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Abstract The collection of accurate information in an environment destroyed by a disaster 
is a p ramount task in rescue activities. Indeed, a visualisation of the state of decay and a 
locali ation of the possible victims are often preferable before a human intervention. In order 
to obtain relevant information, a total sight of the scene is planned. With this end in view, a 
module equipped with several cameras is developed in such manner to cover the entire field. 
Our work contributes to the development of two algorithms based on the rectification of images, 
one generating a panoramic view and the other estimating the distance measurement. Thus , 
the first part of this thesis presents a non exhaustive overview of the theoretical principles 
of the computer vision. This state of the art constitutes a solid base for the comprehension 
of the research field . Then, the second part defines in detail the different stages of the two 
algorit hms, illustrating the suggested fitting of the various theoretical tools. 

Key ords Computer vision, stereovision, image registration, image rectification, edge de­
tectio , depth estimation, panoramic view, 

Résu é La collecte d'informations précises dans un environnement détruit par un désastre 
est u e tâche primordiale dans les activités de secours. En effet, une visualisation de l'état 
de délabrement et une localisation des éventuelles victimes sont souvent préférables avant une 
inter ntion humaine. En vue d'obtenir des informations pertinentes, une vue globale de la 
scène est envisagée. Dans cet objectif, un module équipé de plusieurs caméras est développé 
de telle manière à couvrir l'entièreté du milieu. Notre travail contribue à l'élaboration de deux 
algorit hmes basés sur la rectification d'images, l'un générant une vue panoramique et l'autre 
estimant les distances. Ainsi, la première partie de ce mémoire présente une récapitulation 
non e:ir.haustive des principes théoriques de la vision par ordinateur. Cet état de l'art constitue 
une b e solide pour la compréhension du domaine de recherche. Ensuite, la seconde partie 
défini t en détail les différentes étapes des deux algorithmes, illustrant l'agencement proposé 
des divers outils théoriques. 

Mots-clés Vision par ordinateur, stéréovision, coregistration d'images, rectification d'image, 
détection de contours, estimation de la profondeur, vision panoramique 
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2 INTRODUCTION 

Introduction 

Our work is inscribed in the project «An Intelligent Sensor Head for Information 
Collection in Debris» [TKSW03] whose goal is to provide automated help for rescue activities, 
typically after an earthquake. 

Great advantages can be taken in robotic solutions and automatic image processing 
for rescue activities. Information collection in debris (like victim information, structural 
information, ... ) is one of the most important tasks in large-scale disasters like the 1995 Kobe 
Earthquake or the 2001 WTC attack. Camera systems mounted on robots could provide 
great help in search and rescue operations. 

This project is to develop an intelligent sensor head offering a wide view m order to 
collect efficient and thorough information. To obtain omnidirectional images horizontally and 
vertically, a number of cameras equips the sensor head forming what we call a compound eye 
camera. 

Figure 1: Camera allocation in the prototype. 

The first stage is the development of a prototype which has 12 cameras only horizontally 
as in figure 1. Thus, the angle between two cameras is of 30 ° . This configuration is justified 
by the picture angles of the cameras which are of 58.5 ° horizontally and of 47.5 ° vertically. 
In this way, the images overlap and a panoramic image can be composed from several source 
images. 

In addition to panoramic view, it is possible to compute 3D position of points in the 
scene using binocular stereopsis. Furthermore, the proposed method allows human to easily 
recognise the scene in detail including depth estimation. 
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• visual navigation inside the panoramic view; 

• 3D mapping based on distance measurement. 

The main contribution of this work is to offer an overview of the theoretical basis and 
the m::>st important principles in computer vision. Our approach from scratch facilitates the 
comprehension of the major concepts. Thus, anyone can quickly understand the tapie of this 
research field. Then our implementation allow to estimate the efficiency of our proposed 
method. We published it in [TKSW03] . 

To introduce the first part, the chapter one simply recalls how images can be related 
throu 0 h various 2D geometric transformations. The chapter two intuitively explains the 
camera model and the rendering of digital images. Next the translation of this model is done 
in mathematical form. In this way, the epipolar geometry highlights the relation between 
two images in a stereoscopic system. In this chapter, the core of our approach, namely the 
rectification algorithm, is also presented. The idea is to align images coming from different 
view oints by suppressing the angle between them. Then the chapter three presents the 
most used registration methods. The objective of image registration is to find corresponding 
point between images. It is known to be one of the most difficult task in computer vision 
when accurate results are needed. The chapter four denotes how to simply recover a 3D point 
from corresponding points in two images. In the chapter five, the most known edge detectors 
are reviewed and finally the most used one - the Canny edge detector- is detailed. It is an 
important step because it reduces the data volume while keeping the relevant information 
contained in an image. 

At last, the second part explains the proposed solutions for the panoramic generation and 
the depth estimation according to the principles and concepts introduced in the first part. 
The main stages of the two algorithms are shown on a flowchart and each of them is detailed , 
illustrating the theoretical tools defined in the state of the art. 
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Introduction 

Above all, it is necessary to recall the different 2D geometric transformations that can 
relate images [Fis02, Aga02, Lev95, FLPOl]. In what follows, each type of transformations is 
linear and invertible. Therefore, if the matrix M transforms p top' (i.e. p' = Mp), then 
the inverse matrix M-1 transforms p' back top (i.e. p = M- 1p'). 80 the product of M 
and M-1 is the identity matrix i.e. no transformation is applied. 

In this chapter, the homogeneous coordinates system is briefl.y recalled. Then, the most 
used 2D geometric transformations are reviewed in the order of their degree of freedom. Hence 
each transformation is a subset of the next one and more general type of transformations means 
weaker invariants. 

1.1 Homogeneous coordinates 

Working with geometric transformations and geometric handling involves working in ho­
mogeneous coordinates. That is, a 2D point P with Cartesian coordinates (x, y) becomes a 
column vector whose third component is set to 1 i.e. p = (x, y, l)r. So the relationship be­
tween p and p' can be expressed in matrix notation. Generally, a vector of three real numbers 
(x, y, z)T with z f. 0 is the homogeneous coordinates for the point P with Cartesian coordi­
nates (x/ z, y/ z) and P has many homogeneous coordinates1 . Indeed, (x', y', z')T represents 
the same point Pas (x, y, z)T if (x', y', z')T is a scalar multiple of (x, y, z)T i.e. 

(x', y', z'f = (>.x, >.y, >.zf (1.1) 

where >. is a scalar, >. f. O. 

More generally, a point in a n-dimensional space will be represented as a vector of size 
n+l. 

1. 2 Euclidean transformation 

The basic geometric transformations are Euclidean transformations or isometries. Isometry 
means that the distance between any two coordinate locations remains unchanged by the 
transformation. It concerns: 

rotations which change orientation about the coordinate origin; 

translations which change position about the coordinate origin. 

Note that refl.ections are also an isometry. 

In this case, we are in the Euclidean world coordinates system. Putting these two ba­
sic transformations together defines an Euclidean (rigid body) transformation which has the 
following characteristics: 
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• parallel lines remain parallel; 

• shapes are preserved. 

Thus lengths , angles and areas are invariant. 

The mathematical notation in homogeneous coordinates allows us to combine translation 
and rotation into a single matrix as follows: 

(1.2) 

The t ransformation matrix is a 3 x 3 matrix that depends on three degrees of freedom which are 
0 for the rotation and ti.x , ti.y for the translation along the x-axis and the y-axis respectively. 

1.3 Similarity transformation 

Another basic transformation is scaling which stretches or shrinks the lengths i.e. the real 
world Euclidean distance between any two coordinate locations to be multiplied by a real 
num er À (the scaling factor). A proportional scaling transformation centred at the origin 
with an isometry forms a similarity transformation or homothety. Adding À to the isometry 
matri:x defines the similarity transformation and the matrix is now: 

(1.3) 

With these four degrees of freedom (>. , 0, ti.x and ti.y), the angles and shapes are left unchanged 
and the lengths and areas may change in a proportional way. 

1.4 Affine transformation 

In an affine transformation, the x and y dimensions can be scaled or sheared2 in a non 
proportional way. Affine transformations are linear in the sense that they map straight lines 
into straight lines. They also keep the ratio of lengths on parallel lines and, such as similarity 
transformations, they preserve the parallelism of lines and the ratio of areas. The transforma­
tion matrix is still a 3 x 3 matrix, but with six degrees of freedom. The equation is commonly 
written as: 

(1.4) 

where 

• mo and m4 change the scale independently; 
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• m1 and m3 are the shearing factors; 

• m2 and m5 represent the translation. 

Note that, as for other transformations, the transformation matrix is required to be nonsin­
gular. 

In short, affine transformations do not preserve lengths and angles and thus change the 
shape of geometric abjects. 

1.5 Projective transformation 

A projective transformation, also called homography, is an invertible mapping such that 
collinear points remain collinear3 after transformation, i.e. straight lines remain straight and 
lines are mapped to lines (but the parallelism is not necessarily preserved). So with projective 
transformations, collinearity and cross ratio4 along lines are invariants. The 3 x 3 matrix is 
defined up to a non-zero scale factor5 and has eight degrees of freedom as follows: 

(1.5) 

Here, m5 and m7 influence the parallelism of lines. 

Projective transformations can map points at infinity to finite points called vanishing 
points whereas affine transformations map them to points at infinity. 

1. 6 Overview 

A similarity transformation is sufficient to match two images of a planar scene taken 
from the same viewing angle but from different positions neglecting the stereoscopic effect 
(i.e. assuming that the distance of abjects is large). That is, the camera can rotate about its 
optical axis6 or the camera can move but the optical axis should remain parallel. A projective 
transformation accounts for distortions which occur when images of a 3D static scene are taken 
at fixed locations, or when multiple images of a planar scene (e.g. table, painting, ... ) are 
taken from arbitrary locations. In practice, the projective model is also a good approximation 
for a 3D scene when the movement of the camera is small compared to its depth, and for 
a scene when the relative distances between abjects in the scene is small compared toits depth. 

The two following tables give an overview of the different geometric transformations and 
allow us to identify the differences between them and their effects. 

3 A set of points is collinear if they ail lie on the same straight Jine. 
4 If we have four points A, B, C and D lying on a straight line, then the ratio 1~:g~ is called the cross 

ratio. 
5 A nrni<>r1 ivP trAn<afnrmAtinn ). A fwith ). ci n) is thP. s::i.mP. ::is A sinr.a...thev man ta nraiective)v eaniva)eot 
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Euclidean similarity affine projective 
Transformations 
rotation, translation ✓ ✓ ✓ ✓ 
isotropie scaling ✓ ✓ ✓ 
scaling along axes, shear ✓ ✓ 
perspective projections ✓ 
Invariants 
distance ✓ 
angles, ratios of dis- ✓ ✓ 
tances 
parallelism, center of ✓ ✓ ✓ 
mass, ratio of areas 
incidence5 , cross-ratio ✓ ✓ ✓ ✓ 

Table 1.1: This table (FLPOl) shows an ordering of geometries : particular transformations and properties left 
invariant by the transformations . Each geometry is a subset of the next. More general transforma­
tions mean weaker invariants. 
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Table 1.2: Common geometric transformations that can relate two images. Homogeneous coordinates are used to allow to express the transformations in t 
of matrix multiplications. 
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2.1 Computer v1s1on 

The aim of computer vision is the extraction of tridimensional information ( or in a 
general way, all that human being can do with his own visual system) from a set of images 
captured with an artificial system (such an electronic camera). Without any constraint, it 
seems difficult to be able to find the information of the surrounding world from a set of 
bidimensional projections. However, the biological systems provide a proof of the possibility 
of using vision for problems such navigation, abject recognition, scene analysis, depth 
calculation, ... 

Thus, a logical way to fit the problem of vision in artificial system is trying to copy the 
biological vision. AU this section is greatly inspired from [Fus98] . 

2.1.1 Perspective projection 

The simplest geometrical model of imaging is the pinhole camera. The pinhole model can 
be seen as a box with a hale in one of its sicle. The light rays will be projected to the back of 
the box and draw an inverted and scaled image of the abject. (See figure 2.1) 

y 

X 

Image plm image ' .... ·· ··· · ················· ················ ·· ··········· ····· ···· ······ill 
1?.·.·.·_·.-r.·-·.·_·.·_·.·.·.·.·.·.·. ·.·.·-;;·n~ok·· ·· Z .......... ···· ·· ······· ·············· . ····· ···· · ·· ...... . 

Xp )----- -
, , 

f 

Figure 2.1: The pinhole mode! 

This model can be expressed in a mathematical way. Let X be a point in the scene with 
coordinates (X, Y, Z) and Xp its projection on the image plane with coordinates (X', Y', Z'). 
If f is the distance between the pinhole and the image plane, by similar triangle, we can derive 
the following equations: 
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y 

IMAGE 

X 

z 

Figure 2.2: The pinhole camera mode! 

Thus we obtain 

X' -JX 
z 

Y' -JY 
z (2.2) 

Z' -f 

These equations describe the perspective projection or central projection which defines the 
imag formation process. Note that the process is not linear because of the division by Z and 
that the image is inverted left-right and up-down as specified in the equations by the negative 
signs Equivalently, we can imagine to put the image plane in front of the pinhole. Then we 
obtai:n a non-inverted image and this will simplify the computation since the negative signs 
will disappear from the equations. 
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2.1.2 Optics 

In the pinhole model, for each scene point, there is only one light ray which reaches the 
image plane. But in the real case, the lens is actually wider than a pinhole to collect more 
light. The main drawback is that only a part of the scene can be in sharp focus in the same 
time. Thus, a common way to approximate a complex optical system is to use a thin lens. A 
thin lens has the basic following properties (see figure 2.3): 

1. Any ray entering the lens parallel to the optical axis on one side goes through the focus 
F on the other side; 

2. Any ray going through the lens centre C is not deflected. 

optical 
axis 

Figure 2.3: Thin lens 

f 

The distance f between the focus F and the lens centre C is the focal length, it depends on 
the curvature of bath sides of the lens and on refraction index of the material. 

Let X be a point of the scene, its image Xp can be obtain using the properties of the thin 
lens, by the intersection of two special rays. The first ray is the ray going through X and 
parallel to the optical axis, the second is the ray going through X and through the lens centre 
C (see figure 2.4). With this construction we obtain the thin lens equation: 

(2.3) 

The image of a point in the scene at a distance Z of the centre of the lens will be in sharp 
focus at a distance Z' (which depends also on the focal length f) of this centre. 
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optical 
axis 

X 

-----~-- ----------------------

z z· 

Figure 2.4: Construction of an image of a point. 

2.1.:: Digital image 

17 

A digital image acquisition system is composed of three hardware devices (see figure 2.5): 

• a viewing camera; 

• a frame grabber; 

• a host computer. 

The camera consists of an optical system ( approximated by a thin lens) and a CCD 
( Cha ged Coupled Device) array that constitutes the image plane. The CCD array can be 
seen as a (n x m) grid of photosensitive cells. Generally it has a dimension of 1 x 1 cm and 
is coroposed from about 5 x 105 elements. 

E:ach cell receives the light rays and will convert the light energy into voltage, the output 
of th€ CCD array is then an analog electrical signal obtained by scanning the lines of 
photo-sensor and finding the cell's voltage. 

The video signal is sent to a device called the frame grabber. It will digitised this signal 
into a rectangular array of N x M (typically 512 x 512) integer values and store it in a 
memnry buffer . The elements of this array are called pixels (picture elements) and their value 

' I 
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/C~,,., 
/ ~ Pixel 

(0,0) (511,0) 

1 
r 

Analogie 
A/D frame 

grabber 

(0,51 !) (511,511) 

Figure 2 .5: Digital image acquisition system 

frame buffer. 

It 's important to note that the dimension of the CCD array (n x m) is not necessary the 
same than the dimension of the image (N x M), thus the position of a point in the image plane 
is different if it is measured in CCD elements or in pixels. There is a scale factor between the 
two measures relied by the following equations 

Upix 

Vpix = 

We assume that the size of the CCD array element is the effective pixel size (measured in 
m/pixel). The process of sampling the image plane and transforming it to the digital format 
is called the pixelization. 

2.2 Camera model 
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between a 3D point and its projection onto the image plane. 

As we saw in section 2.1.1, the pinhole camera model can easily be modelled with its 
optical centre C and its image plane I (see figure 2.6). 

A 3D point X is projected on a point Xp of the image described as the intersection of the 
line containing C and X with the image plane I. 

The intersection between the optical axis and I is called the principal point. 

y 

X 

C 

Figure 2.6: Pinhole camera model, with the camera standard reference frame (X, Y, Z) 

In a camera model, it's important to know the different existing coordinates systems (called 
reference frames). In this case, three reference frames are used (see figure 2.7): 

• World reference frame (x, y, z) is an arbitrary 3D reference frame in which a 3D 
point can be expressed; 

• Image reference frame ( u, v) is the coordinate system in which the position of an 
image point is expressed; 

• Camera standard reference frame (X, Y, Z) is a particular 3D reference frame bound 
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y 

C 

camera reference 
frame 

y 

V 
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z 

world reference frame 

X 

X 
z 

I 

X 

Figure 2 . 7: Reference frames 

First, we will consider a very special case in which the world reference frame is set to the 
camera standard reference frame, the focal length is equal to 1, the effective pixel size is 1 
and the image reference frame is centred in the principal point. 

