
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

From organizational to system requirements

the debit card purchase case study

Backes, Constant

Award date:
1997

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/8ecbde03-6a43-4373-841e-c8fe265f9543

From Organizational to
System Requirements :

The Debit Card Purchase Case Study

Constant Backes

Promoter : Prof. Eric Dubois

Thesis submitted in conformity with the requirements for the
degree of 'Licencié et Maître en Informatique'

1996-1997

RUE GRANDGAGNAGE, 21 B - 5000 NAMUR (BELGIUM)

Acknowledgements

First of all I want to thank Eric Dubois and his team for their help and their precious
advices. Especially I want to express my gratitude to Phillipe Du Bois for never loosing his
patience. Thanks also to Michael Petit for helping me with some Albert issues.

I am also grateful to John Mylopoulos and Eric Yu from the University of Toronto for
providing me an ideal environment for doing my research.

Thanks to my parents for their financial support. My gratitude also goes to my sister
Claudine and her husband Armand for their help and assistance during these long years.

I have also to mention Chuck, Carole and Penny Cookson who have helped me to
forget the cold Toronto's nights.

Finally, I owe my deepest gratitude to my wife Denise for her moral support.

ii

Abstract

The improvement of existing systems, organizations or processes becomes more and more difficult. This is
mainly due to the fact that their implementation is often based on specifications describing what bas to be
achieved by the different entities. The reasons why a given agent is or bas to act in a predefined way are
however not represented.

The aim ofthis work is to present a possible way to overcome this problem. The described solution consists in
combining two specification frameworks: the Albert II language and the i* framework.

The Albert II language, developed at the Facultés Universitaires Notre Dame de la Paix in Namur, allows us to
represent what has to be achieved by the agents of a given system. The i* framework developed at the University
of Toronto, at its tum, allows us to express why a certain agent is acting in the way it does.

The aim of this work also consists in describing the existing links between both frameworks, how the two
frameworks may be used together and what are the analyst's advantages ofusing both frameworks.

Abstrait

L'amélioration de systèmes, d'organisations ou de processus existants devient de plus en plus difficile. Ceci est
surtout dû au fait que leur implementation est le plus souvent basée sur des spécifications decrivant ce qui doit
être fait par les différents entités. Les raisons pourquoi un agent agit ou doit agir selon une manière bien précise
doivent être connues et prises en compte afin d'améliorer un système donné.

Le but de ce travail consiste à décrire une approche qui permet de résoudre ce problème. La solution consiste à
utiliser conjointement deux langages de spécification: le language Albert II et le language i*.

Le language Albert II a été développé aux Facultés Universitaires Notre Dame de la Paix à Namur et nous
permet de décrire ce qui doit être réalisé par les agents d'un système donné. Le language i* , développé à
l'Université de Toronto, permet d'exprimer les raisons pour lesquelles les differents agents agissent ou doivent
agir d'une manière précise ..

Le but de ce travail consiste également à décrire les liens existant entre ces deux langages, comment les deux
langages peuvent être utilisés conjointement et quels sont les bénéfices qu'un analyste peut en tirer.

iii

IV

CONTENTS

INTRODUCTION l

CHAPTER 1. INTRODUCTION TO THE ALBERT II LANGUAGE l

SECTION 1. THE FOUR MESSAGES PROTOCOL EXAMPLE .. : 1

SECTION 2. THE ALBERT'S DECLARATION COMPONENT 9

The declaration of a society 9
The declaration of an agent 10

SECTION 3. THE ALBERT'S CONSTRAINTS COMPONENT 15

THE BASIC CONSTRAINTS ····· 15

al. Derived Components Constraints 15
a2. Initial Valuation Constraints 16

THE DECLARATIVE CONSTRAINTS 16

b 1. State Behaviour Constraints 16
b2. Action Composition Constraints 16
b3. Action Duration Constraints 18

THE OPERA TIONAL CONSTRAINTS ·: 19

cl. Precondition Constraints 19
c2. Effects of Actions Constraints 19
c3. Triggering Constraints 20

THE COOPERATION CONSTRAINTS 21

SECTION 4. THE ALBERT SPECIFICATION OF THE FOUR MESSAGES PROTOCOL EXAMPLE .. 22

SECTION4. l . DECLARATION OF THE DATA TYPES 22

SECTION 4 .2. THE TERMINAL AGENT ·· · ··· ···· ············ · ··· ·· ··· ·· ····· ·· ···· ······· · ··········· ······· 24
Declarations 24
The graphical dec/aration of the Terminal agent 26
The Constraints Component of the Terminal agent 26

SECTION 4 .2. THE HOST AGENT 29

Declarations 29
The graphical dec/aration of the Host agent 32
The Constraints Component of the Host agent 32

SECTION 4.3 . THE BANK AGENT 36

Declarations : 36
The graphical dec/aration of the Bank agent 3 7
The Constraints Component of the Bank agent 37

CHAPTER 2 : INTRODUCTION TO THE I* FRAMEWORK 41

SECTION 1. DESCRIPTION OF THE CREDIT CARD PURCHASE EXAMPLE41

SECTION 1. THE STRATEGIC DEPENDENCY MODEL 42

1. GOAL DEPENDENCY 44
2 . T ASK DEPENDENCY 44

3. SOFTGOAL DEPENDENCY 45

4 . RESOURCE DEPENDENCY 45

3. ANAL YSIS OF THE STRA TEGIC D EPENDENCY MO DEL46

Opportunities and vulnerabilities of an actor 46
Agent, Role and Position 47
Degree of dependency 49
Enforcement, lnsurance and Assurance 49

V

THE STRATEGIC RATIONALE MODEL 50

1. THE T ASK DECOMPOSITION LINK 51

a. Task into Task decomposition 51
b. Task into Goal Decomposition 54
c. Task into Resource Decomposition 56
d. Task into Softgoal decomposition 56

2. MEANS-ENDS LINKS 57

3. ANAL YSIS OF THE STRA TEGIC RA TIONALE MODEL 59

Routine 59
Rules 60
Belief 61
Abi/ity, Workabi/ity, Viability and Believability 62

CHAPTER 3 : ANAL YSIS OF THE EXISTING LINKS BETWEEN THE I* FRAMEWORK AND

THE ALBERT II LANGUAGE 65

SECTION 1. INTRODUCTION 65

SECTION 1. THE I* MODELS OF THE FOUR MESSAGES PROTOCOL EXAMPLE 68

THE STRA TEGIC DEPENDENCY MODEL 69

a. The Terminal actor 69
b. The Host actor 70
c. The Bank actor 70

THE STRATEGIC RATIONALE MODEL 70

a. The Terminal actor 70
b. The Host actor 72
c. The Bank actor 74

SECTION 2. THE T ASK DEPENDENCY AND DECOMPOSITION 75

SECTION 3. THE GOAL DEPENDENCY AND ITS DECOMPOSITION 78

SECTION 4. THE RESOURCE DEPENDENCY 81

SECTION 5 . THE SOFTGOAL DEPENDENCY AND THEIR CONTRIBUTION 85

SECTION 6 . THE LIBERTY FACTOR OF AN ACTOR RESPECTIVELY AN AGENT 86

CONCLUSION 89

REFERENCES 91

APPENDIX: THE TWO MESSAGES PROTOCOL EXAMPLE Al

SECTION 1. DESCRIPTION OF THE TWO MESSAGES PROTOCOL EXAMPLE Al

SECTION 2. THE I* MODELS OF THE TWO MESSAGES PROTOCOL EXAMPLE AS

1. THE STRA TEGIC DEPENDENCY MODEL OF THE 2MP EXAMPLE A5

2. THE STRA TEGIC RA TIONALE MODEL OF THE 2MP EXAMPLE A5

a. the Terminal actor A5
b. the Host actor A5
c. the Bank actor A5

SECTION 3. THE ALBERT SPECIFICATION OF THE TWO MESSAGES PROTOCOL

EXAMPLE AIO

A. THETERMINAL AIO
The Dec/aration of the Terminal agentA 10
The Constraints of the Terminal agentA J J
The Dec/aration associated with the TERMINAL agent A 13

B. THE HOST AGENT A 13

The Dec/aration of the Host agent A 13
The Constraints of the Host agent A J 5

VI

The Dec/aration associated with the HOST agent A20
C. THE BANK AGENT·············· ··· ····················· ····· ····· ····· ······ ·· ·· ·· ·· ·· ··· ······················· A20

The Declaration of the BankAgent A20
The Constraints of the Bank agent A2 J
The Dec/aration associated with the BANK agent A24

vii

TABLE OF FIGURES

FIGURE 1.1. EXCHANGE OF MESSAGES DURING A REGULAR TRANSACTION PROCESS BASED
ON THE FOUR MESSAGES PROTOCOL 7

FIGURE 1.2. BASIC INFORMATION EXCHANGED BETWEEN THE AGENTS IN A FOUR MESSAGES
PROTOCOL TRANSACTION PROCESS 8

FIGURE 1.3. STRUCTURE OF THE EXCHANGED MESSAGES IN THE FOUR MESSAGES PROTOCOL
EXAMPLE 9

FIGURE 1.4. SOCIETY OF THE FOUR MESSAGES PROTOCOL 10

FIGURE 1.5. GRAPHICAL REPRESENTATION OF THE DIFFERENT ST A TE COMPONENTS 12

FIGURE 1.6. DECLARATION OF THE HOST AGENT 14

FIGURE 2.1. GRAPHICAL REPRESENTATION OF THE DIFFERENT DEPENDENCY TYPES 42

FIGURE 2.2. STRA TEGIC DEPENDENCY OF THE CREDIT CARD PURCHASE EXAMPLE 43

FIGURE 2.3. THE CREDIT CARD COMPANY ACTOR DECOMPOSITION .. .48

FIGURE 2.4. NOT A TI ONS USED FOR THE DIFFERENT DEGREES OF DEPENDENCY 50

FIGURE 2.5. GRAPHICAL REPRESENTATION OF A TASK DECOMPOSITION LINK 52

FIGURE 2.6. THE STRA TEGIC RA TIONALE MODEL OF THE CREDIT CARD PURCHASE EXAMPLE53

FIGURE 2.7. EXAMPLE OF A TASK INTO TASK DECOMPOSITION 54

FIGURE 2.8. TASK INTO GOAL DECOMPOSITION 55

FIGURE 2.9. T ASK INTO RESOURCE DECOMPOSITION 56

FIGURE 2.10. TASK INTO SOFTGOAL DECOMPOSITION 57

FIGURE 2.11. MEANS-ENDS LINKS 58

FIGURE 2.12. ADDING AN ADDITIONAL SOFTGOAL TO THE VERIFICATION TASK
DECOMPOSITION 60

FIGURE 2.13. ROUTINE DERIVED FROM THE ' VERIFICATION PROCESS' 61

FIGURE 3.1. USE OF BOTH FRAMEWORKS 67

FIGURE 3.2. THE STRA TEGIC DEPENDENCY MODEL OF THE FOUR MESSAGES PROTOCOL
EXAMPLE 69

FIGURE 3.3. THE STRA TEGIC RA TIONALE MODEL OF THE TERMINAL ACTOR 71

FIGURE 3.4. THE STRA TEGIC RA TIONALE MODEL OF THE HOST ACTOR 73

FIGURE 3.5. THE STRA TEGIC RA TI ON ALE MODEL OF THE BANK ACTOR 74

viii

FIGURE 3.6. THE ALBERT FRAGMENTS ASSOCIA TED TO THE TERMINAL' S REQUEST TREATMENT
SUBTASK 78

FIGURE 3.7. THE ALBERT STATEMENTS CORRESPONDING TO THE HOST'S MEANS-ENDS LINK 81

FIGURE 5.lA. THE REGULAR EXCHANGED MESSAGES IN OUR 2 MESSAGES PROTOCOL
EXAMPLE A3

FIGURE 5.lB. THE OCCURRENCE OF A TIMOUT IN OUR 2 MESSAGES PROTOCOL EXAMPLE A3

FIGURE 5.2A. THE CONTENTS OF THE DIFFERENT EXCHANGED MESSAGES IN THE 2 MESSAGES
PROTOCOL EXAMPLE A4

FIGURE 5.2B. THE OCCURRENCE OF A TIMEOUT IN THE 2 MESSAGES PROTOCOL EXAMPLE A4

FIGURE 5.3. THE STRA TEGIC DEPENDENCY MODEL OF THE 2MP EXAMPLE AS

FIGURE 5.4. THE STRA TEGIC RA TIONALE MO DEL OF THE TERMINAL ACTOR A6

FIGURE 5.5. THE STRA TEGIC RA TI ON ALE MO DEL OF THE HOST ACTOR A 7

FIGURE 5.6. THE STRA TEGIC RA TIONALE MO DEL OF THE BANK ACTOR AS

FIGURE 5.7. THE GRAPHICAL DECLARATION OF THE TERMINAL AGENT Al3

FIGURE 5.8. THE GRAPHICAL DECLARATION OF THE HOST AGENT A20

FIGURE 5.9. THE GRAPHICAL DECLARATION OF THE BANK AGENT A24

ix

Introduction

Whereas the development of a complex system still represents an interesting and
challenging task for an analyst, the improvement of a system may become a difficult
and even impossible task. This is mainly due to the fact that the docwnents the analyst
has at its disposai, in order to improve an existing system, often only describe what
has to be realized by the different entities of the system.

In order to improve a given system, a deeper understanding of the system and the
context in which the system is embedded is however required. This understanding is
obtained by analyzing the reasons why a given agent is or has to act in a predefined
way. Most specification languages do however not allow the representation and
description ofthose Whys.

In this paper, we describe a way that allows the analyst to specify both the Whats and
the Whys of a given system. The proposed way consists in combining two different
existing specification languages : the Albert II language and the i * framework.

The Albert II language is a formal requirements specification language which can be
used in order to describe what has to be realized by the different entities of a given
system. The Albert II language has been developped at the Facultés Notre Dame de la
Paix in Namur, (Belgiwn) and suits particularly for representing real-time distributed
and cooperative systems.

"Basically, Albert is based on a variant of real-time temporal logic, a mathematical
language particularly suited for describing histories (i.e. sequences of states) and
expressing performances constraints " [1] .

2

The second framework we use is the i* framework developed at the University of
Toronto, Ontario (Canada). The i* framework allows us to represent the WHYs of a
given organization or system by taking an agent-orientated approach.

The i* framework allows us to represent a given organization or system by describing
the existing agents as well as the dependencies which exist between them. lt also
allows to represent the behaviour of the different agents i.e. the behavior the different
agents have to adopt in order to produce, achieve or execute the source of the
dependency, called dependum at the i * level.

The particularity of the i * framework consists in the fact that the different agents are
perceived by the i* framework as an intentional and strategical entity. This means that
the i * framework recognizes and allows to represent the actors' desires, wants and
goals. An agent is considered as a strategical entity as it is concerned about its
opportunities and vulnerabilities in the relationship with the other agents. The notion
of softgoa/ is used to describe a non-sharply defined goal of an actor.

Another characteristic of the i * framework consists in allowing the representation of
different alternative ways which allow a particular agent to bring about the same
dependum. As different alternatives may have positive or negative implications for a
given actor, a special notation is used in order to represent those implications.

By describing the Whats and Whys of a given organization or system, the analyst' s
task is simplified in the case where a particular organization or system has to be
improved. The use of both frameworks however also allows to facilitate the
specification of a new system due to the natural link that exists between both
frameworks .

The aim of this paper consists in describing the existing link between both
frameworks, the way both frameworks may be used together as well as the advantages
of the proposed approach.

3 Introduction to the Albert language

Chapter 1. Introduction to the Albert Il language

The Albert language is composed of two different components : the Declaration component
and the Constraints component.

The Declaration component allows us, by using graphical notations, to describe the
vocabulary of an application or system. The vocabulary consists in the declaration of the
different involved agents, their internat states, the actions that can be executed by them as well
as their cooperation.

The Constraints component, represented by a set of format logical statements, expresses the
constraints that the different agents have to respect during their life-cycle. Whereas the
declaration part only informs us that a certain agent may for instance execute a certain action,
possesses a certain number of internat states and cooperates with other agents, the constraints
component allows us to specify the circumstances under which an action has to be executed as
well as the effects that the execution of that particular action has on the different agent's state
components. It also allows us to restrict the evolution of the different internat states of an
agent by using logical and temporal expressions. Finally, the circumstances under which
agents can or have to cooperate can also be specified.

In this chapter, we illustrate the use of the Albert II language through the handling of a case
study which has previously been introduced by Philippe Du Bois. The description of our
example called the Four Messages Protocol example is given in Section 1. Section 2 and
Section 3 describe the Declaration respectively the Constraints component. Each Albert notion
is illustrated by one or several examples based on the Four Messages Protocol example. The
final obtained Albert specification is described in Section 4.

As the aim of this chapter consists only in giving a short introduction to the Albert II
language, we inform the reader that a detailed description of the Albert language can be found
in [2] and [3] which have been the foundation of this chapter.

Section 1. The Four Messages Protocol Example

Description of the example :

A customer applies to a shopkeeper in order to buy a certain number of items. We assume that
the customer pays these items by using its debit card and that a C-ZAM system is installed in
the shop.

The aim of the C-ZAM system is to allow customers to pay for goods or services by using
their debit card. From the customer's viewpoint, a certain number of information are entered
into the terminal located in the shop. These information are then forwarded by the terminal to
the customer's bank. Depending on the received information, the bank decides whether the
transaction request can be accepted or not. lts decision is then sent back to the terminal where
it is displayed.

4

If the customer's transaction request has been accepted by the bank, the price of the
transaction is displayed and has to be validated by the customer. The validation of the
displayed price consists in pushing the terminal's OK button in the case where the correct
transaction amount has been displayed. If an incorrect price has been displayed, the customer
has to cancel the transaction process by pushing the CANCEL button. In the case where the
customer' s transaction request has been refused, the reason of the refusai is displayed.

Let us now analyse the structure of the C-ZAM system in more details :

" The system is composed of a certain number of C-ZAM terminais and of a C-ZAM Host. A
C-ZAM terminal is located in the shop and is linked by a telephone line to the C-ZAM Host
(the line may be leased or switched). A terminal is composed of a card reader, a keyboard and
a single line LCD screen. The terminal has an intemal permanent memory and is able to keep
data even if the power is tumed off. "

The communication between the different agents are submitted to a certain number of rules.
These rules are prescribed by a protocol called the Four Messages Protocol (4MP).

The Four Messages Protocol (4MP)

In a Four Messages Protocol, four messages have to be exchanged between the different
involved agents before the transaction process is completed. The different exchanged
messages are summarized by Figure 1.1 ..

The transaction process begins by sending an Authorization Request (ARQ) message to the
C-ZAM Host. The ARQ message contains three information: (i) the customer's debit card
number obtained by scanning the customer's debit card through the terminal's card reader, (ii)
the transaction amount and (iii) the customer's secret PIN (Personal Identification Number)
code.

Once the ARQ message has been sent to the C-ZAM Host, the terminal waits a certain period
of time in order to get a response from the C-ZAM Host. If the Host' s answer does not arrive
within that period, a Timeout occurs and the transaction process is aborted.

Having received the Authoriz.ation Request (ARQ) message from the terminal, the C-ZAM
Host verifies if the customer has entered a valid PIN code. Is this the case, the C-ZAM host
saves the transaction information into its local database, determinates the customer' s bank to
which the message has to be forwarded, replaces the customer' s de bit card number by the
customer's account number and forwards the modified transaction request (ARQ) to the bank.
The Host then waits a certain period oftime in order to get the bank's response. If the bank's
response does not arrive within that period, a Timeout occurs at the Host' s level and the
transaction process is aborted by the Host. A message is then sent to the terminal informing it
that the transaction process could not have been completed. If the bank's response arrives at
the Host's location after a Timeout occurred, the response is ignored.

If the customer has entered an in val id PIN code, the transaction request is refused by the Host
and the request is not forwarded to the customer's bank.

5 Introduction to the Albert language

On the basis of the received transaction information (i.e. the customer's account number and
the transaction amount), the bank decides whether the transaction request can be accepted or
not.

A transaction request is accepted if the customer has enough money on its account in order to
cover the transaction. In our example, we say that a transaction is covered if the customer' s
balance is superior or equal to zero once the transaction amount has been retrieved from the
customer's account. In practice however, a customer can spend more than it possesses. In such
cases, the bank has to evaluate the customer' s financial situation by taking into account
several parameters. As these parameters vary from one bank to another and in order to keep
our example simple, we assume that a transaction request is only accepted by the bank if the
customer's balance is not negative once the transaction amount has been retrieved.

The transaction information as well as the bank's decision are recorded and the bank's
response is sent to the C-ZAM Host. The message containing the bank's response is called
Authorization / Reject (AUTREJ) message as the customer's transaction request is either
AUThorized or REJected by the bank. After the reception of the bank's response, the Host
updates its transaction record based on the received information and transfers the received
message to the terminal from where the transaction request has been emitted.

If a message arrives at the terminal informing the customer that the transaction request has
been refused, the reason of the transaction's refusal is displayed on the terminal's LCD screen.
In the case where a Timeout occurred i.e. in the case where no answer is received from the
C-ZAM Host during a certain period of time, the transaction is aborted and a message is
displayed on the screen informing the customer that the transaction could not have been
executed. Otherwise, the transaction price is displayed and has to be validated by the
customer.

The customer' s confirmation is then sent to the Host in a message called Confirmation
(CONF) message. The Host updates its corresponding transaction record and forwards the
received confirmation message to the customer's bank. In the case where the customer has
validated the displayed amount, the bank is updating the customer' s account balance by
retrieving the validated amount from the customer's account.

In the Four Messages Protocol, we make the distinction between two different categories of
exchanged messages. The criteria which has to be applied in order to find out to which
category a certain message belongs depends on the consequences that the loss of the message
implies.

The first category regroups the messages we call non critical messages and includes the
Transaction Request (ARQ) as well as the bank's Authorization / Reject (AUTREJ) message.
If one of those messages does not arrive at destination (a message is for instance jammed or
lost due to a broken line), a Timeout occurs at the Host' s or at the terminal' s level and the
transaction is aborted. If, for instance, the terminal does not get an answer from the Host after
a certain while, a message will be displayed on the terminal informing the customer that the
transaction process can not be executed and that the process is aborted. The customer may be
disappointed but can be assured that no money is removed from its bank account.

6

The second category of messages are regarded as critical messages as the loss of these
messages will have a considerable consequence for one or more of the implicated agents. The
confirmation (CONF) message is an example of such a critical message.

Let us assume that a customer has validated the transaction price. From the customer' s
viewpoint, the transaction process is finished. The customer can assume that the transaction
request is or will be transferred to its bank and that the right amount of money is or will be
retrieved from its account. As a result, the customer is the regular owner of the bought items.

If a problem now occurs that prevents the confirmation message to be delivered to the
customer' s bank, the transaction amount is never retrieved from the customer' s account. In
such a situation, the customer may be satisfied as he or she gets the items for free. The
shopkeeper may however be less satisfied as he\she may face the risk of getting never
refunded from the customer' s bank.

As the loss of the exchanged messages is in a direct relation with the quality of the used lines
and equipment and as the lines and equipment used by the C-ZAM Host and the Bank are
usually of a good quality, the chances that a message will be lost during the transfer between
the C-ZAM Host and the Bank are very low. The only problems that may occur during the
transfer of the exchanged messages are located between the terminal and the C-ZAM Host as
shopkeepers are usually not disposed to install expensive equipment in their shops or lease
expensive communication lines.

To prevent the loss of a Confirmation message, we assume that the reception of the
Confirmation message has to be confirmed by the Host. We further assume that this
acknowledgement of receipt is done by sending a message, called Acknowledge (ACK)
message, from the Host to the terminal. As the Acknowledge message also may face the risk
of getting lost, we finally assume that the terminal stores the Confirmation message into its
internai permanent memory (the internai permanent memory prevents the Confirmation
message to be lost) and that the terminal has to send the stored message to the Host in regular
intervals as long as it does not receive an Acknowledge message in return.

Analysis of the structure of the exchanged messages

Figure 1.1. describes that four different types of messages have to be exchanged between the
different involved agents before the transaction process is terminated. The aim of this sub
section consists in defining the structure i.e. the content of each sent message.

Figure 1.2. describes the basic exchanged information contained in the different exchanged
messages. The terminal sends the customer's PIN code, the transaction amount and the
customer' s de bit card number to the C-ZAM Host. After having verified the validity of the
customer's PIN code and replaced the customer's debit card number with the
customer's account number (in the case where the customer has entered a valid code), the
C-ZAM host transfers the information to the customer' s bank.

The customer's PIN code, the transaction amount and the debit card respectively the account
number represent the basic transaction information of the transaction process and are used by
the C-ZAM Host respectively the Bank agent to decide whether the transaction request can be

7 Introduction to the Albert language

forwarded respectively can be accepted or not. Additional information have however to be
included in the different messages in order to solve problems that may occur if only these
basic transaction information are transferred.

The C-ZAM host, for instance, may receive hundreds of requests from different terminais

Q
ARQ Blnksys

m
ARQ

li:fJ AUTREJ

AUTREJ
CONF

CONF
D ACK

TERMINAL C-ZAM HOST BANK

Legend

ARQ Authorisation Request MOSSBQ8
AUTREJ Authoris■tion / Reject Message
CONF Confirmation Mess8Q8
ACK Acknowiedge Message

Figure 1.1. Exchange of messages during a regular Transaction Process based on the
Four Messages Protocol

during a day. With the information described by Figure 1.2., it is impossible for the C-ZAM
Host to find out the source of the received messages. The source of the messages is however
needed by the Host in order to forward the bank's response.

In order to solve this kind of problem, we assign a unique identification code to the terminal
and bank agent. We further assume that the terminal and bank agent has to include its
identification code in each message it forwards to the Host. If the C-ZAM Host receives for
instance an ARQ message from the terminal, it canuse the terminal's identification code (and
compare it to a list of known identification codes) in order to find out the identity and location
of the terminal.

A second problem that may occur is that an agent receiving a response from another agent
does not know to which transaction request the response belongs. In order to prevent this kind
of problems, we prescribe that the basic information (the customer's PIN code, the transaction
amount and the customer's debit card respectively account number) have to be included in
each sent message. By including these basic information into each message, the size of the
messages however increases and the messages become theoretically more vulnerable to
transmission errors.

