized so as to have

determinant one, the resulting concept results from the parametric depth construction described in

Section 2.3. However, defining a reasonable shape depth concept for other normalizations requires

14Actually, only Properties (P2) and (P3) from Definition 1.17 are required to properly define the neighborhoods.

22



Introduction Objectives and structure of the thesis

developing a semiparametric version of this construction. In particular, we show that the resulting

depth is affine-invariant and does not depend (in contrast to its tangent depth version) on the

standardization adopted. We also prove that the proposed depth, under elliptical distributions15,

is maximized at the true shape value. We close this chapter by considering depth-based tests for

shape and by conducting simulations in order to investigate their finite-sample performances, both

in terms of power and robustness. This chapter is in preparation for publication.

15Actually, shape depth naturally extends to the shape parameter of distributions having elliptical directions.
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Chapter I Introduction

1 Introduction

The main focus of this work is on the standard classification setup in which the observation, of the

form (X, Y ), is a random vector taking values in Rd×{0, 1}. A classifier is a function m : Rd → {0, 1}
that associates with any value x a predictor for the corresponding “class” Y . Denoting by IA the

indicator function of the set A, the so-called Bayes classifier, defined through

mBayes(x) = I
[
η(x) > 1/2

]
, with η(x) = P [Y = 1 |X = x], (1.1)

is optimal in the sense that it minimizes the probability of misclassification P [m(X) 6= Y ]. Under

absolute continuity assumptions, the Bayes rule rewrites

mBayes(x) = I
[f1(x)

f0(x)
>
π0

π1

]
, (1.2)

where πj = P [Y = j] and fj denotes the pdf of X conditional on [Y = j]. Of course, empirical

classifiers m̂(n) are obtained from i.i.d. copies (Xi, Yi), i = 1, . . . , n, of (X, Y ), and it is desirable

that such classifiers are consistent, in the sense that, as n→∞, the probability of misclassification

of m̂(n), conditional on (Xi, Yi), i = 1, . . . , n, converges in probability to the probability of misclas-

sification of the Bayes rule. If this convergence holds irrespective of the distribution of (X, Y ), the

consistency is said to be universal.

Classically, parametric approaches assume that the conditional distribution of X given [Y = j]

is multinormal with mean µµµj and covariance matrix ΣΣΣj (j = 0, 1). This gives rise to the so-

called quadratic discriminant analysis (QDA)—or to linear discriminant analysis (LDA) if it is

further assumed that ΣΣΣ0 = ΣΣΣ1. It is standard to estimate the parameters µµµj and ΣΣΣj (j = 0, 1)

by the corresponding sample means and empirical covariance matrices, but the use of more robust

estimators was recommended in many works; see, for example, Randles et al. (1978), He & Fung

(2000), Dehon & Croux (2001), or Hartikainen & Oja (2006). Irrespective of the estimators used,

however, these classifiers fail to be consistent away from the multinormal case.

Denoting by dΣΣΣ(x,µµµ) = ((x− µµµ)′ΣΣΣ−1(x− µµµ))1/2 the Mahalanobis distance between x and µµµ in

the metric associated with the symmetric and positive definite matrix ΣΣΣ, it is well known that the

QDA classifier rewrites

mQDA(x) = I
[
dΣΣΣ1

(x,µµµ1) < dΣΣΣ0
(x,µµµ0) + C

]
, (1.3)

where the constant C depends on ΣΣΣ0, ΣΣΣ1, and π0, hence classifies x into Population 1 if it is

sufficiently more central in Population 1 than in Population 0 (centrality, in elliptical setups, being

therefore measured with respect to the geometry of the underlying equidensity contours). This

suggests that statistical depth functions, that are mappings of the form x 7→ D(x, P ) indicating how

central x is with respect to a probability measure P (see Section 2.1 for a more precise definition), are

appropriate tools to perform nonparametric classification. Indeed, denoting by Pj the probability

measure associated with Population j (j = 0, 1), (1.3) makes it natural to consider classifiers of the

form

mD(x) = I
[
D(x, P1) > D(x, P0)

]
,
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based on some fixed statistical depth function D. This max-depth approach was first proposed in Liu

et al. (1999) and was then investigated in Ghosh & Chaudhuri (2005b). Dutta & Ghosh (2012a,b)

considered max-depth classifiers based on the projection depth and on (an affine-invariant version

of) the Lp depth, respectively. Hubert & Van der Veeken (2010) modified the max-depth approach

based on projection depth to better cope with possibly skewed data.

Recently, Li et al. (2012) proposed the “Depth vs Depth” (DD) classifiers that extend the max-

depth ones by constructing appropriate polynomial separating curves in the DD-plot, that is, in the

scatter plot of the points (D
(n)
0 (Xi), D

(n)
1 (Xi)), i = 1, . . . , n, where D

(n)
j (Xi) refers to the depth

of Xi with respect to the data points coming from Population j. Those separating curves are

chosen to minimize the empirical misclassification rate on the training sample and their polynomial

degree m is chosen through cross-validation. Lange et al. (2012) defined modified DD-classifiers that

are computationally efficient and apply in higher dimensions (up to d = 20). Other depth-based

classifiers were proposed in Jörnsten (2004), Ghosh & Chaudhuri (2005a), and Cui et al. (2008).

Being based on depth, these classifiers are clearly of a nonparametric nature. An important

requirement in nonparametric classification, however, is that consistency holds as broadly as possible

and, in particular, does not require “structural” distributional assumptions. In that respect, the

depth-based classifiers available in the literature are not so satisfactory, since they are at best

consistent under elliptical distributions only2. This restricted-to-ellipticity consistency implies that,

as far as consistency is concerned, the Mahalanobis depth is perfectly sufficient and is by no means

inferior to the “more nonparametric” (Tukey, 1975) halfspace depth or (Liu, 1990) simplicial depth,

despite the fact that it uninspiringly leads to LDA through the max-depth approach. Also, even

this restricted consistency often requires estimating densities; see, e.g., Dutta & Ghosh (2012a,b).

This is somewhat undesirable since density and depth are quite antinomic in spirit (a deepest point

may very well be a point where the density vanishes). Actually, if densities are to be estimated in

the procedure anyway, then it would be more natural to go for density estimation all the way, that

is, to plug density estimators in (1.2).

The poor consistency of the available depth-based classifiers actually follows from their global

nature. Zakai & Ritov (2009) indeed proved that any universally consistent classifier needs to be of a

local nature. In this paper, we therefore introduce local depth-based classifiers, that rely on nearest-

neighbor ideas (kernel density techniques should be avoided, since, as mentioned above, depth and

densities are somewhat incompatible). From their nearest-neighbor nature, they will inherit consis-

tency under very mild conditions, while from their depth nature, they will inherit affine-invariance

and robustness, two important features in multivariate statistics and in classification in particu-

lar. Identifying nearest neighbors through depth will be achieved via an original symmetrization

construction. The corresponding depth-based neighborhoods are of a nonparametric nature and

the good finite-sample behavior of the resulting classifiers most likely results from their data-driven

adaptive nature.

The outline of the paper is as follows. In Section 2, we first recall the concept of statistical depth

functions (Section 2.1) and then describe our symmetrization construction that allows to define

the depth-based neighbors to be used later for classification purposes (Section 2.2). In Section 3,

we define the proposed depth-based nearest-neighbor classifiers and present some of their basic

properties (Section 3.1) before providing consistency results (Section 3.3). In Section 4, Monte

2The classifiers from Dutta & Ghosh (2012b) are an exception that slightly extends consistency to (a subset of)
the class of Lp-elliptical distributions.
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Carlo simulations are used to compare the finite-sample performances of our classifiers with those

of their competitors. In Section 5, we show the practical value of the proposed classifiers on two

real-data examples. We then discuss in Section 6 some further applications of our depth-based

neighborhoods. Finally, the Appendix collects the technical proofs.

2 Depth-based neighbors

In this section, we review the concept of statistical depth functions and define the depth-based

neighborhoods on which the proposed nearest-neighbor classifiers will be based.

2.1 Statistical depth functions

Statistical depth functions allow to measure centrality of any x ∈ Rd with respect to a probability

measure P over Rd (the larger the depth of x, the more central x is with respect to P ). Following

Zuo & Serfling (2000a), we define a statistical depth function as a bounded mapping D( ·, P ) from Rd

to R+ that satisfies the following four properties:

(P1) affine-invariance: for any d × d invertible matrix A, any d-vector b and any distribution P

over Rd, D(Ax+b, PA,b) = D(x, P ), where PA,b is defined through PA,b[B] = P [A−1(B−b)]

for any d-dimensional Borel set B;

(P2) maximality at center: for any P that is symmetric about θθθ (in the sense3 that P [θθθ + B] =

P [θθθ −B] for any d-dimensional Borel set B), D(θθθ, P ) = supx∈Rd D(x, P );

(P3) monotonicity relative to the deepest point: for any P having deepest point θθθ, for any x ∈ Rd

and any λ ∈ [0, 1], D(x, P ) ≤ D((1− λ)θθθ + λx, P );

(P4) vanishing at infinity: for any P , D(x, P )→ 0 as ‖x‖ → ∞.

For any statistical depth function and any α > 0, the set Rα(P ) = {x ∈ Rd : D(x, P ) ≥ α}
is called the depth region of order α. These regions are nested, and, clearly, inner regions collect

points with larger depth. Below, it will often be convenient to rather index these regions by their

probability content : for any β ∈ [0, 1), we will denote by Rβ(P ) the smallest Rα(P ) that has

P -probability larger than or equal to β. Throughout, subscripts and superscripts for depth regions

are used for depth levels and probability contents, respectively.

Celebrated instances of statistical depth functions include

(i) the Tukey (1975) halfspace depth DH(x, P ) = infu∈Sd−1 P [u′(X − x) ≥ 0], where Sd−1 =

{u ∈ Rd : ‖u‖ = 1} is the unit sphere in Rd;

(ii) the Liu (1990) simplicial depth DS(x, P ) = P [x ∈ S(X1,X2, . . . ,Xd+1)], where X1,X2, . . . ,

Xd+1 are i.i.d. P and where S(x1,x2, . . . ,xd+1) denotes the closed simplex with vertices x1, . . . ,

xd+1;

(iii) the Mahalanobis depthDM (x, P ) = 1/(1+d2
ΣΣΣ(P )(x,µµµ(P ))), for some affine-equivariant location

and scatter functionals µµµ(P ) and ΣΣΣ(P );

3Zuo & Serfling (2000a) also considers more general symmetry concepts; however, we restrict in the sequel to central
symmetry, that will be the right concept for our purposes.
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(iv) the projection depth DPr(x, P ) = 1/(1+supu∈Sd−1 |u′x−µ(P[u])|/σ(P[u])), where P[u] denotes

the probability distribution of u′X when X ∼ P and where µ(P ) and σ(P ) are univariate

location and scale functionals, respectively.

Other depth functions are the simplicial volume depth, the spatial depth, the Lp depth, etc. Of

course, not all such depths fulfill Properties (P1)-(P4) for any distribution P ; see Zuo & Serfling

(2000a). A further concept of depth, of a slightly different (L2) nature, is the so-called zonoid depth;

see Koshevoy & Mosler (1997).

Of course, if d-variate observations X1, . . . ,Xn are available, then sample versions of the depths

above are simply obtained by replacing P with the corresponding empirical distribution P (n) (the

sample simplicial depth then has a U -statistic structure).

A crucial fact for our purposes is that a sample depth provides a center-outward ordering of the

observations with respect to the corresponding deepest point θ̂θθ
(n)

: one may indeed order the Xi’s

in such a way that

D(X(1), P
(n)) ≥ D(X(2), P

(n)) ≥ . . . ≥ D(X(n), P
(n)). (2.1)

Neglecting possible ties, this states that, in the depth sense, X(1) is the observation closest to θ̂θθ
(n)

,

X(2) the second closest, . . . , and X(n) the one farthest away.

For most classical depths, there may be infinitely many deepest points, that form a convex region

in Rd. This will not be an issue in this work, since the symmetrization construction we will introduce,

jointly with Properties (Q2)-(Q3) below, asymptotically guarantee unicity of the deepest point. For

some particular depth functions, unicity may even hold for finite samples. For instance, in the case

of halfspace depth, it follows from Rousseeuw & Struyf (2004) and results on the uniqueness of the

symmetry center (Serfling, 2006) that, under the assumption that the parent distribution admits a

density, symmetrization implies almost sure unicity of the deepest point.

2.2 Depth-based neighborhoods

A statistical depth function, through (2.1), can be used to define neighbors of the deepest point θ̂θθ
(n)

.

Implementing a nearest-neighbor classifier, however, requires defining neighbors of any point x ∈ Rd.
Property (P2) provides the key to the construction of an x-outward ordering of the observations,

hence to the definition of depth-based neighbors of x : symmetrization with respect to x.

More precisely, we propose to consider depth with respect to the empirical distribution P
(n)
x

associated with the sample obtained by adding to the original observations X1,X2, . . . ,Xn their

reflections 2x −X1, . . . , 2x −Xn with respect to x. Property (P2) implies that x is the—unique

(at least asymptotically; see above)—deepest point with respect to P
(n)
x . Consequently, this sym-

metrization construction, parallel to (2.1), leads to an (x-outward) ordering of the form

D(Xx,(1), P
(n)
x ) ≥ D(Xx,(2), P

(n)
x ) ≥ . . . ≥ D(Xx,(n), P

(n)
x ).

Note that the reflected observations are only used to define the ordering but are not ordered them-

selves. For any k ∈ {1, . . . , n}, this allows to identify—up to possible ties—the k nearest neigh-

bors Xx,(i), i = 1, . . . , k, of x. In the univariate case (d = 1), these k neighbors coincide—irrespective
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of the statistical depth function D—with the k data points minimizing the usual distances |Xi−x|,
i = 1, . . . , n.

In the sequel, the corresponding depth-based neighborhoods—that is, the sample depth regions

R
(n)
x,α = Rα(P

(n)
x )—will play an important role. In accordance with the notation from the previous

section, we will write R
β(n)
x for the smallest depth region R

(n)
x,α that contains at least a propor-

tion β of the data points X1,X2, . . . ,Xn. For β = k/n, R
β(n)
x is therefore the smallest depth-based

neighborhood that contains k of the Xi’s; ties may imply that the number of data points in this

neigborhood, K
β(n)
x say, is strictly larger than k.

Note that a distance (or pseudo-distance) (x,y) 7→ d(x,y) that is symmetric in its arguments is

not needed to identify nearest neighbors of x. For that purpose, a collection of “distances” y 7→ dx(y)

from a fixed point is indeed sufficient (in particular, it is irrelevant that this distance satisfies or

not the triangular inequality). In that sense, the (data-driven) symmetric distance associated with

the Oja & Paindaveine (2005) lift-interdirections, that was recently used to build nearest-neighbor

regression estimators in Biau et al. (2012), is unnecessarily strong. Also, only an ordering of the

“distances” is needed to identify nearest neighbors. This ordering of distances from a fixed point x

is exactly what the depth-based x-outward ordering above is providing.

3 Depth-based kNN classifiers

In this section, we first define the proposed depth-based classifiers and present some of their basic

properties (Section 3.1). We then state the main result of this paper, related to their consistency

properties (Section 3.3).

3.1 Definition and basic properties

The standard k-nearest-neighbor (kNN) procedure classifies the point x into Population 1 iff there

are more observations from Population 1 than from Population 0 in the smallest Euclidean ball

centered at x that contains k data points. Depth-based kNN classifiers are naturally obtained by

replacing these Euclidean neighborhoods with the depth-based neighborhoods introduced above,

that is, the proposed kNN procedure classifies x into Population 1 iff there are more observations

from Population 1 than from Population 0 in the smallest depth-based neighborhood of x that

contains k observations—i.e., in R
β(n)
x , β = k/n. In other words, the proposed depth-based classifier

is defined as

m̂
(n)
D (x) = I

[∑n
i=1I[Yi = 1]W

β(n)
i (x) >

∑n
i=1 I[Yi = 0]W

β(n)
i (x)

]
, (3.1)

with W
β(n)
i (x) = 1

K
β(n)
x

I[Xi ∈ Rβ(n)
x ], where K

β(n)
x =

∑n
j=1 I[Xj ∈ Rβ(n)

x ] still denotes the number

of observations in the depth-based neighborhood R
β(n)
x . Since

m̂
(n)
D (x) = I

[
η̂

(n)
D (x) > 1/2

]
, with η̂

(n)
D (x) =

∑n
i=1I[Yi = 1]W

β(n)
i (x), (3.2)

the proposed classifier is actually the one obtained by plugging, in (1.1), the depth-based estimator

η̂
(n)
D (x) of the conditional expectation η(x). This will be used in the proof of Theorem 3.1 below.

Note that in the univariate case (d = 1), m̂
(n)
D , irrespective of the statistical depth function D,

reduces to the standard (Euclidean) kNN classifier.
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It directly follows from Property (P1) that the proposed classifier is affine-invariant, in the sense

that the outcome of the classification will not be affected if X1, . . . ,Xn and x are subject to a

common (arbitrary) affine transformation. This clearly improves over the standard kNN procedure

that, for instance, is sensitive to unit changes. Of course, one natural way to define an affine-invariant

kNN classifier is to apply the original kNN procedure on the standardized data points Σ̂ΣΣ
−1/2

Xi,

i = 1, . . . , n, where Σ̂ΣΣ is an affine-equivariant estimator of shape—in the sense that

Σ̂ΣΣ(AX1 + b, . . . ,AXn + b) ∝ AΣ̂ΣΣ(X1, . . . ,Xn)A′

for any invertible d×d matrix A and any d-vector b. A natural choice for Σ̂ΣΣ is the regular covariance

matrix, but more robust choices, such as, e.g., the shape estimators from Tyler (1987), Dümbgen

(1998), or Hettmansperger & Randles (2002) would allow to get rid of any moment assumption.

Here, we stress that, unlike our adaptive depth-based methodology, such a transformation approach

leads to neighborhoods that do not exploit the geometry of the distribution in the vicinity of the

point x to be classified (these neighborhoods indeed all are ellipsoids with x-independent orientation

and shape); as we show through simulations below, this results into significantly worse performances.

The main depth-based classifiers available—among which those relying on the max-depth ap-

proach of Liu et al. (1999) and Ghosh & Chaudhuri (2005b), as well as the more efficient ones from

Li et al. (2012)—suffer from the “outsider problem4” : if the point x to be classified does not sit

in the convex hull of any of the two populations, then most statistical depth functions will give x

zero depth with respect to each population, so that x cannot be classified through depth. This is

of course undesirable, all the more so that such a point x may very well be easy to classify. To

improve on this, Hoberg & Mosler (2006) proposed extending the original depth fields by using the

Mahalanobis depth outside the supports of both populations, a solution that quite unnaturally re-

quires combining two depth functions. Quite interestingly, our symmetrization construction implies

that the depth-based kNN classifier (that involves one depth function only) does not suffer from the

outsider problem; this is an important advantage over competing depth-based classifiers.

While our depth-based classifiers in (3.1) are perfectly well-defined and enjoy, as we will show

in Section 3.3 below, excellent consistency properties, practitioners might find quite arbitrary that

a point x such that
∑n

i=1I[Yi = 1]W
β(n)
i (x) =

∑n
i=1 I[Yi = 0]W

β(n)
i (x) is assigned to Population 0.

Parallel to the standard kNN classifier, the classification may alternatively be based on the popu-

lation of the next neighbor. Since ties are likely to occur when using depth, it is natural to rather

base classification on the proportion of data points from each population in the next depth region.

Of course, if the next depth region still leads to an ex-aequo, the outcome of the classification is

to be determined on the subsequent depth regions, until a decision is reached (in the unlikely case

that an ex-aequo occurs for all depth regions to be considered, classification should then be done

by flipping a coin). This treatment of ties is used whenever real or simulated data are considered

below.

Finally, practitioners have to choose some value for the smoothing parameter kn. This may be

done, for example, through cross-validation (as we will do in the real data example of Section 5).

The value of kn is likely to have a strong impact on finite-sample performances, as confirmed in the

simulations we conduct in Section 4.

4The term “outsider” was recently introduced in Lange et al. (2012).
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3.2 Consistency results

As expected, the local (nearest-neighbor) nature of the proposed classifiers makes them consistent

under very mild conditions. This, however, requires that the statistical depth function D satisfies

the following further properties:

(Q1) continuity: if P is symmetric about θθθ and admits a density that is positive at θθθ, then x 7→
D(x, P ) is continuous in a neighborhood of θθθ.

(Q2) unique maximization at the symmetry center: if P is symmetric about θθθ and admits a density

that is positive at θθθ, then D(θθθ, P ) > D(x, P ) for all x 6= θθθ.

(Q3) consistency: for any bounded d-dimensional Borel set B, supx∈B |D(x, P (n))−D(x, P )| = o(1)

almost surely as n → ∞, where P (n) denotes the empirical distribution associated with n

random vectors that are i.i.d. P .

Property (Q2) complements Property (P2), and, in view of Property (P3), only further requires

that θθθ is a strict local maximizer of x 7→ D(x, P ). Note that Properties (Q1)-(Q2) jointly ensure

that the depth-based neighborhoods of x from Section 2.2 collapse to the singleton {x} when the

depth level increases to its maximal value. Finally, since our goal is to prove that our classifier

satisfies an asymptotic property (namely, consistency), it is not surprising that we need to control

the asymptotic behavior of the sample depth itself (Property (Q3)). As shown by Theorem 1 in the

Appendix, Properties (Q1)-(Q3) are satisfied for many classical depth functions.

We can then state the main result of this paper.

Theorem 3.1. Let D be a depth function satisfying (P2), (P3) and (Q1)-(Q3). Let kn be a sequence

of positive integers such that kn →∞ and kn = o(n) as n→∞. Assume that, for j = 0, 1, X|[Y = j]

admits a density fj whose collection of discontinuity points has Lebesgue measure zero. Then the

depth-based knNN classifier m
(n)
D in (3.1) is consistent in the sense that

P [m
(n)
D (X) 6= Y | Dn]− P [mBayes(X) 6= Y ] = oP (1) as n→∞,

where Dn is the sigma-algebra associated with (Xi, Yi), i = 1, . . . , n.

Classically, consistency results for classification are based on a famous theorem from Stone (1977);

see, e.g., Theorem 6.3 in Devroye et al. (1996). However, it is an open question whether Condition (i)

of this theorem holds or not for the proposed classifiers, at least for some particular statistical depth

functions. A sufficient condition for Condition (i) is actually that there exists a partition of Rd into

cones C1, . . . , Cγd with vertex at the origin of Rd (γd not depending on n) such that, for any Xi

and any j, there exist (with probability one) at most k data points X` ∈ Xi + Cj that have Xi

among their k depth-based nearest neighbors. Would this be established for some statistical depth

function D, it would prove that the corresponding depth-based knNN classifier m̂
(n)
D is universally

consistent, in the sense that consistency holds without any assumption on the distribution of (X, Y ).

Now, it is clear from the proof of Stone’s theorem that this condition (i) may be dropped if one

further assumes that X admits a uniformly continuous density. This is however a high price to pay,

and that is the reason why the proof of Theorem 3.1 rather relies on an argument recently used in

Biau et al. (2012); see the Appendix.
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4 Simulations

We performed simulations in order to evaluate the finite-sample performances of the proposed depth-

based kNN classifiers. We considered six setups, focusing on bivariate Xi’s (d = 2) with equal a

priori probabilities (π0 = π1 = 1/2), and involving the following densities f0 and f1:

Setup 1 (multinormality): fj , j = 0, 1, is the pdf of the bivariate normal distribution with mean

vector µµµj and covariance matrix ΣΣΣj , where

µµµ0 =
( 0

0

)
, µµµ1 =

( 1

1

)
, ΣΣΣ0 =

( 1 1

1 4

)
, ΣΣΣ1 = 4ΣΣΣ0;

Setup 2 (bivariate Cauchy): fj , j = 0, 1, is the pdf of the bivariate Cauchy distribution with

location center µµµj and scatter matrix ΣΣΣj , with the same values of µµµj and ΣΣΣj as in Setup 1;

Setup 3 (flat covariance structure): fj , j = 0, 1, is the pdf of the bivariate normal distribution with

mean vector µµµj and covariance matrix ΣΣΣj , where

µµµ0 =
( 0

0

)
, µµµ1 =

( 1

1

)
, ΣΣΣ0 =

( 52 0

0 1

)
, ΣΣΣ1 = ΣΣΣ0;

Setup 4 (uniform distributions on half-moons): f0 and f1 are the densities of

( X

Y

)
=
( U

V

)
and

( X

Y

)
=
( −0.5

2

)
+
( 1 0.5

0.5 −1

)( U

V

)
,

respectively, where U ∼ Unif(−1, 1) and V |[U = u] ∼ Unif(1− u2, 2(1− u2));

Setup 5 (uniform distributions on rings): f0 and f1 are the uniform distributions on the concentric

rings {x ∈ R2 : 1 ≤ ‖x‖ ≤ 2} and {x ∈ R2 : 1.75 ≤ ‖x‖ ≤ 2.5}, respectively;

Setup 6 (bimodal populations): fj , j = 0, 1, is the pdf of the multinormal mixture 1
2N (µµµIj ,ΣΣΣ

I
j ) +

1
2N (µµµIIj ,ΣΣΣ

II
j ), where

µµµI0 =
( 0

0

)
, µµµII0 =

( 3

3

)
, ΣΣΣI

0 =
( 1 1

1 4

)
, ΣΣΣII

0 = 4ΣΣΣI
0,

µµµI1 =
( 1.5

1.5

)
, µµµII1 =

( 4.5

4.5

)
, ΣΣΣI

1 =
( 4 0

0 0.5

)
, and ΣΣΣII

1 =
( 0.75 0

0 5

)
.

