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Abstract: In this paper we describe the mechanism of light emission through thermally activated
delayed fluorescence (TADF)—a process able to ideally achieve 100% quantum efficiencies upon
fully harvesting the energy of triplet excitons, and thus minimizing the energy loss of common (i.e.,
fluorescence and phosphorescence) luminescence processes. If successful, this technology could be
exploited for the manufacture of more efficient organic light-emitting diodes (OLEDs) made of only
light elements for multiple daily applications, thus contributing to the rise of a sustainable electronic
industry and energy savings worldwide. Computational and theoretical studies have fostered the
design of these all-organic molecular emitters by disclosing helpful structure–property relationships
and/or analyzing the physical origin of this mechanism. However, as the field advances further, some
limitations have also appeared, particularly affecting TD-DFT calculations, which have prompted
the use of a variety of methods at the molecular scale in recent years. Herein we try to provide a
guide for beginners, after summarizing the current state-of-the-art of the most employed theoretical
methods focusing on the singlet–triplet energy difference, with the additional aim of motivating
complementary studies revealing the stronger and weaker aspects of computational modelling for
this cutting-edge technology.

Keywords: TADF; OLEDs; excited-states energy conversion; singlet–triplet energy gap; TD-DFT

1. Introduction: The Quest for New Energy Conversion Mechanisms for Efficient Light Emission

The development of emitter materials for the new generation of organic light-emitting diodes
(OLEDs) [1] currently faces a few key challenges, such as the search for more efficient, bright, and
long-lasting blue color emitters or the fine-tuning of low-cost large-scale fabrication methods such as
ink-jet printing and related techniques. Despite the multi-layer (and complex) architecture of modern
OLEDs (see Figure 1), the molecular emitters constituting the active layer still critically determine the
efficiency of the whole electroluminescence process taking place within the device. The subpixels used
to generate the basic colors (red, green, and blue) should all have similar performance (i.e., brightness)
and lifetime (i.e., avoid degradation and burn-in effects) to increase resolution and user experience.
Previously exploited light-emission mechanisms—fluorescence and phosphorescence—have a limited
efficiency (i.e., 25% in the case of fluorescence) or a lack of competitive phosphorescent deep-blue
emitting molecules [2].
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and long-lifetime performance, which could thus pave the way towards its ultimate 
commercialization. In fact, several companies (e.g., Kyulux, Cynora, LG Display, Novaled, Wisechip, 
Idemitsu Kosan, Toray Industries, UDC, Noctiluca, etc.) are investing time and effort to 
commercializing this new family of compounds. The year 2019 also notably marked the 10-year 
anniversary since the first demonstration of TADF OLEDs, but it seems there is still work to be done 
to fully reach this longstanding goal [6,7].  

 

Figure 1. Sketch of the multi-layer architecture of a modern organic light-emitting diode (OLED) 
including a metallic cathode, a layer favoring the electron transport (thus blocking the hole transport), 
the emitting layer, a layer favoring the hole transport (thus blocking the electron transport), the 
indium tin oxide (ITO) anode, and the transparent substrate. In an OLED device, the light-emitting 
active molecules are excited after the electron–hole recombination (i.e., exciton formation) from the 
cathode and the anode, with associated light emission when returning to the ground state. 

The idea behind a more efficient molecular emitter embedded into a functional matrix and acting 
as the active layer of a built-in TADF-based OLED relies on harvesting 100% of the excitons formed 
upon the electrical excitation, in contrast to former light-emitting mechanisms such as fluorescence 
or phosphorescence whose internal quantum efficiencies (IQEs) were limited a priori as said 
previously. In the TADF mechanism, 75% of triplet excitons could ideally be recovered through a 
reverse intersystem crossing mechanism (RISC) due to quasi-resonant lowest singlet and triplet 
excited states, S1 and T1 respectively (see Figure 2). Note that the singlet–triplet energy difference 
(ΔEST) in most conjugated molecules and polymers is around 0.5–1.0 eV [8], thus precluding an 
efficient RISC in the absence of other driving factors. When the energy difference ΔEST remains 
around 0.1–0.2 eV, one could therefore envision an RISC rate within the semi-classical Marcus 

formalism [9], 𝑘ோூௌ ∝ 𝑉ௌைଶ  𝑒ିቆ൫ಓశ ಶೄ൯మరഊೖಳ ቇ
, fast enough to achieve a delayed fluorescence in addition to 

the standard fluorescence from the remaining 25% of singlet excitons. We are also aware of other 
technical requirements, such as: short excited-state lifetime to avoid non-radiative decay and thus 
maximize the photoluminescence quantum yields (PLQYs), appropriate color CIE coordinates and 
color purity, etc. However, in the following sections we focus on the basic aspects for the molecular 
modelling, at the molecular scale, related to energy conversion [10]. 