A solution to this problem may consist in prescribing the storage of the received or sent
information into a local database respectively into a permanent memory and in forwarding a
sort of reference key to those recorded information.

If the Host, for instance, receives a transaction request from a terminal, it stores the received
information into its local database and forwards them (after having replaced the customer' s
debit card number by its account number) as well as a reference key (pointing to the received
and stored transaction information) to the customer's bank. The Bank sends its response back

8

to the Host as well as the Host' s reference key. The reference key is then used by the Host in
order to find out to which transaction request the response belongs. The transaction
information are then updated, and a new message is created and is forwarded to the terminal.

By using this mechanism, the bank's response message, for instance, contains only three

ABQ ►

I OCNber xxx-~1
::01m1

~
~

◄ AIIIBEI
Transaction Authorized

or

D Transaction Refused

TERMINAL COt:IIE ►
Transaction Valldated

or
Transaction Canœlled

◄ AC~
Transaction

Acknowledged

Banl<sys

m ◄
C-ZAM HOST

ABQ ►

I AccNber XXX-XXX 1
A:mounf 1.000.

AIIIBE 1 ~
Transaction Authorized

or BANK
Transaction Refused

COblE ►
Transaction Validated

or
Transaction Canœlled

Legend

ARQ Authorisation Request Message
AUTREJ Authorisation or Reject Message
CONF Confinnation Message
ACK Acknowledge Message

Figure 1.2. Basic Information exchanged between the agents in a Four Messages Protocol
Transaction Process

information: the bank's response (whether the transaction request has been accepted or not),
the C-ZAM Host's and the bank's reference key. The bank's reference key has to be returned
by the Host with the Confirmation message to the bank and is used by the bank to find out to
which transaction the received confirmation message belongs.

A similar mechanism can also be used at the terminal's level. We previously assurned that the
terminal has to store the Confirmation message into its permanent memory in order to avoid
the loss of the message once the power is turned off. As several Confirmation messages can
be contained in the terminal' s memory, the Host has to specify clearly which Confirmation
message it has received from the terminal. Once again, the Host could do this by sending all
the received information back to the terminal. The nurnber of exchanged information can
however be reduced by integrating into the confirmation message a reference key pointing to
the in the terminal's memory stored information. By doing this, the Host has only to sent back
the reference key which is used by the terminal to access and remove the sent Confirmation
message from its interna! permanent memory.

The last problem that may occur is due to the fact that a terminal can emit different transaction
requests which may contain the same basic transaction information. In order to make the
distinction between those transactions, we assume that a terminal can make only one and one
only transaction request at a given moment and we prescribe that two information have to be

9 Introduction to the Albert language

added to the basic transaction information : the date and time when the transaction is
requested.

The final structure of the different exchanged messages is given by Figure 1.3 ..

ABQ ►
DCNber xxx-xxxx ABQ ►

8anklys
AccN>er XXX-XX.XX

Q
Date xxlxx/xx

m ~
Time xx:xx:xx

◄ AIIIBEI
AIIIBEI ◄)00(=

D C-ZAM HOST BANK
TERMINAL

COblE
► COblE ► 1 Con6rmatkxl ~1

1 Contirmatkxl ~1 ~~: =
AC"

Bank_ral

◄
ITerm_ref ~ 1

Legend

ARQ Authoriaation Request Message
AUTREJ Authorisation / Rejact Message
CONF Contnnation Message
ACK Acknowladga Massage

Figure 1.3. Structure of the exchanged messages in the Four Messages Protocol example

Having given the description of the Four Messages Protocol example and described the
structure of each exchanged message, we now analyse the first of the two Albert components :
the Declaration component.

Section 2. The Albert's Declaration Component

The aim of the Declaration component is to define "the structure of the composite system in
terms of agents as well as the structure of each individual agent [4] "

The declaration of a society

The structure of the composite system, called society, specifies by using graphical notations,
the different agents that are included in the system as well as the number of their occurrences
(single agent or member of a class).

In our Four Messages Protocol example, different agents can be identified. First, there is the
customer which applies to the shopkeeper in order to purchase a certain number of goods or
services. The shopkeeper and the customer provide the transactions information to the
terminal which forwards them to the C-ZAM Host agent. In the case where the customer has
entered a valid PIN code, the request is then forwarded to the customer' s bank.

10

In our Four Messages Protocol example, we are mostly interested in the exchange of
messages between the different components of the C-ZAM system. Three agents may be
identified in the C-ZAM system: the Terminal, the C-ZAM Host and the Bank agent. The so
obtained society may then be incorporated as a sub-component into a more complex society
including this time the customer and the shopkeeper agents.

Figure 1.4. Society of the Four Messages Protocol

Graphically, a society is represented by an ellipse containing smaller sub-ellipse components
representing the different agents. Among the sub-ellipses, we make the distinction between
ellipses with shadows depicting a class of agents and those without shadows depicting single
agents.

Figure 1.4. specifies that our Four Messages Protocol society is composed of several
terminais, one C-ZAM Host and several bank agents.

Let us remark that in the last Albert version, the analyst may specify a goal at the societies'
lev el which has to be respected or achieved by the different members of the society. This goal
is expressed by a formula and may refer to an agent's action or state component. How the
condition or state is achieved is then described in the declaration of the different agents.

A society represents the different types and occurrences of the involved agents but does not
give us information about their interactions, the actions that may be executed by them during
their life-cycle or their internai states. Those kind of information may however be obtained by
analyzing the declaration of the different agents.

The declaration of an agent

The declaration of an agent is obtained by specifying the internai state components and
actions of the agent as well as the agent's cooperation with the other agents.

11 Introduction to the Albert language

a. Declaration of the internai state components and actions of an agent

The agent's internai state components as well as the actions that may be executed by the
agent are represented inside a parallelogram. Actions are represented by a box containing the
action's name and a circle. The circle is used in order to mak:e the distinction between an
action and a state component. Parameters can be assigned to actions which affect their
execution. The action' s parameter are typed and are represented outside the box. They are
linked to the box by a line.

In addition, the Albert II language includes the mechanism of decomposing an action into
sub-actions. It also introduces the notion of "actions that may not occur outside the context
of a composed action". T o mak:e the distinction between these and the other action, the
actions that may not occur outside the context of a composed action are graphically
represented by a bold box.

Each state component is of a certain type. The type of each state component is specified in a
box located at the bottom of the state component box. In Albert, we mak:e the distinction
between 4 different types :

- the predefined e/ementary data types : the predefined elementary data types are the
BOOLEAN, the INTEGER, the RATIONAL, the CHAR, the STRING and the
DURATION type. Each data type is accompanied by its usual operations. For a
complete list of operations, please consult Appendix B of [2].

- the elementary types defined by the analyst : elementary types are defined by the
analyst and are based on the characteristics of the system that has to be described or
implemented. The only operators that can be used for this kind of type are the equal
(=) and the not equal (-:t-) operators.

- the constructed data types : More complex data types can be created by the analyst
by using a set of predefined type constructors. The type constructors that can be used
in an Albert II specification are the cartesian product (CP), the set (SET), the bag
(BAG), the table (TABLE), the union (UNION) and the enumeration (ENUM)
constructors.

- the types corresponding to agent identifiers : in Albert II, a type is automatically
associated to each class of agents. Inside the agent' s declaration, the self constant is
used to refer to the proper identifier of the described agent.

In our Four Messages Protocol example, different elementary types have been defined by the
analyst. The CARD type is one of those types and is assigned to the customer's debit card
number. The Albert specification informs us that the customer's debit card number is of type
CARD. Details about the composition of the customer's debit card number like for instance its
length is however not given. These details will be specified further on at the implementation
level.

An example for the constructed data type is given by the Transactions table component
(obtained by applying the table constructor). The Transaction table is used by the Host and

12

the bank agent in order to store the received transaction information during the different
transaction steps.
Figure 1.4. describes the fact that the society of the Four Messages Protocol example is
composed of three different agents. Automatically, three types corresponding to the agent
identifiers are created. These types are the TERMINAL, the HOST and the BANK type.

Different graphical notations are associated to the state components depending on their types.
See Figure 1.5. for more details.

Single State
Component

1 TYPE 1

Set

..

······· ;·.~E~·.·.•··· INDEX H---~
Sequence Table

Figure 1.5. Graphical Representation of the different state components

In order to make the distinction between time varying and constant state components, a bold
line is used to represent a constant component and a plain line to represent time varying state
components.

Figure 1.6. describes the graphical declaration of the Host agent. By analyzing the content of
the parallelogram, we can find out that the Host agent possesses a state component called
TimeOutPeriod. It is an individual constant component which represents the interval oftime
during which the Host agent waits in order to get the response from the customer' s bank. If
the bank's response does not arrive during this period oftime, a Timeout occurs and the
transaction process is aborted.

Four different table components are defined for the Host agent. The Transactions table for
instance contains the different transaction records that are recorded during the agent' s
life-cycle. The transaction information are of type TRANS_ H and are indexed by REF_ H. The
key value (of type REF _H) is a unique value and allows to access information corresponding
to a certain transaction. lt is also this value that is forwarded as reference key to the other
agents.

The Pin table component contains the different debit card numbers emitted by the Host as well
as the corresponding PIN codes.

The Albert language also allows us to define state components whose values are derived from
other state components. The special link between these components is represented by a wavy
line.

,
13 Introduction to the Albert language

In our Four Messages Protoeol example, the Host receives a transaction request from a
terminal. Before the Host forwards the received authorization request message to the
customer' s bank, it has to find out if the customer has entered a valid PIN code. If we assume
that the received debit card number is de and that the received PIN code is p, the Host has to
execute two checks :

First, it has to verify if the received debit card number is a valid number i.e. if the received
number de corresponds to a key value of the PIN table. Second, it has to find out if the entered
PIN code is a valid code i.e. if the received PIN code p matches the Pin code obtained by
accessing the PIN table with the key value de.
If we assume that the result of each check is stored in a state component called ValidCard
respectively PinMatehes (both state components are of BOO LEAN type), the final decision
whether to forward the customer's request or not, represented by the ForwardRequest state
component, depends on the value of the two state components ValidCard and PinMatehes.

The wavy line represents the special link between the three state components. How the value
of the derived ForwardRequest component is calculated is not specified by the graphical
description. The derivation rule can however be found in the textual Albert part.

b. The agent's relations with the other agents

The parallelogram's border and the area outside of it describe the potential interaction that an
agent may have with the rest of its society. Usually; an agent is not an isolated subject but
evolves in a certain environment. In order to achieve difficult tasks, the cooperation between
agents is often requested. In Albert, a cooperation consists in communicating information
between agents. The communicated information refer either to the value of a certain internai
state or to the fact that a certain action has been executed.

A dotted arrow leaving the parallelogram, indicates that an extemal agent is inf ormed about
the value of a certain state component (in the case where the source of the arrow is a state
component) or the execution of a certain action (in the case where the source of the arrow is
an action). The extemal agent being informed is specified by the label at the end of the arrow.

An arrow with a state or an action at its end, describes the fact that the value of an extemal
state component or the execution of an extemal action is communicated to the agent described
by the parallelogram. The source of these information is again specified by a label, located
this time at the beginning of the arrow.

The Host, for instance, communicates the execution of four actions to the terminal
respectively to the bank agent. The four actions can be easily identified by analyzing the
dotted arrows leaving the parallelogram depicted by Figure 1.6 ..

The execution of three extemal actions is communicated to the Host agent. The agents
executing the different actions are the terminal (for the SendMsgConf and the SendMsgReq
actions) respectively the Bank agent (for the EnvoiMsg action).

Exporting or importing information however does not signify that the destination agent
perceives the state components or actions during its entire life-cycle. The Albert Constraints

14

part, composed of a set of logical and temporal expressions, allows us to define conditions
under which the importation and exportation of actions or state components are perceived or
hidden to the destination agent. How such constraints are expressed is analysed, among others,
in the following section.

1

1

i
1

!

Host

B

FO<Ward

c:::,

False_
Request

c:::,

Q TERMINAL

Update
Trans

c:::,

AU REJ B K

Create
Ad<

c:::,

Bank

•

For.vardKo

c:::,

REQUEST B K

Create
Rep

c:::,

Tenninal

•

SendMsg
Response

Search_Ac
Nber

c:::,

DE fT CARO

Terminal

•
Bank

t

SendMsg Sand
Ack Request

c:::, c:::,

A KTER INAL REQUEST K

Request
Treatment

c:::,

Valid_
Request

c:::,

Q TERMINAL

Creste
Reject

c:::,

:- F~~ -:
, Request ,

'~--~' :1 BOOLEAN 1:

---~ ---
' Valid : : Pin

1

Card 1 , Matches 1

1 1 '~~~~'
:1 BOOLEAN 1: :1 BOOLEAN ~

R P R F_H

Pin

.__c_A_R_o__,1- '-1 _ P_I_N__,

A K CON REP TER INAL R _H

Dabit Update Autrej Transactions
Conf Treatment

1
CARO 1- 1 DEBIT REF_H 1- 1 TRANS_H 1

c:::, c:::,

CO F AU REJ BANK

Create
Response

St0t'8'nvalid fil Request Treatment
Trans

c:::, ~ c:::,

RE -H REQUEST 0 IT ARQ TERMINAL R H - CO _ _H

1
1 OoChed< 1 1

--- ---
StoreValid Banklds Chad<

1 TimeOut 1

1 Period
1 1 Trans Card 1 1 1 w 1 c:::,

DEBIT 1- 1 BANK 1
TIME 1 c:::, 1

A~_H

1 _____

1 C 0
1
1
1
1

Figure 1.6. Declaration of the Host agent

SendMsg
Conf Tenninal

c:::,

SendMsg
Req Terminal

c:::,

Q TERMINAL

SendMsg
Bank

c:::,

BA K AU REJ

15 Introduction to the Albert language

Section 3. The Albert's Constraints Component

The Albert textual part allows us to express constraints that the basic components (defined in
the graphical agent's declaration) have to respect and satisfy. The different constraints are
expressed by using logical and temporal expressions. They are grouped under different
headings; each heading representing a special characteristic of the described system.

The headings, at their turn, are split in four different sections : the Basic Constraints section ,
the Declarative Constraints section, the Operational Constraints section and at the Cooperation
Constraints section.

The Basic Constraints section allows us to specify the initial valuation of the different state
components i.e. the value of the different state components at the beginning of the agent' s
life-cycle as well as the derivation rules for the derived components.

The constraints of the Declarative section allow us to restrict the possible evolution of an
agent by specifying the possible values that the agent's state component can take as well as
the possible chains of actions. The duration of the different action can also be specified.

The Operational Constraints section describes additional characteristics of an action like for
instance its triggering condition, its precondition or the effect that the action has on the agents'
state components.

Let us remark that the Declarative Constraints and the Operational Constraints sections
replace the Local Constraints section contained in the previous Albert version.

Finally, the Cooperation Constraints section, as its name indicates, allows us to define
constraints related to the cooperation of the different agents.

We analyse now the different sections one by one. Each explained notion will be illustrated by
one or several examples taken from the Four Messages Protocol (4MP) example introduced in
Section 1 of this chapter.

The Basic Constraints

a 1 . Derived Components Constraints

A Derived Components Constraint specifies how the value of a derived component is
obtained, based on the value of other state components. The wavy line in Figure 1.6. describes
the existence of a special relation between three state components : the ForwardRequest, the
ValidCard and PinMatches state components.

As we previously mentioned, the decision whether a received request can be forwarded or not
to the customer's bank depends on the validity of the received debit card number and PIN
code. If we assume that the validity of the received debit card number is expressed by the
boolean state component ValidCard (ValidCard is true if the received debit card number is
valid, false otherwise) and that the validity of the received PIN code is represented by the
PinMatches state component (PinMatches is true if the received pin code is valid, false

16

otherwise), the Host's decision, represented by the boolean ForwardRequest state component,
can be obtained by applying the logical AND operator to the two boolean state components
ValidCard and PinMatches. We assume that the value of the ValidCard and the PinMatches
state components are obtained by executing the CheckCard respectively the CheckPin action.

The derivation rule for the derived component ForwardRequest is written as :

ForwardRequest ~ ValidCard /\ PinMatches 1

The derivation rule stipulates that the boolean state component ForwardRequest is true ifboth
boolean state components ValidCard and PinMatches are true. Is the value of one of the two
state components equal to false, the value of the derived component will be false too.

a2. Initial Valuation Constraints

By using the initial valuation constraints, we can assign a certain value to an internai state
component at the beginning of an agent's life-cycle i.e. before any action is executed by the
corresponding agent.

As mentioned earlier, the Host agent has to store the transaction information into a table in
order to reduce the amount of transferred information and in order to trace back the different
operations made by its customers. We assume that the transaction table is empty at the
beginning of the Host's life-cycle. The corresponding Albert II constraint is given by:

Transactions[i] := undef

The Declarative Constraints

The Declarative Constraints allow us to describe a particular agent from a historical viewpoint
i.e. by specifying its evolution in time. The Declarative Constraints contains three different
headings : (i) the State Behaviour, (ii) the Action Composition and (iii) the Action Duration
subsection.

b1. State Behaviour Constraints

The State Behaviour Constraints allow us to specify constraints that restrict the evolution of
the state components of a particular agent. The constraints are expressed by using First Order
Logic as well as Temporal Logic.

Real-time temporal logic operators that can be used are given by Table 1.1 .. The special

symbols cf> and <pare used to represent real-time logic expressions. The r symbol represents
any real-time quantity and is of rational type. Time units that may be used are seconds ("),
minutes('), hours (h), days (d) and so on.

b2. Action Composition Constraints

In Albert, an agent possesses state components and may execute a certain number of actions.

17 Introduction to the Albert language

For each ofthose actions, the analyst may specify the action's parameters. Among those
characteristics, the analyst may for instance describe the moment or condition when a
particular action has to be executed.

Futr r q, is true at time c iff q, is true at time c + r.

Pastr cp is true at time c iff cp is true at time c - r.
AlwF cp is true at time c iff cp is true for all t strictly greater than c.
AlwP q, is true at time c iff cp is true for all t strictly less than c.

Alw cp is true at time c iff cp is true for all t.

SomF cp is true at time c iff cp is true for at least one t strictly greater than c.
SomP cp is true at time c iff cp is true for at least one t strictly less than c.
Som cp is true at time c iff cp is true for at least one t.

Lastsrct> is true at time c iff cp is true for all t strictly between c and c + r.

Lastedr<I> is true at time c iff cp is true for all t strictly between c - r and c.

WithinF r cp is true at time c iff cp is true for at least one t strictly between c and c + r.
WithinP r cp is true at time c iff cp is true for at least one t strictly between c - r and c.

cp Until <p is true at time c iff there is a r such that <p is true at c + r and cp is true for all t
strictly between c and c + r.

cp Until! <p is true at time c iff there is a r such that <pis true at c +rand cp is true for all t
strictly between c and c + r, and cp is false at c + r.

et> Sin ce <p is true at time c iff there is a r such that <pis true at c - r and cp is true for all t
strictly between c - rand c.

et> Since! <p is true at time c iff there is a r such that <p is true at c - r and cp is true for all t
strictly between c - rand c, and cp is false at c - r.

N extTimer cp is true at time c iff there is a r such that cp is true at c + r and is false for all t
strictly between c and c + r.

LastTimer cp is true at time c iff there is a r such that cp is true at c - r and is false for all t
strictly between c - rand c.

Table 1.1. Real-time temporal logic operators

In Albert, two different mechanism can be used in order to describe that particular moment or
condition. First, an action' s execution may be based on the value of a given state component.

Second, the execution of a particular action can be linked to the execution of another action. In
order to specify the execution of those kind of actions, the Action Composition constraints
may be used.

By using an Action Composition constraint, we can for instance specify that the Host has to
execute the DoCheck action once the terminal has executed the SendMsgReq action. In our
example, the Host executes the DoCheck action after the terminal has finished its action as the
used operator is the sequential (<>) operator.

18

RequestTreatment H Terminal.SendMsgReq(arq, term_id) < >
DoCheck(Card.arq, Pin.arq) <>
(Valid_ Request(arq, term_id) EB False_ Request(arq, term_id))

Once the DoCheck action finished, the Host executes either the Valid _ Request or the
False_Request action as the OR operator (EB) has been used. The Host, however, can not
decide by its own which action it executes. This means that the analyst has to specify clearly
the condition under which each action is executed. In our exarnple, a constraint of the
Precondition Constraints section is used to specify when which action has to be executed.

Other operators that can be used in an Albert II specification, are:

- the multiple occurrence operator {}" where n represents the number of occurrences

- the exclusive-or operator 'EB'

- the in any order operator ' 1 1 '
- temporal operators like :

- action a 1 ➔ action b meaning that action a and action b start simultaneously

- action a ::;I action b meaning that both actions a and b end simultaneously
- action a le::>I action b meaning that both actions a and b start and end

simultaneously
- the sequential operator '< n >' where n represents the number of time units

between the execution of the two actions.

In order to make the distinction between actions which may and those which may not occur
outside the context of a composed action, the Action Composition Constraints section
enumerates the actions which may not occur outside the context of a composed action. The
enumeration is contained between the {} symbol.

b3. Action Duration Constraints

In certain cases, it is of a certain interest to specify the time needed to execute a certain action.
Usual used time units are seconds("), minutes('), hours (h), days (d) and so on. The stated
time period can be lower, equal or higher than a given time period.

In our Four Messages Protocol exarnple, we specify that the execution of the ForwardOk
action may not last more than the time limit represented by the TimeOutPeriod state
component. The execution of the ForwardKo action, at its turn, must last more than
TimeOutPeriod time units.

1 ForwardOk(request, bank_id) 1 ~ TimeOutPeriod

1 ForwardKo(request, bank_id) 1 > TimeOutPeriod

19 Introduction to the Albert language

The Operational Constraints

In the Albert framework, an agent is represented by its internai state components, actions and
cooperations. As we have seen until now, an Albert specification allow us to specify
constraints that have to be satisfied or respected by a state component or by an action. The
existing links between an action and a state component are described by using a constraint of
the Operational Constraints Section.

The Operational Constraints Section regroups (i) the Precondition Constraints, (ii) the Effect
of Action and (iii) the Triggering Constraints subsection.

c1 . Precondition Constraints

As it name indicates, the Precondition Constraints allow us to express a condition that has to
be satisfied before a particular action can be executed.
In our Four Messages Protocol example, the Host for instance has to store the received
transaction information into its local database in order to reduce the number of exchanged
information. The storage of the information also allows it to trace back the operations
executed by its customers.

We assume that the storage of a valid transaction request at the Host's level is obtained by
executing the Store ValidTrans action. As previously stored information have to kept save and
do not have to be deleted or overwritten, the Host niay only store the received information in
its database at a location which does not contain information about previous stored
transactions. As the different cells of the transaction table used to store the information have
been initialized to undef(by a constraint of the Initial Valuation Constraints section), the
corresponding Precondition Constraint is given by :

StoreValidTrans(arq, term_id, host_ref) : Transactions[host_ref] = undef

c2. Effects of Actions Constraints

Executing an internai or external action usually modifies the content of one or several internai
states of an agent.

As the Albert language allows us to specify actions that may last a certain number of time
units, the action's effect can theoretically occur at the beginning or and the end of its
execution. In order to specify the moment where the effect takes place, the bracket symbol [}
is used.

By convention, if the bracket [J symbol is followed by an expression, the by the expression
described effect takes place at the end of the action's execution. In the case where the
expression is followed by the bracket [J symbol, the effect occurs at the beginning of the
action's execution.

By combining both representations, we can express the fact that several effects occur, one (or
several) at the beginning and one (or several) at the end of the action's execution.

20

In our Four Messages Protocol example, the Host has to check the validity of the received
PIN code and debit card number after the reception of the terminal' s transaction request
(ARQ) message. We assume that these checks are done by executing two actions: the
CheckCard and the CheckPin action.

The first action, CheckCard, analyses the validity of the received debit card number Card.arq.
The result ofthis check is stored in the ValidCard state component. The boolean state
component will be true if the Pin table component contains a record indexed by the received
debit card number Card.arq.

CheckCard(Card.arq): []
ValidCard := In(Card.arq, Pin)

The second action CheckPin analyses the validity of the received PIN code by comparing the
received PIN code with the PIN code associated to the received debit card number in the Pin
table. The result of the check is stored in the PinMatches state component.

CheckPin(Card.arq, Pin.arq): []
PinMatches := (Pin.arq = Pin[Card.arq])

In both cases, we assume that the effect of action takes place at the end of the corresponding
action's execution.

c3. Triggering Constraints

In certain cases, it is of a certain interest to create a link between the value of a given state
component and the execution of a particular action. In order to create such a link, a constraint
from the Triggering Constraints section can be used. The notation used for a triggering
constraint is given by :

<exp> / t -+ < action a >

representing the fact that the action <action a> is triggered in the case where the expression
exp has been realized (satisfied) fort time units.

Until now, the different introduced Albert notions have been illustrated by examples based on
the Host agent. As no Triggering constraints are used in the Host's declaration, we illustrate
the Triggering notion by an example based on the Terminal agent.

In order to guarantee that the Confirmation messages successfully arrive at the Host' s
location, we previously assumed that the messages have to be stored in the terminal ' s internai
memory and that they have to be sent by t!ïe terminal in regular intervals as long as no
Acknowledge message is received from the Host in retum. As the reception of a valid
Acknowledge message implies the removal of the corresponding Confirmation message from

21 Introduction to the Albert language

the terminal' s memory, we can say that the Confirmation messages are sent as long as they are
kept in the terminal's memory. The corresponding Triggering constraint is given by:

Memory[i] -:;:. undef / SendConfFrequency -+ SendConfirm(i)

representing the fact that the SendConfirm action is executed in the case where the terminal' s
memory Memory contains the transaction information more than SendConfFrequency time
units. The SendConfFrequency constant is used in order to represent the fact that the messages
are sent in prefixed intervals.

The Cooperation Constraints

The different sections of the Cooperation Constraints allow the analyst to specify the existing
links between an actor and its environment. Whereas the graphical Albert part only describes
the importation and exportation of state components and action related information, the
textual part i.e. more precisely the cooperation constraints allows us to define conditions under
which those information are perceived or hidden to external agents.