For each of these six setups, we generated 250 training and test samples of size n = ntrain =

200 and ntest = 100, respectively, and evaluated the misclassification frequencies of the following

classifiers:

1. the usual LDA and QDA classifiers (LDA/QDA);

2. the standard Euclidean kNN classifiers (kNN), with β = k/n = 0.01, 0.05, 0.10 and 0.40,

and the corresponding “Mahalanobis” kNN classifiers (kNNaff) obtained by performing the

Euclidean kNN classifiers on standardized data, where standardization is based on the regular

covariance matrix estimate of the pooled training sample;
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3. the proposed depth-based kNN classifiers (D-kNN) for each combination of the k used in

kNN/kNNaff and a statistical depth function (we focused on halfspace depth, simplicial depth,

or Mahalanobis depth);

4. the depth vs depth (DD) classifiers from Li et al. (2012), for each combination of a polynomial

curve of degree m (m = 1, 2, or 3) and a statistical depth function (halfspace depth, simplicial

depth, or Mahalanobis depth). Exact DD-classifiers (DD) as well as smoothed versions (DDsm)

were actually implemented —although, for computational reasons, only the smoothed version

was considered for m = 3. Exact classifiers search for the best separating polynomial curve

(d, r(d)) of order m passing through the origin and m “DD-points” (D
(n)
0 (Xi), D

(n)
1 (Xi)) (see

the Introduction) in the sense that it minimizes the misclassification error

n∑
i=1

(
I[Yi = 1]I[d(n)

i > 0] + I[Yi = 0]I[−d(n)
i > 0]

)
, (4.1)

with d
(n)
i := r(D

(n)
0 (Xi))−D(n)

1 (Xi). Smoothed versions use derivative-based methods to find

a polynomial minimizing (4.1), where the indicator I[d > 0] is replaced by the logistic function

1/(1 + e−td) for a suitable t. As suggested in Li et al. (2012), value t = 100 was chosen in

these simulations. 100 randomly chosen polynomials were used as starting points for the mini-

mization algorithm, the classifier using the resulting polynomial with minimal misclassification

(note that this time-consuming scheme always results into better performances than the one

adopted in Li et al. (2012), where only one minimization is performed, starting from the best

random polynomial considered).

Since the DD classification procedure is a refinement of the max-depth procedures of Ghosh &

Chaudhuri (2005b) that leads to better misclassification rates (see Li et al. (2012)), the original

max-depth procedures were omitted in this study.

Boxplots of misclassification frequencies (in percentages) are reported in Figures 3 and 2. It is

seen that in most setups, the proposed depth-based kNN classifiers compete well with the Euclidean

kNN classifiers. The latter, however, should be avoided since (i) their outcome may unpleasantly

depend on measurement units, and since (ii) the spherical nature of the neighborhoods used lead

to performances that are severely affected by the—notoriously delicate—choice of k; see the “flat”

setup 3. This motivates restricting to affine-invariant classifiers, that (i) are totally insensitive to any

unit changes and that (ii) can adapt to the flat structure of Setup 3 as they show there performances

that are much more stable in k.

Now, regarding the comparisons between affine-invariant classifiers, the simulations results lead

to the following conclusions: (i) the proposed affine-invariant depth-based classifiers outperform

the natural affine-invariant versions of kNN classifiers. In other words, the natural way to make

the standard kNN classifier affine-invariant results into a dramatic cost in terms of finite-sample

performances. (ii) The proposed depth-based kNN classifiers also compete well with DD-classifiers

both in elliptical and non-elliptical setups. Away from ellipticity (Setups 4 to 6), in particular, they

perform at least as well—and sometimes outperform (Setup 4)—DD-classifiers; a single exception is

associated with the use of Mahalanobis depth in Setup 5, where the DD-classifiers based on m = 2, 3

perform better. Apparently, another advantage of depth-based kNN classifiers over DD-classifiers is

that their finite-sample performances depend much less on the statistical depth function D used.
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Figure 1: Boxplots of misclassification frequencies (in percentages), from 250 replications of Setups 1 to
3 described in Section 4, with training sample size n = ntrain = 200 and test sample size ntest = 100,
of the LDA/QDA classifiers, the Euclidean kNN classifiers (kNN) and their Mahalanobis (affine-invariant)
counterparts (KNNaff), the proposed depth-based kNN classifiers (D-kNN), and some exact and smoothed
version of the DD-classifiers (DD and DDsm); see Section 4 for details.

35



Chapter I Simulations

10
9

8
7

6
5

4
3

2
1

0 10 20 30 40 50

LDA
QDA
kNN (β=1%)
kNN (β=5%)
kNN (β=10%)
kNN (β=40%)
kNNaff (β=1%)
kNNaff (β=5%)
kNNaff (β=10%)
kNNaff (β=40%)

LD
A

/Q
D

A
, k

N
N

Setup 4

9
8

7
6

5
4

3
2

1

0 10 20 30 40 50

D-kNN (β=1%)

D-kNN (β=5%)

D-kNN (β=10%)

D-kNN (β=40%)

DD (m=1)

DD (m=2)

DDsm (m=1)

DDsm (m=2)

DDsm (m=3)

H
al

fs
pa

ce
 d

ep
th

9
8

7
6

5
4

3
2

1

0 10 20 30 40 50

D-kNN (β=1%)

D-kNN (β=5%)

D-kNN (β=10%)

D-kNN (β=40%)

DD (m=1)

DD (m=2)

DDsm (m=1)

DDsm (m=2)

DDsm (m=3)

S
im

pl
ic

ia
l d

ep
th

9
8

7
6

5
4

3
2

1

0 10 20 30 40 50

D-kNN (β=1%)

D-kNN (β=5%)

D-kNN (β=10%)

D-kNN (β=40%)

DD (m=1)

DD (m=2)

DDsm (m=1)

DDsm (m=2)

DDsm (m=3)

M
ah

al
an

ob
is

 d
ep

th

10
9

8
7

6
5

4
3

2
1

0 10 20 30 40 50

Setup 5

9
8

7
6

5
4

3
2

1

0 10 20 30 40 50

9
8

7
6

5
4

3
2

1

0 10 20 30 40 50

9
8

7
6

5
4

3
2

1

0 10 20 30 40 50

10
9

8
7

6
5

4
3

2
1

0 10 20 30 40 50

Setup 6

9
8

7
6

5
4

3
2

1

0 10 20 30 40 50

9
8

7
6

5
4

3
2

1

0 10 20 30 40 50

9
8

7
6

5
4

3
2

1

0 10 20 30 40 50

Figure 2: Boxplots of misclassification frequencies (in percentages), from 250 replications of Setups 4 to
6 described in Section 4, with training sample size n = ntrain = 200 and test sample size ntest = 100,
of the LDA/QDA classifiers, the Euclidean kNN classifiers (kNN) and their Mahalanobis (affine-invariant)
counterparts (KNNaff), the proposed depth-based kNN classifiers (D-kNN), and some exact and smoothed
version of the DD-classifiers (DD and DDsm); see Section 4 for details.
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5 Real-data examples

In this section, we investigate the performances of our depth-based kNN classifiers on two well

known benchmark datasets. The first example is taken from Ripley (1996) and can be found on

the book’s website (http://www.stats.ox.ac.uk/pub/PRNN). This data set involves well-specified

training and test samples, and we therefore simply report the test set misclassification rates of the

different classifiers included in the study. The second example, blood transfusion data, is available

at http://archive.ics.uci.edu/ml/index.html. Unlike the first data set, no clear partition into

a training sample and a test sample is provided here. As suggested in Li et al. (2012), we randomly

performed such a partition 100 times (see the details below) and computed the average test set

misclassification rates, together with standard deviations. A brief description of each dataset is as

follows:

Synthetic data was introduced and studied in Ripley (1996). The dataset is made of ob-

servations from two populations, each of them being actually a mixture of two bivariate normal

distributions differing only in location. As mentioned above, a partition into a training sample

and a test sample is provided: the training and test samples contain 250 and 1000 observations,

respectively, and both samples are divided equally between the two populations.

Transfusion data contains the information on 748 blood donors selected from the blood donor

database of the Blood Transfusion Service Center in Hsin-Chu City, Taiwan. It was studied in Yeh

et al. (2009). The classification problem at hand is to know whether or not the donor gave blood

in March 2007. In this dataset, prior probabilities are not equal; out of 748 donors, 178 gave blood

in March 2007, when 570 did not. Following Li et al. (2012), one out of two linearly correlated

variables was removed and three measurements were available for each donor: Recency (number of

months since the last donation), Frequency (total number of donations) and Time (time since the

first donation). The training set consists in 100 donors from the first class and 400 donors from the

second, while the rest is assigned to the test sample (therefore containing 248 individuals).

Table 1 reports the—exact (synthetic) or averaged (transfusion)—misclassification rates of the

following classifiers: the linear (LDA) and quadratic (QDA) discriminant rules, the standard kNN

classifier (kNN) and its Mahalanobis affine-invariant version (kNNaff), the depth-based kNN clas-

sifiers using halfspace depth (DH -kNN) and Mahalanobis depth (DM -kNN), and the exact DD-

classifiers for any combination of a polynomial order m ∈ {1, 2} and a statistical depth function

among the two considered for depth-based kNN classifiers, namely the halfspace depth (DDH) and

the Mahalanobis depth (DDM )—smoothed DD-classifiers were excluded from this study, as their

performances, which can only be worse than those of exact versions, showed much sensitivity to

the smoothing parameter t; see Section 4. For all nearest-neighbor classifiers, leave-one-out cross-

validation was used to determine k.

The results from Table 1 indicate that depth-based kNN classifiers perform very well in both

examples. For synthetic data, the halfspace depth-based kNN classifier (10.1%) is only dominated

by the standard (Euclidian) kNN procedure (8.7%). The latter, however, has to be discarded as it

is dependent on scale and shape changes—in line with this, note that the “kNN classifier” applied

in Dutta & Ghosh (2012b) is actually the kNNaff classifier (11.7%), as classification in that paper

is performed on standardized data. The Mahalanobis depth-based kNN classifiers (14.4%) does not

perform as well as its halfspace counterpart. For transfusion data, however, both depth-based kNN

classifiers dominate their competitors.
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Table 1: Misclassification rates (in %) on the two benchmark datasets from Section 5.

Synthetic Transfusion

LDA 10.8 29.60 (0.9)
QDA 10.2 29.21 (1.5)
kNN 8.7 29.74 (2.0)

kNNaff 11.7 30.11 (2.1)
DH -kNN 10.1 27.75 (1.6)
DM -kNN 14.4 27.36 (1.5)

DDH (m = 1) 13.4 28.26 (1.7)
DDH (m = 2) 12.9 28.33 (1.6)
DDM (m = 1) 17.5 31.44 (0.1)
DDM (m = 2) 12.0 31.54 (0.6)

6 Final comments

The depth-based neighborhoods we introduced are of interest in other inference problems as well. As

an illustration, consider the regression problem where the conditional mean function x 7→ m(x) =

E[Y |X = x] is to be estimated on the basis of mutually independent copies (Xi, Yi), i = 1, . . . , n of

a random vector (X, Y ) with values in Rd ×R, or the problem of estimating the common density f

of i.i.d. random d-vectors Xi, i = 1, . . . , n. The classical knNN estimators for these problems are

f̂ (n)(x) =
kn

nµd(B
βn
x )

and m̂(n)(x) =
n∑
i=1

W
βn(n)
i (x)Yi =

1

kn

n∑
i=1

I
[
Xi ∈ Bβn

x

]
Yi, (6.1)

where βn = kn/n, Bβ
x is the smallest Euclidean ball centered at x that contains a proportion β

of the Xi’s, and µd stands for the Lebesgue measure on Rd. Our construction naturally leads to

considering the depth-based knNN estimators f̂
(n)
D (x) and m̂

(n)
D (x) obtained by replacing in (6.1) the

Euclidean neighborhoods Bβn
x with their depth-based counterparts Rβnx and kn =

∑n
i=1 I

[
Xi ∈ Bβn

x

]
with K

βn(n)
x =

∑n
i=1 I

[
Xi ∈ Rβnx

]
.

A thorough investigation of the properties of these depth-based procedures is of course beyond

the scope of the present paper. It is, however, extremely likely that the excellent consistency prop-

erties obtained in the classification problem extend to these nonparametric regression and density

estimation setups. Now, recent works in density estimation indicate that using non-spherical (actu-

ally, ellipsoidal) neighborhoods may lead to better finite-sample properties; see, e.g., Chacón (2009)

or Chacón et al. (2011). In that respect, the depth-based kNN estimators above are very promising

since they involve non-spherical (and for most classical depth, even non-ellipsoidal) neighborhoods

whose shape is determined by the local geometry of the sample. Note also that depth-based neigh-

borhoods only require choosing a single scalar bandwidth parameter (namely, kn), whereas general

d-dimensional ellipsoidal neighborhoods impose selecting d(d+ 1)/2 bandwidth parameters.
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Appendix — Proofs

The main goal of this Appendix is to prove Theorem 3.1. We will need the following lemmas.

Lemma 1. Assume that the depth function D satisfies (P2), (P3), (Q1), and (Q2). Let P be a

probability measure that is symmetric about θθθ and admits a density that is positive at θθθ. Then, (i)

for all a > 0, there exists α < α∗ = maxx∈Rd D(x, P ) such that Rα(P ) ⊂ Bθθθ(a) := {x ∈ Rd :

‖x− θθθ‖ ≤ a}; (ii) for all α < α∗, there exists ξ > 0 such that Bθθθ(ξ) ⊂ Rα(P ).

Proof of Lemma 1. (i) First note that the existence of α∗ follows from Property (P2). Fix then δ >

0 such that x 7→ D(x, P ) is continuous over Bθθθ(δ); existence of δ is guaranteed by Property (Q1).

Continuity implies that x 7→ D(x, P ) reaches a minimum in Bθθθ(δ), and Property (Q2) entails that

this minimal value, αδ say, is strictly smaller than α∗. Using Property (Q1) again, we obtain that,

for each α ∈ [αδ, α∗],

rα : Sd−1 → R+

u 7→ sup{r ∈ R+ : θθθ + ru ∈ Rα(P )}

is a continuous function that converges pointwise to rα∗(u) ≡ 0 as α→ α∗. Since Sd−1 is compact,

this convergence is actually uniform, i.e., supu∈Sd−1 |rα(u)| = o(1) as α→ α∗. Part (i) of the result

follows.

(ii) Property (Q2) implies that, for any α ∈ [αδ, α∗), the mapping rα takes values in R+
0 .

Therefore there exists u0(α) ∈ Sd−1 such that rα(u) ≥ rα(u0(α)) = ξα > 0. This implies that, for

all α ∈ [αδ, α∗), we have Bθθθ(ξα) ⊂ Rα(P ), which proves the result for these values of α. Nestedness

of the Rα(P )’s, which follows from Property (P3), then establishes the result for an arbitrary α < α∗.

2

Lemma 2. Assume that the depth function D satisfies (P2), (P3), and (Q1)-(Q3). Let P be

a probability measure that is symmetric about θθθ and admits a density that is positive at θθθ. Let

X1, . . . ,Xn be i.i.d. P and denote by Xθθθ,(i) the ith depth-based nearest neighbor of θθθ. Let K
βn(n)
θθθ be

the number of depth-based nearest neighbors in Rβnθθθ (P (n)), where βn = kn/n is based on a sequence kn
that is as in Theorem 3.1 and P (n) stands for the empirical distribution of X1, . . . ,Xn. Then, for

any a > 0, there exists n = n(a) such that
∑K

βn(n)
θθθ

i=1 I[‖Xθθθ,(i) − θθθ‖ > a] = 0 almost surely for

all n ≥ n(a).

Note that, while Xθθθ,(i) may not be properly defined (because of ties), the quantity
∑K

βn(n)
θθθ

i=1 I[‖Xθθθ,(i)−
θθθ‖ > a] = 0 always is.
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Proof of Lemma 2. Fix a > 0. By Lemma 4.1, there exists α < α∗ such that Rα(P ) ⊂ Bθθθ(a). Fix

then ᾱ and ε > 0 such that α < ᾱ − ε < ᾱ + ε < α∗. Theorem 4.1 in Zuo & Serfling (2000b) and

the fact that P
(n)
θθθ → Pθθθ = P weakly as n→∞ (where P

(n)
θθθ and Pθθθ are the θθθ-symmetrized versions

of P (n) and P , respectively) then entail that there exists an integer n0 such that

Rᾱ+ε(P ) ⊂ Rᾱ(P
(n)
θθθ ) ⊂ Rᾱ−ε(P ) ⊂ Rα(P )

almost surely for all n ≥ n0. From Lemma 4.1 again, there exists ξ > 0 such that Bθθθ(ξ) ⊂ Rᾱ+ε(P ).

Hence, for any n ≥ n0, one has that

Bθθθ(ξ) ⊂ Rᾱ(P
(n)
θθθ ) ⊂ Bθθθ(a)

almost surely.

Putting Nn =
∑n

i=1 I[Xi ∈ Bθθθ(ξ)], the SLLN yields that Nn/n → P [Bθθθ(ξ)] = P [Bθθθ(ξ)] > 0

as n→∞, since X ∼ P admits a density that, from continuity, is positive over a neighborhood of θθθ.

Since kn = o(n) as n→∞, this implies that, for all n ≥ ñ0(≥ n0),

n∑
i=1

I[Xi ∈ Rᾱ(P
(n)
θθθ )] ≥ Nn ≥ kn

almost surely. It follows that, for such values of n,

Rβnθθθ (P (n)) = Rβn(P
(n)
θθθ ) ⊂ Rᾱ(P

(n)
θθθ ) ⊂ Bθθθ(a)

almost surely, with βn = kn/n. Therefore, max
i=1,...,K

βn(n)
θθθ

‖Xθθθ,(i)−θθθ‖ ≤ a almost surely for large n,

which yields the result. 2

Lemma 3. For a “plug-in” classification rule m̃(n)(x) = I[η̃(n)(x) > 1/2] obtained from a regres-

sion estimator η̃(n)(x) of η(x) = E[I[Y = 1] |X = x], one has that P [m̃(n)(X) 6= Y ] − Lopt ≤
2
(
E[(η̃(n)(X) − η(X))2]

)1/2
, where Lopt = P [mBayes(X) 6= Y ] is the probability of misclassification

of the Bayes rule.

Proof of Lemma 3. Corollary 6.1 in Devroye et al. (1996) states that

P [m̃(n)(X) 6= Y | Dn]− Lopt ≤ 2E[|η̃(n)(X)− η(X)| | Dn],

where Dn stands for the sigma-algebra associated with the training sample (Xi, Yi), i = 1, . . . , n.

Taking expectations in both sides of this inequality and applying Jensen’s inequality readily yields

the result. 2

Proof of Theorem 3.1. From Bayes’ theorem, X admits the density x 7→ f(x) = π0f0(x) +

π1f1(x). Letting Supp+(f) = {x ∈ Rd : f(x) > 0} and writing C(fj) for the collection of continuity

points of fj , j = 0, 1, put N = Supp+(f)∩C(f0)∩C(f1). Since, by assumption, Rd\C(fj) (j = 0, 1)
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has Lebesgue measure zero, we have that

P [X ∈ Rd \N ] ≤ P [X ∈ Rd \ Supp+(f)] +
∑

j∈{0,1}

P [X ∈ Rd \ C(fj)]

=

∫
Rd\Supp+(f)

f(x) dx = 0,

so that P [X ∈ N ] = 1. Note also that x 7→ η(x) = π1f1(x)/(π0f0(x) + π1f1(x)) is continuous

over N .

Fix x ∈ N and let Yx,(i) = Yj(x) with j(x) such that Xx,(i) = Xj(x). With this notation, the

estimator η̂
(n)
D (x) from Section 3.1 rewrites

η̂
(n)
D (x) =

n∑
i=1

YiW
β(n)
i (x) =

1

K
β(n)
x

K
β(n)
x∑
i=1

Yx,(i).

Proceeding as in Biau et al. (2012), we therefore have that (writing for simplicity β instead of βn in

the rest of the proof)

T (n)(x) := E[(η̂
(n)
D (x)− η(x))2] ≤ 2T

(n)
1 (x) + 2T

(n)
2 (x),

with

T
(n)
1 (x) = E

[∣∣∣∣ 1

K
β(n)
x

K
β(n)
x∑
i=1

(
Yx,(i) − η(Xx,(i))

)∣∣∣∣2]
and

T
(n)
2 (x) = E

[∣∣∣∣ 1

K
β(n)
x

K
β(n)
x∑
i=1

(
η(Xx,(i))− η(x)

)∣∣∣∣2].
Writing D(n)

X for the sigma-algebra generated by Xi, i = 1, . . . , n, note that, conditional on D(n)
X ,

the Yx,(i) − η(Xx,(i))’s, i = 1, . . . , n, are zero mean mutually independent random variables. Conse-

quently,

T
(n)
1 (x) = E

[
1

(K
β(n)
x )2

K
β(n)
x∑

i,j=1

E
[
(Yx,(i) − η(Xx,(i))

)
(Yx,(j) − η(Xx,(j))

) ∣∣D(n)
X

]]

= E

[
1

(K
β(n)
x )2

K
β(n)
x∑
i=1

E
[
(Yx,(i) − η(Xx,(i))

)2 ∣∣D(n)
X

]]

≤ E

[
4

K
β(n)
x

]
≤ 4

kn
= o(1),

as n → ∞, where we used the fact that K
β(n)
x ≥ kn almost surely. As for T

(n)
2 (x), the Cauchy-
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Schwarz inequality yields (for an arbitrary a > 0)

T
(n)
2 (x) ≤ E

[
1

K
β(n)
x

K
β(n)
x∑
i=1

(
η(Xx,(i))− η(x)

)2]

= E

[
1

K
β(n)
x

K
β(n)
x∑
i=1

(
η(Xx,(i))− η(x)

)2I[‖Xx,(i) − x‖ ≤ a]

]

+E

[
1

K
β(n)
x

K
β(n)
x∑
i=1

(
η(Xx,(i))− η(x)

)2I[‖Xx,(i) − x‖ > a]

]

≤ sup
y∈Bx(a)

|η(y)− η(x)|2 + 4E

[
1

K
β(n)
x

K
β(n)
x∑
i=1

I[‖Xx,(i) − x‖ > a]

]

=: T̃2(x; a) + T̄
(n)
2 (x; a).

Continuity of η at x implies that, for any ε > 0, one may choose a = a(ε) > 0 so that T̃2(x; a(ε)) < ε.

Since Lemma 2 readily yields that T
(n)
2 (x; a(ε)) = 0 for large n, we conclude that T

(n)
2 (x)—hence

also T (n)(x)—is o(1). The Lebesgue dominated convergence theorem then yields that E[(η̂
(n)
D (X)−

η(X))2] is o(1). Therefore, using the fact that P [m̂
(n)
D (X) 6= Y | Dn] ≥ Lopt almost surely and

applying Lemma 3, we obtain

E
[
|P [m̂

(n)
D (X) 6= Y | Dn]− Lopt|

]
= E[P [m̂

(n)
D (X) 6= Y | Dn]− Lopt]

= P [m̂
(n)
D (X) 6= Y ]− Lopt ≤ 2

(
E[(η̂

(n)
D (X)− η(X))2]

)1/2
= o(1),

as n→∞, which establishes the result. 2

Finally, we show that Properties (Q1)-(Q3) hold for several classical statistical depth functions.

Theorem 1. Properties (Q1)-(Q3) hold for (i) the halfspace depth and (ii) the simplicial depth.

(iii) If the location and scatter functionals µµµ(P ) and ΣΣΣ(P ) are such that (a) µµµ(P ) = θθθ as soon as

the probability measure P is symmetric about θθθ and such that (b) the empirical versions µµµ(P (n))

and ΣΣΣ(P (n)) associated with an i.i.d. sample X1, . . . ,Xn from P are strongly consistent for µµµ(P )

and ΣΣΣ(P ), then Properties (Q1)-(Q3) also hold for the Mahalanobis depth.

Proof of Theorem 1. (i) The continuity of D in Property (Q1) actually holds under the only

assumption that P admits a density with respect to the Lebesgue measure; see Proposition 4 in

Rousseeuw & Ruts (1999). Property (Q2) is a consequence of Theorems 1 and 2 in Rousseeuw &

Struyf (2004) and the fact that the angular symmetry center is unique for absolutely continuous

distributions; see Serfling (2006). For halfspace depth, Property (Q3) follows from (6.2) and (6.6)

in Donoho & Gasko (1992).

(ii) The continuity of D in Property (Q1) actually holds under the only assumption that P admits

a density with respect to the Lebesgue measure; see Theorem 2 in Liu (1990). Remark C in Liu (1990)

shows that, for an angularly symmetric probability measure (hence also for a centrally symmetric

probability measure) admitting a density, the symmetry center is the unique point maximizing

simplicial depth provided that the density remains positive in a neighborhood of the symmetry
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center; Property (Q2) trivially follows. Property (Q3) for simplicial depth is stated in Corollary 1

of Dümbgen (1992).

(iii) This is trivial. 2

Finally, note that Properties (Q1)-(Q3) also hold for projection depth under very mild assump-

tions on the univariate location and scale functionals used in the definition of projection depth; see

Zuo (2003).
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Dümbgen, L. (1998). On Tyler’s M-functional of scatter in high dimension. Ann. Inst. Statist.

Math., 50 , 471–491.

Dutta, S. & Ghosh, A. K. (2012a). On robust classification using projection depth. Ann. Inst.

Statist. Math., 64 , 657–676.

Dutta, S. & Ghosh, A. K. (2012b). On classification based on Lp depth with an adaptive choice of

p. submitted. Tech. rep., Technical Report Number R5/2011, Statistics and Mathematics Unit,

Indian Statistical Institute, Kolkata, India.

Ghosh, A. K. & Chaudhuri, P. (2005a). On data depth and distribution-free discriminant analysis

using separating surfaces. Bernoulli , 11 , 1–27.

Ghosh, A. K. & Chaudhuri, P. (2005b). On maximum depth and related classifiers. Scand. J.

Statist., 32 , 327–350.

Hartikainen, A. & Oja, H. (2006). On some parametric, nonparametric and semiparametric discrim-

ination rules. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 72 ,

61–70.

He, X. & Fung, W. K. (2000). High breakdown estimation for multiple populations with applications

to discriminant analysis. J. Multivariate Anal., 72 , 151–162.

Hettmansperger, T. P. & Randles, R. H. (2002). A practical affine equivariant multivariate median.

Biometrika, 89 , 851–860.

