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Abstract 

East Coast fever (ECF) is one of the most severe and economically important tick-borne 

diseases of cattle in the Great Lakes region but also occurs in other regions of the sub-Saharan 

Africa. The disease is caused by the apicomplexan pathogen Theileria parva and transmitted 

by the ixodid tick Rhipicephalus appendiculatus. The Great Lakes region of central Africa is 

characterised by diversified agro-ecological conditions and extensive cattle movements, where 

the epidemiology of ECF was previously reported to be complex and unstable: high mortality 

and high incidence in highlands, but clinical cases confined to calves in lowlands and midlands 

with reported occasional epidemics in lowlands. The available immunisation approach is based 

on the use of the Infection and Treatment method (ITM) which involves inoculation of live T. 

parva sporozoites and simultaneous treatment with oxytetracycline. The live vaccination 

approach provides strong immunity against homologous strains, but variable cross-protection. 

The efficacy and safety of live vaccine are limited due to the genetic diversity of T. parva in 

field populations and the risk of spreading “foreign” parasite strains in new areas. A better 

understanding of factors affecting the instability of ECF in the region and epidemiological 

differences between agro-ecological zones (AEZs) could contribute to the formulation of 

effective control strategies. In addition, knowledge of the genetic composition of T. parva is 

crucial prior to the use of live vaccine to prevent the risk of spreading exotic parasite variants 

in new areas. 

The aim of this thesis was to assess the population genetics of R. appendiculatus and T. parva 

and the transmission and infection dynamics of T. parva, as so to further understand the 

epidemic instability of ECF reported in different agro-ecological zones of the Great Lakes 

region (based on altitudes: lowlands <1200 m, midlands: 1200-1800 m and highlands: 1600-

2800 m). To achieve this objective, we examined the genetic variation and the phylogeography 

of R. appendiculatus populations using mitochondrial genes (cox1 and 12S rRNA), the genetic 

and antigenic variation of T. parva using antigen-coding genes (Tp1 and Tp2) and the 

transmission intensity and dynamics of T. parva to define the epidemiological states of ECF in 

contrasting AEZs by means of vectorial inoculation rate (VIR).  Rhipicephalus appendiculatus 

ticks and cattle blood samples were collected during cross-sectional surveys in different AEZs 

of DRC, Rwanda and Burundi. Previously published sequences of R. appendiculatus and T. 

parva in their distribution range in Africa were also included in the analyses. The findings have 

contributed substantially to improve our understanding of the relationships between the genetic 
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and biogeographical distribution of R. appendiculatus and T. parva and the transmission 

dynamics of T. parva to understand the complex epidemiology of ECF in the Great Lakes 

region: 

Two major R. appendiculatus genetic groups were identified in the Great Lakes region: lineage 

A (east African group) and lineage B (south African group). Their distribution in Africa 

strongly correlated with differences in phenotypic features including diapause behaviour, vector 

competence and body size. The east African lineage (the more diverse and ubiquitous) is widely 

distributed and has been longer established in the Great Lakes region whereas the south African 

lineage (less abundant) has settled a founder population from recent colonisation events and its 

distribution decreases with altitude. The two genetic groups have been subjected to sudden 

demographic and spatial population expansion associated with cattle movements in Africa. 

Rhipicephalus appendiculatus ticks are more diverse in lowlands than highlands and its 

biogeographical distribution suggests a sympatric coexistence in central and eastern Africa and 

allopatric distribution in south Africa. 

Population genetic and phylogenetic analyses provided strong evidence of genetic similarity 

among T. parva genetic variants circulating in the Great Lakes region and the components of 

the Muguga trivalent vaccine. There was high degree of genetic variation within populations 

and limited agro-ecological structure due to the widespread major genotypes identical or closely 

similar to vaccine strains. Theileria parva populations from lowlands and midlands were more 

diverse than those from highlands areas. The genetic structure and biogeographical distribution 

of T. parva genetic variants were found to be driven by gene flow facilitated by cattle movement 

and ecological conditions affecting tick population dynamics. Importantly, the fact that 

ubiquitous T. parva alleles were genetically identical or closely-related to the components of 

Muguga trivalent vaccine, together with the admixture of T. parva populations, provides the 

evidence for safe use of existing trivalent live vaccine cross-protection field trials in the Great 

Lakes region. 

The agro-ecological and seasonal variations in the transmission intensity of T. parva were 

primarily predicted by the abundance of tick vector rather than the differences in the proportion 

of infected ticks. Rhipicephalus appendiculatus ticks were present on cattle throughout the year 

and experience at least two generations in the Great Lakes region. The exposure of cattle to T. 

parva infection was found to be significantly different among agro-ecological zones. The 

prevalence of T. parva infection in cattle, the tick challenge on cattle and the transmission 
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intensity were significantly higher in lowlands and midlands while the highlands areas 

exhibited lower tick challenge and lower and constant transmission intensity. 

Based on these three studies, different epidemiological situations were described according to 

contrasting AEZs: (i) In the highlands area, where high cattle mortality was previously reported, 

only T. parva isolates identical to the trivalent Muguga vaccine strains occur, associated with 

the presence of the east African tick lineage and low and constant transmission intensity of T. 

parva. In this area, the situation is suggested to be epidemic; (ii) In midlands and lowlands 

areas, where previous data reported clinical disease confined to calves, there was high genetic 

diversity of T. parva and R. appendiculatus. The two tick lineages were sympatric in these areas 

and there was high tick challenge and high transmission intensity of T. parva. This was an 

indication of endemic situation in these areas. Particularly, the coexistence of R. appendiculatus 

lineages well adapted to the climatic conditions of the region, together with continuous 

introduction of ticks through the extensive cattle movement may disrupt the endemicity and 

lead to occasional epidemics reported in the region. In view of these results, different control 

strategies should be implemented to be adapted in each epidemiological situation. In endemic 

areas (lowlands and midlands), a control method using the ITM vaccine on the susceptible 

animals (calves and exotic) is more indicated whereas strategic tick control during epidemics, 

treatment of sick animals and cost-effective vaccination of calves should be recommended in 

the epidemic area (highlands).  
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List of definitions 

1. Allele (or gene allele): One of two or more alternative versions of a gene, having a 

unique nucleotide sequence. 

2. Allopatric speciation (or geographic speciation): Speciation following geographical 

isolation of two or more populations of a species, restricting the gene flow between the 

separated subpopulations (reproductive isolation).  

3. Allopatry: Complete geographic separation of populations within a species 

4. Bottleneck effect: A form of genetic drift that occurs when a population is rapidly and 

drastically reduced in size from an ecological crisis or an expansion to new habitat that 

wipes out most of members within a population, reducing the population genetic 

variation. The population bottleneck may also be caused by a founder effect. 

5. Founder effect (founder event): The loss of genetic variation and the consequent change 

in genotype frequencies that occurs when a few individuals split away and initiate a new 

population (founder population), with only a small proportion of the genetic diversity 

from a larger population. The founder effect potentially results in speciation. 

6. Gene flow: The movement of genes (or individuals) between two or more populations 

following genetic admixture, usually as a result of migration.  

7. Genetic drift: The changes in allele frequencies that occur in a population over time due 

to stochastic processes produced by sampling in finite populations from generation to 

generation. 

8. Genotype: The genetic constitution of an organism (allele composition), typically with 

respect to a set of DNA versions (alleles) found at one or a few genes of interest. 

9. Haplogroup: A subset of related haplotype sequences that form a phylogenetic clade 

(also referred to as lineage). 

10. Haplotype: A sequence variant of a gene, used as alternative to “allele”. 

11. Lineage (see haplogroup) 

12. Population: All the individuals of a particular species that live in a specific geographic 

area or agro-ecological zone. 

13. Speciation: Divergent evolution of related individuals or populations of a species, 

resulting into separate species.  

14. Stock: A group of related organisms isolated from a common geographical origin within 

a species. 
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15. Strain:  A genetic type or subtype within a species (see also genotype). 

16. Sympatric speciation: Speciation occurring within populations with overlapping 

geographic ranges. 

17. Sympatry: Occurring in the same geographic region (compare with allopatry). 

18. Variant (or antigen variant): One of two or more alternative versions of an antigen 

(protein), having a unique amino acid sequence. 
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3 

1.1 Introduction 

The Great Lakes region of central Africa consists of the three countries members of the CEPGL 

(Communauté économique des Pays des Grands Lacs) that are closely interconnected: The 

Democratic Republic of Congo, Rwanda and Burundi. This region of Africa is close to the 

equator and is characterised by diversified agro-ecological conditions strongly regulated by a 

wide range of altitudes (700-3000 m), the diverse landscape relief, the protected areas and the 

water bodies including Lakes Tanganyika and Kivu and the Ruzizi River flowing between the 

two Lakes. Overall, the climate is tropical with a bimodal rainfall pattern: an early wet season 

from September to December and a late wet season from February to May. The dry season lasts 

from June to August with an intervening short dry period of approximately 15 days in January 

or February. The annual rainfall ranges between 700 and 2000 mm. Livestock are highly 

valuable and play multiple roles in the agricultural and rural livelihoods and economies in the 

Great Lakes region. They provide animal products for food, income and employment and 

contribute to mixed crop-livestock production as valuable source of manure fertilizer (Desiere 

et al., 2015; Klapwijk et al., 2019). Cattle represent the main livestock species and are 

considered as capital reserve for smallholder farmers in the Great Lakes region and in the sub-

Saharan Africa in general (Herrero et al., 2013). However, cattle population have declined due 

to high human population demographic pressure, recent violent conflicts and animal diseases 

(Cox, 2012; Mazimpaka et al., 2017; Wurzinger et al., 2006). Ticks and tick-borne diseases are 

among the major biotic constraints that affect animal production and hamper its development 

in this part of the word, causing significant economic losses (Bazarusanga et al., 2007a; Kaiser 

et al., 1988; Kalume et al., 2013; Randolph and Rogers, 1997). In the context of political unrest 

during the past three decades, there were increased movements of live animals from 

neighbouring countries and within countries for trade, breeding and pasture, with very limited 

veterinary control. In addition, during the pre-colonial period, people immigrated from Rwanda 

and Burundi and established with their cattle in DRC (Verweijen and Brabant, 2017; 

Vlassenroot and Huggins, 2005). These unrestricted cross-border movements of cattle together 

with local transhumance system are thought to have important implications in the 

epidemiological complexity of tick-borne diseases (TBD) through the spatial spread of non-

endemic ticks and pathogens strains, as ticks have potential to establish in new environments 

(Barre and Uilenberg, 2010; Estrada-Peña and Salman, 2013).  
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East Coast fever (ECF) is one of the most severe and economically important TBD of cattle in 

the Great Lakes region but also occurs in other regions of central, eastern and southern Africa 

(Perry, 2016). It induces large direct production losses and high cattle mortality, as well as 

indirect economic losses associated with control measures, hindering the development of 

livestock production in sub-Saharan Africa (Minjauw and McLeod, 2003). The disease is 

caused by the cell-transforming apicomplexan pathogen Theileria parva and transmitted by the 

three-host ixodid tick Rhipicephalus appendiculatus (Bishop et al., 2004). The geographic 

distribution and population dynamics of R. appendiculatus are driven by ecological conditions, 

host availability and vegetation (Leta et al., 2013; Perry et al., 1990). According to the wider 

suitable ecological conditions of the tick vector in sub-Saharan Africa, there is evidence that T. 

parva can spread through animal movement and establish in new areas (Boucher et al., 2019; 

De Deken et al., 2007; Yssouf et al., 2011). In the Great Lakes region, cattle mobility and agro-

ecological variability have been suggested to be the main factors underlying the tick vector 

dispersal and consequently the epidemic instability of ECF (Amzati, 2011; Bazarusanga et al., 

2007b; Kalume et al., 2012). 

Theileria parva infection in susceptible cattle usually results in a rapid proliferation of schizont-

infected lymphocytes, leading to death within two to three weeks in the absence of treatment. 

It has been demonstrated that cattle that spontaneously recover from an ECF infection develop 

a long-life immunity against homologous strains. However, these immune animals remain 

carrier of the pathogen, a source of persistent transmission and spreading of the disease to 

susceptible naïve cattle (Kariuki et al., 1995; Olds et al., 2018). In areas where agro-ecological 

conditions are favourable to continuous transmission of the parasite, this phenomenon may 

contribute to attain a state of endemic stability of ECF (Billiouw et al., 2002; Medley et al., 

1993). The immune status observed in recovered cattle enabled the development of an 

immunisation approach using the Infection and Treatment Method (ITM), which involves 

inoculation of live sporozoites of T. parva and simultaneous treatment with oxytetracycline. A 

widely used formulation is a trivalent vaccine known as the “Muguga cocktail”, which consists 

of a mixture of three T. parva stocks (Muguga, Kiambu-5 and Serengeti transformed) (Radley 

et al., 1975). This formulation has been successfully deployed on a large-scale in Tanzania, 

Kenya and Uganda, and on a limited scale in a few other countries (Di Giulio et al., 2009; 

McKeever, 2007). Immunisation using live vaccine (Muguga cocktail or other local strains) 

remains the only efficient method which provide a long-lasting and solid cell-mediated 
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immunity against homologous challenge, but not always full cross-protection against 

heterologous strains (Radley et al., 1975; Sitt et al., 2015; Taracha et al., 1995a).  

However, despite the success of the Muguga cocktail vaccine, which have provided broad 

protection against ECF in some geographic areas, its widespread deployment is still limited due 

to the epidemiological complexity of ECF and several concerns which include the possibility 

of introducing new T. parva strains to unvaccinated cattle (Geysen et al., 1999; McKeever, 

2007; Oura et al., 2007). It has been demonstrated that exotic T. parva strains introduced 

through vaccination can establish in local tick population and may change the T. parva 

population structure (Oura et al., 2004a; Oura et al., 2007; Skilton et al., 2002). These exotic 

strains may also undergo sexual recombination with local ones and potentially modify parasite 

genetic composition (Henson et al., 2012; Katzer et al., 2011). In addition, extensive cross-

border movement of cattle may introduce new parasite genotypes and more competent tick 

stocks to a region (De Deken et al., 2007; Marcellino et al., 2017; Yssouf et al., 2011). On the 

other hand, the dynamics of population expansion and colonisation ability exhibited by R. 

appendiculatus is probably changing the genetic landscape of T. parva in the sub-Saharan 

Africa (Yssouf et al., 2011).  These factors continuously change the transmission dynamics and 

the population structure of T. parva and R. appendiculatus which have the potential to 

significantly impact the epidemiology of ECF and the success of control measures (Katzer et 

al., 2006; Katzer et al., 2010; McKeever, 2007).  The evolutionary dynamics and genetic 

diversity are main factors that facilitate the survival of T. parva and complicate the 

epidemiology and control of ECF (Katzer et al., 2010). Thus, understanding the complex 

interplay of genetic diversity and population structure of T. parva and its tick vector R. 

appendiculatus associated with agro-ecological conditions is useful to shed more light in the 

complexity of ECF epidemiology in the Great Lakes region. 

In this study mitochondrial genes (cox1 and 12S rRNA) were used to investigate the 

phylogeography of R. appendiculatus (chapter 3) and antigen-coding genes (Tp1 and Tp2) to 

characterise the genetic and antigenic composition of T. parva (chapter 4). The transmission 

dynamics of T. parva were then assessed in different agro-ecological contexts (chapter 5) to 

further conciliate the genetic composition and biogeographical distribution of vector and 

pathogen with the epidemiology of T. parva. The results are crucial in understanding the 

transmission dynamics of T. parva as well as its impact on the epidemiological states and 

integrated management of ECF. 
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1.2 The tick vector: Rhipicephalus appendiculatus 

1.2.1 Ixodid ticks: importance, systematic and morphological characteristics 

Ticks are among the most important and obligate blood-feeding ectoparasites of livestock found 

throughout the world, and particularly abundant in the tropical and sub-tropical regions. They 

are responsible for considerable economic losses worldwide due to their important role as 

vectors of a range of infectious organisms, including protozoa, bacteria and virus, which are 

causative agents of tick-borne diseases affecting humans and animals (Jongejan and Uilenberg, 

2004). In addition to their role as vectors of harmful infectious agents, tick bites may lead to 

severe toxic and allergic reactions that sometimes evolve to deadly paralytic symptoms. Heavy 

tick infestation on an animal can also lead to reduced weight gain and body condition, abortion 

and reduced milk production (Sonenshine and Roe, 2013).  

Ticks belong to the suborder Ixodida (Metastigmata) in the order Parasitiformes, subclass 

Acari, class Arachnida, subphylum Chelicerata and phylum Arthropoda. The suborder Ixodida 

consists of three families: the Ixodidae (hard ticks), Argasidae (soft ticks) and Nuttalliedae (an 

intermediate monospecific family) (Mans and Neitz, 2004; Sonenshine and Roe, 2013). The 

ixodid ticks or hard ticks account for at least 700 species, among which approximately 200 

species occur in the Afrotropical region (Barker and Murrell, 2004; Horak et al., 2002; Nava et 

al., 2009). The most important genera of hard ticks are Rhipicephalus, Boophilus (a subgenus 

of Rhipicephalus), Dermacentor, Hyalomma, Ixodes, Amblyomma and Haemaphysalis (Horak 

et al., 2002; Murrell et al., 2000, 2001). Their common characteristics are the presence of a hard 

sclerotised dorsal scutum, the mouthparts projecting forward and the scutum, which covers the 

entire dorsal body surface in adult males but limited to the anterior half to third dorsal body in 

females and immature stages (Guglielmone et al., 2014). Rhipicephalus is one of the largest 

genera of veterinary importance widely distributed throughout the Word, with the majority of 

species found in Africa (Keirans, 1992; Walker et al., 2005). Representative species of the 

genus Rhipicephalus are recognised by short hypostome and palps, their basis capitulum is 

typically hexagonal in shape from the dorsal view. These ticks have eyes, festoons and the 

males have adanal plates. The most common feature is that most species of the genus 

Rhipicephalus do not have coloured pattern on their scutum, so they are conventionally referred 

to as “brown ticks”. Rhipicephalus appendiculatus (Neumann 1901) tick Figure 1.1, which is 

placed into the genus Rhipicephalus under the subfamily Rhipicephalinae, is widely distributed 

in relatively cool and humid ecosystems in sub-Saharan Africa. The tick has a uniform brown 
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colour, short mouthparts and a hexagonal basis capitulum particularly in female. Rhipicephalus 

appendiculatus transmits the protozoan pathogen T. parva, the causative agent of ECF in cattle. 

It also transmits strains of T. parva that cause Corridor disease (buffalo-derived T. parva) and 

Zimbabwean theileriosis (January disease).  

 

Figure 1.1 Rhipicephalus appendiculatus a) Male: dorsal (left) and ventral (right) view, and 
b) Female: dorsal (left) and ventral (right) view (Mtambo, 2008) 

 

a

b
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1.2.2 Host specificity and preference of Rhipicephalus appendiculatus 

Rhipicephalus appendiculatus occurs in a variety of both domestic and wild ruminants in Africa 

(Walker, 2003; Walker et al., 2005). Both immature and adult stages of the tick can feed on 

cattle as the tick has become well adapted to the presence of domestic cattle. It also infests 

goats, sheep, dogs and wild ruminants including antelopes (Hyppotragus niger), waterbucks 

(Kobus defassa), greater kudus (Tragelaphus strepsiceros) and elands (Taurotragus oryx) 

(Githaka et al., 2014; Stagg et al., 1994). However, cattle remain the only preferred domestic 

hosts of all stages of R. appendiculatus. The tick is also an ectoparasite of African buffalo 

(Syncerus caffer), which is the main wildlife reservoir of various genotypes T. parva (Bishop 

et al., 2015; Pelle et al., 2011). In all these hosts, the predilection attachment sites of adult ticks 

are the pinna surfaces of ears and the head, although the tick can be found on other parts of the 

body during heavy infestation (Jongejan and Uilenberg, 2004). This tick is referred to as “brown 

ear” tick because of its brown colour and its preference for attachment on the ears of animals. 

The burdens of adult ticks can be very large exceeding 1,000 adult ticks on cattle and some wild 

domestic animals (Walker et al., 2005). Immatures are present with less predilection for their 

feeding sites. 

1.2.3 Life cycle of Rhipicephalus appendiculatus 

The development pattern of Rhipicephalus appendiculatus is typically a three-host cycle, 

during which the tick undergoes different phases according to their behaviour on or off the host: 

host seeking, feeding and off-host moulting (Sonenshine and Roe, 2013; Walker et al., 2005). 

Its life cycle comprises four developmental stages: eggs, larvae, nymphs and adults (male and 

female) (Figure 1.2). Larvae, nymph and adult go through an attachment and a free-living 

period. After repletion and detachment, ticks seek sheltered microenvironments either for 

moulting (larvae and nymphs) or for ovipositing (adult female). After moulting and in certain 

cases after quiescence or diapause, the unfed ticks go through a period of hardening, and 

thereafter they start seeking for suitable host, a process known as “questing” (Sonenshine and 

Roe, 2013). As soon as the tick has successfully attached on the host, it starts the feeding period, 

which takes approximatively 4 to 8 days. The feeding period varies with the stage and the 

temperature. Mating occurs after at least 4 days of the female feeding. Mating is required for 

the female continues to complete engorgement. Following repletion, the engorged female drops 

off the host, seek for favourable microhabitats for oviposition and starts ovipositing 5 to 10 

days later.  Ticks usually drop in host resting areas or drinking points, enhancing the chance of 



9 

survival of the ticks off their host (cooler and wetter areas) and facilitating host questing of the 

next instar (Minshull and Norval, 1982; Mwangi et al., 1991). Within the next 14 days, R. 

appendiculatus female lays a batch of around 3000-5000 eggs. However, the oviposition may 

be prolonged up to a month if the temperature is low. The egg hatching produces larvae after 

an incubation period of 20-90 days and the larvae ascend the vegetation in search of suitable 

hosts. Once on the host, larvae feed to repletion, after which they drop off from their host. The 

engorged larvae undergo metamorphosis to the nymphal stage in 18 to 21 days. Subsequently, 

the unfed emerged nymphs’ quest for available host, feed and drop off the host. Engorged 

nymphs undergo metamorphosis to become adults after approximately 21 days. The adults 

(males and females) then find their suitable host, move to their predilection site on the host (i.e. 

on the ears) to feed and start a new cycle.  The whole life cycle duration from freshly deposited 

eggs to adults can be completed in three months under most suitable conditions. However, much 

longer development periods may be expected under various environmental conditions. The 

main factor affecting the development rate of engorged ticks is the temperature, while their 

survival and that of unfed ticks is largely driven by the combined effect of temperature and 

humidity. The survival and development of the free-living stages of ticks are thus governed, to 

a large extent, by the microclimatic conditions (soil type, vegetation, temperature, humidity) 

prevailing in the habitats in which the ticks occur (Norval et al., 1992). The seasonal 

microclimatic variations and cattle mobility have also a strong impact on the drop-off rhythms 

and the distribution and questing activity of free-living instars of the tick in space and time 

(Norval et al., 1992; Speybroeck et al., 2002).  
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Figure 1.2 Life cycle of the three host ixodid tick Rhipicephalus appendiculatus  

1.2.4 Geographic distribution, ecology and phenology of Rhipicephalus appendiculatus  

Rhipicephalus appendiculatus has a wide distribution range confined to sub-Saharan Eastern 

and Central African countries, including the eastern DRC, Rwanda and Burundi (Bazarusanga 

et al., 2007a; Kaiser et al., 1988; Kalume et al., 2013; Perry et al., 1991). It has been reported 

from the equatorial region of east and central Africa to the more tropical region of South Africa 

and from hot coastal areas to cool highlands plateau where climate remains relatively cool and 

humid (Leta et al., 2013; Olwoch et al., 2008; Randolph, 2000). Climatic suitability is known 

to be the main factor that drive its distribution (Bett et al., 2019; Randolph, 2000). The predicted 

potential distribution of R. appendiculatus in Africa based on eco-climatic modelling (Figure 

1.3), together with ecological studies in the field showed that the tick has a wide distribution 

range which is strongly influenced by bioclimatic conditions (temperature, humidity, 

vegetation) and the availability and density of suitable hosts (Berkvens et al., 1998; Cumming, 

2000; Leta et al., 2013; Olwoch et al., 2008; Perry et al., 1990; Speybroeck et al., 2002). In 

actual fact, models indicate large potentially suitable areas in West Africa, where the tick has 
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not established yet but where severe theileriosis outbreaks could occur if infected ticks were 

introduced. In addition to climatic conditions, other factors are involved in the distribution and 

abundance of the tick. These include tick control practises (Vudriko et al., 2018), farming 

management system and host behaviour (Bazarusanga et al., 2007a; Bazarusanga et al., 2011) 

and host resistance to tick infestation (Latif et al., 1991). Rhipicephalus appendiculatus is found 

at altitudes ranging from just above the sea level to 2000 m, with annual rainfall varying 

between 500-2000 mm (Walker et al., 2005).  It mainly occurs in areas which have substantial 

rainfall and moderate temperature (warm and humid) and requires the vegetation composed of 

both savannah grass, woodland and limited tree cover. Heavy forested areas are not suitable for 

this tick (Norval et al., 1992; Okello-Onen et al., 1999). Optimal vegetation composition 

provides favourable microclimatic conditions increasing the survival ability of the free-living 

stages of the ticks and their questing activity (Lessard et al., 1990). Rhipicephalus 

appendiculatus tends to disappear where the vegetation cover is reduced by overgrazing or 

human demographic pressure. 

 

Figure 1.3 Predicted geographical distribution of Rhipicephalus appendiculatus based on 

occurrence data and bioclimatic variables. a) Equatorial distribution (eastern and central 

Africa), and b) Tropical distribution (southern Africa) (Leta et al., 2013). 
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Rhipicephalus appendiculatus is expanding its colonisation to new zones in Africa. For 

instance, it has reached Grande Comore through cattle movements (Boucher et al., 2020; De 

Deken et al., 2007; Yssouf et al., 2011). Simulation models have explored the potential effect 

of global change on the dynamics and distribution of ticks (Dantas-Torres, 2015; Estrada-Pena, 

2003, 2008). The findings show different rates of range alteration or suitability depending on 

the projected increased temperature or precipitation in specific areas. The projected increased 

temperature (from currently cooler to warmer future climate) in humid areas would become 

more suitable for R. appendiculatus to colonise new environments and shifts in its geographical 

distribution (Leta et al., 2013; Olwoch et al., 2008; Randolph, 2000). Highly suitable conditions 

occur in the highlands areas of the Horn of Africa (Ethiopia) which have moderate temperature 

and high precipitation where R. appendiculatus has not been reported yet (Leta et al., 2013; 

Olwoch et al., 2008). In contrast, given that some areas are already hot and dry, the scenario of 

further increases in temperature would make them unsuitable under the future climate scenarios 

(Bett et al., 2019).  

Population dynamics of ticks are known to vary among agro-ecological zones due to variations 

in rainfall, temperature vegetation type and photoperiod (Norval et al., 1992; Okello-Onen et 

al., 1999). The phenology and population dynamics of R. appendiculatus, which are the main 

factors affecting the transmission intensity of T. parva  (Gachohi et al., 2012), have been well 

documented throughout its distribution range: in the southern part of Africa (Berkvens et al., 

1998; Pegram and Banda, 1990; Speybroeck et al., 2002) and in the eastern and central Africa  

(Bazarusanga et al., 2007a; Kaiser et al., 1982, 1991; Kaiser et al., 1988; Kalume et al., 2013; 

Laisser et al., 2017; Okello-Onen et al., 1999; Randolph, 2004). Findings from these studies 

revealed that the number of generations per year is strongly affected by seasonal variations of 

climatic conditions. The tick may undergo several overlapping generations per year in more 

suitable environment conditions. In most parts of the equatorial region of the eastern and central 

Africa (Burundi, Tanzania, Rwanda, Uganda, DRC, Kenya), R. appendiculatus cycles through 

two to more overlapping generations per year (from bimodal to multimodal phenology). 

Generally, these areas are characterised by regular rainfall throughout most of the year and no 

clear pattern of seasonal variation (or short dry seasons). In contrast, in the southern Africa 

(Zambia, Zimbabwe, South Africa, Grande Comore) and some unlike equatorial regions of 

central Africa where marked seasonal variations are reported, R. appendiculatus completes only 

a single adult phenology per year with almost no overlap in feeding periods of different instars, 

except for the fringe area of eastern province of Zambia where a bimodal phenology has been 



13 

described (Berkvens et al., 1998).  The situation in the Southern Africa leads to behavioural 

diapause of the adult ticks, which allow the tick to survive harsh conditions during the 

prolonged dry seasons (Madder et al., 1999; Madder et al., 2002). This diapause behaviour 

results in seasonal synchronisation of different stages of the tick on cattle.  

1.2.5 Intraspecific phenotypic variation in Rhipicephalus appendiculatus 

There is evidence that environmental conditions affect substantially the phenotypic features of 

R. appendiculatus stocks and shape its geographical distribution. Studies on phenotypic, 

physiological and ecological characteristics of R. appendiculatus provided considerable 

differences between “east African” and “south African” tick stocks, representing the equatorial 

and tropical groups of R. appendiculatus, respectively. This indicated that the tick features two 

phenotypes in Africa, largely determined by ecological conditions. The “southern” stock found 

in South Africa, Southern Zambia and Zimbabwe while the “eastern” stock mainly distributed 

in eastern Zambia, Burundi, Kenya, Tanzania and Uganda. These tick stocks display substantial 

differences in their behavioural diapause (Berkvens et al., 1995; Madder et al., 1999; Madder 

et al., 2002), body size (Chaka et al., 1999; Speybroeck et al., 2004), engorgement weight 

(Kubasu et al., 2007), ecological plasticity and preferences (Berkvens et al., 1998; Speybroeck 

et al., 2002) and vector competence (Kubasu, 1992; Ochanda et al., 1998; Odongo et al., 2009). 

According to Madder et al. (2002), populations of R. appendiculatus from different latitudes 

and climatic conditions exhibit differences in diapause induction and intensity, varying from 

completely absent to obligate diapause with a significant geographic pattern (Figure 1.4). 

Variations were also reported in body size between geographically different populations of R. 

appendiculatus (Chaka et al., 1999; Speybroeck et al., 2004). Tick populations from the 

southern stock are larger, express obligatory and high intensity diapause, occur in more tropical 

areas characterised by prolonged dry seasons and experience univoltine adult phenology. The 

larger body size of these south African ticks contributes to slower developmental and 

reproductive cycles and longer period of time between tick instars, but provides strong ability 

to these ticks to survive harsher environmental conditions (Norval et al., 1992; Speybroeck et 

al., 2004). In contrast, the eastern stock populations are smaller, do not enter diapause and are 

present in equatorial areas where ticks cycle throughout the year and undergo bivoltine to 

multivoltine phenology. These smaller sized ticks cycle faster but have lower survival rates 

under unfavourable conditions. It is worth nothing that the two phenotypic groups coexist in 

fringes areas where ecological conditions seem to be intermediate (Madder et al., 2002). Studies 
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have also reported major variations in vector competence of R. appendiculatus stocks for 

different T. parva strains. A southern stock was demonstrated to be more competent than a 

eastern stock for T. parva Katete strains (Tempia, 1997) while the eastern stock was in turn 

more competent for T. parva Muguga strains than a southern stock in Zambia (Ochanda et al., 

1998). Factors underlaying these specific interactions observed in the transmission system 

between tick stocks and T. parva strains are not known. However, it was suggested to be 

associated with geographic origin of involved ticks and T. parva stocks and the presence of 

population-specific proteins in different tick stocks (Baliraine et al., 2000; Ochanda et al., 1998; 

Wang et al., 2001). In addition, Katzer et al. (2006) showed that different tick colonies are also 

associated with particular genotypes of T. parva in the transmission system and impose non-

random selective pressure on the parasite. This may have major consequences shifting the 

population structure of the pathogen in specific zones. 
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Figure 1.4 Geographical pattern of body size and diapause intensity of Rhipicephalus 

appendiculatus from different sub-Saharan African countries: equatorial and tropical 

distributions (Madder et al., 2002; Speybroeck et al., 2004).  

1.2.6 Intraspecific genetic variation and population structure of Rhipicephalus 

appendiculatus  

Intraspecific genetic variations are thought to occur within and between natural populations of 

tick species. The presence of variation at the DNA sequence level usually underlies phenotypic 

differences between and within species (Cruickshank, 2002).  These variations can have major 

impact in the population structure of ticks and are thought to affect the epidemiology of the 

disease they transmit (Araya-Anchetta et al., 2015; Gooding, 1996; McCoy, 2008; Tabachnick 

and Black, 1995). Tick vectors are subjected to evolutionary forces such as mutation, migration 
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(promoting gene flow), natural selection, genetic drift and founder events leading to significant 

changes in the vector population structure and composition (Gandon and Michalakis, 2002; 

Gooding, 1996). Thus, investigating the genetic structure and diversity is essential in 

understanding microevolutionary changes in the vector population. Such analyses provide 

important clues to understand the epidemiology of arthropod-borne diseases for developing 

integrated control strategies (Gooding, 1996; McCoy, 2008).  

Genetic variations can be detected in tick populations using a wide array of molecular markers 

that can be divided into two major groups: (i) biochemical markers which detect variations at 

protein (enzyme) level by electrophoresis (Baliraine et al., 2000), and (ii) PCR-based molecular 

markers using restriction fragment length polymorphism (RFLP) techniques (Lempereur et al., 

2010) or direct DNA sequencing methods (Coimbra-Dores et al., 2018; Kanduma et al., 2016a). 

PCR-based method includes ribosomal, nuclear and mitochondrial genes and micro and 

minisatellites (SSR) markers. These markers allow to detect variation at the nucleotide and/or 

amino acid levels (Araya-Anchetta et al., 2015; Avise, 2012; Cruickshank, 2002; Kanduma et 

al., 2016b). Some of molecular markers widely used to characterise the genetic variability of R. 

appendiculatus comprise the second internal transcribed spacer region of the nuclear ribosomal 

gene cluster (ITS2) and mitochondrial genes: the 12S ribosomal rRNA (12S rRNA) and the 

cytochrome C oxidase subunit I (cox1). The choice of molecular markers is crucial and requires 

a good background of the nature of evolution of the gene and its usefulness for intraspecific or 

interspecific study. The combination of different markers is strongly recommended to provide 

deep resolution in the intraspecific phylogeny of ticks (Abouelhassan et al., 2019; Cruickshank, 

2002; Dabert, 2006; Lv et al., 2014a). Two mitochondrial genes (12S rRNA and cox1) are the 

most widely used to assess the phylogenetic relationships among R. appendiculatus populations 

and their population structure. The fact that mitochondrial DNA (mtDNA) is maternally 

inherited, together with its faster evolution compared to nuclear genome make mtDNA a 

particularly useful tool for studying intraspecific population genetics (Simon et al., 1994). In 

addition, their high copy number and the small genome size of mitochondria make them easier 

to use in PCR and direct sequencing. Mitochondrial genes evolve at widely different rates. For 

instance, the protein coding gene cox1 evolve faster than the non-coding gene 12S rRNA 

(Avise, 2000). The cox1 gene is one of the most conserved mitochondrial protein coding genes 

and more suitable marker for DNA barcoding (Lv et al., 2014b). The evolution of this gene is 

rapid enough to provide deeper phylogeographic signal than any other mitochondrial gene 

(Latrofa et al., 2013; Wang et al., 2019). 
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The ITS2 nuclear marker have been used previously to resolve taxonomic problems of a wide 

variety of closely-related taxa and distinguish between populations of Rhipicephaline ticks, 

including R. appendiculatus versus R. zambeziensis and Rhipicephalus (Boophilus) microplus 

versus Rhipicephalus (Boophilus) decoloratus (Barker, 1998; Baron et al., 2018; Mtambo et al., 

2007a). The marker was able to distinguish between populations of these tick species 

originating from diverse geographic regions (Barker, 1998). It also confirmed the taxonomic 

status of R. appendiculatus and R. zambeziensis which are morphologically very similar species 

of ticks from Zambia (Mtambo et al., 2007a). Therefore, the nuclear ITS2 marker is shown to 

be very informative for interspecific variation but lacks the resolution for intraspecific variation. 

Thus, it should be useful for interspecific phylogeny of closely similar species rather than 

intraspecific analysis. 

Mitochondrial genes, 12S rRNA and cox1 have been widely used in molecular studies of 

intraspecific variation in tick species as well as to resolve relationships among recently diverged 

ticks lineages (Murrell et al., 1999). The two markers provided evidence of geographical and 

genetic differentiation among R. appendiculatus stocks from eastern and southern provinces of 

Zambia (Mtambo et al., 2007b; Mtambo et al., 2007c). The geographic substructuring of R. 

appendiculatus genetic groups appeared to correlate with differences in phenotypic 

characteristics (body size and diapause) (Madder et al., 2002), adult phenologies (Berkvens et 

al., 1998; Speybroeck et al., 2002) and epidemiology of ECF between the two Zambian 

provinces (Billiouw et al., 1999; Billiouw et al., 2002; Mulumba et al., 2000). Extended 

analyses of R. appendiculatus populations from east Africa showed that the two lineages 

previously characterised where sympatric in Kenya, with the eastern lineage being more 

abundant than the southern lineage (Kanduma et al., 2016a). Another study reported that the 

tick recently introduced in Comoros island from Tanzania belonged to the southern 

mitochondrial lineage (Yssouf et al., 2011). These phylogenetic findings strongly correlate with 

phenotypic, ecological and physiological characteristics of the ticks and allow to confirm the 

occurrence of two diverged populations of R. appendiculatus in Africa. Surprisingly, the 

southern lineage appears to be shifting its ecological zone and settling in east Africa (Kanduma 

et al., 2016a; Yssouf et al., 2011).  



18 

1.3 The pathogen: Theileria parva 

1.3.1 Theileria parva: classification, hosts and transmission 

Theileria parva is an obligate intracellular protozoan pathogen, the causative agent of East 

Coast fever (ECF) in cattle, which was first identified by Sir Arnold Theiler in 1900 (Theiler, 

1912). It is the most pathogenic and economically disastrous tick-borne pathogen of cattle in 

eastern, central and southern Africa (Mukhebi et al., 1992). The parasite infects both cattle and 

wild ruminant such as African buffalo (Syncerus caffer) and waterbuck (Kobus ellipsiprymnus) 

(Bishop et al., 2004; Pienaar et al., 2011; Stagg et al., 1994). African buffalo is the natural 

reservoir of T. parva, though it does not develop the disease and remains healthy carrier of 

multiple T. parva genotypes (Pelle et al., 2011; Sitt et al., 2018). Theileria parva is 

transstadially transmitted by its main vector, the ixodid tick R. appendiculatus, but it can also 

be transmitted by Rhipicephalus zambeziensis in southern Africa and Rhipicephalus duttoni in 

Angola (Norval et al., 1992). Based on clinical signs, severity and lethality of the infection and 

epidemiological characteristics, the disease caused by T. parva is usually described in three 

difference forms: (i) East coast fever and (ii) January diseases or Zimbabwe theileriosis caused 

by cattle-derived T. parva and (iii)corridor disease caused by buffalo-derived T. parva.     

Theileria parva belongs to the kingdom Protista, subkingdom protozoa, phylum Apicomplexa, 

class Sporozoa, subclass Piroplasma, order Piroplasmida, family Theileriidae and genus 

Theileria. The genus Theileria comprises a number of cell-transforming pathogens that affect 

domesticated ruminants, such as T. lestoquardi and T. taurotragi, which cause diseases in sheep 

and T. annulata which is responsible for tropical theileriosis occurring in northern Africa, 

southern Europe and Asia. Other species members of the genus Theileria also affect 

domesticated animals and cause benign theileriosis in cattle. These include Theileria velifera, 

Theileria orientalis/buffeli and Theileria mutans. The species of the Theileria genus are 

phylogenetically closely related to species of the Babesia genus, and both fall in the order 

Piroplasmida and the phylum Apicomplexa (Lack et al., 2012; Morrison, 2009).  

1.3.2 The life cycle of Theileria parva  

The life cycle of T. parva is illustrated in Figure 1.5. Understanding the life cycle of T. parva 

provides useful information on the interface between population genetic dynamics, 

recombination processes and other mechanisms underlaying its evolution and diversity. The 

three-host tick R. appendiculatus transmits the parasite transstadially. There is no transovarian 
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transmission of T. parva. The parasite undergoes a complex life cycle involving different 

developmental stages, which include an obligate sexual phase in the tick and asexual 

multiplications occurring both in the bovine and the tick hosts (Jalovecka et al., 2018; Nene et 

al., 2016). The cycle involves two intra-cellular stages in the bovine host, the schizont which 

transforms lymphocytes and the intra-erythrocytic merozoite (piroplasm) stage, which is 

infective for the tick.  

Infected nymph and adult ticks transmit the parasite as infective sporozoites to cattle during 

their blood-feeding. The sporozoites, once injected into the cattle, rapidly invade bovine T and 

B lymphocytes where they differentiate into intracellular schizonts and induce infected cells to 

undergo major changes (Dobbelaere and Heussler, 1999; Jalovecka et al., 2018). The schizonts 

become associated with the mitosis apparatus of the lymphocytes and divide in synchrony with 

the host cells, giving rises to an uncontrolled clonal expansion of infected cells. This enables 

the parasite to remain intracellular while proliferating (Shaw, 2003). This stage of the parasite 

is associated with cancer-like host cells transformation and is responsible for the pathology of 

the disease. A certain proportion of schizonts later undergo merogony after which they 

differentiate to produce merozoites, that upon released by host cell rupture, invade the 

erythrocytes (Gauer et al., 1995). Thereafter, the merozoites mature into intra-erythrocytic 

gametocytes, which are infective to ticks (Dobbelaere and Heussler, 1999). Tick larvae or 

nymphs become infected by ingesting bovine erythrocytes containing gametocytes when 

feeding on infected cattle or buffalo and transmit the infection to susceptible animal hosts 

during their subsequent post-moult instar (nymph or adult, respectively).  The gametocytes 

differentiate into gametic stage inside the erythrocytes after being ingested by the tick and are 

released in the tick gut, where male and female gametes fuse to generate a zygote.  The resulting 

diploid zygotes formed by syngamy invade the gut epithelial cells of the tick which then 

develop into motile kinetes, the final stage of the sexual reproduction. During the 

metamorphosis of the tick host, kinetes escape the gut cells and migrate to the salivary glands 

where they form sporoblasts, resting until the tick host starts feeding. During subsequent 

sporogony, meiotic division occurs and gives rise to haploid cells that result in the production 

of sporozoites, the infective stage for the bovine host (Gauer et al., 1995). The meiotic reduction 

division may involve genetic crossover events in the tick (Gauer et al., 1995; Katzer et al., 

2006). The release of infective sporozoites from salivary glands occurs within a period of 4-8 

days after the beginning of the tick meal (Shaw and Young, 1995).   
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Figure 1.5 Theileria parva life cycle in cattle and the tick Rhipicephalus appendiculatus 

(Nene et al., 2016). Developmental stages are not drawn to scale.  
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1.3.3 Epidemiology of East Coast fever 

1.3.3.1 Epidemiological states of East Coast fever 

The epidemiological states of ECF usually vary among agro-ecological zones and are a result 

of interaction between ecological variables and management practices, tick vector, host and 

pathogen variables (Gachohi et al., 2012). The vector variables include seasonality of tick 

instars, tick burden, vector competence and the proportion of infected ticks (Norval et al., 1991). 

The epidemiological indicators related to host-pathogen interaction include disease incidence, 

host immunity, antibody prevalence (seroprevalence or seroconversion), case-fatality and 

mortality (Berkvens, 1991; Norval et al., 1992). These variables influence the epidemiology 

and control of ECF. Thus, choosing control measures in the context of integrated ECF control 

depends on the epidemiological state of ECF for the targeted area (Uilenberg, 1999). The 

epidemiological states of ECF are considered to be: the absence of ECF, the endemic situation 

and the epidemic situation based on a combination of epidemiological indicators. Theileria 

parva endemicity is defined as the epidemiological state in which a large majority of calves are 

infected and either die or become immune (Billiouw et al., 2002). This implies that all adult 

animals are immune. The majority of cattle develop a carrier state in endemic areas, which is 

defined as the asymptomatic persistence of the parasite in primary infected and recovered 

animals (Medley et al., 1993). Suitable ecological conditions for the tick that allow continuous 

exposure of cattle to all instars of R. appendiculatus (continuous transmission of the parasite) 

are thought to contribute to the endemicity. The endemically unstable state describes a state in 

which the majority of animals of all age classes are susceptible as they were never exposed 

before in their life. Clinical disease is experienced regardless the age groups with high case-

fatality and mortality (Norval et al., 1992). Endemic situations may become epidemic for 

ecological disruption (unfavourable climatic conditions for tick), constant application of 

acaricides at high frequency, grazing system that reduce cattle exposure (low infestation rates) 

and introduction of susceptible animal from disease-free area or exposure of cattle to 

antigenically different T. parva and more competent tick stocks. The epidemic situation 

normally occurs where animals are kept under low levels of tick challenge for a certain period 

of time restricting cattle/tick contact (Gachohi et al., 2012; Norval et al., 1992).  

1.3.3.2 Factors affecting the transmission dynamics of Theileria parva 

Research have focused on the study of transmission of T. parva in field and laboratory stocks 

of ticks (Ochanda et al., 1998; Ochanda et al., 1988; Ochanda et al., 1996; Olds et al., 2018; 
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Young et al., 1983). These studies showed considerable variation in the transmission of T. parva 

among stocks and among instars of the tick (Konnai et al., 2006). According to Ochanda et al. 

(1996), adults ticks have consistently higher prevalence of T. parva than nymphs. Several other 

factors are believed to influence the ability of the vector to acquire and transmit the parasite. 

These include agro-ecological and climatic conditions, tick stocks behaviour, the duration of 

tick attachment, T. parva prevalence and level of parasitaemia in cattle. The successful 

attachment and its duration are associated with increased risk of T. parva transmission (Konnai 

et al., 2007). Theileria parva infection rate in adult R. appendiculatus ticks feeding on carrier 

cattle (low parasitaemia) has been proven to be lower than in ticks feeding on cattle with acute 

infection (high parasitaemia) (Marcotty et al., 2002; Ogden et al., 2003). Agro-ecological 

conditions affect not only the number of generations per year, but also the tick abundance, 

diapause behaviour and consequently the transmission potential of T. parva. The number of 

generations and whether or not different instars of the tick occur simultaneously, determine the 

epidemiological profile of East Coast Fever in a given region (Billiouw et al., 1999; Billiouw 

et al., 2002). In the equatorial conditions where ticks do not express diapause and have high 

burden throughout the year, cattle are continuously challenged by infected ticks (high 

transmission intensity) and calves are infected early in their life while all adult animals are 

immune (no clinical disease occur). In tropical conditions characterised by well-defined seasons 

and unimodal rainfall pattern, obligatory diapause of adult ticks results in tick phenology 

synchronised with the rains and loss of T. parva infection in adult ticks (reduced transmission 

intensity) (Bishop et al., 2008). In such areas and unlike equatorial regions, carrier animals play 

a crucial role of reservoir whereas the nymphal tick stage may transmit T. parva more efficiently 

than adult ticks (Mulumba et al., 2000). In fringes areas, there could be endemic instability and 

risk of occasional epidemics due to the introduction and temporal subsistence of infected ticks 

1.3.4 Control of East Coast fever 

1.3.4.1 Chemotherapy and control of the vector 

East Coast fever can be controlled by direct killing T. parva using chemotherapeutic drugs and 

indirectly by using acaricides to reduce infestation by the tick vectors responsible for 

transmission of the pathogen. Acaricides are usually applied by spraying and/or dipping of 

cattle and have effectively been used in preventing ECF in most affected areas. However, 

although effective, there have been raised issues regarding the use of acaricides. The acaricides 

are toxic, raising concerns in terms of residues in the environmental and possible contamination 

of the food chain (residues in milk and meat products). Acaricides are expensive and need to 
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be applied regularly throughout the life of animals; poor farmers in most affected countries 

cannot afford the chemical for regular spraying (George et al., 2004). Furthermore, intensive 

use of acaricide creates a susceptible cattle population and favours the development of 

acaricide-resistance Rhipicephalus ticks (Jongejan and Uilenberg, 2004; Vudriko et al., 2016).  

Affected animals can be treated using theilericidal drugs such as parvaquone or buparvaquone. 

Buparvaquone (traded as Butalex®), a derivative of parvaquone remains the drug of choice for 

treating T. parva infections in cattle (McHardy et al., 1985). Buparvaquone most likely inhibits 

mitochondrial electron transport in the parasite. This drug is effective against schizont and 

sporozoite stages. However, there are some limitations to the widespread use of this drug: (i) 

this molecule requires to be administrated during the early stage of infection before widespread 

invasion of the immune system by intracellular schizont stage; so, a rapid and accurate 

diagnostic is required, and (ii) buparvaquone is also relatively expensive and may not always 

be available to smallholder farmers (Morrison and McKeever, 2006). The findings of 

buparvaquone resistance in T. annulata also raises concerns for possible resistance in T. parva 

as well (Nyagwange et al., 2019). 

1.3.4.2 Vaccination against Theileria parva 

A live vaccination of cattle against ECF is available. It involves the inoculation of T. parva 

sporozoites and simultaneous treatment with a long-acting oxytetracycline. The antibiotic 

controls but does not kill the parasite and allow cattle to develop a protective immune response. 

Following live vaccine administration, a mild episode stimulates the cell-mediated immunity 

based on the MHC-I restricted CD8+ T cells (McKeever et al., 1994; Morrison and Goddeeris, 

1990). Vaccinated animals are then protected against lethal challenge with homologous parasite 

strains. The immunity is expected to be long life especially if boosted by continuous tick 

challenge. This approach is known as infection and treatment method (ITM) of vaccination 

(Uilenberg, 1999). The ITM vaccination have been developed in the mid 1970s (Radley et al., 

1975). A mixture of three T. parva stocks called the “Muguga Cocktail” is the widely used 

formulation. The three stocks incorporated in the vaccine are Muguga, Kiambu-5 and 

Serengeti-transformed. The use of the trivalent vaccine has been reported to confer broad-

spectrum protection with variable degree of cross-protection in countries where the vaccine was 

introduced. However, the it does not protect against buffalo-derived T. parva in most cases (Sitt 

et al., 2015). The vaccine has been registered and used in several affected African countries, 

including Malawi, Kenya, Uganda, Tanzania and Zambia (McKeever, 2007; Nene and 
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Morrison, 2016). Meanwhile, other T. parva stocks a part from the initial Muguga cocktail have 

been used to immunise cattle in different African countries: Marikebuni stock in Kenya 

(Wanjohi et al., 2001), Katete and Chitongo stocks in Zambia (Geysen, 1999; Marcotty et al., 

2002) and Boleni stock in Zimbabwe (Latif and Hove, 2011). Although the ITM vaccine has 

provided solid immunity, its large-scale adoption has been facing major concerns, which 

include the risk of introducing new strains in areas where they were previously absent (Di 

Giulio et al., 2009; McKeever, 2007; Oura et al., 2004b). It is known that vaccine strains may 

establish a tick-transmissible carrier state in immunised cattle which constitute the risk for 

spread of the disease (Kariuki et al., 1995). Other major concerns of this method of 

immunisation include the fact ITM vaccination provides immunity against homologous strains, 

while vaccinated animals remain susceptible to infection by heterologous strains (Radley et al., 

1975; Sitt et al., 2015; Taracha et al., 1995a). Breakthrough infections in some areas have been 

attributed to the existence of genetically and immunologically more diverse strains in field 

population that probably do not cross-protect with vaccine strains. Thus, live parasite 

immunisation approach requires genetic and antigenic characterisation of the parasite 

population present in an area prior to safety and efficacy trials and deployment (Geysen, 1999). 

