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Introduction 

The purpose of this thesis is the analysis of the Flight Slot Allocation 
Problem. Briefly, it consists of finding a slot i.e. a time window for departure 
in order to ensure that the flight will comply with all the procedures and rules 
that regulate the air traffic. Among other rules, the most important is that 
the numbers of flights which enter a sector or an area shoud never exceeds the 
sector capacity. Therefore CASA is a network problem but of a particular 
and sensitive nature. 

Analysis means for us : 

1. Describing the problem, i.e summarizing the state-of-the-art Which 
rules apply, which problems arise, which solutions are used ? 

2. Giving a formal model, i.e rewriting it as a mathematical problem, 
namely a dynamical optimization problem. 

3. Proposing new solut ions or improving existing ones by the use of appro­
priate (?) mathematical algorithms, namely the simulated annealing 
and/or the tabu search methods. 

4. Comparing with other models and methods, namely constraint pro­
gramming and 0-1 linear programming. 

The case reviewed in detail in this study is the European case. Currently, 
air traffic in Europe is regulated by EUROCONTROL, the European Organ­
ization for the Safety and Control of Air Navigation. The purpose of this 
Body is to manage the traffic on real-time ha.sis to avoid traffic jams (Yes, 
they exist even in the air !), excessive delays and more generally every situ­
ation or condition which could lead to hindering security wîth the help of a 
fully automated system. 

The structure of this thesis is composed of four chapters and follows the 
structure of the objectives: 

• The first chapter is devoted to a description of the current state of air 
traffic air and a review of the operational requirements. 

4 
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• In the second chapter, we formalize the main concepts and rewrite 
CASA as an optimization problem. 

• Thirdly, we review two mathematical methods which have proved useful 
to tackle such complex combinatorial problems : Simulated annealing 
and tabu search. 

• The fourth chapter describes two'1other models : The Vranas & Bert­
simas model which use the 0-1 linear programming formalism and was 
developed at the beginning for the american case, and the ILOG model 
which implements somewhat the constraint programming technique. 

For the readers who are not at ease with the rather esoteric language of 
air controllers, a useful list of acronyms have been added to this thesis. 





Part I 

Description and Formalizing of 
CASA 
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Chapter 1 

Air Traffic Control in Europe 

1.1 Limited Capacity, Growing Demand 

People could wonder why, in the air, without policemen, highways, lights, 
borders and walls, planes are not allowed to fly freely ? Instead of it, air 
traffi.c is submitted to restrictions that the corn.mon car commuter can hardly 
imagine: 

• Minimal delay between two departures. 

• Minimal distance between two planes in the three directions. 

• Forbidding of crossing some special areas (big cities, industrial resorts, 
nuclear power plants, military bases, ... ). 

• Obligation to use predefined paths. 

• Mandatory identification when entering a national airspace. 

Problems arise when to control that the flights actually comply with all 
these regulations and procedures. In Europe, such controls are processed by 
EUROCONTROL, the European Organization for the Safety and Control of 
Air Navigation. Actually, a increasing part of controlling has been "compu­
terized" . The main principle of Air Traffic Regulation is achieved by giving 
to each füght a slot, i.e. a short time period for taking off such that the flight 
will comply with ( almost) all regulations and required procedures. 

7 
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CHAPTER 1. AIR TRAFFIC GONTROL IN EUROPE 8 

The aim of this report is to study and propose improvements of the core 
of the system, namely CASA (Computer-Aided Slot Allocation) which is 
embedded in the TACT (TACTical) system which is merely the interface 
between CASA and the users, both interna! ( the controllers) and external 
(the Air Operators). 

We start by listing what we call the operational constraints, i.e. the 
constraints imposed by the very nature of the Slot Allocation Problem itself 
and not by the peculiar algorithm or method we would like to implement 
to face the issue. In the following, we will also summarize the state of the 
current implementation at EUROCONTROL. 

1.2 The Operational Constraints 

As a general remark, the ATC (Air Traffic Control1) has to be achieved under 
the responsibility of human beings. This has at least two consequences : 

• The users should be confident about the system, which means practic­
ally a quite complex implementation to face all the possible issues. 

• The users should have a clear knowledge of the structure and the beha­
vior of the system, which implies practically the opposite of the previous 
requirement. 

In addition, the demand of the AO (Air Operators) and customers is 
rapidly growing, but this demand is threefold : 

• The number of available destinations. 

• The number of places available, i.e. how many people can travel during 
a year? 

• A more flexible scheme, i.e. smaller flights which can departure at any 
time. This is in opposition to the traditional system of the sixties­
seventies, when there were only long-hauls which were taking off on a 
regular, fixed basis. 

1See the list of acronyms at the end of the report 
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These three features of the current demand increase the total demand of 
fl.ights, leading to air traffic jams. The observable consequences are bigger 
delays on the ground but also in the air. Air Traffic Regulating Bodies 
had to set up one-way paths (in the air !), "fl.ying round-abouts" around 
international airports, etc ... 

1.2.1 Sorne Terminology 

Flights A fl.ight is known by its identification (ID), its departure airport 
(ADEP) and its destination airport (ADES). It can cross and follow many 
locations and areas : 

• Paths (Uxyy) where x is a letter and yy an integer. 

• Unit Information Regions (UIR). 

• Flight Information Regions (FIR). 

• Aerodroms (AR). 

• Navigation Points (NAVAIDs) and Way-points, etc . .. 

Slots Each fl.ight is given a slot, i.e. a departure time interval which length 
is rarely over 5 minutes. As fl.ight procedures are normalized, it is easy 
to compute the crossing and arrivai t imes of the :B.ight with a reasonable 
precision. 

'lraffic Volumes To simplify and uniformize ATC, the concept of Traffic 
Volumes has been developed : It consists of a piece of airspace of limited 
capacity, the capacity being the number of :B.ights allowed to cross the traffic 
volume per hour. It is identified by an alphanumeric string2 • It can be one 
airport, a set of airports, a path, a family of paths, an UIR, etc ... 

2Very often, it consists of four letters with the following meaning : the first one denotes 
a continent or a part of it, e.g. E = Northern Europe, L = Latin Europe, U = Soviet 
Union; the two first letters combined denote the country, LF = France, EB = Belgium, LS 
= Switzerland, ES = Sweden; the third and fourth letters are up to the relevant National 
Regulating Body. Many small countries like Belgium, Netherlands, the Baltic Republics 
are covered by one Traffic Volume. 
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Regulations A regulation is defined by an alphanumeric string3 and con­
sists of a Traffic Volume, a validity period (some hours) and a maximum 
rate of planes allowed to enter the area. Usually, the rate is expressed in 
flights per hour, and this rate may does not have to remain constant over 
the validity period, it can even be updated en-route. 

1.2.2 Regulating the Demand 

The core of the method is to avoid traffic jams and delays in the air, for two 
considerations : financial (fuel is burned, maintenance costs are proportional 
to the number of flight hours) and security. Taking into account the max­
imum capacity of Traffic Volumes, ATC Centres impose ground delays to 
flights. But when the actual demand exceeds the capacity, controllers have 
to define Regulations on the concerned overcrowded Traffic Volumes. 

1.2.3 The Constraints 

Flights have to comply with many constraints that we systematically state 
hereinaf ter. 

1. Sub-periods A regulation period is divided in sub-periods. Each sub­
period has its own rate. The rate defines the "maximum" number of 
flights in the regulation for the relevant sub-period. 

2. Slots Each sub-period is divided in slots. The currently used division 
consists of equally distributed slots with one flight per slot. However, 
we could consider slots with variable time length and capacity, e.g. 5 
flights within a 20' slot. 

3. Exempted flights ,,Exempted flights" means flights which cannot be 
subject to a regulation. They consume resources and slots as others, 
they are ta.ken into account to compute the loads but they cannot 
be delayed as others. This includes official, humanitarian, emergency 
flights and flights coming from outside the European Air Traffic Flow 
Management (ATFM) zone. 

3Very often by six letters : the fi.rst four letters being the identification of the relevant 
Tl:affic Volume, the two last identify the time. 
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4. Minimal overloads The load, i.e. the number of flights in a regula­
tion, should not be higher then the rate of the concerned sub-period. 
Ali the flights are considered, both exempted and regulated ones. 
CAUTION : This is not an absolute criterion (should not be instead 
of has to be). 

5. Delaying flights : The core of the method ln order to fulfill the 
previous constraint ( 4), flight departures are delayed in the future. As 
a consequence, delays are positive numbers. 

6. Forcing exempted flights Exempted flights are "forced" to their 
ETO. ln other words, they must be given a slot within short time 
window around their ETO. 

7. Pen ding rates In order to give some fl.exibility, a small amount of the 
controlling capacity is devoted to a pending rate. This special rate is 
mainly used by late filers and short notice fl.ights. By opposition, the 
rate defined in constraint (1) will now be referred as normal rate. 

8. Conversion of pending rates In order to limit the loss of capacity, 
pending slots which are close to the current time are converted to nor­
mal ones. As a remark, the criterion is much more complex due to the 
unclear definition of time-bands. 

