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Random walks are the simplest way to explore or search a graph and have revealed a very useful tool to
investigate and characterize the structural properties of complex networks from the real world. For instance, they
have been used to identify the modules of a given network, its most central nodes and paths, or to determine
the typical times to reach a target. Although various types of random walks whose motion is biased on node
properties, such as the degree, have been proposed, which are still amenable to analytical solution, most if not all
of them rely on the assumption of linearity and independence of the walkers. In this work we introduce a class
of nonlinear stochastic processes describing a system of interacting random walkers moving over networks with
finite node capacities. The transition probabilities that rule the motion of the walkers in our model are modulated
by nonlinear functions of the available space at the destination node, with a bias parameter that allows to tune
the tendency of the walkers to avoid nodes occupied by other walkers. First, we derive the master equation
governing the dynamics of the system, and we determine an analytical expression for the occupation probability
of the walkers at equilibrium in the most general case and under different level of network congestions. Then we
study different types of synthetic and real-world networks, presenting numerical and analytical results for the
entropy rate, a proxy for the network exploration capacities of the walkers. We find that, for each level of the
nonlinear bias, there is an optimal crowding that maximizes the entropy rate in a given network topology. The
analysis suggests that a large fraction of real-world networks are organized in such a way as to favor exploration
under congested conditions. Our work provides a general and versatile framework to model nonlinear stochastic
processes whose transition probabilities vary in time depending on the current state of the system.

DOI: 10.1103/PhysRevResearch.2.033012

I. INTRODUCTION

Random walks are basic stochastic processes, which bear
universal interest in light of their widespread and cross-
disciplinary usage. Since the pioneering work by Pearson and
Rayleigh, in 1905 [1,2], the number of studies invoking the
notion of random walker has grown rapidly, to eventually
cover a broad spectrum of applications, from physics to en-
gineering, via biology and economics.

Random walks have been thoroughly studied on regular
lattices [3] and, more recently, on graphs displaying complex
topologies [4–7]. In the simplest scenario, the walker moves,
with a uniform probability, from a given node i to one of its
neighbors j. Alternatively, when the dynamics takes place on
a weighted graph, one can gauge the probability of performing
the move with the weight of the link (i, j) [8,9]. Various other

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

classes of random walkers are, however, possible on complex
networks [7]. The walk can be, for instance, biased on the
topological properties of the nodes of the network, such as the
node degree or the betweenness. In Ref. [10], the probability
for a walker to perform a move is modulated by a power law
of the degree of the target node. Tuning the scaling exponent
enables one to steer the dynamics toward the hubs or favor, at
variance, the motion toward low-degree nodes. Furthermore,
when the nodes are also characterized by endogenous state
variables, mirroring congestion or tagging local deficiencies,
these can be considered as a feedback to modify the motion
of individual agents [11]. Metapopulation models of random
walkers which integrate random relocation moves with local
interactions depending on the node occupation probabilities
have also been proposed in Ref. [12] and employed to extract
information on the architecture of the underlying network.
Mutual interference, as stemming from the competition for
available spatial resources, is unavoidably present when many
walkers are moving at the same time across the nodes of
a given network [13]. In Ref. [14] a model of transport on
networks which accounts for the finite carrying capacity of the
nodes has been proposed. In particular, it has been shown that
the equilibrium density (stationary distribution) of crowded
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walkers saturates for large-enough values of the connectivity,
while conventional noninteracting agents have a stationary
distribution which depends linearly on the nodes degree.

In this work we introduce and study a novel and general
class of nonlinear Markov chains with transition probabilities
that change in time depending on the current state of the
system. These describe the motion of interacting random
walkers whose probability to jump to a node of a network
is a nonlinear function of the number of walkers currently at
the node. Such class of nonlinear random walkers provides
a versatile, but at the same time analytically treatable, frame-
work to study the dynamics of active agents that modulate
their motion depending on the level of perceived congestion
on the network. As a special case, we will study walkers
whose probability to move from node i to a neighbor j scales
as a power law of the occupation density of node j, with an
exponent σ � 0 that measures the antisocial behavior of the
walkers, i.e., their tendency to avoid nodes already occupied
by other walkers. Under this framework we will prove that
for any given network and each selected value of σ , there is
always an optimal value of the network crowding (the total
load on the network) that maximizes the entropy rate, i.e.,
facilitates the exploration of the network. We will also show
that, in many real-world networks, the maximal value of the
entropy rate is larger than that in randomized networks with
the same degree distributions.

II. THE STOCHASTIC PROCESS

Consider a set of interacting agents (walkers) moving on
an undirected network with N nodes, each endowed with a
finite carrying capacity. For the sake of simplicity, we assume
that all the nodes have the same carrying capacity, i.e., each of
them can simultaneously host a maximum number of agents
equal to M. The architecture of the network is described in
terms of the binary adjacency matrix A = {ai j}, with ai j = 1
if there is a link connecting nodes i and j, while ai j = 0
otherwise. At each time t , the state of the system (our set
of walkers) is specified by the vector m = (m1, . . . , mN ),
where 0 � mi � M is the number of agents that belong to
node i, at time t . The total number of walkers in the network
is fixed in time and is a tunable parameter of the model.
We can control it by introducing the average node crowding
β = 1/N

∑N
i=1 mi/M. By definition, β ∈ (0, 1] quantifies the

average node congestion, with β → 0 corresponding to the
idealized diluted setting. Hence, we can tune the total number
of walkers in the network, βMN , by independently changing
M and β. Agents perform a biased random-walk hopping
between neighboring nodes, provided there is enough space at
the arriving destination. Differently from Ref. [10], the motion
of the agents is not biased on the topological properties of
the underlying graph but on the positions of the other agents
in the network. More specifically, the bias results in two dis-
tinct contributions, respectively representing the willingness
to leave a node i, and the attractiveness of the target node
j. The first component is a function, f (xi ), of the density
xi = mi/M on node i. The second term is made to depend
on the available space 1 − x j = (M − mj )/M at node j, as
g(x j ) ≡ ĝ(1 − x j ). As a natural constraint, we require that
f (x) vanishes at zero, i.e., f (0) = 0, since no hops can take

place from an empty node. Further, we assume that f (·) is a
nondecreasing nonlinear function of x, a choice that amounts
to modeling antisocial reactions of the walkers to enhanced
crowded conditions, i.e., their tendency to avoid nodes already
occupied by other walkers.

