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ABSTRACT 17 

Intimate associations between different species drive community composition across 18 

ecosystems. Understanding the ecological and evolutionary drivers of these symbiotic 19 

associations is challenging because their structure eventually determines stability and 20 

resilience of the entire species network. Here, we compiled a detailed database on naturally 21 

occurring ant–symbiont networks in Europe to identify factors that affect symbiont network 22 

topology. These networks host an unrivalled diversity of macrosymbiotic associations, 23 

spanning the entire mutualism–antagonism continuum, including: (1) myrmecophiles – 24 
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commensalistic and parasitic arthropods; (2) trophobionts – mutualistic aphids, scale insects, 25 

planthoppers and caterpillars; (3) social parasites – parasitic ant species; (4) parasitic 26 

helminths; and (5) parasitic fungi. We dissected network topology to investigate what 27 

determines host specificity, symbiont species richness, and the capacity of different symbiont 28 

types to switch hosts. 29 

We found 722 macrosymbionts (multicellular symbionts) associated with European ants. 30 

Symbiont type explained host specificity and the average relatedness of the host species. 31 

Social parasites were associated with few hosts that were phylogenetically highly related, 32 

whereas the other symbiont types interacted with a larger number of hosts across a wider 33 

taxonomic distribution. The hosts of trophobionts were the least phylogenetically related 34 

across all symbiont types. Colony size, host range and habitat type predicted total symbiont 35 

richness: ant hosts with larger colony size, a larger distribution range or with a wider habitat 36 

range contained more symbiont species. However, we found that different sets of host factors 37 

affected diversity in the different types of symbionts. Ecological factors, such as colony size, 38 

host range and niche width predominantly determined myrmecophile species richness, 39 

whereas host phylogeny was the most important predictor of mutualistic trophobiont, social 40 

parasite and parasitic helminth species richness. Lastly, we found that hosts with a common 41 

biogeographic history support a more similar community of symbionts. Phylogenetically 42 

related hosts also shared more trophobionts, social parasites and helminths, but not 43 

myrmecophiles.  44 

Taken together, these results suggest that ecological and evolutionary processes structure host 45 

specificity and symbiont richness in large-scale ant–symbiont networks, but these drivers may 46 

shift in importance depending on the type of symbiosis. Our findings highlight the potential of 47 

well-characterized bipartite networks composed of different types of symbioses to identify 48 

candidate processes driving community composition. 49 
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I. INTRODUCTION 77 

Close associations between different species, known as symbioses, are crucial components of 78 

communities in all ecosystems. These intricate associations display a high diversity, ranging 79 

from mutually beneficial partnerships to parasitic interactions in which one species exploits 80 

another (Paracer & Ahmadjian, 2000). Interactions among species are central to ecological 81 

and evolutionary dynamics in assemblages of species that belong to different guilds and 82 

trophic levels. They are thus essential elements of the ‘entangled bank’ – Darwin’s metaphor 83 

for the complexity and connectedness of natural systems (Darwin, 1859) – and can give rise 84 

to important stabilising feedbacks that eventually maintain diversity and ecosystem 85 

functioning (Thrall et al., 2007; Bastolla et al., 2009). To date, insights are derived from 86 

theory and empiricism focusing on either competition and predator–prey interactions (e.g. 87 

Hairston, Smith & Slobodkin, 1960; Pimm, 1979; Tilman, 1982) or more recently mutualistic 88 

interactions (Bascompte, Jordano & Olesen, 2006; Bascompte & Jordano, 2007; Barabás, 89 

D’Andrea & Stump, 2018; Johnson & Bronstein, 2019; Spaak & De Laender, 2020).  90 

Communities contain a wide variety of interactions, rendering the ecological network 91 

extremely complex (Newman, 2003). One important feature of complex systems is the 92 

presence of properties that emerge from interactions among the specific components of the 93 

system (Solé & Bascompte, 2006). Typically, these emergent properties result from the 94 

interaction between different network components across time and space and are difficult to 95 

predict from the specific (isolated) pairwise interactions (Vázquez, Chacoff & Cagnolo, 2009; 96 

Grilli et al., 2017). Generally speaking, modular networks that are characterized by a high 97 

connectance tend to be more robust to species loss, and are less affected by disturbance (Solé 98 

& Bascompte, 2006; Olesen et al., 2007). While theoretical progress has been made (Solé & 99 
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Montoya, 2001), the field is suffering from a lack of comprehensive and manageable 100 

empirical systems. This limits empirical tests of theory (Valdovinos, 2019) and thus hampers 101 

the development of effective management tools to safeguard the biodiversity and ecosystem 102 

functions of natural ecosystems (De Laender et al., 2016). 103 

The study and interpretation of the drivers and consequences of the topology in host–104 

symbiont networks sheds light on the evolution of the strategies and traits of hosts and 105 

symbionts. Moreover, this network approach may unravel general rules in community 106 

assembly processes which can be compared across different types of symbionts and different 107 

systems. While network studies at local scales will be informative on the local community 108 

assembly processes, those reconstructed at regional or global scales will allow inference of 109 

macro-ecological and evolutionary processes (Trøjelsgaard & Olesen, 2013).  110 

In contrast to trophic networks, bipartite host–symbiont networks contain different kinds of 111 

links, with interactions between hosts and symbionts ranging from antagonistic to mutualistic 112 

(Ings et al., 2009). Examples of such networks include plant–mycorrhiza and host–113 

microbiome associations. The complexity of these networks is enormous, and their 114 

description is merely based on one interaction type, either antagonistic or mutualistic, 115 

although theory predicts that the diversity of interaction types may be essential for community 116 

stability (Fontaine et al., 2011; Mougi & Kondoh, 2012; Allesina & Tang, 2015). The 117 

topology of bipartite host–symbiont networks can be dissected by adopting two different 118 

perspectives, i.e. that of each of the individual sets of species (hosts and symbionts). Asking 119 

what factors cause a given topology is equivalent to asking, for each of the sets, what explains 120 

the number of links per species and the specificity of these links, i.e. how the links are 121 

distributed among species from the focal set. An example of this approach is found in studies 122 

on predator–prey networks, where average web vulnerability (i.e. the average number of 123 
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predators per prey) and generality (i.e. the average number of prey eaten per predator) link the 124 

specificity of the two interacting species sets (Schoener, 1989). 125 

A determining feature of the ecology of symbionts is host specificity, which can be quantified 126 

in host–symbiont networks by the number of links departing from a symbiont node. Yet, a 127 

measure of host specificity should ideally consider the relatedness of the targeted host species 128 

as well (Poulin & Mouillot, 2003). Generalist symbionts target multiple, unrelated host 129 

species and may gain low to high benefits in any host. Specialist symbionts, in turn, engage 130 

with one or only a few related species, and achieve high benefits with their hosts by resorting 131 

to advanced morphological, physiological and behavioural adaptations (Bronstein, Alarcón & 132 

Geber, 2006; Thrall et al., 2007). Their strong specialization, however, is offset by lower 133 

population densities and higher extinction risks due to the lower availability of hosts. Several 134 

studies in host–symbiont systems clearly found that host specificity is tightly linked with 135 

fundamental ecological processes and evolutionary history. Typically, host specificity is 136 

different among cohabiting symbionts, as for example demonstrated in parasites of primates 137 

(Pedersen et al., 2005) and in parasitic mites on mussels (Edwards & Malcolm, 2006). A 138 

study on moths and plants indicated that host specificity can be dependent on the type of 139 

symbiotic interaction, with pollinating moths being more specific than their parasitic leaf-140 

feeding relatives (Kawakita et al., 2010).  141 

From the perspective of the host, it is fundamental to understand the ecological, evolutionary 142 

and environmental drivers that promote the number of associated symbionts, i.e. the number 143 

of links departing from a host node to symbiont nodes. Studies on different host–symbiont 144 

systems reported multiple host variables which correlate with parasite species richness. 145 

Generally, the makeup of symbiont communities is orchestrated by both ecological and 146 

evolutionary host factors. Body size has been identified as a key ecological factor that favours 147 

species richness (Lindenfors et al., 2007) and species interactions (Werner & Gilliam, 1984). 148 
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Host species may be conceptualized as island habitats for symbionts and, in line with island 149 

theory (MacArthur & Wilson, 1967), larger host species tend to support more symbionts 150 

(Kuris, Blaustein & Alió, 1980). Symbiont richness is also expected to increase with other 151 

ecological factors such as the number and variety of microhabitats offered by the host, host 152 

longevity, host range, and interaction probability with other host species (Kamiya et al., 2014; 153 

Stephens et al., 2016). Evolutionary processes may affect symbiont species richness in 154 

different ways. Related hosts often show traits that are correlated throughout evolution 155 