9. Shallow modification On request of a Central Executive Unit (CEU) 
controller, a new regulation could be achieved. If the only change is in 
the modification of the rate, it is called shallow rectifying. It consists 
of finding better slots for flights which CTO is after the current time. 
Allocated flights have precedence over pre-allocated ones4 • 

10. Deep modification By comparison with the previous constraint, when 
other changes occur in the regulation definition, the modifying is re­
ferred as deep rectifying. It consists in : 

• For flights which Computed Take-Off Time (CTOT) is before the 
deep rectifying start-time : Nothing changes. 

4For the difference between allocated flights and pre-allocated ones, see the Message 
Procedures section 
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• For flights which have received a Slot lmprovement Proposition5 

(SIP) : If the CTOT is after the deep rectifying start-time and the 
flight is subject to this regulation, the SIP is canceled. 

• For other flights : A new regulation is restarted from the begin­
nmg. 

As CTOT is obviously before CTO, the set of flights subject to modi­
fication is much bigger, hence the qualification of "deep". 

11. Regulation canceling On request of a CEU controller, a regulation 
can be canceled. This can be due to many factors : strikes, bad weather, 
riots, wars, etc . .. 
It consists of : 

• For flights which have been forced to a slot by a CEU controller: 
Nothing changes. 

• For flights which are airborne or presumed so, i.e. their CTOT 
is after the current time : Nothing changes excepting when the 
regulation is the last one which the flight is subject to. In this 
case, the flight may be deleted from the CASA database. 

• For flights which are in any regulation any more : The fl.ight may 
be deleted from the CASA database. 

12. Flight Plan Revision The data about a flight can be updated by 
reception of a message of the outside world (AO, ATC, etc ... ). Fol­
lowing rules apply : 

• For fl.ights which are airborne or presumed so : Nothing changes. 

• For flights with a changed profile : A new reservation procedure 
is made for that fl.ight. Even if it has received a SIP, the corres­
ponding slot is freed. However, if the flight has been manually 
forced by a CEU controller and the new ETOT is still before the 
old CTOT, nothing changes. 

• For fl.ights with a changed EOBT: A new reservation is normally 
made. (Still to argue about, cfr. [4]) 

5See the Message Procedures section 
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13. Filtering Slot lmprovements During the slot allocation optimiza­
tion process, only delay improvements which are higher then a given 
threshold will be taken into account. In other words, if the difference 
between the old CTOT and the new one is too low, no changes are 
made. 

After reading this, at least two conclusions should be made : Slot Al­
location is subject to various, informa! restrictions and decisions of human 
beings have always precedence ( cfr constraints 4,9,10,11) on computer ones, 
hence the complexity of the problem. Moreover, the lack of formality of 
the operational constraints implies that we cannot use classical optimization 
algorithms because they tend to comply strictly with the constraints. 

1.3 The Message Procedures 

Various messages are exchanged between the outside world and TACT & 
CASA. As a general remark, any change in the optimization method should 
be transparent, hence the Message Procedures have to be left unchanged. 

In this section, we will describe in a somewhat chronological way, i.e. the 
time sequence in which they most often occur. 

RPL, IFPL First of all, AO submit flight plans to TACT. These plans 
are called either Repetitive PLans (RPL) or Initial Flight PLans (IFPL). 
Repetitive means that the flight occurs on a daily basis. The flight is then 
recorded in the CASA database. 

SAM A fixed time (often one or two hours) before Initial Off-Block Time 
(IOBT), a Slot Allocation Message (SAM) is sent to the AO. This is the 
proposition of an available departure time, also called Computed Take-Off 
Time (CTOT). The flight is said to be allocated. A flight is said to be pre­
allocated when CASA has found a suitable slot but has not sent a SAM yet. 
The minimal delay between the the issuance of the slot and IOBT is also 
referred as Slot Issuance Time (SIT). 
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SIP After that, the CASA algorithm can propose better slots to the AO. 
A Slot Improvement Proposai (SIP) is then sent. The AO has then three 
possibilities : 

SRJ The AO rejects the improvement. It then sends a Slot ReJection 
Message (SR.J) to TACT. H it does not not answer after a certain time, it is 
reputed to have rejected the improvement. ln both cases, the corresponding 
slot is freed. 

SPA The AO accepts the improvement. lt then sends a Slot Proposition 
Acceptance (SPA) to TACT. 

RDY If prior to any improvement, the AO has sent a ReaDY message 
(RDY), it is reputed to accept all SIPs. 

SRM The accepted improvement is then made official by TACT by sending 
a Slot Revision Message (SRM) to the AO. 

SRR If the AO needs to change the departure time (CTOT), it sends a 
Slot Revision Request (SRR) to TACT. It receives back a SRM. 

SLC For various reasons, a CEU controller can cancel a slot, i.e. giving no 
CTOT to a flight. A SLot Cancellation (SLC) is then sent to the AO. 

As a consequence of constraint (13) Filtering Slot lmprovements, the dif­
ference between, respectively, the CTOT of the SAM and the CTOT of the 
first SIP has to be greater than a given threshold. The same applies to two 
successive SIPs. 

1.4 The Current lmplementation of CASA 

1.4.1 The Basic Rules 

We state here briefly the main principles on which the current implementation 
of CASA relies in order to fulfill all the previous operational constraints and 
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message procedures and, in addition, trying to find an optimum distribution 
of slots and flights. 

Delaying flights This is achieved, within EUROCONTROL by CASA. 
The basic rule is first planned, first served, i.e. if flight A has planned its 
departure before flight B, flight A will actually take off before flight B. This 
rule is equivalently stated by the following equation : 

{1.1) 

where ETO and CTO stand, respectively, for Estimated Time Over and 
Computed Time Over. 

More then one regulation : The most penalizing technique When a 
flight crosses more than one regulation6

, a problem arises to determine which 
delay it will eventually suffer of. As overloads are currently computed for each 
regulation, the actual practice is, for simplicity, to search independently in 
each crossed regulation a delay. Hence, there are as many delays as crossed 
regulations. The bigger delay is then selected and the fl.ight is "forced" in the 
other regulations, i.e. for each relevant regulation, the CTO is the sum of the 
ETO plus the maximum imposed delay and this, even if these regulations 
are overloaded. The regulation which has imposed its delay on the :flight is 
referred as the most penalizing one. 

1.4.2 The Actual Flaws of CASA 

Obviously, the current implementation suffers from some flaws. The first one 
is that the main objectives are nowhere clearly defined. Actually, TACT & 
CASA have been developed in a purely heuristic way, by implementing the 
"manual" procedures used by each European ATC Centre. As the regulation 
of European Air Traffi.c is planned to be achieved on a global basis, these 
heuristics do not make the full benefits of the current technology. 

6 A flight crosses in average 2.5 regulations 
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First planned, first served This principle is too strict and may lead to 
higher average delays. It can be observed in practice that, by swapping two 
flights, the average delay could decrease in a noticeable way. 

No priority There is no idea of priority between flights, e.g. long-hauls 
are treated on the same basis as the short-hauls even if they book in advance, 
big carriers are treated equal to small planes, etc ... 

No cost function Oddly enough, there is no idea of a global measure of 
the delays, no cost fonction is specified, which is quite strange for what looks 
like a serious optimization problem. 

The most penalizing technique Beside of being suspected of inefficiency, 
this principle can lead to some strange behaviors : 



Chapter 2 

Modeling CASA 

2.1 Flights in Equations 

ln this section, the various concepts reviewed in the first chapter will be 
more formalized. In the following section, we will try to formalize CASA as 
an optimization problem. 

2.1.1 Flights 

A flight f is defi.ned by : 

• ETOT at time t : f J,1 
• ETO for regulation r at time t : f ;,1 
• CTOT at time t : rJ,1 
• CTO for regulation r at time t : r;,1 

• Priority coefficient at time t : cj 

We recall that a flight has only one ETOT, but as many ETOs as regu­
lations it crosses. The same applies for CTOT and CTOs. We will keep the 
notation of a A superscript over symbols which refer to estimated values. 

17 



CHAPTER 2. MODELING CASA 18 

2.1.2 Regulations 

A regulation r is defined by : 

• Start-time at time t : Tj r 
1 

• End-time at time t : T; r 
1 

• Slot list at time t : S; 

A regulation is linked to one and only one Traffic Volume. In other 
words, at a given time t, only one regulation is active for the considered 
Traffic Volume. 

2.1.3 Slot Lists 

A slot list records for each slot s : 

• Start-t ime at time t : TJ 11 1 

• End-time at time t : T; a 
' 

• Capacity at time t : K:,., 
• Overload at time t : €~

111 

• And for each fiight f in the slot s : 

- Identifier of flight f : I1 

- ETO for regulation r at time t : f;.J 

- CTO for regulation r at time t : r;,1 

- Delay of flight f : ~ := r;.J - f;.J 

A delay shall always be positive, i.e. \;/ f \:/t, d1 2::. 0 
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2.2 CASA as an Optimization Problem 

2.2.1 The Naive Version 

We define: 

• The set of all fl.ights at time t : :P 

• The set of all regulations at time t : nt 
• The set of all slots for regulation r at t ime t : s: 

19 

We can partition the set of fl.ights between the regulated ones and the 
others : 

P = :F;.eg U :F:ioreg (2.1) 

with Vt: 

:F;.eg n ~oreg = 0 (2.2) 

More precisely, if we define :Ftr,a as the set of fl.ights which are allocated 
to the slots s of the regulation r at the instant t, we can state more formally 
the dynamic feature of our optimization problem. Actually, as explained 
in section 1.2, the data and the parameters of the problem are eglictible to 
change continuously on a real-time basis. 