Hoberg, A. & Mosler, K. (2006). Data analysis and classification with the zonoid depth. DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, 72 , 49–59.

44



Chapter I References

Hubert, M. & Van der Veeken, S. (2010). Robust classification for skewed data. Adv. Data Anal.

Classif., 4 , 239–254.

Jörnsten, R. (2004). Clustering and classification based on the L1 data depth. J. Multivariate Anal.,

90 , 67–89.

Koshevoy, G. & Mosler, K. (1997). Zonoid trimming for multivariate distributions. Ann. Statist.,

25 , 1998–2017.

Lange, T., Mosler, K., & Mozharovskyi, P. (2012). Fast nonparametric classification based on data

depth. Stat. Papers. To appear.

Li, J., Cuesta-Albertos, J., & Liu, R. Y. (2012). DD-classifier: Nonparametric classification proce-

dures based on dd-plots. J. Amer. Statist. Assoc., 107 (498), 737–753.

Liu, R. Y. (1990). On a notion of data depth based on random simplices. Ann. Statist., 18 , 405–414.

Liu, R. Y., Parelius, J. M., & Singh, K. (1999). Multivariate analysis by data depth: Descriptive

statistics, graphics and inference. Ann. Statist., 27 , 783–840.

Oja, H. & Paindaveine, D. (2005). Optimal signed-rank tests based on hyperplanes. J. Statist.

Plann. Inference, 135 , 300–323.

Randles, R. H., Broffitt, J. D., Ramberg, J. S., & Hogg, R. V. (1978). Generalized linear and

quadratic discriminant functions using robust estimates. J. Amer. Statist. Assoc., 73 , 564–568.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge: Cambridge University

Press.

Rousseeuw, P. J. & Ruts, I. (1999). The depth function of a population distribution. Metrika, 49 ,

213–244.

Rousseeuw, P. J. & Struyf, A. (2004). Characterizing angular symmetry and regression symmetry.

J. Statist. Plann. Inference, 122 , 161–173.

Serfling, R. J. (2006). Multivariate symmetry and asymmetry. Encyclopedia statist. sci., 8 , 5338–

5345.

Stone, C. J. (1977). Consistent nonparametric regression. Ann. Statist., 5 , 595–620.

Tukey, J. W. (1975). Mathematics and the picturing of data. Proc. Internat. Cong. Math., 2 ,

523–531.

Tyler, D. E. (1987). A distribution-free M-estimator of multivariate scatter. Ann. Statist., 15 ,

234–251.

Yeh, I., Yang, K., & Ting, T. (2009). Knowledge discovery on RFM model using Bernoulli sequence.

Expert Syst. Appl., 36 , 5866–5871.

Zakai, A. & Ritov, Y. (2009). Consistency and localizability. J. Mach. Learn. Res., 10 , 827–856.

Zuo, Y. (2003). Projection-based depth functions and associated medians. Ann. Statist., 31 , 1460–

1490.

45



Chapter I References

Zuo, Y. & Serfling, R. (2000a). General notions of statistical depth function. Ann. Statist., 28 ,

461–482.

Zuo, Y. & Serfling, R. (2000b). Structural properties and convergence results for contours of sample

statistical depth functions. Ann. Statist., 28 , 483–499.

46



Chapter II

From Depth to Local Depth : A Focus on Centrality



From Depth to Local Depth : A Focus on Centrality1

Davy PAINDAVEINEa,b,∗ and Germain VAN BEVERa,c.
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maintain affine-invariance and to apply to all depths in a generic way. Most importantly, unlike

their competitors, that (for extreme localization) rather measure probability mass, the resulting lo-

cal depths focus on centrality and remain of a genuine depth nature at any locality level. We derive

their main properties, establish consistency of their sample versions, and study their behavior under

extreme localization. We present two applications of the proposed local depth (for classification and

for symmetry testing), and we extend our construction to the regression and functional depth con-
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Chapter II Introduction

1 Introduction

Data depth was originally introduced as a way to generalize the concept of median to the

multivariate setup but has long been known in the statistical literature as a powerful data analytic

tool able to reveal very diverse features of the underlying distribution. Indeed, not only does

depth provide a robust multivariate location functional (through the deepest point), it also yields

information about spread, shape, and symmetry (through depth regions, Serfling, 2004), and even

characterizes the underlying distribution under very mild conditions (see Kong & Zuo, 2010 and the

references therein). Celebrated instances of such depths include Tukey’s halfspace depth (Tukey,

1975), Liu’s simplicial depth (Liu, 1990), the projection depth (Zuo, 2003), or the Mahalanobis

depth (see, e.g., Zuo & Serfling, 2000a). Depth methods allow to address several inference problems,

including, e.g., testing for location and scale differences based on the DD-plot (first introduced as a

graphical display for data exploration; Liu et al. (1999), Li & Liu (2004)), multivariate extensions of

Wilcoxon rank sum tests (Liu & Singh, 1993), diagnostics of non-normality (Liu et al., 1999), and

outlier detection (Chen et al., 2009). More recently, depth was used extensively in a classification

context (see, among many others, Ghosh & Chaudhuri, 2005; Li et al., 2012; Dutta & Ghosh, 2012;

Paindaveine & Van Bever, 2012).

Depth deals with centrality. Its first purpose is to provide a center-outward ordering from the

deepest point—the center of the distribution2—towards less deep, exterior points. Classical depth

functions indeed associate with any center of symmetry (should it exist) a maximal depth value.

Together with the fact that depth decreases along any halfline originating from any deepest point,

this leads to nested star-shaped (in most cases, convex) depth regions, whatever the underlying

distribution may be (depth/quantile regions that may be non-convex are defined in Wei (2008)).

That is the reason why it is often reported that depth is suitable for unimodal convexly-supported

distributions only; see, e.g., Zuo & Serfling (2000a); Lok & Lee (2011); Izem et al. (2008); Hlubinka

et al. (2010). Distributions that are multimodal or have a non-convex support, however, are met in

many fields of applications, among which, obviously, those involving mixture models or clustering

problems (see, e.g., McLachlan & Basford, 1988, or McLachlan & Peel, 2000). This motivates

extending the concept of depth to make it flexible enough to deal with such distributions.

A few such extensions are available in the literature, under the name of local depths. In particular,

Agostinelli & Romanazzi (2011) introduced local versions of the halfspace and simplicial depths.

For halfspace depth, locality is achieved by replacing halfspaces with finite-width slabs, while, for

simplicial depth, it is obtained by restricting to simplices with a volume smaller than some fixed

threshold. When considering all possible values of the locality parameter involved, these local

depths—after adequate standardization—provide a continuum between (global) halfspace/simplicial

depths and the density of the underlying distribution. Density and depth, however, are antinomic

in spirit : for instance, the symmetry center of a centrally symmetric bimodal distribution always

assumes maximal depth while the density may very well be zero there; also, uniform distributions

have non-trivial depth contours but do not show proper equidensity contours.

Similarly, other proposals for local depth—or, more generally, other extensions of depth aiming

at distributions with possibly non-convex supports—converge, as locality becomes extreme, to either

a density measure (Hlubinka et al., 2010) or a constant value (Chen et al., 2009), hence lose their

nature of a centrality measure. The purpose of this paper is to introduce a new concept of local

2Uniqueness may fail to hold; however, the maximizers typically form a convex region.
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depth that, at any locality level, remains of a genuine depth nature and provides a measure of local

centrality. Our construction will actually allow to turn, in a common generic way, any (global) depth

into a corresponding local depth. This is another advantage over the competing local depths, that

focus on a specific depth (Hlubinka et al., 2010; Chen et al., 2009) or require a specific definition

for each global depth considered (Agostinelli & Romanazzi, 2011). The proposed local depth is

defined as global depth conditional on some neighborhood of the point of interest. To make this

local concept purely based on depth, we use the neighborhoods that were recently introduced (for

classification purposes) in Paindaveine & Van Bever (2012). As we will show, the resulting local

depths allow for interesting inferential applications.

The outline of the paper is as follows. In Section 2, we illustrate our local depth concept on two

real data sets, that highlight the need for this extension from global to local centrality and allow for a

comparison with the local depths from Agostinelli & Romanazzi (2011). In Section 3, we first review

the basics of depth (Section 3.1). We then describe the depth-based neighborhoods from Paindaveine

& Van Bever (2012) and show how they allow to define local depth (Section 3.2). We also establish

consistency of the corresponding sample local depth (Section 3.3). Section 4 is dedicated to the

limit behavior of the proposed local depth as locality becomes extreme. Section 5 illustrates the

results of the previous sections on several univariate and multivariate examples. Section 6 presents

two inferential applications of the proposed local depth concept. In Section 7, we show that our

construction extends to the regression and functional depth contexts. Computational aspects are

discussed in Section 8. Finally, the Appendix collects technical proofs.

2 Motivating examples

As mentioned above, we introduce a concept of local depth that can cope with multimodal and/or

non-convexly supported distributions. Here we illustrate this on the basis of two real data sets, that

are freely available in the well-known R package MASS (the first one provides a univariate bimodal

example, whereas the second one involves a bivariate distribution with a non-convex support).

Inferential applications based on the proposed local depth are deferred to Section 6.

2.1 Geyser data

The Geyser data set is related to eruption data from the Old Faithful geyser in the Yellowstone

National Park, Wyoming, USA (see Härdle, 1991). It contains n = 299 measurements of two

variables : “duration” (duration, in minutes, of the eruption) and “waiting” (waiting time, still in

minutes, between two eruptions). As we want to start with a univariate data set, we focus here on

the bimodal variable “waiting”.

Figure 1 starts with reporting a histogram of the waiting times (upper left), together with the

halfspace and simplicial depths of 100 equispaced values in the range of interest (upper right). The

lower subplots draw the proposed local halfspace and simplicial depths at locality levels β = .7

(intermediate localization) and .3 (more extreme localization) ; in the present univariate setup, we

simply define the local depth of a waiting time x, at locality level β, as the (global) depth of x with

respect to the dnβe observed waiting times that are closest to x. For the sake of comparison, we also

report the local halfspace and simplicial depths from Agostinelli & Romanazzi (2011), at locality

levels τ = 23 and 7 (for proper comparison, these τ -values, as in Agostinelli & Romanazzi (2011),

were selected as the .7- and .3-quantiles of the
(
n
2

)
distances between observed waiting times; in
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order to avoid these local depth functions collapsing to zero as τ → 0, they were scaled so that the

deepest waiting time receives depth 1/2 in each case).

With the exception of the Agostinelli & Romanazzi (2011) (τ = 23)-local simplicial depth, all

local depths clearly show the obvious multimodality that is missed by global depth. For more

extreme localization, all local depths reveal both local modes about 55 and 80. Unlike our local

depths, that attribute comparable depth values to both local modes, the Agostinelli & Romanazzi

(2011) local depths, that, at such locality levels, are not local centrality measures but rather density

measures, clearly reflect the heterogeneous probability masses around the two local modes.

For β = 0.3, the proposed local depths show a third local center (about x0 = 65 minutes), which

is in line with the fact that, at this locality level, the distribution is nearly symmetric about x0,

so that it should receive a large (local) centrality measure. If needed, discriminating between the

two “true” local modes and this “artificial” mode about x0 may e.g. be based on the corresponding

depth-based neighborhoods involved (See Section 3.2 below), that are much wider at x0 than at both

“true” modes. Detecting modes, however, is not one of the primary applications of the proposed

local depth concept ; see Section 6 for such applications.
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Figure 1: (Upper left:) Histogram of the variable “Waiting” from the Geyser data set. (Upper right): Plots
of halfspace (blue) and simplicial (orange-red) depths over 100 equispaced points. (Lower:) the proposed local
halfspace (light blue) and simplicial (orange) depths at locality levels β ∈ {.7, .3}, along with their halfspace
(dark blue) and simplicial (red) counterparts from Agostinelli & Romanazzi (2011) for locality levels τ ∈
{27, 3}.

2.2 Boston data

The Boston data set was first introduced in Harrison & Rubinfeld (1978). It contains 506 observa-

tions related to housing and was first used to estimate the “need for clean air” in the Boston area.

The data set originally contains 14 different variables. For the sake of illustration, we restrict here

to two variables, namely “NOX” (annual average of nitrogen oxide concentration, in parts per ten

million) and “DIS” (the weighted mean of distances to five Boston employment centers, in miles).

The upper left panel of Figure 2 shows a scatter plot of the resulting 506 bivariate data points.
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This scatter plot shows that the data set has a non-convex support; this entails that there may

be points whose respective depth values do not reflect properly what one would naturally consider

the relative centrality of these points in the data set. To illustrate this, we consider four particular

locations, marked in orange, blue, red, and green in the scatter plot. Both for halfspace and

simplicial depths, the green location is considered more central than the blue one, which is somehow

paradoxical since the green location is much closer to the boundary of the support. Similarly, the

red location—that actually is the halfspace deepest one—is about twice as (halfspace or simplicial)

deep as the blue location, while visual inspection suggests that the latter is more central than the

former (or at least is of comparable centrality).

Parallel to the univariate case, the β-local depth of a point x ∈ R2 is still obtained as the global

depth of x with respect to the data points sitting in a neighborhood of x containing a proportion β

of the observations (the exact definition of this neighborhood, that is actually of a depth-based

nature, will be provided in Section 3.2). The upper right panel of Figure 2 shows the plots of the

proposed local (halfspace and simplicial) depths for the four locations above, as a function of the

locality level β. As β moves away from one (that still corresponds to going from global depth to

more and more local depth), the paradoxes above vanish : both the green location (that is close

to the boundary of the support) and the red location show decreasing local depths that eventually

fall below the local depth of the blue one. Note that, except for very small β-values3, the orange

location has uniformly low local depth, which is expected since it is close to the boundary of the

convex hull of the data (would this point be outside the convex hull, its local depth would be zero

for any β).

The lower left panel of Figure 2 plots scaled versions of the Agostinelli & Romanazzi (2011) local

halfspace and simplicial depths of the four locations, as a function of the locality level τ in some

appropriate range4; scaling was performed in such a way that, at any fixed τ , the largest τ -local

(halfspace and simplicial) depths considered are equal to one (this still allows to investigate, for any

fixed τ , the corresponding (halfspace and simplicial) depth rankings, and was done because those

local depths are hardly comparable for different τ -values). It is seen that the (local) depth rankings

depend much more on the choice of (halfspace or simplicial) depth than for the proposed local depths

(particularly so for the green location). For halfspace depth, the red point remains the deepest for

most τ -values; it actually is so for all τ -values in the lower right panel of Figure 2, that reports the

corresponding local depths after a unit change expressing the DIS variable in yards (this consists

in multiplying DIS by 1760, but the results are similar for much smaller factors). The particular

τ -indexing used for local simplicial depth makes it affine-invariant, but local halfspace depth fails

to be so, irrespective of the τ -indexing used; the unit change considered, unpleasantly, has a strong

impact on the local halfspace depth from Agostinelli & Romanazzi (2011) (the τ -local halfspace

depth of the green location now dramatically decreases for small τ -values, and, as mentioned above,

the red location remains, for all τ , the halfspace deepest point among all locations). In contrast,

our local depths are affine-invariant, hence are not affected by any unit change.

3Actually, little attention should be paid to small β-values, as the corresponding local depths are computed on the
basis of very few observations in each neighborhood. When investigating extreme locality, it is important to choose
β as a function of the sample size n; in some sense, β is a smoothing parameter, pretty much as the bandwidth in a
density estimation context.

4For halfspace depth, the maximum value τmax of τ was chosen as the minimal τ -value for which the τ -local depths
of the four locations all coincide with the corresponding global halfspace depths ; for simplicial depth, the τ -values at
which the τ -local depths were evaluated are, as suggested in Agostinelli & Romanazzi (2011), the percentiles of the
volumes of the

(
n
3

)
data-based simplices, which also ensures that global depth is obtained for the largest τ considered.
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Figure 2: (Upper left:) Scatterplot of the NOX and DIS variables from the Boston data set, with four
particular locations. (Upper right:) Plots, as a function of the locality level β, of the proposed local halfspace
(solid curves) and simplicial (dashed curves) depths of these locations. (Lower left:) scaled versions of the
corresponding Agostinelli & Romanazzi (2011) local depths ; see Section 2.2 for details. (Lower right:) The
same curves as in the lower left panel, when expressing the DIS variable in yards (such unit change does not
affect the local depths in the upper right panel).
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3 From global to local depth

In this section, we first review the concept of depth (Section 3.1). We then explain how it can be used

to construct neighborhoods of any x ∈ Rd, and propose a local version of any depth (Section 3.2).

Finally, we define the sample local depths that were already put at work in Section 2, and establish

their consistency (Section 3.3).

3.1 Depth functions

A depth function D( · , P ) associates with any x ∈ Rd a measure D(x, P )(≥ 0) of its centrality with

respect to the probability measure P over Rd (the more central x is, the deeper it is). The two most

celebrated depths are the following.

Definition 3.1 (Tukey, 1975). Denoting by Sd−1 the set of unit vectors in Rd, the halfspace depth

of x with respect to P is the “minimal” probability of all halfspaces containing x, i.e., DH(x, P ) =

infu∈Sd−1 P [u′(X− x) ≥ 0] , where X ∼ P .

Definition 3.2 (Liu, 1990). Letting S(x1, . . . ,xd+1) be the convex hull of x1, . . . ,xd+1, the simpli-

cial depth of x with respect to P is DS(x, P ) = P [x ∈ S(X1, . . . ,Xd+1)] , where X, . . . ,Xd+1 are

i.i.d. from P .

There are numerous other concepts of depth, including the spatial depth (Chaudhuri, 1996), the

standardized spatial depth (Serfling, 2010), the projection depth (Zuo, 2003), the Mahalanobis depth

(Zuo & Serfling, 2000a), the zonoid depth (Koshevoy & Mosler (1997)), the simplicial volume depth

(Oja, 1983; Zuo & Serfling, 2000a), etc. The halfspace depth and—under absolute continuity—the

simplicial depth are statistical depth functions, in the following sense.

Definition 3.3 (Zuo & Serfling, 2000a). A bounded mapping D( · , P ) from Rd to R+ is a statistical

depth function if it satisfies the four following properties :

(P1) affine-invariance: for any d×d invertible matrix A, any d-vector b, and any distribution P on

Rd, D(Ax + b, PA,b) = D(x, P ), where PA,b stands for the distribution of AX + b when X

has distribution P ;

(P2) maximality at center: if θθθ is a center of (central, angular or halfspace) symmetry of P , then it

holds that D(θθθ, P ) = supx∈Rd D(x, P );

(P3) monotonicity relative to deepest point: for any P having deepest point θθθ, D(x, P )

≤ D((1− λ)θθθ + λx) for any x in Rd and any λ ∈ [0, 1];

(P4) vanishing at infinity: for any P , D(x, P )→ 0 as ||x|| → ∞.

For any depth function, the depth regions Rα(P ) = {x ∈ Rd |D(x, P ) ≥ α} (of order α > 0)

are of paramount importance as they reveal very diverse characteristics from P : location, disper-

sion, dependence structure, etc. (see, e.g., Liu et al., 1999). Clearly, these regions are nested, and

inner regions contain points with larger depth. When defining local depth below, it will be more

appropriate to index the family {Rα(P )} by means of probability contents: for any β ∈ [0, 1], we

define

Rβ(P ) =
⋂

α∈A(β)

Rα(P ), with A(β) =
{
α ≥ 0 : P [Rα(P )] ≥ β

}
, (3.1)
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the smallest depth region with P -probability larger than or equal to β; we use subscripts and

superscripts to denote depth regions associated with some fixed order (α) and some fixed probability

content (β), respectively.

3.2 Depth-based neighborhoods and local depth

Below, we will naturally base the definition of local depth of a point x ∈ Rd on some neighborhoods of

x (this may seem quite natural, but is actually in contrast with all concepts of local depth available

in the literature). To ensure that the resulting local depth is of a purely depth nature, we will

make use of the depth-based neighborhoods from Paindaveine & Van Bever (2012), which we now

describe.

Let D( · , P ) be a depth function satisfying Properties (P2)-(P3) in Definition 3.3. For any P , the

depth regions Rα(P ) or Rβ(P ) provide neighborhoods of the5 deepest point θθθP , say. As mentioned

above, we need depth-based neighborhoods of any x ∈ Rd. This may be achieved by symmetrizing

the distribution P with respect to x, that is by replacing P = PX with Px = 1
2P

X + 1
2P

2x−X.

Properties (P2)-(P3) indeed readily imply that the resulting depth regions Rα(Px) or Rβ(Px) provide

nested neighborhoods of x. In line with most definitions of depth functions, the construction of these

(depth-based) neighborhoods is done in a completely nonparametric way. The parameter α (resp.,

β) will play the role of the locality parameter, smaller neighborhoods corresponding to larger values

of α (resp., to smaller values of β).

Definition 3.4 (Depth-based neighborhoods). The order-α (resp., probability-β) depth-based neigh-

borhood of x with respect to the distribution P is Rx,α(P ) = Rα(Px) (resp., Rβx(P ) = Rβ(Px)).

Before proceeding to local depth, we note that there are other symmetrization processes mapping

the distribution P to a distribution Px that is centro-symmetric about x, such as, e.g., the one

that maps P = PX to g(PX) = 1
2P

x−X + 1
2P

x+X. The symmetrization process g( · ), however,

leads to less natural depth-based neighborhoods of x; in particular, if PX is spherically symmetric

about x( 6= 0), then the depth-based neighborhoods obtained from the symmetrization we propose

will be spherically symmetric about x, whereas those resulting from the symmetrization g( · ) will

not. Other possible symmetrization processes, such as g(PX) = 1
4P

X + 1
4P

Rot
π/2
x (X) + 1

4P
Rotπx(X) +

1
4P

Rot
3π/2
x (X), where Rotωx stands for the rotation about x with angle ω (in radians), would lead to

depth-based neighborhoods that are not affine-equivariant and would require more computational

efforts in the sample case. These considerations motivate the proposed symmetrization process

PX 7→ 1
2P

X + 1
2P

2x−X.

Now, conditioning on the depth-based neighborhoods from Definition 3.4 provides a local version

of any depth D. More precisely, we adopt the following definition.

Definition 3.5 (Local depth). Let D( · , P ) be a depth function. The corresponding local depth

function at locality level β(∈ (0, 1])—or simply, β-local depth function—is

LDβ( · , P ) : Rd → R+ : x 7→ LDβ(x, P ) = D(x, P βx ),

where P βx : B 7→ P βx [B] = P [B ∩Rβx(P )]/P [Rβx(P )] is the conditional (on Rβx(P )) distribution of P .

5Uniqueness of θθθP is not guaranteed in general, so that the depth regions will rather define a neighborhood of the
(convex) collection of deepest points. However, note that, for halfspace depth, uniqueness holds under the assumption
of angular symmetry (Rousseeuw & Struyf, 2004). This will be sufficient for our purposes.
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As announced, we favored the β-parametrization over the α-parametrization when defining local

depth. The reason is twofold. First, the maximal depth order α∗(P ) = maxx∈Rd D(x, P ), hence

also the range of relevant α-values, depends on P . Second, and more importantly, the neighbor-

hood Rx,α(P ) may have P -probability zero for α close to α∗(P )6, in which case the conditional dis-

tribution Px,α[ · ] = P [ · |Rx,α(P )], hence also the local depth function x 7→ LDα(x, P ) = D(x, Px,α),

is not properly defined. In contrast, β-local depth is always well-defined, and the range of β-values

does not depend on P , nor on the particular depth function used : β will always assume values

between 0 (extreme localization) and 1 (no localization).

Unlike its competitors, this construction of local depth applies in a generic way to any depth

function D( · , P ), and it ensures affine-invariance at any fixed locality level β (which trivially follows

from Property (P1)). For β = 1, the local depth clearly reduces to its global antecedent D( · , P ),

which shows that the proposed concept provides an extension of usual (global) depth. The properties

of LDβ( · , P ) for extreme locality—that is, as β → 0—will be considered in Section 4.

3.3 Sample local depth and consistency

We now turn to the sample case. To do so, consider d-variate mutually independent observations

X1, . . . ,Xn with common distribution P , and denote by P (n) the corresponding empirical distribu-

tion. Classically, sample (global) depths are obtained by substituting P (n) for P in D( · , P ), which

leads, e.g., to the sample halfspace depth

DH(x, P (n)) =
1

n
inf

u∈Sd−1
#
{
i = 1, . . . , n : u′(Xi − x) ≥ 0

}
,

and the sample simplicial depth

DS(x, P (n)) =
(
n
d+1

)−1
∑

1≤i1<i2<...<id+1≤n
I
[
x ∈ S(Xi1 , . . . ,Xid+1

)
]
,

where I[B] stands for the indicator function of B. Sample depth regions are defined accordingly:

Rα(P (n)) is defined as the collection of x’s with D(x, P (n)) larger than or equal to α, and Rβ(P (n))

as the intersection of all Rα(P (n)) with P (n)-probability larger than or equal to β. In this sample

case, Rβ(P (n)) is thus the smallest sample depth region that contains at least a proportion β of the

Xi’s. We refer to He & Wang (1997) and Zuo & Serfling (2000c) for results on sample depth regions.

As in the population case, our sample local depth concept will require considering, for any x ∈ Rd,
the symmetrized distribution P

(n)
x , that is the empirical distribution associated with the 2n random

vectors X1, . . . ,Xn, 2x − X1, . . . , 2x − Xn. We are then able to define the sample version of the

local concept introduced in Section 3.2.

Definition 3.6 (Sample local depth). Let D( · , P ) be a depth function. The corresponding sample

local depth function at locality level β(∈ (0, 1])—or simply, sample β-local depth function—is

LDβ( · , P (n)) : Rd → R+ : x 7→ LDβ(x, P (n)) = D(x, P
β,(n)
x ),

where P
β,(n)
x denotes the empirical measure associated with those data points among Xi, i = 1, . . . , n

that sit in Rβx(P (n))(= Rβ(P
(n)
x )).