Efforts are still directed at scaling up its wide deployment in more affected countries. To 

overcome the concerns raised above, other vaccination methods have been evaluated and are 

currently under evaluation, using T. parva antigen vaccine candidates that are target of 

neutralization antibodies and CD8+ T cells (Lacasta et al., 2018; Musoke et al., 1992; Musoke 

et al., 2005; Svitek et al., 2018). Neutralizing antibodies are directed against sporozoite surface 

proteins to prevent sporozoite entry into host cells while CD8+ cytotoxic T cells (CTLs) are 

directed against antigens of the schizont stage to interrupt the infection by killing the schizont-

infected host cells. A number of antigens that are targets of neutralizing antibodies have been 

identified: p67, p32, p104, PIM and p150 (Dobbelaere et al., 1985; Iams et al., 1990; Shapiro 

et al., 1987; Skilton et al., 1998; Skilton et al., 2000). The most tested antigen is the surface 

protein p67, which neutralized sporozoite infection in vitro. This antigen is conserved among 

cattle-derived T. parva strains making it a suitable candidate vaccine to allow cross-protection 

between cattle-derived parasite strains (Nene et al., 1996). There have been several vaccine 

trials using the p67 protein and protection from T. parva challenge following p67 immunisation 

induces some degree of protection ranging from 13 to 70% (Musoke et al., 1992). The major 

limitation with p67 vaccination trials is the lack of correlation between various antibody titres 

and immunity and immunity was relatively lower in field conditions (Musoke et al., 1992; 

Musoke et al., 2005). Research are still undertaken trying to improve the immunological effect 
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of the recombinant p67 surface protein. Recently, Lacasta et al. (2018) reported a preliminary 

improvement of the correlation between humoral immune responses (antibody titers) and 

protection against ECF. A number of candidate vaccine antigens that are target of the MHC-I 

restricted CD8+ T cells have been identified and are under evaluation attempting to produce 

next generation vaccine against T. parva (Akoolo et al., 2008; Graham et al., 2007; Graham et 

al., 2008; Svitek et al., 2018).  

1.3.5 Genetic recombination during the sexual reproduction phase of Theileria parva in 

the tick 

The life cycle scenario is consistent with T. parva being predominantly haploid and undergoing 

asexual proliferation during the developmental stages in the bovine, while a transient diploid 

zygote formed after fusion of gametes develops in the tick midgut. Tick vectors are likely to 

carry a mixture of parasite genotypes during their blood meal, as cattle and buffalo are usually 

infected by multiple T. parva genotypes in the field (Hemmink et al., 2018; Muleya et al., 2012; 

Salih et al., 2018). Studies have provided evidence for significant genetic exchange 

(recombination events) that can occur through sexual recombination when two or more T. parva 

genotypes infect R. appendiculatus (Katzer et al., 2006; Nene et al., 1998). This can generate 

allelic diversity and is presumed to play important role in the distribution of polymorphism and 

shifts in the population genetic structure of T. parva (Henson et al., 2012; Katzer et al., 2011; 

Katzer et al., 2006). Furthermore, the recombination processes may have substantial implication 

in shifting of immunological determinants and their recognition which may occur from 

reassortment between antigen-encoding loci recognised by the host cellular immune response 

(Katzer et al., 2006).  

1.3.6 Pathogenesis and clinical signs of East coast fever 

The pathogenic effect of T. parva is induced by the schizont-infected cells. During the 

intracellular phase of T. parva in cattle, schizont-infected cells acquire a cancer-like phenotype 

with massive and uncontrolled proliferation. This rapid multiplication of infected cells is 

responsible for most of the pathogenicity of T. parva and is associated with the main clinical 

signs of ECF (Shaw, 2003). The length of the incubation period and the severity of ECF depend 

on the parasite load, with initial clinical signs appearing approximately 8-12 days post infection. 

Schizont-infected cells appear in the lymph nodes draining the inoculation site (the predilection 

feeding site of the vector). In the case of T. parva often transmitted by R. appendiculatus ticks, 
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this results in unilateral hypertrophy of the preparotidian lymph node. Two to three days later, 

parasitized cells become detectable in other lymphoid tissues (spleen, kidneys, liver and lungs) 

and the animals suffer from generalised lymphadenopathy. The main clinical signs include 

enlargement of lymph nodes (containing lager number of parasitized cells), high fever (40-

42°C), dyspnoea, diarrhoea, lacrimation, corneal opacity and nasal discharge. Throughout the 

course of the disease, rumination stops, the animals become anorexic, they lose weight and their 

body condition quickly deteriorates which leads to reduced milk yield (Morrison et al., 1996) 

Pregnant animals may abort. The disease causes high mortality in fully susceptible cattle, which 

usually die within 14 to 24 days after infection (Morrison, 2015). Cattle death is usually caused 

by severe pulmonary oedema leading to respiratory distress at the terminal stage (Ndungu et 

al., 2005). The acute phase is associated with the presence of multinucleated intracytoplasmic 

and free schizonts in lymph node biopsy smears. Some infected animal can also develop into a 

fatal condition referred to as “turning sickness” (neurologic signs). Neurological symptoms are 

caused by blockage of the capillaries of the central nervous system by infected cells (Mbassa et 

al., 2006). A wasting disease is observed in more chronic conditions with prolonged poor body 

state and ultimately death after a few weeks. Long-standing cases show foci of lymphocytic 

infiltrations in kidneys that appear as white infarcts in animals that have recovered. The is a 

marked variation in the susceptibility of cattle to infection and the severity of the disease can 

be altered by cattle breed, the strains of T. parva involved and magnitude of the infected tick 

challenge (Mbogo et al., 1996; Morrison et al., 2015). A proportion of animals may recover and 

develop strong immunity against homologous T. parva strain (carrier status) (Skilton et al., 

2002). However, they may remain emaciated and unproductive and, in most cases, sustain a 

chronic infection transmissible to ticks over prolonged periods of time (Kariuki et al., 1995; 

Oura et al., 2007). 

1.3.7 Immune response to Theileria parva in the bovine host 

There is evidence that immunity to T. parva can be activated in two ways: killing the schizont-

infected host cells by cytotoxic T cells and blocking the sporozoite entry by neutralization 

antibodies specific for sporozoite surface antigen. However, maternally derived antibodies do 

not provide such protection, and a cell-mediated response to infection is always necessary for 

effective immune protection (McKeever et al., 1999; Morrison, 2007). The recovery from 

infection has been demonstrated to be correlated with the appearance of CD8+ T cells specific 

for parasitised lymphocytes following immunisation or natural challenge with T. parva. This is 



27 

a strong evidence that the solid and long-lasting protective mechanisms against T. parva is cell-

mediated and directed against the schizont-infected lymphocytes (McKeever et al., 1994). The 

immune cells responsible for killing infected lymphoblasts belong to CD8+ T-cell 

subpopulation, mediated by their T cell receptor (TCR) which bind to the major 

histocompatibility complex class-I (MHC-I) at the surface of target cells, to produce a cytotoxic 

immune response (Figure 1.6) (Goddeeris et al., 1990; McKeever et al., 1994). The CD8+ T 

cell responses in different animals is mainly directed against different immunodominant 

antigens which exhibit significant allelic variation among T. parva strains, and make the 

protection strain specific (MacHugh et al., 2009; Taracha et al., 1995a; Taracha et al., 1995b). 

The strain specificity of induced CTL responses is consistent with the reported antigenic 

heterogeneity in T. parva populations, which is maintained to a greater extent in buffalo-derived 

T. parva (McKeever, 2001; Pelle et al., 2011; Sitt et al., 2015). The strain specific nature of 

protection has also been associated with the differences in MHC-I haplotypes among cattle, 

which tend to respond to different epitopes of T. parva (Goddeeris et al., 1990; Steinaa et al., 

2018b) and the polymorphism in the T cell receptor (TCR) repertoires of the host might play a 

role in the affinity differences towards different epitopes of T. parva strains (Morrison et al., 

1995). Therefore, the cell-mediated immune response to T. parva is the result of interaction 

between bovine MHC-I haplotypes, TCR recognition and the strain of T. parva (McKeever, 

2006; Morrison et al., 1987; Morrison et al., 1996). Although the cell-mediated immunity has 

been reported to be the main mechanisms underlying the protective immunity against T. parva, 

sporozoite neutralising antibodies can also be induced after repeated challenge or vaccination 

using recombinant p67 sporozoite surface protein and reduce severity of infection. However, 

the lack of correlation between the antibody titers and immunity suggests weak immunogenicity 

of the protein (Musoke et al., 2005; Nene et al., 2016).  
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Figure 1.6  Proposed intracellular transport pathway for MHC I and II molecules involved in 

antigen presentation (Male and Brostoff, 2007) 
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1.3.8 Evolutionary history of Theileria parva: from African buffalo to cattle? 

Theileria parva infects both cattle and African buffalo (Syncerus caffer). The parasite is non-

pathogenic in buffalo and does not induces any clinical sign of the disease, while it gives rise 

to a clinical disease in cattle when infected for the first time. African buffalo, which is 

considered as native bovine host, remains long-term healthy carrier and natural reservoir of 

more diverse genotypes of T. parva (Bishop et al., 2015; Minami et al., 1983; Morrison, 2015; 

Sitt et al., 2015). Strikingly, cattle grazing in the same area with buffalo can acquire infection 

with buffalo-derived T. parva variants. Such infection results in an acute and usually highly 

fatal clinical disease called “corridor disease”, associated with an acute death of infected cattle 

(Bishop et al., 2004; Latif et al., 2002; Sitt et al., 2015). However, given the poor differentiation 

of buffalo-derived infections to the erythrocytic tick-infective stage (piroplasm stage) and the 

fatal death of cattle during the corridor disease, transmission of the infection from cattle to ticks 

is highly inefficient (Bishop et al., 2015; Maritim et al., 1992; Uilenberg, 1999). Cattle-derived 

T. parva (causing East Coast fever and January disease) is considered to have originated from 

African buffalo before it adapted to cattle. From the evolutionary point of view, the initial 

evolution and genetic diversity of T. parva may have likely arisen in African buffalo prior to 

its establishment in cattle population (Hayashida et al., 2013; McKeever, 2009).  It has been 

argued that T. parva co-evolved a long time with African buffalo before the introduction of 

cattle in Africa. This implies that, after introduction of domestic cattle in Africa, only a limited 

subset of the buffalo-derived T. parva gene pool may have developed the ability to cycle in 

cattle (i.e. keeping cattle alive long enough to be transmitted to ticks) and established a stable 

population that is currently maintained and circulating among cattle (Freeman et al., 2006; 

Gifford-Gonzalez and Hanotte, 2011; Hayashida et al., 2013; Pelle et al., 2011). This hypothesis 

reflects that the African buffalo may have strongly influenced the evolution of T. parva through 

their immune responses, which allowed the evolutionary adaptation to the parasite and the 

control of the infection (Bishop et al., 2004; McKeever, 2009). As cattle are still sharing grazing 

lands with African buffalo in some areas and the fact that cattle are continuously infected by T. 

parva from buffalo-derived in the presence of the tick vector R. appendiculatus, it is possible 

that the adaptation process has been continuous. However, there is no data that predict the 

evolutionary time scales of such co-evolution and the adaptation process is still unknown. In 

addition, researchers have argued that there is a genetic barrier to recombination events between 

cattle and buffalo-derived T. parva strains. They hypothesised that genetic recombination may 

have occurred in the very ancient ancestral bovine Theileria populations before their 



30 

geographical segregation (Hayashida et al., 2013). Then the coevolution between T. parva and 

cattle led likely to the divergence between buffalo and cattle parasite strains that evolved 

independently after geographic and host separation (Hayashida et al., 2013).  

Parasite adaptation to cattle can be seen in two steps. First, the survival of the cattle should be 

long enough for the parasite to produce gametocytes and infect ticks shortly after infection. The 

disease caused by such infection is referred to as East Coast fever and is generally observed in 

Central and Eastern Africa where tick abundance is relatively constant throughout the year. In 

areas with uni or bimodal annual tick abundance as observed in Southern Africa, cattle must 

remain carrier of the infection for several months to assure the transmission from infective ticks 

(nymphs or adults) to receptive ticks (larva or nymphs), which are not found at the same time 

on animals. In this instance, the disease may present a peak of incidence in January, during the 

rains (hence the name January disease) and often appear less severe than ECF and Corridor 

disease. 

1.3.9 Generation and maintenance of Theileria parva genetic diversity:	 evolutionary 

survival strategies  

The evolutionary changes observed in T. parva parasites have significantly modified the 

phenotype characteristics, including virulence and evasion ability from host cells immunity 

(Sivakumar et al., 2014). There are several mechanisms and factors that explain the generation 

and maintenance of genetic variation in T. parva parasites. A better understanding of these 

mechanisms and their patterns in different ecological and epidemiological zones is crucial to 

predict theileriosis dynamics and vaccine outcomes. Genetic recombination during the sexual 

stage in the tick vector is considered to be the major mechanism generating genetic diversity in 

T. parva as discussed above (Henson et al., 2012; Katzer et al., 2011). Nevertheless, several 

other mechanisms and factors including bovine host immunity, mutation, gene conversion, gene 

isolation, gene flow among populations and genetic drift are thought to underline and maintain 

the genetic diversity among T. parva populations (Connelley et al., 2011; Geysen et al., 2004; 

Katzer et al., 2011; Katzer et al., 2006; McKeever, 2009; Sivakumar et al., 2014; Toye et al., 

1991). Theileria parva is believed to have undergone evolutionary changes to survive 

immunological responses of its hosts (Deitsch et al., 2009). Thus, the influence of bovine 

immunity plays a crucial role generating genetic and antigenic diversity of T. parva (McKeever, 

2009; McKeever et al., 1999). This survival strategy of T. parva often complicates the 

epidemiology of ECF (McKeever, 2009). In addition, evolutionary acquisition of mutations in 
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the immunodominant CD8+ T-cell epitopes play an important role in the survival strategies 

facilitating the parasite to escape bovine immune recognition as immunity is strain specific 

(Connelley et al., 2011). Furthermore, the diversity is very limited in populations characterised 

by geographic separation (restricted gene flow) and genetic drift, whereas gene flow is thought 

to increase the chance of sexual recombination between T. parva stocks and therefore increase 

the genetic diversity within parasite populations. Besides, it is important to consider factors 

such as host movements (mostly attributed to bovines since ticks themselves rely on their hosts 

for movements), which may be more crucial in the genetic composition and substructuring of 

T. parva (Bishop et al., 2004). 

1.3.10 Molecular tools to study the population genetics of Theileria parva 

Genetic composition and evolutionary processes of pathogens vary among populations within 

species, and has significant implications for the epidemiology and control of the disease 

(Ellegren and Galtier, 2016). Over the past three decades, molecular techniques and gene 

markers were developed for T. parva and other protozoan pathogens. These tools have been 

increasingly applied to understand the population genetics and the mechanisms underlying the 

genetic diversity in protozoa pathogens (Tibayrenc et al., 1990). Specifically, genetic diversity 

and molecular evolution of T. parva studies have been widely carried out to genotype T. parva 

populations with a major goal to support live T. parva vaccine development and use in sub-

Saharan Africa. For that purpose, a range of genetic markers and molecular techniques were 

developed and widely used to analyse the diversity and structure of T. parva stocks isolated 

from cattle and buffalo in a wide range of geographic areas as well as laboratory stocks (Figure 

1.7). These tools include anti-schizont monoclonal antibodies (MAbs) directed against a single 

immunodominant polymorphic antigen (Conrad et al., 1989; Minami et al., 1983; Toye et al., 

1995b), southern blotting and restriction fragment length polymorphisms (RFLP) techniques 

using mainly DNA probes derived from multicopy gene families (Bishop et al., 2001; Bishop 

et al., 1993; Bishop et al., 1994; Conrad et al., 1987), PCR based approaches that target genes 

encoding antigens recognised by bovine antibodies by applying PCR-RFLP essay (Bishop et 

al., 2001; Bishop et al., 1992; De Deken et al., 2007; Elisa et al., 2014; Geysen, 1999; Pienaar 

et al., 2011) and sequencing of these antigen genes (Nene et al., 1992; Sibeko et al., 2011; 

Sibeko et al., 2010; Sitt et al., 2019). The polymorphic single copy antigen genes (PIM, p67, 

p104 and p150) used to discriminate between T. parva strains using the RFLP method enabled 

better characterisation of T. parva stocks before and after immunisation programs (Elisa et al., 
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2014; Geysen et al., 1999). Later, the identification of a panel of micro- and mini-minisatellite 

DNA markers (SSR) greatly enhanced molecular characterisation of the population structure 

and diversity of T. parva (Asiimwe et al., 2013; Elisa et al., 2015; Muwanika et al., 2016; 

Odongo et al., 2006; Oura et al., 2005; Oura et al., 2007; Oura et al., 2003; Oura et al., 2011b; 

Patel et al., 2011; Rukambile et al., 2016). Most recently, the published whole genome sequence 

for T. parva gave hope to further understand the population genetics and evolutionary changes 

of the pathogen (Gardner et al., 2005; Hayashida et al., 2013; Hayashida et al., 2012; Henson 

et al., 2012; Norling et al., 2015; Pain et al., 2005). It  provided more powerful polymorphic 

genetic tools, including antigens that are targets of CD8+ T cell responses induced by the live 

vaccine and additional SSR markers for fine characterisation of the genotypic and antigenic 

diversity and the population structure of the pathogen (Elisa et al., 2015; Graham et al., 2007; 

Graham et al., 2006; Graham et al., 2008; Hemmink et al., 2018; Hemmink et al., 2016; Katzer 

et al., 2010; Kerario et al., 2019; Muleya et al., 2012; Oura et al., 2004a; Pelle et al., 2011; Salih 

et al., 2018; Salih et al., 2017; Sitt et al., 2018).  

Molecular characterisation based on monoclonal antibodies and DNA probing revealed an 

extensive polymorphism among T. parva isolates from various geographic regions, including 

Tanzania, Kenya, Zambia, Zimbabwe and Uganda (Bishop et al., 1993; Bishop et al., 1994). 

However, these studies did not provide overall picture of the diversity on a genome-wide scale 

(Bishop et al., 2002; Bishop et al., 1994; Toye et al., 1995b). Other research focused on the 

analysis of single copy antigen coding genes under the PCR-RFLP and genotyping with a panel 

of Variable Number Tandem Repeat (VNTR) markers have demonstrated that highly diverse 

T. parva populations occur in Uganda (Muwanika et al., 2016; Oura et al., 2005), Zambia 

(Geysen et al., 1999; Muleya et al., 2012), Kenya (Nene et al., 1992; Odongo et al., 2006; Oura 

et al., 2003) and South Sudan (Salih et al., 2018) and in the Grande Comore (De Deken et al., 

2007). However, low level of diversity was found in cattle-derived T. parva from Tanzania 

(Elisa et al., 2015), while buffalo-derived parasites where more diverse in the same country 

(Rukambile et al., 2016) and in Uganda (Oura et al., 2011a). The majority of Zambian T. parva 

field samples had homogenous hybridisation patterns, but differ from the components of the 

Muguga trivalent vaccine (Geysen et al., 1999). Infection of a single animal with multiple T. 

parva genotypes was reported to be frequent and evidence of linkage disequilibrium was 

observed in most of these studies. In addition, sequencing of the polymorphic immunodominant 

molecule (PIM) and the p67 antigen revealed polymorphism between T. parva, especially in 

buffalo-derived T. parva (Bishop et al., 1997; Toye et al., 1995a). Different PIM patterns and 
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an extensive polymorphism where observed in buffalo-derived T. parva from south Africa 

(Sibeko et al., 2011; Sibeko et al., 2010). The levels of diversity in the gene encoding the p67 

sporozoite surface protein were similar in T. parva from buffalo and cattle naturally infected 

from buffalo (Sitt et al., 2019). However, the sporozoite antigen p67 shows a considerable 

sequence conservation within cattle-derived T. parva, making it useless to characterise cattle-

derived T. parva populations, but could serve to distinguish these parasites with buffalo-derived 

T. parva (Nene et al., 2016; Nene et al., 1996). Profiles obtained from buffalo stocks are also 

heterogeneous whereas cattle-derived T. parva stocks are often homogeneous. 

The recent identification of genes encoding T. parva antigens that are targets of the CD8 + T 

cells allowed to further investigate sequence polymorphism and epitope diversity in T. parva 

populations from cattle and buffalo in different geographic regions of Africa: in Kenya and 

selected laboratory isolates from different African countries (Pelle et al., 2011), Tanzania (Elisa 

et al., 2015; Kerario et al., 2019), South Sudan (Salih et al., 2017), laboratory isolates 

component of the trivalent vaccine from Kenya (Hemmink et al., 2016) and buffalo-derived 

isolates from Kenya and South Africa (Hemmink et al., 2018; Pelle et al., 2011; Sitt et al., 

2018). These studies revealed the presence of large number of allelic variants both at nucleotide 

and antigenic level and within the CTL epitopes in buffalo-derived T. parva (Hemmink et al., 

2018; Pelle et al., 2011; Sitt et al., 2018). However, a limited polymorphism (nucleotide and 

antigenic) was reported within cattle-derived and in the component of the trivalent vaccine, 

further suggesting that cattle contain a subset of T. parva population that have originally 

evolved in buffalo and that the vaccine does not cover the overall diversity of T. parva in the 

field (Hemmink et al., 2016). The application of these markers is crucial in determining the 

population structure of T. parva in different eco-epidemiological contexts, predicting vaccine 

outcomes prior to vaccination and follow up the vaccination (Graham et al., 2006; Graham et 

al., 2008; Nene et al., 2016). No such studies have been undertaken in the Great Lakes region, 

where field vaccination has not been deployed yet, except in Burundi and Rwanda where a 

small-scale live immunisation programme was implemented between 1981 and 1987, to test the 

protective effect of local T. parva isolates (Tama, 1989). 
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Figure 1.7 Geographical distribution of Theileria parva laboratory stocks described in sub-

Saharan Africa. Bold indicates the component of the trivalent Muguga vaccine. The numbers 

in brackets indicate the year of isolation.  

1.3.11 Theileria parva whole genome: questioning the protective value of Muguga and 

Serengeti strains in the vaccine 

The T. parva genome, which has a small size (8.5-12 Mbp) compared to other apicomplexan 

parasites, is divided into 4 chromosomes (Bishop et al., 2004; Nene et al., 1998). Whole genome 

sequences from cattle and buffalo-derived T. parva revealed the genetic complexity of T. parva 

and identified higher number of single nucleotide polymorphisms (SNPs) in T. parva from 

buffalo than in those from cattle (Hayashida et al., 2013; Henson et al., 2012). In addition, 

Buffalo-derived isolates were clustered in separate phylogenetic group diverged from cattle-

derived parasites (Norling et al., 2015). Single nucleotide polymorphisms are more prevalent 

in protein coding than non-coding regions, under different rate of evolutionary pressure 
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(Hayashida et al., 2013). However, the genes that are involved in mediating immunity to ECF, 

virulence and biological differences between strains remain to be determined. The whole 

genome sequencing has also identified high rate of recombination events and a considerable 

number of crossover events, suggesting gene conversion that might be leading to divergence 

and diversity between T. parva strains (Gardner et al., 2005; Henson et al., 2012; Katzer et al., 

2011). Besides, the sequence differences between the components of the trivalent vaccine 

(Muguga, Serengeti-transformed and Kiambu-5) are becoming problematic. For instance, there 

is high degree of genome similarity between Muguga and Serengeti-transformed, questioning 

the protective value of the two strains and their importance to be used together in the vaccine. 

However, the differences Muguga and Kiambu-5 are consistently different across the genome, 

particularly within the protein-coding genes (Norling et al., 2015). A more recent experiment 

demonstrated that immunisation with the Muguga strain alone provides similar level of 

protection compared to trivalent Muguga cocktail (Steinaa et al., 2018a), supporting the 

evidence of limited antigenic diversity in the three components of the Muguga cocktail vaccine 

(Hemmink et al., 2016). In view of these data, the protection value of the three components 

strains of the Muguga cocktail vaccine should be re-assessed under fine-scale biological and 

vaccination trials.  

1.4 East Coast fever in the Great Lakes region  

1.4.1 Physical characteristics of the study area: DRC, Rwanda and Burundi 

The ecological diversity in the Great Lakes region (Figure 1.8) is largely defined by the 

landscape topography and altitude which subsequently regulate other bioclimatic attributes, 

including rainfall amount and pattern, temperature and vegetation. In addition, protected areas 

and shared water bodies including Lakes Kivu (DRC and Rwanda) and Tanganyika (DRC and 

Burundi) and the Ruzizi river also influence the bioclimatic conditions in the region. Generally, 

the climate is essentially tropical and strongly tempered by altitude (cooler and more humid 

with increasing altitude). It comprises three major seasons with a long and bimodal rainfall 

pattern: (i) the early rainy season (wet1: September to December), (ii) the late rainy season 

(wet2: February to May) and (iii) the dry season (dry: June-August). There is an intervening 

short dry period between the two rainy seasons of approximately 15 days in January and/or 

February. These contrasting agroecological and climatic conditions are thought to influence the 

socio-economic characteristics, cattle management systems, tick vector population dynamics 
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and epidemiological features of ECF among AEZs (Bazarusanga et al., 2007a). A summary 

description of the characteristics of the six AEZs is presented in Table 1.1.     

 

Figure 1.8 Geographic map of the study area: a) Map of Africa showing the study area (in grey) 

and other countries where R. appendiculatus and T. parva were previously described; b) The 

Great Lakes region. Altitudes: lowlands (AEZ1 < 1200 m); midlands (AEZ2: 1200–1800 m) 

and highlands (AEZ3: 1600-2800 m).  

Table 1.1 Geographical and climatic characteristics of the agro-ecological zones (AEZ) 

included in the study 

Country Agro-ecological 

zone (AEZ) 

Altitude  

(m) 

Temperature 

(°C) 

Rainfall 

(mm/year) 

Rainy season 

DRC AEZ1 780–1100 23–25 800–1000 October-April 
 

AEZ2 1200–1800 17–21 1000–1500 September-May 
 

AEZ3 1800–2800 12–19 1350–2000 September-May 

Burundi AEZ1 774–1100 23–24 800–1100 November-May 
 

AEZ3  1700–2800 14–15 1300–2000 September-May 

Rwanda a AEZ1  1000–1500 21–24 800–950 November-May 

Abbreviations: DRC (AEZ1: Lowlands, AEZ2: Midlands, AEZ3: Highlands); Burundi (AEZ1: Lowlands, 
AEZ3: Highlands); Rwanda (AEZ1: eastern low plateau which is the lowlands of Rwanda) 
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The Democratic Republic of Congo 

Sampling was conducted in the South-Kivu province in the eastern Democratic Republic of 

Congo. The South-Kivu province lies between longitudes 26- 29°E and latitudes 1°-5°S and 

covers 64,851 km². Cattle blood samples and ticks (attached and free-living) were collected in 

three AEZs along an altitudinal transect, defined as lowlands (DRC AEZ1) located in the Ruzizi 

Valley, midlands (DRC AEZ2) in the administrative district of Walungu and highlands (DRC 

AEZ3) located in the district of Kabare and the highlands part of Walungu (Mulumemunene). 

The lowlands area is the warmest semi-arid AEZ, characterised by a tropical warm and dry 

climate, with a cool dry season of 4–5 months and warm rainy season. The vegetation is strongly 

dominated by savannah grasslands and small patches forest. The “upland Kivu” (midlands and 

highlands) falls within a montane humid tropical climate which consists of a warm and humid 

tropical climate in midlands and much cooler conditions in highlands (lower to mild 

temperature). The highlands area experiences abundant and frequent rainfalls with a warm dry 

season receiving occasional and poorly distributed rainfall. The dominant vegetation is more 

variable in the upland Kivu, composed of montane and savannah grasslands, scrubs woodland 

and degraded forests in the midlands and highlands while specifically in some places of 

highlands, it is marked by relict species of seasonal deciduous forests (Klapwijk et al., 2019).  

Burundi 

Burundi is located between latitude 2-4°S and longitude 28-30°E and covers 27.834 km2. The 

country is bordered by Rwanda, Tanzania, Lake Tanganyika and the Democratic Republic of 

Congo. Burundi is divided into five AEZs based on their altitudes and climatic conditions: the 

Imbo valley (780 – 1100 m), the western slope of the Congo-Nile ridge (1000 – 1700 m), the 

Congo-Nile ridge (1700 – 2500 m), the central plateau (1350 – 2000 m) and the northeast 

depressions (1100 – 1400 m). Cattle blood samples and ticks were collected from two AEZs: 

The administrative districts of Rugombo and Gihanga in the Imbo lowlands (Burundi AEZ1) 

and the districts of Muramvya, Mwaro and Mugamba in the Congo-Nile highlands (Burundi 

AEZ3). The Imbo region extends along the Ruzizi River and the North of Lake Tanganyika. 

Like the Ruzizi valley in RDC, the vegetation is composed of savannah and small patches of 

forest. The Imbo valley is characterised by a warm tropical climate with low rainfall and a long 

dry season while the Congo-Nile ridge (highlands) is characterised by a tropical montane 

climate with low temperature (cooler conditions) and high rainfall (comparable with the 

highlands of DRC) (Hatungumukama et al., 2007).  
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Rwanda 

Rwanda lies between latitudes 1–3°S and longitudes 29–31°E and covers 26,300 km2. It borders 

the Democratic Republic of Congo, Burundi, Tanzania and Uganda. The country is just below 

the equator (south of the equator). Based on altitudes, climatic conditions and the diverse relief, 

Rwanda is divided into four major AEZs: (i) The highlands zone (altitude:1,950 m) found in 

the northern cold and high rainfall region, (ii) the medium tempered zone in the central high 

plateau (1,650–1,950) where the climate (cooler conditions) is moderated by the Lakes Kivu, 

(iii) the medium continental zone located in the western high plateau (1,550–1,900) which is 

characterised by cooler climate, and (iv) the lowlands in the eastern plateau (1,000 and 1,500 

m) which is the semi-arid region of Rwanda and is ecologically comparable with the lowlands 

of DRC and Burundi (Ruzizi valley and Imbo valley, respectively). Ticks samples from Rwanda 

were obtained in the districts of Nyagatare, Gatsibo and Kayonza of the eastern low plateau 

(Rwanda AEZ1) (Table 1.1). This AEZ includes the savannah area of eastern province of 

Rwanda and is the most important pastoral region in Rwanda, holding 40% of the national herd 

raised under a communal grazing system. The lowlands area of Rwanda is located in the north-

eastern part of Rwanda close to the border with Tanzania and Uganda. The vegetation type is 

largely savannah and some river bank woods (Bazarusanga et al., 2007a). 

1.4.2 Cattle production systems in the Great Lakes region 

The livestock species plays important economic and socio-cultural roles in the Great Lakes 

region where cattle remain an important cultural symbol of power and prosperity 

(Hatungumukama et al., 2007; Kibwana et al., 2012; Mazimpaka et al., 2017). The contribution 

of livestock to the Gross Domestic Product (GDP) is estimated at 16% in Rwanda, 13% in 

Burundi and 4-6% in DRC. The cattle population consists of approximately 1,194,895 cattle in 

Rwanda, 467,000 in Burundi, 237,000 in Nord Kivu and 180,000 in South Kivu (eastern DRC). 

The majority of cattle populations are found in the eastern Province (lowlands) of Rwanda, in 

the Imbo valley (lowlands) and the Congo-Nile ridge (highlands) of Burundi and in the Ruzizi 

valley (lowlands) of DRC. The cattle populations are mainly dominated by pure indigenous 

Ankole Longhorned cattle breed (Sanga type), ecotypes that are found only in the Great Lakes 

region of East and Central Africa. They are estimated to represent more than 80-90% of the 

cattle population in both countries, but it remains difficult to define the degree of cross-breeding 

(Manirakiza et al., 2017; Ndumu et al., 2008). These cattle have the advantage to be highly 

adapted to the local environmental conditions. They have the potential to withstand periodic 
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feed shortage better than exotic breeds, they are tolerant to heat stress and against tropical 

diseases (most tick-borne diseases) as well as walking long distances for grazing lands (Paling 

et al., 1991; Wurzinger et al., 2006). However, local breeds are characterised by poor dairy and 

beef potential compared to exotic breeds. 

In the Great Lakes region, cattle are kept under different production systems varying from 

traditional extensive systems to intensive or semi-intensive systems. Indigenous Ankole cattle 

are mostly kept under the traditional extensive system in open communal grazing lands 

characterised by little or absence of tick control. This system is mainly practised in semi-arid 

areas (lowlands) of both countries where communal natural grazing areas are the most available. 

It includes cattle mobility through seasonal transhumance in search of pasture and water. During 

the last three decades, the cattle population declined drastically and livestock production 

systems have undergone drastic changes often attributed to human population growth and land 

pressure which led to loss and degradation of natural pastures, shortage of communal grazing 

areas and disease epidemics that followed the influx of cattle with migrants of the violent 

conflicts (1990-2006) (Cox, 2012; Desiere et al., 2015; Hatungumukama et al., 2007; Jenicek 

and Grofova, 2015; Wurzinger et al., 2006). In most affected areas, especially in much of the 

midlands and highlands of both countries, smallholder farmers have adopted the integrated 

mixed crop-livestock farming system which also includes off-farm activities and micro-

livestock (Klapwijk et al., 2019; Maass et al., 2012). In addition, there has also been a gradual 

shift from extensive systems to commercial intensive or semi-intensive management practices 

such as zero-grazing with feed supplementation, cultivated forage and use of agricultural 

residues to overcome the shortage of animal feed, mostly in highlands areas where grazing 

lands are becoming inexistent (replaced by habitations or crop production). These systems 

consist of integrating highly productive exotic breeds of cattle kept together with indigenous 

Ankole cattle (Manirakiza et al., 2017). They are characterised by frequent acaricide 

application. However, the intensive and semi-intensive systems are still emerging and are rare 

in the region. 

After the tragic war period (1990-2006), livestock rehabilitation programmes have been 

initiated in Rwanda and Burundi and very recently in DRC trying to revitalise the sector by 

reversing the trends in cattle ownership among households. These projects were initiated to 

respond, in line with vision 2020, to the rapidly increasing demand for livestock products which 

is driven by current population growth and urbanisation. The major agenda was to modernise 
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agriculture and livestock production to contribute to both food security and poverty alleviation. 

Emphasis has been focused on the introduction and dissemination of exotic cattle breeds to 

rural farmers in Rwanda and Burundi; especially the Holstein and Friesian so as to improve 

dairy productivity in the region to meet the challenges of food security. In Rwanda, the 

government started the strategy of cattle distribution aiming at intensifying livestock production 

through the social framework “One cow per poor family”. Since its introduction in 2006, the 

project has distributed around 300 thousand dairy cattle, with the purpose to reach more than 

350 thousand by the end of the project (Nilsson et al., 2019). Similar livestock-oriented 

programs are gaining popularity in neighbouring countries. For instance, the Burundi 

government, with the support of technical and financial partners, promoted the importation of 

Holstein crossbred cows from Uganda to be given to rural poor smallholders. Some progress 

has already been made so far by these various projects in the region. Nevertheless, there are 

still major challenges of designing and developing appropriate livestock production system 

related to feed availability and animal diseases management, especially tick and tick-borne 

diseases (Klapwijk et al., 2014). 

1.4.3 Cattle movement: local transhumance and cross-border movements of cattle 

Socio-economic vulnerability in the Great Lakes Region is increasing by the recurrent violent 

conflicts and the effect of climate change, which increase poverty and internal migration of 

human population with their cattle. As rainfall become temporally and spatially more variable, 

seasonal movements of cattle, known as transhumance, represent a key resilience behaviour of 

cattle keepers in response to the environmental and socio-cultural constraints. The 

transhumance is a common practice characterised by regular movement of cattle during the dry 

season across all the main production zones in the region. It is motivated by the need to access 

grazing and water resources to overcome harsh environmental conditions towards regions of 

different climate and seasonal availability of vegetation. However, uncontrolled movements 

and contact patterns of cattle can contribute to the dispersal of vectors and multiple infectious 

animal diseases, as well as drive social conflicts between pastoralists and sedentary crop 

farmers (Brabant and Nzweve, 2013; Kerfua et al., 2018). Thus, the lack of integrated 

management of transboundary diseases between countries remains a big challenge in the region 

(Bouslikhane, 2015). 

In general, three different types of cattle movements can be distinguished in the Great Lakes 

region: (i) short distance transhumance occurring within a production zone where cattle keepers 
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move with their animals in search of suitable grazing in the same AEZ, (ii) long-distance 

movements occurring to overcome seasonal variability of feed and water and to engage in 

livestock trade between AEZs (internal movements) and between countries (cross-border 

movements), and (iii) human population migrations with their cattle due to political unrest. The 

general trend of transhumance practice usually occurs from April to August. During this period, 

a large proportion of cattle located in high plateau migrate for long-distance transhumance to 

littoral regions of Lakes Kivu and Tanganyika and along the Ruzizi River. In particular, short-

distance transhumance represents an integral component of the livestock production system in 

the Ruzizi Valley, the Imbo Valley and the Eastern Province of Rwanda (Nyagatare district), 

where cattle keepers undertake more local migration largely within the AEZs throughout the 

year. The main transhumance destination and corridor within countries are represented by 

savannah areas in lowlands near protected areas or Lakes and Rivers (mostly lowlands areas). 

Cattle move towards internal migration as well as cross-border seasonal movements from 

Burundi, Rwanda and Tanzania to DRC in search for grazing. Cross-border cattle trading routes 

within the Great Lakes region are from Rwanda, Burundi and Uganda (via Rwanda or Burundi) 

to the South Kivu (Ruzizi valley and Kabare district) and Nord Kivu Provinces. Cattle entering 

DRC for trade from neighbouring countries are oriented on provincial markets and towards 

main urban agglomerations of the country in other Provinces of DRC (Katanga, Maniema and 

Tanganyika). The particularity of these movements is that cattle do not move from Congo to 

other countries. The Ruzizi valley of DRC remains the main corridor and destination of cattle 

from neighbouring countries (Brabant and Nzweve, 2013).  

The protracted violent conflicts which started in 1990 has immerged the region for much of the 

last three decades and also cleared the cattle population across the Great Lakes region. During 

the tragic conflict (1994-2006) and almost continuous and ongoing instability in the region, 

people migrated with their cattle to neighbouring countries (Cox, 2012). These migrations 

include several waves of exodus of cattle keepers originating from Rwanda and Burundi into 

DRC where they settled with their cattle in the Ruzizi valley (Uvira district) and the high plateau 

(Fizi and Uvira districts) of the South Kivu Province in the DRC (Vlassenroot and Huggins, 

2005). Since the war of 1994 onwards, there has been an influx of returning refugees with a 

large number of cattle from neighbouring countries. In addition to recent migrations, there is 

broad consensus that the largest group of cattle-keeping population moved to DRC and Uganda 

during the pre-colonial period at the end of the nineteenth century in the context of migratory 

flux of population related to political unrest and other social and economic calamities in the 



42 

Rwandan Kingdom (Verweijen and Vlassenroot, 2015). The suitable grazing lands along the 

Ruzizi River and the Lakes Tanganyika also attracted migration of cattle keepers to DRC, where 

they settled with their cattle (Vlassenroot and Huggins, 2005). There was also forced migration 

of Rwandans who fled their country as independence approached (1959-1961) and the assisted 

migration of Rwandans to eastern Congo under Belgium rule (between 1937-1955) who moved 

with their cattle to DRC. 

Both risk of spreading animal diseases and the potential generation of social conflicts related 

to livestock movements have led the three governments of the CEPGL to sign a regional 

agreement to address the regulation of cross-border cattle movements. However, there are still 

uncontrolled movements of cattle entering DRC through the Ruzizi valley (Brabant and 

Nzweve, 2013). 

1.4.4 History and control challenges of East Coast fever in the Great Lakes region 

Theileriosis was first reported in 1919 in the Great Lakes region while it was already described 

under its endemic form since 1910 in Uganda (Mortelmans and Kageruka, 1986). A veterinary 

laboratory was established in Butare (Rwanda) and used to serve Rwanda, Burundi, and the 

Belgian Congo. The disease was observed in the Gitega region (in Burundi) among tick-infested 

animals concentrated along the trade routes. Firstly, it was described as a relatively mild disease 

of calves and not of adult cattle; the case-fatality rate was estimated to range between 20-75% 

associated with a mortality of 30% among calves during their first year of life. The great 

majority of calves (80-90%) experienced a clinical form of the disease accompanied by 

hyperthermia and marked enlargement of lymphatic nodes. Since that period the disease was 

identified throughout the region and the severe disease was named by local communities as 

Amakebe in Uganda, Ikibagalira or Kivagilira (Kiwagarira) in Rwanda, Congo and Burundi, 

meaning “the killer” (Mortelmans and Kageruka, 1986; Van Saceghem, 1925). Later, the 

epidemiology and transmission of theileriosis were further described and the disease was 

declared as endemic in Rwanda-Burundi and Belgian Congo with mortalities confined to 

calves. In Rwanda, ECF cases were reported throughout the country whereas in Congo and 

Burundi it was found in localised areas. The high mortality and most of clinical disease usually 

occurred at the end of the wet seasons and calves were the most exposed to the disease, but 

adult cattle that move from different regions developed highly fatal disease. Researchers 

suggested the existence of antigenically different T. parva strains. Rhipicephalus 

appendiculatus was present in the whole region with the exception of the mountain regions at 
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high altitude ranging from 2000-2800m where it was absent or was represented by fewer 

number of ticks. It was reported that R. appendiculatus does not survive in highlands due to the 

cooler conditions that prevail in these areas. Control measures relied considerably on the 

restriction of cattle movement (between endemic and disease-free areas) and a number of 

dipping tanks and hand-spraying facilities have been installed to control the vector; however, 

only about 10% of cattle population was regularly dipped (Paling et al., 1991).  At the time, 

farmers were using arsenic (dipping tank) to reduce tick infestation, but resistance was reported 

for arsenic and they started using organochlorides family (DDT, HCH, Toxaphen). Before the 

independence in 1960, ECF was supposed to be completely controlled among the local breeds, 

but exotic breeds were still at risk of developing the disease. However, only few dipping tanks 

remained operational and the disease was again declared as major constraint causing epidemics 

in the region. The disease further hinders the introduction of more productive exotic breeds of 

cattle, hampering the development of the livestock sector. 

To cope with these challenges, live vaccination against theileriosis was initiated at the phase of 

laboratory testing and field validation between 1975-1991 in Rwanda and Burundi, but no such 

initiative was done in the Eastern Congo. A national research program was initiated in Burundi 

to develop ITM-based vaccination with the technical assistance from the German Agency for 

Technical Cooperation (GTZ) and the International Laboratory for Research on Animal 

Diseases (ILRAD) (Tama, 1989). The infection and treatment method of immunisation was 

then introduced Burundi in 1981 using a combination of stabilates from three local T. parva 

stocks (Gatumba, Gitega and Ngozi) and tetracycline treatment. The Ngozi isolate did not 

provide conclusive result and was later discarded due to its apparent association with 

ophthalmic problems. Immunisation programme have been conducted on a small scale with 

satisfactory results from 1981-1985 in the government farms and only 10% of calves own by 

private farmers. From 1986-1991, around 1781 calves were immunised, among which only 30% 

belonged to private farmers and 70% to the government farms. A cross-protection immunisation 

trial was also conducted in 1990 using Muguga cocktail stabilates, but this trial was not 

conclusive. The immunisation method has been used mainly on young cattle on government 

farms. Between 1975 and 1982, the Government of Rwanda together with the Food and 

Agriculture Organization (FAO) of the United Nations set up a project (1977-1982) to control 

TTBD is Rwanda. Immunisation against ECF began during that project and study was carried 

out to identify the species and strains of Theileria. The disease was diagnosed throughout the 

country, except in highlands areas were low temperature was believed to limit the distribution 
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of the vector. Two strains of T. parva were identified and used in the vaccination: T. parva 

Nyakizu and T. parva Satinski (Paling and Geysen, 1981). The development of a vaccine 

against theileriosis, based on local strains was considered to be the only practical solution at 

that moment. The T. parva Nyakizu isolate was chosen as the vaccine strain and in order to 

characterise this strain, various doses of the stabilates were tested in Ankole and crossbred 

animals.  An average of 300 cattle was vaccinated each year on a voluntary basis. However, 

many farmers were reluctant to vaccinate their cattle because of the high cost of vaccination, 

the lack of qualified trained staff to monitor vaccinated animals in rural areas and the expense 

of drugs (tetracycline and parvaquone). During the civil war which started in 1994, the 

veterinary service has lost many of its facilities and qualified personnel. The local T. parva 

stocks were also unfortunately lost during the war due to lack of liquid nitrogen. Since Rwanda 

has emerged from civil war, there has been some progress in rehabilitation of the livestock 

population throughout the Great Lakes region. The current control strategy against ECF is 

achieved by acaricide application and treatment of sick animals using the therapeutic 

Buparvaquone drug. But these methods are not sustainable and are very expensive to 

smallholder farmers. 

 

Recent studies conducted in Rwanda and in the Nord Kivu Province of DRC showed that the 

tick vector R. appendiculatus remains the most common Ixodid ticks and that the epidemiology 

of ECF is influenced by various ecological conditions and management practices which in turn 

affect the vector dynamics. The climate change, human population growth, change in land use 

and cattle movements are potential factors that affect the epidemiology of ECF in the Great 

Lakes region (Bazarusanga et al., 2007a; Bazarusanga et al., 2011; Bazarusanga et al., 2007b; 

Kalume et al., 2012; Kalume et al., 2013).  Currently, the initiative of the Global Alliance of 

Veterinary Medicine (GALVmed) is playing the role of facilitator, accessing the feasibility of 

sustainable deployment of the available Muguga Cocktail vaccine in the region or to answer 

the question whether local isolates could serve as vaccination strains instead of the existing 

Muguga Cocktail. The ITM vaccine is not yet registered in the region due to unavailability of 

information on T. parva strains circulating in the field. The major challenge for successful 

immunisation against ECF using the ITM approach is the genetic diversity of T. parva 

genotypes in the field. As a progress, GALVmed is testing the Muguga trivalent vaccine under 

various controlled trials in Rwanda, DRC (Nord- Kivu) and Burundi prior to request the right 

to import the vaccine (Perry, 2016). 
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2.1 Introduction 

As stated in the Chapter 1, ECF remains one of the major challenges to cattle production in 

the Great Lakes region, hampering the development of cattle production in the region. Although 

efforts have been done trying to control the disease, the epidemiology of ECF is still complex 

in the region: high mortality and high incidence in highlands, but clinical cases confined to 

calves in lowlands and midlands with reported occasional epidemics in lowlands (Amzati, 

2011; Bazarusanga et al., 2007b; Kalume et al., 2012). A better understanding of factors 

affecting the instability of ECF in the region and epidemiological differences between AEZs 

could contribute to the improvement and formulation of effective and integrated control 

strategies. These factors may be related to the genetic composition and ecological dynamics of 

the tick vector and the pathogen it transmits. The biogeographical dynamics and population 

structure of R. appendiculatus and T. parva stocks are thought to be affected by short and long-

distance movements of cattle and agro-ecological variability, which in turn may affect the 

transmission system of T. parva and the epidemiology of ECF. On the other hand, knowledge 

of the genetic composition of T. parva is crucial prior to the use of live vaccine to prevent the 

risk of spreading “foreign” parasite variants in new areas. 

2.2 General objective 

The overall objective of this thesis was to study the genetic variation, population structure and 

biogeographical dynamics of R. appendiculatus and T. parva to better understand the 

epidemiological situation of East Coast Fever (ECF) in different agro-ecological zones of the 

Great Lakes region (Figure 2.1). The results would further contribute to the implementation of 

appropriate control strategies, especially assuring safe deployment of live vaccine in the Great 

Lakes region. 
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Figure 2.1 Proposed interaction between agro-ecological conditions (lowlands, midlands and 

highlands) and the genetic of Theileria parva and Rhipicephalus appendiculatus to explain the 

epidemiology of ECF: a) Study 1: population genetics of R. appendiculatus; b) Study 2: 

population genetics of T. parva; c) Study 3: transmission dynamics of T. parva. 

2.3 Specific objectives 

The specific objectives considered to achieve the main objective were as follows:   

1. To analyse the intraspecific genetic diversity and the phylogeographical structure of 

Rhipicephalus appendiculatus  

2. To investigate the genetic and antigenic variation and the population structure of Theileria 

parva  

3. To model the transmission dynamics of Theileria parva in different agro-ecological zones 

using the vectorial inoculation rate (VIR) as a proxy of ECF incidence 
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2.4 Thesis outline 

The research conducted during this thesis analysed the complexity of the epidemiological 

situation of ECF in the Great Lakes region in light of the genetic diversity of R. appendiculatus 

and T. parva. The results are discussed in relation with agro-ecological variability and the 

extensive movements of cattle reported in the region. Cross-sectional research and various 

analytic approaches were applied to study the population genetics of the tick vector and the 

pathogen it transmits, as well as the epidemiology of ECF. The structure of the study is 

illustrated in Figure 2.2. The contents of the thesis are outlined as follows: 

The first study (Chapter 3) corresponds to the first specific objective of this thesis. This chapter 

provides data on the genetic diversity, population structure and phylogeography of R. 

appendiculatus. The tick samples came from cattle in three AEZs of DRC, two AEZs of 

Burundi and one AEZ of Rwanda. Phylogenetic and phylogeographical analyses were based on 

sequences of the cytochrome oxidase subunit I (cox1) and the 12S ribosomal rRNA (12s RNA). 

The historical evolutionary dynamics were evaluated based on mismatch models performed on 

cox1 DNA sequences. The results allowed to elucidate the colonisation patterns of two lineages 

of R. appendiculatus in the Great Lakes region that have undergone sudden population growth. 

The analyses were expanded to the overall distribution of the tick in Africa: these data were 

compared with published sequences from different sub-Saharan African countries to assess 

their evolutionary relationships and dynamics.  

The second study (Chapter 4) is related to the second objective of this thesis. In this chapter, 

we present the results of genetic and antigenic diversity and population structure of T. parva 

samples isolated from cattle blood collected in three AEZs of DRC and one AEZ of Burundi. 

The AEZs were defined as populations when assessing the population structure of T. parva. 

Phylogenetic, genetic differentiation and antigenic variation analyses were performed based on 

sequences of two antigen-coding gene markers (Tp1 and Tp2). In addition to samples collected 

during this study, published cattle-derived and buffalo-derived sequences were included. These 

originated from various ecological regions of sub-Saharan Africa to further understand the 

evolutionary relationships between geographical diverse T. parva sequences.  

The third study is presented in Chapter 5 which illustrates the current epidemiological situation 

related to the transmission dynamics of T. parva in three AEZs of DRC during three different 

seasons (two wet seasons and one dry season). In this study, ticks were collected from cattle 
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(attached ticks) and from the vegetation (free-living ticks). The attached ticks were used to 

estimate the tick burden while the free-living ticks were used to assess the proportion of ticks 

infected with T. parva. In addition to tick samples, cattle blood samples were analysed to 

estimate the prevalence of T. parva in the bovine host. The results were discussed in relation 

with the genetic composition of R. appendiculatus and T. parva in these AEZs to consolidate 

the genetic of the vector and the pathogen to the epidemiological data to be able to understand 

the complexity of ECF in the region. 

Finally, Chapters 6 and 7 summarise and consolidate the main findings obtained from these 

three main studies under the general discussion and conclusions and perspectives. Their 

potential implications in the implementation of control measure of ECF are also discussed. 

 

Figure 2.2 Thesis overview and study design 
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Chapter 3. Phylogeography and population 
structure of Rhipicephalus appendiculatus in 

the Great Lakes region* 
 

 

This research was carried out to investigate the genetic composition and agro-ecological 

distribution of Rhipicephalus appendiculatus based on mitochondrial genes, using tick samples 

collected from cattle in the Democratic Republic of Congo, Rwanda and Burundi. It refers to 

the first objective of the thesis. The results highlighted the occurrence of two mitochondrial 

lineages of R. appendiculatus in the Great Lakes region, with population admixture of ticks 

among agro-ecological zones. The “east African” lineage (lineage A) was the most abundant 

and has been longer well established in the region and the “south African” lineage (lineage B) 

was more recently introduced through cattle movement, and this is the seminal report of its 

presence in the region. The observed genetic pattern of the tick vector may have significant 

implications in the transmission system of the pathogen Theileria parva, resulting in the 

epidemic instability and complexity of ECF observed in the Great Lakes region due to possible 

reintroduction through cattle movements and temporal subsistence of different tick lineages on 

cattle. 