Observe that the standard unconstrained random walk is
eventually recovered when setting f (x) = x and g(x) = 1 for
all x. The finite carrying capacity signifies that no transition
toward node j can take place, if x j = 1, namely if the arrival
node is fully packed. We hence require the self-consistent
condition g(1) ≡ ĝ(0) = 0. Any possible choice of f (x) and
g(x) fulfilling the above prescription is in principle possible.
Notice that the linear model studied in Ref. [14] can be ob-
tained as a particular case of our model if we fix f (x) = x and
g(x) = 1 − x. On the other hand, adopting nonlinear functions
for g(x), enables one to reveal a large plethora of interesting
dynamical features, which reflect different modalities of ac-
tive reaction to perceived crowding conditions, encompassing
social/antisocial attitudes.

The evolution of our system of nonlinear interacting ran-
dom walks is ruled by the master equation:

d

dt
P(m, t ) =

∑
m′

[T (m|m′)P(m′, t ) − T (m′|m)P(m, t )],

where P(m, t ) denotes the probability to find the system in
the state m at time t, T (m′|m) is the transition probability
from state m to state m′, and the sum is restricted to states
m′ compatible with m [15]. Because the transitions involve
pairs (i, j) connected by a link, i.e., such that ai j = 1 and
only increments and decrements by one unity are allowed,
we get m′ = (. . . , mi ± 1, . . . , mj ∓ 1, . . . ). The transition
probabilities read:

T (mi − 1, mj + 1|mi, mj ) = ai j

ki
f
(mi

M

)
g
(mj

M

)
,

where ki = ∑
j ai j is the degree of node i. To make the

notation compact, in the above expression we solely highlight
the state components which are modified by the occurring
transition [16–20]. The calculation is however exact: All com-
ponents are accounted for, and no approximation is involved
(see Appendix A).

A straightforward manipulation yields (see Appendix A
and Refs. [14,21]) the following equation for the time evolu-
tion of the mean-field node density ρi(t ) = limM→∞〈mi〉/M:

dρi

dt
=

∑
j

�i j

[
f (ρ j )g(ρi ) − k j

ki
f (ρi )g(ρ j )

]
= Li(ρ), (1)

where �i j = ai j/k j − δi j is the random-walk Laplacian and
the nonlinear operator Li(ρ) is defined by the rightmost
equality. Notice that the above mean-field equation has been
obtained by neglecting terms which are 1/M smaller than the
others. This is an approximation at M finite but holds exactly
in the limit M → ∞, i.e., when 1/M corrections vanish [16].
From Eq. (1) it is immediate to conclude that the mass, namely
the total number of walkers, is an invariant of the dynamics.
The quantity

∑N
i=1 ρi(t )/N is hence conserved and equals to

the average node congestion β.
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NONLINEAR WALKERS AND EFFICIENT EXPLORATION … PHYSICAL REVIEW RESEARCH 2, 033012 (2020)

FIG. 1. The stationary solution. (a) The stationary distribution of the walkers at a node of degree k is determined as the intersection between
the line ρ/(cσ k) and the curve (1 − ρ )σ . The normalization constant cσ depends on σ , the level of crowding in the network. (b) ρ∗ is plotted
versus k. When σ < 1 agents cluster on nodes with a large degree, while for σ > 1 hubs are progressively depleted (with respect to the case
σ = 1). The solutions obtained for σ �= 1 intersect the curve relative to σ = 1 at kcrit .

III. EQUILIBRIUM DISTRIBUTION

The stationary solution of Eq. (1) can be computed, for any
choice of the nonlinear functions f and g (see Appendix B).
We study here the case in which we set f (x) = x and g(x) =
(1 − x)σ , with σ � 0. Modulating the exponent σ , means
selecting different exploration strategies of the walkers. More
specifically, the larger σ the more the walkers will try to
avoid densely populated nodes. In other terms, the value of
σ quantifies the level of antisocial behavior of the walkers.
Notice that the diluted limit of noninteracting walkers is
recovered by letting σ → 0 (and also β → 0). For the case
at hand, the stationary solution ρ∗

i should match the following
implicit equation:

ρ∗
i

cσ ki
= (1 − ρ∗

i )σ ∀i, (2)

where cσ is a normalization factor which depends on
the selected σ . Recalling the definition of β yields cσ =
βN/

∑
j k j (1 − ρ∗

j )σ , a condition which should complement
Eq. (2) for a self-consistent determination of the stationary
equilibrium. To interpret the above asymptotic solution we
will draw a comparison with that obtained when assuming
linear transition rates, σ = 1 When σ < 1, agents accumulate
on the nodes characterized by a large degree by consequently
depleting those displaying modest connectivity (see Fig. 1).
At variance, when σ > 1, hubs are progressively emptied and
the walkers tend to preferentially fill peripheral nodes with
respect to the linear case. It is instructive to compute the
critical degree kcrit where such inversion takes place for a
generic σ with respect to the reference case σ = 1. A direct
computation (see Appendix B 1) returns:

kcrit =
[(

c1

cσ

)1/(1−σ )

− 1

]
1

c1
. (3)

In short, for all ki > kcrit , we have ρ∗
i |σ<1 > ρ∗

i |σ=1, while
the opposite inequality holds true if ki < kcrit . The sign of the
inequalities reverse when σ > 1 (see Fig. 1).

IV. EXPLORATION UNDER CONGESTED CONDITIONS

The entropy rate of a random walk on a complex network
characterizes the walkers ability to explore the network, re-
sulting in a nontrivial indicator where topology and dynamical
rules are mutually entangled [10,22,23]. We will hence eval-
uate the entropy rate of the process under study to quantify
the performance of the walkers in exploring a given network
under different level of congestion. The entropy rate h of
a stationary Markov chain with transition matrix � = {πi j}
and stationary distribution w∗ = {w∗

i } can be written as h =
−∑

i j πi jw
∗
i log πi j . In the present case one gets:

h = −
∑

i j

ρ∗
i ai j

ρ∗
i (1 − ρ∗

j )σ

ki
log

[
ai j

ρ∗
i (1 − ρ∗

j )σ

ki

]
. (4)

The entropy rates depends on the dynamics of the walkers,
via the stationary probability ρ∗

i , the nonlinearity exponent σ ,
and the congestion parameter β, but also on the structure of
the underlying network, via its adjacency matrix A = {ai j}.
The entropy rate in Eq. (4) (normalized to the system size
N) can be rewritten in the heterogeneous mean-field (HMF)
approximation, by dividing the nodes in different degree
classes, considering the asymptotic densities of nodes with
the same degree and performing sums over degree classes (see
Appendix C) [10,24].