Figure 1. Sketch of the multi-layer architecture of a modern organic light-emitting diode (OLED)
including a metallic cathode, a layer favoring the electron transport (thus blocking the hole transport),
the emitting layer, a layer favoring the hole transport (thus blocking the electron transport), the indium
tin oxide (ITO) anode, and the transparent substrate. In an OLED device, the light-emitting active
molecules are excited after the electron–hole recombination (i.e., exciton formation) from the cathode
and the anode, with associated light emission when returning to the ground state.

On the other hand, thermally activated delayed fluorescence (TADF) [3–5], also known as E-type
fluorescence in the past, can help to achieve these ambitious goals thanks to the combination of pure
organic materials, without relying on heavy metals (in contrast to phosphorescence). It has efficient and
long-lifetime performance, which could thus pave the way towards its ultimate commercialization. In
fact, several companies (e.g., Kyulux, Cynora, LG Display, Novaled, Wisechip, Idemitsu Kosan, Toray
Industries, UDC, Noctiluca, etc.) are investing time and effort to commercializing this new family of
compounds. The year 2019 also notably marked the 10-year anniversary since the first demonstration
of TADF OLEDs, but it seems there is still work to be done to fully reach this longstanding goal [6,7].

The idea behind a more efficient molecular emitter embedded into a functional matrix and acting
as the active layer of a built-in TADF-based OLED relies on harvesting 100% of the excitons formed
upon the electrical excitation, in contrast to former light-emitting mechanisms such as fluorescence or
phosphorescence whose internal quantum efficiencies (IQEs) were limited a priori as said previously. In
the TADF mechanism, 75% of triplet excitons could ideally be recovered through a reverse intersystem
crossing mechanism (RISC) due to quasi-resonant lowest singlet and triplet excited states, S1 and T1

respectively (see Figure 2). Note that the singlet–triplet energy difference (∆EST) in most conjugated
molecules and polymers is around 0.5–1.0 eV [8], thus precluding an efficient RISC in the absence of
other driving factors. When the energy difference ∆EST remains around 0.1–0.2 eV, one could therefore

envision an RISC rate within the semi-classical Marcus formalism [9], kRISC ∝ V2
SOC e−(

(λ+∆EST)2

4λkBT )
, fast

enough to achieve a delayed fluorescence in addition to the standard fluorescence from the remaining
25% of singlet excitons. We are also aware of other technical requirements, such as: short excited-state
lifetime to avoid non-radiative decay and thus maximize the photoluminescence quantum yields
(PLQYs), appropriate color CIE coordinates and color purity, etc. However, in the following sections
we focus on the basic aspects for the molecular modelling, at the molecular scale, related to energy
conversion [10].
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Figure 2. Sketch of the energy levels for the ground state (S0) and lowest excited states (S1 and T1) of 
different multiplicity, involved in the thermally activated delayed fluorescence (TADF) mechanism 
after the exciton formation, and the corresponding reverse intersystem crossing mechanism (RISC) 
process from the T1 to the S1 states compared to fluorescence (emission from S1) and phosphorescence 
(emission from T1). Note the ideal energy up-conversion from the triply-degenerated T1 to the S1 state 
for sufficiently small ΔEST values. 

2. Current Achievements and Challenges for Theoretical Methods at the Molecular Scale 

However, the search for novel (purely organic) molecular materials with close in energy S1 and 
T1 states is not exempted from difficulties due to the myriad possible candidates to be explored. 
Fortunately, the computational design of novel conjugated organic materials has significantly 
contributed to the field, first applying a variety of modelling techniques for the fast screening of the 
compounds, and then rationalizing the physical origin of small ΔEST together with other competitive 
factors such as the impact of the spin–orbit coupling (SOC or 𝑉ௌை). Despite significant advances in 
the study and influence of SOC [11–13], which also contributes to the RISC rate as 𝑘ோூௌ ∝ 𝑉ௌைଶ , in 
the following we concentrate on the former ΔEST quantity for simplicity. 

In the simplest possible and uncorrelated (Hartree–Fock) case, supposing that both S1 and T1 
states are formed exclusively by a one-electron excitation (if this is not formally the case, one can 
always use a natural transition orbital representation or the attachment/detachment formalism) from 
the highest occupied molecular orbital (HOMO or simply H) to the lowest unoccupied molecular 
orbital (LUMO or simply L), one easily infers that ΔEST roughly relates to the exchange energy (i.e., 
the value of the double integral ∫ ∫ 𝜙ு∗ (𝒓)𝜙(𝒓) ଵ|𝒓ି𝒓´| 𝜙ு(𝒓´)𝜙∗(𝒓´)𝑑𝒓𝑑𝒓´ ), which should thus be 
minimized for any set of molecules tackled. Previous works on donor–acceptor (DA) conjugated 
systems found that a poor overlap between the involved HOMO (𝜙ு) and LUMO (𝜙) orbitals, when 
they interact only through their exponential tails, would lead to sufficiently small ΔEST values [14,15]. 
Therefore, computational calculations offered, from the very beginning and mostly using time-
dependent density-functional theory (TD-DFT) methods, an intuitive and cost-effective tool to look 
at the spatial distribution of those orbitals as a simple indicator for the screening and choice of 
suitable candidates (Figure 3). 