Three operators (K, F, XK) are used to specify conditions under which information are
perceived ('K'), hidden ('F') or exclusively perceived ('XK') by an agent. Exclusively
perceived means that an agent only perceives an information or is only informing another
agent if the stated condition is true. Is the stated condition not realized, the information are not
perceived or communicated.

The ' simple' perception operator ('K') is not so strictly defined. An agent may perceive an
information or may communicate information to another agent even if the stated condition is
not realized.

Four different headings are used in the Cooperation Constraints section to distinguish between
cases where an agent is communicating its internai states to other agents (state information), is
informing other agents about the execution of an internai action (action information), is
perceiving states from external agents (state perception) or perceives the fact that an external
action has been executed (action perception) by an external agent.

The Host, for instance, always informs the bank agent when it is executing the SendRequest
action.

XK(SendRequest(request, bank_id).Bank / true)

In return, the bank agent always communicates its execution of the SendMsg action to the
Host. An exclusive perception is used in order to specify the fact that the Host is only
informed when the bank is executing the specified action. Is this not the case, the bank has not
the right to communicate the execution of the action to the Host.

XK(Bank.SendMsg(autrej, bank_id) / true)

22

The graphical description of the different agents of our Four Messages Protocol example as
well as the constraints that have to be respected by the different agents are described in the
following section.

Section 4. The Albert specification of the Four Messages
Protocol example

Section 4. 1. Declaration of the Data Types

BASIC TYPES

In our Four Messages Protoco/ example, different Basic Types are defined. Table 1.2
describes in the first colurnn the name associated to each basic type and gives in the second
colurnn a short description of the type.

Name of the Basic Type Description
CARD represents the structure of the customer' s de bit card number
PIN describes the structure of the PIN code associated to the customer' s

debit card
DATE corresponds to the format of the transaction date
TIME represents the format of the transaction time
DEBIT describes the structure of the customer's bank account number
REF represents the structure of the Terminal's reference key
REF H represents the structure of the Host' s reference key
REF BK represents the structure of the Bank' s reference key

Table 1. 2. Message Protocol Basic Types

CONSTRUCTED TYPES

The ARQ type describes the different sub-components of the transaction request (ARQ)
message.

The state component associated to the ARQ type con tains the date (Date) and time (Time)
when the transaction is requested, the customer's debit card number (Card), the transaction
amount (Price) and the customer's secret PIN code (Pin).

ARQ = CP (Date : DATE ; Time : TIME ; Card : CARD ; Price : INTEGER ; Pin : PIN)

The Authorization Reject (AUTRE]) message sent from the Host to the terminal is of type
REP. It contains the date (Date) and time (Time) when the transaction has been requested, the
customer's debit card number (Card), the transaction amount (Price), the response to the
transaction request (Response), the reason (Reason) why the request has been refused (in the
case where it has been refused, otherwise the field is empty) and the Host's reference key
(Host_ret).

23 Introduction to the Albert language

REP = CP (Date : DATE ; Time : TIME ; Card : CARD ; Price : INTEGER ;
Response : STRING; Reason: STRING; Host_ref: REF _H)

The CONF type, associated to the Confirmation message, sent from the terminal to the Host,
contains the Host' s reference key (Host_ref), the customer' s confirmation (Response) and the
terminal' s key reference (Ref)

CONF= CP (Host_ref: REF _H; Response: STRING; Ref: INTEGER)

The structure of the Acknowledge message, sent from the Host to the terminal, is specified by
the ACK type. An Acknowledge message contains the terminal' s reference number (Ref) as
well as the Host's reference key (Host_ref).

ACK = CP (Ref : INTEGER ; Host_ref : REF_ H)

The TRANS_ T type is used to define the structure of the information stored in the terminal' s
memory. The information contain the customer's confirmation response (Confirm) and the
Host' s reference key (Host_ref)

TRANS_T = CP (Confirm: BOOLEAN; Host_ref: REF_H)

The structure of the Authorization request (ARQ) message, sent from the Host to the
customer's bank, is specified by the REQUEST type. The sent message contains the
customer's bank account number (Debit_nber), the transaction amount (Price), the Host's
reference key (Host_ref) and the date (Date) and time (Time) when the transaction has been
requested.

REQUEST = CP (Debit nber : DEBIT, Price : PRICE ; Host ref: REF H, Date : DATE, - - -
Time: TIME)

The information stored in the Host's transaction table are of type TRANS_H. They contain the
date (Date) and time (Time) when the transaction has been requested, the customer' s de bit
card number (Card), the transaction amount (Price), the transaction's status (Status), the
reason why the transaction has been refused (in the case where the requested transaction has
been refused), the identification code of the customer's bank (Bank_id), the bank's reference
key (Bank_ref) and the terminal's identification code (Term_id).

TRANS_H = CP (Date: DATE; Time: TIME; Card: CARD; Price: INTEGER;
Status : ST A TUS_ H; Reason : REASON _ H, Bank _id : BANK ;
Bank_ref: REF _BK; Term_id: TERMINAL)

The structure of the Confirmation message, sent from the Host to the customer' s bank, is
defined by the CONF_ H type. The message contains the customer' s confirmation of the
transaction amount (Conf) and the bank's reference key (Bank_ref).

CONF _H = CP (Conf: STRING, Bank_ref: REF _BK)

24

The TRANS_BK type depicts the information that are stored at the bank's level. The stored
information are the transaction date (Date) and time (Time), the customer' s account number
(Debit_number), the transaction amount (Price), the status of the transaction (Response), the
reason of the transaction's status (Reason) and the Host's reference number (Host_ref).

TRANS_BK = CP (Date: DATE; Time: TIME; Debit_number: DEBIT;
Price: INTEGER; Response: STATUS_BK; Reason: REASON_BK,
Host_ref: REF_ H)

The information contained in the Authorization / Reject (AUTREJ) message, sent from the
bank to the Host, contain the bank's response (Response), the reason of the transaction's
refusal (in the case where the transaction has been refused by the bank, blank otherwise), the
Host's reference key (Host_ref) and the bank's reference key (Bank_ref).

AUTREJ =: CP (Response : STRING; Reason: STRING; Host_ref: REF _H,
Bank _ref: REF_ BK)

The value that can be associated to the transaction status at the Host' s level are enumerated by
the STATUS_H type.

STATUS_H = ENUM ['Transaction Requested', 'Transaction Accepted', 'Transaction
Refused', 'TimeOut', 'Transaction Validated', 'Transaction
Cancelled']

The value that can be assigned to the transaction status at the bank's level are enumerated by
the STATUS_BK type.

STATUS_BK = ENUM['Transaction Accepted', 'Transaction Refused', 'Transaction
Validated', 'Transaction Cancelled']

The transaction reject reason at the Host level is specified by the REASON _ H type.

REASON_H = ENUM[", 'lnvalid Pin or Card Number']

Possible values of the transaction reject reason are given by the REASON_BK type.

REASON_BK = ENUM['', 'Amount not Covered']

Section 4.2. The Terminal Agent

Declarations

STATE COMPONENTS

TimeOutPeriod instance-of TIME
The TimeOutPeriod state component specifies the number of time units the terminal waits,
after the sending of the authorization request message, in order to get a response from the Host
agent. If no answer arrives during that time period, a Timeout occurs at the terminal' s level
and the current transaction process is aborted.

25 Introduction to the Albert language

SendConfFrequency instance-of TIME
The SendConfFrequency state component defines the number oftime units needed by the
terminal to execute the SendConfirm action. As the terminal sends the customer' s transaction
confirmation to the Host as long as it gets no response in retum, the SendConfFrequency state
component describes the frequency of the sent messages.

A vailable instance-of BOO LEAN
The A vailable state component is true if the terminal is available (i.e. can be used for a new
transaction process), false otherwise.

Memory table-of TRANS_ T indexed-by INTEGER
The Memory state component represents the terminal' s internai permanent memory.

ACTIONS

ScanCard(card) : the action of scanning the customer' s debit card card by using the
terminal' s card reader

ScanCard(CARD)
EnterTime(date, time) : the action of entering the transaction date date and time time

EnterTime(DATE, TIME)
EnterPrice(price) : the action of entering the transaction amount price by using the terminal' s
keyboard

EnterPrice(INTEGER)
EnterPin(pin): the action of entering the customer' s PIN Code pin by using the terminal's
keyboard

EnterPin(PIN)
SendMsgReq(arq, term_id): the action of sending the transaction request arq and the
terminal' s identification code term id to the Host

SendMsgReq(ARQ, TERMINAL)➔HOST
DisplayMsg(msg): the action of displaying a message msg on the terminal's LCD display

DisplayMsg(STRING)
ResetTerminal : the action of freeing the terminal

ResetT erminal
Confirm(confirm) : the action of entering the customer's validation conjirm

Confirm(BOOLEAN)
StoreConf(confirm, host_ref, i) : the action of storing, at position i, the customer' s
confirmation confirmand the Host's reference key host_refin the terminal's memory

StoreConf(BOOLEAN, REF _H, INTEGER)
CreateConf(i, conf) : the action of creating a confirmation message confbased on the
information stored at position i in the terminal' s memory

CreateConf(INTEGER, CONF)
SendMsgConf(conf, term _id) : the action of sending the created confirmation message conf
and the terminal ' s identification code term id to the Host

SendMsgConf(CONF, TERMINAL)➔HOST
Remove(i) : the action of removing a stored ARQ- message, located at position i,
from the terminal' s memory

Remove(INTEGER)

26

The graphical declaration of the Terminal agent

Host Host

Terminal • • 1 1

SendMsg EnterPin

l ':" I
EnterPrice SendMsg

Req Conf

c:::> c:::> c:::> c:::>

TER INAL A Q PIN cAko INTJGER TER~INAL cdNF

I

1
1
1

1

EnterTime

c::'.)

Send
Request

c:::>

A Q

Forward
_Ok

c:::>

A Q ~ Q

Ack
Treatment

c:::,

Create
Conf

c:::>

INT GER cdNF

Memory

Response
Treatment

c:::>

A Q R P

Refused

c:::>

R P

1 TimeOut 1

: Period 1

1 INTEGER 1--.1 TRANS_T 1 ~ TIME i
1 __ ___ _

1

' Available Reset Ack Free 1 1

Response

c:::>

,-s~-,
1 1

1 Frequency ,

1 TIME i
1 ------

Reception Terminal 1 Terminal

c:::, c:::, j BOOLEAN 1
1 c:::>
- - ----

1 TI:• 1

Send
Confirm

c:::>

INT GER

Display
Msg

c:::,

StoreConf

c:::>

BOO EAN REF _H INTEGER

L ____________________ ___,

The Constraints Component of the Terminal agent

BASIC CONSTRAINTS

DERIVED COMPONENTS

INITIAL VALUATION
Memory[i] := undef
A vailable := true

SendMsg
Response Host

c:::>

TERMINAL R P

SendMsg
Ack Host

c:::,

A K TER INAL

At the beginning of the terminal' s life-cycle, its internat permanent memory is empty and the
terminal is available for a new transaction process.

DECLARATIVE CONSTRAINTS

STATE BEHAVIOUR

27 Introduction to the Albert language

In-Dom (Memory, conf) ⇒ SomeF(-, (ln-Dom (Memory, conf)))
A customer's transaction confirmation stays only a certain time in the terminal's memory.

ACTION COMPOSITION

{Host.SendMsgResponse, ScanCard, EnterTime, EnterPrice, EnterPin, SendRequest,
Forward_Ok, Forward_Ko, SendMsgReq, TimeOut, DisplayMsg, FreeTerminal,
ResetTerminal, ResponseTreatment, Accepted, Refused, Confirm, Host.SendMsgAck,
StoreConf, SendConfirm, CreateConf, SendMsgConf, AckTreatment, Remove}

Request H ScanCard(Card.arq) <> EnterTime(Date.arq, Time.arq) <>
EnterPrice(Price.arq) <> EnterPin(Pin.arq) <> SendRequest(arq)

SendRequest(arq) H (F orward _ Ok(arq) EB F orward _ Ko(arq))

Forward_Ok(arq) H SendMsgReq(arq, term_id) <> Response(arq)

Forward_Ko(arq) H SendMsgReq(arq, term_id) <> TimeOut

TimeOut H DisplayMsg('Transaction Cancelled') <> FreeTerminal

Free Terminal H DisplayMsg(' Available') <> ResetTerminal

Response(arq) H Host.SendMsgResponse(rep, term_id) <> (ResponseTreatment(arq, rep)

EB dac)

ResponseTreatment(arq, rep) H (Accepted(rep) EB Refused(rep))

Accepted(rep) H DisplayMsg(Price.rep) <> Confirm(confirm) <>
StoreConf(confirm, Host_ref.rep, i) <> FreeTerminal

SendConfirm(i) H CreateConf(i, conf)<> SendMsgConf(conf, term_id)

Refused(rep) H DisplayMsg('Transaction Refused' + reason.rep) <> FreeTerminal

AckReception H Host.SendMsgAck(ack, term_id) <> (AckTreatment(ack) EB dac)

AckTreatment(ack) H Remove(ref.ack)

ACTION DURA TION
1 Forward_ Ok(arq) 1 ~ TimeOutPeriod
The execution of the Forward Ok action can not last more than TimeOutPeriod time units

1 F orward _ Ko(arq) 1 > TimeO~tPeriod
The execution of the Forward Ko action must last more than TimeOutPeriod time units

28

OPERATIONAL CONSTRAINTS

PRECONDITION
StoreConf(_, _, i) : Memory[i] = undef
The terminal has not the right to erase previously stored information.

ResponseTreatment(arq, rep): Date.arq = Date.rep /\ Time.arq = Time.rep /\

Card.arq = Card.rep) /\ -,A vailable
The ResponseTreatment action is executed in the case where the received message rep
corresponds to the actual transaction request arq and the terminal is still used i.e. is not
available.
AckTreatment(ack): Host_ref.ack = Host_ref.Memory[Ref.ack]
The terminal executes the AckTreatment action in the case where the received Acknowledge
ack message corresponds to the in the memory stored information.
Accepted(rep): Response.rep = 'Transaction Accepted'
In order to execute the Accepted action, the transaction request must have been accepted.
Refused(rep): Response.rep = 'Transaction Refused'
The terminal executes the Refused action in the case where the transaction has been refused.
Request : A vailable
A new transaction process can only be started if the terminal is available.

EFFECTS OF ACTIONS
StoreConf(confirm, Host_ref.rep, i) : []

Memory[i] := confirm, Host_ref.rep
The StoreConfirm action stores the customer' s confirmation and the Host' s reference key into
its internai memory.
Remove(i) : []

Memory[i] := undef
The information stored at position i in the terminal' s memory are removed.
ResetT erminal : []

A vailable := true
The terminal is reset and becomes available for a new transaction process.
ScanCard(Card.arq): []

A vailable := false
The terminal becomes busy after the customer's debit card is scanned through the terminal's
card reader.

TRIGGERINGS
Memory[i] -:t= undef / SendConfFrequency -+ SendConfirm(i)
For each stored transaction, the SendConfirm action has to be executed. We assume that the
information have to stay SendConfFrequency time units in memory before the SendConfirm
action is triggered.

COOPERATION CONSTRAINTS

STATE PERCEPTION
ACTION PERCEPTION

29

STATEINFORMATION
ACTION INFORMATION

XK(SendMsgReq (arq, term_id).Host / true)
XK(SendConfMsg (conf, term_id).Host / true)

Introduction to the Albert Janguage

The terminal always informs the Host when it executes the SendMsgReq respectively the
SendConfMsg action. The fact that the messages do not always arrive at their destination is
described by omitting the corresponding Action Perception constraint at the Host' s level.

Section 4.2. The Host Agent

Declarations

STATE COMPONENTS

TimeüutPeriod instance-of TIME
The TimeüutPeriod state component specifies the number of time units the Host waits, after it
bas forwarded the customer' s request, in order to get a response from the customer' s bank. If
no valid answer arrives during that time period, a Timeüut occurs at the terminal' s level and
the current transaction process is aborted.

ValidCard instance-of BOO LEAN
The ValidCard state component is true, if the Host bas received a valid debit card number.

PinMatches instance-of BOO LEAN
The PinMatches state component is true, if a valid Pin Code bas been entered.

F orwardRequest instance-of BOO LEAN
The received transaction request is forwarded to the customer's bank if the value of the
F orwardRequest state component is true. Otherwise, the terminal is inf ormed that the
requested transaction has been refused. The ForwardRequest state component is a derived
component and its value is derived from the V alidCard and PinMatches state components.

Pin table-of PIN indexed-by CARO
The Pin table contains all the debit card numbers emitted by the Host as well as their
corresponding PIN (Personnal Identification Number) codes.

Debit table-of DEBIT indexed-by CARD
The Debit table contains for each debit card number the corresponding account number.

Transactions table-ofTRANS_H indexed-by REF _H
The Transactions table is used by the Host agent in order to store the different transaction
information.

Banklds table-of BANK indexed-by DEBIT
The Banklds table contains for each debit card number the corresponding identification code
of the bank.

30

ACTIONS

CheckPin(card, pin) : the action of checking if the entered Pin Code pin corresponds to the
received card nwnber card

CheckPin(CARD, PIN)
Search _ AcNber(card, debit_ nber) : the action of searching the account nwnber de bit_ nber
corresponding to the received card nwnber card

Search _ AcNber(CARD, DEBIT)
StoreValidTrans(arq, term_id, host_ref): the action of storing a valid transaction request arq
as well as the terminal's identification code term_id at position host_refinto the transactions
table

Store ValidTrans(ARQ, TERMINAL, REF_ H)
CreateRequest(debit_nber, host_ref, request): the action of creating a request message
request based on the customer' s account nwnber de bit_ nber as well as different information
previously stored in the transactions table at position host _ref

CreateRequest(DEBIT, REF _H, REQUEST)
FindOutBank(debit_nber, bank_id): the action of finding out the identification code
bank_id of the bank to which the request message will be forwarded.

FindOutBank(DEBIT, BANK)
SendRequest(request, bank_id): the action of forwarding the customer's transformed
transaction request request to the customer' s bank identified by bank _id

SendRequest(REQUEST, BANK) ➔ BANK
UpdateTimeOut(host_ref) : the action of recording the occurrence of a Timeout by updating
the transaction information of the transaction located at position host_refin the transaction
table.

UpdateTimeOut(REF _ H)
StorelnvalidTrans(arq, term_id, host_ref) : the action ofrecording an invalid received
transaction request arq as well as the terminal' s identification code term _id into the
transactions table at position host _ref

StorelnvalidTrans(ARQ, TERMINAL, REF _H)
CreateReject(host_ref, rep) : the action of creating a negative response message rep based
on an invalid received transaction request arq

CreateReject(REF _ H, REP)
SendMsgResponse(rep, term_id): the action of forwarding the response rep to the terminal
identified by term id -

SendMsgResponse(REP, TERMINAL) ➔TERMINAL
UpdateTrans(autrej, bank_id) : the action of updating the transactions table after the
reception of the bank's response autre}

UpdateTrans(AUTREJj, BANK)
CreateRep(host_ref, rep, term _id) : the action of creating a response message rep containing
the bank's decision whether the transaction request has been accepted or not. The needed
information are contained in the transaction table. The identification code of the destination

terminal is also determined
CreateRep(REF _H, REP, TERMINAL)

CreateAck(conf, ack) : the action of creating an acknowledge message ack based on the
received confirmation message conf

CreateAck(CONF, ACK)

31 Introduction to the Albert language

SendMsgAck(ack, term _id) : the action of forwarding the acknowledge message ack to the
terminal identified by term _id

SendMsgAck(ACK, TERMINAL) ➔ TERMINAL
UpdateConf(conf): the action ofupdating the transaction record based on the received
confirmation message conf

UpdateConf(CONF)
CreateConf(host_ref, conf_h, bank_id): the action of creating a confirmation message
conf_ h and as well as the determination of the identification code of the customer' s bank

bank_id based on the information located at position host _ref in the transaction table.
CreateConf(REF _ H, CONF_ H, BANK)

SendMsgConf(conf_h, bank_id): the action offorwarding the confirmation message conf_h
to the customer's bank identified by bank_id

SendMsgConf(CONF _H, BANK) ➔ BANK

32

The graphical declaration of the Host agent

Bank

•
Host

w SlndMlg
Conf

c:::,

K EST

RR
RE~KRE~K

Update
Trans

c:::,

AU REJ K

Creste
Ad<

c:::,

Create
Rep

c:::,

Tenninal

•
SlndMlg
ReopcnM

c:::,

TE~INAL p

Tenninat

•
SlndM1g

Adt.

c::,

Valid_
Raquait

c:::,

Q TERMINAL

Craate
Rejec:t

c:::,

Bank

• 1

Send
Request

c:::,

INAl REQUEST K

:-;;~-:
1 Raquait 1

1 1

:1 BOOLEAN t

___ 7S __ _
1

Valid : : Pin
1

Card 1 , Matches 1

'r==-=~' 'r==-=~' :1 BOOLEAN t :1 BOOLEAN t

R P R F_H

Pin

1 CARO 1- 1 ~--P1N

A K CON REP TER INAl R _H

1

1
1
1

1
1

!
!

Dabit

CARO 1- 1 DEBIT

fil
ReaponN
Traatment

c:::,

-1

RE _ REQUEST 1T

DoCheck
StoreVaiid

Trans

c:::, c:::,

CA D IN ARQ TERMINAL R _H

Transactions

REF _H 1- 1 TRANS_H 1

K

Sl<nlnvalid fü_, Trans

c:::,

ARQ TE INAl R -H

Banklds

DEBIT 1- 1 BANK

1 TimeOut 1

: Period :

l TIME 1
1 _____ 1

'---------------------------------'

The Constraints Component of the Host agent

BASIC CONSTRAINTS
DERIVED COMPONENTS

SlndM1g
Conf Tenninal

c:::,

SendM8g
Req Tenninal

c::,

SandMlg

c::,

Bank

BK AUREJ

33 Introduction to the Albert language

ForwardRequest è! ValidCard" PinMatches

INITIAL VALUATION
Transactions[i] := undef
At the beginning of the Host's life-cycle, the Transactions table is empty.

DECLARATIVE CONSTRAINTS
STATE BEHA VIOUR
ACTION COMPOSITION

{Terminal.SendMsgReq, Bank.SendMsg, Terminal.SendMsgConf, DoCheck,
Valid_ Request, False_ Request, CheckCard, CheckPin, Search_AcNber,
StoreValidTrans, CreateRequest, FindOutBank, Forward, ForwardOk,
ForwardKo, SendRequest, TimeOut, UpdateTimeOut, StorelnvalidTrans
CreateReject, SendMsgResponse, AutrejTreatment, UpdateTrans, CreateRep
CreateAck, SendMsgAck, ForwardConf, UpdateConf, CreateConf, SendMsgConf}

RequestTreatment H Terminal.SendMsgReq(arq, term_id) <>
DoCheck(Card.arq, Pin.arq) <>

(Valid_ Request(arq, term_id) œ
False_ Request(arq, term_id))

DoCheck(Card.arq, Pin.arq) H CheckCard(Card.arq) <> CheckPin(Card.arq, Pin.arq)

Valid_ Request(arq, term_id) H Search_AcNber(Card.arq, debit_nber) <>
StoreValidTrans(arq, term_id, host_ret) <>
CreateRequest(debit_nber, host_ref, request) <>
FindOutBank(debit_nber, bank_id) <>
Forward(request, bank_id)

Forward(request, bank_id) H (ForwardOk(request, bank_id) œ
ForwardKo(request, bank_id))

Forwardûk(request, bank_id) H SendRequest(request, bank_id) <> ResponseTreatment

ForwardKo(request, bank_id) H SendRequest(request, bank_id) <>
Timeüut(Host_ref.request)

TimeOut(Host_ref.request) H UpdateTimeOut(Host_ref.request)

False_ Request(arq, term_id) H StorelnvalidTrans(arq, term_id, host_ret) <>
CreateReject(host_ref, rep) <>
SendMsgResponse(rep, term _id)

ResponseTreatment H Bank.SendMsg(autrej, bank_id) <>
(AutrejTreatment(autrej, bank_id)
EB <lac)

34

AutrejTreatment(autrej, bank_id) H UpdateTrans(autrej, bank_id) <>
CreateRep(Host_ref.autrej, rep, term_id) <>
SendMsgResponse(rep, term_id)

ConfReception H Terminal.SendMsgConf(conf, term_id) <> CreateAck(conf, ack) <>

SendMsgAck(ack, term_id) <> (ForwardConf(conf) EB dac)

ForwardConf(conf) H UpdateConf(conf) <>
CreateConf(Host_ref.conf, conf_h, bank_id) <>
SendMsgConf(conf_ h, bank _id)

ACTION DURA TION
1 Forwardük(request, bank_id) 1 ~ TimeOutPeriod

1 ForwardKo(request, bank_id) 1 > TimeOutPeriod

The Forwardük action may not last more than TimeOutPeriod time units. The ForwardKo
action, at its turn, may not last less than TimeOutPeriod time units.

OPERATIONAL CONSTRAINTS
PRECONDITIONS

Valid_Request(arq, term_id): ForwardRequest
The Valid _ Request action can not be executed if the Host has not received a valid
transaction request.

False_Request(arq, term_id):-, ForwardRequest
The False_Request action can not be executed if the Host has received a valid transaction
request

StoreValidTrans(arq, term_id, host_ref) : Transactions[host_ref] = undef
The Store ValidTrans action can only store transaction information into its Transactions table
at position host_ref, if the Transactions table does not contain at that location information
about other previously stored transactions.

StorelnvalidTrans(arq, term_id, host_ref) : Transactions[host_ref] = undef
Information of previously stored transactions can not be overwritten.

ForwardConf(conf): status.Transactions[Host_ref.conf] = 'Transaction Accepted'
The F orwardConf action can not be executed if the confirmation message has already been
previously forwarded

AutrejTreatment(autrej, bank_id): status.Transactions[Host_ref.autrej]-:;:. 'Timeüut'
The AutrejTreatment for a given transaction can not be executed if a Timeüut has occurred
for that particular transaction.