Let w = (x, y, z) be the coordinates of the point X in the world reference frame, and 
m = (u, v) be the coordinates of the projection Xp of X in the image (in pixels). From section 
2.1.1, we can simply deduce the following relationship 

1 u V 
= (2.4) 

z X y 

that is 

1 
u -X (2.5) 

z 
1 

V -y 
z 
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Let 

and (2.6) 

be the homogeneous coordinates1 of Xp and X respectively. We will use - to denote homo­
geneous coordinates. The projection equation, in this simplified case, is 

Note that, in this special case, the value k is equal to the third coordinate of X. 

or, 

H nce, in homogeneous coordinates, the projection equation is 

km=Pw 

where '.:::'. means "equal up to an arbitrary scale factor". 

(2.7) 

(2.8) 

(2.9) 

The matrix P represents the geometric model of the camera, and is called the Perspective 
Projection M atrix (PPM). In this special case, we have 

~ ~ ~ l = [IIO] 
0 1 0 

(2.10) 

2.2. 1 Intrinsic parameters 

In a more realistic model of camera, the image plane is placed behind the projection centre 
at a certain distance f. Projection equations become 

{ 
u = 
V = 

-fx 
~ 
z y 

(2.11) 

where J is the focal length in meters. 
Moreover, pixelization must be taken into account, by introducing a translation of the principal 
point and a scaling of u and v axes 

ku=/-x + uo 
kv=1Y + va 

(2.12) 



22 PART I. STATE OF THE ART 

where (uo, vo) are the coordinates of the principal point, ku (kv) is the inverse of the effective 
pixel size along the horizontal (vertical) direction, measured in pixel/m. 
After these changes, the PPM becomes 

P=[ 
-fku 0 uo 

~] = A[J[OI 0 -fkv VQ 

0 0 1 
(2.13) 

where 

[-fku 0 
uo ] A= 0 -fkv vo 

0 0 1 
(2.14) 

If the CCD grid is not rectangular, u and v are not orthogonal; if 0 is the angle they form, 
then the matrix A becomes 

[

-fku 

A= 0 
0 

fku cot0 
- fkv/ sin0 

0 

Hence, the matrix A has -in general- the following form 

[ 

Œu / UQ ] 

A= 0 Œv Vo 
0 0 1 

uo ] 
Vo 
1 

(2.15) 

(2.16) 

where Œu = - fku, Œv = - f kv/ sin 0 are the focal lengths in horizontal and vertical pixels, 
respectively, and , = f ku cot 0 is the skew factor. The parameters Œu, Œv, 1 , uo and vo are 
called the intrinsic parameters. 
Note that the CCD grid is often rectangular. 

2.2.2 Extrinsic parameters 

The previous section was particular since we assumed that the world reference frame 
coincided with the camera standard reference frame. If we change the camera reference frame 
to a new world reference frame, the rigid transformation encodes the camera's position and 
orientation. This transformation is defined by a 3 x 3 orthonormal rotation matrix R and a 
translation vector T. 

If w and w' are the Cartesian coordinates of the scene point X in these two frames, we 
have 

w=Rw'+T 

using homogeneous coordinates, the later rewrites 

w=Gw' 

where 

(2.17) 

(2.18) 
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The PPM yielded by this reference change is 

p = A[IIO]G = A['RIT] = [A'R.IAT] (2.20) 

The three entries of the translation vector T and the three parameters 2 that encode n are 
the extrinsic parameters. 

Si ce w' = c-1w, with 

(2.21) 

the c lumns of nT are the coordinates of the standard reference frame relative to the world 
refere ce frame and -'R.TT is the position of the optical centre C in the world reference frame. 
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2.3 Epipolar geometry 

Let us consider a stereo system composed with two pinhole cameras (see figure 2.8). 
C and C' are the optical centre of the left and the right camera respectively. A 3D point 
Xis projected onto the two image planes at points x1 and x2 which constitute a conjugate pair. 

These two perspective images of the rigid scene are related by the so-called epipolar geom­
etry, which can be described by a 3 x 3 singular matrix. It contains all the necessary geometric 
information to establish correspondence between the two images. 

2.3.1 Definitions 

• The epipolar plane of X is the plane defined by the 3D point X and the optical centres 
C and C'. 

• The epipole is the point of intersection of the line joining the two optical centres, that 
is the baseline, with the image planes (see figure 2.8). Thus the epipole is the image, in 
one camera, of the optical centre of the other camera (note that the epipole may be out 
of the image plane3 ). 

left image plane 

left 
optical 
center 

left epipole 

C 

X 

baseline 

right epipole 

right 
optical 

c· center 

Figure 2.8: The baseline joins the two optical centres. The point e and e' are the epipoles. 

Image of X 

• The epipolar line of X is the straight line of intersection of the epipolar plane with the 
image plane (see figure 2.9). It is the image in one camera of a ray through the optical 
centre and image point in the other camera. All epipolar lines intersect at the epipole. 
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X 

epipolar plane 

right epipolar line 
left epipolar line 

Figure 2.9: The epipolar plane is defined by the 3D point and the optical centres. Its intersection with the 
image plane constructs the epipolar line. 

Thus, an epipolar constraint is that a point x1 in one image generates a line of possible objects , 
Cx1, whose image generates a line lx1 in the other image on which its corresponding point x2 
must lie (see figure 2.10). We see that this constraint allows us to search the correspondences 
along a line instead of a region with condition that we know the respective positions of the 
cameras ( epipolar constraint). 

xi 

• 

X 
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2.3.2 The epipolar geometry and the fundamental matrix 

In this section we will follow [FL95] to define the relation between the two images x1 and x2 . 

Previously, we saw that the epipolar line lx1 generated by the point x1 is the projection 
in the second image of a line Cx1 through the optical centre C and the point x1 . In other 
words, lx 1 is the line through the projection of the optical centre C (the epipole e') and the 
projection of the point of infinity of Cx1. This consideration will be used later. 

First, we have to see how the optical centre can be recovered from the projection matrix 
P (PPM) defined in section 2.2. In a general way, let us decompose P as follows: 

F=[Pp] (2.22) 

where P is a 3 x 3 matrix of rank 3 and p is a 3 x 1 vector. Without loss of generality we 
assume that C is not at infinity, thus we can write 

(2.23) 

where ë is the projective representation of C according to homogeneous coordinates. Note 
that C is a 3 x 1 Euclidean vector of coordinates and the 1 means that C is not at infinity. C 
satisfies the equation 

(2.24) 

from which we conclude 
(2.25) 

Now we corne back to the epipolar line. We begin with the computation of e' i.e. the 
projection of the optical centre C. Using the equations (2.23) and (2.25) and P1

, the projection 
matrix of the second image, we write 

(2 .26) 

where P' and p' corne from the application of the equation (2.22) to the PPM P1 of the 
second image. 

We also need the projection of the point of infinity of Cx1. This projection is 

(2.27) 

We can easily obtain the projective representation of the epipolar line lx 1 which is the 
cross-product of these two points 4 

lx1 = [p' - P' p-1p] x P' p-1x1 = [p' - P' p-1p] x P' p -l x1 

F 

(2.28) 
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T us we can define the Fundamental matrix F such that 

(2.29) 

where F is a 3 x 3 matrix of rank 2. Therefore, it is singular. 

Since the point x2 corresponding to x1 belongs to the line lx1, it follows that 

(2.30) 

Note that reversing the role of the two images, the fundamental matrix is changed by its 
transpose. Thus, transposing the equation (2.30), we obtain 

(2.31) 

This shows that just as in the case of one camera where we can relate the optical centre to 
the perspective projection matrix P, in the two cameras case, we can relate the fondamental 
ma tri x: to the two projection matrices P and P'. 

Finally, it's interesting to note that if we work in a calibrated environment (both intrinsic 
and extrinsic parameters are known), we use the Essential matrix E and the equation (2.30) 
beco es 

x{Ex1 = 0 (2.32) 

wher 

E= [ 

0 -tz ty ]n tz 0 -tx 
-ty tx 0 

(2.33) 

R and T = (tx, ty, tz)T are the orthonormal rotation matrix and the translation vector 
(see figure 2.11). 

x2 
y 

X' 
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2.3.3 Properties 

The essential and the fondamental matrices have the following properties: 

• The fondamental matrix encapsulates both the intrinsic and the extrinsic parameters of 
the camera, while the essential matrix encapsulates only the extrinsic parameters; 

• The essential matrix E is a 3 x 3 matrix with only 5 degrees of freedom. To estimate 
it using the corresponding image points, the intrinsic parameters of both cameras must 
be known; 

• F maps image points to their corresponding epipolar lines, that is, Fx1 
x{lx1 = x{ Fx1 = O. Likewise, pT x2 = lx2 since zT x2x1 = O; 

• F maps epipoles to the origin of the corresponding image plane; 

lx1 , since 

• F has 7 degrees of freedom. There are 9 matrix elements, but only their ratio is signif­
icant, which leave 8 degrees of freedom. In addition, noting that detF = 0 it remains 
only 7. 
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2 .4 Image rectification 

T!le idea behind rectification is to define two new perspective matrices which preserve the 
optic ' 1 centres and with the baseline contained in the focal planes. This ensures that epipoles 
are a1 infinity, hence epipolar lines are parallel. ln addition, we choose the convention that 
the epipolar lines have to be horizontal. 

T e new perspective projection matrices will have both same orientation but different 
positi ms. Positions ( optical centres) are the same as the old cameras, but orientation changes 
beca se we rotate both cameras around the optical centres in such a way that focal planes 
become coplanar. In order to simplify the algorithm, the rectified perspective projection 
matri:es will have the same intrinsic parameters. The new camera pair can be thought as a 
single camera translated along the X axis of its standard reference system (see figure 2.12). 

e 

C 

Technique 

, , , 

, , , 

X 

, ' , ' 

Figure 2.12: View of the rectification technique 

'• x2 
' 

e' 

C' 

T he method consist in the computation of a rectification matrix which is used to transform 
the two images (in fact the perspective projection matrices). The algorithm consists of four 
step~: 

• Rotate the left camera so that the epipole goes to infinity along the horizontal axis; 

• Apply the same rotation to the right camera to recover the original geometry; 

• Rotate the right camera by R which is the 3 x 3 rotation matrix between the cameras; 
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To carry out this method we construct a triple of mutually orthogonal unit vectors e1 , e2 

and e3. The first vector is given by the epipole which coincides with the direction of translation: 

(2.34) 

The only constraint on the second vector, e2, is that it must be orthogonal to e1. So we 
compute and normalise the cross-product of e1 with the direction vector of the optical axis: 

(2.35) 

The third unit vector is determined as: 

(2.36) 

Finally the rectification matrix, Rrect, is defined as: 

(2.37) 

This rectification matrix is used to transform the images ( with R which is the rotation 
matrix between the two cameras): 

• Set R1 = Rrect and R,. = RRrect; 

• For each left-camera point, Pl= [x, y, Jf compute 

R1p1 = [x', y', z'] 

and the coordinates of the corresponding rectified point, Pi, as 

' f [' ' '] Pl= IX ,Y ,z 
z 

• Repeat the previous step for the right camera using R,. and Pr. 

(2.38) 

otice that the rectified coordinates are in general not integer. Therefore, we have to im­
plement rectification backwards, that is, starting from the new image plane and applying the 
inverse transformations, so that the pixel values in the new image plane can be computed as 
a bilinear interpolation5 of the pixel values in the old image. 



Chapter 3 

Image registration methods 
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Introduction 

Image registration is an important task when we work with several pictures from the same 
scene i.e. images which partially or totally overlap. These images can be taken from different 
viewpoints, different sensors and or at different times. So it finds a variety of applications 
in computer vision such as image matching for stereovision, pattern recognition, motion 
analysis, change detection from images taken under different conditions, multi-modal views, ... 

In our case, when the pictures are taken from different viewpoints, it is useless to simply 
overlay the images because the result will be full of misregistration. So, the purpose of 
registration is to find the coordinates transformation that maps each point in one image to a 
point in the others so as to optimally align the images together when a perfect alignment is 
not possible. 

Following [Bro92], we can distinguish four main classes of registration techniques according 
to the situation: 

multi-modal registration is used to talk about registration of images acquired from differ­
ent sensors. It integrates information from the different sensors such as positron emission 
tomography (PET) and single photon emission computed tomography (SPECT) in the 
medical image analysis to anatomically locate metabolic fonctions for example; 

template registration finds a match for a reference pattern in an image e.g. recognising an 
airport and its runways in a satellite photograph; 

viewpoint registration tackles the matching of several images from different viewpoints. It 
is well known in computer vision to recover the depth of the scene or to track object 
motion; 

temporal registration handles the case of images taken at different times or under different 
conditions. For instance, one can register remotely sensed data to monitor evolution e.g. 
urban growth or pollution. 

We can also classify the different registration techniques by taking into consideration the 
distortions. Even the sensors themselves may introduce noise in the pictures due to the lens 
and the device in charge of encoding the received signal into a digital picture. We distinguish 
two types of distortions: 

spatial differences which are the cause of misalignment. It is the perspective changes in­
cluded by the position and the pose of the cameras. This kind of distortions will deter­
mine the geometric transformation class such as relative translation, rotation, scale or 
more complex spatial transformations which will optimally align the images together; 

non-spatial differences which are not the source of misregistration but make registration 
more difficult since the matching will not be exact, even after spatial transformation. 
It is important to notice that the non-spatial distortions should not be removed by 
registration. Therefore, the similarity measure and the search space and strategy have 
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The compound eye camera for rescue activities is in the viewpoint registration category, 
with lot of spatial differences. Subsequently, this review of standard methods is focused on 
this part. The reader who is interested in the other fields can refer to [Bro92]. 

The transformations that relate images taken from different viewpoints are local or global 
geometric transformations accounting for perspective distortions. On the one hand, [Bro92] 
defines: 

glob 1 transformation as a single equation which maps the entire images together; 

local transformation as a different mapping depending on the spatial location in the images. 

On t e other hand,we can distinguish global alignment and local alignment: 

global alignment establishes a mapping between each image and an arbitrary reference 
image. In most cases, it reduces the possible accumulated registration errors and it 
allows a large motion between successive images. This is typically used for independent 
cameras; 

local alignment finds a transformation between pairs of images in a set of several images. 
This techniques compensates for small amounts of motion parallax. This is typically 
used for a single camera in motion. 

Combining both global and local alignment can improve the quality of the registration. First, 
global alignment is applied to the whole sequence of images and then local alignment is based 
on the results of pairwise local image registrations. 

I this chapter, we review the most used methods to register images. We begin with the 
frequ.ency based registration using the Fourier transform. Next we corne back in the spatial 
domain with the presentation of the optical flow and its use in image registration. The two 
most common methods directly based on intensity are also detailed, namely the correlation­
based method and the technique using the Levenberg-Marquardt algorithm. Then we describe 
the feature based registration, especially using corners. AU of these methods rely on a score to 
measure the similarity or the error obtained with the estimated parameters of the registration, 
so di erent similarity measures are discussed in the last section. 
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3.1 Frequency based registration 

Many image registration methods work in the spatial domain, we will review them in the 
next sections. The phase correlation however is based on the Fourier theory and thus works 
in the frequency domain. The Fourier transform is used to decompose an image into its sine 
and cosine components and has several properties that can be exploited for image registration. 
This way of processing images is not really intuitive so we will first describe the basic principles 
and then present the use of the Fourier transform in image registration. 

3. 1. 1 The Optical Fourier Transform 

A simple lens can instantaneously achieve a Fourier Transform. The input image should 
be placed at the focal length of the lens and illuminated with a coherent light incident parallel 
to the optical axis. The corresponding Fourier image can be captured on a frosted glass screen 
placed at the opposite focus of the lens (see figure 3.1 and figure 3.2). Here is the intuitive 
explanation given by S. Lehar in [Leh]: «Every point on the input image radiales an expanding 
cone of rays towards the lens, but since the image is at the focus of the lens, those rays will be 
refracted into a parallel beam that illuminates the entire image at the ground glass screen». 

input 
image 

------f-----

lens 
Fourier 
image 

interference 
- • • - 1 ■ - ■ 1 - ■ 1 - 1 1 - ■ ■ - 11 - ■ 1 -> 

-··-··-··-··-··-··-··-··-> 

- .. - .. - .. - .. - .. - .. - .. - .. -> 

~------!-------

Figure 3.1: On the one hand, every point of the input image is spread uniformly over the Fourier image, 
where constructive and destructive interference will automatically produce the proper Fourier 
representation. 