(phylogenetic correlation) which lead to similar values in species richness. However, related 156 

host species may have diverged with time, whether or not in a common spatial evolutionary 157 

ancestry (biogeography), but may still attract a similar fauna of symbionts as unrelated host 158 

species with a similar ecology (Poulin, 1995).  159 

Another pattern that emerges in host–symbiont networks is the sharing/transmission of 160 

symbiont species across host species. The degree of symbiont sharing is vital as symbiont 161 

transmission can connect eco-evolutionary dynamics across hosts as a result of rapid 162 

symbiont spread in host populations [e.g. Jaenike et al., 2010; Himler et al. (2011) in 163 

endosymbionts]. While little is known about the proximate mechanisms by which single 164 

symbionts switch between hosts, we can anticipate that host species with similar ecological 165 

niches and/or a shared evolutionary history tend to have similar symbiont communities. The 166 

pervasive effect of phylogenetic relatedness on symbiont sharing has for example been 167 

demonstrated in bat parasites (Luis et al., 2015) and in plant–mycorrhiza (Veresoglou & 168 

Rillig, 2014). 169 

Ant–symbiont networks are ideally suited to study which factors drive bipartite network 170 

topology (Ivens et al., 2016). The diversity of symbiotic associations found in ants (Kistner, 171 

1982; Hölldobler & Wilson, 1990; Rettenmeyer et al., 2010; Parmentier, 2020) is thought to 172 

be promoted by their omnipresence in terrestrial ecosystems, their stable and climate-173 
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controlled nest fortresses and the high number of available resources in the nest (Kronauer & 174 

Pierce, 2011). Ants interact with different types of symbionts spanning the entire parasitism–175 

mutualism gradient. They include parasitic ants, different groups of arthropods living in the 176 

nests, mutualistic aphids and caterpillars, endoparasitic helminths, plants, bacteria and fungi 177 

(Hölldobler & Wilson, 1990). Therefore, they are promising systems to study different 178 

interaction types within a single biological system (Fontaine et al., 2011). 179 

Ant–symbiont networks that have been studied recently typically deal with local interaction 180 

networks and mostly focus on one kind of symbiotic interaction in isolation, such as 181 

mutualistic plant–ant networks (Guimarães et al., 2006; Blüthgen et al., 2007; Dáttilo, 182 

Guimarães & Izzo, 2013; Cagnolo & Tavella, 2015), mutualistic aphid–ant networks (Ivens et 183 

al., 2018) or parasite–ant networks (Elizalde et al., 2018). Some studies have already covered 184 

different types of symbiotic interactions in a local network (Pérez-Lachaud & Lachaud, 2014; 185 

Rocha, Lachaud & Pérez-Lachaud, 2020) and a recent study tested different types of ant–186 

symbiont interactions on a large scale (Glasier, Poore, & Eldridge, 2018). However, the latter 187 

study only included a limited set of interaction types and pooled interactions of well-studied 188 

bioregions with those of very poorly studied regions. 189 

Here, we ask what factors explain the topology of ant–symbiont networks across Europe. We 190 

firstly provide a quantitative and systematic meta-analysis of the diversity of European ant–191 

symbiont interactions. By adopting the symbiont perspective, we test the hypothesis that the 192 

type of symbiosis explains the number and identity of their host species (host specificity). 193 

More specifically, we expect that parasitic ants are more specific than the other types of 194 

symbionts. Secondly, we follow a trait-based host perspective to identify the major drivers 195 

that promote the diversity of ant–symbiont interactions and facilitate symbiont sharing. We 196 

test the hypothesis that the number of symbionts with which an ant species interacts and the 197 

number of symbionts it shares with other ant hosts depend on ecological factors (colony size, 198 
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nest type, distribution, habitat, degree of sympatry, worker size) and evolutionary drivers 199 

(phylogeny, biogeography) associated with the host species.  200 

 201 

II. MATERIALS AND METHODS  202 

(1) Ant symbionts 203 

Symbionts are species that engage in a close association with a host species on which they 204 

may have beneficial, neutral or adverse effects. We limited our analyses to Europe (excluding 205 

the Canary Islands and Madeira), as knowledge of ant–symbiont interactions on other 206 

continents is extremely fragmentary and poorly understood. Moreover myriad unknown 207 

symbionts presumably await discovery and description in these continents (Parmentier, 2020). 208 

By contrast, a firm body of knowledge on the distribution and diversity of ant symbionts in 209 

Europe has been recorded and has grown steadily from a long tradition of studying ant 210 

symbionts since the end of the 19th century (Wasmann, 1894; Janet, 1897). We focused on all 211 

types of macrosymbionts (multicellular organisms) associated with European ants. We did not 212 

include microsymbionts (unicellular microorganisms such as bacteria), as only a few case 213 

studies are available. In addition, these symbionts differ completely in their strategies and 214 

dynamics. Depending on the intimacy of the relationship between ants and symbionts, we can 215 

distinguish obligate and facultative interactions. An obligate interaction occurs when a 216 

symbiont lives permanently inside or near an ant nest. Obligate symbionts depend completely 217 

on ants and cannot be found without them. Facultative myrmecophiles may associate with 218 

ants, but regularly (or mostly) occur without ants. This study focuses on obligate symbionts.  219 

We categorized five types of symbionts: (1) myrmecophiles; (2) trophobionts; (3) social 220 

parasites; (4) helminths; and (5) fungi (Table 1). Myrmecophiles were further subdivided into 221 

three functional groups: unspecialized myrmecophiles, specialized myrmecophiles and 222 

myrmecophilous parasitoids (Table 1).  223 
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Plants engaging in mutualistic relationships (e.g. myrmecochory) were not included in our 224 

analyses. Contrary to the tropics, ant–plant relationships tend to be loose in Europe and are at 225 

best facultative (Rico-Gray & Oliveira, 2007).  226 

 227 

(2) Ant–symbiont data set compilation 228 

We compiled documented ant–symbiont interactions in Europe. Our database of ant–symbiont 229 

interactions was assembled from 269 published references, including faunistic notes, research 230 

articles, reviews and books. In a first round of searches, we scanned reference works (e.g. 231 

Wasmann, 1894; Donisthorpe, 1927; Evans & Till, 1966; Uppstrom, 2010; Tykarski, 2017; 232 

Molero-Baltanás et al. 2017) for associations between ant hosts and symbionts. Next, we 233 

searched for ant–symbiont interactions via Google Scholar using the terms: “myrmecophile” 234 

or “ant associate” or “inquiline” or “ant guest” or “ant symbiont”. We also found host–235 

symbiont interactions within the reference lists of the retrieved publications. In a second 236 

phase, each symbiont occurring in Europe was searched by its Latin binomial name and its 237 

common taxonomic synonyms combined with a search string with the names of all ant genera 238 

(N = 56; AntWiki, 2019) found in Europe (for example “Phengaris alcon” AND Acropyga 239 

OR Anochetus OR Aphaenogaster OR Bothriomyrmex OR Camponotus OR …) using Google 240 

Scholar. We chose Google Scholar over ISI Web of Science, as the latter does not retrieve 241 

faunistic notes or other types of grey literature. We omitted symbionts from our data set when 242 

they were reported not to be associated with ants. Note that some species with a poorly 243 

studied biology, such as parasitoid wasps and mites, were included in our data set, although 244 

they may not be completely dependent on ants. Ultimately, we obtained a binary host–245 

symbiont matrix (see online Supporting information Appendix S1, references used to compile 246 

this table are listed in Appendix S2) filled with interactions (1) and non-interactions (0) 247 

between ants (columns) and symbionts (rows). We included some references on ant–248 
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trophobiont interactions reported in the non-European part of Russia (e.g. Novgorodova, 249 

2005) to increase the relatively modest number of reported interactions in this type of 250 

association. The reported ants and trophobionts in these references have a widespread 251 

Palearctic distribution and they are expected to interact in Europe as well.  252 

 253 

(3) Host specificity in different symbiont types 254 

We first determined the host range of the different symbiont types. A second analysis 255 

compared host relatedness across symbiont types. We used two approaches to estimate host 256 

relatedness: taxonomic and phylogenetic relatedness. 257 

In the first analysis, we compared the number of host species across seven different types of 258 

host symbionts, i.e. unspecialized myrmecophiles, specialized myrmecophiles, 259 

myrmecophilous parasitoids, trophobionts, social parasites, parasitic fungi and helminths 260 

(Table 1). Symbionts with hosts only identified at the genus level were not included in all 261 

subsequent analyses. Note that we found evidence of one mutualistic fungus (Cladosporium 262 

myrmecophilum) (Table 1), but we only analysed parasitic fungi to ensure a coherent 263 

functional group of symbionts. Studies are uneven across symbionts, potentially meaning that 264 

better studied symbionts have a higher number of recorded host species. To account for 265 

differences in sampling effort, we therefore first performed a regression of the total number of 266 

host species against the (ln+1)-transformed number of Google Scholar hits for the binomial 267 

species name (and commonly used synonyms) of the symbionts. The residuals of this 268 

regression were not normally distributed. Therefore we used a non-parametric Kruskal-Wallis 269 

test to compare these residuals across symbiont types. This test was followed by post-hoc 270 