EFFECTS OF ACTIONS

35 Introduction to the Albert language

CheckCard(Card.arq): []
ValidCard := In(Card.arq, Pin)

The ValidCard state component is true, if the Host has received a valid debit card number

CheckPin(Card.arq, Pin.arq): []
PinMatches := (Pin.arq = Pin[Card.arq])

The PinMatches state component is true, if the customer has entered a valid Pin code

StoreValidTrans(arq, term_id, host_ref) : []
Transactions(host_ref] := Card.arq, Price.arq,

Date.arq, Time.arq,
'Transaction Requested',
term id

The Host stores information about a transaction request (that will be transferred to the
corresponding bank) into its transaction table.

StorelnvalidTrans(arq, term_id, host_ref) : []
Transactions[host_ref] := Card.arq, Price.arq,

Date.arq, Time.arq,
'Transaction Refused',
'Invalid Pin or Card
Number', term_id

The Host stores information about a refused transaction request into its transaction table. The
transaction request has been refused because the Host has received an invalid debit card
number or Pin code.

UpdateTimeOut(Host_ref.request): []
Status.Transactions[Host_ref.request] := 'Timeüut'

The status of a given transaction is updated due to the occurrence of a Timeout

UpdateTrans(autrej, bank_id): []
Status.Transactions[Host_ref.autrej] := Response.autrej
Reason. Transactions[Host_ref.autrej] := Reason.autrej
Bank_id.Transactions[Host_ref.autrej] := Bank_id
Bank_ref.Transactions[Host_ref.autrej] := Bank_ref.autrej

The information of a given transaction are updated after the reception of the bank's
authorization / reject message

UpdateConf(conf) : []
Status. Transactions[Host_ ref.conf] := Response.conf

The status of a given transaction is updated after the reception of the terminal' s Confirmation
message.

TRIGGERINGS

36

COOPERATION CONSTRAINTS
ACTION PERCEPTION
XK(Bank.SendMsg(autrej, bank_id) / true)
The Host agent perceives the execution of the SendMsg action each tiine the action is
executed by the bank agent.

STATE PERCEPTION
ACTION INFORMATION

XK(SendRequest(request, bank _ id).Bank / true)
XK(SendMsgResponse(rep, tenn_id).Terminal / true)
XK(SendMsgAck(ack, tenn_id) .Terminal/ true)
XK(SendMsgConf(conf_ h, bank _ id).Bank / true)
The Host agent always infonns the destination agents when it is sending them a message.

STATEINFORMATION

Section 4.3. The Bank Agent

Declarations

STATE COMPONENTS

BalanceOk instance-of BOO LEAN
The BalanceOk state component is true if the customer' s account balance covers the requested
transaction amount.

Transactions table-ofTRANS_BK indexed-by REF _BK
The Transactions table is used by the bank agent to store all the information about its
customer' s transactions.

Accounts table-of INTEGER indexed-by DEBIT
The Accounts table contains for each account its corresponding balance.

ACTIONS

Check_ Balance(de bit_ card, price) : the action of checking the balance of the customer' s bank
account debit_card by taking into account the transaction amountprice.

Check_Balance(DEBIT, INTEGER)
StoreAccepted(request, bank _ref) : the action of storing the accepted transaction request
request into the transaction table at position bank_ref

StoreAccepted(REQUEST, REF _BK)
CreateRep(bank_ref, autrej) : the action of creating a response message autre} containing the
bank's response based on the information contained i11 the transaction table at position
bank_ref

CreateRep(REF _BK, AUTREJ)
SendMsg(autrej , bank_id) : the action of sending the response message autre} and the bank' s

37 Introduction to the Albert language

identification code bank _id to the Host agent

SendMsg(AUTREJ, BANK)➔HOST
StoreRefused(request, bank _ref) : the action of storing the refused transaction request request
into the transaction table at position bank_ref

StoreRefused(REQUEST, REF_ BK)
UpdateAcc(bank _ref) : the action of retrieving the transaction amount from the customer' s
bank account by using the information stored in the transaction table at position bank _ref

UpdateAcc(REF _BK)
UpdateConf(conf_h): the action ofupdating the transaction record after the reception of the
customer' s confirmation message conf_ h

UpdateConf(CONF _ H)

The graphical declaration of the Bank agent

Bank

Conf
Treatment

c:::,

Host

t
1

Fl
A~ K

i=l
~ER

Store
Accepted

c:::,

REQ EST RE _BK

Send
ConfMsg

c:::,

CO F_H B K

Send

Host

1 1

1 BalanceOk 1

1 1

Request Host
Transactions Accoonts

1 REF _BK I TRANS_BK DEBIT I INTEGER 1

i

Croate
Rep

c:::,

AU EJ RE _BK

~ BOOLEAN 1
1 _____ 1

/._ __________________________ ~

The Constraints Component of the Bank agent

BASIC CONSTRAINTS
DERIVED COMPONENTS
INITIAL VALUATION
Transactions[i] := undef

c:::,

REOÙEST B~K

At the beginning of the bank' s life-cycle, the Transactions table used to store the transactions
made by its customers is empty

DECLARATIVE CONSTRAINTS
STATE BEHA VIOUR
ACTION COMPOSITION
{ Host. SendRequest, Check_ Balance, Accepted, Refused, StoreAccepted, CreateRep,
SendMsg, StoreRefused, Host.SendConfMsg, UpdateAcc, UpdateConf}

38

Request H Host.SendRequest(request, bank_id) <> Check_Balance(Debit_card.request,

Price.request) <> (Accepted(request) EB Refused(request))

Accepted(request) H StoreAccepted(request, bank_ref) <> CreateRep(bank_ref, autrej) <>
SendMsg(autrej, bank _ id)

Refused (request) H StoreRefused(request, bank_ref) <> CreateRep(bank_ref, autrej) <>
SendMsg(autrej, bank _id)

Conffreatment H Host.SendConfMsg(conf_h, bank_id) <>

(UpdateAcc(Bank_ref.conf_h) EB dac) <> UpdateConf(conf_h)

ACTION DURA TION

OPERATIONAL CONSTRAINTS
PRECONDITION
Accepted(request): Balanceük
The bank has not the right to execute the Accepted action in the case where the received
transaction request has not been accepted i.e. in the case where the Balanceük state
component is false.

Refused(request):-, Balanceük)

The bank has not the right to execute the Refused action in the case where the received
transaction request has been accepted i.e. in the case where the Balanceük state component is
true.

UpdateAcc(Bank _ref.conf_h) / status.Transactions[Bank_ref.conf_h] =
'Transaction Accepted')

The bank has not the right to retrieve the transaction amount from the customer' s account in
the case where the customer has refused the at the terminal' s screen displayed transaction
amount.

EFFECTS OF ACTIONS

Check_ Balance(Debit_ nber.request, Price.request) : []
Balance Ok :=
(Accounts[Debit_ nber.request] -

Price.request) ~O
The Balance_ Ok state component is true if the transaction amount is covered by the
customer' s account balance.

StoreAccepted(request, bank_ref): []
Transactions[bank _ref] := Debit_nber.request,

Price.request,

39 Introduction to the Albert language

Date.request, Time.request,
'Transaction Accepted',
Host_ref.request,

The StoreAccepted action stores the information of an accepted transaction request into the
Transactions table.

StoreRefused(request, bank_ref): D
Transactions[bank _ref] := De bit_ nber.request,

Price.request,
Date.request, Time.request,
'Transaction Refused',
'Amount not covered',
Host_ref.request

The StoreRefused action stores the information of a refused transaction request into the
Transactions table.

UpdateAcc(bank_ref.conf_h): D
Accounts[Debit_nber.Transactions[Bank_ref.conf_h] :=
Accounts[Debit_nber.Transactions[Bank_ref.conf_h] -
Price.Transactions[Bank_ref.conf_h]

The UpdateAcc action updates the customer' s account balance once the customer' s
transaction validation has arrived at the bank's location.

UpdateConf(conf_h): []
response.Transactions[Bank_ref.conf_h] := Conf.conf_h

The UpdateConf action updates the status of the corresponding stored transaction.

TRIGGERINGS

COOPERATION CONSTRAINTS
ACTION PERCEPTION

XK(Host.SendConfMsg(conf_h, bank_id) / bank_id = self)
XK(Host.SendRequest(request, bank_id) / bank_id = self)

The bank agent perceives the Host's execution of the SendConfMsg respectively the
SendRequest action in the case where the sent messages are addressed to the bank agent. A
message is addressed to a certain bank, if the specified identification code matches with the
bank's identification code i.e. in the case where the condition bank_id = selfis true.

STATE PERCEPTION
ACTION INFORMATION

XK(SendMsg(autrej, bank_id).Host / true)
The bank agent always informs the Host agent when it is executing the SendMsg action.
STATE INFORMATION

40

41 Introduction to the ï• Framework

Chapter 2 : Introduction to the i* framework

The i* framework (pronounced i star) has been developed at the University of Toronto and has
been successfully applied in Requirements Engineering, in Business Process Reengineering,
in Organizational Impacts Analysis and in Software Process Modelling areas. The here below
presented introduction to the i* framework is based on [5], the latest version of the i*
framework.

The i * framework is composed of two components : (i) the Strategic Dependency model
which allows us to represent the existing dependencies between actors of a given organization
or process and (ii) the Strategic Rationale model which allows us to describe the internai
behavior of the different actors specified in the Strategic Dependency model.

The structure of this chapter is similar to the previous chapter. Section 1 describes the
example which is used through this chapter in order to explain the different i * framework
concepts. Section 2 analyzes the first model of the i * framework : the Strategic Dependency
model. Section 3, at its turn, describes the Strategic Rationale model.

Section 1. Description of the Credit Card Purchase example

A customer applies to the shopkeeper in order to bùy a certain number of goods or services.
We assume that the customer wants to pay the goods or services by using its credit card.
Before the customer can however be regarded as the regular owner, the shopkeeper has to
ensure that the transaction is covered by the Credit Card Company i.e. that he or she will be
refunded by the customer's Credit Card Company.

To do this, the shopkeeper has to follow a procedure similar to the procedure described in the
Four Messages Protocol example of Chapter 1. First, the shopkeeper has to enter the
transaction amount into a terminal located in the shop and scan the customer' s credit card
through the card-reader of the terminal. The transaction information are then forwarded to the
Credit Card Company. The Credit Card Company evaluates the received request and sends its
response back to the terminal.

In the case where the transaction has been accepted, a coupon is printed out containing the
main transaction information like the transaction date and time, the transaction amount and the
number of the used credit card. In order to complete the transaction process, the customer has
to validate the transaction by signing the printed transaction coupon.

Depending on the Credit Card Company, the shopkeeper has to compare the customer' s
signature on the coupon with the signature on the credit card. The Credit Card Company can
also request that the shopkeeper controls the customer' s identity (in order to find out if the
transaction is made by the owner of the card) . In our example, both checks have to be
executed.

42

The response of the Credit Card Company depends on three criteria : (i) the validity of the
received credit card nwnber, (ii) the actual debt level of the customer's account and (iii) the
customer's Transaction History.

The customer' s maximum debt level describes a level that the customer may not exceed. The
Transaction History defines a limit of expenses for a given period that the customer bas to
respect. This lunit may be different than the customer' s maximwn debt level.

In practice, both limits i.e. the maximwn amount of debt and the Transaction History limit can
vary from one company to another. In our simplified Credit Card Purchase example, we
asswne that the two lunits exist but we do not specify their amount.

Section 1. The Strategic Dependency Model

Defmition:

"A Strategic Dependency Model can be described as a set of nodes and arcs where the
nodes represent the different actors of an organiz.ation or processes and the arcs the
existing dependencies between the different actors (nodes)."

A dependency exists in a situation where an actor, called depender, depends on another actor,
called the dependee, to get something realized. The _object of a dependency, called dependwn,
can be a task to execute, a goal to achieve or a resource to fumish. Depending on the type of
the dependwn, the dependency arc is called a task dependency, a goal dependency, a softgoal
dependency or a resource dependency.

;' Actor i Actor ·.,

Task Dependency

_: Actor

Goal Dependency

(.··~,::; ····~I
·.. _... ..__ __ _,

Resource Dependency

:' Actor ------1(11---

SoftgoalDependen cy

Figure 2.1. Graphical representation of the different dependency types
The graphical representation of the different types of dependency is given by Figure 2.1.

43 Introduction to the i* Framework

The Strategic Dependency model of our Credit Card Purchase example is given by
Figure 2.2 ..

Figure 2.2. Strategic Dependency of the Credit Card Purchase example

Figure 2.2. depicts that the customer depends on the Credit Card Company in order to pay for
the bought goods or services. The dependency is represented by a task dependency called Pay
Article. The Transaction Authorization goal dependency between the customer and the
shopkeeper expresses the fact that the customer depends on the shopkeeper in order to get the
Credit Card Companies' transaction authorization. The authorization, in our example, is
represented by the Coupon resource dependency. We also assume that the customer has some
desires and wants and represent them by the Convenience, Fast Transaction and Secure
softgoals. We analyze those softgoals later on in the softgoal dependency subsection.

The Shopkeeper depends on the customer in order to get the customer' s identification piece,
its credit card and the signed coupon (in the case where the requested transaction has been
authorized by the customer's Credit Card Company). The different items are represented by a
resource dependency. The shopkeeper depends on the Credit Card Company in order to get
the transaction's authorization (represented by the Transaction Authorization goal
dependency). The authorization itself is represented by the Credit Card's Response resource
dependency. As we assume that, in our example, the shopkeeper is refunded by the Credit
Card Company, the shopkeeper' s desire of getting paid as possible, is represented by the Fast
Payment softgoal.

The Credit Card Company depends on the transaction information represented by the
Transaction Request resource. lt also depends on the shopkeeper in order to get the customer

44

identified (represented by the Identify Customer task dependency) and in order to get the
customer's signature checked (depicted by the Check Signature task dependency).

1. Goal Dependency

Definition :

"A goal dependency describes astate or condition that has to be achieved by the
dependee. The depender depends on the dependee to get a certain state or condition
brought about but does not specify the way how the dependum has to be achieved".

A certain degree of liberty can be identified in a goal dependency. As the depender does not
care about the way how the dependee organizes itself to bring about the dependum, the
dependee can analyze different existing ways which allow the achievement of the dependum
and chose the more convenient one.

As the depender is only interested in the achievement of a state or condition, the dependee
could theoretically delegate its responsibilities to another actor. This new actor would then be
in charge of achieving the requested dependum.

In our Credit Card Purchase example, the customer depends on the Host in order to get the
transaction authorization. We assume that the customer is not interested in the way the Host
has to act in order to get and transfer this authorization and represent the dependency by a goal
dependency. The same remark can be made for the shopkeeper's Transaction Authorization
goal dependency.

2. Task Dependency

Definition

A task dependency describes a situation in which the dependee depends on the
depender to get a certain task executed. A particularity of the task dependency consists
in the fact that the task is accompanied by a description ofhow to perform the task.
The liberty factor of the goal dependency does no more exist. The different actors have
to execute the task as requested by the description.

The Credit Card Company, for instance, depends on the shopkeeper to get the task 'ldentify
Customer' and 'Check Signature ' executed. The notion of task dependency requires that both
tasks have to be followed by a description on how they have to be executed.
In our example, we assume that the verification of the customer's identification is done by
verifying the customer' s identification piece (in order to find out if the customer is the owner
of the credit card). The 'CheckSignature' task prescribes that the shopkeeper has to compare
the signature on the coupon with the signature on the customer's credit card.

45 Introduction to the i* Framework

3.SoftgoalDependency

Definition

In a softgoal dependency, the depender depends on the dependee to get a certain
condition achieved. In opposition to a goal dependency, the depender does not specify
precisely (in a sharpened way) what it expects from the dependee. A softgoal
dependency has no real sense if it is not associated to a task -, goal - or resource
dependency.

In our Credit Card Purchase exarnple, the 'Pay Article' task dependency describes the fact that
the customer depends on the Credit Card Company to pay for the goods or services. The
customer may however have some special wants or let us rather say some additional desires.
The customer may, for instance, not feel like waiting too long in the shop before the Credit
Card Company's response arrives. This fact is represented by the 'Fast Transactiont' softgoal.

The 'Fast Transaction' softgoal provides some crucial information to the Credit Card
Company especially in cases where a given system has to be improved as it reflects the
customer' s desires and wants. How long a customer wants to wait i.e. how fast a transaction
response has to arrive is not sharply defined and may be subject to interpretations. Does the
customer accept a response tiine of 15 seconds ? What about a delay of 30 seconds ? Is the
delay more easier accepted by the customer if it is informed about the reason of the delay ?

Similar questions can be asked for the customer's 'Secure' and 'Convenience' softgoal. What
does a customer mean by a secure transaction ? Is secure referring to a mechanism that
guarantees the customer that only transactions that are executed by him are retrieved from its
account or is the notion of security related to the protection of the information during the
transfer between the shop and the Credit Card Company? What does a convenient way of
acting mean for the customer ? How many manipulations or operations does the customer
accept ? All those questions are related to the actor' s softgoaols and may be subject to
interpretations.

4. Resource Dependency

Definition

"A resource dependency describes a relationship between two actors in which the
depender depends on the dependee in order to get a particular resource. The dependum
can be a physical or an informational entity. The resource is usually reused by the
depender in order to achieve a certain state or condition that is requested by another
actor".

The shopkeeper, for instance, depends on the customer's credit card and identification piece in
order to execute the different checks. The Credit Card Company depends on the different
information included in the transaction request message so that it can determinate if the
customer's transaction request can be accepted or not.

46

At the i* level, a resource dependency represents more than a simple non intentional flow.
Depending on the background of the resource dependency, the resource dependency may be
accompanied by a task, a goal or a softgoal dependency.

In our example, the customer hands over its credit card and identification piece to the
shopkeeper in order to pay the goods or services i.e. in order to get the transaction ·
authorization from the Credit Card Company. Ifwe assume that the customer is not interested
in how the authorization is made and transferred to the shop's location, the Credit Card and Id
Piece resource dependencies are accompanied by a goal dependency called ' Transaction
Authorization' dependency between the customer and the Host and a task dependency called
'Pay Article' between the customer and the Credit Card Company.

In order to close the transaction process, the shopkeeper depends on the Credit Card
Companies' response. As shopkeepers usually try to maximize their benefit, a fast payment
procedure is usually required so that the Credit Card Response resource dependency is
accompanied by a softgoal dependency.

3. Analysis of the Strategic Dependency Model

The i * franiework allows us to represent an actor as an intentional and strategic entity. An
actor does not simply execute some tasks but has motivations and interests. One of its major
interests consists in a long-term relationship with the other agents in order to stabilize and
extent its position inside its organization or process.

The opportunities it is faced to as well as its and the others' vulnerabilities are usually
analyzed by each actor. An existing dependency does not mean that a depender is executing a
certain task, is achieving a certain goal or is producing a certain resource. The dependee may
not be interested in or does not have the time to achieve, execute or produce the dependum.

The Strategic Dependency model allows the analyst to plan or modify an existing organization
or process in a way that all the actors can be satisfied. Planning or modifying does however
not mean reducing the dependencies as much as possible. Such a reduction would inevitably
bring about conflicts inside the organization or process. Dependencies will always exist in an
organization or process composed of autonomous components. Instead, plan and modify
means that the dependencies should be equally distributed among the different actors.

In order to get an equal distributed Strategic Dependency model, certain analyses can be
made. The opportunities and vulnerabilities of each actor as well as their role and position
inside their organization or process have to be analyzed. The different analyzes are described
in the next two subsections.

Opportunities and vulnerabilities of an actor

An opportunity for an actor consists in delivering a dependum to an actor who requires the
dependum in order to achieve a certain state or condition. The delivery of the dependum
represents an opportunity for the dependee as it can ask something in exchange. This can be
a task, a resource or the achievement of a condition. We say that the depender is vulnerable
since it depends on the dependee to get a certain task executed or a condition achieved. The

47 Introduction to the i • Framework

degree of vulnerability depends on the nwnber of dependees that are able of providing the
same kind of dependwn. A low nwnber of dependees implies that the depender is highly
vulnerable and that the power of the dependee is very high as the dependee is one of only a
f ew ac tors which are able to pro vide the dependwn.

The Credit Card Company, for instance, depends on the shopkeeper to get the customer
identified and the customer' s signature checked. Both verifications represent a critical
operation for the company as the company depends on the validity of the received information
in order to execute its tasks. False information (for instance the non detection of the utilization
of a stolen credit card) can have some serious effects on the Credit Card Company. If the
utilization of the stolen card is not found out by the shopkeeper, the customer can request the
canceling of the transaction. In this case, the customer is refunded and the Credit Card
Company has to pay for the items.

The high vulnerabilify of the Credit Card Company is however compensated by a reciprocal
vulnerability of the shopkeeper. First of all, we asswned that the shopkeeper is paid by the
Credit Card Company. In practice, the shopkeeper is only paid if it has followed the
procedures prescribed by the Credit Card Company. As it is difficult for the company to find
out whether the shopkeeper has respected the prescribed procedures or not, the shopkeeper is
usually forced to share the Credit Card Comapnies' costs due to the canceling of the
transaction by the customer.

As shopkeepers usually try to maximize their profit, a certain vulnerability exist on both sides
so that both actors can almost be assured that the requested condition or state is achieved.

Agent, Role and Position

The i * framework allows us to represent a given organization or process by taking an actor
orientated approach. The Strategic Dependency model gives us information about the different
actors and the dependencies existing between them.

By introducing the notion of agent, role and position, the i * framework allows the analyst to
represent an actor in more details by describing whether a given dependency is linked to a
particular agent or to the position it occupies in the organization or process.

In the case where a given dependency is linked to a particular agent, the agent possesses a
certain knowledge that becomes crucial for the organization. The departure of that agent or its
unavailability can, for instance, pose a certain problem for its organization or process.

In the case where the dependency is linked to a certain position of a given organization or
process, the agent occupying that particular position can be replaced as it is the agent' s
position and not its knowledge which is crucial for the organization.

Based on the description of our Credit Card Company actor, the analyst can, for instance,
represent the fact that the Credit Card Company is composed of several agents occupying
different positions like for instance clerk agents and managment agents. The analyst can
further represent the fact that certain roles are attached or played by a given position.

48

0
Q
ô

Figure 2.3. The Credit Card Company actor decomposition

Position

Role

Agent

Figure 2.3. describes the position and role occupied and played by the clerk agents in our
Credit Card Company example.

A clerk agent occupies, for example, the position of a chartered accountant or an auditor. We
assume that the different verifications are made by the chartered accountant. By analyzing
Figure 2.3. , we can find out that inside the Credit Card Companies' organization, the chartered
accountant depends on the ARQ message it gets from the Host in order to execute its role i.e.
in order to execute the 'Do Checks' role.

By analyzing an agent, its position and role, the analyst can find out whether the dependency
is linked to the agent or to the position it occupies. If we assume that the agent is able to
execute the different verifications as it occupies a strategical position in the organization and
that no particular knowledge is required in order to evaluate the incoming requests (the agent
has only to apply a certain number of simple rules in order to find out whether the request can
be accepted or not), the dependency is linked to the agent's position.

49 Introduction to the i* Framework

Degree of dependency

An existing dependency between two actors does not ensure the depender the achievement,
the production or the execution of the dependum. The dependee may fail or may not be
interested in bringing about the dependum.

In order to evaluate the implications of this non achievement, the i * framework makes the
distinction between 3 different degrees of dependencies.

In an Open Dependency, the failure affects the depender but the depender can still achieve its
goal. In a Committed Dependency, the failure can affect some parts of the depender and it can
become difficult for the depender to achieve its goal. In a Critical Dependency, the depender' s
goals become impossible to achieve in the case where the dependum is not brought about.

Figure 2.4. describes the notations used in order to represent the different types of
dependencies. An 'X' symbol is used to characterize a Critical Dependency and a 'O' symbol to
represent an Open Dependency. If no label is added to the dependency, the dependency is
considered as a Committed Dependency.

Let us illustrate the different degree of dependencies by analyzing the Pay Article task
dependency existing between the customer and the Credit Card Company.

If the price of the item is too high and the customer can not afford to buy it, the customer's
behavior can be affected but the customer can still achieve its goal (i.e. get in possession of
the item) for example by leasing it. The existing dependency is in this case represented by an
Open Dependency.

A Committed Dependency can be illustrated by taking the assumption that the leasing of the
item or other mechanisms that allow the customer to get into possession of the item are not
possible. As the customer can not get in possession of the desired item, its behavior may be
highly influenced.

In the case where the item represents an essential foodstuff for the customer i.e. a good
necessary to ensure its living (like water, bread, meat ...), the fact that the item can not be
bought can have a considerable effect on the customer's survival. The dependency is
represented in this case by Critical Dependency.

In order to find out if dependencies may fail in a given organization or process, the concepts
of Enforcement, Insurance and Assurance have been introduced in the i * framework.

Enforcement, Insurance and Assurance

A dependency is enforced, if a reciprocal dependency exists between two actors. In our
example, such a reciprocal dependency exists between the shopkeeper and the Credit Card
Company. The company depends on the shopkeeper to get accurate transaction information.

50

Buy Item

Actor Actor

Open Dependency

Buy Item

Actor Actor

Committed Dependency

Buy Item

Actor Actor

Critical Dependency

Figure 2.4. Notations used for the different degrees of dependency

As we have mentioned previously, the Credit Card Company's vulnerability is soften by the
fact that the shopkeeper depends on the company to get paid.

The notion of Insurance is used in order to describe a situation in which an actor has the
choice of several dependees so that its chances to gèt the dependurn achieved, produced or
executed are better. A customer can, for instance, have several shops at its disposai where it
can purchase a particular item. If a shopkeeper does, for instance, not accept the customer's
credit card, the customer can still leave the shop and purchase the item in a shop where its
credit card is recognized as a means of payment.

The last situation in which a depender can be quite optimistic to get its dependurn brought
about is described by the Assurance concept. The chances that a dependum is brought about
are good, as the dependee itself is also interested in the achievement, the production or the
execution of the dependum.

In our example, the shopkeeper can be quite optimistic in order to get the Credit Card
Companies' response as the company tries to maximize its profit by satisfy as much as
possible its customers.

The Strategic Rationale Model

Definition

The aim of the Strategic Rationale model is to describe the components of a process or
organization, their links as well as the rationales behind them.