Figure 2. Sketch of the energy levels for the ground state (S0) and lowest excited states (S1 and T1) of
different multiplicity, involved in the thermally activated delayed fluorescence (TADF) mechanism
after the exciton formation, and the corresponding reverse intersystem crossing mechanism (RISC)
process from the T1 to the S1 states compared to fluorescence (emission from S1) and phosphorescence
(emission from T1). Note the ideal energy up-conversion from the triply-degenerated T1 to the S1 state
for sufficiently small ∆EST values.

2. Current Achievements and Challenges for Theoretical Methods at the Molecular Scale

However, the search for novel (purely organic) molecular materials with close in energy S1 and T1

states is not exempted from difficulties due to the myriad possible candidates to be explored. Fortunately,
the computational design of novel conjugated organic materials has significantly contributed to the
field, first applying a variety of modelling techniques for the fast screening of the compounds, and
then rationalizing the physical origin of small ∆EST together with other competitive factors such as
the impact of the spin–orbit coupling (SOC or VSOC). Despite significant advances in the study and
influence of SOC [11–13], which also contributes to the RISC rate as kRISC ∝ V2

SOC, in the following we
concentrate on the former ∆EST quantity for simplicity.

In the simplest possible and uncorrelated (Hartree–Fock) case, supposing that both S1 and T1 states
are formed exclusively by a one-electron excitation (if this is not formally the case, one can always use
a natural transition orbital representation or the attachment/detachment formalism) from the highest
occupied molecular orbital (HOMO or simply H) to the lowest unoccupied molecular orbital (LUMO
or simply L), one easily infers that ∆EST roughly relates to the exchange energy (i.e., the value of the
double integral

∫ ∫
φ∗H(r)φL(r) 1

|r−r′ |φH(r′)φ∗L(r
′)drdr′), which should thus be minimized for any set

of molecules tackled. Previous works on donor–acceptor (DA) conjugated systems found that a poor
overlap between the involved HOMO (φH) and LUMO (φL) orbitals, when they interact only through
their exponential tails, would lead to sufficiently small ∆EST values [14,15]. Therefore, computational
calculations offered, from the very beginning and mostly using time-dependent density-functional
theory (TD-DFT) methods, an intuitive and cost-effective tool to look at the spatial distribution of those
orbitals as a simple indicator for the screening and choice of suitable candidates (Figure 3).
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Figure 3. Left: Chemical structure of 2-phenoxazine-4,6-diphenyl-1,3,5-triazine (PXZ-TRZ), a 
commercially available green emitter that is widely used for TADF and exhibits external quantum 
efficiencies up to 21% [16]. Right: Isocontour plots of the HOMO (top) and LUMO (bottom) orbitals, 
with the green and red color of the lobes denoting their different sign. An excited state—S1 or T1—
created mostly by a HOMO-to-LUMO one-electron promotion will involve some degree of 
intramolecular charge-transfer character due to the spatial localization of both orbitals on different 
molecular moieties, D and A, respectively. 

Beyond this qualitative picture, the prediction of the energy of the S1 and T1 states, E(S1) and 
E(T1) respectively, is obviously a key target to achieve in order to accurately assess the magnitude 
ΔEST = E(S1) – E(T1), and eventually the energy of any other Sn and Tn states defining the full excited-
states energy manifold. As simple as it seems, this is still a challenging goal [17]. The use of the cost-
effective TD-DFT method, independently of the type of calculation done (i.e., the underlying selected 
exchange-correlation functional Exc[ρ]), has revealed a set of serious shortcomings affecting the 
reliability and reproducibility of the computational results for TADF applications. Note that the 
common deviations found in earlier and benchmark applications to large sets of organic materials 
(TD-DFT is generally agreed to provide an averaged mean absolute deviation of 0.3 eV, roughly 
speaking, between calculated and experimental absorption or emission low-lying energies, with all 
due caution about specific cases [18,19]) could be the reason to choose—or discard—a TADF-based 
molecule based on the sole criteria of providing a low ΔEST value. Using exciton properties as 
reference properties for benchmarking theoretical methods could also possibly be exploited [20]. 
Among the known shortcomings, we remark: (i) the difference in quality between E(S1) and E(T1) 
calculations, with unbalanced errors for both quantities, as well as with respect to the historically 
used “ΔSCF” method to predict the energy of the T1 state; (ii) the neglect of pure double-electron 
excitations using conventional TD-DFT methods; and (iii) the relatively large spread of the results 
using different exchange-correlation functionals or, in other words, the possibility of having system-
dependent results upon the functional choice.  