Figures 2(a) and 2(c) show the entropy rate per node, h/N ,
versus β, for synthetic networks with the same average degree
〈k〉 and heterogeneous or homogeneous degree distributions,
respectively. Symbols refer to a direct (and exact) computation
through Eq. (4). Solid lines are instead the results in the HMF
approximation. We notice that, for any value of σ , there is
an associated value of the crowding parameter βopt which
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FIG. 2. Entropy rate and isoexplorability on synthetic networks. The asymptotic entropy rate per node h/N is shown as a function of
the average node congestion β and for different choices of the parameter σ . Panel (a) refers to scale-free networks with N = 1000, γ = 2.5
and average degree 〈k〉 = 6.9. Panel (c) is obtained for Erdős-Rényi networks, with N = 1000 and 〈k〉 = 6.9. Symbols refer to the exact
computation performed from Eq. (4). Lines are the analytical predictions obtained in the heterogeneous mean-field approximation. In panels
(b) (relative to SF networks) and (c) (for the case of Erdős-Rényi graphs) the isolevel lines h/N are depicted in the reference plane (β, σ ). A
constant level of explorability is obtained by modulating σ as a nonlinear function of β.

maximizes the entropy rate h/N . An adequate and network-
dependent amount of congestion seems therefore necessary
to favor the network explorability for any given level of
antisocial behavior (as measured by the value of σ ). The
maximum entropy hopt = h(βopt ) increases by decreasing σ ,
namely when the antisocial behavior of the walkers is reduced.
A trivial global optimum is eventually obtained when the
constraint of a finite carrying capacity is completely removed.
Notice also that the entropy rate approaches zero when β →
1, namely under extremely crowded conditions, i.e., when the
agents are practically stuck in their positions. Interestingly,
both βopt and the value of hopt depend on the topology of
the network. As an example, when σ = 0.5, βopt ∼ 0.68,
and hopt ∼ 0.48 × N for Erdős-Rényi random graphs, while
βopt ∼ 0.64 and hopt ∼ 0.34 × N for scale-free networks.
Complementary insights can be obtained by looking at the
isolevel lines of h/N in the plane (β, σ ) reported in Figs. 2(b)
and 2(d). In order to maintain the same level of explorability,
the walkers need to adjust the value of the dynamic bias σ ,
depending on the traffic load β in the network. Intriguingly
enough, σ is a nonmonotonic function of β on iso-h curves.
For small values of β, the walkers have to strengthen their
antisocial behavior (i.e., to increase σ ) to keep the same value
of h. Above a critical value of the average node crowding β,

the walkers need instead to weaken their antisocial bias (i.e.,
to decrease σ ).

Further, we have analyzed how the average node degree
of a network, impacts the entropy rate of the walkers. To this
end, we build different Erdős-Rényi networks with the same
number of nodes but different average node degrees. Figure 3
shows the entropy rate per node as a function of β and its
maximum as a function of 〈k〉, for three values of the nonlinear
bias parameter σ (0.5 top panels, 1.0 middle panels, and 2.0
bottom panels). Increasing the network connectivity, yields a
global enhancement of the entropy rate and of its associated
maximum. The larger the connectivity, in fact, the richer the
variety of routes available to the motion of the walkers. As a
further point, we stress that random architectures return lower
entropy values at peak, as compared to lattices, a counterintu-
itive conclusion that is made quantitative in the Appendix B
2, where we also derive closed analytical formulas for the
entropy rate on k-regular lattices.

Finally, we studied the properties of our model of nonlinear
random walkers on several networks taken from the real
world. We computed the entropy rate as a function of the
crowding parameter, determining in each case the optimal
values βopt and hopt for several values of the nonlinear bias
σ . Results are compared to those obtained on randomized

033012-4
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FIG. 3. Entropy rate versus 〈k〉. The asymptotic entropy rate h/N per node and its maximum value are reported as a function of the network
load (left panels) and the average nodes degree (right panels) for several values of the nonlinear bias parameter σ . Erdős-Rényi networks with
N = 100 nodes have been used. Lines in the left panels are the analytical predictions.

versions of the networks. Two different types of randomiza-
tion have been adopted: The first one preserves the degree
of each node, while the second one maintains the network
average degree only. As an example Fig. 4 shows the results
obtained for [Fig. 4(a)] a snapshot of the social network
of Facebook [25] and [Fig. 4(b)] for the air transportation
network among the 500 largest U.S. airports [5,26]. First, we
confirm the nonmonotonic behavior of the entropy rate: This
latter vanishes for small and large values of β and exhibits
a maximum at an optimal value of the crowding parameter
βopt. In addition to this, we notice that, for intermediate and
large values of β, the entropy rate of the walkers on both these
two real-world networks is larger than that on the randomized
versions of the networks preserving the degree distribution.

In Appendix D and Table I we report on the results obtained
for a large collection of real networks. Although some of
them can also exhibit smaller values of entropy rate than their
randomized versions, we have found that all the networks
analyzed, which describe urban street patterns, achieve a
better explorability.

V. CONCLUSIONS AND OUTLOOK

To summarize, we have here discussed a general approach
to the modeling of biased random walks under crowded
conditions. The formulation of the problem is not limited to
the specific framework analyzed here (see Appendix E for a
generalization in which also function f is a power law) and
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FIG. 4. Entropy rate for real networks. The entropy rate per node, h/N , for different values of σ is shown for two real networks: (a) the
social network of Facebook [25] and (b) the transportation network of the 500 largest U.S. airports [5,26]. Filled symbols refer to the average
entropy rate obtained for an ensemble of 50 randomizations which preserve the node degrees of the two real networks.

paves the way to devising novel algorithms for an efficient
transport on networks, even in more complex adaptive settings
where the dynamics of the walkers is coevolving with the
underlying network [33].
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APPENDIX A: FROM THE MASTER EQUATION TO THE
DETERMINISTIC DENSITY EVOLUTION

The goal of this section is derive the mean-field equations
for the densities, namely Eqs. (3) in the main body of the
paper, from the master equation:

d

dt
P(m, t ) =

∑
m′

[T (m|m′)P(m′, t ) − T (m′|m)P(m, t )],

(A1)
where P(m, t ) denotes the probability to find the system at
time t in the state m = (m1, . . . , mN ). Recall that the above
sum is restricted to states m′ compatible with m. Because at
a given time only a walker can hop from a given node to one
of its neighbors, the states m′ take the form m j = (. . . , mi ±
1, . . . , mj ∓ 1, . . . ) for all j with ai j = 1.

