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Abstract 

Energy consumption has become a major concern in portable devices design. The power 
minimization has traditionally focused on circuit design. More recently, software based 
techniques, named Dynamic Power Management (DPM), have emerged as attractive ap
proaches to save energy. 
The display is one of the main contributor to the overall power budget. In this dissertation 
we show how to integrate such DPM techniques in a Linux device driver controlling a TFT 
liquid crystal display. We also detail the implementation of the techniques "Variable dot 
dock" and "Variable frame refresh" on a Persona! Digital Assistant (PDA) using the Linux 
operating system. A power consumption reduction of respectively 6.4 % and 10 % is ob
served. Finally we outline a solution for a third technique : the" Liquid crystal orientation 
shift". 
By this work we demonstrate that a software adaptation in the operating system, without 
modifying the hardware, can lead to an appreciable reduction of the power consumption in 
a portable system. Therefore the DPM techniques can be applied to improve the lifetime 
of existing portable system batteries. 

Résumé 

La consommation d'énergie est devenue un centre d'intérêt majeur dans la conception 
d'appareils portables. La minimisation de l'énergie s'est traditionnellement concentrée 
sur la conception de circuits. Plus récemment, des techniques orientées logiciel, appelées 
gestion dynamique de la consommation d'énergie (en anglais DPM), se sont révélées être 
une approche intéressante pour économiser de l'énergie. 
L'écran est l'un des principaux consommateurs d'énergie du système. Dans ce mémoire, 
nous montrons comment intégrer de telles techniques DPM dans un pilote de périphérique 
Linux contrôlant un écran TFT à cristaux liquides. Nous détaillons aussi l 'implémentation 
des techniques "Variable dot dock" et "Variable frame refresh" sur un Assistant Personnel 
Digital (en anglais PDA) utilisant le système d'exploitation Linux. Une réduction de la 
consommation électrique de respectivement 6.4 % et 10 % est observée. En dernier lieu, 
nous esquissons aussi une solution pour une troisième technique appelée "Liquid crystal 
orientation shift". 
Par ce travail, nous démontrons qu'une adaptation logicielle du système d'exploitation, 
sans modification du matériel, peut apporter une réduction appréciable de la consommation 
électrique dans un système portable. Les techniques peuvent donc être appliquées pour 
améliorer la durée de vie des batteries des systèmes portables existants. 
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Introduction 

Energy consumption bas become one of the primary concerns in electronic systems design 
due to the recent popularity of portable devices such as laptop computers, Persona! Digital 
Assistants (PDAs) and cellular phones. The battery capacity bas improved very slowly 
while the computational demand (for instance multimedia applications) bas dra-Stically 
increased over the same time. Sorne low-power circuit design techniques have helped to 
increase battery lifetime. On the other hand, managing power dissipation at higher levels 
can significantly reduce energy consumption and increase battery lifetime. That is the rea
son why power management techniques, under the narne of Dynamic Power Management 
(DPM), have recently emerged as an attractive alternative to inflexible hardware solutions. 

Dynamic Power Management is in fact a design methodology aiming at controlling per
formance and power levels of digital circuits and systems, with the goals of extending the 
operational autonomy time of battery-powered systems, providing acceptable performance 
degradation when energy supply is limited, and adapting power dissipation to satisfy envi
ronmental constraints. DPM encompasses a set of techniques that achieve energy-efficient 
computation by selectively turning off (or.reducing the performance of) system components 
when they are idle (or partially unexploited). 

DPM applies to the various cornponents of a system, in particular to the Liquid Crys
tal Display (LCD) of portable systems, such as laptop computers and PDAs. Display 
power consumption is often one of the most significant contributor to the overall power 
budget for many portable devices, especially when multimedia applications are run. There 
are four main software techniques to reduce power consumption of a LCD display. These 
techniques do not require hardware changes. Therefore they are applicable on existing 
systems by simply modifying the driver in the operating system. 

The first technique, called Variable dot clock, reduces the dot dock frequency used for 
processor-display communication, decreasing the display refresh rate as a side effect. The 
second technique is named Variable frame refresh and exploits the property of liquid crys
tals of the display, which maintains their orientation for a while when they are not polarized. 
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Advantage of this time is taken to reduce power consumption by disabling the LCD con
troller. The third method, the liquid crystal orientation shift technique, is based on the 
observation that LCD power consumption is proportional to the image luminance. The 
luminance of useless parts of the screen can therefore be reduced in order to save energy. 
Finally, the fourth method, called Backlight shifting, proposes to adapt the luminance in
tensity of the display according to the environment luminance. This method derives from 
the observation that the display has a high visibility in poorly illuminated environment 
because of the high contrast. 

A driver including these techniques is implemented in the ECOS real- time embedded op
erating system [l]. The present dissertation reports our implementation work of the first 
two techniques in a device driver for the Linux operating system and outlines a solution 
for the third technique. Implementing these techniques was performed during my training 
period at the Department of Electronics, Computer Science and Systems (DEIS) of the 
University of Bologna (Italy), from September 2002 to January 2003. 

This dissertation is organized as follows. The first chapter describes the basic concepts 
of Dynamic Power Management. Three DPM levels are considered: the component level, 
the system level and the network level. Examples of power reduction techniques are also 
included. Each example concerns one of the main elements of a classical electronic system. 
This chapter has been written in cooperation with Benjamin Briquet. 

The second chapter gives an overview of the hardware platform, the Assabet, used to 
implement the power reduction techniques. We explain the frame buffer memory organi
zation and the LCD controller registers, because these elements are driven by the driver 
we have adapted. 

In the third chapter we present the Linux operating system which was installed on the 
Assabet. In particular we describe how Linux allows applications to manage I/O devices 
and emphasize the notion of file, which is the basic concept of the Linux system. 

The fourth chapter is related to the basic concepts of a Linux devices driver. We introduce 
the three main classes of device drivers and describe the basic fonctions of a char driver, 
since the LCD driver we have adapted owns to this class. We also propose a methodology 
for device driver designing. 

The fifth chapter describes how the processor detects an interrupt and launches the ap
propriate interrupt handler. It also explains the concept of task queue, which is used to 
implement the Variable frame refresh technique. 
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In the sixth chapter we give a description of the sall00fb.c driver, i.e. the driver we 
have enhanced for power management. We explain how a configuration change is effec
tively performed. This is another personal contribution to this dissertation subject. 

The last chapter develops the power reduction techniques for a TFT1 LCD display. The 
implementation and observed measurements are described for the Variable dot clock and 
the Variable frame refresh techniques. A solution is outlined for the Liquid crystal orien
tation shift technique. 

In conclusion we emphasize the effectiveness of DPM methodology for reducing power 
consumption in electronic systems. 

1 Thin-Film Transistor. 
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Chapter 1 

Dynamic power management 

1.1 Introduction 

One of the most important technical evolution of the last decade has been the emergence 
of portable systems, such as laptop computers, cellular phones and PDAs. The increasing 
popularity of such systems encourages the development of more and more sophisticated 
devices. Designing a portable system requires to tackle about the problem of delivering 
high performance with a limited consumption of electric power. High performance is re
quired to support complex applications (for instance multimedia) that are running on these 
portable systems. Low-power consumption is required to achieve acceptable autonomy in 
battery-powered systems, as well as to decrease battery weight. Stationary systems1 are 
also concerned with power conservation, because of the cost and noise of cooling systems, 
the cost of electric power ( especially for large systems) and stricter environmental impact 
regulations. 

The battery capacity has improved very slowly while the demands of computation capacity 
have drastically increased over the same time. Better low-power circuit design techniques 
have helped to increase battery-lifetime, but benefits obtained by such techniques do not 
compensate all the needs. In addition, the pressure for fast time-to-market has become 
extremely high, and it is often unacceptable to completely redesign a system merely to 
reduce its power dissipation. 

Electronic systems are generally designed to deliver peak performance, but in many cases 
peak performance levels are not needed for most of the operation time. Cellular phones 
and portable computers are two examples of systems with non-uniform workload. When 
the user is sending or receiving a call with a cellular phone ( or is running an application on 

1 i.e. non portable systems. 
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a laptop computer), be wants to have the maximum performance. However, when the user 
is carrying the phone in his pocket ( or is thinking to what to write during a text-editing 
session on a laptop computer), he does not need the full computational power of the system. 

Power management for computer systems is traditionally focused on regulating the power 
consumption by switching the system in a low-power state, which does not allow to use the 
system. This state is a de-activating state, generally requiring a user action to re-activate 
the system. More recently, some researches focus on the development of power manage
ment techniques performed while programs are running. 

Dynamic power management (DPM) is a design methodology that dynamically recon
figures an electronic system to provide the requested services and performance levels with 
a minimum number of active components or a minimum load of such components. Dy
namic power management encompasses a set of techniques that achieve energy-efficient 
computation by selectively turning off ( or reducing the performance of) system compo
nents when tbey are idle (or partially unexploited). A component is in an idle state if it 
has no request to serve; it can tben be put in a sleep state to reduce its power consumption. 
When a request arrives, the component wakes up and switches into a run state in order to 
serve this request2 . Moreover, a component can be completely shut clown in order to not 
consume power. The component is thus in the off state. 

The fundamental premise for the applicability of DPM is that systems (and their com
ponents) have to support a non uniform workload during their operation times. Such an 
assumption is valid for most systems, both when considered in isolation and when inter
networked. A second assumption of DPM is that it is possible to predict, with a certain 
degree of confidence, the fluctuations of workload. Finally, a third assumption is that the 
workload observation and prediction should not consume significant energy. 

We examine hereafter the three levels where dynamic power management (DPM) can 
be applied: first at component level, then at system level and finally at network level. 

1.2 D ynamic power management at compone nt level 

We can see a system like a set of interacting components. The definition of a component 
is general and abstract. lt may be a chip (such as the CPU) or a board (bard disk, mem
ory, wireless interface, video display, ... ) but in the current context, it is a black box: no 
detailed knowledge of its interna! structure is needed. 

2 0 ther names for these states are sometimes used in the literature, such as active, disable, on, work, .... 
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A power manageable component (PMC) is characterized by multiple states of operation 
that span the power-performance trade-off. This allows to distinguish these components 
from those always operating at a given performance level and power consumption. The 
ideal case for a PMC is always to have a lot of states of operation in order to minimize the 
power by calibrating perfectly the performance needed by the requests served by the com
ponent. Nevertheless, a problem appears when the number of states increases because the 
hardware complexity and overhead become more pronounced. In fact, the PMC's cannot 
switch from a state to another one without a cost. The cost may be a performance lost, a 
delay or even a power transition cost. The relation that we often note is: low-power states 
(such as sleep) have lower performances and larger transition costs, with respect to states 
with higher power. The transition cost has an important impact and has to be taken into 
account in the power management models. 

1.2.1 Power state model 

We can thus define for each component a power/performance behavior. In other words, it 
can be defined for each PMC the power states it accepts (for instance run, off, sleep, and 
idle), the associated performances, the transition costs and the power consumptions when 
it switches from one power-state to another one. We can represent this information with a 
power state machine for example (see figure 1.1). To summarize, we can say that a PMC 

--- Power~«JOrnw --
( RUN )--

·9011• 

,,lOµa •leom.t 

--
( IOLE ) SLEEP \ 

' -$Oi,s 
.... - --- --- _,.,. 
-••5/JnfW Po-• 0.18MW 

Figure 1.1: Example of power state machine. 

is needed to develop some power management techniques and that a component cannot 
switch from one of its state to another one without a cost. This leads us to consider the 
power management mode! as a non-trivial optimization problem. 
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1.2.2 Under the black box 

We have defined a component as a black box. It is time to see now how DPM is imple
mented inside the box. We examine in this section two of the most dynamic techniques 
implemented in components themselves: the clock gating technique and the power off sup
ply technique. In reality, these techniques are generally implemented in the hardware 
circuit of the component. That is why they are also called physical mechanisms. 

One of the most common DPM techniques at the component level is the dock gating. 
This addresses digital components that are clocked (CPU, display, ... ). Power can be 
saved by reducing the frequency of the component dock ( or some component docks, if the 
component uses several docks), and at the limit by stopping the clock. Clock gating can be 
applied both during idleness periods or activity periods. During activity periods, slowing 
the dock decreases the performance and, for some components (like the CPU), extends the 
execution time to perform a task. In this case, power saving is generally weak. For this 
reason, power saving can be more important during idleness period. The main challenge 
is then efficient idleness detection. Moreover, to go back to normal system activity, clock 
gating requires a short transition time: the clock should be re-initialized in one or a few 
dock periods. 

Even by stopping the clock, power dissipation is not completely eliminated. Power con
sumption of an idle component can be avoided by the technique of powering off the com
ponent. This radical solution requires controllable switches inserted in the electrical line 
supplying the component. A major disadvantage of this method is the recovery time, which 
is typically higher than in the case of clock gating because the component's operation must 
be re-initialized. 

1.2.3 Internai controller and external controller 

We have said above that the transition latency can have an important impact on the power 
management mode!. In reality, when it is possible to switch a component to a sleep state 
without compromising the performance (or with little performance degradation) because 
the transition between the sleep state and the run state is nearly instantaneous, an inter
nal controller - internai to t he component - can be implemented. This interna! controller 
decides for example to decrease the frequency ( clock gating) or shut down the component 
(supply shutdown) if there are no requests to serve. lnternally managed components are 
also called self-managed components. The main drawback is the lack of observability of the 
overall system operation and of the need of tolerating little or no performance degradation, 
since no assumptions can be made on how demanding the component's environment will be. 
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Clock gating is often implemented in a component with an interna[ controller while supply 
shutdown will be rather implemented with an external controller. The difference between 
the two techniques resides in the t ransition time to switch the component into its normal 
state. Indeed, when power transitions take a long time or consume a lot of energy, it is 
needed to take into account the workload of the system and decide when it is worthwhile to 
switch to a low-power state. Otherwise, the performance could be disastrous. The example 
that we have in mind is the limit case of workload with no idle periods longer than the 
time required to enter and exit the sleep state. If we decide to shut down the component 

as soon as an idle period is detected and if the power consumption associated with state 
transitions is of the same order of that of the run state, this could reduce the performance 
without saving any power. Workload information is thus required for all advanced power 
management approaches. The goal is even to predict the workload to identify exactly the 
idle periods. Severa! approaches and models can be produced to capture the workload 
information. Diverse techniques based on predictive approach or stochastic control have 
already been developed. We can easily imagine that these models are very complex. It is 
thus the role of an external controller - external to the component - to control transitions 
based on the workload of the system. 

Let's see now how an external controller can be implemented at the system level by a 
power manager. 

1.3 Dynamic power management at system level 

1.3.1 Structure of a system-level power manager 

The power management idea is to profit from idle periods (e.g., when the component is 
not used) to put the component in its sleep state, or in one of its sleep states if multiple 
low-power states are available, without compromising too much the performance of the 
whole system. Regarding the system, the assumption made here is that it is not always 
entirely active; this means there are some periods during which some components are idle. 

The activity of components (PMC and also non-PMC) is coordinated by a system con
troller, which is generally implemented in a software routine of the operating system. That 
is why the control of the system consumption is also implemented in software and espe
cially in operating system as a module of the system controller. 

We call power manager (PM) the system part (hardware or software) that performs DPM 
at system level. A power manager is composed of an observer monitoring the workload of 
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the system and its resources, a controller issuing commands for forcing state transitions in 
system resources, and at least one policy, which is a control algorithm for deciding when 
and how to force state transitions (based on information provided by the observer). The 
figure 1.2 depicts the general structure of a power manager. 

; Power manager : 
',---, ~-- ~--- 1 1 1 

' ' ' Observer 01kl03d Pollcy · Contrt>l!e< : 
lflformat.on , 

'--.-- '--~ ~--~ 1 1 

1 ----- ----- .. ---·----------------- -----· 

D 
Cl 

SYSTEM 

Figure 1.2: Structure of a system-level power manager. 

There are some reasons for implementing the power manager at software level. Software 
power managers are easy to write and to reconfigure. Then, in most cases, the designer 
cannot or does not want to interfere with and modify the underlying hardware platform. 
Finally, as DPM implementations are still a navel art, the experimentation with software 
is easier than with hardware. 

1.3.2 Power manager controller 

The power manager must be able to control the state of each PMC. In order to develop 
a power manager as generic as possible, it should be interesting to dispose of an interface 
between the power manager and a PMC. This interface should be able to understand each 
command from the power manager and to effectively perform it. The way to control the 
state of a component is very hardware dependent. For this reason, the interface should be 
implemented in the component-closest software part, which is generally the driver of the 
component. 

Industrial designs have been also proposed to encourage the standardization of interfaces. 
For instance, Intel, Microsoft and Toshiba propose a standard called advanced configura
tion and power interface, in short ACPI. ACPI is an OS-independent general specification 
that defines the interface between the operating system and an ACPI-compliant hardware. 
This interface can be used both for hardware configuration and power management. The 
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front-end of the ACPI is the A CP I driver, which is OS-specific. The OS kernel interacts 
with hardware through the ACPI driver, which maps each OS request to an ACPI com
mand and each ACPI response/message to a signal/interrupt (see figure 1.3). 

AppllCallOOS 

os 
KERNEL 

ACPI 

~lardware 

Figure 1.3: ACPI interface. 

The ACPI allows the operating system to put the system in five possible global power 
states: 

• Working: The system is ON and fully usable. 

• Sleeping: The system appears to be OFF and the power consumption is reduced. 
The system returos to the working state in an amount of time inversely proportional 
to the power consumption. 

• Soft off: The system appears to be OFF and power consumption is very low. A full 
OS reboot is needed to restore the working state. 

• Mechanical off: The system is OFF, with no power consumption. It needs to be 
reconnected to the power supply to go back to the working state after a full reboot. 

• Legacy: This state is entered when the system does not comply with ACPI. 

Additionally, the ACPI specifications define power states for system components. There 
are two types of system components, devices and processor, for which four power states 
are defined in the Table 1.1: 
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1 Device power states Il 1 Processor power states 
This state has the highest level of 

The processor is fully operational and DO power consumption. The device is CO 
executes instructions. 

fully active. 
The details of these states are device The processor is not executing in-

Dl, 
dependent. A device in Dl is ex-

Cl, 
structions. The processor in Cl is ex-

D2 pected to save less power than in D2, C2 pected to save less power than in C2, 
but it preserves more context (hence, but switcbing from Cl to CO is per-
wake-up is faster) . formed in a negligible tirne. 
Power has been fully removed from 

This state offers improved power sav-
the device. The device cannot be used 

DS in this state and bas the longest re- CS ings with respect to C2. The bard-

store time. The OS will re-initialize 
ware latency to resuming execution is 

the device when powering back on. 
larger than that in C2. 

Table 1.1: Devices and processor power states 

1.3.3 Power manager observer 

A power manager needs information to predict fut ure workloads. Two extreme approaches 
allow to collect this information. In the first approacb, the power manager observes the 
requests soliciting the managed component and try to predict the future idleness lengtb, 
and on this basis determines the best power state. It selects the power state without direct 
interaction with requesting application. The figure 1.4 depicts this approach. 

1 ApphcatiOn 1 
1 

recni 
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Application 
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Hardware 

Figure 1.4: The power manager observes requests. 

In reality, however, requests may be generated by multiple requesters. For example, re
quests for a network interface card may corne from different programs (such as ftp, telnet or 
netscape). These programs work differently and have different performance requirements. 
Without information about requester programs, the power manager cannot precisely pre
dict the exact moment when the component is not used anymore and thus wastes energy to 
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maintain performance unnecessarily or cause delays and performance waste to save power. 

At the other extreme, requester programs directly control power management through 
an application programming interface (API). For example, programs can keep a compo
nent in a run state, wake up a component in the sleep state or know the current state of 
a component. The figure 1.5 describes this approach. The main disadvantage of this ap-

[ ApplicaLJon ] AppticattOn 

power"tate powerstate 

r!_ 
I_ Driver 
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Figure 1.5: Applications control power states directly. 

proach is that programs must include specific power management instructions. Moreover, 
programs do not know very well the components, especially the transition costs of each of 
them. They are not aware if changing state saves power. 

Other solutions have been proposed, like in [2], which are generally situated between the 
two previous extreme approaches. Generally, in these other solutions, programs provide to 
the power manager an information about their needs of components. The power manager 
decides, according to the programs needs and its knowledge of the components transition 
costs, to put some components in sleep state if their are idle for a sufficient long period. 

1.3.4 P ower m anager policies 

A power management policy is an algorithm that selectively shuts down idle resources 
based on the observation of present and past workload and operating conditions. We sur
vey here two different approaches to policy optimization, the predictive techniques and the 
stochastic control. 

The rationale in all predictive approaches is to take DPM decisions based on predictions 
concerning the duration of idle periods. A generic predictive method observes the time
varying workload, and , based on this observation, computes a predicted duration Tpred of 
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the upcoming idle time. The power manager then decides the transition to the sleep state 
if Tpred 2'. TBE, where TsE is the break-even time, the minimum idle time amortizing the 
state transition cost. 

Good predictive approaches should minimize the time for which the system wastes power 
because it does not immediately detect the beginning of an idle period. They also should 
minimize the mis-predictions Tpred -:/: ~dle, where ~dte is the actual duration of an idle 
period. Predicting a too small Tpred (Tpred < ~dle) wastes power, while a too long Tpred 
(Tpred > Tidte) decreases performance. 

The most corn.mon predictive PM policy is the fixed timeout. The policy can be sum
marized as follows: when an idle period begins, a t imer is started with a certain duration 
Tro- If after TTo the system is still idle, then the PM forces the transition to the sleep state. 
The system remains in sleep state until it receives a request from the environment that 
signals the end of the idle period. The fundamental assumption in the fixed timeout policy 
is that the probability of ~dle being longer than TaE + Tro , given that ~dle > Tro, is close 
to one. Hence, this policy assumes that if the idleness duration is longer than the timeout 
duration (1':idl.e > Tro), the idleness duration will continue a sufficiently long time to allow 
the system to save power by changing the power state (1':it.Ue > TTo + TsE) - Timeouts are 
"implicitly" predictive even if they never generate an actual T pred, in the sense that they 
predict a long idle time if the system bas been idle for a while. The critical design decision 
is obviously the choice of the timeout value TTo• 

Timeouts have three main limitations: fixed timeouts may be ineffective when the workload 
is non-constant. Moreover, power is wasted while waiting for the expiration of the timeout. 
Finally, performance penalty is always paid upon wake-up. Adaptive timeouts have been 
developed to improve effectiveness, by dynamically reducing/increasing the timeout value 
when idleness duration increases/decreases. The figure 1.6 illustrates the timeout-based 
policies. 

Another predictive policy consists of shutting down or putting in sleep state the system or 
a component as soon as it becomes idle, if the policy predicts Tpred > T8 e . A prediction 
of idle time duration is made available as soon as the idle period begins. Predictions are 
made based on past idle and activity period durations. The system wakes up either only 
upon arriva! of a request from the environment, or at the end of the predicted idle period. 
The predictive shutdown policy is illustrated in the figure 1. 7. 

Predictive approaches have some limitations: first, they do not precisely take into account 
the workload variations. Then, predictive algorithms are based on a two-state system 
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Figure 1.6: Timeout-based policy. 
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Figure 1. 7: Predictive shutdown policy. 

model, while real-life systems bave multiple power states. Policy involves not only the 
cboice of wben to perform state transitions, but also the choice of which transition should 
be performed. 

The stochastic control approacb considers the workload as a Markov chain of R states. 
A Markov chain is a probability fonction of the evolution of the system state, according 
to the state at present tirne. A Markov chain defines probabilities for the system to enter 
into astate at a moment t + 1, according to the system state at the moment t. Thus, t he 
workload can be represented by a two-state Markov chain, where the two states are: RO 
when no request is issued by the environment and Rl when a request is issued. 

In the same way, power states are also represented by a Markov chain of S states. The 
transitions are probabilistic, and probabilities are controlled by commands issued by the 
power manager. A power manager is then a fonction R x S ➔ A where Ais a command 
to control the future state of the system. Such fonction is an abstract representation of 
a decision process: the PM observes the power state S of the system and the state R 
representing the workload, takes a decision, and issues a command A to select the next 
state of the system. 
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1.4 Dynamic power management at network level 

In many cases, the systems are not isolated and interact between tbem. We call network a 
set of communicating systems. We can thus imagine a power manager tbat tries to mini
mize the global consumption of the whole network, rather tban the individual consumption 
of each system. The power manager is so implemented as a distributed algorithm. This 
distributed algorithm takes autonomous decisions for each system in the network based 
either on local information, or on incomplete global network status data. 

Currently, the DPM in such networked systems is not really still well developed. 

1.5 Examples of dynamic power management tech-
. 

niques 

This section describes some examples where dynamic power management techniques are 
used. Each subsection is focused on one of the main components of a portable computing 
system. Thus, we present here low-power techniques concerning respectively the battery, 
the processor, the memory, the bard disk and the network card. 

1.5.1 Battery-driven dynamic power management 

Battery lifetime extension is a primary design objective for portable systems. Tradition
ally, battery life-time bas been prolonged mainly by reducing average power consumption 
of system components. An analysis of battery discharge characteristics bas allowed to 
develop new opportunities for life-time extension. [3] and [4] propose a class of policies, 
whose decision rules controlling the system operation state are based on the observation 
of both system workload and battery output voltage. 

The proposed policies are based on three battery physical properties. First, the effec
tive voltage of a battery decreases as the state of charge decreases. As a matter of fact, a 
battery is considered exhausted when its output voltage falls below a given voltage thresh
old (such as 80% of the nominal voltage). The second property is that the actual usable 
capacity (Number of Amps x Number of hours) depends on the discharge current. More 
clearly, in a theoretical battery, requiring more power (for example twice more power) re
duces battery lifetime proportionally (for example a reduction of a factor two). In a real 
bat tery, the lifetime reduction is more accentuated. The reason is that at higher discharge 
current, a battery is less efficient to convert its chemically stored energy into available 
electrical energy. The third property says that a battery can recover some of its deliver-

28 



able charge if discharge periods are interleaved with rest periods (i.e. periods in which no 
current is drawn). 

The simplest policy is threshold-based. It aims at maximizing battery lifetime by lowering 
the performance when the battery is almost discharged. If the battery is fully charged, 
the system is kept in a normal-performance state. When the battery output voltage falls 
below a threshold, the system is forced into a low-performance and low-power state until 
the battery is fully discharged. The rationale for this policy is to provide acceptable degra
dation of system performance as the battery discharges. 

Sorne modern portable appliances can accommodate two batteries in the same case. The 
batteries are normally used sequentially: The second battery starts supplying the current 
only when the first battery is totally discharged. As a battery can recover some of its 
deliverable charge if it is let at the rest, a dual-battery system can alternatively use each 
battery to draw its energy. In this way, the battery temporarily disconnected from the 
load can recover, while the other one powers the system. An efficient policy to manage 
the batteries alternation consists of defining three regions of operation. In the first region, 
the switching between the two batteries has constant frequency, and the system works in 
a normal-performance state. The second region is entered when the output voltage of one 
battery first reaches a threshold. The system still works in normal state, but switching 
between batteries is voltage-controlled. When the output voltage of the loaded battery 
reaches the threshold, it is disconnected from the Joad (to give it some recovery time). The 
second region is exited when the output voltage of the battery temporarily disconnected 
from the load does not reach a level close enough to the threshold during the recovery 
time. In the third region, the fixed frequency-switching scheme is restored, and the system 
is transitioned into a low-performance state until both batteries are fully discharged. 

The battery-driven policies proposed here, applied in isolation or altogether with another 
technique(s), allow a very important lifetime extension in some systems. 

1.5.2 Power management for the processor: Dynamic voltage 
scaling 

DPM aims at reducing energy consumption at the system level by selectively placing com
ponents into low-power states during idle periods. The power manager can completely 
turn off the component (power off supply) or disable some docks to do that ( dock gating). 
In the microprocessors, other techniques have been developed tb decrease significantly the 
energy consumption. If dock gating is an efficient technique to reduce the energy in clocked 
components, dynamic voltage scaling (DVS) is often an additional technique that can more 
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reduce the power consumption. DVS can be used simultaneously to the clock gating. 