Regarding the set of flights, this feature can be elicited as : 

_r.!+1 - F.! reg - r,a Formerly regulated fl.ights (2.3a) 

+ u :;:: a 
' 

Newly created regulations (2.3b) 
rElv'Tlt 

aES; 

\ u J='; a 
' 

Terminated / cancelled regulations (2.3c) 
rEO'Tlt 
aes: 

\ {f E J=';eu I fJ,/ > t} Taken-off fl.ights (2.3d) 
\Met Manually exempted flights (2.3e) 
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The second and third terms of the equation refer to flights which, respect­
ively, are (were) subject to regulations which are newly created (cancelled or 
terminated). As a flight can be subject to many regulations, it can happen 
that a flight still remains in :F;.eg after such modifications. 

The basic optimization problem can hence be stated as follow : 

mm wt = L cj -~ 
JEF;eg 

w.r.t. e;,s < 0 

~ 2: 0 

~ : decision variables 

'vr E 'R\'vs Es: 
\;/ f E :F;.eg 

(2.4a) 

(2.4b) 

(2.4c) 

This problem has to be solved at each "solving" time t. The cost fonction 
is obviously the sum of each flight's delay times its priority coefficient. The 
basic constraints are that we demand ( or we require) that : 

• Any slot of any regulation should not be overload. 

• Delays are to be positive. 

Whether these constraints are requirements or demands is still under 
discussion. In an ideal world, this should be strictly respected, but as the 
actual air trafE.c in Europe is very congested, the current policy is to let the 
the flights taking off even at the expense of overloading the regulations and 
hence the capacity of the Contrai Centres. Otherwise, stronger security could 
be guaranteed but at the expense of tremendous delays (many hours !). 

2.2.2 The Constructive Version 

We can notice that the dependency of the e's upon the variables of the 
problem, namely the delays ( dj) is not obvious. This is due to the fact there 
is no clear relationship between time and the time division in slots. 

Actually, to state more formally this relationship : Let f be ftight belong­
ing to slot s of regulation r at time t, i.e : 
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If we suppose that f suffers from a delay ~ and that '½+1 = d1 + ô, ô 
being positive or not. If we define 

/ = {r E 1?} 1 3!s: f E .1;,.,} (2.5) 

the set of all regulations which contaîn one and only one slot allocated to 
füght f at time t, i.e the regulations f is subject to. Provided that /+1 has 
been computed from the value of ô and /, we can deduce : 

Vr E /\/+l 
Vr E (/+1 n /) LJ c'R.1+1 (/+1 LJ /) 

Vr E p'+l\p' 

(2.6a) 

(2.6b) 

(2.6c) 

The first equation (2.6a) means that for a slot which is no more allocated 
to the füght f, its overload decreases by one unit. The third equation (2.6c) 
means that for a slot which is newly allocated, its overload increases. The 
second equation (2.6b) regards all other slots : Those who are still linked to 
the flight f as shown by the first term (/+ln/), the second term represents 
the slots which are not concerned by the changing of the delay off. 

We can restate the problem in a more constructive (?) way following an 
idea in ([11]) by introducing t he following auxiliary variables : 

(2.7) 
(2.8) 

Setting u~.,1 to 1 means that f has been linked to the slot s of regulation 
r at time t. That is why the u's are often referred as "time stamps". The 
value of o: 1 express the difference between the beginning of the slot allocated 
to f and its computed entrance time (CTO) in the regulation r. 

We can then express the relationship between these auxiliary variables 
and the flight's variables. Hereinafter , * refers to the time horizon, i.e. * E N 
and T;., is the duration of the slot s which is often supposed equal1 within 

1It is not always so in current practice. 
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the regulation. 

• (a-1 ) 
r;,1 = f;,1 + dj = L L T;(T u~af + o: f 

'-v-' '-v-' '-v-' a=l tr=l '-v-' 
I II III "---- ----' V 

IV 

• 
w.r.t . L u~af = 1 

a=l 

0:/ < r:,a+l 

22 

(2.9a) 

(2.9b) 

(2.9c) 

The system (2.9) should therefore respected for ail flights J's and all 
regulations r's. Its first equation (2.9a) can be explained as follows : The 
first term is the CTO, i.e the computed entrance time of the flight fin the 
regulation r, it is by definition of the ground-holding policy equal to the 
ETO (term II), i.e the intended entrance time plus its delay (term III). It is 
also equal to the duration of all slots ( term IV) preceding the one which is 
allocated to the flight plus its delay o:1 within the allocated slot (term V). 

Equation (2.9b) ensures us that one and only one slot is allocated to the 
flight f wîthin the regulatîon r. Equation (2.9c) guarantees that the flight's 
CTO îs not pushed beyond the end of the allocated slot. 

So the load of a slot can be connected to the time-stamps by observing 
that the number of flights a slot is allocated to is : 

(2.10) 
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The problem can then be fully stated : 

min wt = L cj · ~ cost fonction (2.lla) 
/E:F' 

w.r.t. e:~., ~ 0 no overloads (2.llb) 

~ ~o positive delays (2.llc) 

r;1 + ~ ~ t, (~T:,) t 0t 
uraf + rf (2.lld) 

a:,< T;,.,+1 s such u~.,1 = 1 (2.lle) 
• 

I.::u~.,1 = 1 only one slot allocated to f (2.llf) 
a=l 

t+t - "t 
€ra Kr a - ~ Uraf slot's overload (2.llg) 

/E:F' 

where: 

• dj : decision variables (natural numbers) 

• €~., : constraint variables (natural) 

• u~.,1, a:1 : auxiliary variables (u's binary, o's natural) 

• cj, f;1, T;,.,, K~., : parameters (natural) 

If we want to be complete, we have also to respect the constraint Fil­
tering slot improvements (subsection 1.2.3, 13) which leads to the following 
constraint : 

(2.12) 

0 being the threshold between two successive SIPs. 

To get a idea of the magnitude of the figures in the real case : Actually in 
Europe, more or less 20000 flights a day take off and land, of which a round 
value of 6000 are regulated. Around 100 regulations are created per day. 
Taking an average du.ration of 5 hours and a slot duration of 3', we see that 
a regulation's slot list contains approximately 100 slots. Hence, our problem 
contains: 
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• ~: IPI = 6000 

• €~8 : 1nt1. 1s:1 = 10000 

• o:1 : IRtl · IPI = 600000. Hence, a total of 616000 integer variables . 

• u~8/ : 1nt1 . 1s:1 . IPI = 60 millions2 (sic !) binary variables. 

• cj : IPI = 6000 

• f;1 : 1ntl · IPI = 600000 

• T;,a : 1nt1. 1s:1 = 10000 

• ~~8 : IRtl · IS;I = 10000. Hence, a total of 622000 integer parameters. 

Clearly, direct resolution of Europe air traffic congestion with this model 
is highly infeasible. However, two remarks can be made: 

• A clever, i.e dynamic managing of the variables can noticeably reduce 
the size of the problem. Actually, a flight is suspectable to be subject 
only to the regulations linked to the Traflic Volumes it crosses, not 
all the regulations. But as the problem is dynamic, structuring the 
variables as arrays would lead to the higher values. 

• If we suppose that the slot duration is constant, i.e. T;
8 

= T and that 
ail the o's are equal to zero, which means practically that T is the new 
time unit, (2.11) is a linear 0-1 problem, for which solving methods 
exist. 

Hence, we have to explore new ways of solving these problems, exploration 
which is left to the next part of this thesis. 

2These estimates are upper values and are obtained by multiplying the cardinal of each 
set. 
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Chapter 3 

Simulated Annealing & Tabu 
Search 

3.1 Introduction 

ln this chapter, we will give a brief description of two of the best known com­
binatorial optimization techniques : Simulated annealing and tabu search. 
This is motivated by the problem we have at hand, namely CASA. Obviously, 
direct resolution of the model (2.11) is infeasible. Resolution of a linear prob­
lem in lR with 60 million variables is very demanding in resources1 so what 
to say of 0-1 linear problem . .. 

Such resolutions have been attempted by Vranas ([11, 15, 14]) by using 
linear relaxation of the 0-1 problem and adding some simplifications but its 
use in an operational environment is doubtful as the solving time's magnitude 
is of one hour on a Sun Sparc workstation. However, the description of this 
attempt and others will be deferred to the next chapter. 

In two words, simulated annealing is a combinatorial optimization tech­
nique, which means that : 

• It is stochastic in nature. 

• It gives a near-optimum (if it converges !) of the problem at hand. 

1 We recall tbat the problem is dynamic, i.e. its parameters change continuously and it 
should be solved each, say 10' ! 