Dunn tests with the Benjamini–Hochberg adjustment for multiple testing. 271 

In the second analysis, we compared the relatedness of targeted host species across the seven 272 

different symbiont types. For each symbiont, we estimated the average taxonomic distance 273 
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between the different hosts by using the specificity index, STD proposed by Poulin & Mouillot 274 

(2003). Host ant species (all ants belong to the family Formicidae) were classified following 275 

Linnaean classification into subfamilies, tribes, genera and species groups/subgenera. The 276 

taxonomic distance between two hosts is then defined as the number of hierarchical steps that 277 

are needed to reach a common node in the taxonomic tree. The taxonomic distance between 278 

two species of the same subgenus/species group equals 1; the distance between two species of 279 

the same genus, but from a different subgenus/species group equals 2. A distance of 3 or 4 280 

was assigned to a pair of species belonging to the same tribe or subfamily, respectively. A 281 

taxonomic distance of 5 is reached between two ant host species from different subfamilies 282 

(largest possible distance). STD was estimated by averaging the taxonomic distance across all 283 

pairs of host species. However, STD cannot be calculated for symbionts with a single host 284 

species, although this can be addressed by excluding these ‘singletons’ from the analyses 285 

(Poulin & Mouillot, 2005). The single host species for many of our symbionts (e.g. mites) 286 

likely reflects undersampling, rather than true specificity to a single host species, because 287 

even extremely specialized species (e.g. Microdon, Claviger, social parasites) often have 288 

more than one host species. Since these singletons were equally distributed over all groups of 289 

symbionts, we argue they could be omitted from further analyses; a total of 392 symbionts 290 

were retained in our analysis. Note that the STD is not affected by uneven sampling when dealt 291 

with in this way. We modelled the STD as a response variable against the predictor symbiont 292 

type with a non-parametric Kruskal-Wallis test, followed by post-hoc Dunn tests with the 293 

Benjamini–Hochberg adjustment for multiple testing. Alternatively, we can assign a default 294 

taxonomic distance of 1 to the singletons, which is the lowest possible value (Poulin & 295 

Mouillot, 2005). We repeated the analysis with this approach and compared it with the 296 

analysis without singletons.  297 
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Next, we compared the relatedness of the targeted host species across the symbiont types with 298 

a phylogenetic- instead of a taxonomic-distance matrix. The phylogenetic-distance matrix was 299 

based on the phylogenetic tree of European ants (Arnan, Cerdá & Retana, 2017). Distances 300 

between species were estimated by node count (number of nodes along the branches of the 301 

tree from one species to another) and were retrieved using Mesquite v.3.5. Phylogenetic 302 

distances are more accurate than taxonomic distances to assess relatedness, but unfortunately 303 

we do not possess phylogenetic information at the species level for all ants in our data set (the 304 

phylogeny was known for 108 out of 181 ant species). We decided to exclude the 73 ant 305 

species without phylogenetic information and their interactions with their symbionts from 306 

subsequent analyses. We believe that this is acceptable as the retained 108 species cover 307 

87.8% of the interactions in our host species–symbiont data set. In addition, symbionts that 308 

interacted with only one ant species were omitted, as no specificity index could be calculated 309 

for these species. Ultimately, we retained 362 symbiont species and 108 ant species in this 310 

analysis (host–symbiont matrix in Appendix S3). As the residuals meet the assumptions of a 311 

general linear model (GLM), we ran a GLM using phylogenetic distance as the response 312 

variable and symbiont type as predictor. Significance of the model was assessed with a 313 

likelihood ratio test (ANOVA function implemented in the package car), pairwise post-hoc 314 

tests were conducted with the Benjamini–Hochberg adjustment for multiple testing. 315 

 316 

(4) Predictors of symbiont diversity in European ants 317 

A central question in this study is why some ant species host more symbionts than other ant 318 

species. Therefore, we first compiled for the European ant species several predictors based on 319 

Arnan et al. (2017), Boulay et al. (2017), Seifert (2007) and AntWiki (2019). We selected 320 

traits of the host that could affect symbiont diversity. These predictors were colony size 321 

(number of workers), average worker size (mm), nest type [levels: (a) arboricolous; (b) 322 
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diverse; (c) soil; and (d) organic mound] and phylogeny as a proxy for trait similarity, and 323 

factors reflecting differences in the functional role of the host species, including habitat 324 

[levels: (a) eurytope: – a broad range of niches, including anthropogenic habitats; (b) open; 325 

(c) open/sylvicolous; and (d) sylvicolous], distribution range, the number of sympatric ants 326 

and biogeographic region [levels: (a) atlantic; (b) boreo-mountain; (c) continental; (d) 327 

Mediterranean; and (e) wide-ranging]. Ants were assigned to the biogeographical region 328 

where they were found proportionally the most in sampled biogeographical regions based on 329 

the observations of Arnan et al. (2017). If the proportional occurrence in the most preferred 330 

region was less than double the proportional occurrence in another region, the ant species was 331 

grouped under the ‘wide-ranging’ category. We also estimated the distribution range [the 332 

number of countries where the host species has been reported, based on records on AntWiki 333 

(2019)], the number of sympatric ants [number of ant species with symbionts which share at 334 

least one country in the distribution range, based on AntWiki (2019)] and the number of hits 335 

for their binomial name (and common synonyms) on Google Scholar as a proxy for sample 336 

effort for every ant species. Next we correlated total symbiont diversity with the host 337 

predictors described above, while correcting for the phylogenetic relatedness of the different 338 

ant species. The phylogenetic relatedness of host species should be accounted for as closely 339 

related host species cannot be treated as independent observations. For that reason, we 340 

modelled a phylogenetic generalized least-squares regression (PGLS) with total number of 341 

symbionts per ant species as the dependent variable. A PGLS model incorporates a 342 

phylogenetic variance–covariance matrix in its error structure. We used the variance–343 

covariance matrix based on the pairwise node counts retrieved from the phylogenetic tree of 344 

European ants by Arnan et al. (2017). The phylogenetic relatedness of 108 out of the 181 ant 345 

species found in our data set was determined in this tree (see Appendix S3). From this subset 346 

of 108 species, we were able to find values for all predictors for 96 species. Consequently, the 347 
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PGLS model was based on these 96 ant species (Appendix S4). This data set reduction is 348 

acceptable as these 96 ant species interact with 620 symbionts and cover 86.5% of the 349 

recorded interactions in the host species–symbiont data set. The phylogenetic covariance 350 

matrix was multiplied by Pagel’s λ, a widely used parameter that scales and corrects for the 351 

expected degree of phylogenetic covariance (Pagel, 1999). This multiplier spans from 0, 352 

which corresponds to the complete absence of a phylogenetic signal in the residuals of the 353 

model (the model is then similar to a regular GLM with an ordinary least-squares error 354 

structure) to 1, when the covariance of the model residuals follows a Brownian motion model 355 

of evolution (Pagel, 1999; Freckleton, Harvey, & Pagel, 2002). The λ parameter 356 

characterizing the phylogenetic signal was estimated through maximum likelihood estimation 357 

within the PGLS model. We analysed this model using the pgls function embedded in the R 358 

3.5.1-package ‘caper’. We transformed the variables to meet the normality assumptions of the 359 

residuals. Number of symbionts was square–root transformed, the predictors colony size, the 360 

number of sympatric ants and Google Scholar hits ln-transformed, and the distribution range 361 

was square-root transformed. Finally, all continuous predictors were scaled to unit variance.  362 

In addition to this analysis on the drivers of total symbiont diversity, we ran similar PGLS 363 

models with subsets of symbiont species richness as dependent variables (overall number of 364 

myrmecophiles, trophobionts, social parasites and helminths, separately) and predictors of the 365 

subset of ant species that engage with these symbionts as predictors. Identical transformations 366 

of predictors and subsets of symbiont richness were applied as in the analysis on total 367 

symbiont richness described above. Diversity of fungi was not regressed against ant predictors 368 

in separate PGLS models as the number of host ants is relatively low in these groups.  369 

Models were ranked per analysis with the dredge function in the ‘MuMIn’ R-package 370 

according to their corrected Akaike Information Criterion (AICc) value. We retained the best 371 
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models identified with ΔAICc < 2. Significance levels of the predictors of the retained models 372 

were assessed using Wald χ² tests. 373 

 374 

(5) Predictors of symbiont sharing in European ants 375 

Studying the factors that facilitate or constrain the transmission of a symbiont from one host 376 

to another is pivotal to understanding the ecological and co-evolutionary processes in host–377 

symbiont networks (Okuyama & Holland, 2008; Pilosof et al., 2013). For example, symbionts 378 

that are only shared by closely related hosts may indicate host–symbiont co-evolution in the 379 

network (Guimarães, Jordano & Thompson, 2011). Predictors were similar to the previous 380 

analysis and encompassed traits of the ant species and variables related to their habitat and 381 

distribution, including colony size, worker size, nest type, phylogeny as a proxy for trait 382 

similarity, habitat, distribution range, biogeographic region and allopatric distribution. We 383 

used multiple regression on distance matrices (MRM), an extension of partial Mantel analysis, 384 

to test the association between different distance matrices (Lichstein, 2007). The symbiont 385 

dissimilarity matrix contained the pairwise Jaccard distances between each pair of host ants 386 

based on the presence–absence data of the symbionts they supported. This matrix was 387 

regressed against multiple distance/dissimilarity matrices giving dissimilarities in the 388 

aforementioned predictors. Worker size difference was the absolute difference for this trait 389 

between every pair of ant species. The pairwise differences in colony size were ln-390 

transformed. For the allopatric distribution matrix, we first calculated the degree of overlap in 391 

distribution (sympatry) between each pair of species (ln-transformed number of countries in 392 

the distribution range that are shared between each pair of ant species). We standardized this 393 

matrix between 0 and 1 and subtracted it from 1 to obtain a dissimilarity matrix. Entries in the 394 

distance matrices of habitat, nest type and biogeographic region were coded 0 when the pair 395 

of ants occupy the same habitat, nest type or biogeographic region, respectively, and 1 when 396 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Okuyama%2C+Toshinori