We can compare in fact DVS to a kind of DPM at the component level except that DVS is 
targeting specifically the processor. DVS is close to dock gating because bath act on the 
dock frequency except that DVS does not turn off the clock but changes the frequency of 
the processor (the speed of the processor) and voltage at run-time, depending on the needs 
of the running application. Thus DVS do not thus detect idleness period but rather esti
mate the needs of the running application. When peak performance is needed ( e.g. peak 
computational loads), the processor operates at its normal voltage and frequency (which 
is also its maximum frequency). During the rest of the time, when the load is lower, the 
operating frequency is reduced to meet the computational requirements (performance). 
In fact, once again, it is assumed implicitly that the workload is not constant and that 
the average computational throughput is often much lower than the peak computational 
capacity needed for adequate performance. 

DVS algorithms modify the frequency according to the needs of the running application 
and go beyond that because they scale the operating voltage of the processor along with 
the frequency. In fact, the vast majority of microprocessors today bas a voltage-dependent 
maximum operating frequency, so that when they are used at a reduced frequency, the 
processor can operate at a lower supply voltage. In other words, the maximum operat
ing frequency increases (within certain limits) with the increased operating voltage; when 
the processor is run slower, a reduced operating voltage suffi.ces. The interest of reducing 
the operating voltage along the frequency is obviously to save energy. There is a second 
characteristic also shared by the vast majority of microprocessors today, allowing saving 
energy: the energy consumed by the processor per dock cycle scales quadratically with 
the operating voltage, so that even a small change in voltage can have a significant im
pact on energy consumption. Moreover, important energy savings can be got because 
high performance is needed only for a small fraction of the time, while for the rest of the 
time, a low-performance and low-power processor would suffi.ce. By dynamically scaling 
both voltage and frequency of the processor based on computation load, DVS can provide 
the performance to meet peak computational demands, while on average, providing the re
duced power consumption benefits typically available on low-power performance processors. 

To decrease the frequency along with the needs of the application, the processor must 
operate over a range of frequencies. For that, it must be specifically hardware-designed to 
support dynamic dock frequency adjustment. The number of frequencies is thus predefined 
by the design of the microprocessor. As we have already pointed it out in previous sections 
for the different states in the DPM model, there is also some overhead here when switching 
from a frequency to another one. This overhead is also called transition time, like in the 
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DPM model. Nevertheless, even if it depends a lot from the hardware, the transition tirne 
overhead is often very short. 

If DVS relies on a specific hardware design, we can say that it relies also on software 
at the system level, or even at the task level. DVS algorithms have in fact two main 
fonctions: the first one identifies the needs of the application and the second one adjusts 
effectively the CPU frequency and voltage. To accomplish the first "mission" , the execution 
time of the application has to be predicted (by analyzing the workload). It is important 
to note that this execution time can be increased (performance decreases) if the frequency 
is decreased, but the main challenge is to respect the needs of the running application or, 
in other words, to keep an adequate performance. In fact, "respect the needs" or "keep an 
adequate performance" can be formulated like the respect of the deadline of a task in a 
real-time environment where tasks must be completed before a deadline, or like keeping a 
frame delay constant for a MPEG or MP3 streaming application. There are in fact a lot 
of models implemented in software (at the system level or at the task level) that try to 
get accurate information on the workload in order to adapt the frequency of the processor 
on the basis of this information while keeping an adequate performance . We can also 
define for DVS the notion of policy, which is an algorithm that selectively adjusts the clock 
frequency and voltage of the processor based on the observation of the workload. 

In fact, we can easily integrate the DVS technique into the DPM model presented in 
previous sections at the system level. We can consider that the processor remains in a 
run state when the DVS algorithm is applied. It allows reducing the energy consump
tion of the processor when the processor is in a run state. Let us remind that, when in 
previous sections, we talk about the run state, the component consumes a lot of energy be
cause it is fully powered on. In reality, we can see here the run state like a set of sub-states. 

If the model describing the run state is the same as the one characterizing the other 
states, the transformation, from the "original" DPM run state into multiple "new" run 
states taking into account the different performance and power levels of DVS, is com
pletely compatible with the rest of the model and so, the power management policy that 
we develop can make decisions for both dynamic voltage setting and the transition into 
the low-power states. For example, in the case of a MPEG streaming application where 
keeping an adequate performance consists in maintaining the frame delay constant, the 
power manager can check if the rate of incoming or decoding frames bas changed, and 
then adjusts the CPU frequency and voltage accordingly. Once the decoding is completed, 
the system enters in an idle state. At this point, the power manager observes the time 
spent in the idle state, and depending on the policy, it decides when transiting into one of 
the sleep states. When a request arrives for video decoding {after receiving a new frame on 
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the network interface), the power manager switches the system back into the active state 
and starts the decoding process. That is actually the ratio between the rate of incoming 
frames and the rate of decoding frames that determines the frequency and the voltage 
levels of the processor. 

It is to be noted that a dilemma appears and can be stated as follow: lowering the threshold 
voltage to reduce run power can increase sleep power. ln fact, increasing the execution time 
of applications by reducing the frequency causes the system to be more often in the run 
state than in the sleep state. In other words, if a system is frequently idle, it could be more 
interesting to save power by putting the system in the sleep state instead of decreasing the 
frequency and the voltage of the processor. 

1.5.3 Selective instruction compression for memory energy re
duction 

We have already seen that power management can be applied to several embedded com
ponents. lt is time now to see how we can save power in the memory management. 

The fi.rst developed techniques are bus encoding techniques and memory organization 
techniques. Both are based on a reduced switching activity on the processor-memory 
bus. In fact, the fi.rst technique changes the format of the information transmitted on 
the processor-memory bus. Thus, it reduces the switching activity on the bus and so, in 
the same way, reduces the power consumption. The second techniques change the way 
information is stored in memory so that the address streams between the processor and 
the memory cause a low-transition activity on the bus. The processor-memory interface is 
a major contributor in the power consumption and so, these techniques can be efficient. 

Other techniques have been additionally developed through instruction memory band
width. These techniques use a set of special instructions which are smaller in size (e.g., 
contain less bits than normal instructions) and hence, achieve to reduce the bandwidth 
needed to run the program. Either these special instructions are another set of instruc
tions supported by the processor but in this case it often requires additional software tools 
to allow users to generate these special machine instructions from the task level, or these 
special instructions are simply a subset of the original instructions supported by the proces
sor. In this latter case, if we consider only a subset of the original instructions, we decrease 
the number of potentially instructions used and so, we do not need the entirely bit-width 
associated to all original instructions. Thus this subset of instructions can be replaced by 
binary patterns of limited width. For example, if we identify in an application the utiliza
tion of 512 distinct instructions among the 8192 instructions offered by the processor, we 
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can then only use 9 bits to encode the 512 instructions (log2 512 = 9) instead of 13 bits 
needed to encode 8192 distinct instructions (log2 8192 = 13). The 9-bit instructions take 
less place in memory than 13-bit instructions. It thus reduces the memory bandwidth us
age and in consequence the total energy because the unused memory banks can be disabled. 

We suppose in fact that the processor can disable the memory banks that are not cur
rently used in order to save energy. It is an hardware requirement to save energy. For 
example, if the memory consists of four 8-bit banks and that we have succeeded in reduc
ing the size of the instructions from 32 to 8 bits, it requires only one memory bank instead 
of 4. The 3 unused banks can be disabled to save energy. Moreover, if we assume that 
the memory access is 8-bit wide, the number of fetching between the processor and the 
memory passes from 4 to 1: the total bus utilization is thus also reduced, which improves 
performance (i.e., the program utilization time decreases). 

We can simply implement a table whose the role is to match the original instructions of 
the subset with the compressed instructions. In reality, the program is stored in memory 
in compressed format, i.e., each instruction is replaced with a [log2N]-bit binary pattern 
which is in one-to-one correspondence with the original instruction. Every time an instruc
tion is fetched from the memory, it is first decompressed (i.e, the original format is restored) 
by means of the instruction decompression table and then passed to the processor's decod
ing logic. The advantage of the table is that we do not modify the architecture of the 
processor. The figure l.8(b) depicts the solution and especially the instruction decompres
sion table (IDT). The main drawback of this technique is the energy saving depends on 
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Figure 1.8: Processor-memory normal architecture (a) and power-saving architecture (b) 

the ratio between the number of different instructions that forms the subset ( compressed 
instructions) and the total number of machine instructions. The more distinct instruc
tions are used, the more there are instructions in the subset and therefore, fewer energy is 
saved. Indeed, the bit-width of these instructions may become similar to the bit-widtb of 
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the original instructions, thus making negligible the reduction in memory bandwidth. The 
second drawback is the implementation of the table because this can be very complicated 
to encode and decode instructions especially if the size of the compressed instructions is 
not compatible with the byte-addressable memory. Indeed, usually memories can be only 
accessed for example by a multiple of 8 bits. If we refer to the example in the previous 
paragraph where the application uses only 512 instructions among the 8192 instructions 
supported by the processor, the 9-bit instruction is not compatible with the 8-bit access 
scheme of the memory. In fact, two bytes are needed to store each compressed instruction 
and so, it results in a waste of space and consequently in a waste of energy. Moreover, 
it requires two operations to store this 9-bit instruction in memory and so, it does not 
decrease the program utilization time. 

One solution consists of taking a subset of fixed cardinality. That does not depend anymore 
on the number of distinct instructions used by each application running but rather on the 
probabilities of the instructions to be used. In fact, an assumption is indirectly made: the 
number of machine instructions used by most software programs, although limited with 
respect to the total number of instructions supported by the processor, bas a highly non
uniform statistical distribution. In other words, some instructions are usually much more 
used than others. We can hence consider a subset of original instructions that are exe
cuted more often whatever the applications; less probable instructions are left unchanged 
and stored as they are in memory. As there are as well non-compressed (few) instructions 
as compressed (many) instructions in memory, that requires a controller which properly 
handles instruction fetching. The figure 1.9 depicts the second power-saving architecture 
in the case where the compressed instruction bas 8-bit width. 

Figure 1.9: Processor-Memory second power-saving architecture 

The percentage of energy that can be saved depends mainly on the architecture and espe-
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cially on the way in which the memory is organized and accessed. The technique presented 
here is indeed a new way of managing and accessing the memory since there are different 
bit-width instructions. We have not presented all the implementation and changes that 
this technique required in the memory management. However, it is directly implemented 
in hardware and so, it is application-independent. It is important to say also that, like in 
all other power management techniques, there are some costs to take into account in this 
power management technique. In fact, the instruction decompression table (IDT) consumes 
a certain time to decode and to encode instructions, and therefore it consumes power. This 
cost in power and performance of the decompression block is not still well-known and is 
currently under investigation. In addition to that, to distinguish compressed and original 
instructions, it is needed to put sometimes some bits in memory and this causes also some 
overheads in the number of memory accesses, as well as a waste of space. Thus, the costs 
in term of performance or energy exist also for these techniques aiming at reducing the 
consumption of energy by the memories. Like in all other power management techniques, 
there is always a trade-off between performance and power. 

1.5.4 Power management for hard disks 

The bard disk drive is one of the major power consuming subsystems in a computer, since 
it can consume more than one fifth of the total power used by the computer. The main 
way to reduce power consumption of hard disks consists of stopping plates spinning during 
t he periods when no disk requests are made. However, this approach encounters three 
problems: first, when a request occurs while plates are not spinning, it can not be per
formed before the plates have taken back a suffi.dent speed. This delay strongly decreases 
the performance of the system. Moreover, accelerating the plates generates extra power 
dissipation. Finally, too frequent on/ off cycles tend to accelerate the degradation of the 
hardware systems, causing a problem of reliability. Now a desirable power management 
scheme should save energy while providing bigh performance and low failure rates. 

Disks accesses generally occur in burst: the activity of a disk is often characterized by 
sets of close requests, separated by long idle periods. It can be made use of these idle 
periods to reduce power consumption. In [5], a method is proposed to do that, on the 
basis of the concept of sessions, which are time intervals when requests frequently occur. 
A session starts with a disk access, and is separated from the previous one by a long period 
of inactivity. Requests close in time are regrouped in the same session. A threshold r is 
used to separate sessions. If no requests occurs during r seconds after a request occurrence, 
the current session ends. The figure 1.10 depicts an example of sessions with different r. 

A first observation is that, during inter-session periods, there are no disk activities, and 
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Figure 1. 10: Example of sessions for different thresholds. 

then the system can spin down the plates to save power. Moreover, smaller T may sepa
rate adjacent requests into two sessions, while a larger value can regroup them into one. 
Hence, a large T allows to reduce the number of inter-sessions, while a small T increases 
their occurrences. Thus, a variable T can be used to improve performance according to 
the access frequency: by increasing T during access bursts, one increases the waiting time 
before the session ends, and tbus reduces the risk to spin down the plates before the end 
of the burst. ln the same way, T can be decreased when the disk activity is characterized 
by long idleness periods separated by short bursts. 

1.5.5 Transport protocol optimization for energy efficient w1re-
less embedded system 

For wireless portable systems, the power consumption in the network interface plays an 
important role for the battery lifetime. Although there are already some DPM techniques 
allowing to put the network interface card in several possible states (receive state, transmit 
state, idle state, sleep state, .. . ) , the power consumption can be optimized by developing 
techniques at an upper level, and in particular at the network protocols level. Indeed, 
the higher sub-layers of the protocol (IP, TCP, UDP, ... ) allow to estimate the long-term 
workload, while the Medium Access Control (MAC) sub-layer allows to know the channel 
state. This optimization is especially needed since transition costs are very important. 
Hence, the challenge in developing an effective power management strategy is to identify 
the times during which the sub-system can be placed in a particular power mode, by ob
serving the workload. 

The IEEE 802.11 protocol describes how the physical and MAC sub-layers must be imple
mented. IEEE 802.11 defines two modes: a normal mode and a low-power mode. When 
the network card is in low-power mode, it is shut down and the received data packets 
are lost. Fortunately, these packets are kept by the access point. IEEE 802.11 specifies 
that the network card must be periodically awaken to check if the access point keeps data 
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packets. The main drawback of this technique is that the card wakes up to check the ac
cess point, even if no packets are waiting. It generates thus a power consumption overhead. 

A transport protocol optimization of wireless LAN interfaces has been proposed in [6] . 
The proposed technique is based on the TCP buffer. It consists of monitoring the TCP 
receive buffer occupancy and exploiting in-built signaling mechanisms of TCP, such as 
window advertisement3 and silly window syndrome4 (SWS) avoidance, to identify scenar
ios where low power modes can be triggered with minimal overheads. Two extreme cases 
can occur: TCP receive buffer full and TCP receive buffer empty. 

TCP disposes of a mechanism preventing the receive buffer from overflowing. When the 
receive buffer is full, the receiver sends a zero window5 to the sender. This message signals 
to the sender that it has to stop sending packets. As the application reads data out of 
the receive buffer, the window becomes non-zero, but it is not immediately advertised to 
avoid the silly window syndrome. In fact, the receiver has to wait until its window has 
considerably increased, to prevent the inefficient exchange of small amounts of data across 
the connection (instead of full-sized segments). Hence, in order to avoid the silly window 
syndrome, the receiver waits before requesting to the sender to resend data packets. The 
receiver can take advantage of this waiting time to save power by switching off the network 
card. Indeed, the receiver knows that it will not receive data packet during this period. 
Generally, this period can last several seconds before the receive buffer is sufficiently empty 
to allowing the sender to resend data packets. 

Another idleness condition that can be exploited at the transport layer occurs when the 
buffer is empty. However, power managei:nent actions have to be taken carefully when the 
buffer is empty because, even if no packets are presently stored, they might be in transit 
over the network. Ensuring that incoming packets are not dropped can be performed by a 
predictive approach. Thus, the traffic flow can be predicted considering the status of the 
outstanding TCP sockets. If no socket is actively used by the receiver, the network card 
is considered as idle and can be shut down. When the buffer of the receiver is empty, a 
timer is started. If the timer expires, the card is shut down until a read/write operation 

3To avoid overflowing the buffer, TCP sets a Window Size field in each packet it transmits. This field 
contains the amount of data that may be transmitted into the buffer. If this number falls to zero, the 
remote TCP can send no more data. It must wait until buffer space becomes available and it receives a 
packet announcing a non-zero window size. 

4The silly window syndrome occurs when the receiver authorizes too early the sender to continue the 
transmission. "Too early" means that the receive buffer is not sufficiently empty yet. As a consequence, 
the receiver signals a "small window", so that the sender will send small data packets in burst, a situation 
to be avoided. 

6Message signaling to the sender that the receive buffer is full. 
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on the buffer occurs. At this moment, the card is switched on. If a read/write operation 
on the buffer occurs before the timer expiration, the timer is cancelled and then restarted. 
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Chapter 2 

System description 

This chapter describes the system Assabet used for this work. The first section presents 
the PDA concerned by the power management. The second section explains what is and 
how is organized the frame buffer memory. The third section gives more details about the 
displaying of pixels, and the last section describes the LCD controller registers. 

2.1 Overview of the Assabet 

LCD power management has been implemented on a PDA plateform, the Assabet, supplied 
by HP. The Assabet disposes of a StrongARM 1110 Microprocessor [7], which can operate 
with an internal clock frequency up to 221 MHz. The Assabet bas 8 MBytes FLASH and 
32 MBytes DRAM. The screen used for the experimentation is a Sharp 3.9" TFT LCD 
touch screen which supports either 8-bit or 16-bit color at 320 x 240 pixels. 

The operating system is the version 2.4.6-rmkl-npl of the Linux kernel. 

2.2 Frame buffer and palette m emory organization 

The pixel is the smallest monochromatic element of an image. An image can be seen as a 
matrix of pixels, so that t he image size is defined by the horizontal and vertical numbers 
of pixels. In memory, a pixel is simply represented by a number, which is generally coded 
with 4, 8, 12 or 16 bits. A set of pixels corresponding to an entire image on the screen is 
called a frame. 

The frame buffer is a memory area used to con tain the pixels to display on the screen. It is 
able to contain enough pixels to fill the entire screen one or more times. The frame buffer 
provides an abstraction to the graphie hardware: it allows the software ( applications or the 
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Figure 2.1: The Assabet. 

operating system) to display images on the screen. Indeed, the software has just to write 
the image's pixels into the frame buffer and they will be displayed on the screen. Thus, 
the software does not need to know anything about the low-level details. In the case of 
the Assabet, the frame buffer is located in DRAM. There are several ways to organize the 
pixels inside the frame buffer. We can distinguish two main approaches. 

In the first approach, a frame is composed of two parts: the palette and the pixel data. At 
the lowest addresses of the frame buffer is stored the palette, also called the color map, 
which contains the possible colors for a pixel of the frame. Each possible color is repre
sented by a palette entry. The palette generally contains 16 or 256 palette entries. The 
first palette entry (palette entry 0) contains an extra field, called PBS for Pixel Bit Size, 
allowing to select the number of bits per pixel data in the frame. 

Behind the palette are stored the pixel data, which indicate the color of each pixel of 
the frame. The pixel data are used as pointers to index into the palette. A pixel data 
must be able to select each entry of the palette. It is thus coded with 4 bits for a 16 
entries palette and with 8 bits for a 256 entries palette. In monochrome mode, the palette 
is composed of 16 palette entries. Each palette entry is 16 bits long, but only four of these 
bits are used to define the gray-scale level. In color mode, the palette is composed of 16 
or 256 palette entries, each of them corresponding to a possible color. A palette entry 
is encoded with 16 bits and defines a color as a combination of three basic colors, red, 
green and blue, whose intensities vary. The intensity of a basic color is coded on 4 bits, 
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so that 15 intensities1 are possible for each basic color. Hence, it is possible to represent 
153 = 3375 different colors. However, since the palette only stores 16 or 256 entries, an 
entire frame can only contain 16 or 256 different colors. The figure 2.2 depicts the frame 
buffer organization in this approach, both for color and monochrome modes. 
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Figure 2.2: Frame buffer organization with a palette. 

In the second approach, no palette is used. The color of a pixel is simply represented 
by a number coded with 8, 12 or 16 bits. The figure 2.3 depicts the frame buffer organiza
tion in this approach. 

Figure 2.3: Frame buffer organization without palette. 

1 15 and not 16 color intensities because the two sets of bits '1110' and '1111' correspond to the same 
maximal intensity 
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2.3 Refreshing the screen 

A screen receives and draws an image pixel by pixel. Pixels are successively displayed on 
the screen from left to right to draw a line, and pixel lines are successively drawn from the 
top to the bot tom of the screen. Pixels are transmitted by means of data pins to the screen 
at a frequency determined by a regular signal called pixel clock. This signal is emitted on 
a specific pin simply called pixel clock pin. At each tick on the pixel dock pin, a pixel 
is read from the data pins and displayed on the screen. The display also needs to know 
when a pixels line and a frame ends. Two other signais are thus sent on two pins: the line 
clock which occurs at the end of the transmission of a pixel line, and the frame clock which 
notifies the end of a frame. At each line/frame dock pulse, a new line/frame begins. The 
line and frame clock periods are multiple of the pixel clock period. 
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Figure 2.4: The display timings. 

The figure 2.4 presents all the display timings that must be taken into account in the 
line and frame clock period calculation. PPL (Pixel Per Line) is the number of pixels in 
each line, i.e. the horizontal resolution of the screen. Since one pixel is displayed each pixel 
clock pulse, it takes PPL pixel clock pulses to display a line. BLW (Beginning-of-Line pixel 
dock Wait count) and ELW (End-of-Line pixel clock Wait count) specify the number of 
wait pixel dock pulses to insert at the beginning and at the end of each line. HSW (Hori
zontal Sync pulse Width) defines the wait pixel clock pulses between two line dock pulses, 
in addition to BLW and ELW. Hence, the line clock period is the sum of BLW, PPL, ELW 
and HSW. Likewise, LPP (Lines Per Panel) specifies the vertical resolution of the screen. 
BFW (Beginning-of-Frame line clock Wait count) and EFW (End-of-Frame line clock Wait 
count) specify the number of wait line dock pulses to insert at the beginning and at the 
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end of each frame. Finally, VSW (Vertical Sync pulse Width) defines the wait line dock 
pulses between two frame dock pulses, in addition to BFW and EFW. The frame dock 
period is hence the sum of BFW, LPP, EFW and VSW. 

From these values, it is possible to calculate the refresh rate of the screen, by means 
of the following equations: 

Pixel clock pulses per line - BLW + ELW + HSW + PPL 

Lines per frame - BFW + EFW + VSW + LPP 

Pixel clock pulses per frame - Pixel clock pulses per line x Lines per frame 

Pixel clock f requency 
Refresh rate = 

Pixel clock pulses per frame 

Once the pixel dock frequency is defined, the LCD controller automatically refreshes the 
screen by repeatedly sending pixel to the screen. It is to be noted that refreshing the screen 
is not performed by the core processor, which is free to perform other operations. 

2.4 The LCD controller 

A complex device, like a LCD display, needs a device controller to drive it. The LCD 
controller bas three main roles: first, it has to transmit data sent by the processor to the 
display. Secondly, it has to interpret commands it receives and force the display to perform 
the corresponding changes. Finally, it has to receive electric signais, called interrupts, from 
the device and transmit them to the processor . Rather than describing the architecture of 
the LCD controller, it is more useful to present its interface, which is composed of registers. 

2.4.1 The LCD Controller registers 

In the Assabet, most of chips (controllers, caches, . .. ) are integrated in the processor, in 
order to minimize power consumption by reducing distances. The processor disposes of its 
own address space, which is subdivided into several areas. Each of these areas is associ
ated with a chip of the system and is subdivided into different memory registers, called 
I/0 registers or 1/0 ports. To act on a chip, such as LCD controller, the processor has to 
write values in one or several I/0 registers associated to the chip. Likewise, the processor 
can be notified about the device state by reading an I/0 register. An I/0 register can 
be decomposed in one or more sets of bits, called fields. Each of these fields commands a 
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fonction of the chip or provides information about the chip's status. 

I/O registers are the basic way for drivers to communicate with the different external 
devices. There are four main types of I/O registers: control registers, status registers, 
input and output registers. The control registers allow to send commands to the device. 
A command is given by writing bits inside some fields of a control register. The status 
registers allow to be notified about the device state. For that, the processor simply reads 
the content of a status register. The driver can also fetch data from the device by reading 
bytes from an input register and push data to the device by writing bytes in an output 
register. In order to limit their number, some registers are often used for different pur
poses. For instance, some bits of a register describe the device state, while others specify 
the command to be issued to the device. Similarly, the same I/O register may be used as 
an input register or an output register. 

The LCD controller of the Assabet includes four control registers (LCCRO, LCCRl, 
LCCR2 and LCCR3), one status register (LCSR) and four input/output DMA registers 
(DBARl, DBAR2, DCARl and DCAR2). An exhaustive description of these registers 
can be found in Appendix A. We simply present here an overview of these registers and 
the main fields that are used in the next chapters. 

2.4.2 The LCD Controller Control Registers (LCCR) 

The first LCD controller control register, called LCCRO, contains ten fields mainly con
cerned with display modes and interrupt requests. In a power management context, the 
most interesting field in LCCRO is the field LEN, since it allows to disable the LCD con
troller. Ali the other registers must be init ialized before enabling the LCD controller. If 

LEN is modified when the LCD controller is active, the current frame will be completely 
transmitted before disabling the controller. 

The second LCD controller control register, called LCCRl, regroups four fields used to 
control the number of pixels or pixel clock per line. 

The third contrai register, LCCR2, regroups four fields that are used to control the number 
of pixels line or line clock per frame. 

Finally, the LCD Controller Control Register 3, or LCCR3, contains seven fields allowing 
to control various fonctions within the LCD controller. For power management implemen
tation, the most interesting field is PCD, which allows to select the frequency of the pixel 
clock. PCD allows to generate a frequency situated between CCLK/514 and CCLK/6, 
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where CCLK is the CPU dock frequency. From the PCD value, it is possible to calculate 
the pixel dock frequency by using the following formula: 

. CCLK 
Pixel clock frequency = 2 * (PCD + 2) 

2.4.3 The LCD Controller Status Register (LCSR) 

This register contains 32 fields used to signal interrupts. These interrupts can be generated 
by events such as the disabling of the LCD controller or a DMA transfer. An interrupt is 
lifted when its corresponding bit is re-initialized. Thus, this register contains two kinds of 
bits: the flags, that are set and cancelled by the hardware, and the status bits, that are set 
by the hardware and cancelled by the software. 

2.4.4 The LCD Controller DMA Registers (DBA R and DCAR) 

The LCD controller disposes of two DMA channels to transmit frame buffer data to the 
LCD controller. Each of these DMA channels needs a base address pointer, stored in the 
DBARI or DBAR2 register, and a current address pointer, stored in the DCARI or 
DCAR2 register. 

When the LCD display is switched on, both DBAR and DCAR contain the base ad
dress. The LCD controller requires a DMA transfer, and the DMA reads four words from 
the frame buffer memory by using the current address pointer DCAR. These words are 
sent to the controller and DCAR is incremented of four. Each time the entry buffer of 
the controller contains four empty places, a DMA request is sent and four new words are 
loaded. When the current address pointer reaches the end of the frame buffer, the base 
address value in DBAR is copied in DCAR and the transfer continues frorn the start of 
the frame buffer. 
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Chapter 3 

The Linux operating system 

3.1 Introduction 

The Linux operating system, in short Linux, is a member of the Unix operating systems 
family. A first version of Linux was developed in 1991 by a Finnish student, Linus Tor
valds, by referring to Minix, a version of the Unix operating system developed by Andrew 
Tanenbaum. This first Linux version was only available on IBM/PC compatible computers 
using an Intel 80386 microprocessor, but was adapted afterwards with the help of other 
developers, in order to be supported by various architectures, such as Alpha, SPARC, 
ARM or MIPS. Linux was also upgraded with man.y additional functionalities and finally 
converged to a stable version released in 1993. Year after year, new enhanced versions were 
released, taking into account hardware evolutions and new peripherals. All those evolu
tions resulted from the contribution of man.y developers around the world, their activities 
still being coordinated by Torvalds. 