The basic structure of the Strategic Rationale (S.R.) model is provided by the Strategic
Dependency (S.D.) model. By specifying the internai behavior of each actor, the Strategic
Rationale model describes how a certain dependum represented in the Strategic Dependency

51 Introduction to the i* Framework

model is achieved, produced or executed. Two new links are introduced by the Strategic
Rationale model in order to describe this achievement, production or execution : the Task
decomposition link and the Means-ends link.

As several internal behaviors are able to create the same dependum, the Strategic Rationale
does not lirnit its description to one possible way of acting. Alternative ways allowing to bring
about the same dependum can be represented by using the Strategic Rationale model. As the
different alternatives can have different implications for a given actor, the positive and
negative contributions of each alternative can also be expressed.

The next two paragraphs (sub-sections) describe the task decomposition link respectively the
means-ends link. The different i * notions are again illustrated by examples taken from our
Credit Card Purchase example. The Strategic Rationale model corresponding to the Credit
Card Company example is depicted by Figure 2.5.

1. The Task Decomposition Link

In a task dependency, the depender depends on the dependee to get a certain condition or state
achieved. The difference with a goal dependency consists in the fact that a task is
accompanied by a description of how the condition or state has to be achieved.

A task decomposition link allows us to describe how a task has to be realized by specifying
the different subcomponents that have to be executed, produced or achieved. Four diff erent
sub-components can be used corresponding to the four basic i* components: the task, the goal,
the resource and the softgoal component. Depending on the type of the subcomponent, the
sub-component is called a subtask, a subgoal, a ResourceF or or a SoftgoalF or component. The
different graphical representations are given by Figure 2.6. and are analyzed here afterwards.

a. Task into Task decomposition

A Task into Task Decomposition allows us to describe how the main task has to be executed
by specifying one or several subtasks. Each of those subtasks allows to achieve a certain
subcondition or substate. The main or parent task is achieved by executing the subtask(s) and
their respective subcomponent(s).

The i* framework describes the subtasks that have to be executed, but does not describe the
order in which they have to be executed. This is due to the fact that the i * framework
recognizes each actor a certain freedom of acting. This liberty has already been underlined in
the previous section describing the goal dependency. In a Task into Task decomposition, the
order in which the different subtasks are executed is established by the actor. In the real world
i.e. at run-time, the actor is however often forced to respect a certain order so that a certain
dependum can be brought about. If the reader wants to find out the order in which a particular
actor has to be execute the different subtasks, the reader must possess a certain knowledge of
the described process or organization. This can however raise some difficulties especially
when the reader is faced to a complex process or organization.

In a Task into Task decomposition, a main or parent task is decomposed into subtasks. These
subtasks can then theoretically be decomposed again and again. Each new level provides new

52

information about the components that have to be achieved in order to achieve the component
located at the parent level.

This decomposition approach is used by many specification languages among others also by
the Albert II language described in the previous chapter. In the Albert II language, for
instance, an action can be decomposed into subactions which, at their tum, can be
decomposed again. The decomposition usually ends when the analyst has reached a level
containing atomic actions i.e. actions which can not be further decomposed.

<~>~---------<<~>
Task into Task Decomposition

C)------+-----+
Task into Goal Decomposition

Task into Resource Decomposition

Task into Softgoal Decomposition

Figure 2.5. Graphical representation of a task decomposition link

In the i * framework, the decomposition process usually ends when no more further
subcomponents can be found that represent a strategic importance for an actor. There may
situations exist in which a task could be further decomposed but the analyst has stopped the
decomposition process as the new components do not represent a strategical interest for the
described actor.

In our Credit Card Purchase example, the Credit Card Company has to perform a certain
number of checks before the customer's transaction request can be accepted. First, it has to
verify the validity of the received credit card number. The customer's balance has then to be
checked i.e. the company has to find out if the customer has not exceeded its maximum debt
level for the actual period. Finally, the company has to find out if the customer's expenses
have not exceeded a certain amount represented by the Transaction I Iistory limit.

53

1

1

I

Cuatomér

C-o,,~)
Po,n
oftt>o "m

- ~ --

<) C , l •n• l • m

PayC n h

Credlt c;aréi
Com,P""Y

'
'

Introduction to the i* Framework

Figure 2.6. The Strategic Rationale model of the Credit Card Purchase example

54

Figure 2.7. describes that the Credit Card Company has to perform an internai task called
VerifyRequest in order to realize the state or condition described by the Transaction
Authorized goal. The VerifyRequest task can be decomposed into three subtasks. Each subtask
represents one of the three checks that the company has to perform. An internai task means
that the executed task belongs to the actor's internai behavior and that the fact that the task or
subtask is executed is not directly perceived by the other actors (in opposition to the task's
effects).

Transaction
Authorized

Shopkeeper

Transaction
Request

Credit Card
Response

/

/

\

\

Credit Card Com~é!IJY- _ - - - - - - -

Check Card
Number

VerifyRequest

Check Balance Check History

Figure 2. 7. Example of a Task into task decomposition

b. Task into Goal Decomposition

' '

In a Task into Goal decomposition, indications on how a task has to be performed are given
by specifying a subcondition or substate that has to be achieved. How this substate or
subcondition has to be achieved is not directly specified and alternatives may be taken into
account.

' \
1

' ' 1
1

55 Introduction to the i* Framework

Figure 2.8. describes that in order to find out if a customer's transaction request can be
accepted or not, the Credit Card Company has to execute two checks (CheckCardNumber and
CheckHistory) and achieve the 'Balance Checked' goal. If we assume now that the Computer
Department is in charge of executing the different checks, the Computer Department has the
choice between two alternatives.

Transact ion
Au th o riz e d

CreditCard Company

Balanced Checked

Check Balance

Shopkeeper

Transact ion
Request

C re d il Ca rd
Response

Ve rify
Request

- C o-m .p_u ter ',,
D e p a r t lire o t '',

' ' '

Let Ac c ountancy
Depart. do C h e ck

Balance

C heck Bal a n c e

AC COU n tan C y
Department

- -_ - -

Ch e ck H istory

' \

' '
\ \

' '
' ' l \

Figure 2.8. Task into Goal Decomposition

l

First, the Computer Department can chose to execute the 'Check Balance' task by itself.
Second, it also has the possibility to ask the Accountancy Department to perform the check.
The two arrows represent two means-ends links and are used to describe the fact that the agent
has several ways at its disposai which allow the achievement of a certain goal. For further
details about means-ends links, please consult the next subsection analyzing the concept of
means-ends links.

56

c. Task into Resource Decomposition

A Task into Resource Decomposition describes a situation in which a resource is needed in
order to execute a task. Let us remark that a resource is considered by the i * framework as
non-critical and that the only problem related to a resource is whether it is available or not.
The resource is however only specified in the Strategic Rationale model if it represents a
strategic interest for the described actor.

Figure 2.9. describes that in our Credit Card Purchase example, the shopkeeper depends on the
customer's credit card (extemal resource) in order to execute the RequestTreatment task. The
RequestTreatment task is decomposed into a sub-task called ScanCard which uses the card
reader of the terminal (internai resource).

C redit Ca rd

C us tomer

Request
Treatm ent

Scan Card

Terminal

Tra n sa ctio n
Authorized

Figure 2.9. Task into Resource Decomposition

d. Task into Softgoal decomposition

' ' \

By decomposing a task into a SoftgoalFor component, the i* framework allows us to specify a
non-sharpened condition that a particular actor considers as important and which has to be
satisfied by the decomposed task. The non-sharpened condition is again subject to
interpretations. The condition described by the softgoal can however be used as a criteria
which has to be satisfied while decomposing a component into sub-componcïï.ts.

57 Introduction to the i* Framework

Figure 2.1 O. represents a situation in which the VerifyRequest task is decomposed into a
subtask, two subgoal and one softgoal subcomponent. The softgoal subcomponent specifies
that the actor i.e. the Credit Card Company considers a fast response as important.

In the case where several alternative ways exist which allow an actor to achieve the sarne state
or condition, the softgoal criteria can be used in order to chose one of the existing alternative
ways. How alternatives are represented is described in the next section.

' \

Shopkeeper 1

Credit
Carel
Coo\)anY

\krify
ReqlEst

Figure 2.10. Task into Softgoal Decomposition

2. Means-ends links
Definition :

' \

"A Means-ends Link indicates a relationship between an end - which can be a goal to
be achieved, a task to be accomplished, a resource to be produced, or a softgoal to be
satisfied - and a means for attaining it. The means is usually expressed in the form of a
task, since the notion of task (...) embodies how to do something."

Graphically, a means-ends link is represented by an arrow where the arrow's source describes
the means and the arrow' s end the end.

Figure 2.11. is derived from Figure 2.1 O. and illustrates a Goal-Task link (GT Link). Two
different alternatives exist to achieve the 'Balance Verified goal . The Computer Department
may delegate its responsibilities to the Accountancy Department or perform the task by itself.

58

, ,
1/ ,,

, ,
1 1

' 1
\

' '

,

,, ,,.. .,

CreditCard
Company

, , : : ~omp~r
,,,,✓, , Department

Transaction
Authorized

' '
' '' ,,

Chod<
Balance

, '
1 '

-----~-' Accountancy
Oepartment

Check
History

Figure 2.11. Means-Ends links

,,
" " " " " " ,,

1

I

\'

1 \
' 1

1

I

Shopkeeper

In a Resource-Task link (RT Link), a resource is produced by the execution of a certain task.
Figure 2.11. describes the fact that a message containing the Credit Card Companies' response
is created by the execution of the 'VerifyRequest' task. Let us however stress that in this
particular example, the RT Link is not represented by an arrow but by a dependency link.
This, because the created resource 'Credit Card Response' represents a dependum.

Two special means-ends links are introduced by the i * framework implicating softgoals.

A Softgoal-Task Link (ST Link) expresses the fact that a certain task contributes to the
realization of a certain softgoal (represented by the end). A label is added to the arrow
informing the reader that the means task contributes positive('+') or negatively ('-') to the
realization of a certain softgoal.

In Figure 2.11. , the 'Let Accountancy Department do the Balance Chedc task contributes
positively to the realization of the 'Fast Response' softgoal (we assume that the Accountancy
Department can perform the task faster as it has all the necessary information at its disposai)
whereas the execution of the 'Check Balance' task by the Computer Department, contributes
negatively toit (we assume that an operator from the Computer Department has to move from
the Computer Department to the Accountancy Department in order to execute the verification
task).

Softgoals also can contribute positively or negatively to the realization of other softgoals. If
we add a second softgoal, called 'Correct Result' softgoal, to the task decomposition described

59 Introduction to the i* Framework

by Figure 2.11., the new obtained verification process, depicted by Figure 2.12., must be fast
and a correct result must be obtained. We say that the 'Fast Response' softgoal contributes
negatively to the 'Correct Resu/f softgoal as the risk of an incorrect result increases in the case
where an actor tries to reduce the time of the verification process.

Two additional means-ends links can be used in a Strategic Rationale model i.e. the Task
Task Link (TI Link) and the Goal-Goal Link (GG Link). Both links are however seldom used
in a Strategic Rationale model.

A TI Link expresses the fact that the execution of different alternative tasks may allow the
realization of the task represented by the end. A GG Link describes a case in which a
condition or a state can be achieved by achieving a subcondition or substate. Again, different
alternatives may exist which allow us to achieve the state or condition represented by the
means or by the end.

3. Analysis of the Strategic Rationale Model

Routine

Definition

"A routine is a sub-graph in the Strategic Rationale graph with a single link to a
"means " node from each " end " node. "

A routine describes a single way to achieve a certain condition or state described by an end. A
routine implies that a certain number of choices are made by the analyst at each or-node as a
routine may not contain alternatives.

A possible routine for the Credit Card Companies' verification process is described by Figure
2.13. It describes that in order to get the customer' s transaction request validated, the two
checks are shared between the Computer Department and the Accountancy Department.

As a routine is a sub-graph of the Strategic Rationale graph and as the Strategic Rationale
graph is partly based on the Strategic Dependency, external dependencies may be contained in
a routine.
In order to underline the positive and / or negative contributions of a certain routine, multiple
means-ends links containing softgoals may be allowed.

60

I I
I I

I ,'

1 I

1 1

1

1

' '

,

Credlt Card
Company

Check
Balance

~Computer
Department

Check
Balance

Veriflcation

Aocountancy
Department

..,, .,, - -- ------

Check
History

, ,

Figure 2.12. Adding an additional softgoal to the Verification task decomposition

Rules

I

I

I

I

A routine represents a certain way of achieving a certain state or condition. lt can be
predefined inside an organization or process i.e. can be obligatory for all the different actors.

Definition

"A rule consists of an applicability condition, a means and an end. "

Based on this definition, we can say that "a means-end link is an application of a rule in a
context in which an actor believes that the applicability condition will hold" .

A rule, for instance, consists in saying that an employee from the Computer Department of the
Credit Card Company can execute the 'Check Balance' task of the Credit Card Companies'
verification process, if it has the necessary knowledge needed to execute the task.

1

1
1

61

I
I

/ ,
/ / , /

/ , , , , ,
I I

/ I
I

I

' '

Belief

Credit Card
Company

Ched<
Balance

Acx:ountancy
Department

\

\

1

1

Introduction to the i* Framework

Shopkeeper

' '
' ' ' ' ' \

\ '
\ \

\ \
\

\

\

1

1

1

Figure 2.13. Routine derived from the 'Verification process '

For a given rule, an actor has to evaluate if the applicability condition is or will be satisfied
and act in consequence. A clerk from the Credit Card Company can estimate or believe that it
is not able .i.e. does not possess the required knowledge or qualification to execute a particular
task.

As we mentioned earlier, the existence of a dependency does not ensure the dependee that the
dependum is produced, achieved or executed. The dependee does not have the time or is not
interested in bringing about the dependum.

Another possibility why a certain dependum is not brought about can consist in the fact that
there exist no routine which allows a certain actor to achieve a certain state or condition or
that the actor believes that the applicability condition will not hold.

The choice, whether the dependee tries to achieve a certain state or condition or not, is a
personal choice and can be influenced by the positive and/ or negative contributions of a
given routine, the knowledge of the actor as well as its experience.

62

The concepts of a routine, a rule and an actor's belief give us important information about a
certain actor and allow us to foresee, to a certain degree, its behavior. We can however never
be completely sure whether an actor is or will be able to achieve a certain condition or state
and which routine is or will be chosen to achieve the requested condition or state.

Ability, Workability, Viability and Believability

The Strategic Rationale model allows us to represent the internai behavior of a certain actor
inside an organization or process. In opposition to conventional process models where a
process is represented by a set of actions (which are connected by flows), the Strategic
Rationale model allows us to go further in the analyze of a given process.

Whereas conventional process models allow us to represent the "whats" of a given process,
the Strategic Rationale model allows us to represent the answers to three different kinds of
questions:

h!m:'. : how does an actor achieve a certain condition or state ?

for instance : how can the ' Verify Request' condition be achieved at the Credit Card

Companies' level ?

n'..bl'. : why does a certain actor have a certain interest in achieving a certain condition or

state?

for instance : why does the Credit Card Company delegate its responsibilities to the

Accountancy Department ?

bow else : how else can an actor achieve a certain condition or state ?

for instance : Does another routine exists which allows the Credit Card Company to
get the transaction request be verified ?

The answers to the " how" questions are obtained by analyzing the different means-ends links
and task decompositions of the Strategic Rationale model or by analyzing the different
existing routines. The positive and negative contributions of a certain process allows us to find
out why a particular actor is interested in the achievement of a particular state or condition.
Finally, the "how else" questions can be answered by analyzing the different means-ends
representing the different existing alternatives.

White these questions allow us to get a better understanding of a given actor, a second set of
questions, especially of interest for a strategic analysis, allow us to find out process level
based information:

Ability : Does a process have a particular routine which allows an actor to achieve a certain

state or condition ?

Workability : Does an actor possess a certain routine that allows it to achieve a certain

state or condition ?

63 Introduction to the i* Framework

Viability : To which extent are the different actor' s softgoals satisfied by a given process?

Believability : What evidence are there to confirm or disconfirm that a certain process will

work?

By asking and analyzing those two sets of questions, a reader can find out certain information
about a process and the behavior of a particular actor that can not be obtained or can only be
obtained with certain difficulties by using conventional representation models. A simple fact
that underlines the advantage of the Strategic Rationale model and in more general the use of
the i * framework.

64

65 Chapter 3 : Analysis of the existing links between
the i* framework and the Albert II language

Chapter 3 : Analysis of the existing links

between the i* framework and the

Albert Il language

Section 1. Introduction

From its beginning on, the computer domain and all its related components have seen
themselves expanding at an incredible speed. Soon, analysts found out that the only way
allowing them to realize important and complex systems consisted in following a certain
structured way of proceeding.

Whereas the first methodologies only described in a simplified way how systems have to be
realized, the following ones becomes more and more complex. In order to show their
evolution, let us analyze one of the first theories : the Waterfall model introduced by
Boehm [6].

The Waterfall model describes the basic steps that an analyst has to follow in order to realize a
certain application or system. Based on the Waterfall model, three different stages or steps
have to be executed : (i) the specification stage, (ii) the design stage and (iii) the
implementation stage.

During the first step, the customer' s desires and wants are written down in a document called
requirements document. The design module takes these requirements in the second stage as
basis for its work and specifies the design of the system. The obtained design is then used in
the next stage in order to implement the system. The Waterfall model specifies the order in
which the different modules have to be executed. The analyst may however go back to a
previous stage in the case where problems are detected at a certain level.

If we focus now on the specification stage, a certain evolution can also be detected. Whereas
the first specification languages have been particularly designed for a restricted and simple
domain, the following ones have evolved and can be applied today to a various number of
different and complex domains.

An example of these early specification languages is for instance the SADT language
introduced by Ross & Schoman [7].

The SADT language is composed of boxes representing actions and different types of arrows.
An arrow is linked to a box and represents an input, an output, a control or a resource used by
the action.

The advantage of an SADT model consists in the fact that it can be easily used by non
specialists in order to represent systems composed of activities and flows as the only used
components are boxes and arrows. The SADT model also allows the decomposition of a

66

complex system into less complex sub-systems. The obtained sub-systems can then be
decomposed again and again.

One of its disadvantages however consists in the fact that when a complex system is
decomposed, the number of obtained levels may become very important. An important
number of levels however makes the understanding of the model more difficult.

A second desadvantage of a SADT model consists in the fact that it describes a particular
system at a given moment by specifying its activities and flows. Constraints related to those
activities and flows can not be represented by the SADT framework. The concepts similar to
the notion of an agent or an actor are also not included in the SADT framework.

Certain of th ose features are implemented in more recent developed languages like for
instance the Albert II language described in Chapter 1.

Another evolution that took place and which affect the specification process is related to the
fact that more and more existing applications and systems have to be improved. Most of the
specification languages containing the above mentioned features are limited when being used
in the reengineering process.

Their limitation consists in the fact that the obtained models only describe WHAT the
different agents or actors are or have to do and not WHY they are or have to do it. The WHY
however gives important information about a given application or system. These information
are crucial for the reengineering process. And it is at this point that the i * framework steps in.

As we have seen in the second chapter, the i* framework is used to describe the dependencies
that may exist between the diff erent agents as well as the internai behavior of the different
actors necessary for executing or achieving the dependum i.e. the source of dependency.

Whereas the Albert language allows us to describe what has to be achieved by specifying the
vocabulary and constraints of a given system, the i* framework allows us to represent why a
particular way of achieving a dependency represents a certain interest for a particular agent.

The combination of the Albert and the i* framework allows the analyst to draw models which
specify both the why and the what of a given application or system and makes the analyst' s
job more easier, especially in the reengineering process.

Figure 3.1. describes, by using a time evolution axis, how both frameworks can be used
together in order to get a valid specification of a system. As you may observe, the i *
framework is used rather at the beginning of the specification process whereas the Albert
language only starts at the middle of the time evolution axis.

The reason why both frameworks are used at different moments can be explained by the fact
that when an analyst starts writing an Albert specification, the analyst must already have made
some preliminary work.

67

Use of the i * framework

S.D. model S.R. model

•.. 1 ..

◄• 1

Chapter 3 : Analysis of the existing links between
the i• framework and the Albert li language

1

Use of the Albert II language tri

Figure 3.1. Use ofboth frameworks

This preeliminary work consists in analyzing and understanding the system that has to be
realized as well as the domain in which the futur system will be implemented. Stated
otherwise, the analyst must already have a certain number of ideas in mind about how to
achieve the different requested wants and needs before creating the system' s specification.

t

Once the different ways of acting have been found out, the analyst' s job consists in evaluating
these different ways and in chosing one of them. This way of acting is then represented at the
Albert level.

As the i* framework allows us to represent and evaluate different alternatives allowing to
achieve the same sub-condition or sub-state, the Albert work can be based on the models
previously created at the i* level so that the analyst's work becomes a lot more easier.

The Strategic Dependency model for instance allows us to describe the existing dependencies
between the different agents and arrange their relations in a way that the dependencies are well
distributed. Once the dependencies arranged and the Strategic Dependency model drawn, the
Startegic Rational model can be created. It describes the internai behavior of the different
agents from a intentional and strategic viewpoint as well as the possible existing alternatives
that allow to achieve the different dependums.

On the basis of the described alternatives and their evaluations, a final way of acting, called
routine at the i * level, is chosen. lt describes the way how the main condition or state has to
be achieved by enumerating a set of tasks, goals, resources and softgoals that have to be
executed, achieved or produced. A particularity of a routine consists in the fact that it
describes one and only one way to achieve a certain state or condition. Stated otherwise, a
routine does not contain alternatives.

Once a final routine has been chosen, the analyst may start creating the corresponding Albert
specification. The aim of the Albert language is to describe the possible actions and the related
constraints that may occur during the life-cycle of the different agents and which allow us to
achieve the conditions or states described in the corresponding i * models.

At the beginning of the Albert specification process, the analyst starts by analyzing the
different components of the Strategic Rational model and tries then to represent them by an

68

Albert fragment. Progressing intime, the different Albert fragments are arranged together and
form finally a unique Albert specification. Whereas at the beginning of the Albert process
only links between the i* and Albert fragments existed (the links are represented by a doted
line in Figure 3 .1), the final obtained models of both frameworks (at time period tn) describe
the same application or system but at different levels.

The analyst' s work can be considerable simplified if both framework are used together during
the specification process. In the case where only the Albert language is used, the analyst has to
find out the different tasks that have to be executed by the different agents as well as the
different existing alternatives, chose a certain way of acting, decompose that way into sets of
actions and finally specify each of them in order to get a valid Albert specification.

The i * framework allows us to simplify the analyst' s work at the Albert level. The Albert
language at its turn may be used in order to check whether a particular i * model can be
implemented or not.

In the case where an i * model is specified at the Albert level and problems are detected, the
analyst can go back to the i* level and try to solve the problem by searching, evaluating and
chosing a new alternative. The process of going back and forth between the i * framework and
the Albert language may be repeated several times until a solution has finally been found.

In the next sections, we analyze the existing links between the i * and the Albert language by
adopting an i* to Albert approach. This means that we take the different components of the i*
framework as basis (as the i* models are created before the corresponding Albert
specification) and describe whether links to the Albert language exist. In the case where links
between the 2 frameworks are detected, they are illustrated by different fragments (examples)
taken from our Four Messages Protocol example introduced in Chapter 1.

Lets however stress the fact that an existing link between the Albert and the i * framework
does not mean that an i * model can be easily translated by a certain prefixed way of acting.
There exist no predefined algorithm or other mechanism which allows us, by applying a
certain number of rules, to receive a valid Albert specification based on a i * model. The
analyst has still to possess a certain knowledge about the related domain in order to find out
and specify the different Albert components and particular the different existing constraints.

The structure of this chapter is as following. Section 1 introduces the i* models of the Four
Messages Protocol (4MP) example introduced in Chapter 1. Section 2 analyzes the task
dependency and its decomposition. Section 3 describes the existing links between a goal
dependency (and its decomposition) and the components of the Albert language. Section 4 and
5 analyzes the resource respectively the softgoal components (and their decompositions).
Finally, Section 6 closes this chapter by taking a short look at the notion of liberty of acting.

Section 1. The i* models of the Four Messages Protocol example

69 Chapter 3 : Analysis of the existing links between
the i* frarnework and the Albert II language

The aim ofthis section consists in describing the obtained i* models representing the Four
Messages Protocol example. For a complete description of this example, please refer to
Chapter 1. As the Strategic Rationale model does not fit on one page, the model is
decomposed into three submodels ; each submodel representing one of the three actors.

The Strategic Dependency mode/

The Strategic Dependency model of our 4MP example contains 3 actors: the terminal, the
Host and the Bank actor. The Strategic Dependency model of our Four Messages Protocol
example is given by Figure 3.2. Here below, we analyze the different actors' dependencies:

' '

___ ,
I

1 Bric
'
'

'
'

Figure 3.2. The Strategic Dependency model of the Four Messages Protocol example

a. The Terminal actor

The Terminal depends on the Bank actor in order to pay the bought goods or services. In our
example, we assume that it is the bank which prescribes the different procedures that have to
be followed by the different actors. Based on this assumption, the dependency is represented
by a task dependency called Pay Items. We further assume that the Terminal actor has some
needs and desires which are represented by three softgoals.

70

First of all, we assume that the Terminal does not want to wait too long before the transaction
process is completed. This fact is represented by the 'Fast Response ' softgoal dependency.
Second, we assume that the terminal is concerned about the Security of the made transaction.
By a secure transaction we understand the security of the transaction information during the
different exchanges as well as the fact that information are managed by the Host and the bank
that allow to trace back the by-the-terminal made transactions in the case where problems are
encountered. Finally, we take the assumption that the terminal requests a Convenient way of
executing the transaction process. In our example, a convenient transaction represents a
transaction where only a few interventions are requested from the terminal before the
transaction is completed.

The terminal depends on the Host in order to get the bank's response whether the requested
transaction has been accepted or not. We assume that the terminal is not interested in the way
the Host has to act in order to get and transfer the bank's response so that we represent the
dependency by a goal dependency called 'Get Authorization' .