The forward spatial 2D Fourier transform 8' off (x, y) is defined as: 
00 00 

8'{f(x, y)}~ F(u, v) = J J f(x, y)e-i21r(ux+vy)dxdy (3.1) 

-00 -00 

where x, '!./ are the spatial variables and u, v are the spatial frequencies (radians per unit 
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Fourier 
image 

------!----- +-----!-----

Figure 3.2: On the other hand, parallel rays from the entire input image are focused onto the single central 
point of the Fourier image, where it defines the central DC component (the DC component is 
the name given for the F(O, 0) value which is the sum of ail frequencies) which is the average 
brightness of the input image. 

T his optical Fourier transform can automatically perform the inverse Fourier transform if 
we operate in the reverse direction, recovering the brightness image from the Fourier repre­
sentation. The forward and inverse Fourier transforms are identical except for a minus sign 
that reverses the direction of the computation. That is, the inverse Fourier transform is given 
by the formula: 

00 00 

~ - 1{F(u v)} f(x y) 1 / / F(u, v)ei21r(ux+vy)dudv '-). ' = ' = (21r)2 (3.2) 

-00-00 

3.1.2 Basic principles 

According to the Fourier theory, any signal can be expressed as a sum of a series of 
sinusc:ids. In 2D, this periodic fonction is of the form [HE]: 

s(x,y) = Acos(2nfxx + 21rfyY + 0) (3.3) 

where A is the amplitude, f x and Jy are the horizontal and vertical frequencies respectively 
and 0 ïs the phase. The periods over the horizontal and vertical axis of the sinusoid are defined 
using the reciprocal of frequency i.e. y;; and t. Since we are working with digital images , 
we are only interested in discrete sinusoids and we can write the frequencies fx and Jy as ~ 
and I where N, M are the width and height of the image and u, v are integers that index 
vertic.i.l and horizontal frequencies. Let the input image I(x, y) with O ~ x < N , 0 ~ y < M 

1 r \ - n+ 1, 1 _ 1 _ __ _: __ ,_J.. _____ \ ,:xr __ .1.. _ _ , 
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with 0 = 0 or ; as follows: 

where a( u, v) and b( u, v) are the weights of the sinusoids and their absolu te values indicate 
the amount of each frequency in the image I(x, y). A high frequency image has large weights 
for high frequency indices u, v and similarly a low frequency image has large weights for small 
frequency indices u, v. Note that the weights are defined on a coordinates system indexed by 
pairs ( u, v) which is called the frequency domain. 

The Discrete Fourier Transform (DFT) is the operation of obtaining the frequency 
domain representation of the image. The following definition is from the HIPR1 website 
[FPWW02): « The DFT is the sampled Fourier transform and therefore does not contain all 
frequencies but only a set of samples which is large enough ta Jully describe the real domain 
image. The number of frequencies corresponds ta the number of pixels in the real domain 
image». Consequently, the brightness image and the Fourier image are of the same size and 
both contain exactly the same information, but expressed in terms of amplitude and phase. 
In other words, the Fourier image is a function of spatial frequency (i.e. a function from 
the frequency plane to complex numbers), rather than brightness as a function of spatial 
displacement (i.e. a function from the 2D plane to real numbers). Therefore, an inverse 
Fourier transform (3.6) of the image in the frequency space exists and produces an exact 
pixel-for-pixel copy of the original image. 

For a N x M image I(x, y), the two dimensional N x M DFT F(u, v) is given by: 

N-1 M-1 

F(u, v) = I:: I:: I(x, y)e-i21r(~+~) for u = 0, ... , N - 1 and v = 0, ... , M - 1 (3.5) 
x=O y=O 

where I(x, y) is the image in the real space and the exponential term is the basis fonction 
corresponding to each point F( u, v) in the frequency space2 . This equation can be interpreted 
as: « the value for each point F( u, v) is obtained by multiplying the real image with the corre­
sponding base function and summing the result». This is an operation called "convolution". 

Each term of the Fourier transform depends on 

• the spatial frequency. It corresponds to the frequency across space with which the 
brightness modulates i.e. the rate of change of pixel values in the image. For example, 
rapid changes of gray-level values imply high frequency and almost uniform gray-level 
values imply low frequency; 

and encodes 

• the magnitude of the sinusoid which stands for the contrast, i.e. the difference between 
the darkest and the brightest peaks of the image (see equation 3.7); 
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• 1 he phase which represents how the wave is shifted relative to the origin (see equation 
:l .8); 

and the whole series of sinusoids ranges through spatial frequency from zero, this is the DC 
compcnent F(0, 0) 3 , all way up to the Nyquist frequency F(N - 1, M - l )4 . 

Fi• ally, to recover the image in the real space, we can use the inverse DFT as follows: 

N-1 M-1 

I(x,y) = N~ L L F(u, v)ei271'(~+~) for x = 0, ... , N - l and y = 0, . .. , M - l 
u=O v=O 

(3.6) 

We can decompose the DFT expression in two parts [Der98, HE]. The magnitude of the 
compLx DFT coefficients is called the amplitude spectrum which is defined to be 

IIF(u, v)II = JRe{F(u, v)}2 + Im{F(u, v)}2 (3.7) 

The s,1uare of the amplitude spectrum is called the power spectrum or the spectral density 
of the image. The phase of the DFT coefficients, namely the phase spectrum of the image, 
corres onds to 

_ 1 (Jm{F(u, v)}2
) 

LF(u, v) = tan Re{F(u, v)}2 (3.8) 

In ad ition, the DFT and inverse DFT are periodic. A conjugate symmetry relation between 
the D7"\T coefficients exists over one period of the DFT. This relation is formally stated as: 

F(u,v) = F*(N -u,M-v) for u E [0, N] and v E [0, M] (3.9) 

where * denotes complex conjugate. This conjugate symmetry implies: 

IIF(u,v)II = IIF(N-u,M-v)II (3.10) 

On figure 3.3, we can see a simple example of the Fourier transform found in [Leh]. Let 
a sinœoidal brightness image of spatial frequency 1 be the image in the real space and its 
corres onding image in the frequency space. 

3 No modulation i.e. the average brightness of the whole image. For example, a zero DC component would 
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(a) Brightness image (b) Magnitude image 

Figure 3.3: The sinusoïdal image of spatial frequency 1 (3.3(a)) and its corresponding image in the frequency 
space (3.3(b)) . Every pixel in the Fourier image is a spatial frequency value, the magnitude 
of that value is encoded by the brightness of the pixel (with white color for high value). The 
bright pixel at the very center is the DC component. The two brighl pixels either sicle of the 
center encode the sinusoïdal pattern. The brighter t he peaks in the Fourier image, the higher the 
contrast in the brightness image. Ali other pixels in the Fourier image are black i.e. values are 
zero because there is only one Fourier component in this simple example. 

A signal containing only a single spatial frequency of frequency f is plotted as a single 
peak at point f along the spatial frequency axis, the height of that peak corresponding to 
the amplitude, or contrast of that sinusoïdal signal. Actually, due to the conjugate symmetry 
property, the Fourier transform also plots a mirror-image of the spatial frequency plot reflected 
across the origin, with spatial frequency increasing in bath directions from the origin. These 
two plots are always mirror-image reflections of each other, with identical peaks at f and - f 
as shown on figure 3.4. 

N 

spatial frequency t 

Q) 

"O 
::, 
~ 
Cl. 

E 
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frequency f 

. 

0 

t 
DC term 

t 
frequency f 

N 

spatial freq ue ncy 

Figure 3.4: The two plots with identical peaks at J and - J due to the conjugate symmetry property of the 
Fourier transform. 

Note that a logarithmic transformation is commonly applied to the Fourier image because 
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example found in [FPWW02]. 

(a) Brightness image (b) Magnitude image ( c) log image 

Figure 3.5: From left to right: the original brightness image (3.5(a)) to which the Fourier transform is 
applied. The magnitude image (3 .5(b)) calculated from the complex result. We can only see the 
value of the DC component which is by far the largest component of the image. A logarithmic 
transformation is applied to obtain the last image (3.5(c)). We can see that the image contains 
components of all frequencies, but that their magnitude gets smaller for higher frequencies. Hence, 
low frequencies contain more image information than higher ones. We can also observe that 
there are two dominating directions originating from the regular pattern in the background of 
the original image. 

0 e of the interesting properties of the DFT is to be separable [FPWW02, HE], i.e. it 
can be seen as a lD transform on every row of the image, and another lD transform on every 
column of the image, resulting in a 2D Fourier transform of the same size as the original image. 
Indeed, the equation can be written as: 

N-1 

G(u,y) = L I(x,y)e-i21r(~) for u = 0, ... , N - 1 (3.11) 
x=O 

M-1 

F(u, v) = L G(u, y)e-i21r(*) for v = 0, ... , M - 1 (3.12) 
y=O 

Expressing the 2D Fourier transform in terms of a series of lD transforms decreases the 
number of required computations. Even with these computational savings, the lD DFT has 
n 2 complexity. This can be reduced to n log2 n by using the Fast Fourier Transform (FFT) 
to co pute the lD DFTs. The FFT takes the "<livide and conquer 11 approach to solve the 
problem. There also exists other common variants such as the Discrete Cosine Transform 
(DCT). It is not the purpose of this part to talk about that, the interested reader can refer to 
[Der98, FPWW02, HE]. 

3 .1.3 The phase correlation 

Now that the principles of the Fourier transform have been presented, we can describe its 
use in the image registration field. As L. G. Brown recalled it in [Bro92], translation, rotation 
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Let li (x, y) and I2(x, y) be the intensity fonctions of two overlapping images, the purpose 
is to recover the displacement (b.x, b.y) such that: 

Ii(x - b.x, y - b.y) = h(x, y) (3.13) 

The phase correlation algorithm can estimate the translation between a pair of overlapping 
images. This translation property of the Fourier transform is also called the Shift theorem 
(3.1). Denote by Ss{I(x, y)} the Fourier transform of I(x, y): 

Ss{I(x, y)}:@: F(u, v) (3.14) 

Theorem 3.1 (The Shift theorem) Let I(x,y) be a function on R2 and F(u,v) its 2D 
Fourier transform, then 

(3.15) 

In the case of a simple displacement, the Fourier magnitude of the two images in the 
frequency space is the same. The translation is expressed in the difference between the phases 
of the images. Let F 1 and F2 be the DFT of li and I2 respectively, we have according to the 
Shift theorem: 

(3.16) 

According to the Correlation theorem5 , the Fourier transform of two images correlation is 
[Lia00]: 

Cross(u,v) = F1(u,v)F2(u,v) (3.17) 

where * denotes the complex conjugate. As stated before, this is the phase change in the 
spectrum domain that reflects the shift in the spatial domain. Thus, the cross-power spectrum 
(3.17) is normalised by its magnitude to obtain its phase: 

F2(u, v)Fi(u, v) 
<I>[Cross(u, v)] = IIF2(u, v)Fi(u, v)II 

Equations (3.16) and (3.18) yield to 

<I>[Cross(u,v)] = e-i21r(uli.x+vli.v) 

(3.18) 

(3.19) 

The inverse Fourier transform (IDFT) is applied to the normalised cross-power spectrum 
to obtain the phase correlation surface: 

(3.20) 

Thus applying the inverse Fourier transform to the phase shift results in a ô fonction 
offset by exactly the amount of translational displacement. This correlation surface 
Corr(x, y) is 0 everywhere except a pulse which is located at (b.x, b.y), Thus we are able to 
recover the displacement between the two images by seeking the pulse with the equation (3 .20). 

The peak value of the correlation surface Corr(m, n) should ideally be equal to 1 but the 
presence of random noise, dissimilar parts and non-translational motion imply a peak value 
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smaller than 1. Therefore, to work even in the presence of noise, the height of the IDFT values 
is used as a measure for the quality of the match. So the translation parameters 6.x and 6.y 
are estimated by searching the maximum (see figure 3.6) as follows: 

{1.14 .. · 

tJ..Oa. 

a.oo 

tl..04 

Qllil 

0- .•· 
~ 

(x,y) = arg (~8:X(Corr(x,iJ))) 
(x,y) 

• ' ·•. 

• .... : 

(3.21) 

Figure 3.6 : Once the IDFT is computed, the largest peak is searched and its valueµ is recorded as a measure 
of the match quality. 

In [McG98, RC96], the phase correlation method has been extended to recover rotation, 
scale and translation parameters between two images, assuming h(x, y) be the scaled, rotated 
and tran lated replica of li ( x, y). In a few words, the rotation movement is represented as 
a translat ional displacement by converting to polar coordinates. Then it is deduced in a 
similar manner as translation using phase correlation. It should be possible to estimate any 
transformation between images as proposed in several works. Though the Fourier approach 
is suited to estimate general small motion between images (e.g. between frames in a video 
sequence), it is difficult to extend the method to large general transformations i.e. images 
taken from very different viewpoints. 

3.1.4 Advantages and drawbacks 

In short, the frequency domain method or phase correlation estimates the 2D Fourier 
transform of each image and computes the phase difference at each frequency, performing an 
inverse Fourier transform and searching for a peak in the magnitude image. 

T his method is often used to get good initial guesses for pairs of images which overlap 
by as litt le as fifty percent. It is particularly well-suited to images taken under different 
conditions of illumination or images taken with different sensors since the phase difference 
for every frequency contributes equally and it is insensitive to changes in spectral energy. 
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As we have seen in this section, the phase correlation is usually limited to translation wh 
it is possible to estimate scale changes and rotations through the conversion of the Cartesi 
to polar coordinates system. Thus, it is a robust method in the case of simple transformatio 
such as translation and rotation between a pair of images (i.e. Euclidean transformatio 
but it is more complicated to tackle problems such as the projective case. If the inter-frar 
motion is not mostly translational (i.e. large rotations or zooms), the use of the correlati, 
measure is not possible. 
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3.2 Optical flow based registration 

Here, the image registration is seen from the motion point of view. The optical flow 
recovery consists in estimating a general motion between two images and generally involves 
estimating an independent displacement vector for each pixel. Most of them are gradient­
based algorithm which estimates the optical flow from spatial (and temporal) derivatives of 
the image intensity. In this section we will first review the underlying theory according to 
[ZBOl] a d then relate the gradient-based method in detail. 

3.2.1 The optical flow 

Since the coordinates system is centred on the viewer i.e. the camera, a 3D point X with 
homogeneous6 position vector X = (X, Y, Z, W)T moves along a 3D path when the camera 
moves. Note that W is assumed to be constant i.e. W is set to 1. The derivative of this path 
with respect to time corresponds to the instantaneous 3D velocity of the point . 

_ dX (dx dY dZ o)r 
w = dt = dt ' dt' dt' (3.22) 

Working back in the image coordinates system, the 3D point X is projected through the 
optical centre here taken as origin onto a 2D projection plane (the image) at distance J, the 
focal length, along the z axis as follows 7 : 

Thus, the 2D point Cartesian coordinates (x, y) under perspective projection are 

x' X 
X= - = j­

Z1 Z 
y' y 

y= - = f-
z' Z 

And we want to recover the velocity vector for every point: 

(3.23) 

(3.24) 

(3.25) 

which represents how quickly the point is moving across the images and the direction of its 
move. 

Let the image intensity I(x, y, t) be now fonction of time t as well as of x and y. So, for 
two images li and h taken at time t and t + dt respectively, we have: 

li (x, y) ~ I(x, y, t) 

h(x, y) ~ I(x, y, t + dt) 

(3.26) 
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A first assumption to derive the relationship between intensity change and optical flow 
that the time-varying image intensity can be expanded in a first-order Taylor series expansi( 
(3.27): 

{)J {)J {)J 
I(x + dx, y+ dy, t +dt)= I(x, y, t) + ax dx + ay dy + at dt+... (3.2 

which expresses the intensity of a point a small distance away and a small time later. T 
dots stand for higher order terms. 

The point at a position (x, y) in the image at time t has moved through a distance (dx, d 
during dt. Moreover, we can suppose that the point intensity is the same at time t and 
time t + dt . This second assumption implies that: 

I(x + dx, y+ dy, t +dt)= I(x, y, t) (3.2 

Thus we have: 
{)J {)J {)J 
-dx + -dy + -dt+ · · · = 0 
ax {)y at 

(3.2 

The time arguments t and t + dt in the intensity fonction are actually just indices for t 
two images (see equations 3.26). Consequently, we can assume a constant velocity for ima 
points between the two images and the higher order terms are O. Dividing equation (3.29) · 
dt yields the optical fiow constraint equation: 

al dx al dy al _ O 
ax dt + ay dt + at -

(3.3 

where: 

• ~~ = {)x and t = {)Y are the x and y components of the optical flow vector; 

• ~, U and ~ are the spatial and temporal partial derivatives of image intensity8 a1 
represent how quickly the intensity changes with space and time. 

Thus, as the 3D point moves about images according to their respective coordinates syste 
its corresponding 2D image point also traces out a 2D path and the vector of 2D velocity 
defined by the derivative of that path. 

- T dx dy 
( )

T 

{) = ('i9 x, {)y) = dt' dt (3. 

This is what it is commonly called the optical flow field. 