One of the advantages of Linux is that it is not a commercial operating system: its source 
code is under GNU1 Public License (GPL) , that allows anybody to consult it freely, execute 
it or make a copy of the source files, adapt it or improve it, and distribute it, modified or 
not. Nevertheless, any software product derived from a product covered by the GPL must, 
if it is redistributed, be released un.der the GPL. The main goal of this philosophy is to 
allow the growth of knowledge by allowing everybody to modify programs at will. 

The main part of the Linux operating system is called the kernel. The kernel is loaded 
into RAM at boot time and contains many needful procedures for an efficient running of 
t he system. It must achieve the two following purposes: 

• Interact with the hardware components. 

1GNU is the recursive acronym of "GNU's Not Unix" . 
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• Provide an operating environment for the applications implemented on the computer 
system ( the so-called user programs). 

Sorne operating systems (such as MS-DOS) allow all applications to directly communicate 
with the hardware components. On the contrary, Unix operating systems and in particular 
Linux, bide to the user ail low-level details concerning the physical organization of the 
computer. When a user program wants to use a hardware resource, it sends a request 
to the operating system. The kernel analyzes the request and allocates the resource by 
interacting with the hardware resource on behalf of the user program. In order to reinforce 
this approach, Linux introduces two execution modes for the processor: a non privileged 
mode for t he user programs (the User Mode) and a privileged mode for the kernel (the 
Kernel Mode). 

3.2 User mode and kernel mode 

A process can be defined as "an instance of a program in execution". Wben a process runs 
in user mode, it doesn't dispose of the privilege to directly access to data structures or 
fonctions of the kernel. When a process runs in kernel mode, tbese restrictions no longer 
apply: kernel data structures and functions can be used without any restriction. Eacb 
processor proposes special instructions to switch from the user mode to the kernel mode 
and vice versa. 

An user application runs essentially in user mode and switches to kernel mode only when 
it requests a service provided by the kernel. When the request is satisfied, the processor 
puts the process back in user mode. For example, an applicative process cannot normally 
directly access to a peripheral device. It bas to switch to kernel mode before that. When 
the I/0 operations are completed, the processor bas to go back to the user mode. 

There are several situations to switch in kernel mode: 

• A process invokes a system call. 

• The processor running the process signais an exception, which is an unusual condition 
such as an invalid instruction. Theo, the kernel handles the exception on behalf of 
the process that bas caused it. 

• A peripheral device issues an interrupt signal to the processor to notify it about of an 
event, such as the completion of an I/0 operation. Each interrupt signal is managed 
by an element of the kernel called an interrupt handler. 
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The computer memory is subdivided into user space and kernel space, and this separation 
obviously corresponds to the two execution modes. Thus, the user space is the place where 
applicative processes are running; the kernel space is the one where the kernel code is 
executed after loading, and where kernel data structures are hosted. 

Operations executed in the kernel space include (figure 3.1): 

- Process management: To achieve the effect of an apparent simultaneous execution of 
multiple processes, Linux bas to switch from one process to another one in a very 
short time. Process management is concerned with the creation and the destruction 
of processes, as well as when to switch and which process to choose. 

- Memory management: In general, the memory is not large enough to contain ail the 
running processes. Before loading a prograrn in memory, it could be needfuI to 
liberate space, by releasing the memory of inactive processes. Memory management 
is concerned with the allocation of the memory space to processes and liberation of 
space. 

- Device control: Generally a process needs data from outside (keyboard, disks) and 
produces a result to be exported outside (screen, disk, printer). Most of the device 
control operations are performed by code; this code, specific to the device being 
addressed, is called device driver. The kernel must dispose of a device driver for 
every peripheral present in the system (bard disk, keyboard, screen and so on). 

- Filesystem: It is concerned with the creation, the access, the move, the destruction and 
t he organization of files or directories and also their storage on volumes. 

- Networking: Networking must be managed by the operating system because most net

work operations are not specific to a process: incoming data packets are asynchronous 
events. The packets must be collected, identified and dispatched to the processes. 
More, the system is in charge of delivering data packets from programs to the net
work. Additionally, ail the routing and address resolution issues are implemented 
within the kernel. 

3.3 Filesystem 

Linux, as any Unix operating system, uses the concept of file. An Unix file is a container of 
information, structured as a sequence of bytes. It does not include any control information 

such as its length, or an End-Of-File (EOF) delimiter. Each file belongs to one of these 
following types: 
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Figure 3.1: A view of the kernel. 

• regular file: a set of jointly stored data. 

• directory: a set of files regrouped in the filesystem. 

• symbolic link: a short file containing the access path to another file. 

• pipe and named pipe: a special file used for interprocess communication. 

• socket: a software mechanism allowing programs to communicate with a local or 
remote application. 

• device file: file allowing user programs to access hardware devices of the system. 

For the user, files are regrouped according to a structure in tree: the filesystem. Each 
node of the tree, except terminal nodes, represents a directory and contains information 
about files located under this node. A terminal node represents a file of another type (See 
figure 3.2). 

Figure 3.2: An example of filesystem. 
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At each file of the filesystem corresponds a special structure, an inode, used by the system 
to identify it. The inode structure contains ail relevant information for the filesystem to 
handle a file, such as the type of file, its size, its inode nurnber, the owner id, the access 
rights, the pointers to data bloclcs and other type-specific information. Thus, file's content 
is stored in data blocks, pointed by the inode. 

As mentioned in the previous section, the user programs are not authorized to access 
directly to devices and have to require them through system calls. Because the filesystern 
is stored on a disk, user programs cannot directly manipulate files and must also use sys
tem calls. Therefore, Linux uses several system calls related to file handling. Whenever 
a process wants to perform an operation on a specific file, it uses the appropriate system 
call and passes the file pathname as a pararneter. 

Although all the files seem identical in the filesystem, accessing to the data blocks of 
a regular file is very different frorn accessing to a device through a device file, or com
municating through a socket. Nevertheless, frorn the user prograrn point of view, system 
calls are standardized. Thus, a read(}2 system call applied on a regular file allows to read 
the content of the data blocks, whereas applied on a device file, it allows to extract data 

provided by the device (for example, the movements of the mouse). Effective differences 
between regular files and device files are hidden from user programs by the kernel. 

Concretely, a system call is not implemented directly: it uses a pointer for each opera
tion. By default, this pointer references the default file operations, which are operations 
used to manage regular files. For the other files, the kernel updates the pointer in order 
to replace default file operations by the appropriate fonctions for the particular file to be 
accessed. 

If a process wants to perform an operation, like read or write a file, it has to open the 
file before. In order to open a file, a process has to invoke the open() system call. This 
system call creates an "open file" object, and returns a file descriptor. This descriptor 
stores information about the interaction between the open file and the process, and con
tains pointers to the functions associated to this file. When the file is opened, processes 
can realize some operations on the file like moving into the file (by using the pointer to the 
lseek() fonction), reading some part of the file (read(}) or writing into it ( write()). When a 
process doesn't need anymore to access the contents of a file, it can invoke the system cal1 
"close()", which releases the open file object corresponding to the file descriptor. When a 

2The function names are postfixed with (). 
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process term.inates, the kernel closes all its still opened files. 

3.4 Device driver and device file 

3.4.1 Device driver 

The kernel interacts with 1/0 devices by means of special programs, called device drivers. 

Device drivers are part of the kernel and consist of data structures and functions that con
trol the various devices connected to the computer system, such as bard disk, keyboard, 
mouse, monitor, network interface, and devices linked to a SCSl3 bus. 

Each driver interacts with the kernel in an uniform way. This approach has the following 
advantages: 

• Device-specific code can be encapsulated in a specific module (see below). 

• Vendors can add new devices without knowing the kernel source code: only the 
interface specifications must be known. 

• The kernel deals with all devices in a uniform way and accesses them through the 
same interface. 

• lt is possible to write a device driver as a module that can be dynamically loaded in 
the kernel without rebooting the system. lt is also possible to dynam.ically unload a 
module that is no longer needed, thus minim.izing the size of the kernel image stored 
in RAM. 

The figure 3.3 illustrates how device drivers interface with the rest of the kernel and with the 
processes. If some user programs want to operate on hardware devices, they make requests 
to the kernel using the usual file-related system calls and the device files normally found in 
the /dev directory. As a matter of fact, the device files are the user-visible portion of the 
device driver interface. Each device file refers to a specific device driver, which is invoked 
by the kernel in order to perform the requested operation on the hardware component. 

3.4.2 Device file 

Linux considers 1/0 devices as files; thus, the filesystem includes specific files, the device 

files, that allow user programs to access hardware devices. These device files represent in 
the filesystem the 1/0 devices supported by Linux. When a process accesses to a device 
file, it activates the functions speci.fic to the device. These functions, implemented in the 

3Small Computer System Interface 
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Figure 3.3: The device driver interface. 

device driver, are linked to the device file by the kernel. With few exceptions, all device 
files are located in the / <lev directory. 

In addition of its name, each device file has three main attributes: 

• the class of device; 

• the major number; 

• the minor number. 

The class of a device concerns the way to exchange data from and to the device. Char 
device, black device and network interface are the three main types, which are described 
in the chapter "General description of a Linux device driver". 

The major number is a number ranking from 1 to 255 that identifies the device type. 
Usually, ail device files having the same major number and the same class share the same 
set of file operations, since they are handled by the same device driver. For example, 
/<lev /null and /<lev /zero are both handled by the driver number 1. Another example is 
the hard disk: although each of its partition is considered as a spécifie device, the partitions 
own the same major number. The kernel uses this major number when an open() is called 
to request the execution by an appropriate driver. 
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The minor number, also ranking from 1 to 255, is used by the driver to identify a specific 
device among a group of devices that share the same major number. For example, each 
partition of a disk uses a different minor number. 

Every time the kernel calls a device driver, it tells the driver which device is being acted 
upon. The major and minor numbers are paired in a single data type that the driver uses 
to identify a particular device. A combined device number (the major and minor number 
concatenated together) resides in the field i..rdev of the inode structure. Thus, the driver 
can identify the device by extracting the device number located at inode->i..rdev. 

3 .5 The concept of module 

The Linux kernel is monolithic: each kernel fonction is integrated into the whole kernel 
program. Wben a programmer wants to add a new functionality to the Linux kernel, be 
has two possible approaches: he can decide either to include the new fonction into the 
kernel (static approach), or to write the new fonction as a module, compile it separately 
and integrate the compiled code to the kernel (dynamic approach). 

A module usually regroups additional fonctions to be realized by a filesystem, a device 
driver, a protocol or other features. A module is an object file, its code can be dynamically 
linked to (and unlinked from) the kernel at any time during the runtime. 

The module is integrated in the kernel in order to serve future requests and proposes 
two entry points. The first one, the module_ini t () ( or sometimes ini t..module ()) fonc
tion, contains all needful code to respond to later invocation of the module's fonctions 
(memory allocation, hardware initialization, .. . ). The second entry point, module_exitO 
( or cleanup..module O), must be able to undo what was realized by module_ini t (). The 
two commands insmod . /<file>. o and rmmod <file> allow respecti vely to link and un
link a module. 

Generally, programmers have the tendency to implement new fonctions as modules. Be
cause modules can be linked on request, the kernel will not be bloated with hundreds 
of rarely-used functions and will have a reasonable size. However, some code cannot be 
added by modularization to the kernel: this happens typically when a new functionality 
requires a modification of some data structures or functions statically linked in the kernel. 
As an example, suppose that the functionality needs to introduce new fields into the inode 
structure. Because the kernel is running, it is impossible to modify the declaration of the 
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struct inode type. The only way to implement the modification is then to add statically 
the fields in the type declaration and re-compile the kernel. 

The link between the kernel and a module implies two main tasks to be performed. First, 
the kernel must be able to access to global symbols (variables and functions) of the module, 
such as the entry point of the module. In the same way, a module must be able to access 
to the kernel symbols or to the symbols of other modules. The second task consists in 
keeping track of the use of a module, so that no module is unloaded while another module 
or another part of the kernel is using it. 

When a module is loaded, the references to the kernel symbols that are used in the module 
must be replaced with suitable addresses. The kernel uses a special table to store the sym
bols that can be accessed by modules together with their corresponding addresses. This 
table is called the kemel symbol table. At load time, all references to the global kernel 
symbols are replaced by the effective addresses. 

A linked module can also export its own symbols, so that the kernel or other modules 
can access to the global variables and use functions from a module loaded earlier. For that 
purpose, the module collects all its exportable symbols and includes them into the kernel 
symbol table. 

The figure 3.4 shows how the kemel accesses to the module's functions and how the module 
accesses to the kernel's functions. 

The kernel keeps an usage counter for ~ach module, so that it can determine whether 
this module can be removed without problem. The system needs this information because 
a module can't be unloaded if it is used by a process. The counter is incremented when an 
operation involving the module's functions is started and decremented when the operation 
terminates. A module can be unlinked only if its usage counter is null. 
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Chapter 4 

The Linux device drivers 

4.1 General description of a Linux device driver 

4.1.1 Definition and roles of a device driver 

Definition 

A device driver is the part of the operating system that manages communication with a 
specific device. It is a "black box" that bides the details of a particular device and provides 
a high level programming interface to it. 

Roles 

User actions are executed by means of a set of standardized calls that are independent 
of the specific driver; mapping these calls to device-specific operations that really act on 
the hardware is then the role of the device driver. Because each device requires a driver 
running with each type of an operating system, there are several hundred drivers on Linux. 

The main functions of a driver are: 

• Perform I/O management; 

• Provide transparent device management; 

• Avoid low-level programming; 

• Increase I/O speed because usually it is optimized; 

• Include software and hardware error management; 

• Allow current access to the software by several processes. 
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A device driver is a software layer that lies between the applications and the device. Because 
several applications can use the same device by different ways, it is important for a driver 
to be flexible. This is the reason why a driver provides mechanisms, and not a policy. 
Moreover, it is also interesting to keep complexity out of the kernel, in order to maintain 
the small size of this one. For example, a hard disk can generally be subdivided into 
several partitions, which can support different files organizations (FAT, Ext, Ext2, NTFS). 
The bard disk driver cannot impose a files organization, but must let the choice of this 
organization. 

4.1.2 Level of kernel support to hardware device 

The kernel can support the access to hardware devices in three possible ways (see figure 4.1): 

- No support at all: applications interact directly with device I/O registers by using 
assembly language instructions. The most famous example of this approach is how 
the X Window System, the most common used windows manager under Unix and 
Linux, handles the graphie display. It is composed of a X server, managing a terminal 
(mouse, keyboard and display) and providing graphie fonctions, and of one or several 
X clients calling these functions to display windows or drawings. These programs 
are not included in the kernel: they run in user mode like usual applications. 

- Minimal support: the kernel does not recognize the hardware device but only its I/O 
interface. It considers this I/O interface as the one of a device capable of reading 
and/or writing sequences of bytes. Consequently, the kernel invites the application 
program to read and/or write bytes and supplies to the device a device driver to han
die these bytes. The minimal support approach is used to handle external hardware 
devices connected to a general-purpose I/O interface, like serial ports. 

- Extended support: The kernel recognizes the device and handles itself the I/O inter
face. All hardware devices directly connected to the I/O bus, like internai hard disk, 
are handled according to the extended support approach: the kernel bas to integrate 
a driver for each device of this type. 

Minimal support is preferable to extended support because it keeps small the kernel size. 
But this approach bas also a disadvantage: because of the general-purpose I/O interface, 
that only offers generic fonctions, specific interactions between the device and functions 
or data structures of t he kernel are impossible. For example, in the case of a bard disk, 
it is not possible with the minimal support approach, to recognize the disk and set up its 
filesystem. In this case, an extended support will be compulsory. 

Each device proposes a number of fonctionalities that the driver has to be able to execute. 
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Figure 4.1: Level of kernel support (Left: No support at ail. Central: Minimal support. 
Rigbt: Extended support). 

Although the working and the implementation differ for each device, these functionalities 
often present common characteristics that allow to get together existing devices in several 
classes. 

4.1.3 Classes of devices 

Linux distinguishes three device classes: char devices, block devices and network interfaces. 
At each class of devices corresponds a class of drivers, which allow to access to the devices 
of this class. 

Char devices 

A char ( or character) device is a device that can be accessed in the same way as a stream 
of bytes, wbere bytes are addressed sequentially. Thus, a char device generally produces, 
and/or expects to receive, an aleatory-sized stream of bytes. The mouse, the keyboard, 
the display, the serial ports and the prioter are examples of char devices, as they are well 
cbaracterized by a stream of bytes. The main difference between a char device and a reg
ular file is that with the regular file , it is possible to move back and forth, whereas most 
char devices are just seen as data channels which can only be accessed sequentially. 

Char devices are accessed through names in the filesystem, called filesystem nodes. Those 
names are conventionally located in the /dev directory (for example, /dev/lpO is the device 
file corresponding to the printer). 

Block devices 

A black device is a device that can host a file system, accessible only by black of bytes. 
Hard disks, floppy disks and CD-ROM are the most usual examples of black devices. These 
kinds of devices have a very high average access time. Each operation requires several mil
liseconds to complete, mainly because the bard disk controller must move the heads on 
the disk surface and turn the disk to reach the exact position of the data. However, when 
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the heads are correctly placed, data transfer is performed at rates of tens of megabytes per 
second. 

ln order to achieve acceptable performance, block devices transfer several adjacent bytes 
at once. Groups of bytes are adjacent when they are recorded on the disk surface in sucb a 
way that a single search operation can access to them. The hardware imposes as transfer 
unit the sector, which is generally a set of 512 adjacent bytes. 

However, at the driver level, each transfer request concerns a fixed-size set of adjacent 
bytes, called block, in a single operation. In Linux, block size must be a power of 2, and 
cannot be larger than a page frame1 . Because of the hardware constraints, a block size 
must also be a multiple of the sector size. Therefore, in many architectures, the authorized 
block sizes are 512, 1024, 2048, and 4096 bytes. 

Like char devices, block devices are accessed by means of filesystem nodes in the / dev 

directory. They are also identified by a major and a minor number, unique for ea-eh block 
device file. The major number identifies the driver associated with the device, for example 
/ dev /hd. The minor number is used only by the driver identi:fied by the major number 
(other parts of the kernel do not use the minor number). 

The space of a block device can be partitioned: each partition is then considered as a 
speci:fic device, and is accessible by its own device file. Block size is fixed for the partition 
at its creation. Thus, a disk can host several block sizes, but only one per partition. 

Another characteristic of block devices is that blocks of bytes stored on the device can 
be addressed randomly: the time needed to transfer a data block can be assumed indepen
dent of the block address inside the device and of the current device state. 

An efficient way to avoid low access time consists of using a bu.fier cache, which is a 
disk cache storing blocks. The idea behind the buffer cache is to relieve user processes 
having to wait for relatively slow disks to retrieve or store data. Thus, it would be coun
terproductive to write a lot of data at once; instead, data should be written piecemeal at 
regular intervals so that I/O operations bave a minimal impact on the speed of the user 
processes and on response time resented by human users. 

1The available RAM is partitioned into page frames 4 or 8 KBytes in length. 
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Network interfaces 

AU network transactions are made through an interface, that is a device able to exchange 
data with other hosts. Usually, an interface is a hardware device, but it might also be a 
software device, like the loopback interface2

. A network interface is in charge of sending 
and receiving data packets, without knowing how individual transactions map to the actual 
packets being transmitted. 

Each network interface is identified by an unique name (such as eth0), but that name 
has not a corresponding entry in the filesystem. Instead of using the filesystem, a rela
tionship between the device name and a network address must be set up. Therefore, data 
communication between an application program and the network interface is not based on 
the standard file-related system calls; it is based on other system calls, such as socket(), 
bind() , listen(), accept(), and connect() , which act on network addresses. 

As our work concerns displays, the next section will be focused on the description of a 
char driver, using as an example the frame buffer driver fbmem.c (see Appendix C). 

4.2 Char drivers 

Char drivers are drivers that allow to transmit information from the user to the device, 
or vice versa, byte per byte. Because bytes are exchanged one by one, there is no need to 
have a buffer for the exchange of data. 

User programs use several standardized. system calls, such as open(), release(), read() 
and write(), to realize I/O operations. A device driver usually implements these different 
system calls to specialize them to a specific device. 

In order to access to the functions behind these system calls, the kernel uses a specific 
structure: the file_operati ons structure. This structure contains a field for each possi
ble system call, allowing to point towards the adequate function. Each file is associated 
with its own set of functions. The following list shows which operations generally appear 
in a char driver and what they allow to do on the device. 

The setup() function 

int __ init video_setup(char *options) 

2 A loopback is an interface allowing to connect to himself exactly as to another host. 
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Sometimes, it is desirable to pass parameters to a device driver or to the Linux kernel 
in general. This may be necessary when automatic detection of hardware is not possible, 
or may result of a confüct with another hardware. This function is less used in recent 
versions of Linux and Linux device drivers. 

The init () fun et ion 

void __ init fbmem_init(void) 

The ini t O fonction is only called at boot time and is used to initialize the driver. The 
fonction has three main roles: it must test for the presence of a device, create internai 
device driver structures and finally register the device at the kernel level. This is done 
when the system is started up or when the driver modules are initialized, by using the 
following fonction: 

int {devfs_}register_chrdev (unsigned int major, const char *name, struct 
file_operations *fops); 

This instruction associates, in a table handled by the kernel, a major number with a 
device file's name and its associated fonctions, put in argument. The major number is 
used as index in this table. li the register_chrdev() instruction is called with zero as 
major number, the kernel will associate dynamically a free major number to the specified 
device file. Otherwise, the value of the major argument is used as major number for the 
device. 

The open() and release() functions 

int fb_open(struct inode *inode, struct file *file); 
int fb..release(struct inode *inode, struct file *file); 

The open O function is used to realize initialization, in preparation for later operations 
with the device. It has to perform several tasks: 

• H the driver is integrated in a module, it increments the usage count to avoid being 
unloaded before the closing of the device file. 

• H the driver handles several devices, it selects the appropriate one by using the minor 
number. Possibly, it specializes the file operations table. 

• The driver checks for device-specific errors (hardware problems, device not ready, ... ). 

• Possibly the driver sends an initialization request to the hardware device. 
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• The driver initializes and fills any data structure (sometimes, some of these actions 
are realized at boot time by the ini t O fonction). 

The role of the release () function is the opposite of the open() function. It bas to execute 
the following tasks: liberate and clean the data structure used by the driver, decrement 
the usage count and possibly shutdown the device. 

Though open O and release O are always the first and the last operations performed 
on the device, these fonctions can be missing. 

open O and release O need two arguments. The first argument, inode, is a pointer 
to a inode structure. This structure contains data that allow to assuredly identify the 
device. The second argument, the file structure, is an important data structure used in 
device drivers and represents an open file. It contains several information like if the file is 

readable or writable ( or both), the current reading or writing position, different flags for 
critical resources rnanaging and a pointer to the file_operations structure (see below). 
These two methods return O when they succeed and an error number when they fail. 

The read() and write() fonctions 

ssize_t fb..read(struct file *file, char *buffer, size_t size, loff_t *offset); 
ssize_t fb_write(struct file *file, const char *buffer, size_t size, loff_t * 
offset); 

The instruction read O allows to retrieve data from the device and serve them to an 
application. wri te O allows to send data to the device and works like the read () function 
but in the opposite sense. Because device data and user application are in different address 
spaces, the read() and writeO functions have to move segments of data from the kernel 
space to the user space, or vice versa, and call copy_to_user() or copy_from_userO to 
do that. 

The file argument is the same as in open() and release() and allows to identify device 
file. count contains the size of the data to transfer. buffer points to a user buffer that 
contains data to write to the device's I/O memory or points to an empty memory area in 
the user space where read data must be stored. Finally, offset points to a variable that 
contains the current position in the user buffer. The returned value is the number of bytes 
effectively transferred. For example, when an application uses the write() system call, in 
order to write pixels into the frame buffer, the fb_writeO fonction in fbmem.c works like 
this: buffer points to the beginning of the user buffer. The user application can transfer 
pixels in several segments by calling several times the fb_wri te () fonction. count tells 
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the size of a transfer and offset the beginning of the transferred segment. 

The ioctl() function 

int fb_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsig
ned long arg); 

The ioctl system call offers a way to issue device-specific control commands, like read
ing or changing device parameters, reading or modifying the palette, ... ioctlO is device 
specific in the sense that, unlike read, write and others methods, it allows applications to 
access to specific features of the hardware being driven. Most of the ioctl implementations 
consists of a switch instruction that selects the adapted actions aœording to the cmd ar
gument. The last parameter, arg, allows to pass an argument to the selected command. 
The type of arg authorizes to pass only one argument, but it could be a pointer to a set 
of data, like a structure for example. 

By looking at the ioctl() code, we can observe two kinds of commands: commands that 
"get" data, and commands that "put" data. In both case, there is exchange of data ( the arg 
argument) between user space and kernel space and there is a need to use copy_to_user() 
and copy ..from_user () to do that. 

The ioctl() commands of the fbmem.c driver allows to extract or modify the main data 
structures that concern the display, the LCD controller and the frame buffer. 

The llseek() fonction 

loff_t llseek(struct file *file, loff_t *offset, int whence); 

The llseek{) method allows an user program to change the current read/write position 
in a file , the new position being returned as a return value. The offset argument indi
cates the length of the offset and whence defines from which place {beginning or end of the 
file , current position). llseek() is not implemented in the frame buffer driver. 

The poli() fonction 

unsigned int poll(struct file *file, struct poll_table_struct *table); 

The poll O method is the back end of two system calls, poll and select, both used to 
inquire if a process can read from or write to one (or more) open file{s) without blocking. 
These system calls are used by applications that must use multiple input or output streams 
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without blocking on any one of them. The method returns a bit mask describing operations 
that could be immediately performed without blocking. poll () is not implemented in the 
frame buffer driver. 

The mmap() function 

int fb...mmap(struct file *file, struct vm_area_struct *vma); 

Linux provides the mmap() system call, that allows to a part of memory device to be 
associated, or mapped, with the process address space. It means that whenever the pro
gram reads or writes in the assigned address space, it accesses the memory device; an 
operation (read or write) on a byte of the assigned address space is translated by the ker
nel into the same action on the corresponding byte in the memory device. For example, 
using mmap() on the /dev/fb file allows to an application a quick and easy access to the 
frame buffer memory: in order to modify some pixels, the application bas just to write 
new values directly at the good place, and does not have to take up position with llseek() 
before writing each pixel. 

The mmap() fonction asks two arguments: the usual struct file, and vma that con
tains information about virtual addresses used to access to the device. mmap() returns 0 
if it succeeds, otherwise an integer representing an error. 

The registration function 

The kernel needs to know which devices are available. For this reason, the kernel main
tains two tables, chrdevs for char devices and blkdevs for block devices, that contain a 
description of each device. This description indicates the major number and the name of 
the device, as well as the possible operations on it. If a device driver is statically included 
in the kernel, like the frame buffer driver, the corresponding device is registered during the 
system initialization. However, if a device driver is dynamically loaded as a module, the 
corresponding device is registered when the module is loaded and unregistered when the 
module is unloaded. 

int {un}registerJramebuffer(struct fb_info *fb_info) 

The frame buffer driver registers itself by calling register_framebuffer (), with a pointer 
to a fb_info structure in argument. This function registers the major number and main
tains an internai list of which frame buffer device is in charge df each minor number. The 
fb_info includes everything needed for specific device management. lt also creates a de
vice file in the / <lev directory. 
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Logically, the unregister _framebuffer () fonction allows to unregister the driver by delet
ing corresponding entry in the table and removing device file in the filesystem. 