26 



CHAPTER 3. SIMULATED ANNEALING & TABU SEARCH 27 

As we will see later, only asymptotic convergence can be proven for this 
technique but no proof of "true" convergence2 exists, up to now. 

Actually, the paradigm of simulated annealing stems from thermodynam­
ics and tries to reproduce the physical phenomenon of annealing, i.e. the slow 
decreasing of free energy of a material downwards its global maximum by 
lowering carefully the temperature, hence the name. It is applied in industry 
in material science to obtain a harder, bigger and more stable crystal of the 
material. Since the Middle Age, it has been used for e.g. swords in annealed 
steel. 

E 

q 

a1 s 

Figure 3.1: Free energy and temperature 

As shown on Fig. 3.1, when the temperature is increased to 01, all the 
states between [ai, bi] are allowed because temperature (T) is a measure of 
the kinetic energy of the molecules and the free energy ( E) of a material is 
somewhat related to it3. Actually, the relationship is : 

Ec = kBT kB : Boltzmann constant (3.1) 

so two minima are possible : w1 which is local and w2 which is global. 

2"Tull" convergence implies asymptotic convergence but not the opposite 
3Please refer to a good book on thermodynamics for a more rigorous and detailed 

explanation 
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. 
If temperature is decreased carefolly to 0 2, then only the states between 

[a2 , b2] are allowed so only one minimum impossible, namely w2 • But if the 
temperature is too quickly decreased, then it can happen that the system is 
trapped at the local minimum w1 which is also referred as a meta-stable state 
whereas W2 is referred as a stable state, following thermo-dynamical termin­
ology. The simulated annealing tries to reproduce the physical phenomenon 
with the following correspondences : 

• Finding a stable state is equivalent to minimize a fonction : The energy. 

• The energy of the system is, in fact, a cost fonction. 

• Astate of the physical system is equivalent to astate of the combinat­
orial problem, i.e. an instantiation of all the variables. 

3.2 The Homogeneous Scheme 

3.2.1 The Model : Stochastic Transitions 

We give here a more formal description of the behavior of the system during 
the annealing/optimization phase. We suppose that the problem to solve is 

minw(x) 

w.r.t. x ES 

w being the cost fonction and S the set of "realizable" solutions. 

(3.2) 
(3.3) 

We can model the behavior of annealing (both simulated and physical) by 
assessing that the system jumps from a state i to a state j until equilibrium 
is reached. Such transition is accepted with the following probability : 

exp ( w~~;i) {3.4) 

This accepta.nce rule is commonly referred as the Metropolis criterion. When 
equilibrium is achieved the probability that the system is in state i is : 

1 (w· -w·) P{X = i} = Z(T) exp ~BT 3 (3.5) 
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where Z(T) is the normalization constant : 

Obviously, a state with lower "energy" has more chances to be selected as 
the final state t equilibrium. 

Following the works of [2), the acceptance rule can be defined as : 

Aij = P(accept j from i I i,j ES) 

{
1 if w(j) - w(i) :S 0 

- exp (w;:w;) if w(j) - w( i) ~ 0 
(3.6) 

where c is the new constant, introduced for the sake of a better generality. 

We have now to elicit-ate how the system jumps from one state to another. 
Actually, many formalisms are allowed but they share a common feature : 
They are all stochastic. Sorne authors prefer a constant distribution [2], 
others prefer Gaussian or Cauchy distributions [5, 9]. The choice is based 
upon selecting the one which leads to a better rate of convergence or a better 
ensured convergence4 or a better ergodicity. 

We recall that ergodicity is ( one definition among others) the opposite of 
limit of the correlation between two sequences of consecutive states of the 
system : i.e. if the behavior of the system at one instant is closely related to 
the behavior of the system in the future, then the system is weakly ergodic. 
Strong ergodicity implies two things : 

• The final behavior will not depend on the initial conditions. As we do 
not know the structure of the optimal solutions, we are ensured that 
the system will converge or, at least, it will not be trapped in a local 
ffilnlffiUIIl. 

• The averages computed on the ensembles are, at equilibrium, averages 
of observables' values (Gibbs, 1902). 

4 As we will see later, only asymptotic convergence bas been proven. However some 
schemes have "almost-proven" convergence. 
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Quite often, it is observed in practice ( e.g. Sorne combinatorial techniques 
such genetic algorithms, Lester Ingber's Very Fast Simulated Re-annealing, 
Adaptative Simulated Annealing5

) that some schemes have better rate of 
convergence but lack of ergodicity. In other words, the found minimum is 
often not the global one. 

The simplest scheme [2) is the constant distribution : All the states of 
the neighboring Si of the current system's state i are proposed with equal 
probabili ty : 

Gij = P(generate j from i I i,j ES) 

= {0
1 

if i i si 
1S;î if j E Si 

(3.7) 

Therefore, the probability that a transition of the system from state i to 
state j takes place is simply : 

if i # j 
(3.8) 

3.2.2 Convergence & Markov Chains 

As mentioned in the subsection's title, we will use the Markov chains theory 
to assess the asymptotic convergence of the homogeneous scheme. A Markov 
chain is simply a sequence of transitions of the system where the probability 
of each transition is specified : Pi~ = P(X(k) = j I X(k - 1) = i), i.e. the 
probability that transition i -+ j takes place at time k, the matrix P being 
commonly referred as the transition matrix. If P does not depend on the 
"transition time" k, the Markov is called homogeneous; if not, it is called 
inhomogeneous. 

As we are interested in the long-term/final behavior of the system, we 
define the stationary distribution (Feller, 1950) : 

qi := lim P(X(k) = i I X(0) = j, Vj) 
k➔+oo 

(3.9) 

5Ingber's simulated annealing schemes have incorporated a lot of tricks and heuristics, 
so almost no forma} proof could have been given, but at least, they are claimed to be very 
effective operationally. 
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With this definition, it can be shown that the stationary distribution de­
serves its name, i.e satisfies qT = qT P . ln other words, this distribution 
is left unchanged by any transition that would take place and it is the left 
eigenvector of P with eigenvalue 1. Moreover, this distribution, if it exists, 
is also the final distribution of the system, i.e. : 

{3.10) 

The conditions of existence of such a stationary distribution are the fol­
lowing (Feller, 1950) : 

Theorem 3.1 Let P be the transition matrix associated to a Markov chain. 
Then P has a stationary distribution q if : 

• P is aperiodic6
, i.e. the greatest period should be 1 for all i 's. 

• P is irreducible, i.e. any state is reachable from another in a finite 
number of transitions. 

\/i, j 3n > 0 : Pt; > 0 

• P satisfies the balance equation : 

(3.11) 

We have now to show that simulated annealing re-defi.ned as a Markov 
chain {3.8) complies with the required conditions {3.1). 

Theorem 3. 2 7 Let P be the transition matrix associated with the simu­
lated annealing algorithm as previously defined. Then the algorithm has a 
stationary distribution : the Boltzmann distribution. 

qi(c) = -exp --1 ( w(i)) 
Z(c) c 

(3.12a) 

6The period of state i is the greatest cornrnon divisor of al! the n's such P[I 2: 0 
7The reader is deferred to the excellent book of Aarts&Koorts [2] for the cornplete 

proofs of these theorems. 
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with 

Z(c) := L exp (-w(j)) 
·s C JE 

(3.12b) 

Moreover, the algorithm converges asymptotically to Sopt m the following 
sense : 

lim q, ( C) = q,,opt = { IS~ptl 
c➔O Ü 

if i E Sopt 

otherwise 
(3.13) 

As theorem (3.2) states it, only asymptotic convergence could have been 
proven, i.e. the stationary distribution can be made as close as intended to 
the optimal distribution by lowering the "temperature" c, but there is no 
proof that there exists a given Cmax such Ve : 0 < c < Cmax, q(c) = qopt· 

Even so, one of the hypothesis of convergence was that the Markov chain 
was homogeneous, so we would have to set the temperature c at a very low 
value from the start. 

One (big !) caveat of this approach is that the convergence rate is very 
low: 

Theorem 3.3 Let N be the minimal number of transitions to approximate 
the stationary distribution with tolerance € > 0, i.e : 

la(N) - q(c)j < € 

Then we have : 

where 

And the definition of the "norm" LJ is 

VaEIR, laJ = {~ 
if a~ 0 

otherwise 

(3.14a) 

(3.14b) 

(3.14c) 



CHAPTER 3. SIMULATED ANNEALING & TABU SEARCH 33 

So the convergence rate is inversely proportional to the second power 
of the states space's size. We recall that one state is only an assignment 
of ail the variables so the states space's size is approximately the number 
of variables times the average number of values a variable can be set to. 
Actually, it is at least proportional to the quadratic size since the second 
term is always greater then 1 if we suppose that we take € < 1. If the set of 
allowable values is not enumerable8 , resolution along these lines is hopeless. 

3.3 The Inhomogeneous Scheme 

3.3.1 Markov Chains Again 

ln this section, we will introduce an improvement to the previous scheme 
by assessing that the Markov chain associated with the simulated annealing 
process would no longer be homogeneous. We allow then that the t ransition 
matrix depends on "transition" time. However, such Inhomogeneous Markov 
chain is actually build as an infinite sequence of finite homogeneous Markov 
subchains with decreasing temperature c. 