Let us introduce the average number of agents in node i
at time t, 〈mi(t )〉 ≡ ∑

m miP(m, t ), and the densities ρi(t ) =
limM→∞〈mi(t )〉/M. Then, by taking the time derivative of
〈mi〉, recalling (A1) and accounting for the subsets of

compatible states we get:

d

dt
〈mi〉 =

∑
j,m j

mi[−T (mi − 1, mj + 1|mi, mj )P(mi, mj, t )

+ T (mi, mj |mi + 1, mj − 1)P(mi + 1, mj − 1, t )

+
∑
j,m j

mi[−T (mi + 1, mj − 1|mi, mj )P(mi, mj, t )

+ T (mi, mj |mi − 1, mj + 1)P(mi − 1, mj + 1, t )] ,

or, equivalently,

d

dt
〈mi〉 =

∑
j

[−〈T (mi − 1, mj + 1|mi, mj )〉

+ 〈T (mi + 1, mj − 1|mi, mj )〉] .

Consider now the transition probabilities. These latter are
expressed in terms two functions, f node and g as:

T (mi − 1, mj + 1|mi, mj ) = ai j

ki
f
(mi

M

)
ĝ

(
M − mj

M

)
,

then we eventually get:

d

dt
〈mi〉 =

∑
j

[
− ai j

ki

〈
f
(mi

M

)
ĝ

(
M − mj

M

)〉

+ a ji

k j

〈
f
(mj

M

)
ĝ

(
M − mi

M

)〉]
.

By introducing the rescale time τ = t/M and performing the
limit M → ∞ (which in turn amounts to neglecting correla-
tions, i.e., 〈 f (·)〉 = f (〈·〉), similarly for g) yields:

d

dτ
ρi =

∑
j

[
− ai j

ki
f (ρi )ĝ

(
1 − ρ j

) + a ji

k j
f (ρ j )ĝ(1 − ρi )

]
.

By introducing the random-walk Laplacian �i j = ai j/k j − δi j

and making use of the symmetry of the adjacency matrix,
we obtain the sought equation for the time evolution of the
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density ρi:

d

dτ
ρi =

∑
j

�i j

[
f (ρ j )ĝ(1 − ρi ) − k j

ki
f (ρi )ĝ

(
1 − ρ j

)]
.

(A2)

APPENDIX B: ASYMPTOTIC SOLUTION

We now set to calculate the asymptotic density ρ∗
i as

displayed on each node of the network. To do this end we
equate to 0 the right-hand side of Eq. (A2) and rewrite the
ensuing equation as follows:

∀i = 1, . . . , N 0 =
∑

j

�i jψ j (i), where ψ j (i)

=
[

f (ρ j )ĝ(1 − ρi ) − k j

ki
f (ρi )ĝ

(
1 − ρ j

)]
,

that is for all i, (ψ1(i), . . . , ψN (i))T should be the eigenvector
of the random-walk Laplace matrix � associated with the null
eigenvalue. In other words, for some constant μ(i):

ψ j (i) = k jμ(i) .

Observe that ψi(i) = 0 for all i and thus kiμ(i) = 0, which
implies μ(i) = 0. Indeed, ki �= 0 for all i since the network
is connected. In conclusion, the asymptotic solution ρ∗

i must
satisfy:

f (ρ∗
j )ĝ(1 − ρ∗

i ) − k j

ki
f (ρ∗

i )ĝ(1 − ρ∗
j ) = 0 ∀i, j .

Reordering the terms one gets:

f (ρ∗
j )

k j ĝ(1 − ρ∗
j )

= f (ρ∗
i )

kiĝ(1 − ρ∗
i )

∀i, j .

The above condition is met, for any i and j, only if the terms
on the right- and left-hand side equate to a constant c (namely
if they do not bear a reflex of the associated index):

f (ρ∗
i )

kiĝ(1 − ρ∗
i )

= c ∀i . (B1)

For generic f and ĝ the previous equation can exhibit
multiple solutions. To rule out such possibility, and eventually
focus on the interesting setting where just one solution is
allowed for, we can assume (i) f to be nondecreasing function,
vanishing at x = 0, and (ii) ĝ to be nonincreasing function,
vanishing at x = 1. In such a way, by continuity, the curves
f (ρ) and ckĝ(1 − ρ) intersect only once for any choice of
c > 0 and k > 0.

1. About kcrit

In Fig. 1 (main text) we have shown the nontrivial behavior
of the stationary solution ρ∗

i as a function of σ and the
node degree ki responsible for the interesting phenomenon of
accumulation/depletion of hubs and leaves with respect to the
case σ = 1. For any given σ > 0 there exists a unique critical
values for the node degree, kcrit , where such inversion takes
place which indirectly defines “large” versus “small” degrees.

To compute such critical value we need to impose the
equality among the stationary solution ρ∗|σ , for σ �= 1, and

the same quantity for σ = 1, ρ∗|σ=1, both associated to a
node with degree k. From Eq. (4) (main text) with σ = 1 we
obtain ρ∗|σ=1 = c1k/(1 + c1k); assuming ρ∗|σ=1 = ρ∗|σ and
substituting this value again in (4) we get

c1kcrit

1 + c1kcrit
= cσ kcrit

(
1 − c1kcrit

1 + c1kcrit

)σ

,

from which we straightforward obtain

c1

cσ

= 1

(1 + c1kcrit )
(σ−1) ,

which gives the Eq. (5) (main text).