4.3 A methodology for device driver designing 

4.3.1 The ideal device driver 

The ideal driver is the one that bides completely the hardware. This means first that the 
device driver should be the only piece of software in the entire system that reads or writes 
the device's control and status registers. Secondly, when the device generates an interrupt, 
this interrupt should be integrally processed by the device driver. Moreover, it should be 
not needed to change the programming of the driver when the underlying peripheral is 
replaced by another one of the same type; for example, the programming interface of a 
"flash" memory driver should work with any "flash" memory device. 

Nevertheless, in practice, hiding the hardware completely is difficult, because of the broad 
features of the devices. But trying to design towards an ideal device driver gives the three 
benefits: 

1. The modularization makes that the structure of overall software is easier to under
stand and maintain. 

2. Because only one driver interacts directly with the peripheral's registers, the hardware 
state can be tracked more accurately; 

3. Interface software changes are localized in the device driver. 

The most tangible effect is the reduction of the system bugs. 

4.3.2 Design methodology 

The methodology of hiding hardware particularities and interactions when designing a 
device driver consists of five rules. To implement them as simply and incrementally as 
possible, these rules should be used in the following order. 

1. Defining a data structure that overlays the memory-mapped control and 
status registers of the device. 

The first step in the driver development process is to create a structure that looks 
just like the memory-mapped registers of the device. This structure contains fields 
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corresponding to the control and status registers. To make the bits within the control 
register easier to read and write individually, it is also interesting to define bitmasks. 
A bitmask generally consists in a 32 bits word that can be combined, with help of 
logical operations, with a register content to select a specific (set of) bit(s). For 
example, the bitmask of the LEN field of the LCCRO register is defined like this: 

#define LCCRO_LEN Ox00000001 I* LCD ENable 

It can be used to put the bit LEN to O of the LCCRO register, and that what
ever the value contained in fbi->reg_lccr0. 

LCCR0 = fbi->reg_lccr0 & -LCCR0_LEN; 

2. Declaring a set of variables to store the current state of the hardware and 
device driver. 

The second step in the driver development process is to figure out what variables 
will be needed to contain the state of the hardware and device driver. For example, 
it would be useful to keep in a variable the number of bits used to represent a pixel. 

3. Implementing a routine to init ialize the hardware to a known state. 

Once defined the way to store the state of the device, one can start writing the 
fonctions that interact with the device and control it. The best is to begin with the 
hardware initialization routine. This is to be made anyway, and it is a good way to 
get familiar with the device interaction. 

4. Implementing a set of routines t hat, taken together, provide an API for 
users to the device driver. 

In this step, the other functions are added to the driver. This step requires a good 
knowledge of the different operations that the hardware can perform. It is also needed 
to know how to request the operations and transmit parameters to the device. All 
these functions must be tested in each possible condition. It is also important to 
keep in mind that many devices are critical resources. 

5. Implementing one or more interrupt service routines 

This step consists in identifying the possible interrupt-s, locating where the driver 
can detect them, and implementing appropriate answers. 
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Chapter 5 

Interrupts 

An interrupt signal is defined as an event that alters the sequence of instructions executed 
by the processor. Such events correspond to electrical signals generated by hardware cir
cuits inside or outside the processor. 

Interrupt signals are subdivided into exceptions, hardware interrupts and software inter
rupts: 

- An exception (or synchronous interrupt) is produced in the CPU control unit when 
special instructions are executed or when an error or an abnormal situation occurs. 
This interrupt is also called synchronous interrupt because the control unit issues it 
only after terminating the execution of the processed instruction. 

- A (hardware) interrupt (or asynchronous interrupt) is generated by another hardware 
device, such as a timer or an I/O device, at arbitrary time with respect to the CPU 
dock. For instance, the reception of a complete frame by the display system causes 
an interrupt. 

- A software interrupt is generated by a special software instruction. Such an interrupt is 
generally used to implement system calls. 

This chapter is essentially focused on the hardware interrupts, because they concern the 
interactions between the operating system and the devices. 

5 .1 Polling mode and interrupt mode 

The duration of an I/O operation is often unpredictable. It can depend on mechanical 
considerations (the current position of a disk head with respect to the block to be trans
ferred) , on random events (when a data packet arrives in the network card), or on human 
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factors (when a user presses a key on the keyboard) . In any case, the device driver that 
started an I/0 operation needs a monitoring mechanism signaling to the CPU either the 
termination of the I/0 operation or a timeout . The two techniques available to monitor 
the end of an I/0 operation are respectively called the polling mode and the inte1rupt mode. 

In the polling mode, the processor repeatedly checks (polis) the status register of the 
device, until its value signais the completion or the failure of the I/0 operation. Because 
an I/0 operation can take a long time, the driver bas to release the CPU after each polling 
operation, to allow other processes to continue their execution. 

In the interrupt mode, the I/0 controller of a device signais to the processor the com
pletion or the failure of an I/0 operation, by sending an electrical interrupt signal. At the 
reception of an interrupt, the processor transmits this one to an interrupt handler, which 
is able to interpret the interrupt and perform the needed actions. 

On the whole, interrupts offers a much more efficient use of the processor than polling, 
because the processor is able to use a larger percentage of its waiting time to perform 
useful actions. However, it takes time to put aside the current process and transfer control 
to the interrupt handler. 

5.2 lnterrupts handling 

This section describes how interrupts are handled and is subdivided into three parts: the 
first part explains the way an interrupt generated by a device is detected by the CPU. The 
second part describes how the kernel selects the appropriate interrupt handler, and the 
third part is focused on the role of an interrupt handler and how it works. 

5.2.1 Interrupts detection 

Most of devices are able to transmit interrupts to the processor. An interrupt is just 
an electric signal emitted by the device controller on an output line. Ail these lines are 
connected to the input pins of a hardware circuit called the interrupt controller, which 
warns the processor when an interrupt occurs. There are two kinds of interrupts: 

• The unmaskable interrupts, that cannot be disabled. Only a few critical events, such 
as hardware failures, give rise to unmaskable interrupts. 

• The maskable interrupts, that can be disabled. Maskable interrupts are generally 
used to signal non critical events, such as the completion of a data transfer. The 
lines transmitting maskable interrupts are called IRQ (Interrupt ReQuest). 
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When the interrupt controller receives an interrupt, it stores the line number in one of 
its registers, called ICIP1, which is accessible to the processor. Afterwards, the interrupt 
controller sends a signal to the processor to point out that an interrupt has occurred (see 
figure 5.1). The processor can then start a new sequence of instructions, called the kernel 
control path. 

DèVIC8 
controller 

~-~ 

lnterrupt controller 
7ëïp 00000011 

Figure 5.1: Detection of an interrupt by the processor. 

5.2.2 Interrupt handler selection 

When an interrupt is signaled to the processor, this latter stops what it is currently doing 
and switches to a new sequence of instructions, called the kernel control path. This step 
requires to save the current content of the program counter on a kernel specific stack, and 
to actualize the counter with the address of the first instruction of the kernel control path. 

The kernel control path is executed in kernel mode. The first action performed by the 
kernel control path consists in saving the current content of the processor registers in the 
kernel stack. It is necessary to keep these values in order to restore the processor in its 
previous state at the end of the interrupt handling. After that, the kernel control path 
reads the content of the ICIP register and confirms the reception of this one to the inter
rupt controller. 

1for Interrupt Controller IRQ Pending. 
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Afterwards, the kernel control path executes the appropriate interrupt handler, which is a 
function capable to handle the interrupt. In practice, the kernel maintains a table, called 
Interrupt Descriptor Table or IDT, that contains the address of each interrupt handler. 
The content of the ICIP register indicates the position, in the IDT table, of the appropriate 
interrupt handler address. 

At the end of the interrupt handler execution, the kernel control path restores the CPU 
registers with the values stored on the top of the stack, and restores the program counter 
with the previous saved value. 

An interrupt might occur when the kernel is handling another interrupt. The kernel allows 
to interrupt a kernel control path to execute another one, with the consequence that the 
kernel control paths can be nested. 

Interleaving the kernel control paths allows to confirm faster to the interrupt controller 
the reception of an interrupt. lndeed, this one remains blocked until receiving the ac
knowledgment. Thanks to the interleaving, the kernel is able to send the acknowledgment 
even if it is handling a previous interrupt. 

5.2.3 lnterrupt handler role and working 

An interrupt generally signals the reception of a set of data, for instance the reception 
of an entire frame by the LCD controller or the reception of a data packet by a network 
interface. The role of an interrupt handler is to give feedback toits device about interrupt 
reception. 

The first step usually consists of clearing a bit of the device controller register; most 
hardware devices will not generate other interrupts until their "interrupt-pending'' bit has 
been cleared. The other typical task of an interrupt handler is to awake sleeping processes, 
which are waiting for an event. 

The number of IRQ lines is generally limited, so that several devices might share a same 
IRQ line. This means that the ICIP register does not give a sufficient information to iden
tify the source of the interrupt. Therefore an interrupt handler must be flexible enough 
to serve several devices. Thus, several interrupt service routines (ISR) may be associated 
with the same interrupt handler; each of them is a fonction related to a single device shar
ing the IRQ line, and implements the task of the interrupt handler concerning the device 
(figure 5.2). As it is not possible to know in advance which particular device uses the IRQ, 
each ISR is successively executed to verify whether its device needs attention, by consult-
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ing the status register of the device controller. So, the ISR performs all the operations 
needed to be executed when the device raises an interrupt. The interrupt service routine 

IOT 

Figure 5.2: Selection of the interrupt handler and access to the ISRs. 

of a device is implemented into its driver. Each !SR requires the same arguments: irq 
represents the IRQ number, dev_id is the device identifier and regs is a pointer to the 
kernel stack area containing the registers saved just after the interrupt bas occurred. The 
first argument allows a single !SR to handle several IRQ lines, the second one allows the 
!SR to take care of several devices of the same type and the last one gives the access to the 
execution context of the interrupted process. Generally, these arguments are rarely used. 

5.3 The initialization 

Because the IRQ lines are in limited number, a device bas to request to the kernel an 
IRQ line before using it. This is generally performed by the init() function of the device's 
driver. Thus, the driver proposes an IRQ number, which can be accepted or refused if this 
IRQ is already reserved by a device refusing to share it. More, the init() function bas also 
to provide the ISR corresponding to the device. These two actions are performed at the 
same time by calling the following function: 

int request_irq(unsigned int irq, void *isr, unsigned long flags, const 
char *dev_name, void *dev_id); 

where irq is the interrupt number being requested, and isr is a pointer to the inter
rupt service routine being installed. flags can take one of these two possible values: 
SA...INTERRUPT, indicating that the ISR must be executed with interrupts disabled; or 
Sk.SHIRQ, signaling that the interrupt line can be shared between devices. dev _na.me 
provides the name of the device owner of the interrupt line and dev _id points to the data 
structure of the related device. r equest_irq O returns O to indicate success or a negative 
value to notify an error. 
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A driver has also to release the IRQ when it does not use it anymore. This is espe
cially the case when a module is unloaded. Releasing an IRQ is simply performed by using 
the fonction: 

void free_irq(unsigned int irq , void *dev_id). 

5.4 Bottom and top half parts of an interrupt handler 

Interrupts can occur at any time, for instance during the execution of a process. As the 
duration of an interrupt handling may be long, the waiting processes is sometimes blocked 
for a long time. Moreover, some parts of the interrupt handling are not urgent and could 
be run later. For instance, assume a block of data arriving on a network line. This event 
leads to a hardware interrupt of the kernel. As this interrupt is generally long, the current 
process is stopped for the same long time. When the hardware interrupts the kernel, it 
could be simpler to mark the presence of data, let the processor corne back to its previous 
task, and then process the incoming data (i.e. moving the data into a buffer where its 
recipient process can find it). 

Linux resolves this problem by dividing an interrupt handler in two parts: a top half 
part, that the kernel executes right away to respond to an interrupt, and a bottom half 
part, which is a routine required by the top half, but executed later, at safer time. 

The bottom ha1f part generally performs low priority or longtime actions such as awaken
ing processes, starting another I/O operation, handling received data and so on. This is a 
low-priority function awaiting that the kernel finds a convenient moment to run it. Bottom 
halves that are in waiting state will be executed only when the kernel finishes handling a 
system call, an exception or an interrupt, or executes the schedule() function to select a 
new process to run. Thus, when a top half requests the execution of a bottom half, a long 
time interval can occur before its execution. 

The kernel has to keep track of all the fonctions representing bottom halves in waiting 
state and must be able to call them at another time for processing. Thus, a bottom half 
is generally put into a task queue, a kernel task queue or into a tasklet, which are queue 
or list of fonctions being waiting for execution. The working of the task queues and the 
tasklets is described in the next sections. 
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5.5 Task queues 

A task queue is a linked list of tasks where tasks (such as a bottom half) are stored in order 
to delay their execution to a determined-system safe tiine (see figure 5.3). Thus, tasks are 

Figure 5.3: A task queue. 

progressively accumulated in a queue to be executed later, when the queue execution is 
required. A task put in a queue several times is executed only once. Generally, a t ask has 
low priority and might take a long time to finish. Task queues are not only used to delay 
the execution of bottom halves: they can be used to perform repetitive actions, such as 
polling a device, without burdening too much the processor. 

A task comprises a fonction and an argument. When a task is run, its function is sirnply 
executed with the argument. The argument is a pointer to a data, whicb can be either a 
single value or a data structure. In any case, the function returns void. A task in a queue 
is defined by the following structure: 

struct tq_struct { 

}; 

struct tq_struct *next; 
int sync; 
void (*routine)(void *); 
void *data; 

The most important fields in this data structure are routine and data. These two fields 
must be initialized before inserting the task in the queue. The initialization is made re
spectively with a reference to the function and a reference to the argument. next is used 
to store a pointer to the next task in the queue and sync is used by the kernel to prevent 
queueing the same task several times. The two fields must also be initialized, with respec
t ively null and O. Another data structure involved in task queues is task_queue, wbich is 
the type of a task queue. This is just a pointer to a struct tq_struct task. The following 
list presents operations that can be performed on task queues and tasks. Their effect is 
summarized in the figure 5.4 
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DECLARE_TASK_QUEUE(name); 

This macro declares a task queue with name as variable name and initializes this pointer 
to null. 

int queue_task(struct tq_struct *task, task_queue *list); 

This function puts a task into a task queue. The return value is O if the task was al
ready present on the given queue, nonzero otherwise. 

void run_task_queue(task_queue *list); 

This function is used to consume a queue of accumulated tasks. When all the tasks are 
executed, the task queue is empty. 

--------- ----·- ·----~ ia.at .. ... , 
• :u, ,, 

..._ ______ ....__ mi:t••U'lc.tlOn•trrr fd,hH...,.Mt 

Figure 5.4: Initialization and execution of a task queue. 

Task queues are generally run in interrupt mode. Thus, three constraints are imposed 
to the fonction of a task. First, no access to user space is allowed. The only way to receive 
data from the user space is to use the argument. Secondly, the task cannot sleep. A task 
sleeps when it executes a wait fonction. Finally, the function cannot request a process 
scheduling. 
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5.6 Kernel t ask queues 

Classical task queue presents a disadvantage: the queue execution must be explicitly re
quested by calling run_task_queue O. For this reason, the easiest way to perform deferred 
execution is to use the queues that are already maintained by the kernel. Kernel task 
queues are automatically run by the kernel and can contain several tasks coming from 
many places in the kernel. There are few of these queues, but a driver generally uses one 
of these following three ones: 

The scheduler queue 

Contrary to a classical task queue, the scheduler queue allows its tasks to sleep. As a 
matter of fact, the kernel runs a special process, called keventd, whose sole job is running 
tasks from the scheduler queue. Thus, tasks from the scheduler queue are run in process 
context and not in interrupt mode. Moreover, as a task shares the scheduler queue with 
other tasks, also authorized to sleep, the time that elapses before a task runs could be 
significant. The scheduler queue is not directly accessible; rather than use queue_taskO 
with the scheduler queue in argument, the code must call the following function to put a 
task on the queue: 

int schedule_task(struct tq_struct *task) ; 

task, of course, is the task to be scheduled. The return value is O if the task was al
ready preseot on the given queue, nonzero otherwise. 

The timer queue 

The system bas a timing hardware feature, called timer, used by the kernel to keep track 
of time intervals. The t imer generates an interrupt at regular intervals, wbich provokes the 
execution of an interrupt service routine. This ISR increments a counter, that the kernel 
uses for instance to know the current time or to delay operation for a specified amount of 
time. 

The timer queue is run at the time of a timer tick. It is used to store the tasks that 
must be done at the next timer interruption. Tasks run from the timer queue are run in 
interrupt mode: they cannot sleep, excbange data with user space or request a scbeduling. 
Contrary to the scheduler queue, the timer queue is directly accessible: to put a task in 
the timer queue, the code must simply use the queue_task() instruction, with tq_timer 
as queue name. 
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The immediate queue 

The immediate queue is the fastest queue in the system. It is run as soon as possible but 
at a safe time, either as soon as a process returns from a system call or when the scheduler 
is run. Like the timer queue, the immediate queue is run in interrupt mode, so that it 
cannot sleep, exchange data with user space or request a scheduling. 

5. 7 Tasklets 

Tasklets look like task queues in a number of ways. They are a way to defer a task until 
a safe time and they are always run in interrupt mode. Like task queues, a tasklet will 
be run only once, even if it is inserted several times. But contrary to a task queue, each 
tasklet is associated with only one function, which is called when the tasklet is executed. 
This function receives an unsigned long argument and returns no value. A tasklet must be 
declared with one of these two fonctions: 

DECLARE_TASKLET(name , function, data) ; 
DECLARE_TASKLET...DISABLED(name, function , data); 

These functions declare a tasklet with the given name; when the tasklet is executed, the 
given fonction is called with the (unsigned long) data value. In the second function, the 
initial state of the tasklet is disabled, meaning that it will not be executed until enabled 
at some future time. The following instruction must be used to request the execution of 
the tasklet: 

tasklet_schedule(&tasklet); 

The tasklet system provides two other fonctions for advanced use of tasklets: 

void tasklet_disable (struct taskl et_struct *t); 
void tasklet_enable(struct tasklet_struct *t); 

The first function disables the given tasklet. The tasklet may still be called, with tasklet_ 
schedule O, but its execution will be deferred until a time when the tasklet has been 
enabled again. The second fonction logically allows to enable a tasklet that had been pre
viously disabled. If a disabled tasklet bas already been called with tasklet_schedule O , 
it will run soon. 
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Chapter 6 

The LCD controller frame buffer 
driver 

This section concerns the description of the hardware dependent part of the LCD controller 
frame buffer1 driver, implemented in sa1100fb.c2 . The power reduction techniques for TFT 
LCD displays have been implemented in this driver. 

6.1 Device dependent and independent levels 

The Lioux operating system supports various architectures. To allow that, the drivers 
implementation has to take into account many kinds of devices, having many similarities 
but also some differences. This is especially the case of the frame buffer driver, that can 
manage till fifty kinds of controller devices. 

In order to support all of them without weigbing down the kernel, the frame buffer driver is 
subdivided into two levels: the device i.odependent level, implemented in the fbmem.c file, 
and the device dependent level, implemented in a different file for each kind of device. The 
device independent level is common for all kinds of devices; the device dependent level is 

specific to a device and specializes the driver for this device. When the kemel is compiled, 
the compiler selects the appropriate device dependent file according to the compilation's 
parameters and neglects the others. 

In practice, a variable in fbmem.c, called fb_dri vers, is initialized at boot time with the 
name of the init() or setup() function of the device dependent level. When fbmemJ.nit() 
or fbmem..setup() are called, they use this variable to require the execution of the device 

1See Chapter two. 
2See Appendix D. 
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dependent init() or setup() fonctions. 

For the StrongARM 1100 LCD controller, the device dependent level is defined in the 
sall00fb.c file. Device independent function and structure names are prefixed by fb_ or 
fbmem_, while LCD controller specific fonction and structure names generally begin by the 
sal 1 00fb_ prefix. 

6.2 The initialization 

int __ init sa1100fb_init (void) 

The sa11 00fb_init() function performs eight main operations: 

l. Initialize the main device-related data structures; 

2. Insert the "controller task" into the task queue; 

3. Initialize the frame buffer memory; 

4. Install the interrupt service routine; 

5. Define the content of the LCD controller registers; 

6. Register the frame buffer driver; 

7. Register the device power management function; 

8. Update the controller registers and enable the LCD screen and the controller. 

6.2.1 Initializing the main device-related data structures 

The LCD controller frame buffer driver uses seven important structures. These seven struc
tures are divided up two files, which are fb.h3 and sa1100fb.h4 . The following structures 
are included in fb.h: 

• fb_var_screeninfo is used to describe the display features modifiable by the user, 
such as the resolution, color depth or the dock frequency. 

3See Appendix E. 
4See Appendix F. 
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• fb_fix_screeninfo defines the properties that are created when a display mode is 
selected and cannot be changed otherwise. Thus, the content of fb_fix_screeninfo 
can only be roodified by changing the display mode, whereas the content of fb_var _screeninfo 
can be changed anytiroe. An example is the start of the frame buffer memory. This 
can depend on what mode is set, and while using a mode, memory position does not 
have to change. 

• fb_cmap is concerned with colors definition in the palette or color map. 

• fb_ops regroups a collection of needed functions to control the device, such as 
fb_open() or fb_ioctl O, and also device specific functions. This structure is in
stanced two tiroes: once in fbmem.c to reference the functions that are accessible 
everywhere in the kernel; once in sall00fb.c to regroup the functions usable by fb
mem.c. 

• fb_info, includes the four previous structures and thus is able to contain a configu-
ration for the display system. 

The driver also uses two other structures, called sall00fb_info and sall00fb__mach
_info, which are device dependent and defined in sall00fb.h. sa1100fb_info includes the 
fb_info structure and is used to store the current configuration of the display system. 
The fb_ops structure is initialized with a variable called sall00fb_ops, which contains 
references to five functions: 

• sa1100fb_get_fix() 

• sa1100fb_get_var() 

• sa1100fb_set_var() 

• sa1100fb_get_cmap() 

• sa1100fb_set_cmap() 

The first three functions concern the display mode handling and the user settings, and the 
two other functions are related to the palette. 

Only the device dependent structures are initialized. Values affectation to the sall00fb_ -
info structure is performed by calling the sa1100fb_ini tJbinf o () function. These values 
are affected to a variable pointed by fbi. The following table describes the main fields of 
the sall00fb_info structure. 
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struct struct fb _var ....screeninfo, 

sallOOfbJnfo 
struct fbJnfo struct fbJlx....scr eeninfo Description 

and struct fb_cmap 

struct fbJnfo lb struct fb_var ..screenjnfo var _u32 xres horizontal resolution of picture 
_ u32 yres vertkal resolutioo of picture 
-u32 bits..per _pixel size of pixel data 
_ u32 pixclock pixel clock period (picosecond) 
_ u32 le~..margin time from sync to picture (hor.) 
_u32 right..margin time from picture to syoc (hor.) 
_ u32 upper ...margin time from sync to picture (ver.) 
_ u32 lower...margin time from picture to sync (ver.) 
_u32 hsyncJen length of horizontal sync 
_ u32 vsyncJen length of vertical sync 

struct lbJix.screeninfo 6.x unsigned long smem..start physical address of fb memory 
_ u32 smem-1en length of frame buffer memory 

struct fb_cmap cmap _ u32 start first eotry of the palette 
_ u32 len number of entries 
_ u32 *red table of red entries 
- u32 *green table of green eotries 
_ u32 *blue table of green entriœ 
_ u32 *traosp table of transparency levels 

struct lb_ops *fbops frame buffer operations 
dma...addr..t dbarl oext value for DBARl 
dma.addr_t dbar2 next value for DBAR2 
u..i.nt regJccrO next value for LCCRO 
uJnt regJccrl next value for LCCRl 
uJot reg-1ccr2 oext value for LCCR2 
uJnt regJccr3 next value for LCCR3 
volatile u_char state state of the LCD cootroller 

The sa1100fb_mach_info structure is used to contain the initial display features that will 
be written into the control registers (LCCRO, 1, 2 and 3) at the initialization time. These 
values will be also written in fbi->fb. var and correspond to the normal configuration of 
the screen. 

6.2.2 Inserting the "controller task" into the task queue 

After initializing the data structure, the sa1100fb_ini t_fbinfo () function inserts a task 
into a task queue. This task, called the controtler task, consists essentially in writing the 
content of fbi->reg_lccr0, 1, 2 and 3 into the four controller registers. To do that, 
the task only calls set_ctrlr _s tate O , whose the working is explained further. 

The controller task will be executed only at the end of the initialization process or when the 
con.figuration is modified during the running t ime. The execution of the task is requested 
by the sa1100fb_schedule_task() function. 

static inline void sa1100fb_schedule_task(struct sa1100fb_info *fbi, u_int 
state) 
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6.2.3 Initializing the frame buffer memory 

static int _ init sa1100fb..map_video..memory(struct sa1100fb_info *fbi) 

The driver must allocate memory to the frame buffer. This memory area will contain 
the palette, where colors are stored, and the pixel data. sa1100fb..map_video..memoryO 
allows to make the reservation of this space. 

6.2.4 Installing the interrupt service routine 

This step is performed by calling request_irq O. This function requests an interrupt 
channel (IRQ) and associates it with an interrupt service routine (ISR)5: 

static void sa1100fb..handle_irq(int irq, void *dev_id, struct pt_regs *regs). 

This handler is called when a bit is set into the status register LCSR. The interrupt han
dler begins by clearing the "interrupt-pending" bit, in this case the LDM field in LCCR0, 
in order to reactivate interrupts. The next performed step is awaking ail the processes 
concerning the device. The concerned process will be able to handle the interrupt. 

6.2.5 Defining the content of the LCD controller registers 

static int sa1100fb_set_var(struct fb_var_screeninfo *var, int con, struct 
fb_info *info) 

The fifth step consists in calculating the content of the LCD controller registers according 
to the values stored in the argument "var" . 

This step, relatively complicated, is performed by calling the sa1100fb_set_var() func
tion, which generates the following actions: 

l. Validate the new display mode settings, stored in "var", or eventually adapt them 
(performed by sa1100fb_validate_var() ); 

2. Store the dimensions of the palette and configure it (performed by sa1100fb..hw_set
_varO ); 

3. De:fine the new content of the controller registers and store it in fbi->reg-1.ccr0, 
1, 2 and 3 (performed by sa1100fb_acti vate_var () ); 

5See the chapter 5 "lnterrupts" . 
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4. Request the execution of the controller task ( performed by sa1100fb_schedule_task() ). 
The effective configuration of the controller registers will be performed as soon as 
possible. 

sa1100fb_set_var() is not only called at initialization time, but can be used at any time, 
in order to modify the display mode at run time. The figure 6.1 illustrates the successive 
fonction calls occurring when sa1100fb_set_var() is called. 
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Figure 6.1: Defining the content of the LCD controller register. 

The next two other fonctions allow to copy fbi ->fb. f ix and fbi ->fb. var into a variable 
specified in argument. 

static int sa1100fb_get_fix(struct fb_fix_screeninfo *fix, int con, struct 
fb_info *info) 
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static int sa1100fb_get_var(struct fb_var_screeninfo *var, int con, struct 
fb_info *info) 

6.2.6 Registering the frame buffer driver 

Registering the frame buffer driver at the kernel is simply performed by calling the register
_framebuffer O 6. 

6.2. 7 Registering the device power management function 

By default, the driver provides the possibility to set the display in "sleep" mode, which 
allows to reduce the power consumption. ln sleep mode, the controller is disabled, the 
screen is power down and the backlight is turned off. The kernel must be inforrned that 
the device can be put to sleep mode. The driver signals this information by using the 
kernel function pm_register() . This function takes in argument a pointer to the power 
management function, which is here: 

static int sa1100fb_pm_callback(struct pm_dev *pm_dev, pm_request_t req, void 
*data). 

The req argument can be PM_SUSPEND, which puts the device in the state "CJ)ISABLE", 
or PM..RESUME, which selects the state "C..ENABLE" . 