Finally, Figure 3 .2 depicts the fact that the terminal depends on two resources provided by the
Host. The respective dependums are the Authorization / Reject (AUTREJ) message and the
Acknowledge Receipt (ACK) message.

b. The Host actor

The Host, at its turn, depends on two resources provided by the terminal. The-by-the terminal
produced resources are (i) the Authorization Request (ARQ) message and the Confirmation
(CONF) message. Figure 3.2. also describes the fact that the Host depends on the bank in
order to get the bank' s response. The dependum of the dependency is represented by the
Authorization / Reject (AUTREJ) message. Again, we assume that the actor is not interested
in the way the decision is taken and transferred so that the dependency is represented by a goal
dependency called 'Get Authorization '.

c. The Bank actor

The bank depends on the Authorization Request (ARQ) message as well as on the
Confirmation (CONF) message it receives from the Host. The Bank also depends on the Host
in order to minimize the fees related to the transaction process. In our example, we assume
that the bank's fees are minimized by the accuracy of the received information. The more
accurate the received information are, lesser complains occur and less transactions are
cancelled by the customers. In our example, we assume that the number of cancelled
transactions is in direct relation with the bank's profit. As the objective of minimizing the
number of faulty transactions may be subject to interpretations (how many fault transactions
are tolerated ?), the dependency is represented by a softgoal dependency called Minimize
Faulty Transactions.

The Strategic Rationa/e mode/

a. The Terminal actor

71 Chapter 3 : Analysis of the existing links between
the i* framework and the Albert II language

In order to pay the bought goods or services, the terminal has to execute the Transaction
Treatment task. The TransactionTreatment task is decomposed into a subtask called
RequestTreatment and a subgoal called ConfirmationRequested.

Figure 3.3. The Strategic Rationale model of the Terminal actor

The RequestTratment task allows the terminal to acquire the transaction information like the
used debit card number (by executing the ScanCard task), the transaction amount (by
executing the EnterPrice task) and the Pin code (by executing the EnterPin task).

To achieve the state represented by the ConfirmationRequested subgoal, the terminal needs
the Authorization / Reject (AUTREJ) message from the Host. Depending on its content, the
AuthorizationTreatment respectively the Refusa!Treatment task is executed. In the case where
the transaction request has been accepted, the AuthorizationTreatment task is executed which

72

consists in displaying and in validating the displayed transaction amount and in freeing the
terminal.

The ValidateAmount task creates the Confirmation (CONF) message the Host depends on.
The Free Terminal task depends on the from the Host sent Acknowledge (ACK) message.

In the case where the transaction request has not been accepted, the Refusa/Treatment task is
executed. It consists in informing the customer that the requested transaction has not been
accepted. The reason of the transaction' s refusai is also displayed. The terminal is then freed
and becomes available for future transaction processes.

b. The Host actor

After the Host has received the ARQ message from the terminal, the TransactionTreatment
task is executed. The task consists in checking the validity of the received Pin code by
executing the Check Pin task and by achieving the condition or state represented by the Close
Transaction goal. Depending on the result of the made check, the condition or state
represented by the goal component is achieved by executing the AcceptedTreatment or the
Store/nvalidTreatment subtask.

Has a valid Pin code been received, the AcceptedTreatment subtask is executed which consists
in executing the ValidPinTreatment task, the Autre}Treatment task and the UpdateConftask.

The aim of the ValidPinTreatment consists in finding out the account number belonging to the
received debit card number (by executing the FindOutAccNber task) and in storing the
received transaction information into the Host' s database (by executing the Storelnfo task).
The ValidPinTreatment task also produces the ARQ message the bank actor depends on.

The AutrejTreatment task depends on the bank's response (AUTREJ) message and consists in
updating the previously stored transaction information. Once the information updated, a new
A UTREJ message is created which represents the terminal' s dependum.

The UpdateConftask updates the transaction information and depends on the confirmation
(CONF) message it receives from the terminal. The task also creates a new confirmation
(CONF) message which is forwarded to the bank.
In the case where an invalid Pin code has been received by the Host, the transaction
information are stored (by executing the StorelnvalidTreatment task) and the Authorization
/Reject (AUTREJ) message created. The message is used to inform the terminal that the
requested transaction has not been accepted.

73

+

Chapter 3 : Analysis of the existing links between
the i* framework and the Albert li language

Figure 3.4. The Strategic Rationale model of the Host actor

By analyzing the depicted softgoals, we can find out that the Host is mainly interested in
maximizing its profit and that two softgoals are contributing positively to this objective. A
Fast Treatment allows the Host to increase the number of forwarded messages and at the same
time its profit as we assume that there exist a direct link between the Host' s profit and the
number of executed transactions i.e. forwarded transaction messages.

A positively effect on the Host's profit has also the Security softgoal. The security softgoal
represents the fact that the received and by-the-Host forwarded transaction information are
stored and updated at the Host's level. The Security softgoal, however contributes negatively
to the FastTreatment softgoal as storing and updating information takes time and slows down
the transaction execution speed.

74

c. The Bank actor

In order to achieve the Pay Items dependency, the bank has to execute the
TransactionTreatment task. The task itself is decomposed into two subtasks : (i) the
RequestTreatment and (ii) the ConfirmationTreatment task.

Se<urity

+

Figure 3.5. The Strategic Rationale model of the Bank actor

\

\

The RequestTreatment task is achieved by executing three subtasks : the CheckBalance, the
Check.AccNber task and the Storelnfo task. The aim of the two first tasks consists in verifying
the validity of the received account number respectively the customer' s account balance. The
Storelnfo task stores the received transaction information into the bank' s local database.

75 Chapter 3 : Analysis of the existing links between
the i* framework and the Albert II language

The ConjirmationTreatment task depends on the Host's Confirmation message. Its execution
consists in storing the terminal' s confirmation into its database (by executing the StoreConf
task) and in updating the customer's account balance (by executing the UpdateAccount task).

The bank's main objective is the maximization of its profit. Its profit is maximized by
minimizing its fees as well as the number of Open Transactions. By Open Transactions we
understand the transactions which have been authorized by the bank but whose confirmation
the bank has not yet received.

We also assume that the Satis/y customer softgoal also contributes positively to the bank's
profit as satisfied customer are more intended to spend money and use their card in order to
pay for goods or services they purchase.

The storage of the transaction information as well as the made checks allow the bank to
contribute positively to its Security objective and thus indirectly to the Satis/y Customer
softgoal. Again, the fact of storing the transaction information slows down the transaction
process as the storage takes time. We say that the storage contributes negatively to the Less
open transactions softgoal.

Figure 3.5. depicts the Strategic Rationale model of the Bank actor.

After having described the Strategic Dependency as well as the Strategic Rationale model of
our Four Messages Protocol example, we analyze now in the following sections the existing
links between the i * and the Albert framework.

Section 2. The Task Dependency and decomposition

A task dependency describes a situation in which an actor (called the depender) depends on
another actor (called the dependee) in order to get a certain task executed. A particularity of a
task dependency consists in the fact that it is accompanied by a description on how the task
should be executed. This description is represented in the Strategic Rationale mode! by using
the task decomposition mechanism.

In our Credit Card Purchasing example, the terminal depends on the bank in order to pay the
goods and services. As the terminal has to follow a certain predefined way of acting, the
dependency is represented by a task dependency called 'Pay Items'.

In order to find out which steps the dependee has to execute, let us analyze the Strategic
Rationale model depicted by Figure 3.5.

In order to achieve the dependum, the bank has to execute the TransactionTreatment task. To
execute the task as well as the related subtasks, the bank however needs certain information.
These information are collected on the terminal' s side by executing the RequestTreatment task
depicted by Figure 3.3. The different obtained information are then sent in a message called
Authorization Request (ARQ) message via the Host to the bank.

The i* example describes at design time a condition or state that has to be achieved. In the real
world or let us rather say at run time, the i * condition or state is achieved by executing a set of

76

actions. And it is that particular set of actions as well as the related constraints which have to
be specified at the Albert level.

As the execution of the actions described by the Albert specification allows us to achieve the
same condition or state than the condition or state described at the i * level, we can say that it
is possible to represent a task dependency and its decomposition by a set of Albert statements.

Ifwe analyze for instance the TransactionTreatment task at the terminal's level depicted by
Figure 3.3., we can find out that the task is decomposed into a subtask called
RequestTreatment and a subgoal called ConfirmationRequested. The RequestTreatment task
and all its subcomponents have to be executed in order to retrieve the transaction information
the bank and the Host depend on.

If we associate now a substate to each of the subtasks and a state to the RequestTreatment
task, the state associated to the RequestTreatment task is achieved by achieving the states
associated to the different subtasks.

In order to find out, at the Albert level, the actions and the corresponding constraints which
allow us to achieve the condition or state represented in the corresponding i * models, the task
decomposition is very useful as it describes certain subconditions or substates that have to be
achieved. Such a task decomposition may however be not complete.

As we have previously explained in Chapter 2, a Strategic Rationale model only represents
components that are of a certain strategic interest for particular actor. Situations may however
exist in which a certain subtask is not described by a task decomposition (as it has no strategic
interest for an actor) but still has to be executed. The non existence of a certain strategic
interest may be due to the fact that an actor may not take advantage from a given component
i.e. that the component represents no opportunity for the actor. This may for instance be the
case for a task that has to be executed by all of the different actors of a given organization or
system and to which no dependency type can be attached to.

Such a task, even if it is not included in the task decomposition in the Strategic Rationale
model, has to be performed by the actor. The job of the analyst consists in identifying these
kind of tasks and include them in the Albert specification.

Figure 3.3 depicts that the terminal has to execute different tasks in order to collect the
different transaction information. In practice, however, the simple fact of collecting the
transaction information is not enough. The transaction information have to be sent to the Host
by executing a certain action. Figure 3 .3 however does not mention a task whose aim consists
in forwarding the collected information to the Host. lt only describes the existing resource
dependency between the different actors and the way the dependum is achieved. The existing
dependency however may be interpreted as an exchange of resources.
At the Albert level, the transfer of the transaction information from one agent to another has to
be taken into account. Furthermore, in Chapter 1, we assumed that problems may occur during
the exchange of the messages between the terminal and the Host actor. At the i* level, the
Strategic Dependency respectively the Strategic Rationale Model inform us that there exist a
resource dependency between the terminal and the Host actor but it does not mention or
represent the fact that problems may occur during the transfer of the different information

77 Chapter 3 : Analysis of the existing links between
the i* framework and the Albert II language

between the terminal' s and the Host' s location. The only fact that may be represented at the i *
level is related to the notion of degree of dependency.

In addition, not all i* tasks are or have to be translated into a set of actions and specified by an
Albert statement. Figure 3.3. describes that the RequestTreatment task is decomposed into
three subtasks. This means that 3 different subtasks have to be executed by the terminal before
the main task RequestTreatment is achieved. At the Albert level, the analyst has to find out
and specify a certain number of actions as well as the related constraints in order to achieve
the RequestTreatment task. To do so, the analyst has to specify a certain number of actions
that allow the achievement of the same situation than the situation represented by the different
subtasks at the i * level. As the main task is decomposed into and achieved by executing the
different subtasks and as the specified actions have been introduced in order to represent the
different subtasks, the at-the-Albert level specified actions allow to achieve the
RequestTreatment task.

The different actions and their constraints have however been introduced in order to represent
the existing link between the actions and the subtasks. The main task i.e. the Request
Treatment task has not been directly represented.

The Albert fragment associated to the terminal' s RequestTreatment subtask is given by Figure
3 .6. The RequestTreatment task and its decomposition is represented at the Albert level by the
Request constraint of the Action Composition Constraints section.

The Request constraint specifies the sequential execution of five actions. Among those five
actions, three actions have been introduced in order to represent the subtasks of the
RequestTreatment task. These three actions are the ScanCard, the EnterPrice and the
EnterPin action.

The EnterTime action has been introduced at the Albert' s level in order to represent the fact
that a terminal can only execute one single transaction at a given moment. The SendRequest
action represents the exchange of the ARQ message between the terminal and the Host. The
action is decomposed into two subactions Forward_Ok and Forward_Ko which are used in
order to illustrate the fact that problems may occur during the exchange of the different
messages.

We further associate a Precondition constraint to the Request action stipulating that the
terminal has to be available before a new transaction process can be started i.e. the Request
action be executed.

In our Albert specification, the terminal ' s status is represented by the boolean Available state
component. We assume that the terminal is available i.e. is free and can be used for a new
transaction processif the value of the state component is true. Otherwise, the terminal is
regarded as non available.

The Initial Valuation constraints makes the terminal available at the beginning of its
life-cycle. The terminal becomes unavailable for any further transaction process once the first
action of the transaction process is executed. The fact that the terminal' s status switches from
available to unavailable is represented by the Effect of Action constraint.

78

BASIC CONSTRAINTS
DERIVED COMPONENTS
INITIAL VALUATION
A vailable := true
DECLARATIVE CONSTRAINTS
STATE BEHA VIOR
ACTION COMPOSITION

Request H ScanCard(Card.arq) <> EnterTime(Date.arq, Time.arq) <> EnterPrice(Price.arq) <>
EnterPin(Pin.arq) <> SendRequest(arq)

SendRequest(arq) H Forward_OK(arq) œ Forward_KO(arq)

ACTION DURA TION
OPERA TIONAL CONSTRAINTS
PRECONDITION
Request : A vailable

EFFECTS OF ACTIONS
ScanCard(Card.arq) : []

Available := false
TRIGGERINGS
COOPERATION CONSTRAINTS

STATE PERCEPTION
ACTION PERCEPTION
STATE INFORMATION
ACTION INFORMATION
XK(SendMsgReq (arq, term id).Host / true)

Figure 3.6. The Albert fragments associated to the terminal ' s RequestTreatment subtask

Finally, the Action Information constraint of the Cooperation Constraints section specifies the
circumstances under which the Host perceives the execution of the SendMsgReq action. In our
example, the terminal always informs the Host when it executes the action. As the messages
exchanged between the terminal and the Host may be lost, we have to specify at the Host' s
level the fact that not all the-by-the terminal sent messages are perceived by the Host.

The different Albert statements represent the different i * components depicted by Figure 3 .3.
We can say that a tie exist between these statements as they have been introduced for the same
purpose. This special tie may however be difficult to perceive in the final obtained Albert
specification. In order to keep trace of the statements that have been introduced for the same
purpose, a feature called Post/t has been introduced in Albert. A Postlt can be used in order to
add comments to an Albert specification. A possible comment could consist in linking the
statements that belong together i.e. that have been introduced for the same purpose

Section 3. The Goal Dependency and its decomposition

In opposition to a task dependency, a goal dependency does not specify how a state or
condition has to be achieved. Is a goal component contained in a Strategic Rationale model,
several alternative ways may exist which allow the achievement of a same condition or state
(associated to the goal component). In a goal dependency, a certain freedom of acting is
recognized to the actor.

79 Chapter 3 : Analysis of the existing links between
the i* frarnework and the Albert II language

This means that the actor is free to chose the way of proceeding that allows it to achieve the
dependum in the case where several alternatives exist. The dependee may even delegate its
responsibilities to another actor. Furthermore, the actor can even refuse to bring about the
by-the-depender requested condition or state.

The goal dependency represents at the i * level a condition or state that the depender wants to
be brought about. As we have mentioned in Chapter 2, the dependency link does not guarantee
the depender that the dependum is or will be achieved or produced.

At the Albert level, the analyst has to find out a way that allows it to achieve the same
condition or state than those expressed at the i* level. At the Albert level, the freedom of
acting which existed at the i * level, does however no more exist. This is due to the fact that an
Albert specification describes WHA T has to be done by the different agents. Has a special
condition been realized or a particular action been executed, the specification forces an agent
to act. The agent has no other choice.

Stated otherwise, we can say that whereas the notion of liberty of acting can be associated to a
goal at the i * level, the same goal becomes a requirement which bas to be realized by the
different agents at the Albert level.

At the Albert's level, the analyst's job consists in specifying a set of constraints so that the at
the i * described condition or state can be achieved. Similar to the task dependency link
described in the previous section, the analyst's job can again be simplified by analyzing the
goal decomposition as well as the existing means-ends links.

As explained in Chapter 2, different alternatives may exist in order to bring about the same
dependum. The i * level recognizes an actor the liberty of choosing the way that suits him in
the best way. Which alternative is finally chosen by the actor is however not specified. The
evaluation of the alternatives i.e. their positive or negative contributions to the actors'
softgoals allow us however to determinate in a certain degree the alternative that has the best
chances to be chosen.

We can however not foreseen at hundred percent which alternative is finally chosen. The
decision is taken by the actor and is mainly based on the alternatives' positive and negative
contributions to the actor's softgoals. Other parameters like the actor's know-how and
experience do also influence its choice.

As the notion of liberty of acting does not exist at the Albert level, a particular way of
proceeding has to be chosen by the analyst (in the case where several alternative ways exist
allowing to achieve the same condition or state). The final chosen way of acting may contain
in alternatives which are represented by means-ends links.

Means-ends links allow us to represent the fact that different means allow a particular actor to
achieve the same end. In our Four Messages Protocol example, the Host has to execute
several checks after having received the transaction request (ARQ) message. Based on the
received information, the Host decides whether the request has to be forwarded to the
customer's bank or whether it is refused at its level (this is the case when the terminal has
forwarded an invalid Pin code).

80

Figure 3.4 depicts that the Close Transaction goal component may be achieved by executing
one of two existing means : the AcceptedTreatment task or the StorelnvalidTreatment task.
Two alternative ways exist which allow to achieve the same goal. The AcceptedTreatment
means-ends link is executed in the case the request has been accepted i.e. forwarded,
otherwise the Storelnvalid Treatment means-ends link is executed.

In this particular case, both means have to be represented at the Albert level. The analyst,
however, has to take care that it specifies clearly under which condition which mean has to be
executed.

In our example, the Albert criteria can be expressed as follow : Has a valid Pin code been
received by the Host, a certain number of actions, representing the i * AcceptedTreatment task,
have to be executed. Otherwise, the analyst has to specify a set of actions and the related
constraints which allow to represent the i* StorelnvalidTreatment task.

Once the different alternatives have been selected, the necessary means-ends links identified
and the different criteria specified, the creation of the Albert specification becomes similar to
the approach described in the previous section.

The Albert statements corresponding to the Host's means-ends link are given by Figure 3.7.

Figure 3.7. describes that after the Host has received the Authoriza.tion Request message from
the terminal, the Host verifies the validity of the received debit card number as well as the
validity of the Pin code. Both checks are made by executing the DoCheck action. Depending
on the results of the two checks CheckCard and CheckPin, the Valid _ Request respectively the
False _ Request action is executed.

Let us remark that both actions i.e. the Valid_Request and the False_Request action represent
the upper part of the two rneans-ends links associated to the Close Transaction goal i.e. the
AcceptedTreatment respectively the StorelnvalidTreatment tasks.

The subcomponents of the two means-ends links are represented at the Albert level by the
Va/id_ Request respectively the False _ Request decomposition.

The two Precondition constraints represent the criteria specifying when which mean-ends link
has to be executed. They specify that, in the case where the ForwardRequest derived
cornponent (representing the result of the two checks) is true, the Valid_Request action has to
be executed. Otherwise, the False _ Request action has to be executed.

The combination of the Effect of Action constraints section and the Derived Constraints
section allow us to assign the value true to the ForwardRequest state component in the case
where a valid Pin code and debit card number have been received. Otherwise the value of the
derived component is false.

Let us finally stress that the goal dependency and its decomposition plays an important part in
the reengineering process. If an implemented system has to improved, its different goals
represent potential points where irnprovernents can be made as new alternatives can be
associated to them and as the dependee is only interested in the achievement of the condition

81

BASIC CONSTRAINTS
DERIVED COMPONENTS

ForwardRequest = ValidCard " PinMatches
INITIAL VALUATION
DECLARATIVE CONSTRAINTS
STATE BEHA VIOR
ACTION COMPOSITION

Chapter 3 : Analysis of the existing links between
the i* framework and the Albert II language

RequestTreatment H Terminal.SendMsgReq(arq, term_id) <> DoCheckPin(Card.arq, Pin.arq)

DoCheck(Card.arq, Pin.arq) H CheckCard(Card.arq) <> CheckPin(Card.arq, Pin.arq) <>

(Valid_ Request(arq, term_id) EB False_ Request(arq, term_id))

Valid_ Request(arq, term_id) H Search_AcNber(Card.arq, debit_nber) <>
StoreValidTrans(arq, term_id, host_ref) <>
CreateRequest(debit_nber, host_ref, request) <>
FindOutBank(debit_nber, bank_id) <>
F orward(request, bank _ id)

False_ Request(arq, term_id) H StorelnvalidTrans(arq, term_id, host_ref) <>
CreateReject(host_ref, rep) <>
SendMsgResponse(rep, term _ id)

ACTION DURA TION
OPERATIONAL CONSTRAINTS
PRECONDITIONS

Valid_Request(arq, term_id): ForwardRequest
False_Request(arq, term_id):-, ForwardRequest

EFFECTS OF ACTIONS

CheckCard(Card.arq): []
ValidCard := ln(Card.arq, Pin)

CheckPin(Card.arq, Pin.arq) : []
PinMatches := (Pin.arq = Pin[Card.arq])

TRIGGERINGS

COOPERATION CONSTRAINTS
ACTION PERCEPTION
ST ATE PERCEPTION
ACTION INFORMATION
STATEINFORMATION

Figure 3.7. The Albert statements corresponding to the Host's means-ends link

or state and not in the way how this is done.

Section 4. The Resource Dependency

In a Resource Dependency, an actor depends on another actor in order to get a certain
resource. Used in a decomposition, it represents a physical or informational entity that an
actor needs in order to achieve a certain state or condition.

The i * framework considers a resource as non-critical and the only problem that may occur is
related to the fact that the resource is unavailable at a given moment. The non availability of
the resource may have some serious consequences on the achievement or production of a
certain dependum. The fact that a resource dependency exists between two actors does

82

however not mean that the resource is or will be produced or delivered. In the case where the
problem is however perceived at time, a particular actor may take into consideration other
existing alternatives in order to achieve or produce the same resource.

At the Albert level, a resource may be an internal or an external resource. In the case where
the resource is an internai one, the resource is represented by a state component and is located
inside the parallelogram of the actor. An external resource is also represented by astate
component but is provided by an external agent.

A resource is created, used and modified by an action. In order to indicate which action uses
which resource, the resource is indicated as a parameter of the action. The action's effect on
the resource is specified by a statement of the Effect of Action Constraints section. The initial
valuation of the resource, at its tum, can be specified by a statement of the Initial Valuation
Constraints section. Finally, the resource's evolution can be restricted by a statement of the
State Behavior Constraints section.

In the case where a resource is needed by an action in order to get executed, the unavailability
of the resource implies the non execution of the action. As actions often produce an output
which represents an input for other actions, those actions can also not be executed. A snowball
effect can be the result which can theoretically lock the whole organization or system.

Such a deadlock is theoretically also possible at the i* level. It could however be prevented if
alternatives exist which allow to bring about the same resource without using the unavailable
one.

The conditions under which a certain externat resource becomes available for a certain agent
are specified by the statements of the Cooperation constraints.

In the case where an i * resource has to be represented in an Albert specification, the analyst
has to start by specifying the resource's type. For a given agent, the analyst has then to find
out whether the resource is an internai or an external one i.e. whether it belongs to the agent or
whether it is provided by an externat agent.

For each state component, the analyst may specify the state component's initial value and
restrict its evolution if such a restriction exists. Is the value of the state component modified
by an internai or externat action, the action' s effects have also to be specified.

In the case where the state component intervenes in the precondition of a particular action or
in the case where its value triggers a particular action, the different circumstances have also to
be described by using a constraint of the Precondition respectively the Triggering section.

Is a resource represented by an externat state component or is a resource exported, the
circumstances of the state perception or state information have also to be specified in the
Cooperation Constraints section.

Let us remark that from a theoretical viewpoint, an i * resource can be easily represented at the
Albert level. In practice, however, some problems may occur.

83 Chapter 3 : Analysis of the existing links between
the i* framework and the Albert II language

First of ail, a resource does not simply represent a simple flow at the i* level but can be
accompanied by another dependency type. The aim of the analyst consists, at the Albert level,
in identifying the different dependencies which are related to the resource dependency and
represent both the resource and the different related dependency types in the Albert
specification.

The Strategic Dependency model, for instance, depicted by Figure 3.2. describes the fact that
several resource dependencies exist between the Host and the Bank actor. The Bank actor for
example depends on the Authorization Request (ARQ) and the Confirmation (CONF)
message. In both cases, the dependee is the Host agent. In order to represent our Four
Messages Protocol example at the Albert level, the analyst has to find out, among others, the
resources' types and the way and circumstances they are produced. Once the characteristics of
the resources determined, the analyst can theoretically start with the specification of the
resource at the Albert level.

As a resource does not represent a simple flow at the i * level, the resource can be influenced
or let us rather say accompanied by other dependencies. In our case, the Minimize Faulty
Transactions softgoal influences the exchanged resources. In fact, the softgoal dependency
requires a certain way of acting that allows the bank to minimize the number of its faulty
transaction. Such a way can however have a serious impact on the resources' characteristics.

In addition, minimizing the number of faulty transactions can also have a serious impact on
the way and circumstances the resource is produced so that the analyst's job is notas simple
as first expected.

The second problem that may occur while representing a resource component consists in the
fact that an i* resource is not always represented by an Albert state component. In certain
cases, it is of a certain interest to represent a resource or let us rather say an exchange of a
resource by an action.

This is for instance the case in our Four Messages Protocol example. Ifwe focus on the
Authorization Request (ARQ) message exchanged between the Host and the bank, we could
represent the ARQ message by a state component and specify the circumstances under which
it is perceived by the dependee.

As those circumstances are based on expressions and as those expressions contain state
components, the customer's bank has to evaluate those expressions i.e. it has to evaluate a
certain number of state components in order to find out whether it perceives or not the state
component(s) representing the ARQ message.

From a theoretically viewpoint this is possible but as in practice important distances may exist
between the Host's and the bank's location, this sort of mechanism becomes in practice very
difficult and even impossible to realize.

A solution to this problem consists in representing the exchange of information by an action
where the parameters of the action represent the different exchanged information. In our case,
the Bank perceives the fact that the Host is sending the transaction information by executing a
certain action and perceives the exchanged information by analyzing the action's parameters.