 
 

 

 

 

 

                                                
* This chapter was published as:  
 
Amzati, G.S., Pelle, R., Muhigwa, J.-B.B., Kanduma, E.G., Djikeng, A., Madder, M., Kirschvink, N., Marcotty, 
T., 2018. Mitochondrial phylogeography and population structure of the cattle tick Rhipicephalus appendiculatus 
in the African Great Lakes region. Parasites & vectors 11, 329-329. 
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3.1 Abstract 

Background: The ixodid tick Rhipicephalus appendiculatus is the main vector of Theileria 

parva, which causes the highly fatal cattle disease East Coast fever (ECF) in sub-Saharan 

Africa. Rhipicephalus appendiculatus populations differ in their ecology, diapause behaviour 

and vector competence. Thus, their expansion in new areas may change the genetic structure 

and consequently affect the vector-pathogen system and disease outcomes. In this study we 

investigated the genetic distribution of R. appendiculatus across agro-ecological zones (AEZs) 

in the African Great Lakes region to better understand the epidemiology of ECF and elucidate 

R. appendiculatus evolutionary history and biogeographical colonization in Africa. Methods: 

Sequencing was performed on two mitochondrial genes (cox1 and 12S rRNA) of 218 ticks 

collected from cattle across six AEZs along an altitudinal gradient in the Democratic Republic 

of Congo, Rwanda, Burundi and Tanzania. Phylogenetic relationships between tick populations 

were determined and evolutionary population dynamics models were assessed by mismach 

distribution. Results: Population genetic analysis yielded 22 cox1 and 9 12S haplotypes in a 

total of 209 and 126 nucleotide sequences, respectively. Phylogenetic algorithms grouped these 

haplotypes for both genes into two major clades (lineages A and B). We observed significant 

genetic variation segregating the two lineages and low structure among populations with high 

degree of migration. The observed high gene flow indicates population admixture between 

AEZs. However, reduced number of migrants was observed between lowlands and highlands. 

Mismatch analysis detected a signature of rapid demographic and range expansion of lineage 

A. The star-like pattern of isolated and published haplotypes indicates that the two lineages 

evolve independently and have been subjected to expansion across Africa. Conclusions: Two 

sympatric R. appendiculatus lineages occur in the Great Lakes region. Lineage A, the most 

diverse and ubiquitous, has experienced rapid population growth and range expansion in all 

AEZs probably through cattle movement, whereas lineage B, the less abundant, has probably 

established a founder population from recent colonization events and its occurrence decreases 

with altitude. These two lineages are sympatric in central and eastern Africa and allopatric in 

southern Africa. The observed colonization pattern may strongly affect the transmission system 

and may explain ECF endemic instability in the tick distribution fringes. 
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3.2 Background 

The ixodid brown ear tick Rhipicephalus appendiculatus is the main vector of the protozoan 

pathogen Theileria parva, the causative agent of a fatal lymphoproliferative cattle disease 

known as East Coast fever (ECF). East Coast fever is a highly pathogenic and the most 

economically important tick-borne disease of cattle in 12 sub-Saharan African countries, 

including Burundi, Democratic Republic of Congo and Rwanda (Mukhebi et al., 1992; Nene et 

al., 2016). Rhipicephalus appendiculatus is the most abundant tick in the Great Lakes region of 

Central Africa, where its burden and distribution vary significantly among agro-ecological 

zones (AEZs) (Bazarusanga et al., 2007a; Kaiser et al., 1988; Kalume et al., 2013). The 

geographical dispersal pattern and population dynamics of this tick are mainly driven by 

climatic conditions, vegetation, host availability and mobility, grazing system and management 

practices (Olwoch et al., 2009; Perry et al., 1990).  

The Great Lakes region of Central Africa is characterised by cattle movement within and 

between countries for trade, breeding and pasture (Failly, 1999; Mararo, 2000). During the pre-

colonial period, immigrants originating from Rwanda and Burundi settled with their cattle in 

Congo in search of grazing lands. In addition, political unrest during the past three decades and 

rapidly increasing demand for animal products increased significantly the importation of live 

animals (Verweijen and Brabant, 2017; Vlassenroot and Huggins, 2005). This cross-border 

movement of cattle across geographical areas, together with bioclimatic conditions suitable for 

R. appendiculatus, could play a significant role in spreading ticks and pathogens (Boulinier et 

al., 2016; De Deken et al., 2007; Maze-Guilmo et al., 2016; Yssouf et al., 2011). Therefore, the 

spread and establishment of ticks from one geographical region to another might be setting up 

a complexity in the epidemiological status and control of the disease they transmit (Barre and 

Uilenberg, 2010; Estrada-Peña and Salman, 2013; Fevre et al., 2006). Thus, predicting vector-

borne pathogen dynamics and emergence relies on better understanding of mechanisms 

underlying the genetic structure of their vectors (Leo et al., 2017; Ogden et al., 2013).  

Ecological establishment and population genetic structure of ticks can be affected by founder 

events and gene flow, largely due to their dispersal across geographical zones through host 

migration (Criscione et al., 2005; Leo et al., 2017). Arthropod vectors then respond differently 

to evolutionary forces such as migration, mutation, selection and genetic drift (promoted by 

bottlenecks) in their new environment (Gandon and Michalakis, 2002; Gooding, 1996). The 

adaptive mechanism of R. appendiculatus to changed environment suggests genetic divergence 
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between geographical stocks and phenotypic variations, including diapause behaviour and 

vector competence to transmit T. parva (Kubasu, 1992; Odongo et al., 2009). The degree to 

which different R. appendiculatus stocks acquire and transmit T. parva is partially genetically 

dependent because of the heritability of their susceptibility to infection (Young et al., 1995). 

Furthermore, there is a similar extensive genetic variation among T. parva strains in the field 

associated with different clinical features and disease outcomes, and variable cross-immunity 

levels. Studies suggest that there are also specific interactions between R. appendiculatus and 

T. parva stocks in the transmission dynamic system, significantly affecting the epidemiology 

of ECF (Ochanda et al., 1998). Thus, phylogenetic and ecological analyses should provide 

useful information to control ECF by determining: (i) the genetic structure of R. appendiculatus 

populations; (ii) its dispersal pattern; and (iii) its demographic history (Le Roux and Wieczorek, 

2009; McCoy, 2008). 

The genetic diversity of R. appendiculatus has been studied in different African countries using 

various molecular tools, such as mitochondrial DNA (Mtambo et al., 2007c; Yssouf et al., 2011) 

and micro- and minisatellite DNA markers (Kanduma et al., 2016b). Two distinct genetic 

groups have been described, namely the eastern and the southern African lineages (Mtambo et 

al., 2007c). More recently, Kanduma et al. (Kanduma et al., 2016a) found that the two genetic 

groups are present in Kenya. These evidences show that R. appendiculatus genetic groups may 

have a wide geographical range, with different ecological preferences and phenology in sub-

Saharan Africa (Berkvens et al., 1998; Leta et al., 2013; Speybroeck et al., 2002), due to 

differences in body size (Chaka et al., 1999) and diapause induction and intensity (Madder et 

al., 1999; Madder et al., 2002).  

Major gaps in knowledge still exist concerning the agro-ecological colonization and 

establishment of the R. appendiculatus lineages in the Great Lakes region of Central Africa, 

where cattle mobility seems to be the main factor of tick dispersal and epidemic instability of 

ECF (Bazarusanga et al., 2007b; Kalume et al., 2012; Kalume et al., 2013). Thus, further studies 

on the population structure and phylogeography of R. appendiculatus, including ticks from 

distinct agro-ecological conditions of DR Congo, Burundi and Rwanda, are important to shed 

light on the intra and inter population variation, the dispersal pattern and the historical dynamics 

of the characterised lineages in various ecological situations of Africa. The objective of this 

study was to assess the evolutionary relationship between R. appendiculatus populations and to 

investigate the impact of geographical locations on its genetic structure, to better understand 
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the epidemiology of ECF in the Great Lakes region. To achieve this objective, we sequenced 

and analysed fragments of the cytochrome c oxidase subunit 1 (cox1) and the 12S ribosomal 

RNA (12S rRNA) gene loci. The genetic structure of R. appendiculatus provides clues to a 

better understanding of the epidemiology of ECF and insight into the development of targeted 

selective management and control strategies.  

3.3 Methods 

3.3.1 Study area 

Ticks were collected from cattle in six agro-ecological zones (AEZs) of the Central African 

Great Lakes region (Democratic Republic of Congo, Rwanda and Burundi) (Figure 3.1). The 

three countries share the Ruzizi Valley, which consists of lowlands along the Ruzizi River 

flowing between Lake Kivu and Lake Tanganyika. A summary description of the characteristics 

of the six AEZs is presented in Table 3.1. Briefly, although the study area is close to the equator, 

the wide range of altitudes (700 to 3000 m above sea level) mitigates significantly the tropical 

climate attributes and therefore the AEZs limits. Generally, the rainfall period is long and 

bimodal (with variations in the duration between AEZs). An early rainy season starts 

approximately in September and ends in December, while the late rainy season lasts from 

February to May, followed by a dry season from June to August. There is an intervening short 

dry period between the two rainy seasons of about 15 days in January and/or February 

depending on the AEZs. Rainfall and temperature are strongly influenced by altitude ranges. 

Rainfall increases while temperature decreases with increasing elevation. The average 

temperature ranges between 12–25 °C and the annual average rainfall from 800–1100 mm in 

the Ruzizi Valley to 1300–2000 mm in the highlands.  

In eastern DRC, ticks were collected along an altitudinal transect in South-Kivu province. 

Based on elevation and geographical position within the transect, three major AEZs were 

defined from lowlands to highlands, namely, DRC AEZ1 (lowlands) in the Ruzizi Valley, DRC 

AEZ2 (midlands) in the administrative district of Walungu and DRC AEZ3 (highlands) in the 

district of Kabare and the highlands part of Walungu (Mulumemunene). The lowlands region 

(DRC AEZ1) is the warmest AEZ, characterised by a tropical dry climate (semi-arid), with a 

cool dry season of 4–5 months. Cattle are raised generally in an open grazing system in 

communal pastures of savannah grassland. In contrast, the “upland Kivu” (DRC AEZ2 and 
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AEZ3) has a montane humid tropical climate and is much cooler. The warm dry season lasts 

for 3–4 months, with occasional and poorly distributed rainfall.  

Ticks from Burundi were collected from two AEZs. The sampled administrative districts 

included Rugombo and Gihanga in the Imbo lowlands (Burundi AEZ1) and Muramvya, Mwaro 

and Mugamba districts of the Congo-Nile highlands (Burundi AEZ3). The Imbo region extends 

along the Ruzizi River and the North of Lake Tanganyika. The vegetation is composed of 

savannah and small patches of forest.  

Ticks from Rwanda were obtained from the eastern low plateau in Nyagatare, Gatsibo and 

Kayonza districts (Rwanda AEZ2). This region includes the savannah of eastern province of 

Rwanda. The eastern semi-arid plateau zone is the most important pastoral region in Rwanda, 

holding 40% of the national herd raised in a communal grazing system. The vegetation type is 

largely savannah and some river bank woods. 

 

Figure 3.1 Sampling sites of Rhipicephalus appendiculatus ticks in DRC, Rwanda and 

Burundi: a) Map of Africa showing the study area (in grey) and other countries where the tick 

was previously sequenced (indicated by their names); b) Sampling localities of R. 

appendiculatus and their altitudes (squares: AEZ1 altitude < 1200 m; circles: AEZ2 altitude 

1200–1800 m; and triangles: AEZ3 altitude: 1800-2800 m). The sites represented by empty 
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circles and triangles show sampling locations described by Mtambo et al. (Mtambo et al., 

2007c) 

Table 3.1 Geographical and climatic attributes of the six agro-ecological zones (AEZ)  

Country Agro-

ecological 

zone (AEZ) 

Altitude 

(m) 

Temperature 

(°C) 

Rainfall 

(mm/year) 

Rainy season Sample 

size (no. 

of ticks) 

DRC AEZ1 780–1100 23–25 800–1000 October-April 46 
 

AEZ2 1200–1800 17–21 1000–1500 September-May 54 
 

AEZ3 1800–2800 12–19 1350–2000 September-May 46 

Burundi AEZ1 774–1100 23–24 800–1100 November-May 26 
 

AEZ3  1700–2800 14–15 1300–2000 September-May 17 

Rwanda a AEZ2  1200–1500 21–24 800–950 November-May 20 
a Sequences previously described in Mtambo at al. (Mtambo et al., 2007c) are not included in the 20 samples from 
Rwanda and thus were not used in the population genetic analysis presented in Tables 3.2–3.4 
Notes: DRC (AEZ1: Lowlands, AEZ2: Midlands, AEZ3: Highlands); Burundi (AEZ1: Lowlands, AEZ3: 
Highlands); Rwanda (AEZ2: eastern low plateau which is the lowlands of Rwanda as described by Bazarusanga 
et al. (Bazarusanga et al., 2007a)) 

3.3.2 Tick sampling and morphological identification 

Ticks were collected from cattle during a cross-sectional survey conducted from February to 

April 2015 (late rainy season) in the six AEZs. In each AEZ, 8 to 12 cattle herds were selected 

randomly using a random number generator in Microsoft Excel. From ticks collected in each 

herd representing a location or village, 4 to 5 ticks were selected using the same random process 

for further analysis. The number of ticks sampled in each population is shown in Table 3.1. All 

ticks were directly immersed in 70% ethanol for preservation and morphologically identified 

using the identification key of Walker et al. (Walker, 2003). Morphological identification was 

confirmed at the tick unit at the International Livestock Research Institute (ILRI, Kenya). Ten 

additional specimens originating from Simanjiro district in northern Tanzania were obtained 

from the Sokoine University of Agriculture in Tanzania. 

3.3.3 DNA extraction, PCR amplification and sequencing 

Total genomic DNA was isolated from whole individual ticks using the DNeasy® Blood and 

Tissue Kit (Qiagen GmbH, Hilden, Germany) according to the standard manufacturer’s 

protocol, except that an additional incubation of 10 min at 56 °C was added after mixing the 
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sample with 200 µl buffer AL to ensure optimal cell lysis. Prior to extract DNA, ticks were 

washed twice in double distilled water and left to dry for 10 min at room temperature and 

homogenized.  

Given the suitability of mitochondrial genes to discriminate intraspecific variation in ticks 

(Kanduma et al., 2016a; Mtambo et al., 2007c), we amplified the cox1 and 12S rRNA gene loci 

to assess the genetic diversity and phylogenetic relationships of R. appendiculatus populations. 

A 710 bp fragment of cox1 gene locus was amplified with the forward primer LCO1490 (5'-

GGT CAA CAA ATC ATA AAG ATA TTG G-3') and the reverse primer HC02198 (5'-TAA 

ACT TCA GGG TGA CCA AAA AAT CA-3') as previously described by Folmer et al. (Folmer 

et al., 1994); for the 12S rRNA gene locus we used the primers SR-J-1499 (5'-TAC TAT GTT 

ACG ACT TAT-3') and SR-N-14594 (5'-AAA CTA GGA TTA GAT ACC C-3') with a 

fragment size of 380 bp, described in Simon et al. (Simon et al., 1994). PCR amplifications of 

both cox1 and 12S rRNA gene fragments were performed using 50 ng of genomic DNA, 25 µl 

of 2× AccuPower® PCR PreMix (Bioneer PCR-PreMix, Seoul, South Korea), 0.2 µM each of 

forward and reverse primers, and nuclease free water added up to a final reaction volume of 50 

µl. The thermal cycling program for cox1 consisted of an initial denaturation at 95 °C for 3 min 

followed by 35 cycles of denaturation at 94 °C for 1 min, annealing at 40 °C for 1 min and 

extension at 72 °C for 1 min. The final extension was carried out for 10 min at 72 °C. PCR 

parameters of 12S rRNA gene fragment were as described for cox1, except that the annealing 

temperature was 52 °C and the extension time was 90 s. PCR products were analysed by 

electrophoresis on a 1.8% agarose gel. Amplicons were purified using the QIAquick® PCR 

Purification Kit (Qiagen GmbH, Hilden, Germany) following the manufacturer’s instructions. 

Both strands were sequenced directly with the same primers used for PCR, on an ABI 3730 

capillary sequencer (Applied Biosystems, California, USA). 

3.3.4 Sequences editing, blasting and multiple alignments 

Forward and reverse chromatograms for each individual tick were visually checked. Sequences 

were manually edited and assembled using CLC Main Workbench software v7.8.1 (CLC Bio, 

Aarhus, Denmark). Multiple sequences were aligned with CrustalW algorithm using default 

settings in the same software. The sequences were then trimmed to exclude poor quality bases 

and obtain uniform sizes. The final sequence sizes were 586 bp and 346 bp for cox1 and 12S 

rRNA genes, respectively. Aligned and trimmed sequences were subjected to a BLAST search 

against all NCBI nucleotide databases, with default settings to confirm their species identity. A 
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total of 219 sequences for cox1 and 126 for 12S were obtained after quality check processing. 

To check for amplification of nuclear pseudogenes and confirm protein coding, all cox1 

nucleotide sequences were translated into their amino acid sequences to examine the presence 

of ambiguous stop codons for correct coding of invertebrate mitochondrial DNA. 

3.3.5 Genetic diversity and population genetic structure 

Multiple sequences extracted from the alignments were used to construct haplotypes in DnaSP 

software v5.10.01 (Librado and Rozas, 2009). Genetic variation within populations was 

estimated on cox1 gene sequences. Population genetic indices represented by number of 

haplotypes (h), number of segregating sites (S), haplotype diversity (Hd), mean number of 

pairwise nucleotide differences within population (K) and nucleotide diversity (π) were 

calculated for each AEZs (named populations) and for the overall data set using Arlequin 

v3.5.2.2 (Excoffier and Lischer, 2010) and DnaSP. The population genetic structure among 

AEZs and among haplogroups was evaluated by an analysis of molecular variance (AMOVA) 

performed in Arlequin. The significance of AMOVA fixation indices was evaluated based on 

1,023 random permutations. In addition, to assess the level of genetic distance/differentiation 

between populations, we estimated gene flow expressed as of the absolute number of migrants 

(Nm) exchanged among populations, average number of nucleotide differences between 

populations (KXY) and population pairwise genetic differentiation (FST) also in Arlequin 

(Meirmans and Hedrick, 2011). Their significance was tested using 1,000 random permutations. 

The genetic differentiation and population structure statistics were tested under the hypothesis 

that different populations are represented by distinct genetic groups or are exchanging migrants. 

These analyses were performed for combined data (of the main haplogroups identified) to 

understand the effect of coexistence of the haplogroups in the genetic structure and diversity. 

3.3.6 Demographic and spatial expansion history analyses 

The historical population dynamics and structure was inferred from mismatch distribution of 

cox1 haplotypes implemented in Arlequin (Rogers and Harpending, 1992), which compared the 

observed distribution of pairwise nucleotide differences between haplotypes and that expected 

under a population expansion model for each population, haplogroup and overall data. 

Multimodal mismatch pattern is assumed to define a population of demographic equilibrium or 

constant size, whereas sudden or expanding population is characterised by unimodal 

distribution. The sum of square deviation (SSD) were estimated to determine if the observed 
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mismatch deviated significantly from a population expansion model, and the Harpending’s 

raggedness index (RI) were used to evaluate the smoothness of mismatch distribution 

(Harpending, 1994). In addition, to detect deviation from neutrality expectations or mutation-

drift equilibrium we performed analysis of Fu’s Fs (Fu, 1997) and Tajima’s D (Tajima, 1989) 

statistics in Arlequin and DnaSP. Tajima’s D test is based on the difference between the number 

of polymorphic sites and the mean number of nucleotides pairwise differences, while Fu’s Fs 

test is based on haplotype frequencies. The significance of all these statistics was tested by 

bootstrap resampling of 1000 coalescent simulations. Significant negative values of neutrality 

statistics should indicate a signature of historical event of population expansion, whereas 

significantly positive values indicate events such as recent population bottleneck, population 

subdivision or presence of some recent immigrants in a population. Values near zero and not 

significant, indicate that population size is constant. 

3.3.7 Phylogenetic and phylogeographical reconstruction 

Different published haplotype sequences of R. appendiculatus from South Africa, Kenya, 

Grande Comore, Zambia, Zimbabwe, Uganda and Rwanda were retrieved from the National 

Center for Biotechnology Information (NCBI) database (see Table S3.1) and were compared 

with sequences obtained in the present study. Phylogenetic reconstruction was performed 

separately on cox1 and 12S rRNA gene sequences to determine the relationship among 

populations and possible historical dispersal event. To find the evolutionary substitution model 

that best describe the evolution of cox1 and 12S rRNA gene sequences, we performed a 

hierarchical likelihood ratio test, based on the lowest Bayesian information criterion using 

MEGA v7.0 (Kumar et al., 2016). The nucleotide substitution model selected was then used to 

perform a Neighbor-joining (NJ) and/or Maximum Likelihood (ML) algorithm in MEGA. The 

stability and branches support were obtained using 1,000 bootstrap permutations. 

Rhipicephalus eversti and Rhipicephalus microplus from this study (GenBank accession 

numbers MF458972 and MF458973 for cox1 and MF479198 and MF479199 for 12S RNA 

genes) and Rhipicephalus turanicus obtained from the GenBank (accession numbers 

KU880574 and DQ849231 for cox1 and 12S rRNA genes, respectively) were used as outgroup 

taxa. A Median-joining (MJ) network was constructed to investigate the phylogenetic and 

ancestral relationship among haplotypes using PopArt Software (Leigh and Bryant, 2015). 
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3.4 Results 

3.4.1 Morphological and molecular identification of ticks 

PCR fragments of the mitochondrial cox1 and 12S rRNA gene loci were successfully generated 

from 219 and 126 individual ticks, respectively, originating from the three AEZs of DRC, the 

two AEZs of Burundi, one AEZ of Rwanda and specimens from Tanzania. The 10 sequences 

from Tanzania and the sequences previously described in Rwanda were not included in the 

population genetic and structure analyses. Generated nucleotide sequences were aligned with 

the reference haplotype sequences retrieved from the GenBank (Table S3.1). The final fragment 

length obtained for cox1 was 586 bp and 12S rRNA yielded a fragment of 346 bp long, with no 

indels detected in both genes. Their morphological identification has been confirmed by the 

high molecular identity (99–100%) with known sequences of R. appendiculatus found in 

GenBank (Table S3.2). Haplotype sequences (55 and 23 sequences for cox1 and 12S rRNA, 

respectively) obtained for each of the six AEZs were deposited and are available in GenBank 

(GenBank accession numbers: MF458895–MF458949 and MF479166–MF479188 for cox1 

and 12S rRNA genes, respectively). 

3.4.2 Phylogenetic relationships and haplotypes distribution 

The overall sequence analysis revealed that cox1 had 27 polymorphic sites, 21 of which were 

parsimony informative and 6 were singletons, yielding 22 haplotypes (Table S3.3). cox1 amino 

acid sequences did not contain any internal stop codon or indel. Most nucleotide mutations were 

synonymous, except one non-synonymous change identified at position 32 of the haplotype 

CH22 (change from an Alanine to a Threonine). The highest number of cox1 haplotypes was 

found in DRC AEZ1, while the lowest was observed in Burundi AEZ3 (Table 3.2). The 12S 

rRNA gene provided 10 polymorphic sites, five of which were parsimony informative, defining 

9 haplotypes. The 22 cox1 haplotype sequences obtained in this study were submitted to 

GenBank under accession numbers MF458950-MF458971 and the nine 12S rRNA gene 

haplotypes were deposited under accession numbers MF479189-MF479197. The phylogenetic 

relationships among cox1 haplotypes inferred by a NJ phylogenetic tree (Figure 3.2), a ML tree 

(Figure 3.3) and a MJ network (Figure 3.4) produced identical topologies and detected two 

distinct clades or lineages strongly-supported by a NJ bootstrap value of 100%. The two 

lineages diverged at least by 12 mutational steps (Table S3.3) but shared a wide range of agro-

ecological and geographical conditions in the Great Lakes region. The first lineage, named 
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“haplogroup A”, was represented by the most frequent haplotypes (CH1, CH2 and CH5) and 

comprised in total 19 haplotypes consisting of 189 of the 209 sequences analysed (90%), 

whereas the second lineage “haplogroup B” included three haplotypes (CH7, CH13, CH20) and 

had a total of 20 sequences (10%) (Figure 3.2, Table S3.3). Haplogroup B comprised of 

haplotypes present in most AEZs except the highlands zone of Burundi (Burundi AEZ3). These 

cox1 haplogroups presented a star-like pattern in the MJ network with less frequent and single 

haplotypes connected together to the predominant or ancestral haplotypes generally by single 

substitutions (Figure 3.4), supporting the hypothesis of a recent population expansion. The 

phylogenetic relationships found in the cox1 gene were fully congruent with those revealed by 

the ML tree performed on 12S rRNA haplotypes. 

The distribution of haplotypes presented in Table 3.2 showed that there were shared and private 

cox1 haplotypes confined to restricted AEZs. Three haplotypes CH1 (27%), CH2 (28%) and 

CH5 (19%) were shared between all AEZs and were by far the most ubiquitous in the region, 

accounting for 74% (154 sequences) of the overall dataset (Table S3.3). Haplotype CH1 was 

detected in 13 (50%) of the 26 sequences from lowlands of Burundi (Burundi AEZ1). Two 

haplotypes (CH11 and CH13) defined by 10 and 11 sequences, respectively, were common in 

all the AEZs of DRC and in Rwanda AEZ2. Haplotype CH12 was exclusive to DRC AEZ2 and 

AEZ3. Nine out of the 22 haplotypes were found in single individuals; therefore, they belonged 

to particular AEZs (Table S3.3). Furthermore, two 12S rRNA haplotypes (12SH1 and 12SH2) 

were the most abundant, representing 90% of the 126 sequences analysed. Haplotypes 12SH4 

and 12SH5 had together 8 (6%) out of the 126 analysed sequences. The presence of single 

haplotypes indicates high frequency of rare alleles, which suggests a recent population 

expansion. 

 

 

 



64 

Table 3.2  Rhipicephalus appendiculatus cox1 haplotypes distribution (%) and genetic diversity indices in six agro-ecological zones of the 

Democratic Republic of Congo, Burundi and Rwanda 

Country AEZ n h Haplotype (frequency in %)a, b Haplogroupc 

(%) 

 Genetic diversity indices 

A B S (PIS) Hd (SD) K π (SD) 

DRC AEZ1 46 10 CH1(30), CH2(28), CH5(6), CH6(2), CH7(4), CH8(2), 

CH11(9), CH13(11), CH16(4), CH17(2)  

85 15  17 (16) 0.82 (0.03) 4.4 (2.2) 0.007 (0.002) 

AEZ2 54 12 CH1(18), CH2(30), CH5(28), CH7(2), CH11(2), 

CH12(4), CH13(4), CH18(4), CH19(4), CH20(2), 

CH21(2), CH22(2) 

92 8  20 (17) 0.81 (0.03) 3.1 (1.6) 0.005 (0.001) 

AEZ3 46 7 CH1(17), CH2(33), CH5(28), CH11(9), CH12(6), 

CH13 (4), CH14(2) 

96 4  16 (15) 0.79 (0.03) 2.4 (1.3) 0.004 (0.001) 

Burundi AEZ1 26 8 CH1(50), CH2(19), CH3(4), CH4(4), CH5(11), 

CH6(4), CH7(4), CH10(4) 

96 4  18 (3) 0.72 (0.08) 2.01(1.2) 0.003 (0.001) 

AEZ3 17 5 CH1(29), CH2(35), CH5(23), CH8(6), CH 9(6)  100 0  4 (2) 0.77 (0.06) 1.1 (0.9) 0.002 (0.0003) 

Rwanda AEZ2 20 8 CH1(30), CH2(20), CH4(5), CH5(5), CH7(20), 

CH11(5), CH13(10), CH15(5) 

70 30  18 (13) 0.85 (0.05) 6.3 (3.1) 0.011 (0.002) 

Total  209 22 – 90 10  27 (21) 0.81(0.01) 3.4(1.7) 0.006 (0.0006) 
aHaplotypes belonging to the haplogroup B are underlined; bBold indicates shared haplotypes by all agro-ecological zones; cA and B are haplogroup names 
Abbreviations: AEZ, agro-ecological zones; n, number of sequences; h, number of haplotypes; S, segregation sites; PIS, parsimony informative sites; Hd: haplotype diversity; 
SD, standard deviation; k: mean number of pairwise nucleotide differences; π, nucleotide diversity; CH1-22: names of cox1 haplotype
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Figure 3.2 Phylogenetic tree of R. appendiculatus cox1 haplotypes. The evolutionary history 

was inferred by using the neighbor-joining method based on the Tamura 3-parameter model. A 

discrete Gamma distribution was used to model evolutionary rate differences among sites. 

Bootstrap values (> 80) are displayed above nodes. CH1-22 are haplotype names. The values 

in parentheses correspond to the frequency of each haplotype. KU725893 and AF132833 are 

GenBank accession numbers for R. appendiculatus sequences used as reference haplotypes 

from Kenya and Zimbabwe, respectively. Two species (R. eversti and R. microplus) obtained 

in this study and R. turanicus from GenBank (accession number: KU880574) were included as 

outgroups 
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Figure 3.3 Phylogenetic tree of cox1 haplotypes displaying the relationship between the R. 

appendiculatus specimens in sub-Saharan African countries. The evolutionary history was 

inferred by using the maximum likelihood method based on the Tamura 3-parameter model. A 

discrete Gamma distribution was used to model evolutionary rate differences among sites [5 

categories (+G, parameter = 0.39)]. The tree is drawn to scale, with branch lengths measured in 

the number of substitutions per site. Bootstrap scores > 70 are displayed to support nodes. The 

values in bracket behind haplotypes names correspond to the frequency of each haplotype. 

Haplotype sequences (CH1-22) obtained in the present study are indicated by a black square. 

Rhipicephalus eversti and R. microplus obtained in this study and R. turanicus (GenBank: 

KU880574) were used as outgroups. 

 

Figure 3.4 Median-joining network of the 36 cox1 haplotypes for R. appendiculatus ticks 

across sub-Saharan African countries. Lines represent mutations and the dot corresponds to a 

possible intermediate haplotype. Each circle denotes a unique haplotype. Haplotype frequencies 

are not shown here, but their occurrences across Africa are presented in Table 3.5 
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3.4.3 Population genetic diversity 

Population genetic indices were estimated using cox1 nucleotide sequences and are shown in 

Table 3.2. The overall haplotype diversity (Hd) and nucleotide diversity (π) were 0.81 and 

0.006, respectively. The haplotype diversity ranged from 0.72 in Burundi AEZ1 to 0.85 in 

Rwanda AEZ2 and the nucleotide diversity (π) values ranged from 0.002 in Burundi AEZ3 to 

0.011 in Rwanda AEZ2. The average number of nucleotides pairwise differences (k) was 3.4 

for the overall dataset, with the highest value observed in Rwanda AEZ2 (6.3). Altogether, 

these population genetic indices showed that the diversity of R. appendiculatus is quite different 

among AEZs. Ticks from Rwanda AEZ2 were more highly diverse than those from three AEZs 

of DRC and the two AEZs of Burundi. We also observed an excess of singleton mutations in 

Burundi AEZ1 (15 out of 18 polymorphic sites), suggesting a sudden population expansion. 

These data analysed separately by haplogroups (Table 3.3), showed that the differences of 

genetic diversity among AEZs was largely affected by the frequency distribution of the two 

cox1 haplogroups (Table 3.2).  
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Table 3.3 Genetic diversity and evolutionary dynamics of the two haplogroups (A and B) identified from cox1 sequences of R. appendiculatus  

Genetic indices and statistics Haplogroup A Haplogroup 

B 

Overall 

data set DRC  Burundi Rwanda 

AEZ2 

Haplogroup 

A (overall) AEZ1 AEZ2 AEZ3  AEZ1 AEZ3 

Diversity indices 
Number of sequences 39 50 44  25 17 14 189 20 209 
Number of polymorphic sites 7 9 6  8 4 7 18 2 27 
Number of Haplotypes 8 9 6  7 5 6 19 3 22 
Haplotype diversity  
(SD) 

0.76 
(0.044) 

0.78 
(0.032) 

0.77 
(0.033) 

 0.7  
(0.084) 

0.77 
(0.057) 

0.77 
(0.089) 

0.77 
(0.016) 

0.56 
(0.063) 

0.81 
(0.01) 

Nucleotide diversity  
(SD) 

0.002 
(0.0003) 

0.0025 
(0.0003) 

0.002 
(0.0003) 

 0.002 
(0.0004) 

0.002 
(0.0003) 

0.002 
(0.0006) 

0.002 
(0.0001) 

0.001 
(0.0002) 

0.006 
(0.0006) 

Neutrality tests 
Tajima's D  
(P-value) 

-0.6  
(0.35) 

-0.79 
(0.23) 

0.096  
(0.6) 

 -1.4 
(0.049)* 

-0.21 
(0.45) 

-1.4  
(0.07) 

-1.5 
(0.032)* 

0.24 
(0.67) 

-0.93 
(0.23) 

Fu's Fs  
(P-value) 

-2.4 
(0.08) 

-2.5 
(0.097) 

-0.1 
(0.49) 

 -2.6 
(0.027)* 

-1.1 
(0.18) 

-2.1 
(0.041)* 

-10.4 
(0.001)* 

0.2 
(0.49) 

-3.8 
(0.15) 

Demographic expansion 
Sum of Squared deviation  
(P-value) 

0.002 
(0.66) 

0.004 
(0.31) 

0.002 
(0.49) 

 0.002 
(0.72) 

0.02 
(0.17) 

0.001 
(0.9) 

0.0008 
(0.44) 

0.029 
(0.049)* 

0.017 
(0.1) 

Harpending’s Raggedness index  
(P-value) 

0.06 
(0.39) 

0.079 
(0.21) 

0.06 
(0.38) 

 0.05 
(0.71) 

0.16 
(0.12) 

0.06 
(0.73) 

0.057 
(0.2) 

0.21 
(0.1) 

0.049 
(0.51) 

Spatial expansion 
Sum of Squared deviation 
(P-value) 

0.002 
(0.5) 

0.004 
(0.21) 

0.002 
(0.4) 

 0.002 
(0.67) 

0.02 
(0.1) 

0.001 
(0.9) 

0.0008 
(0.26) 

0.029 
(0.011)* 

0.036 
(0.28) 

Harpending’s Raggedness index 
(P-value) 

0.064 
(0.39) 

0.079 
(0.21) 

0.062 
(0.43) 

 0.05 
(0.75) 

0.16 
(0.12) 

0.06 
(0.72) 

0.057 
(0.22) 

0.21 
(0.12) 

0.049 
(0.74) 

*Values are statistically significant at P < 0.05; significance was determined using 1000 coalescent simulations  
Abbreviations: D, Tajima’s neutrality statistic; Fs, Fu’s neutrality statistic 
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3.4.4 Population structure and ecological differentiation based on cox1 haplotypes 

Analysis of molecular variance (AMOVA) based on cox1 sequences revealed statistically 

significant variance among the six AEZs analysed together for both combined haplogroups and 

haplogroup A alone (6%, P < 0.001) (Table S3.4). The genetic variability among individuals 

within AEZs explained the large majority of molecular variance (94%) for the overall dataset, 

suggesting an admixture between different populations and the coexistence of the two 

genetically divergent lineages (Figure 3.2, Table 3.2). This is consistent with moderate genetic 

structure of R. appendiculatus in the Great Lakes region. The population differentiation indices 

were then calculated to compare the genetic variation observed among AEZs (Table 3.4). Both 

differentiation statistics based on pairwise estimates of the Inter-population nucleotide 

differences (KXY), the pairwise genetic distance (FST), and the number of migrants (Nm) showed 

evidence of differentiation between some R. appendiculatus populations. The population 

pairwise genetic distance (FST) varied from a negative and not significant value (FST = -0.014, 

P = 0.87) with infinite value of Nm (between DRC AEZ2 and AEZ3) to the strongest 

differentiation (FST = 0.19, P = 0.005) with low number of migrants (Nm = 2.1) between 

Burundi AEZ3 and Rwanda AEZ2. Pairwise FST values were found to be low and not significant 

between DRC AEZ3 and Burundi AEZ3 with infinite Nm and between DRC AEZ2 and Burundi 

AEZ3 associated with a high number of migrants (Nm = 11,875), indicating an excess of gene 

flow between these zones. DRC AEZ1 did not differ significantly with Burundi AEZ1 (FST = 

0.022, P = 0.19) and Rwanda AEZ2 (FST = 0.018, P = 0.24). Tick populations from Rwanda 

AEZ2 showed a strong genetic differentiation with those from DRC AEZ3 (FST = 0.18, P < 

0.001) and DRC AEZ2 (FST = 0.14, P = 0.03), indicating reduced or lack of gene flow between 

these populations. These results were confirmed by inter-population nucleotide differences 

(KXY), which was significant when populations were significantly differentiated by the pairwise 

FST statistic. Tick populations were compared by analysing haplogroup A sequences alone. The 

findings showed that ticks from Rwanda AEZ2 and the two AEZs of Burundi were not 

genetically different. They shared more migrants belonging to haplogroup A (Table 3.4). In 

general, the population differentiation was observed between lowlands and highlands AEZs. 
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Table 3.4  Population genetic statistics for pairwise comparison of different populations of R. appendiculatus from sequences of cox1 gene. 

Values in parentheses represent the P-value statistics 

Population 1 Population 2 Haplogroup A and B  Haplogroup A 

KXY FST Nm KXY FST Nm 

DRC AEZ1 DRC AEZ2 3.8 (0.044)* 0.036 (0.044)* 13.2  1.5 (< 0.001)* 0.11 (< 0.001)* 4 

DRC AEZ1 DRC AEZ3 3.6 (0.032)* 0.057 (0.032)* 8.3  1.5 (0.001)* 0.1 (0.001)* 4.3 

DRC AEZ1 Burundi AEZ1 3.3 (0.15) 0.022 (0.19) 22.2  1.2 (0.31) 0.002 (0.33) 243.6 

DRC AEZ1 Burundi AEZ3 3 (0.059) 0.056 (0.087) 8.4  1.3 (0.087) 0.043 (0.082) 11.2 

DRC AEZ1 Rwanda AEZ2 5.4 (0.3) 0.018 (0.24) 26.8  1.3 (0.78) -0.026 (0.79)    ∞ 

DRC AEZ2 DRC AEZ3 2.7 (0.85) -0.014 (0.87) ∞  1.4 (0.93) -0.016 (0.93) ∞ 

DRC AEZ2 Burundi AEZ1 2.7 (0.003)* 0.060 (0.011)* 7.9  1.5(< 0.001)* 0.13 (< 0.001)* 3.2 

DRC AEZ2 Burundi AEZ3 2.1 (0.23) 0.00004 (0.43) 11876  1.3 (0.46) -0.012 (0.54) ∞ 

DRC AEZ2 Rwanda AEZ2 5.2 (0.003)* 0.14 (0.003)* 3.1  1.6 (0.006)* 0.11 (0.004)* 3.8 

DRC AEZ3 Burundi AEZ1 2.4 (< 0.001)* 0.076 (0.006)* 6.1  1.5(< 0.001)* 0.14 (< 0.001)* 3.2 

DRC AEZ3 Burundi AEZ3 1.8 (0.32) -0.005 (0.43) ∞  1.3 (0.39) -0.009 (0.46) ∞ 

DRC AEZ3 Rwanda AEZ2 5.1 (< 0.001)* 0.18 (< 0.001)* 2.2  1.6 (0.009)* 0.11 (0.011)* 3.9 

Burundi AEZ1 Burundi AEZ3 1.6 (0.074) 0.034 (0.08) 12.2  1.2 (0.077) 0.063 (0.073) 7.4 

Burundi AEZ1 Rwanda AEZ2 4.8 (0.030)* 0.14 (0.03)* 3.1  1.2 (0.97) -0.039 (0.98) ∞ 

Burundi AEZ3 Rwanda AEZ2 4.6 (0.005)* 0.19 (0.005)* 2.1  1.3 (0.16) 0.044 (0.14) 10.9 

*Values are statistically significant at P < 0.05; significance was determined using 1000 coalescent simulations. 
Abbreviations: KXY, average number of nucleotide differences between populations; FST, pairwise genetic distance F-statistic based on nucleotide sequences (Right’s fixation 
index); Nm, number of migrants between populations  
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3.4.5 Demographic and dispersal dynamics of R. appendiculatus  

Demographic and spatial dynamics inferred from pairwise nucleotide differences revealed 

bimodal pattern for the total dataset (Figure 3.5a). Tajima’s D and Fu’s Fs were negative but 

not significant (Table 3.3). However, the sum of square deviation (SSD) and raggedness index 

(RI) for both demographic and range expansion did not deviate significantly from that expected 

under expansion model. The negative values of neutrality tests and the non-significance of SSD 

and RI indices, suggest a sudden expansion of R. appendiculatus populations in the Great Lakes 

region. The population dynamics history was also analysed separately for each of the six AEZs 

(Figure 3.6, Table S3.5). Most AEZs showed a bimodal mismatch distribution, except in 

Burundi AEZ3 where the mismatch pattern was unimodal (Figure 3.6e). The observed bimodal 

pattern suggested population subdivision as shown by the existence of two well resolved 

haplogroups (Figure 3.2).  

The population dynamics were then inferred for each haplogroup separately (Table 3.3). A 

unimodal distribution was observed in both haplogroups (Figure 3.5b, c). For the haplogroup 

A, we detected significant evidence of demographic and spatial expansion events from the 

unimodal mismatch distribution, together with significantly negative values for Tajima’s D (D 

= -1.5, P = 0.032) and Fu’s Fs (Fs = -10.4, P = 0.001) statistics. A good fit of sudden population 

expansion was also observed in this haplogroup, based on sum of squared deviation values that 

were not significant in all the cases: demographic (SSD = 0.0008, P = 0.44) and range (SSD = 

0.0008, P = 0.26) expansion, with no significant variation of the raggedness index for both 

models (Table 3.3). In contrast, haplogroup B did not display any significant signature of 

expansion from the selective neutrality tests. In addition, the observed mismatch pattern for this 

haplogroup deviated significantly from that expected under population expansion scenario 

(SSD = 0.029, P = 0.049 and P = 0.011 for demographic and spatial expansion, respectively), 

implying that haplogroup B did not experience any historical population expansion. This group 

is characterised either by a constant population size (demographic equilibrium) or had 

experienced a weak signal of population bottleneck that reduced its diversity. When analysing 

the demographic dynamics for samples belonging to haplogroup A in each AEZ (Table 3.3), 

population expansion signal was confirmed in all AEZs by mismatch analyses exhibiting 

unimodal distribution (Figure S3.1). For the six AEZs, none of the statistical comparisons 

between the observed and the expected distributions rejected the sudden and range expansion 

assumptions based on the raggedness index and the sum of squared deviation. The neutrality 
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indices were generally negative but not significant, except in Burundi AEZ1 where both 

Tajima’s D (D = -1.4, P = 0.049) and Fu’s Fs (Fs = -2.6, P = 0.027) statistics showed significant 

negative values and in Rwanda AEZ2 where Fu’s Fs was negative (Fs = -2.1) and significant 

(P = 0.041). According to the mismatch distribution and negative values for neutrality tests, the 

hypothesis of population growth and spatial expansion models could not be rejected in the six 

AEZs, which was consistent with a model of sudden expansion for each population subdivision. 
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Figure 3.5  cox1 mismatch distribution pattern for two haplogroups of R. appendiculatus:  

a) and b) show the mismatch distribution of nucleotide sequences in haplogroups A and B, 

respectively. c) shows the overall mismatch distribution pattern for all AEZs and lineages. The 

x-axis shows the number of pairwise differences between pairs of haplotype sequences and the 

y-axis shows their frequencies (in %). The observed frequencies are represented by solid 

histograms and the simulated mismatch distributions expected under demographic expansion 

(solid black line) and under spatial expansion (dotted black line). Simulated curves under range 

and demographic expansion have same pattern in these figures, they overlapped. 
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Figure 3.6 cox1 mismatch distribution pattern for six populations of R. appendiculatus. a, b 

and c show the mismatch distribution pattern for R. appendiculatus from DRC AEZs (AEZ1, 2 

and 3, respectively); d and e represent the mismatch pattern of ticks from Burundi AEZ1 and 

AEZ3, respectively; f depicts the mismatch distribution of ticks from Rwanda AEZ2. The x-

axis shows the number of pairwise differences between pairs of haplotype sequences and the y-
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axis shows their frequencies in %. The observed frequencies are represented by solid 

histograms. Black full line represents the expected distribution under sudden expansion model, 

and dotted line represents the distribution simulated under spatial expansion model. Simulated 

curves under spatial and demographic expansion have same pattern in (d), and they overlapped. 

3.4.6 Phylogeographical structure 

To study the phylogeographical structure of R. appendiculatus in Africa, the haplotype 

sequences found in this study along with those retrieved from GenBank (Table S3.1) were used 

to reconstruct the phylogenetic using ML tree and the MJ network methods based on cox1 and 

12S rRNA genes. Thirty-six cox1 haplotypes were identified in 105 sequences including 50 

haplotypes from GenBank and the 55 haplotype sequences obtained in our study for each of the 

six AEZs and for Tanzania (Table 3.5). Twenty-eight haplotypes had been already described 

in different African countries, and eight haplotypes (CH3, CH9, CH10, CH14, CH16, CH18, 

CH20 and CH33) were newly described in the present study. Most of these new haplotypes 

were less abundant (Table S3.3) and diverged from the common ancestral haplotypes generally 

by only one substitution (Figure 3.4). Haplotypes CH1, CH7, CH11 were the most ubiquitous 

and shared wide geographical distribution in affected African countries. CH1 haplotype was 

shared by Kenya, Eastern Zambia, DRC (AEZ1, 2 and 3), Burundi (AEZ1 and 3), Tanzania and 

Rwanda (AEZ2 and GenBank sequences), while haplotype CH7 was reported in Kenya, South 

Africa, Zimbabwe, Grande Comore, Eastern and southern provinces of Zambia, DRC (AEZ1, 

2 and 3), Burundi (AEZ1) and Rwanda (AEZ2). Haplotype CH11 was present in Kenya, 

Rwanda (AEZ2 and GenBank sequences), Comoros and DRC (AEZ1, 2 and 3). Eighteen 

haplotypes mostly with unique sequences were found to be restricted to Kenya and have not 

been reported in any other country. In the same way, haplotype CH23 was particular to Uganda. 

This country did not share any haplotype with other countries. The ML phylogenetic tree 

reconstructed using the 105 sequences indicated that globally, the African tick R. 

appendiculatus is consistently clustered into two groups (haplogroups A and B) well-supported 

by a ML bootstrap value of 100% (Figure 3.3). Our 19 haplotypes that had been described for 

haplogroup A (Table 3.2, Table S3.3) formed one clade with 19 haplotypes from Kenya 

(19/29), all the 3 haplotypes from Rwanda (3/3), six haplotypes from Eastern province of 

Zambia (6/7), all the five haplotypes from Tanzania, whereas our three haplotypes of 

haplogroup B were clustered with 10 haplotypes from Kenya, the single haplotype from Grande 

Comore, all haplotypes from South Africa (3/3), Zimbabwe (3/3), Uganda (2/2), Southern 
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province of Zambia (2/2), and one haplotype from Eastern province of Zambia. In addition to 

ML tree, the MJ network also revealed that R. appendiculatus is divided into two main groups 

in Africa, separated by seven mutational steps (Figure 3.4). 

Similar findings were confirmed by 12S rRNA gene. Our 23 12S rRNA individual haplotypes 

from each of the six AEZs were analysed together with the 29 sequences obtained from 

GenBank (Table S3.1). Fourteen haplotypes were observed, two most common (12SH1 and 

12SH5) and 12 minors (defined mostly by one sequence or restricted to particular country) 

(Table S3.6). Haplotype 12SH1 was common in DRC, Burundi, Rwanda, Kenya and Eastern 

province of Zambia, while haplotype 12SH5 was present in DRC, Rwanda, Zimbabwe, 

Comoros, South Africa, Eastern Zambia and Kenya. Six new haplotypes were not found outside 

the Great Lakes region (12SH3, 12SH4 and 12SH6–H9). The NJ phylogenetic resolved these 

12S rRNA haplotypes into two haplogroups (haplogroup A and B) supported by 97% bootstrap 

value (Figure S3.2). Their pattern was identical to that observed from cox1 haplogroups. 

However, the Ugandan haplotype (12SH10: GenBank AF150028) was clustered in haplogroup 

A, showing that the haplogroup A is also present in Uganda. Unfortunately, we did not find its 

corresponding cox1 sequence. 
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Table 3.5  Rhipicephalus appendiculatus cox1 haplotypes and their distribution among agro-

ecological zones of the Great Lakes region and other sub-Saharan African countries 

Haplotype d Haplotypes from GenBank: Country (original 
haplotype name and GenBank number) 

Present study Haplogroup 

CH1a Kenya (H2: KU725891, H4: KU725893, H6: 
KU725895)1, Rwanda (H3:DQ901360)2 Zambia-
east (H4: KX276942, H5: DQ8592663, 
H3:DQ9013612, H2: DQ8592653) 

Burundi (AEZ1, AEZ3), DRC 
(AEZ1, AEZ2, AEZ3), Tanzania 
(TZ18, TZ10, TZ08, TZ20), 
Rwanda (AEZ2) 

A 

CH3 – Burundi AEZ1 A 
CH4 Rwanda (H6: DQ901362)2 Burundi AEZ1, Rwanda (AEZ2) A 
CH6b Kenya (H5: KU725894)1 Burundi (AEZ1, AEZ3), DRC 

(AEZ1, AEZ2) 
A 

CH7c Kenya (H1: KU725890)1, South Africa (H1: 
KX2769391, H1: KX2769401, H1: DQ9013562), 
Zambia-east (H1: DQ859261)3, Zambia-south 
(H1:KX2769431, H1: DQ859262)3, Zimbabwe 
(AF1328334, KC5032575, H1: KX2769441), Grande 
Comore (H1) 6 

Burundi AEZ1, DRC (AEZ1, 
AEZ2, AEZ3), Rwanda (AEZ2) 

B 

CH9 – Burundi AEZ3 A 
CH10 – Burundi AEZ1 A 
CH11d Kenya (H3: KU725892)1, Rwanda (H3: 

DQ901363)2, Grande Comore (H3)6 
DRC (AEZ1, AEZ2, AEZ3), 
Rwanda (AEZ2) 

A 

CH12 Kenya (H11: KU725900)1 DRC (AEZ2, AEZ3) A 
CH14 – DRC AEZ3 A 
CH16 – DRC AEZ1 A 
CH18 – DRC AEZ2 A 
CH20 – DRC-AEZ2 B 
CH23 Uganda (H8: KX276941, KU725897)1 – B 
CH24 Kenya (H14: KU725903)1 – B 
CH25 Kenya (H27: KU725916) 1 – B 
CH26 Grande Comore (H2: DQ901357)2,6, Kenya (H7: 

KU725896, H13: KU725902) 1 
– B 

CH27 Kenya (H16: KU725905)1 – B 
CH28 Kenya (H21: KU7259101, H9: DQ9013592, H9: 

DQ9013582) 
– B 

CH29 Kenya (H28: KU725917) 1 – B 
CH30 Kenya (H9: KU725898) 1 – A 
CH31 Kenya (H17: KU7259061 – A 
CH32 Kenya (H24: KU725913) 1 – A 
CH33 – Tanzania (TZ13) A 
CH34 Kenya (H22: KU725911) 1 – A 
CH35 Kenya (H23: KU725912) 1 – A 
CH36 Kenya (H10: KU725899) 1 – A 
CH37 Kenya (H15:KU725904) 1 – A 
CH38 Kenya (H20: KU725909) 1 – A 
CH39 Kenya (H19: KU725908) 1 – A 
CH40 Kenya (H26: KU725915) 1 – A 
CH41 Kenya (H25: KU7259141 – A 
CH42 Kenya (H18: KU725907) 1 – A 
CH43 Kenya (H12: KU725901) 1 – A 
CH44 Zambia-east (H3: DQ859263) 3 – A 
CH45 Zambia-east (H4: DQ859264)3 – A 

1(Kanduma et al., 2016a); 2(Mtambo et al., 2007c); 3(Mtambo et al., 2007b); 4(Murrell et al., 2000); 5(Burger et al., 
2014); 6(Yssouf et al., 2011); a CH1: variants CH1, CH2, CH5, CH15, CH17 and CH21 (Table S3.3) 
b CH6: variants CH6, CH8 and CH22 (Table S3.3); c CH7: variants CH7 and CH13; d CH11: CH11 and CH19 
(Table S3); d Haplotypes underlined are exclusive to the Great Lakes region. Similar data for 12S rRNA are detailed 
in Table S3.6 
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3.5 Discussion 

This study analysed the intraspecific variation of mitochondrial DNA to better understand how 

factors such as agro-ecological zones and anthropogenic movements of cattle may affect 

population genetic structure and population expansion history of the tick R. appendiculatus, the 

main vector of T. parva in sub-Saharan Africa. We expected evidence of R. appendiculatus 

population expansion, gene flow and different colonization patterns of tick lineages, facilitated 

by the reported cattle mobility in the Great Lakes region. 