This function is generally used to reduce the power consumption during idle periods. But 
contrary to the dynamic power management techniques we have implemented, it does not 
allow to use the screen. 

6.2.8 Updating the controller registers and enabling the LCD 
screen and the controller 

static void set_ctrlr_state(struct sa1100fb_info *fbi, u_i.nt state) 

Now that the new controller registers content is defined in fbi ->reg_lccr0, 1 , 2 and 
3, the driver has to effectively copy these values into the controller registers, and finally 
enable the controller. This is performed by calling set_ctrlr _state (). As a matter of 
fact, this function puts the controller in the enabled or disabled state, according to the 
state argument. 

6See the section 4.2. 
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state can take five possible values: 

- C...DISABLE: The controller is disabled, the LCD screen is powered down and the 
backlight is turned off. In this state, the display system is in a low power consumption 
state. 

- C...ENABLE: Select this state enables the controller, powers up the LCD screen and 
turns on the backlight. The display system is in a normal operating state. 

- C-.REENABLE: This option is selected when controller registers are re-programmed 
while the controller is enabled. It is used to change mode without completely sbutting 
down the screen. The controller is simply disabled for the changes and directly 
enabled after. 

- C...DISABLE_CLKCHANGE: Selecting this option disables the controller for dock 
change, but does not act on the LCD screen or on the backlight. 

- C_ENABLE_CLKCHANGE: this option allows to enable the controller after dock 
change. It does not act on the LCD screen or on the backlight. 

Enabling and disabling the controller is an easy task, which is performed by calling the 
sa1100fb_enable_controller () and sa1100fb_disable_controller () fonctions. 

static void sa1100fb_enable_controller(struct sa1100fb_info *fbi) 
static void sa1100fb_disable_controller(struct sa1100fb_info *fbi) 

sa1100fb_enable_controllerO writes the values contained in fbi->reg_lccr0, 1, 2 
and 3 into the LCCR registers. This is the only function that allows to update all the 
LCCR registers. It also writes 1 into the LEN field of the LCCR0 register, in order to 
enable the LCD controller. 

sa1100fb_enable_controller() also updates the registers DBARl and DBAR2, by copy
ing values stored in fbi->dbar1 and fbi->dbar2 into these two registers. 

Powering up and down the LCD screen is performed by the sa1100fb_power _up_lcd() and 
sa1100fb_power_up-1.cd() fonctions, whereas the backlight is controlled by sa1100fb_ba
cklight_on O and sa1100fb_backlight_off (). These four fonctions simply call functions 
located somewhere else in the kernel. The figure 6.2 illustrates the working of the set_ -
ctrlr _state () function. 
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Figure 6.2: Updating the controller registers and enabling the LCD screen and the con
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6.3 U pdating the palette 

static int sa1100fb_get_cmap(struct fb_cmap *cmap, int kspc, int con, struct 
fb_info *info) 

sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con, struct fb_info * 
info) 

These two fonctions allow to access to the palette, one to read its content, the other 
one to edit it. The first fonction only makes a copy of the palette at the memory address 
"cmap", put in argument. The second function is used to replace the current palette by a 
new one, referenced by the argument" cmap". This function quickly calls _ do _set_cmap O, 
which eventually defines a default palette and calls fb_set_cmap () 7 with a reference to the 
sa1100fb_setcolregO fonction in argument. fb_set_cmap() contains a loop that applies 
sa1100fb_setcolregO to each palette entry to update them. 

static int sa1100fb_setcolreg(u_int regno, u_int r ed, u_int green, u_int blue, 
u.int trans, struct fb_info *info) 

This function is used to edit a palette entry. The regno argument represents the number 
of the updated palette entry, whereas the new color is composed of the combination of 
red, green, blue and trans (for transparency). The new palette entry is also composed 
according to the color mode stored in info. The update of the palette is depicted in the 
figure 6.3. 

7
fb_set_cmap() is implemented in /linux/drivers/video/fbcmap.c directory of the source code. 
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Figure 6.3: Updating the palette. 
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Chapter 7 

Driver adaptation for power 
reduction of a TFT LCD display 

This chapter provides the results of the work performed during my training period at the 
University of Bologna. The objective was to implement various techniques of power man
agement in a frame LCD controller driver of the Linux operating system. 

The first section presents the four considered software techniques to reduce the power 
consumption of a TFT LCD display: Variable dot clock, Variable frame refresh, Liquid 
crystals orientation shift and Backlight shifting. The second section describes the imple
mentation of the "Variable dot clock" and "Variable frame refresh" techniques inside the 
LCD controller frame buffer driver sall00fb.c; an outline of the implementation of the 
"Liquid crystals orientation shift" technique are also proposed. Experimental results for 
the "Variable dot clock" and "Variable frame refresh" technique are then presented and 
analyzed in the last section. 

The above techniques were initially developed for power reduction of a LCD controller 
driver of the ECOS operating system and gave interesting results [1 ]. Our work bas adapted 
the techniques for a TFT LCD display. 

7 .1 Software techniques for low-power TFT LCD dis
plays 

Defining a power management strategy on a LCD display system is a complex task, because 
the display does not experience explicit idle times. As a matter of fact, the clisplay can be 
considered as idle when the user does not watch on it, a situation that the system cannot 
detect. For this reason, most policies concerning LCD displays are based on applications 
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requirements (for example, a text editor requires lower resolution than a video player) or 
on user interventions (reducing the performance when no key is pressed for a long time). 

7.1.1 Variable dot clock 

The first technique, called Variable dot clock, consists of decreasing the frequency of the 
display system dot clock, i.e. the pixel clock, used for the controller-screen communication. 
This is a typical example of clock gating. Reducing the pixel clock frequency slows down 
the pixels transmission between the LCD controller and the screen, and consequently de
creases the refresh rate. 

Thus, the pixel clock can be set to the lower possible frequency until flicker becomes ex
cessive. This setting causes a reduction of the power consumption for every synchronized 
component of the display system. The pixel clock frequency can be configured according 
to the type of application: a simple text editor could use the lowest frequency, while higher 
frequencies should be used by programs where images change quickly (for instance a video 
player). 

7.1.2 Variable frame refresh 

The second technique is called Variable frame refresh and consists of repeatedly turning 
off and on the LCD controller. Turning off the LCD controller closes the communication 
to the display, so that no more image is transferred and the screen ceases to be refreshed. 
The power is saved because the whole display system is shut clown. This method is viable 
for a LCD display because liquid crystals can maintain their orientation for a short time, so 
that the last displayed image before turning off the controller persists on the screen with a 
luminance decreasing progressively. When the controller is turned on, pixels transmission 
restarts and the screen is refreshed. The delay between turning off and on the controller 
must be regulated in order to keep a suitable refresh rate. 

7.1.3 Liquid crystals orientation shift 

The Liquid crystals orientation shift technique takes advantage of the fact that that user 
applications are often displayed in a window that occupies just a portion of the screen. In 
this case, the user does not need to see other portions with the same clarity. It is possible 
to modify the characteristics of useless portions of the screen, in order to reduce power 
consumption. The color generated by a liquid crystal depends on the charge it receives. In 
order to reduce power consumption, it is possible to provide a null charge to every liquid 
crystal located in an useless part of the screen. This is simply performed by affecting a 
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null value to the pixels corresponding to useless areas of the screen. The result is that each 
of the useless liquid crystals will adopt the default color of the screen (generally black or 
white). 

7. 1.4 Backlight shifting 

The Backlight shifting technique is based on the observation that the display has a higher 
visibility in poorly illuminated environment because there is a high contrast between the 
luminosity of the display and the one of the environment. Decreasing the light intensity 
of the backlight of the screen allows to significatively reduce power consumption. It is 
possible to measure t he luminosity of the environment with the help of a light sensor, and 
automatically regulate the backlight intensity to keep a suflicient contrast with respect 
to the environment. T his method gives very significant power savings, due to the large 
consumption of the backlight with respect to the whole display system. 

7 .2 lmplementation 

7.2.1 Variable dot dock 

The goal of the Variable dot dock technique is to reduce the pixel dock frequency. The pixel 
dock frequency can be dynamically set by modifying the PCD field of the LCD controller 
control register LCCR31

. We have seen in the chapter two that this field allows to config
ure the pixel dock frequency according to the formula Pixel clock frequency = 2x(P~ff+2) 
where CCLK is the frequency of a CPU dock. 

Controlling the PCD field does not require to implement a new fonction inside the driver. 
Indeed, as explained in the chapter six, the driver disposes of a structure regrouping the 
display features modifiable by the user: the struct fb_var _s creeninfo structure. This 
structure indudes the field pixclock, which represents the current pixel clock period. The 
driver provides a function allowing to modify the content of the struct fb_ var _screeninf o 
structure: the sa1100fb_set_var() function. When this function is called with a new 
content for the structure in argument, the driver updates the variable as well as the 1/0 
registers content to make effective the new configuration. Thus, the pixel clock period can 
be easily modified, simply by calling sa1100fb_set _var() with a new pixel clock period. 
This period is then translated into a corresponding PCD value, which is afterwards written 
in the PCD field. 

1See Appendix A. 
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The sa1100fb_set_var O function must be available for user applications. It is thus ref
erenced in a variable whose type is fb_ops, the sa1100fb_ops variable, wbicb references 
the fonctions exported to fbmem.c. Rather than implementing a specific system call in 
fbmem.c, the driver allows to use this function by means of an ioctl() system call. We have 
seen in the chapter four that the ioctl() system call provides a way to issue device-specific 
control commands, like reading or changing display parameters. User applications can thus 
perform one of these device-specific commands by executing an ioctl() system call with in 
argument the desired cornmand and the associated argument. 

The ioctl command allowing to modify the information stored in the fb_var_screeninfo 
structure is FBIOPULVSCREENINFO. The required argument is a variable whose type must 
be struct fb_ var _screeninfo. Each field of this structure determines a feature of the 
display configuration. ln order to modify the pixel clock period without changing other 
features of the current configuration, it is preferable to first copy the current content of the 
fb_var _screeninfo structure in a temporary variable of the user application, then replace 
the content of the pixclock field by the new pixel dock period, and finally recopy the tem
porary variable inside the fb_var _screeninfo structure by using the FBIOPUT _VSCREENINFO 

command. Copying the fb_var _screeninfo structure content can be perforrned with an
other ioctl command, which is FBIOGELVSCREENINFO, with the target variable as argument. 
The figure 7.1 illustrates how the fb_var _screeninfo is updated. 
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Figure 7.1: Updating the fb_var _screeninfo structure. 
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The program PCD.c2 allows to replace the pixel dock period with a new value put in 
argument. PCD.c first opens the device file representing the frame buffer,i.e. /dev /fb, 
by using the open() system call, and then copies in a temporary variable (my_var) the 
content of the fb_var _screeninfo structure with help of the ioctl() system call with 
the FBIOGELVSCREENINFO command. Afterwards, my _var is updated with the new pixel 
dock period and replaces the current fb_var _screeninfo structure content by means of 
the ioctl() system call with the FBIOPULVSCREENINFO command. Finally, the device file 
/dev/fb is dosed. 

7.2.2 Variable frame refresh 

The Variable frame refresh technique is implemented with a loop which repeatedly switches 
off and on the LCD controller. Switching off and on the controller is performed by respec
tively writing 0 and 1 in the LEN field of LCCR0. The driver disposes of two functions to 
do that: sa1100fb_disable_controller O and sa1100fb_enable_controller (). 

We have to take care of two problems occurring when an infinite loop is run in the kernel 
code. First, the loop does not share the processor with other processes, witb the result 
that no applications can be executed. In order to solve that, a scbeduling instruction bas 
to be inserted inside the loop to liberate the processor for other processes. We propose to 
use the schedule_timeout (long timeout) instruction, wbich causes the process to sleep 
during at most timeout dock ticks. During this time, the scheduler is called, allowing all 
sleeping processes to run. This instruction bas to be placed between the "disable" and the 
"enable" instructions in order to keep the controller off during a non negligible period. We 
also add this instruction after sa1100fb_enable_controller(). 

The second problem is that the execution flow of the kernel is blocked by the loop. For 
this reason, executing the loop inside a task is preferable, so that the loop is executed 
separately from the kernel. We propose to insert the "loop task" into the scheduler queue 
because we do not have to launcb its execution and because this queue allows a task to sleep. 

Our loop task function is implemented in sall00fb.c and is called pm-1.enJunction (struct 
pm_len_arg *my _arg) . The task is initialized and inserted into the scheduler queue by call
ing the sa1100fb_enable_pm_len (struct fb_delay *del, struct sa1100fb_info *fbi) 
function and ends when sa1100fb_di sable_pm-1enO is called. These two last functions 
can be called by an application by means of an ioctl() system call. For that, we must 
dedare tbese two functions in the sa1100fb_ops structure to export them to fbmem.c, 
and we add in fbmem.c two command names in the fb_ioctl () fonction, respectively 

2See Appenclix B.l. 
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FBIOPMLEN _QN and FBIOPMLEN _OFF. 

LENON.c3 is the application allowing to launch the task while LENOFF.c4 allows to end 
the task. Tbeir workings are similar to PCD.c. 

7.2.3 Liquid crystals orientation shift 

Shifting the liquid crystals orientation of the useless parts of the screen can be performed 
by implementing a fonction writing a null value to the corresponding pixels in the frame 
buffer. We first need a way to determine if a pixel is located in a useless part or not. This 
will be a fonction receiving as arguments the coordinates of the active window, i.e. the 
useful screen area. The active window is a rectangle defined by the XY-coordinates of its 
upper left corner with respect of the upper left corner of the screen, and by the length 
of its sides. The length unit is the pixel. As pixels are sequentially stored in the frame 
buffer memory, we need an algorithm to calculate if a pixel in memory owns to the active 
window or not. The figure 7.2 depicts the coordinates of the active window and considers 
four areas around this window: UP, DOWN, LEFT and RIGHT. 

W)( 
Wlenglh 
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~1 Lml ________ IRIGHT 
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YRES 

Figure 7.2: The active window coordinates. 

Assume p the position of a pixel in the frame buffer memory (1::; p :::; (XRES x YRES)). 
p is not located into the active window if p E U P or p E DOW N or p E LEFT or 
p E RIGHT. p owns to one of these sets if one of the following equations is verified: 

pEUP {=:} p :::; (WY-l)xXRES 

3See Appendix B.2. 
4See Appendix B.3. 
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p E DOWN -{=} p > (WY + Wwidth-1) x XRES 

p E LEFT -{=} (p modulo X RES) < W X 

p E RIGHT -{=} (p modulo XRES) ~ (WX + Wlength) 

In sall00fb.c, t he address of the first pixel datais contained in the field screen_cpu of the 
sa1100fb_info structure. By default, a pixel data is represented with one byte. We can 
thus test each pixel by means of a loop and modify the value of each pixel located outside 
the active window. 

7.3 Experimental results 

In this section, we present the results obtained on the Assabet by applying the Variable dot 
dock and the Variable frame refresh techniques. For each technique we have measured the 
current consumption of the whole system. Power monitoring has been supported through 
an I/V converter realized with a 1-ohm resistor, allowing to measure the average value of 
the current and the power in a specified range of tune. To do this, the voltage level on 
the resistor is measured with a data acquisition board controlled by a Labview program 
for measurement control. Measurements have been performed with 10000 samples at the 
frequency of 1000 samples/sec. 

Flicker is observed with a small light image displayed on a black background. The flicker 
is more visible and disturbing when the screen becomes brighter. 

7.3.1 Variable dot dock 

The normal value of the pixel clock period is 171521 picoseconds. We first calculate the 
corresponding refresh rate (see the formulas in the section 2.3) , based on the initial content 
of LCCRl and LCCR2 set by the sall00fb.c driver. 
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Pixel dock frequency 
1012 

5830190 Hz 171521 ps 

Pixel clock pulses per line = 61 + 9 + 5 + 320 = 395 

Li.nes per frame - 3+0+1+240 - 244 

Pixel clock pulses per frame 395 X 244 96380 

Refresh rate 5830190 Hz 
60.5 Hz = 96380 -

The normal refresh rate of the display is thus 60.5 Hz. The table 7.1 presents the current 
consumption of the Assabet with the Variable dot dock technique. By increasing the pixel 
dock period step by step, we have collected the corresponding current values. 

Pixel dock period Refresh rate Medium consumption Power reduction Flicker 
(in ps) (in Hz) (in mA) (in%) 
171521 60.5 570 0% no flicker 
300000 34.6 554 2.8% no flicker 
500000 20.8 545 4.4% no flicker 
550000 18.9 542.5 4.8% soft 
700000 14.8 540.5 5.2% visible 
1000000 10.4 537.5 5.7% visible 
1500000 6.9 535.4 6.1% high 
2000000 5.1 534.1 6.3% high 
2080895 5.0 533.8 6.4% last possible value 
2080896 5.0 526 7.7% unusable screen 

Table 7.1: Assabet current consumption with Variable dot clock. 

We can find out that the Variable dot clock technique allows to reduce the power con
sumption until 36.2 Amps, corresponding to a reduction of 6.4% of the consumption of 
the whole system. Moreover, the display refresh rate can be reduced to 20 Hertz without 
significative lost of visibility. Such a refresh rate corresponds to a reduction of 4.4% of the 
power consumption. 
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7.3.2 Variable frame refresh 

Running the loop task increases the total power consumption with respect to the idle state. 
MeasuremenLs should be performed while an application is runoing to get a better view 
on the effectiveness of this technique. AI, a matter of fact, measurements were performed 
with an adapted version of the loop task. The reason cornes from the working of the 
schedule_timeoutO instruction. When schedule_timeout() is executed, the scheduler 
is called, allowing all sleeping processes to run. However, if few processes are in progress, 
the scheduler reallocates the processor to the process running the loop task before timeout 
dock ticks elapsed. Hence, we cannot perform measurements with various disabled or en
abled delays. For this reason, we were constraint to replace schedule_timeout () by the 
mdelay(unsigned long msecs) instruction. The mdelay() instruction delays the execu
tion during exactly msecs milliseconds, by means of an active loop. 

while (my_stop==0) { 
sa1100fb_disable_controller(my_arg->info); 
mdelay(my_arg->delay_dis); 
sa1100fb_enable_controller(my_arg->info); 
mdelay(my_arg->delay_en); 

} 

Executing a loop keeps the processor busy and increases its power consumption. How
ever, we can imagine that this active loop occupies the processor as if an application run. 
For this reasoo, the following measurements must be considered with caution. AI, a matter 
of fact , tbey should be done in more realistic conditions. 

When the loop task only contains the mdelay(100) instruction inside the loop (i.e. with
out any instructions to disable and enable the controller), the medium coosumptioo of the 
Assabet is 693 mA. We compare the measuremeots with this value in the table 7.2. 

Tests bave been subdivided in two parts. First, we have varied the delay wheo the LCD 
controller is disabled by keeping constant the delay when it is enabled. Afterwards, we 
vary the delay when the controller is enabled without changing the delay wheo it is disabled. 

We observe that the Variable frame refresh technique allows to save power when Lhe pro
cessor is fully used. In the first set of measurements, the flicker quickly becomes bad. In 
order to keep an usable display, the period when the controller is disabled should not be 
bigher tbao 40 ms. We also observe that power consumptioo increases wben the ruoning 
d uration of the mdelay () instructions increases. In the second set of measurements, we 
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Disable delay Enable delay Medium consumption Power reduction Flicker 
(in ms) (in ms) (in mA) (in%) 

10 0 624 10.0 visible 
20 0 633 8.7 visible 
30 0 638 7.9 visible 
40 0 641 7.5 visible 
50 0 643 7.2 high 
100 0 646 6.8 high 

10 5 624 10.0 visible 
10 10 646 6.8 soft to visible 
10 20 656 5.3 soft 
10 30 668 3.6 soft 
10 40 674 2.7 no flicker 
10 50 686 1.0 no flicker 
10 100 689 0.6 no flicker 

Table 7.2: Assabet current consumption with Variable frame refresh. 

can reduce the power consurnption up to 10%, while keeping an acceptable visibility of the 
displayed image. 
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Conclusion 

The rapidly increasing demand for portable systems encourages the development of more 
and more sophisticated devices. Designing a portable system requires finding a trade-off 
between delivering high performance and maintaining a limited consumption of electrical 
power. Designers and researchers bave developed numerous technological innovations and 
optimization techniques to reduce power consurnption. One of the most successful ap
proaches to power minimization is Dynamic Power Management. 

In this dissertation we have presented several power reduction techniques for a TFT LCD 
display and shown how to integrate them in a Linux device driver. The two basic tech
niques at the component level are Variable dot clock (a type of clock gating) and Variable 
frame refresh (a type of power off), which we bave developed especially for our research on 
a Persona! Digital Assistant "Assabet" using the Linux operating system. We have also 
explained how power can be managed at system level by means of a power manager. 

Presenting these developments has required explanation about the notions of device file 
and device driver in Linux, the structure of a char driver, the interrupts detection and the 
task queue, in order to explain how I/O devices are managed by the operating system Linux. 

Our contribution is twofold. First, we bave developed a description of the main data 
structure and fonctions of the frame buffer LCD controller driver sall00fb.c and indicated 
how the display configuration can be modified. Secondly, we have implemented two power 
reduction techniques in this driver, the Variable dot clock and Variable frame refresh tech
niques. As shown by the observed measurements, we were able to reduce the Assabet 
power consumption by up to 6.4% with the Variable dot clock technique and up to 10% 
with the Variable frame refresh technique. Finally, we have outlined a solution for the 
Liquid crystal orientation shift technique. 

The project of managing power consumption for a TFT LCD · display bas further issues 
to explore, since there are two other techniques which could be implemented in the Linux 
driver. We hope that this work will lea<l to new enhancements and developments of the 
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DPM techniques. 

In conclusion, this dissertation demonstrates that a software adaptation in the opera.t
ing system, without modifying the hardware, can lead to an appreciable reduction of the 
power consumption in a portable system. Therefore the DPM techniques can be applied 
to improve the lifetime of existing portable systems batteries. 
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Table of acronyms 

ACPI Advanced Configuration and Power Interface 
API Application Programming Interface 

BFW Beginning-of-Frame line dock Wait 
BLW Beginning-of-Line pixel dock Wait 
CPU Central Processing Unit 

DBAR DMA Base Address Register 
DCAR DMA Current Address Register 
DMA Direct Memory Access 
DPM Dynamic Power Management 

DRAM Dynamic Random Access Memory 
DVS Dynamic Voltage Scaling 
EFW End-of-Frame line dock Wait 
ELW End-of-Line pixel dock Wait 
EOF End of File 
FAT File Association Table 
FIFO First In First Out 
GNU GNU is Not Unix 
GPL G NU Public Licence 
HSW Horizontal Sync pulse Widt h 
ICIP Interrupt Controller IRQ Pending 
IDT Interrupt Descriptor Table (interrupt) 
IDT Instruction Decompression Table (memory) 
IRQ Interrupt ReQuest 
ISR Interrupt Service Routine 
I/O Input / Output 
LAN Local Area Network 

LCCR LCD Controller Control Register 
LCD Liquid Crystal Display 

LCSR LCD Controller Status Register 
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LPP Lines per Panel 
MAC Medium Access Control 

MPEG Moving Picture Experts Group 
NTFS Windows NT FileSystem 
os Operating System 

PBS Palette Bit Size 
PPL Pixels Per Line 
PC Persona! Computer 

PDA Persona} Digital Assistant 
PM Power Manager 

PMC Power Manageable Component 
RAM Random Access Memory 
SCSI Small Computer System Interface 
swc Silly Window Syndrome 

TCP/IP 
TFT 

Transmission Control Protocol / Internet Protocol_ 
Thin-Film Transistor 

vsw Vertical Sync pulse Width 
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Glossary 

Advanced Configuration and Power Interface (ACPI): general and OS-independent 
specification defining the interface between the operating system and an ACPI-compliant 
hardware. This interface can be used both for hardware configuration and power manage
ment. 

Block: (fixed) size of transfer from or to a block device. 

Block device: Device that can host a filesystem, accessible only by block of bytes. 

Bottom half part: Routine required by the top half part, but executed later. 

Break-even t ime: Minimum idle time amortizing the state transition costs. 

Char ( or character) device: Device that can be accessed in the same way as a stream 
of bytes, where bytes are addressed sequentially. 

Clock gating: Power reduction technique consisting of reducing the frequency of the 
component dock. 

Color map: See P alette. 

Context: The current state of the registers and flags of the processor. 

Control register: Register of a controller allowing to send commands to the device. 

Device driver: Part of the operating system that manages communication with a specific 
device. 

D evice file: File allowing user programs to access hardware devices of the system. 
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Direct Memory Access {DMA): Mechanism providing a device controller the abil
ity to transfer data directly to or from the memory without involving the processor. 

Directory: Set of files regrouped in the filesystem. 

Dynamic Power Management {DPM): Design methodology that dynarnically recon
figures an electronic system to provide the requested services and performance levels with a 
minimum number of active components or a minimum load of such components. Dynarnic 
power management encompasses a set of techniques that achieve energy-efficient computa
tion by selectively turning off (or reducing the performance of) system components when 
they are idlc ( or partially unexploited). 

Dynamic Random Access Memory {DRAM): Memory that contains the instruc
tions and data of a program while it is running, which allows faster access than accessing 
a magnetic disk. 

Except ion: Electrical signal produced in the CPU control unit when special instruc
tions are executed or when an error or an abnormal situation occurs. 

Filesystem: Set of rules that de.fine how the files are organized and manipulated. 

Flag: Field of a status register being set and cancelled by the hardware. 

Frame: Set of pixels corresponding to an entire image on the screen. 

Frame Buffer: Memory area used to contain the pixels to display on the screen. 

Frame dock: Signal occurring at t he end of a frame transmission. 

Idle: A component or a system is in an idle state if it has no request to serve. 

Input register: Register of a controller allowing to fetch data from the device. 

(Hardware) interrupt: Electrical signal generated by an hardware device, such as a 
timer or an I/O device, at arbitrary time with respect to the CPU dock. 

Interrupt controller: Hardware circuit that warns the processor when an interrupt oc
curs. 
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Interrupt D escriptor Table (IDT): Table containing the address of each interrupt 
handler. 

Interrupt handler: Function called when an interrupt occurs and capable to handle 
the interrupt. 

Interrupt Request (ffiQ): Lines transmitting maskable interrupts. 

Interrupt Service Routines (ISR): Function related to a single device sharing an IRQ 
line, and implements the task of the interrupt handler concerning the device. 

Interrupt signal: Event that alters the sequence of instructions executed by the pro
cessor. 

ioctl system call: System call allowing to issue device-specific control commands, like 
reading or changing device parameters, reading or modifying the palette, ... 

I/0 port or I/0 register: Memory location t hat is a part of a device and used for 
the communication with a device. 

Kernel: Main part of the Linux operating system. 

Kernel control path: Sequence of instructions executed when an interrupt occurs and 
that launches the execution of the appropriate interrupt handler. 

LCD controller: Electronic device allowing the control a peripheral. 

Line clock: Signal occurring at the end of the transmission of a pixel line. 

Loopback: Interface allowing to connect to himself exactly as to another host. 

Major number: Number ranking from 1 to 255 that identifies the device type. 

Markov chain: Probability fonction of the evolution of the system state, according to 
t he state at present time. 

Minor number: Number ranking from 1 to 255 used by the driver to identify a spe
cific device among a group of devices that share the same major number. 
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Module: Object file whose code can be dynamically linked to (and unlinked from) the 
kernel at any time during t he runtime. A module regroups a set of additional functions to 
be realized by a filesystem, a device driver, a protocol or other features. 

Network interface: Interface in charge of sending and receiving data packets, with
out knowing how individual transactions map to the actual packets being transmitted. 

Output register: Register of a controller allowing to send data to the device. 

Palette: Set of data representing the possible colors a pixel of a frame can takes. 

Palette entry: Representation of a possible color in the palette. 

Pipe: Special file used for interprocess communication. 

Pixel: The smallest monochromatic element of an image. 