This situation is not surprising within the context of correctly predicting intramolecular charge-
transfer (ICT) excitations, since for molecular materials this has always been a major challenge [21]. 
Some of these shortcomings were partly remedied with the recent use of tuned exchange-correlation 
functionals based on the matching between theoretically predicted and experimentally available one-
electron (i.e., the energy of the H and/or L orbitals, 𝜖ு and 𝜖) and many-electron (i.e., the energy of 
the corresponding ionized states) energies for each of the molecules studied—a computational 
protocol later extended directly to the matching of theoretical and experimental E(S1) and/or E(T1) 
energies. Invoking again the concept of DA compounds at their infinite separation, it is easy to see 
that the excitation energy will be given by IP(D) – EA(A), where IP is the ionization potential of the 
donor fragment and EA is the electron affinity of the acceptor fragment. This suggests the aforesaid 

Figure 3. Left: Chemical structure of 2-phenoxazine-4,6-diphenyl-1,3,5-triazine (PXZ-TRZ), a
commercially available green emitter that is widely used for TADF and exhibits external quantum
efficiencies up to 21% [16]. Right: Isocontour plots of the HOMO (top) and LUMO (bottom) orbitals,
with the green and red color of the lobes denoting their different sign. An excited state—S1 or T1—created
mostly by a HOMO-to-LUMO one-electron promotion will involve some degree of intramolecular
charge-transfer character due to the spatial localization of both orbitals on different molecular moieties,
D and A, respectively.

Beyond this qualitative picture, the prediction of the energy of the S1 and T1 states, E(S1) and
E(T1) respectively, is obviously a key target to achieve in order to accurately assess the magnitude
∆EST = E(S1) − E(T1), and eventually the energy of any other Sn and Tn states defining the full
excited-states energy manifold. As simple as it seems, this is still a challenging goal [17]. The use of
the cost-effective TD-DFT method, independently of the type of calculation done (i.e., the underlying
selected exchange-correlation functional Exc[ρ]), has revealed a set of serious shortcomings affecting
the reliability and reproducibility of the computational results for TADF applications. Note that the
common deviations found in earlier and benchmark applications to large sets of organic materials
(TD-DFT is generally agreed to provide an averaged mean absolute deviation of 0.3 eV, roughly
speaking, between calculated and experimental absorption or emission low-lying energies, with all
due caution about specific cases [18,19]) could be the reason to choose—or discard—a TADF-based
molecule based on the sole criteria of providing a low ∆EST value. Using exciton properties as reference
properties for benchmarking theoretical methods could also possibly be exploited [20]. Among the
known shortcomings, we remark: (i) the difference in quality between E(S1) and E(T1) calculations,
with unbalanced errors for both quantities, as well as with respect to the historically used “∆SCF”
method to predict the energy of the T1 state; (ii) the neglect of pure double-electron excitations using
conventional TD-DFT methods; and (iii) the relatively large spread of the results using different
exchange-correlation functionals or, in other words, the possibility of having system-dependent results
upon the functional choice.

This situation is not surprising within the context of correctly predicting intramolecular
charge-transfer (ICT) excitations, since for molecular materials this has always been a major
challenge [21]. Some of these shortcomings were partly remedied with the recent use of tuned
exchange-correlation functionals based on the matching between theoretically predicted and
experimentally available one-electron (i.e., the energy of the H and/or L orbitals, εH and εL)
and many-electron (i.e., the energy of the corresponding ionized states) energies for each of the
molecules studied—a computational protocol later extended directly to the matching of theoretical and
experimental E(S1) and/or E(T1) energies. Invoking again the concept of DA compounds at their infinite
separation, it is easy to see that the excitation energy will be given by IP(D) – EA(A), where IP is the
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ionization potential of the donor fragment and EA is the electron affinity of the acceptor fragment. This
suggests the aforesaid tuning at intermediate separations: εH ≈ IP(D) and εL ≈ EA(A). Note also that: (i)
the mentioned tuning is possible thanks to the flexibility of the ingredients (and their weights) entering
into modern expressions for exchange-correlation functionals (e.g., the range-separation parameter);
and (ii) a system-specific tuning was also previously explored in the context of TADF adjusting the
fraction of exact-like exchange (i.e., exact exchange energy but calculated with the self-consistently
obtained Kohn–Sham orbitals) of the more classical hybrid functionals. These last efforts do not solve
other issues, such as the n-tuple (n being double or higher) excitations, besides the increase of the
computational effort and the lack of transferability of the results. However, they have definitively
contributed to the estimation, for instance, of the influence of polarization effects after calculating the
difference in E(S1) and E(T1) energies from gas phase to polarizable environments [22,23].