3.2.2 The gradient-based method 

Still according to [ZBOl], we assume that the only difference between the two images i 
translation in coordinates. In this way, we can easily explain the estimation of the veloc 
through gradient-based measurement. 
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W have obtained the optical flow constraint (3.30) also called the gradient constraint 
which is independent of dt and can be write as follows to highlight the velocity components 
-Dx an -Dy: 

(3.32) 

where, for the ease of notation, lx, Iy and It are the spatial and temporal derivatives which 
are u ually noted M, U and M- respectively. 

T e gradient constraint relates the velocity at one pixel to the spatial and temporal deriva­
tives f image intensity at the same location. Using the gradient constraint at only one pixel 
to recover the velocity is impossible due to the number of unknowns (-Dx and -Dy) which is 
higher than the number of equations. Assuming that nearby points in the image move in a 
similar manner9 , the solution is to selve velocity over a group of pixels and thus combining 
information over a spatial region. For example, we can take two neighbouring pixels with 
respective coordinates (x1, y1) and (x2, Y2) to obtain 

(3.33) 

An example of the optical flow pattern from the sequence of images of a rotating Rubik's 
cube shown in figure 3. 7 is given in figure 3.8. 

Figure 3. 7: A Rubik's cube on a turntable which is rotating counter-clockwise. 
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Figure 3.8: The velocity vectors calculated from comparing the two images of the Rubik's cube sequence 
(figure 3.7). The vectors represent the counter-clockwise rotation of the turntable and the cube. 
The other point of the image are white because of the static background. 

The gradient-based method computes a possibly different spatial transform for each pixel. 
The goal of motion analysis in the case of image registration is to find a global geometric 
transformation which can be applied over the entire image. 

For example, let consider the affine transformation which relates the coordinates of corre­
sponding pixels (x, y) and (x', y') in the two images li and h as follows: 

SCx 

shy 
shx 
SCy 

(3.34) 
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affine flow field is expressed as 

which can be rewritten 

{)x = x' - x = mo + m1x + m2y 

{)Y = y' - y= m3 + m4x + msy 

m2 
1 +ms 

47 

(3.35) 

(3.36) 

Thus, the parameters of a general 2D affine transformation can be completely determined 
by th affine 6-dimensional flow vector m = (m0 , m 1, m 2, m3 , m 4 , m 5 )T_ Taking the matrix 
form )f equation (3.35), we have: 

wherE 
X=(l x y O O 0) 

Ü Ü Ü 1 X y 

(3.37) 

(3.38) 

Then to recover the parameters mi of the vector m, we rewrite the gradient constraint (3.32) 
as fo ows 

( Ix(x, y, t),Iy(x, y, t)) ( !: ) + It(x, y, t) = 0 

Finaly combining equations (3.37) and (3.39) results in 

( Ix(x, y, t), Iy(x, y, t) )xm + It(x, y, t) = 0 

or more precisely 

(3.39) 

(3.40) 

( Ix(r, y, t), xlx(x, y, t), ylx(x, y, t), Iy(x, y, t), xiy(x, y, t), yly(x, y, t) ) m+ft(x, y, t) = 0 
(3.41) 

T.:) obtain a global affine transformation which will be approximately valid for the whole 
imag~, we want to estimate a single set of affine parameters mi instead of a velocity vector 
for e1.ch pixel. So we take into consideration all pixels inside the overlapping area 10 . The 
equa-; ion (3.41) is extended into a linear matrix equation as follows: 

Am+b=O (3.42) 

where each row in the matrix A consists of the vector in brackets in equation (3.41) for a cer­
tain pixel (x, y) and each component of the vector b consists of the right part of equation (3.41). 

In practice, the intensity conservation assumption is only approximately true because of 
possi)le changes in intensity. Therefore, the problem is to minimise the Sum of Squared 
Diffe:rences11 : 

SSD = L (I(x + {)xdt, y+ {)ydt, t + dt) - I(x, y, t)) 2 (3.43) 
x,y 

10H the two images mainly overlap, then the overlapping area is over the whole images. If not (i.e. only a 
small p art of the images overlaps) , the global translation must be estimated in order to apply the gradient-based 
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which becomes the squared error summed over all the considered pixels according to equation 
(3.42): 

SE= I)Am + b) 2 (3.44) 
x,y 

3.2.3 Advantages and drawbacks 

The gradient-based method can either compute a velocity vector for each pixel or estimate 
a global transformation which approximately aligns the two images. 

The optical flow based method can easily be extended to use full 2D projective models 
and eliminates the need for a calibrated camera. AU available information in the images 
is statistically optimally used. However, a first estimation of the transformation parame­
ters is required in the case of large displacement between images e.g. very different viewpoints. 

According to R. Szeliski and J. Coughlan, the main drawback of the minimisation scheme 
presented above is that it will typically have many locally optimal solutions. Indeed, on the 
one hand we have a velocity vector for each point and on the other hand we have a global 
estimation of the transformation if we compute a single set of parameters. In this case, it will 
have many local misregistrations. So they proposed a spline based image registration [SC94] 
which removes the need for overlapping correlation windows and produces an explicit measure 
of the correlation between adjacent motion estimates. 
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3.3 lntensity based registration 

There are a lot of registration methods based on intensity i.e. the value of each pixel in 
the i age. ln fact, the optical flow based method seen before is also based on intensity. Here, 
we will present two well known algorithms: 

• the correlation-based method found in [TV98]. This method uses a correlation window 
m the second image to find the correspondence with a template from the first image; 

• the method based on the Levenberg-Marquardt iterative nonlinear minimisation algo­
rithm. It is detailed in [Sze96]. 

T hese approaches are similar to the optical flow based method if it is only that the projected 
point~ (i.e. pixel coordinates) are directly used instead of the motion vectors. 

3.3.1 The correlation-based method 

F r a pixel P1 ( x, y) in the first image, this method uses a correlation window centred on 
Pi ( x, y) ( called the tem plate) and looks for the window centred on the corresponding pixel 
P2(x + 6.x, y+ b.y) in the second image i. e. the window producing the highest correlation. 
b.x and b.y refer to the disparity search range 1r in the image h for P1(x, y). This search 
space 1r corresponds to a set of possible translations T(b.x, b.y) along the x-axis and y-axis. 
1r should be as limited as possible. For example, knowing the Fundamental matrix F between 
the cameras, the search of the corresponding pixels can be reduced to a lD space: the epipolar 
line12 of Pi(x, y) (see figure 3.9). 

(a) The left image li (b) The right image h 

Figure 3.9: Assuming the left picture 3.9(a) to be the reference image and the other picture 3.9(b) to be on 
the right, the algorithm looks for the point in the adjacent image corresponding to the central 
pixel of the window in the reference image. This window is correlated to several windows of the 
same width 2W + 1 in the other image (only a few are drawn here) . In the adjacent image, the 
centre of the correlation window producing the highest correlation is the corresponding point 
we are looking for. In this example, the search space is restricted to the pixels in the vicinity 
of epipolar lines of each searched pixels Pi (x, y) . The corresponding pixels obtained with this 
method are marked by a cross. 

As it. is illustrated on figure 3.9. the algorithm consists of: 
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1. For each translation T(ô.x, ô.y) E 'JI', compute the Normalised Cross-Correlation13 : 

w w 
L L (Ii(x+ i,y+j)-I1 )(h(x'+ i,y1 +j)-I2) 

NCC = -;====i===-=w=1=·==-=w====================== 
W W 2 W W 

2 L L (Ii(x+i,y+j)-I1) L L (h(x'+i,y
1
+j)-I2) 

i=-W j=-W i=-W j=-W 
(3.45) 

where x' = x + ô.x and y' = y+ ô.y, li and I2 respectively denote the average of the 
value of pixels in the template and in the window of the adjacent image; 

2. The translation T(ô.x, ô.y) is the one that maximises NCC over 'JI'. This is also called 
the disparity of the pixel P1(x, y). 

The size 2W + 1 of the correlation window is a determining parameter because 

• too small a window may not capture enough image structure and may be tao noise 
sensitive which would produce many false matches; 

• too large a window makes the matching less sensitive to noise but also to actual variations 
of image intensity which is not desired. 

The success of the matching using correlation windows also depends on the presence of 
distinctive structure in the window that occurs infrequently in the search region of the other 
image. 

The correlation-based method gives a pixel-by-pixel correspondence. In order to estimate 
a global geometric transformation M that relates the two images, one can simply resolve the 
following equations with at least four pairs of corresponding points widespread in the images: 

, mox+m1y+m2 
X=-------

m5X + m7y + 1 
(3.46) 

, m3x + m4y + ms 
y = 

m5x + m7y + 1 

where ( x, y) and ( x', y') are pairs of corresponding pixels and ( mo, ... , m7) are the unknown 
factors to be estimated. This can be written as: 

1 0 0 0 I I x' X1 Yl -X1X1 -X1Y1 mo 1 
0 0 0 X1 Y1 1 I 

-y1X1 
I 

-Y1Y1 m1 y~ 

(3.47) 

Xn Yn 1 0 0 0 -XnX~ -XnY~ m5 x' n 
0 0 0 Xn Yn 1 I 

-YnXn 
I 

-YnYn m1 y~ 

in the !!"eneral case of a given set of n corresponding points coordinates. 
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3.3.2 Using the Levenberg-Marquardt algorithm 

Working with intensity generally means maximising a similarity measure or minimising 
an error fonction 14 . In [Sze96], the goal is to i teratively estima te a transformation, say a 
projective one, by minimising the discrepancy in intensities. 

Let (xi, Yi) denote a pixel in the reference image fi. Given an estimated15 perspective 
transf rmation matrix M, we can obtain the corresponding pixel (x~, YD in the image h from 
the pixel (xi, Yi) in the reference image li by rewriting the projective transformation as: 

, moxi + m1Yi + m2 
X · = 

i m5Xi + m1Yi + l (3.48) 

, m3xi + m4yi + m5 
Y· = 

t ffi6Xi + ffi7Yi + 1 

T e Szeliski's technique simply minimises the Sum of the Squared intensity Errors overall 
these corresponding pairs of pixels i (pixels that are mapped outside image boundaries do not 
contribute): 

SSE = L (I2( x~,YD -Ii(xi,Yi))
2 

= L ef (3.49) 
iE/inh iE/inh 

wher i E li n I2 expresses that we only consider the pixels with coordinates (xi, Yi ) which 
have their correspondent in the boundaries of the image I2 (i.e. the coordinates (x~, YD 
obtai ed with the equations 3.48 lie in I2) - However, the computed coordinates (x~, YD do 
not fall on integer pixel coordinates so Szeliski suggests to use bilinear interpolation 16 to get 
the i tensity value of h(x~, YD-

T e minimisation of the error function SS E is performed by using the Levenberg-M arquardt 
iterative nonlinear minimisation algorithm. By considering the transformation matrix M as 
a vector m = (mo,m1,m2,m3,m4,m5,m5,m7)T, this algorithm computes an approximate 
Hessian matrix A and a weighted gradient vector b from the partial derivatives of ei- The 
weig t of the gradient vector is simply the error term ei- The algorithm consists of four main 
steps 

Step 1: For each pixel i at location (xi, Yi) 

1. Compute the corresponding coordinates (x~, YD according to the current transfor­
mation matrix M i.e. vector m<t) (see equations 3.48) ; 

2. Compute the difference in intensity ei = h(x~, YD - li (xi, Yi); 

3. Compute the partial derivatives of ei with respect to the mk terms using: 

(3.50) 

4. Add the pixel contribution to A and bas follows: 

14 S e section 3.5 "The similarity measure". 
15The estimated perspective transformation can be the result of the previous iteration or can corne from a 
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A is a 8 x 8 matrix and its components are: 

(3.51) 

Whereas gradient vector b has 8 elements: 

(3.52) 

Note that the partial derivatives of ei (3.50) are straightforward to compute: 

~ - .!!'...l. 8e · x· N.81 
dm3 - Di Y; 

where Di = m5Xi + m 7yi + 1 is the denominator in (3.48) and ( ~, ~) is the image intensity 

gradient of I2(x~, yD: 

VI ( 1 ') = (oh(x~,y:) 0I2(x~,YD) 
2 xi, Yi 8 , 8 , 

xi Yi 
(3.53) 

A derivative filter is used to approximate the image intensity gradient V h(x~, y:) as explained 
in chapter 5. For example, we canuse the Sobel filter 17 which gives: 

(3.54) 

(3.55) 

Then, the next steps of the Levenberg-Marquardt algorithm are: 

Step 2: Solve the system of equations (A+ Al)~m = b where 'I is the identity matrix and 
À is a time-varying stabilisation parameter which is initialised with a modest value18

, 

say 0.001. If we select À = 0, the algorithm performs a Newton-Gauss minimisation. 
With this parameter >., the Levenberg-Marquardt algorithm smoothly varies between the 
Newton-Gauss and the steepest descent method; 

Step 3: Compute SSE again with m(t) + ~m and check if it has decreased: 
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• if it is so, decrease19 À by a factor of 10 and update the parameter vector m,(t+l) = 
m,(t) + ~m. Note that the image h must be temporarily transformed with the 
current parameters in order to compute the right partial derivatives during the 
next iteration; 

• if not, the updated failed to reduce the residual, so increase20 À by a factor of 10 
and set m(t+l) = m,(t). 

Step 4: Continue iterating until the error is below a fixed threshold or a fixed number of 
1terations has been completed. 

Theo tput vector m contains the eight estimated parameters of the perspective transformation 
M. 

3.3.3 Advantages and drawbacks 

The method using correlation windows can be used to obtain a first estimation of the 
geometric transformation. However, the pairs of corresponding points must be quite selected 
to be representative of the distortion between the images ( e.g. the four selected points in the 
first image are the four corners of a rectangle which covers the overlapping area). In addition, 
the c rrelation of the template and windows is not accurate when the viewpoints of the 
cameras are very different i.e. when the geometric distortion is important between the images. 

T he Levenberg-Marquardt approach uses image pixel values directly, and minimises the 
discrepancy of intensities between a warped image and the reference image by statistically 
using all the information. According to Szeliski, the advantage of using Levenberg-Marquardt 
over traightforward gradient descent is that it converges in fewer iterations. The major 
drawback is that it is very sensitive to geometric distortion and it requires a good initial 
approximation of the geometric transformation to register images with large distortion. 

In addition to the computational cost of temporary transformations and interpolation, this 
method is sensitive to intensity variations due to video camera gain control and illumination 
scene changes. In [JC0l], they use multiresolution by first estimating the translation at the 
coars st level, then refining an affine transformation and at the finest level, they estimate the 
projective transformation initialised with the affine parameters. Beyond the projective model, 
t hey lso introduce a polynomial illumination change model in the algorithm above to handle 
the problem of illumination change. 

19T rie parameter À should approach O as the minimum is achieved so that the influence of the diagonal 
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3.4 Feature based registration 

Feature based methods rely on three main steps: 

1. Locate and extract a number of features in both images; 

2. Match the common main features from the images; 

3. Compute the parameters of the transformation from the features location. 

Severa! types of features have been used to accomplish the registration, frequently used ones 
include points, lines and polygons. According to the chosen features, the methods will differ in 
the two first steps, the third one depending on the class of transformations which is considered. 

In her survey [Bro92], L. G. Brown calls this method Point Mapping and distinguishes 
the intrinsic and the extrinsic RCPs21 . The intrinsic RCPs are some kind of markers placed 
specifically for the registration task and are not part of the image data itself. Although these 
points can be easily identified and make the registration easier, it is not always possible to 
resort to these artefacts. The extrinsic RCPs belong to the image data itself and can be 
manually selected or automatically found. 

Corners, line intersections as well as points of locally maximum curvature on contour 
lines are commonly used as relevant control points, the principle being to select points which 
are likely to be uniquely found in both images and more tolerant of local distortions. On 
the one hand, the number of control points in both images should be large enough to ensure 
a sufficient number of pairs of corresponding points which will be used in the computing of 
the transformation. On the other hand, the higher the number of control points, the more 
difficult the matching step. 

In what follows, we only present image registration using corners which is commonly used. 
So we first explain how to extract corners in an image. Then the matching of corners and the 
estimation of the transformation is presented in the case of two overlapping images. 

3.4.1 The extraction of corners 

The most intuitive type of feature point is the corner which is commonly defined in the 
image processing field as [TH98]: «Corners are image points that show a strong two dimen­
sional intensity change, and are therefore well distinguished /rom neighbouring points». M. 
Trajkovié and M. Hedley in [TH98] classify the corner detectors in two main classes: 

• curvature based; 

• 
11 interest opera tors II or feature point detectors. 

In what follows, only one method of each class is presented, namely the Kitchen & Rosenfeld 
corner detector and the Harris corner detector. On figure 3.10, we can see a comparison of 
the corners extracted with each one of them. 
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(a) The Harris corner detector (b) The Kitchen & Rosenfeld corner detector 

Figure 3.10: While the Harris corner detector ( on figure 3.10( a)) extracts a lot of corners, the corners detected 
by the Kitchen & Rosenfeld approach are mainly situated at the end of edges as illustrated in 
figure 3.lO(b) . 