6An example is obtained for x = 0 ∈ Rd and P being the distribution of X conditional on [‖X‖ > 1], where X is
standard d-variate normal.
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By definition, Rβx(P (n)) is the smallest sample depth region that contains at least a proportion β

of the 2n random vectors X1, . . . ,Xn, 2x−X1, . . . , 2x−Xn, or equivalently (symmetrization indeed

implies that these depth regions are centro-symmetric about x), a proportion β of the n original

data points Xi. Note that, for k ∈ {1, 2, . . . , n− 1}, ties may imply that R
k/n
x (P (n)) contains more

than k of the Xi’s.

Some applications of local depth will make use of all β-values, while others will be based on a

single β-value or on a small collection of them. In the latter case, the choice of β crucially depends

on the application at hand, and there is of course no hope to identify a universal rule to select the

appropriate β-value(s). Instead, it is desirable, in every specific application, to define data-driven

β-selection procedures, at least whenever the results strongly depend on β. This will be illustrated

in Section 6 below, where we present two applications of the proposed local depth concept.

Theorem 3.1 below provides consistency of sample local depth under absolute continuity as-

sumptions. Of course, we need assuming consistency for the original global depth D( · , P ) : for any

absolutely continuous P and any x ∈ Rd, |D(x, P (n))−D(x, P )| a.s.→ 0 as n→∞. Actually, we will

need the following reinforcement.

(Q1) weak continuity : for any absolutely continuous P , any sequence of probability measures (Pn)

that converges weakly to P as n → ∞, and any x ∈ Rd, we have that |D(x, Pn) − D(x, P )| → 0

as n→∞.

This reinforcement is needed to cope with the complex dependence of the sample local depth

LDβ(x, P (n)) = D(x, P
β,(n)
x ) on P (n). Note indeed that the dependence of P

β,(n)
x [ · ] = P (n)[ · |Rβ(P

(n)
x )]

on empirical measures is twofold.

Theorem 3.1 (Consistency). Fix x ∈ Rd and let D( · , P ) satisfy Property (P2), (P3), and (Q1).

Then, for any absolutely continuous P and any sequence βn → β, we have that LDβn(x, P (n))
a.s.→

LDβ(x, P ) as n→∞.

Property (Q1) actually holds for many depths. In particular, Proposition 1 of Mizera & Volauf

(2002) and Theorem 2.2 (ii) of Zuo (2003) establish (Q1) for the halfspace and projection depths, re-

spectively. For simplicial depth, Dümbgen (1992) proved the stronger property supx∈Rd |DS(x, Pn)−
DS(x, P )| → 0 as Pn → P weakly.

4 Extreme localization

As we pointed out in the Introduction, all available extensions of depth that aim to deal with non-

convexly supported distributions converge, as locality becomes extreme, to either a density measure

or to a constant value, hence lose their nature of a centrality measure. We now show that the

proposed local depths improve on this.

4.1 Assumptions and extreme local regions

For the sake of convenience, we are listing here the assumptions—all on the original depth D—we

will need in this section.

(Q1+) uniform weak continuity : for any two sequences (Pn) and (P ′n) of absolutely continuous

distributions for which |Pn[B]− P ′n[B]| → 0 as n→∞ for any Borel setB, |D(x, Pn)−D(x, P ′n)| → 0

as n→∞ for any x ∈ Rd;
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(Q2) unique maximization at the symmetry center : if P is absolutely continuous (with density f ,

say) and is centrally symmetric about θθθ in the closure Supp(f) of Supp+(f) = {x ∈ Rd | f(x) > 0},
then D(θθθ, P ) > D(x, P ) for all x;

(Q3) P -independent depth at the symmetry center : if P is absolutely continuous and centrally

symmetric about θθθ, then cD = D(θθθ, P ) (that, under (P2), is equal to maxx∈Rd D(x, P )) is indepen-

dent of P (which justifies the notation cD).

We defined local depth above through LDβ(x, P ) = D(x, P βx ), where P βx is obtained from P by

conditioning it on Rβx(P ). Provided that the depth D satisfies Property (Q1), it then seems natural

to expect that

lim
β→0

LDβ(x, P ) = D(x, P 0
x), (4.1)

where P 0
x denotes the possible weak limit of P βx . Unfortunately, the situation is not so simple, as we

show in Section 4.2 below. We start with a result concerning the support R0
x(P ) :=

⋂
β>0R

β
x(P ) of

P 0
x.

Lemma 4.1. Let D( · , P ) satisfy (P2), (P3), (Q1), and (Q2). Fix an absolutely continuous P

(with density f , say). Then, (i) for any x ∈ Supp(f), for all ε > 0, there exists β > 0 such that

Rβx(P ) ⊂ Bx(ε) := {y ∈ Rd : ‖y − x‖ ≤ ε}, so that R0
x(P ) = {x}; (ii) if one further assumes that

(Q2) also holds for symmetry centers θθθ /∈ Supp(f), then, for any x /∈ Supp(f), x belongs to the

interior of R0
x(P ).

This result shows that the support R0
x(P ) of the limiting distribution P 0

x, hence also P 0
x itself,

is of a different nature depending on whether x belongs to Supp(f) or not. This motivates treating

these two cases separately, in the next two subsections.

4.2 Extreme behavior in the support of the distribution

We start with the case x ∈ Supp(f), for which R0
x(P ) = {x} (Lemma 4.1(i)). For such x, the

result expected in (4.1) does not hold because P 0
x does not exist. To prove this, let us reach a

contradiction by assuming that it does exist. Note first that, from Lemma 4.1(i), it is clear that

any open halfspace that does not contain x needs to have P 0
x-probability zero, which implies that

an open halfspace H having x on its boundary should also receive P 0
x-probability zero. However,

a direct computation—along the same lines as in the proof of Theorem 4.1 below—rather provides

that

P 0
x[H] = lim

β→0
P βx [H] = lim

β→0

Vol(Rβx(P ) ∩H)

Vol(Rβx(P ))
=

1

2
,

a contradiction. The non-existence of the weak limit P 0
x explains why we have to reinforce (Q1) into

(Q1+), under which we can show the following result (see the Appendix for the Proof).

Theorem 4.1. Let D( · , P ) satisfy (P2), (P3), (Q1+), (Q2), and (Q3). Fix an absolutely continu-

ous P (with density f , say). Let x ∈ Supp+(f) be a continuity point of f . Then LDβ(x, P )→ cD
as β → 0, where cD is the constant in (Q3).

This confirms that, unlike most of its competitors, the proposed local depth concept is not

of a density nature under extreme localization; irrespective of the density at x ∈ Supp+(f), the
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limiting local depth at x takes a constant value cD, which supports the intuition that, for ex-

treme locality, points inside the support of the distribution get most central (clearly, under (Q3),

supx∈Rd LD
β(x, P ) ≤ cD for any β).

On the contrary, a point x at the boundary of the support may assume, as β → 0, any limiting

local depth value between the minimal possible value 0 and the maximal possible value cD. To

illustrate this, we consider the following bivariate example. For any η ∈ (0, π), let P = Pη be the

uniform distribution on the unit disk B0(1) (centered at the origin 0 =
(

0
0

)
) deprived from a sector

with radius 1/2 and angle η, that is, more precisely, the uniform distribution on the set

Cη := B0(1) \
{
x =

(
r cosϕ

r sinϕ

)
∈ B0(1/2) : ϕ ∈ [−π, π] \ [−η/2, η/2]

}
;

see Figure 3. For any η ∈ (0, π), the origin lies on the boundary of the support of Pη, and one

can show that `η := limβ→0 LD
β(0, Pη) ranges from `0 = lim

η
>→0
`η = cD to `π = lim

η
<→π `η = 0.

This confirms that points on the boundary of the support, for extreme localization, may receive

arbitrarily small or arbitrarily large local depths. This is far from being undesirable, though, and,

in this example, is perfectly translating the obvious fact that (extreme) local centrality of the origin

is a decreasing function of η. Note that the global depths D(0, Pη), η ∈ (0, π), remain bounded

away from zero.

0

Figure 3: Support Cη of the uniform distribution considered above.

Before turning to points x outside the support, we focus on the univariate halfspace and simplicial

depths, for which more precise results can be derived. For x ∈ Supp+(f), we have the following

result (see the Appendix for a proof).

Theorem 4.2. Fix x ∈ Supp+(f). Then, (i) provided that f admits a continuous derivative f ′

in a neighborhood of x, we have that, as β → 0, LDβ
H(x, P ) = 1

2 −
|f ′(x)|
8f2(x)

β + o(β); (ii) provided

that f admits a continuous second derivative f ′′ in a neighborhood of x, we have that, as β → 0,

LDβ
S(x, P ) = 1

2 −
(f ′(x))2

16f4(x)
β2 + o(β2).

This result shows that, for small values of β, the behavior of the local depth is not characterized

by f(x), but rather by |f ′(x)|/f2(x). The latter quantity is a measure of local asymmetry at x,

which further indicates that, as desired, our local depth provides a centrality measure for x, and not

a density measure at x. From Theorem 4.2, LDβ
S is seen to converge to 1/2(= cDS = cDH for d = 1)

faster than LDβ
H does. As a consequence, one may expect having to consider larger β-values for

simplicial depth than for halfspace depth to find out about the above local asymmetry features; this

may actually be seen in Figure 3 below.

For points on the boundary of the support, too, the picture is clearer for the univariate halfspace

and simplicial depths than in the general multivariate case. Indeed, it can easily be shown that, in
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the univariate case, limβ→0 LD
β
H(x, P ) = 0 = limβ→0 LD

β
S(x, P ) as soon as, for some ε > 0, f is

continuous in (x− ε, x+ ε) \ {x}.

4.3 Extreme behavior outside the support of the distribution

Finally, we turn to the case x /∈ Supp(f). When it does exist, the weak limit P 0
x = limβ→0 P

β
x

then coincides with the probability measure obtained by conditioning P on R0
x (which, according to

Lemma 4.1(ii), is a neighborhood of x). Since the interior of R0
x has zero P -probability, the support

of the conditional distribution P 0
x is contained in the boundary ∂R0

x of R0
x, so that P 0

x may not be

absolutely continuous.

Quite fortunately, for the halfspace and simplicial depths, Property (Q1) extends to P ’s that

are not absolutely continuous; see Remark 2.5 in Zuo (2003). For these depths, we may therefore

conclude that limβ→0 LD
β(x, P ) = D(x, P 0

x) as in (4.1). For most x /∈ Supp(f), the support

of P 0
x will be contained in an open halfspace having x on its boundary hyperplane, in which case

limβ→0 LD
β(x, P ) = D(x, P 0

x) = 0 for both halfspace and simplicial depths. It is only in some

very specific points x /∈ Supp(f), that typically are symmetry centers of the corresponding limiting

region R0
x, that limβ→0 LD

β(x, P ) = D(x, P 0
x) will be non-zero. Quite interestingly, the resulting

value needs not be the maximal value cD, but is obtained from P 0
x in a natural way.

We illustrate this in the univariate case d = 1, where we can again go further than in the

multivariate case. If d = 1, the limiting region R0
x is always an interval of the form [x− h0

x, x+ h0
x].

From the general discussion above, we know that the support of the limiting distribution P 0
x is

included in ∂R0
x = {x− h0

x, x+ h0
x}. Denoting by p−x and p+

x the respective probabilities P 0
x assigns

to x− h0
x and x+ h0

x, we obtain that

lim
β→0

LDβ
H(x, P ) = DH(x, P 0

x ) = min(p−x , p
+
x ), (4.2)

lim
β→0

LDβ
S(x, P ) = DS(x, P 0

x ) = 2p−x p
+
x . (4.3)

The probabilities (p−x , p
+
x ) can be computed from the identities

p−x + p+
x = 1 and

p+
x

p−x
= lim

ε
>→0

P [X ∈ (x+ h0
x, x+ h0

x + ε)]

P [X ∈ (x− h0
x − ε, x− h0

x)]
(∈ [0,∞]).

An explicit example is provided in Section 5.

5 Examples

We first consider two univariate examples. We restrict our attention to local halfspace and simplicial

depths, that admit the following explicit expressions in the univariate case (these expressions readily

follow from the well-known formulae DH(x, P ) = min(F (x), 1 − F (x)) and DS(x, P ) = 2F (x)(1 −
F (x)), where F (x) = P [(−∞, x)] is the cumulative distribution function associated with P ).

Proposition 5.1. Let xβ := x − inf{h > 0 : F (x + h) − F (x − h) ≥ β}, where F denotes

the cumulative distribution function associated with the absolutely continuous distribution P .

Then the local halfspace and simplicial depths of x with respect to P are given by LDβ
H(x, P ) =

1
β min [F (x)− F (xβ), F (2x− xβ)− F (x)] and LDβ

S(x, P ) = 2
β2 (F (x)− F (xβ)) (F (2x− xβ)− F (x)) ,

respectively.
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Both univariate examples involve mixture probability measures P = PX ; more precisely, we

considered the Gaussian and uniform mixtures, obtained with X ∼ 1
2N (µa = −2, 2) + 1

2N (µb =

2, 1) and X ∼ 1
2Unif(−5,−1) + 1

2Unif(1, 3), respectively. Figures 3 and 5 report the plots of the

corresponding β-local halfspace and simplicial depth functions for various β ranging from β = 1

(global depth) to a small β-value (extreme locality), along with the plot of the density f of X.

We start by commenting results for the Gaussian mixture. As expected, global depth functions

are unimodal, while local depth functions allow for local maxima. In line with the univariate

example from Section 2, small β-values give raise to three local maxima : two located about the

modes µa and µb, and a third one (also for simplicial depth, although it is less visible than for

halfspace depth) at µ ∈ (µa, µb), say. The large local centrality measure µ gets for small enough β

is associated with the fact that, in the corresponding β-neighborhoods, the mixture distribution is

almost symmetric about µ ; however, the large volume of Rβµ(P ), compared to Rβµa(P ) and Rβµb(P ),

allows to discriminate between both types of local maxima. Finally, the plot associated with β = 0.01

illustrates Theorem 4.1 (pointwise convergence of local depth functions to the constant function 1/2).
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Figure 4: Plots of several β-local halfspace (blue) and simplicial (orange) depth functions for a mixture of
Gaussian distributions (X ∼ 1

2N (−2, 2) + 1
2N (2, 1)), along with a plot of the corresponding density.

Regarding the uniform mixture, comments similar to those made for the Gaussian mixture can

be repeated, and we therefore rather focus on what is specific to this second example. In line with the

general univariate results from Section 4.2, limβ→0 LD
β
i (x, P ) = 1/2 (i = H,S) for all x ∈ Supp+(f)

(Theorem 4.1), and limβ→0 LD
β
i (x, P ) = 0 (i = H,S) for x ∈ Supp(f) \ Supp+(f) = {−5,−1, 1, 3}.

For points x ∈ R \ Supp(f) = (−∞,−5) ∪ (−1, 1) ∪ (3,∞), it is easy to check that (p−x , p
+
x ) = (0, 1)

if x ∈ (−∞,−5) ∪ (0, 1), (p−x , p
+
x ) = (1, 0) if x ∈ (−1, 0) ∪ (3,∞) and (p−x , p

+
x ) = (1/3, 2/3) if x = 0,

which according to (4.2)-(4.3), results into limβ→0 LD
β
i (x, P ) = 0 (i = H,S) for all non-zero such

values of x, and into limβ→0 LD
β
H(x, P ) = DH(x, P 0

x ) = 1/3 and limβ→0 LD
β
S(x, P ) = DS(x, P 0

x ) =

4/9 for x = 0. This thoroughly explains the plot corresponding to β = 10−4 in Figure 5.

We now turn to two multivariate (simulated) examples : for the first example, that involves

a bimodal distribution, we generated n = 1, 000 independent observations of the form Xi =√
0.3h(Zi)Zi + Tiµµµa + (1 − Ti)µµµb, where µµµa =

(
0
0

)
, µµµb =

(
2
0

)
, the Zi’s are i.i.d. standard bivari-

ate normal, h(z) is the indicator that the Euclidean norm of z is smaller than 0.6, and the Ti’s are
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Figure 5: Plots of several β-local halfspace (blue) and simplicial (orange) depth functions for a mixture of
uniform distributions (X ∼ 1

2Unif(−5,−1) + 1
2Unif(1, 3)), along with a plot of the corresponding density.

i.i.d Bin(0, 1/2), independent from the Zi’s. The second example, that focuses on a non-convexly

supported distribution, is based on n = 500 independent observations of the form
(
Xi
Yi

)
, where Xi ∼

Unif(−1, 1) and Yi|[Xi = x] ∼ Unif(1.5(1 − x2), 2(1 − x2)). Figures 6 and 7 show heatplots of the

corresponding local halfspace depth functions at locality levels β = 1 (global halfspace depth), 0.7,

0.5, 0.3, 0.2, and 0.1, along with observations in the upper left panels.

In Figure 6, one can see that, as β moves away from one, the multimodal nature of the distribution

is revealed (a task in which global halfspace depth clearly fails). At any β, a third local maximum

is present around µµµ = (µµµa +µµµb)/2, resulting from the symmetry of the distribution about µµµ at any

locality level β (i.e., P βµµµ is centrally symmetric about µµµ for any β). This is in line with the fact

that our local depth is a centrality measure, and not a density measure. As in the univariate case,

discriminating between the true modes around µµµa, µµµb, and this “artificial” mode in µµµ may be based

on a comparison of the volumes of the neighborhoods Rβx(P (n)), for x = µµµa,µµµb,µµµ. Incidentally, we

point out that, in some applications (including, in particular, classification; see Section 6.1), such

artificial modes, due to the zero (or small) probability mass there, will have no (or low) impact in

practice.

Parallel to the Boston example in Section 2, Figure 7 illustrates that global depth cannot deal

with non-convexly supported distributions, since in particular the global deepest point is very close

the boundary on the support. As β decreases, it is seen that local depth much better reflects

centrality in the present setup. Small β-values clearly illustrate Theorem 4.1, since local depth is

then almost constant in the support. We point out that this would hold irrespective of the (non-

vanishing) density over the same support. In sharp contrast, the local depths from Agostinelli &

Romanazzi (2011), for β → 0, would, after appropriate normalization, converge to the density,

which, for many densities, would clearly fail to reflect centrality.
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Figure 6: Heatplots of local halfspace depth functions at locality levels β = 1 (global halfspace depth), 0.7, 0.5,
0.3, 0.2, and 0.1, for n = 1, 000 independent observations from the bivariate mixture distribution described in
Section 5.

Figure 7: Heatplots of local halfspace depth functions at locality levels β = 1 (global halfspace depth), 0.7,
0.5, 0.3, 0.2, and 0.1, for n = 500 independent observations from the distribution with a non-convex (“moon-
shaped”) support described in Section 5.
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6 Inferential applications

In this section, we describe two applications of the proposed local depth concept. The first one is

related to classification, while the second one deals with symmetry testing.

6.1 Max-depth classification

Consider the classical two-population problem in which a random d-vector is to be classified as

arising from any of two probability measures P0 or P1, on the basis of the value x it assumes. This

is to be achieved on the basis of a “training sample”, made of two mutually independent random

samples (X01, . . . ,X0n0) and (X11, . . . ,X1n1) from P0 and P1, respectively. Depth-based classifiers

typically match x to the population with respect to which it is most central : denoting by P
(n)
j ,

j = 0, 1, the empirical distribution associated with (Xj1, . . . ,Xjnj ), x is classified into Population 0

(resp., Population 1) if D(x, P
(n)
0 ) > D(x, P

(n)
1 ) (resp., D(x, P

(n)
0 ) < D(x, P

(n)
1 )), while ties are

decided at random.

This max-depth approach was first proposed in Liu et al. (1999), and was then investigated

in Ghosh & Chaudhuri (2005). In the same vein, Li et al. (2012) recently proposed the “Depth

vs Depth” (DD) classifiers that improve on the max-depth ones by constructing appropriate poly-

nomial separating curves in the DD-plot, that is, in the scatter plot of (D(Xi, P
(n)
0 ), D(Xi, P

(n)
1 )),

i = 1, . . . , n (the original max-depth classifiers simply use the main bisector in the DD-plot as a

separating curve).

As we showed in Section 2, global depth may fail to properly measure centrality for non-convexly

supported distributions. Consequently, max-depth classifiers may perform poorly when P0 and/or

P1 have a non-convex support (which is confirmed in our simulations below). Since the proposed

local depths can deal with such non-convexity, one may think of defining max-local -depth classifiers

obtained by substituting, in max-depth classifiers, β-local depth (for some β) for (global) depth. In

practice, β may be chosen through cross-validation, that is, by minimizing in β ∈ (0, 1], the resulting

empirical misclassification rate evaluated on the training sample.

We conducted the following simulation exercise both to show that max-depth classifiers may in-

deed behave poorly under non-convexly supported distributions and to investigate the performances

of the proposed max-local-depth classifiers. Three bivariate distributional setups were investigated :

Setup 1 (multinormality): Pj , j = 0, 1, is bivariate normal with mean vector µµµj and covariance

matrix ΣΣΣj , with µµµ0 =
(

0
0

)
, µµµ1 =

(
2
2

)
, ΣΣΣ0 =

(
1 0
0 1

)
, and ΣΣΣ1 =

(
2 1
1 1

)
;

Setup 2 (moon- and ball-supported distributions): P0 is the distribution of
(
X
Y

)
, where X ∼

Unif(−1, 1) and Y |[X = x] ∼ Unif(1.5(1 − x2), 2(1 − x2)), whereas P1 is the uniform dis-

tribution on the ball with center
(

0
1.3

)
and radius 0.7;

Setup 3 (ring- and rectangle-supported distributions): P0 is the distribution of RU, where R ∼
Unif(1,2) and U =

(
cos Θ
sin Θ

)
, with Θ ∼ Unif(0, 2π), are independent, while P1 is the uniform

distribution on the rectangle (−1.5, 1.5)× (−2.5, 2.5).

Exactly as in Li et al. (2012), we generated, for each setup, 100 training samples of size n0 = n1 =

200, and recorded, on corresponding test samples of size ntest = 1, 000 (500 observations from each
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population), the misclassification frequencies of the following classifiers (all depth-based classifiers

below are based on halfspace depth) : (i) the Linear and Quadratic Discriminant Analysis classifiers

(LDA/QDA); (ii) the standard kNN classifier, where k is chosen through cross-validation (kNN);

(iii) the max-depth classifier from Ghosh & Chaudhuri (2005) (max-D); (iv) its (exact) linear and

quadratic exact DD-refinements from Li et al., 2012 (DD1 and DD2). These classifiers actually

search for the separating linear (resp., quadratic) curve {(d, f(d)) : d ∈ (0, 1)} passing through the

origin and one (resp., two) DD-points (D(Xi, P
(n)
0 ), D(Xi, P

(n)
1 )), i = 1, . . . , n, that minimizes the

missclassification rate

n0∑
i=1

I[f(D(X0i, P
(n)
0 )) > D(X0i, P

(n)
1 )] +

n1∑
i=1

I[f(D(X1i, P
(n)
0 )) < D(X1i, P

(n)
1 )]

+
1

2

n0∑
i=1

I[f(D(X0i, P
(n)
0 )) = D(X0i, P

(n)
1 )] +

1

2

n1∑
i=1

I[f(D(X1i, P
(n)
0 )) = D(X1i, P

(n)
1 )];

(iv) our cross-validated max-local-depth classifier (max-LD (β = βCV)); (v) various max-local-depth

classifiers based on a fixed β, with β = .8, .6, .4 and .2 (max-LD).

Figure 8 shows boxplots of the resulting misclassification frequencies, and further reports, in

each setup, the median of the 100 β-values selected through cross-validation.

13
12

11
10

9
8

7
6

5
4

3
2

1

0.00 0.05 0.10 0.15

Setup 1

LDA

QDA

kNN

kNNx

kNNy

DD1

DD2

max-LD (β=βCV)

max-LD (β=1) = max-D

max-LD (β=0.8)

max-LD (β=0.6)

max-LD (β=0.4)

max-LD (β=0.2)

(med βCV= 0.9)

13
12

11
10

9
8

7
6

5
4

3
2

1

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Setup 2

( med βCV= 0.125)

13
12

11
10

9
8

7
6

5
4

3
2

1

0.30 0.35 0.40 0.45 0.50 0.55

Setup 3

( med βCV = 0.3)

Figure 8: Boxplots of missclassification frequencies from 100 replications, in Setups 1 to 3 described in Sec-
tion 6.1, with training sample sizes n0 = n1 = 200 and test sample size ntest = 1, 000 (500 observations from
each population), of the LDA/QDA classifiers, the exact linear (DD1) and quadratic (DD2) DD-classifiers,
the proposed cross-validated max-local-depth classifiers (max-LD (β = βCV)), as well as some max-local-depth
classifiers with fixed β, for β = 1 (max-depth classifier) and β = 0.8, 0.6, 0.4, 0.2.

Our cross-validated max-local-depth classifier shows similar performances as its depth-based

competitors under ellipticity (Setup 1), but clearly outperforms its competitors under non-convex

populations (Setups 2 and 3), with the only exception of the classifier DD2 in Setup 3 with whom it
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competes equally. The β-values selected through cross-validation nicely reflect the non-convexity of

the underlying setup, hence the need to restrict to observations that are “close” to the point to be

classified (β small) or the allowance to base classification on all observations (β close to 1). This is

seen in the three setups, where the medians of the 100 selected β-values are, respectively, .9 (convex

setup), .125 and .3 (non-convex setups).

Comparison with classical benchmarks is also of interest. As expected, our cross-validated max-

local-depth classifier dominates LDA/QDA classifiers under non-convexity. On the contrary, the

(universally consistent) kNN classifiers seem to dominate the proposed classifiers, hence also our

depth-based competitors from Li et al. (2012) (which may seem unexpected in view of the Monte

Carlo comparisons conducted there). Unlike depth-based classifiers, however, kNN classifiers fail

to be affine-invariant, hence may show significantly poorer performances under unit changes. This

is illustrated in our simulations where it is seen that, in all setups, misclassification rates of kNN

classifiers suffer from multiplying one of both coordinates by a factor 10.