84

The perception of the action can be used in order to start the execution of other actions at the
bank's level (by using a constraints of the Action Composition Constraints section) and the
action's parameters can be used as input for other actions.

In order to illustrate an existing resource link between the i* and the Albert framework, let us
analyze, for instance, the ARQ resource dependency between the Host and the bank. As
previously mentioned, the bank actor depends on the ARQ message in order to take a decision
whether the requested transaction can be accepted or not.

At the Albert level, the analyst has to specify the resource's type, the fact whether the resource
is represented by an intemal or extemal state component, the way how the resource is
produced, used and forwarded.

Based on our Four Messages Protocol example, the Host receives the transaction request from
the terminal. The contents of the received message is described by the ARQ type. The
received ARQ message contains: (i) the date and time when the transaction has been
requested, (ii) the used debit card number, (iii) the transaction amount and (iv) the Pin code.

After the Host has executed the-at-the Albert level specified actions, a message of type
REQUEST is forwarded to the customer's bank. The difference with the received ARQ
message consists in the fact that in the forwarded message, the number of the debit card has
been replaced with the customer' s account number.

The types of the two messages are given by :

ARQ = CP (Date : DA TE ; Tirne : TIME ; Card : CARD ; Price : INTEGER ; Pin : PIN)

REQUEST = CP (Debit_nber: DEBIT, Price : PRICE; Host_ref: REF _H, Date: DATE,
Tirne : TIME)

As previously mentioned, the exchange of the different message is represented by the
execution of an action. In our example, the request message is sent to the customer' s bank by
executing the Forward action.

The Forward action is decomposed by using a constraint of the Action Composition
Constraints section. The corresponding subactions are the ForwardOk and the ForwardKo
action. Both actions are used in order to represent the fact that problems may occur at the
destination's location i.e. at the bank's level.

Forward(request, bank_id) H (ForwardOk(request, bank_id) EB ForwardKo(request, bank_id))

The assumption taken in the first chapter related to the quality of equipment and lines used by
and between the Host and the bank is still valid. Let us remind that we assumed that messages
may only be lost during the exchange between the terminal and the Host. Sorne internai
problems (at the bank's level) may however imply that the bank's response does not arrive at
time at the Host's location. In this case, a Timeout occurs and the transaction process is
aborted by the Host.

85 Chapter 3 : Analysis of the existing links between
the i* framework and the Albert ll language

The fact that a Timeout may occur is represented by using two Action Composition
constraints :

ForwardOk(request, bank_id) H SendRequest(request, bank_id) <> ResponseTreatment

ForwardKo(request, bank id) H SendRequest(request, bank_id) <> TimeOut(Host_ref.request)

The constraints describe that the ForwardOk action is executed in the case where the
SendRequest action is followed by the reception of the bank's response within a certain
interval oftime. The ForwardKo action is executed in the case where the Timeout occurs.

The interval of time during which the Host waits in order to get the response is represented by
an Action Duration constraint :

ACTION DURA TION
1 ForwardOk(request, bank id) 1 :5 TimeOutPeriod

The occurrence of a Timeout is expressed by the following constraint :

11 ForwardKo(request, bank id) 1 > TimeOutPeriod

As the action of sending messages from the Host to the bank is used in order to trigger certain
actions at the bank's level, the bank actor has to be informed of the execution of the
SendRequest action.

COOPERATION CONSTRAINTS
ACTION INFORMATION
XK(SendRequest(request, bank id).Bank / true)

Section 5. The Softgoa/ Dependency and their contribution

A softgoal describes a non-sharpened condition that the depender wants to be achieved but
which may be subject to interpretations. The advantage of a softgoal consists in the fact that it
may help the analyst to chose an appropriate way of acting by giving it some additional
information about the actor' s desires and wants.

At the specification level, the notion of i * softgoal can be linked to the notion of
Non Functional Requirements (NFR). As an Albert specification only specifies the Functional
Requirements of a given application or system, no direct link can be made between an i *
softgoal and an Albert component.

At the i * level, softgoals play an important part in the decision process of an actor. In the case
where several alternative ways exist which allow the actor to achieve the same condition or
state, the softgoals can be used in order to evaluate each of the existing alternatives so that a
final choice can be made by the actor. In other words, softgoals are used to foresee at a certain
degree the behavior of a given actor. The actor is however free and may even chose an non
logical alternative.

86

At the Albert level, the notion of liberty of acting, the possibility to make choices and the
notion of softgoals do not exist. An Albert specification describes what has to be done by a
particular agent once certain conditions or states are achieved. The agent has no choice i.e. is
forced in a certain way to act. If alternatives exist, the analyst has to specify clearly the
condition under which a certain alternative has to be executed.

The non existence of the i * softgoal notion at the Albert level can however be moderated by
two facts. First, the aim of a specification consists in describing in a particular way the desires
and needs of a given application or system. A good specification describes what is expected
without any ambiguities. The obtained specification however never describes all the
customer' s requests, wants and desires. By using Functional Requirements, there exist always
a certain part that can not be entirely represented. Those facts are however not eliminated from
the specification process but are expressed by using Non Functional requirements. A usual
way consists in expressing them in a textual way.

Second, we can say that an Albert specification does not explicitly contain the notion of an i *
softgoal. The facts described at the i* level by the softgoals are however implicitly contained
in an Albert specification.

If, at the end of a specification process, the analyst is asked why he or she has chosen a
particular way of acting, for instance why he or she has introduced the Timeout notion at the
Albert level, the analyst may reply for instance that the organiz.ation's interest consisted in
getting a 'Fast Transaction Response' and that the Timeout mechanism allows to intervene
once a deadlock occurred.

Stated otherwise, we can say that even if the Albert language does not contain a notion similar
to the i * softgoal, the at the i * represented softgoals are contained implicitly in the
corresponding Albert specification. This under the assumption that the analyst has respected
the at the i * lev el expressed wants and des ires.

Section 6. The Liberty factor of an actor respective/y an agent

A dependency exists in a situation in which a depender depends on a dependee in order to get
a certain dependum achieved or realized. The subject of the dependency may be a task, a
resource or a softgoal. An existing dependency does however not ensure the depender that the
dependum is realized. The depender may not have the time or may even not be interested in
bringing about the dependum.

The failure can have some implications for the depender and the long term relationship
between the dependee and the depender can also be affected. In order to evaluate those
implications, the notion of degree of dependency has been introduced in the i * framework.

In the case where the depender perceives at time that the dependum is or will not be brought
about, the depender has, in certain situations, the possibility to take into account existing
alternatives which allow him or her to get the requested dependum.

As mentioned several times before, the liberty of acting which exists at the i * level does no
more exist at the Albert level. The aim of an Albert specification consists in describing how a

87 Chapter 3 : Analysis of the existing links between
the i* framework and the Albert II language

certain condition or state may or has to be achieved by specifying a certain set of actions as
well as the related constraints. Is a certain condition realized and the execution of a particular
action linked to that condition (by using a Triggering constraint), the Albert agent has to
execute that particular action.

The liberty of acting does no more exist at the Albert level but this fact does not have a
negative implication on the Albert framework. An Albert agent plays simply a more passive
role than an actor at the i* level but thus is responsible for the actions that have to be executed
by it. An Albert agent is simply following a given specification by the letter, and behaves like
requested.

88

89

Conclusion

Nowadays, it becomes more and more difficult to develop and implement complex systems.
Difficulties also appear when it cornes to improve such an existing system. Most of the
problems are mainly based on the fact that the documents that have been used in order to
develop and implement the system do not contain detailed information which allow the
analyst to improve the given system.

The limitation of those documents mainly consists in the fact that they only describe WHA T
has to be realised by the different entities and not WHY the entities have to act in a certain
predefined way. The Why is however needed when the analyst has to rewrite and improve a
given organisation or system as it provides important information about the organisation or
system as well as the context in which the organisation or system is embedded.

In Chapter 1, we have presented a formal requirements specification language called the
Albert II language allowing to describe what has to be realised by the different entities of a
given system. The Albert II language has been developed at the Facultés Notre Dame de la
Paix in Namur, Belgium and suits particularly for representing real-time distributed and
cooperative systems.

In Chapter 2, we have described the i* framework developed at the University of Toronto,
Ontario, Canada. The i* framework allows to represent the WHYs of a given organisation or
system by taking an agent orientated approach. The i * framework allows to represent a given
organisation or system by describing the existing agents, the existing dependencies between
them and the agents ' intentional and strategical behaviour in order to bring about a certain
source of dependency, called dependum at the i * level.

Whereas the Albert II language, presented in Chapter 1, only allows to describe a particular
way of acting, the i * framework also allows to represent different alternatives way which
allow a particular agent to bring about a certain dependum. In addition, the framework allows
to represent the opportunities and vulnerabilities i.e. the positive and negative contributions of
a given alternative way from an agent's viewpoint.

In Chapter 3, we have described why it is of a certain interest to combine the Albert II and the
i • framework. Even if the two frameworks are used at different levels or lets rather say at
different moments in the specification process, the analyst can take advantage of the
combination of the two frameworks.

First of all , the use of the i * and the Albert II framework allows the analyst to represent both
the WHATs and the WHYs of a given organisation or system. At the Albert level, the use of the
i * framework allows the analyst to facilitate its preliminary work which consists in analysing
and understanding a given system as well as the context in which the system is embedded.
The i* models also describes the different existing alternatives (in the case where alternatives
exist) so that the analyst's work becomes much more easier.

The Albert II language, at its turn, may be used in order to specify in a more detailed way the
behaviour of the different agents by specifying for instance the constraints that have to be

90

respected by the different agents. The Albert language can also be used in order to find out
whether the at the i * represented system may be implemented or not by specifying and
verifying a certain number of constraints related to the system.

In the case where problems are detected at the Albert lev el, the analyst may go back to the i *
level and chose or search another existing alternative. The going back and forth may be
repeated until a valid specification is finally obtained.

Chapter 3 also describes the existing links between the Albert II and the i * framework. The
fact that a link exist between both frameworks does however not mean that a given i* model
may be easily translated or lets rather say represented at the Albert level by applying a certain
number of predefined rules. The analyst still needs a certain knowledge about the system that
has to be realised or improved as well as the context in which the system is or has to be
embedded.

91

References

[1] Eric Dubois, Philippe Du Bois and Jean-Marc Zeippen. A Formai Requirements
Engineering Methodfor Real-Time, Concurrent, and Distributed Systems, Institut
d'Informatique, Facultés Universitaires de Namur, (Belgiurn)

[2] Philippe Du Bois. The Albert II Language, On the Design and the Use of a Formai
Specification Language for Requirements Analysis, PhD thesis, Facultés Universitaires Notre
Darne de la Paix, Namur (Belgiurn)

[3] Bernard Jung en. The Albert II Reference Manua/, Version 1.1, CAT project, 1996

[4] Eric Dubois and Michaël Petit. A Formai Requirements Engineering Frameworkfor CIM
Infrastructures Re engineering, Computer Science Department, University of Namur.

[5] Eric Yu. Modelling Strategic Relationships For Process Reengineering, PhD thesis,
University of Toronto, Ontario (Canada)

[6] Ian Sommerville, Software Engineering, Addison Wesley, 1996

[7] Ross & Schoman, Structured Analysis for Requirements Definition in Classics in Software
Engineering, Edited by Edward Nash Y ourdon, Y ourdon Press

Al

Appendix: The Two Messages Protocol example

Section 1. Description of the Two Messages Protocol example

In the Two Messages Protoco/ example, two messages have to be exchanged between the
different involved agents before the transaction process is completed.

The transaction process begins by sending an Authorisation Request (ARQ) message to the
C-ZAM Host. The structure of the sent ARQ message is similar to the structure of the ARQ
message in the Four Messages Protocol example.

Once the ARQ message has been sent to the C-ZAM Host, the terminal waits a certain period
in order to get a response from the Host. If the Host' s answer does not arrive within that
period, a Timeout occurs.

Having received an Authorization Request (ARQ) message from the terminal, the C-ZAM
Host verifies if the customer has entered a valid PIN code. Is this the case, the C-ZAM host
saves the transaction information into its local database, determinates the customer' s bank to
which the message has to be forwarded, replaces the customer' s de bit card number by the
customer's account number and forwards the modified transaction request (ARQ) to the bank.
The Host then waits a certain time in order to get the bank's response. If the bank's response
does not arrive within that period, a Timeout occurs and the transaction process is aborted.

If the customer has entered an invalid PIN code, the transaction request is refused at the
Host' s level and is not forwarded to the customer' s bank.

On the basis of the received transaction information (i.e. the customer's account number and
the transaction amount), the bank decides whether the transaction request can be accepted or
not. A transaction request is accepted if the customer has enough money on its account in
order to cover the transaction. In order to find out whether the transaction is covered or not,
the same procedures than in the Four Messages Protoco/ example are applied.

After the transaction information and the bank's decision have been recorded, the customer's
account balance is updated (in the case where the transaction request has been accepted) and
the bank's response, called Authorization / Reject (AUTREJ) message, is sent to the C-ZAM
Host.

After the reception of the bank's response, the Host updates its corresponding transaction
record based on the received information and transfers the received message to the terminal
from where the transaction request has been emitted.

If a message arrives at the terminal informing the customer that the transaction request has
been refused, the reason of the transaction's refusal is displayed on the terminal's LCD screen.
In the case where the request has been accepted, the customer is informed and the transaction
process is finished. In opposition to the Four Messages Protocol example, the customer does

A2

not need to confirm the transaction amount. As soon as the bank's response arrives and has
been displayed at the terminal's location, the transaction process is finished.

The occurrence of a Timeout at the terminal 's Level

In the case where a Timeout occured i.e. in the case where the answer of the customer' s bank
(respectively the Host) is not received by the terminal from the C-ZAM Host after a certain
period of time, the transaction is aborted and a message, called Authorization Request
Canceling (ARQ-) message, is sent to the customer's bank informing it that the previously
sent Authorization Request (ARQ) message has to be cancelled.

To ensure that the ARQ- message arrives at the Host's location, a mechanism similar to the
one described in the 4MP example is used. We assume that the information contained in the
ARQ- message are stored in the terminal' s intemal memory and that the ARQ- message has to
be sent as long as the terminal does not get an Acknowledge Canceling (AOK) message in
return. It is only after the terminal receives a valid AOK message that the corresponding
ARQ- message is removed from its memory.

When a ARQ- message arrives at the Host's level, the Hosts checks if it has already forwarded
the received ARQ- message to the customer's bank. Is this not the case, the ARQ- message is
forwarded to the customer's bank and an AOK message is returned to the terminal. In the case
where the received ARQ- message has already been forwarded, an AOK message is sent to the
terminal and the message is not forwarded to the customer's bank.

The customer' s bank evaluates the received ARQ- message, stores the transaction information
into its local database and updates the customer' s account balance (i.e. adds the transaction
amount to the customer' s account balance in the case where the transaction request has
previously been accepted i.e. in the case where the transaction amount has previously been
retrieved from the customer's account).

Special case : An ARQ- message arrives before its corresponding ARQ message

An ARQ- message can theoretically arrive before its corresponding ARQ message. This is for
instance the case when a ARQ message is jammed or lost whereas its corresponding ARQ
message arrives at destination without any troubles.

At the Host's level, the ARQ- message is stored and forwarded to the customer's bank. If the
corresponding ARQ message arrives, it is stored and forwarded to the customer' s bank.

At the bank's level, the ARQ- message is stored in the bank's database. If its corresponding
ARQ message arrives afterwards, it is stored in the database but is not evaluated.

The exchanged messages are represented by Figure 5.la. and 5.lb. Figure 5.la. describes the
exchange of the two messages. The Authorization Request (ARQ) message contains the
terminal's transaction request. The Authorization /Reject (AUTREJ) message encloses the
bank' s response (as well as the reason of the refusai in the case where the request has not been
accepted).

A3

Figure 5 .1 b. describes the different exchanged messages in a transaction request in the case
where a Timeout occurs at the terminal' s lev el.

Q
ARQ Bllnk>ys

m
ARQ

~
AUTREJ

AUTREJ

D
TERMINAL C-ZAM HOST BAN

Legend

ARQ Authorisation Re<µ15t Message
AlJTREJ Authorisation / Reject Message

Figure 5.la. The regular exchanged messages in our 2 Messages Protocol example

After the terminal has waited a certain period oftime in order to get the bank's response, a
Timeout occurs and an Authorization Request Canceling (ARQ-) message is sent to the bank
via the Host. The terminal then waits in order to get the Canceling Acknowledge (AOK)
message from the Host.

In the example depicted by Figure 5.1 b., we assume that the first sent ARQ- message does not
arrive at the destination or that the Host is notable to sent an AOK message in return. It's only
after the terminal has sent the message for the second time that the corresponding AOK
message arrives at the terminal' s location.

àBQ ►

Q ARQ-
►

ARQ-
►

àO~
D ...

TERMINAL

Banksys

m
C-ZAM HOST

àBQ ►

- ARQ---► tiifJ
Legcnd

ARQ Authorisation Request Message
ARQ- Autt-.:>rization Request

Cln:ellng Message
AOK Ca1œling Acknowtedge

BANK

Figure 5.lb. The occurrence of a Timout in our 2 Messages Protocol example

The content of the different messages is depicted by Figure 5.2a. respectively Figure 5.2b.

A4

Q
D

TERMINAL

ARQ

AIIIBEI

►
Bllnkayl

m
C-ZAM HOST

ARQ ►

w
AIIIREI BANK

XXX

Legend

ARQ Authorislllion Request Message
AUTREJ Authorislllion / Reject Message

Figure 5.2a. The contents of the different exchanged messages in the 2 Messages Protocol
example

In a regular transaction process (i.e. in a process where the request is not cancelled), the same
information than those in our 4MP example are exchanged.

In the case where a Timeout occurs, we assume that the Host forwards the ARQ- message to
the bank and that the message contains the same information than those contained in the ARQ
request message. The content of the ARQ- and AOK messages is given by Figure 5.2b.

Q
D

TERMINAL

4RQ ►
CJalt>er XXX·XXXX

,~,~· l .= .·
PIN)0()()(

Date wwxx
urne xx:xx:xx

4RQ ►

,me xx:xx:xx

ARQ- ---

Bllobys

m
C-ZAM HOST

►

ARQ ►
Acc""8<" XXX·XXXX

~
BANK

ARQ- ►
Acc""8<"

Legend

ARQ
ARQ-

AOK

XXX·XXXX

Alàhorisation Request Message
Authorization Request
Ca-iceling Message
Canceling Ackn<M1edge

Figure 5.2b. The occurrence of a Timeout in the 2 Messages Protocol example

AS

Section 2. The i* models of the Two Messages Protocol
example

1. The Strategic Dependency mode/ of the 2MP example

The Strategic Dependency model of our 2MP example depicted by Figure 5.3., contains,
similar to our Four Messages Protocol example, 3 actors: the Terminal, the Host and the
Bank actor. The difference between both example consists in the fact that in the 2MP example
only 2 messages have to be exchanged (instead of four like in the 4MP example).

In the case where a problem occurs in the 2MP example during the transaction process, the
transaction process is aborted and two additional messages have to be exchanged in order to
ensure that the transaction is actually canceled.

The actors' dependencies are the same than in the Four Messages Protocol example with the
exception that the ARQ- resource dependency represents the Authorization Request Canceling
message and the AOK resource dependency the Acknowledge Canceling message.

Termilal

'

I
'
i

°" -

Bank
\

1

Figure 5.3. The Strategic Dependency model of the 2MP example

2. The Strategic Rationale mode/ of the 2MP example

a. the Terminal actor

Figure 5.4. depicts the Strategic Rationale model corresponding to the terminal actor in our
Two Messages Protocol example.

A6

The Strategic Rationale model of the terminal actor describes that in order to execute the
transaction process, the terminal has to execute the Transaction Treatment task. The task is
decomposed into a task called RequestTreatment and a goal called Timeout.

The RequestTreatment task is decomposed into three subcomponents and allows to collect the
necessary transaction information.

"" -

Figure 5.4. The Strategic Rationale model of the Terminal actor

The Timeout goal can be achieved by executing one of the two means-ends links called
ResponseTreatment respectively Arq-Treatment and represents the fact that the sending of the
ARQ message is followed by the reception of the AUTREJ message or the occurrence of a
Timeout.

In the case where a Timeout occurs, the Arq-Treatment means has to be executed ; otherwise
the ResponseTreatment means.

A7

The ResponseTreatment means consits in displaying the received AUTREJ message and in
freeing the terminal. The Arq-Treatment means consists in creating the ARQ- message the
Host depends on. After the reception of the AOK message, the terminal becomes again
available after the execution of the FreeTerminal task.

b. the Host actor

Figure 5.5. depicts that depending on the received message, the Host executes the
TransactionTreatment respectively the TransactionCanceled subtask. The
TransactionTreatment task is executed after the reception of an Authorization Request (ARQ)
message; the TransactionCance/ed task after the arrivai of an Authorization Request
Canceling (ARQ-) message.

+

Figure 5.5. The Strategic Rationale model of the Host actor

A8

TheTransactionCanceledtask stores the received information into the Host's database and
forwards the received ARQ- message to the bank. Finally, a Canceling Acknowledge (AOK)
message is sent to the terminal.

c. the Bank actor

The Strategic Rationale model describing the bank's behavior is depicted by Figure 5.6.

The participation of the bank actor in the transaction process consists in achieving
TransactionTreament goal. To do this, the bank has to execute one of the two means-ends
links called RequestTreatment respectively TransactionCancel.

Figure 5.6. The Strategic Rationale model of the Bank actor

The aim of the RequestTreatment task is the same than in our Four Messages Protocol
example. Lets however remark that the transaction amount is retrieved directly from the
customer's account in the case where the transaction request has been accepted. In opposition
to the 4MP example, the 2MP example does not require the confirmation of the transaction
amount.

A9

The TransactionCance/ task is executed in the case where an ARQ- message is received. It
consists in updating the customer's account balance and in storing the received Authorization
Request Canceling (ARQ-) message. The customer' s account is however only updated if the
transaction amount has been previously retrieved. This means that a corresponding ARQ
message has to be received before the reception of the ARQ- message by the bank and that the
request has been accepted by the bank.

AIO

Section 3. The Albert specification of the Two Messages Protocol
example

The Types

BASIC TYPES

CARD
PIN
DATE
TIME
DEBIT
REF H
REF BK

CONSTRUCTED TYPES

STATUS_H = ENUM ['Transaction Requested', 'Transaction Accepted', 'Transaction Refused',
'Transaction Cancelled', 'Tirneüut']

STATUS_BK = ENUM['Transaction Accepted', 'Transaction Refused', 'Transaction Cancelled']
REASON_H = ENUM[", 'lnvalid PinCode', 'Previously Cancelled']
REASON_BK = ENUM[", ' Amount not Covered', 'Previously Cancelled']

ARQ = CP [Card : CARD ; Price : INTEGER ; Pin : PIN ; Date : DA TE ; Tirne : TIME]
REP = CP [Date : DA TE ; Tirne : TIME ; Card : CARD ; Response : STRING ; Reason : STRING]
AOK = CP [Ref: INTEGER, Date : DA TE, Tirne : TIME, Card : CARD]
ARQ- = CP [Card : CARD ; Price : INTEGER ; Pin : PIN ; Date : DA TE ; Tirne : TIME ; Ref: INTEGER]
AUTREJ = CP [Host_ref: REF_ H ; Response : STRING ; Reason : STRING]
REQUEST = CP [De bit_ nber : DEBIT ; Price : INTEGER ; Date : DA TE ; Time : TIME ; Host_ref: REF_ H]
TRANS_H = CP [Card : CARD; Price: INTEGER ; Date : DATE; Tirne: TIME; Status : STATUS_H;

Reason: REASON_H; Term_id : TERMINAL]
TRANS_ BK = CP [Debit_ nber : DEBIT ; Price : INTEGER ; Date : DA TE ; Tirne : TIME ;

Status: STATUS_BK; Reason : REASON_BK, Host_ref : REF_H]

OPERATIONS

a. The Terminal

The Declaration of the Terminal agent

DECLARATIONS

ST ATE COMPONENTS

Memory table-of ARQ indexed-by INTEGER
TirneOutPeriod instance-of TIME
SendArq-Frequency instance-of TIME
A vailable instance-of BOO LEAN

ACTIONS

ScanCard(card) : the action of scanning the customer's debit card card through the terminal ' s
cardreader

Al l

ScanCard(CARD)

EnterPrice(price) : the action of entering the transaction amount price by using the terminal' s keyboard
EnterPrice(INTEGER)

EnterPin(pin): the action of entering the customer's secret PIN Code pin by using the terminal's
keyboard

EnterPin(PIN)
EnterTirne(date, tirne) : the action of entering the transaction date date and tirne time

EnterTirne(DA TE, TIME)
SendMsgReq(arq, term_id): the action of sending the transaction request arq and the terminal's

identification code term id to the Host

SendMsgReq(ARQ, TERMINAL)➔ HOST
DisplayMsg(msg) : the action of displaying a message msg on the terminal's LCD display

DisplayMsg(STRING)
ResetTe.rminal : the action of freeing the terminal

ResetTerminal
StoreArq-(i, arq) : the action of storing an ARQ message arq into the terminal' s memory at position i

StoreArq-(INTEGER, ARQ)
CreateArq-(i, arq-) : the action of creating an ARQ- message arq- by using the informations located at

position i in the terminal's memory
CreateArq-(INTEGER, ARQ-)

SendMsgArq-(arq-, term _id) : the action of sending an ARQ- message arq- and the terminal' s
identification code term id to the Host

SendMsgArq-(ARQ-, TERMINAL) ➔ HOST
Remove(i) : the action ofremoving a stored record located at position i from the terminal's memory

Remove(INTEGER)

The Constraints of the Terminal agent

BASIC CONSTRAINTS
DERIVED COMPONENTS
INITIAL VALUATION

Memory[i] := undef
A vailable := true

DECLARATIVE CONSTRAINTS
ST A TE BEHA VI OUR

ln-Dom (Memory, arq) ⇒-, SomeF(In-Dom (Memory, arq))

ACTION COMPOSITION
{ScanCard, EnterPrice, EnterPin, EnterTirne, SendRequest, Envoi_OK, Envoi_KO, SendMsgReq,
Response, Tirneout, Host.SendMsgResponse, ResponseTreatment, DisplayMsg, FreeTerminal ,

ResetTerminal, StoreArq-, SendArq-, CreateArq-, SendMsgArq-, Host.SendMsgAok, AokTreatment,
Remove}

Request H ScanCard(card.arq) <> EnterPrice(price.arq) <> EnterPin(pin.arq) <>
EnterTirne(date.arq, time.arq) <> SendRequest(arq)

SendRequest(arq) H (Envoi_OK(arq) œ Envoi_KO(arq))

Envoi_OK(arq) H SendMsgReq(arq, term_id) <> Response(arq)

Envoi_KO(arq) H SendMsgReq(arq, term_id) <> Timeout(arq)

Response(arq) H Host.SendMsgResponse(rep, term_id) <> (ResponseTreatment(arq, rep) Œl dac)

Al2

ResponseTreatment(arq, rep) H DisplayMsg(response.rep + reason.rep) <> FreeTerminal

Free Terminal H DisplayMsg(' Available') <> ResetTerminal

Timeout(arq) H DisplayMsg('Transaction Cancelled') <> StoreArq-(i, arq) <> FreeTerminal

SendArq-(i) H CreateArq-(i, arq-) <> SendMsgArq-(arq-, term_id)

AokReception H Host.SendMsgAok(aok, term_id) <> (AokTreatment(aok) EB dac)

AokTreatment(aok) H Remove(ref.aok)

ACTION DURA TION

1 Envoi_ OK(arq) 1 ~ TimeOutPeriod

1 Envoi_KO(arq) 1 > TimeOutPeriod

OPERA TIONAL CONSTRAINTS

PRECONDITION

Request : A vailable
StoreArq-(i, _) : Memory[i] = undef
ResponseTreatment(arq, rep): Date.arq = Date.rep /\ Time.arq = Time.rep /\ Card.arq = Card.rep /\

Available
AokTreatment(aok) : Date.aok = Date.Memory[ref.aok] /\ Time.aok = Time.Memory[ref.aok] /\

Card.aok = Card.Memory[ref.aok]
EFFECTS OF ACTIONS

StoreArq-(i, arq) : []
Memory[i] := Card.arq, Price.arq, Pin.arq, Date.arq, Time.arq

Remove(ref.aok) : []
Memory[ref.aok] := undef

ResetTerminal : []
Available := true

ScanCard(card.arq) : []
A vailable := false

TRIGGERINGS

Memory[i] -:;:. undef / SendArq-Frequency ➔ SendArq-(i)

COOPERATION CONSTRAINTS
ACTION PERCEPTION

ST ATE PERCEPTION
ACTION INFORMATION

XK(SendMsgReq(arq, term_id).Host / true)
XK(SendMsgArq-(arq-, term _ id).Host / true)

STATE INFORMATION

Al3

The Declaration associated with the TERMINAL agent

Terminal

Host ...
1

Host ...
1

SendMsg
Req

c::;,

A QTERMINAL

SendMsg
Arq-

c::;,

INAL

l~" I 1::1 EnterPrice

c::;,

CAko INT GER

1

EnterTime

----------..._____,

DA E TIME

Remove

c::,

! Memory

Send
Request

c::;,

a

Aok
Treatment

c::;,

A K

r-----1
, TimeOut 1
1 Pefiod 1
1

l TIME

I

l I INTEGER I_..I ARQ

c__ ___ ___, 1 _____ .,

Free Reset G] Terminal Terminal

c::;, -----------

.