Pixel clock: Regular signal determining the frequency of pixels transmission on the data 
pins. This signal is emitted on a specific pin simply called pixel dock pin. 

Pixel data: Color of a pixel of the frame. 

Policy: Algorithm selectively shutting down idle resources and based on the observa
tion of present and past workload and operating conditions. 

Power Manageable Component (PMC): Component characterized by multiple states 
of operation. 

Power Manager (PM): System part (hardware or software) that performs DPM at 
system level. 

Power State Machine (PSM): State machine representing the power states a com
ponent or a system accepts and t he transition costs between states. 

Process: Instance of a program in execution. 

Program counter: A register in the processor that contains the address of the next 
instruction to be executed. Also known as a instruction pointer. 
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Regular file: Set of jointly stored data. 

refresh rate: Amount of times a display's image is repainted per second. 

Run: A component or a system is in a run state if it is serving a request. 

Scheduler: Part of the operating system that decides which task or process to run next. 
This decision is based on readiness of each process, their relative priorities, and the specific 
scheduling algorithm implemented. 

Sector: Set of 512 adjacent bytes on a disk. 

Session: Time interval when requests frequently occur. 

Sleep: A component or a system in a sleep state is disabled in order to consume less 
power. 

Socket: Software mechanism allowing programs to communicate with a local or remote 
application. 

Software interrupt: Signal is generated by a special software instruction. 

Status bit: Field of a status register being set by the hardware and cancelled by the 
software. 

Status register: Register of a controller allowing to be notified about the device state. 

Symbolic link: Short file containing the access path to another file. 

System call: Special instruction that transfers control from user mode to a dedicated 
location in kernel code space. 

Task queue: Linked list of tasks where tasks are stored in order to delay their execu
tion to a determined-system time. 

Top half part: Code that the kernel executes right away to answer to an interrupt. 

Transition costs: Costs associated with a state change. These costs can be a delay, 
a performance reduction or a power overhead. 
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X Window System: Graphie interface system used by Linux and other Unix operat
ing systems. 
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Appendix A 

LCD Controller Registers 

A.1 LCD Controller Control Register O (LCCRO) 

I bits I field name I D escrip t ion 
0 LEN LCD controller enable. 

0 - LCD controller disabled. 
1 - LCD controller enabled. 
Note: all the registers must be initialized before enabling the LCD con-
troller. 

1 CMS Color /Monochrome mode select 
0 - Color operation mode enabled. 
1 - Monochrome operation mode enabled. 

2 SDS Single-/Dual-panel display select 
0 - Single-panel display enabled. 
1 - Dual-panel display enabled. 

3 LDM LCD disable done interrupt mask. 
0 - LCD disable done condition generates an interrupt. 
1 - LCD disable done condition does not generate an interrupt. 

4 BAM Base address update interrupt mask. 
0 - Base address update condition generates interrupt. 
1 - Base address update condition does not generate an interrupt. 

5 ERM Error interrupt mask. 
0 - Bus error and FIFO over/underrun errors generate an interrupt. 
1 - Bus error and FIFO over/underrun errors do not generate an inter-
rupt. 

6 - reserved 
7 PAS Passive/active display select. 

0 - Passive or STN display operation ena.bled. 
1 - Active or TFT display operation enabled. 
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tion bits I field name I Descrip 

8 BLE Big/littl e endian select. 

9 DPD 

e endian byte order is selected. 0 - Littl 
1 - Bige ndian byte order is selected. 

ixel data pin mode. Double-p 
0 - In sin 
clock. 

gle-panel monochrome operation, four pixels are sent each pixel 

11..10 
19 .. 12 PDD 

ingle-panel monochrome operation, eight pixels are sent each 1 - In s 
pixel clo ck. 
reserved 

DMA request delay. Palette 
Value fr 
data tra 

om O to 255 used to specify the number of clocks between each 
nsfer while the palette is charged. 

31..20 reserved 

A.2 LCD Contro ller Control Register 1 (LCCRl) 

tion 
r line 

bits I field name I Descrip 

9 .. 0 PPL Pixel pe 
Value fr 
within e 

om 1 to 1024 used to specify the number of pixels contained 

15 .. 10 

23 .. 16 

31 .. 24 

A.3 

HSW 

ELW 

BLW 

ach line on the LCD display. 
al sync pulse width. Horizont 

Value fr 
the line 

om 1 to 64 used to specify number of pixel dock periods to pulse 
clock at the end of each lioe. 

End-of-lin 
Value fr 
to the en 

e pixel clock wait count. 
om 1 to 256 used to specify nu.mber of pixel clock periods to add 

d of a line transmission before line dock is asserted. 
Beginnin 
Value fr 
to the b 
output t 

g-of-line pixel dock wait count. 
om 1 to 256 used to specify nu.mber of pixel dock periods to add 
eginning of a line transmission before the first set of pixels is 
o the display. 

LCD Contro ller Control Register 2 (LCCR2) 

tion bits I field name I Descrip 

9 .. 0 LPP Line per 
Value fr 
frame). 

panel 
om 1 to 1024 used to specify number of lines per panel (i.e. per 

15 .. 10 vsw sync pulse width. Vertical 
Value fr 
insert aft 

om 1 to 64 used to specify number of extra line dock periods to 
er the end-of-frame. 
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bits I field name I D escription 
23 .. 16 EFW End-of-frame line clock wait count. 

Value from O to 255 used to specify number of line clock periods to add 
to the end of each frame. 

31..24 BFW Beginning-of-frame line clock wait count. 
value from O to 255 used to specify number of line clock periods to add 
to the beginning of a frame before t he first set of pixels is output to the 
display. 

A.4 LCD Controller Control Register 3 (LCCR3) 

bits I field name I Description 
7 .. 0 PCD Pixel clock divisor. 

Value from O to 255 used to specify the frequency of the pixel clock 
based on the CPU clock ( CCLK) frequency. 

15 .. 8 ACB AC bias pin frequency. 
Value from 1 to 256 used to specify the number of line docks to count 
before switching the ac bias pin in passive mode. 

19 .. 16 API AC bias pin transitions per interrupt. 
Value from O to 15 used to specify the number of ac bias pin transitions 
to count before setting the line count status (ABC) bit, signalling an 
interrupt request. 

20 VSP Vertical sync polarity. 
0 L..FCLK pin is active high and inactive low. 
1 L..FCLK pin is active low and inactive high. 

21 HSP Horizontal sync polarity. 
0 L_LCLK pin is active high and inactive low. 
1 L..LCLK pin is active low and inactive high. 

22 PCP Pixel clock polarity. 
0 Data is driven on the LCDs data pins on the rising edge of L_FCLK. 
1 Data is driven on the LCDs data pins on the falling edge of L_FCLK. 

23 OEP Output enable polarity. 
0 L..BIAS pin is active high and inactive low in active display mode and 
parallel data input mode. 
1 L..BIAS pin is active low and inactive high in active display mode and 
parallel data input mode. 

31..24 - Reserved 
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A.5 DMA Channel 1 Base Address Register 

1 bits I field name I Description 
31..0 DBARl DMA channel 1 base address pointer. 

Used to specify the base address of the frame buffer memory. 

A.6 DMA Channel 1 Current Address Register 

1 bits j field name I Description 

31..0 DCARl DMA channel 1 current address pointer. 
Read-only register. Continuously reflects the current address that DMA 
channel 1 is transferring from or will use in the next transfer. 

A. 7 DMA Channel 2 Base Address Register 

1 b its I fie ld name I Description 
31..0 DBAR2 DMA channel 2 Base address pointer. 

Used to specify the base address of the frame buffer memory for the 
lower half of the display in dual-panel operation. 

A.8 DMA Channel 2 Current Address Register 

1 bits I fie ld name I Description 

31..0 DCAR2 DMA channel 2 Current address pointer . 
Read-only register. Continuously reflects the current address that DMA 
channel 2 is transferring from or will use in the next transfer. 
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A.9 LCD Controller Status Register 

1 bits I field name I Descript ion 
0 LDD LCD disable done flag. 

0 LCD has not been disabled and the last active frame completed. 

1 BAU 
1 LCD has been disabled and the last active frame has just completed. 
Base address update fl.ag (read-only) . 
0 Base address has been written and bas not yet been transferred to 
the current address register. 
1 Base address has been transferred to the current address register, 
triggered either by enabling the LCD or when the current address pointer 
equals the end address value calculated by the LCD. 

2 BER Bus error status. 
0 DMA bas not attempted an access to reserved/nonexistent memory 
space. 
1 DMA has attempted an access to a reserved/nonexistent location in 
external memory. 

3 ABC AC bias count status. 
0 AC bias transition counter has not decremented to zero, or API is 
programmed to all zeros. 
1 AC bias transition counter has decremented to zero, indicating that 
the L..BIAS pin bas transitioned the number of times speci.fied by the 
API control bit field. 

4 IOL Input FIFO overrun lower panel status. 
0 Input FIFO for the lower panel display has not overrun. 
1 DMA attempted to place data into the input FIFO for the lower panel 
after it bas been filled. 

5 IUL Input FIFO underrun lower panel status. 
0 Input FIFO for the lower panel display has not underrun. 
1 DMA not supplying data to input FIFO for the lower panel at a 
sufficient rate. 

6 IOU Input FIFO overrun upper panel status. 
0 - Input FIFO for the upper or whole panel display bas not overrun. 
1 - DMA attempted to place data into the input FIFO for the upper or 
whole panel after it has been filled. 

7 IUU Input FIFO underrun upper panel sta.tus. 
0 Input FIFO for the upper or whole panel display bas not underrun. 
1 DMA not supplying data to input FIFO for the upper or whole panel 
at a sufficient rate. 

8 OOL Output FIFO overrun lower panel status. 
0 Output FIFO for the lower panel display has not overrun. 
1 Dither logic attempted to place data into the output FIFO for the 
lower panel after it had been fi.lied. 

121 



bits I field na.me I Description 
~ 

9 OUL Output FIFO underrun lower panel status. 
0 Output FIFO for the lower panel display has not underrun. 
1 LCD dither logic not supplying data to output FIFO for the lower 
panel at a sufficient rate. 

10 oou Output FIFO overrun upper panel status. 
0 Output FIFO for the upper or whole panel display has not overrun. 
1 Dither logic attempted to place data into the output FIFO for the 
upper or whole panel after it had been filled. 

11 ouu Output FIFO underrun upper panel status. 
0 Output FIFO for the upper or whole panel display has not underrun. 
1 LCD dither logic not supplying data to output FIFO for the upper 
or whole panel at a sufficient rate. 

31..12 Reserved 
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Appendix B 

Applications 

B.1 PCD.c 
#include <fcntl.h> 
#include <asm/io.h> 
#include <stdio.h> 
#include <linux/fb.h> 
#include <linux/ioctl.h> 

struct fb_var_screeninfo •my_var; 
int id; 
int t1; 
long new_val; 

main(int argc, char •argv[]) { 
if (argc ! = 2) 

new_val = 171521; 
else 

new_val = atol(argv[1]); 
my_var = (struct fb_var_screeninfo •)malloc(sizeof(struct fb_var_screeninfo)); 
id= open("/dev/fb",O_RDONLY); 

} 

t1 = ioctl(id,FBIOGET_VSCREENINFO,my_var); 
close(id); 

/•new value PCD•/ 
my_var- >pixclock = new_val;/•normal value is 171521*/ 

id open("/dev/fb",O_RDWR) ; 
tl = ioctl(id,FBIOPUT_VSCREENINFO,my_var); 

close(id); 
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B .2 

#include 
#include 
#include 
#include 
#include 
#include 
#include 

int id; 
int tl; 

LENON.c 
<fcntl.h> 
<unistd.h> 
<asm/io.h> 
<stdio.h> 
<linu.x/fb.h> 
<linux/ioctl.h> 
<math.h> 

struct fb_delay { 
int dis; 
int en; 

}; 

struct fb_delay delay_struct; 

main(int argc,char •argvO) { 

if (argc != 3) { 
delay_struct.dis ~ 0; 
delay_struct.en = 0; 

} 

else { 

} 

delay_struct.dis = atoi(argv[1]); 
delay_struct.en = atoi(argv[2]); 

id= open("/dev/fb",0_ROWR); 

t1 = ioctl(id,Ox4619/•FBIOPHLEN_ON•/,ldelay_struct); 

close(id); 
} 

124 



B.3 LENOFF.c 
#include <fcntl.h> 
#include <unistd.h> 
#include <asm/io .h> 
#include <stdio .h> 
#include <linux/fb.h> 
#include <linux/ioctl.h> 
#include <math.h> 

int id; 
int t1; 

main() { 

id open("/dev/fb",O_RDWR); 

t1 = ioctl(id,Ox461A/•FBIOPHLEN_OFF•/,NULL); 

close(id); 
} 
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Appendix C 

fbmem.c 

I• 
* linux/drivers/video/fbmem.c 

* 
* Copyright (C) 1994 Martin Schaller 

* 
* 2001 - Documented with DocBook 
* - Brad Douglas <bradCneruo . com> 

* 
* This file is subject to the terms and conditions of the GNU General Public 
* License. See the file C0PYING in the main directory of this archive 
* for more details . 

•I 
#include <linux/config .h> 
#include <linux/module.h> 
#include <limu/types. h> 
#include <linux/errno.h> 
#include <linux/sched.h> 
#include <linux/smp_lock.h> 
#include <linux/kernel.h> 
#include <limu/major . h> 
#include <linux/slab.h> 
#include <linu.x/mman.h> 
#include <linux/tty.h> 
#include <linux/console.h> 
#include <linux/init.h> 
#include <linux/proc_fs.h> 
#ifdef C0NFIG_KM0D 
#include <linux/kmod.h> 
#endif 
#include <linux/devfs_fs_kernel.h> 
#if defined( __ mc68000 __ ) 11 defined(C0NFIG_APUS) 
#include <asm/setup.h> 
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#endif 
#include <asm/io.h> 
#include <asm/uaccess.h> 
#include <asm/page.h> 
#include <asm/pgtable.h> 
#include <linux/fb.h> 
#include <video/fbcon.h> 

I* 
* Frame buffer device initialization and setup routines 
*I 

extern int acornfb_init(void); 
extern int acornfb_setup(char*) ; 
extern int amifb_init(void); 
extern int amifb_setup(char*); 
extern int atafb_init(void); 
extern int atafb_setup(char•); 
extern int macfb_init(void); 
extern int macfb_setup(char•); 
extern int cyberfb_init(void); 
extern int cyberfb_setup(char*); 
extern int pm2fb_init(void); 
extern int pm2fb_setup(char•); 
extern int clps711xfb_init(void); 
extern int cyber2000fb_init(void); 
extern int retz3fb_init(void); 
extern int retz3fb_setup(char•); 
extern int clgenfb_init(void); 
extern int clgenfb_setup(char*); 
extern int hitfb_init(void); 
extern int vfb_init(void); 
extern int vfb_setup(char•); 
extern int offb_init(void); 
extern int atyfb_init(void); 
extern int atyfb_setup(char•); 
extern int aty128fb_init(void); 
extern int aty128fb_setup(char•); 
extern int igafb_init(void); 
extern int igafb_setup(char•); 
extern int imsttfb_init(void); 
extern int imsttfb_setup(char•); 
extern int dnfb_init(void); 
extern int tgafb_init(void); 
extern int tgafb_setup(char*); 
extern int virgefb_init(void); 
extern int virgefb_setup(char*); 
extern int resolver_video_setup(char•); 
extern int s3triofb_init(void); 
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extern int vesafb_init(void); 
extern int vesafb_setup(char•); 
extern int vga16fb_init(void); 
extern int vga16fb_setup(char•); 
extern int hgafb_init(void); 
extern int hgafb_setup(char•); 
extern int matroxfb_init(void); 
extern int matroxfb_setup(char•); 
extern int hpfb_init(void); 
extern int sbusfb_init(void); 
extern int sbusfb_setup(char•); 
extern int control_init(void); 
extern int control_setup(char•); 
extern int platinum_init(void); 
extern int platinum_setup(char•); 
extern int valkyriefb_init(void); 
extern int valkyriefb_setup(char•); 
extern int chips_init(void); 
extern int g364fb_init(void); 
extern int sa1100fb_init(void); 
extern int epson1356fb_init(void); 
extern int mqfb_init(void); 
extern int mqfb_setup(char•); 
extern int fm2fb_init(void); 
extern int fm2fb_setup(char•); 
extern int q40fb_init(void); 
extern int sun3fb_init(void); 
extern int sun3fb_setup(char •); 
extern int sgivwfb_init(void); 
extern int sgivwfb_setup(char•); 
extern int rivafb_init(void); 
extern int rivafb_setup(char•); 
extern int tdfxfb_init(void); 
extern int tdfxfb_setup(char•); 
extern int sisfb_init(void); 
extern int sisfb_setup(char•); 
extern int stifb_init(void); 
extern int stifb_setup(char•); 
extern int radeonfb_init(void); 
extern int radeonfb_setup(char•); 
extern int e1355fb_init(void); 
extern int e1355fb_setup(char•); 
extern int dcfb_init(void); 
extern int anakinfb_init(void); 

static struct { 
const char •name; 
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int (•init)(void); 
int (•setup)(char•); 

} fb_drivers[] __ initdata = { 

#ifdef CONFIG_FB_SBUS 

!• 
* Sbusfb must be initialized _before_ other frame buffer devices that 
* use PCI probing 

•! 
{ "sbus", sbusfb_init, sbusfb_setup }, 

#endif 

!• 
* Chipset specific drivers that use resource management 
•I 

#ifdef CONFIG_FB_RETINAZ3 
{ "retz3", retz3fb_init, retz3fb_setup }, 

#endif 
#ifdef CONFIG_FB_AMIGA 

{ "amifb", amifb_init, amifb_setup }, 
#endif 
#ifdef CONFIG_FB_CLPS711X 

{ "clps711xfb", clps711xfb_init, NULL }, 
#endif 
#ifdef CONFIG_FB_CYBER 

{ "cyber", cyberfb_init, cyberfb_setup }, 
#endif 
#ifdef CONFIG_FB_CYBER2000 

{ "cyber2000", cyber2000fb_init, NULL }, 
#endif 
#ifdef CONFIG_FB_PM2 

{ "pm2fb", pm2fb_init, pm2fb_setup }, 
#endif 
#ifdef CONFIG_FB_CLGEN 

{ "clgen", clgenfb_init, clgenfb_setup }, 
#endif 
#ifdef CONFIG_FB_ATY 

{ "atyfb", atyfb_init, atyfb_setup }, 
#endif 
#ifdef CONFIG_FB_MATROX 

{ "matrox", matroxfb_init, matroxfb_setup }, 
#endif 
#ifdef CONFIG_FB_ATY128 

{ "aty128fb", aty128fb_init, aty128fb_setup } , 
#endif 
#ifdef CONFIG_FB_VIRGE 

{ "virge", virgefb_init, virgefb_setup }, 
#endif 
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#ifdef CONFIG_FB_RIVA 
{ "riva", rivafb_init, rivafb_setup }, 

#endif 
#ifdef CONFIG_FB_RADEON 

{ "radeon", radeonfb_init, radeonfb_setup }, 
#endif 
#ifdef CONFIG_FB_CONTROL 

{ "controlfb", control_init, control_setup }, 
#endif 
#ifdef CONFIG_FB_PLATINUM 

{ "platinumfb", platinum_init, platinum_setup }, 
#endif 
#ifdef CONFIG_FB_VALKYRIE 

{ "valkyriefb", valkyriefb_init, valkyriefb_setup }, 
#endif 
#ifdef CONFIG_FB_CT65550 

{ "chipsfb", chips_init, NULL }, 
#endif 
#ifdef CONFIG_FB_IMSTT 

{ "imsttfb", imsttfb_init, imsttfb_setup }, 
#endif 
#ifdef CONFIG_FB_S3TRIO 

{ "s3trio", s3triofb_init, NULL }, 
#endif 
#ifdef CONFIG_FB_FM2 

{ "fm2fb", fm2fb_init, fm2fb_setup }, 
#endif 
#ifdef CONFIG_FB_SIS 

{ "sisfb", sisfb_init, sisfb_setup }, 
#endif 

!• 
• Generic drivers that are used as fallbacks 

• 
• These depend on resource management and must be initialized 
• _after_ all other frame buffer devices that use resource 
• management! 

•! 
#ifdef CONFIG_FB_OF 

{ "offb", offb_init, NULL }, 
#endif 
#ifdef CONFIG_FB_VESA 

{ "vesa", vesafb_init, vesafb_setup }, 
#endif 

!• 
• Chipset specific drivers that don't use resource management (yet) 
•! 

#ifdef CONFIG_FB_3DFX 
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{ "td.fx", tdfxfb_ini t, tdfxfb_setup } , 
#endif 
#ifdef CONFIG_FB_SGIVW 

{ "sgivw", sgivwfb_init, sgivwfb_setup }, 
#endif 
#ifdef CONFIG_FB_ACORN 

{ "acorn", acornfb_init, acornfb_setup }, 
#endif 
#ifdef CONFIG_FB_ATARI 

{ "atafb", atafb_init, atafb_setup }, 
#endif 
#ifdef CONFIG_FB_MAC 

{ "macfb", macfb_init, macfb_setup }, 
#endif 
#ifdef CONFIG_FB_HGA 

{ "hga", hgafb_init, hgafb_setup }, 
#endif 
#ifdef CONFIG_FB_IGA 

{ "igafb", igafb_init, igafb_setup }, 
#endif 
#ifdef CONFIG_APOLLO 

{ "apollo", dnfb_init, NULL }, 
#endif 
#ifdef CONFIG_FB_Q40 

{ "q40fb", q40fb_init, NULL }, 
#endif 
#ifdef CONFIG_FB_TGA 

{ "tga", tgafb_ini t, tgafb_setup } , 
#endif 
#ifdef CONFIG_FB_HP300 

{ "hpfb", hpfb_init, NULL }, 
#endif 
#ifdef CONFIG_FB_G364 

{ "g364", g364fb_init, NULL }, 
#endif 
#ifdef CONFIG_FB_SA1100 

{ "sa1100", sa1100fb_init, NULL } , 
#endif 
#ifdef CONFIG_FB_EPSON1356 

{ "epson1356", epson1356fb_init, NULL }, 
#endif 
#ifdef CONFIG_FB_MQ200 

{ "mqfb", mqfb_ini t ,mqfb_setup } , 
#endif 
#ifdef CONFIG_FB_SUN3 

{ "sun3", sun3fb_init, sun3fb_setup }, 
#endif 
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#ifdef CONFIG_FB_HIT 
{ "hitfb", hitfb_init, NULL }, 

#endif 
#ifdef CONFIG_FB_ANAKIN 

{ "anakinfb", anakinfb_init, NULL } , 
#endif 
#ifdef CONFIG_FB_E1355 

{ "e1355fb", e1355fb_init, e1355fb_setup } , 
#endif 
#ifdef CONFIG_FB_DC 

{ "dcfb", dcfb_init, NULL }, 
#endif 

I* 
* Generic drivers that don't use resource management (yet) 

•! 
#ifdef CONFIG_FB_ VGA16 

{ "vga16", vga16fb_init, vga16fb_setup }, 
#endif 
#ifdef CONFIG_FB_STI 

{ "stifb", stifb_init , stifb_setup }, 
#endif 
#ifdef CONFIG_GSP_RESOLVER 

I* Not a real frame buffer device ... •/ 
{ "resolver", NULL , resolver_video_setup }, 

#endif 
#ifdef CONFIG_FB_VIRTUAL 

I* 
* Vfb must be last to avoid that it becomes your primary display if 
* other display devices are present 

•! 
{ "vfb", vfb_init, vfb_setup }, 

#endif 
}; 

#define NUM_FB_DRIVERS (sizeof(fb_drivers)/sizeof(•fb_drivers)) 
extern const char •global_mode_option; 
static initcall_t pref_init_funcs(FB_MAX]; 
static int num_pref_init_funcs __ initdata = O; 
struct fb_info •registered_fb[FB_MAX]; 
int num_registered_fb; 
extern int fbcon_softback_size; 
static int first_fb_vc; 
static int last_fb_vc = MAX_NR_CONSOLES-1; 
static int fbcon_is_default = 1; 
#ifdef CONFIG_FB_OF 
static int ofonly __ initdata = O; 
#endif 
static int fbmem_read_proc(char •buf, char **start, off_t offset, 
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{ 

} 

int len, int *eof, void *private) 

struct fb_info ••fi; 
int clen; 
clen = 0; 

for (fi= registered_fb; fi< &registered_fb[FB_MAX] && len < 4000; fi++) 
if (•fi) 

clen += sprintf(buf + clen, "¼d ¼s\n", 
GET_FB_IDX((•fi)->node), 
(•fi)->modename); 

*start = buf + offset; 
if (clen > offset) 

clen -= offset; 
else 

clen = 0; 
return clen < len? clen len; 

static ssize_t 

fb_read(struct file •file, char •buf, size_t count, loff_t •ppos) 
{ 

} 

unsigned long p = *ppos; 
struct inode •inode = file->f_dentry->d_inode; 
int fbidx = GET_FB_IDX(inode->i_rdev); 
struct fb_info •info = registered_fb[fbidx]; 
struct fb_ops •fb = info->fbops; 
struct fb_fix_screeninfo fix; 
if(! fb 11 ! info->disp) 

return -EN0DEV; 
fb->fb_get_fix(&fix,PR0C_C0NS0LE(info), info); 
if (p >= fix.smem_len) 

return 0; 
if (count >= fix.smem_len) 

count = fix.smem_len; 
if (count + p > fix . smem_len) 

count = fix.smem_len - p; 
if (count) { 

char •base_addr; 
base_addr = info->disp->screen_base; 

} 

count -= copy_to_user(buf, base_addr+p, count); 
if ( !count) 
return -EFAULT; 
•ppos += count; 

return count; 
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static ssize_t 

fb_write(struct file *file, const char *buf, size_t count, loff_t *ppos) 
{ 

} 

unsigned long p = *ppos; 
struct inode *inode = file- >f_dentry->d_inode; 
int fbidx = GET_FB_IDX(inode->i_rdev); 
struct fb_info *info = registered_fb[fbidx]; 
struct fb_ops *fb = info->fbops; 
struct fb_fix_screeninfo fix; 
int err; 
if(! fb 11 ! info->disp) 

return -ENODEV; 
} 

fb->fb_get_fix(kfix, PROC_CONSOLE(info), info); 
if (p > fix.smem_len) 

return -ENOSPC; 
} 

if (count >= fix.smem_len) 
count = fix.smem_len; 

err = O; 
if (count + p > fix.smem_len) { 

count = fix .smem_len - p; 
err = -ENOSPC; 

} 

if (count) { 

} 

char *base_addr; 
base_addr = info->disp->screen_base; 
count - = copy_from._user(base_addr+p, buf, count); 
*ppos += count; 
err = -EFAULT; 

if (count) 
return count; 

return err; 

#ifdef CONFIG_KMOD 
static void try_to_load(int fb) 
{ 

} 

char m.odnam.e[16]; 
sprintf (modnam.e, "fb¼d", fb); 
request_module(modnam.e); 