Definition 3.1 Let L be the length of each homogeneous Markov subchain. 
Then the temperature sequence Ck is taken as being piecewise constant such 
that : 

Vk, lL < k < (l + l)L, q = <r1 

Moreover, the <r 's must satis/y 

Vl, u1+1 ::; u1 

lim u1 = 0 
l➔+oo 

(3.15a) 

(3.15b) 

(3.15c) 

As already mentioned in subsection (3.2.1), ergodicity is an important 
feature of a stochastic system, it ensures at least, that the final/regime be­
havior of the system is not constraint by the initial state. A more precise 
definition of it is : 

8 A priori, a flight's delay can take any value, which implies that the states space's size 
is infinite 
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Definition 3.2 (Weak ergodicity) A inhomogeneous Markov chain is weakly 
ergodic if: 

Vi,j, l ES, Vm > 0 : lim (U;1(m, k) - Ui1(m, k)) = 0 
k➔+oo 

(3.16a) 

where 

U;j(m, n) := P(X(n) = j I X(m) = i) (3.16b) 

ln other words, X(k) becomes independent of X(m) whatever the later's value 
is, as k -t +oo. 

Definition 3.3 (Strong ergodicity) A inhomogeneous Markov chain is str­
ongly ergodic if there exists a vector qopt such : 

Vi,j ES, Vm > 0 : k~~oo Uij(m, k) = q;,opt (3.17) 

We notice that strong ergodicity implies9 convergence in distribution, i.e. 

lim P(X(k) = i) = q,,opt 
k➔+oo 

(3.18) 

So to ensure convergence of the Markov chain, we have to ensure its 
strong ergodicity. We remark that, for homogeneous Markov chains, there is 
no difference between strong and weak ergodicity. 

Theorem 3.4 An inhomogeneous Markov chain is strongly ergodic if: 

• It is weakly ergodic. 

• It verifies the balance equation for all k 's : 

Vk, 3qk : (qk{ = (qk{ pk (3.19) 

• The sequence ( qk) k must satis/y : 

+oo 
L I qk - qk+l 1 < 00 (3.20) 
k=l 

9It implies also weak ergodicity 
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And in the same vein as for the homogeneous case, we can prove that the 
Markov chain associated to the simulated annealing algorithm as defined by 
(3.6), (3. 7) and (3.15) converges asymptotically towards the optimal distri­
bution qopt• 

Theorem 3.5 If the following conditions are satisfied : 

• The length L of a homogeneous Markov subchain must be such : 

L ~ ~a.xs { min {p 1 3i E Sapt, Pf; > 0}} 
JE 

• The temperature sequence (0-1)1 must satisfy : 

o-
1 
> _~_( L_+_l-'--) 
- log(l + 2) 

where 

~ := :çD;ax{w(j) -w(i) 1 j ES;} ,,,es 

(3.21) 

(3.22a) 

(3.22b) 

Then the inhomogeneous Markov chain associated to the simulated anneal­
ing algorithm converges towards its optimal distribution qopt, S; being the 
neighboring of the state i and Xs- its characteristic function: . 

(3.23) 

To summarize, each homogeneous subchain should be long enough to 
allow escaping from the set of optimal solutions Sopt to any other state, so 
at least, we are sure that the system will not be trapped at a local minimum 
during the annealing sub-process. And the temperature Ck should be lowered 
carefully to avoid the same issue. 

It is noteworthy to observe that the above theorem states only sufficient 
conditions, not necessary ones, so actually the sub-chain's length could be 
lowered or the temperature decrease rate be raised. Sorne authors [l] have 
even given sufficient and necessary conditions for asymptotic convergence, so 
more accurate values of parameters L and ck are straightforwardly derived 
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but it is of little operational help : As the given optimization problem is 
( often) not well known, the shape of its cost fonction nasty, etc .. . so even 
assessing a coarse magnitude of parameters L and ~ is painful. 

Sorne other authors [12] have also proven more general sufficient condi­
tions, i.e. conditions which hold were the acceptance and generating prob­
abilities are not the same as those chosen in (3.6) and (3. 7). 

Theorem 3 .6 Let ( S, w) be a combinatorial optimization problem. Let G;i 
and Â;j be, respectively, the generating and acceptance probabilities of the 
simulated annealing algorithm associated to it. Let P;j the transition prob­
abilities of the inhomogeneous Markov chain to the simulated algorithm as 
defined in {9.8). 
If the following conditions are satisfied : 

Vi,jES,3p~l: 3{l0, . •• ,lp}CS 

such lo = i, lp = j andVk, 0 ~ k ~ p -1, G1kl1t+i (q) > 0 (3.24a) 

Vi,j ES, Vk > 0 : G;j(ck) = Gji(ck) 

Vi . ES Vk > 0 : A · ·(c ) = {l if w(i) ~ w(j) 
,J ' '' k E]0,1[ ifw(i)<w(j) 

Vi,j,m ES suchw(i) ~ w(m) =::; w(j) : Â;j(ck) = A;m(ck)Am;(ck) 

Vi,j ES suchw(i) ~ w(j) : lim A;;(ck) = 0 
c1,➔0 

00 

L (A(u1)l+1 = +(X) 
1=0 

(3.24b) 

(3.24c) 

(3.24d) 

(3.24e) 

(3.24f) 

where the q 's and 0-1 's are defined by (9.15), the length L by {9.21), S; as 
the neighboring of state i and the A 's as : 

Then the inhomogeneous Markov chain associated to the simulated annealing 
algorithm converges asymptotically in the following sense : 

lim P(X(k) E Sopt) = 1 
k➔+oo 

(3.25) 
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A few explanations and useful comments should be given about this 
(lengthy) theorem. 

• The two first conditions express that the generating mechanism is 
"total", i.e. any state is reachable from another in a finite time, and 
symmetric, i.e. if transitions i ➔ j and j ➔ i are proposed with equal 
probability. 

• Third condition stress that any cost-improving transition is always ac­
cepted, any cost-hindering transition might be rejected. 

• Fourth condition implies that the acceptance mechanism is somewhat 
transitive. 

• Fifth condition stresses the fact that, at lower temperatures ck, almost 
all cost-decreasing transitions are rejected. 

• Thelength of a homogeneous Markov subchain should be high enough 
to allow, as previously explained, escaping from an optimal state to 
any other state. 

Therefore this theorem states convergence conditions which are very close 
to the physical conditions observed with (real) annealing as described in the 
first part of this chapter. Moreover, this theorem ensures the convergence of 
the algorithm if we decide to use e.g. Gaussian or Cauchy distributions for 
the generating probabilities. 

3.3.2 The Convergence Rate 

Despite all the efforts, we were not able to assess full convergence of the 
(inhomogeneous) simulated annealing algorithm. Moreover, it can be shown 
that the convergence rate, even if improved by the introduction of the tem­
perature decreasing scheme, is still too low for operational interest. Indeed, 
a bound has been derived by [10] : 

Theorem 3. 7 Let N be the minimal number of transitions to approximate 
the optimal distribution with tolerance € > 0, i.e. 

(3.26a) 
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Then we have : 

with 

1 a·-------
.- (L + l)IS;IL+l 

/3 := min{w(i) 1 i ES\ Sopt} - Wopt 

(L + 1).0.. 

(3.26b) 

(3.26c) 

(3.26d) 

In practice, /3 is often observed that /3 = O(L + 1)-1
, so only the value of 

a matters for deriving the magnitude of the convergence rate. We see that it 
is still exponential but in the neighboring's size. So, as we have control over 
it, solving our optimization problem along these lines is not hopeless. 

However, some researchers have tried some faster temperature schemes. 
The scheme we reviewed at extent in previous section is actually a logarithmic 
scheme: 

uo 
ui ~ ln(l) 

for which a convergence proof has been given. But, it has been observed 
in practice, that adopting quicker schemes10 [5, 9] could still converge. The 
problem is that no convergence proof have been assessed up to now. Actually, 
the convergence is achieved, when possible and observed, by careful tuning of 
the parameters and incorporating some heuristics inside the algorithm. For 
example, a "linear" scheme could be used 0-1 ~ o-0 /0, or even an exponential 
scheme as proposed by [5, 9] : 

uo 
O"j ~ ---

- exp(l) (3.27) 

This scheme must be used with great care. Currently, it is used with 
two extra features : adaptativeness and reannealing. We remember that 
decreasing too quickly the temperature increases the probability of being 
trapped in a local minimum. So three heuristic rules are followed (For a 
longer explanation of this, cfr. [5]) to avoid such phenomenon : 

1°Fast temperature decreasing is also referred as simulated quenching, another corres­
pondence with thermodynamics 
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Broad spectrum : The generation distribution must have a broader spec­
trum 11

• Intuitively, it is justified by the fact that, if the system is on 
the edge of being trapped in a local minimum, it would be wise to allow 
it to escape from it quickly. A constant distribution over the neighbor­
ing as (3.7) implies that the system would remain a longer time in the 
vicinity of the local minimum. 

Reannealing : From time to t ime, it is necessary to increase the temperat­
ure so more cost-hindering transitions are accepted, with the same aim 
of preventing the system trapping in a local minimum. This method is 
sometimes referred as VFSR: Very Fast simulated Reannealing. 