17 
 

the pair of ants show differences in these variables. The phylogenetic distances were the 397 

pairwise node counts. Again, we focused our analysis on the subset of 96 ants for which the 398 

phylogenetic relationship was resolved by Arnan et al. (2017) and for which we possessed 399 

values for all predictors. We also included a matrix of sampling effort in which we pairwise 400 

multiplied the (ln+1)-transformed hits on Google Scholar of one ant species with the (ln+1)-401 

transformed hits on Google Scholar of another ant species. All matrices were standardized 402 

between 0 and 1 and MRM analyses were conducted in the R package ‘ecodist’ using the 403 

MRM function. Significance of the predictor matrices was tested using 9999 permutations. 404 

We removed non-significant predictors, and reran the MRM analysis until all predictors were 405 

significant (Martiny et al., 2011). The relative importance of the significant predictor matrices 406 

was calculated with the lmg metric, which uses unweighted averages of sequential R² of 407 

different orderings of the model predictors. The calculation and visualization of the lmg 408 

metrics was conducted with the R-package ‘relaimpo’.  409 

We conducted similar MRM analyses on subsets of the symbiont community, where the 410 

response variable was the dissimilarity (pairwise Jaccard indices) in the set of myrmecophiles, 411 

trophobionts, social parasites, helminths and parasitic fungi of the host ants, respectively. 412 

All statistical tests were conducted in R 3.5.2.  413 

 414 

III. RESULTS 415 

(1) Ant–symbiont networks display a diversity of species interactions 416 

We identified 722 obligate ant symbionts interacting with 181 ant species in Europe 417 

(Appendix S1). The references we used to compile the host–symbiont interaction matrix are 418 

listed per symbiont species in Appendix S2. Myrmecophiles (N = 535) outnumbered the four 419 

other types of ant symbionts (N = 80, N = 71, N = 22 and N = 14 for trophobionts, social 420 

parasites, parasitic helminths and fungi, respectively). One fungus was mutualistic, the other 421 
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13 species were parasitic. Within the group of myrmecophiles, beetles and mites were the 422 

most species-rich groups (Fig. 1). The subdivision of myrmecophiles into parasitoids (N = 423 

33), unspecialized myrmecophiles (N = 413) and specialized myrmecophiles (N = 89) can be 424 

found in Appendix S1. The hosts of 75 symbionts were not identified at the species level in 425 

the literature record. The distribution of the number of host species per symbiont was right-426 

skewed (mean = 3.58, median = 2). The highest frequency (39%) of symbionts interacted with 427 

one host species and a maximum number of 34 host species was documented in the 428 

myrmecophilous silverfish Proatelurina pseudolepisma. 429 

European ant genera contained a highly variable number of species (proportional to the genus 430 

font size in Fig. 2; Fig. S1), ranging from 1 to 82, in the genera that interact with symbionts. 431 

Generally, the species-rich ant genera, such as the Formicinae genera Lasius, Formica and 432 

Camponotus and the Myrmicinae genera Messor and Myrmica attracted a higher diversity of 433 

all five types of symbionts (Pearson’s product-moment correlation: r = 0.59, P < 0.001, d.f. = 434 

30; Fig. S1). A notable exception was the European ant genus Temnothorax, which contained 435 

the most species while supporting a relatively moderate number of symbionts. Myrmecophiles 436 

were the dominant group in most ant genera. Trophobionts were generally the second most 437 

diverse group, but were absent or nearly absent in some genera such as Monomorium, 438 

Aphaenogaster, Leptothorax, Messor, Temnothorax and Cataglyphis. Social parasites 439 

contributed slightly to total symbiont diversity in most ant genera, but were very diverse in 440 

the ant genera Temnothorax, Tetramorium and Leptothorax. Helminths and fungi represent a 441 

minor fraction of the symbiont fauna in almost all ant genera. However, fungi are well-442 

represented in Myrmica. Ant genera shared many symbionts with other genera (78.9% of the 443 

hosted community on average), belonging to the same or different ant subfamilies (connecting 444 

lines in Fig. 2). Temnothorax, Leptothorax and Messor are characterized by a relatively high 445 

number of unique symbionts (see relatively large inner circles in Fig. 2).  446 
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 447 

(2) Host specificity in different symbiont types 448 

After controlling for sampling effort, symbiont groups had significantly different host ranges 449 

(Kruskal-Wallis chi-squared = 44.97, d.f. = 6, P < 0.001; Fig. 3). Social parasites had the 450 

lowest number of host species (Fig. 3, post-hoc comparisons indicated with letter code). Other 451 

symbiont types interacted with a higher number of ants, but we did not detect significant 452 

differences among these other types (Fig. 3). Host range of symbiont groups without 453 

controlling for sampling effort can be found in Fig. S2. 454 

The average taxonomic distance between host species targeted by a symbiont was 455 

significantly different among symbiont groups (Kruskal-Wallis chi-squared = 83.37, d.f. = 6 , 456 

P < 0.001; Fig. S3). The approach where we omitted the symbionts with one host species 457 

(Fig. S3) and that where we assigned a taxonomic distance of 1 to these species (Fig. S4) 458 

provided similar results (relative differences among symbiont groups are very similar in Figs 459 

S3 and S4). Likewise, we found significant differences in average phylogenetic distance 460 

between host species across the symbiont groups (GLM, F = 17.27, d.f. = 6, P < 0.001; Fig. 461 

4). Patterns in the average host phylogenetic distance of the different symbiont groups closely 462 

matched those of the average host taxonomic distance. Host species of social parasites were 463 

very closely related to each other (Figs 4 and S3). Parasitic fungi also exploited related host 464 

species. Helminths and myrmecophiles interacted with hosts that are much more unrelated on 465 

average. We did not find differences in host relatedness among myrmecophilous parasitoids, 466 

unspecialized and specialized myrmecophiles (Figs 4 and S3). Ants interacting with 467 

trophobionts showed the lowest relatedness (Fig. 4). 468 

 469 

(3) Predictors of symbiont diversity in European ants 470 
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The number of symbionts is highly variable in ant species. Here we report the host drivers that 471 

affect total symbiont richness and diversity of four subsets of ant symbionts (myrmecophiles, 472 

trophobionts, social parasites and helminths). Total symbiont diversity was clearly positively 473 

correlated with colony size. This factor was highly significant (PGLS, P < 0.001) in the four 474 

top-ranking models (Table 2, Fig. 5). Habitat and distribution range of the host were also 475 

incorporated in most of the top-ranking models. In these models, symbiont richness increased 476 

with the host distribution range and was highest in eurytopic habitats (PGLS, P < 0.001). As 477 

expected, sample effort has a major effect on the reported total symbiont diversity and the 478 

other subsets of symbiont diversity. Symbiont interactions were highest in ants that are 479 

intensively studied. We controlled for sample effort by including the proxy (ln+1)-480 

transformed Google Scholar hits in our models. Myrmecophile richness was also positively 481 

affected by colony size (PGLS, P < 0.001 in the five top-ranking models, Table 2, Fig. 5), 482 

distribution and eurytopic habitat. Myrmecophiles were more abundant in larger ants (PGLS, 483 

P < 0.05 in the retained models). Trophobiont diversity was positively correlated with 484 

sampling effort and an eurytopic habitat in most models (Fig. 5, Table 2). Trophobiont 485 

diversity was in some models also higher in ant species with a higher distribution. There were 486 

no predictors consistently present in the top-ranking models explaining social parasite species 487 

richness (Table 2) Helminth diversity was higher in eurytopic ant species, but no other 488 

predictors were consistently retained in the top models (PGLS, P < 0.001, Table 2).  489 