3. Understanding the Grounds of a TD-DFT Calculation

Current implementations of TD-DFT in most codes make use of the linear-response formalism,
in which for pure (non-hybrid) density functionals the exact excitation energies }ωn are obtained
from the eigenvalues of the matrix Miaσ, jbτ = (εaσ − εiτ)

2δi jδabδστ + 2
√
εaσ − εiσ

√
εbτ − ε jτ Kiaσ, jbτ(ω),

where the indices ij (ab) refer to occupied (virtual) orbitals and στ are spin indices. Interestingly,
the contribution from the term Kiaσ, jbτ(ω) ideally includes the many-body and frequency-dependent
effects beyond one-electron energy orbital differences. This term splits into two contributions,
Kiaσ, jbτ(ω) =

∫ ∫
φ∗iσ(r)φaτ(r)

(
1
|r−r′ | + fxc(r, r′, ω)

)
φ∗jτ(r

′)φbτ(r′)drdr′, with the second contribution
depending on the second functional derivative (i.e., the kernel) of the exchange-correlation functional,

fxc(r, t; r′, t′) = δ2Exc,σ([ρσ];r,t)
δ2ρσ(r′,t′)

, which is by definition exact and non-local in space (i.e., dependence on r
and r′) and non-local in time (i.e., dependence on t and t′) to incorporate the ω-dependency. We would
like to emphasize the importance of this term in TD-DFT, especially in TADF, which basically would
turn (approximate) one-electron into (exact) many-electron excitations.

However, several approximations are used in practice to calculate, for example, the E(S1) and
E(T1) energies through the linear-response TD-DFT formalism, again independent of the expression
selected for Exc[ρ]:

(i) All excited-state calculations are done converging first the ground-state eigenvalues and orbitals,
and then using those orbitals and the associated density to calculate all TD-DFT-related magnitudes,
which thus precludes the incorporation of an explicit dependence on time in the kernel fxc—a fact
known as the adiabatic approximation;

(ii) The use of complex mathematical expressions for the integrand of modern semilocal Exc[ρ]
functionals (i.e., GGA or meta-GGA) makes it difficult to obtain their second functional derivative
analytically, and often the simplest expression known as the local density approximation (LDA) is
used instead

[
f (r, r′, ω) ≈ f LDA

xc (r)δ(r− r′)
]

to speed up the calculations. The good performance
of the adiabatic LDA (ALDA) approximation in finite systems has discouraged the development
of more elaborate ways to incorporate the time dependence [24].

(iii) Again, the use of a semilocal Exc[ρ] functional, depending only on ρ(r) and its successive
derivatives, precludes the incorporation of an explicit spatial dependence in fxc.

Briefly speaking, neither the temporal nor the spatial memory is contained in fxc, thus keeping an
oversimplified form. Note that the use of a tuned range-separated functional or the Tamm–Dancoff

approximation (TDA), for instance, would not overcome these common drawbacks of TD-DFT
calculations, although they would slightly improve the agreement with respect to experimental results,
especially for triplet excitations bearing a low-to-medium degree of ICT excitations.

These shortcomings do not strongly affect the performance of TD-DFT for non-CT excitations, i.e.
for those excitation being mostly local, beyond that average accuracy obtained in benchmark studies,
but the role of the

∫ ∫
φ∗iσ(r)φaτ(r) fxc(r, r′,ω)φ∗jτ(r

′)φbτ(r′)drdr′ integral is normally underestimated
in TADF applications. Solving exactly this problem is far from being trivial: the small but non-vanishing
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overlap between the involved orbitals giving rise to the S1 and T1 states would need to be incorporated
through the spatial non-locality of the kernel fxc, which is not possible in current formulations beyond
some exceptions, deteriorating thus the accuracy for charge transfer (CT) excitations. In the limit of
infinitely separated D and A fragments, Kiaσ, jbτ(ω) will vanish and thus the excitation energy will
be wrongly given by eigenvalue difference, but at intermediate separations this contribution can be
substantially modified (decreasing or increasing) each of the excited-state energies with respect to the
first contribution

∫ ∫
φ∗iσ(r)φaτ(r)

(
1
|r−r′ |

)
φ∗jτ(r

′)φbτ(r′)drdr′.
Finally, we also discuss here the importance of double excitations in calculations for TADF studies.