Adaptativeness : The aim is exploiting the knowledge we have of the cost 
fonction (if we can) by imposing different temperatures schemes, one 
for each dimension/variable12. 

An experimental implementation combining these last features has been 
developed by Ingber & al. and is claimed to be one of the most powerful 
combinatorial optimization algorithms, not only by its author, but also by 
other researchers. Nevertheless, as already said, great care and time are 
necessary for the fine tuning of such algorithm. Even so, no convergence can 
be ensured. The code of ASA ( Adaptative Simulated Annealing) has been 
made publicly available by FTP [8]. 

3.4 The Finite-Time Scheme 

We will, in this section, how the simulated annealing algorithm associated to 
the inhomogeneous Markov chain with the simple "standard" temperature 
scheme (3.5) could be implemented in practice. Indeed, even the inhomog­
eneous scheme is too slow for operational use, an optimal state is approached 
only at infinity. So we have to "truncate" this scheme in a clever way in order 
to obtain quicker convergence, but not at the expense of eventually finding a 

11The spectrum's width of a distribution is measured by the ratio (standard devi­
ation/maximum value) or (first momentum/maximum value), e.g. a Gaussian distribution 
with large standard deviation has a quite large spectrum, on the opposite, a Dirac distri­
bution bas no spectrum 

12We assume that the states space's dimension is finite. 
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"good" semi-optimum. Practically, there is a trade-off between the accuracy 
of the computed optimal solution and the time needed to obtain it. Basically, 
we have to define four parameters : 

• The initial state of the algorithm, i.e. which values must be assigned 
to the variables, what is the initial value of the temperature. 

• The temperature decreasing fonction : At which rate the temperature 
be decreased and when. 

• The stop criterion : When do we estimate that the system is close 
enough to an optimal solution. 

• The length of a homogeneous Markov sub-chain: Too short chains can 
cause the system being trapped in a local minimum, on the other sicle, 
too long chains hinder the convergence speed. 

3.4.1 Choosing an Initial State 

First of all, the variables can be set to any allowed values. What matters 
is the initial temperature u0 which will be chosen high enough in order to 
accepting all the generated transitions. This is achieved by computing the 
acceptance ratio : 

mt + m.i. · exp (-éw) 
X~ tT 

mt + m.i. 
(3.28) 

with mt, m.i. being, respectively, the number of cost-increasing and cost­
decreasing generated transitions and ow the mean cost difference of the m.i. 
transitions. So the system is started with a low temperature then a sequence 
of n trials is made and x is computed by counting the number of accepted 
transitions over the proposed transitions after each trial. The same is made 
for mt, m.i. and ow. Inserting these values into (3.28) and solving it gives an 
estimate for u . Updating u after each trial leads to the value of u0 at the 
end of the sequence. A few hundreds runs are enough to obtain convergence. 
Physically, this corresponds to the melting up of the material, so the state 
of the system is very disordered. 
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3.4.2 The Temperature Decreasing Function 

The aim is to decrease the temperature slowly enough to ensure that quasi­
equilibrium is reached at the end of each Markov sub-chain. By quasi­
equilibrium, we mean that, within each homogeneous sub-chain, the system 
state distribution can be as close as desired to the stationary distribution 
q(o-,) (cfr. sect. 3.2.2). 

Moreover, we desire that two successive stationary distributions are close 
enough: 

(3.29) 

with ,c being the temperature decreasing parameter. Satisfying these equa­
tion leads to the following condition : 

O"/ 
O"/ ~-----,­

+I - l + "' ln{l+1<) 
3E(<T1) 

(3.30) 

with E(o-1) being the approximated standard deviation of distribution q(o-1). 

3 .4.3 The Stop Criterion 

The algorithm is stopped when the cost of the current system state is sup­
posed close to the optimal cost. More precisely, we require that, in average, 
the difference between w(o-1) and Wopt is small when compared to w00 , i.e. the 
maximum13 average cost. 

lw '"' - Wopt lwloo < € 
(3.31) 

where € is referred as the stop parameter. Satisfying this criterion requires 
that: 

(3.32) 

However, computing the derivative of lwl is a sensitive task. It is suggested 
to smooth the values of ]omega prior to approximate the derivative with 
classical methods [2]. 
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3.4.4 The Markov Length 

The length of a homogeneous Markov sub-chain is chosen big enough to allow 
the system visiting the entire neighboring of astate. It can be proven that 
is sufficient to choose : 

(3.33) 

3.4.5 The Convergence Rate Again 

Beside the fact that the finite-time scheme previously described is more heur­
istic then rigorous, it is at least faster : its complexity is proportional to the 
logarithm of the states space's size. More precisely, we have that the minimal 
number N of transitions to satisfy the stop criterion (3.31) is : 

N = O(r L ln(ISI)) (3.34) 

where r is the time for computing one transition14
. The (only) remaining 

problem is that there is no a priori confidence that the eventual solution is 
an optimal one. Only a posteriori simulations can assess it. 

3.5 The Tabu Search 

It is a technique close to simulated annealing but where the exploration of the 
neighboring is done in a more "clever" way or, at least, in a less stochastic 
way. The main difference lies in the acceptance mechanism : Instead of 
sampling randomly the neighboring of a state i, the algorithm keeps an up­
dated list of the recent transitions. This list is referred as the tabu list as 
the transitions in this list are forbidden for a certain time, i.e. the system 
cannot make twice the same transition within a certain time window. 

However, the system can be a little improved by adding aspiration cri­
teria, i.e. if a tabu transition satisfies one of this aspiration criteria, its tabu 
status is overridden. The idea hidden in these features is still to prevent the 
system from being trapped in a local minimum. 

The algorithm has the following structure : 
14So it is clever to formulate the cost fonction in an incremental way to avoid massive 

re-computations 
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1. Choose an initial state i, either randomly or by exploiting the know-
ledge of the system. 

2. Generate randomly a list (Tk)k of transitions i ➔ j, j E Si. 

3. Pickup the best15 transition Tk . Is Tk a tabu transition ? 

4. If yes, check if Tk satisfies one of the aspiration criteria (C1),, i.e. if 
31 : C1(Tk) is true. If yes, the transition is no longer tabu. 

5. li Tk is tabu then go back step 3, else go next step. 

6. Apply transition Tk. 

7. Update parameters : Tabu list (mandatory), Aspiration criteria (op­
tional), system state. 

8. Go back step 2 until a solution is found or time and resources capacities 
are exceeded. 

In practical implementations, people add some extra features as short­
term and long-term memory tabu lists to which different aspiration criteria 
are applied. Updating the tabu-list can be achieved in different ways : man­
aging it as a LIFO pile of constant length, giving different tabu coefficients to 
the transitions, varying the length of the tabu list e.g. a bigger length at the 
beginning to ensure full exploration then decreasing it, as the temperature 
control scheme in simulated annealing, etc ... 

These technique has the advantage of being much flexible then e.g. simu­
lated annealing or more classical optimisation algorithms, more heuristics can 
be incorporated in it, but has two major drawbacks : Tuning the parameters 
is extremely sensitive and there is no general convergence proof. 

3 .6 Conclusion 

To conclude, it is obvious that solving combinatorial problems is intractable 
by classical methods as these problems are often, in practice, N P -complete 

15By "best", we mean the transition which leads to the highest decrease of the cost 
fonction 
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and still di:fficult by using stochastic exploring algorithms such simulated 
annealing or tabu search. Actually, some general remarks can be made : 

• Formalizing the problem is itself a sensitive task. Clearly a problem 
like optimizing the total delay of Europe's air traffi.c as modelled in 
(2.11) with 60 million variables is almost infeasible. Ther is must be a 
trade-off between the accuracy of the model and its size/simplicity. 

• Sorne algorithms have been developped for solving these di:fficult optim­
ization problems, almost all of them are stochastic (simulated anneal­
ing, tabu search, genetic methods, etc ... ). Moreover, only asymptotic 
convergence can be proven for simulated annealing and genetic meth­
ods. Tuning the parameters is a very sensitive task. 

• In practical implementations, some heuristics is incorporated inside the 
algorithms in order to speed up and to exploit the existing knowledge of 
the system to optimize. However, getting a clear understanding of the 
algorithm's behavior is henceforth less easy. The tabu method is more 
a framework for using heuristics rather than an optimization algorithm 
in the classical sense. 

• For the above reasons, practical implementations of the algorithms end 
up with solutions but there is no warranty that they are optimal ! 

In two words, it is hard to assert a priori that any of the previously ex­
posed stochastic algorithms could, with reasonable confidence, solve a com­
binatorial optimization problem. Such algorithms should be considered as 
frameworks for developing ad hoc implementations on a trial $ error basis. 



Chapter 4 

Solving CASA 

The purpose of this chapter is the derivation of approximated models from 
the general CASA model (2.11). However, it reader should bear in mind that 
these approximated models will not be equivalent to the general one or to 
each other. Actually, each model is derived in order to make the full benefits 
of chosen the method/algorithm. The three models which will be exposed in 
this chapter make different compromises between speed, optimality, size and 
flexibility. From an operational point of view, a fast and reliable algorithm 
is clearly preferred over an optimal slower one. Flexibility as a criterion is 
less often required but can be fruitful when the requirements are not clearly 
stated or change regularly. 