T e first class of methods identifies corners as points on the boundary of two regions 
of the image where the boundary curvature is sufficiently high. For example, the approach 
described by Ki tchen and Rosenfeld defines 11 cornerness II as the product of the local gradient22 

magn tude and the rate of change of the gradient direction along an edge contour. In other 
words, it locates corners of edges as the local extrema of the following operator K: 

K= 
82 1 (81)

2 + 82 r (8r)2 2 8
2

/ 8181 8xFfx ay ayay ax - axay ax ay 

(~fl 2 
+ (U)2 

(3.56) 

wher M, U, 8~
2Jx, /y2JY and fx2JY denote the first and second order derivatives of image 

inten ity. Note that K explicitly represents the second directional derivatives in the direction 
ortho

0
onal to the gradient. Indeed, the partial derivatives of the gradient direction 0 are: 

8 2 1 81 82 1 8I 82 1 81 82 I 8I axay ax - 8xFfx ay 

(M)
2 
+ (U)2 

ayay ax - axay ay 

(M)
2 
+ (U)2 

(3.57) 

In ack:lition, as the gradient is directed across the edge, the vector ( -U, g; )Y is directed 
along the edge. Thus the measure of the cornerness K is the projection of the rate of change 
of the gradient direction along the edge multiplied by the gradient magnitude. An example 
of this corner detector is shown in figure 3.l0(b). 

T e second class of methods redefines corners as points that are sufficiently different from 
their neighbours. The most widely used one, the Plessey feature point detector (also simply 
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called the Harris corner detector), belongs to this class and was proposed by C. Harris and 
M. Stephens. Consider the following matrix: 

(3.58) 

For a pixel P, Mp is formed with its neighbourhood (e.g. a 5 x 5 window centred on P) and is 

the covariance matrix of all the gradient vectors '\l I ( x, y) = ( M, ~) T in the neighbour hood. 

A corner is detected if the two eigenvalues of the matrix Mp are large, which corresponds to 

5x5 window 

□ 

81/fh 

(a) Neither edge nor corner 

5x5 window 

[2] 
ôl 
lJv 

(b) Corner 

5x5 window 

D 
~ ôl 

lJv 

(c) Edge 

81/fh 

Figure 3.11: On figure 3.ll(a), the distribution of the gradient vector is compact and so the two eigenvalues 
are small. Consequently, it corresponds to a part of the image where the intensity is uniform. 
On the contrary, when the distribution is widespread as on figure 3.ll(b) and results in two 
large eigenvalues, we can deduce that it is a corner. On the last figure (3.ll(c)), if only one of 
the eigenvalues is large due to a distribution in one direction, and the other eigenvalue is above 
a certain threshold, the pixel is supposed to belong to an edge. 

an important change of grey level for a small motion in any direction. Indeed, the eigenvalues 
represent the major and minor axis of the elliptical approximation of the gradient vector 
distribution (see figure 3.11). As it is underlined in [Tao02], we can also identify edges. If the 
smaller eigenvalue of the matrix Mp is larger than a certain threshold , the pixel P belongs 
to an edge (see figure 3.ll(c)). 

To avoid the eigenvalue decomposition of the matrix Mp, corners can be defined as local 
maxima of the cornerness fonction R: 

R = detMp - k(trace Mp) 2 (3.59) 

where k is a parameter set to 0.04 according to C. Harris. On figure 3.12, an example illustrates 
the Harris corner detector. 
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Figure 3.12: Two overlapping images with extracted corners using the Harris corner detector. Note that all 
the corners detected in an image do not necessarily have their corresponding point in the other 
image. 

derivatives to smooth the images. Another interesting remark is that there are often too 
much extracted corners in practice. One possibility is to set a threshold which determines 
the inimum requested variation of brightness around the pixel and select only the corners 
with value R above this threshold. 

T ere also exists some others well known corner detectors such as the straightforward 
method SUSAN introduced by Smith and Brady, the method developed by Wang and Brady, 
t he s mple and fast detector of Trajkovié and Hedley, ... They also propose to consider the 
pixel with high gradient, only to reduce the computational cost of the Harris corner detector. 
See [TH98] for explanations and comparisons of these methods. 

3.4.2 The matching of corners 

After the set of corners has been determined in the two images, the features in each picture 
must be matched. The easiest and most intuitive approach is to take a small region of pixels 
(referred to as a correlation window23 ) from around the detected corner with coordinates 
(x1 , y1) in the reference image li and compare this with a similar region from around each 
of tl candidate corners (xi, Yi) in the other image h. The search space can be restricted 
by d fining a search window in h with a radius larger than the expected displacement of the 
feature between the two images. Thus, all corners lying in the search window are candidates 
for the match (see figure 3.13). 

To determine if two corners are matching, a score called the similarity measure24 is as­
sociated to each comparison. The Normalised Cross-Correlation (3.60) is often used. The 
objective is to find the pair of correlation windows that maximises the NCC measure in order 
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Figure 3.13: The matching step through correlation. Given the detected corner Ii(x1,Y1) in the reference 
image 3.13(a), we want to find the corresponding corner h(x;,YD in the other image 3.13(6). 
A correlation window is used and the search is restricted to the search window in h . Ali the 
detected corners h(x;, y;) inside the search window are candidates for the match. 

to locate the two corresponding corners. 

w w 
L L (li(x1 + k,y1 + l)-li) (h(xi + k,Yi + l) -h) 

NCC = ---;====k==-=W=l===-=w===================== 
W W 2 W W 2 L L (li(x1+k,y1+l)-li) L L (I2(xi+k,yi+l)-I2) 

k=-W l=-W k=-W l=-W 

(3.60) 

where 

• (x1, Y1) and (xi, yi) are the coordinates of the corners; 

• li and h respectively denote the average of the value of pixels lying in the correlation 
windows of the images li and I 2; 

• W is related to the size of the (2W + 1) x (2W + 1) correlation windows. 

According to [Bro92], some techniques map a set of points in one image onto the 
corresponding set in the second image instead of working corner by corner. Moreover, other 
ones determine the spatial transformation between the images while performing the matching 
task. This is the case of the clustering technique which tackle the problem of rotation, scaling 
and translation but it can be extended to other transformations. For each possible pair of 
matching corners, the transformation is determined which represents a point in the cluster 
space. By finding the best cluster of these points, the transformation which most closely 
matches the largest number of points is found. 

3.4.3 The estimation of the transformation 
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of the transformation can be estimated by solving a system of equations. If we are estimating 
a pro_ ective transformation with 8 parameters mo, ... , m7, the system is rewritten in matrix 
notat on as follows: 

X1 Y1 1 0 0 0 1 1 
mo x' -X1X1 -X1Y1 1 

0 0 0 X1 Yl 1 1 
-y1X1 

1 
-Y1Y1 m1 y~ 

(3.61) 

Xn Yn 1 0 0 0 -XnX~ -XnY~ m5 x' n 
0 0 0 Xn Yn 1 1 

-YnXn 
1 

-YnYn m1 y~ 

3.4,-Ç, A bout other types of features 

Û) ncerning edge based registration, there are less frameworks in this field . As regards 
the detection of the edges, you can refer to chapter 5 "Edge detection" . A complete and 
interESting edge based method is presented in [HLF+97] which uses a multiresolution wavelet 
t rans orm to extract the features. The wavelets are the partial derivatives of a smoothing 
fonction and are decomposed into two independent components that are equivalent to 
t he gradient of the smoothed image. They also propose a new method to eliminate the 
incorrectly matched pairs based on the idea that the distance between two points in the same 
imag is preserved when it undergoes a rigid transform. This method is summarised in [HB00]. 

I [CL99], t hey present a strategy to initialise the registration using polygon features 
matcning. They combine three descriptors for polygons, namely, Shape-Matrix, Fourier De­
scripfors and Invariant Moments in the matching scheme. 

3.4.5 Advantages and drawbacks 

The feature based methods select a few corresponding RCPs on the two images and 
estimate the parameters of the transformation using these reliable points only, which 
mini ises the search space. As stated in [Bro92], these methods are less sensitive to local 
distol'tions because they use RCPs, area based similarity measure and the information from 
spatial relationships between RCPs in the images. 

The critical part is the selection of features and their matching. On the one hand, this 
metJ.--od becomes unstable and inaccurate for a large number of control points and it also 
requ res a good correspondence between corners. On the other hand, the corresponding 
corn")rs used in the estimation of the transformation parameters must not lie in the same 
area of the images but have to be quite widespread in the images. In addition, the extraction 
of c aracteristic features may be computationally expensive. These problems can be 
overcome by using more efficient and robust algorithms as suggested in [Bro92] or by using 
a br .. nch-and-bound approach combined with computing point alignments to accelerate the 
search [MNLM99] . 

In order to handle more geometric transformations than rigid-body model, more robust 
mechanisms are needed such as the multiresolution wavelet approach or locally warped corre­
laticm windows according to an estimation of the relationship between the two images. 
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3.5 The similarity measure 

The objective is to compute a measure which quantifies the quality of the matching for 
two given fonctions li (x, y) and I2(x', y') . These two fonctions give the respective pixel 
intensity values at each location (x, y) in the first image and at each location (x', y')25 in the 
second image. 

ote that error metrics or similarity measures aren't suited to RGB color images but to 
gray-scale images. So we simply add the intensities of the three colour components for each 
pixel as: 

I(x, y) = 0.212671 I(x, Y)R + 0.715160 I(x, y)c + 0.071169 I(x, y)s (3.62) 

This weighted sum of the three colour components implies a loss of useful information but 
reduces the complexity and the computation time of the measure. 

In the case of a template registration like in the correlation-based method presented in 
section 3.3.1, the (2W + 1) x (2W + 1) pixels inside the template and those inside the correlation - -windows of the adjacent image can be seen as vectors li and I2. Then the goal is to minimise - -the squared Euclidean distance (3.63) between li and I2 to find the corresponding windows. 
This distance is also known as the Sum of Squared Differences: 

W W 2 

SSD=llh-hll2 = L L (li(x+i,y+j)-I2(x'+i,y
1
+j)) (3.63) 

i=-W j=-W 

where the sum is over all the pixels in the region of interest i.e. the template and the window. 

The term L:-w I:f=-w Ir(x + i, y+ j) only depends on the template and is constant 
in the expansion of SSD: 

w w 
SSD = L L ( Ir (x+i, y+ j)-2!1 (x+i, y+ j)I2(x' +i, y'+ j) + I?(x' +i, y'+ j)) (3.64) 

i=-W j=-W 

If the term I::-w I:f=-w I?(x' + i, y'+ j) is approximately constant then the remaining 
Cross-Correlation term (3.65) can be used as a similarity measure between the template and 
the correlation windows in the adjacent image, the maximum value of CC being the best 
match. 

w w 
CC=<h,h>= L L li(x+i,y+j)h(x'+i,y'+j) (3.65) 

i=-Wj=-W 

As it is underlined in [Lew95], CC has several weaknesses in the measure of the similarity 
for template matching: 

• matching can fail if the image energy I::-w I:f=-w I?(x' + i, y'+ j) varies with po­
sition. For instance, the correlation between the template and a bright spot may be 
better than the right matching region in the image; 
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• the range of CC is dependent on the size of the template; 

• CC is not invariant to illumination changes. 

Thus, CC is usually normalised to unit length by dividing it by the standard deviation of bath 
li and 12, yielding a cosine-like correlation coefficient called the Normalised Cross-Correlation: 

w w 
L L ( li ( x + i, y + j) - li) ( l 2 ( x' + i, y' + j) - l 2) 

NCC = ---.====i=·==-=W=j===-=w====================== 
W W 2 W W 2 L L (li(x'+i,y'+j)-li) L L (h(x'+i,y'+j)-h) 

(3.66) 

~-Wj=-W ~-Wj=-W 

wher li and 12 respectively denote the average of the value of pixels in the template and in 
the window of the adjacent image. Like SSD, NCC measures the degree of linearity between 
the s mples being compared, the absolute value of NCC lying between O and 1 (1 indicating 
perfect matching windows). 

Although NCC is preferable since it is invariant to linear brightness and contrast variations 
betw en perfect matching windows, it relies on the same strong assumptions than SSD, 
namely: 

• the image noise is additive and Gaussian; 

• there is no rotation in the image nor in the 3D space; 

• there is no scaling nor perspective distortions. 

These three hypothesis restrict the use of bath measures because of the following deficiencies 
due to different viewpoint of cameras: 

• in the presence of noise which is often more complicated than a Gaussian process, the 
line of regression obtained by the measures can be unsatisfactory; 

• parts of the scene are visible in only one of the two images ( occlusion and projective 
distortion). ln this presence of depth discontinuities, only part of the data is valid for 
cross correlation and the outliers should be detected and discarded; 

• in the presence of specular reflection, the location of highlights varies with respect to 
the texture and intensities at corresponding points may not be identical or even linearly 
related. Thus, SSD and NCC could be poor estimator of correspondence. 

I order to overcome these limitations, robust statistical methods have been developed, 
using weights that cause outliers to contribute less weight compared to inliers. Such a method 
look. like 

w w 
D :s::::::::' :s::::::::' ( f T I 
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where Pu is a robust estimator which assigns small weights for constraints with large residue 
eij. For example the Lorentzian estimator (3.68) has been used for motion estimation and 
automatic satellite image registration [JC0l]. 

( 
1 (e- -)2) Pu(eij) = log 1 + 2 : (3.68) 

where a is a threshold. In general, this kind of estimators have a parameter expressing the 
point at which data must be considered outliers. The value assigned to this parameter is a 
critical choice: 

• the measure E can behave like SSD in the case of high value for the parameter a; 

• too low a value a may cause mismatches because the influence of valid data would be 
reduced correspondingly. 

Further, it can vary with scene depending on the image contrast and noise level. 

When all the pixels of overlapping area are taking into consideration, the similarity mea­
sures must be adapted for a variable number of pixels. An obvious technique is to average the 
SSD for one pixel. It is known as the Mean Squared Error: 

L (Ii(x,y) -h(x',y1))2 
MSE = SSD = _x,_yE_C ________ _ 

N N 
(3.69) 

where the sum is over all the pixels in the region of interest (i.e. the current overlapping area 
C) and N is the total number of pixels in the overlapping area. 

MSE works well to compare various image compression techniques by replacing li and 12 
respectively with the original image and the compressed version and by cumulating over the 
whole image. However , it isn't reliable in the case of images with variation in illumination 
caused by the different viewpoints of the cameras. Indeed, the larger the overlapping area 
is, the higher the mean value will be because of the cumulative formulation of the squared 
intensity errors. To overcome this problem, some other formulas are proposed in the literature. 
In our implementation, we use the formula S (3.70) proposed in [ZB0l] and derived from the 
expansion of SSD (3.64): 

2 L li (x, y)I2(x', y') 
x,yEC S= ----,--------___,-L (li(x, y) 2 + h(x', y')2) 

(3.70) 

x,yEC 

where C is the current overlapping area. This measure S is comprised between 0 and 1. 
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3.6 Conclusion 

T e different approaches discussed in this chapter are not exclusive. Many developed 
algorit hms combine several techniques to overcome the problems of a single one. For example, 
when the displacement between two images is large, the phase correlation is often used to 
get an initial approximation before applying an intensity based algorithm. Another common 
impro ement is the multiresolution matching (also called hierarchical matching). It consists 
of registering smaller, subsampled versions of the images and then refining the results on 
higher- resolution up to the original full resolution images. This approach commonly refers 
to a yramid where the bottom is the original image and the top the coarsest level. As in 
[ZBOl] or in [JCOl], different methods are used according to the level of the pyramid. 

Or her methods use some heuristics to avoid getting stuck in various local minima26 such 
as threshold, weight, limit number of iterations, ... But these heuristics must be tailored to 
the type of source images and cannot be used in general cases. 



------------------



Chapter 4 

Triangulation 
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Following [Ioc98] the 3D position (X, Y, Z) of a point X can be reconstructed from the 
perspective projection of X on the image planes of two cameras, once the relative position 
and orientation of the two cameras are known. This chapter will explain simply the model 
used to achieve a scene point reconstruction which is called triangulation. 

4.1 A review of the camera model 

We suppose that a 3D point X is visible in an image, let Xp ·be the projection of X in this 
image. The camera is supposed to be a pinhole camera 1 , thus the relation between the world 
coordinates of a point X(X, Y, Z) and the coordinates on the image plane Xp(x, y) is 

X 

y = 

fx 
z 

!y 
z 

(4.1) 

where f is the focal distance of the lens and Z is the coordinate along the optical axis(see 
figure 4.1). 

focal distance 

X 

optical axis 

focal distance X 

optical axis 

z 

image plane 

X X 

y y 

Figure 4.1 : A review of the pinhole camera mode!. 



CHAPTER 4. TRIANGULATION 67 

4.2 From frame to image coordinates 

A digitalised image is usually stored in a frame buffer, that can be seen as a matrix of 
pixels with N columns and M rows2 . Let ( i, j) be the discrete frame coordinates of the image 
with )rigin in the upper left corner, (Ox, Oy) be the principal point (i.e. the intersection 
between the optical axis and the image plane) in the frame coordinates, and (x, y) be the 
image coordinates corresponding ta ( i, j). 

i 

( Ox ,Oy) X 

j • y 

Figure 4.2: Relation between frame and image coordinates 

Inage coordinates relate ta frame coordinates in the following way: 

X (i - Ox) Sx 

y (j - Oy) Sy 

where Sx and Sy are the horizontal and the vertical distances of two adjacent pixels in the 
frame buffer. 