6.2 Testing for central symmetry

There are many graphical methods based on depth—or on the companion concept of multivariate

quantiles—to assess departures from angular symmetry, central symmetry, or other types of multi-

variate symmetry; see Liu et al. (1999) and Serfling (2004). There are, however, few genuine tests

of symmetry based on depth. To the best of our knowledge, the only such tests, available in any

dimension d, are

• the test from Rousseeuw & Struyf (2002), that is a test for angular symmetry about a specified

center x0 rejecting the null for large values of T
(n)
x0 , with T

(n)
x = 1

2 −DH(x, P (n)). Quite remarkably,

T
(n)
x0 is distribution-free under the null, which allows to approximate arbitrary well the exact fixed-n

critical values through simulations;

• the test from Dutta et al. (2011), that may be seen as the companion test for the null of angular

symmetry about an unspecified center, as it rejects this null for large values of T (n) = T
(n)

θ̂θθ
, where θ̂θθ

denotes the halfspace deepest point of P (n) (or, if unicity fails, the barycenter of the collection of

deepest points). Critical values are obtained from bootstrap-type samples (as in Dutta et al. (2011),

we will use the term “bootstrap”, although the corresponding tests are rather of a permutation

nature).

The motivation for both tests comes from the following characterization result : for an absolutely

continuous P , DH(x0, P ) ≤ 1/2, and equality holds iff P is angularly symmetric about x0; see Zuo

(1998), Zuo & Serfling (2000b), Rousseeuw & Struyf (2004), and Dutta et al. (2011).

Since the null of central symmetry is at least as relevant for applications as the null of angular

symmetry, it is unfortunate that there is no depth-based tests of central symmetry available in

any dimension d. As we show now, the proposed local depth concept allows to define (universally

consistent) tests of central symmetry. This relies on the following result, that characterizes central

symmetry through local depth (see the Appendix for the proof).

Theorem 6.1 (Characterization of central symmetry through local depth). Let P be an absolutely

continuous distribution over Rd. Then P is centrally symmetric about x0(∈ Rd) if and only if

LDβ
H(x0, P ) = 1/2 for all β ∈ (0, 1].
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Testing central symmetry about x0 may then be based on the Cramèr-Von Mises (CV) or

Kolmogorov-Smirnov (KS) statistics

CV
(n)
x0;βn

=

∫ 1

βn

(
LDβ

H(x0, P
(n))− 1/2

)2
dβ (6.1)

KS
(n)
x0;βn

= sup
β∈[βn,1]

∣∣LDβ
H(x0, P

(n))− 1/2
∣∣, (6.2)

where the sequence (βn) is such that βn → 0 and nβn → ∞ (such a sequence typically allows to

achieve universal consistency while discarding, at any given sample size n, the levels at which local

depth can only be poorly estimated ; see Footnote 2 in Page 52). Critical values are obtained as

in Dutta et al. (2011). More precisely, one first generates “bootstrap” samples of the form X∗(m) =

(x0 + s(m)1(X1 − x0), . . . ,x0 + s(m)n(Xn − x0)), m = 1, . . . ,M , where (X1, . . . ,Xn) denotes the

original sample and the s(m)i’s are mutually independent variables taking values ±1 with equal

probability 1/2. The α-level critical value for CV
(n)
x0;βn

is then simply the order-α quantile in the

series CV
(n)
x0;βn

(X∗(m)), m = 1, . . . ,M (discreteness may require randomization to achieve null size α).

Critical values for KS
(n)
x0;βn

are computed in the exact same way.

We conducted a simulation study in order to investigate the finite-sample behavior of these tests.

For any of the following setups and any corresponding value of a, we generated 1, 000 independent

random samples (X1, . . . ,Xn) of size n = 400 from the same distribution as the generic random

vector X :

Setup 1: X = R
(

cos Θ
sin Θ

)
, where Θ ∼ Unif(0, 2π) and R|[Θ = θ] ∼ Unif(0, θa), for a = 0 (central

symmetry) and a = .125, .250, .375, .500 (angular symmetry);

Setup 2: X = R
(

cos Θ
sin Θ

)
, where R ∼ Unif(0, 1) and (Θ/2π)1/(1+a) ∼ Unif(0, 1), for a = 0 (central

symmetry) and a = .15, .30, .45, .60 (no angular symmetry);

Setup 3: X = R
(

cos Θ
sin Θ

)
+
(
a
a

)
, where R ∼ Unif(0, 1) and Θ ∼ Unif(0, 2π), for a = 0 (central

symmetry) and a = .125, .250, .375, .500 (no angular symmetry).

Figure 9 plots the resulting rejection frequencies (at nominal level 5%) of the angular symmetry

test based on T
(n)
x0 and of the central symmetry tests based on CV

(n)
x0;βn

and KS
(n)
x0;βn

, for βn =

.15, .16, . . . , .30; exact critical values were used for T
(n)
x0 (see Rousseeuw & Struyf, 2002), while

critical values for CV
(n)
x0;βn

, and KS
(n)
x0;βn

were obtained as described above from M = 1, 000 bootstrap

samples.

The results show that the bootstrap procedure indeed leads to central symmetry tests that have

the correct size under the null. As expected, these tests succeed in detecting central asymmetry in all

setups, while the angular symmetry test, of course, shows no power in Setup 1 (which confirms that

it is inappropriate as a test for central symmetry). The angular symmetry test seems to dominate the

central symmetry ones in Setup 2, and the opposite holds in Setup 3. Most importantly, the proposed

Cramér Von Mises local-depth-based tests, that dominate their Kolmogorov-Smirnov counterparts,

show empirical powers that barely depend on βn; consequently, in contrast with classification in

Section 6.1, it is not needed here to design a β-selection procedure (one just needs using a βn-value

that is small, but large enough to make it so that the actual sample size (nβn) used in the most

extreme local depth involved (level βn) does not fall below 50, say).
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Figure 9: Rejection frequencies, in each of the three setups described in Section 6.2, of the angular symmetry
test from Rousseeuw & Struyf (2002), and of the proposed Cramèr-Von Mises and Kolmogorov-Smirnov
central symmetry tests, for βn = .15, .16, . . . , .30; results are based on 1,000 replications and the sample size
is n = 400.

Of course, tests for central symmetry about an unspecified center may be obtained, as in Dutta

et al. (2011), by rejecting the null for large values of CV
(n)

θ̂θθ;βn
and KS

(n)

θ̂θθ;βn
.

7 Extension to other setups

We focused so far on location depths, which are the most well-known ones (and the first to have been

introduced). In the last fifteen years, depth has however been extended to more general contexts,

that cover regression models (Rousseeuw & Hubert, 1999), location-scale models (Mizera & Müller,

2004), or generic parametric models (Mizera, 2002). More recently, many extensions of depth to the

functional data context were also proposed ; See Fraiman & Muniz (2001); López-Pintado & Romo

(2009, 2011); Cuevas et al. (2007), etc.

Quite nicely, our construction of local depth extends naturally to these other depths. We now

explain this in the empirical case, to which we restrict for the sake of exposure (a thorough investi-

gation of the resulting local depths would go beyond the scope of the present paper and is therefore

left for future research).

7.1 Tangent depth and regression depth

Let the random k-vector Z have a distribution in the parametric family {Pθθθ : θθθ ∈ ΘΘΘ ⊂ Rd} and

assume that independent copies Zi, i = 1, . . . , n, of Z are available. Let Fi(θθθ) = F (Zi, θθθ) be a

measure of how well the parameter value θθθ fits observation Zi. In such parametric context, the

following depth function gives large depth to parameter values θθθ that provide a good overall fit for

the sample Zi, i = 1, . . . , n.

Definition 7.1 (Mizera, 2002). The tangent depth of θθθ with respect to the empirical distribu-

tion P (n) of Zi, i = 1, . . . , n is TD(θθθ, P (n)) = DH(0, P
(n)
∇ (θθθ)), where 0 = (0, . . . , 0)′ ∈ Rd and P

(n)
∇ (θθθ)

denotes the empirical distribution of ∇θθθFi(θθθ), i = 1, . . . , n.
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An example is simple linear regression, where observations are of the form Zi =
(
Xi
Yi

)
and

the parameter value θθθ =
(
θ1
θ2

)
is associated with the regression line y = θ1x + θ2. For Fi(θθθ) =

(Yi−θ1Xi−θ2)2, i = 1, . . . , n, the tangent depth in Definition 3.2 reduces to the so-called regression

depth from Rousseeuw & Hubert (1999).

Now, since tangent depth is defined through location (halfspace) depth, a local tangent depth

concept may readily be obtained from our local location depth.

Definition 7.2. Using the same notation as in Definition 3.2, the local tangent depth of θθθ with

respect to P (n), at locality level β(∈ (0, 1])—or simply, β-local tangent depth—is LTDβ(θθθ, P (n)) =

LDβ
H(0, P

(n)
∇ (θθθ)).

We now present an example illustrating the resulting local regression depth. We generated

n = 500 independent regression observations Zi =
(
Xi
Yi

)
from a balanced mixture of simple linear

regression models, according to Y = θ1X + θ2 + ε, where X ∼ Unif(0, 5), ε ∼ N (0, .1), and θθθ =
(
θ1
θ2

)
uniformly distributed over {θθθa =

(
.75
0

)
, θθθb =

(−.25
1

)
}, are mutually independent. Figure 10 shows the

heatplots of the β-local regression depth from Definition 7.2, for β = 1 (classical regression depth),

0.8, 0.6, 0.4 and 0.2, along with a scatter plot of the bivariate data.

Figure 10: (Upper center:) Scatter plot of the 500 data points generated from the mixture of linear regression
models described in Section 7.1. Maxima of global regression depth (black lines) and local maxima of β = 0.4-
local regression depth (brown, green, and blue lines) are pictured. (Others:) Heatplots of local regression depth
functions at locality levels β = 1 (global regression depth), 0.8, 0.6, 0.4, and 0.2. Local maxima are highlighted
in the plot for β = 0.4.

All maximizers of global regression depth lie approximately on a segment in the slope-intercept

space, which corresponds to a collection of regression lines passing through a fixed point
(
x
y

)
; we

plotted in the observation space the regression lines associated with the maximizers with smallest

and largest slopes (in solid lines). Clearly, this shows that, as in the location case, global regression

depth misses the mixture or “bimodal” structure of the model. In contrast, β-local regression depths
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clearly show local maxima about θθθa and θθθb, and, parallel to the location examples from the previous

sections, also in a third intermediate parameter value θθθ, between θθθa and θθθb, that corresponds to a

symmetry center. The regression lines associated with θθθa, θθθb, and θθθ are plotted in the observation

space; the corresponding parameter values are reported in the heatplot for β = 0.4.

7.2 Local functional depth

As stated above, many concepts of depth are available for functional data. Here, we describe a local

version of one of the most successful functional depths, namely the modified band depth introduced

in López-Pintado & Romo (2009). We start with a short description of this depth.

We consider functional observations t 7→ fi(t), i = 1, . . . , n, all defined on [0, 1]. The J-band

depth of a given function f : [0, 1] → R with respect to {f1, . . . , fn} is the proportion of J-tuples

(i1, . . . , iJ), 1 ≤ i1 < . . . < iJ ≤ n for which

min
j=1,...,J

fij (t) ≤ f(t) ≤ max
j=1,...,J

fij (t) ∀t ∈ [0, 1].

Since one single extreme value of f(t) is enough to give zero J-band depth to f , the following

modified version was proposed.

Definition 7.3 (López-Pintado & Romo, 2009). The modified band depth of f with respect to the

empirical distribution P (n) of fi, i = 1, . . . , n is

MBD(f, P (n)) =

∫ 1

0

(
n
J

)−1
∑

1≤i1<...<iJ≤n
I[ min
j=1,...,J

fij (t) ≤ f(t) ≤ max
j=1,...,J

fij (t)] dt.

Our construction of local depth therefore suggests the following local extension.

Definition 7.4. Denote by P
(n)
f the empirical measure associated with the 2n functions f1, . . . fn,

2f − f1, . . . , 2f − fn. Then the local modified band depth of θθθ with respect to P (n), at locality

level β(∈ (0, 1])—or simply, β-local modified band depth—is LMBDβ(f, P (n)) = MBD(f, P
β,(n)
f ),

where P
β,(n)
f denotes the empirical measure associated with the dnβe functions that have largest

MBD( · , P (n)
f ) among f1, . . . , fn.

We consider an illustration where we generated functions f1, . . . , fn by repeating independently

n = 400 times the following procedure : (i) selecting randomly (with equal probability) m(t) =

max(0, (t−0.2)) or m(t) = min(0, 0.2− t); (ii) generating points of the form (t`, y`) = ( `
100 ,m( `

100)+

ε`), ` = 0, . . . , 100, where the ε`’s are i.i.d. N (0, 0.2); (iii) performing a spline regression of order 3,

with 10 basis functions, over these (t`, y`)’s.

The left panel of Figure 11 plots those fi’s, along with an artificial function fartif that was

randomly generated in the same fashion as the fi’s but from a trend m(t) = max(0, (0.2 − t)/2)

and ε`’s that are i.i.d. N (0, 0.05); the figure also emphasizes two particular observations, namely

the (global) MBD-deepest observation f1
max = arg maxiMBD(fi, P

(n)) and the (β = 0.5)-local

MBD-deepest observation f0.5
max = arg maxi LMBD0.5(fi, P

(n)) (the modified band depths of these

functions—with J = 2, as suggested in López-Pintado & Romo (2009)—were estimated on the basis

of 101 equispaced values of t). The middle panel of the figure plots the β-local modified band depth

of fartif , f
1
max, and f0.5

max, as a function of the locality level β.
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As expected, fartif is (globally) deeper than f1
max and f0.5

max, but its local depth decreases much

with β. The depth of f1
max exhibits a similar behavior, but remains quite deep at all locality levels β.

Finally, the large β-local depth of f0.5
max for small to moderate values of β translates its visible higher

local centrality. Again, β-local depth for small β should considered with care, as it is typically

computed from very few observations.

This last remark is illustrated by the dramatic increase, for β close to zero, of the β-local depths

of f1
max and f0.5

max, compared to that of fartif . This corresponds to a bias arising from the fact that

the former functions, unlike the latter, are part of the sample; the bias of β-local depth for observed

functions is about 1/dβne, which is large for small β-values. In order to compare f1
max, f0.5

max, and

fartif on a common basis, we recomputed the β-local depths of these functions with respect to the

sample of 398 functions obtained by removing f1
max and f0.5

max from the original sample. The right

panel of Figure 11 shows that this indeed eliminates the above bias. Of course, such a bias potentially

affects the other local depths introduced in this paper (the reason why the previous illustrations did

not show any bias is that local depth was evaluated there at locations that do not bear observations).
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Figure 11: (Left:) Plots of the n = 400 observed functions, with three particular functions highlighted : the
(global) MBD-deepest observation f1max (orange curve), the β = 0.5-local MBD-deepest observation f0.5max (blue
curve), and the artificial function fartif (green curve); (Middle:) β-local modified band depths of f1max, f0.5max,
and fartif . (Right:) The corresponding bias-corrected β-local depths; see Section 7.2 for details.

8 Computational aspects

In the (possibly multivariate) location case, the evaluation of LDβ(x, P (n)) at a fixed point x ∈ Rd

with respect to the empirical distribution P (n) associated with observations X1, . . . ,Xn proceeds

along the following few simple steps :

1. Evaluate D(Xi, P
(n)
x ), i = 1, . . . , n, where P

(n)
x is the empirical distribution associated with

the symmetrized observations X1, . . . ,Xn, 2x−X1, . . . , 2x−Xn;

2. Rank the (original) observations according to the ordered depthsD(X(1), P
(n)
x ) ≥ D(X(2), P

(n)
x )

≥ . . . ≥ D(X(n), P
(n)
x ) (this ranking is not unique in case of ties, but this will not affect the

final value of local depth);

3. Determine nβ(P
(n)
x ) = max

{
` = dnβe, . . . , n : D(X(`), P

(n)
x ) = D(X(dnβe), P

(n)
x )

}
;
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4. Compute LDβ(x, P (n)) = D(x, P
β,(n)
x ), where P

β,(n)
x is the empirical measure associated

with X(1), . . . ,X(nβ(P
(n)
x ))

.

The computation of the local tangent depth from Section 7.1 (of which local regression depth is a

particular case) is obtained by substituting in these four steps, 0(∈ Rd) for x and ∇θθθFi(θθθ) for Xi,

i = 1, . . . , n, and by restricting to halfspace depth D = DH . Similarly, the computation of local

functional depth of f with respect to f1, . . . , fn is obtained by substituting there f for x, fi for Xi,

i = 1, . . . , n, and the modified band depth MBD for the depth D.

The procedure in Steps 1-4 above makes clear that the proposed sample local depths can be

computed from global depth routines only (all illustrations in this paper were simply obtained from

the R package depth). This is another advantage over the competing local depths, that do require

developing specific routines or packages ; see, e.g., the R package localdepth, from Agostinelli &

Romanazzi (2011).

Note that the evaluation of LDβ(x, P (n)) may be time consuming since it requires computing

(n+1) depth values (n depth values, in a sample of 2n data points, in Step 1, and one depth value, in

a sample of nβ(P
(n)
x )(≤ n) data points, in Step 4). Quite fortunately, there has been much progress

in the computation of depth in the recent years ; see in particular Hallin et al. (2010) for halfspace

depth, and Liu & Zuo (2011a,b) and Liu et al. (2011) for projection depth.

Of course, computing “the whole local depth field” {LDβ(x, P (n)) : x ∈ Rd} — in practice,

computing local depth on a fine grid in a compact set — may still be very demanding. Generating

the heat plots in Figures 6, 7, and 10 relied on a trivial method, where evaluation of LDβ(x, P (n))

started from scratch at any newly considered x, which, indeed, may be slow for moderate to large

sample sizes n. However, the value of LDβ(x+∆∆∆, P (n)), with ∆∆∆ small, might be computed from the

previous evaluation of LDβ(x, P (n)), by exploiting the fact that the distributions P
(n)
x and P

(n)
x+∆∆∆,

hence also the empirical measures P
β,(n)
x and P

β,(n)
x+∆∆∆ (leading to the corresponding local depth values

in Step 4 above), are close to each other. How to turn this into a practical algorithm allowing to

compute efficiently the local depth field clearly remains a non-trivial question, that is beyond the

scope of this methodological paper.

Now, most importantly, practical applications of local depth typically do not require evaluating

the whole local depth field, but rather requires computing local depth at one or a reasonably small

number of locations x only. This is the case for both applications considered in Section 6 : clas-

sification indeed requires evaluating local depth only at points to be classified (and at data points

if β is selected through cross-validation), whereas symmetry testing only involves the local depth of

the null symmetry center. Incidentally, we stress that, for symmetry testing, (i) the discrete nature

of halfspace depth implies that (6.1)-(6.2) can be obtained from a finite number of β-values only;

(ii) the bootstrap procedure there can be implemented in practice, since the M bootstrap samples,

by symmetry, lead to the same results in Steps 1-3, that therefore need to be performed only once

(only Step 4, in which a single depth value is computed, needs to be performed for each bootstrap

sample).

Finally, we point out that computing local depth of a fixed point for ` distinct β-values typically

requires much less time than computing ` times local depth for one fixed β-value. One can indeed

take advantage of the fact that Step 1 above is common to the various computations of β-local

depths (there is some analogy with quantile regression, where the information used to compute a
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fixed regression quantile may be exploited when computing regression quantiles at other quantile

levels). Also, if the computational effort is an important issue, one always may use a (global) depth

concept that is not computationally intensive, such as, e.g., the Mahalanobis depth. If it is felt that

this depth is too “parametric”, it can then be used in Steps 1-3 only, while a more nonparametric

depth (halfspace depth, simplicial depth, projection depth, etc.) is used in Step 4. This possibility

to base local depth on two different global depths has not been considered in the paper, but leads

to a local depth concept enjoying all nice properties of the one we introduced.
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Appendix — Proofs

This appendix collects proofs of technical results. We start with the proof of Theorem 3.1, which

requires the following preliminary result. Throughout this section, Rβx will denote Rβx(P ), when no

ambiguity is possible.

Lemma 1. Let D( · , P ) be a depth function satisfying Property (Q1). Then, for any x ∈ Rd, any

Borel set B ⊂ Rd, and any absolutely continuous distribution P , the mapping β 7→ P [Rβx ∩ B] is

continuous over (0, 1].

Proof of Lemma 1. Note first that Property (Q1) implies that, for any absolutely continuous P ,

x 7→ D(x, P ) is a continuous function : indeed, if X is a random d-vector with distribution P = PX,

then Property (P1) entails that, for any sequence xn converging to x, |D(xn, P ) − D(x, P )| =

|D(x, PX+(x−xn)) − D(x, P )| → 0 as n → ∞, since PX+(x−xn) converges weakly to P . Together

with the fact that P is absolutely continuous, this implies that P [Rβx(P )] = β for any β ∈ (0, 1].

Now, fix β0 ∈ (0, 1] and a Borel set B. Consider a decreasing sequence (βn) converging to

β0. The numbers γn = P [Rβnx ∩ B] form a monotone decreasing sequence that is lower bounded

by γ0 = P [Rβ0
x ∩ B]. Hence they admit a limit limn→∞ γn ≥ γ0. Letting γ̄n = P [Rβnx ∩ Bc],

with Bc = Rd \ B, we similarly obtain that limn→∞ γ̄n ≥ γ̄0 = P [Rβ0
x ∩ Bc]. If limn→∞ γn > γ0,

then we have limn→∞ βn = limn→∞(γn + γ̄n) > γ0 + γ̄0 = β0, a contradiction. Hence, we must have

that limn→∞ γn = γ0, i.e., that β 7→ P [Rβx ∩ B] is right continuous at β0. The result then follows

since left continuity can be established along the same lines. 2

Proof of Theorem 3.1. In view of (Q1), it is sufficient, in order to show that∣∣∣LDβn(x, P (n))− LDβ(x, P )
∣∣∣ =

∣∣∣D(x, P
βn,(n)
x )−D(x, P βx )

∣∣∣ a.s.→ 0 as n→∞,

to prove that P
βn,(n)
x [B]

a.s.→ P βx [B] for any Borel set B.
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Fix then such a B and ε > 0. Lemma 1 implies that there exist δ, η > 0 such that

[P [Rβ−δx ∩B]− η, P [Rβ+δ
x ∩B] + η] ⊂ [P [Rβx ∩B]− βε, P [Rβx ∩B] + βε]. (1)

Now, Theorem 3 in Zuo & Serfling (2000c) implies that there exists n0 such that Rβ−δx ⊂ Rβn,(n)
x ⊂

Rβ+δ
x a.s. for all n ≥ n0 (throughout the proof, R

βn,(n)
x stands for Rβn(P

(n)
x )), which of course yields

that, a.s. for all n ≥ n0,

P (n)[Rβ−δx ∩B] ≤ P (n)[R
βn,(n)
x ∩B] ≤ P (n)[Rβ+δ

x ∩B], (2)

The SLLN entails that P (n)[Rβ±δx ∩ B]
a.s.→ P [Rβ±δx ∩ B] as n → ∞; consequently, there exists n1

such that, a.s. for all n ≥ n1,[
P (n)[Rβ−δx ∩B], P (n)[Rβ+δ

x ∩B]
]
⊂
[
P [Rβ−δx ∩B]− η, P [Rβ+δ

x ∩B] + η
]
. (3)

Combining (1)-(3), we proved that, a.s. for all n ≥ max(n0, n1),

P [Rβx ∩B]− βε ≤ P (n)[R
βn,(n)
x ∩B] ≤ P [Rβx ∩B] + βε,

or equivalently, P βx [B]− ε ≤ 1
βP

(n)[R
βn,(n)
x ∩B] ≤ P βx [B] + ε. In other words, we have proved that,

as n→∞,
1

β
P (n)[R

βn,(n)
x ∩B]

a.s.→ P βx [B]. (4)

Taking B = Rd in (4) yields P (n)[R
βn,(n)
x ]

a.s.→ β, which, jointly with (4), establishes that P
βn,(n)
x [B] =

P (n)[B|Rβn,(n)
x ]

a.s.→ P βx [B], as was to be proved. 2

Proof of Lemma 4.1. (i) Fix x ∈ Supp(f) and ε > 0. By Lemma A.1 in Paindaveine &

Van Bever (2012) (whose proof, under the properties (Q1)-(Q2) introduced in the present paper,

trivially extends to the case where the symmetry center θθθ belongs to Supp(f) \ Supp+(f)), there

exist δ > 0 and α < α∗x := maxy∈Rd D(y, Px) such that Bx(δ) ⊂ Rx,α ⊂ Bx(ε). Since x ∈ Supp(f),

we then have that β0 := P [Rx,α] ≥ P [Bx(δ)] > 0. From the definition of Rβ0
x , it follows that

Rβ0
x ⊂ Rx,α ⊂ Bx(ε).

(ii) Fix x /∈ Supp(f) and let ε > 0 be such that P [Bx(ε)] = 0. If one assumes that (Q2) also

holds for θθθ /∈ Supp(f), then it is easy to check that the proof of Lemma A.1(i) in Paindaveine &

Van Bever (2012) further extends to the case where the symmetry center does not belong to Supp(f).

Therefore there still exist δ > 0 and α < α∗x such that Bx(δ) ⊂ Rx,α ⊂ Bx(ε). The definition of Rβx
implies that Rx,α ⊂ Rβx for any β > 0. It follows that x ∈ Bx(δ) ⊂ Rx,α ⊂ R0

x = ∩β>0R
β
x, hence

that x is an interior point of R0
x. 2

Lemma 2. Under the assumptions of Theorem 4.1, β/Vol(Rβx)→ f(x) as β → 0.