#endif I* CONFIG_KMOD *I 

static int 
fb_ioctl(struct inode *inode, struct file *file, unsigned int cmd, 

135 



{ 
unsigned long arg) 

int fbidJt = GET_FB_IDX(inode->i_rdev); 
struct fb_info •info = registered_fb[fbidJt]; 
struct fb_ops •fb = i nfo->fbops; 
struct fb_cmap cmap; 
struct fb_var_screeninfo var; 
struct fb_fix_screeninfo fix; 
struct fb_con2fbmap con2fb; 
struct fb_delay delay_struct;//I add this line 
int i; 

if ( ! fb) 
return -EN0DEV; 

svitch (cmd) { 
case FBI0GET_VSCREENINF0: 

if ((i = fb->fb_get_var(tvar, PR0C_C0NS0LE(info), info))) 
return i; 

return copy_to_user((void •) arg, tvar, 
eizeof(var))? -EFAULT: 0; 

case FBI0PUT_VSCREENINFO: 

if (copy_from_user(tvar, (void •) arg, sizeof(var))) 
return -EFAULT; 

i = var.activate t FB_ACTIV!TE_ALL 
? set_all_vcs(fbidJt, fb , &var, i nfo) 

fb->fb_set_var(tvar, PR0C_C0NS0LE(info), info); 
if (i) 

roturn i; 
if (copy_to_user((void •) arg, tvar, eizeof(var))) 

return -EFAULT; 
return O; 

case FBI0GET_FSCREENINF0: 

if ((i = fb->fb_get_fix(tfix, PR0C_C0NS0LE(info), info))) 
return i; 

return copy_to_user((void •) arg, tfix, sizeof(fix))? 
-EFAULT: 0; 

esse FBI0PUTCMAP: 

if (copy_from_user(tcmap, (void •) arg , sizeof(cmap))) 
return -EFAULT; 

return (fb->fb_set_cmap(tcmap, 0, PR0C_C0NS0LE(info), info)); 
case FBI0GETCMAP: 

if (copy_from_user(tcmap, (void •) arg, sizeof(cmap))) 
return -EFAULT; 

return (fb->fb_get_cmap(tcmap, 0, PR0C_C0NS0LE(info), info)); 
case FBI0PAN_DISPLAY: 

if (copy_from_user(tvar, (void •) arg, sizeof(var))) 
return -EFAULT; 
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if (fb->fb_pan_display == NULL) 
return (var.xoffset 11 var.yoffset)? - EINVAL : 0; 

if ((i=fb->fb_pan_display(tvar, PROC_CONSOLE(info), info))) 
return i; 

if (copy_to_user((void •) arg, &var, sizeof(var))) 
return -EFAULT; 

return i; 
case FBIOGET_CON2FBMAP: 

if (copy_from_user(&con2fb, (void •)arg, sizeof(con2fb))) 
return -EFAULT; 

if (con2fb.console < 1 11 con2fb.console > KAX_NR_CONSOLES) 
return -EINVAL; 

con2fb.framebuffer = con2fb_map[con2fb.console-1]; 
return copy_to_user((void •)arg, &con2fb, 

sizeof(con2fb))? -EFAULT: O; 
case FBIOPUT_CON2FBMAP: 

if (copy_from_user(&con2fb, (void •)arg, sizeof(con2fb))) 
return - EFAULT; 

if (con2fb.console < 0 11 con2fb.console > MAX_NR_CONSOLES) 
return -EINVAL; 

if (con2fb.framebuffer < 0 11 con2fb.framebuffer >= FB_KAX) 
return -EINVAL; 

#ifdef CONFIG_KMOD 
if (!registered_fb[con2fb.framebuffer]) 

try_to_load(con2fb.framebuffer); 
#endif /• CONFIG_KMOD •! 

if (!registered_fb[con2fb.framebuffer]) 
return -EINVAL; 

if (con2fb.console != 0) 
set_con2fb_map(con2fb.console-1, con2fb.framebuffer); 

else 

/• set them all •/ 
for (i = O; i < MAX_NR_CONSOLES; i++) 
set_con2fb_map(i, con2fb.framebuffer); 

return O; 
case FBIOBLANK: 

if (info->blank == 0) 
return -EINVAL; 

(•info->blank)(arg, info); 
return O; 

case FBIODIS_CTRLR://I add this case 
fb->fb_disable_controller(info); 
return O; 

case FBIQEN_CTRLR://I add this case 
fb->fb_enable_controller(info); 
return O; 

case FBIOPMLEN_ON://I add this case 
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} 

if (copy_from_user(&delay_struct, (void •)arg, sizeof(struct fb_delay))) 
return - EFAULT; 

printk("<1> \n\n! ! !Tutti va bene. \n\n"); 
printk("<1>\n\n! ! !delay_dis = 1/.d" ,delay_struct .dis); 
printk("<1>\n\n! ! !delay_en = ¼d" ,delay_struct. en); 
fb->fb_enable_pm_len(&delay_struct,info); 
return O; 

case FBIOPMLEN_OFF://I add this case 
fb->fb_disable_pm_len(); 
return O; 

case FBIODARKENS://I add this case 
win = (struct fb_window •)arg; 

return O; 
default: 

} 

if (fb->fb_ioctl == NULL) 
return -EINVAL; 

return fb->fb_ioctl(inode, file, cmd, arg, PROC_CONSOLE(info), 
info); 

static int 
fb_mmap(struct file •file, struct vm_area_struct * vma) 
{ 

int fbidx = GET_FB_IDX(file->f_dentry->d_inode->i_rdev); 
struct fb_info •info = registered_fb[fbidx]; 
struct fb_ops *fb = info->fbops; 
unsigned long off; 

#if !defined( __ sparc __ ) 11 defined( __ sparc_v9 __ ) 
struct fb_fix_screeninfo fix; 
struct fb_var_screeninfo var; 

unsigned long start; 
u32 len; 

#endif 
if (vma->vm_pgoff > (-OUL >> PAGE_SHIFT)) 

return -EINVAL; 
off= vma->vm_pgoff << PAGE_SHIFT; 
if (!fb) 

return -ENODEV ; 
if (fb->fb_mmap) { 

int res; 
lock_kernel () ; 
res = fb->fb_mmap(info, file, vma); 
unlock_kernel () ; 
return res; 

} 
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#if defined( __ sparc __ ) && !defined( __ sparc_v9 __ ) 

I* Should never get here, all fb drivers should have their own 
mmap routines *I 

return -EINVAL; 
#else 

I* !sparc32 ... *I 
lock_kernel () ; 
fb->fb_get_fix(&fix, PROC_CONSOLE(info), info); . 
I* frame buffer memory *I 
start = fix.smem_start; 
len = PAGE_ALIGN((start & -PAGE_MASK)+fix.smem_len); 
if (off>= len) { 

I* memory mapped io *I 
off-= len; 
fb->fb_get_var(&var, PROC_CONSOLE(info), info); 
if (var.accel_flags) 

return -EINVAL; 
start = fix.mmio_start; 
len = PAGE_ALIGN((start & -PAGE_MASK)+fix.mmio_len); 

} 

unlock_kernel () ; 
start &= PAGE_MASK; 
if ((vma->vm_end - vma->vm_start +off)> len) 

return -EINVAL; 
off+= start; 
vma->vm_pgoff =off>> PAGE_SHIFT; 

#if defined( __ sparc_v9 __ ) 

vma->vm_flags I= (VM_SHM I VM_LOCKED); 
if (io_remap_page_range(vma->vm_start, off, 

vma->vm_end - vma->vm_start, vma->vm_page_prot, 0)) 
return -EAGAIN; 

vma->vm_flags I= VM_IO; 
#else 
#if defined( __ mc68000 __ ) 
#if defined(CONFIG_SUN3) 

pgprot_val(vma->vm_page_prot) I= SUN3_PAGE_NOCACHE; 
#else 

if (CPU_IS_020_0R_030) 
pgprot_val(vma->vm_page_prot) 1= _PAGE_NOCACHE030; 

if (CPU_IS_040_0R_060) { 
pgprot_val(vma->vm_page_prot) &= _CACHEMASK040; 
I* Use no-cache mode, serialized *I 
pgprot_val(vma->vm_page_prot) I= _PAGE_NOCACHE_S; 

} 

#endif 
#elif defined( __ powerpc __ ) 

pgprot_val(vma->vm_page_prot) I= _PAGE_NO_CACHEI _PAGE_GUARDED; 
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#elif defined( __ alpha __ ) 

/• Caching is off in the I/0 space quadrant by design . •/ 
#elif defined( __ i386 __ ) 

if (boot_cpu_data.x86 > 3) 
pgprot_val(vma->vm_page_prot) 1= _PAGE_PCD; 

#elif defined( __ mips __ ) 

pgprot_val(vma->vm_page_prot) &= -_CACHE_MASK; 
pgprot_val(vma->vm_page_prot) I= _CACHE_UNCACHED; 

#elif defined( __ arm __ ) 

vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot) ; 
/• This is an IO map - tell maydump to skip this VMA •/ 
vma->vm_flags 1= VM_IO ; 

#elif defined( __ sh __ ) 

pgprot_val(vma- >vm_page_prot) &= -_PAGE_CACHABLE; 
#else 

#warning What do we have to do here?? 
#endif 

if (io_remap_page_range(vma->vm_start, off, 
vma->vm_end - vma->vm_start, vma->vm_page_prot)) 

return -EAGAIN; 
#endif /• ! __ sparc_v9 __ •! 

return O; 
#endif /• !sparc32 •/ 
} 

#if 1 /• to go away in 2.5.0 •/ 
int GET_FB_IDX(kdev_t rdev) 
{ 

int fbidx = MINOR(rdev); 
if (fbidx >= 32) { 
int newfbidx = fbidx » 5 ; 
static int warned ; 
if (!(warned & (1<<newfbidx))) { 

warned 1= l<<newfbidx; 

printk("Warning: Remapping obsolete /dev/fb• minor ¼d to ¼d\n", 
fbidx, newfbidx); 

} 

fbidx = newfbidx ; 
} 

return fbidx; 
} 

#endif 

static int 
fb_open(struct inode •inode, struct file •file) 
{ 

int fbidx = GET_FB_IDX(inode->i_rdev); 
struct fb_info •info; 
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int res = O; 
#ifdef CONFIG_KMOD 

if (!(info = registered_fb[fbidx])) 
try_to_load(fbidx); 

#endif /• CONFIG_KMOD *f 

} 

if (!(info = registered_fb[fbidx])) 
return -ENODEV; 

if (info->fbops->owner) 
__ MOD_INC_USE_COUNT(info->fbops->owner); 

if (info->fbops->fb_open) { 
res = info->fbops->fb_open(info,1); 
if (res tt info->fbops->owner) 

__ MOD_DEC_USE_COUNT(info->fbops->owner); 
} 

return res; 

static int 
fb_release(struct inode •inode, struct file •file) 
{ 

int fbidx = GET_FB_IDX(inode->i_rdev); 
struct fb_info •info; 
lock_kernel () ; 
info = registered_fb[fbidx]; 
if (info->fbops->fb_release) 

info->fbops->fb_release(info,1); 
if (info->fbops->owner) 

__ MOD_DEC_USE_COUNT(info->fbops->owner); 
unlock_kernel O ; 
return O; 

} 

static struct file_operations fb_fops = { 
owner: THIS_MODULE, 
read: 
vrite: 
ioctl: 
mmap: 
open: 

fb_read, 
fb_write, 
fb_ioctl, 
fb_mmap, 
fb_open, 

release: fb_release, 
#ifdef HAVE_ARCH_FB_UNMAPPED_AREA 

get_unmapped_area: get_fb_unmapped_area, 
#endif 
}; 

static devfs_handle_t devfs_handle; 

f** 
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* register_framebuffer - registers a frame buffer device 
* Cfb_info: frame buffer info structure 

* 
* Registers a frame buffer device ©fb_info. 

* 
* Returns negative errno on error, or zero for success. 

* 
•I 

int 
register_framebuffer(struct fb_info •fb_info) 
{ 

inti, j; 
char name_buf[B]; 
static int fb_ever_opened[FB_MAX); 
static int first = 1; 

if (num_registered_fb == FB_MAX) 
return -ENXIO ; 

num_registered_fb++; 
for (i = 0; i < FB_MAX; i++) 

if (!registered_fb[i]) 
break; 

fb_info->node = MKDEV(FB_MAJOR, i); 
registered_fb[i] = fb_info; 
if (!fb_ever_opened[i]) { 

struct module •owner = fb_info->fbops->owner; 
!• 

} 

* We assume initial frame buffer devices can be opened this 
* many times 
•I 

for (j O; j < MAX_NR_CONSOLES; j++) 
if (con2fb_map[j] = i) { 

if (owner) 
__ MQD_INC_USE_COUNT(owner); 

if (!fb_info->fbops->fb_open) 
continue; 

if (!fb_info- >fbops->fb_open(fb_info,0)) 
continue; 

if (owner) 
__ MOD_DEC_USE_COUNT(owner); 

} 

fb_ever_opened[i] = 1; 

if (first) { 
first = O; 
take_over_console(lfb_con, first_fb_vc, last_fb_vc, fbcon_is_default); 

} 
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} 

I** 

sprintf (name_buf, "¼d", i); 
fb_info->devfs_hand.le = 

devfs_register (devfs_handle, name_buf, DEVFS_FL_DEFAULT, 
FB_MAJOR, i, S_IFCHR I S_IRUGO I S_IWUGO, 
&fb_fops, NULL) ; 

return O; 

* unregister_framebuffer - releases a frame buffer device 
* ©fb_info : frame buffer info structure 

* 
* Unregisters a frame buffer device ©fb_info. 

* 
* Returns negative errno on error, or zero for success. 

* 
•! 

int 
unregister_framebuffer(struct fb_info •fb_info) 
{ 

} 

/u 

int i , j ; 
i = GET_FB_IDX(fb_info->node); 
for (j = O; j < MAX_NR_CONSOLES; j++) 

if (con2fb_map[j] == i) 
return -EBUSY; 

if (!registered_fb[i]) 
return -EINVAL; 

devfs_unregister (fb_info->devfs_handle); 
fb_info->devfs_handle = NULL; 
devfs_unregister (fb_info->devfs_lhandle); 
fb_info->devfs_lhandle = NULL; 
registered_fb[i]=NULL; 
num_registered_fb--; 
return O; 

* fbmem_init - init frame buffer subsystem 

* 
* Initialize the frame buffer subsystem . 

• 
• NOTE: This function is _only_ to be called by drivers/char/mem.c . 

• 
•/ 

void __ init 
fbmem_init(void) 
{ 

int i ; 
create_proc_read_entry("fb", 0, 0, fbmem_read_proc, NULL); 
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devfe_handle = devfs_mk_dir (HULL, "fb", NULL); 
if (dov:fs_register_chrdev(FB_MAJOR,"fb",tfb_fops)) 

printk("unable to get major Y,d for fb devs\n", FB_MAJOR); 

#ifdef CONFIG_FB_OF 
if (ofon.ly) { 

offb_ini t () i 
return; 

} 

#endif 

/• 

} 

/u 

• Probe for all builtin frame buffer devices 
•I 

for (i = O; i < num_pref_init_funcs; i++) 
pref_init_funcs(i](); 

for (i = O; i < NUM_FB_DRIVERS; i++) 
if (fb_drivers[i].init) 

fb_drivers[i).init(); 

• video_setup - process command line options 
• Goptions: string of options 
• 
• Procese command line options for frame buffer subsyetem . 
• 
• NOTE: This function is a __ setup and __ init function . 
• 
• Returne zero . 

• 
•/ 

int __ init video_setup(char •options) 
{ 

int i, j; 

if (!options Il !•options) 
return O; 

if (!strncmp(options, "scrollback:", 11)) { 
options += 11; 
if (•options) { 

fbcon_softback_size = simple_strtoul(options, &:options, O); 
if (•options== 'k' 11 •options s= 'K') { 

} 

fbcon_softback_size •= 1024; 
options++; 

if (•options!=',') 
return O; 

options++; 
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} 

} else 
return O; 

if (!strncmp(options, "map:", 4)) { 
options += 4; 

} 

if (*options) 
for (i = 0, j = 0; i < MAX_NR_C0NS0LES; i++) { 

if (!options [j]) 
j = O; 

con2fb_map[i] = (options[j++]-'0') % FB_MAX; 
} 

return 0; 

if (!strncmp(options, "vc:", 3)) { 
options+= 3; 

} 

if (*options) 
first_fb_vc = simple_strtoul(options, &options, 10) - 1; 
if (first_fb_vc < 0) 
first_fb_vc = O; 
if (*options++=='-') 
last_fb_vc = simple_strtoul(options, &options, 10) - 1; 
fbcon_is_default = 0; 

#ifdef C0NFIG_FB_QF 
if (!strcmp(options, "ofonly")) { 

ofonly = 1; 

} 

#endif 

return 0; 

if (num_pref_init_funcs == FB_MAX) 
return O; 

for (i = 0; i < NUM_FB_DRIVERS; i++) { 
j = strlen(fb_drivers[i].name); 
if (!strncmp(options, fb_drivers[i].name, j) && 
options[j] == ':') { 

if (!strcmp(options+j+1, "off")) 
fb_drivers[i].init = NULL; 

else { 

} 

if (fb_drivers[i].init) { 
pref_init_funcs[num_pref_init_funcs++] = 

fb_drivers[i].init; 
fb_drivers[i] .init = NULL; 

} 

if (fb_drivers[i].setup) 
fb_drivers[i].setup(options+j+1); 

return 0; 
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} 

} 

} 

!• 
* If we get here no fb was specified. 
* We consider the argument to be a global video mode option . 
•! 

global_mode_option = options; 
return O; 

__ setup("video=", video_setup); 
!• 

* Visible symbols for modules 
•! 

EXPORT_SYMBOL(register_framebuffer); 
EXPORT_SYMBOL(unregister_framebuffer); 
EXPORT_SYMBOL(registered_fb); 
EXPORT_SYMBOL(num_registered_fb); 
#if 1 /• to go away in 2.5 .0 •/ 
EXPORT_SYMBOL(GET_FB_IDX); 
#endif 
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Appendix D 

sall00fb.c 

I* 
* linu.x/drivers/video/sa1100fb.c 

* 
* Copyright (C) 1999 Eric A. Thomas 
* Based on acornfb.c Copyright (C) Russell King. 

* 
* This file is subject to the terms and conditions of the GNU General Public 
* License. See the file C0PYING in the main directory of this archive for 
* more details. 

* 
* 
*I 

StrongARM 1100 LCD Controller Frame Buffer Driver 

#include <linu.x/config.h> 
#include <linux/module.h> 
#include <linu.x/kernel.h> 
#include <linu.x/sched.h> 
#include <linux/errno.h> 
#include <linux/string.h> 
#include <linu.x/interrupt.h> 
#include <linux/slab.h> 
#include <linu.x/fb.h> 
#include <linux/delay.h> 
#include <linux/pm.h> 
#include <linux/init.h> 
#include <linux/cpufreq.h> 
#include <asm/hardware.h> 
#include <asm/io.h> 
#include <asm/irq.h> 
#include <asm/mach-types.h> 
#include <asm/uaccess.h> 
#include <video/fbcon.h> 
#include <video/fbcon-mfb.h> 
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#include <video/fbcon-cfb4.h> 
#include <video/fbcon-cfb8.h> 
#include <video/fbcon-cfb16.h> 
#include <linux/tqueue.h>//I add this line 
#include <linux/delay.h>//I add this line for "mdelay" 

#undef CHECK_COMPAT 

#define DEBUG 0 

#define DEBUG_VAR 1 

#undef ASSABET_PAL_VIDEO 

#include "sa1100fb.h" 

void (*sa1100fb_blank_helper)(int blank); 
EXPORT_SYMBOL(sa1100fb_blank_helper); 

#ifdef CHECK_COMPAT 
static void 
sa1100fb_check_shadow (struct sa1100fb_lcd_reg *new _reg , 

struct fb_var_screeninfo *var, u_int pcd) 
{ 

struct sa1100fb_lcd_reg shadow; 
int different = O; 
I* 
* These machines are good machines! 
•/ 

if (!machine_is_assabet() && !machine_is_bitsy()) 
return; 

I* 
* The following ones are bad, bad, bad. 
* Please make yours good! 

*I 
if (machine_is_pangolin()) { 

DPRINTK("Configuring Pangolin LCD\n"); 
shadow.lccrO = 

LCCRO_LEN + LCCRO_Color + LCCRO_LDM + 
LCCRO_BAM + LCCRO_ERM + LCCRO_Act + 
LCCRO_LtlEnd + LCCRO_DMADel(O) ; 

shadow. lccr1 = 
LCCR1_DisWdth(var->xres) + LCCR1_HorSnchWdth(64) + 

LCCR1_BegLnDel(160) + LCCR1_EndLnDel(24); 
shadow. lccr2 = 

LCCR2_DisHght(var->yres) + LCCR2_VrtSnchWdth(7) + 
LCCR2_BegFrmDel(7) + LCCR2_EndFrmDe1(1); 
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} 

shadow.lccr3 = 

LCCR3_PixClkDiv(pcd) + LCCR3_HorSnchH + 
LCCR3_VrtSnchH + LCCR3_PixF1Edg + LCCR3_0utEnH; 

DPRINTK ( "pcd = ¼x , PixCldDi v (pcd) =7.x \n" , 
pcd, LCCR3_PixClkDiv(pcd)); 

if (machine_is_freebird()) { 
DPRINTK("Configuring Freebird LCD\n"); 

#if 1 

#else 

#endif 
} 

shadow .lccrO = Ox00000038; 
shadow.lccr1 = Ox010108e0; 
shadow.lccr2 = Ox0000053f; 
shadow.lccr3 = Ox00000c20; 

shadow .lccrO = 

LCCRO_LEN + LCCRO_Color + LCCRO_Sngl + 

LCCRO_LDM + LCCRO_BAM + LCCRO_ERM + LCCRO_Pas + 
LCCRO_LtlEnd + LCCRO_DMADel(O); 

/• Check ,Chester•/ 
shadow.lccr1 = 

LCCR1_DisWdth(var->xres) + LCCR1_HorSnchWdth(5) + 

LCCR1_BegLnDel(61) + LCCR1_EndLnDel(9); 
/• Check ,Chester•/ 
shadow. lccr2 = 

LCCR2_DisHght(var->yres) + LCCR2_VrtSnchWdth(1) + 

LCCR2_BegFrmDel(3) + LCCR2_EndFrmDel(O); 
/• Check ,Chester•/ 
shadow .lccr3 = 

LCCR3_0utEnH + LCCR3_PixF1Edg + LCCR3_VrtSnchH + 
LCCR3_HorSnchH + LCCR3_ACBsCnt0ff + 

LCCR3_ACBsDiv(2) + LCCR3_PixClkDiv(pcd); 

if (machine_is_brutus()) { 
DPRINTK("Configuring Brutus LCD\n"); 
shadow.lccrO = 

LCCRO_LEN + LCCRO_Color + LCCRO_Sngl + LCCRO_Pas + 
LCCRO_LtlEnd + LCCRO_LDM + LCCRO_BAM + LCCRO_ERM + 

LCCRO_DMADel(O); 
shadow. lccr1 = 

LCCR1_DisWdth(var->xres) + LCCR1_HorSnchWdth(3) + 

LCCR1_BegLnDel(41) + LCCR1_EndLnDel(101); 
shadow.lccr2 = 

LCCR2_DisHght(var->yres) + LCCR2_VrtSnchWdth(1) + 
LCCR2_BegFrmDel(O) + LCCR2_EndFrmDel(O) ; 

shadow.lccr3 = 

LCCR3_0utEnH + LCCR3_PixRsEdg + LCCR3_VrtSnchH + 
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LCCR3_HorSnchH + LCCR3_ACBsCntOff + 
LCCR3_ACBsDiv(2) + LCCR3_PixClkDiv(44); 

} 

if (machine_is_huw_webpanel()) { 
DPRINTK("Configuring HuW LCD\n"); 
shadow.lccrO = LCCRO_LEN + LCCRO_Dual + LCCRO_LDM; 
shadow.lccr1 = LCCR1_DisWdth(var->xres) + 

LCCR1_HorSnchWdth(3) + 
LCCR1_BegLnDel(41) + LCCR1_EndLnDel(101); 

shadow .lccr2 = 239 + LCCR2_VrtSnchWdth(1); 
shadow.lccr3 = 8 + LCCR3_0utEnH + 

LCCR3_PixRsEdg + LCCR3_VrtSnchH + 
LCCR3_HorSnchH + LCCR3_ACBsCntOff + LCCR3_ACBsDiv(2); 

} 

#ifdef CONFIG_SA1100_CERF 
if (machine_is_cerf()) { 

DPRINTK("Configuring Cerf LCD\n"); 
#if defined (CONFIG_CERF_LCD_72_A) 

shadow.lccrO = 
LCCRO_LEN + LCCRO_Color + LCCRO_Dual + 
LCCRO_LDM + LCCRO_BAM + LCCRO_ERM + LCCRO_Pas + 
LCCRO_LtlEnd + LCCRO_DMADel(O); 

shadow. lccr1 = 
LCCR1_DisWdth(var->xres) + LCCR1_HorSnchWdth(5) + 

LCCR1_BegLnDe1(61) + LCCR1_EndLnDel(9); 
shadow. lccr2 = 

LCCR2_DisHght(var->yres / 2) + LCCR2_VrtSnchWdth(1) + 

LCCR2_BegFrmDe1(3) + LCCR2_EndFrmDel(O); 
shadow.lccr3 = 

LCCR3_0utEnH + LCCR3_PixRsEdg + LCCR3_VrtSnchH + 
LCCR3_HorSnchH + LCCR3_ACBsCntOff + 

LCCR3_ACBsDiv(2) + LCCR3_PixClkDiv(38); 
#elif defined (CONFIG_CERF_LCD_57_A) 

shadow.lccrO = 

LCCRO_LEN + LCCRO_Color + LCCRO_Sngl + 

LCCRO_LDM + LCCRO_BAM + LCCRO_ERM + LCCRO_Pas + 
LCCRO_LtlEnd + LCCRO_DHADel(O); 

shadow.lccrl = 

LCCR1_DisWdth(var->xres) + LCCR1_HorSnchWdth(5) + 

LCCR1_BegLnDel(61) + LCCR1_EndLnDel(9); 
shadow.lccr2 = 

LCCR2_DisHght(var->yres) + LCCR2_VrtSnchWdth(1) + 
LCCR2_BegFrmDe1(3) + LCCR2_EndFrmDel(O); 

shadow. lccr3 = 
LCCR3_0utEnH + LCCR3_PixRsEdg + LCCR3_VrtSnchH + 

LCCR3_HorSnchH + LCCR3_ACBsCnt0ff + 
LCCR3_ACBsDiv(2) + LCCR3_PixClkDiv(38); 
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#elif defined (CONFIG_CERF_LCD_38_A) 

#else 

shadow.lccrO = 
LCCRO_LEN + LCCRO_Color + LCCRO_Sngl + 

LCCRO_LDM + LCCRO_BAM + LCCRO_ERM + LCCRO_Pas + 

LCCRO_LtlEnd + LCCRO_DMADel(O); 
shadow.lccr1 = 

LCCR1_DisWdth(var->xres) + LCCR1_HorSnchWdth(5) + 
LCCR1_BegLnDel(61) + LCCR1_EndLnDel(9); 

shadow. lccr2 = 

LCCR2_DisHght(var->yres) + LCCR2_VrtSnchWdth(1) + 
LCCR2_BegFrmDe1(3) + LCCR2_EndFrmDel(O); 

shadow.lccr3 = 
LCCR3_0utEnH + LCCR3_PixRsEdg + LCCR3_VrtSnchH + 

LCCR3_HorSnchH + LCCR3_ACBsCntOff + 
LCCR3_ACBsDiv(2) + LCCR3_PixClkDiv(38); 

#error "Must have a CerfBoard LCD form factor selected" 
#endif 

} 

#endif 
if (machine_is_lart()) { 

DPRINTK("Configuring LART LCD\n"); 
#if defined LART_GREY_LCD 

shadow.lccrO = 
LCCRO_LEN + LCCRO_Mono + LCCRO_Sngl + LCCRO_Pas + 

LCCRO_LtlEnd + LCCRO_LDM + LCCRO_BAM + LCCRO_ERM + 

LCCRO_DMADel(O) ; 
shadow. lccr1 = 

LCCR1_DisWdth(var->xres) + LCCR1_HorSnchWdth(1) + 
LCCR1_BegLnDe1(4) + LCCR1_EndLnDel(2); 

shadov. lccr2 = 

LCCR2_DisHght(var->yres) + LCCR2_VrtSnchWdth(1) + 
LCCR2_BegFrmDel(O) + LCCR2_EndFrmDel(O); 

shadow.lccr3 = 

LCCR3_PixClkDiv(34) + LCCR3_ACBsDiv(512) + 
LCCR3_ACBsCntOff + LCCR3_HorSnchH + LCCR3_VrtSnchH; 