3.5.1 Two R. appendiculatus lineages that are more variable in lowlands than highlands 

occur in the Great Lakes region 

The 22 haplotypes identified by DNA polymorphic analysis of cox1 gene locus were clustered 

into two well-defined major groups, named haplogroup A (the most frequent) and haplogroup 

B. Similar grouping were obtained with 12S rRNA analyses. The two haplogroups identified in 

the present study have been previously described as “east African” and “southern African” 

genetic groups (Mtambo et al., 2007c), corresponding to our haplogroups A and B, respectively. 

This genetic grouping fitted well with the phenotypical, physiological and ecological variation 

studies which have previously distinguished two major subpopulations of R. appendiculatus in 

Africa (Berkvens et al., 1998; Chaka et al., 1999; Leta et al., 2013; Madder et al., 1999; Madder 

et al., 2002; Speybroeck et al., 2004; Speybroeck et al., 2002). These phenotypic and 

physiological variations are largely associated with agro-ecological and geographical 

subdivisions. Tropical areas with prolonged and marked dry seasons are more suitable for larger 

sized ticks expressing high intensity of diapause and displaying univoltine phenology, 

corresponding to “southern African group” or haplogroup B. Equatorial areas with bimodal or 

continuous rainfall rather harbour smaller ticks without diapause with bivoltine or continuous 

phenology, corresponding to “east African group” or haplogroup A (Madder et al., 2002; 

Mtambo et al., 2007b).  

The highest genetic variability was observed in lowlands, whereas a relatively lower diversity 

was observed in midlands and highlands. The high genetic diversity in lowlands can be 

explained by the strong presence of the two lineages A and B observed in these AEZs. The 

coexistence of these lineages could originate from the dispersal of the tick through livestock 

movement between AEZs (Excoffier et al., 2009), associated with the suitability of semi-arid 

climate for lineage B expressing obligatory diapause (Madder et al., 2002).  
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3.5.2 Moderate genetic structure of R. appendiculatus between lowlands and highlands  

Population genetic analyses of cox1 gene variation in R. appendiculatus revealed low to 

moderate genetic differentiation values and high gene flow rates among AEZs. The two 

identified R. appendiculatus lineages were sympatric in the Great Lakes region, although 

lineage A was the most abundant and widely distributed in all AEZs and lineage B was 

particular confined to lowlands, where the climate is tropical dry, more arid with lower annual 

rainfall and longer dry season than in highlands (short dry season with abundant annual 

rainfall). These climate conditions in lowlands are quite similar to the described ecological 

zones of lineage B in southern Africa (Mtambo et al., 2007b; Mtambo et al., 2007c). In addition, 

altitudinal gradient seems to be a key factor that shapes the distribution pattern and the 

establishment ability of lineage B. Its frequency decreases with increasing altitude. High degree 

of genetic similarity was observed between the lowlands of DRC and the low plateau of Rwanda 

and between the highlands of DRC and Burundi, which are geographically distant from each 

other. The most likely explanation for this is that the spatial pattern of R. appendiculatus 

lineages is not only driven by geographical separation as described in previous studies (Mtambo 

et al., 2007b), but also related to their ecological preferences, as observed by the significant 

genetic differentiation among lowlands and highlands AEZs. On the other hand, adjacent AEZs 

shared more migrants, especially of lineage A, facilitated by short-distance seasonal movement 

of cattle (Verweijen and Brabant, 2017), which may have reduced the geographical structuring 

of the tick (Boulinier et al., 2016; Leo et al., 2017). Analysis of molecular variance (AMOVA) 

confirmed these findings showing that the variance explained by divergence between the six 

AEZs was lower (6%), while the largest fraction of genetic variation was observed among 

individuals within AEZs (94%). 

3.5.3 Rhipicephalus appendiculatus lineage A has undergone sudden demographic and 

range expansion in the Great Lakes region 

The demographic and spatial dynamics were analysed using multiple algorithms, to elucidate 

colonization events of the tick R. appendiculatus that took place in the Great Lakes region. A 

strong evidence of recent spatial and demographic expansion was observed for lineage A in all 

AEZs included in the study. Analyses of cox1 sequences revealed relatively high haplotype 

diversity contrasted with low nucleotide diversity values for each population, suggesting a 

sudden population expansion (Braverman et al., 1995; Simonsen et al., 1995). This result, 

together with negative values of Tajima’s D and Fu’s Fs, the star-like radiation, the unimodal 
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mismatch pattern and non-significant RI and SSD statistics, further support the recent 

evolutionary history and sudden population growth experienced by lineage A (Emerson et al., 

2001; Frankham, 1996; Ray et al., 2003). We did not estimate the expansion time, but we 

hypothesize that the expansion was recent and not sufficient to increase the nucleotide diversity, 

probably because of recent coalescence, while rapid population expansion following a selective 

sweep (bottleneck or genetic drift) could have accumulated new mutations that sufficiently 

increased the haplotype diversity (Avise, 2000; Robbertse et al., 2016; Rogers and Harpending, 

1992). This could explain the excess of singletons polymorphic sites and rare haplotypes that 

diverge from ancestral haplotypes by only 1–2 mutational steps (Rogers and Harpending, 1992; 

Slatkin and Hudson, 1991). However, the strong bimodal mismatch pattern observed in Rwanda 

AEZ2 and DRC AEZ1 suggests the coexistence of R. appendiculatus lineages after recent 

colonization events or exchanging migrants (Ray et al., 2003; Rogers et al., 1996; Rogers and 

Harpending, 1992). The scenario of lineage B contrasts with that of lineage A. Analyses 

indicate, for lineage B, an equilibrium situation that is characterised by a weak signal of recent 

bottleneck and no evidence of population expansion. It was also less diverse than haplogroup 

A, indicating that haplogroup A is experiencing population expansion independently of 

haplogroup B and it has been established longer in the Great Lakes region, while haplogroup B 

was probably introduced more recently and established a founder population. There are three 

possible explanations of the equilibrium observed in haplogroup B: (i) only few haplotypes 

were recently introduced; (ii) only the few identified haplotypes persisted after a bottleneck; or 

(iii) haplogroup B is experiencing an initial selection sweep which has reduced the number of 

rare haplotypes and singleton mutations (Ray et al., 2003). When we analysed R. 

appendiculatus cox1 sequences available in Africa, the star radiation of the MJ network in each 

group suggests that the two lineages went through a demographic expansion and evolve 

independently of each other with limited gene exchange. Unfortunately, we were not able to 

test the hypothesis of crossbreeding events between the two lineages described here, because 

of the maternal inheritance of mitochondrial genes used in the present study. More studies, such 

as extensive biological characterisation, crossbreeding experiments and the use of biparental 

inheritance markers are necessary to investigate the panmixia of the two lineages and the 

genetic mechanisms driving their establishment and corresponding phenotypic variations in 

changed environments.  

The fact that R. appendiculatus has undergone spatial expansion was in accordance with the 

expectation that long and short distance movement of cattle are key factors of spreading ticks. 
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The processes responsible for that evolutionary pattern may have resulted, not only from range 

expanding of the previously established haplotypes to proximate AEZs, but also from the 

recolonization events of ticks from other regions and countries (Cristescu, 2015; Excoffier et 

al., 2009). In addition to cattle movement, the population expansion and establishment of novel 

haplotypes in previously unoccupied areas could have been driven by recent environmental and 

climatic changes, affecting vector-borne diseases landscape over recent decades (Biek and Real, 

2010; Manel and Holderegger, 2013; Ostfeld, 2009). 

3.5.4 Sympatric and allopatric ecological zones of R. appendiculatus lineages in Africa 

Phylogenetic trees produced two main genetic subpopulations of R. appendiculatus that have a 

wide distribution range in Africa, with large divergence in behavioural diapause (Madder et al., 

1999; Madder et al., 2002), spatial variation in body size (Chaka et al., 1999; Speybroeck et al., 

2004), ecology and phenology (Berkvens et al., 1998; Leta et al., 2013; Speybroeck et al., 

2002). Initially, the two lineages were considered as “east African” and “southern African” 

genetic groups (Mtambo et al., 2007c). To date, they are sympatric in most eastern and central 

African ecological zones. For instance, previous studies did not reveal the presence of 

haplogroup B in Rwanda (Mtambo et al., 2007c). This could be an indication of recent 

introduction of the tick in the Great Lakes region. The MJ network further elucidate that the 

initial population of haplogroup B could have come from an ancestral female of haplotype CH7, 

which is the most prevalent haplotype of this group in areas where it occurs. Consequently, two 

different eco-genetic zones are shaped in Africa, the sympatric zone where the two lineages are 

found, which covers central and eastern Africa, and allopatric zone in southern Africa where 

the two lineages have clear geographical and ecological separation. For instance, in Zambia, 

lineage B is present in the south (long dry season) and lineage A in the east of the country 

(shorter dry season) (Mtambo et al., 2007c). In Grande Comore, lineage B has established a 

stable population, while lineage A was found on imported cattle (Yssouf et al., 2011). In areas 

where the two lineages are sympatric, their respective abundances differ, mainly driven by their 

divergence in ecological preferences and plasticity (Speybroeck et al., 2002). The sympatric 

relationships agree with the observation made by Berkvens et al. (Berkvens et al., 1995), where 

an east African stock from Kenya expressed diapause, contrasting with the result obtained by 

Madder et al. (Madder et al., 1999), where another stock from the same region was unable to 

enter diapause. These evidences show that lineage B has a greater invasive ability into new 

habitats and better fit wide range of tropical and equatorial conditions, while lineage A is 
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particularly confined to equatorial conditions. This could be explained by the larger body size 

and obligatory diapause behaviour for southern African ticks, which allow them to survive hot 

and dry ecological conditions (Madder et al., 2002; Speybroeck et al., 2002). We hypothesise 

that these characteristics make the development of lineage B slower than lineage A in sympatric 

areas, giving an evolutionary advantage to the latter. This could also reduce the abundance of 

lineage B delaying its oviposition during unfavourable conditions. The processes that took place 

to divide the two groups need to be further investigated. However, we propose that they could 

have diverged following genetic drift due to founder events of natural geographical barrier that 

may result in reproductive isolation. It is demonstrated that biogeographical break again host 

migration reduces gene exchange and could dictate the spatial and reproductive separation 

within a species (Avise, 2000).  

3.6 Conclusions 

This study provided new insights into the genetic structure and colonization events of R. 

appendiculatus in the Great Lakes region and over its distribution range in sub-Saharan Africa. 

Our results highlighted the occurrence of two major genetic lineages (A and B) in the Great 

Lakes region. The two lineages are not spatially structured in the study region and they differ 

in their colonization histories and pattern. Lineage B, not previously reported, was probably 

introduced recently in the region and its occurrence decreases with increased altitude, whereas 

lineage A, widely distributed, has been longer established and subjected to sudden demographic 

and spatial expansion most likely related to short and long-distance cattle movement. 

Rhipicephalus appendiculatus ticks are more diverse in lowlands than highlands with moderate 

genetic differentiation between the two ecosystems, while more genetic similitude is found in 

zones with same agro-ecological profiles, in spite of their geographical distance. The genetic 

distribution of R. appendiculatus suggests two different eco-genetic zones in Africa, the 

sympatric zone (central and eastern Africa) where the two lineages coexist and the allopatric 

zones (southern Africa) where they have clear geographical divergence. The range expansion 

pattern of lineages and the genetic admixture of R. appendiculatus populations observed in the 

Great Lakes region can strongly affect the epidemiological dynamics of ECF. This could 

partially explain the endemic instability and occasional epidemics due to the introduction and 

temporal subsistence of infected ticks mostly in fringes areas of lowlands. 
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Chapter 4. Genetic and antigenic variation of 
Theileria parva in the Great Lakes region of 

Central Africa* 
 

 
This research refers to the second objective of the thesis and was performed using blood 
samples collected from cattle in the Democratic Republic of Congo and Burundi. In the 
previous study of the tick vector Rhipicephalus appendiculatus (Chapter 3), we found that two 
sympatric lineages of the tick occur in the Great Lakes region and that the genetic diversity 
was higher in lowlands than highlands. The two lineages diverged in their ecological 
distribution and abundance in different agro-ecological zones. We hypothesised that the 
observed genetic composition and distribution pattern of the tick, together with cattle 
movements and agro-ecological variability, may have significant implications in the 
transmission dynamics and therefore, the genetic structure of T. parva. The present study 
examined the evolutionary dynamics and the biogeographical distribution of T. parva 
genotypes based on two antigens genes (Tp1 and Tp2), to further understand the epidemiology 
of ECF in the region and predict vaccine safety. The results revealed high variation of T. parva 
within populations, especially in lowlands and midlands and limited geographical sub-
structuring due to the widespread major genotypes. These findings suggest that the 
biogeographical distribution of T. parva genotypes is driven by host dispersal and ecological 
conditions that affect tick vector distribution and competence. Interestingly, most T. parva 
alleles found in the Great Lakes region were closely similar to the components of the trivalent 
Muguga vaccine, which justify testing the existing ITM vaccine in the region. 
 

 

 

 

 

 

                                                
* This chapter was published as: 
 
Amzati, G.S., Djikeng, A., Odongo, D.O., Nimpaye, H., Sibeko, K.P., Muhigwa, J.-B.B., Madder, M., Kirschvink, 
N., Marcotty, T., 2019. Genetic and antigenic variation of the bovine tick-borne pathogen Theileria parva in the 
Great Lakes region of Central Africa. Parasites & vectors 12, 588. 
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4.1 Abstract  

Background: Theileria parva causes East Coast fever (ECF), one of the most economically 

important tick-borne diseases of cattle in sub-Saharan Africa. A live immunisation approach 

using the infection and treatment method (ITM) provides a strong long-term strain-restricted 

immunity. However, it typically induces a tick-transmissible carrier state in cattle and may lead 

to spread of antigenically distinct parasites. Thus, understanding the genetic composition of T. 

parva is needed prior to the use of the ITM vaccine in new areas. This study examined the 

sequence diversity and the evolutionary and biogeographical dynamics of T. parva within the 

African Great Lakes region to better understand the epidemiology of ECF and to assure vaccine 

safety. Genetic analyses were performed using sequences of two antigen-coding genes, Tp1 and 

Tp2, generated among 119 T. parva samples collected from cattle in four agro-ecological zones 

of DRC and Burundi. Results: The results provided evidence of nucleotide and amino acid 

polymorphisms in both antigens, resulting in 11 and 10 distinct nucleotide alleles, that predicted 

6 and 9 protein variants in Tp1 and Tp2, respectively. Theileria parva samples showed high 

variation within populations and a moderate biogeographical sub-structuring due to the 

widespread major genotypes. The diversity was greater in samples from lowlands and midlands 

areas compared to those from highlands and other African countries. The evolutionary 

dynamics modelling revealed a signal of selective evolution which was not preferentially 

detected within the epitope-coding regions, suggesting that the observed polymorphism could 

be more related to gene flow rather than recent host immune-based selection. Most alleles 

isolated in the Great Lakes region were closely related to the components of the trivalent 

Muguga vaccine. Conclusions: Our findings suggest that the extensive sequence diversity of 

T. parva and its biogeographical distribution mainly depend on host migration and agro-

ecological conditions driving tick population dynamics. Such patterns are likely to contribute 

to the epidemic and unstable endemic situations of ECF in the region. However, the fact that 

ubiquitous alleles are genetically similar to the components of the Muguga vaccine together 

with the limited geographical clustering may justify testing the existing trivalent vaccine for 

cross-immunity in the region. 
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4.2 Background 

Theileria parva is an intracellular apicomplexan parasite of cattle transmitted by the ixodid tick 

Rhipicephalus appendiculatus. The parasite infects and transforms bovine lymphocytes and 

causes an acute lymphoproliferative disease known as East Coast fever (ECF), which remains 

a major constraint to the improvement of cattle production in sub-Saharan Africa (Nene et al., 

2016). The disease is present in 12 countries including the Great Lakes region of Africa, where 

ticks are invading new areas through the extensive cross-border and seasonal movement of 

cattle for trade and pasture (Amzati et al., 2018; Bazarusanga et al., 2007b; Bouslikhane, 2015; 

Kalume et al., 2012; Verweijen and Brabant, 2017). The geographical distribution of T. parva 

is mainly determined by that of its vector, for which predictive models have shown to have a 

wide range of suitable environments in Africa (Leta et al., 2013; Olwoch et al., 2009; Perry et 

al., 1991). Thus, host dispersal and ecological traits affecting tick population dynamics and 

performance may drive the mechanisms for spreading various genotypes of the parasite in 

different agro-ecological zones (AEZs), which in turn could result in epidemics or disruption 

in the endemicity of the disease in colonised areas (De Deken et al., 2007; Estrada-Pena et al., 

2009; Geysen, 2008; Yssouf et al., 2011).  

Current management and control of ECF are achieved by limiting tick infestation through the 

use of acaricides, as well as by treatment of infected cattle with theilericidal drugs such as 

buparvaquone. However, the continuous use of acaricides is unsustainable, and treatment is 

only effective during the early stages of the disease (Nene et al., 2016). In view of these 

limitations, vaccination remains the most effective control measure. The current approach to 

immunisation is the Infection and Treatment Method (ITM) of vaccination, which involves 

inoculation of titrated live sporozoites from three parasite stocks known as “Muguga cocktail” 

and simultaneous treatment with a long-acting formulation of oxytetracycline (Di Giulio et al., 

2009). The Muguga trivalent vaccine provides robust and long-lasting protection against 

challenge with homologous T. parva strains but limited protection against heterologous strains 

(Bishop et al., 2015; Sitt et al., 2015). It has been demonstrated that ITM vaccination induces 

strain-specific immunity, mediated by the major histocompatibility complex (MHC) class I-

restricted CD8+ T cells killing T. parva-infected bovine host cells (Morrison et al., 2015). This 

suggests that the evolutionary dynamics of genetic diversity, which usually result in antigenic 

variation of parasites, enable T. parva to escape recognition by the host immune system 

(Connelley et al., 2011; Sivakumar et al., 2014). The genetic diversity of T. parva is thought to 
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be driven by several mechanisms and factors, including gene isolation, genetic drift, mutation, 

host immunity and genetic exchange through recombination (Katzer et al., 2006; Sivakumar et 

al., 2014). Furthermore, the deployment of the Muguga cocktail in new areas can introduce new 

strains and establish locally persistent infections, a source of the permanent spread of the 

disease through transmission by local ticks, even in the absence of detectable parasitaemia (Olds 

et al., 2018; Oura et al., 2007; Skilton et al., 2002). The “foreign” vaccine strains may also 

recombine with local ones and produce new, potentially more virulent genotypes (Katzer et al., 

2006). Thus, to reduce the risks of introducing foreign parasite strains, a comprehensive study 

of parasite genotypes circulating in the region is required prior to the deployment of a live 

vaccine.  

Genetic studies using a panel of DNA mini- and microsatellite markers to characterise the extent 

of genotypic diversity of T. parva have been done across different African countries, including 

Tanzania (Elisa et al., 2015; Rukambile et al., 2016), Uganda (Muwanika et al., 2016; Oura et 

al., 2005; Oura et al., 2011b), Kenya (Katzer et al., 2010; Odongo et al., 2006), Zambia (Muleya 

et al., 2012) and South Sudan (Salih et al., 2018). These studies provided evidence of genetic 

exchange between some populations and a minimal genetic sub-structuring on a geographical 

basis. More recently, a number of antigen-coding genes and epitopes that are targets of bovine 

MHC-I restricted CD8+ T cells were identified in order to develop subunit vaccines against T. 

parva (Graham et al., 2007; Graham et al., 2008). Two of these reported antigens (Tp1 and 

Tp2), which are immunodominant targets of bovine cytotoxic CD8+ T cells, were shown to be 

extensively polymorphic in parasite isolates from East Africa, especially in buffalo-derived T. 

parva and those from cattle co-grazing with buffalo (Hemmink et al., 2018; Pelle et al., 2011; 

Salih et al., 2017; Sitt et al., 2018). The substantial variation previously reported in Tp1 and 

Tp2 antigens proved their great value for studying the antigenic composition and population 

structure of T. parva. In addition, antigenic variability in T. parva populations and 

immunodominance nature of the CD8+ T cell responses are believed to be major determinants 

of the parasite strain-restricted immunity, although the role of these antigens in immune 

protection conferred by the ITM vaccination is not clearly demonstrated yet (Bishop et al., 

2015; Connelley et al., 2011; MacHugh et al., 2009; Morrison et al., 2015; Pelle et al., 2011; 

Sitt et al., 2015). It can therefore be hypothesised that the movement of cattle carrying parasites 

or infected ticks and the agro-ecological variability could define the T. parva population 

structure through continuous introduction of new parasite variants that may affect the 

epidemiological landscape of ECF in the Great Lakes region of Africa. Thus, population genetic 
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diversity studies of parasites are useful to better understand the epidemiology of ECF. In our 

recent genetic study of the tick vector, we identified two sympatric R. appendiculatus lineages, 

that strongly coexist in lowlands grazing areas in the Great Lakes region, where the climate is 

more arid than in the highlands (Amzati et al., 2018). The colonisation pattern of these two 

lineages in sympatric zones could result in different transmission dynamics and geographical 

distributions of T. parva genotypes.  

Given the reported transboundary cattle movements and the evidence of agro-ecological 

conditions affecting the population structure of the tick vector in the Great Lakes region, the 

present study analysed: (i) the level of population genetic diversity and structure of T. parva 

parasites; (ii) their similitude with Muguga cocktail vaccine components; (iii) their 

phylogenetic relationships and biogeographical patterns; and (iv) their evolutionary dynamics. 

Theileria parva samples originating from three AEZs in the Democratic Republic of Congo and 

one AEZ in Burundi were analysed using the polymorphic antigens Tp1 and Tp2, in comparison 

with published sequences, so as to further characterise the genetic relationships between T. 

parva genotypes evolving in different African countries. The knowledge of the population 

structure and evolution of T. parva should provide more insight for better understanding of the 

epidemiology of ECF and prediction of potential vaccine outcomes and breakthroughs for 

future sustainable management of ECF in the Great Lakes region. 

4.3 Methods  

4.3.1 Study area 

The study was carried out in three AEZs of the South-Kivu Province of the Democratic 

Republic of Congo (DRC) and one AEZ in the Imbo valley of Burundi (Rugombo and Gihanga 

districts). Details of the geographical and climatic attributes of the AEZs and sampling sites 

characteristics were described in our earlier study (Amzati et al., 2018) and mapped in Figure 

4.1. Briefly, the South-Kivu Province is covered by three main AEZs based on their altitudes: 

lowlands (< 1200 m: DRC AEZ1), midlands (1200–1800 m: DRC AEZ2) and highlands (1800-

2800 m: DRC AEZ3), while the Imbo valley of Burundi falls into the lowlands area (< 1200 m: 

Burundi AEZ1). The rainfall period is bimodal and its duration varies significantly between 

AEZs. The annual rainfall increases with altitude while the temperature decreases. Majority of 

cattle found in the study area belong to indigenous Ankole breeds (Sanga type), raised mainly 

under a communal open grazing system and subjected to short and long-distance transhumance 
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during the dry season. The livestock production system is characterised by irregular use of 

acaricides in all AEZs, except in more fenced commercial farms in the highlands where 

acaricides are usually applied on a weekly basis. No vaccination history against ECF had been 

reported in DRC, whereas a small-scale immunisation programme was introduced in Burundi 

between 1981 and 1987, using a cocktail vaccine of three local T. parva isolates (Gatumba, 

Gitega and Ngozi) for ITM vaccination (Tama, 1989). 
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Figure 4.1 Map of the Great Lakes region showing sampling sites and their altitudes in the four 

agro-ecological zones of DRC and Burundi. Sampling sites located in the lowlands are indicated 

by squares (AEZ1: altitude < 1200 m), while circles indicate the sampling locations in midlands 

(AEZ2: altitude 1200–1800 m); and triangles denote sites located in the highlands (AEZ3: 

altitude 1800-2800 m) 

4.3.2 Cattle blood sample collection 

A cross-sectional study was conducted during the late rainy season between February and April 

2015, as previously described in Amzati et al. (Amzati et al., 2018). Blood samples were 

collected from indigenous cattle raised under traditional farming systems. Three cattle herds 

were randomly selected from 8–12 villages in each AEZ. In each herd, 5–10 adult cattle (over 

3 years of age) were randomly sampled. The random function of Microsoft Excel program was 

used as random generator. Cattle blood samples were collected from the jugular vein into EDTA 

vacutainer tubes, then transferred to the laboratory in a cool box. On the same day, 

approximately 120 µl of each blood sample was spotted on Whatman FTA cards (Whatman 

Bioscience, Cambridge, UK), air-dried for 4 h at ambient temperature and stored individually 

in plastic bags containing dry silica gel packs at room temperature until used. A total of 480 

blood samples were collected from the four AEZs (Table S4.1).  

4.3.3 DNA isolation and PCR screening for Theileria parva  

Genomic DNA (gDNA) was extracted from the dried blood spots using a commercial DNA 

extraction Kit (PureLink® Genomic DNA Mini Kit, Invitrogen, Schwerte, Germany), 

according to the manufacturer’s instructions. DNA concentration was assessed using a 

Nanodrop spectrophotometer (Wilmington, Delaware, USA). Purified gDNA samples were 

screened for the presence of T. parva DNA using a nested PCR (nPCR) assay targeting the T. 

parva-specific conserved single-copy gene encoding the sporozoite microneme-rhoptry surface 

antigen, p104-kDa (GenBank: M29954) (Iams et al., 1990; Odongo et al., 2010). 

Oligonucleotide outer primers IL3231 and IL755 and inner primers were IL4243 and IL3232 

were used as previously described (Table 4.1) (Odongo et al., 2010; Skilton et al., 2002) to 

amplify a 277-bp fragment of the p104 antigen gene. Amplification was performed using 

lyophilized AccuPower® PCR Pre-mixes (Bioneer, Seoul, South Korea) for both primary and 

secondary PCR. The primary PCR reaction, in addition to AccuPower® PCR Pre-mixes, 

contained 0.25 µM of each forward and reverse primers, 20 ng of gDNA, and nuclease-free 
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distilled water added to bring the reaction to a final volume of 20 µl. The reaction mixture for 

the secondary amplification was as described for the primary PCR, except that the template was 

1 µl of 3× diluted primary PCR products. A clean FTA punch was used as negative control for 

the DNA extraction and the positive control was a T. parva Muguga (F100 TpM) DNA obtained 

from BecA-ILRI Hub. The cycling conditions for the p104 gene have previously been described 

(Odongo et al., 2010; Skilton et al., 2002), except for some minor modifications (Table 4.1). 

Six microliters of the secondary PCR products were analysed by electrophoresis in 1.8% 

agarose gels stained with GelRed (Biotium Inc., Hayward, USA) and visualised under UV light. 
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Table 4.1  PCR oligonucleotide primers used for amplification of p104, Tp1 and Tp2 genes with their corresponding annealing temperatures and 
amplicon sizes   

Gene 

locus 

Primer name Primer sequence (5'-3') Annealing 

temperature (°C) 

Amplicon size (bp) Reference 

p104 IL3231 (Fw1) ATTTAAGGAACCTGACGTGACTGC 60 496 (Skilton et 

al., 2002) 

 

IL755 (Rev1) TAAGATGCCGACTATTAATGACACC 

IL4243 (Fw2) GGCCAAGGTCTCCTTCAGAATACG 55 277 (Odongo et 

al., 2010) IL3232 (Rev2) TGGGTGTGTTTCCTCGTCATCTGC 

Tp1 Tp1-Fw1 ATGGCCACTTCAATTGCATTTGCC 50 432 (Pelle et al., 

2011) Tp1-Rev1 TTAAATGAAATATTTATGAGCTTC 

Tp1-Fw2 TGCATTTGCCGCTGATCCTGGATTCTG 55 405 (Elisa et al., 

2015; Salih 

et al., 2017) 

Tp1-Rev2 TGAGCTTCGTATACACCCTCGTATTCG 

Tp2 Tp2-Fw1 ATGAAATTGGCCGCCAGATTA 50 525 (Pelle et al., 

2011) Tp2-Rev1 CTATGAAGTGCCGGAGGCTTC 

Tp2-Fw2 ATTAGCCTTTACTTTATTATTTWCATTYTAC 54 504 (Elisa et al., 

2015; Salih 

et al., 2017) 

Tp2-Rev2 CTATGAAGTGCCGGAGGCTTCTCCT 

Abbreviations:  Fw1, forward outer; Fw2, forward inner; Rev1, reverse outer; Rev2, reverse inner 
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PCR amplification and sequencing of Tp1 and Tp2 gene loci 

Samples which tested positive for T. parva by an indication of the amplification of the p104 

marker were used for the analysis of genetic diversity of T. parva samples. Two T. parva genes, 

Tp1 and Tp2, were amplified using a previously described nested PCR (Pelle et al., 2011; Salih 

et al., 2017). The sizes of amplified regions containing known CD8+ T cell epitopes were 405 

bp and 504 bp for Tp1 and Tp2 nested amplicons, respectively (Graham et al., 2007; Graham et 

al., 2008; Pelle et al., 2011). Specific outer and inner primers used to amplify the two genes are 

presented in Table 4.1. The amplification was performed in a 20 µl PCR reaction, with the 

same components described for p104. Thermal cycling conditions for primary and secondary 

PCR for Tp1 and Tp2 genes were as described in Table 4.1. Six microliters of Tp1 and Tp2 

nPCR products were analysed by electrophoresis in a 1.8% agarose gel. Amplicons obtained 

from the nPCR were purified using the QIAquick® PCR Purification Kit (Qiagen GmbH, 

Hilden, Germany) following the manufacturer’s instructions and sequenced directly using inner 

forward and reverse primers on an Applied Biosystems ABI 3730 sequencer (Macrogen Inc. 

Europe, Amsterdam, The Netherlands).  

4.3.4 Prediction of amino acid sequences and epitope identification 

Nucleotide sequences of Tp1 and Tp2 genes were manually edited, assembled and their 

consensus translated into amino acid sequences using CLC Main Workbench software v7.9.1 

and the online translation tool EMBOSS-Transeq. A BLAST search was then performed to 

confirm species and gene identity of these sequences against available sequences in the 

GenBank database. The nucleotide and deduced amino acid sequences were aligned separately 

for each gene with corresponding Muguga reference sequences, one of the three components of 

the Muguga cocktail live vaccine (GenBank: JF451936 and JF451856 for Tp1 and Tp2, 

respectively). Multiple nucleotide sequence alignments were constructed with a codon-based 

approach under the Muscle algorithm as implemented in the Translator X online platform 

(http://www.translatorx.co.uk) (Abascal et al., 2010). All alignments were visualised and 

inspected in the CLC Main Workbench software. Single nucleotide polymorphisms (SNPs), 

indels and sequence variants were then identified by comparing the generated consensus 

sequence for each sample to the corresponding Muguga sequence. The CD8+ T cell epitope 

regions and variants were identified using previously described positions presented in Table 

S4.2 (Graham et al., 2008; Pelle et al., 2011).  
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4.3.5 Population genetic analysis and phylogenetic reconstruction 

Tp1 and Tp2 nucleotide sequences were collapsed into alleles using DnaSP software v6.11.01 

(Rozas et al., 2017). Genetic diversity indices, including the number of segregating sites (S), 

nucleotide diversity (π), number of distinct alleles (NA), were estimated for each AEZ and for 

the entire dataset using the same software. In addition, the nucleotide diversity was estimated 

throughout the sequenced fragment of the Tp2 gene based on a sliding-window of 100 

nucleotides with a step size of 25 bp, to estimate the stepwise diversity across epitope coding 

regions. In order to assess the genetic structure within and between populations, pairwise 

estimates of genetic differentiation among populations based on Wright’s fixation index (FST) 

and analysis of molecular variance (AMOVA) were implemented in Arlequin v3.5.2.2 

(Excoffier and Lischer, 2010). The genetic differentiation (FST) was interpreted as low (0–0.05), 

intermediate (0.05–0.15), great (0.15–0.25) and very great (FST < 0.25) (Freeland et al., 

2011)[46]. The evolutionary divergence between gene alleles was estimated using proportion 

genetic distance (p-distance) in MEGA v7.0 (Kumar et al., 2016).  

Phylogenetic reconstructions were performed to further investigate the population structure and 

relationships among T. parva alleles in sub-Saharan Africa. Both representative Tp1 and Tp2 

allele sequences found in the present study and those previously published, obtained from cattle 

and African buffalo (Syncerus caffer) across Africa, were used in the phylogenetic analyses and 

population differentiation. Published sequences comprised samples from Kenya (cattle-derived, 

buffalo-derived and buffalo-associated parasites), South Sudan and laboratory isolates from 

Kenya, Uganda, Tanzania, Zambia and Zimbabwe. The Tp1 and Tp2 gene sequences of the 

three T. parva stocks used in the live trivalent Muguga vaccine (Muguga, Serengeti-

transformed and Kiambu-5) were also included in the analyses. The obtained overall 

representative allele datasets were aligned for each gene based on their corresponding amino 

acid translations using the Translator X server with its Muscle algorithm. Sites that were 

ambiguously aligned were eliminated from the protein alignment before back-translate to 

nucleotides using the GBlocks program with default parameters. In addition, the Tp1 and Tp2 

alignments for individual sequences generated in the present study (from the Great Lakes 

region) were visually checked and concatenated to generate a data matrix (Tp1+Tp2) in order 

to maximise the phylogenetic signal. Samples with missing data for one locus were excluded 

from the concatenated dataset. Phylogenetic reconstructions were then performed for the Tp1 

and Tp2 representative gene alleles separately, as well as for the concatenated nucleotide matrix 
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in MEGA software using the Neighbor-Joining (NJ) algorithm by performing 1000 bootstrap 

replications. The best-fitting nucleotide substitution model for each dataset was estimated under 

the Bayesian information criterion (BIC) using MEGA. The evolutionary distances for each of 

the three datasets were computed using the Tamura 3-parameter (T92) model of nucleotide 

sequence evolution in which rate variation among sites was modelled according to gamma 

distribution. The phylogenetic trees were rooted with orthologous sequences from Theileria 

annulata as the outgroups (GenBank: TA17450 for Tp1 and TA19865 for Tp2). Furthermore, 

a median-joining (MJ) network was constructed using cattle-derived Tp2 nucleotide sequences 

generated during this study as well as published sequences, to investigate the ancestral 

relationships among T. parva alleles on the basis of their geographical origins. The network 

was computed through the default MJ algorithm described by Bandelt et al. (Bandelt et al., 

1999) in the PopArt software (Leigh and Bryant, 2015). Invariant sites were removed from the 

dataset for network reconstruction. 

4.3.6 Molecular evolutionary dynamics  

Theileria parva demographic dynamics were analysed using selective neutrality statistics Fu 

and Liʼs D* and F* (Fu, 1997) and Tajima’s D (Tajima, 1989) to evaluate the departure from 

neutral evolution or evidence of natural selection constraint for each studied population as 

implemented in the DnaSP and Arlequin software. To further assess the selective constraint 

within Tp2 epitope coding regions, a sliding-window was estimated for the overall data set 

within a window of 100 bp using a step size of 25 bp. The significance of these statistics was 

tested with a coalescence-based approach using 1000 simulations. Statistically significant 

positive values of neutrality tests indicate an excess of intermediate-frequency alleles in the 

population than expected, that could be due to balancing selection, population structure or 

bottlenecks, while negative values denote an excess of rare polymorphisms in a population, 

which provides evidence of purifying, directional (positive) selection or population expansion. 

Population dynamics were further assessed with mismatch distribution of pairwise nucleotide 

differences between sequences in the Arlequin software.  

4.4 Results 

4.4.1 PCR amplification and gene polymorphisms 

Of the 480 samples investigated, 119 produced a p104 amplicon suggesting that they contained 

T. parva DNA. These were subjected to Tp1 and Tp2 amplification and sequencing; sequences 
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were successfully generated from 116 and 96 samples, respectively (Table S4.3). We were 

unable to obtain amplicons or sequences from 3 samples for the Tp1 gene and 23 samples for 

the Tp2 gene. Novel Tp1 and Tp2 sequences were submitted and are available in the GenBank 

under accession numbers: MF449288-MF449294 for Tp1; and MF449295-MF449302 for Tp2. 

The 405-bp sequence region of Tp1 encodes 134 amino acids (25% of the 543 amino acids of 

the full-length Tp1 gene). This region is located between nucleotides 537 and 941 of the 

reference genome of the T. parva Muguga strain (GenBank: XP_762973), while the 504-bp 

region of the Tp2 gene encodes 167 amino acids of the 174 amino acid-long protein encoded 

by the reference T. parva Muguga genome (GenBank: XP_765583). Sequence analyses showed 

moderate synonymous and nonsynonymous nucleotide substitutions randomly distributed 

along the Tp1 sequence, including in the single CD8+ T cell target epitope, as well as an indel 

of 12 nucleotide insertion (TCT GCA CCT CCT) corresponding to the 4 amino acid residues 

SAPP. In contrast, the analyses revealed extensive polymorphisms in the Tp2 gene, both at the 

nucleotide and amino acid levels, which were also identified within the six epitope regions. To 

further understand the phylogenetic relationships between T. parva parasites in sub-Saharan 

Africa, a comprehensive population genetic analysis was conducted, including Tp1 and Tp2 

sequences retrieved from the GenBank. 

4.4.2 Sequence diversity in the Tp1 gene locus  

Sequence analysis of Tp1 gene fragment detected 11 distinct alleles in the 116 sequenced DNA 

samples (Table 4.2, Figure S4.1). These alleles were defined by 14 single-nucleotide 

polymorphisms (SNPs) and one in-frame indel insertion of 12 nucleotides compared with the 

reference T. parva Muguga genome sequence (identical to Serengeti and Kiambu-5 sequences 

for Tp1). The insertion occurred in four samples with the Tp1 sequences identical to that of 

allele 45, which is genetically the most distant from the Muguga reference sequence (Table 

S4.4). On the other hand, Tp1 allele 1 (present in the three T. parva stocks components of the 

trivalent Muguga vaccine) was the most predominant allele, identified in 76 (65.5%) of the 116 

samples. The overall nucleotide polymorphism in the Tp1 gene was π = 0.5%. The lowest 

genetic diversity was obtained in DRC AEZ3, where all the 25 sequences were represented by 

the T. parva Muguga allele 1. The three other AEZs (DRC AEZ1, 2 and Burundi AEZ1) had 

very similar levels of nucleotide diversity (Table 4.2).  

Moreover, the 11 Tp1 alleles allowed to predict six distinct antigen variants, distinguished by 

amino acid changes at seven polymorphic residues and one insertion motif of four amino acids 
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(that contrasted with 92% of conserved amino acid residues) (Figure 4.2, Table 4.2). The most 

common antigen variant (var1), which is present in the T. parva strains Muguga, Serengeti and 

Kiambu-5, was found in 69% (80/116 samples) of samples obtained from all AEZs. 

Furthermore, antigen variants 3 and 31, with the smallest genetic distances to the variant 1, 

accounted for 10% and 16% of the total T. parva samples, respectively; while variants 32–34 

were rarely present and were only observed in DRC AEZ1 and 2. In most cases, the predicted 

protein variants of gene alleles containing unique sequence were identical or nearly similar to 

the most common antigens due to synonymous substitutions (Figure S4.1, Table S4.5).  

The multiple alignment of predicted Tp1 amino acid sequences revealed the presence of three 

different CD8+ T cell epitope variants, observed in the defined single Tp1 CD8+ T cell epitope 

region (VGYPKVKEEML) (Figure 4.2, Table S4.2). The detailed geographical distribution of 

epitope variants is presented in Table S4.6. Briefly, the epitope variant ending with -ML (which 

is also present in the three T. parva Muguga cocktail vaccine stocks) was found in the majority 

of samples from all four AEZs (72%: 84 out of 116 samples), followed by the epitope variant -

II which was observed in 30 samples (26%) and particularly absent in T. parva samples from 

the highlands of DRC (DRC AEZ3). The third epitope variant (-MI) was only present in two 

samples from DRC AEZ1 and 2. We noticed the abundance of two of the three epitope variants 

in Burundi AEZ1, where approximately half of T. parva samples carried the epitope -II. 
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Figure 4.2 Multiple amino acid sequence alignment of six Tp1 antigen variants in 116 T. parva 

samples obtained from DRC and Burundi. Antigen variants are named var-1 to var-34. The 

single letter amino acid code is used. The antigen variants nomenclature used in this study was 

first proposed by Pelle et al. [36]. Variants var-1 and var-3 were first described by Pelle et al. 

[36] and var-31 by Salih et al. [37]. The numbers in square brackets behind variants names 

indicate the number of T. parva isolates represented by each variant. The single previously 

identified T. parva CD8+ T cell target epitope is bolded and boxed. The polymorphic residues 

in the T cell epitope are coloured in red. Conserved amino acid residues are denoted by (*) 

below the alignment, and dashes (-) denote insertion region. Nested PCR primers used for 

sequencing are shaded and boxed in flanked regions. The Muguga sequence (GenBank: 

JF451936) was used as the reference sequence; it represents the other component of the Muguga 

cocktail vaccine (Serengeti-transformed and Kiambu 5) that are identical to Muguga strain 

sequence for the Tp1 locus. Tp1 antigen variant var-1 is found in the three Muguga vaccine 

strains. Corresponding gene alleles and sample characteristics are presented in Table S4.3 

 
 
 
 
 
 
 
 

            1                                                                  69 
Muguga      AFAADPGFCYFLLIPGPDSKPIFFKNDGDKFLRCVGYPKVKEEMLEMATKFNRLPKGVEIPAPPGVKPE 
Var-1[80]   AFAADPGFCYFLLIPGPDSKPIFFKNDGDKFLRCVGYPKVKEEMLEMATKFNRLPKGVEIPAPPGVKPE 
Var-3[11]   AFAADPGFCYFLLIPGPDSKPIFFKNDGDKFLRCVGYPKVKEEIIEMATKFNRLPKGVEIPAPPGVKPE 
Var-31[18]  AFAADPGFCYFLLIPGPDSKPIFFKNDGDKFLRCVGYPKVKEEIIEMATKFNRLPKGVEIPAPPGVKPE 
Var-32[4]   AFAADPGFCYFLLIPGPDSKPIFFKNDGDKFLRCVGYPKVKEEMLEMATKFNRLPKGMEIPAPPGVKPE 
Var-33[2]   AFAADPGFCYFLLIPGPDSKPIFFKNDGDKFLRCVGYPKVKEEMIEMATKFNRLPKGVEIPAPPGVKPE 
Var-34[1]   AFAADPGFCYFLLIPGPDSKPIFFKNDGDKFLRCVGYPKVKEEIIEMATKFNRLPKGVEIPAPPGVKPE 
            *******************************************  ************ *********** 
            70                                                                138 
Muguga      APTPTPTTITPSVPPTIPTPITPSAPP----TTPPTGLNFNLTVQNKFMIGSQEVKLNITHEYEGVYEA 
Var-1[80]   APTPTPTTITPSVPPTIPTPITPSAPP----TTPPTGLNFNLTVQNKFMIGSQEVKLNITHEYEGVYEA 
Var-3[11]   APTPTPTTITPSVPPTIPTPITPSAPP----TTPPTGLNFNLTVQNKFMVGSQEVKLNITHEYEGVYEA 
Var-31[18]  APTPTPTTITPSVPPTIPTPITPSAPP----TTPPTGLNFNLTVQNKFMIGSQEVKLNITHEYEGVYEA 
Var-32[4]   APTPTPTTITPSVPPTIPTPITPSAPPSAPPTTPPKGLNFNLTLQNKFMIGSQEVKLSITHEYEGVYEA 
Var-33[2]   APTPTPTTITPSVPPTIPTPITPSAPP----TTPPTGLNFNLTVQNKFMIGSQEVKLNITHEYEGVYEA 
Var-34[1]   APTPTPTTITPSVPPTIPTPITPSAPP----TTPPTGLNFNLTVQNKFMVGSQEVKLSITHEYEGVYEA 
            ***************************    **** ******* ***** ******* *********** 
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Table 4.2 Tp1 and Tp2 sequence diversity in cattle-derived T. parva from RDC and Burundi 

Gene 

locus 

AEZ Sample 

size  

Nucleotide sequences  Amino acid sequences 

Polymorphic sitesa No. of 

allelesb 

Nucleotide diversity 

± SD 

 Polymorphic sitesa No. of antigen 

variantsb 

Tp1 DRC AEZ1 31 12 + ind 7 0.008 ± 0.002  7 + ind 5 

  DRC AEZ2 27 12 + ind 8 0.007 ± 0.002  7 + ind 6 

  DRC AEZ3 25 0 1 0  0 1 

  Burundi AEZ1 33 4 3 0.005 ± 0.0004  3 3 

                Overall Tp1 116 14 + ind 11 0.005 ± 0.0007  7 + ind 6 

Tp2 DRC AEZ1 25 166 7 0.13 ± 0.025  82 7 

  DRC AEZ2 20 165 5 0.17 ± 0.016  81 5 

  DRC AEZ3 23 2 2 0.002 ± 0.0004  2 2 

  Burundi AEZ1 28 175 6 0.16 ± 0.017  85 5 

                Overall Tp2 96 181 10 0.14 ± 0.01  88 9 
aThe insertion region (ind) was excluded for the determination of the number of polymorphic sites and the nucleotide diversity 
bAlleles represent distinct nucleotide sequences diverged at least by one substitution (Figure S4.1, Figure S4.2), while antigen variants represent predicted 
distinct protein sequences (Figure 4.2, Figure 4.4) 
Abbreviations: AEZ, agro-ecological zone; ind, indels; SD, standard deviation  
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4.4.3 Sequence diversity in the Tp2 gene locus  

A total of 10 unique Tp2 alleles were identified among the 96 sequenced T. parva samples 

(Table 4.2, Figure S4.2). The 10 alleles were determined by SNPs detected at 181 of the 504 

nucleotide positions (variation in 36% of the nucleotide residues). The majority of variable sites 

(179 of 181) were parsimony informative and there were no deletions or insertions in the Tp2 

sequences analysed. The overall nucleotide polymorphism (π) was 14%, with the highest level 

of DNA diversity observed among T. parva samples obtained from cattle raised in DRC AEZ2 

and Burundi AEZ1. In contrast, the nucleotide diversity was lower in DRC AEZ3 where only 

two Tp2 alleles (alleles 1 and 2) were described (Table 4.2). The sliding-window plot revealed 

that samples from different AEZs shared similar patterns of diversity through their sequences, 

with the highest polymorphism observed between nucleotide positions 200–300 in most 

populations, except in DRC AEZ3 were the diversity was found between positions 50 and 100 

(Figure 4.3a, b). The number of alleles varied from five to seven among the T. parva samples 

in DRC (AEZ1 and 2) and Burundi AEZ1 (Table 4.2). The Tp2 allele 1 (which is the Muguga 

and Serengeti allele) was the most ubiquitous, being observed in 39 of the 96 samples (41%) 

(Table S4.5, Figure S4.2). The next most common Tp2 allele in the region was allele 2 (the T. 

parva Kiambu-5 allele, a component of the trivalent Muguga cocktail vaccine), and was present 

in 22 samples (23%). The majority of T. parva samples (61 of the 96 samples; 64%) were 

similar to the three component stocks of the Muguga cocktail, as observed for Tp1 alleles. 

Interestingly, although the Muguga/Serengeti type was the most present in the region, it was 

less abundant than the Kiambu-5 type in Burundi AEZ1. In addition, alleles of the three 

components of the live vaccine were found in only 6 out of the 20 samples (30%) from DRC 

AEZ2. Moreover, the most common Tp2 alleles in this DRC AEZ2 (alleles 56 and 57) were 

genetically the most distant from Muguga/Serengeti and Kiambu-5 alleles (p-distance > 25%) 

(Table S4.4). 
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Figure 4.3 Tp2-based sliding-window plot of Tajima’s D statistics (a) and nucleotide diversity 

(b) of T. parva sequences from the Great Lakes region. A window length of 100 nucleotides 

and a step size of 25 bp were used. The maximum nucleotide diversity and Tajima’s D values 
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are observed between the nucleotide positions 200 and 300, containing the Tp2 epitopes 4 and 

5. Abbreviation: Ep1-6, epitope1-6. 

The nucleotide variation observed in the 10 Tp2 alleles resulted in nine distinct protein variants 

with variations found at 88 amino acid residue positions (53% of variation) (Figure 4.4). The 

results of antigenic variability of the Tp2 gene are summarised in Table 4.2. In general, the 

number of antigen variants found in T. parva samples from different AEZs remained the same 

as for Tp2 gene alleles, except in Burundi AEZ1 where the nucleotide substitution observed in 

allele 59 was synonymous and therefore this allele together with allele 57 were translated into 

protein variant 54 (Table S4.5). These results reveal that most of SNPs found in the Tp2 gene 

were non-synonymous, increasing the antigenic variability for the overall data set. 

Furthermore, multiple alignment of Tp2 amino acid sequences revealed an extensive degree of 

polymorphism in the six defined CD8+ T cell epitopes within the sequenced gene region (Table 

4.3, Table S4.2). The numbers of epitope variants ranged from four for epitope 2 to seven for 

epitope 1 (Table 4.3, Figure 4.4). Within these epitopes, the number of conserved residues 

varied from three to five amino acid positions. Epitope 6 had the highest number of conserved 

amino acid residues, with residues 135–138 found in all protein sequences. Two variants 

(SHEELKKLGML and SDEELNKLGML) out of the seven variants of epitope 1 were identical 

to Muguga cocktail vaccine stock variants (Muguga/Serengeti and Kiambu-5) and comprised 

together 61 out of the 96 Tp2 sequences studied (64%) (Table 4.3, Table S4.6). The majority 

of sequences described in the present study carried the Muguga/Serengeti epitope variants in 

most AEZs, except in Burundi AEZ1 where the Kiambu-5 variant was the most prevalent for 

epitope 1, and in DRC AEZ2 where the most prevalent epitope variants were not present in the 

Muguga cocktail (Table S4.6). Strikingly, despite the divergence distribution of epitope 

variants in different AEZs, a large number of overall major variants were common to all AEZs.  
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Figure 4.4 Multiple amino acid sequence alignment of nine Tp2 antigen variants detected in 96 

T. parva samples from DRC and Burundi. Amino acids are denoted by the single-letter codes. 

Var-1 to var-59 are variant names. The antigen variants nomenclature used in this study was 

first initiated by Pelle et al. [36]. Antigen variants var-1 and var-2 were described in Pelle et al. 

[36] and Salih et al. [37] and are, respectively, Muguga (identical to Serengeti-transformed) and 

Kiambu-5 strains. Reference sequences component of the Muguga cocktail live vaccine are 

represented by Muguga (GenBank: JF451856), Serengeti (Serengeti-transformed, GenBank: 

JF451862) and Kiambu-5 (GenBank: JF451880). The numbers in square brackets behind 

variants names indicate the number of T. parva samples represented by each variant. The six 

previously described epitopes (epitope1-6), that are the target of the bovine CD8+ T cells 

immune responses are bolded and boxed. The conserved amino acid residues in the epitopes 

are coloured in red. The star (*) below the alignment indicates positions of conserved amino 

acid residues. The shaded and boxed flanked regions denote the inner primers used for 

sequencing. Tp2 Antigen variants var-1 and var-2 are found in Muguga/Serengeti and Kiambu-

5 strains, respectively. Corresponding gene alleles and sample characteristics are presented in 

Table S4.3. 