This issue has also been previously observed for conjugated polyenes and biochromophores [25,26],
but it has been largely ignored in the TADF field. However, recent synthetic advances have revealed
how TD-DFT could not even qualitatively predict the ∆EST value (i.e., errors up to 0.5 eV) for a set of
particularly interesting TADF compounds known as multi-resonant TADF emitters [27–29], bearing
some degree of double-excitation character in addition to other electronic effects. A double-excited
state is formed by simultaneously promoting two electrons from occupied to virtual orbitals. Whereas
the correct description of these states, be them ground states or excited states, is clearly based on

correlation effects, the full wavefunction is given by |Ψ〉 = c0|Ψ0〉 + ca
i

∣∣∣Ψa
i 〉 + cab

i j

∣∣∣∣Ψab
i j 〉 + · · · , where

∣∣∣Ψa
i 〉

is a singly-excited determinant,
∣∣∣∣Ψab

i j 〉 is a doubly-excited determinant, etc., and the corresponding
energy by the sum of uncorrelated (E0) and correlation energy, E = E0 + Ec, how these states might be
described by linear-response TD-DFT is still a matter for further investigation.

4. Beyond a TD-DFT Treatment of TADF

The underlying trade-off between accuracy and computational cost should always be considered
for any theoretical application with predictive power: real-life molecules are often constituted by tens
or even hundreds of atoms, which helps to explain the great initial success of TD-DFT for the field of
TADF, with only very limited applications of other ab initio methods to date. After having enumerated
the issues to be solved with TD-DFT calculations for TADF compounds, which however does not
preclude its widespread use as a complementary tool, it is now easier to understand why cost-effective
solutions for excited states based on ab initio methods might emerge as a reliable alternative for
difficult cases.

Therefore, since the spin-component-scaled (SCS-)CC2 method has recently been successfully
applied to TADF compounds [30] for which TD-DFT calculations failed, in the following we revisit
its main features. The method is a variant of the coupled-cluster (CC) general theory in which

the ground-state energy is obtained by ECC = 〈Ψ0

∣∣∣∣e−T̂ĤeT̂
∣∣∣∣Ψ0〉, where |Ψ0〉 is the ground-state

reference (i.e., Hartree–Fock) wavefunction. The cluster operator eT̂ can be expanded as a Taylor
series as 1 + T̂ + 1

2! T̂2 + 1
3! T̂3 + · · · , with T̂ = T̂1 + T̂2 + · · ·+ T̂n, where T̂1 is the operator for all

single excitations, T̂2 is the operator for all double excitations, and so forth. In the formalism of
2nd-quantization, these excitation operators are T̂1 =

∑
ia ti

a âa âi, T̂2 = 1
4
∑

ia, jb ti j
ab âa âb âi â j, etc., where

ij (ab) denote occupied (unoccupied) hole–particle orbital states and âa (âi) the corresponding creation
(annihilation) operators. The different truncations will define the corresponding CC level: CCSD (with
only single and double excitations, T̂ = T̂1 + T̂2), CCSDT (with single, double, and triple excitations,
T̂ = T̂1 + T̂2 + T̂3), etc. Even in its simple CCSD formulation, the exponential operator thus becomes
eT̂ = 1 + T̂1 + T̂2 +

1
2! T̂2

1 +
1
2! T̂1 T̂2 +

1
2! T̂2

2 + · · · and also includes excitations of the form T̂1 T̂2

(disconnected triples) or T̂2
2 (disconnected quadruples).

The CCSD energy is thus given by ECCSD = 〈ΨHF

∣∣∣∣ĤeT̂1+T̂2

∣∣∣∣ ΨHF〉, with the corresponding

amplitudes obtained from the equations 〈µi
∣∣∣e ˆ−T1−T̂2ĤeT̂1+T̂2 |ΨHF 〉, where µi (i = 1, 2) denotes the

single and double excitations manifold. If the CCSD equations are approximated, the singles are
retained but the doubles are approximated to be correct up to second-order only, and one obtains the
CC2 method [31]. The energy thus becomes ECC2 = EHF +

∑ab
i j

[
ti j
ab + ti

at j
b

][
2(ia

∣∣∣ jb) − ( ja
∣∣∣ib)], with the
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cluster amplitudes ti
a and ti j

ab obtained iteratively. For instance, for the case of the sets of all singly

excited determinants µ1, the equation to be solved is Ω(µ1) = 〈µ1

∣∣∣∣Ĥ +
[
Ĥ, T̂2

]∣∣∣∣Ψ0〉 = 0, from which
we can easily observe how single- and double-excitations are coupled and naturally enters into the
CC2 treatment. Next, the introduction of different scaling factors for the same-spin and opposite-spin
contributions to the correlation energy gives rise to the SCS variant, with a hopefully better performance
after mimicking those effects from higher-order excitations [32,33]. The excitation energies are also

obtained by linear-response theory as derivatives with respect to the cluster amplitudes (e.g., ∂Ω(µi)

∂ti
a

),

but at a cost scaling as O
(
N5

)
with respect to the system size N and thus considerably higher than that

of TD-DFT scaling as O
(
N3−4

)
.