2. The case of k-regular networks

The asymptotic solution Eq. (B1) simplifies in the case of
k-regular networks, for which i.e., ki = k for all i; in this case
indeed, the dependence on the node index i disappears and
thus all the nodes will display the same asymptotic density.
The total mass conservation allows to determine the latter as

ρ∗
i = β ∀i = 1, . . . N, (B2)

independently of the nonlinear functions f and g. These latter
are instead used in determining the normalizing constant c
entering in Eq. (B1)

c = 1

k

f (β )

ĝ(1 − β )
. (B3)

Given the exact asymptotic solution one can explicitly com-
pute the entropy rate given by Eq. (4) [in the main text with
the choice f (x) = x and g(x) = (1 − x)σ or the following
Eq. (C1)]. Indeed, the sum over the index j allows to simplify∑

j ai j with the degree ki at the denominator, while the
second sum returns the factor N , being the remaining part
independent from i. One gets therefore:

h = −Nβ f (β )g(β ) log

[
f (β )g(β )

k

]
,

where we have used that g(x) = ĝ(1 − x).
Assuming f (x) = x and g(x) = (1 − x)σ one can compute

the value of β which maximizes h for a fixed σ , namely
βopt. Moreover, one can calculate the parameter σ opt which
returns the maximum of h for a fixed β. To this end one needs
to perform the partial derivative, ∂βh, respectively, ∂σ h, and
equating these latter to 0. In this way one can can draw an
interesting conclusion on σ opt; indeed, one can obtain

σ opt = log[k/(eβ )]

log(1 − β )
, (B4)

and thus if k < eβ, then one gets σ opt > 0, while on the
contrary one obtains σ opt < 0. The first constraint can be
realized only with k = 2, that is, for a one-dimensional (1D)
ring where each node is connected to its two neighbors, one on
the left and one on the right, and for β sufficiently large, i.e.,
β > 2/e ∼ 0.736. These facts can explain why in the case
of the Erdős-Rényi and scale-free networks one always found
σ opt < 0 and thus h is a decreasing function of σ (see Fig. 7).

The computation for βopt follows the same reasoning. One
can in particular obtain an implicit equation for the optimal
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FIG. 5. Entropy and topology regularity. We compare, as a func-
tion of the network connectivity, the maximum of the entropy rate
per node computed for a k-regular 1D lattice and an Erdős-Rényi
network with the same average degree and the same number of
nodes (N = 50). Results show that the regular topology always
exhibits the highest maximum. For large network connectivities the
two computed quantities converge to a shared value (indeed both
networks converge to the same complete network).

value of β for a generic function g(x):

log
βoptg(βopt )

k
= −1 + g(βopt )

g(βopt ) + [βoptg(βopt )]′
.

For the particular choice g(x) = (1 − x)σ we obtain:

log
βopt (1 − βopt )σ

k
= −1 + 1

2 − σβopt

1−βopt

.

We conclude this section by observing that more regular
topologies can be associated to larger entropy rates and thus to
a stronger ergodic behavior. In particular in Fig. 5 we compare
the maximum of the entropy rate achieved for a k-regular 1D
lattice against the same quantity computed for an Erdős-Rényi
network with the same average degree and the same number
of nodes. We can observe that for all the values of the average
degree, the entropy rate is always larger in the case of the
regular lattice than for the random network.

Remark 1 (The k-Cayley trees). A similar analysis can be
performed in the case of k-Cayley trees, where each node has
degree k (also called coordination number), but the leaves that
by definition have degree 1. This implies that there will be two
values for the asymptotic density, one associated to the leaves,
ρ∗

out, and one for the remaining nodes, i.e., the inner ones, ρ∗
inn,

determined by:

ρ∗
inn

k(1 − ρ∗
inn )σ

= c and
ρ∗

out

(1 − ρ∗
out )σ

= c . (B5)

The constraint on the conservation of the total mass and the
observation that in the limit of infinitely large Cayley tree,
i.e., for a diverging number of shells, the number of inner
nodes divided by the number of leaves converges to 1/(k − 2),
provide a third relation:

ρ∗
inn

1/(k − 2)

1 + 1/(k − 2)
+ ρ∗

out
1

1 + 1/(k − 2)
= β . (B6)

From Eqs. (B5) and (B6) one can determine the three variables
ρ∗

inn, ρ∗
out, and c and then again the entropy rate h. Let us

observe that in this limiting case the average degree of the
Cayley tree converges to 2 and thus we cannot fairly compare
its entropy rate with the one obtained for the k-regular 1D
lattice or the Erdős-Rényi network with the same average
degree.

3. Analytical approximation for the asymptotic solution when
f (x) = x and g(x) = (1 − x)σ

Assuming f (x) = x and g(x) = (1 − x)σ , σ > 0, for 0 �
x < 1 and 0; otherwise, the asymptotic solution for the density
Eq. (B1) is implicitly given by

ρ∗
i = kic(1 − ρ∗

i )σ ∀i . (B7)

In the following we shall write ρ∗
i (σ ) to stress the dependence

on the parameter σ . For σ = 1 the solution to the latter
problem takes the form [14]

ρ∗
i (1) = kic

1 + kic
∀i.

Let us introduce yi = 1 − ρ∗
i and rewrite the equation for the

implicit solution as

1 − y = κyσ , (B8)

where for a sake of clarity we dropped the index i and we
introduced κ = kic. One can thus look for a series expansion
of y(σ ) in terms of (σ − 1) that should converge in a neigh-
borhood of σ = 1:

y(σ ) =
∑
n�0

yn

n!
(σ − 1)n.

Inserting this power series into Eq. (B8), recalling that

d

dσ
[y(σ )]σ = [y(σ )]σ log y + σ [y(σ )]σ−1 dy

dσ
,

and equating terms corresponding to the same powers of
(σ − 1) on the left- and the right-hand sides of Eq. (B8), we
can express yn as a function of the terms yl , 0 � l � n − 1.
This recursive (infinite) system of equations can be explicitly
solved. The first few terms are given by

y0 = 1

1 + κ

y1 = − κ

1 + κ
y0 log y0

y2 = − κ

1 + κ
[(y0 log y0 + y1) log y0 + y1]

+ κ2

(1 + κ )2
y0 log y0(1 + log y0).