4.1 Reformulating CASA as a Combinatorial 
Problem 

Reformulating CASA as a combinatorial problem requires three elements to 
be defined: 

The state space : Basically, a state of the system is simply an setting 
of the system's variables, i.e. a list of pairs (variable/value). As a 
consequence, only the minimum number of variables should be retained 
to keep the state space's size low. Moreover, the variables should belong 
to a finite countable set. If the variables are allowed to take any value in 
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lR or N, then the state space's size is infini te which implies intractability 
of the problem. 

The actual cost function : It differs from the primary cost fonction, i.e. 
the fonction defined in the general model by the fact that the con­
straints in (2.11) are incorporated in it. Moreover, different penalties 
can be assigned to each primary constraint. More precisely, if the 
primary problem is of the general form : 

min f(, x,, ) 
w.r.t.Vj, c;(,x,,) = 0 

Vi, x, EN 

then the combinatorial version will be : 

min w(k) = f(k) + L 1r;c;(k) 
j 

kES 

( 4.la) 

(4.lb) 

(4.lc) 

(4.2a) 

(4.2b) 

where the 1r's are the penalty coefficients, k = (x,), is a state of the 
system and S = N" the state space. It is wiser to do so otherwise 
because each generated transition should be checked if it does not lead 
to a forbidden state, i.e a state which does not satisfy the primary con­
straints c;, prior to being proposed to the acceptance mechanism, check­
ing which could be achieved by evaluating all the primary constraints. 
In addition, evaluating w should be incremental, i.e. evaluating the 
cost 's difference of the modification of a variable's value should not 
imply recomputing the whole cost-function. More rigorously, the term 
w(k+b,)-w(k), where ô, is the modification of x, should remain simple 
or, even better, depends only on x,, i.e. 8! .w(k +8,)-w(k) = 0, Vj =/:- i. 

J 

The second term in ( 4.2a) should not always be linear in the constraints 
or the variables. However, it is the simplest way to achieve increment­
ality of the cost function. We notice that incorporating the primary 
constraints in w has the advantage of some flexibility in the model. 
Sorne strong constraints can be given higher penalties or to link the 
"cost" of constraint violation to the actual primary cost1 . Tuning the 

1 In the case of CASA, it is equivalent to say that an overload of one flight over one 
regulation costs as much as e.g. a 60' delay. 
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penalty coefficients is sensitive as too low values would (in most cases) 
speed up the algorithm but the found solution would be irrealistic, i.e. 
too much constraints would be violated. 

The neighboring structure : As this is the main element which drives 
the simulated annealing convergence, it should be chosen carefully. If 
the neighboring's size is too large, convergence would be be delayed as 
shown by the convergence rate's estimates (3.3, 3.7 & 3.34). 

For the above reasons, we propose the following combinatorial version 
which is derivated in a natural way from (2.11) : 

mm wt = ~ et . d:. + ~ Pt L €t.,J + qt ( L €taJ) 
2 

L..J J J L- ra K,t ra K,t 
Je:P VrE'R! ra ra 

Vaes: 

St = { ( ~) J I f E :Ft} 

with the d/s such : 

where: 

• p~., is the primary constraints violation penalty. 

• q~., is the secondary constraints violation penalty. 

• ~ is the slot's relative overload. 
"r• 

and the €rSt are considered as fonctions of the delays d}. 
This version exhibits the required features : 

(4.3a) 

(4.3b) 

( 4.3c) 

Flexibility : One can balance the cost of delaying a flight versus. the 
relative overloading of a slot. The linear term in€ express that overloads 
are to be avoided, the quadratic term has been integrated to avoid 
"bursty" overloads. Actually, it is preferred to have a 5% overload for 
one hour rather then a 30 % overload for 15'. 
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Incrementality : Proving incrementality of ( 4.3a) in a rigorous way is not 
obvious due to the complex relationship between the € 1S and the delays 
di. However, it is intuitively the case : Modifying a fl.ight's delay is 
naturally incremental (linear !) in the cost term Cf· di, but the second 
and third terms, we should notice that only a few slots are concemed. 
Actually two slots per regulation are concerned, the one which was 
allocated to the flight before the transition and the one after. As a 
regulated flight crosses in average 2.5 regulations, only 5 slots' overloads 
have to be evaluated. 

Reasonable size : We observe that the problem contains, hopefully, a bit 
less then 60 million variables. As already mentioned ( 4.3c ), a delay 
can take dmax values. As a delay is rarely (at least, up to now) over 4 
hours, the size of the state space S is approximately : 

1st1 = IFI. dmax = 6000. 240 ~ 1.5. 106 (4.4) 

Moreover, we impose that a transition could change only one fl.ight's 
delay. The delay modification must belongs to { -ômax, Ômax - 1}. So 
if we take ômax = 5', the neighborhood's size is : 

(4.5) 

4.2 Convergence Estimates 

Recalling the expressions of the convergence rate magnitude in the homo­
geneous (3.3), inhomogeneous (3. 7) and finite-time (3.34) schemes, we can 
derivate in a straightforward way the actual magnitudes where Nt stands for 
the minimal nu~ber of transitions at time t to achieve convergence: 

Homogeneous 

with 

lim Ç (l, IFl2) = +oo 
i'➔O 

IPl➔oo 

(4.6a) 

( 4.6b) 
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So, if we desire a higher optimality on big-sized problem as CASA is, 
the computation time is exponential and therefore solving these model 
is not realistic in operational use. 

lnhomogeneous 

with 

( 4.7a) 

(4.7b) 

Actually, giving an upper bound on L is not obvious. We recall that 
is the length of a homogeneous Markov sub-chain. In practice, L is 
set to the value of the neighborhood's size ISil• The problem is still 
exponential in size but, as previously noted, it is the neighborhood's 
size which plays the key role. So by varying Oma:r, we can modify the 
asymptotic convergence rate. 

Finite-Time 

(4.8) 

So the finite-time is less time consuming as it is logarithmic in the state 
space's size. However, it should be reminded that there is no warranty 
that the algorithm ends up with an optimal solution. 

4.3 Sorne Other Strategies 

4.3.1 Constraint Programming : The ILOG Study 

This section is devoted to two other strategies which, in practice, opposite 
goals. Constraint programming is a technique for "quick" resolution of con­
straints. 0-1 linear programming is a powerful tool for formalizing complex 
problems and finding an optimal or near-optimal solution but is as the ex­
pense of resolution speed. We will present here briefly the works of two teams 
which are currently working also on the Slot Allocation Problem. These two 
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teams have already carried some simulations of CASA but only in the static 
case, i.e. when all the information is available at start up2

• 

Basically, constraint programming, also referred as CLP(fd)3 
: Constraint 

Logical Programming (finite domain), contains three elements: 

Value List : The algorithm keeps and updates for each variable a list of 
allowed values. In CLP(fd), it consists often of a chained list of integer 
intervals. If the variable's valuelist contains only one value, it is set 
otherwise it is free. If at any instant, there exists a variable with an 
empty valuelist, the problem is unsolvable. 

Instantiation : A free variable is is chosen and instantiated to an allowed 
value. Choosing the variable and its value is a sensitive task. In prac­
tice, a lot of heuristics is incorporated in this part of the algorithm. 
In the ILOG implementation, the user can even defining himself the 
instantiation strategy. Without tuning, the problem can remain un­
solvable. 

Propagation Mechanism : Each time a variable is instantiated, its value 
is propagated i.e. for each other variable, the system eliminates the 
imposssible values. The idea is to reduces back-tracking4

• 

The algorithm stops when a variable's valuelist becomes empty ( the system 
has no solution) or when all the variables have been instantiated. 

The model derived by ILOG [13] differs somewhat of the general model 
(2.11) by considering two sets of constraints : the hour constraints and the 
interval constraints. From (2.10), we derive : 

(4.9) 

As usually the capacities are defined on an hour basis, the first set of 
constraints has been expressed for "slots" with duration T = 60' and ,c~,;' set 

2Currently, only two thirds of the flight plans are registered before starting the regula­
tions of the current day. 

3 Actually, constraint can be defined on real numbers. The nuance between constraint 
programming and pure CLP is that CLP use a Prolog-like syntax 

4Remember that, in Prolog, back-tracking is considered as t he major cause of its poor 
time performance. 
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to its hour values. The second set of constraints is expressed for "slots" with 

duration T = 8, usually 10' with ,,,t~ = f ~ l5. As the interval capacities are 
rounded up, there is no real redundancy between the two sets. 

As the ILOG implementation allows the user to define an instantiation 
strategy to speed up the algorithm, it would be wiser to use it. Two strategies 
are proposed : 

Chronological scheduling : Given an enumeration of the fiights, the al­
gorithm tries to instantiate all the flight delays in the order specified. 
Given a fiight, it tries to instantiate its delay to the minimum value 
and increases it if it leads until no more constraint are violated. 