Note that not only (SCS-)CC2 can provide considerably accurate excitation energies for ICT
and double-excited states of real-life TADF compounds, but other existing methods such as
CIS(D) [34], configuration interactions with single and perturbatively approximated double excitations
(SCS-)ADC(2) [35], algebraic diagrammatic construction at second-order, NEVPT2 [36], N-electron
valence perturbation theory at second-order, EOM-CCSD [37], equation-of-motion coupled clusters with
single and double excitations, CASPT2 [38], complete active space second-order perturbation theory,
DFT-MRCI [39], density-functional theory coupled with multi-reference configuration interactions,
BSE@GW [40], Bethe–Salpeter equation with Green’s functions, etc. could also be tested on the quest
for the most accurate description of these systems.

5. Case Study: 2CzPN and DABNA-1/TABNA Compounds

In the following we illustrate the previous arguments by applying TD-DFT and a pair of ab
initio methods (SCS-CC2 and NEVPT2) to a set of prototype TADF molecular materials: (i) the
1,2-bis(carbazol-9-yl)-4,5-dicyanobenzene (2CzPN) molecule; and (ii) a pair of B-centered N-substituted
triangulene derivatives (Figure 4). The 2CzPN system is a commercially available highly efficient
blue-sky emitter, with two electron-donating carbazolyl moieties attached to the electron-withdrawing
dicyanobenzene ring. On the other hand, the latter systems (dubbed as DABNA-1 and TABNA in the
literature) have recently been proposed as new candidates providing narrow emission spectra, thus
maximizing color purity and having high PLQY, thus minimizing non-radiative decays thanks to their
particular (multi-resonant) electronic structure [27–29]. Contrarily to former prototypical molecules,
these triangulene-engineered compounds are relatively rigid (which contributes to low reorganization
energies, and thus negligible Stokes shift and narrow emission spectra) also keeping low ∆EST values,
which have fostered recent investigations to shed light about the physical origin of this unexpected
behavior [30,41,42].
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Figure 4. Chemical structure (from left to right) of the 1,2-bis(carbazol-9-yl)-4,5-dicyanobenzene
(2CzPN) and the DABNA-1/TABNA triangulene derivatives.

Table 1 shows the energy values for the set of molecules selected, as calculated by different
methods with the sufficiently large def2-TZVP basis set. Note that the experimental E(S1) and
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E(T1) energies are taken from solution using polar solvents and/or thin-films experiment, and could
be thus affected by strong solvatochromic or polarization matrix effects due to its CT nature [43].
Therefore, as stated previously, we will focus on the trends affecting the ∆EST values. Note also that:
(i) the multi-configurational NEVPT2 method relies on the complete active space self-consistent field
(CASSCF) method, introducing both non-dynamical and dynamical correlation effects; (ii) both the
CASSCF and NEVPT2 methods need the choice of a reasonable active space, N electrons distributed
among M orbitals, which is done here based on a calculated fractional occupation of orbitals ((8,8) for
2CzPN and (10,10) for DABNA-1 and TABNA). The fractional occupation (fi) of orbitals is obtained by
the finite-temperature DFT method [44,45]. Briefly, the fractional occupation is induced by minimizing
the Gibbs electronic free energy (Gel = Eel − Tel Sel) of the system at a fictitious pseudo-temperature
(i.e., electronic) called Tel, with the fi values obtained by a smeared distribution around the Fermi level.
We used as a cutoff to define the active space of those orbitals with a fractional occupation fi < 0.98
and fi > 0.02, and thus appreciably populated. Furthermore, the implementation of the state-averaged
CASSCF and NEVPT2 methods also needs to fix the number of roots of each multiplicity (Sn, Tn) to
be simultaneously calculated, which was chosen here as (8,8) after looking at the convergence of the
results with respect to that technicality.

Table 1. Vertical excitation energies (in eV) of the lowest singlet and triplet states and their energy
difference. The oscillator strength (fosc) values are also included.

Compound Method E(S1) E(T1) ∆EST fosc (S0← S1)

2CzPN TDA-PBE0 3.01 2.67 0.34 0.08

SCS-CC2 a 3.65 3.30 0.35 0.12

NEVPT2 3.33 3.02 0.32 0.20

Experimental b 2.94 2.63 0.31 –

DABNA-1 TDA-PBE0 3.25 2.69 0.56 0.25

SCS-CC2 a 3.25 3.10 0.15 0.31

NEVPT2 3.04 2.95 0.09 0.21

Experimental c 2.74 2.59 0.14 –

TABNA TDA-PBE0 3.69 3.12 0.57 0.12

SCS-CC2 a 3.67 3.50 0.17 0.13

NEVPT2 3.16 2.99 0.18 0.32

Experimental d 3.11 2.90 0.21 –
a Taken from Ref. [30]. b Data from experiments done in toluene. c Data from experiments done in EtOH [27].
d Data from experiments done in a PMMA film, 1 wt% [27].