4.3 Triangulation 

The principle is relatively simple: knowing the position of the optical centre of an image 
and a point from the image plane, we can "draw" a line through these two points. If we do the 
same for the second image, the two lines will intersect and this intersection will be the 3D point. 
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To make it easier, we choose the 3D world reference system to be the left camera reference 
system. The right camera is translated and rotated with respect from the left one, so six 
parameters describe this transformation. 

The simplest case arises when the optical axes of the cameras are parallel, and the trans­
lation of the right camerais along the X axis. 

4.3.1 General case 

Given the translation vector T and the orthonormal rotation matrix R describing the 
transformation from left camera to right camera coordinates, the equation to salve for stereo 
triangulation is 

X'= RT(X-T) (4.2) 

where X= (X, Y, Z) and X'= (X', Y', Z') are the coordinates of the 3D point X in the 
left and right camera coordinates respectively, and R7 is the transposed matrix of R. 

4.3.2 The case of parallel cameras (perpendicular to their baseline) 

Let us consider the optical setting in the figure 4.3, that is also called the standard model. 

• Hypotheses: 

1. L and R are two pinhole cameras with parallel optical axes and the same focal 
length f. 

2. The baseline (i.e. the line connecting the two lenses/ optical centres) is perpendic­
ular to the optical axes. Let b be the distance between the two lens centres. 

• Notations: 

1. X Z is the plane where the optical axes lie, XY plane is parallel to the image plane 
of both cameras, the X axis is the baseline and the origin O of (X, Y, Z) world 
reference system is the lens centre of the left camera ( L). 

2. (x1, y1) is the image in the left camera of the point X and (x2, y2) the image in the 
right camera. 

In this setting the equations ( 4.2) of stereo triangulation becomes 

X' =I(X-T) (4.3) 

where I is the identity matrix. This system can be written in matrix form 

(X'\ ( (X\ (b\\ 
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X 

f 

__ _,_ _________________________________ X 

L R 

b 

Figure 4.3: Optical setting of two parallel cameras 

The setting described in figure 4.3 allows us to rewrite the translation vector T as (b, 0, 0). 
F'urthermore, the equations (4.1) give 

X 
z 

= X1-
f 

y z 
Y1-

f 
X' Z' 

(4.5) X2-
f 

Y' 
Z' 

Y2-
f 

v.here 

• (x1, y1) and (x2, y2) are the position of the projection of X in the left and right image 
coordinate respectively. 
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Thus, the equation (4.4) becomes 

)

- ( X1 t; b) 
- Y17 

z 
(4.6) 

This system can be solved easily and we obtain the solution 

z (bf) 
= 

(x1 - x2) 

X 
z 

X1-
f 

y z 
Yi-

f 

4.3.3 Slightly non-parallel cameras 

In the general case, the right camera can be rotated with respect to the left one. This new 
setting will complicate the triangulation. For example we will discuss the case of a rotation 
around the Y axis. 

Rotation around the Y axis ( 0) 

In this case, the equation ( 4.2) can be rewritten as 

(4.7) 

Again, using the equations (4.5) this system can be rewritten and we can finally use 

X
1 

X 
(cos0y + sin0)Z' - 7z + t1 0 

1 

'Y._z, - '#...z + t2 
f f 

0 

x' 
(-sin0y+cos0)Z1 -Z+t3 = 0 

The resolution of the system gives us the following solutions 

r.f t3 - t1 
Z' = 

( (cos 0f + sin 0) - j(- sin 0f + cos 0)) 

x' 
Z = (-sin0y+cos0)Z1 +t3 

(4.8) 

(4.9) 

To illustrate this case like in the parallel case, we will simplify and assume that the rotation 
angle are small ( smalt angle approximation). Thus we can still assume that the right image 
plane is parallel to the left image plane and hence to XY plane, so the difference between 
the two images is an horizontal translation. In this case the optical axes are not parallel, but 

+ . - 11 :1 J, 
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Figure 4.4: Optical setting of non-parallel cameras 

If 0 is the rotation angle, then Zo = ta~ 0 . With this setting, the equations ( 4.9) are 
simpEfied and using once again the equations ( 4.5), the equations of stereo triangulation 
become 

z = 
(bf) 

(x1 - X2 + f }
0

) 

X 
z 

= X1-
f 
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Rotation around the X axis ( <j)) 

Rotation around X axis only affects the Y coordinate. Let <j) be the rotation angle, then 
stereo triangulation is 

z = 
(bf) 

(x1 - x2) 

X 
z 

= X1-
f 

y z 
x1 f + tan<j)Z 

Rotation around the Z axis ( 'lj;) 

Rotation around the optical axis is usually dealt with by rotating the image before applying 
matching and triangulation. 

4.3.4 Mid-point technique 

Unfortunately this geometric view is a little idealised. As summarised in [TV98], we have 
to take into account that camera parameters and correspondence locations in image space 
are known only approximatively. The rays will not actually intersect in 3D space. Their 
intersection can only be estimated as the point of minimum distance from both rays. This 
point will be located on a line segment orthogonal to both rays, as shown in figure 4.5. A 
standard approach first computes the end-points of this line segment. F'rom these points, we 
can easily compute the mid-point X' that is the point in 3D space optimally close to the two 
non-intersecting rays. 

• Let {ax1 
point). 

la E !R} be the ray, l, through C and x1 (left origin and corresponding 

• Let {T + {3'R7 x2 1/3 E !R} be the ray , r, through C' and x2 (right origin and 
corresponding point), expressed in the left reference frame. 

1, E !R} be a vector w orthogonal to both l and r. 

The problem is reduced to determine the midpoint, X', of the segment parallel to w that 
joins l and r (Figure 4.5). 

This is straightforward because the endpoints of the segment can be computed by solving 
the linear system of equations: 

(4.10) 
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Figure 4.5: The approximation of the 3D point is X', the mid-point of a segment orthogonal to both rays. 
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5 .1 Edge detector 

«In computer vision, edge detection is a process which attempts to capture the significant 
properties of abjects in the image. These properties include discontinuities in the photo­
metrical, geometrical and physical characteristics of abject.» [ZT98] 

Edges often occur at image locations of abject boundaries, thus edge detection is used 
when we want to <livide the image into areas representing different abjects. Furthermore, 
representing the image by its edges has the great advantage that the volume of data is 
reduced significantly while retaining most of the useful image information. Since edges consist 
of mainly high frequencies, we can, in theory, detect edges by applying a high-pass frequency 
filter in the Fourier domain or by convolving the image with an appropriate kernel in the 
spatial domain. In practice, we perform edge detection in the spatial domain, first because it 
is computationally less expensive and because it often provides better results. 

«Since image intensity is often proportional to scene radiance, physical edges are repre­
sented in the image by changes in the intensity function.» [ZT98] 

We can highlight them by calculating the derivatives of the image. This is illustrated for the 
one-dimensional case in figure 5.1. We can see that the position of the edge can be estimated 

Func11on fil) 

1 st d erlva11ve 

2nd derlva11ve 

Figure 5.1: First and second derivative of an edge illustrated in one dimension. 

with the maxima of the first derivative or with the zero-crossings of the second derivative, 
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one-dimensional fonction J(x), the first derivative can be approximated by 

d J(x) 
d(x) = J(x + 1) - f(x) (5.1) 

DL'îerent edge detection kernels which are based on the equation (5.1) enable us to calculate 
either the first and the second derivative of a two-dimensional image and then get the image 
intemi ty gradient as: 

VI( ) = (âl(x,y) âl(x,y)) = (V V ) 
X 1 y ÔX 1 Ôy X 1 y 

(5 .2) 

Tltere are two common approaches to estimate the first derivative in a two-dimensional 
image, Prewitt compass edge detection and gradient edge detection. 

5.1.1 Convolution 

Convolution is a mathematic operation which, from an image of dimension (N x M) and a 
kerne of dimension (nK x mK ), attribute to each pixel a value which is a linear combination 
of th initial pixels. 

If I(x,y) is a pixel of an image and K(i,j) is the kernel with mK « M and nK « N, the 
resulting image O(x, y) will be: 

ffiK nK 

O(x, y) = L L I(x + l - l, y+ k - l)K(k, l) 
k=l 1=1 

5.1.... Noise 

Iœal world signal is generally slightly different from the signal obtain by our production 
model. This gap is called noise. This noise cornes from the process of signal capture and is 
not part of the ideal signal. Noise can usually be grouped in two classes: 

• independent noise; 

• noise dependent of the data of the image. 

Independent noise can often be seen as an additional noise model, that means that the captured 
imag3 I(x, y) is the result of the sum of the real image S(x, y) and a noise n(x, y): 

I(x, y) = S(x, y)+ n(x, y) 

The oise n(i,j) has often a null average and is described by its variance o-;;. The impact of 
the roise can be described by the Signal to Noise Ratio (SN R) given by: 
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Every captured image is disturbed by a noise coming from the detector. Most of the time, 
this noise can be described by an independent and additional model where the noise n(x, y) 
has a Gaussian distribution with null average and variance of rJ. This implies that each pixel 
in the noised image is the sum of the real value of the pixel and a random value according to 
a distribution N(O, rJ2) 

The Gaussian noise can be reduced using a spatial filter, whose an example, among the 
most efficient, is the Gaussian smoothing. 

5.1.3 Prewitt compass edge detector 

This section and the following are based on [FPWW02], the interested readers can see there 
for more details and examples. The operation usually outputs two images, one estimating the 
local edge gradient magnitude, and one estimating the edge orientation of the input image. 
The technique uses a set of 8 (in general) convolution kernels, each of them sensitive to a 
particular orientation. Using these kernels, the image is convolved and for each pixel, the 
local edge gradient magnitude is computed with the maximum response of all 8 kernels at this 
pixel location 

ICI = max(IGil : i = 1 to n) (5.3) 

where Gi is the response of the kernel i at the particular pixel position and n is the number of 
convolution kernels. The kernel that yields the maximum response will give the approximation 
of the local edge orientation. 

In figure 5.2, we can see two examples of the set of the 8 templates used by Prewitt. The 

-1 +1 +1 +1 +1 +1 
-1 -2 +1 -1 -2 +1 
-1 +1 +1 -1 -1 +1 

(a) 0° (b) 45° 

Figure 5.2: The Prewitt compass edge detecting templates sensitive to edges at 0° and 45°. 

whole set of 8 kernels is produced by taking one of the kernels and rotating its coefficient 
circularly. Each of the rotating kernels is sensitive to an edge orientation ranging from 0° to 
315° by steps of 45°, where 0° corresponds to a vertical edge (remember that the gradient is 
perpendicular to the edge). 

The maximum response IGI for each pixel is the value of the corresponding pixel in the 
output magnitude image. The values for the output orientation image are between 1 and 8, 
depending on which of the 8 kernels produces the maximum response. The edge magnitude 
and orientation of a pixel is then determined by the template that matches the local area of 
the pixel the best. 

The compass ed_qe detector is an appropriate way to estimate the magnitude and the 
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y-direction, the compass edge detection obtains the orientation directly from the kernel with 
the maximum response. On the other hand, the compass operator needs (here) 8 convolutions 
for each pixel, whereas the gradient edge detector needs only 2, one kernel being sensitive to 
edges in the vertical direction and one to the horizontal direction as we will see in the next 
section. 

5.1.4 Gradient edge detector 

Sobe} edge detector 

T e Sobel operator performs a 2D spatial gradient measurement of an image and so em­
phasises regions of high spatial frequency that correspond to edges. Typically it is used to find 
the approximate absolute gradient magnitude at each point in an input gray-scale image. In 
theory at least, the operator consists of a pair of 3 x 3 convolution kernels as shown in figure 
5.3. ne kernel is simply the other rotated by 90°. 

-1 0 1 -1 -2 -1 
-2 0 2 0 0 0 
-1 0 1 1 2 1 

(a) Bx (b) Sv 

Figure 5.3: The Sobel convolution filter which can be used to approximate the image mtensity gradient. 

These kernels are designed to respond maximally to edges running horizontally and 
vertically relative to the pixel grid, one kernel for each of the two perpendicular orientations. 

T e kernels can be applied separately to the input image, to produce separate measure­
ments of the gradient component in each direction ( call these V x and V y). These can then 
be combined together to find the absolute magnitude of the gradient at each point and the 
orientation of the gradient. 

T he gradient magnitude is given by 

(5.4) 

Typically an approximation is computed using 

(5.5) 

that is faster to compute. 

T he angle of orientation of the gradient is given by 
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Notice that if V x = 0 then the orientation of the gradient is vertical. Following these defini­
tions, the orientation 0 = 0 is taken to mean that the direction of maximum contrast from black 
to white runs from left to right in the image, and other angles are measured anti-clockwise 
from this. 

Roberts cross edge detector 

The Roberts cross edge detector is very similar to the Sobel edge detector, the difference is 
the size of the convolution kernels. Here it is a pair of 2 x 2 kernels. 

@II] 
ITII] 

(a) Rx 

ŒI±IJ 
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(b) Ry 

Figure 5.4: The Roberts cross convolution kernel. 

The main advantage of this technique is that is very quick to compute, only four input 
pixels are necessary to compute the value of each output pixel. But the disadvantage is that 
since it uses such a small kernel, it is very sensitive to noise. 

Canny edge detection 

Here is an overview of the Canny operator which was defined and proved in [ Can86]. 

Canny introduced his edge detection technique in his thesis and proved that it is optimal 
according to the following cri teria: 

1. to maximise the signal to noise ratio (SN R); 

2. to minimise the distance between the response and the real edge1; 

3. to minimise the response to an unique edge. 

It takes as an input a gray-scale image, and produces as output an image showing the 
position of intensity discontinuities. The algorithm presented by Canny is made of four steps: 

• Step one - Apply a Gaussian smoothing to the image, G ® I; 

• Step two - Gradient calculation of G ® I, its magnitude and its direction; 

• Step three - Non-maxima suppression of V(G ® J); 

• Step four - Thresholding by hysteresis. 
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Step one - Gaussian smoothing. The image data is smoothed by a two dimensional 
Gaussian fonction of width defined as a user parameter. Actually the Gaussian smoothing is 
a con'1olution where the kernel G(x,y), symmetric, with dimension (nK x nK) (where nK is 
odd), is defined by 

1 (x-µ)2+y-µ2 
G(x,y) = -

2 2
e- 2u2 

-rrcr 

which is the joint distribution fonction of two independent variables X, Y of identical distri­
bution N(µ , cr2) where the average is defined by 

for nr fixed. 

As the variables X and Y are independent the convolution can be separated in two passes. 
One pass according to X (aligned with the x-axis), followed by one for Y (aligned with the 
y-axis). A point with coordinates (x, y) in the image J will have, after convolution, the value 

nK 

O(x, y)= L J;YG1Gy(k) = G 0 JXY 
k=l 

wher JXY is the image under-matrix of dimension (nK x nK) centred in (x, y) and 1;Y is the 
kth line of the matrix JXY. 

N tice that the interest in the separation of the convolution is that the algorithmic 
eomplexity is in the order of nk with the operator G and only nK for G x and Gy. 

Fmally, to keep the same bounds for O(x, y) than for I(x, y), we have to normalise the 
kernei such that 

nK nK 

LLG(x,y) = 1 
x=ly=l 

Step two - Gradient calculation. Assuming two dimensional convolution at step one, 
the s oothed image data are differentiated with respect to the x and y directions. It is 
possible to compute the gradient of the smoothed surface of the convolved image fonction in 
any direction from the known gradient in any two directions. 

The gradient of an image J at the point of coordinates (x, y) will be approximated by 
a co volution of kernel (-1,0, 1) according to X, noted "VxfxY, and of kernel (-1,0, lf 
according to Y, noted "V yfXY. 

Magnitude. Again, the magnitude of the gradient at point of coordinates (x , y) will be 
computed with 

but the value is generally approximated by 
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Direction. The direction of the approximated gradient n = v' I /llv' Ill will have an angle 
given by 

y' JXY 
0n(x, y)= arctan v':JXY 

Step three - non-maxima suppression. Having found the rate of intensity change 
at each point in the image, edges must be placed now at the points of maxima, or rather 
non-maxima must be suppressed. We wish to suppress non-maxima perpendicular to the 
edge direction, rather than parallel to (along) the edge direction, since we expect a continuity 
of edge strength along an extended contour. 

The non-maxima suppression will mark as edge point all the points which, in a 1-pixel 
neighbourhood, have a maximal magnitude in the direction of the gradient. 

Thus, each pixel in turn become the centre of a 9-pixels neighbourhood, if the magnitude 
of this pixel is maximal in the direction of the gradient, it is accepted otherwise it is rejected 
(see figure 5.5). 