Back to ρ∗
i (σ ) we obtain

ρ∗
i (σ ) = cki

1 + cki
+ cki

(1 + cki )2
log(1 + cki )

× (σ − 1) + ρ∗
i,2 × (σ − 1)2

2
+ O[(σ − 1)3],

(B9)
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FIG. 6. Analytical approximation for the asymptotic solution. Left panels [(a) and (c)]: We compare the approximate formula up to the
mth order (m = 3 dotted line, m = 5 dashed line, and m = 7 solid line) with the exact solution of Eq. (B7), as obtained via numerical methods.
Right panels [(b) and (d)]: For a fixed approximation order, m = 7, we compute the average error δ7(σ ) over 10 realizations of the underlying
network. The boundaries of the gray shadow are at one standard deviation from the mean. Top panels refer to β = 0.2 while bottom ones to
β = 0.8. The underlying network is generated according to the Erdős-Rényi recipe, with N = 100 nodes and probability for the existence of a
link p = 0.2.

with

ρ∗
i,2 = cki log(1 + cki )

(1 + cki )2

{[
log(1+cki )− cki

(1 + cki )
log(1 + cki )

]

− cki

(1 + cki )

}
− (cki )2

(1 + cki )2

log(1 + cki )

1 + cki

× [1 − log(1 + cki )].

We can thus write, for σ ∼ 1, the following approximate
solution:

ρ∗
i (σ )=ρ∗

i,0 + ρ∗
i,1 × (σ − 1)+ρ∗

i,2 × (σ − 1)2

2
+O(σ − 1)3.

(B10)
From the explicit form of the coefficients ρ∗

i,n one can analyze
the dependence of the asymptotic density on the nodes degree
and on the normalizing parameter c, that, we recall, is a
function of the crowding amount β, for fixed σ . Indeed, we
observe that for cki � 1 the zeroth-order correction is of the
order of the unity, ρ∗

i,0 → 1, while the high-order corrections,
n � 1, do satisfy ρ∗

i,n = O[(log cki )n/cki]. Thus, they are neg-
ligible provided at least one among ki and c is sufficiently

large. The former condition implies that i is a hub, the latter
amounts to operate under crowded conditions, namely β → 1,
which in turn implies c → ∞. On the other hand, cki � 1
(the network is connected and thus ki �= 0 for all i) yields
ρ∗

i,n = O[(cki )n+1]; hence, in very diluted conditions, β → 0,
high degree nodes can exhibit a very low density.

To check the accuracy of the approximation we quantify
the discrepancy between the approximate formula Eq. (B9),
up to a given order m, ρ

(m)
i (σ ), and the exact numerical

solution of Eq. (B7), ρ∗
i (σ ), both for the same fixed value of

σ . The error is specifically defined as:

δm(σ ) = max
i=1,...,N

∣∣∣∣1 − ρ
(m)
i (σ )

ρ∗
i (σ )

∣∣∣∣ .
Results reported in Fig. 6 testify on the accuracy of the
proposed approximation for σ close to 1; observe that for over
a significant window in σ , the error stays bounded to a few
percentages. The actual error depends also on the crowding
parameter β and on the network topology. The top panels
of Fig. 6 refer to a weakly crowded environment, β = 0.2,
while bottom ones are obtained when considering a more
pronounced degree of imposed crowding, β = 0.8. One can
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observe that the error deteriorates, as β increases. To test
the impact of the topology of the underlying network, we
created 10 Erdős-Rényi networks made by N = 100 nodes
and assuming a probability for the existence of a link p = 0.2.
For each network, we computed δ7(σ ). The solid line in the
right panels of Fig. 6 displays the average of the computed
errors, while the boundaries of the gray shadow are set at
one standard deviation by the mean. A similar behavior (data
not shown) is obtained when employing different schemes of
network generation (as adopted in the main body of the paper).

APPENDIX C: ENTROPY RATE AND THE
HETEROGENEOUS MEAN-FIELD HYPOTHESIS

The aim of this section is provide additional information
on the application of the approximate HMF. Working under
this assumption, we will characterize the entropy rate and then
derive a simplified formula which holds when correlations
among nodes degree can be neglected.

Consider again the entropy rate given by:

h=−
∑

i j

ρ∗
i ai j

f (ρ∗
i )g(1 − ρ∗

j )

ki
log

[
ai j

f (ρ∗
i )g(1 − ρ∗

j )

ki

]
,

(C1)
where ai j is the adjacency matrix of the underlying network,
(ki )1�1�N the nodes degree and ρ∗

i the stationary probability.
The first step consists in reorganizing the sums as follows:

h = −
∑

i

ρ∗
i

f (ρ∗
i )

ki
log

f (ρ∗
i )

ki

∑
j

ai jg(1 − ρ∗
j )

−
∑

i

ρ∗
i

f (ρ∗
i )

ki

∑
j

ai jg(1 − ρ∗
j ) log[ai jg(1 − ρ∗

j )].

Then we invoke the heterogeneous mean-field hypothesis,
namely we aggregate together nodes which share the same
connectivity. Instead of summing on the node’s index, we
perform the sum on the degree [10]. Let thus denote by P(k)
the probability for a generic node to have degree k and let
P(k′|k) the conditional probability that a generic node with
degree k is connected to a node with degree k′, then

hHMF = h

N
= −

∑
k

P(k)ρ̂∗
k

f (ρ̂∗
k )

k
log

f (ρ̂∗
k )

k

×
∑

k′
P(k′|k)kg(1 − ρ̂∗

k′ ) −
∑

k

P(k)ρ̂∗
k

f (ρ̂∗
k )

k

×
∑

k′
P(k′|k)kg(1 − ρ̂∗

k′ ) log(g(1 − ρ̂∗
k′ )),

where ρ̂∗
k is the density of the nodes that share connectivity k.

Assuming an uncorrelated network, P(k′|k) = k′P(k′)/〈k〉,
we get:

huncorr
HMF = −

∑
k

P(k)ρ̂∗
k f (ρ̂∗

k ) log
f (ρ̂∗

k )

k

∑
k′

k′P(k′)
〈k〉 g(1 − ρ̂∗

k′ )

−
∑

k

P(k)ρ̂∗
k f (ρ̂∗

k )
∑

k′

k′P(k′)
〈k〉 g(1 − ρ̂∗

k′ )

× log(g(1 − ρ̂∗
k′ )),

0 0.5 1 1.5 2
0.4
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1

FIG. 7. Optimal value for the crowding coefficient βopt as a
function of σ . We report βopt (σ ) as numerically obtained by means
of the HMF hypothesis (curves), under the assumption P(k) ∼ 1/kγ

(γ = 3 dashed line, γ = 2.5 dash-dotted line, and γ = 3.5 solid
line) and compare it with the corresponding quantity estimated for
scale-free networks which implement an identical scaling exponent
(γ = 2.5 triangles, γ = 3.0 circles, and γ = 3.5 squares). Each
symbol is the average over 10 different networks realizations.