For 2CzPN, there is a close agreement between TDA-PBE0 and the more sophisticated SCS-CC2
and NEVPT2 methods, as well as with respect to the experimental result—a fact that was also
documented before [30]. However, for both DABNA-1 and TABNA molecules, TDA-PBE0 provides
a relatively large ∆EST value of around 0.6 eV, and is thus incompatible in principle with a TADF
mechanism, and far from the experimental results. On the other hand, SCS-CC2 and NEVPT2 methods
give considerably lower ∆EST values (approximately between 0.1–0.2 eV), and are thus very close
to the experimental estimates. In fact, in a previous publication by some of the authors [30], we
specifically compared various theoretical levels for the DABNA-1 compound (CC2, SCS-CC2, and
STEOM-CCSD, with ∆EST values between 0.12 and 0.17 eV) with an experimental result of 0.14 eV.
Concerning oscillator strength values, all methods give non-vanishing values, and are thus compatible
with the reasonable experimentally observed PLQY.

We will start rationalizing these results by inspecting first the double-excitation nature of the
S0, S1, and T1 excited state formed in all the compounds. This can be done through analyzing



Molecules 2020, 25, 1006 9 of 12

the CAS wavefunction, in which the NEVPT2 correction is based, as stated previously. The CAS
wavefunction can be expressed as an expansion of simply-, doubly-, triply-substituted, etc. Slater
determinants, with M being the subset of those selected active orbitals, as: |ΨCAS〉 =

∑
M CM|ΨM〉 =

c0|Ψ0〉 +
∑

i ca
i

∣∣∣Ψa
i 〉 +

∑
i j cab

i j

∣∣∣∣Ψab
i j 〉 +

∑
i jk cabc

i jk

∣∣∣∣Ψabc
i jk 〉 + · · · weighted by the corresponding coefficients

ca
i , cab

i j , cabc
i jk , . . . The relative n-tuple (n ≥ 2) coefficients (cab...

i j... ) amount to 1.0%, 8.5%, and 5.4% (0.7%,
3.3%, and 1.9%) for the S1 (T1) excited state of 2CzPN, DABNA-1, and TABNA, respectively, with respect
to the sum of all the coefficients. Note that this difference between 2CzPn and DABNA-1/TABNA
compounds is also seen at the S0 ground state: 0.0%, 3.8%, and 1.2%, respectively. These results
show the negligible (significant) impact of mostly double (but also higher) excitations for 2CzPN
(DABNA-1 and TABNA)—an effect that is currently neglected by the linear-response formulation of the
TD-DFT method and introduced (at least partly) by both NEVPT2 and SCS-CC2 through the dynamical
correlation contribution. Note also the general difficulties in dealing with marked double excitations
for real-world compounds, which is still a matter of debate within the theoretical community [46].

The importance of these findings is worth note. First, the correct description of the
singlet–triplet energy difference in standard (e.g., 2CzPN) and complex (e.g., DABNA-1/TABNA) TADF
compounds is a more complex issue than simply looking at the HOMO–LUMO (uncorrelated and/or
kernel-independent) exchange energy, and requires the inclusion of correlation effects at high orders.
This is approximately done by the CC2 method at first and second order, and the SCS parameterization
seems to efficiently include (at least partly) the missing correlation energy. On the other hand, the
use of multi-configurational methods (e.g., NEVPT2) also allows both components of the correlation
energy, non-dynamical and dynamical, to be dealt with in a balanced way. However, we also need
to aware of the influence of the active space and the number of roots (Sn, Tn) demanded in the final
NEVPT2 results.

6. Summary and Prospects

The rise in the massive deployment of OLED technologies for displays has fostered the search
of new light-emitting mechanisms (e.g., TADF) to improve the device efficiency beyond the 25%
fluorescence limit. The expected outcomes are two-fold: the improvement of energy efficiency as well
as an increase in the resolution of OLED displays. Academic and industrial research has significantly
contributed to the discovery and improvement of molecular materials for red, green, and blue pixels,
although compounds for the latter are still facing few challenges. Fortunately, the theoretical modelling
in recent years has guided the understanding and screening of potential molecular candidates, not only
by a fast inspection of the shape and location of the frontier molecular orbital, but also by allowing the
calculation of the singlet–triplet energy difference and other related energy magnitudes. However, this
last target is very challenging for TADF compounds, and often demands the application of a variety
of theoretical methods beyond standard TD-DFT applications. This last point is illustrated here by
selecting a set of real-world molecules differing considerably in their electronic structure, despite being
widely used as TADF emitters, and showing how electronic structure methodologies such as SCS-CC2
or NEVPT2 (or related) can contribute to reach chemically accurate results, providing useful insights
for molecular design.
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