Proof of Lemma 2. Fix ε > 0 and let r = r(ε) be such that f(x) − ε ≤ f(y) ≤ f(x) + ε

for any y ∈ Bx(r) = {z ∈ Rd : ‖z − x‖ < r}. Lemma A.1 in Paindaveine & Van Bever (2012)

ensures that there exists β0 > 0 such that Rβ0
x ⊂ Bx(r). Therefore, for any β ∈ (0, β0), one has

(f(x)− ε)Vol(Rβx) ≤ β =
∫
Rβx
f(y)dy ≤ (f(x) + ε)Vol(Rβx), or equivalently f(x)− ε ≤ β/Vol(Rβx) ≤

f(x) + ε. The result follows. 2
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Proof of Theorem 4.1. Fix x ∈ Rd such that f is positive and continuous at x. For any β, let

B 7→ P sym,β
x [B] = Px[B|Rβx] be the symmetrized (about x) version of P , conditional to Rβx—recall

that we let Px = 1
2P

X + 1
2P

2x−X. We have

|LDβ(x, P )− cD| = |D(x, P βx )− cD| = |D(x, P βx )−D(x, P sym,β
x )|,

where we used the fact that D( · , P ) satisfies (Q3). In view of (Q1+), it is therefore sufficient to

prove that, for any Borel set B, P βx [B] − P sym,β
x [B] → 0 as β → 0. To do so, fix such a B and,

denoting by f sym
x the density of P sym

x , write

P βx [B]− P sym,β
x [B] =

1

β

∫
Rβx∩B

(f(y)− fx(y)) dy =
1

2β

∫
Rβx∩B

(f(y)− f(2x− y)) dy.

If x lies in the interior of B, Lemma 4.1(i) shows that there exists β0 > 0 such that, for all β ≤ β0,

we have Rβx ∩ B = Rβx. Clearly, this implies that for all β ≤ β0, the integral above, hence also

P βx [B]− P sym,β
x [B], is equal to zero. If x does not belong to the closure of B, then the same lemma

implies that Rβx ∩B is empty for β small enough, which leads to the same conclusion. It remains to

consider the case where x belongs to the boundary of B. For such an x, we may write

P βx [B]− P sym,β
x [B] =

Vol(Rβx ∩B)

2β
(Iβ − Irefl

β ), where

Iβ =
1

Vol(Rβx ∩B)

∫
Rβx∩B

f(y) dy and Irefl
β =

1

Vol(Rβx ∩Brefl)

∫
Rβx∩Brefl

f(y) dy,

and where Brefl = 2x−B denotes the reflection of B about x. The same reasoning as in the proof of

Lemma 2 allows to show that both Iβ and Irefl
β converge to f(x) as β → 0. The result then follows

from the fact that Vol(Rβx ∩B)/β ≤ Vol(Rβx)/β remains bounded as β → 0 (Lemma 2). 2

The next lemma is needed to prove Theorem 4.2. Recall that X is an absolutely continuous distri-

bution with cdf F and pdf f , and put g(β) := (F (x)−F (xβ))/β and h(β) := (F (2x−xβ)−F (x))/β,

where xβ was defined in the statement of Proposition 5.1.

Lemma 3. Fix x ∈ Supp+(f). (i) If f is continuous in a neighborhood of x, then limβ→0 g(β) = 1
2 =

limβ→0 h(β); (ii) if f admits a continuous derivative f ′ in a neighborhood of x, then limβ→0 g
′(β) =

− f ′(x)
8f2(x)

and limβ→0 h
′(β) = f ′(x)

8f2(x)
; if f admits a continuous second derivative f ′′ in a neighborhood

of x, then (iii) limβ→0 h
′′(β) = 0 and limβ→0 g

′′(β) = 0.

Proof of Lemma 3. First note that xβ is the (1−β)/2-quantile of the symmetrized distribution of

X about x, that is, xβ = (F Y )
−1

(1−β
2 ), where F Y is the cdf 1

2F+ 1
2F

2x−X . Below, the corresponding

pdf will be denoted fY .

(i) Absolute continuity implies that limβ→0 xβ = x. Therefore, L’Hôpital’s rule can be applied

and, together with the continuity of f in a neighborhood of x and the expression for xβ given above,

we obtain

lim
β→0

g(β) = lim
β→0

(
− f(xβ)

dxβ
dβ

)
= lim

β→0

f(xβ)

2fY (xβ)
.

Since fY (x) = f(x), the result follows for g. Computations for h(β) are extremely similar, hence

will be omitted here (as well as in the proof of (ii)-(iii) below).
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(ii) Straightforward calculus shows that g′(β) = (
f(xβ)

2fY (xβ)
− g(β))/β. Taking the limit of g′(β)

and applying L’Hôpital’s rule gives

lim
β→0

g′(β) = lim
β→0

d

dβ

[
f(xβ)

2fY (xβ)

]
− lim
β→0

g′(β).

The result then follows after some calculations using that (fY )′ is continuous in a neighborhood of x

and takes value zero at x.

(iii) Tedious calculations show that

g′′(β) =
1

β

{
−f ′(xβ) + f(xβ)(fY )′(xβ)

(
fY (xβ)

)−1

4 (fY (xβ))2 − 2g′(β)

}
.

L’Hôpital’s rule then establishes the result, after some derivations using that (fY )′′ is continuous in

a neighborhood of x and takes value f ′′(x) at x. 2

Proof of Theorem 4.2. Under the assumptions considered, it is clearly sufficient to prove that,

as β → 0,

(a) LDβ
H(x, P )→ 1

2 and ∂
∂βLD

β
H(x, P )→ − |f

′(x)|
8f2(x)

;

(b) LDβ
S(x, P )→ 1

2 , ∂
∂βLD

β
S(x, P )→ 0, and ∂2

∂β2LD
β
S(x, P )→ − (f ′(x))2

16f4(x)
.

Proposition 5.1 shows that LDβ
H = min(g(β), h(β)). A simple Taylor expansion then yields

lim
β→0

LDβ
H(x, P ) =


limβ→0 g

′(β) if f ′(x) > 0

limβ→0 h
′(β) if f ′(x) < 0

limβ→0 min(g′(β), h′(β)) if f ′(x) = 0

Lemma 3 then directly establishes (a). In order to prove (b), note that Proposition 5.1 states that

LDβ
S(x, P ) = 2g(β)h(β), which yields ∂

∂βLD
β
S(x, P ) = 2g′(β)h(β)+2g(β)h′(β) and ∂2

∂β2LD
β
S(x, P ) =

2g′′(β)h(β) + 4g′(β)h′(β) + 2g(β)h′′(β). The limits in (b) then follow from Lemma 3. 2

Proof of Theorem 6.1. (Necessity:) For any β, the region Rβx0(P ) is centrally symmetric about x0

: Rβx0(P ) = 2x0 − Rβx0(P ). Hence the central symmetry of P about x0 implies that P βx0 [ · ] =

P [ · |Rβx0(P )] is also centrally symmetric about x0. This implies that LDβ
H(x0, P ) = DH(x0, P

β
x0) =

1/2 for any β.

(Sufficiency:) For any β, LDβ
H(x0, P ) = DH(x0, P

β
x0) = 1/2 implies that P βx0 is angularly

symmetric about x0. In other words, for any β, P βx0 [C] = P βx0 [2x0−C], for any C in the collection Cx0

of cones originating from x0. This of course rewrites P [C ∩ Rβx0(P )] = P [(2x0 − C) ∩ Rβx0(P )],

∀C ∈ Cx0 , ∀β ∈ (0, 1]. Since the regions Rβx0(P ) are symmetric with respect to x0, this implies that

P [C ∩ (Rβ2
x0

(P ) \Rβ1
x0

(P ))]

= P [2x0 − (C ∩ (Rβ2
x0

(P ) \Rβ1
x0

(P )))] ∀C ∈ Cx0 , ∀β1 < β2 ∈ (0, 1].

This proves the result since the sigma-algebra generated by the subsets C ∩ (Rβ2
x0 \ R

β1
x0), C ∈ Cx0 ,

0 < β1 < β2 ≤ 1, coincides with the Borel sigma-algebra on Rd. 2
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Chapter III Introduction

1 Introduction

Elliptical distributions play a crucial role in many fields of statistics. They form a quite flexible

extension of the multinormal model, on which most textbook statistical procedures in multivariate

analysis are based. A random d-vector X is said to be elliptically distributed if its characteristic

function is of the form

Rd → C

t 7→ exp(it′µµµ)ψ(t′ΣΣΣt), (1.1)

where the d-vector µµµ is a location parameter and the symmetric and positive definite d×d matrix ΣΣΣ

is a scatter parameter. The characteristic generator ψ( · ) : R+ → R then fully determines the

distribution of the Mahalanobis distance dµµµ,ΣΣΣ(X) =
(
(X − µµµ)′ΣΣΣ−1(X − µµµ)

)1/2
, hence in particular

determines whether X has lighter-than-normal or heavier-than-normal tails. To make ΣΣΣ and ψ

identifiable without imposing any moment assumption, one may e.g. require that dµµµ,ΣΣΣ(X) has median

one. Under absolute continuity assumptions, the level sets of the corresponding density are hyper-

ellipsoids that are centered at µµµ and whose shape and orientation are determined by ΣΣΣ, which

justifies the terminology.

The scatter parameter ΣΣΣ is of paramount importance in many inference procedures, including

principal component analysis (PCA), canonical correlation analysis (CCA), testing for sphericity,

etc. As it is often the case, however, these three applications do only require to know or to estimate

the scatter matrix up to a positive scalar factor. In other words, factorizing ΣΣΣ into σ2V, where

σ2 = (detΣΣΣ)1/d is a scale parameter and V = ΣΣΣ/(detΣΣΣ)1/d is a shape parameter, it is often so that

the parameter of interest is V, while σ2 plays the role of a nuisance. In PCA, for instance, principal

directions may be interchangeably computed from ΣΣΣ or from V, and both scatter and shape matrices

will similarly lead to the same proportions of explained variances. Other factorizations of scatter

into scale × shape are possible, such as those leading to shape matrices with fixed trace d or upper-

left entry equal to one. The determinant-based normalization above was shown to be canonical

in Paindaveine (2008), and it still plays a very particular role in the present work.

Many recent works focused on developing specific inference procedures for shape, and proposed,

among others, tests of sphericity—or, more generally, tests that the underlying shape is equal to a

given value. Most of these tests are based on estimators of shape—that are typically obtained by

normalizing existing robust estimators of scatter. A quite systematic analysis of the properties of

M-, S-, and R-estimators of shape has been performed in Frahm (2009). The shape estimator based

on the celebrated MCD estimator of scatter was recently investigated in Paindaveine & Van Bever

(2013). Shape estimators based on multivariate signs and ranks were proposed in Tyler (1987),

Hallin et al. (2006) and Taskinen et al. (2010). Tests for sphericity relying explicitly on the concept

of shape were proposed, e.g., in Hallin & Paindaveine (2006b), Sirkiä et al. (2009), and Paindaveine

& Van Bever (2013).

The procedures above are of a likelihood nature. In particular, assuming that i.i.d. observa-

tions Xi, i = 1, . . . , n, are available, the corresponding estimators V̂ are M-estimators, in the sense

that they are defined through

V̂ = arg min
V

n∑
i=1

Fi(V) or
n∑
i=1

ai(V̂) = 0, (1.2)
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where the scalar Fi(V) typically measures how well the shape parameter value V fits the observa-

tion Xi and where the vector ai(V) is, e.g., taken as ai(V) = ∇VFi(V). In the important particular

case where Fi(V) is the ith term in the (Gaussian) log-likelihood, V̂ is the (Gaussian) maximum

likelihood estimator of V; see Section 2.2 below. The purpose of this paper is to introduce a depth

notion for shape, à la Mizera (2002), that looks for a (possibly non-unique) Pareto-optimal value

of V, essentially minimizing individually as many Fi(V) as possible, instead of minimizing a global

measure of fit as in (1.2). More precisely, the depth of V will be defined as the minimal probability

mass—in the empirical case, the minimal proportion of the sample—that needs to be removed for

the shape value V not to be Pareto-optimal anymore. Instead of using this formulation of paramet-

ric depth in terms of Fi(V), we rather use below the essentially equivalent Mizera (2002) “tangent

depth” formulation that is based on the gradients ∇VFi(V); see Section 3.

The outline of the paper is as follows. Section 2 fixes the notations we will use in the present

elliptical setup, and discusses M-estimation for shape, which gives the opportunity to provide the

score functions for shape that will be needed in the sequel. Section 3 first reviews the concept of

(location) halfspace depth and its extension to an arbitrary parametric setup proposed by Mizera

(2002) (Section 3.1). Then it defines the proposed concept of shape depth and establishes its affine-

invariance (Section 3.2). Section 4 shows that shape depth is uniquely maximized at the true

depth value. Section 5 introduces depth-based tests for shape, and investigates their finite-sample

properties through simulations. While the previous sections actually focus on the determinant-based

definition of shape, Section 6 extends the construction to other scale functionals, which requires to

extend the parametric Mizera (2002) scheme into a semiparametric one. Section 7 briefly discusses

the unspecified location case, as well as the application of the proposed concept to point estimation.

Finally, the Appendix collects technical proofs.

2 Shape and M-estimation of shape in elliptical families

In this section, we first define the concept of shape in elliptical families and introduce the notation

that will be needed in the sequel (Section 2.1). Then we discuss M-estimation of shape, and provide

the scores that enter classical likelihood-based inference procedures (Section 2.2).

2.1 Shape

Consider a random d-vector X that has an elliptical distribution described by (1.1), for some loca-

tion µµµ ∈ Rk and some scatter ΣΣΣ ∈ Sd, where Sd denotes the set of all d×d symmetric positive definite

matrices. Identifiability of ΣΣΣ is ensured by imposing that the Mahalanobis distance dµµµ,ΣΣΣ(X) has

median one. The unit vector Uµµµ,ΣΣΣ(X) = ΣΣΣ−1/2(X−µµµ)/dµµµ,ΣΣΣ(X) is uniform over the unit sphere Sd−1

in Rd, and is independent of dµµµ,ΣΣΣ(X) (throughout, A1/2, for a symmetric and positive definite matrix

A, stands for the symmetric and positive definite square root of A).

As in Paindaveine (2008), scale and shape parameters may be obtained from the scatter param-

eter ΣΣΣ by using an arbitrary scale functional S.

Definition 2.1. A mapping S : Sd → R+
0 is a scale functional iff (i) S is 1-homogeneous (i.e.

S(λΣΣΣ) = λS(ΣΣΣ) ∀λ > 0), (ii) S is differentiable with ∂S
∂ΣΣΣ11

(ΣΣΣ) 6= 0 for all ΣΣΣ ∈ Sd, and (iii) S(Id) = 1.

The shape and scale parameters associated with ΣΣΣ ∈ Sd are then VS(ΣΣΣ) = ΣΣΣ/S(ΣΣΣ) and σ2
S(ΣΣΣ) =

S(ΣΣΣ), respectively.
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Scale functionals therefore allow to factorize the scatter matrix ΣΣΣ into σ2V, where the scale σ2

belongs to R+
0 and the shape V is in the set VSd =

{
V ∈ Sd : S(V) = 1

}
. Below, superscript and

subscript S will only be used when the dependence on the underlying scale functional is needed.

Classical scale functionals include

(i) Sone(ΣΣΣ) = Σ11 (Hallin & Paindaveine, 2006a; Hettmansperger & Randles, 2002; Randles, 2000),

(ii) Strace(ΣΣΣ) = (trΣΣΣ)/d (Dümbgen, 1998; Tyler, 1987),

(iii) Sdet(ΣΣΣ) = (detΣΣΣ)1/d (Dümbgen & Tyler, 2005; Hallin & Paindaveine, 2008; Taskinen et al.,

2006; Tatsuoka & Tyler, 2000), and

(iv) Strace−1(ΣΣΣ) = d/(trΣΣΣ−1) (Frahm, 2009).

As advocated in Paindaveine (2008), the determinant-based standardisation Sdet may be con-

sidered canonical since it is the only one for which the scale and shape parameters are orthogonal

(meaning that the corresponding Fisher information matrix is block-diagonal); we refer to Frahm

(2009) for other appealing properties of the scale functional Sdet.

The following notation will be needed in the sequel. For any d × d matrix A, let vec(A) be

the d2-dimensional vector resulting from stacking the columns of A one over each other. The

Kronecker product A ⊗ A will be denoted as A⊗2. For a d-vector λλλ = (λ1, . . . , λd)
′, diag(λλλ) will

be the d× d diagonal matrix with diagonal elements λ1, . . . , λd. If ΣΣΣ is a symmetric matrix, denote

by vech(ΣΣΣ) = (Σ11, ( ˚vechΣΣΣ)′)′ the d(d + 1)/2-vector resulting from stacking the elements of the

upper-triangular part of ΣΣΣ. The vector ˚vechΣΣΣ (with dimension D := d(d + 1)/2 − 1) is therefore

the vector vechΣΣΣ deprived from its first component. Finally, for a given scale functional S and a

shape matrix V ∈ VSd , MV
S will denote the D× d2 matrix such that (MV

S )′( ˚vech v) = vec(v) for all

matrices v ∈ Sd satisfying
(
∇S(vech V)

)′
(vechv) = 0.

For a shape matrix V ∈ VSd , there is a one-to-one relationship between V (or vech V) and ˚vech V,

since V11 may be obtained from ˚vech V by imposing the constraint S(V) = 1. The shape parameter

is therefore ˚vech V, and, in the sequel, ∇V will actually denote the gradient with respect to ˚vech V.

2.2 M-estimation of shape

Consider the problem of conducting inference on the shape parameter on the basis of n mutually

independent copies Xi, i = 1, . . . , n, of the random d-vector X considered in Section 2.1. In the

absolutely continuous case, the common distribution of the Xi’s admits a Lebesgue density of the

form

x 7→ Lµµµ,σ,V;g(x) :=
1

σd(det V)1/2
g
(dµµµ,V(x)

σ

)
, (2.1)

where µµµ(∈ Rd) is the location parameter, σ(> 0) and V(∈ VSd ) are the scale and shape asso-

ciated with the scatter ΣΣΣ, and where g : R+ → R+ is the radial density. As usual, maximum

likelihood estimators of shape are simply obtained by solving the system of likelihood equations∑n
i=1∇V logLµµµ,σ,V;g(Xi) = 0, that rewrites

1

2
MV

S

(
V⊗2

)−1/2
n∑
i=1

vec

(
ϕg

(di;µµµ,V
σ

)di;µµµ,V
σ

Ui;µµµ,VU′i;µµµ,V − Id

)
= 0, (2.2)
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where we let di;µµµ,V = dµµµ,V(Xi), Ui;µµµ,V = Uµµµ,V(Xi), and ϕg = −g′/g; see Hallin & Paindaveine

(2006b). Particularizing to the determinant-based scale functional S = Sdet, (2.2) simplifies to

1

2
MV

S (V⊗2)−1/2
n∑
i=1

ϕg

(di;µµµ,V
σS

)di;µµµ,V
σS

vec
(
Ui;µµµ,VU′i;µµµ,V −

1

d
Id

)
= 0, (2.3)

as we then have MV
S (vec V−1) = 0; see, e.g., Paindaveine (2008). Three examples of such likelihood

estimators—or more generally, M-estimators—of shape are the following.

(i) Replacing g with the radial density associated with the multinormal case and solving (2.3)

for V gives V̂N ,µµµ = Sµµµ/(det Sµµµ)1/d, where Sµµµ = 1
n

∑
(Xi−µµµ)(Xi−µµµ)′ is the classical covariance

matrix with known location µµµ. Of course, when µµµ is unspecified, jointly solving (2.3) and

the corresponding likelihood equations for location would provide the Gaussian maximum

likelihood shape estimator V̂N = S/(det S)1/d, with S = 1
n

∑
(Xi − X̄)(Xi − X̄)′, that is

simply the appropriately normalized regular covariance matrix.

(ii) For a fixed location µµµ, the well-known estimator of shape from Tyler (1987)—namely the

unique solution V (with determinant one), of 1
n

∑n
i=1 Ui;µµµ,VU′i;µµµ,V = 1

dId—is obtained as the

limiting solution (as ν → 0) of (2.3) when g is taken as the radial density gν of the elliptical

t distribution with ν degrees of freedom (note indeed that ϕgν (z) ∝ (d + ν)z/(ν + z2), so

that ϕgν (z)z goes to a constant as ν → 0). For the unspecified location case, the corresponding

estimator of (µµµ,V) is the one proposed in Hettmansperger & Randles (2002).

(iii) Alternatively, R-estimators of shape may be obtained by replacing, in (2.3), ϕg(di/σ)di/σ

with a function K(Ri) involving the rank Ri of di among d1, . . . , dn. The resulting rank-based

estimators of shape exhibit very good robustness and efficiency properties; see Hallin et al.

(2006).

Very classically, these examples all involve minimization of an aggregate, global, objective function;

see (1.2) in the Introduction. Minimizing, in a “Pareto” fashion, individual measures of fit (as it is

the case with maxdepth estimation) will allow the definition of an alternative inferential approach

for shape, described in the next section.

3 Shape depth

Inference on location µµµ and shape V is of obvious interest. The literature provides abundant so-

lutions to the location problem. One classical way to estimate the parameter µµµ is through depth

functions, measuring the centrality of any location with respect to the underlying population, there-

fore providing a (so-called maxdepth) estimate of the location parameter as the point in space with

maximal depth. Interestingly, the notion of depth has been extended to, first, the regression setup

(Rousseeuw & Hubert, 1999), and, later, to any parametric setup (Mizera, 2002; Mizera & Müller,

2004). Estimation based on depth in such setups can be achieved in the same fashion, by finding the

parameter value with largest tangent depth. In this section, we first review (Section 3.1) the classical

concept of halfspace (location) depth (Tukey, 1975) as well as that of tangent depth (Mizera, 2002).

Then we introduce (Section 3.2) the proposed shape depth concept, in the particular case in which

shapes are normalized to have determinant one.
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3.1 Halfspace depth and tangent depth

Depth functions, of the form D : Rd → R+ : µµµ 7→ D(µµµ, P ), measure the centrality of an arbitrary lo-

cation µµµ with respect to a probability measure P on Rd. Many depths are available in the literature,

among which the simplicial depth (Liu, 1990), the spatial depth (Vardi & Zhang, 2000), the stan-

dardized spatial depth (Zuo & Serfling, 2000), the projection depth (Zuo, 2003), the Mahalanobis

depth (Zuo & Serfling, 2000), the simplicial volume depth (Oja, 1983; Zuo & Serfling, 2000), or the

zonoid depth (Koshevoy & Mosler, 1997). Here, we focus on the following celebrated depth.

Definition 3.1 (Tukey, 1975). The halfspace depth of µµµ with respect to the random d-vector X

having distribution P is DH(µµµ, P ) = infu∈Sd−1 P [u′(X − µµµ) ≥ 0], the smallest probability mass of

any halfspace whose boundary hyperplane contains µµµ.

Interestingly, an equivalent definition of halfspace depth, allowing the extension of depth to

other setups, is the following. Let the objective function µµµ 7→ Fµµµ(x) measure how well (actually,

how poorly) the parameter value µµµ “fits” the point x in the sample space; one may, typically,

take Fµµµ(x) = h(‖x − µµµ‖), where h : R+ → R+ is smooth and monotone increasing. Letting

0d = (0, . . . , 0)′ ∈ Rd, one may then directly check that

DH(µµµ, P ) = DH(0d, P∇µµµFµµµ(X)) (3.1)

(throughout, Pg(X) denotes the distribution of the random vector g(X) when X has distribution P ).

In the empirical case, this amounts to looking at the depth of 0d among the directions ∇µµµFµµµ(Xi),

i = 1, . . . , n, of maximal increase of Fµµµ(·). As mentioned in the Introduction, depth somehow

individually minimizes such objective functions rather than minimizing a global objective function

of the form
∑n

i=1 Fµµµ(Xi).

Mizera (2002) based on (3.1) a concept of tangent depth, that extends location depth to an

arbitrary parametric model. In order to describe this concept, consider a random d-vector X with

a distribution P = Pθθθ0
in the parametric family P =

{
Pθθθ| θθθ ∈ ΘΘΘ ⊂ Rk

}
(here, k may be different

from d). As above, let θθθ 7→ Fθθθ(x) be a measure of fit of the parameter value θθθ for the observation x.

The following concept then typically attributes large depth to “good” parameter values, that is, to

parameter values θθθ that are close to θθθ0.

Definition 3.2 (Mizera, 2002). The tangent depth of θθθ with respect to P = PX is TD(θθθ, P ) =

DH(0, P∇θθθFθθθ(X)).

An important particular case is the linear regression setup, where the observation takes the

form (X, Y )′, with values in Rp−1 ×R, and involves a (p− 1)-dimensional covariate X and a scalar

response Y , while the parameter value θθθ(∈ΘΘΘ = Rp) is associated with the regression hyperplane y =

θθθ′
(

1
x

)
. For Fθθθ(x, y) = h(|y − θθθ′

(
1
x

)
|), where h : R+ → R+ is still smooth and monotone increasing,

tangent depth reduces to the well-known regression depth from Rousseeuw & Hubert (1999).

In some setups, it may be difficult to choose an appropriate objective function θθθ 7→ Fθθθ(x). A

general, likelihood-based, approach consists in taking Fθθθ(x) = − logLθθθ(x), where Lθθθ(x) stands for

the likelihood function; see, e.g., Mizera & Müller (2004); Müller (2005). It is easily checked that,

in the location and regression cases considered above, Gaussian or tν-likelihoods lead to the Tukey

(1975) location depth and Rousseeuw & Hubert (1999) regression depth, respectively. However, the
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resulting depth concepts may severely depend on the likelihood function used; an example is given

by the location-scale depth from Mizera & Müller (2004), where different unimodal densities may

give rise to heterogeneous depth functionals.

3.2 Shape depth

For the determinant-based scale functional Sdet (to which, unless otherwise stated, we restrict up

to Section 6), the discussion above makes it natural to define the shape depth of an arbitrary shape

value V, with respect to a distribution P = PX on Rd, as ShDµµµ(V, PX) = DH

(
0D, P∇V logLµµµ,σ,V;g(X)

)
,

where

∇V logLµµµ,σ,V;g(X) =
1

2
ϕg

(dµµµ,V
σ

)dµµµ,V
σ

MV
S (V⊗2)−1/2 vec

(
Uµµµ,VU′µµµ,V −

1

d
Id

)
(3.2)

is the corresponding score for V; see (2.3). Assuming that g is monotone strictly decreasing, the

scalar quantity ϕg(dµµµ,V/σ)dµµµ,V/σ is positive, hence may be dropped in (3.2) without affecting the

depth, that therefore does not depend on σ nor g. This leads to the following definition.