and using the equilibrium definition, g(1 − ρ̂∗
k′ ) = f (ρ̂∗

k′ )/
(ck′), we eventually get:

huncorr
HMF = −

∑
k

P(k)ρ̂∗
k f (ρ̂∗

k ) log
f (ρ̂∗

k )

k

∑
k′

P(k′)
〈k〉

f (ρ̂∗
k′ )

c

−
∑

k

P(k)ρ̂∗
k f (ρ̂∗

k )
∑

k′

P(k′)
〈k〉

f (ρ̂∗
k′ )

c
log

f (ρ̂∗
k′ )

ck′ ,

and after some straightforward computations

huncorr
HMF = − 1

c〈k〉
[〈

ρ̂∗
k f (ρ̂∗

k ) log
f (ρ̂∗

k )

k

〉
〈 f (ρ̂∗

k )〉

+ 〈ρ̂k f (ρ̂k )〉
〈

f (ρ̂∗
k ) log

f (ρ̂∗
k )

ck

〉]

= − 1

c〈k〉 [〈ρ̂∗
k f (ρ̂∗

k ) log f (ρ̂∗
k )〉〈 f (ρ̂∗

k )〉

− 〈ρ̂∗
k f (ρ̂∗

k ) log k〉〈 f (ρ̂∗
k )〉

+ 〈ρ̂∗
k f (ρ̂∗

k )〉〈 f (ρ̂∗
k ) log f (ρ̂∗

k )〉
− 〈ρ̂∗

k f (ρ̂∗
k )〉〈 f (ρ̂∗

k ) log ck〉] .

Recalling that f (x) = x (for the case analyzed in the main
body of the paper) we get:

huncorr
HMF = − 1

c〈k〉 [〈(ρ̂∗
k )2 log ρ̂∗

k 〉〈ρ̂∗
k 〉 − 〈(ρ̂∗

k )2 log k〉〈ρ̂∗
k 〉

+ 〈(ρ̂∗
k )2〉〈ρ̂∗

k log ρ̂∗
k 〉 − 〈(ρ̂∗

k )2〉〈ρ̂∗
k log ck〉]. (C2)

In the main text we have shown that the entropy rate
per node is a nonmonotonic function of the crowding pa-
rameter β and thus the existence of an optimal value, βopt,
i.e., a value for which h attains its maximum. The latter
depends on the nonlinearity bias σ . In Fig. 7 we report
results of some dedicated simulations proving that the optimal
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FIG. 8. Entropy rate for assortative/disassortative synthetic net-
works. We built several random assortative and disassortative syn-
thetic networks, made of N = 1000 nodes, each one character-
ized by its assortativity coefficient, r ∈ [−1, 1]. We then compute
the deviation between the entropy rate hHMF and the analogous
quantity obtained when degree correlations are silenced using a
null model, huncorr

HMF . We can observe a slight dependence of �h =
maxβ |h/N − hHMF| on r, which in the worst case scenario reaches
a few percentages.

value of the crowding parameter is a decreasing function of
the nonlinear bias σ , in the case of uncorrelated scale-free
networks, for several values of γ . A qualitatively similar
result holds true also for other network topologies (data
not shown).

To study the impact of the assortativity on the entropy rate,
we build 400 random assortative and disassortative synthetic
networks made of N = 1000 nodes, each one characterized
by its assortativity coefficient, r ∈ [−1, 1]. For each network
we computed the entropy rate using Eq. (4) (in the main
body of the paper), or equivalently Eq. (C2), that is taking
into account the possible correlations among nodes degree;
then we applied a degree-preserving randomization process to
the network, namely we build a null model by rewiring links
without changing the nodes degree. Eventually, we computed
the entropy rate by using the nodes degree distribution P(k)
common to both networks, via Eq. (C2). This amounts in
turn to neglect the degree correlations. Let us observe that
in this way both networks exhibit the same asymptotic nodes
densities which depend only on the node degree for fixed
β and σ , see Eq. (4) (in the main body of the paper).
Hence, any possible differences as stemming from the usage
of Eq. (C2) and Eq. (4) (in the main body of the paper)
should be traced back to nodes degree correlations [36]. To
measure the discrepancies as originated by the two afore-
mentioned formulas, we define �h = maxβ |hHMF − huncorr

HMF |.
The results reported in Fig. 8 show a dependence of the
latter on r; �h vanishes for r → 0 coherently with the fact
that, for nonassortative networks hHMF and huncorr

HMF should
eventually coincide. Then �h is maximal for |r| → 1 and
in the worst case scenario, the difference is bounded by a

few percentages. We also stress that this behavior does not
depend on the value of the nonlinear bias σ imposed (data
not shown).

APPENDIX D: REAL AND SYNTHETIC NETWORKS

The synthetic uncorrelated scale-free networks used in our
analyses have been created by means of the configuration
model [5], i.e., by drawing a set of positive integer numbers
according to the distribution ∼1/kγ , and then by using the
latter as the degree sequence. In the Erdős-Rényi networks
with N nodes, each of the N (N − 1)/2 edges is created
independently with probability pER.

To study the behavior of our model of nonlinear random
walkers on real-world networks we have selected various
networks from different domains and with a different number
of nodes, links and level of assortativity. The networks con-
sidered and the results obtained are summarized in Table I.
In particular, we have evaluated the maximal entropy rate hopt

for each network, and we have compared this value to that
obtained in two different types of null models. The quantity
�hopt

rew (respectively, �hopt
rnd) denotes the difference between

the value of hopt and that of a null model (both normalized
to the system size) that consists in randomizing the original
network under the assumption of preserving its node degrees
(respectively, the average degree) in the randomization. In
formulas:

�hopt
rew = hopt − hopt

null,rew

N
and �hopt

rnd = hopt − hopt
null,rnd

N
.