112 

120 

~ 
"' 

95 

Figure 5.5: Non-maxima suppression will choose for edge point the point w1th magnitude equal to 120 be­
cause, in the direction of its gradient (represented by the arrow), the points in a 1-pixel neigh­
bourhood have a lower magnitude (112 and 95) 

Step four - Thresholding. In spite of the smoothing performed as the first step, the 
non-maxima suppressed magnitude image will contain many false edge fragments caused by 
noise, fine texture and shadows. For example a brutal changing in the image from white to 
gray or from white to black could be mistaken for an edge. 

We should reduce these fragments that are useless information. One typical procedure is 
to apply a threshold to the non-maxima suppressed magnitude image. All values below the 
threshold are set to O. After the application of this threshold, an array is obtained containing 
the edges detected in the input image. 

However, in this method, it is very difficult to choose the correct value for the threshold 
and that involves trials and errors. Because of this difficulty, there may still be some false 
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The relation between the two threshold is often t2 ~ 2t1 , or t2 ~ 3t1 . Wi th these threshold 
values, two thresholded edge images T1(x,y) and T2(x,y) are produced. If a value lies above 
the upper limit, it is automatically accepted and placed in the edge image T2 (x, y). If a value 
lies b low the low threshold it is automatically rejected. And if it lies between the two limits, 
the point is placed in T1 ( x, y). 

The image T2 has gaps in the contours but contains fewer false edges. With the double 
thresrolding algorithm, the edges in T2 are linked into contour. When it reaches the end of 
a cont our, algorithm looks in T1 at the locations of the 8 neighbours for edges that can be 
linked to the contour. This algorithm continues until the gap has been bridged to an edge in 
T2. T us, once we start to draw an edge, we don't stop before the magnitude of the gradient 
decreases considerably. 

Note that the choice of the two thresholds and Gaussian deviation still remain the main 
factor of a correct edge detection as illustrated below. 

Exa ple We see with the figure 5.6 that the choice of the parameters is very important and 
could be different following the scene we are dealing with. The example of figure 5.6 is difficult 
beca se of the amount of details, thus different natural scenes (more or less complicated) will 
need ifferent parameters values. Ideally, we should find a standard set of values that will be 
a compromise and produce acceptable2 results for each scene, but it is not always possible. 

(a) 

(b) (c) (d) (e) 

Figure 5.6: (5.6(a)) is the original image. (5.6(b)) Gaussian kernel with standard deviation 1.0 and upper and 
lower threshold of 255 and 1. (5.6(c)) Same kernel and upper threshold but with lower threshold 
of 220. (5 .6(d)) Standard deviation = 1, lower threshold = 1 and upper = 128. (5 .6(e)) Same 
threshold as (5.6(d)) but with Gaussian deviation = 2. 
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Figure 6.1: The data flowchart of the panoramic generation process. 

To generate the panoramic image, none of the registration methods presented in chapter 
3 is used. Indeed, the geometric transformations between source images are difficult to 
automatically estimate because of the very different viewpoints. We could use a hybrid 
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sually satisfactory result and not an accurate correspondence between the points in the images. 

At a given time, the process computes a panoramic image from a set of received images in 
which we distinguish (see figure 6.2): 

• t he reference image coming from a camera which is considered as the origin of the coor­
dinates system from the panoramic image point of view. This image remains unchanged 

11 along the process; 

• the adjacent images coming from several cameras surrounding the first one. 

In sh rt we perform a global alignment using a global transformation between the reference 
image and each adjacent image. 

The overall flow of the proposed panoramic image generation has three main stages as it 
is illustrated in figure 6.1. 

T he first stage consists of rectifying each adjacent image in such a way that it is projected 
onto plane which is parallel to the image plane of the reference image. Thus, the alignment 
problem is reduced to a single translation along the x-axis or the y-axis according to the 
relati~e position of the cameras. As we will see later, the camera intrinsic parameters and 
the e tr insic parameters of every surrounding camera are required to project the images onto 
new lanes. 

Next, the translation between every rectified image and the reference image is sought in 
a search space restricted on the one hand by the first stage and on the other hand by the 
posit ' n of the adjacent image in comparison with the reference image (see figure 6.2). 

adjacent adjacent adjacent 
top left top top right 

adjacent Reference adjacent 
left right 

adjacent next adjacent 
bottom left bottom bottom right 

F igur 6 .2: The cameras are supposed to be set up in such a way that the adjacent images surround the 
reference image. Thus, the search space is divided into 8 search areas according to the position 
of t he adjacent images compared to the reference image. 
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reduce the misalignment errors between the overlaying parts of the images. 

In what follows, each one of the stages is discussed in detail and then illustrated on the 
basis of two images shown in figure 6.3. 

(a) The reference image (b) An adjacent image 

Figure 6 .3: Two images taken with a hand-held camera. The camera was moved of 7cm on the right and of 
3cm behind between the two photographs but also turned behind of 30 • towards the right . In 
what follows, we consider the image 6.3(a) as the reference image and the one on the right as the 
adjacent image 6.3(b) 

6 .1 The rectification 

The objective of this stage is to reduce the geometric transformation between the images 
to a simple translation. For that, an adjacent image is rectified in a way similar to the 
method explained in section 2.4 11 Rectification 11

• 

Instead of computing a rectification matrix and transforming each image, the proposed 
method transforms the adjacent images relative to the reference image. First we assume that 
the translation along the z-axis is small compared to the depth of the scene. Thus it can be 
ignored and we simply rotate the image plane of each adjacent image according to the rotation 
between the reference camera and the respective camera as illustrated on figure 6.4. 
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Figure 6.4: Let C1 and C2 be the optical centre of the reference and adjacent cameras, their corresponding 
image planes are respectively li and h. The rectification of the image on the plane h consists 
of projecting this image onto the plane J~ parallel to the plane li of the reference image. 
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Given the angles </J, 0, -,j; of rotation around the x, y and z axis between the reference 
camera and the considered camera, we compute the rotation matrix R' from the opposite 
values in such a way to obtain the rotation to apply to the image plane. 

( 

cos -0 0 - sin -0 ) 
R~(0) = 0 1 0 

sin -0 0 cos -0 

( 

cos --,j; sin --,j; 
R~(-,j;) = - sin --,j; cos --,j; 

0 0 

R 1 =R1 R 1 R 1 
X y Z 

n 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

As noticed in section 2.4, we implement the rectification backwards using the inverse 
matrix R'-1 to assign pixel values in the new image plane. For each pixel (x', y'), we obtain 
the coordinates (x, y) of the pixel in the original image as: 

1. transform the coordinates from frame to image plane1 

2. Compute 

3. finally obtain the coordinates (x, y) 

X= 
(u 6) 

Sx 

y= 
(v 6) 

Sy 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

These coordinates of pixels in the original image are not integer, we use bilinear interpolation2 

to obtain the pixels value. On figure 6.5, we can see the result of the rectification. 
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Figure 6.5: Here is the right image (see figure 6.3) which is rectified to be horizontally aligned with the 
reference image. 

6.2 The estimation of the translation 

Given the overlapping images, we have the reference image3 and we want to estimate 
each one of the translations T(~x, ~y) to be applied to each adjacent image so that the 
overl pping areas of the images are aligned. 

Thanks to the location of the cameras, we can restrict the search space 11' of the possible 
translations according to the position of the adjacent image in comparison with the reference 
image. For example, let's the adjacent image be on the right , the space 11' of the possible 
translations is from T(-width, 0)4 to T(0, 0) 5 . We can reduced this interval still further by 
estimating the maximum possible overlap between the two images. 

V ith this end in view, a common approach is discussed below without considering the 
first tage of rectification. This algorithm is based on an exhaustive search using a coarse grid 
prop sed in [ZB0l]. Afterwards an example is shown in the case of rectified images. 

3 I1 s origin (for example the upper-left corner of the image) is the origin of the coordinates system in which 
we a working. 

4 ln the case of T( -width , O) (where width is the width of the image), only the left edge of the adjacent 
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6.2.1 The exhaustive search method 

To improve the reliability of the estimation, all the available information is exploited i.e. 
all the pixels in the overlapping area are considered. 

The algorithm iteratively computes a similarity measure6 S (6.10) at all possible trans­
lations T(b. x, b.y) to exhaustively search the space 11' of possible translations and the one 
which maximises the measure Sis estimated to be the best translation T(b. x, b.y)- Thus , the 
similarity measure S expresses the accuracy of the matching in progress and considers the 
intensity value of all the pixels in the current overlapping area C: 

2 L Ii(x, y)h(x + b.x, y+ b.y) 
(x,y)EC 

S=---~------------L (Ii(x, y) 2 + I2(x + b.x, y+ b.y) 2
) 

(x,y)EC 

(6.10) 

As in [ZBOl], a coarse grid is applied between the two images to find a first estimation of 
the translation i.e. a large step value between each possible translation T(b.x, b.y) is used. 
Once the best translation 'Îi is found for the first step, a new search is performed on a finer 
grid in the vicinity of 'Îi, using a smaller searching step (see figure 6.6) . The vicinity of 'Îi 
is defined as the search space from the translation estimated before 'Îi to the translation 
considered after 'Îi, i.e. the space centred on 'Îi and of size 2 x step. 

This is repeated until an accuracy of 1-pixel is reached and finally obtain the estimation T. 
In this way, the algorithm is robust and is not so computationally expensive because of taking 
all the pixels in the overlapping area into consideration and of the exhaustive search. Note 
that the value used for the first step must be quite selected in order to obtain good results: 

• a low value increases the computation time; 

• a large value increases the probability of false matching. 
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(a) The first step 

(b) The second step 

Figure 6.6: In the first picture 6.6(a), the coarse grid is drawn on the reference image with a first step of 32 
pixels. The pixels which are considered in the computation of the best similarity measure are 

Jod . urhi:f·o +bic Hiald to th .a Srct ort:iTT\~tl"n 1-.. nn thA n~vt c:h~<TA h hth,, ~ c:m~l la.r 
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On figure 6. 7 and 6.8, we can see some examples obtained using the algorithm described 
above. In the mosaic view, the adjacent image simply overlays the reference image according 
to the estimated translation. 

(a) The first image (b) The second image above on the right 

(c) The images overlayed with the estimated translation 

Figure 6. 7: The input images 6.7(a) and 6.7(b) corne from the same picture and the image 6.7(b) has been 
distorted in order to test the robustness of the algorithm. 
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(a) The right image (b) The left image 

(c) The images overlayed with the estimated translation 

Figure 6.8: An example with images 6.8(a) and 6.8(b) taken with a hand-held camera. Despite the small 
motion (rotation and translation) between the two camera poses and the change in illumination , 
the translation is estimated well and the images are approximately aligned 6.8(c). Note that the 
search space 1l' was limited to horizontal translation along the x-axis. 
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6.2.2 In our implementation 

Given the reference image and the rectified image, the coarse grid method is applied to 
find the first estimation of the translation (see figure 6.9). 

(a) The reference image and the rectified adjacent image 

0 32 64 96 128160 192 224 256 288 320 

(b) The first step (reference image) ( c) The second step ( reference image) 

Figure 6.9: On the picture 6.9(b), the coarse grid is drawn on the reference image with a step of 32 pixels. 
The similarity measure (see table 6.1) has a maximum value for ~:z: = -224 i.e. when the 
overlapping area in the reference image is from the 224th to the 352th pixel along the x-axis. On 
the picture 6.9(c), the coarse grid in the vicinity of 'Îi is drawn in the reference image. The next 
step is of 16 pixels in the vicinity of 224 th pixels along the x-axis (see table 6.2). 
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Llx value of S 
0 0.597674644100379 

-32 0.593988983561173 
-64 0.6105110949544069 
-96 0.6041678857347818 
-128 0.6041678857347818 
-160 0.6268926529702445 
-192 0.7483860784409733 
-224 0.7990459416888565 
-256 0.698801578437786 
-288 0.5026258378241202 
-320 0.5026258378241202 

Table .1: The values of the similarity measure S (equation 6.10) obtained during the first step of 32 pixels. 
The first column is the translation along the x-axis between the reference image and the adjacent 
image which is on the right . Note that the overlapping area in the reference image starts at pixel 
-6,,, along the x-axis. 

Llx value of S 
-192 0.7483860784409733 
-208 0.8346878527534598 
-224 0.7990459416888565 
-240 0.7736619605441296 
-256 0.698801578437786 

Table .2: The values of the similarity measure S obtained during the second step of 16 pixels. The search space 
is from t:,,, = -192 (the translation estimated before t:,,, = -224) to t:> ,, = -256 (the translation 
estimated after 'Ti). Here, the similarity measure is maximised with t:> ,, = -208. 

6.3 The composition 

Once we have rectified all the adjacent images and have found their respective translation 
T(Llx, Lly) related to the reference image, the last stage is to combine the sequence of images 
into a single panoramic view. 

Si:mply aligning the images produces visible defects (i.e. misalignment errors) and 
brightness seams (i.e. the edges of the component images) in the mosaic between regions 
covered by several images because of changing in image brightness. These variations of 
brightness are mainly due to different illumination orientations and conditions. Consequently, 
methods are developed in order to create seamless mosaic from several images. This is the 
blending process which must smooth all the discontinuities in intensity and colour while 
preserving image sharpness. 

Several ways are described below and they are presented in the ascending order of their 
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6.3.1 Average value 

In the case where image alignment is close to perfect, it is desirable to use all the images in 
the overlapping area to produce the panoramic mosaic. So we can simply compute the pixels 
value in the mosaic by averaging the corresponding values in all overlapping images as shown 
on figure 6.10. 

G) G)j Aligned Frames 
(i) (i) G) G)2 
e e (i) e G) G) 1 

$ $ (i) (i) ::1: 

$ $ s 

' 
è è 6 6 6 6 

Pnnornmic 1fosnic 

Figure 6.10: The principle of the average value. The pixel values in the panoramic mosaic are computed as 
the average of the pixel intensities in the aligned frames. 

In addition to a simple mean, the median is often used to compute the pixel values in the 
mosaic from all overlapping regions. The example shown on figure 6.11 is the result obtained 
with the mean value. 

Figure 6.11: The result using the average value. We can see the seam where the images overlap and the 
overlapping area between the images is blurred . There is also deterioration of image quality due 
to the approximative alignment. 
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6.3.2 Single value 

When the alignment between images is not perfect, averaging may result in blurring and 
in deterioration of image quality (see figure 6.11). In this case it is preferred to select only 
one of the input images to represent a region in the mosaic. Such a selection should be done 
to mi imize effects of misalignment. The most logical selection is to select from each image 
that part closest to its centre (see figure 6.12). There are two reasons for that selection : 

• alignment is usually better at the centre than at the edges of the pictures; 

• image distortion is minimal at the centre of the image. 

Aligned Frames 

2 3 5 

Pa noramic Mosaic 

Figure 6.12: The principle of the single value. The pixel values in the panoramic mosaic are taken from a 
single frame whose centre, a~er alignment, is closest to the corresponding pixel. So the value of 
ail the pixels in Region 2 of the mosaic is therefore taken from the strip at the centre of Image 
2, etc ... 
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6.3.3 Weighted average value 

Due to different viewpoints, the images are not perfectly aligned despite the rectification 
and the estimation of the translations. Thus, the first two methods presented above provide 
unsatisfactory results. In order to hide the visible edges of the component images and to 
reduce the effects of misalignment errors, we use a weighted average value. 

The objective is to gradually increase the contribution (in the final mosaic view) of pixels 
from each component image proportionally to their distance to the edge. We obtain the 
following formula to compute the value of the pixel (x, y) in the panoramic view: 

M 

:Z::w(x', y', k)h(x', y') 
Pan(x, y) = _k=_l ______ _ 

M 

L w ( x', y', k) 
k=l 

(6.11) 

where Pan() is the intensity fonction of the panoramic image, h is the intensity fonction of 
the k th component image and M is the number of component images. 

Two weight fonctions w(x', y', k) are commonly used: 

• weight with triangle function; 

• weight with distance. 

The weight with triangle function 

In [Sze96], the weighting fonction w() is a simple bilinear fonction : 

w(x, y) = Wt(x)wt(Y) (6.12) 

w here Wt () is a triangle (hat) fonction that is cl oser to 1 as the coordinates ( x, y) are nearer 
to the centre of the image. In practice we have the triangle fonction w(x, y, k) as follows: 

(6.13) 

where widthk and heightk are the width and height of the k th image respectively. 

The weight with distance 

In [SS97], a distance map d(x, y) is first computed (see figure 6.14). We can either use 
the Euclidean distance7 or the city black distance 8 to the nearest edge to build the map. 

7The Euclidean distance is the length of the straight line between two points P(x , y) and Q(u, v). It is thus 
computed as de = j(x - u) 2 + (y - v) 2 in such a way that ail pixels are at equal distance de and forma circle. 

8 For two given points P(x,y) and Q(u,v), the city black distance measures the path between the points 
ha.c;ed on a 4-connected neie:hbourhood and is comouted as d,h = lx - ul · 
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(a) The distance d from a point P to the edge (b) The distance map 

Figure 6.14: On the left image 6.14(a), the distance d(x, y) from the point P(x, y) to the nearest edge is 
drawn. On the right image 6.14(b), the distance map i.e. an image where the distance to the 
edges has been pre-computed in al! locations. 