 

 

 
 
                  1                                                                                 84 
Muguga         ISLYFIIYILHSPVLGGNCSHEELKKLGMLEGDGFDRDALFKSSHGMGKVGKRYGLKTTPKVDKVLADLETLFGKHGLGGISKD 
Serengeti      ISLYFIIYILHSPVLGGNCSHEELKKLGMLEGDGFDRDALFKSSHGMGKVGKRYGLKTTPKVDKVLADLETLFGKHGLGGISKD 
Kiambu 5       ISLYFIIYILHSPVLGGNCSDEELNKLGMLEGDGFDRDALFKSSHGMGKVGKRYGLKTTPKVDKVLADLETLFGKHGLGGISKD 
Var-1[39]      ISLYFIIYILHSPVLGGNCSHEELKKLGMLEGDGFDRDALFKSSHGMGKVGKRYGLKTTPKVDKVLADLETLFGKHGLGGISKD 
Var-2[22]      ISLYFIIYILHSPVLGGNCSDEELNKLGMLEGDGFDRDALFKSSHGMGKVGKRYGLKTTPKVDKVLADLETLFGKHGLGGISKD 
Var-53[15]     ISLYFIIYILPSSVLGGNCSDDELDTLGMLDKPDLDKNRLFLTSHGMGRIGRRYGIRPGTKTEKFLKELKKLFTEVGITGVGEK 
Var-54[13]     ISLYFIIYILPSSVLGGNCSDNELDTLGLLDKPDLDKNRLFLTSHGMGKIGRRFGIRPGTKTEKFLKELTKLFTEIGITGVGEK 
Var-55[2]      ISLYFIIYILPSSVLGGNCTEEELKKMGMVEGEGFDKEKLFKSSKSMGIVGRNHGLKPKPRLESVFEDLEKLFGKHGLGGISKN 
Var-56[1]      ISLYFIIYILPSSVLGGNCTEEELRKLGMVEDSNFDRESLFKSSHGMGKVGRMHGLKPKPKLESVFEDLEKLFGKHGLGGISKN 
Var-57[1]      ISLYFIIYILPSSVLGGNCTEEELRKLGMVEDSNFDRESLFKSSHGMGKVGRMHGLKPKPKLESVFEDLGKLFGKHGLGGISKN 
Var-58[1]      ISLYFIIYILHSPVLGGNCSDEELNILGMLEGDGFDRDALFKSSHGMGKVGKRYGLKTTPKVDKVLADLETLFGKHGLGGISKD 
Var-59[2]      ISLYFIIYILPSSVLGGNCTEEELRKLGMVEDSNFDRESLFKSSHGMGKVGRMHGLKPKPKLESVFEDLEKLFGKHGLGGISKN 
               ********** * ******   **   *       *   **  *  **  *   *             *  **   *  * 
 
               85                                                                              167 
Muguga         CLKCFAQSLVCVLMKCRGACLKGPCTDDCQNCFDRNCKSALLECIGKTSIPNPCKWKEDYLKYKFPETDEDESTKKGEASGTS 
Serengeti      CLKCFAQSLVCVLMKCRGACLKGPCTDDCQNCFDRNCKSALLECIGKTSIPNPCKWKEDYLKYKFPETDEDESTKKGEASGTS 
Kiambu 5       CLKCFAQSLVCVLMKCRGACLKGPCTDDCQNCFDRNCKSALLECIGKTSIPNPCKWKEDYLKYKFPETDEDESTKKGEASGTS 
Var-1[39]      CLKCFAQSLVCVLMKCRGACLKGPCTDDCQNCFDRNCKSALLECIGKTSIPNPCKWKEDYLKYKFPETDEDESTKKGEASGTS 
Var-2[22]      CLKCFAQSLVCVLMKCRGACLKGPCTDDCQNCFDRNCKSALLECIGKTSIPNPCKWKEDYLKYKFPETDEDESTKKGEASGTS 
Var-53[15]     CLECFAASIKCVAQYCKGACLKGPCTEDCQQCIKSNCMDGLLECIGKPSVPNPCDWKDAYLKFKLPETGEGESEKKGEASGTS 
Var-54[13]     CLECLAASIKCVSHHCKGACLKGPCTEGCQECIKRNCMEALLQCIGKPSVPNPCDWKDDYLKFKFPETGEDEAQKKGEASGTS 
Var-55[2]      CLTCFVQSIMCVINKCRGACLKGPCTDGCQKCINTNCKPALLECIGVNDIPNPCKWKEDYLKYKLPETDEDESEKKGEASGTS 
Var-56[1]      CLTCFAQSILCVIKNCRGACLKGPCSDDCQNCFKAKCKQALLECIGASDIPNPCKWKDDYLKYKLPDTDEDEPEKKGEASGTS 
Var-57[1]      CLTCFAQSILCVIKNCRGACLKGPCSDDCQNCFKAKCKQALLECIGASDIPNPCKWKDDYLKYKLPDTDGDESEKKGEASGTS 
Var-58[1]      CLKCFAQSLVCVLMKCRGACLKGPCTDDCQNCFDRNCKSALLECIGKTSIPNPCKWKEDYLKYKFPETDEDESTKKGEASGTS 
Var-59[2]      CLTCFAQSILCVIKNCRGACLKGPCSDDCQNCFKAKCKQALLECIGASDIPNPCKWKDDYLKYKLPDTDEDESEKKGEASGTS 
               ** *   *  **   * ********   ** *    *   ** ***    **** **  *** * * *   *  ********* 
 
 
 

 

 

 
 

Epitope 4 
Epitope 5 

Epitope 6 

Epitope 1 Epitope 2 Epitope 3 
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Table 4.3  Tp1 and Tp2 CD8+ T cell epitope variants identified in cattle-derived T. parva from DRC and Burundi  

Tp1 epitope variants 

(Tp135–45) 

Tp2 epitope variants 

Epitope 1 

(Tp220–30) 

Epitope 2 

(Tp233–41) 

Epitope 3 

(Tp242–52) 

Epitope 4 

(Tp289–97) 

Epitope 5 

(Tp291–99) 

Epitope 6 

(Tp2131–140) 

VGYPKVKEEML 

(var-1, 32) 

SHEELKKLGML 

(var-1) 

DGFDRDALF 

(var-1, 2, 58) 

KSSHGMGKVGK 

(var-1, 2, 58) 

FAQSLVCVL 

(var-1, 2, 58) 

QSLVCVLMK  

(var-1, 2, 58) 

KTSIPNPCKW 

(var-1, 2, 58) 

VGYPKVKEEII 

(var-3, 31, 34) 

TEEELKKMGMV 

(var-55) 

EGFDKEKLF 

(var-55) 

KSSKSMGIVGR 

(var-55) 

FVQSIMCVI 

(var-55) 

QSIMCVINK (var-

55) 

VNDIPNPCKW 

(var-55) 

VGYPKVKEEMI 

(var-33) 

TEEELRKLGMV 

(var-56, 57, 59) 

SNFDRESLF 

(var-56, 57, 59) 

KSSHGMGKVGR 

(var-56, 57, 59) 

FAQSILCVI 

(var-56, 57, 59) 

QSILCVIKN (var-

56, 57, 59) 

ASDIPNPCKW 

(var-56, 57, 59) 

 SDNELDTLGLL 

(var-54) 

PDLDKNRLF 

(var-53, 54) 

LTSHGMGKIGR 

(var-54) 

LAASIKCVS 

(var-54) 

ASIKCVSHH 

(var-54) 

KPSVPNPCDW 

(var-53, 54) 

 SDDELDTLGML 

(var-53) 

 
LTSHGMGRIGR 

(var-53) 

FAASIKCVA 

(var-53) 

ASIKCVAQY 

(var-53) 

 

 SDEELNKLGML 

(var-2) 

     

 SDEELNILGML 

(var-58) 

     

Notes: Epitope variants were identified using the reference amino acid positions presented in Table S4.2. Numbers in brackets following the epitope sequences correspond to 
antigen variants carrying the epitopes (Figure 4.2, Figure 4.4). Epitope variants described for the first time are in italic and those found in the Muguga cocktail vaccine are in 
bold. Tp2 antigen variants var-1 and var-2 are found in Muguga (identical with Serengeti-transformed) and Kiambu-5 strains, respectively. Tp1 antigen variant var-1 is found 
in Muguga (identical with Serengeti-transformed and Kiambu-5). Abbreviations: Var-1 to var-59, antigen variant names  
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4.4.4 Phylogenetic and phylogeographical patterns of T. parva populations in sub-

Saharan Africa 

In order to elucidate the phylogeographical structure and the evolutionary relationships among 

T. parva allelic sequences, the nucleotide sequences generated from the present study were 

analysed together with previously sequenced T. parva isolates from cattle and buffalo from 

different sub-Saharan African countries (Kenya, South Sudan, Tanzania, Uganda, Zambia and 

Zimbabwe) and the three component stocks of the Muguga cocktail live vaccine obtained from 

GenBank. In total, 274 Tp1 and 241 Tp2 sequences were analysed (Table S4.7, Table S4.8). 

The allelic analysis yielded 48 distinct alleles for Tp1 and 61 different Tp2 alleles. Of these T. 

parva alleles identified in Africa, seven Tp1 alleles (A43-A49) and eight Tp2 alleles (A56-A63) 

were new and exclusive to the Great Lakes region of Central Africa. In addition, 22 Tp1 alleles 

(A13-A34) and 36 Tp2 (A06-A43) were exclusively found in buffalo-derived or buffalo-

associated T. parva isolates.  The phylogenetic tree constructed from Tp1 gene alleles failed to 

provide strong phylogenetic signal (Figure S4.3), whereas the one based on Tp2 alleles showed 

that T. parva parasites are more clustered depending on their mammalian host species than their 

geographical sub-structuring.  

The NJ phylogenetic tree performed on the 61 Tp2 alleles (representative of 241 individual 

sequences) distinguished two main phylogenetic groups (clades A and B) (Figure 4.5). The 

two main groups comprised four (A1-A4) and two (B1 and B2) sub-clades for clade A and 

clade B, respectively. The larger clade (clade A), containing the three component stocks of the 

Muguga cocktail vaccine, was composed of the majority of sequences. These sequences carried 

20 Tp2 alleles from cattle-derived T. parva (162 sequences of the 241 overall individual 

sequences; 67%) and 31 alleles from buffalo and cattle sharing grazing land with buffalo (35 

individual sequences). The cattle-derived sequences found in this clade were clustered within 

the sub-clade A1 together with the three vaccine strains and were broadly distributed in various 

geographical areas in Africa (DRC AEZ1, 2 and 3, Burundi AEZ1, Kenya, South Sudan and 

Katete in the Eastern Province of Zambia) (Table S4.8). In general, the more diverse buffalo-

derived isolates found in clade A tend to be clustered in exclusive separate sub-clades (A2, A3 

and A4), although sub-clade A1 contained mixed T. parva sequences from cattle and buffalo 

(or buffalo-associated cattle). The minor clade (clade B) contained 10 alleles (44 sequences) 

and had two independent sub-clades. The first sub-clade (B1) consisted exclusively of T. parva 

sequences from buffalo (6 sequences giving 5 alleles), while the second sub-clade (B2) 
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comprised only cattle-derived T. parva (38 sequences carrying 5 alleles). Cattle-derived 

parasites found in clade B originated from DRC (AEZ1 and 2), Burundi AEZ1, Kenya, Uganda, 

Southern Province of Zambia (Chitongo) and Zimbabwe (Boleni). It is worth noting that cattle-

derived samples from the lowlands and midlands of DRC and Burundi contained more diverse 

T. parva alleles which were consistently found in the two main Tp2 clades and had no obvious 

association between allelic clades or sub-clades and their geographical origins. However, 

remarkably all the T. parva samples from the highlands (DRC AEZ3) were clustered within the 

major clade (clade A). 

The median-joining (MJ) network performed on the 200 cattle-derived Tp2 individual 

sequences described in Africa (collapsed into 25 representative alleles) recovered two major 

genetic groups that diverged at least by 100 nucleotide mutational steps (Figure 4.6). The two 

groups fully corresponded to cattle-derived alleles clustered in clades A1 and B2 detected in 

the Tp2 gene tree (Figure 4.5) and contained ubiquitous alleles that were shared by two to more 

populations. The majority of low-frequency alleles occurred in South Sudan and were closely 

connected to the dominant allele (A01) which was present in all the seven populations. 

Interestingly, The MJ network showed an extensive admixture of cattle-derived parasite 

populations from diverse geographical locations with high number of mutational step 

connections. 

The evolution of loci was compared with the evolution of T. parva samples using a concatenated 

phylogenetic analysis performed on 93 Tp1+ Tp2 individual sequences from cattle in the Great 

Lakes region. In total, 19 representative alleles were defined in the concatenated sequences. 

The NJ tree of the concatenated dataset provided similar topologies that fully agreed with that 

obtained by the Tp2 phylogenetic analysis (Figure 4.5, Figure 4.6), resulting into two well-

defined main clades of cattle-derived parasites (Figure S4.4). Each of these clades was 

significantly divided into two sub-clades strongly supported by their bootstrap values. The 

major clade (clade A), which contained the three Muguga cocktail vaccine alleles, included 70 

(75%) concatenated sequences corresponding to alleles found in sub-clade A1 of the Tp2 NJ 

tree, while the minor clade (clade B) contained samples clustered in sub-clade B2 of the Tp2 

phylogenetic tree (Figure 4.5).  
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Figure 4.5 Neighbor-Joining tree showing phylogenetic relationships among the 61 Tp2 gene 

alleles described in Africa (A01-A63). Tp2 gene alleles obtained from cattle in the present study 

are indicated by black diamonds. Theileria parva alleles found in cattle with no association 

with buffalo and in laboratory stocks are coloured in blue, while buffalo-derived and buffalo-

associated alleles are depicted in Red. Bootstrap values (> 50%) are shown above branches. 

The Tp2 homologous sequence of T. annulata (GenBank: TA19865) was used as the outgroup. 

The number in brackets behind allele names denote the number of T. parva isolates carrying 

the allele. The detailed Tp2 alleles distribution and their corresponding populations/AEZs are 
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presented in Table S4.8. Tp2 allele A01 corresponds to isolates identical to Muguga and 

Serengeti-transformed strains, while Tp2 allele A02 represents isolates identical to Kiambu-5 

strain 

 

 

Figure 4.6 Median-joining network representing the phylogeographical distribution of Tp2 

alleles of T. parva from cattle in sub-Saharan Africa. Each circle represents a unique allele, 

with colours depicting the proportion of individuals from different populations sharing the 

allele. Black nodes represent hypothetical unsampled alleles (or median vectors). Numbers in 

brackets on connecting lines indicate mutational steps between alleles. The detailed Tp2 alleles 

distribution and their corresponding populations/AEZs are presented in Table S4.8. Tp2 allele 

A01 corresponds to samples identical to Muguga and Serengeti-transformed strains and Tp2 

allele A02 represents samples identical to Kiambu-5 strain. Abbreviations: CD, cattle-derived 

samples (from Kenya); LS, laboratory samples (ILRI) [36]  
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4.4.5 Population differentiation 

The partition of genetic diversity in Tp2 sequences was further analysed using analysis of 

molecular variance (AMOVA) based on allelic variants from the four AEZs of the Great Lakes 

region and those from South Sudan, Kenya (cattle-derived: CD; buffalo-derived: BD; and 

buffalo-associated: BA) and the laboratory T. parva stocks (LS). The AMOVA results further 

supported the findings obtained with phylogenetic analyses, showing that most of the variation 

(75% of the total variation) was found between individuals within populations, whereas a 

relatively small amount of the total diversity was significantly explained by interpopulation 

divergence (25%, P < 0.001). To examine the degree of gene flow and genetic differentiation 

levels among T. parva populations, Wright’s fixation index (FST) values were computed for 

each pairwise comparison between Tp2 sequences from different geographical origins, 

alongside buffalo-derived T. parva sequences obtained from GenBank. Overall, pairwise 

comparison (FST) values between different geographical areas and/or populations ranged from 

-0.02 (between LS and DRC AEZ1) to the greatest genetic divergence of 0.69 (between DRC 

AEZ2 and South Sudan) (Table 4.4). The FST statistic revealed interesting findings. First, T. 

parva isolates from the highlands of DRC (DRC AEZ3) and those from South Sudan were not 

genetically different (FST = -0.003), showing a high degree of similarity between alleles. These 

two populations contained the highest number of samples carrying the Muguga cocktail vaccine 

component alleles (alleles 1 and 2) (Table S4.8). Secondly, T. parva parasite samples from 

lowlands (DRC AEZ1 and Burundi AEZ1) and midlands (DRC AEZ2) were genetically distant 

from those of highlands (DRC AEZ3) and the ones from South Sudan. Thirdly, the laboratory 

isolates (most ancient isolates from different sub-Saharan countries) were neither significantly 

divergent from those from lowlands and midlands of DRC and Burundi nor from Kenyan field 

isolates (CD).   
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Table 4.4 Pairwise estimates of genetic distance among nine T. parva populations using FST statistic for nucleotide sequences of Tp2  

Country Population DRC 

AEZ1 

DRC 

AEZ2 

DRC 

AEZ3 

Burundi 

AEZ1 

BA BD CD South 

Sudan 

LS  

DRC DRC AEZ1 – 0.008 < 0.001 0.2 < 0.001 0.001 0.4 < 0.001 0.4 

DRC AEZ2 0.17 – < 0.001 0.06 < 0.001 0.004 < 0.001 < 0.001 0.07 

DRC AEZ3 0.20 0.58 – < 0.001 < 0.001 < 0.001 0.04 0.3 < 0.001 

Burundi Burundi AEZ1 0.02 0.08 0.3 – < 0.001 0.008 0.1 < 0.001 0.3 

Kenya BA 0.17 0.19 0.39 0.15 – 0.3 < 0.001 < 0.001 < 0.001 

BD 0.17 0.17 0.45 0.14 0.002 – < 0.001 < 0.001 0.009 

CD -0.01 0.28 0.13 0.06 0.22 0.23 – 0.002 0.1 

South Sudan South Sudan 0.29 0.69 -0.003 0.41 0.52 0.59 0.19 – < 0.001 

Laboratory samples LS -0.02 0.08 0.35 0.009 0.15 0.14 0.04 0.48 – 

Notes: FST values below the diagonal and P-values above the diagonal; The genetic differentiation was considered as low (FST between 0–0.05), intermediate (FST between 
0.05–0.15), great (FST between 0.15–0.25) and very great (FST < 0.25). The sample sizes (number of sequences) used in each population are shown in (Table S4.7, Table S4.8) 
Abbreviations: AEZ, agro-ecological zones; BD, buffalo-derived; LS, laboratory samples; CD, cattle-derived 
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4.4.6 Evolutionary population dynamics: evidence of immune selection or demographic 

processes? 

The evolutionary dynamics of T. parva isolates from cattle in different geographical areas in 

sub-Saharan Africa were assessed by neutrality statistics and mismatch analyses to elucidate 

natural selection and demographic forces responsible for maintaining the observed 

polymorphism in the Tp2 gene. We applied Tajima’s D and Fu and Liʼs D* and F* statistics to 

assess the mode and significance of any departure from neutral expectations for the entire 

sequence (Table 4.5) and using a sliding-window through the sequence (Figure 4.3a). Overall, 

these analyses showed significant departure from neutral evolution expectations. These 

statistics, together with the multimodal mismatch pattern, confirmed the significant deviation 

from population expansion for the majority of studied populations. However, the evidence of 

population expansion signature was detected only in South Sudan population where the 

neutrality statistics were negative and significant (Table 4.5). For other populations, positive 

and significant values of Fu and Liʼs D* and F* statistics consistently observed in most areas 

suggested a significant pressure of balancing selection or diversifying selection that might be 

the reason of increased allelic frequency and nucleotide diversity, acting to maintain Tp2 alleles 

at intermediate frequencies compared with expectations under neutrality (Table 4.2). In 

addition, the sliding-window plot showed that Tp2 gene region of nucleotide positions 200–300 

was the more diverse and subjected to positive values of Tajima’s D statistic (Figure 4.3a, b). 

This region contains sequences for Tp2 epitopes 4 and 5 and another part that does not contain 

defined epitopes, suggesting that the evolutionary pressure signature is randomly distributed 

within the gene.  
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Table 4.5 Tp2-based demographic structure and natural selection analyses of T. parva 

populations 

Country Population Sample 

size 

Tajima’s 

D 

Fu and 

Liʼs D* 

Fu and 

Liʼs F* 

DRC DRC AEZ1 25 1.2 0.97 0.94 

DRC AEZ2 20 2.5 1.8** 2.1** 

DRC AEZ3 23 1.1 0.84 1.1 

Burundi Burundi AEZ1 28 2.2 1.9** 2.1** 

 Tp2 Clade A 68 -1.2 1.9** 0.6 

 Tp2 Clade B 28 3.6** 1.6** 2.6** 

Overall (DRC and Burundi) 96 2.5 2.3** 2.3** 

Kenya CD 22 0.17 1.8** 1.4 

South Sudan South Sudan 65 -2.5** -2.7* -3.1* 

Laboratory samples LS 17 2.7** 1.7** 2.3** 
*P < 0.05, **P < 0.01 
Abbreviations: AEZ, agro-ecological zone; LS, laboratory samples; CD, cattle-derived  

4.5 Discussion 

The rationalisation and implementation of an effective ECF vaccine-based control require 

information of the circulating parasite antigenic variants in a region to assure vaccine efficacy 

(when vaccinated animals are exposed to wild parasites) and safety (cross-immunity is required 

if vaccine stock is transmitted by ticks to an immune cattle population). Previous genetic studies 

of T. parva schizont-infected cell lines and parasite field isolates from cattle and African buffalo 

in East Africa using schizont antigen genes revealed an extensive genetic and antigenic 

diversity in T. parva populations, which was much greater in buffalo than in cattle-derived 

parasites (Elisa et al., 2015; Hemmink et al., 2018; Pelle et al., 2011; Salih et al., 2017; Sitt et 

al., 2018). In this study, we conducted a comprehensive analysis of Tp1 and Tp2 sequences to 

investigate the extent of diversity, the phylogenetic relationships and the evolutionary dynamics 

of T. parva samples obtained from cattle in four AEZs in the African Great Lakes region and 

determine how they relate to vaccine stocks and published sequences from various geographical 

areas of sub-Saharan Africa. We were particularly interested in understanding the role of agro-

ecological conditions and anthropogenic movements of cattle in the genetic structuring and 

evolutionary dynamics of T. parva. 
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4.5.1 Theileria parva populations are more variable in lowlands than highlands but 

ubiquitous alleles are identical to the Muguga vaccine components   

The sequence analyses provided evidence of polymorphism at the nucleotide and amino acid 

levels and within the epitope-containing regions of the two genes in the T. parva population 

from the Great Lakes region. Genetic distance statistics showed particularly a higher level of 

similarity within Tp1 sequences and an extensive diversity within Tp2 sequences, supporting 

the evidence that the genetic diversity is greater in Tp2 than in Tp1 gene as previously reported 

(Hemmink et al., 2018; Pelle et al., 2011; Sitt et al., 2018). Nevertheless, the major alleles and 

epitope variants identified in the two genes were identical to those found in the Muguga cocktail 

vaccine components. Besides, the genetic diversity results further showed that the parasite 

populations from highlands were less diverse compared to those from lowlands (DRC AEZ1 

and Burundi AEZ1) and midlands (DRC AEZ2), which contained the majority of the genetic 

variation observed in the Great Lakes region. Interestingly, all the AEZs consistently shared the 

Muguga cocktail vaccine component alleles, that were the most ubiquitous in the region. The 

fact that sequences identical to the alleles in the Muguga cocktail were the most prevalent and 

broadly distributed may be associated with the reported unrestricted movement of cattle in the 

region (Amzati et al., 2018; Bazarusanga et al., 2007b; Bouslikhane, 2015; Kalume et al., 2012; 

Verweijen and Brabant, 2017). Altogether, these findings indicate that the Muguga cocktail 

component alleles seem to be endemic and the most transmitted and circulating genotypes in 

the Great Lakes region, while their coexistence with other genetically distant and more diverse 

alleles in lowlands and midlands areas might be generating epidemics or unstable endemic 

situations. Furthermore, nucleotide sequence analysis of T. parva at the sub-Saharan African 

level revealed that cattle-derived T. parva populations circulating in the Great Lakes region, 

especially from lowlands and midlands of DRC and Burundi are more diverse in comparison 

with those reported in cattle from various ecological zones of sub-Saharan Africa (Elisa et al., 

2015; Pelle et al., 2011; Salih et al., 2017). These results further suggest that the level of allelic 

variation of T. parva may be significantly affected by the demographic processes such as broad 

geographical dispersal of the parasite populations through human population migration with 

their cattle, which consequently result in high connectivity between cattle populations in Africa 

(Bouslikhane, 2015; Ndumu et al., 2008; Verweijen and Brabant, 2017).  
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4.5.2 Limited population structure and geographic separation of T. parva  

A comprehensive phylogenetic analysis of T. parva Tp2 sequences from the Great Lakes region 

and those from other regions across sub-Saharan Africa strongly support the evidence that T. 

parva parasites circulating in cattle from the Great Lakes region are highly diverse, containing 

individuals similar to those found in cattle from most east African countries and newly 

described alleles (Elisa et al., 2015; Pelle et al., 2011; Salih et al., 2017). The topologies derived 

from phylogenetic analysis deduced from the concatenated cattle-derived sequences (Tp1+ 

Tp2) found in the Great Lakes region produced strong congruent results with Tp2 analysis, 

suggesting that the two loci co-evolve with similar substitution patterns in cattle-derived T. 

parva samples. The NJ and MJ network algorithms clustered T. parva sequences into two main 

groups (clades). The Muguga reference sequence noticeably clustered together with the 

majority of sequences in the larger clade while the smaller clade contained alleles that are 

genetically the most distant from the Muguga reference alleles. However, T. parva genetic 

groups were not clearly separated by geographical sub-structuring, as there were no population-

specific clade or sub-clade consistently associated with geographical origins. A particular 

striking result was that, despite the large overall nucleotide diversity of Tp2 sequences, the 

diversity within each clade was lower, strongly suggesting that the overall genetic variation was 

predominantly affected by the genetic divergence among samples belonging to different clades 

and poorly among samples from different AEZs. These patterns further reflect a limited 

geographical segregation of T. parva genotypes which seems to be explained by the occurrence 

of most dominant alleles (Muguga component stocks) in all geographical areas. The reduced 

population structure could be the evidence that balancing selection acting on the genes studied 

or gene flow through cattle immigration is maintaining similar ubiquitous alleles in T. parva 

populations from distinct geographical regions (Fijarczyk and Babik, 2015; Ndumu et al., 

2008). This was further supported by the AMOVA, which indicate that the sequence variation 

was substantiality higher between individuals within populations rather than among 

populations.  

The degree of gene flow and genetic differentiation among the populations was assessed by 

estimating FST statistics, which investigate the level of population subdivision. Although the 

phylogenetic analysis did not give a clear population structure or geographical grouping, there 

is evidence of statistically significant genetic differentiation between T. parva populations, 

mostly due to the presence of some unshared and more diverse alleles that are exclusive to 
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parasite populations from particular AEZs. Overall, high genetic differentiation was observed 

between lowlands and highlands, supported by the strong evidence that all T. parva samples 

found in highlands were closely related to the Muguga cocktail vaccine stocks. The lowlands 

and midlands of DRC and Burundi had similar levels of genotypic distribution and variation. 

These areas are relatively close and may exchange more genotypes through the dispersal of the 

parasites during short-distance seasonal movement of cattle. In addition, cattle movements are 

very extensive in the Ruzizi valley (lowlands of Burundi and DRC) which is an important entry 

point for imported cattle from neighbour countries (Verweijen and Brabant, 2017; Vlassenroot 

and Huggins, 2005). 

4.5.3 Ecological conditions driving tick population dynamics are suggested to be 

affecting the biogeographical distribution of T. parva genotypes 

The observed pattern of genotypic distribution suggests that ecological parameters driving the 

phenology and establishment ability of tick lineages seem to be further affecting the 

transmission dynamics of T. parva and consequently its genetic diversity and structure. In the 

African Great Lakes region, AEZs are mainly differentiated by temperature and rainfall 

(affected by altitude), which are crucial factors underlining the ecology and population 

dynamics of the tick vector (Berkvens et al., 1998; Leta et al., 2013; Olwoch et al., 2009; 

Speybroeck et al., 2002; Vajana et al., 2018). Thus, these environmental factors might be 

involved in determining the population structure of ticks as well as the transmission pattern of 

specific genotypes of the pathogen in different ecological conditions. Our previous findings of 

the population structure of the tick vector R. appendiculatus allow a direct linking with 

population structure of the pathogen at the agro-ecological level (Amzati et al., 2018). We found 

that the diversity of R. appendiculatus had a strong altitudinal gradient, being lower in highlands 

and more extensive in lowlands. With this evidence, we hypothesise that the association 

between T. parva genotypes and biogeographical areas could be explained by the climate 

factors affecting tick vector capacity (Berkvens et al., 1998; Madder et al., 2002; Speybroeck 

et al., 2002). The extensive genetic diversity of T. parva observed in lowlands and midlands 

appears to be supported by the intensity of tick activity in cattle which could increase the 

transmission dynamics of the parasite and multiple reinfection and coinfection events 

(Bazarusanga et al., 2007a; Bazarusanga et al., 2011; Kalume et al., 2013; Oura et al., 2005). 

In addition, the lowlands areas are ecologically more suitable for the sympatric coexistence of 

two lineages of the tick vector with different diapause behaviour, which may allow the temporal 
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persistence of ticks on cattle and permanent transmission of the parasite (Amzati et al., 2018). 

Therefore, the repeated and permanent acquisition and continued transmission of parasites may 

result in genetic recombination among T. parva genotypes during their sexual reproduction 

stage in the tick and generate new genotypes in the parasite population (Katzer et al., 2006). In 

contrast, the low level of genetic diversity observed in highlands could be a result of reduced 

tick burden that may consequently reduce the transmission intensity of T. parva (Amzati et al., 

2018; Bazarusanga et al., 2007a; Kalume et al., 2013). The likely lower transmission intensity 

in highlands could restrict the effective population size of the parasite and reduce its diversity. 

4.5.4 Lack of evidence for recent host immune selective pressure but suggested 

demographic processes affecting the evolutionary structure of T. parva 

Theileria parva population dynamics were inferred using neutrality statistics in order to 

understand the factors underlying the observed genetic variability in Africa. The results of these 

statistics suggested that balancing selection occurred in most populations except in South Sudan 

where T. parva parasites appear to have experienced a sudden demographic expansion (Salih 

et al., 2017). However, although neutrality statistics provided positive values suggesting 

evidence for balancing selection, which might arise as a result of selective pressure of host 

immunity and might increase the frequency distribution of polymorphisms, it is worth noting 

that this pattern of departure from neutral evolution can also be caused by demographic 

processes such as immigration dynamics and population colonisation and admixture (Biswas 

and Akey, 2006). Previous studies provided evidence of positive selection pressure for amino 

acid changes acting on Tp1 and Tp2 genes, but there was no sufficient evidence of host immune-

based selection (Pelle et al., 2011). In addition, it seems that the evolutionary pressure is not 

predominantly directed to known epitope regions but is randomly distributed across the entire 

region of the gene. Thus, the observed selection and polymorphism could have arisen either 

through immune selection acting on epitopes presented by the bovine MHC class I and 

recognised by CD8+ T cells or most likely from demographic processes of the parasites due to 

range expansion through cattle movements. Moreover, a recent comparison of the 

polymorphism in the T cell epitopes of geographically distant T. parva parasite populations 

from buffalo showed that both populations consistently shared a large proportion of epitope 

variants, suggesting that the majority of variability found in the two genes is more ancient rather 

than a result of recent immune-based substitutions (Hemmink et al., 2018). This was further 

supported by the lack of genetic differentiation between the more diverse T. parva populations 
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from DRC and Burundi and the ancient laboratory isolates from cattle in various geographical 

areas of Africa. It was also suggested that variation observed in cattle-derived parasites may 

represent the ancient diversity evolved in buffalo and that only a subset founder population 

have been established within cattle population (Hemmink et al., 2018; Pelle et al., 2011). We 

can therefore suggest that the genetic distribution and variation of T. parva observed in the 

Great Lakes region are more affected by cattle translocation between populations (gene flow) 

and ecological traits regulating tick populations than the host immune pressure and other 

mechanisms such as selection, mutation and genetic drift (or bottlenecks).  

4.5.5 The use of the trivalent Muguga vaccine is not expected to introduce new T. parva 

antigenic variants  

The findings of this study provided a broad picture of the genetic structure of T. parva in the 

African Great Lakes region as a baseline for future fine scale description of the parasite 

population and immunisation trials of ITM vaccine. However, the prevalence and the number 

of T. parva genotypes circulating in the region may be underestimated, as some of the strains 

have a shorter carrier state and low parasitaemia below the detection threshold of antigen 

markers in asymptomatic cattle sampled during a cross-sectional survey (Geysen, 2008). 

Longitudinal monitoring of infections could be suggested in order to understand the 

spatiotemporal dynamics of T. parva genotypes in the region and further molecular 

characterisation could be undertaken using multilocus markers (Katzer et al., 2010; Oura et al., 

2003) and high-throughput sequencing approach (Hemmink et al., 2018; Hemmink et al., 2016) 

or cloning parasites from individual animals to detect all possible diversity profiles. Of interest, 

the majority of T. parva samples analysed in this study have shown to carry alleles identical or 

nearly similar to Muguga cocktail vaccine strains, although an extensive diversity was observed 

in lowlands and midlands. The wide distribution of the vaccine alleles in the region may be 

used as reference point for vaccine trial composed with Muguga cocktail stocks to evaluate 

cross-immunity in field conditions using local strains as challenge without any risk of 

introducing new parasite variants. A striking finding was that some samples found in cattle 

from lowlands and midlands (Tp1: allele-45/var-32) were close to alleles present in buffalo 

derived and buffalo-associated parasites. These antigenic variants may break through immunity 

induced by the Muguga vaccine (Bishop et al., 2015; Sitt et al., 2015). Thus, it could be relevant 

to test an improved alternative vaccine in lowlands and midlands areas that include local 

parasite stocks to provide broad protection. In order to initiate a vaccination trial, the MHC 
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class I diversity in cattle from the Great Lakes region could be assessed because of the 

differential immune responses between cattle of different MHC class I haplotypes (Steinaa et 

al., 2012). 

4.6 Conclusions 

The present study sheds light on the strong genetic similarity among major T. parva genotypes 

circulating in the region and Muguga vaccine stocks. The high degree of variation observed 

within populations and the moderate agro-ecological sub-structuring suggested that T. parva 

genotypes evolving in cattle are circulating within and between African countries through short 

and long-distance cattle movement. The findings reported in this study also provide insight into 

factors affecting the population genetic structure and biogeographical distribution of T. parva 

in the African Great Lakes region. It appears that the local persistence and the geographical 

distribution of T. parva genotypes are mainly driven by ecological factors affecting tick vector 

population dynamics and competence. Furthermore, the widespread of major genotypes and the 

signature of selection are most probably related to extensive gene flow through cattle 

immigration and agro-ecological conditions determining the transmission intensity of T. parva 

rather than a recent mutational process of immune selective pressure. The observed patterns of 

genetic structure and diversity of T. parva indicate that the strong genotypic diversity found in 

the region would be generating ECF endemic instability in lowlands and midlands and an 

epidemic structure in highlands. However, the fact that ubiquitous alleles are genetically similar 

to those used in the Muguga vaccine, along with the high level of admixture, partially provides 

evidence for safe deployment of existing trivalent live vaccine for field trial without any risk of 

introducing new parasite variants in the Great Lakes region. The Muguga cocktail ITM vaccine 

trial could be implemented regardless of agro-ecological zone since animal movement plays an 

important role in the spread of major genotypes. Future efforts should be done to understand 

the vector-pathogen and host-pathogen genotype relationships in the transmission system and 

the spatiotemporal dynamics of T. parva genotypes. 
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Chapter 5. Transmission dynamics of Theileria 
parva in the Eastern Democratic Republic of 

Congo* 
 

This chapter presents the current epidemiological situation of ECF based on the seasonal 

transmission dynamics of T. parva in three AEZs of DRC. In the first study (Chapter 3), we 

found that two lineages of R. appendiculatus occur in the Great Lakes region with a negative 

altitudinal gradient of their coexistence. The results of Chapter 4 revealed that the diversity of 

T. parva and its biogeographical distribution depend on host migration and agro-ecological 

conditions driving tick population dynamics. It can therefore be postulated that the occurrence 

and abundance of ticks, together with agro-ecological variability may lead to differences in the 

transmission dynamics of T. parva and consequently different epidemiological profiles of ECF.  

In this study, ticks were collected from cattle (attached ticks) and from the vegetation (free-

living ticks). The attached ticks were used to estimate the tick burden while the free-living ticks 

were used to assess the infection rate of T. parva. The transmission intensity of T. parva was 

then modelled as a function of the tick burden and the transformed infection rate in individual 

ticks, and expressed directly the vectorial inoculation rate (VIR). In addition to tick samples, 

cattle blood samples were analysed to estimate the prevalence of T. parva infection in the bovine 

host. The pattern of transmission intensity and dynamics of T. parva suggested an endemic 

situation in lowlands and midlands areas where there was high tick challenge and an epidemic 

situation in the highlands where tick activity was reduced.  

 

 

 

 

 

                                                
* Manuscript in preparation 
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5.1 Abstract 

Theileria parva is a protozoan parasite which causes East Coast fever (ECF), a lethal 

lymphoproliferative disease of cattle in sub-Saharan Africa. It is transmitted by the ixodid tick 

Rhipicephalus appendiculatus. This study was carried out to investigate the agro-ecological and 

seasonal variations of the transmission dynamics of T. parva in the South Kivu Province of the 

eastern Democratic Republic of Congo. Three cross-sectional studies were conducted during 

three seasons (two wet seasons and one dry season) in three agroecological zones (AEZ), 

namely lowlands, midlands and highlands. We assessed R. appendiculatus tick burden and 

molecular prevalence of T. parva in cattle as well as in free-living R. appendiculatus collected 

from the vegetation. We then estimated the transmission intensity of T. parva by mean of the 

vectorial inoculation rate (VIR), by expressing the number of infective ticks attached to cattle 

during a feeding period assumed to be one week. A total of 1424 blood samples and 13,704 R. 

appendiculatus ticks were collected from cattle and 1667 free-living ticks from grazing lands. 

The overall T. parva prevalence in cattle was 32%, with significant variations across AEZs and 

between seasons. Rhipicephalus appendiculatus was the most abundant tick species with a 

mean burden of 26 ticks per animal, corresponding to 83% of the tick load. The tick burden per 

animal was significantly higher in lowlands and midlands than highlands. The overall T. parva 

prevalence in individual free-living ticks was 4% with non-significant variation among AEZs 

and between seasons. The number of infective ticks varied significantly among AEZs and 

among seasons within AEZs, being higher in lowlands and midlands during the two wet 

seasons. The agro-ecological and seasonal variation in the transmission intensity of T. parva 

was primarily predicted by the abundance of tick vector rather than the differences in tick 

infection rate among AEZs. These findings have important implications in the epidemiology of 

ECF. The pattern of transmission intensity and dynamics of T. parva suggested an endemic 

situation in lowlands and midlands areas where there is high tick challenge and an epidemic 

situation in the highlands where tick activity and the T. parva infection in cattle are reduced. 

However, epidemic instability is likely to occur in lowlands due to cattle movements and the 

genetic composition of T. parva and R. appendiculatus. 
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5.2 Background 

East coast fever (ECF), caused by the intracellular protozoan parasite Theileria parva and 

transmitted by the ixodid tick Rhipicephalus appendiculatus, is one of the most pathogenic tick-

borne diseases of cattle which hinder cattle production in eastern, central and western Africa 

(Bett et al., 2019; Boucher et al., 2020; Gachohi et al., 2012; Morrison, 2015). Theileria parva 

transmission occurs transstadially; R. appendiculatus larval or nymphal stages acquire the 

infection while feeding on infected cattle and transmit the pathogen during their subsequent 

nymphal or adult developmental stages after moulting (Konnai et al., 2006; Olds et al., 2018). 

Theileria parva is widely spread in the Great Lakes region due to the wide distribution and 

dispersal of its tick vector favoured by cattle movements (Amzati et al., 2018; Bazarusanga et 

al., 2007a; Kalume et al., 2013). In the South Kivu Province of the Democratic Republic of 

Congo (DRC), live cattle are usually imported from neighbouring countries for trade and 

grazing, with very limited veterinary control. These unrestricted cross-border movements of 

cattle together with local transhumance system are thought to have important implications on 

the epidemiology of ECF through the spread of non-endemic ticks and pathogens strains, as 

ticks have potential to become established in new environments (Barre and Uilenberg, 2010; 

De Deken et al., 2007; Marcellino et al., 2017; Yssouf et al., 2011).  

Rhipicephalus appendiculatus ticks undergo a three-host life cycle which occurs both on cattle 

and on the vegetation. It is believed that the geographical distribution and seasonal population 

dynamics of such tick vectors are strongly driven by variations in ecological conditions, host 

availability and density, host movements and farming management practices (Dantas-Torres, 

2015; Leta et al., 2013; Olwoch et al., 2003; Perry et al., 1990). The interaction between ticks, 

pathogens, hosts and environmental conditions have substantial consequences in the 

establishment ability, vector competence of ticks, intensity of pathogen transmission and 

disease epidemiology (Leger et al., 2013; Ochanda et al., 1998; Young et al., 1996). In areas 

where agro-ecological conditions favour optimal interaction, continuous transmission of T. 

parva may lead to endemic state in which only calves are susceptible (Gilioli et al., 2009; 

Kivaria et al., 2004; Medley et al., 1993). However, agro-ecological variability and movements 

of cattle with possible introduction and establishment of potentially more virulent exotic T. 

parva strains and more competent ticks may disrupt the endemic situation and lead to epidemics 

(De Deken et al., 2007; Sitt et al., 2015; Uilenberg, 1999). 

Studies suggest that R. appendiculatus stocks originating from diverse agro-ecological areas 

differ in their biological features and their ecological preferences and plasticity. These include 
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diapause induction and intensity (Madder et al., 1999; Madder et al., 2002), body size (Chaka 

et al., 1999), infection rate and vector competence (Ochanda et al., 1998; Odongo et al., 2009). 

Based on these phenotypic and physiological divergences, associated with phylogenetic 

analyses, two main populations of R. appendiculatus have been identified in Africa: the 

equatorial and tropical lineages (Amzati et al., 2018; Kanduma et al., 2016a; Leta et al., 2013; 

Mtambo et al., 2007c). The two lineages occur in the Great Lakes region, with differences in 

their agro-ecological distribution and colonization patterns (a negative altitudinal gradient of 

their coexistence) (Amzati et al., 2018). It can therefore be postulated that the occurrence and 

abundance of ticks, together with agro-ecological variability may lead to differences in the 

transmission dynamics of T. parva and consequently different epidemiological profiles of ECF 

in space and time.  

Determining the seasonal dynamics and agro-ecological distribution of R. appendiculatus ticks 

and T. parva infection rate is of great significance for the epidemiology of ECF and facilitate 

the deployment of appropriate control measures either though vector control or cattle 

vaccination. To assess the epidemiological profile and the dynamics of transmission intensity 

of T. parva in the eastern DRC, we conducted repeated cross-sectional surveys on traditionally 

managed indigenous cattle population during the dry and the wet seasons in three different 

AEZs. The study focused on the analyses of the tick burden on cattle and the molecular 

prevalence of T. parva infections in cattle and in pooled free-living ticks. As suggested by 

(Ostfeld et al., 2006), the risk of exposure to vector-borne pathogens is mainly determined by 

the abundance of the vector and their infection rate. So, the transmission intensity of T. parva 

was modelled as a function of the tick burden and infection rate of individual ticks, and 

expressed directly the vectorial inoculation rate (VIR). The VIR estimates, assessed as a proxy 

measure of incidence, expressed the mean number of infective ticks that successfully attach on 

an animal during the feeding period. The study aimed to investigate the effect of AEZs and 

seasonal variation on the abundance of R. appendiculatus and the transmission dynamics of T. 

parva. The findings of this study contribute to a better understanding of ECF epidemiology in 

the South Kivu Province of DRC to guide control measures of the disease. 
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5.3 Methods 

5.3.1 Study area  

Sampling was performed from September 2014 to August 2015 across three agro-ecological 

zones (AEZs) of the South-Kivu province in the eastern Democratic Republic of Congo. The 

South-Kivu province lies between longitudes 26°47′- 29°20′E and latitudes 1°36′-4°51′S. The 

landscape morphology is characterised by high variation of altitude ranging from 700 to 3000 

m above sea level, with diversified agro-ecological conditions. The ecological diversity in 

South Kivu is largely defined by the topography, altitude and latitude which subsequently 

regulate other bioclimatic attributes, including rainfall amount and pattern, temperature and 

vegetation. In addition, the protected area (Kahuzi Biega National park) and the water bodies 

including Lakes Kivu and Tanganyika and the Ruzizi river (flowing between the two lakes) 

also influences the bioclimatic conditions in South Kivu. The climate is essentially tropical and 

strongly moderated by altitude (the climate is cooler and more humid with increasing altitude). 

It comprises three major seasons with a bimodal rainfall pattern: (i) the early rainy season (wet1: 

September to December), (ii) the late rainy season (wet2: February to May) and (iii) the dry 

season (dry: June-August). The two rainy seasons are alternating with a short dry period of 

approximatively 15 days (January-February). The duration of seasons varies between AEZs and 

the rainfall increases while the temperature decreases with altitude. The study area was 

classified into three major AEZs on the basis of altitudes and climate: (i) the lowlands (< 1200 

m) which is located in the Ruzizi valley (along the Ruzizi River), (ii) the midlands (1200-1800 

m) located in the district of Walungu and (iii) the highlands (1600-2800 m) in the district of 

Kabare and part of Walungu (Mulumemunene). Distinctive bioclimatic characteristics of AEZs 

are described in details in Table 5.1. The lowlands AEZ is a semi-arid area characterised by a 

tropical warm and dry climate, with warmer rainy seasons and a longer cool dry season. The 

vegetation is strongly dominated by savannah grasslands and small patches forest. The 

midlands AEZ is considered as an intermediate ecological zone between lowlands and 

highlands, which consists of a warm and humid tropical climate. The highlands area is much 

cooler (lower to mild temperature) and experiences abundant and frequent rainfalls, with a 

warm dry season receiving occasional rainfall. It falls within a montane humid tropical climate. 

The dominant vegetation is more variable, composed of montane and savannah grasslands, 

scrubs woodland and degraded forests in the midlands and highlands. In some places of 

highlands, the vegetation is marked by relict species of seasonal deciduous forests.  
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Table 5.1 Geographical and climatic characteristics of the three agro-ecological zones 

Agro-ecological  

zone (AEZ) 

Altitude  

(m) 

Temperature 

(°C) 

Rainfall 

(mm/year) 
Rainy season 

Lowlands 780-1100 23-25 800–1000 October-April 

Midlands 1200-1800 17-21 1000-1500 September-May 

Highlands 1800-2800 12-19 1350-2000 September-May 

5.3.2 Cattle farming system 

The majority of cattle herds are composed of Ankole breeds (Sanga type), kept under traditional 

extensive farming system (open grazing system) where animals are fed on communal natural 

grazing lands and housed overnight in “kraals”. Cattle are subjected to seasonal transhumance 

for grazing and water resources during the dry season. Adult animals move long distances 

depending on feed availability while calves are permanently kept in kraals or around homestead 

during their first year of life. The Ruzizi valley (lowlands), with a denser grass cover, is the 

most important pastoral area holding the highest cattle densities in South Kivu and the main 

corridor and destination of cattle originating from Rwanda, Burundi, Tanzania and Uganda and 

from montane areas in South Kivu. The control of ticks is negligible and irregularly applied, 

except in commercial farms in the highlands where acaricides are used on a weekly basis.  

5.3.3 Cattle blood sample collection 

Three cross-sectional surveys were organised from September 2014 to August 2015. Blood 

samples were collected from a total of 1424 traditionally managed indigenous cattle in three 

AEZs during three seasons. Sampling was done during planned visits communicated to 

livestock keepers at least two weeks before. Three cattle herds (or cattle keepers) were 

randomly selected from 5-12 sites (villages) in each AEZ during each season. Within each herd, 

5-10 adult cattle of over 3 years old were randomly sampled using the random number generator 

in Microsoft Excel. Blood samples were then taken from the jugular vein using EDTA tubes 

and preserved in a cool box containing ice packs. Samples were transferred the same day to the 

laboratory and approximatively 120 µl of each sample was spotted on Whatman FTA cards 

(Whatman Bioscience, Cambridge, UK). FTA cards were allowed to dry and were stored in 

separate labelled plastic bags at room temperature until further processing. The selected herds 

(or farmer) from one survey were excluded during the next survey to prevent the likelihood of 

re-sampling the same animal more than once. Additional information about the number of blood 
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samples collected in each AEZ and season is detailed in Table 5.2. These blood samples were 

further analysed for molecular detection of the presence of T. parva. 
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Table 5.2 Cattle blood and tick samples collected in three agro-ecological zones during three seasons 

Sample type Season  Agro-ecological zone (AEZ) 
Total 

Lowlands Midlands Highlands 

Cattle blood: PCR positive samples/ no. of 
cattle sampled (%) 

Wet1 138/261(53) 39/130 (30) 53/274 (19) 230/665 (35) 

Wet2 99/205 (48) 41/79 (51) 16/66 (24) 156/350 (45) 

Dry 65/150 (43) 14/59 (24) 20/200 (10) 99/409 (24) 

Total 302/616 (49) 94/268 (35) 89/540 (16) 485/1,424 (34) 

Free-living ticks: PCR positive pools /no. of 
tested 5 tick pools (%) 

Wet1 9/32 (28) 7/31 (23) 7/49 (14) 23/112 (21) 

Wet2 16/46 (35) 14/39 (36) 5/37 (13) 35/122 (29) 

Dry 2/18 (11) 3/20 (15) 1/10 (10) 6/48 (13) 

Total 27/ 96 (28) 24/90 (27) 13/96 (14) 64/282 (23) 

Attached ticks: total no. of collected ticks/ 
no. of cattle sampled (mean no. of ticks per 
animal) 

Wet1 2,247/77 (29) 2,853/73 (39) 1,235/66 (19) 6,335/216 (29) 

Wet2 2,090/54 (39) 2,073/49 (42) 968/42 (23) 5,131/145 (35) 

Dry 1,028/54 (19) 770/44 (18) 440/64 (7) 2,238/162 (14) 

Total 5,365/185 (29) 5,696/166 (34) 2643/172 (15) 13,704/523 (26) 

Abbreviations: Dry, the season; Wet1, the early rainy season; Wet2, the late rainy season;
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5.3.4 Tick collection from the vegetation  

Free-living ticks were collected from the vegetation in open communal grazing areas during 

three seasons between September 2014 and August 2015 and covering three AEZs. At each 

AEZ, three sites (villages) were selected from which 2-3 sentinel pastures (grazing areas) were 

randomly selected for tick collection during 3-4 consecutive visits per season in the same 

pastures. Free-living ticks were collected by visually searching on the vegetation combined 

with dragging a white cotton blanket over vegetation in the selected grazing areas. All ticks 

attached to the cloth and those collected manually were immediately immersed in plastic tubes 

containing 70% ethanol and maintained at room temperature until identification and DNA 

extraction. Overall, a total of 1667 free-living ticks was obtained across the three AEZs during 

three seasons. The collected ticks were placed in separate tubes according to site, pasture and 

season of collection and were transferred to the laboratory for morphological identification. The 

adult free-living ticks were subsequently analysed for the presence of T. parva. 

5.3.5 Sampling of attached ticks on cattle 

Attached ticks were collected from 523 cattle among those selected for blood sampling in sites 

where ticks were collected in the vegetation (Table 5.2). Samples were collected based on 

scheduled visits and farmers were aware to prevent their cattle at least two weeks without 

acaricide treatment prior to the sampling. Tick collections were made from about 5-10 adult 

cattle in each herd and from 2-3 herds in each site (3-4 villages per AEZ). Ticks were collected 

in the afternoon when cattle came back from pastures to “kraals”. During each visit, animals 

were restrained, the whole body was inspected and ticks were manually removed and directly 

placed into separate labelled vials containing 70% ethanol. After collection, tick samples were 

brought to the laboratory and stored at room temperature until subsequent identification and 

counting. Ticks obtained from cattle were used to estimate the tick burden, expressed as the 

mean number of R. appendiculatus ticks per animal. 