We found a phylogenetic signal in the predictors of the PGLS models (Δ AICc < 2) with total 490 

symbiont richness as dependent variable (Pagel λ ranged from 0.41 to 0.54 Table 2). The 491 

residuals of the models showed different degrees of phylogenetic covariance. The largest 492 

phylogenetic signal was found in the models with social parasites (Pagel λ ranged from 0.83 493 

to 1.00) and helminths (Pagel λ ranged from 0.85 to 0.94) as dependent variable. By contrast, 494 
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phylogenetic relatedness of the hosts did not explain additional variation (Pagel’s λ = 0) in 495 

most retained models with myrmecophiles as dependent variable (Table 2).  496 

 497 

(4) Predictors of symbiont sharing in European ants 498 

The dissimilarity matrices of the host predictors (indicated with Δ in Fig. 6) were positively 499 

correlated with dissimilarity in symbiont composition (Fig. 6). This shows that ant species 500 

with a higher similarity in these predictors display a higher similarity in symbiont 501 

composition. The most important predictors of similarity in ant symbiont communities in the 502 

European ant data set were phylogenetic relatedness of the ant hosts (MRM, lmg = 0.40, P < 503 

0.001) and similarity in biogeographic region (MRM, proportional contribution to the total r² 504 

= lmg = 0.35, P < 0.001) (Fig. 6). Similarities in worker size (lmg = 0.07, P = 0.01), colony 505 

size (lmg = 0.04, P = 0.02) and habitat (lmg = 0.01; P = 0.03) also facilitated the sharing of 506 

symbionts (Fig. 6). Better studied ant pairs shared more similar symbiont communities 507 

(MRM, lmg = 0.13, P < 0.001). Well-studied ant pairs also shared more trophobionts, 508 

myrmecophiles and parasitic fungi (MRM-analyses, lmg ranging from 0.14-0.60, all P < 0.05, 509 

Fig. 6). Trophobiont sharing was also positively correlated with phylogenetic relatedness and 510 

similarity in biogeographic regions of the ant hosts (MRM, lmg = 0.22, P < 0.001 and lmg = 511 

0.13, P < 0.001, respectively). The similarities in social parasite communities was largely 512 

explained by phylogenetic relatedness (MRM, lmg = 0.76, P < 0.001). Similarities in 513 

biogeography (MRM, lmg = 0.04, P = 0.04) explained additional variation in the sharing of 514 

social parasites. Helminth sharing was also strongly facilitated in phylogenetically related ant 515 

hosts (MRM, lmg = 0.71, P < 0.001). Interestingly, phylogenetic relatedness of the hosts did 516 

not promote the sharing of myrmecophiles. The similarity of myrmecophile communities 517 

between ant hosts was mainly driven by living in a similar biogeographic region (MRM, lmg 518 
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= 0.68, P < 0.001), Lastly, ants in the same biogeographic region tend to share more parasitic 519 

fungi (MRM, lmg = 0.44, P < 0.01) (Fig. 6).  520 

 521 

IV. DISCUSSION  522 

Understanding community composition and stability is an important challenge in ecology. 523 

Network analysis has approached this challenge, using community structure and species 524 

interactions as fundamental building blocks. Yet, studies that explain the detailed topology of 525 

large-scale ecological networks encompassing a diversity of interaction types are limited. We 526 

here provide a complete tally of the distribution of ant symbiont groups over European ants 527 

and compare host specificity, symbiont richness, host switching and its drivers for different 528 

ant symbiont groups.  529 

 530 

(1) Characterization of the European ant–symbiont network 531 

It is widely acknowledged that the group of obligate ant symbionts is hyperdiverse 532 

(Wasmann, 1894; Kistner, 1979, 1982; Hölldobler & Wilson, 1990; Rettenmeyer et al., 2010), 533 

although exact species numbers at a regional scale are lacking. Rough estimates of the global 534 

diversity of parasites living in ant nests reach 10,000 to 20,000 species (Thomas, Schönrogge 535 

& Elmes, 2005), which is higher than mammal and bird diversity. We here identified 722 536 

symbionts distributed over 181 ant species in Europe. The majority of these symbionts were 537 

classified as myrmecophiles, which are commensalistic-to-parasitic arthropods mostly living 538 

inside the ant nest (Kronauer & Pierce, 2011; Parmentier et al., 2016a; Parmentier, 2020). 539 

Beetle and mite communities were the most diverse groups. In other regions, beetles and 540 

mites also outnumber other myrmecophilous arthropod groups (Kistner, 1982; Hölldobler & 541 

Wilson, 1990). Social parasites and mutualistic trophobionts are medium-sized groups; 542 

endoparasitic helminths and parasitic fungi are relatively species-poor, but understudied. 543 
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Mutualistic ant symbionts are thus clearly overshadowed by the diversity of commensalistic 544 

and parasitic ant symbionts in Europe. Species-rich ant genera and subfamilies generally 545 

supported higher numbers of ant symbionts. Host–symbiont networks are characterized by an 546 

asymmetrical organization of interactions with host-specific symbionts and symbionts that 547 

interact with multiple host taxa (Guimarães et al., 2006). Overall, a large proportion of the 548 

symbionts were shared among heterogeneric ant species (Fig. 2). Some ant genera interacted 549 

with a relatively low number of symbionts, but most of their symbionts were not found in 550 

association with other ant genera. The highly specific group of social parasites was much 551 

more represented in the symbiont community of these hosts. In addition, the group of 552 

trophobionts is diverse in some ant genera, but is marginal or even absent in others (Fig. 2). 553 

The distribution of trophobiont interactions across the ant genera echoed the dietary 554 

preferences of the host. The diet of genera such as Formica, Lasius and Myrmica consists of a 555 

significant proportion of honeydew, whereas genera with few or no trophobiotic interactions 556 

are known to be predatory (e.g. Temnothorax, Cataglyphis) or granivorous (e.g. Messor) 557 

(Seifert, 2007). Mutualistic interactions are much more diverse in tropical systems than those 558 

observed in the European network and include ant-cultivated plants, ant-defended plants and 559 

ant-cultivated fungi (Rico-Gray & Oliveira, 2007). The uneven distribution of the five types 560 

of symbionts among the European ant genera suggests that some ant lineages are more 561 

predisposed to associate with particular types of symbionts. Ant–host associations are thus 562 

shaped by deep evolutionary processes as determined by biotic and environmental drivers of 563 

speciation and extinction (Aguilée et al., 2018). 564 

 565 

(2) Host specificity in different symbiont types 566 

Host specificity is a key feature of host–symbiont networks, and is moulded by the ecological 567 

and evolutionary interactions between the host and symbiont (Poulin & Mouillot, 2003). 568 
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Patterns in host specificity have been studied in a wide range of host–symbiont systems. 569 

Generally, parasites are thought to have a tendency to evolve to extreme host specialization as 570 

they need complex adaptations to bypass host defences (Kawakita et al., 2010). The drivers 571 

favouring host specificity in mutualist partners are far less understood and both low and high 572 

degrees of specificity are widespread (e.g. plant–seed dispersers and fig–fig wasps, 573 

respectively). Ant symbioses are ideal to unravel patterns in host specificity. They occupy the 574 

complete mutualism–parasitism continuum and allow comparison of host specificity in 575 

different types of symbionts. We here demonstrate that average host range in European ant 576 

symbionts was much broader than previously assessed in a study on host specificity of 577 

myrmecophiles at a global scale (Glasier et al., 2018) which found that obligate ant symbionts 578 

occurred on average with ca. 1.20 host species. We, however, found that European symbionts 579 

were reported with three times this number of host species (3.58) on average. The much lower 580 

number of detected hosts in Glasier et al. (2018) is probably the result of their searching 581 

method. They did not include data from faunistic notes, grey literature and books, which 582 

report the majority of interactions between ants and their symbionts. Moreover, the symbiont 583 

fauna, let alone the range of their interactions, is poorly documented outside Europe, which 584 

makes hard predictions at a global scale unreliable (Parmentier, 2020). Ant symbionts were 585 

extremely variable over the host-ant range. After controlling for sampling effort, social 586 

parasites clearly targeted the lowest number of host species, which is in line with expectations 587 

as they are the most specialized group of parasites (Buschinger, 2009). Apart from the number 588 

of hosts, the relatedness of host species is also a vital aspect of host specificity. It is well 589 

described that social parasites colonize nests of related hosts (Emery’s rule; Buschinger, 590 

2009). However, this has not been compared with other types of symbiont groups. We showed 591 

that the hosts of social parasites were clearly the most related of all symbiont types. The hosts 592 
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of myrmecophiles, parasitic fungi and helminths showed moderate to poor relatedness on 593 

average. Trophobionts were associated with the most distantly related ant species. 594 

There is a large body of literature that explains the constraints of host switching in social 595 

insect symbionts. Generally, it is thought that specialized myrmecophiles and social parasites 596 

rely on chemical deception, by mimicking the colony recognition cues or some key 597 

pheromones (overview in Parmentier, Dekoninck & Wenseleers, 2017). They are completely 598 

integrated into the host colony and are treated as a true colony member. Because of this strict 599 

mimicking of the host’s communication system, they are not able to colonize unrelated host 600 

species. Unspecialized myrmecophiles are typically poorly integrated into the colony, but host 601 

switching is more common in this group. This is facilitated by the use of general defensive 602 

chemicals, chemical insignificance or behavioural strategies (Stoeffler, Tolasch & Steidle, 603 