Back to the fonction Pan(x, y), the weight fonction w() is simply a monotonie fonction 
and w(d(x, y)) = d(x, y) is currently used, where d(x, y) gives the distance from the pixel 
P(x, y) to the nearest edge as shown on figure 6.15. 

Figure 6.15: Instead of measuring the distance orthogonally to the edges as in figure 6.14, we simply take 
the distances d1,d2,d3 and d4 that follow the column x and the row y of the coordinates (x,y) 
to reduce the complexity of the measurement. Thus, the distance d(x, y) to the nearest edge is 
chosen amongst the quadruplet (di, d2, d3, d4) and gives d4. 

As [WYZOl] underlines it, the weight with distance is more efficient than the weight with 
triangle fonction. By using the distance map, the contribution of pixels at the edges is null 
and gradually increases towards the centre of the component image. With a triangle fonction, 
the pixels at the edges contribute 50% to the mosaic image, resulting in a slightly visible seam. 
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6.3.4 Comparison of the various approaches 

(a) With average value (b) With single value (c) With weighted average value 

Figure 6.16: On picture 6.16(a), the misalignment errors (e.g. the rays of light on the ground) and the seam 
between the two images are visible. In addition, the region where the images overlap is blurred 
(e.g. the curtains and the rack in the middle of the picture). Using a single value 6.16(b) hides 
the misalignment errors and the blurring effect in the overlapping area but there is a seam that 
is still visible (i.e. the gray stripe on the right). At least, using the average value weighted with 
distance disguises ail these artifacts well as shown in the picture 6.16(c) . 

6.3.5 In our implementation 

As discussed earlier, the best result is obtained with the weight with distance. So we com­
pute the distance to the nearest edge as in figure 6.15 and the pixel weight is then proportional 
to this distance to some power n with the fonction w(x) = xn. In practice we have: 

M 

L (dk(x', y')tik(x', y') 

Pan(x,y) = _k=_l_M ______ _ (6.14) 

L (dk(x',y')t 
k=l 

where M is the number of overlapping images, dk(x', y') is the distance fonction of the k th 

image, x' = x + .6.x and y' = y + .6.y according to the translation T k estimated for the kth 

image. According to [MB00], a value for n between 3 and 4 has proven to give good results 
and the higher the parameter n is, the sharper the transition between the images, and the 
less blurred the transition regions appear. Concerning the misalignment errors, they can be 
partly hidden with a small value for n. The figure 6.17 shows the blended image obtained 
with n = 4. 
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Figure 6.17: The result using the weighted average value as in equation (6.14). The images are well aligned 
and the misalignment errors are not visible. 
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6.4 Final result 

In this section, we present a large panoramic view composed from 4 colour images (see 
figure 6.18) and the computation time for each stage (see table 6.3). The photographs are taken 
with a hand-held camera placed on a basic tripod. A small translation and an approximate 
rotation of 30 ° are applied in the respective direction and orientation between the poses to 
simulate the configuration of the future compound eye camera. The focal length is of 7mm 
but we had to estimate the effective pixel size. The angle of rotation and the translation are 
also inaccurate because of the material used for snapshots. In addition , the snapshots are 
resized to 352 x 264 pixels with a standard software for image editing. The pixel size is then 
estimated to be of 0.0216mm in both horizontal and vertical axis. 

Figure 6.18: The source images taken from viewpoints similar to the future compound eye camera. 
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Figure 6.19: The mosaic obtained as result of the rectification-based method. Note the misalignment error 
around the column between the two windows. This error is due to the inaccuracy of angle of 
rotation and translation between the poses. 

Stage Time in ms 
Rectification 
adjacent up 671ms 

adjacent right 451ms 
adjacent left 410ms 

Rectification total time 1532ms 
Estimation of translations 

adjacent up l00ms 
adjacent right 91ms 
adjacent left llüms 

Translation total time 301ms 
Composition 2443ms 

Total computation time 4276ms 

Table .3: The computation time of the whole algorithm and its different stages. The computer which has 
been used is equipped with a processor Intel(R) Pentium(R) 4 2GHz and 256MB DDR of memory. 
The OS is Microsoft Windows XP. The algorithm is implemented with Java2 SDK Standard Edition 
_. -, A, __ ,...: __ .,_i.. ,..., : .... + .... -- ... + .... ...1 ...1 .... - ..... 1 ......... ..,...... .......... + ,...,_, _.:_ ,.... ..... ................. .. c .. ~ r\l\TP c+ . . ..1: ...... A r-,p 
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Translation Estimation 
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Edge Detecùon 
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Depth Estimation 

Figure 7.1: The data-flow scheme. 

Righi Image 

Recftification 

Righi Rectified Image 

From at least two views of a same scene, the depth estimation of a 3D scene point can 
be achieved by triangulation under condition that the relative position of the two cameras is 
known. 
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extremely difficult task in computer vision. The problem of the corresponding points ( called 
the registration1 problem) is that from a point in one image, we have to find which point in 
the second image corresponds to the same 3D scene point. Starting from this consideration, 
we try to develop an algorithm that is able to find the depth of all points visible in the two 
images and then to make a reconstruction of the 3D environment. It is obvious that the two 
cameras from which we take the images have to be oriented in such a way that the resulting 
images are partially overlapping, i.e. there is a part of one image which represents the same 
scene than a part of the second image. The figure 7.1 shows the scheme of the algorithm we 
implement. 

7.1 Camera settings 

Fi:rst, we will define the extrinsic parameters used for the two cameras. As the module 
on which lie the cameras is a dodecagon, the angle between them is equal to 30°. Thus the 
rotation matrix is given by 

( 

cos 30° 0 sin 30° ) 
R= 0 1 0 

- sin 30° 0 cos 30° 
(7.1) 

V..Te choose the world reference frame centred in the left camera centre, this implies that 
the translation vector of the right camera from the left camera will be (see figure 7.2) 

(7.2) 

expressed in millimeter. 

The figure 7.3 shows the original images taken with a system of two cameras parameterised 
with the previous settings. 

7. 2 Image rectification 

A solution to simplify the search of the corresponding points is image rectification2 . Due 
to the rotation and the translation between the two cameras, the corresponding point in 
the right image (for example) of a point in the left image could be anywhere. Fortunately, 
the epipolar geometry3 allows us to search the corresponding point in one image just along 
the pipolar line generated by the point in the other image. Thus, knowing the epipolar 
geometry, we have to search only in lD instead of in 2D. 

The idea of using rectification is that we make the two images coplanar and parallel to the 
base ne. This transformation has the effect that the epipolar lines become horizontal (since 
the epipoles are at infinity). 

1 See chapter 3 "Image registration methods" for further details. 
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Figure 7.2: The extrinsic parameters of the two cameras' system. 

Example: 

If a point in the left rectified image has the coordinates (in pixel) 

(x, y) 

the corresponding point in the right rectified image will be at coordinates 

(x', y) 

where we only have to find x'. 

Image plane 2 
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(a) 

(b) 
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7. 3 Interesting points 

Na,turally, we won't try to compute the corresponding points of the whole image. A part 
of th left image is not visible in the right image, thus the idea is to search only for points 
that we are sure to be represented in the right image. Actually it is not interesting to work 
with he entire image since a lot of information that it contains are useless. 

7.3.1 Translation estimation 

Vve try to estimate the translation4 between the two images, this estimation allows us to 
compute the overlapping area. This area is the part of the left image in which almost all the 
points are visible in the right image. In other words, almost all points in this area have a 
corrn~ponding point in the right image. The figure 7.5 shows the overlapping area computed 
from the images in figure 7.3. 

Figure 7.5: The overlapping area from the two original images. 

7.3.2 Using edge detection 

T e translation estimation gives an area on which we can work, but all this area is not 
usefu . We don't need to compute the depth of all the appearing points. Most of the points 
are uaeless since they don't provide new interesting information. Actually edge points of the 
c:rPnP i:np imffiriPnt. rnmn11t.ini:r t.hP. ciP.nt.h nf t.hP.sP. noint.s will rrivP. 11s....thP. · · · 
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and the orientation of the abjects of the scene. 

We choose the Canny edge detection5 algorithm which is the commonly used technique. 
Using this algorithm, the resulting image contains only the useful points for which we need to 
estimate the depth. Thus the amount of computation to make will largely be reduced. The 
figure 7.6 gives an example of an edge image. 

(a) (b) 

Figure 7.6: The overlapping area before (figure 7.6(a)) and after (figure 7.6(b)) the application of the Canny 
edge detection algorithm. 

Notice that the parameters of the algorithm have to be changed if we want to obtain more 
edges on the image. This is the choice of the user to define when the result is accurate enough. 

7.4 Image registration 

We previously saw that the image rectification simplifies the registration problem since it 
allows us to search along an horizontal line. In addition, we know that the coordinates of the 
corresponding point in the right image are "not far" from the initial coordinates of the point 
in the left image. 

As the figure 7.1 presents it, we will use the two rectified images and the overlapping area 
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edge image we test if it is an edge point (if the point is white), if it is the case we use the 
rectified images to find its corresponding point. 

Fen: facility, we choose a correlation-based method6 to execute the registration. 

Fig ure 7. 7: The white cross is an arbitrary point for which we want to find the corresponding point. 
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Figure 7.8: Examples of search windows around the initial position and along the horizontal line. 

Figure 7.9: The corresponding point found by the correlation-based method. 
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Ai=plying the correlation-based method to the entire overlapping edge area, we obtain a 
list of couples of coordinates: 

(7.3) 

w ere n is the number of edge points, (xi, Yi) are the coordinates in the left image and 
(ui, Vi l are the coordinates of the corresponding point. 

7. 5 Triangulation 

Fnm the list of couples of corresponding points, we use the mid-point triangulation tech­
nique: to obtain a depth estimation for each couple of coordinates. The result is a list of 3D 
coordmates 

(7.4) 

(a) The edges in the overlapping area (b) The 3D reconstruction of the overlapping area 

Figure 7.10: The 3D reconstruction rendered with Java3D v 1.3.1. 

Figure 7.10 shows a example of the 3D reconstruction of the scene from the common vision 
of the two images. However, a lot of points are badly positioned or missing. We think this is 
principally due to the lack of precision of the intrinsic and extrinsic parameters of the images 
used for the test. Indeed, the stereo system simulated with the hand-held camera is very 
inaccurate. Test should be done with the final prototype to completely know the result of the 
propased approach. 
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Conclusion 

Concerning the panoramic image generation, we have presented a rectification-based ap­
proach that works in three main stages: 

1. rectification of the images in order to reduce the alignment problem to a simple trans­
lation; 

2. estimation of the translation based on a coarse grid and an exhaustive search between 
the reference image and each rectified image; 

3. composition of the reference image and the rectified images into a seamless panoramic 
image using a blending algorithm. 

This approach in image mosaic techniques reduces the search of the transformation 
between images to a simple translation. Thus, complex registration stages are not required 
and it should provide better computation time. It has also the advantage of handling large 
rotations between viewpoints and not requiring a large overlapping area between images. 
However, there are a few limitations of our method. A reference image is necessary among 
the images to be aligned and must have a central position so that the other images are 
adjacent to this reference image. In addition, it doesn't provide accurate alignment of images 
despite satisfactory visual results . The misalignment errors are not corrected but disguised 
thanks to the blending algorithm used in the last stage. This is a reasonable choice between 
computation time and quality of results in our case because the source images corne from 
CMOS cameras. 

The depth estimation method presented in this work have two main advantages: 

1. the rectification approach simplifies the registration problem; 

2. all techniques used are easy to understand. 

Unfortunately, it couldn't be tested with precision because of the lack of available images. 
Nevertheless, we can already see some failures which will cause bad results. 

First, the choice of the correlation-based technique to solve the registration problem is not 
necessary the best. Even if this technique is simple to use, the weaknesses exist. For example: 

1. the conditions of enlightenment will greatly affect the result; 

2. surfaces with few variations of intensity (such walls, panels, ... ) are not treated properly. 

Another problem cornes from the rectification itself. The interpolation used introduces 
imprecision and loss of information. Indeed the image transformation deforms it and may be 
not accurate if the parameters are not known exactly. This will cause a lack of precision. 

The impact of these drawbacks will be wrong correspondences and of course big mistakes 
in depth estimation since the parameters of the triangulation are false. Furthermore, we 
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T he described panoramic image generation technique has worked well in the scene in which 
we tried it and using a hand-held camera to take the pictures. However, the depth estimation 
is very sensitive to inaccurate parameters (i.e. intrinsic and extrinsic parameters). Thus, 
intensive experiments with accurate parameters and improvements are necessary in order to 
apply it to the real application and to validate the two methods: 

• tests with pictures from the compound eye camera and under conditions similar to rescue 
activities (dark scene with debris) must be clone as soon as the prototype is ready; 

• the complexity of the panoramic image generation has to be reduced, mainly in the 
composition stage, in order to run in real-time. 

We trust in the successful use of the rectification approach in the project 11 An Intelligent 
Sensor Head for Information Collection in Debris 11

• On the one hand, the proposed methods 
should work well with dark pictures of debris because the only critical part is the estimation 
of translations which makes optimal use of all the information and is improved thanks to the 
rectification stage. On the other hand, the complexity of the panoramic image generation 
algorithm should be easily improved because the algorithm was implemented in a simple way 
in order to demonstrate the applicability of the rectification-based approach. 

A idea to overcome the problem introduced by the rectification used in depth estimation 
could be to directly use the epipolar lines equation. The search of the corresponding points 
would be along these lines without modifying the images. The price to pay will be a slower 
techruque and then a loss of speed in the processing of the images. 

F inally and for all these reasons, it appears clearly that ours algorithms are the first step 
on the way to an optimal solution. In addition, further works may consist of: 

• trying other faster techniques; 

• estimating the depth with more than two source images; 

• building 3D maps of the scene; 

• registering the current images with images taken during a former passage or by other 
robots ( e.g. multi-agents); 

• building a map in order to compute the path of robots; 

• automatically detecting victims; 

• building a model of debris to estimate their stability and the possible danger allowing 
to plan their removal. 
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A-1 The interpolation 

The image pixels occupy integer coordinates x and y and so the intensity fonction I(x, y) 
usually has the signature I : N+ x N+ - N+. Sometimes however, we want to get the 
brightness of a pixel P(x',y') from float indices x' and y' i.e. subpixel intensity. In this case we 
have J : JR+ x JR+ - N+. Thus, we interpolate the pixel intensity i.e. the value of the pixel 
is generated from its neighbours. The contribution of neighbouring pixels is often related 
to a certain weight which is generally inversely proportional to the distance at which the 
neighbour is located. 

In this section, we briefly present the most common types of interpolation in two dimension 
according to [Rod]. 

A-1.1 The nearest-neighbour interpolation 

One can simply round x and y to get the intensity from these rounded coordinates i.e. the 
interpolating pixel is assigned the value of the nearest neighbour. This method is fast, but it 
is the simplest and crudest technique and it may not produce accurate results . Indeed, the 
nearest-neighbour interpolation may introduce aliasing8 ,1/2 pixel shifting and jaggies9

. 

A-1.2 The bilinear interpolation 

In linear interpolation, the value of the interpolated pixel Px' is computed from the imme­
diate neighbours of Px'. Let Px' be the pixel to be interpolated where x' = x + d with x E N+ 
and 0.0 ::; d < 1.0. The distance-to-weight relationship is linear i.e. the relationship is of the 
form y= ax +bas shown on figure A-1. 

Thus in 2D, we have the bilinear interpolation, also known as first-order interpolation, 
which linearly combines the values of the four closest pixels i.e. in a 2 x 2 pixel neighbourhood. 
First we apply the linear interpolation in one direction. Then the linear interpolation in the 
other direction is applied on the result. Let the non-integer coordinates (x', y') be (x + dx, y+ 
dy) with x, y E N+ and 0.0 ::; dx, dy < 1.0. Consequently, P(x,y) denotes the upper left-hand 
neighbour (see figure A-2). 

The bilinear interpolation is computed by: 

I(x', y') = (1-dx)(l-dy)I(x, y)+dx(l-dy)I(x+ 1, y)+dxdyI(x+ 1, y+ l)+dy(l-dx)I(x, y+ 1) 
(A-1) 

The bilinear interpolation is piecewise bilinear and provides an improvement in image 
quality over the nearest-neighbour interpolation. However, it may result in less-than-desirable 
smoothing effects. 
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Figur A-1: In linear interpolation , the pixel Px, value is determined by the left and right neighbours of Px' 

i.e. Px and P (x+ 1). Their respective values are noted Px and P(x+ 1) The intensity Px' of Px' is a 
linear function of Px and P(:z:+I) as it is shown by the drawn line. 
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FigLre A-2: T he bilinear interpolation is performed in a 2 x 2 neighbourhood. Pcx' ,y') denotes the pixel ai 

distance dx and dy from the upper left-hand neighbour Pcx ,y) . 