Definition 3.3. For any V ∈ VSd , the shape depth of V, with respect to the distribution P =

PX on Rd having known deepest point µµµ, is ShDµµµ(V, PX) = DH

(
0D, PWµµµ,V

)
, where Wµµµ,V =

MV
S (V⊗2)−1/2 vec

(
Uµµµ,VU′µµµ,V −

1
dId
)
.

While shape depth does not depend on σ and g (in contrast with other instances of tangent depth,

such as, e.g., the location-scale depth from Mizera & Müller (2004)), it does explicitly involve the

deepest location µµµ2—which, in the elliptical case, coincides with the location parameter µµµ from the

previous sections. Definition 3.3 therefore applies in the specified location case; extension to the

unspecified location case will be briefly discussed in Section 7.

As mentioned above, we restricted here to the determinant-based scale functional Sdet. Extending

the concept of shape depth to an arbitrary scale functional is non-trivial, and, in particular, building

tangent depth on the generic score in (2.2) instead of the determinant-based score in (2.3) would not

allow to get rid of σ nor g. A proper extension of shape depth to an arbitrary scale functional will

actually require modifying the Mizera (2002) tangent depth construction, which will be achieved

in Section 6.

Coming back to Definition 3.3, it is interesting to note that the shape depth there involves the

underlying X only through the direction—or multivariate sign—Uµµµ,V. Consequently, shape depth

intrinsically is a sign concept, and the resulting inference procedures, parallel to Tyler’s estimator

of shape introduced in Section 2.2, will be multivariate sign procedures, hence will enjoy natural

robustness properties. Since the Mahalanobis distance dµµµ,V is not involved in shape depth, any

result we will prove under the assumption of ellipticity will de facto also hold under the much

weaker assumption that the underlying distribution P = PX has elliptical directions—in the sense

that X is distributed as RAU, where U is uniform over the unit sphere Sd−1 in Rd and where the

nonnegative random variable R may be stochastically dependent of U (and may fail to be absolutely

continuous).

In the location setup, affine-invariance is one of the classical requirements for depth functions;

see Property (P1) in Zuo & Serfling (2000). The following theorem states that the proposed shape

depth inherits the affine-invariance properties of its location antecedent, namely halfspace depth.

2If uniqueness does not hold, we follow the standard practice that consists in defining µµµ as the barycenter of the
deepest region.
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Theorem 3.1. Fix V ∈ VSd and an arbitrary distribution P = PX on Rd. Then

ShDµµµ(V, PX) = ShDAµµµ+b

( AVA′

S(AVA′)
, PAX+b

)
,

for any invertible d× d matrix A and any d-vector b.

The proof requires extra insight on the random vector Wµµµ,V and is therefore deferred to the

Appendix.

4 Consistency

In this section, we provide a “consistency” result, stating that, under ellipticity, the shape depth

from the previous section is uniquely maximized at the true shape value. The proof relies on a

preliminary result, that in turn requires introducing the following notations. We will write W
µµµ,V
d2 ,

W
µµµ,V
D+1, and W

µµµ,V
D , for the vec, the vech, and the ˚vech forms of the random matrix Uµµµ,VU′µµµ,V−

1
dId,

respectively. We then have the following result.

Lemma 4.1. Fix V ∈ VSd and an arbitrary distribution P = PX on Rd. Then ShDµµµ(V, PX)
(i)
=

DH

(
0d2 , P

W
µµµ,V

d2

) (ii)
= DH

(
0D+1, PW

µµµ,V
D+1

) (iii)
= DH

(
0D, PW

µµµ,V
D

)
.

This lemma is the key result to many properties of shape depth. In particular, it is the main

step in the proof of the affine-invariance property in Theorem 3.1, and, as announced, it also plays

a crucial role in the proof of the following consistency result.

Theorem 4.1. Fix an arbitrary elliptical distribution P = PX on Rd (d ∈ {2, 3}), with location µµµ

and shape V0. Then, for all V ∈ VSd , the (known-location) shape depth of V satisfies ShDµµµ(V, P ) ≤
ShDµµµ(V0, P ), with equality if and only if V = V0.

The proof is long and deferred to the Appendix. However, we summarize some intermediary

steps below, as they bring much information about the structure of the proposed shape depth.

First note that it is sufficient to prove Theorem 4.1 for V0 = Id: if the elliptical random d-

vector X has shape V0, then affine-invariance yields ShDµµµ(V, PX) = ShDµµµ(V
−1/2
0 VV

−1/2
0 , PY),

where Y = V
−1/2
0 X is spherically distributed, i.e., is elliptically distributed with shape matrix Id.

Applying the V0 = Id result in Theorem 4.1 therefore implies that

ShDµµµ(V, PX) = ShDµµµ(V
−1/2
0 VV

−1/2
0 , PY) ≤ ShDµµµ(Id, PY),

with equality if and only if V
−1/2
0 VV

−1/2
0 = Id, that is, if V = V0. This shows that the general

statement in Theorem 4.1 indeed follows from the V0 = Id subresult.

Now, this subresult is a direct corollary of the following three lemmas.

Lemma 4.2. Fix an arbitrary elliptical distribution P = PX on Rd (d ∈ {2, 3}), with location µµµ

and shape V0 = Id. Then, letting Dd := {λλλ = (λ1, . . . , λd)
′ ∈ Rd :

∑d
i=1 λi = 1}, we have

ShDµµµ(Id, PX) = inf
λλλ∈Dd

P

[ d∑
i=1

λiU
2
i ≥ 1/d

]
,

where U = (U1, . . . , Ud)
′ is uniformly distributed over the unit sphere Sd−1 in Rd.
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Lemma 4.3. Let U = (U1, . . . , Ud)
′ be uniformly distributed over Sd−1 (d ∈ {2, 3}). Then,

infλλλ∈Dd P [
∑d

i=1 λiU
2
i ≥ 1/d] = P [U2

1 > 1/d] = 1 − FBeta
(
1/d; 1/2, (d − 1)/2

)
, where FBeta

(
· ; a, b

)
denotes the cumulative distribution function of the Beta(a, b) distribution.

Lemma 4.4. Fix an arbitrary elliptical distribution P = PX on Rd (d ∈ {2, 3}), with location µµµ

and shape V0 = Id, and let again U = (U1, . . . , Ud)
′ be uniformly distributed over Sd−1. Then, for

any V ∈ VSd \ {Id}, ShDµµµ(V, PX) < P [U2
1 > 1/d].

Lemma 4.2 states that the (shape) depth of the “true” shape matrix coincides with the halfspace

depth, with respect to the Dirichlet distribution of (U2
1 , . . . , U

2
d )′, of the mean 1

d1d of this Dirichlet

(here, 1d denotes the d-variate vector of ones). Lemma 4.3 provides one of the minimal halfspaces

of this depth problem. Finally, Lemma 4.4 obviously is the key result to establish unicity of the

maximizer in (the V0 = Id version of) Theorem 4.1. All details can be found in the Appendix.

5 Inferential applications

In this section, we turn to depth-based inference for shape, which of course requires considering

the sample version of the population concept introduced in Definition 3.3. Assuming i.i.d. d-variate

observations X1, . . . ,Xn are available (with corresponding empirical distribution P (n), say), we

define the sample shape depth of V with respect to P (n) as

ShDµµµ(V, P (n)) = DH(0, P
(n)

Wµµµ,V) =
1

n
min

u∈SD−1
]
{
i = 1, . . . , n |u′Wµµµ,V

i ≥ 0
}
,

where P
(n)

Wµµµ,V stands for the empirical distribution of

Wµµµ,V
i = MV

S

(
V⊗2

)−1/2
vec
(
Ui;µµµ,VU′i;µµµ,V −

1

d
Id

)
, i = 1, . . . , n. (5.1)

As the notation suggests, this defines sample shape depth for specified location µµµ; more precisely, in

the same spirit as in Definition 3.3, this covers the case where the common deepest point of the Xi’s

is known to be equal to µµµ.

We here restrict to hypothesis testing (point estimation will be briefly discussed in Section 7).

More specifically, we consider the case where, on the basis of i.i.d. d-variate observations X1, . . . ,Xn

that have a common elliptical distribution with known location center µµµ and unknown shape ma-

trix V (normalized to have determinant one), we want to test

H0,µµµ : V = V0 vs H1,µµµ : V 6= V0

at level α ∈ (0, 1), where V0 ∈ VSdet
d is fixed. The important particular case obtained with V0 = Id

corresponds to the problem of testing sphericity.

Theorem 4.1 suggests to consider a depth-based test rejecting the null for small values of T
(n)
µµµ =

ShDµµµ(V0, P
(n)), where P (n) denotes the empirical distribution of the Xi’s. Clearly, the random

vectors Wµµµ,V0
i (see (5.1)) are distribution-free under the null H0,µµµ. In particular, the α-quantile t

(n)
α

of T
(n)
µµµ under H0,µµµ does not depend on the underlying radial density g; the notation t

(n)
α is justified

by the fact that this quantile also does not depend on µµµ nor—in view of the affine-invariance of

shape depth—on the null shape value V0. Consequently, evaluating the sample α-quantile in a

(large) collection of m values of the (V0 = Id) test statistic, obtained from m mutually independent
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standard normal random samples, will provide a valid3 estimate t̂
(n;m)
α of t

(n)
α (estimated values of

t̂
(n;5,000)
α for various values of α and n are provided in Table 1 for d = 2 and for d = 3). The resulting

depth-based test then rejects the null H0,µµµ at level α whenever T (n) < t̂
(n;m)
α .

Table 1: Estimated critical values t̂
(n,m)
α from m = 5, 000 independent d-dimensional standard normal random

samples (d = 2, 3), for various values of the nominal level α and sample size n.

d = 2 (d = 3)

α \ n 50 200 500 1, 000 10, 000

0.01 0.26 (0.14) 0.38 (0.28) 0.422 (0.334) 0.443 (0.360) 0.4824 (0.4031)
0.025 0.28 (0.16) 0.385 (0.29) 0.428 (0.340) 0.448 (0.364) 0.4837 (0.4044)
0.05 0.30 (0.18) 0.395 (0.295) 0.434 (0.344) 0.452 (0.368) 0.4848 (0.4056)
0.1 0.32 (0.18) 0.405 (0.305) 0.438 (0.350) 0.457 (0.371) 0.4862 (0.4070)
0.2 0.34 (0.20) 0.415 (0.315) 0.446 (0.356) 0.462 (0.376) 0.4879 (0.4084)

A simulation study was conducted in order to assess the finite-sample behavior of the proposed

depth-based test. Four competitors were considered :

(i) The µµµ-specified version of the Gaussian test from John (1972)—more precisely, the µµµ-specified

version of its robustification to any elliptical distributions with finite fourth-order moments

defined in Hallin & Paindaveine (2006b). This test is based on the Gaussian maximum like-

lihood estimator of shape V̂N ,µµµ = Sµµµ/(det Sµµµ)1/d, where Sµµµ = 1
n

∑
(Xi − µµµ)(Xi − µµµ)′ is the

classical covariance matrix with known location µµµ; see Section 2.2. The test statistic is

Q
(n)
N ,µµµ =

nĉd
2

(
tr
[
(V−1

0 V̂N ,µµµ)2
]
− 1

d
tr2
[
V−1

0 V̂N ,µµµ

])
,

with ĉd := (d+ 2)( 1
n

∑n
i=1 d

2
i;µµµ,Sµµµ

)2/[d( 1
n

∑n
i=1 d

4
i;µµµ,Sµµµ

)].

(ii)-(iii) Two multivariate signed-rank tests from Hallin & Paindaveine (2006b), that are based on test

statistics of the form

Q
(n)
K,µµµ =

nd(d+ 2)

2(
∫ 1

0 K
2(u) du)

(
tr
[
(V−1

0 V̂K,µµµ)2
]
− 1

d
tr2
[
V−1

0 V̂K,µµµ

])
,

where V̂K,µµµ = SK,µµµ/(det SK,µµµ)1/d is the shape associated with the (null) signed-rank scatter

matrix SK,µµµ = 1
n

∑n
i=1K(Ri;µµµ,V0/(n + 1))Ui;µµµ,V0U

′
i;µµµ,V0

; here, Ri;µµµ,V0 stands for the rank

of di;µµµ,V0 among d1;µµµ,V0 , . . . , dn;µµµ,V0 . The test (ii) is a pure sign test based on K(u) ≡ 1,

whereas the test (iii) is a “van der Waerden” signed-rank test based on the (Gaussian) score

function K(u) = Ψ−1
d (u), where Ψd denotes the cumulative distribution function of the chi-

square distribution with d degrees of freedom.

(iv) The test based on the MCDγ shape estimator V̂MCDγ ,µµµ = SMCDγ ,µµµ/(det SMCDγ ,µµµ)1/d, where

SMCDγ ,µµµ is the celebrated MCDγ estimator of scatter; γ, that determines the proportion of the

sample retained to compute the final covariance matrix estimate, was fixed to 0.8 to achieve

a good balance between efficiency and robustness. The corresponding test statistic is

Q
(n)
MCDγ ,µµµ

=
nĉγ
2

(
tr
[
(V−1

0 V̂MCD,µµµ)2
]
− 1

d
tr2
[
V−1

0 V̂MCD,µµµ

])
.

3Due to the discreteness of the distribution of T
(n)
µµµ , randomization may be needed to achieve exact null size α.
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We refer to Paindaveine & Van Bever (2013) for an expression of ĉγ .

The tests in (i)-(iv) all reject the null for large values of the corresponding test statistics, whose

common null asymptotic distribution is chi-square with D = d(d + 1)/2 − 1 degrees of freedom.

Consequently, these four competing tests reject the null at asymptotic level α whenever their test

statistic exceeds the upper α-quantile Ψ−1
D (1− α) of the χ2

D distribution.

We performed a first simulation to investigate the finite-sample performances of our depth-based

tests in terms of power. We restricted to the problem of testing bivariate sphericity about the origin

(µµµ = 0d and V0 = Id, with d = 2), at level α = 5%. We considered three types of bivariate elliptical

distributions, namely standard normal, t5, and Cauchy ones. For each type of distribution and each

value of `, we generated M = 3, 000 independent random samples Xi, i = 1, . . . , n = 500, with

location center µµµ = 02 and shape matrix

V (`, ξ) =
I2 + `ξ

(
1 0.5
0.5 −1

)(
det
[
I2 + `ξ

(
1 0.5
0.5 −1

)])1/2
, ` = 0, 1, . . . , 6;

the value ` = 0 corresponds to the null, whereas ` = 1, . . . , 6 are associated with increasingly severe

alternatives. The value of ξ was chosen as ξ = 0.035, 0.04, and 0.045 for bivariate normal, t5, and

Cauchy samples, respectively, to ensure that the most extreme alternatives (corresponding to ` = 6)

for each type of distribution lead to approximately identical (and close to one) rejection frequencies.

For each sample, we performed the proposed depth-based test (associated with the estimated

critical value t
(n,m)
α = 0.434 from Table 1, with α = 0.05, n = 500, and m = 5, 000) and its four

competitors (i)-(iv) above (based on the asymptotic critical value Ψ−1
D (1− α) = Ψ−1

2 (0.95) ≈ 5.99).

Plots of the resulting rejection frequencies (as a function of `) are reported in Figure 1. Clearly, the

empirical power curves of the proposed depth-based test are very similar to (although they may seem

slightly lower than) those of the sign test in (ii), which is in line with the fact that the depth-based

test is also of a sign nature. Consequently, the proposed depth-based test performs very well under

heavy tails (it can indeed be checked that the sign test in (ii) coincides with the a.e. limit, as ν → 0,

of the tests—φν , say— achieving parametric optimality under tν elliptical densities), hence beats

all other tests there. As expected, the MCDγ-based test shows low empirical powers (although the

proportion γ of observations used to estimate the shape parameter is quite large; see Paindaveine

& Van Bever, 2013), and the Gaussian test collapses under infinite fourth-order moments.

We conducted another simulation in order to compare the various tests in terms of robustness.

There is no general agreement on how to study resistance of tests subject to contamination; here,

we focused on the concept of “level robustness” as described in He et al. (1990). More precisely, we

investigated the impact on the null size of each test above under various contaminations of the null

hypothesis H0,µµµ : V = V0, with µµµ = 02 and V0 = diag(2, 1/2). To do so, we considered mixture

distributions of the form PX(η)
= (1 − Bη)P

X + BηP
Y, where B is a Bern(η) random variable

independent from X and Y,with η = 0 (zero contamination), .025, .05, .1 and .2 (increasingly severe

contamination). Here, X is a bivariate normal, t5, or Cauchy elliptically symmetric random vector,

with center µµµ and shape V0 as above, hence is compatible with the null hypothesis. The distribution

of the bivariate random vector Y determines the contamination pattern considered, and was chosen

as follows:
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Chapter III Extensions to other scale functionals

(i) (Non-uniform directional contamination): Y has the same distribution as the vector

obtained by rotating X about the origin by an angle π/4 radiants.

(ii) (Uniform directional contamination): Y has the same elliptical distribution as X but for

the fact that its shape is V = I2.

(iii) (Uniform directional and radial contamination): Y is obtained by multiplying by four

the random vector Y in the contamination pattern (ii).

In (i), the contamination is directional and typically shows up in the first eigendirection of Y, that

is, in the direction of the main bisector, whereas the original distribution PX rather puts mass along

the horizontal axis. The contamination pattern (ii) rather provides a directional contamination that

is uniformly distributed over the unit circle. As for the last contamination pattern (iii), it combines

the directional outlying feature of (ii) with a radial outlyingness.

For each combination of an elliptical density type (Gaussian, t5, or Cauchy), a contamination

pattern ((i)-(iii)), and an η-value among those given above, we generated 3, 000 corresponding

independent random samples X
(η)
i , i = 1, . . . , n = 200. The resulting rejection frequencies of the five

tests considered in the previous simulation are plotted in Figure 2 as functions of the contamination

level η.

The results show the very good (level) robustness of the proposed depth-based test. In particular,

it always dominates its sign-based competitor. Only the MCD-based test seems to dominate the

proposed test in terms of robustness. At the sample size considered, the MCD-based test, however,

is very liberal under heavy tails (see also Paindaveine & Van Bever, 2013) and, as we have seen in

the first simulation, exhibits very low finite-sample powers. Finally, note that radial outliers appear

to have a strong impact on both the Gaussian and van der Waerden tests.

6 Extensions to other scale functionals

As we explained in Section 2.1, different scale functionals S may be used to normalize scatter ma-

trices ΣΣΣ into shape matrices V = ΣΣΣ/S(ΣΣΣ). Throughout the previous sections, we restricted to

the determinant-based scale functional Sdet(ΣΣΣ) = (detΣΣΣ)1/d. This scale functional plays an impor-

tant role in semiparametric inference on shape, since it is the only one that provides parameter-

orthogonality between the resulting shape parameter V and scale parameter σ2 = S(ΣΣΣ); see Paindav-

eine (2008). In some setups, however, it may be more suitable to work with scale functionals—such

as, e.g., Sone(ΣΣΣ) = Σ11 or Strace(ΣΣΣ) = (trΣΣΣ)/d—for which the resulting shape matrices form an affine

space. In this section, we discuss the construction of shape depth for an arbitrary scale functional

satisfying Definition 2.1.

Of course, it is tempting to adopt, as we did in the particular case of Sdet, the tangent depth

scheme from Definition 3.2, that is, to define the S-shape depth of VS , relative to a distribution PX,

as ShDµµµ,σS ,g,S(VS , PX) = DH

(
0D, P∇VS

logLµµµ,σS,VS ;g(X)

)
, where

∇VS
logLµµµ,σS ,VS ;g(X) =

1

2
MVS

S (V⊗2
S )−1/2 vec

(
ϕg

(dµµµ,VS

σS

)dµµµ,VS

σS
Uµµµ,VS

U′µµµ,VS
− Id

)
(6.1)

is the generic score function for S-shape; see (2.2).
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As natural as this may be, the resulting S-shape depth concept is far to be as satisfactory as for

the particular case Sdet considered earlier. The reason is twofold. First, as already pointed out in

Section 3, the shape depth ShDµµµ,σS ,g,S(VS , PX) above not only depends on the location µµµ but also

on the scale σS and the radial density g. Second, and more importantly, the consistency property in

Theorem 4.1 does not hold for an arbitrary scale functional, even if one restricts to the collection of

elliptical densities with the location µµµ, scale σS, and radial density g used to evaluate shape depth.

We illustrate this inconsistency through the following bivariate example that involves the scale

functional Strace(ΣΣΣ) = (trΣΣΣ)/2. Let X be a bivariate normal random vector with mean µµµ0 = 02,

scale σ0,Strace = σ0 = 1, Gaussian radial density g = φ and shape V0,Strace = Va0 = V3/4, where

we put Va = diag(a, 2 − a) for any a ∈ (0, 2). Consistency would imply that, for any a 6= a0,

ShDµµµ0,σ0,φ,Strace(Va, PX) < ShDµµµ0,σ0,φ,Strace(Va0 , PX). However, we have the following result (see

the Appendix for the proof).

Lemma 6.1. In the setup described above,

ShDµµµ0,σ0,φ,Strace(Va0 , PX) < ShDµµµ0,σ0,φ,Strace(V1, PX).

For the sake of illustration, Figure 3 plots (estimated versions of) ShDµµµ0,σ0,φ,Strace(Va, PX) and

ShDµµµ0,Sdet
(Va/Sdet(Va), PX), as functions of a. Estimations were obtained as follows: we generated

M = 100 mutually independent random samples from the distribution PX considered in Lemma 6.1.

Then, for every value ai = i/100, with i = 1, . . . , 199, we estimated ShDµµµ0,σ0,φ,Strace(Va, PX) and

ShDµµµ0,Sdet
(Va/Sdet(Va), PX) by averaging over the M = 100 samples available the respective sam-

ple depths (sample Strace-shape depth is obtained from his population version in the exact same way

as for the Sdet-shape depth in Section 5). Figure 3 shows that S-shape depth crucially depends on

the scale functional used, and confirms that the consistency result from Theorem 4.1 does not hold

for the scale functional Strace.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

a

Sh
ap

e 
D

ep
th

Trace
Determinant

Figure 3: Plots of (estimated versions of) ShDStrace
(Va, PX) (in red) and ShDSdet

(Va/Sdet(Va), PX) (in
green) as functions of a ∈ (0, 2), where X is elliptical with Strace-shape Va0 , a0 = 3/4 (hence also Sdet-shape
Va0/Sdet(Va0)).
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This dependence of S-shape depth on the scale functional S—but also its dependence on the

underlying scale and radial density—makes it desirable to define an alternative shape depth con-

cept, that would be as satisfactory for an arbitrary scale functional S as the one we introduced in

Section 3.2 for the scale functional Sdet. Quite interestingly, the appropriate S-shape depth concept

may be obtained by replacing scores for S-shape in (6.2) by their efficient (in the semiparametric

sense) versions

∇∗VS
logLµµµ,σS ,VS ;g(X) =

1

2
ϕg

(dµµµ,VS

σS

)dµµµ,VS

σS
MVS

S (V⊗2
S )−1/2 vec

(
Uµµµ,VS

U′µµµ,VS
− 1

d
Id

)
; (6.2)

see (9) in Paindaveine (2008). The same arguments as above Definition 3.3 then allow to get rid

of the scalar factor involving Mahalanobis distance dµµµ,VS
/σS , which finally leads to the following

definition.

Definition 6.1. For any VS ∈ VSd , the efficient shape depth of VS , with respect to the distribu-

tion P = PX on Rd having known deepest point µµµ, is ShD∗µµµ,S(VS , PX) = DH

(
0D, PW∗µµµ,VS

)
, where

W∗µµµ,VS = MVS
S (V⊗2

S )−1/2 vec
(
Uµµµ,VS

U′µµµ,VS
− 1

dId
)
.

Parallel to Sdet-shape depth, efficient S-shape depth, for any given scale functional S, does

not require knowing the scale σS nor the radial density g, but only the location µµµ. Actually,

Definitions 3.3 and 6.1 appear to be strictly the same definitions. Note however that the matrix MVS
S

depends on the scale functional S, so that it might be so that, despite this strong similarity between

both definitions, efficient S-shape depth still crucially depends on the scale functional S. The

following result shows that efficient S-shape depth, on the contrary, is a concept that does not

depend on S (see the Appendix for the proof).

Theorem 6.1. Let S1 and S2 be two scale functionals. Then, for any probability distribution P =

PX (with known location µµµ and any ΣΣΣ ∈ Sd),

ShD∗µµµ,S1

( ΣΣΣ

S1(ΣΣΣ)
, P
)

= ShD∗µµµ,S2

( ΣΣΣ

S2(ΣΣΣ)
, P
)
.

As a corollary, our results on affine-invariance (Theorem 3.1) and consistency (Theorem 4.1)—

but also more minor results such as Lemmas 4.2, 4.3 and 4.4—extend immediately to efficient

S-shape depth for an arbitrary scale functional S. This is in sharp contrast with the original—

parametric, Mizera (2002)-type—S-shape depth concept introduced earlier in this section. It directly

follows from Paindaveine (2008) that Sdet is the only scale functional for which the original S-shape

ShDS(V, PX) coincides with its efficient version ShD∗S(V, PX). This explains why we started by

defining shape depth for this particular scale functional.

As we showed above, replacing parametric scores by semiparametric (efficient) ones is needed—

unless the scale functional Sdet is adopted—to obtain a shape depth concept that achieves consistency

(in the sense of Theorem 4.1). This provides a semiparametric construction of depth that extends

the parametric one from Mizera (2002) and, to the best of our knowledge, is original. This extension

is needed as soon as the semiparametric model at hand is not adaptive. All semiparametric models

where the parametric Mizera (2002) depth had been used so far—namely, regression (Rousseeuw &

Hubert, 1999), location-scale (Mizera & Müller, 2004), etc.—are adaptive, which may partly explain

why the semiparametric depth we are introducing here was not considered before. Of course, it would

be of interest to consider other instances of semiparametric depth, and to develop a general theory.
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7 Final comments

In the previous sections, shape depth was defined in the µµµ-specified case only, and inferential appli-

cations focused on hypothesis testing. Here, we shortly comment on point estimation and on the

extension to the µµµ-unspecified case.