2011; Parmentier et al., 2017, 2018). Consequently, we predicted that specialized 604 

myrmecophiles would display much higher degrees of host specificity than unspecialized 605 

myrmecophiles. Surprisingly, we did not find differences in the number of host species and 606 

host relatedness among unspecialized myrmecophiles, specialized myrmecophiles and 607 

parasitoids. A limitation of the present study is that we do not have information on the relative 608 

importance of the recorded host species for a symbiont. It is likely that some of the listed host 609 

species of specialized symbionts rarely act as hosts, resulting in an overestimation of the 610 

actual species range and host species relatedness of symbionts. Additionally, the biology of 611 

most myrmecophiles is poorly known, which makes a functional grouping according to 612 

specialization challenging and open for refinement. The processes which make trophobionts 613 

attractive to one host, but not to another are hitherto unexplored. Likewise, the mechanisms of 614 

host switching and the factors that facilitate or constrain host switching in endoparasitic 615 

helminths and fungi are unknown. 616 

 617 
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(3) Predictors of symbiont diversity in European ants 618 

Associations between ant hosts and their symbionts are not random and are structured 619 

according to both ecological and evolutionary factors that act at different spatiotemporal 620 

scales. From the perspective of ant symbionts, ant nests can be conceptualized as habitat 621 

islands. Ant species with larger ant nests interact with more symbiont species. Nest size of ant 622 

species has been repeatedly hypothesized as an important driver of ant symbiont diversity 623 

(Hughes, Pierce & Boomsma, 2008; Kronauer & Pierce, 2011), and here was formally tested 624 

for the first time. Previous studies across very different host–symbiont systems [e.g. 625 

ectoparasites of fishes (Guégan et al., 1992), parasites of hoofed mammals (Ezenwa et al., 626 

2006), parasites of carnivores (Lindenfors et al., 2007), feather mites of finches (Villa et al., 627 

2013)] identified the size of the host species as one of the key factors in determining symbiont 628 

species richness (Kamiya et al., 2014). This positive association results from the fact that 629 

larger host species provide more niches and are less ephemeral (Lindenfors et al., 2007). 630 

Analogously, ant species with larger nests provide more space to allow larger population 631 

sizes, thereby reducing the extinction risk of symbionts (cf. island theory; Macarthur & 632 

Wilson, 1967). In addition, ant species with larger nests provide a higher diversity of 633 

microhabitats, including refuge areas that eventually facilitate species coexistence (Barabás et 634 

al., 2018). Larger ant nests are also expected to be more persistent (Kaspari & Vargo, 1995). 635 

The colony size of ant species is thus a strong local driver of total symbiont richness, and 636 

myrmecophile richness in particular.  637 

Total symbiont diversity, myrmecophile diversity, helminth and trophobiont diversity are 638 

additionally determined by more regional ecological factors like range size and niche width of 639 

the host ants. In that respect, eurytopic ants, such as Lasius niger and Myrmica rubra that can 640 

live in a wide variety of habitats including urban regions, hosted more symbionts, 641 

myrmecophiles, trophobionts and helminths. An effect of both distribution and habitat reflects 642 
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that more symbionts occur in widely distributed ant species with high densities. Symbionts 643 

associated with widely distributed ants are less prone to extinction as predicted by life-history 644 

theory and metacommunity ecology (Nosil, 2002; Leibold et al., 2004).  645 

Host density has widely been demonstrated as a key factor explaining parasite species 646 

richness (Lindenfors et al., 2007). Interestingly, we found that species with larger workers 647 

engaged with more myrmecophiles than ant species with small workers. This pattern in 648 

myrmecophile diversity was previously hypothesized based on experimental work, showing 649 

that the survival of three myrmecophilous beetles gradually increased in laboratory nests of 650 

larger ant species (Parmentier, Dekoninck & Wenseleers, 2016b). This positive relationship 651 

between ant size and myrmecophile diversity suggests that species with small workers detect, 652 

attack and deter myrmecophiles more easily and efficiently.  653 

Sampling effects appear highly relevant in most models of symbiont diversity among different 654 

hosts. Trophobiotic and more specialized parasitic interactions as seen in the group of 655 

helminths and social parasites are more determined by evolutionary drivers than 656 

myrmecophiles. Indeed, affinity with their hosts is strongly shaped by the phylogeny of the 657 

host. The effect of phylogeny is echoed in the high Pagel’s lambda values of the 658 

corresponding PGLS models, implying that much of the residual variation in trophobiont and 659 

especially helminth and social parasite richness could be explained by the phylogeny of the 660 

hosts. This strong phylogenetic driver for social parasite richness is in line with our previous 661 

results that social parasites mainly target closely related ant species (referred to as Emery’s 662 

rule; Buschinger, 2009) belonging to a small number of ant genera. Symbiont network 663 

structure thus shifts from more neutral ecological drivers related to regional species 664 

abundance to co-evolutionary drivers related to ancestry. The uniqueness and tightness of 665 

species interactions are known to be both a driver and consequence of co-evolutionary 666 

dynamics. Interestingly, we here show that these evolutionary drivers overrule any ecological 667 
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one in the most specialized interactions (social parasites), hence demonstrating the integrated 668 

nature of symbiont network formation according to the prevailing interaction strengths. Other 669 

predictors, which were not considered in the analyses, may also positively affect the diversity 670 

of symbionts. The availability of larvae and pupae rather than colony size may be more 671 

important for parasitoid species (Rocha et al., 2020). The tolerance level of ant species to 672 

intruders and the colonial organization (either single nests or multiple connected nests, either 673 

a single queen or multiple queens) are also possible determinants of diversity, but sufficient 674 

information is lacking to test these hypotheses. 675 

Ant–symbiont networks are unique in the sense that the host-associated network that is 676 

studied covers a wide array of interactions, from putatively mutualist to strictly antagonistic. 677 

We found that evolutionary processes are pivotal in networks of the most specialized ant 678 

symbionts (social parasites), whereas less-specialized networks, as found in the group of 679 

myrmecophiles, were mostly determined by ecological factors. The same pattern was found in 680 

other symbiont systems. Studies on specialized host–parasite networks equally point at the 681 

dominance of evolutionary drivers (phylogeny and biogeography) of these associations (Feliu 682 

et al., 1997; Rosas-Valdez & de Pérez-Ponce de León, 2011), while less-obligatory animal 683 

parasitic (Nunn et al., 2003; Ezenwa et al., 2006; Lindenfors et al., 2007; Nava & 684 

Guglielmone, 2013) or plant mutualistic interactions (Sanders, 2003; Wagner, Mendieta-685 

Leiva, & Zotz, 2015) are more affected by ecological factors related to distribution and 686 

abundance patterns that enhance contact and hence transmission of their diversity and host-687 

association patterns. 688 

 689 

(4) Predictors of symbiont sharing in European ants 690 

We hypothesized that the shared evolutionary history of related ant species would promote the 691 

sharing of similar symbiont communities. A positive correlation between phylogenetic 692 
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relatedness of the hosts and symbiont sharing was demonstrated in previous studies on orchid 693 

mycorrhiza (Jacquemyn et al., 2011) and bat viruses (Luis et al., 2015), but no such 694 

relationship was found in arbuscular mycorrhiza (Veresoglou & Rillig, 2014) and primate 695 

parasites (Cooper et al., 2012). Consistent with our prediction, we found that the main factor 696 

that promoted symbiont sharing in European ants was the relatedness of the hosts. It indicates 697 

that many symbionts pass more easily to related host species. As related ant species employ 698 

nearly identical defence structures (nestmate recognition cues, physiological and behavioural 699 

defences), it enables symbionts, especially specialized parasites, to bypass the host defence 700 

systems of related hosts. Another key factor that may facilitate the cross-species transmission 701 

of symbionts is the overlap in geographical distribution of the hosts (cf. bat viruses in Luis et 702 

al., 2015). We showed that ant species living in the same biogeographical region possessed 703 

more similar symbiont communities. This suggests that both the spatial overlap and similarity 704 

in climatic conditions facilitate the sharing of symbionts. Sampling effort also considerably 705 

explained the sharing of symbionts. More shared symbionts were reported in well-studied 706 

pairs of species. Focusing on the different subsets of ant symbionts, we found that the sharing 707 

of trophobionts between host ant species was mainly determined by biogeography and 708 

phylogenetic relatedness. Phylogenetic relatedness of the hosts was the most important driver 709 

explaining the sharing of helminths and social parasites. The strong phylogenetic effect on the 710 

sharing of social parasites is directly linked to the very low taxonomic/phylogenetic distance 711 

between their hosts. Social parasites target a very narrow range of host species by hijacking 712 

their communication system. This exploitation of host cues is facilitated by immediate 713 

common ancestry (Buschinger, 2009). The biology of most helminths is unknown, but 714 

probably immune evasion is only possible in related host species. Myrmecophiles and 715 

parasitic fungi were more similar in ant species residing in the same biogeographical region. 716 