5.3.6 Morphological identification and molecular confirmation of tick species 

Tick samples were morphologically identified to genus and species level under a stereo 

microscope according to the standard taxonomical identification key proposed by Walker at al. 

(2003). Subsequently, only adults free-living ticks belonging to R. appendiculatus species were 

grouped in pools of five individuals and were further investigated for the presence of Theileria 

parva. Identified attached R. appendiculatus ticks were counted for each animal and recorded 

by herd, season and collection site. After identification, ticks were stored in 70% ethanol at 4°C 
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and used for subsequent analysis. Detailed data regarding the tick samples used in this study 

are shown in Table 5.2. Part of the specimens (25-30 ticks) of randomly selected free-living R. 

appendiculatus ticks in each AEZ and additional 5-10 ticks of each of other tick species were 

confirmed by molecular identification using the cox1 gene as described in our previous study 

(Amzati et al., 2018). 

5.3.7 DNA extraction from pooled free-living ticks and cattle blood 

Total DNA was extracted from blood and tick samples. Tick DNA extraction was performed 

on pooled adults free-living R. appendiculatus. Pools were made from adult ticks consisting of 

five ticks per pool according to pasture, collection site and season in each AEZ. A total of 282 

pools from the tree AEZs and three seasons were analysed (Table 5.2). Ticks from each pool 

were washed twice in distilled water, air dried on sterile filter paper, crushed and homogenised 

by grading prior to DNA extraction. Total DNA was then extracted from the homogenates of 

pooled ticks using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) according to 

the manufacturer’s guidelines. DNA was eluted from the column in a final volume of 50 µl TE 

buffer and stored at -20 °C until used for PCR amplification. A negative control DNA was 

extracted from uninfected laboratory ticks. DNA concentration was measured by 

spectrophotometry using Nanodrop (Nano Drop® ND-1000, PeqLab Erlangen, Germany) and 

extraction efficiency was further validated on agarose gel electrophoresis. Besides, cattle blood 

DNA samples were extracted using the Invitrogen Kit (PureLink® Genomic DNA Mini Kit, 

Invitrogen, Schwerte, Germany), according to the manufacturer’s as described in our previous 

study (Amzati et al., 2019).  

5.3.8 Theileria parva detection in DNA from pooled free-living ticks and cattle blood 

Purified DNA samples from both pooled free-living ticks (282 pools) and cattle blood (1424 

samples) were screened for the presence of T. parva DNA using a more sensitive nested PCR 

(nPCR) approach, that target the T. parva specific p104 gene (Iams et al., 1990; Odongo et al., 

2010; Skilton et al., 2002).The oligonucleotide primer pair IL3231 and IL755 was used in the 

first PCR amplification followed by the secondary amplification using the internal forward 

primer IL4243 and reverse primer IL3232 that amplify a 277 bp fragment of the p104 gene.  

Primary PCR assays for tick DNA were performed in a final reaction volume of 50 µl containing 

25 µl of 2× AccuPower® PCR PreMix (Bioneer PCR-PreMix, Seoul, South Korea), ~20-50 ng 

of DNA, 0.2 µM of each primer, and nuclease free water added to bring the reaction up to 50 

µl. The nPCR was run using the same components, except that the final reaction volume was 
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20 µl which contained 1µl of DNA template from the primary PCR and 12.5 µl of 2× PCR 

PreMix. Thermal cycling conditions were as following: 94°C for 1 min (initial denaturation), 

followed by 30 cycles at 94°C for 1 min (denaturation); 60°C for 1 min (annealing), 72 °C for 

1 min (extension) and a final extension at 72 °C for 9 min.  For the nested PCR assay, PCR 

conditions were the same as described above, except that annealing temperature of 55 °C and 

that 1 µl of the primary PCR product was used as template.  DNA samples purified from cattle 

blood were amplified using the same nPCR approach as described previously (Amzati et al., 

2019). A negative control PCR reaction containing nuclease-free water as template instead of 

DNA was included. Similarly, a positive DNA control obtained from the T. parva Muguga 

isolate was used in each PCR run. The PCR products of the nPCR for both tick and cattle DNA 

were separated by electrophoresis on a 1.8 % agarose gel and visualised under UV light after 

dyed with GelRed (Biotium Inc., Hayward, USA). Samples containing PCR products of the 

expected size (277bp) were treated as positive to T. parva.  Randomly selected T. parva positive 

samples were sequenced and compared with other published sequence from various areas across 

Africa.  

5.3.9 Statistical analyses 

Our goal was to estimate the effects of AEZs and seasons as independent variables on the spatial 

and temporal variation in cattle exposure to ticks and T. parva. Statistical analyses were 

performed in STATA 11 (Stata Corp, Texas USA) and R software version 3.6.1 (R Core Team, 

2019: https://www.r-project.org/) using three separate generalised linear models (GLM) for 

each data set containing different dependant variables: (i) the prevalence of T. parva infection 

in cattle blood, (ii) the prevalence of T. parva in pooled free-living ticks and (iii) the number of 

ticks per animal. The datasets of T. parva prevalence in cattle and in pooled free-living ticks 

(binary outcome) were analysed using the logistic regression model with logit link function, 

while the number of ticks per animal (count outcome) was analysed with Poisson regression, 

followed by negative binomial model to account for overdispersion using the log link function. 

In both models, fixed explanatory variables were agro-ecological zones with three levels 

(lowlands, midlands and highlands), seasons (three levels: wet1, wet2 and dry) and their 

interaction. Basic regression models with only fixed effect terms were extended by robust 

estimation of standard error for survey, using collection sites as clusters. The design effects 

parameter (DEFT) was then estimated to evaluate the effect of clustering within sampling sites. 

The T. parva prevalence in cattle and in pooled ticks and their confidence intervals (CI 95%) 

were computed for different AEZs and seasons. Predictions and CIs were performed based on 
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the robust model in case of significant intra-cluster correlation (DEFT > 1) and on the basic 

model in the absence of correlation (DEFT < 1).  

5.3.10  Computing the vectorial inoculation rate 

The vectorial inoculation rate was estimated as a function of the abundance of ticks on cattle 

and the infection rate of T. parva in free-living ticks. The linear estimators and standards errors 

were predicted from pooled prevalence and tick burden regression models. These estimations 

were used to create two separate normal distributions for each season within each AEZ. From 

these generated distributions, paired but independent random values were simulated 100,000 

times. The pool infection rate was expressed as the number of positive pools divided by the 

total number of pools examined. Theileria parva infection detected in pools was expressed as 

the proportion and minimum infection rate based on the assumption that each PCR positive 

pool contained at least one positive tick (Sosa-Gutierrez et al., 2016). The distribution of 

estimated pool prevalence was transformed in individual prevalence based on a simplified 

algorithm using a probabilistic function:  !" = 1 − (1 − !')) *+   (with: !": Individual 

prevalence, !': pool prevalence and ,: number of ticks per pool) (Katholi et al., 1995; Mitchell 

and Pagano, 2012). The VIR distribution was then generated as a product of the obtained 

independent and paired tick burden and individual prevalence values. The percentiles values at 

2.5, 50 and 97.5 were generated for the prevalence in individual ticks, tick burden and VIR 

distributions for each combination of seasons and AEZs. The VIR was interpreted as the mean 

number of infective R. appendiculatus ticks that attach to cattle, assuming that attached infected 

ticks successfully realise the feeding period of one week (Konnai et al., 2007).  
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5.4 Results 

5.4.1 Tick species identification 

A total of 1,667 adults free-living R. appendiculatus ticks were obtained on the vegetation and 

13,704 attached R. appendiculatus ticks were collected from cattle in the three AEZs during the 

dry and the wet seasons (Table 5.2). The overall attached ticks (16,421 specimens) belonged 

to six species grouped into the genera Rhipicephalus, Boophilus sub-genus of Rhipicephalus 

and Amblyomma. The species identified among these 16,421 ticks collected from cattle, in 

decreasing order of relative abundance, were Rhipicephalus appendiculatus, the most abundant, 

accounting for 83% of the collected ticks, followed by Rhipicephalus (Boophilus) decoloratus 

(8.1%), Amblyomma variegatum (3.5%), Rhipicephalus evertsi evertsi (2.8%), Rhipicephalus 

(Boophilus) microplus (2.2%) and Rhipicephalus compositus (0.4%). Rhipicephalus 

appendiculatus was the most dominant tick species on cattle in all AEZs during the three 

seasons. The distribution and ecology of other tick species will be handled in a separate paper. 

Molecular identification confirmed the status of these species and clustered the tested 

specimens with their corresponding haplotypes previously published. Two lineages of R. 

appendiculatus previously identified in an earlier study were found in the present study (Amzati 

et al., 2018). The lineage A was present in all AEZs whereas lineage B was found 

predominantly in lowlands followed by midlands (data not shown).   

5.4.2 Agro-ecological and seasonal dynamics in Rhipicephalus appendiculatus tick 
burden on cattle  

The abundance of R. appendiculatus tick feeding on cattle was analysed with regard to AEZs 

and seasons. The mean tick count ranged between six and 42 ticks per animal depending on 

seasons and AEZs. The overall mean R. appendiculatus tick burden was 26 ticks/animal 

corresponding to 83% of the tick load. Summary results of the negative binomial regression 

model are shown in Table 5.3. Statistical analyses revealed significant variation of the 

abundance of R. appendiculatus on cattle across AEZs and seasons (P < 0.001) as depicted in 

Figure 5.1a. Rhipicephalus appendiculatus was significantly more abundant during the two 

wet seasons compared to the dry season (Table 5.3). There was a markedly higher mean number 

of ticks per animal in lowlands and midlands compared to highlands where the tick burden 

significantly decreased (IRR= 0.36 and P < 0.001). However, the three AEZs showed similar 

patterns of seasonal dynamics in R. appendiculatus tick burden, being significantly lower 

during the dry season compared to the wet seasons (wet1 and 2). There was a significant 
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interaction between AEZs and the seasonal dynamics of R. appendiculatus. In lowlands, the 

tick burden of R. appendiculatus averaged 19 ticks per animal during the dry season, with the 

greatest mean number of ticks per animal obtained during the late wet season. The tick 

abundance was higher during the late wet season (39 ticks/animal) compared to the early wet 

season (29 ticks/animal) (Figure 5.1a, Table S5.1).  In the midlands, the tick burden similarly 

decreased in the dry season (17 ticks/animal) while it increased substantially during the early 

wet season (39 ticks/animal) and the late wet season (42 ticks/animal). However, there were no 

significant differences recognised between the tick burden recorded during the two wet seasons 

in this area. On the other hand, although the abundance of ticks was much lower during the dry 

season in all AEZs, the mean tick burden found during the dry season in lowlands and midlands 

was similar to that obtained in highlands during the two wet seasons.   

Table 5.3 Summary of the negative binomial model for R. appendiculatus tick abundance 

(mean tick burden per animal) from cattle according to AEZs and seasons 

Factor Level IRRa CI (95%) P-value DEFTb 

AEZ Lowlands Refc         

  Midlands 0.92 0.61 1.3 0.61 1.01 

  Highlands 0.36 0.23 0.55 < 0.001 1.2 

Season Dry Refc         

  Wet1 1.5 1.1 2.3 0.003 1.1 

  Wet2 2.0 1.5 2.7 < 0.001 0.94 

 Interaction Midlands & Wet1 1.5 0.86 2.5 0.08 1.1 

  Midlands & Wet2 1.2 0.76 1.8 0.45 0.98 

  Highlands & Wet1 1.8 0.93 3.4 0.006 1.4 

  Highlands & Wet2 1.6 0.96 2.8 0.03 1.1 

Notes: AEZ, agro-ecological zones; Seasons: Wet1, early wet season (September-December); Wet2, late 
wet season (February-May); Dry, dry season (June-August). The model was multivariate, including 
AEZs (three levels), seasons (three levels) and their interaction. aIncidence rate ratio; bDEFT, design 
effects computed using sample sites (villages) as subpopulation clusters assuming intra-village 
correlation. The model including “sites” as a random effect was a better model (DEFT >1) and was used 
to predict confidence intervals. cRef., reference level: lowlands and dry season were used as reference 
for comparison in the model (P=0.05). CI, confident intervals 
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Figure 5.1 Agro-ecological and seasonal dynamics of (a) the abundance of R. appendiculatus 
ticks collected from cattle, (b) the infection rate of T. parva estimated in individual free-living 
ticks and (c) the vectorial inoculation rate (transmission intensity of T. parva). The graphs show 
the means and their 95% confidence intervals. Notes: AEZ, agro-ecological zones; Seasons: 
Wet1, early wet season (September-December); Wet2, late wet season (February-May); Dry, 
dry season (June-August).  
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5.4.3 Theileria parva infection rate in free-living ticks collected from the vegetation 

A total of 282 pools of unfed free-living ticks collected from the vegetation in three AEZs 

during the three main seasons of the year were analysed for the presence of T. parva. Overall, 

T. parva DNA was detected in 64 (pool prevalence of 23%) out of the 282 tested pools (Table 

5.2). There was no evidence of statistically significant variation in the proportion of T. parva-

infected free-living R. appendiculatus neither among AEZs nor among seasons within each 

AEZ (Table S5.3). The individual infection rate simulated from pool infection showed that 

free-living R. appendiculatus ticks are infected with T. parva throughout the year without 

significant seasonal and agro-ecological patterns (Figure 5.1b). The predicted infection rate in 

individual ticks was moderate and ranged from 2% during the dry season in highlands to 8% 

during the late wet season in lowlands and midlands with an overall of 4% (Table S5.2). 

5.4.4 Vectorial inoculation rate: Theileria parva transmission dynamics and intensity 

The VIR simulated as the product between the individual tick infection rate and the mean tick 

burden displayed significant variations among AEZs and among seasons as depicted in Figure 

5.1c. The overall estimated VIR for the study area was 1.6 infective ticks/animal. The T. parva 

transmission intensity decreased with increasing altitude and the seasonal transmission 

dynamics also varied significantly within AEZs. A markedly higher mean number of infective 

R. appendiculatus ticks per animal was detected in lowlands and midlands compared to 

highlands, although it was similar during the dry season in all the three AEZs. Of the three main 

seasons covered by the present study, the dry season had lowest VIR compared to the wet 

seasons. In the highlands, the VIR was relatively constant (around one infective tick/animal) 

throughout the year regardless the seasons, meaning that there was no significant seasonal trend 

in the transmission intensity of T. parva in this area. In contrast, in lowlands and midlands, the 

transmission intensity was strongly affected by seasons, being lower during the dry season (less 

than 1 infective tick/animal), and increasing significantly during the wet seasons (2-4 infectives 

ticks/ animal). Interestingly, the lowest VIR observed during the dry season in lowlands and 

midlands was closely similar to the ones observed during the dry season and the two wet seasons 

in highlands. Is it worth noting that, slighter differences in the number of infective ticks were 

found between the early wet season (2 infective ticks/animal) and the late wet season (3-4 

infective ticks/animal) in lowlands and midlands.  
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5.4.5 Agro-ecological and seasonal dynamics of Theileria parva infection in cattle  

A total of 1424 cattle blood samples were screened to detect the presence of T. parva DNA. Of 

the 1424 DNA samples analysed, 485 (34%: CI: 32-37%) samples tested positive to T. parva 

(Table 5.2). There were statistically significant variations in the prevalence of T. parva 

infection in cattle across AEZs, with different seasonal patterns within AEZs (Table 5.4). The 

prevalence decreased significantly with increasing altitude: midlands (OR = 0.41 and P = 0.01) 

and highlands (OR = 0.15 and P < 0.001). The lowest proportion of positive samples was 

recorded during the dry season in highlands (10%), while there was markedly higher prevalence 

during the early wet season in lowlands and the late wet season in midlands (Table S5.2). The 

seasonal pattern of T. parva infection in cattle appeared to be very complex in lowlands and 

midlands (Table S5.2). In lowlands, the prevalence was slightly higher during the early wet 

season (53%) compared to the dry season (43%) which was not statistically different from the 

late wet season (48%). Besides, in midlands, the risk of infection was significantly higher 

during the late wet season (53%) compared to the early wet season (30%) and the dry season 

(24%). Strikingly, the prevalence observed during the dry season was not significantly different 

from that observed during the early wet season in this AEZ. In highlands, the T. parva 

prevalence was clearly different between the wet seasons and the dry season.  
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Table 5.4 Summary of the logistic regression model for the prevalence of T. parva infection 

in cattle according to AEZs and seasons  

Factor Level Odds ratio 

(OR) 

CI (95%) P-value DEFTa 

AEZ 

  

  

Lowlands Refb         

Midlands 0.41 0.31 0.54 0.01 0.38 

Highlands 0.15 0.09 0.22 < 0.001 0.69 

Season 

  

  

Dry Refb         

Wet1 1.5 0.91 2.4 0.063 1.2 

Wet2 1.2 0.55 2.7 0.35 1.8 

Interaction Midlands & Wet1 0.94 0.48 1.8 0.88 0.76 

 
Midlands & Wet2 2.8 1.22 6.6 0.017 0.93 

 
Highlands & Wet1 1.5 0.81 2.6 0.26 0.81 

 
Highlands & Wet2 2.4 0.87 6.4 0.046 1.1 

Notes: AEZ, agro-ecological zones; Seasons: Wet1, early wet season (September-December); Wet2, late 
wet season (February-May); Dry, dry season (June-August). The model was multivariate, including 
AEZs (three levels), seasons (three levels) and their interaction. aDEFT, design effects computed using 
sample sites (villages) as subpopulation clusters assuming intra-village correlation. bRef., reference 
level: lowlands and dry season were used as reference for comparison in the model (P=0.05). CI, 
confident intervals 
 

 

Figure 5.2 Agro-ecological and seasonal dynamics of the prevalence of T. parva infections in 
cattle. The graphs show the means and their 95% confidence intervals. abbreviations: AEZ, 
agro-ecological zones; Seasons: Wet1, early wet season (September-December); Wet2, late wet 
season (February-May); Dry, dry season (June-August) 
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5.5 Discussion 

This study aimed to investigate the extent of agro-ecological and seasonal dynamics of T. parva 

transmission intensity and the distribution of its main tick vector R. appendiculatus in the South 

Kivu Province (eastern DRC). We conducted repeated cross-sectional surveys in three 

contrasting AEZs during the wet and dry seasons to determine the R. appendiculatus tick burden 

and the prevalence of T. parva infection in free-living ticks and in cattle. We then estimated the 

vectorial inoculation rate (VIR) based on tick burden and infection rate in ticks. These data 

provide useful information on tick population dynamics and T. parva transmission intensity to 

better understand the epidemiology of ECF in DRC for future rational and effective control 

strategies. The abundance of the tick and the transmission dynamics have a direct impact on the 

degree of endemicity to T. parva (Gachohi et al., 2012).  

Rhipicephalus appendiculatus was the most common tick species recorded in South Kivu with 

a wide agro-ecological distribution range, accounting for 83% of the overall tick population 

collected on cattle. These findings are in general consistent with previous results reported in 

most neighbouring countries and regions, including Rwanda (Bazarusanga et al., 2007a), Nord 

Kivu in DRC (Kalume et al., 2013), Uganda (Byaruhanga et al., 2015), Tanzania (Hezron E et 

al., 2012; Laisser et al., 2014) and Burundi (Kaiser et al., 1988; Moran et al., 1996). The wide 

geographic distribution and the dominant nature of R. appendiculatus found in this study 

represents the ability of this species to colonise most equatorial conditions in the eastern and 

central Africa were climatic conditions are favourable to tick development and survival (Leta 

et al., 2013; Olwoch et al., 2003; Perry et al., 1990). Rhipicephalus appendiculatus tick burden 

was significantly affected by AEZs and seasons in South Kivu. It was lower in highlands and 

higher in lowlands and midlands AEZs. The environmental and livestock management 

conditions in these AEZs vary in their suitability for R. appendiculatus. In addition, migration 

of people with their cattle, seasonal transhumance, anthropic activities and climatic variability 

observed in the Great Lakes region may have facilitated the dispersal of the tick species and 

shaped its current agro-ecological distribution (Bazarusanga et al., 2007a; Byaruhanga et al., 

2015; Kalume et al., 2013; Verweijen and Brabant, 2017). In the highlands, there is a montane 

tropical humid climate characterised by high rainfall but lower temperature. A large proportion 

of natural grazing lands are degraded and used for crop production due to high human 

demographic pressure. These factors may have led to reduced exposure of cattle to ticks. 

According to (Speybroeck et al., 2003), low temperatures compromise the survival capacity 

and delay the development of early instars of the tick and therefore result in reduced tick activity 
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on animals. In contrast, the midlands region provides more ecologically optimal conditions for 

the multiplication and survival of the tick as expected (warm and humid: medium temperature 

and substantial rainfall). The tick species is known to be most present and abundant at altitudes 

ranging between 1000-1800 m above the sea level (covering the midlands), where it has more 

successful reproduction cycles in warm and humid conditions (Gachohi et al., 2012; Rubaire-

Akiiki et al., 2006; Yawa et al., 2018). Besides, the obvious high R. appendiculatus tick burden 

on cattle in lowlands could be a result of the establishment of the species in this region despite 

the relatively semi-arid characteristic of the lowlands AEZ at altitudes below 1200 m (warm 

and dry: rainfall varying between 800-1000 mm). There are a number of most likely 

explanations related to this finding: (i) The rainfall amounts which still fall within the range of 

suitable precipitations (500-2000 mm) for R. appendiculatus and warm conditions prevailing 

in lowlands likely reflects optimal development and survival of the tick (Berkvens et al., 1998; 

Rubaire-Akiiki et al., 2006; Speybroeck et al., 2002; Walker et al., 2005); (ii) The lowlands 

area is subjected to increased cattle movements from neighbouring countries and within the 

country which could favour permanent connectivity of cattle carrying ticks from different 

epidemiological situations; (iii) The higher number of cattle concentrated in this area which is 

the main cattle production zone in the South Kivu Province could contribute to the high activity 

of ticks in the shared open communal grazing lands; (iv) The availability of vegetation where 

cattle graze during the dry season and the humid microclimate created along the Ruzizi River 

and the littoral fringe of Lake Tanganyika likely provide suitable ecological conditions for 

continuous tick activity.  With regards to seasonal variation, R. appendiculatus ticks were found 

throughout the year. However, the tick infestation exhibited a clear seasonal variation in its 

abundance within all AEZs. The tick burden was lower during the dry season, but large numbers 

where found during the wet seasons. The lower number of ticks collected from cattle during the 

dry season naturally reflects the reduced rainfall and vegetation which affect the development, 

survival rate and behaviour of the tick. Interestingly, although there was lower number of ticks 

during the dry season, the fact that adult ticks were present on cattle during all seasons 

throughout the year suggests that R. appendiculatus has more than one generation with at least 

a bivoltine phenology. This is usually observed in the equatorial region of its distribution range 

(central and eastern Africa) where no synchronisation of the developmental stages is needed as 

opposed to South African areas which experience marked seasonal pattern of tick instars 

(Berkvens et al., 1998; Gachohi et al., 2012; Madder et al., 2002; Speybroeck et al., 2002).  
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The prevalence of T. parva infection was estimated in individual free-living ticks collected from 

the grazing areas. However, the statistical analysis did not provide significant differences of the 

infection rate neither across AEZs nor among seasons. The low and relatively constant 

prevalence of T. parva in ticks is consistent with other studies that used tick salivary gland 

staining and PCR methods to assess the infection in ticks from endemic regions (Gitau et al., 

2000; Kimaro et al., 2017; Konnai et al., 2006; Ogden et al., 2003; Swai et al., 2006). There is 

evidence that T. parva infection rate in free-living ticks is usually expected to be low in endemic 

areas where most cattle are carrier (with low-level parasitaemia) and in areas where low 

prevalence prevails in cattle, which reduce the likelihood that most ticks acquire the infection 

(Medley et al., 1993; Ogden et al., 2003; Swai et al., 2006; Young et al., 1996). The vectorial 

inoculation rate (VIR) was much higher in lowlands and midlands than highlands, a situation 

correlated with the tick burden recorded in these respective AEZs. This is an indication of a 

stronger predictive power of tick burden to the estimates of T. parva transmission intensity. 

Analysis of seasonal fluctuation in VIR further support these findings showing that the 

dynamics of transmission intensity was greatly associated with tick burden rather than infection 

rate in ticks. The mean number of infective ticks was relatively constant throughout the year in 

highlands, while a significant seasonal pattern was found in lowlands and midlands. The 

suitability of ecological conditions which determine the extent of tick activity is believed to 

explain the observed transmission intensity of T. parva. Lower transmission may occur during 

seasons when climatic conditions are unfavourable to R. appendiculatus and the intensity of 

transmission increases with increased activity of adult ticks (Billiouw et al., 2002; Mulumba et 

al., 2001). Excepted from climatic conditions influencing the tick population dynamics, it could 

be possible that the observed differences in the transmission intensity and dynamics of T. parva 

are also explained by the genetic composition of R. appendiculatus from different ecological 

conditions, their behavioural diapause and variable levels of vector competence (Amzati et al., 

2018; Mtambo et al., 2007b; Ochanda et al., 1998).  

The overall prevalence of T. parva infection in cattle obtained in this study was generally 

similar to that recorded previously among indigenous cattle in different endemic areas of 

eastern and central African countries (Bazarusanga et al., 2007b; Byaruhanga et al., 2016; Kabi 

et al., 2014; Laisser et al., 2014; Muhanguzi et al., 2014; Tayebwa et al., 2018). The T. parva 

prevalence exhibited a significant variation among AEZs displaying a significant decrease in 

highlands and increased in lowlands and midlands, an indication of different levels of cattle 

exposure to T. parva infection (Deem et al., 1993; Gitau et al., 2000). These findings appear to 
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be correlated with the spatial and temporal variations in R. appendiculatus tick challenge and 

the transmission intensity of T. parva which were also significantly higher in lowlands and 

midlands than highlands. So, the differences observed in the extent and seasonal trend of T. 

parva prevalence in the three regions could be attributed to the variation in tick abundance due 

to changes in agro-ecological conditions and cattle densities (Magona et al., 2011b). However, 

a more complex seasonal trend of T. parva infection was observed in lowlands and midlands. 

Agro-ecological conditions prevailing in lowlands and highlands seems to favour increased 

activity of ticks which suggests an optimal interaction between hosts and ticks and subsequently 

a continuous transmission of T. parva (Bazarusanga et al., 2007b; Magona et al., 2011a; Olwoch 

et al., 2009). Under such conditions where cattle are continuously exposed to high tick 

challenge throughout the year, together with high transmission intensity and prevalence of T. 

parva, a scenario consistent with endemic status is expected, as reported in most endemic areas 

in Africa (Gachohi et al., 2012; Jonsson et al., 2012; Kimaro et al., 2017; Kivaria et al., 2004; 

Magona et al., 2008; Magona et al., 2011b; Rubaire-Akiiki et al., 2006). However, substantial 

movements that expose cattle to variable tick challenge, temporal variation in tick abundance 

(limiting early infection of calves) and exposure of cattle to more competence circulating tick 

stocks and heterologous T. parva strains are likely to disrupt the endemic situation and lead to 

unstable endemic or epidemic situations (Billiouw et al., 2002; De Deken et al., 2007; Latif et 

al., 2019; Rubaire-Akiiki et al., 2006; Yssouf et al., 2011). The situation observed in the 

highlands AEZ is totally different: low tick challenge, low and constant transmission intensity 

throughout the year and low prevalence among cattle. In such circumstances, as an implication 

to disease epidemiology, a large proportion of cattle are likely maintained susceptible and could 

be affected during the exposure to T. parva infection which usually generate strong epidemic 

situations (especially during seasons or years when tick abundance increases or moving to 

higher challenge areas) (Billiouw et al., 2002; Rubaire-Akiiki et al., 2004; Rubaire-Akiiki et 

al., 2006).  

The tick population dynamics and T. parva transmission intensity are not the only factors that 

shape the epidemiological profile of ECF in the region. Other factors related to the genetic 

composition of parasite and vector populations are thought to bring different levels of 

interaction and complexity in the transmission system. In our earlier study, we reported an 

extensive variability of T. parva alleles in lowlands and midlands while only alleles identical 

to the components of the trivalent vaccine occur in highlands (Amzati et al., 2019). Besides, we 

found that two sympatric R. appendiculatus lineages occur in the region with an altitudinal 
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gradient of their coexistence and diversity. The south African lineage was more prevalent in 

lowlands and midlands whereas the east African lineage was ubiquitous in all AEZs (Amzati et 

al., 2018). These genetic discrepancies in T. parva and R. appendiculatus populations among 

AEZs, together with ecological conditions which define the differences in T. parva transmission 

dynamics and intensity and the movements of cattle undoubtedly play a crucial role in the 

complexity of ECF epidemiology reported in the Great Lakes region (Bazarusanga et al., 2007b; 

Kalume et al., 2012). Although the repeated cross-sectional approach applied in this study 

provided an overall picture of the epidemiological status of ECF in South Kivu, additional fine-

scale longitudinal studies would be important to further assess data on the seroconversion rate, 

occurrence of clinical cases, mortality and case-fatality among cattle in different AEZs.  

5.6 Conclusions 

The findings presented in this study provide valuable information on ecological effects on the 

tick burden and the transmission intensity of T. parva, which shed light on the epidemiological 

profile of ECF in DRC. The exposure of cattle to T. parva was found to be strongly affected by 

the abundance of R. appendiculatus ticks and the transmission intensity of T. parva. 

Rhipicephalus appendiculatus ticks were present on cattle throughout the year and experience 

at least two generations. The agro-ecological and seasonal variations in the transmission 

intensity of T. parva was primarily predicted by the abundance of tick vector rather than the 

differences in tick infection rate among AEZs. The pattern of transmission intensity and 

dynamics of T. parva suggested an endemic situation in lowlands and midlands areas where 

there is high tick challenge whereas an epidemic situation is suggested in the highlands where 

tick activity and the T. parva infection in cattle are reduced. However, the movements of cattle 

together with the genetic composition of R. appendiculatus and T. parva seem to be major 

factors that are complexifying the epidemiological status of ECF leading to occasional 

epidemics or disruption in endemicity in lowlands.  
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Chapter 6. General discussion 
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6.1 Introduction 

East coast fever caused by Theileria parva is the most pathogenic and economically important 

tick-borne disease of cattle in the Great Lakes region. The Great Lakes region of central Africa 

is characterised by diversified agro-ecological conditions and extensive cattle movements, 

where the epidemiology of ECF was previously reported to be complex and unstable, restricting 

the achievement of effective control measures (Amzati, 2011; Bazarusanga et al., 2011; 

Bazarusanga et al., 2007b; Kalume et al., 2012; Kalume et al., 2013). The control of ECF may 

rely on acaricide application to reduce tick infestation on cattle, the use of theilericidal drugs to 

treat seek animals, immunisation of cattle and the potential anti-tick vaccines under evaluation 

(Nene et al., 2016; Nene and Morrison, 2016; Olds et al., 2016; Parizi et al., 2020). The current 

immunisation method is based on the use of the Infection and treatment method (ITM) which 

involve inoculation of live T. parva sporozoites and simultaneous treatment with long-acting 

dose of oxytetracycline. The live vaccination approach provides strong immunity against 

homologous parasite strains, but limited cross-protection with heterologous strains. The 

efficacy and safety of live vaccine are limited due to the genetic diversity of T. parva in field 

populations and the risk of spreading “foreign” parasite strains in new areas (Hemmink et al., 

2016; Kivaria et al., 2007; McKeever, 2007). Effective control strategies should be preferably 

designed in light of factors affecting the observed epidemic complexity of ECF in the Great 

Lakes as the disease is greatly variable among AEZs. The factors that are thought to explain the 

complexity may include the interplay between the biogeographical genetic composition of the 

tick vector and the pathogen and the transmission dynamics of T. parva. Predicting changes in 

the epidemiological landscape of vector-borne diseases should rely on an appropriate 

understanding of the biology, ecology and genetics of tick vector and pathogen populations, the 

vector-pathogen interface and their implications on the dynamics of the disease (Gooding, 

1996; McCoy, 2008; Tabachnick and Black, 1995). These population genetic studies associated 

with the epidemiology of ECF can reveal and explain more complex epidemiological situations. 

The overall aim of the studies presented in this thesis was to assess the population genetics of 

R. appendiculatus and T. parva and the transmission and infection dynamics of T. parva, as so 

to further understand the epidemic instability of ECF reported in different agro-ecological zones 

of the Great Lakes region and to assure the safety and efficacy of existing control measures. To 

achieve this objective, we examined specifically the intraspecific genetic variation and the 

phylogeography of R. appendiculatus populations (Chapter 3), the genetic and antigenic 
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variation of T. parva (Chapter 4) and the transmission intensity and dynamics of T. parva to 

define the epidemiological states of ECF in contrasting agro-ecological zones by means of 

vectorial inoculation rate (VIR) (Chapter 5). In the following sections, we will discuss the use 

of molecular markers and the major findings from our studies with focus on their evolutionary 

and ecological implications on the epidemiology of ECF. 

6.2 Mitochondrial genes for genetic studies of Rhipicephalus 

appendiculatus 

The genetic variation within and between tick species by the use of genetic tools and techniques 

usually provides clues that support the control diseases (Araya-Anchetta et al., 2015; McCoy, 

2008; Sivakumar et al., 2014). During the past three decades, genetic markers have been widely 

used to estimate population genetic structure of ticks at the species level and taxonomic 

resolution of closely-related tick species (Araya-Anchetta et al., 2015). In the present study, we 

used mitochondrial COI and 12S rRNA markers to investigate the phylogenetic structure of R. 

appendiculatus. Mitochondrial genes undergo faster evolution due to their higher mutation rate 

compared to nuclear genes. Their maternal inheritance and clonal evolution support their 

usefulness for intraspecific evolutionary reconstruction (Shao and Barker, 2007). Our results 

showed that COI gene was more variable than 12S rRNA because of its high level of 

intraspecific variation, as previously described for R. appendiculatus (Kanduma et al., 2019; 

Kanduma et al., 2016a; Mtambo et al., 2007b; Mtambo et al., 2007c), R. microplus (Burger et 

al., 2014) and other Rhipicephalus species (Latrofa et al., 2013). Nevertheless, both 

mitochondrial genes resolved successfully and in congruence the phylogenetic substructuring 

of R. appendiculatus. In contrast, it has been reported previously that the nuclear second internal 

transcribed spacer (ITS2) of ribosomal DNA did not resolve any clear subgrouping of R. 

appendiculatus probably due to sexual recombination between the nuclear genomes within the 

species maintained at high level of sequence conservation (Kanduma et al., 2016a; Mtambo et 

al., 2007c), but was useful to distinguish closely-related species R. appendiculatus and R. 

zambeziensis (Mtambo et al., 2007a). Thus, mitochondrial genes were seen to be more powerful 

than nuclear markers for intraspecific discrimination of R. appendiculatus. 

6.3 Theileria parva antigen-coding genes 

The genetic variation within T. parva populations is considered to be one of the main survival 

strategies of this pathogen (Katzer et al., 2010). The availability of whole-genome sequence of 
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T. parva allowed generating useful molecular tools to discriminate the genetic and antigenic 

variation between and within T. parva populations (Gardner et al., 2005; Hayashida et al., 2013; 

Henson et al., 2012; Norling et al., 2015). These include variable number of tandem repeat 

(VNTR) markers (mini and micro-satellites) (Table S6.1) (Odongo et al., 2006; Oura et al., 

2007; Oura et al., 2003; Rukambile et al., 2016) and antigen-coding genes that are targets of 

bovine MHC-I restricted CD8+ T cells (Graham et al., 2007; Graham et al., 2008). In this study, 

we used two antigen-coding loci that are immunodominant targets of bovine cytotoxic CD8+ T 

cells in cattle and are substantially polymorphic for typing the genetic composition T. parva 

populations (Table S6.2) (Hemmink et al., 2018; Kerario et al., 2019; Pelle et al., 2011; Salih 

et al., 2017). It has been shown that the immunodominance nature of the CD8+ T cell responses 

together with the antigenic variability in T. parva populations are major determinants of the 

phenomenon of parasite strain-specific immunity responses elicited by live vaccination 

(Connelley et al., 2011; MacHugh et al., 2009; Morrison et al., 2015). However, the direct role 

of the gene loci used in this study in the immunity provided by the live vaccination is not 

formally demonstrated to date, but it is believed that the efficacy of the vaccine is affected by 

the allelic variation and antigenic differences between vaccine and challenge strains (Pelle et 

al., 2011; Sitt et al., 2018; Sitt et al., 2015). The advantage of using the genes encoding antigens 

recognised by the CD8+ T cells is that these antigens have been identified as vaccine candidates 

for the development of subunit vaccine against T. parva (Svitek et al., 2018). The extent of their 

sequence variation is thought to constraint the efficacy of the vaccine (Hemmink et al., 2018; 

Nene et al., 2016). Furthermore, these gene loci provide an opportunity to study the nature and 

extent of the signature of selective forces driving the antigenic diversity and the diversity within 

epitope regions affecting the immune responses (Graham et al., 2007; Graham et al., 2008). 

Thus, the results of the two genes may give strong indication of potential vaccine outcomes as 

the success of the live vaccination partially depend on the antigenic variability of T. parva 

which can lead to parasite immune evasion.  

6.4 Two divergent Rhipicephalus appendiculatus lineages occur in the 

Great Lakes region: geographical isolation or ecological preferences? 

The phylogenetic analyses performed on mitochondrial sequences for R. appendiculatus 

specimens from the Great Lakes region together with published sequences revealed the 

presence of two genetic groups or “lineages” of the ticks occurring across its distribution range 

in the sub-Saharan Africa. The two groups are named lineages A and B in the present study, 
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corresponding to the “east African” and the “south African” stocks, respectively (Mtambo et 

al., 2007c). The analyses showed extensive polymorphism in individuals that belong to lineage 

A and low level of diversity within individuals of lineage B. However, they have no clear 

geographical sub-structuring in the Great Lakes region (sympatric distribution) but strong 

geographic separation in the southern Africa (allopatric distribution). The lineage A was 

composed of individuals mainly present in the equatorial region while the lineage B consisted 

of specimens present in the tropical region and unlike equatorial areas. The ecological and 

geographical distributions of the two lineages suggested that they have experienced 

independently different processes and historical dynamics that have shaped their structure. The 

analysis further revealed low level of genetic differentiation and population subdivision over 

geographical regions due to extensive gene flow leading to population admixture. A recent 

analysis of R. appendiculatus populations from different geographical areas in Kenya did not 

show any evidence of isolation by distance, suggesting that the genetic structure of this tick 

species could be shaped by dynamics other than geographic separation in the eastern African 

region (Kanduma et al., 2016a; Kanduma et al., 2016b). The evolutionary dynamics analyses 

revealed a signal of sudden demographic and spatial population expansion, suggesting that the 

observed genetic distribution is shaped by frequent dispersal of ticks though host mobility in 

the Great Lakes region, supported by the observed high degree of migration.  

Earlier findings from east Africa suggested that one R. appendiculatus lineage may have 

diverged from the other (ancestral population) and experienced sudden population expansion 

after a bottleneck or genetic drift (Kanduma et al., 2016a). However, factors driving this 

divergence are unknown and which lineage is the ancestor is still speculative. We hypothesised 

that the divergence observed between the two R. appendiculatus lineages could have arisen 

following ancient geographical isolation due to founder events. Founder populations that 

initially belonged to lineage B could have experienced independent selective pressures from 

lineage A and subjected to genetic drift that shaped their current genetic composition. When, 

where and how the geographic isolation took place? does this separation represent ongoing 

speciation? Are there crossbreeding events between the two lineages? Do these lineages 

maintain their phenotypic features heritable to their offspring in new environments? These 

questions cannot be answered with the current data generated during this study. The observed 

current geographical distribution of tick lineages is shaped by cattle movements associated with 

their ecological preferences and establishment ability in different climatic conditions (Avise, 

2000; Avise, 2012; Madder et al., 2002). The fact that the two lineages are sympatric in most 
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fringe ecological areas in central and eastern Africa show that they share some ecological 

preferences. The genetic grouping of R. appendiculatus stocks in Africa strongly correlated 

with phenotypic characteristics based on their body size, phenology, diapause behaviour and 

ecological distribution: the east African stock (lineage A) and the south African stock (lineage 

B). This support the existence of at least two distinct populations of R. appendiculatus in Africa 

that represent two divergent genetic groups (Leta et al., 2013). The east African stocks are 

smaller sized, characterised by at least a bivoltine adult phenology and the absence of diapause. 

The south African stocks are larger sized and have univoltine phenology and obligate diapause 

(Berkvens et al., 1998; Chaka et al., 1999; Madder et al., 2002; Speybroeck et al., 2004; 

Speybroeck et al., 2002). The larger body size of these south African stocks contributes to 

slower developmental and reproductive cycles, but provides strong ability to these ticks to 

survive harsh environmental conditions (hot and dry) while the smaller sized ticks have lower 

survival rates under unfavourable conditions. In sympatric areas, the “east African” stock may 

have faster reproductive ability giving rise to an evolutionary advantage in areas where the 

oviposition of the “south African” stocks could be delayed due to its obligatory diapause 

(Madder et al., 2002; Speybroeck et al., 2002).  

6.5 Recent introduction of the “south African” Rhipicephalus 

appendiculatus lineage in the Great Lakes region through cattle 

movements 

The south African lineage (tropical lineage) was previously absent from the Great Lakes region 

during a countrywide genetic study of R. appendiculatus conducted in Rwanda in 2007 

(Mtambo et al., 2007c). It can be hypothesised that this lineage was recently introduced in the 

region through livestock movement, but the colonisation trajectory is currently difficult to 

determine. It could have inherited its diapause behaviour from its region of origin (southern 

Africa) and only developed the ability to survive in areas where there are pronounced and longer 

dry seasons like in the lowlands areas of Ruzizi valley (DRC), Imbo valley (Burundi) and the 

eastern lowlands of Rwanda. The process that reduced its colonisation ability in highlands 

AEZs needs to be further investigated. However, we can postulate that the reduced abundance 

of the obligatory diapausing lineage and its quasi-absence in the highlands may be explained 

by the longer wet season (abundant rainfall) in the highlands which does not give the 

opportunity to the tick to undergo diapause (Madder et al., 1999; Madder et al., 2002). The 

lowlands areas where most of specimens of lineage B were found is holding the majority of 
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cattle imported from neighbouring countries and is ecologically similar to the distribution zone 

of lineage B in southern Africa (Mtambo et al., 2007b; Mtambo et al., 2007c). In contrast, the 

east African R. appendiculatus lineage may have been established longer in the region since the 

first report of R. appendiculatus and T. parva within the Great Lake region (Mortelmans and 

Kageruka, 1986). The dominant and ubiquitous nature of the distribution of the east African 

lineage in the Great Lakes region could be an indication of well-established population of this 

tick in the region. It is known that genetic diversity and distribution generally differ between 

long-established and recently introduced populations of invasive ticks. Long-established 

populations are more genetically diverse than recently introduced populations (Nadolny et al., 

2015). Although the two groups are sympatric in the Great Lakes region, they displayed 

contrasting genetic diversity patterns. This provides evidence that the two tick stocks have 

different life histories as they originated from various ecological conditions and established in 

the Great Lakes region. 

6.6 Extensive genetic diversity among Theileria parva in the Great Lakes 

region 

Agro-ecological variations driving tick population dynamics and anthropogenic movements of 

cattle were expected to be main factors affecting the genetic distribution of T. parva in the Great 

Lakes region. Previous studies on genetic characterisation of T. parva in field samples from 

various ecological areas of Africa revealed extensive diversity in T. parva populations, 

especially in buffalo-derived parasites (Elisa et al., 2015; Hemmink et al., 2018; Kerario et al., 

2019; Pelle et al., 2011; Salih et al., 2017; Sitt et al., 2018). In the present study, a number of 

alleles were not identical to previously reported sequences, which demonstrate the extensive 

diversity within T. parva parasites from the Great Lakes region. T. parva populations from the 

Great Lakes region were extensively more diverse compared to those from various ecological 

zones in Africa and the majority of cattle-derived alleles circulating in Africa were found in 

DRC and Burundi (Figure 6.1). Interestingly, ubiquitous alleles and epitope variants identified 

in the two genes were identical or closely related to those found in the trivalent Muguga vaccine 

components. The evolutionary dynamic analyses did not provide the evidence of immune-based 

selection driving the observed diversity in the Great Lakes region, rather we proposed the 

demographic mechanisms such as range expansion of the parasite facilitated by the 

unidirectional importation of cattle from different countries and the ecological conditions 

driving tick population dynamics and competence (Estrada-Pena et al., 2009; Hemmink et al., 
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2018; Pelle et al., 2011). Other mechanisms such as recombination during the sexual phase in 

the tick and random mutations could explain the generation of novel alleles (Sivakumar et al., 

2014). It can be suggested that only the subset founder population of buffalo-derived T. parva 

established in cattle are circulating in different African countries through the dispersal of 

infected ticks and cattle. The coexistence of endemic alleles that are ubiquitous with newly 

introduced genetically distinct alleles might be leading to endemic instability. However, the 

extent of cross-protection between T. parva strains should be determined is such areas 

characterised by high gene flow. Phylogenetic and population structure analyses revealed a 

limited geographical separation of T. parva populations which was explained by the broad 

distribution of Muguga alleles associated with cattle movements in the region (Failly, 1999; 

Verweijen and Brabant, 2017). The cattle movements (gene flow) are maintaining similar 

ubiquitous cattle-derived T. parva alleles in different geographical and ecological areas in 

Africa, whereas unshared and less abundant alleles are restricted to parasite populations from 

specific AEZs and explain the significant genetic differentiation between lowlands and 

highlands areas. 

 

Figure 6.1 Theileria parva Tp2 antigenic diversity in the Great Lakes region 
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A surprising result was that an in-frame indel insertion of 12 nucleotides was found in four Tp1 

cattle-derived sequences from DRC (allele-45/var-32) that were genetically the most distant 

from vaccine strains. This typical insertion in the Tp1 gene and its encoded protein was first 

reported as only present in buffalo-derived and buffalo-associated isolates (Pelle et al., 2011). 

However, the transmission of buffalo-derived T. parva within cattle by ticks is usually 

inefficient and cattle infected with these parasites develop a suddenly lethal disease that reduces 

their transmission sustainability within cattle population (absence of carrier state in cattle) 

(Bishop et al., 2015; Latif et al., 2019; Mbizeni et al., 2013; Sitt et al., 2015). In addition, cattle 

are not sharing pasture with African buffalo in the study area. Thus, the presence of these 

parasites in cattle could result either from the importation of animals carrying infected ticks that 

have acquired infection from African buffalo in other regions and transmitted the parasite to 

local cattle in DRC; or that the allele also evolves in cattle-derived parasites but was not 

described in previous studies in cattle from East Africa. Unfortunately, we were not able to 

monitor these infected cattle in order to make conclusive statements based on the case-fatality 

of the infection and other clinical features. 

The Tp1 and Tp2 PCR assays used in this study have challenges that still need to be addressed 

to improve their performance. The sensitivity of these tests is still compromised in cases of 

mixed infections, especially in endemic areas. In addition, the sensitivity related to the level of 

parasitaemia and long-term infections is not known. It is known that the detection threshold of 

molecular essays varies in different field situations according to T. parva stocks and the level 

of parasitaemia (Geysen, 2008; Oura et al., 2004a; Oura et al., 2007). We commanded 

increasing the DNA template using the current primers to increase the probability of detecting 

T. parva DNA or design improved primers that are specific to different T. parva variants. 

6.7 Transmission intensity and dynamics of Theileria parva  

The seasonal dynamics and agro-ecological distribution of R. appendiculatus ticks and 

transmission of T. parva are of great epidemiological significance and have strong effect in the 

transmission of different T. parva variants. The infection rate in vector populations is a crucial 

parameter in assessing the transmission intensity of vector-borne diseases in order to calculate 

a proxy estimate of the incidence of the disease. In this study, we estimated the transmission 

intensity by means of the vectorial inoculation rate (VIR), expressing the number of infective 

ticks that attach on cattle during the feeding period of assumed one week. The p104 PCR-based 

method used in this study is more sensitive and has the advantage of being specific to detect T. 
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parva either in ticks or in carrier animals (Odongo et al., 2010; Odongo et al., 2009; Olds et al., 

2018; Skilton et al., 2002). When a large number of ticks have to be analysed, detecting T. 

parva infection based on individual ticks is time consuming and a costly approach. The pooling 

approach used in this study seems to be a simple and practical approach to examine the infection 

rate in free-living ticks. However, the pooling must be random and the number of ticks per pool 

should allow successful detection of T. parva DNA in pools containing at least one infected 

tick (Katholi et al., 1995). 

The differences in agro-ecological conditions were expected to determine the abundance of 

ticks and the number of generations which in turn are thought to reflect differences in infestation 

challenge and transmission intensity of T. parva. The objective was to assess the 

epidemiological landscape of ECF based on the level of tick challenge and the transmission 

intensity of T. parva in the three AEZs. Overall, we found that the transmission intensity was 

strongly predicted by the tick burden rather than the infection rate in ticks which was found to 

be constant across AEZs and seasons. According to (Norval et al., 1992), the abundance of 

feeding stages of ticks on cattle determines the level of T. parva transmission, increasing the 

number of infective ticks. The study revealed valuable findings in specific AEZs: in lowlands 

and midlands, we observed higher number of ticks per animal and higher transmission intensity, 

while lower tick challenge and lower and constant transmission intensity were found in 

highlands. The highlands AEZ is less ecological suitable for the survival of different instars of 

the tick due to the cooler conditions prevailing in this area together with reduced cattle densities 

whereas the lowlands and midlands area allows the strong occurrence of all instars of the tick 

throughout the year and provides favourable conditions (warm and humid) for R. 

appendiculatus and T. parva survival, facilitating the transmission (Gachohi et al., 2012; 

Rubaire-Akiiki et al., 2006; Yawa et al., 2018).  The development and survival of free-living 

stages of R. appendiculatus are mainly favoured by humidity. The aridity and cooler conditions 

(lower temperature and dry conditions) compromise the development of earlier stages of the 

ticks reducing the establishment of tick populations on cattle (Norval et al., 1992; Speybroeck 

et al., 2003). A seasonal pattern in the transmission intensity was observed in lowlands and 

midlands, which was increased during the wet seasons. The increased rainfall and vegetation 

during these seasons favoured the exposure of cattle to ticks and consequently increased 

transmission intensity. In addition, although data were not collected on a monthly basis, the 

trends of tick abundance suggest at least two generations per year, a characteristic of the tick in 
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equatorial conditions (Berkvens et al., 1998; Gachohi et al., 2012; Madder et al., 2002; 

Speybroeck et al., 2002). 

The prevalence of T. parva in cattle was higher in lowlands and midlands where the tick 

challenge and the transmission intensity were also high, especially during the late wet season. 

This shows that during the earlier wet season, animals are infested by adult ticks that have lost 

their T. parva infection during the dry season. In such conditions, the transmission of T. parva 

during the earlier wet season is obtained from carrier animals and the nymphal tick stage may 

play a crucial role in the transmission (Mulumba et al., 2001; Mulumba et al., 2000). However, 

it is difficult to provide clear relationships between the molecular prevalence in cattle and the 

tick challenge in a cross-sectional survey as the PCR methods usually detect current infections 

and have fluctuation of the sensitivity in detecting carrier infections (Geysen, 2008; Skilton et 

al., 2002).  The observed pattern of transmission intensity and dynamics of T. parva suggested 

an endemic situation in lowlands and midlands areas where there is high tick challenge and 

high T. parva transmission throughout the year and an epidemic situation in the highlands 

characterised by low tick activity, low and constant transmission intensity (Figure 6.2). Since 

animals in highlands receive low tick challenge, a large proportion of susceptible animals may 

exist, which can easily trigger a strong epidemic.  