Reducing overcharges first : The algorithm select the most overloaded 
(violated) constraint first. It selects then, among the flights linked to 
that constraint , the one whose delaying leads to the smallest increase 
of cost. Given that flight, the algorithm tries to push it out of the 
constraint. H it fails, it decreases the fiight 's delay until no more con­
straints are violated. Estimating in advance what would be the effect 
of a flight's delaying on the cost function is diflicult, so ILOG has pro­
posed an ad hoc heuristics [13) . 

Obviously, the second strategy is less naïve then the first one and gives 
better results. Simulations have been carried on a set of 17 regulations and 
1991 flights of which a large amount of "combined" flights, i.e. flights which 
cross more then one regulation. CASA gives a total delay of 40.000', the first 
strategy decreases it to 32000' then the second strategy improves it to 21000', 
hence a relative reduction of 40% ! Moreover, solving time is of the order of 
a second on SunSparc 20 workstation. However, it should be reminded that 
CASA solves the dynamic problem which is more constrained then the static 
one, so the real benefits would be less then 40%. 

4 .3 .2 0-1 Linear Programming: The Vranas & Bert­
simas Study 

The models defined by Vranas [11) can be derived from model (2.11) by 
making the hypothesis that all the slots have the same duration T and that 

5 fl is the round-up fonction: f al= n + 1 if a E (n, n + 1), a E JR., n EN 
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the flights enter in the regulation at the beginning of the slot. Hence the ô's 
in (2.11) are set to O. It is the same as saying that the slot's duration is the 
new tune unit. 

Given these hypothesis, it is easy to notice that (2.11) can be transformed 
in a 0-1 linear problem in the time-stamps Ur1s/ : 

min w = L Cf· (T t(s -1) Urs/ - Trf) cost function 
/E:F a=l 

w.r.t. L Urs/ $ K,rs slot's overload 
Je:F 

* 
positive delays 

* 

(4.10a) 

(4.10b) 

( 4.10c) 

only one slot allocated to f 

( 4.10d) 

where the subscriptst have been dropped since only the static case has been 
reviewed. We remark that the problem still contains 60 million binary vari­
ables but is now linear. Vranas & Bertsimas use then the classical method 
of linear relaxation of the integer problem, method which gives near-integer 
(in this case, binary) solutions of the problem ( 4.10). 

However, the figures given by the simulations are less hopeful then ILO G 's 
figures are. Simulations were carried on various sets ranging from 2293 flights 
and 25 regulations to 1808 flights and 16 regulations, the later set containing 
more then 50% of combined flights. If we examine more carefully the worst 
case with 50% of combined flights, which is the more realistic6 one, we observe 
only a 10% improvement of the total delay. Moreover, the computation time 
is about 7400", almost 2 hours on a SunSparc 20 workstation ! In the dynamic 
case, this method is of no operational use. If we look at better figures, the 
total delay decreasing can be up to 40% but the computation time remains 
of the sa.me magnitude. 

6 lf it is not realistic today, it will be so tomorrow 
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4.4 Conclusion 

It is diflicult to draw some definite conclusions of the material exposed above. 
We can remind that each of the presented methods (0-1 linear programming, 
simulated annealing and constraint programming) make different comprom­
ises between speed and optimality. In theory, 0-1 linear programming finds 
an optimal solution even it takes ages for achieving it. On the opposite, ILO­
G's constraint programming as quickly as possible a solution which satisfies 
the constraints without regards for optimality. In practice, things are a bit 
different. Using linear relaxation in integer programming hinder optimality 
since it is unlikely that ail variables would be set to non-integer values. Tun­
ing of the strategy in constraint programming allows the user to solutions 
which are thought to be close to optimality. Simulated annealing or tabu 
search are more flexible and are expected to be optimal and fast but are 
quite diflicult totune. 

Reviewing the figures given by the two methods leads to perplexity. Al­
though the test cases are similar ( around 18 regulations, 1900 flights of which 
50% are regulated, the workstation is a SunSparc 20), there is a little dis­
crepancy with the theory : If the 0-1 linear programming is actually much 
slower then constraint programming, it gives in practice worse value of total 
delay. But concluding that constraint programming is the effective method 
is too early as only a few simulations have been clone. 

In two words, solving the CASA problem seems is not obvious as many 
strategies are possible but no one has proven to be the most accurate. Further 
models should be developped and tested on a standard base of sets. 



Conclusion 

The best way to conclude is perhaps to review the initial objectives and 
examine how they have been achieved if they were. 

• A description of CASA has been given and a list of operational re­
quirements/ constraints has been laid down. However, this is a rather 
informa! list, some points as the existence of sub-periods, pending rates, 
the concept of a slot,etc ... have not been properly addressed. We add 
that the above list has been obtained by talking with people, reading 
the software documentation [4], even reading the code sources. 

• A fairly general mathematical model of CASA has been developed. 
Even if it is intractable in its present form, it provides a basis from 
which the other models have been derivated in a natural and straight­
forward way. 

• A thorough explanation of the principles of simulated annealing has 
been achieved. The author stressed the point that for a combinatorial 
problem as CASA is, there is no warranty of solving it in a reasonable 
time. Only extensive simulations can assess the strength and qual­
ities of a method. Heuristics have to be incorporated in the solving 
algorithm to speed it up. 

• A comparison have been made between ILOG and Vranas models. Vra­
nas model is very time-consuming, so its operational use is doubtful but 
it should in theory be useful for calibrating the other methods and mod­
els. ILOG model is powerful and quick and even achieves good figures 
in finding a close-to-optimal solution. Results are in little discrepancy 
with the theory as the most optimal solutions have been found by 
ILOG and not by Vranas. However, as the test cases were not exactly 
the same and only a few simulations have been carried out, concluding 
that ILOG is the most effective might be early. 

• What lacks is the development of the prototype which would have im­
plemented the simulated annealing technique to assess its qualities in 
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optimizing CASA. Actually, the prototype is still in its infancy and 
will remain in it for a while. The major reason is that the author has 
attempted from the beginning to develop an interface with the current 
implementation of CASA to solve directly the dynamic case. A bit 
of modesty would have, maybe, given more concrete estimates on the 
static case. 

The author is convinced that stronger support for this fields of research 
will be necessary. As the air traffic grows up by 10% a year, needs for more 
cost-effective and optimal traffic management policies would become more 
and more stringent. 

The author pleases the readers to be indulgent with the style of this thesis. 
As the author knows his audience ranges from hard-liner mathematicians to 
confirmed hackers and has himself a bakcground in physics and thermody­
namics, choosing the level of rigour and formality was difficult. Moreover, 
some sentences could have been written in a surprising or, at least, innovative 
English. 

The author has been however very pleased to study this problem. It 
has proven to be useful and instructive to work on a practical case and to 
confrontate it with the theories he has learned. 
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List of Acronyms 

As normal human beings do not speak often this language ... 

AO : Air Operators. The air companies. 

AR : AiRports. A yet common concept. 

ATC : Air Traffic Control. The centre which manages air traffic over a 
given sector. 

ATFM : Air Traffic Flow Management. The global European traffic man­
agement policy. 

CASA : Computer-Aided Slot Allocation. The algorithm reviewed in this 
thesis. 

CEU : Central Executive Unit . The operational unit of ATFM. 

CTOT : Computed Take-Off Time. Take-off time imposed by CASA. 

CTO : Computed Time-Over. lmposed entrance time in a regulation. 

EOBT : Estimated Off-Block Time. Intended time for leaving the airport's 
main building. The difference with ETOT is the time to access the 
runway. 

ETOT : Estimated Take-Off Time. Intended take-off time. 

ETO : Estimated Time-Over. Intended entrance time in a regulat ion. 

FIR : Flight Information Regions. Somewhat related to ATC. 

ID : Flight IDentification. To identify a flight. 

IFPL : Initial Flight PLan. The first flight plan submitted to CASA. 

IOBT : Initial Off-Block Time. Somewhat related to EOBT. 
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LBBR : Identifier of Brussels International Airport (Latin europe, Belgium, 
BRussels). 

NAVAID : Navigation points. Entrance points, gates, round-abouts, ... 

RDY : ReaDY message. The flight will accept any SIP. 

RPL : Repetitive Flight Plan. A flight which take-ff on a regular (daily) 
basis. 

SAM : Slot Allocation Message. Sent by CASA, first proposition of a slot. 

SIP Slot lmprovement Proposal. Sent by CASA if a better slot has been 
found. 

SIT : Slot lssuance Time. After this time, the fl.ight's slot is "frozen". 

SLC : SLot Cancellation. Sent by CASA, the flight's slot is cancelled. 

SPA : Slot Proposition Acceptance. The flight accepts the proposed slot. 

SRJ : Slot ReJection message. The flights rejects the proposed slot 

SRM : Slot Revision Message. Sent by CASA, the newly proposed slot is 
"frozen". 

SRR : Slot Revision Request. The flight requests a new slot. 

TACT : TACTical System. The system in which CASA is embedded. 
Serves as an interface betwen CASA and the users (AO, CEU). 

UIR : Unit Information Regions. Somewhat related to the FIR. 

SIP : Slot Improvement Proposa!. Sent by CASA, a better slot is proposed. 
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