Climatic conditions have a strong effect on the distribution of different groups of 717 
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myrmecophiles. One example is the large group of myrmecophilous silverfish which are 718 

mainly confined to ants living in the Mediterranean region (Molero-Baltanás et al. 2017; 719 

Appendix S1). Interestingly, host switching of myrmecophiles and parasitic fungi was not 720 

positively correlated with host relatedness (cf. Cooper et al., 2012; Veresoglou & Rillig, 721 

2014).  722 

 723 

V. OUTSTANDING QUESTIONS 724 

Merging different interaction types into one ecological network framework is a key challenge 725 

in ecology (Fontaine et al., 2011). Diverse host–symbiont communities provide an 726 

opportunity to test the relative contributions of ecology and evolution to network assembly. 727 

For example, our study on ant–symbiont networks revealed different roles of ecological and 728 

evolutionary processes depending on the type of symbiosis. Our insights may provide a basis 729 

for theory development and across-ecosystem comparisons (e.g. plant- and coral-based 730 

networks) and synthesis.  731 

We lack theory on how the architecture and the interaction signs and sizes jointly affect the 732 

stability and productivity of these diverse networks, much in contrast to trophic or mutualistic 733 

networks. The relative ease with which one can manipulate ant–symbiont communities makes 734 

them suited as empirical systems to test theory.  735 

Host–symbiont networks offer an opportunity to understand both ecological and evolutionary 736 

processes behind community assembly, from meso- to macro-ecological scales (see Vellend, 737 

2016). More specifically, as hosts occur spatially structured at these scales, it remains an open 738 

question how these assembly processes are determined by ecological and evolutionary 739 

limitation of dispersal. One key question is whether and how symbionts are dispersing: to 740 

what degree is horizontal transfer and subsequent symbiont sharing across hosts a facilitator 741 

of symbiont community assembly, and to which degree is vertical transfer, i.e. co-dispersal of 742 
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symbiont and host, established across the antagonism–mutualism gradient of host–symbiont 743 

networks? Mutualistic plant mycorrhizal fungi and plant diaspores, for instance, are passively 744 

co-dispersed by birds (Correia et al., 2019). Are similar processes equally prevalent in ant–745 

symbiont interactions, for instance are symbionts transported by their host during colony 746 

relocation (Parmentier, 2019)? 747 

Empirical data demonstrate that different host ants coexist regionally. The stabilizing and 748 

equalizing mechanisms that underpin such coexistence are at present unknown. How do the 749 

complex symbiont networks in which these hosts are embedded contribute to such 750 

mechanisms? Addressing such questions with new analytical tools in coexistence research 751 

(Saavedra et al., 2017; Spaak & De Laender, 2020) could advance our basic understanding of 752 

how a variety of direct and indirect interactions affect coexistence among hosts. For example, 753 

do symbionts induce indirect interactions among ant hosts? Do ant density-dependent 754 

interactions between symbionts (Parmentier et al., 2018) represent a stabilizing higher-order 755 

interaction (Grilli et al., 2017)? 756 

Insights from this review are restricted and applicable to networks as characterized at the 757 

species level, thereby neglecting any intraspecific variation. Following the relevance of 758 

ecological and evolutionary determinants, the question remains open as to what degree co-759 

evolutionary dynamics between hosts and their symbiont community occur. As strong 760 

selection may act on ant symbionts to bypass host colony defence, cryptic speciation in ant 761 

symbionts is expected to be high (Schönrogge et al., 2002; Zagaja & Staniec, 2015; von 762 

Beeren, Maruyama & Kronauer, 2015). Symbiont populations may be adapted to an 763 

individual host population as was demonstrated in the ant-parasitic syrphid fly Microdon and 764 

the butterfly Phengaris (Elmes et al., 1999; Tartally et al., 2019). Ultimately, population 765 

divergence may result in cryptic symbiont species each targeting a different host species. 766 
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At a higher phylogenetic level, other hymenopteran and insect lineages (Isoptera) provide 767 

similar niches to nest symbionts. None of the listed ant symbionts are shared with wasps, 768 

solitary and eusocial bees and termites (note that the latter two groups are poorly represented 769 

in Europe). Apparently only facultative symbionts (e.g. Porcellio scaber in wasp and bee 770 

nests for instance) or very generalist entomopathogens such as Beauveria bassiana are able to 771 

spread across different social insect lineages, but more study is needed to understand the 772 

drivers of host–symbiont divergence at these deep phylogenetic levels. 773 

 774 

VI. CONCLUSIONS 775 

(1) Ant–symbiont networks are particularly interesting to study large-scale patterns and 776 

drivers in host–symbiont network topology and symbiont richness as they are extremely 777 

diverse and cover the entire mutualism–antagonism continuum. We assembled a complete 778 

network of ant–symbiont interactions in Europe and studied the drivers of host specificity, 779 

symbiont richness and symbiont sharing in the different interaction sub-networks. 780 

(2) We identified 722 ant macrosymbionts which we categorized in five types: (1) 781 

myrmecophiles – commensalistic and parasitic arthropods (N = 535); (2) trophobionts – 782 

mutualistic aphids, scale insects, plant hoppers and mutualistic Lepidoptera (N = 80); (3) 783 

social parasites – parasitic ant species (N = 71); (4) parasitic helminths (N = 22); (5) fungi – 784 

parasitic (N = 13) and mutualistic (N = 1).  785 

(3) The different types of ant symbionts significantly varied in host specificity. Apart from 786 

quantitative differences in host range, we also found clear differences in the average 787 

taxonomic/phylogenetic relatedness of the targeted host species for the different types of ant 788 

symbionts. The most species rich and best-studied ant genera generally supported the largest 789 

number of symbionts, but the different types of symbionts were unevenly distributed across 790 

ant genera. 791 
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(4) We revealed that the ecological and evolutionary factors which drive symbiont species 792 

richness may shift depending on the type of symbiosis. Myrmecophile species richness is 793 

mainly determined by ecological drivers, such as colony size, host range and niche width of 794 

the host. By contrast, species richness of social parasites is strongly determined by the 795 

evolutionary factor host phylogeny.  796 

(5) Ants living in the same biogeographic region shared more symbionts. The sharing of 797 

trophobionts, helminths and social parasites, in particular, was also strongly facilitated in 798 

phylogenetically related hosts. 799 
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symbionts. Symbionts with a single host species were omitted from this analysis. Letter codes 1784 
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FIGURE LEGENDS 1791 

Fig. 1. Distribution of different types of ant symbionts. Total number of symbionts N = 722, 1792 

number of symbionts per type given in parentheses. Trophobionts are mutualistic, social 1793 

parasites and helminths are strictly parasitic. Fungi are parasitic, except for the mutualistic 1794 

species Cladosporium myrmecophilum. Myrmecophiles range from commensals to parasites 1795 

and include parasitoid wasps and flies. Note that three mutualistic Lepidoptera species are 1796 

classified as trophobionts and six parasitic and commensalistic Lepidoptera species as 1797 

myrmecophiles. 1798 

 1799 

Fig. 2. Ant–symbiont network displaying the proportional distribution of symbionts across the 1800 

European ant genera. A multilevel pie chart is given for each ant genus. The size of the outer 1801 

pie chart corresponds to the total number of associated symbionts (circle size legend in right 1802 

corner). The size of the inner pie chart is related to the number of symbionts that are not 1803 

shared with other ant genera (unique symbionts). The proportional distribution of the five 1804 

types of ant symbionts (see Fig. 1) is given for all associated symbionts (colour segments in 1805 

outer pie charts) and for the symbionts that are not shared with other genera (colour segments 1806 

in inner pie charts). The relative proportion of unique symbionts can be deduced by the 1807 

relative size of the inner circle to the outer circle. The genera are organized in four groups, 1808 

corresponding to the ant subfamily to which they belong. The genera are connected with lines, 1809 

of which the width is directly proportional to the number of shared symbionts. The font size 1810 

of a genus is proportional to its number of described species in Europe.  1811 

 1812 

Fig. 3. Mean ± SE number of host species per symbiont type, controlled for sampling effort. 1813 

Letter codes refer to Tukey post-hoc test. Species with no letters in common are significantly 1814 

different (P < 0.05). 1815 
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 1816 

Fig. 4. Mean ± SE phylogenetic distance of targeted host species (based on the phylogenetic 1817 

tree of Arnan et al., 2017) for different types of ant symbionts. Letter codes refer to post-hoc 1818 

test. Symbiont types with no letters in common are significantly different (P < 0.05).  1819 

 1820 

Fig. 5. Ranking of the predictors from the five PGLS models by the corrected Akaike 1821 

information criterion (AICc). The change in AICc (ΔAICc) when adding or removing a 1822 

variable from the most optimal model is compared. Predictors included in the most optimal 1823 

model are removed (ΔAICc positive), whereas those not included are added (ΔAICc negative) 1824 

to the best model (lowest AICc). The ranking is given for the five PGLS analyses, i.e. with 1825 

dependent variable the number of symbionts (best model: ~ sample effort + colony size + 1826 

distribution + habitat), myrmecophiles (best model: ~ sample effort + colony size + 1827 

distribution + habitat + worker size), trophobionts (best model: ~ sample effort + habitat), 1828 

social parasites (best model: ~ distribution range) and helminths (best model: ~ sample effort 1829 