Response
Treatment

c::;,

Q R P

r-----.
1 SendArq- 1

t Frequency ,
1 1

1 TIME
, _____ .,

~
INT~GER

Response

c::;,

r-----1
1 Available 1
1

1 ~l B~OO~ LEA~ N-1
t _____ .,

TimeOut

c::;,

a

Display
Msg

c::,

CreateArq-

c::;,

Figure 5.7. The Graphical Declaration of the Terminal agent

b. The Host agent

The Declaration of the Host agent

DECLARATIONS
STATE COMPONENTS

TimeOutPeriod instance-of TIME
Pin_Ok instance ofBOOLEAN
Codes table-of PIN indexed-by CARO
DebitCard table-of DEBIT jndexed-by CARO
Transactions table-ofTRANS_H indexed-by REF _H

ACTIONS

SendMsg
Response Host

c::;,

TERMINALR P

SendMsg
Aok Host

c::;,

A KTERMINAL

CheckPin(card, pin) : the action of checking if the entered Pin Code pin corresponds to the received
card Number card

CheckPin(CARO, PIN)
Search _ AcNber(card, debit_ nber) : the action of searching the account number debit _ nber belonging to

the received card number card
Search _ AcNber(CARO, DEBIT)

StoreValid(arq, term_id, host_ref): the action ofrecording a valid transaction request arq as well as

A14

the tenninal's identification code term_id at position host_refinto
the transactions table

StoreValid(ARQ, TERMINAL, REF _H)
CreateRequest(debit_nber, host_ref, request): the action of creating a request message request based

on the customer's account number debit_nber as well as
different infonnations previously stored in the
transactions table at position host_ref

CreateRequest(DEBIT, REF _H, REQUEST)
FindOutBank(debit_ nber, bank _id) : the action of finding out the identification code bank _id of the

bank to which the request message is forwarded.
FindOutBank(DEBIT, BANK)

SendRequest(request, bank_id): the action offorwarding the customer's transfonned transaction
request request to the customer' s bank identified by bank _id

SendRequest(REQUEST, BANK)➔BANK
UpdateTimeOut(host_ret) : the action ofrecording the occurrence of a Timeout by updating the

transaction infonnations of the transaction located at position host_refin
the transaction table.

UpdateTimeOut(REF _H)
Storelnvalid(arq, tenn_id, host_ret) : the action ofrecording an invalid received transaction request

arq as well as the tenninal's identification code term_id into
the transactions table at position host _ref

Storelnvalid(ARQ, TERMINAL, REF _H)
CreateReject(arq, rep): the action of creating a negative response message rep based on an invalid

received transaction request arq
CreateReject(ARQ, REP)

SendMsgResponse(rep, tenn_id) : the action offorwarding the response rep to the tenninal identified
by term_id

SendMsgResponse(REP, TERMINAL) ➔TERMINAL
UpdateTrans(autrej) : the action ofupdating the transactions table after the reception of the bank's

response autre}
UpdateTrans(AUTREJ)

CreateRep(autrej , rep, tenn_id): the action of creating a response message rep containing the bank' s
decision whether the transaction request has been accepted or not. The
needed infonnations are contained in the received autre} message as
well as in the transaction table.

CreateRep(REF _H, REP, TERMINAL)
StorePrevCancelled(arq, tenn_ id, host_ret) : the action ofrecording a received transaction request arq

that has previously been cancelled as well as the tenninal's
identification code term id into the transaction table at
position host _ref

StorePrevCancelled(ARQ, TERMINAL, REF _H)
StoreArq-(arq-, tenn_id, host_ret) : the action ofrecording the reception of an ARQ- message arq- as

well as the tenninal's identification code term_id at position
host _ref in the transaction table.

StoreArq-(ARQ-, TERMINAL, REF _H)

StoreArqNotExist(arq-, tenn_id, host_ref) : the action ofrecording the reception ofan ARQ- message
arq- as well as the tenninal ' s identification code term_id in
the case where the ARQ- message arrives before the
corresponding ARQ message

StoreArqNotExist(ARQ-, TERMINAL, REF_ H)

CreateArq-(host_ref, debit_nber, cancel) : the action of creating an ARQ- message cancel based on the
customer' s account number debit nber as well as different
infonnations previously stored in the transaction table at
position host_ref

Al5

CreateArq-(REF _H, DEBIT, REQUEST)
SendArq-(cancel, bank_id): the action of sending an ARQ- message cancel to the customer's bank

identified by bank _id

SendArq-(REQUEST, BANK) ➔BANK
CreateAok(arq-, aok): the action of creating an AOK message aok based on a received ARQ- message

arq- CreateAok(ARQ-, AOK)
SendMsgAok (aok, term_id): the action of sending an AOK message aok to the terminal identified by

term id

SendMsgAok (AOK, TERMINAL) ➔TERMINAL

The Constraints of the Host agent

BASIC CONSTRAINTS
DERIVED COMPONENTS
INITIAL VALUATION

Transactions[i] := undef

DECLARATIVE CONSTRAINTS
ST ATE BEHA VIOUR

ACTION COMPOSITION

{ARQ-Invalid, Arq-Treatment, ARQ-Valid, ArqNotExist, AutrejTreatment, Bank.EnvoiMsg,
CheckPin, CreateAok, CreateArq-, CreateReject, CreateRep, CreateRequest, EnvoiKo, EnvoiOk,
ExistArq, False_pin, FindOutBank, Forward, lnformBankArq-, InformCancelled, lnformTerm,
NotYetCancelled, PreviouslyCancelled, ResponseTreatmerit, Search _ AcNber, SendArq-, SendMsgAok,
SendMsgResponse, SendRequest, StoreArq-, StoreArqNotExist, Storelnvalid, StorePrevCancelled,
StoreValid, Terminal.SendMsgArq-, Terminal.SendMsgReq, TimeOut, UpdateTimeOut, UpdateTrans,
Valid_pin}

RequestTreatment H Terminal.SendMsgReq(arq, term_id) <> (NotYetCancelled(arq, term_id) EB
PreviouslyCancelled(arq, term _ id))

NotYetCancelled(arq, term_id) H CheckPin(card.arq, pin.arq) <> (Valid_pin(arq, term_id) EB
False_pin(arq, term_id))

Valid_pin(arq, term_id) H Search_AcNber(card.arq, debit_nber) <> StoreValid(arq, term_id, host_ret) <>
CreateRequest(debit_nber, host_ref, request) <>
FindOutBank(debit_nber, bank_id) <> Forward(request, bank_id)

Forward(request, bank_id) H (EnvoiOk(request, bank_id) EB EnvoiKo(request, bank_id))

EnvoiOk(request, bank_id) H SendRequest(request, bank_id) <> ResponseTreatment

EnvoiKo(request, bank_id) H SendRequest(request, bank_id) <> TimeOut(host_ref.request)

TimeOut(host_ref.request) H UpdateTimeOut(host_ref.request)

False_pin(arq, term_id) H Storelnvalid(arq, term_id, host_ret) <> CreateReject(arq, rep) <>
SendMsgResponse(rep, term _id)

ResponseTreatment H Bank.EnvoiMsg(autrej , bank_id) <> (Autrejîreatment(autrej) EB dac)

Autrejîreatment(autrej) H Updateîrans(autrej) <> CreateRep(host_ref.autrej, rep, term_id) <>

A16

SendMsgResponse (rep, term_id)

PreviouslyCancelled(arq, term_id) H StorePrevCancelled(arq, term_id, host_ref) <>
CheckPin(card.arq, pin.arq) <>

(lnformCancelled(host_ref) œ dac)

lnformCancelled(host_ref) H Search _ AcNber(card. Transactions[host_ret], debit_ nber) <>
CreateRequest(debit_nber, host_ref, request) <>
FindOutBank(debit_nber, bank_id) <> SendRequest(request, bank_id)

CancelTreatment H Terminal.SendMsgArq-(arq-, term_id) <> CheckPin(card.arq-, pin.arq-) <>

(ARQ-Valid(arq-, term_id) œ ARQ-lnvalid(arq-, term_id))

Arq-Valid(arq-, tenn_id) H (ExistArq(arq-, term_id) œ ArqNotExist(arq-, term_id))

Arq-Treatment(arq-, term_id) H StoreArq-(arq-, tenn_id, host_ref) <> lnformBankArq-(host_ref)

ExistArq(arq-, term_id) H (Arq-Treatment(arq-, term_id) œ dac) <> lnformTerm(arq-, term_id)

ArqNotExist(arq-, tenn_id) H StoreArqNotExist(arq-, term_id, host_ref) <> InformBankArq-(host_ref)

InformBankArq-(host_ref) H Search_AcNber(card.Transactions[host_refl, debit_nber) <>
CreateArq-(host_ref, debit_nber, cancel)<>

FindOutBank(debit_nber, bank_id) <>
SendArq-(cancel, bank_id)

ARQ-Invalid(arq-, tenn_id) H InformTerm(arq-, term_id)

InformTerm(arq-, term_id) H CreateAok(arq-, aok) <> SendMsgAok (aok, term_id)

ACTION DURA TION

1 Envoiük(request, bank_id) 1::; TirneOutPeriod

1 EnvoiKo(request, bank_id) 1 > TirneOutPeriod

OPERA TIONAL CONSTRAINTS

PRECONDITION

NotYetCancelled(arq, term_id) : In-Dom (Transactions, trans)

with Date.arq = Date.trans
Tirne.arq = Time.trans
Card.arq = Card.trans

Status.trans * ' Transaction Cancelled'

The NotYetCancelled action may only be executed in the case where the Transactions table does not
contain a transaction trans corresponding to the received ARQ message arq and whose status is equal to
'Transaction cancelled'. In other words, the NotYetCancelled action is executed if the received ARQ
message arq has not yet been cancelled by a corresponding ARQ- message.

PreviouslyCancelled(arq, term_id) : In-Dom (Transactions, trans)

with Date.arq = Date.trans
Time.arq = Time.trans
Card.arq = Card.trans

Al7

Status.trans = 'Transaction Cancelled'

The Host can only execute the PreviouslyCancelled action, in the case where the transaction table does
not contain a transaction record trans corresponding to the received ARQ message arq and whose status is
equal to 'Transaction Cancelled'. The PreviouslyCancelled action can only be executed if the received ARQ
message arq has been previously cancelled.

Valid_pin(arq, terrn_id): Pin_Ok

The Valid_Pin action canon/y be executed if the customer has entered a va/id Pin code i.e. the value of
the Pin_Ok state component is true

False_pin(arq, terrn_id):-, Pin_Ok

The False_Pin action can not be executed if the customer has entered a va/id Pin code

StoreValid(arq, terrn_id, host_ret): Transactions[host_ret] = undef
Storelnvalid(arq, terrn_id, host_ret): Transactions[host_ret] = undef
StorePrevCancelled(arq, terrn_id, host_ret): Transactions[host_ret] = undef
StoreArq-(arq-, terrn_id, host_ret): Transactions[host_ret] = undef
StoreArqNotExist(arq-, terrn_id, host_ret): Transactions[host_ret] = undef

A new record canon/y be added to the Transactions table (at position host_rej), if the position host_ref
does not contain a previously stored record

lnforrnCancelled(host_ret) : Pin_ Ok

The Hostforwards the received ARQ message arq to the Bank agent (i.e. execute the InformCancelled
action) in the case where the customer has entered a va/id Pin Code

Arq-Valid(arq-, terrn_id): Pin_Ok

The execution of the ARQ-Valid action requires the entering of a va/id Pin Code.

Arq-Invalid(arq-, terrn_id): -,Pin_Ok

The Host executes the ARQ-Invalid action in the case where the customer has entered an invalid Pin Code.

Arq-Treatment(arq-, terrn_id):-, In-Dom (Transactions, trans)

with Date.arq- = Date.trans
Time.arq- = Time.trans
Card.arq- = Card.trans
Status.trans = 'Transaction Cancelled'

The Host may on/y execute the Arq-Treatment action in the case where an ARQ message has previously
been received corresponding the received ARQ- message arq- .

ExistArq(arq-, terrn_id): In-Dom (Transactions, a)

with Date.arq- = Date.a
Time.arq- = Time.a
Card.arq- = Card.a

(Status.a =' Transaction Requested' v

Status.a =' Transaction Accepted ' v
Status.a =' Transaction Refused')

Al8

The ExistArq action is executed in the case where the ARQ message corresponding to the received ARQ
message has been eprevious/y treated.

ArqNotExist(arq-, tenn_id):-, (In-Dom (Transactions, a))

with Date.arq- = Date.a
Time.arq- = Time.a
Card.arq- = Card.a

(Status.a =' Transaction Requested' v
Status.a =' Transaction Accepted ' v
Status.a =' Transaction Refused')

The ArqNotExist action is executed in the case where the ARQ- message arq- has been received be/ore its
corresponding ARQ message.

AutrejTreatment(autrej) : Status.Transactions[host_ref.autrej] * 'TimeOut'

The execution of the AutrejTreatment action ·requires the non occurrence of a TimeOut at the Host 's
level for the corresponding transaction request.

EFFECTS OF ACTIONS
CheckPin(card.arq, pin.arq) : []

Pin_Ok := (Pin.arq = Codes[Card.arq])

StoreValid(arq, tenn_id, host_ref) : []
Transactions[host_ref) := Card.arq, Price.arq, Date.arq, Time.arq,

'Transaction Requested', Tenn_id

Storelnvalid(arq, tenn _id, host_ref) : [] .
Transactions[host_ref] := Card.arq, Price.arq, Date.arq, Time.arq,

' Transaction Refused', 'lnvalid PinCode',
Tenn id

StorePrevCancelled(arq, tenn_id, host_ref) : []
Transactions[host_refl := Card.arq, Price.arq, Date.arq,

Time.arq, Transaction Refused',
'Previously Cancelled', Tenn_id

StoreArq-(arq-, tenn_id, host_ref): []
Transactions[host_refl := Card.arq, Price.arq, Date.arq, Time.arq,

' Transaction Cancelled' , ", Tenn_id

StoreArqNotExist(arq-, tenn_id, host_ref): []
Transactions[host_refl := Card.arq, Price.arq, Date.arq, Time.arq,

'Transaction Cancelled', ", Tenn_id

UpdateTrans(autrej) : []
Status.Transactions[host_refl := Response.autrej
Reason. Transactions[host_refl := Reason.autrej

UpdateTimeOut(host_ref.request) : []
Status.Transactions[host_ref.request] :=' TimeOut'

TRIGGERINGS

Al9

COOPERATION CONSTRAINTS
ACTION PERCEPTION

XK(Bank.EnvoiMsg(autrej, bank_id) / true)

ST ATE PERCEPTION
ACTION INFORMATION

XK(SendRequest(request, bank_id).Bank / true)
XK(SendMsgResponse(rep, tenn_id).Terminal / true)
XK SendArq-(cancel, bank_id).Tenninal / true)
XK(SendMsgCont'(conf_h, bank_id).Bank / true)

STATE INFORMATION

A20

The Declaration associated with the HOST agent

Host

Terminal ...
1

SendMlg -c::::,

A6K TER NAL

;- ~i~-:
: Ptriod 1

-----,

~ _____ J

NotYet
Cancelled

c::::,

: Pin_Ok 1

1

1 llOOlEAN 1 _____ !

False
Pin

c::::,

Bank

♦

Request
Treatment

c::::,

Q TER~INAL A Q TER NAL

~
Slo<e
Valid

c::::,

EnwiOk

=
BAKR EST

G,eale

Requeil

Terminal ...

5endM,g
RNponse

c::::,

REP TERMINAL

RetpOnM
Treatrnent

c::::,

RE _H TERMINAL A Q RE _H DEBIT R QUEST

l~.J
Œ]

ARC- TERMINAL

Sto<e
lnvalid

RE _H TER NAL A Q RE _H

Store
Arq-

=
RE _H TERMINAL A 0-

Codes

Sto<e
Prev

Cancelled

c::::,

TERMINAL A Q

Bank

♦

Send
Requeil

c::::,

REQ ESTBA K

Update
Trans

c::::,

A RE

FindOul
Bank

c::::,

ARQ
Treatment

c::::,

A Q- TERMINAL

RE _H

lnlonn
Cancetled

c::::,

R _H

Create
Arq-

c::::,

DE

TransacttOOS

R OUEST

Figure 5.8. The Graphical Declaration of the Host agent

c. The Bank Agent

The Declaration of the Bank Agent

DECLARA TI ONS
ST ATE COMPONENTS

Transactions table-of TRANS_ BK indexed-by REF_ BK
Accounts table-of INTEGER indexed-by DEBIT
BalanceOk instance-of BOO LEAN

Send
Msg Tenninal
Arq-

c::::,

TER INAL 0-

SendMsg
Req Tennina

+1----=
A Q TERMINAL

A21

ACTIONS
Check_Balance(request) : the action of checking the customer's balance contained in the received

request request
Check_ Balance(REQUEST)

StoreAccepted(request, bank _ref) : the action of storing the accepted transaction request request into the
transaction table at position bank _ref

StoreAccepted(REQUEST, REF _BK)
UpdateAcc(debit_ nber, price) : the action of retrieving the transaction amount price from the

customer's bank account debit nber
UpdateAcc(DEBIT, PRICE)

CreateRep(bank_ref, autrej): the action of creating a response message autre} containing the bank's
response based on the informations contained in the transaction table at
position bank _ref

CreateRep(REF _BK, AUTREJ)
EnvoiMsg(autrej, bank_id) : the action ofsending the response message autre} and the bank's

identification code bank _id to the Host agent

EnvoiMsg(AUTREJ, BANK)➔HOST
StoreRefused(request, bank _ref) : the action of storing the refused transaction request request into the

transaction table at position bank_ref
StoreRefused(REQUEST, REF _BK)

StoreCancelled(request, bank_ref): the action ofrecording a ARQ- message cancel arriving before its
corresponding ARQ message at position bank_refinto the
transaction table

StoreCancelled(REQUEST, REF _BK)
StoreRequest(cancel, bank_ret): the action ofrecording a received

transaction Canceling message cancel into the transaction table at
position bank_ref

StoreRequest(REQUEST, REF _BK)
UpdateARQ-(cancel): the action ofupdating the customer's bank account specified in the received

ARQ- message cancel
UpdateARQ-(REQUEST)

The Constraints of the Bank agent

BASIC CONSTRAINTS
DERJVED COMPONENTS
INITIAL VALUATION

Transactions[i] := undef

DECLARATIVE CONSTRAINTS
ST ATE BEHA VI OUR

ACTION COMPOSITION

{Host.SendRequestNotYetCancelled, SpecialTreatment, Check_ Balance, Accepted, Refused,
StoreAccepted, UpdateAcc, StoreRefused, CreateRep, EnvoiMsg, StoreCancelled, Host.SendArq-,
StoreRequest, UpdateArq-}

Request H Host.SendRequest(request, bank_id) <> (NotYetCancelled(request) EB SpecialTreatment(request))

NotYetCancelled(request) H Check_ Balance(request) <> (Accepted(request) EB Refused(request))

Accepted(request) H StoreAccepted(request, bank_ref) <> UpdateAcc(debit_nber.request, price.request) <>
CreateRep(bank_ref, autrej) <> EnvoiMsg(autrej, bank_id)

Refused(request) H StoreRefused(request, bank_ref) <> CreateRep(bank_ref, autrej) <>
EnvoiMsg(autrej, bank_id)

A22

SpecialTreatment(request) H StoreCancelled(request, bank_ref)

RequestArq- H Host.SendArq-(cancel, bank_id) <> StoreRequest(cancel, bank_ref) <>
(UpdateArq-(cancel) EB dac)

ACTION DURA TION

COOPERATION CONSTRAINTS
PRECONDITION

Specia!Treatment(request): (ln-Dom (Transactions, tr))

with Date.request = Date.tr
Time.request = Time.tr
Debit_nber.request = Debit_nber.tr
Status.tr = 'Transaction Cancelled'

NotYetCancelled (request) : -, (ln-Dom (Transactions, tr))

with Date.request = Date.tr
Time.request = Time.tr
Debit_nber.request = Debit_nber.tr
Status.tr = 'Transaction Cancelled'

Accepted(request): BalanceOk

Refused(request) : -, Balanceûk

UpdateArq-(cancel) / In-Dom (Transactions, tr)

with Date.cancel = Date.tr /\

Time. cancel = Time.tr /\
Debit nber.cancel = Debit nber.tr /\ - -
Status.tr = 'Transaction Accepted'

StoreAccepted(request, bank_ref): Transactions[bank_ref] = undef

StoreRefused(request, bank _ref) : Transactions[bank _ref] = undef

StoreCancelled(request, bank _ref) : Transactions[bank _ref] = undef

StoreRequest(cancel, bank _ref) : Transactions[bank _ref] = undef

EFFECTS OF ACTIONS

Check_Balance(request): [)

BalanceOk := (Accounts[debit_nber.request] - Price.request) ~ 0

StoreAccepted(request, bank_ret) : []
Transactions[bank_ref] := Debit_nber.request, Price.request, Date.request,

Time.request, Host_ref.request,
' Transaction Accepted '

StoreAccepted(request, bank _ret) : [)
Transactions[bank _ref] := Debit_ nber.request, Price.request,

Date.request, Time.request, Host_ref.request,
'Transaction Refused' ,
' Amount not Covered'

A23

StoreCancelled(request, bank_ref): []
Transactions[bank _ref] := De bit_ nber.cancel, Price.cancel, Date.request,

Time.request, Host_ref.cancel,
' Transaction Refused', 'Previously Cancelled'

StoreRequest(cancel) : []
Transactions[bank _ref] := Debit_ nber.cancel, Price.cancel, Date.request,

Time.request, Host_ref.cancel, ' Transaction Cancelled'

UpdateAcc(debit_nber.request, price.request) : []

UpdateARQ-(cancel) : []

Accounts[de bit_ nber.request] := Accounts[debit_ nber.request]
- Price.request

Accounts[debit_nber.cancel] := Accounts[debit_nber.cancel] + Price.cancel

TRIGGERINGS

COOPERATION CONSTRAINTS
ACTION PERCEPTION

XK(Host.SendRequest(request, bank_id) / bank_id = self)
XK(Host.SendArq-(cancel, bank_id) / bank_id = self)

ST ATE PERCEPTION
ACTION INFORMATION

XK(EnvoiMsg(autrej, bank_id).Host / true)

ST ATE INFORMATION

A24

The Declaration associated with the BANK agent

Bank

1~
GJ

REQUEST

Request
Arq-

c::,

Host ..
1

Transadicns

1 REF_BK 1--.jTRANS_BK I

Check
Balance

REQÙEST

Aa:arots

1

1 j~B~OO~LEAN~I

DEBIT 1--.1 INTEGER 1

Figure 5.9. The Graphical Declaration of the Bank agent

Send
Arq- Host

c::::,

REQUEST BA K

Send
Request

c::,

Host