 

Figure 6.2 East Coast fever epidemiological states based on the vectorial inoculation rate in 

three agro-ecological zones of DRC    
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6.8 The genetic composition of Rhipicephalus appendiculatus and Theileria 

parva and the transmission dynamics  

The evolutionary processes and historical dynamics of tick species are thought to have 

significant consequences on its ecological adaptability and epidemiological situations 

(Gooding, 1996; McCoy, 2008). The differences observed in the agro-geographical distribution 

and ecological preferences of R. appendiculatus lineages in the Great Lakes region suggest 

distinct epidemiological situations of ECF in different AEZs, because of the underlined 

differences in the vector phenotypes and phenologies (Berkvens et al., 1998; Chaka et al., 1999; 

Madder et al., 2002; Speybroeck et al., 2002). The geographical variation in the diapause 

behaviour and phenology of R. appendiculatus lineages may result in distinct vector 

competence (Kubasu, 1992; Ochanda et al., 1998; Odongo et al., 2009), survival and 

transmission efficiency of various T. parva strains in different AEZs, significantly affecting the 

epidemiology of ECF (Bishop et al., 2008).  It has been established previously that the tick 

stock vector competence is heritable and that specific tick stocks are associated with specific T. 

parva strains in the transmission system (Norval et al., 1992; Ochanda et al., 1998; Tempia, 

1997; Young et al., 1995).  The biogeographical patterns of the genetic composition of T. parva 

suggested a direct association with ecological parameters driving tick population dynamics 

which affect the transmission dynamics of T. parva, and consequently the genetic structure of 

T. parva and the epidemiological landscape of ECF. The differences in bioclimatic conditions 

between AEZs (temperature, rainfall, vegetation and cattle population, cattle movements) are 

believed to underline substantially the ecological dynamics and activity of tick populations 

(Berkvens et al., 1998; Leta et al., 2013; Pegram and Banda, 1990; Speybroeck et al., 2002). In 

addition, the spreading ability of R. appendiculatus through cattle movement and the genetic 

distribution if its lineages seem to be altering the disease transmission system. It has been shown 

that tick population structure and heterogeneity determine parasite diversity (Katzer et al., 2006; 

McCoy, 2008). In the Great Lakes region, the genetic diversity of R. appendiculatus was 

strongly affected by the altitudes. It was lower in highlands and higher in lowlands and 

midlands. The east African lineage was present in all AEZs while the newly introduced south 

African lineage was confined to lowlands and midlands. The extensive genetic diversity of T. 

parva found in lowlands and midlands appears to be correlated with the high transmission 

intensity of T. parva in these areas, the increased number of ticks on cattle and the sympatric 

coexistence of the two R. appendiculatus lineages. The lowlands fringes areas which seem to 

be ecologically more suitable for the sympatric coexistence of the two lineages allow the 



158 

coexistence of tick lineages that have different phenotypes and consequently continuous 

transmission of T. parva. In contrast, the low level of genetic diversity of T. parva found in 

highlands was associated with reduced tick challenge on cattle and consequently, the low 

transmission intensity of T. parva observed in this area. These findings suggest that the genetic 

structure and diversity of T. parva are associated with the mobility of their hosts and the agro-

ecological conditions affecting ticks established and competence. Although there was limited 

geographical substructuring between R. appendiculatus populations, the results showed that the 

occurrence and abundance of tick lineages are driven by agro-ecological and climatic factors 

facilitated by cattle movements. The factors affecting the tick population dynamics and sudden 

expansion are found to be major determinant of the epidemiological patterns of ECF in the 

region. These findings highlighted the strong relationships between the genetic composition of 

R. appendiculatus and T. parva and the dynamics of infective ticks. 
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7.1 Conclusions 

This study has contributed substantially to improve our understanding of the relationships 

between the genetic and biogeographical distribution of R. appendiculatus and T. parva and the 

transmission dynamics of T. parva. In addition, factors affecting these variations and their 

nature have been proposed. These findings helped to understand the complex epidemiology of 

ECF in the Great Lakes region. 

Rhipicephalus appendiculatus contains two major genetic groups in the Great Lakes region that 

differ in they colonisation patterns: lineage A (east African group) and lineage B (south African 

group). Their distribution in Africa correlated with marked differences in phenotypic features 

including behaviour diapause, vector competence and body size. The east African lineage (the 

more diverse and ubiquitous) is widely distributed and has been longer well-established in the 

Great Lakes region whereas the south African lineage (less abundant) has probably settled a 

founder population from recent colonisation events and its distribution decreases with altitude. 

The two genetic groups have been subjected to sudden demographic and spatial population 

expansion associated with cattle movements in Africa. The genetic divergence of R. 

appendiculatus lineages may have arisen from historical geographic isolation while the current 

structure is associated with their ecological preferences. Rhipicephalus appendiculatus ticks are 

more diverse in lowlands than highlands, with moderate genetic structure between the two 

ecosystems, while more genetic similitude is found in areas with same agro-ecological 

attributes, in spite of their geographical distance. The biogeographical distribution of R. 

appendiculatus suggests a sympatric coexistence in central and eastern Africa and allopatric 

distribution in south Africa. 

Population genetic and phylogenetic analyses provided strong evidence of genetic similarity 

among ubiquitous T. parva genetic variants circulating in the Great Lakes region and the 

components of the Muguga trivalent vaccine. There was high degree of genetic variation within 

populations and limited agro-ecological structure due to the widespread major genotypes 

identical or closely similar to vaccine strains. Theileria parva populations from lowlands and 

midlands were more diverse than those from highlands areas. The majority of cattle-derived T. 

parva alleles circulating in Africa were found in the Great Lakes region, suggesting that T. 

parva populations are extensively more diverse in the Great Lakes region compared to those 

from various ecological zones in Africa. The genetic structure and biogeographical distribution 

of T. parva genetic variants were found to be strongly driven by gene flow facilitated by cattle 
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movement and ecological conditions driving tick population dynamics and phenotypes. 

Importantly, the fact that ubiquitous T. parva variants were genetically identical or closely 

related to the components of Muguga trivalent vaccine, together with the admixture of T. parva 

populations, partially provides evidence for safe use of existing trivalent live vaccine cross-

protection field trials without any risk of introducing new parasite variants in the Great Lakes 

region. 

The agro-ecological and seasonal variations in the transmission intensity of T. parva were 

primarily predicted by the abundance of tick vector rather than the differences in tick infection 

rate. Rhipicephalus appendiculatus ticks were present on cattle throughout the year and 

experience at least two generations in the Great Lakes region. The exposure of cattle to T. parva 

infection was found to be significantly affected by agro-ecological zones. The prevalence of T. 

parva infection in cattle, the tick challenge on cattle and the transmission intensity were 

significantly higher in lowlands and midlands while the highlands areas exhibited lower tick 

challenge and lower and constant transmission intensity. 

These studies highlighted the strong relationships between the genetic composition of R. 

appendiculatus and T. parva and the transmission dynamics of T. parva that are complexifying 

the epidemiology of ECF in the region. Different epidemiological situations were then 

described in the contrasting agro-ecological zones: (i) In the highlands area, where high cattle 

mortality was previously reported, only T. parva isolates identical to the trivalent Muguga 

vaccine strains occur, associated with the strong presence of the east African tick lineage and 

low and constant transmission intensity of T. parva. In this area, the situation is suggested to be 

epidemic; (ii) In midlands and lowlands areas, where previous data reported that the disease 

was confined to calves, there was high genetic diversity of T. parva and R. appendiculatus. The 

two tick lineages are sympatric in these areas and there were high tick challenge and 

transmission intensity of T. parva. This is an indication of an endemic situation in these areas. 

Particularly, the strong coexistence of two R. appendiculatus lineages well adapted to the 

climatic conditions of the region, together with the continuous introduction of ticks through the 

extensive cattle movement may disrupt the endemicity and lead to occasional epidemics.    

An integrated management of ECF including different control strategies should be implemented 

to be adapted in each epidemiological situation (Table 7.1). In endemic areas (lowlands and 

midlands), a control strategy using the ITM vaccine on the susceptible animals (calves and 

exotic) is more indicated. However, the age at first contact and the calving regime need to be 
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determined to facilitate the choice of optimal period for vaccination. In contrast, strategic tick 

control during epidemics, treatment of sick animals and a cost-effective vaccination of calves 

should be recommended in the epidemic area (highlands). In addition, tick control should be 

applied on cattle moving across agro-ecological zones to prevent the continuous introduction 

of new tick and parasite strains and reduce the risk of epidemics.   

7.2 Perspectives 

This study provided the evidence of interaction between the genetic composition of R. 

appendiculatus and T. parva and the transmission dynamics which can influence the 

epidemiology of ECF in the light of ecological conditions (Table 7.1). However, it remains to 

known which T. parva genotype is efficiently transmitted by which R. appendiculatus lineage. 

This question should be answered with research directed to assess the vector-pathogen genotype 

co-evolution and its impact in the transmission system and the spatiotemporal dynamics of T. 

parva genotypes. As demonstrated in this thesis, tick lineages are shifting and expanding their 

ecological niches. Thus, another important pending research question is to evaluate the 

heritability of phenotypic characteristics of R. appendiculatus in their new habitats and whether 

the identified two lineages are inbreeding or represent ongoing allopatric or sympatric 

speciation. These data are valuable to further understand the significance of specific vector-

pathogen interaction in the epidemiology of ECF. In addition, although sequencing of 

mitochondrial genes was used successfully to characterise R. appendiculatus lineages, future 

research should be focused on the identification of tools and techniques (such as RLFP and 

morphological keys) that are cost-effective and able to easily discriminate the two lineages. 

This may help to further delineate the ecological and geographical ranges of the two lineages 

and to study their seasonal dynamics and phenology. On the other hand, an extensive genetic 

diversity of T. parva was found in the region. However, it remains relevant to investigate the 

relationships between the antigenic variation and the immunological variation of T. parva 

strains to be able to predict at a fine scale their impact in the epidemiology of ECF. Besides, 

the presence of T. parva variants identical to south African stocks (Chitongo and Boleni) that 

are more genetically distant from the components of Muguga trivalent vaccine remains of 

concern and their significance in the epidemiology and control of ECF should be further 

investigated in the ecological context of the Great Lakes region. The fact that majority of T. 

parva parasites circulating in the region were identical to the Muguga trivalent stocks alleviates 

the concerns of introducing exotic parasite strains through ITM vaccination. Nevertheless, 

testing the cross-protection with local isolates as challenge should be crucial to define the 
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composition of the IMT vaccine to be used in the region. A more recent experiment in 

controlled conditions demonstrated that immunisation with the Muguga strain alone provides 

similar level of protection compared to trivalent Muguga cocktail (Steinaa et al., 2018a), 

supporting the evidence of limited antigenic diversity in the three components of the Muguga 

cocktail vaccine (Hemmink et al., 2016). This raises the research question of testing different 

compositions of the IMT vaccine in field conditions. Although epidemiological situations were 

defined in different AEZs, their evolution can be expected to occur because of the reported 

climate change and changes in landscape use, cattle density and cattle movement trajectories. 

Thus, it should be of major interest to monitor these changes through a longitudinal study which 

may help to investigate the temporal distribution of T. parva and R. appendiculatus genotypes 

and their contribution to the incidence of ECF. Furthermore, a large-scale cattle blood sampling 

should be extended to Rwanda and other AEZs of Burundi to further capture the whole picture 

of T. parva strains circulating in these parts of the region. Finally, an ex-ante adoption study 

involving policymakers in charge of animal health and production, cattle farmers and other 

stakeholders will be relevant for the success of the deployment of live vaccine and other 

strategic control measures. 
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Table 7.1 Conclusions and perspectives 

Studies Conclusions Perspectives 

Lowlands and midlands  Highlands  

Genetic of R. 
appendiculatus 

Sympatric coexistence of 
tropical and equatorial 
lineages 

 Equatorial lineage, low 
diversity 

• Characterisation of phenotypic differences and heritability in new 
environments 

• Crossbreeding (biological experiments) and panmixia (neutral 
markers) 

• Identification tools for the two lineages 
• Longitudinal survey (phenology and temporal genetic structure) 

Genetic of T. 
parva 

More diverse and 
population admixture 

 Less diverse, identical to 
vaccine stocks 

• Antigenic variation vs immunological variation 
• T. parva strains /variants vs lethality 
• Temporal dynamics of genetic variants 
• Neutral markers (SSR) 
• Additional data for Rwanda 

Transmission 
dynamics 

High and seasonal 
transmission intensity  

 Low and relatively 
constant transmission 

• Vector-pathogen coevolution and relationships in the transmission 
system 

• Longitudinal study: age at first contact 
• Additional data for Rwanda and other TTBDs  

Epidemiological 
states 

Endemic situation  Epidemic situation • Impact of changing landscape and climate change 
• Longitudinal study: seroconversion and incidence 

Control 
strategies 

ITM Vaccine: 
susceptible population 
(calves and exotic cattle) 

 Strategic tick control, 
treatment of sick animals 
and vaccination of calves 

• Cross-immunity vaccination trial: monovalent vs trivalent vaccine 
• Using existing trivalent vaccine or improved vaccine with local 

isolates?  
• Possible breakthroughs infection due to more variable T. parva 

variants?  
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Appendices (Chapter 3) 

Table S3.1 Rhipicephalus appendiculatus cox1 and 12S rRNA haplotype sequences retrieved 

from GenBank 

Gene 
locus Geographical origin 

Number of 
sequences 

GenBank  
accession number Reference 

Cox1 Kenya 29 KU725890-917 [31] 
DQ901358-59 [29] 

Zimbabwe 3 AF132833 [68] 
KX276944 [31] 
KC503257 [69] 

Comoros 1 DQ901357 [29] 
Rwanda 3 DQ901360, DQ901362-63 [29] 
Zambia (Southern 
province) 

2 DQ859262 [52] 
KX276943 [31] 

Zambia (Eastern 
province) 

7 DQ859261, DQ859263-66  [52] 
DQ901361 [29] 
KX276942 [31] 

South Africa 3 DQ901356 [29] 
KX276939-40 [31] 

Uganda 2 KX276941, KU725897 [31] 
12S 
rRNA 

Kenya 6 KX276945-49       [31] 
DQ901320 [29] 

Zimbabwe 2 AF031859, AF150027 [73] 
Comoros 1 DQ901317 [29] 
Rwanda 5 DQ901279, DQ901281-82, 

DQ901284, DQ901286 
[29] 

Zambia (Southern 
province) 

6 DQ849203-05, DQ849208, 
DQ901309, DQ901311 

[29] 

Zambia (Eastern 
province) 

6 DQ849207, DQ849210, DQ849212, 
DQ849214, DQ901277, DQ901288  

[29] 

South Africa 2 DQ849233, DQ849235 [29] 
Uganda 1 AF150028 [70] 

[29].  Mtambo J, Madder M, Van Bortel W, Geysen D, Berkvens D, Backeljau T. Genetic variation in 
Rhipicephalus appendiculatus (Acari: Ixodidae) from Zambia: correlating genetic and ecological variation with 
Rhipicephalus appendiculatus from eastern and southern Africa. J Vector Ecol. 2007;32:168-75. 

[31].  Kanduma EG, Mwacharo JM, Githaka NW, Kinyanjui PW, Njuguna JN, Kamau LM, et al. Analyses of 
mitochondrial genes reveal two sympatric but genetically divergent lineages of Rhipicephalus appendiculatus in 
Kenya. Parasit Vectors. 2016;9:353. 

[52]. Mtambo J, Madder M, Van Bortel W, Chaka G, Berkvens D, Backeljau T. Further evidence for geographic 
differentiation in R. appendiculatus (Acari: Ixodidae) from Eastern and Southern provinces of Zambia. Exp Appl 
Acarol. 2007;41:129-38. 

[68]. Murrell A, Campbell NJH, Barker SC. Phylogenetic Analyses of the Rhipicephaline Ticks Indicate That the 
Genus Rhipicephalus Is Paraphyletic. Mol Phylogenet Evol. 2000;16:1-7. 

[69]. Burger TD, Shao R, Barker SC. Phylogenetic analysis of mitochondrial genome sequences indicates that the 
cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Mol Phylogenet Evol. 2014;76:241-
53. 

[70] Beati L, Keirans JE. Analysis of the systematic relationships among ticks of the genera Rhipicephalus and 
Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological 
characters. J Parasitol. 2001;87:32-48. 
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Table S3.2 cox1 and 12S rRNA BLAST results for species identification and confirmation 

Gene 
locus Haplotype GenBank 

accession no. 

BLAST results 
Reference 

GenBank match Identity  
(%) 

Source 

cox1 CH1 MF458950 KU725895 100 Kenya [31] 
CH2 MF458951 KU725893 100 Kenya [31] 
CH3 MF458952 KU725895 99 Kenya [31] 
CH4 MF458953 KU725895 99 Kenya [31] 
CH5 MF458954 KU725891 100 Kenya [31] 
CH6 MF458955 KU725894 99 Kenya [31] 
CH7 MF458956 KC503257 100 Zimbabwe [69] 
CH8 MF458957 KU725894 100 Kenya [31] 
CH9 MF458958 KU725893 99 Kenya [31] 
CH10 MF458959 KU725895 99 Kenya [31] 
CH11 MF458960 KU725892 100 Kenya [31] 
CH12 MF458961 KU725900 99 Kenya [31] 
CH13 MF458962 AF132833 100 Zimbabwe [68] 
CH14 MF458963 KU725894 99 Kenya [31] 
CH15 MF458964 KU725895 99 Kenya [31] 
CH16 MF458965 KU725895 99 Kenya [31] 
CH17 MF458966 KU725895 99 Kenya [31] 
CH18 MF458967 KU725893 99 Kenya [31] 
CH19 MF458968 KU725892 99 Kenya [31] 
CH20 MF458969 KC503257 99 Zimbabwe [70] 
CH21 MF458970 KU725891 99 Kenya [31] 
CH22 MF458971 KU725894 99 Kenya [31] 

12S 
rRNA 

12SH1 MF479189 DQ849209 100 Zambia(east) [29] 
12SH2 MF479190 AF150028 100 Uganda [70] 
12SH3 MF479191 DQ849209 99 Zambia(east)  [29] 
12SH4 MF479192 DQ849203 99 Zambia(south)  [29] 
12SH5 MF479193 DQ849203 99 Zambia(south)  [29] 
12SH6 MF479194 DQ849209 99 Zambia(east)  [29] 
12SH7 MF479195 DQ849209 99 Zambia(east)  [29] 
12SH8 MF479196 DQ849209 99 Zambia(east)  [29] 
12SH9 MF479197 DQ849209 99 Zambia(east)  [29] 

[29].  Mtambo J, Madder M, Van Bortel W, Geysen D, Berkvens D, Backeljau T. Genetic variation in 
Rhipicephalus appendiculatus (Acari: Ixodidae) from Zambia: correlating genetic and ecological variation with 
Rhipicephalus appendiculatus from eastern and southern Africa. J Vector Ecol. 2007;32:168-75. 

[31].  Kanduma EG, Mwacharo JM, Githaka NW, Kinyanjui PW, Njuguna JN, Kamau LM, et al. Analyses of 
mitochondrial genes reveal two sympatric but genetically divergent lineages of Rhipicephalus appendiculatus in 
Kenya. Parasit Vectors. 2016;9:353. 

[69]. Burger TD, Shao R, Barker SC. Phylogenetic analysis of mitochondrial genome sequences indicates that the 
cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Mol Phylogenet Evol. 2014;76:241-
53. 

[68]. Murrell A, Campbell NJH, Barker SC. Phylogenetic Analyses of the Rhipicephaline Ticks Indicate That the 
Genus Rhipicephalus Is Paraphyletic. Mol Phylogenet Evol. 2000;16:1-7. 

[70] Beati L, Keirans JE. Analysis of the systematic relationships among ticks of the genera Rhipicephalus and 
Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological 
characters. J Parasitol. 2001;87:32-48. 
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Table S3.3 Polymorphism in the 22 haplotypes of the cox1 gene fragment of R. appendiculatus 

Haplotype 
No. of 
sequences 
(%)a 

Polymorphic sites (27 positions) * Haplogroup 
21 41 56 80 93 95 104 107 143 164 167 179 233 249 302 314 320 329 395 401 458 470 498 500 527 539 548  

CH1 56 (27) C A A T G T C T A T C G T T C T T T G T G C C A G A A A 
CH2 59 (28) . G . . . . . . . . . . . . . . . . . . . . . . . . . A 
CH3 1 (0.5) . . . . . . . . . C . . . . . . . . . . . . . . . . . A 
CH4 2 (1) . . . . . . . . . . . A . . . . . . . . . . . . . . G A 
CH5 39 (19) . G . . . . . . G . . . . . . . . . . . . . . . . . . A 
CH6 2 (1) . . . . . . T . . . . . . . . . . . A . . . . . . . . A 
CH8 2 (1) . . . . . . . . . . . . . . . . . . A . . . . . . . . A 
CH9 1 (0.5) . G . . . . . . . . . . C . . . . . . . . . . . . . . A 
CH10 1 (0.5) . . . . . . . . . . . . . . . . . . . . . . . . . G . A 
CH11 10 (5) . . . . . . . . . . . . . . . . C . A . . . . . . . . A 
CH12 5 (2) . G . . . . . . G . . . . . . . . . . . . . . . A . . A 
CH14 1 (0.5) . G . . . . . . . . . . . . . . . . A . . . T . . . . A 
CH15 1 (0.5) . . . . . . . C . . . . . . . . . . . . . . . . . . . A 
CH16 2 (1) . . . . . . . . . . . . . . . . . C . . . . . . . . . A 
CH17 1 (0.5) . . . C . . . . . . . . . . . . . . . . . . . . . . . A 
CH18 2 (1) . G . . . . . . . A . . . . . . . . . . . . . . . . . A 
CH19 2 (1) . . . . . G . . . . . . . . . . C . A . . . . . . . . A 
CH21 1 (0.5) . G G . . . . . G . . . . . . . . . . . . . . . . . . A 
CH22 1 (0.5) . G . . A . . . . . . . . . . . . . A . . . . . . . . A 
CH7 8 (4) T T . . . . T . . . T . . C T C . . . C A T . G T . . B 
CH13 11 (5) T T . . . . T . G . T . . C T C . . . C A T . G T . . B 
CH20 1 (0.5) T T . . . . T . . . T . C C T C . . . C A T . G T . . B 

a Number of specimens sharing the same haplotype 
*The number represents the position of variable sites (bp)  
 dots (.) represent nucleotides identical to haplotype 1 
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Table S3.4 Population genetic structure inferred by analysis of molecular variance (AMOVA) 

based on cox1 sequences of R. appendiculatus from different agro-ecological zones 

Haplogroup Level of 

partitioning 
Source of variation d.f. 

Percentage 

of variation 
P-value 

Overall data AEZs Among AEZ 5 6 < 0.001 

 Within AEZ 203 94 - 

Haplogroup A AEZs Among AEZ 5 6 < 0.001 

 Within AEZ 183 94 - 

 DRC Among AEZ 2 6 < 0.001 

  Within AEZ 130 94  

 Burundi Among AEZ 1 6 0.06 

  Within AEZ 40 94 - 

 d.f., degree of freedom 
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Table S3.5 Evolutionary neutrality, demographic and spatial history of mitochondrial cox1 gene 

Statistics 
DRC   Burundi Rwanda 

Overall 
AEZ1 AEZ2 AEZ3   AEZ1 AEZ3 AEZ2 

Selective neutrality tests         
Tajima's D 
(P-value) 

0.41 
(0.71) 

-0.95 
(0.17) 

-1.3 
(0.14) 

 -2.1 
(0.005)* 

-0.21 
(0.44) 

0.92 
(0.83) 

-0.93 
 (0.23) 

Fu's Fs 
(P-value) 

1 
(0.71) 

-1.4 
(0.31) 

0.84 
(0.7) 

 -1.6 
(0.048)* 

-1.1 
(0.15) 

1.6 
(0.8) 

-3.8 
 (0.15) 

Demographic expansion          
Harpending’s Raggedness index (RI)  0.061 0.064 0.055  0.047 0.16 0.086 0.049 
P (Simulated RI ≥ Observed RI) 0.89 0.29 0.47  0.79 0.11 0.28 0.51 
Sum of Squared deviation (SSD) 0.13 0.014 0.007  0.006 0.022 0.084 0.017 
P (Simulated SSD ≥ Observed SSD) 0.004* 0.047* 0.19  0.5 0.16 0.12 0.1 
Spatial expansion         
Harpending’s Raggedness index (RI)  0.061 0.064 0.055  0.047 0.16 0.086 0.049 
P (Simulated RI ≥ Observed RI) 0.73 0.39 0.54  0.78 0.12 0.59 0.74 
Sum of Squared deviation (SSD) 0.043 0.014 0.006  0.006 0.022 0.062 0.036 
P (Simulated SSD ≥ Observed SSD) 0.23 0.044* 0.22   0.45 0.082 0.13 0.28 

*Values are statistically significant at p < 0.05; Significance was determined using 1000 coalescent simulations 

Abbreviations: D, Tajima’s neutrality statistic; Fs, Fu’s neutrality statistic 
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Figure S3.1 cox1 mismatch distribution pattern for R. appendiculatus haplogroup A in different 

agro-ecological zones. The x-axis shows the number of pairwise differences between pairs of 

haplotype sequences and the y-axis shows their frequencies. The observed frequencies are 

represented by solid histograms and the simulated mismatch distributions expected under 

demographic expansion (solid black line) and under spatial expansion (dotted black line) 
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Table S3.6 Rhipicephalus appendiculatus 12S rRNA haplotypes and their distribution across 

agro-ecological zones of the Great Lakes region and other sub-Saharan African countries 

Haplotype Haplotypes from GenBank: Country (original 
haplotype name and GenBank number) This study Haplogroup 

12SH1 Kenya (H2: KX276946, H5: KX276949) 1, Rwanda 
(H5: DQ901279, H5: DQ901281, H5: DQ901282, 
H5: DQ901284)2, Zambia-east (H5: DQ849210, 
DQ901288)2 

Burundi (AEZ1, 
AEZ3), DRC AEZ1, 
AEZ2, AEZ3), 
Rwanda AEZ2 

A 

12SH2 Kenya (H3: KX276947) 1 Burundi (AEZ1, 
AEZ3), DRC AEZ1, 
AEZ2, AEZ3), 
Rwanda AEZ2 

A 

12SH3 - Burundi AEZ1 A 
12SH4 - Burundi AEZ1, DRC 

AEZ1, Rwanda AEZ2 
B 

12SH5 Zimbabwe (AF031859, AF150027)3, Grande 
Comore (H1: DQ901317) 2, Zambia-south (H1: 
DQ849203, H1: DQ849205, H1: DQ901311, H1: 
DQ849208, H1: DQ849204, H1: DQ901309) 2, 
Zambia-East (H1: DQ849207) 2, South Africa (H1: 
DQ849233, H1: DQ849235) 2, Kenya (DQ9013202, 
H1: KX2769451),  

DRC (AEZ1, AEZ3), 
Rwanda AEZ2 

B 

12SH6 - DRC AEZ3 A 
12SH7 - DRC AEZ3 A 
12SH8 - DRC AEZ3 A 
12SH9 - DRC AEZ3 A 
12SH10 Uganda (AF150028)4 - A 
12SH11 Zambia-east (H2: DQ901277, H2: DQ849214) 2 - A 
12SH12 Zambia-east (H3: DQ849212) 2 - A 
12SH13 Rwanda (H4: DQ901286) 2 - A 
12SH14 Kenya (H4: KX276948) 1 - B 

1[31]; 2[29]; 3[73], 4[74] 

[29]. Mtambo J, Madder M, Van Bortel W, Geysen D, Berkvens D, Backeljau T. Genetic variation in 
Rhipicephalus appendiculatus (Acari: Ixodidae) from Zambia: correlating genetic and ecological variation with 
Rhipicephalus appendiculatus from eastern and southern Africa. J Vector Ecol. 2007;32:168-75. 

[31]. Kanduma EG, Mwacharo JM, Githaka NW, Kinyanjui PW, Njuguna JN, Kamau LM, et al. Analyses of 
mitochondrial genes reveal two sympatric but genetically divergent lineages of Rhipicephalus appendiculatus in 
Kenya. Parasit Vectors. 2016;9:353. 

[73]. Murrell A, Campbell NJH, Barker SC. Phylogenetic Analyses of the Rhipicephaline Ticks Indicate That the 
Genus Rhipicephalus Is Paraphyletic. Mol Phylogenet Evol. 2000;16:1-7. 

[74]. Beati L, Keirans JE. Analysis of the systematic relationships among ticks of the genera Rhipicephalus and 
Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological 
characters. J Parasitol. 2001;87:32-48. 
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Figure S3.2 Neighbor-joining tree of 12S haplotype sequences for R. appendiculatus across 

African countries. The evolutionary distances were computed using the Tamura 3-parameter 

method. Bootstrap values (>60) are displayed above nodes. The values in bracket behind 

haplotypes names correspond to the frequency of each haplotype.  Haplotype sequences 

(12SH1-9) obtained in the present study are indicated by a black square. Rhipicephalus eversti 

and R. microplus obtained in the present study and R. turanicus from GenBank (accession 

number: DQ849231) were used as outgroups. 
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Appendices (Chapter 4) 

Table S4.1 Cattle blood sample distribution across agro-ecological zones 

Country 
Agro-ecological  

zone (AEZ) 

Blood sample (no. of 

cattle) 

DRC AEZ1 110 

  AEZ2 114 

  AEZ3 130 

Burundi AEZ1 126 

Total  480 

DRC (AEZ1: Lowlands, AEZ2: Midlands, AEZ3: Highlands); Burundi (AEZ1: Lowlands) 
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Table S4.2 Nucleotide and amino acid sequences of Tp1 and Tp2 antigen epitopes from T. parva Muguga reference sequence 

Gene 
locus 

Epitope positions with inner primers used in the present study Published epitopes using 
outer primers (GenBank 
JF451936 and JF451856 
for Tp1 and Tp2, 
respectively) [34, 36] 

Epitope Amino acid 
sequence* 

Nucleotide sequence* 

Tp1 Tp135-45 35VGYPKVKEEML45 104GTAGGGTATCCAAAGGTTAAAGAAGAAATGCTA136 Tp1214-224 
Tp2 Tp220-30 20SHEELKKLGML30 58AGTCATGAAGAACTAAAAAAATTGGGAATGCTA90 Tp227–37 

Tp233-41 33DGFDRDALF41 97GATGGTTTCGACAGGGATGCATTGTTC123 Tp240–48 

Tp242-52 42KSSHGMGKVGK52 124AAATCATCACATGGTATGGGAAAGGTAGGAAAA156 Tp249–59 

Tp289-97 89FAQSLVCVL97 265TTTGCACAAAGCCTAGTGTGCGTATTA291 Tp296–104 

Tp291-99 91QSLVCVLMK99 271CAAAGCCTAGTGTGCGTATTAATGAAA297 Tp298–106 

Tp2131-

140 
131KTSIPNPCKW140 391AAAACAAGTATTCCAAATCCATGTAAATGG420 Tp2138–147 

*The numbers flanking epitope sequences represent their positions in the Tp1 and Tp2 antigen gene fragment 

34. Graham SP, Pelle R, Yamage M, Mwangi DM, Honda Y, Mwakubambanya RS, et al. Characterization of the fine specificity of bovine CD8 T-cell responses to defined 
antigens from the protozoan parasite Theileria parva. Infect Immun. 2008;76(2):685-94. 

36. Pelle R, Graham SP, Njahira MN, Osaso J, Saya RM, Odongo DO, et al. Two Theileria parva CD8 T cell antigen genes are more variable in buffalo than cattle parasites, 
but differ in pattern of sequence diversity. PLoS One. 2011;6(4):e19015. 
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Table S4.3 Characteristics of 119 T. parva samples obtained from cattle in different agro-ecological zones (AEZs) of The Democratic Republic 

of Congo and Burundi 

N Sample ID Sample origin Tp1 locus Tp2 locus 
District Country AEZa Gene allele Antigen variant GenBank No. b Cluster  Gene allele Antigen variant GenBank No. b Cluster 

1 B01 Rugombo Burundi 1 4 3 JF451973 1  1 1 JF451856 1A 
2 B02 Rugombo Burundi 1 1 1 JF451936 1  58 55 MF449297 1B 
3 B03 Rugombo Burundi 1 1 1 JF451936 1  57 54 MF449296 2A 
4 B04 Rugombo Burundi 1 nd nd nd  nd  58 55 MF449297 1B 
5 B05 Rugombo Burundi 1 4 3 JF451973 1  2 2 JF451880 1A 
6 B06 Rugombo Burundi 1 37 31 KJ566597 1  2 2 JF451880 1A 
7 B07 Rugombo Burundi 1 37 31 KJ566597 1  59 54 MF449298 2A 
8 B08 Rugombo Burundi 1 1 1 JF451936 1  2 2 JF451880 1A 
9 B09 Rugombo Burundi 1 1 1 JF451936 1  2 2 JF451880 1A 

10 B10 Rugombo Burundi 1 1 1 JF451936 1  1 1 JF451856 1A 
11 B11 Rugombo Burundi 1 37 31 KJ566597 1  1 1 JF451856 1A 
12 B12 Rugombo Burundi 1 37 31 KJ566597 1  57 54 MF449296 2A 
13 B13 Rugombo Burundi 1 1 1 JF451936 1  2 2 JF451880 1A 
14 B14 Rugombo Burundi 1 1 1 JF451936 1  2 2 JF451880 1A 
15 B15 Rugombo Burundi 1 1 1 JF451936 1  2 2 JF451880 1A 
16 B16 Rugombo Burundi 1 4 3 JF451973 1  56 53 MF449295 2B 
17 B17 Rugombo Burundi 1 37 31 KJ566597 1  57 54 MF449296 2A 
18 B18 Rugombo Burundi 1 4 3 JF451973 1  2 2 JF451880 1A 
19 B19 Rugombo Burundi 1 1 1 JF451936 1  2 2 JF451880 1A 
20 B20 Gihanga Burundi 1 1 1 JF451936 1  56 53 MF449295 2B 
21 B21 Gihanga Burundi 1 1 1 JF451936 1  1 1 JF451856 1A 
22 B22 Gihanga Burundi 1 1 1 JF451936 1  2 2 JF451880 1A 
23 B23 Gihanga Burundi 1 1 1 JF451936 1  2 2 JF451880 1A 
24 B24 Gihanga Burundi 1 37 31 KJ566597 1  57 54 MF449296 2A 
25 B25 Gihanga Burundi 1 37 31 KJ566597 1  57 54 MF449296 2A 
26 B26 Gihanga Burundi 1 37 31 KJ566597 1  57 54 MF449296 2A 
27 B27 Gihanga Burundi 1 37 31 KJ566597 1  57 54 MF449296 2A 
28 B28 Gihanga Burundi 1 1 1 JF451936 1  1 1 JF451856 1A 
29 B29 Gihanga Burundi 1 1 1 JF451936 1  nd nd nd nd 
30 B30 Gihanga Burundi 1 1 1 JF451936 1  nd nd nd nd 
31 B31 Gihanga Burundi 1 1 1 JF451936 1  nd nd nd nd 
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32 B32 Gihanga Burundi 1 1 1 JF451936 1  nd nd nd nd 
33 B33 Gihanga Burundi 1 37 31 KJ566597 1  nd nd nd nd 
34 B34 Gihanga Burundi 1 37 31 KJ566597 1  nd nd nd nd 
35 K01 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
36 K02 Kabare DRC 3 1 1 JF451936 1  2 2 JF451880 1A 
37 K03 Kabare DRC 3 1 1 JF451936 1  2 2 JF451880 1A 
38 K04 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
39 K05 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
40 K06 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
41 K07 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
42 K08 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
43 K09 Kabare DRC 3 1 1 JF451936 1  2 2 JF451880 1A 
44 K10 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
45 K11 Kabare DRC 3 1 1 JF451936 1  2 2 JF451880 1A 
46 K12 Kabare DRC 3 1 1 JF451936 1  2 2 JF451880 1A 
47 K13 Kabare DRC 3 nd nd nd nd  1 1 JF451856 1A 
48 K14 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
49 K15 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
50 K16 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
51 K17 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
52 K18 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
53 K19 Kabare DRC 3 1 1 JF451936 1  2 2 JF451880 1A 
54 K20 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
55 K21 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
56 K22 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
57 K23 Kabare DRC 3 1 1 JF451936 1  1 1 JF451856 1A 
58 K24 Kabare DRC 3 1 1 JF451936 1  nd nd nd nd 
59 K25 Kabare DRC 3 1 1 JF451936 1  nd nd nd nd 
60 K26 Kabare DRC 3 1 1 JF451936 1  nd nd nd nd 
61 U01 Uvira DRC 1 1 1 JF451936 1  1 1 JF451856 1A 
62 U02 Uvira DRC 1 1 1 JF451936 1  1 1 JF451856 1A 
63 U03 Uvira DRC 1 1 1 JF451936 1  56 53 MF449295 2B 
64 U04 Uvira DRC 1 1 1 JF451936 1  1 1 JF451856 1A 
65 U05 Uvira DRC 1 1 1 JF451936 1  1 1 JF451856 1A 
66 U06 Uvira DRC 1 1 1 JF451936 1  1 1 JF451856 1A 
67 U07 Uvira DRC 1 37 31 KJ566597 1  1 1 JF451856 1A 
68 U08 Uvira DRC 1 37 31 KJ566597 1  1 1 JF451856 1A 



209 

69 U09 Uvira DRC 1 1 1 JF451936 1  1 1 JF451856 1A 
70 U10 Uvira DRC 1 1 1 JF451936 1  1 1 JF451856 1A 
71 U11 Uvira DRC 1 1 1 JF451936 1  1 1 JF451856 1A 
72 U12 Uvira DRC 1 4 3 JF451973 1  56 53 MF449295 2B 
73 U13 Uvira DRC 1 4 3 JF451973 1  56 53 MF449295 2B 
74 U14 Uvira DRC 1 4 3 JF451973 1  2 2 JF451880 1A 
75 U15 Uvira DRC 1 1 1 JF451936 1  1 1 JF451856 1A 
76 U16 Uvira DRC 1 1 1 JF451936 1  1 1 JF451856 1A 
77 U17 Uvira DRC 1 1 1 JF451936 1  1 1 JF451856 1A 
78 U18 Uvira DRC 1 37 31 KJ566597 1  57 54 MF449296 2A 
79 U19 Uvira DRC 1 1 1 JF451936 1  2 2 JF451880 1A 
80 U20 Uvira DRC 1 4 3 JF451973 1  62 58 MF449301 1A 
81 U21 Uvira DRC 1 1 1 JF451936 1  1 1 JF451856 1A 
82 U22 Uvira DRC 1 4 3 JF451973 1  56 53 MF449295 2B 
83 U23 Uvira DRC 1 37 31 KJ566597 1  56 53 MF449295 2B 
84 U24 Uvira DRC 1 45 32 MF449290 2  60 56 MF449299 1B 
85 U25 Uvira DRC 1 45 32 MF449290 2  61 57 MF449300 1B 
86 U26 Uvira DRC 1 43 1 MF449288 1  nd nd nd nd 
87 U27 Uvira DRC 1 1 1 JF451936 1  nd nd nd nd 
88 U28 Uvira DRC 1 1 1 JF451936 1  nd nd nd nd 
89 U29 Uvira DRC 1 1 1 JF451936 1  nd nd nd nd 
90 U30 Uvira DRC 1 44 3 MF449289 1  nd nd nd nd 
91 U31 Uvira DRC 1 46 33 MF449291 1  nd nd nd nd 
92 W01 Walungu DRC 2 1 1 JF451936 1  1 1 JF451856 1A 
93 W02 Walungu DRC 2 1 1 JF451936 1  56 53 MF449295 2B 
94 W03 Walungu DRC 2 39 1 KJ566599 1  1 1 JF451856 1A 
95 W04 Walungu DRC 2 1 1 JF451936 1  2 2 JF451880 1A 
96 W05 Walungu DRC 2 4 3 JF451973 1  56 53 MF449295 2B 
97 W06 Walungu DRC 2 37 31 KJ566597 1  56 53 MF449295 2B 
98 W07 Walungu DRC 2 37 31 KJ566597 1  56 53 MF449295 2B 
99 W08 Walungu DRC 2 1 1 JF451936 1  56 53 MF449295 2B 

100 W09 Walungu DRC 2 1 1 JF451936 1  56 53 MF449295 2B 
101 W10 Walungu DRC 2 1 1 JF451936 1  56 53 MF449295 2B 
102 W11 Walungu DRC 2 37 31 KJ566597 1  56 53 MF449295 2B 
103 W12 Walungu DRC 2 1 1 JF451936 1  2 2 JF451880 1A 
104 W13 Walungu DRC 2 nd nd nd nd  1 1 JF451856 1A 
105 W14 Walungu DRC 2 45 32 MF449290 2  63 59 MF449302 1B 
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106 W15 Walungu DRC 2 45 32 MF449290 2  63 59 MF449302 1B 
107 W16 Walungu DRC 2 1 1 JF451936 1  57 54 MF449296 2A 
108 W17 Walungu DRC 2 1 1 JF451936 1  57 54 MF449296 2A 
109 W18 Walungu DRC 2 1 1 JF451936 1  57 54 MF449296 2A 
110 W19 Walungu DRC 2 1 1 JF451936 1  2 2 JF451880 1A 
111 W20 Walungu DRC 2 39 1 KJ566599 1  57 54 MF449296 2A 
112 W21 Walungu DRC 2 48 34 MF449293 1  nd nd nd nd 
113 W22 Walungu DRC 2 47 1 MF449292 1  nd nd nd nd 
114 W23 Walungu DRC 2 1 1 JF451936 1  nd nd nd nd 
115 W24 Walungu DRC 2 1 1 JF451936 1  nd nd nd nd 
116 W25 Walungu DRC 2 1 1 JF451936 1  nd nd nd nd 
117 W26 Walungu DRC 2 1 1 JF451936 1  nd nd nd nd 
118 W27 Walungu DRC 2 1 1 JF451936 1  nd nd nd nd 
119 W28 Walungu DRC 2 49 33 MF449294 1  nd nd nd nd 

  
 Notes: Ninety-six and 116 reliable sequences were obtained for Tp2 and Tp1 gene loci respectively; Twenty-three samples failed to be amplified by Tp2 gene and 
three samples failed for Tp1 gene 
aAEZ-1, lowlands valleys of DRC (Ruzizi valley) and Burundi (Imbo valley); AEZ-2, midlands of DRC in the Walungu district; AEZ-3, highlands of DRC in the 
Kabare district 
 b GenBank accession numbers with JF and KJ prefixes were previously described in Kenya (Pelle et al., 2011) and South Sudan (Salih et al., 2017), while 
GenBank accession numbers for newly described alleles are represented by MF prefix. 

Abbreviations: AEZ, agro-ecological zones; nd, not determined. 

36. Pelle R, Graham SP, Njahira MN, Osaso J, Saya RM, Odongo DO, et al. Two Theileria parva CD8 T cell antigen genes are more variable in buffalo than cattle 
parasites, but differ in pattern of sequence diversity. PLoS One. 2011;6(4):e19015. 

37. Salih DA, Pelle R, Mwacharo JM, Njahira MN, Marcellino WL, Kiara H, et al. Genes encoding two Theileria parva antigens recognized by CD8+ T-cells exhibit 
sequence diversity in South Sudanese cattle populations but the majority of alleles are similar to the Muguga component of the live vaccine cocktail. PLoS One. 
2017;12(2):e0171426 
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Figure S4.1 Multiple sequence alignment of the 11 Tp1 gene alleles obtained in this study. The flanked primer regions are shaded and boxed. 
The CD8+ T cell target epitope coding region and indel insertion are bolded and boxed. Tp1 allele1 corresponds to samples identical with the 
three vaccine strains (Muguga, Serengeti-transformed and Kiambu-5). 

 
 
 
               1                                                                                                                                       139 
Muguga         TGCATTTGCCGCTGATCCTGGATTCTGTTATTTTCTATTAATACCAGGCCCTGACTCGAAACCAATATTCTTCAAAAACGACGGAGATAAATTTTTACGTTGCGTAGGGTATCCAAAGGTTAAAGAAGAAATGCTAGAA 
Allele-1[76]   TGCATTTGCCGCTGATCCTGGATTCTGTTATTTTCTATTAATACCAGGCCCTGACTCGAAACCAATATTCTTCAAAAACGACGGAGATAAATTTTTACGTTGCGTAGGGTATCCAAAGGTTAAAGAAGAAATGCTAGAA 
Allele-4[10]   TGCATTTGCCGCTGATCCTGGATTCTGTTATTTTCTATTAATACCAGGCCCTGACTCGAAACCCATATTCTTCAAAAACGACGGAGATAAATTTTTACGTTGCGTAGGGTATCCAAAGGTTAAAGAAGAAATTATAGAA 
Allele-37[18]  TGCATTTGCCGCTGATCCTGGATTCTGTTATTTTCTATTAATACCAGGCCCTGACTCGAAACCCATATTCTTCAAAAACGACGGAGATAAATTTTTACGTTGCGTAGGGTATCCAAAGGTTAAAGAAGAAATTATAGAA 
Allele-39[2]   TGCATTTGCCGCTGATCCTGGATTCTGTTATTTTCTATTAATACCAGGCCCTGACTCGAAACCCATATTCTTCAAAAACGACGGAGATAAATTTTTACGTTGCGTAGGGTATCCAAAGGTTAAAGAAGAAATGCTAGAA 
Allele-43[1]   TGCATTTGCCGCTGATCCTGGATTCTGTTATTTTCTATTAATACCAGGCCCTGACTCGAAACCAATATTCTTCAAAAACGACGGAGATAAATTTTTACGTTGCGTAGGGTATCCAAAGGTTAAAGAAGAAATGCTAGAA 
Allele-44[1]   TGCATTTGCCGCTGATCCTGGATTCTGTTATTTTCTATTAATACCAGGCCCTGACTCGAAACCCATATTCTTCAAAAACGACGGAGATAAATTTTTACGTTGCGTAGGGTATCCAAAGGTTAAAGAAGAAATTATAGAG 
Allele-45[4]   TGCATTTGCCGCTGATCCTGGATTCTGTTATTTTCTATTAATACCAGGCCCTGACTCGAAACCTATATTCTTCAAAAACGACGGAGATAAATTTTTACGTTGCGTAGGGTATCCAAAGGTTAAAGAAGAAATGCTAGAA 
Allele-46[1]   TGCATTTGCCGCTGATCCTGGATTCTGTTATTTTCTATTAATACCAGGCCCTGACTCGAAACCCATATTCTTCAAAAACGACGGAGATAAATTTTTACGTTGCGTAGGGTATCCAAAGGTTAAAGAAGAAATGATAGAA 
Allele-47[1]   TGCATTTGCCGCTGATCCTGGATTCTGTTATTTTCTATTAATACCAGGCCCTGACTCGAAACCAATATTCTTCAAAAACGACGGAGATAAATTTTTACGTTGCGTAGGGTATCCAAAGGTTAAAGAAGAAATGCTAGAA 
Allele-48[1]   TGCATTTGCCGCTGATCCTGGATTCTGTTATTTTCTATTAATACCAGGCCCTGACTCGAAACCCATATTCTTCAAAAACGACGGAGATAAATTTTTACGTTGCGTAGGGTATCCAAAGGTTAAAGAAGAAATTATAGAA 
Allele-49[1]   TGCATTTGCCGCTGATCCTGGATTCTGTTATTTTCTATTAATACCAGGCCCTGACTCGAAACCAATATTCTTCAAAAACGACGGAGATAAATTTTTACGTTGCGTAGGGTATCCAAAGGTTAAAGAAGAAATGATAGAA 
               *************************************************************** ********************************************************************  **** 
 
               140                                                                                                                                     278 
Muguga         ATGGCTACAAAATTCAATAGACTACCAAAGGGCGTGGAAATACCTGCACCTCCAGGAGTAAAACCAGAGGCTCCCACACCTACACCAACGACAATAACTCCTTCTGTACCTCCTACTATACCAACGCCAATAACTCCTT 
Allele-1[76]   ATGGCTACAAAATTCAATAGACTACCAAAGGGCGTGGAAATACCTGCACCTCCAGGAGTAAAACCAGAGGCTCCCACACCTACACCAACGACAATAACTCCTTCTGTACCTCCTACTATACCAACGCCAATAACTCCTT 
Allele-4[10]   ATGGCTACAAAATTCAATAGACTACCAAAGGGCGTGGAAATACCTGCACCTCCAGGAGTAAAACCAGAGGCTCCCACACCTACACCAACGACAATAACTCCTTCTGTACCTCCTACTATACCAACGCCAATAACTCCTT 
Allele-37[18]  ATGGCTACAAAATTCAATAGACTACCAAAGGGCGTGGAAATACCTGCACCTCCAGGAGTAAAACCAGAGGCTCCCACACCTACACCAACGACAATAACTCCTTCTGTACCTCCTACTATACCAACGCCAATAACTCCTT 
Allele-39[2]   ATGGCTACAAAATTCAATAGACTACCAAAGGGCGTGGAAATACCTGCACCTCCAGGAGTAAAACCAGAGGCTCCCACACCTACACCAACGACAATAACTCCTTCTGTACCTCCTACTATACCAACGCCAATAACTCCTT 
Allele-43[1]   ATGGCTACAAAATTCAATAGACTACCAAAGGGCGTGGAAATACCTGCACCTCCAGGAGTAAAACCAGAGGCTCCCACACCTACACCAACGACGATAACTCCTTCTGTACCTCCTACTATACCAACGCCAATAACTCCTT 
Allele-44[1]   ATGGCTACAAAATTCAATAGACTACCAAAGGGCGTGGAAATACCTGCACCTCCAGGAGTAAAACCAGAGGCTCCCACACCTACACCAACGACAATAACTCCTTCTGTACCTCCTACTATACCAACGCCAATAACTCCTT 
Allele-45[4]   ATGGCTACAAAATTCAATAGACTACCAAAGGGCATGGAAATACCTGCACCTCCAGGAGTAAAACCAGAGGCTCCCACACCTACACCAACGACAATAACTCCTTCTGTACCTCCTACTATACCAACTCCAATAACTCCTT 
Allele-46[1]   ATGGCTACAAAATTCAATAGACTACCAAAGGGCGTGGAAATACCTGCACCTCCAGGAGTAAAACCAGAGGCTCCCACACCTACACCAACGACAATAACTCCTTCTGTACCTCCTACTATACCAACGCCAATAACTCCTT 
Allele-47[1]   ATGGCTACAAAATTCAATAGACTACCAAAGGGCGTGGAAATACCTGCACCTCCAGGAGTAAAACCAGAGGCTCCCACACCTACACCAACGACAATAACTCCTTCTGTACCTCCTACTATACCAACGCCAATAACTCCAT 
Allele-48[1]   ATGGCTACAAAATTCAATAGACTACCAAAGGGCGTGGAAATACCTGCACCTCCAGGAGTAAAACCAGAGGCTCCCACACCTACACCAACGACAATAACTCCTTCTGTACCTCCTACTATACCAACGCCGATAACTCCTT 
Allele-49[1]   ATGGCTACAAAATTCAATAGACTACCAAAGGGCGTGGAAATACCTGCACCTCCAGGAGTAAAACCAGAGGCTCCCACACCTACACCAACGACAATAACTCCTTCTGTACCTCCTACTATACCAACGCCAATAACTCCTT 
               ********************************* ********************************************************** ******************************** ** ******** * 
  