+ habitat), respectively. Note that myrmecophiles, trophobionts, social parasites and 1830 

helminths are four subsets of all ant-associated symbionts. 1831 

 1832 

Fig. 6. Relative importance of the significant predictor matrices explaining the dissimilarity in 1833 

symbiont communities across different ant species. Rankings are given for predictors 1834 

explaining overall dissimilarity (1–similarity) in symbiont composition, and for dissimilarity 1835 

in subsets of symbiont composition: myrmecophiles, trophobionts, social parasites, helminths 1836 

and parasitic fungi, respectively. Note that myrmecophiles, trophobionts, social parasites, 1837 

helminths and parasitic fungi are subsets of all ant-associated symbionts. The allocated 1838 

contribution (sequential R²) of the different distance matrices (indicated with Δ) or the matrix 1839 

capturing the combined sample effort of a pair of host species to the explained variation of the 1840 
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MRM models is estimated with the lmg metric. The error bars are 95% confidence intervals 1841 

produced using 1000 bootstrap replicates. The combined sample effort of a pair of host 1842 

species was negatively correlated with their dissimilarity in symbiont composition. The 1843 

dissimilarity matrices of all other predictors were positively correlated with dissimilarity in 1844 

symbiont composition. Significance levels of the predictors were tested with a permutation 1845 

test (N = 9999; ***, P < 0.001; **, P < 0.01; *, P < 0.05; ▪, P < 0.10).  1846 

  1847 
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Table 1. Overview of the different types of ant symbionts found in Europe. 1868 
Symbiont type General description Representatives and strategies Ref. 

MYRMECOPHILE 

A diverse group of arthropods that mostly 

live inside ant nests. The life strategies of 

these organisms range from commensalism 

to specialized parasitism; there are no 

mutualists in this group. Representatives in 

many arthropod orders, but beetles and 

mites are the most diverse. Also known as 

ant guests. 

 

- unspecialized myrmecophiles: poorly integrated in the colony and may provoke aggression. Very similar in 

behaviour and morphology to free-living relatives. Do not rely on advanced chemical deception. 

 

- specialized myrmecophiles: accepted in the colony by being groomed, fed or transported. Typically possess 

advanced glandular structures (trichomes) or specialized behaviour to deceive the host. 

 

- myrmecophilous parasitoids: wasps and flies of which the larvae parasitize ant workers, ant larvae or possibly 

other myrmecophiles. Eventually kill the host. Adult parasitoids do not live in the nest. 

1–6 

TROPHOBIONT 

 

Mutualistic arthropods that provide sugary 

honeydew in exchange for protection and 

hygienic services. Mostly live outside the 

nest. 

- Hemiptera: aphids, scale insects and planthoppers. 

 

- Lepidoptera: mutualistic caterpillars permanently living outside the nest. 

1 

SOCIAL 

PARASITE 

A group of ants that parasitize other ant 

species. 

 

- xenobiosis: parasitic ants that construct a nest inside other ant nests, but raise their own brood.  

 

- temporary parasitism: a parasitic queen usurps a host colony and exploits the host work force to establish her 

own colony. Parasite workers gradually substitute the host worker force. 

 

- dulosis (slavery): a parasite colony is established as in temporary parasitism, but here the workers of the 

parasitic species will raid pupae of other ant species. Workers which will emerge from these pupae will do 

most of the tasks in the colony.  

 

- inquilinism: parasitic queens permanently exploit a host colony. The parasitic queen produces only sexuals, not 

workers.  

 

7 

HELMINTH Endoparasitic worms 

 

- nematodes (Nematoda): the juveniles (dauers) of some groups, such as the Rhabditidae and Diplogastridae, 

live in the postpharyngeal glands of their ant host and are considered weak parasites. Mermithid nematodes 

develop in the haemocoel of the ant, may cause morphological changes in the host, and ultimately kill the host 

upon emergence. Other hosts, such as oligochaetes, may be necessary to complete the life cycle of 

mermithids. 

 

8–9 
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- flukes (Platyhelminthes: Trematoda): Dicrocoelium is a trematode whose definitive hosts are grassland 

vertebrates. The eggs are released along with the faeces and eaten by snails. Ants serve as the second 

intermediate host of the parasite and become infected by ingesting snail slime. The parasite induces 

behavioural changes in the ant which then climb to the top of grass stems where they are ingested by the 

definitive host. 

 

- tapeworms (Platyhelminthes: Cestoda): cestodes are infamous parasites that live in the digestive tract of 

vertebrates. These tapeworms have a life cycle with multiple hosts and ants may serve as an intermediate host. 

 

FUNGUS 
A diverse group of mainly ant-specific 

ecto- and endoparasites. 

 

- parasitic fungi: Laboulbeniales are ectoparasites that do not kill their host. They produce a multicellular thallus 

externally attached to the integument of the host ant. Myrmicinosporidium durum is an endoparasitic fungus 

which ultimately kills its host. Pandora formicae is a well-known entomopathogenic fungus, that manipulates 

its ant host to climb the vegetation. The ant attaches itself to the distal part of leaves with its mandibles and 

dies of the infection. 

 

- mutualistic fungi: Cladosporium myrmecophilum provides stability and structure to the carton nests of Lasius 

fuliginosus. 

 

10, 11 

1, Hölldobler & Wilson (1990); 2, Kronauer & Pierce (2011); 3, Elizalde et al. (2018); 4, Pérez-Lachaud et al. (2019); 5, Parmentier (2020); 6, Kistner (1982); 7, Buschinger 1869 

(2009); 8, Poinar (2012); 9, Demartin (2018); 10, Espadaler & Santamaria (2012); 11, Maschwitz & Hölldobler (1970). 1870 
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Table 2. Estimates for the predictors of the top-ranked PGLS analyses (ΔAICc < 2). The subset of best models is given for the analyses with total 1871 

number of (1) symbionts, (2) myrmecophiles, (3) trophobionts (4) social parasites and (5) helminths as dependent variable. Significant estimates 1872 

indicated in bold (***, P < 0.001; **, P < 0.01: *, P < 0.05; ▪, P < 0.10). 1873 

  1874 

 
intercept colony size 

sample 

effort 

biogeo

graphy 
distribution habitat 

sympatric 

ants 

nest 

type 

worker 

size 
d.f. AICc weight lambda 

              

all symbionts              

 6.48 0.82*** 0.89**  0.70*** +***    7 375.3 0.33 0.54 

 7.93 0.71*** 0.84**  0.74*** +***  +▪  10 375.5 0.30 0.52 

 6.85 0.82*** 0.82**  0.77*** +***   0.31 8 376.0 0.22 0.44 

 8.20 0.70*** 0.77**  0.80*** +***  +▪ 0.26 11 376.8 0.15 0.41 

              

myrmecophiles             

 6.29 0.81*** 0.43  0.95*** +***   0.45* 8 299.0 0.31 0.00 

 6.64 0.94***   1.17*** +***   0.46* 7 299.1 0.29 0.00 

 7.95 0.75***   1.20*** +***  +▪ 0.44* 10 300.4 0.15 0.00 

 7.56 0.57*** 0.66* +*** 0.80*** +***   0.57* 12 300.7 0.13 0.32 

 6.21 0.81*** 0.45  1.10*** +*** -0.22  0.42* 9 300.9 0.12 0.00 

              

trophobionts             

 2.93  0.77***   +***    5 131.2 0.42 0.73 

 3.14  0.64***  0.20*** +***    6 132.3 0.24 0.60 

 3.52 0.22** 0.42*  0.31*** +***    7 133.0 0.18 0.36 

 3.06 0.11** 0.26***   +***    6 133.2 0.16 0.68 

              

social parasites             

 1.34    0.27**     2 75.5 0.23 1.00 

 1.19  0.26**       2 75.9 0.19 1.00 

 1.25      0.22**   2 76.4 0.15 0.83 

 1.30    0.17**  0.11   3 76.7 0.12 0.94 

 1.27  0.13  0.16**     3 76.9 0.11 1.00 

 1.21  0.16**    0.11   3 76.9 0.11 0.93 

 1.29    0.26**    -0.10 3 77.3 0.09 0.98 

              

helminths              

 1.81  0.14*   +***    5 31.7 0.18 0.91  

 1.83  0.11*   +*** 0.10   6 31.8 0.16 0.88  

 2.01     +*** 0.13▪   5 31.9 0.16 0.85  

 1.87  0.11  0.11** +***    6 32.0 0.15 0.88  

 2.07    0.14** +***    5 32.1 0.14 0.87  
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 2.07     +***    4 33.5 0.07 0.88  

 1.82 -0.06 0.16*   +***    6 33.5 0.07 0.94  

 1.83 -0.07 0.14*   +*** 0.10   7 33.5 0.07 0.94  

              

 1875 