(D1)

Let us observe that, by definition, networks in the first type
of null model have the same degree sequence as the original
real-world network. The asymptotic distribution in Eq. (B1)
depends, for a fixed load β, only on the degree sequence of
the network. We can hence conclude that both the real network
and the rewired ones exhibit the same asymptotic density of
the walkers ρ∗

i for all i = 1, . . . , N . From the expression of
the entropy rate in Eq. (C1) we can thus obtain that hnull,rew

differs from h only for the following contribution coming from
differences in the adjacency matrices:

h − hnull,rew = −
∑

i j

ρ∗
i

[
ai j − a(null,rew)

i j

] f (ρ∗
i )g(1 − ρ∗

j )

ki

× log

[
f (ρ∗

i )g(1 − ρ∗
j )

ki

]
,

where ai j is the adjacency matrix of the original network while
a(null,rew)

i j the one obtained after the degree-preserving random-
ization. Differences between the two matrices are limited by
be constraint imposed by fixing the degree sequence, and so
are the differences between the entropy rates. From the values
of �hopt

rew we observe that in general real-world networks,
with the exception of Internet at the autonomous systems
level and some social networks perform better in terms of
explorability especially in the case of walkers with large
values of σ .

On the other hand, using a null model that only pre-
serves the average degree of the original network, we will
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FIG. 9. Comparison of the entropy rates for the different null models. We report in the main panel the entropy rate for the real network “C.
Elegans frontal” [29] (circles), the one computed using the HMF assumption (black line) and the one for the randomized network preserving
the average degree (shaded gray areas corresponding to the interval [min h/N, max h/N] for the 50 replicas). In the panels (a)–(c) we zoom
in the vicinity of the maximum of the entropy rate to appreciate the similarity with the entropy rate obtained for the degree-preserving null
model.

obtain larger variations of the entropy rates because now
the asymptotic density will also differ (see Fig. 9). Ran-
domized networks obtained in this way in general exhibit
larger maximal entropy rates, with the notable exception of
urban street patterns (see Table I and Fig. 10) that have
not only a positive value of �hopt

rew but also always a pos-
itive value of �hopt

rnd. In these systems, in fact, randomized
networks with the same average degree performs worse in
term of explorability, namely their entropy rate is always
smaller than the one of the original network. Based on this
it is tempting to speculate that road network have been
assembled so as to optimize their structure for transport
under congested conditions: any randomized version that
disrupts the local organization of crossroads will perform
worse.

Our results imply that the entropy rate per node, for the
synthetic networks, the real ones or a randomized version of
these latter, exhibits the same functional behavior; h vanishes
for very small and very large values of β and then achieves a
single maximum at an intermediate value of the parameter.
This value, βopt, corresponds thus to an optimal network
crowding (the total load on the network) that facilitates the
exploration of the network, being a maximum of the en-
tropy rate. In Table II we report, for three choices of the
nonlinear parameter σ , the values of the optimal crowding
computed for the real networks presented in Table I, together
with the corresponding differences with respect to the same

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 10. Entropy rates for the road networks. We report the
entropy rate for the road network of London [5,30] (circles) together
with the same quantity computed using the randomized network pre-
serving the average degree (shaded gray areas corresponding to the
interval [min h/N, max h/N] for the 50 replicas). The solid black line
denotes the entropy rate computed using the HMF assumption that
also coincides with the entropy rate obtained using the randomized
model that preserves the degree distribution (not visible at this scale).
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FIG. 11. The role of degree-degree correlations. Results reported for the US Airplane network [5,26] (top panels) and Facebook [25]
(bottom panels) indicate that, when the randomization (preserving the degree distribution) is not able to completely wash out the degree-degree
correlations, then the entropy rate of the randomized network [gray shaded area in panels (a) and (d)] differs from the one computed in the
HMF approximation [black lines in panels (a) and (d)]. In both cases, the circles denote the entropy rate for the original network. We report for
the original network [panels (b) and (e)] and the randomized one [panels (c) and (f)] a measure of the presence of degree-degree correlations,
namely the average degree 〈knn〉 of neighbors of nodes of degree k as a function of k. The similarity of the scatter plots in panels (b) and
(c) suggest the presence of degree-degree correlations in the randomized version of the US Airplane network. Comparison of panels (e) and
(f) suggests instead that correlations have been destroyed in the case of Facebook.

quantities computed for the null model networks obtained by
randomizing the original network under the assumption of
preserving its node degrees (respectively, the average degree).
In formulas:

�βopt
rew = βopt − β

opt
null,rew and �β

opt
rnd = βopt − β

opt
null,rnd.

(D2)

To conclude, let us consider the role of the degree-degree
correlations on the computation of the entropy rate of non-
linear random walkers. In few cases, e.g., the three Internet
Autonomous Systems networks and the US Airplane network
the randomization process is not able to completely destroy
the degree correlations and thus the entropy rate for the null
model will deviated from the same quantity computed in the
HMF approximation (see Fig. 11 top panels for the case of
the US Airplane network). On the other hand, once the ran-
domization is able to wash out the degree-degree correlations,
we obtain a satisfying agreement between the null model
entropy rate and the HMF approximation. We recall in fact
that the HMF approximation implies neglecting degree-degree
correlations (see Fig. 11 bottom panels for the case of the
Facebook network).

APPENDIX E: DIFFERENT CHOICES OF THE BIAS
FUNCTIONS f AND g

The aim of this section is to introduce and study some
more general classes of biases functions f and g. The simplest

FIG. 12. Proof of the existence and uniqueness of the stationary
solution via a qualitative approach. The solution of Eq. (E1) can be
obtained as the intersection of the curves y = xα (red for α > 1 and
green for α < 1) and y = λ(1 − x)σ (blue), where λ = cki and x =
ρ∗

i . For any choice of α > 0, σ > 0 and λ > 0 such two curves admit
one and only one intersection in [0,1]; left panel: 0 < σ < 1; right
panel: 1 < σ .
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straightforward generalization is to consider

f (x) = xα and

g(x) = (1 − x)σ for 0 � x < 1 and 0 otherwise

for some real positive α and σ . Under such assumption the
asymptotic solution given by Eq. (4) (in the main body of the
paper) rewrites:

(ρ∗
i )α

(1 − ρ∗
i )σ

= cσ ki ∀i. (E1)

Observe that the function on the left-hand side equals 0
for ρ∗

i = 0 and monotonically diverge to +∞ for ρ∗
i → 1−.

Hence, for any cσ ki, there exists one and only one value for
ρ∗

i satisfying the equality. Stated differently looking for the
asymptotic solution corresponds to finding the intersection of
the two curves y = xα and y = λ(1 − x)σ (see Fig. 12 for two
generic cases) and by continuity such intersection is always
unique.
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