               279                                                                                                                                     417 
Muguga         CGGCACCTCCT------------ACTACACCACCTACGGGACTAAATTTTAACTTGACAGTTCAGAACAAATTCATGATAGGTTCGCAAGAAGTTAAGTTAAATATAACTCACGAATACGAGGGTGTATACGAAGCTCA 
Allele-1[76]   CGGCACCTCCT------------ACTACACCACCTACGGGACTAAATTTTAACTTGACAGTTCAGAACAAATTCATGATAGGTTCGCAAGAAGTTAAGTTAAATATAACTCACGAATACGAGGGTGTATACGAAGCTCA 
Allele-4[10]   CGGCACCTCCT------------ACTACACCACCTACGGGACTAAATTTTAACTTGACAGTTCAGAACAAATTCATGGTAGGTTCGCAAGAAGTTAAGTTAAATATAACTCACGAATACGAGGGTGTATACGAAGCTCA 
Allele-37[18]  CGGCACCTCCT------------ACTACACCACCTACGGGACTAAATTTTAACTTGACAGTTCAGAACAAATTCATGATAGGTTCGCAAGAAGTTAAGTTAAATATAACTCACGAATACGAGGGTGTATACGAAGCTCA 
Allele-39[2]   CGGCACCTCCT------------ACTACACCACCTACGGGACTAAATTTTAACTTGACAGTTCAGAACAAATTCATGATAGGTTCGCAAGAAGTTAAGTTAAATATAACTCACGAATACGAGGGTGTATACGAAGCTCA 
Allele-43[1]   CGGCACCTCCT------------ACTACACCACCTACGGGACTAAATTTTAACTTGACAGTTCAGAACAAATTCATGATAGGTTCGCAAGAAGTTAAGTTAAATATAACTCACGAATACGAGGGTGTATACGAAGCTCA 
Allele-44[1]   CGGCACCTCCT------------ACTACACCACCTACGGGACTAAATTTTAACTTGACAGTTCAGAACAAATTCATGGTAGGTTCGCAAGAAGTTAAGTTAAATATAACTCACGAATACGAGGGTGTATACGAAGCTCA 
Allele-45[4]   CTGCACCTCCTTCTGCACCTCCTACTACACCACCTAAGGGACTAAATTTTAACTTGACACTTCAGAACAAATTCATGATAGGTTCGCAAGAAGTTAAGTTAAGTATAACTCACGAATACGAGGGTGTATACGAAGCTCA 
Allele-46[1]   CGGCACCTCCT------------ACTACACCACCTACGGGACTAAATTTTAACTTGACAGTTCAGAACAAATTCATGATAGGTTCGCAAGAAGTTAAGTTAAATATAACTCACGAATACGAGGGTGTATACGAAGCTCA 
Allele-47[1]   CGGCACCTCCT------------ACTACACCACCTACGGGACTAAATTTTAACTTGACAGTTCAGAACAAATTCATGATAGGTTCGCAAGAAGTTAAGTTAAATATAACTCACGAATACGAGGGTGTATACGAAGCTCA 
Allele-48[1]   CGGCACCTCCT------------ACTACACCACCTACGGGACTAAATTTTAACTTGACAGTTCAGAACAAATTCATGGTAGGTTCGCAAGAAGTTAAGTTAAGTATAACTCACGAATACGAGGGTGTATACGAAGCTCA 
Allele-49[1]   CGGCACCTCCT------------ACTACACCACCTACGGGACTAAATTTTAACTTGACAGTTCAGAACAAATTCATGATAGGTTCGCAAGAAGTTAAGTTAAATATAACTCACGAATACGAGGGTGTATACGAAGCTCA 
               * *********            ************* ********************** ***************** ************************ ************************************ 

Epitope coding region 

Indel 
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Table S4.4 Estimates of evolutionary divergence between gene alleles for Tp1 and Tp2, using proportion nucleotide distance 

Tp1 Allele-1 Allele-4 Allele-37 Allele-39 Allele-43 Allele-44 Allele-45 Allele-46 Allele-47 Allele-48 Allele-49 
Allele-1            
Allele-4 0.01           
Allele-37 0.007 0.002          
Allele-39 0.002 0.007 0.005         
Allele-43 0.002 0.012 0.010 0.005        
Allele-44 0.012 0.002 0.005 0.010 0.015       
Allele-45 0.017 0.025 0.022 0.017 0.020 0.027      
Allele-46 0.005 0.005 0.002 0.002 0.007 0.007 0.020     
Allele-47 0.002 0.012 0.010 0.005 0.005 0.015 0.020 0.007    
Allele-48 0.015 0.005 0.007 0.012 0.017 0.007 0.025 0.010 0.017   
Allele-49 0.002 0.007 0.005 0.005 0.005 0.010 0.020 0.002 0.005 0.012  

 
Tp2 Allele-1 Allele-2 Allele-56 Allele-57 Allele-58 Allele-59 Allele-60 Allele-61 Allele-62 Allele-63 
Allele-1           
Allele-2 0.004          
Allele-56 0.25 0.25         
Allele-57 0.26 0.25 0.075        
Allele-58 0.15 0.15 0.26 0.28       
Allele-59 0.26 0.25 0.077 0.002 0.28      
Allele-60 0.14 0.14 0.24 0.26 0.10 0.27     
Allele-61 0.14 0.14 0.25 0.27 0.10 0.27 0.006    
Allele-62 0.006 0.002 0.25 0.25 0.15 0.25 0.14 0.14   
Allele-63 0.14 0.14 0.24 0.26 0.10 0.27 0.002 0.004 0.14  

 Notes: Evolutionary divergence between genes alleles was estimated using proportion nucleotide distance in MEGA.  
Tp1 allele-1 corresponds to isolates identical to the three vaccine strains (Muguga, Serengeti-transformed and Kiambu-5). 
Tp2 allele-1 corresponds to isolates identical to Muguga and Serengeti-transformed strains and Tp2 allele-2 represents samples identical to Kiambu-5 strain. 
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Table S4.5 Tp1 and Tp2 genes alleles with their corresponding antigen variants 

Marker Gene alleles Antigen variants Number of T. 
parva samples 

Frequency 
(%) 

Tp1 
  
  
  
  
  
  
  
  
  
  
  

Allele-1 Var-1 76 65.5 
Allele-4 Var-3 10 8.6 
Allele-37 Var-31 18 15.5 
Allele-39 Var-1 2 1.7 
Allele-43 Var-1 1 0.9 
Allele-44 Var-3 1 0.9 
Allele-45 Var-32 4 3.4 
Allele-46 Var-33 1 0.9 
Allele-47 Var-1 1 0.9 
Allele-48 Var-34 1 0.9 
Allele-49 Var-33 1 0.9 
Total no. of Tp1 sequences 116 100.0 

Tp2 
  
  
  
  
  
  
  
  
  
  

Allele-1 Var-1 39 40.6 
Allele-2 Var-2 22 22.9 
Allele-56 Var-53 15 15.6 
Allele-57 Var-54 12 12.5 
Allele-58 Var-55 2 2.1 
Allele-59 Var-54 1 1.0 
Allele-60 Var-56 1 1.0 
Allele-61 Var-57 1 1.0 
Allele-62 Var-58 1 1.0 
Allele-63 Var-59 2 2.1 
Total no. of Tp2 sequences 96 100.0 
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Table S4.6 Amino acid variants of Tp1 and Tp2 CD8+ T cell target epitopes of T. parva from 

DRC and Burundi 

Epitope variants DRC AEZ1 
(25) 

DRC AEZ2 
(20) 

DRC AEZ3 
(23) 

Burundi 
AEZ1 (28) 

Overall 
(96) 

Tp220-30           
SHEELKKLGML 14 3 17 5 39 
SDEELNKLGML  2 3 6 11 22 
SDDELDTLGML 5 8 0 2 15 
SDNELDTLGLL 1 4 0 8 13 
TEEELRKLGMV 2 2 0 0 4 
TEEELKKMGMV 0 0 0 2 2 
SDEELNILGML 1 0 0 0 1 
Tp233-41           
DGFDRDALF 17 5 23 16 61 
PDLDKNRLF  6 13 0 10 29 
SNFDRESLF 2 2 0 0 4 
EGFDKEKLF 0 0 0 2 2 
Tp242-52           
KSSHGMGKVG
K  17 6 23 16 62 
LTSHGMGRIGR 5 8 0 2 15 
LTSHGMGKIGR 1 4 0 8 13 
KSSHGMGKVGR 2 2 0 0 4 
KSSKSMGIVGR 0 0 0 2 2 
Tp289-97           
FAQSLVCVL 17 6 23 16 62 
FAASIKCVA 5 8 0 2 15 
LAASIKCVS  1 4 0 8 13 
FAQSILCVI 2 2 0 0 4 
FVQSIMCVI 0 0 0 2 2 
Tp291-99           
QSLVCVLMK 17 6 23 16 62 
ASIKCVAQY  5 8 0 2 15 
ASIKCVSHH  1 4 0 8 13 
QSILCVIKN 2 2 0 0 4 
QSIMCVINK 0 0 0 2 2 
Tp2131-140           
KTSIPNPCKW  17 6 23 16 62 
KPSVPNPCDW 6 12 0 10 28 
ASDIPNPCKW 2 2 0 0 4 
VNDIPNPCKW 0 0 0 2 2 
Tp135-45 31 27 25 33 116 
VGYPKVKEEML 20 21 25 18 84 
VGYPKVKEEII 10 5 0 15 30 
VGYPKVKEEMI  1 1 0 0 2 

Notes: Numbers in bracket are sample size in each AEZ; Epitope sequences in bold are present in the 
reference sequences of T. parva stocks component of the live vaccine. 
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Figure S4.2 Multiple sequence alignment of the 10 Tp2 gene alleles obtained in this study. The 
flanked primer regions are shaded and boxed. The CD8+ T cell target epitope coding regions 
(1-6) are bolded and boxed. Tp2 allele-1 corresponds to T. parva samples identical to Muguga 
and Serengeti-transformed and Tp2 allele-2 represents samples similar to Kiambu-5. 

 

 

 

 

 

 

 

 

 

               1                                                                                                                          126  
Muguga         ATTAGCCTTTACTTTATTATTTACATTTTACATTCCCCAGTGCTGGGAGGTAATTGTAGTCATGAAGAACTAAAAAAATTGGGAATGCTAGAGGGCGATGGTTTCGACAGGGATGCATTGTTCAAA 
Serengeti      ATTAGCCTTTACTTTATTATTTACATTTTACATTCCCCAGTGCTGGGAGGTAATTGTAGTCATGAAGAACTAAAAAAATTGGGAATGCTAGAGGGCGATGGTTTCGACAGGGATGCATTGTTCAAA 
Kiambu 5       ATTAGCCTTTACTTTATTATTTACATTTTACATTCCCCAGTGCTGGGAGGTAATTGTAGTGATGAAGAACTAAATAAATTGGGAATGCTAGAGGGCGATGGTTTCGACAGGGATGCATTGTTCAAA 
Allele-1[39]   ATTAGCCTTTACTTTATTATTTACATTTTACATTCCCCAGTGCTGGGAGGTAATTGTAGTCATGAAGAACTAAAAAAATTGGGAATGCTAGAGGGCGATGGTTTCGACAGGGATGCATTGTTCAAA 
Allele-2[22]   ATTAGCCTTTACTTTATTATTTACATTTTACATTCCCCAGTGCTGGGAGGTAATTGTAGTGATGAAGAACTAAATAAATTGGGAATGCTAGAGGGCGATGGTTTCGACAGGGATGCATTGTTCAAA 
Allele-56[15]  ATTAGCCTTTACTTTATTATTTACATTTTACCTTCCTCAGTCTTGGGAGGTAATTGTAGTGACGATGAACTGGATACTTTGGGTATGTTGGACAAACCAGATCTTGACAAGAATAGATTGTTCTTA 
Allele-57[12]  ATTAGCCTTTACTTTATTATTTACATTTTACCTTCCTCAGTCTTGGGAGGTAATTGTAGTGACAATGAGCTGGATACTTTGGGTTTGTTGGACAAACCAGATCTTGACAAGAATAGATTGTTTTTA 
Allele-58[2]   ATTAGCCTTTACTTTATTATTTACATTTTACCTTCCTCAGTCTTGGGAGGTAATTGTACTGAGGAAGAACTAAAAAAAATGGGAATGGTAGAGGGTGAAGGTTTCGATAAGGAAAAATTGTTCAAA 
Allele-59[1]   ATTAGCCTTTACTTTATTATTTACATTTTACCTTCCTCAGTCTTGGGAGGTAATTGTAGTGACAATGAGCTGGATACTTTGGGTTTGTTGGACAAACCAGATCTTGACAAGAATAGATTGTTTTTA 
Allele-60[1]   ATTAGCCTTTACTTTATTATTTACATTTTACCTTCCTCAGTCTTGGGAGGTAATTGTACTGAGGAAGAACTAAGAAAATTGGGAATGGTAGAGGATAGTAATTTCGACAGGGAGTCATTGTTCAAA 
Allele-61[1]   ATTAGCCTTTACTTTATTATTTACATTTTACCTTCCTCAGTCTTGGGAGGTAATTGTACTGAGGAAGAACTAAGAAAATTGGGAATGGTAGAGGATAGTAATTTCGACAGGGAGTCATTGTTCAAA 
Allele-62[1]   ATTAGCCTTTACTTTATTATTTACATTTTACATTCCCCAGTGCTGGGAGGTAATTGTAGTGATGAAGAACTAAATATATTGGGAATGCTAGAGGGCGATGGTTTCGACAGGGATGCATTGTTCAAA 
Allele-63[2]   ATTAGCCTTTACTTTATTATTTACATTTTACCTTCCTCAGTCTTGGGAGGTAATTGTACTGAGGAAGAACTAAGAAAATTGGGAATGGTAGAGGATAGTAATTTCGACAGGGAGTCATTGTTCAAA 
               ******************************* **** ****  *************** * *  * ** **    *   ****  ** * **         * * ** * * *   ******   * 
 
               127                                                                                                                        252 
Muguga         TCATCACATGGTATGGGAAAGGTAGGAAAAAGGTATGGTCTTAAAACTACTCCAAAAGTAGATAAAGTCTTAGCAGATCTTGAAACACTGTTTGGAAAACACGGTCTTGGTGGTATTAGTAAAGAT 
Serengeti      TCATCACATGGTATGGGAAAGGTAGGAAAAAGGTATGGTCTTAAAACTACTCCAAAAGTAGATAAAGTCTTAGCAGATCTTGAAACACTGTTTGGAAAACACGGTCTTGGTGGTATTAGTAAAGAT 
Kiambu 5       TCATCACATGGTATGGGAAAGGTAGGAAAAAGGTATGGTCTTAAAACTACTCCAAAAGTAGATAAAGTCTTAGCAGATCTTGAAACACTGTTTGGAAAACACGGTCTTGGTGGTATTAGTAAAGAT 
Allele-1[39]   TCATCACATGGTATGGGAAAGGTAGGAAAAAGGTATGGTCTTAAAACTACTCCAAAAGTAGATAAAGTCTTAGCAGATCTTGAAACACTGTTTGGAAAACACGGTCTTGGTGGTATTAGTAAAGAT 
Allele-2[22]   TCATCACATGGTATGGGAAAGGTAGGAAAAAGGTATGGTCTTAAAACTACTCCAAAAGTAGATAAAGTCTTAGCAGATCTTGAAACACTGTTTGGAAAACACGGTCTTGGTGGTATTAGTAAAGAT 
Allele-56[15]  ACATCACATGGTATGGGAAGGATAGGGAGAAGGTATGGTATTAGACCTGGAACAAAAACAGAAAAATTCTTAAAAGAACTTAAAAAATTATTTACAGAAGTCGGTATTACAGGTGTTGGTGAGAAG 
Allele-57[12]  ACATCACATGGAATGGGAAAGATAGGTAGAAGGTTTGGTATTAGACCTGGAACAAAAACAGAAAAATTCTTAAAAGAACTTACTAAATTATTTACAGAAATTGGTATTACAGGTGTTGGTGAGAAG 
Allele-58[2]   TCATCAAAGAGTATGGGAATAGTAGGGAGAAATCATGGTCTTAAACCAAAACCAAGATTAGAGAGTGTATTTGAAGATCTTGAAAAACTGTTTGGAAAACACGGTCTTGGTGGTATTAGTAAAAAT 
Allele-59[1]   ACATCACATGGAATGGGAAAGATAGGTAGAAGGTTTGGCATTAGACCTGGAACAAAAACAGAAAAATTCTTAAAAGAACTTACTAAATTATTTACAGAAATTGGTATTACAGGTGTTGGTGAGAAG 
Allele-60[1]   TCATCACATGGAATGGGAAAGGTAGGTAGAATGCATGGTCTTAAACCAAAACCAAAATTAGAGAGTGTATTTGAAGATCTTGAAAAACTGTTTGGAAAACACGGTCTTGGTGGTATTAGTAAAAAT 
Allele-61[1]   TCATCACATGGAATGGGAAAGGTAGGTAGAATGCATGGTCTTAAACCAAAACCAAAATTAGAGAGTGTATTTGAAGATCTTGGAAAACTGTTTGGAAAACACGGTCTTGGTGGTATTAGTAAAAAT 
Allele-62[1]   TCATCACATGGTATGGGAAAGGTAGGAAAAAGGTATGGTCTTAAAACTACTCCAAAAGTAGATAAAGTCTTAGCAGATCTTGAAACACTGTTTGGAAAACACGGTCTTGGTGGTATTAGTAAAGAT 
Allele-63[2]   TCATCACATGGAATGGGAAAGGTAGGTAGAATGCATGGTCTTAAACCAAAACCAAAATTAGAGAGTGTATTTGAAGATCTTGAAAAACTGTTTGGAAAACACGGTCTTGGTGGTATTAGTAAAAAT 
                ***** *  * *******   **** * **    ***  *** * *     *** *  *** *   * **   *** ***   * * * ***  * **   *** **   *** ** ** *  * 
                    
               253                                                                                                                        378 
Muguga         TGTCTTAAATGTTTTGCACAAAGCCTAGTGTGCGTATTAATGAAATGTAGAGGAGCATGTCTCAAAGGACCATGTACTGACGACTGCCAAAATTGCTTTGATAGAAACTGTAAATCTGCATTGCTG 
Serengeti      TGTCTTAAATGTTTTGCACAAAGCCTAGTGTGCGTATTAATGAAATGTAGAGGAGCATGTCTCAAAGGACCATGTACTGACGACTGCCAAAATTGCTTTGATAGAAACTGTAAATCTGCATTGCTG 
Kiambu 5       TGTCTTAAATGTTTTGCACAAAGCCTAGTGTGCGTATTAATGAAATGTAGAGGAGCATGTCTCAAAGGACCATGTACTGACGACTGCCAAAATTGCTTTGATAGAAACTGTAAATCTGCATTGCTG 
Allele-1[39]   TGTCTTAAATGTTTTGCACAAAGCCTAGTGTGCGTATTAATGAAATGTAGAGGAGCATGTCTCAAAGGACCATGTACTGACGACTGCCAAAATTGCTTTGATAGAAACTGTAAATCTGCATTGCTG 
Allele-2[22]   TGTCTTAAATGTTTTGCACAAAGCCTAGTGTGCGTATTAATGAAATGTAGAGGAGCATGTCTCAAAGGACCATGTACTGACGACTGCCAAAATTGCTTTGATAGAAACTGTAAATCTGCATTGCTG 
Allele-56[15]  TGCCTCGAATGTTTCGCAGCAAGTATTAAGTGTGTAGCACAATATTGCAAAGGAGCGTGTCTAAAGGGACCATGTACAGAAGACTGCCAACAATGCATTAAATCTAATTGTATGGACGGATTGCTG 
Allele-57[12]  TGCCTCGAATGTTTAGCAGCAAGCATTAAGTGTGTATCACACCATTGCAAGGGAGCGTGTCTAAAGGGACCATGTACAGAAGGCTGTCAAGAATGCATTAAAAGAAATTGTATGGAAGCATTGCTG 
Allele-58[2]   TGTCTTACTTGTTTTGTGCAAAGCATTATGTGTGTTATAAATAAATGTAGAGGAGCATGTCTCAAAGGCCCATGTACCGACGGATGTCAAAAGTGTATTAATACTAATTGTAAACCGGCACTGCTG 
Allele-59[1]   TGCCTCGAATGTTTAGCAGCAAGCATTAAGTGTGTATCACACCATTGCAAGGGAGCGTGTCTAAAGGGACCATGTACAGAAGGCTGTCAAGAATGCATTAAAAGAAATTGTATGGAAGCATTGCTG 
Allele-60[1]   TGTCTTACTTGTTTTGCACAAAGCATATTGTGTGTTATAAAAAATTGTAGAGGAGCATGTCTCAAAGGACCATGTAGTGACGACTGCCAAAATTGCTTTAAAGCTAAATGTAAACAGGCATTGCTT 
Allele-61[1]   TGTCTTACTTGTTTTGCACAAAGCATATTGTGTGTTATAAAAAATTGTAGAGGAGCATGTCTCAAAGGACCATGTAGTGACGACTGCCAAAATTGCTTTAAAGCTAAATGTAAACAGGCATTGCTT 
Allele-62[1]   TGTCTTAAATGTTTTGCACAAAGCCTAGTGTGCGTATTAATGAAATGTAGAGGAGCATGTCTCAAAGGACCATGTACTGACGACTGCCAAAATTGCTTTGATAGAAACTGTAAATCTGCATTGCTG 
Allele-63[2]   TGTCTTACTTGTTTTGCACAAAGCATATTGTGTGTTATAAAAAATTGTAGAGGAGCATGTCTCAAAGGACCATGTAGTGACGACTGCCAAAATTGCTTTAAAGCTAAATGTAAACAGGCATTGCTT 
               ** **    ***** *    ***  *   *** **   *    * ** *  ***** ***** ** ** *******  ** *  ** *** * **  ** *    ** ****     * * **** 
               379                                                                                                                        504  
Muguga         GAATGCATTGGGAAAACAAGTATTCCAAATCCATGTAAATGGAAAGAAGATTATCTAAAATACAAATTTCCTGAAACAGATGAGGACGAATCTACGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
Serengeti      GAATGCATTGGGAAAACAAGTATTCCAAATCCATGTAAATGGAAAGAAGATTATCTAAAATACAAATTTCCTGAAACAGATGAGGACGAATCTACGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
Kiambu5        GAATGCATTGGGAAAACAAGTATTCCAAATCCATGTAAATGGAAAGAAGATTATCTAAAATACAAATTTCCTGAAACAGATGAGGACGAATCTACGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
Allele-1[39]   GAATGCATTGGGAAAACAAGTATTCCAAATCCATGTAAATGGAAAGAAGATTATCTAAAATACAAATTTCCTGAAACAGATGAGGACGAATCTACGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
Allele-2[22]   GAATGCATTGGGAAAACAAGTATTCCAAATCCATGTAAATGGAAAGAAGATTATCTAAAATACAAATTTCCTGAAACAGATGAGGACGAATCTACGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
Allele-56[15]  GAATGTATTGGTAAACCCAGTGTTCCAAACCCTTGTGATTGGAAAGATGCTTATCTAAAATTCAAACTTCCTGAAACAGGTGAGGGCGAATCTGAGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
Allele-57[12]  CAATGCATTGGGAAACCAAGTGTTCCAAATCCTTGTGATTGGAAAGATGATTATCTAAAATTCAAATTTCCTGAAACAGGTGAGGATGAGGCTCAGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
Allele-58[2]   GAATGCATTGGAGTAAATGATATTCCAAATCCATGTAAATGGAAAGAAGATTATCTAAAATACAAACTTCCTGAAACAGATGAGGACGAATCTGAGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
Allele-59[1]   CAATGCATTGGGAAACCAAGTGTTCCAAATCCTTGTGATTGGAAAGATGATTATCTAAAATTCAAATTTCCTGAAACAGGTGAGGATGAGGCTCAGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
Allele-60[1]   GAATGCATTGGAGCAAGTGATATTCCAAATCCTTGTAAATGGAAAGATGATTATCTAAAATACAAACTTCCTGATACAGATGAGGACGAACCTGAGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
Allele-61[1]   GAATGCATTGGAGCAAGTGATATTCCAAATCCTTGTAAATGGAAAGATGATTATCTAAAATACAAACTTCCTGATACAGATGGGGACGAATCTGAGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
Allele-62[1]   GAATGCATTGGGAAAACAAGTATTCCAAATCCATGTAAATGGAAAGAAGATTATCTAAAATACAAATTTCCTGAAACAGATGAGGACGAATCTACGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
Allele-63[2]   GAATGCATTGGAGCAAGTGATATTCCAAATCCTTGTAAATGGAAAGATGATTATCTAAAATACAAACTTCCTGATACAGATGAGGACGAATCTGAGAAAAAAGGAGAAGCCTCCGGCACTTCATAG 
                **** *****   *     * ******* ** *** * ******** * *********** **** ******* **** ** **  **  **  ******************************* 

1 2 

3 

4 5 

6 
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Table S4.7 Distribution of Tp1 gene alleles of T. parva from cattle and buffalo in the sub-

Saharan region of Africa 

Tp1 alleles 
Tp1 

variants 
The Great Lakes region Kenya South 

Sudan 
Laboratory 

samples Total DRC 
AEZ1 

DRC 
AEZ2 

DRC 
AEZ3 

Burundi 
AEZ1 BA BD CD 

A01 Var-1 17 16 25 18 1 5 12 53 6 153 
A02 Var-2 0 0 0 0 0 0 3 0 8 11 
A03 Var-2 0 0 0 0 0 0 1 0 1 2 
A04 Var-3 5 1 0 4 0 0 2 14 0 26 
A05 Var-4 0 0 0 0 0 0 0 0 1 1 
A06 Var-5 0 0 0 0 0 0 1 0 0 1 
A07 Var-6 0 0 0 0 0 0 1 0 0 1 
A08 Var-7 0 0 0 0 0 0 1 0 0 1 
A09 Var-1 0 0 0 0 0 0 1 0 0 1 
A10 Var-8 0 0 0 0 0 0 1 0 0 1 
A11 Var-9 0 0 0 0 0 0 1 0 0 1 
A12 Var-10 0 0 0 0 0 0 1 0 0 1 
A13 (2nd indel) Var-11 0 0 0 0 7 0 0 0 0 7 
A14 Var-12 0 0 0 0 1 2 0 0 0 3 
A15 (2nd indel) Var-13 0 0 0 0 2 0 0 0 0 2 
A16 (2nd indel) Var-14 0 0 0 0 0 1 0 0 0 1 
A17 (1st & 2nd indel) Var-15 0 0 0 0 0 1 0 0 0 1 
A18 (2nd indel) Var-16 0 0 0 0 0 1 0 0 0 1 
A19 (1st & 2nd indel) Var-17 0 0 0 0 0 1 0 0 0 1 
A20 Var-18 0 0 0 0 0 1 0 0 0 1 
A21 (2nd indel) Var-19 0 0 0 0 0 1 0 0 0 1 
A22 Var-18 0 0 0 0 0 1 0 0 0 1 
A23 (2nd indel) Var-20 0 0 0 0 0 1 0 0 0 1 
A24 (1st & 2nd indel) Var-21 0 0 0 0 0 1 0 0 0 1 
A25 Var-22 0 0 0 0 1 0 0 0 0 1 
A26 (2nd indel) Var-23 0 0 0 0 1 0 0 0 0 1 
A27 (2nd indel) Var-14 0 0 0 0 1 0 0 0 0 1 
A28 (2nd indel) Var-24 0 0 0 0 1 0 0 0 0 1 
A29 Var-25 0 0 0 0 1 0 0 0 0 1 
A30 (2nd indel) Var-26 0 0 0 0 1 0 0 0 0 1 
A31 (2nd indel) Var-13 0 0 0 0 1 0 0 0 0 1 
A32 Var-27 0 0 0 0 1 0 0 0 0 1 
A33 Var-28 0 0 0 0 1 0 0 0 0 1 
A34 Var-29 0 0 0 0 1 0 0 0 0 1 
A35 (2nd indel) Var-30 0 0 0 0 1 0 0 0 0 1 
A36 Var-31 0 0 0 0 0 0 0 4 0 4 
A37 Var-31 4 3 0 11 0 0 0 3 0 21 
A38 Var-9 0 0 0 0 0 0 0 1 0 1 
A39 Var-1 0 2 0 0 0 0 0 1 0 3 
A40 Var-31 0 0 0 0 0 0 0 1 0 1 
A41 Var-31 0 0 0 0 0 0 0 1 0 1 
A42 Var-1 0 0 0 0 0 0 0 1 0  1 
A43 Var-1 1 0 0 0 0 0 0 0 0 1 
A44 Var-3 1 0 0 0 0 0 0 0 0 1 
A45 (2nd indel) Var-32 2 2 0 0 0 0 0 0 0 4 
A46 Var-33 1  0 0 0 0 0 0 0 0 1 
A47 Var-1 0 1 0 0 0 0 0 0 0 1 
A48 Var-34 0 1 0 0 0 0 0 0 0 1 
A49 Var-33 0 1 0 0 0 0 0 0 0 1 
Total  31 27 25 33 22 16 25 79 16 274 

Notes: Tp1 allele A01 corresponds to T. parva alleles identical to the one in the three vaccine strains (Muguga, Serengeti-
transformed and Kiambu-5). Abbreviations: BD, buffalo-derived; BA, buffalo-associated; CD, cattle derived 
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Table S4.8 Distribution of Tp2 gene alleles of T. parva from cattle and buffalo in the sub-

Saharan region of Africa 

Tp2 alleles 
The Great Lakes region Kenya South 

Sudan 
Laboratory 

samples Total DRC 
AEZ1 

DRC 
AEZ2 

DRC 
AEZ3 

Burundi 
AEZ1 BA BD CD 

A01 14 3 17 5 0 0 15 43 9 106 
A02 2 3 6 11 0 0 3 7 1 33 
A03 0 0 0 0 0 0 2 0 6 8 
A04 0 0 0 0 0 0 2 0 0 2 
A05 0 0 0 0 0 0 0 1 1 2 
A06 & 28 0 0 0 0 4 0 0 0 0 4 
A07 0 0 0 0 0 2 0 0 0 2 
A08 0 0 0 0 0 1 0 0 0 1 
A09 0 0 0 0 0 1 0 0 0 1 
A10 0 0 0 0 0 1 0 0 0 1 
A11 0 0 0 0 0 1 0 0 0 1 
A12 0 0 0 0 0 1 0 0 0 1 
A13 0 0 0 0 0 1 0 0 0 1 
A14 0 0 0 0 0 1 0 0 0 1 
A15 0 0 0 0 0 1 0 0 0 1 
A16 0 0 0 0 0 1 0 0 0 1 
A17 0 0 0 0 0 1 0 0 0 1 
A18 0 0 0 0 0 1 0 0 0 1 
A19 0 0 0 0 0 1 0 0 0 1 
A20 0 0 0 0 0 1 0 0 0 1 
A21 0 0 0 0 0 1 0 0 0 1 
A22 0 0 0 0 1 0 0 0 0 1 
A23 & 24  0 0 0 0 2 0 0 0 0 2 
A25 0 0 0 0 1 0 0 0 0 1 
A26 0 0 0 0 1 0 0 0 0 1 
A27 0 0 0 0 1 0 0 0 0 1 
A29 0 0 0 0 1 0 0 0 0 1 
A30 0 0 0 0 1 0 0 0 0 1 
A31 0 0 0 0 1 0 0 0 0 1 
A32 0 0 0 0 1 0 0 0 0 1 
A33 0 0 0 0 1 0 0 0 0 1 
A34 0 0 0 0 1 0 0 0 0 1 
A35 0 0 0 0 1 0 0 0 0 1 
A36 0 0 0 0 1 0 0 0 0 1 
A37 0 0 0 0 1 0 0 0 0 1 
A38 0 0 0 0 1 0 0 0 0 1 
A39 0 0 0 0 1 0 0 0 0 1 
A40 0 0 0 0 1 0 0 0 0 1 
A41 0 0 0 0 1 0 0 0 0 1 
A42 0 0 0 0 1 0 0 0 0 1 
A43 0 0 0 0 1 0 0 0 0 1 
A44 0 0 0 0 0 0 0 2 0 2 
A45 0 0 0 0 0 0 0 2 0 2 
A46 0 0 0 0 0 0 0 1 0 1 
A47 0 0 0 0 0 0 0 1 0 1 
A48 0 0 0 0 0 0 0 1 0 1 
A49 0 0 0 0 0 0 0 1 0 1 
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A50 0 0 0 0 0 0 0 1 0 1 
A51 0 0 0 0 0 0 0 1 0 1 
A52 0 0 0 0 0 0 0 1 0 1 
A53 0 0 0 0 0 0 0 1 0 1 
A54 0 0 0 0 0 0 0 1 0 1 
A55 0 0 0 0 0 0 0 1 0 1 
A56 5 8 0 2 0 0 0 0 0 15 
A57 1 4 0 7 0 0 0 0 0 12 
A58 0 0 0 2 0 0 0 0 0 2 
A59 0 0 0 1 0 0 0 0 0 1 
A60 1 0 0 0 0 0 0 0 0 1 
A61 1 0 0 0 0 0 0 0 0 1 
A62 1 0 0 0 0 0 0 0 0 1 
A63 0 2 0 0 0 0 0 0 0 2 
Total 25 20 23 28 25 16 22 65 17 241 

Notes: Tp2 allele A01 is identical to the one from T. parva Muguga and Serengeti-transformed strains 
and Tp2 allele A02 represents T. parva samples similar to Kiambu-5 strain. Abbreviations: BD, 
buffalo-derived; BA, buffalo-associated; CD, cattle derived 
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Figure S4.3 Neighbor-Joining tree showing phylogenetic relationships among the 48 Tp1 gene 
alleles described in Africa (A01-A49). Tp1 gene alleles obtained in the present study are 
indicated by black diamonds. Theileria parva alleles found in cattle with no association with 
buffalo and in laboratory stocks are coloured in blue and those from buffalo and buffalo-
associated cattle are shown in Red. Bootstrap values (>50%) are shown above branches. The 
Tp1 homologous sequence of Theileria annulata (GenBank accession no. TA17450) was used 
as outgroup. The number in brackets behind alleles names denote the number of T. parva 
isolates carrying the allele. The frequencies of Tp1 alleles and their corresponding 
populations/AEZs are detailed in Table S7. Tp1 allele A01 corresponds to isolates identical to 
the three Muguga cocktail vaccine strains (Muguga, Serengeti-transformed and Kiambu-5). 

 A02 (11)
 A05
 A03 (2)

 A06
 A48
 A04 (26)
 A44

 A41
 A37 (21)

 A40
 A46

 A36 (4)
 A38
 A07

 A39 (3)
 A49

 A42
 A43

 A09
 A10
 A11

 A01 (153)
 A12
 A47

 A08
 A27
 A33
 A16

 A17
 A19
 A24

 A21
 A26

 A45 (4)
 A13 (8)

 A23
 A14 (3)
 A18

 A30
 A15 (2)
 A28
 A31

 A25
 A34
 A20
 A22
 A29

 A32
 TA17450

70

76
91

61

72

74

61
51

0.05



220 

 

 

Figure S4.4 Phylogenetic tree showing the relationships among concatenated Tp1 and Tp2 
nucleotide sequences of 93 T. parva samples from cattle in DRC and Burundi. The evolutionary 
history was constructed using the Neighbor-Joining method with 1000 bootstrap replicates. Bootstrap values 
(>50%) are shown above branches and indicate the degree of support of each node. The concatenated homologous 
Theileria annulata sequence (GenBank accession no. TA17450 and TA19865 for Tp1 and Tp2, respectively) was 
used as the outgroup. The codes in brackets behind sample names correspond to their respective concatenated Tp1 
(A) and Tp2 (a) alleles (Aa). Allele A01a01 corresponds to Muguga and Serengeti-transformed vaccine strains, 
while allele A02a02 is carried by Kiambu-5 strain. Samples are colour-coded based on their agro-ecological origin 
(U and Red=DRC AEZ1; W and Green = DRC AEZ2; K and Blue=DRC AEZ3; B and Purple =Burundi AEZ1). 
Detailed sample characteristics and corresponding gene alleles and protein variants are shown in Table S3. 
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Appendices (Chapter 5) 

Table S5.1 Predictions and confidence intervals (95%) for tick abundance on cattle and the 
vectorial inoculation rate (VIR) according to AEZs and seasons 

AEZ Season Mean tick burden on cattlea   Vectorial inoculation rate 
(VIR)b 

Prediction CI (95%)   Prediction CI (95%) 

lower upper   lower upper 

Lowlands Wet1 29.2 24.3 35.0   1.9 0.93 3.5 

  Wet2 38.7 31.1 48.0   3.2 1.8 5.2 

  Dry 19.1 15.3 23.7   0.44 0.11 1.6 

Midlands Wet1 39.1 32.5 47.1   1.9 0.89 3.9 

  Wet2 42.3 33.7 53.1   3.6 2.01 6.1 

  Dry 17.5 13.7 22.3   0.56 0.17 1.6 

Highlands Wet1 18.7 15.3 22.8   0.57 0.26 1.2 

  Wet2 23.1 17.9 29.5   0.66 0.26 1.5 

  Dry 6.9 5.5 8.5   0.14 0.02 0.83 
aExpressed as the mean number of ticks per animal 
bVIR expressed as the number of infective ticks feeding on one animal during the feeding period of one week, 
which is used as the transmission intensity of T. parva 
Notes: AEZ, agro-ecological zones (AEZ1: lowlands, AEZ2: midlands and AEZ3: highlands). Seasons: Wet1, 
early wet season (September-December); Wet2, late wet season (February-May); Dry, dry season (June-August) 
Abbreviations: IC confident intervals 
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Table S5.2 Predictions and confidence intervals (95%) for T. parva prevalence in cattle blood 
and in free-living ticks according to AEZs and seasons 

AEZ Season T. parva prevalence in 
cattle blood   T. parva prevalence in 

pooled ticksa   T. parva prevalence in 
individual ticksb 

Prediction CI (95%)   Prediction CI (95%)  Prediction CI (95%) 

lower upper   lower upper  lower upper 

Lowlands Wet1 0.53 0.47 0.59   0.28 0.15 0.46  0.064 0.033 0.12 

  Wet2 0.48 0.41 0.55   0.35 0.22 0.49  0.082 0.05 0.13 

  Dry 0.43 0.36 0.51   0.11 0.028 0.35  0.023 0.006 0.084 

Midlands Wet1 0.3 0.23 0.38   0.23 0.11 0.4  0.05 0.023 0.098 

  Wet2 0.51 0.41 0.63   0.36 0.22 0.51  0.085 0.05 0.14 

  Dry 0.24 0.15 0.36   0.15 0.049 0.38  0.032 0.01 0.09 

Highlands Wet1 0.19 0.15 0.24   0.14 0.07 0.27  0.03 0.014 0.061 

  Wet2 0.24 0.15 0.36   0.13 0.057 0.29  0.029 0.012 0.065 

  Dry 0.1 0.065 0.15   0.1 0.014 0.47  0.021 0.003 0.12 
aTicks were grouped in pools of 5 ticks for T. parva DNA detection 
bThe prevalence in individual ticks was simulated using the probability formula applied on pooled prevalence 
Notes: AEZ, agro-ecological zones (AEZ1: lowlands, AEZ2: midlands and AEZ3: highlands). Seasons: Wet1, 
early wet season (September-December); Wet2, late wet season (February-May); Dry, dry season (June-August). 
Abbreviations: IC confident intervals 
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Table S5.3 Summary of the logistic regression model showing the association between T. 

parva infection rate in free-living ticks and ecological variables (AEZs and seasons) 

Factor Level Odds ratio 

(OR) 

CI (95%) P-value DEFTa 

AEZ Lowlands Refb         

  Midlands 1.4 0.21 9.6 0.72 0.78 

  Highlands 0.88 0.07 11.2 0.92 0.77 

Season Dry Refb         

  Wet1 3.1 0.59 16.5 0.17 0.53 

  Wet2 4.3 0.86 20.8 0.07 0.71 

 Interaction Midlands & Wet1 0.52 0.05 4.9 0.57 0.62 

  Midlands & Wet2 0.74 0.08 6.1 0.78 0.69 

  Highlands & Wet1 0.47 0.03 7.6 0.6 0.39 

  Highlands & Wet2 0.32 0.02 5.3 0.43 0.55 

Notes: AEZ, agro-ecological zones; Seasons: Wet1, early wet season (September-December); Wet2, late wet 
season (February-May); Dry, dry season (June-August). The model was multivariate, including AEZs (three 
levels), seasons (three levels) and their interaction. aDEFT, design effects computed using sample sites (villages) 
as subpopulation clusters assuming intra-village correlation. bRef., reference level: lowlands and dry season were 
used as reference for comparison in the model (P=0.05). CI, confident intervals 
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Appendices (Chapter 6) 

Table S6.1 Linkage disequilibrium of T. parva populations from cattle in different geographic locations of Africa based on microsatellite 
markers 

Country Region/AEZ N !" 
Linkage equilibrium/disequilibrium  

  #$%  &' "() Structure 

South Sudan (Salih et 
al., 2018) 

Kajo Keji 41 14 0.0544 2.7536 2.2393 LD 
Juba  45 14 0.0436 2.1546 1.8188 LD 
Yei  30 14 0.0150 2.1309 2.3414 LE 
Bor  62 14 0.0295 1.9931 1.7692 LD 
Overall 178 14 0.0499 2.1846 1.6119 LD 

Tanzania (Elisa et al., 
2015) 

Eastern 21 14 -0.0016 2.876 3·4409 LE 
Southern 14 14 0.0211 3.269 4·2228 LE 
Overall 35 14 0.0066 3.267 3·7396 LE 

Uganda (Oura et al., 
2005) 

Western (Mbarara) 34 12 0.0679 4.09  2.54  LD 
Northern (Lira) 40 12 0.0164 2.80 2.63  LD 
Central (Kayunga) 30 12 0.1439 5.87 2.59  LD 
Overall 104 12 0.0405 3.10 2.29  LD 

Uganda (Muwanika 
et al., 2016) 

Western 30 8 0.1424 2.9373 1.405 LD 
Northern 19 8 0.1647 3.2166 1.700 LD 
Central 11 8 0.1846 3.0424 1.964 LD 
Eastern 18 8 0.1302 2.8625 1.811 LD 
Overall 78 8 0.0749 2.0591 1.886 LD 

Zambia (Muleya et 
al., 2012) a 

Eastern (Petauke)  28 9 0.027 1.979 1.910 LD 
Northern (Isoka)  33 9 0.104 3.418 2.254 LD 
Overall 61 9 0.078 2.457 1.677 LD 

Sample size (N), number of loci (NL), Standardized	index	of	association	(*+,); VD: Mismatch variance which is compared to the variance expected (VE) for linkage equilibrium 
(null hypothesis linkage equilibrium: VD= VE); LMC: 95% confidence limit of Monte-Carlo simulation: The null hypothesis of linkage disequilibrium is rejected when VD is 
significantly greater than L. 
a Northern Zambia: Kanyelele and Kalembe areas (Isoka district), and Eastern Zambia: Saukani area (Petauke district) (Muleya et al., 2012) 
LD: linkage disequilibrium; LE: linkage equilibrium 
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Table S6.2 Parameters of the analysis of genetic diversity and population growth based on 
Tp2 gene sequences 

Genetic indices and statistics 
Populations 

Burundi DRC Kenya LS South 
Sudan Tanzania 

Number of sequences 28 68 22 17 65 71 
Number of variable sites 175 166 145 129 79 177 
Number of mutations 199 194 153 130 83 208 
Number of gene alleles 6 8 4 4 15 27 
Haplotype diversity (SD) 0.77 

(0.051) 
0.69 

(0.046) 
0.52 

(0.12) 
0.62 

(0.083) 
0.55 

(0.073) 
0.85 

(0.029) 
Nucleotide diversity (SD)  0.16 

(0.017) 
0.13 

(0.015) 
0.08 

(0.028) 
0.12 

(0.019) 
0.01 

(0.003) 
0.13 

(0.007) 
Number of pairwise 
nucleotide differences 69.7 57.2 41.5 62.7 4.6 66.5 

Tajima's D 1.4 1.4 -0.05 2.7** -2.5*** 1.9 
Fu and Li's D*  1.9** 2.1** 1.8** 1.7** -2.7* 1.5 
Fu and Li's F* 2.05** 2.2** 1.5** 2.3** -3.1* 1.9* 
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Table S6.3 Frequency distribution (%) of Tp1 antigen variants from cattle-derived T. parva among sub-Saharan African countries 

Tp1 antigen variant Tp1 gene alleles Burundi1 DRC2 Kenya 
(CD)3 

South 
Sudan4 

Tanzania5 Overall 

Var-1 [AEG42617] a Allele-1, 9, 39, 42, 43, 47 55 75 52 70 64 66.1 
Var-2 [AEG42641] b Allele-2, 3,  0 0 16 0 0 1.2 
Var-3 [AEG42654] Allele-4, 44 12 8 8 18 23 16.1 
Var-4 [AEG42657] Allele-5 0 0 4 0 0 0.3 
Var-5 [AEG42659] Allele-6 0 0 4 0 0 0.3 
Var-6 [AEG42662] Allele-7 0 0 4 0 0 0.3 
Var-7 [AEG42661] Allele-8 0 0 4 0 0 0.3 
Var-8 [AEG42663] Allele-10 0 0 4 0 0 0.3 
Var-9 [AEG42658] Allele-11, 38 0 0 4 1 0 0.6 
Var-31 [AIA64003] Allele-36, 37, 40, 41  33 8 0 11 8 10.8 
Var-32 [AVM41544] Allele-45 0 5 0 0 0 1.2 
Var-33 [AVM41545] Allele-46, 49 0 2 0 0 4 2.0 
Var-34 [AVM41547] Allele-48 0 1 0 0 0 0.3 
Var-35 [QBL98042]  0 0 0 0 1 0.3 
No. of sequences  33 83 25 79 122 342 

1: Burundi (Amzati et al., 2019); 2: RDC(Amzati et al., 2019); 3: CD Kenya (Pelle et al., 2011), 4: South Sudan (Salih et al., 2017); 5: Tanzania (Elisa et al., 2015; Kerario et 
al., 2019). aVar-1: Muguga (Kenya: AEG42617), Mariakani (Kenya: AEG42618), Kiambu-5 (Kenya: AEG42620), Serengeti (Tanzania: AEG42621), Nanyuki (Kenya: 
AEG42622); bVar-2: Marikebuni (Kenya: AEG42641), Boleni (Zimbabwe: AEG42644), Uganda (AEG42652), Mariakani (Kenya: AEG42646).  
Notes: Var-10 (not shown in the table) is only found in the laboratory stock Chitongo (Zambia: AEG42656); Var-11 to var-30 (not shown in the table) are only described in 
buffalo-derived and buffalo-associated T. parva (Pelle et al., 2011; Sitt et al., 2018)  
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Table S6.4 Frequency distribution (%) of Tp2 antigen variants from cattle-derived T. 
parva among sub-Saharan African countries 

Tp2 Antigen variant Burundi1 DRC2 Kenya 
(CD)3 

South 
Sudan4 Tanzania5 Overall 

Var-1 [AEG42537] a 18 50 68 66 50 51.9 
Var-2 [AEG42561] b 39 16 14 11 16 17.0 
Var-3 [AEG42565]c 0 0 9 0 0 0.7 
Var-4 [AEG42574] 0 0 9 0 0 0.7 
Var-5 [AEG42575] d 0 0 0 2 0 0.4 
Var-42 [AIA64009] 0 0 0 3 0 0.7 
Var-43 [AIA64013] 0 0 0 5 0 1.1 
Var-44 [AIA64011] 0 0 0 2 0 0.4 
Var-45 [AIA64012] 0 0 0 2 0 0.4 
Var-46 [AIA64018] 0 0 0 2 0 0.4 
Var-47 [AIA64014] 0 0 0 2 0 0.4 
Var-48 [AIA64017] 0 0 0 2 0 0.4 
Var-49 [AIA64016] 0 0 0 2 0 0.4 
Var-50 [AIA64015] 0 0 0 2 0 0.4 
Var-51 [AIA64019] 0 0 0 2 0 0.4 
Var-52 [AIA64020] 0 0 0 2 0 0.4 
Var-53 [AVM41549] 7 19 0 0 0 5.3 
Var-54 [AVM41550] 29 7 0 0 0 4.6 
Var-55 [AVM41551] 7 0 0 0 0 0.7 
Var-56 [AVM41553] 0 1 0 0 0 0.4 
Var-57 [AVM41554] 0 1 0 0 0 0.4 
Var-58 [AVM41555] 0 1 0 0 0 0.4 
Var-59 [AVM41556] 0 3 0 0 0 0.7 
Var-60 [QBL98216] 0 0 0 0 1 0.4 
Var-61 [QBL98165] 0 0 0 0 2 0.7 
Var-62 [QBL98164] 0 0 0 0 23 8.1 
Var-63 [QBL98170] 0 0 0 0 5 1.8 
Var-64 [QBL98175] 0 0 0 0 3 1.1 
No. of sequences 28 68 22 65 100 283 

1: Burundi (Amzati et al., 2019); 2: RDC (Amzati et al., 2019); 3: CD Kenya (Pelle et al., 2011), 4: South Sudan 
(Salih et al., 2017); 5: Tanzania (Elisa et al., 2015); avar-1: Muguga (Kenya: AEG42537), Marikebuni (Kenya: 
AEG42538), Mariakani (Kenya: AEG42541), Serengeti (Tanzania: AEG42543), Katete (Zambia: AEG42544); 
bvar-2: Kiambu-5 (Kenya: AEG42561); cvar-3: Chitongo (Zambia: AEG42565), Boleni (Zimbabwe: AEG42566), 
Uganda (AEG42567), Mariakani (AEG42569); dvar-5: Nanyuki (Kenya: AEG42575). 
Notes: Var-6 to var-41 (not shown in the table) are only described in buffalo-derived T. parva (Pelle et al., 2011; 
Sitt et al., 2018)  
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Table S6.5 CD8+ T-cell epitope variants identified so far in two immunodominant antigens (Tp1 and Tp2) from cattle in Africa 

Tp1214–224 Tp227–37 Tp240–48 Tp249–59 Tp296–104 Tp298–106 Tp2138–147 

VGYPKVKEEML 
(1, 2, 3, 4, 5) a 

SHEELKKLGML 
(1, 2, 3, 4, 5) var-1,5 

DGFDRDALF 
(1, 2, 3, 4, 5) var-1,2,5 

KSSHGMGKVGK 
(1, 2, 3, 4, 5) var-1,2,5 

FAQSLVCVL 
(1, 2, 3, 4, 5) var-1,2,5 

QSLVCVLMK 
(1, 2, 3, 4, 5) var-1,2,5 

KTSIPNPCKW 
(1, 2, 3, 4, 5) var-1,2,5 

VGYPKVKEEII 
(1, 2, 3, 4, 5) b 

SDEELNKLGML 
(1, 2, 3, 4, 5) var-2 
 

PDLDKNRLF 
(1, 2, 3, 5) var-3 

LTSHGMGRIGR 
(1, 2, 3) var-3 

FAASIKCVA 
(1, 2, 3, 5) var-3 

ASIKCVAQY 
(1, 2, 3, 5) var-3 

KPSVPNPCDW 
(1, 2, 3, 5) var-3 

VGYPKVKEEIL 
(3, 4, 5) 

SDDELDTLGML 
(1, 2, 3, 5) var-3 SNFDRESLF (2) LTSHGMGKIGR 

(1, 2, 3, 5) 
LAASIKCVS 
(1, 2, 3, 5) 

ASIKCVSHH 
(1, 2, 3, 5) ASDIPNPCKW (2) 

VGYPKVKEEMI 
(2, 5) 

SDNELDTLGLL 
(1, 2, 3, 5) EGFDKEKLF (4) KSSHGMGKVGR (2) FAQSILCVI (2) QSILCVIKN (2) VNDIPNPCKW (1) 

VGYPKVKEEMV (5) SDEELNILGML (2) EGFDRETLF (4) KSSKSMGIVGR (1) FVQSIMCVI (1) QSIMCVINK (1) KNDIPNPCKW (4) 
 TEEELRKLGMV (2) GNFDRELLF (5) KSSKSMGKVGK (4) FAQSIMCVL (4) QSIMCVLKK (4)  KPSIPNPCKW (4) 

 TEEELKKMGMV (1)  KSSQSMGKVGK (4) FAQSLMCVL (4) QSLMCVLMK (4) KTCFPNPCKW (4) 

 SEEELKKLGML (4)  KSSHGMGKIGR (5) LAQSIVCVV (5) QSIVCVVSK (5) KTDIPNPCKW (4) 

 SHEELNILGML (4)     VSDIPNPCKW (5) 

 SQEELKKMGML (4)      

 SYEELKKLGML (4)      

 THEELKKMGML (4)      

 SHDGLKKLGML (5)      

 SDDELNKLGML (5)      

 SEAELRKMGMI (5)      

1: Burundi (Amzati et al., 2019); 2: RDC(Amzati et al., 2019); 3: CD Kenya (Pelle et al., 2011), 4: South Sudan (Salih et al., 2017); 5: Tanzania (Elisa et al., 2015); var-1: 
Muguga (Kenya: AEG42537), Marikebuni (Kenya: AEG42538), Mariakani (Kenya: AEG42541), Serengeti (Tanzania: AEG42543), Katete (Zambia: AEG42544); var-2: 
Kiambu-5 (Kenya: AEG42561); var-3: Chitongo (Zambia: AEG42565), Boleni (Zimbabwe: AEG42566), Uganda (AEG42567), Mariakani (AEG42569); var-5: Nanyuki 
(Kenya: AEG42575). 
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Figure S6.6 Mismatch distribution of frequencies of pairwise differences among T. parva 
Tp2 alleles assuming population expansion 
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