Regarding point estimation, Theorem 4.1—or, more precisely, its extension4 to an arbitrary scale

functional S—suggests defining the depth-based estimator as

V̂
(n)
S = arg max

V∈VSd

ShD∗µµµ,S(V, P (n)), (7.1)

where P (n) stands, as usual, for the empirical distribution of the d-variate observations X1, . . . ,Xn

at hand. The so-called maxdepth approach in (7.1) is quite classical; see, e.g., Donoho (1982),

Rousseeuw & Hubert (1999), and Mizera & Müller (2004), for location, linear regression, and

location-scale, respectively.

The exact properties of V̂
(n)
S (consistency, asymptotic distribution, robustness, etc.) remain to be

explored. Also, computational aspects are non-trivial, even for d = 2 (a case to which we now restrict

for the sake of illustration). If the optimization in (7.1) is to be performed (in an approximate way)

by running over a fine grid of the parameter space, then it may seem more convenient to work with

the trace-based normalization of shape than with the determinant-based one; indeed, the former

leads to a parametric space of the form

VStrace
2 =

{(
a b
b 2−a

)
∈ R2×2

∣∣ a ∈ (0, 2), a(2− a)− b2 > 0
}

∼=
{(

a
b

)
∈ R2

∣∣ (a− 1)2 + b2 < 1
}

= VStrace
2 ,

which is bounded, unlike the parametric space

VSdet
2 =

{(
a c
c b

)
∈ R2×2

∣∣ ab− c2 = 1, a > 0, b > 0
}

∼=
{(

a
b

)
∈ R2

∣∣ a > 0, b ∈ R
}

= VSdet
2

obtained for the latter. Now, it may be so that running over a grid may be avoided by exploiting the

possible quasi-concavity of shape depth, that would result into convex shape depth regions. Figure 4

illustrates this possible quasi-concavity, both for the determinant- and trace-based normalizations,

by providing heatplots of the corresponding sample depth functions computed from a random sample

of n = 1, 000 bivariate standard normal observations (note that for non-linear scale functionals such

as Sdet, one needs to define what is exactly meant with quasi-concavity).

Turning to the µµµ-unspecified case, a naive approach consists in replacing in Definition 3.3 the

unknown value of µµµ with its maxdepth estimator µ̂µµ(n) = arg maxµµµDH(µµµ, P (n)). This is current

practice in semiparametric inference for shape, as it is well-known that parameter-orthogonality

between µµµ and V implies that this plug-in strategy does not affect the asymptotic behavior of

likelihood-type inference procedures for shape. Since there is no guarantee that this also holds for

depth-based inference procedures for shape, it seems safer to directly go for a joint estimation of

(µµµ,V) through location-shape depth, very much in the spirit of the location-scale depth approach

from Mizera & Müller (2004).

4In the previous section, we showed that this extension holds provided that efficient shape depth is considered.
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Figure 4: Heatplots of the shape depth functions, computed from a random sample of n = 1, 000 bivariate
standard normal observations, for the parameter spaces VStrace

2 (left) and VSdet
2 (right).

The discussion related to semiparametric depth in the previous section makes it natural to define

location-shape depth on the basis of the efficient score function for (µµµ,VS), that is of the form

∇∗µµµ,VS
logLµµµ,σS ,VS ;g(X) =


1
σSϕg

(
dµµµ,VS
σS

)
V
−1/2
S Uµµµ,VS

1
2 MVS

S (V⊗2
S )−1/2ϕg

(
dµµµ,VS
σS

)
dµµµ,VS
σS vec

(
Uµµµ,VS

U′µµµ,VS
− 1

dId

)
 ;

(7.2)

see Paindaveine (2008). This leads to the following definition.

Definition 7.1. For any µµµ ∈ Rd and any VS ∈ VSd , the location-shape depth of (µµµ,VS), with respect

to the distribution P = PX on Rd, is

LShD
(
(µµµ,VS), P

)
= DH

(
0d+D, P∇∗µµµ,VS logLµµµ,σS,VS ;g(X)

)
,

where ∇∗µµµ,VS
logLµµµ,σS ,VS ;g(X) is the efficient score in (7.2).

Provided that g is monotone strictly decreasing, location-scale depth does not depend on σS
nor on g, since one may then get rid of the positive scalar factor (1/σS)ϕg(dµµµ,VS

/σS). Removal of

this factor, however, does not completely eliminate the Mahalanobis distance dµµµ,VS
from the above

efficient score, so that, in contrast with shape depth, location-schape depth is not a sign concept.

Of course, properties of location-shape depth remain to be explored.
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de Belgique and by the IAP research network grant nr. P7/06 of the Belgian government (Belgian

Science Policy). Germain Van Bever’s research is supported through a Mandat d’Aspirant FNRS

(Fonds National pour la Recherche Scientifique), Communauté Française de Belgique.
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Appendix — Proofs

This appendix collects the proofs of all theorems, propositions, and lemmas stated in the manuscript.

We start with the key lemma from Section 4.

Proof of Lemma 4.1. (i) Letting Wµµµ,V
d2 = (V⊗2)−1/2W

µµµ,V
d2 , we first show that

ShDµµµ(V, P ) = inf
w∈RD

P
[
(MV

S w)′Wµµµ,V
d2 ≥ 0

]
(3)

= inf
w̃∈Rd2

P
[
w̃′Wµµµ,V

d2 ≥ 0
]

(4)

= DH(0d2 , P
Wµµµ,V

d2
). (5)

Since (3) and (5) merely hold by definition, it is sufficient to prove (4). Fix then w̃ ∈ Rd2
and let

us show that there exists a D-vector w such that

P
[
(MV

S w)′Wµµµ,V
d2 ≥ 0

]
= P

[
w̃′Wµµµ,V

d2 ≥ 0
]
. (6)

Let Aw̃ be the d × d matrix defined through w̃ = (vec Aw̃). Without loss of generality, we may

assume that Aw̃ is symmetric : since Wµµµ,V = vec
(
V−1Uµµµ,V(Uµµµ,V)′V−1 − 1

dV
−1
)

is the vec of a

symmetric matrix, we indeed have (vec Aw̃)′Wµµµ,V =
(
vec(Aw̃ + A′w̃)/2

)′
Wµµµ,V.

Since (vec V)′Wµµµ,V = 0, we may then rewrite w̃′Wµµµ,V
d2 in (6) as

w̃′Wµµµ,V
d2 = (vec Aw̃)′Wµµµ,V

d2 = (vec (Aw̃ − cV))′Wµµµ,V
d2 , (7)

where we put c := (∇S(vechV))′(vech Aw̃). Now, differentiating with respect to λ both sides of the

identity S(λ(vechV)) = λ (which follows from homogeneity of the scale functional5 S), we obtain

(vech V)′∇S(vechV) = 0, which yields

(∇S(vech V))′ vech(Aw̃ − cV) = 0.

The definition of MV
S then implies that vec(Aw̃ − cV) = (MV

S )′ ˚vech(Aw̃ − cV), so that w =
˚vech(Aw̃ − cV) is a D-vector that satisfies (6). This shows that the infimum in (3) is smaller

than or equal to the infimum in (6). Since the reverse equality trivially holds, this establishes (6).

Finally, affine-invariance of halfspace depth directly yields that ShDµµµ(V, P ) = DH(0d2 , P
Wµµµ,V

d2
) =

DH(0d2 , P
W

µµµ,V

d2
).

(ii) Since W
µµµ,V
d2 and W

µµµ,V
D+1 are the vec and vech of a common d × d symmetric matrix, there

exists a full rank d2 × (D + 1) matrix P such that W
µµµ,V
d2 = PW

µµµ,V
D+1. As P′ has full column rank,

we then obtain

DH(0d2 , P
W

µµµ,V

d2
) = inf

w∈Rd2
P
[
w′W

µµµ,V
d2 ≥ 0

]
= inf

w∈Rd2
P
[
(P′w)′W

µµµ,V
D+1 ≥ 0

]
= DH(0D+1, PW

µµµ,V
D+1

).

5Recall that, whenever partial are computed S is considered as a function of vech(V) rather that V.
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(iii) The equality to be proved similarly follows from the existence of a full rank d2×D matrix Q

such that W
µµµ,V
d2 = QW

µµµ,V
D . This comes from the fact that (W

µµµ,V
d2 )1 = U2

1 − (1/d) may be written

as (W
µµµ,V
d2 )1 = −

∑d
j=2(U2

j − (1/d)) = −
∑d

j=2(W
µµµ,V
d2 )j . 2

Proofs of theorems 3.1 and 6.1 are now mere consequences of the Lemma 4.1.

Proof of Theorem 3.1. Let Wµµµ,V
d2 (A, b) denote the random vector Wµµµ,V

d2 = (V⊗2)−1/2W
µµµ,V
d2

computed from the shape matrix AVA′/S(AVA′) and the random observation AX + b. Since

standard properties of the vec operator and the Kronecker product yield

Wµµµ,V
d2 = (V⊗2)−1/2vec

(
Uµµµ,V(Uµµµ,V)′ − 1

d
Id

)
= vec

(
V−1/2Uµµµ,V(Uµµµ,V)′V−1/2 − 1

d
V−1

)
= vec

(
V−1(X−µµµ)(X−µµµ)′V−1

(X−µµµ)′V−1(X−µµµ)
− 1

d
V−1

)
,

we readily obtain

Wµµµ,V
d2 (A, b) = S(AVA′) vec

(
A
′−1

[
V−1(X−µµµ)(X−µµµ)′V−1

(X−µµµ)′V−1(X−µµµ)
− 1

d
V−1

]
A−1

)

= S(AVA′) (A⊗A)−1 vec

(
V−1(X−µµµ)(X−µµµ)′V−1

(X−µµµ)′V−1(X−µµµ)
− 1

d
V−1

)
= S(AVA′) (A⊗A)−1 Wµµµ,V

d2 .

The result then follows from the identity ShDµµµ(V, P ) = DH(0d2 , P
Wµµµ,V

d2
) (Lemma 4.1) and from

affine-invariance of halfspace depth 2

Proof of Theorem 6.1. Let W
µµµ,VSi

d2 , i = 1, 2, denote the random vectors Wµµµ,V
d2 = (V⊗2)−1/2W

µµµ,V
d2

evaluated at VSi = ΣΣΣ/Si(ΣΣΣ), i = 1, 2. Clearly, Uµµµ,VS1 = Uµµµ,VS2 and VS1 = (S2(ΣΣΣ)/S1(ΣΣΣ))VS2 ,

which implies that

W
µµµ,VS1

d2 = (V⊗2
S1

)−1/2 vec
(
Uµµµ,VS1 (Uµµµ,VS1 )′ − 1

d
Id

)
=

S1(ΣΣΣ)

S2(ΣΣΣ)
(V⊗2

S1
)−1/2 vec

(
Uµµµ,VS2 (Uµµµ,VS2 )′ − 1

d
Id

)
=
S1(ΣΣΣ)

S2(ΣΣΣ)
W

µµµ,VS2

d2 .

As in the proof of Theorem 3.1, the result then follows from the identity ShDµµµ(V, P ) = DH(0d2 , P
Wµµµ,V

d2
)

(Lemma 4.1) and from the affine-invariance of halfspace depth. 2

We now establish Theorem 4.1 by proving Lemmas 4.2, 4.3, and 4.4.

Proof of Lemma 4.2. In this proof, we write U and WD+1 for Uµµµ,Id and W
µµµ,Id
D+1, respectively.

Actually, instead of the original WD+1, we will work with

W̃D+1 = (U2
1 − 1/2, U2

2 − 1/2, U1U2)′,
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for d = 2, and with

W̃D+1 = (U2
1 − 1/3, U2

2 − 1/3, U2
3 − 1/3, U1U2, U2U3, U1U3)′,

for d = 3. The new vectors W̃D+1 are obtained from the original ones by permuting their columns,

hence lead to the same halfspace depth of 0D+1.

Both for d = 2 and d = 3, there exist a (D + 1) × d matrix A, and a (D + 1) × (D + 1)

invertible matrix B such that BW̃D+1 = (AU)� (AU)− 1
d1D+1, where � denotes the Hadamard

(i.e., entrywise) vector product ; for d = 2, the A and B matrices are given by

A =

 1 0

0 1

1/
√

2 1/
√

2

 and B = I3,

while, for d = 3, one has

A =


I3

−1/
√

3 −1/
√

3 1/
√

3

−1/
√

3 1/
√

3 −1/
√

3

1/
√

3 −1/
√

3 −1/
√

3

 and B =


I3 03×3

1/3 −1/3 −1/3

03×3 −1/3 1/3 −1/3

−1/3 −1/3 1/3

 .

Now, for any w = (w1, . . . , wD+1)′ ∈ DD+1,

P [w′BW̃D+1 ≥ 0] = P
[
w′
(
(AU)� (AU)− (1/d)1D+1

)
≥ 0
]

= P
[D+1∑
i=1

wi((AU)i)
2 ≥ (1/d)w′1D+1

]
= P

[
U′(A′diag(w)A)U ≥ 1/d

]
,

where diag(w) denotes the (D + 1)× (D + 1) diagonal matrix with diagonal entries w1, . . . , wD+1.

Factorizing A′diag(w)A into Odiag(λλλw)O′, where O is orthogonal and λλλw = (λw1 , . . . , λ
w
d )′, then

yields (recall that U is spherically symmetric)

P [w′BW̃D+1 ≥ 0] = P
[
U′diag(λλλw)U ≥ 1/d

]
= P

[ d∑
i=1

λwi U
2
i ≥ 1/d

]
.

It follows that

ShDµµµ(Id, P ) = inf
w∈RD+1

P [w′W̃D+1 ≥ 0] = inf
w∈RD+1

P [w′BW̃D+1 ≥ 0]

= inf
w∈DD+1

P [w′BW̃D+1 ≥ 0] = inf
w∈DD+1

P
[ d∑
i=1

λwi U
2
i ≥ 1/d

]
. (8)

A direct computation shows that A′diag(w)A has trace one, implying that λλλw ∈ Dd, which in turn
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shows that

ShDµµµ(Id, P ) = inf
w∈DD+1

P
[ d∑
i=1

λwi U
2
i ≥ 1/d

]
≥ inf

λλλ∈Dd
P
[ d∑
i=1

λiU
2
i ≥ 1/d

]
. (9)

Since, for any λλλ ∈ Dd, taking w = (λλλ′,0′D+1−d)
′ yields λλλw = λλλ, the reverse inequality in (9) also

holds. This establishes the result. 2

In order to prove Lemma 4.3, we will need the following lemma about depth.

Lemma 1. Let X be a random vector supported on an hyperplane Π1 ⊂ Rd. Fix ϑϑϑ ∈ Π1 and

let T : Rd → Rd denote the projection on the hyperplane Π2, Π2 6⊥ Π1. Then DH(ϑϑϑ, PX) =

DH(T (ϑϑϑ), PT (X)).

Proof of Lemma 1. Let πππ`, ` = 1, 2, be unit d-vectors orthogonal to Π`, ` = 1, 2, respectively. For

any u ∈ Sd−1, let Hϑϑϑ,u =
{
x|u′(x− ϑϑϑ) ≥ 0

}
. Then

DH(ϑϑϑ, PX) = inf
u∈Sd−1

PX[Hϑϑϑ,u] = inf
u∈Sd−1\{πππ1}

PX[Hϑϑϑ,u],

since PX[Hϑϑϑ,πππ1
] = 1. Would there exist a bijective (hence invertible) function v : Sd−1 \ {πππ1} →

Sd−1 \ {πππ2} : u 7→ v(u), such that PX[Hϑϑϑ,u] = PT (X)[HT (ϑϑϑ),v(u)] for all u ∈ Sd−1 \ {πππ1}, the result

would be proved, since we would then have

inf
u∈Sd−1\{πππ1}

PX[Hϑϑϑ,u] = inf
v∈Sd−1\{πππ2}

PT (X)[HT (ϑϑϑ),v] = DH(T (ϑϑϑ), PT (X)).

Let us then show that such a mapping v does exist. For any u ∈ Sd−1 \ {πππ1}, (∂Hϑϑϑ,u)∩Π1 is of

dimension d− 2, hence of codimension 1 in Π1. Given that T is linear and bijective (due to the fact

that Π1 and Π2 are not orthogonal), it holds that T ((∂Hϑϑϑ,u)∩Π1) remains of codimension 1 in Π2,

so that there exists v = v(u) ∈ Sd−1 (different from πππ2) such that T (Hϑϑϑ,u ∩Π1) = HT (ϑϑϑ),v(u) ∩Π2.

Therefore, PX[Hϑϑϑ,u] = PX[Hϑϑϑ,u∩Π1] = PT (X)[T (Hϑϑϑ,u∩Π1)] = PT (X)[HT (ϑϑϑ),v∩Π2] = PT (X)[HT (ϑϑϑ),v].

Note also that the mapping u 7→ v(u) is bijective, since T is invertible. The result therefore follows.

2

Proof of Lemma 4.3. Applying Lemma 1 with Π1 ≡ x1 + · · · + xd = 1 and Π2 ≡ xd = 0, we

obtain

inf
λλλ∈Dd

P

[ d∑
i=1

λiU
2
i ≥ 1/d

]
= inf

λλλ∈Sd−1
P

[ d∑
i=1

λi(U
2
i − 1/d) ≥ 0

]
= DH

(
(1/d)1d, P(U2

1 ,··· ,U2
d )′
)

= DH

(
(1/d)(1d−1, 0)′, P(U2

1 ,··· ,U2
d−1,0)′), (10)

where 1` denotes the `-dimensional vector of ones. For d = 2, (10) is equal to

inf
(u1,u2)′∈S1

P
[
u1(U2

1 − 1/2) ≥ 0
]

= min{P [U2
1 ≤ 1/2], P [U2

1 ≥ 1/2]} = P [U2
1 ≥ 1/2].
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We may therefore focus on the case d = 3 in the sequel. For d = 3, (10) rewrites

DH

(
(1/3)(12, 0)′, P(U2

1 ,U
2
2 ,0)′) = inf

λλλ∈S2
P

[
λ1(U2

1 − 1/3) + λ2(U2
2 − 1/3) ≥ 0

]
(11)

= inf
λλλ∈D2

P

[
λ1U

2
1 + λ2U

2
2 ≥ 1/3

]
.

Note indeed that a minimizer of (11) cannot be of the form λλλ = (λ1, λ2, λ3)′ ∈ S2 with λ1 + λ2 = 0.

Clearly, (U2
1 , U

2
2 , U

2
3 )′ is equal in distribution to (X2

1 , X
2
2 , X

2
3 )′/(X2

1 + X2
2 + X2

3 ), where X =

(X1, X2, X3)′ is standard multinormal. Assuming, without loss of generality, that λ1 ≥ λ2 (so that

λ1 ≥ 1/2), the probability in (11) can then be rewritten

P
[
λ1U

2
1 + λ2U

2
2 ≥ 1/3

]
= P

[
(λ1 − 1/3)X2

1 + (λ2 − 1/3)X2
2 ≥ (1/3)X2

3

]
. (12)

Now, two cases arise, namely (i) λ2 < 1/3 or (ii) λ2 ≥ 1/3.

(i) For λ2 < 1/3, rewrite (12) as

P
[
(λ1 − 1/3)X2

1 ≥ (1/3− λ2)X2
2 + (1/3)X2

3

]
= P [Yc(λ1,λ2) ≥ 1],

where Yc(λ1,λ2) = X2
1/
(
c1(λ1, λ2)X2

2 + c2(λ1, λ2)X2
3

)
, with c1(λ1, λ2) = (1/3 − λ2)/(λ1 − 1/3) and

c2(λ1, λ2) = (1/3)/(λ1 − 1/3).

Since the cj(λλλ)’s are non-negative and sum up to one, we have (1/2, 1/2) =: c̄ ≺ c(λλλ) (where “≺”

denotes majorization; see Marshall et al. (2011)), so that, in view of (1.4) in Eaton & Olshen (1972),

Yc̄ is stochastically smaller than Yc(λλλ); see also the main result in Hájek (1962) or (1) in Lawton

(1968). In particular, P [Yc̄ ≥ 1] ≤ P [Yc(λλλ) ≥ 1] for any λλλ, which implies that P [Yc(λ1,λ2) ≥ 1] is

minimized at c(λλλ) = c̄, which corresponds to λλλ = (λ1, λ2) = (1, 0).

(ii) For λ2 ≥ 1/3, the quantity to be minimized is P
[
Zc(λ1,λ2) ≤ 1

]
, where we denote Zc(λ1,λ2) =

X2
3/
(
c1(λ1, λ2)X2

1 +c2(λ1, λ2)X2
2

)
, with c1(λ1, λ2) = 3λ1−1 and c2(λ1, λ2) = 3λ2−1. Following the

same argument as above, a majorization of c(λλλ) via c(λλλ) ≺ (1, 0) ensures that Zc(λλλ) is stochastically

smaller than Z(1,0), hence P [Zc(λλλ) ≤ 1] ≤ P [Z(1,0) ≤ 1] which therefore gives a minimizer (for the

case λ2 ≥ 1/3) at λλλ = (λ1, λ2) = (2/3, 1/3).

Comparing both minimal values yields the result since P [U2
1 >

1
3 ] = 1− 1√

3
and P [2

3U
2
1 + 1

3U
2
2 >

1
3 ] = 1/2. 2

Proof of Lemma 4.4. Fix V ∈ VSd . There exists a d × d orthogonal matrix O and a diagonal

matrix ΛΛΛ = diag(λ1, . . . , λd), with λ1 ≥ λ2 ≥ . . . ≥ λd, such that V = OΛΛΛO′. Affine-invariance

entails that

ShDµµµ(V, PX) = ShDµµµ(Λ̄ΛΛ, PO′X) = ShDµµµ(Λ̄ΛΛ, PX).

where Λ̄ΛΛ := ΛΛΛ/S(ΛΛΛ) is a d × d diagonal matrix with diagonal entries λ̄1 ≥ λ̄2 ≥ . . . ≥ λ̄d, say. We
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then have

ShDµµµ(V, PX) = ShDµµµ(Λ̄ΛΛ, PX) ≤ P
[
(UΛ̄ΛΛ

1 )2 ≥ 1/d
]

= P
[
X2

1 ≥ (1/d)

d∑
i=1

λ̄1

λ̄i
X2
i

]
≤ P

[
X2

1 ≥ (1/d)

d∑
i=1

X2
i

]
= P

[
U2

1 ≥ 1/d
]
, (13)

where U = (U1, . . . , Ud)
′ is uniformly distributed on the unit sphere Sd−1. Equality in (13) occurs

if and only if λ̄i = λ̄1 for i = 2, . . . , d, that is, if and only if Λ̄ΛΛ = Id, i.e., if and only if ΛΛΛ = Id, hence

if and only if V = Id. 2

Proof of Lemma 6.1. For the trace-based scale functional considered, it follows from the definition

of MV
Strace

that, for d = 2,

MV
Strace

=

(
0 1 1 0
−1 0 0 1

)
.

Denoting WD;a =
(

2X1X2,
X2

2
(2−a)2 −

X2
1
a2 −

(
1

2−a −
1
a

))′
and using ϕg(z) = z and σS = 1, one then

readily obtains ShDµµµ0,σ0,φ,Strace(Va, PX) = DH(02, PWD;a
).

We start by computing the depth of V1 = I2 , on the basis of WD;1. The spherical symmetry

of the random vector Z = (Z1, Z2)′ = (X1/
√
a0, X2/

√
2− a0)′ yields

ShDµµµ0,σ0,φ,Strace(V1, PX) = DH(02, PWD;1
) = inf

w∈R2
P [w′WD;1 ≥ 0]

= inf
w∈R2

P [Z′QwZ ≥ 0] = inf
w∈R2

P [λw+Z
2
1 + λw−Z

2
2 ≥ 0], (14)

where λw± = (1− a0)w2 ±
√

(2a0 − a2
0)w2

1 + w2
2 are the eigenvalues of

Qw :=

(
−a0w2

√
a0(2− a0)w1√

a0(2− a0)w1 (2− a0)w2

)
.

The last infimum in (14) can be taken over all w vectors that are of the form w = w(θ) =

(cos(θ)/
√

2a0 − a2
0, sin(θ))′, for θ ∈ [0, 2π]. For these w(θ), one has λw± = (1 − a0) sin(θ) ± 1, and

the infimum is obtained for sin θ = −1, which corresponds to w = (0,−1)′. The depth of V1 = I2

is therefore given by

ShDµµµ0,σ0,φ,Strace(V1, PX) = P
[
a0Z

2
1 + (a0 − 2)Z2

2 ≥ 0
]

=: ca0(1). (15)

Turning to the depth of Va0 , we of course have that

ShDµµµ0,σ0,φ,Strace(Va0 , PX) ≤ P [(WD;a0)2 ≤ 0] = P
[
a0Z

2
2 + (a0 − 2)Z2

1 ≤ (2a0 − 2)
]

=: ca0(a0),

where Z = (Z1, Z2)′ is as above. By conditioning on Z2
2 , one can show that

ca0(1) = 1−
∫ ∞

0
F
((2− a0)z

a0

)
f(z) dz
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and

ca0(a0) =

∫ ∞
2−2a0
2−a0

F
((2a0 − 2) + (2− a0)z

a0

)
f(z) dz,

where F ( · ) and f( · ) are the cdf and pdf of the χ2
1 distribution, respectively. For a0 = .75, this

yields that

ShDµµµ0,σ0,φ,Strace(Va0 , PX) ≤ ca0(a0) ≈ .3732

is indeed strictly smaller than

ShDµµµ0,σ0,φ,Strace(V1, PX) = ca0(1) ≈ .4196.
2
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Dümbgen, L. & Tyler, D. E. (2005). On the breakdown properties of some multivariate M-

functionals. Scand. J. Statist., 32 (2), 247–264.

Eaton, M. L. & Olshen, R. A. (1972). Random quotients and the Behrens-Fisher problem. The

Annals of Mathematical Statistics, 43 , 1852–1860.

Frahm, G. (2009). Asymptotic distributions of robust shape matrices and scales. J. Multivariate

Anal., 100 , 1329–1337.
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