#endif 
#if defined LART_COLOR_LCD 

shadow.lccrO = 
LCCRO_LEN + LCCRO_Col or + LCCRO_Sngl + LCCRO_Act + 

LCCRO_LtlEnd + LCCRO_LDM + LCCRO_BAM + LCCRO_ERM + 
LCCRO_DMADel(O); 

shadow.lccr1 = 
LCCR1_DisWdth (var->xres) + LCCR1_HorSnchWdth(2) + 

LCCR1_BegLnDel(69) + LCCR1_EndLnDel(8); 
shadow.lccr2 = 

LCCR2_DisHght(var->yres) + LCCR2_VrtSnchWdth(3) + 
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#endif 

LCCR2_BegFrmDel(14) + LCCR2_EndFrmDel(4) ; 
shadow.lccr3 = 

LCCR3_PixClkDiv(34) + LCCR3_ACBsDiv(512) + 

LCCR3_ACBsCnt0ff + LCCR3_HorSnchL + LCCR3_VrtSnchL + 

LCCR3_PixF1Edg; 

#if defined LART_VIDEO_OUT 

#endif 
} 

shadow. lccrO = 

LCCRO_LEN + LCCRO_Color + LCCRO_Sngl + LCCRO_Act + 

LCCRO_LtlEnd + LCCRO_LDM + LCCRO_BAM + LCCRO_ERM + 
LCCRO_DMADel(O); 

shadow. lccrl = 

LCCR1_DisWdth(640) + LCCR1_HorSnchWdth(95) + 

LCCR1_BegLnDel(40) + LCCR1_EndLnDel(24); 
shadow.lccr2 = 

LCCR2_DisHght(480) + LCCR2_VrtSnchWdth(2) + 
LCCR2_BegFrmDel(32) + LCCR2_EndFrmDel(11); 

shadow.lccr3 = 

LCCR3_PixClkDiv(8) + LCCR3_ACBsDiv(512) + 
LCCR3_ACBsCnt0ff + LCCR3_HorSnchH + LCCR3_VrtSnchH + 
LCCR3_PixF1Edg + LCCR3_0utEnL; 

if (machine_is_graphicsclient()) { 
DPRINTK("Configuring GraphicsClient LCD\n"); 
shadow.lccrO = 

LCCRO_LEN + LCCRO_Color + LCCRO_Sngl + LCCRO_Act; 
shadow . lccr1 = 

LCCR1_DisWdth(var->xres) + LCCR1_HorSnchWdth(9) + 

LCCR1_EndLnDel(54) + LCCR1_B~gLnDel(54); 
shadow.lccr2 = 

LCCR2_DisHght(var- >yres) + LCCR2_VrtSnchWdth(9) + 
LCCR2_EndFrmDel(32) + LCCR2_BegFrmDel(24); 

shadow.lccr3 = 

LCCR3_PixClkDiv(10) + LCCR3_ACBsDiv(2) + 
LCCR3_ACBsCnt0ff + LCCR3_HorSnchL + LCCR3_VrtSnchL; 

} 

if (machine_is_omnimeter()) { 
DPRINTK("Configuring OMNI LCD\n"); 
shadow.lccrO = LCCRO_LEN I LCCRO_CMS I LCCRO_DPD; 
shadow.lccrl = 

LCCR1_BegLnDe1(10) + LCCR1_EndLnDel(10) + 
LCCR1_HorSnchWdth (1) + LCCRl_DisWdth(var->xres); 

shadow.lccr2 = LCCR2_DisHght(var->yres); 
shadow.lccr3 = 

LCCR3_ACBsDiv(OxFF) + LCCR3_PixClkDiv(44); 
//jca (GetPCD(25) << LCD3_V_PCD); 
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} 

if (machine_is_xp860()) { 
DPRINTK("Configuring XP860 LCD\n"); 
shadow . lccrO = 

LCCRO_LEN + LCCRO_Color + LCCRO_Sngl + LCCRO_Act + 
LCCRO_LtlEnd + LCCRO_LDM + LCCRO_ERM + LCCRO_DMADel(O); 

shadow.lccr1 = 
LCCR1_DisWdth(var->xres) + 

LCCRLHorSnchWdth(var->hsync_le.n) + 
LCCR1_BegLnDel(var->left_margin) + 
LCCRLEndLnDel(var->right_margin) ; 

shadow.lccr2 = 
LCCR2_DisHght(var->yres) + 
LCCR2_VrtSnchWdth(var->vsync_len) + 

LCCR2_BegFrmDel(var->upper_margin) + 
LCCR2_EndFrmDel(var->lower_margin); 

shadow. lccr3 = 
LCCR3_PixClkDiv(6) + LCCR3_HorSnchL + LCCR3_VrtSnchL; 

} 

if (shadow.lccrO != new_regs->lccrO) { 

printk(KERN_ERR "LCCR1 mismatch: Ox¼08x != Ox¼08x\n", 
shadow.lccr1, new_regs->lccr1); 

different = 1; 
} 

if (shadow.lccr1 != new_regs->lccr1) { 

printk(KERN_ERR "LCCR1 mismatch: Ox¼08x != Ox¼08x\n", 
shadow. lccr1, new_regs->lccr1); 

different = 1; 
} 

if (shadow.lccr2 != new_regs->lccr2) { 
printk(KERN_ERR "LCCR2 mismatch: Ox¼08x != Ox¼08x\n", 

shadow.lccr2, new_regs->lccr2); 
different = 1; 

} 

if (shadow.lccr3 != new_regs->lccr3) { 

printk(KERN_ERR "LCCR3 mismatch: Ox¼08x != Ox¼08x\n", 
shadow. lccr3, new_regs->lccr3); 

different = 1; 
} 

if (different) { 
printk(KERN_ERR "var: xres=¼d hslen=¼d lm=¼d rm=¼d\n", 

var->xres, var->hsync_len, 
var->left_margin, var->right_margin); 

printk(KERN_ERR "var: yres=¼d vslen=¼d um=¼d bm=¼d\n", 
var->yres, var->vsync_len, 
var->upper_margin, var->lower_margin); 

153 



printk(KERN_ERR "Please report this to Russell King" 

} 

"<rmk©arm.linux.org.uk>\n") ; 
} 

DPRINTK("olccr0 = 0x1/.08x\n", shadow . lccr0); 
DPRI NTK("olccr1 = 0x1/.08x\n", shadow.lccr1); 
DPRINTK("olccr2 = 0:x:1/.08:x:\n" , shadow.lccr2); 
DPRINTK("olccr3 = 0x1/.08x\n", shadow.lccr3) ; 

#else 
#define sa1100fb_check_shadow(regs,var,pcd) 
#endif 
!• 
* IMH0 this looks wrong. In 8BPP, length should be 8. 
•! 

static struct sa1100fb_rgb rgb_8 = { 
red: { offset: o, length: 4, }, 

green: { offset: 0, length: 4 , }, 

blue: { offset: 0, length: 4, }, 

transp: { offset: 0, length: 0, }, 

}; 

static struct sa1100fb_rgb def_rgb_16 = { 

red: { offset: 11 , length: 5 , }, 

green: { offset: 5, length: 6, }, 

blue: { offset: 0, length: 5, }, 

transp: { offset: 0, length: 0, }, 
}; 

#ifdef C0NFIG_SA1100_ASSABET 
static struct sa1100fb_mach_info 
#ifdef ASSABET_PAL_VIDE0 

assabet_info __ initdata = { 

pixclock: 67797, bpp: 16, 
512, xres: 640, 

hsync_len: 64, 
left_margin: 
right_margin: 

0, 

yres: 
vsync_len: 6, 

125, upper_margin: 
115, lower_margin: 

70, 
36, 

sync: 
l ccr0: 
lccr3: 

LCCR0_Color LCCR0_Sngl I LCCR0_Act, 

#else 
pixclock: 
xres: 

LCCR3_0utEnH I LCCR3_PixRsEdg I LCCR3_ACBsDiv(512), 

171521, 
320, 

bpp: 
yres: 

8, 
240, 

hsync_len: 5, 
left_margin: 

vsync_len: 1, 
61, upper_margin : 3, 

right_margin: 9, lower_margin: 0, 
sync: FB_SYNC_H0R_HIGH_ACT I FB_SYNC_VERT_HIGH_ACT, 
lccr0 : LCCR0_Color I LCCR0_Sngl I LCCR0_Act, 
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lccr3: 
#endif 

LCCR3_0utEnH I LCCR3_PixRsEdg I LCCR3_ACBsDiv(2), 

}; 

#endif 

#ifdef C0NFIG_SA1100_BITSY 
static struct sa1100fb_mach_info bitsy_info initdata = { 

pixclock: 0 , bpp: 16, 
xres: 320, 
hsync_len: 3, 
left_margin: 
right_margin: 

0, 

yres: 240, 
vsync_len: 3, 

12, upper_margin: 
17, lower_margin: 

10, 
1, 

sync: 
lccr0: 
lccr3: 

LCCR0_Color I LCCR0_Sngl I LCCR0_Act, 
LCCR3_0utEnH I LCCR3_PixRsEdg I LCCR3_ACBsDiv(2) 

0x10 /• PCD •! , 
#error FIXME 

}; 

!• 
* FIXME: please get rid of the PCD definition in favour of 
* LCCR3_PixClkDiv. --rmk 
•! 

static struct sa1100f b_rgb bitsy_rgb_16 = { 

red: { offset: 12, length: 4, }, 

green: { offset: 7, length: 4, }, 
blue: { offset: 1, length: 4, }, 

transp: { offset: 0, length: 0, }, 

}; 

#endif 

#ifdef C0NFIG_SA1100_BRUTUS 
static struct sa1100fb_mach_info brutus_info __ initdata = { 

pixclock: 0 , bpp: 8, 
xres : 320, yres: 240, 
hsync_len: 3, vsync_len: 1, 
left_margin: 41, upper _margin : 0, 
right_margin: 101, lower_margin: 0 , 
sync: FB_SYNC_H0R_HIGH_ACT I FB_SYNC_VERT_HIGH_ACT, 
lccr0: LCCR0_Color I LCCR0_Sngl I LCCR0_Pas, 
lccr3: LCCR3_0utEnH I LCCR3_PixRsEdg I LCCR3_ACBsDiv(2) 

LCCR3_PixClkDiv(44) , 
}; 

#endif 

#ifdef C0NFIG_SA1100_CERF 
static struct sa1100fb_mach_info cerf_info __ initdata = { 
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pixclock: 171521, bpp: 8, 
#if defined(C0NFIG_CERF_LCD_72_A) 

xres : 640, yres : 480, 
lccr0: LCCR0_Color I LCCR0_Dual I LCCR0_Pas, 
lccr3: LCCR3_0utEnH I LCCR3_PixRsEdg I LCCR3_ACBsDiv(2) 

LCCR3_PixClkDiv(38), 
#elif defined(C0NFIG_CERF_LCD_57_A) 

xres : 320, yres: 240, 
lccr0: LCCR0_Color I LCCR0_Sngl I LCCR0_Pas, 
lccr3: LCCR3_0utEnH I LCCR3_PixRsEdg I LCCR3_ACBsDiv(2) 

LCCR3_PixClkDiv(38), 
#elif defined(C0NFIG_CERF_LCD_38_A) 

xres: 
lccr0: 
lccr3 : 

240, yres: 320, 
LCCR0_Color I LCCR0_Sngl I LCCR0_Pas, 
LCCR3_0utEnH I LCCR3_PixRsEdg I LCCR3_ACBsDiv(2) 

LCCR3_PixClkDiv(38) , 
#else 
#error "Must have a CerfBoard LCD form factor selected" 
#endif 

hsync_len: 5, vsync_len: 1, 
left_margin: 61, upper_margin: 3, 
right_margin: 9, lower _margin: 0, 
sync: FB_SYNC_H0R_HIGH_ACT I FB_SYNC_VERT_HIGH_ACT, 

}; 

#endif 

#ifdef C0NFIG_SA1100_FREEBIRD 
#warning Please check this carefully 
static struct sa1100fb_mach_info freebird_info __ initdata = { 

}; 

pixclock: 171521 , bpp: 16, 
xres : 240, yres : 320, 
hsync_len: 3, 
left_margin: 2, 

vsync_len: 2, 
upper_margin: 0, 

right_margin: 2, lower_margin: 0, 
sync: FB_SYNC_H0R_HIGH_ACT I FB_SYNC_VERT_HIGH_ACT, 
lccr0 : LCCR0_Color I LCCR0_Sngl I LCCR0_Pas, 
lccr3: LCCR3_0utEnH I LCCR3_PixF1Edg I LCCR3_ACBsDiv(2), 

static struct sa1100fb_rgb freebird_rgb_16 = { 
red: 
green: 
blue: 

{ 

{ 

{ 

transp: { 
}; 

#endif 

offset: 
offset: 
offset: 
offset: 

8, length: 4, }, 

4, length: 4, }, 

0, length: 4, }, 

12, length: 4, }, 
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#ifdef CONFIG_SA1100_GRAPHICSCLIENT 
static struct sa1100fb_mach_info graphicsclient_info __ initdata = { 

pixclock: 0, bpp : 8, 
xres : 640, yres: 480, 
hsync_len: 9, 
left_margin: 
right_margin : 

o. 

vsync_len: 9, 
54, upper _margin: 
54, lower _margin: 

24, 
32, 

sync: 
lccrO: 
lccr3: 

LCCRO_Color I LCCRO_Sngl I LCCRO_Act, 
LCCR3_0utEn.H I LCCR3_PixRsEdg I LCCR3_ACBsDiv(2) 

}; 

#endif 

LCCR3_PixClkDiv(10), 

#ifdef CONFIG_SA1100_HUW_WEBPANEL 
static struct sa1100fb_mach_info huw_webpanel_info __ initdata = { 

pixclock: 0, bpp: 8, 
icres: 640 , yres: 480, 
hsync_len: 3, vsync_len: 1, 
left_margin: 41, upper_margin: 0, 
right_margin: 101, lower_margin : 0, 
sync: FB_SYNC_HQR_HIGH_ACT I FB_SYNC_VERT_HIGH_ACT, 
lccrO : LCCRO_Color I LCCRO_Dual I LCCRO_Pas, 
lccr3: LCCR3_0utEnH I LCCR3_PixRsEdg I LCCR3_ACBsDiv(2) 1 8, 

#error FIXME 

!• 
• FIXHE: please get rid of the ' I 8' in preference to an 
• LCCR3_PiicClkDiv() version. --rmk 
•! 

}; 

#endif 

#ifdef LART_GREY_LCD 
static struct sa1100fb_mach_info lart_grey_info __ initdata = { 

pixclock: 150000, bpp: 4, 
xres: 320, yres: 240, 

vsync_len: 1, hsync_len: 1, 
left_margin: 
right _margin: 

4 , upper _margin: 
2, lower_margin : 

cmap_greyscale: 1, 

0 , 

0 , 

sync: FB_SYNC_HQR_HIGH_ACT I FB_SYNC_VERT_HIGH_ACT, 
lccrO: 
lccr3: 

}; 

#endif 

LCCRO_Mono I LCCRO_Sngl I LCCRO_Pas I LCCR0_4PixMono, 
LCCR3_0utEnH I LCCR3_PixRsEdg I LCCR3_ACBsDiv(512), 

#ifdef LART_COLOR_LCD 
static struct sa1100fb_mach_info lart_color_info __ initdata = { 

157 



pixclock: 150000, bpp: 16, 
xres: 320, yres: 240, 
hsync_len : 2, vsync_len: 3, 
left_margin: 69, upper_margin: 14, 
right_margin: 8, lower_margin: 4, 
sync: 
lccrO: 
lccr3: 

0, 
LCCRO_Color I LCCRO_Sngl I LCCRO_Act, 
LCCR3_0utEnH I LCCR3_PixF1Edg I LCCR3_ACBsDiv(512), 

}; 

#endif 
#ifdef LART_VIDEO_OUT 
static struct sa1100fb_mach_info lart_video_info __ initdata = { 

pixclock: 39721, bpp: 16, 
xres : 640, yres: 480, 
hsync_len: 95, vsync_len: 2, 
left_margin: 40, upper_margin: 32, 
right_margin: 24, lower_margin: 11, 
sync: FB_SYNC_HQR_HIGH_ACT I FB_SYNC_VERT_HIGH_ACT, 
lccrO: LCCRO_Color I LCCRO_Sngl I LCCRO_Act, 
lccr3: LCCR3_0utEnL I LCCR3_PixF1Edg I LCCR3_ACBsDiv(512), 

}; 

#endif 

#ifdef CONFIG_SA1100_0MNIMETER 
static struct sa1100fb_mach_info omnimeter_info __ initdata = { 

pixclock: 0, bpp: 4, 
xres: 480, 
hsync_len: 1, 
left_margin: 
right_margin: 

yres: 320, 
vsync_len: 1, 

10, upper_margin: 
10, lower_margin: 

cmap_greyscale: 1, 

0, 
0, 

sync: FB_SYNC_HOR_HIGH_ACT I FB_SYNC_VERT_HIGH_ACT, 
lccrO: LCCRO_Mono I LCCRO_Sngl I LCCRO_Pas I LCCR0_8PixMono, 
lccr3: LCCR3_0utEnH I LCCR3_PixRsEdg I LCCR3_ACBsDiv(255) 1 

LCCR3_PixClkDiv(44) , 
#error FIXME: fix pixclock, ACBsDiv 

/• 
* FIXME: I think ACBsDiv is wrong above - should it be 512 (disabled)? 
• - rmk 
•! 

}; 

#endif 

#ifdef CONFI G_SA1100_PANGOLIN 
static struct 

pixclock: 
xres: 

sa1100fb_mach_info pangolin_info __ initdata = { 
341521, bpp : 16, 
800, yres: 600, 
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hsync_len: 64, vsync_len: 7, 
left_margin: 160, upper_margin : 7, 
right_margin: 24, lower_margin: 1, 
sync: FB_SYNC_HQR_HIGH_ACT I FB_SYNC_VERT_HIGH_ACT, 
lccr0: LCCR0_Color I LCCR0_Sngl I LCCR0_Act, 
lccr3: LCCR3_0utEnH I LCCR3_PixF1Edg, 

}; 

#endif 

#ifdef C0NFIG_SA1100_XP860 
static struct sa1100fb_mach_info xp860_info initdata = { 

pixclock: 0, bpp: 8, 
xres: 1024, yres : 768, 
hsync_len: 3, vsync_len : 3, 
left...margin: 3, upper_margin: 2, 
right_margin: 2, lower_margin: 1, 

0, sync: 
lccr0: 
lccr3: 

LCCR0_Color I LCCR0_Sngl I LCCR0_Act, 
LCCR3_0utEnH I LCCR3_PixRsEdg I LCCR3_PixClkDiv(6), 

}; 

#endif 

static struct sa1100fb_mach_info * init 
sa1100fb_get_machine_info(struct sa1100fb_info •fbi) 
{ 

struct sa1100fb_mach_info •inf NULL; 
/• 

* R G B T 
* default {11,5} , { 5 , 6}, { 0,5}, { 0 , 0} 
* bitsy {12,4}, { 7,4}, { 1,4}, { 0,0} 
* freebird { 8,4}, { 4,4}, { 0,4}, {12,4} 
•! 

#ifdef C0NFIG_SA1100_ASSABET 
if (machine_is_assabet()) { 

inf = &assabet_info; 
} 

#endif 
#ifdef C0NFIG_SA1100_BITSY 

if (machine_is_bitsy()) { 
inf = &bitsy_info; 
fbi->rgb[RGB_16] = &bitsy_rgb_16; 

} 

#endif 
#ifdef C0NFIG_SA1100_BRUTUS 

if (machine_is_brutus()) { 
inf = kbrutus_info; 

} 
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#endif 
#ifdef CONFIG_SA1100_CERF 

if (machine_is_cerf()) { 
inf = &cerf_info; 

} 

#endif 
#ifdef CONFIG_SA1100_FREEBIRD 

if (machine_is_freebird()) { 
inf = &freebird_info; 
fbi->rgb[RGB_16] = &freebird_rgb16 ; 

} 

#endif 
#ifdef CONFIG_SA1100_GRAPHICSCLIENT 

if (machine_is_graphicsclient()) { 
inf = &graphicsclient_info; 

} 

#endif 
#ifdef CONFIG_SA1100_HUW_WEBPANEL 

if (machine_is_huw_webpanel()) { 
inf = &huw_webpanel_info; 

} 

#endif 
#ifdef CONFIG_SA1100_LART 

if (machine_is_lart()) { 
#ifdef LART_GREY_LCD 

inf = &lart_grey_info; 
#endif 
#ifdef LART_COLOR_LCD 

inf = &lart_color_info; 
#endif 
#ifdef LART_VIDEO_OUT 

inf = &lart_video_info; 
#endif 

} 

#endif 
#ifdef CONFIG_SA1100_0MNIMETER 

if (machine_is_omnimeter()) { 
inf = &omnimeter_info; 

} 

#endif 
#ifdef CONFIG_SA1100_PANGOLIN 

if (machine_is_pangolin()) { 
inf = &pangolin_info; 

} 

#endif 
#ifdef CONFIG_SA1100_XP860 

if (machine_is_xp860()) { 
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inf &xp860_info; 
} 

#endif 
return inf; 

} 

static int sa1100fb_activate_var(struct f b_var_screeninfo *Var, struct sa1100fb_info *); 
static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state); 

static inline void sa1100fb_schedule_task(struct sa1100fb_info *fbi, u_int state) 
{ 

} 

I* 

U11signed long flags; 
local_irq_save(flags); 

I* 
* We need to handle two requests being made at the same time. 
* There are two important cases: 
* 1. When we are changing VT (C_REENABLE) while U11blanking (C_ENABLE) 
* We must perform the Ullblanking, which will do our REENABLE for us . 
* 2. When we are blanking, but immediately U11blank before we have 
* blanked. We do the "REENABLE" thing here as well, just to be sure. 
*I 

if (fbi->task_state == C_ENABLE && state == C_REENABLE) 
state = (u_int) -1; 

if (fbi->task_state == C_DISABLE && state == C_ENABLE) 
state = C_REENABLE; 

if (state != (u_int)-1) { 

} 

fbi->task_state = state; 
schedule_task(&fbi- >task); 

local_irq_restore(flags); 

* Get the VAR structure pointer for the specified console 
*I 

static inline struct fb_var_screeninfo *get_con_var(struct fb_info *info, int con) 
{ 

} 

I* 

struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; 
return (con== fbi->currcon 11 con= -1)? &fbi->fb.var: &fb_display[con].var; 

* Get the DISPLAY structure pointer for the specified console 

*I 
static inline struct display *get_con_display(struct fb_info *info, int con) 
{ 

} 

struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; 
return (con< O)? fbi->fb.disp: &fb_display[con]; 
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I* 
* Get the CMAP pointer for the specified console 

*I 
static inline struct fb_cmap *get_con_cmap(struct fb_info *info, int con) 
{ 

struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; 
return (con== fbi->currcon 11 con== - 1)? &fbi->fb.cmap &fb_display[con].cmap; 

} 

static inline u_int 
chan_to_field(u_int chan, struct fb_bitfield *bf) 
{ 

} 

I* 

chan&= Oxffff; 
chan>>= 16 - bf->length; 
return chan<< bf->offset; 

* Convert bits-per-pixel to a hardware palette PBS value. 

*I 
static inline u_int 
palette_pbs(struct fb_var_screeninfo *Var) 
{ 

int ret = O; 
switch (var->bits_per_pixel) { 

#ifdef FBCON_HAS_CFB4 
case 4: ret = 0 << 12; break; 

#endif 
#ifdef FBCON_HAS_CFBB 

case 8: ret = 1 << 12; break; 
#endif 
#ifdef FBCON_HAS_CFB16 

case 12: 
case 16: ret = 2 << 12; break; 

#endif 
} 

return ret; 
} 

static int 

sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, 
u_int trans, struct fb_info *info) 

{ 

struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; 
u_int val, ret = 1; 

if (regno < fbi->palette_size) { 
val= ((red >> 4) & OxfOO); 
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} 

} 

val 1= ((green>> 8) & 0x0f0); 
val I= ((blue >> 12) & 0x00f); 
if (regno == 0) 

val 1= palette_pbs(&fbi->fb.var); 
fbi->palette_cpu[regno] = val; 
ret = 0; 

return ret; 

static int 

sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 
u_int trans, struct fb_info •info) 

{ 

} 

struct sa1100fb_info •fbi = (struct sa1100fb_info •)info; 
u_int val; 
int ret = 1; 

!• 
* If greyscale is true, then we convert the RGB value 
* to greyscale no mater what visual we are using. 
•I 

if (fbi->fb.var .grayscale) 

red =green= blue = (19595 * red + 38470 *green+ 
7471 * blue) >> 16; 

switch (fbi->fb.disp->visual) { 
case FB_VISUAL_TRUEC0L0R: 

I• 
* 12 or 16-bit True Colour. We encode the RGB value 
* according to the RGB bitfield information. 
•! 

if (regno < 16) { 

} 

u16 •pal = fbi->fb.pseudo_palette; 
val chan_to_field(red, &fbi->fb .var.red); 
val 1= chan_to_field(green, &fbi->fb.var.green); 
val 1= chan_to_field(blue, &fbi->fb.var.blue); 
pal[regno] = val; 
ret = 0; 

break; 
case FB_VISUAL_PSEUD0C0L0R: 

} 

ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info); 
break; 

return ret; 

static int sa1100fb_validate_var(struct fb_var_screeninfo •var, 
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struct sa1100fb_info •fbi) 
{ 

int ret = -EINVAL; 
if (var->xres < MIN_XRES) 

var->xres MIN_XRES; 
if (var->yres < MIN_YRES) 

var->yres = MIN_YRES; 
if (var->xres > fbi->ma:x_xres) 

var->xres fbi->ma:x_xres; 
if (var->yres > fbi->ma:x_yres) 

var->yres fbi->ma:x_yres; 
var->xres_virtual = 

var->xres_virtual < var->xres? var->xres var->xres_virtual; 
var->yres_virtual = 

var->yres_virtual < var->yres? var->yres var->yres_virtual; 
DPRINTK("var->bits_per_pixel=¼d\n", var->bits_per_pixel); 
switch (var->bits_per_pixel) { 

#ifdef FBCON_HAS_CFB4 
case 4: ret = O; break; 

#endif 
#ifdef FBCON_HAS_CFBB 

case 8: ret = 0; break; 
#endif 
#ifdef FBCON_HAS_CFB16 

case 12: 
if ((fbi->lccrO & LCCRO_PAS) -- LCCRO_Pas) 

ret = O; 
break; 

case 16: 
if ((fbi->lccrO & LCCRO_PAS) - LCCRO_Act) 

ret = 0; 
break; 

#endif 
default: 

break; 
} 

return ret; 
} 

static inline void sa1100fb_set_truecolor(u_int is_true_color) 
{ 

DPRINTK("true_color = ¼d\n", is_true_color); 
#ifdef CONFIG_SA1100_ASSABET 

if (machine_is_assabet()) { 
#if 1 

// phase 4 or newer Assabet's 
if (is_true_color) 
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BCR_set(BCR_LCD_12RGB); 
else 

BCR_clear(BCR_LCD_12RGB); 
#else 

// older Assabet's 
if (is_true_color) 

BCR_clear(BCR_LCD_12RGB); 
else 

BCR_set(BCR_LCD_12RGB); 
#endif 

} 

#endif 
} 

static void 

sa1100fb_hw_set_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi) 
{ 

u_long palette_mem_size; 
fbi->palette_size = var->bits_per_pixel = 8? 256: 16; 
palette_mem_size = fbi->palette_size * sizeof(u16); 
DPRINTK("palette_mem_size = Ox1/.08lx\n", (u_long) palette_mem_size); 
fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); 
fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; 
fb_set_cmap(&fbi->fb.cmap, 1, sa1100fb_setcolreg, &fbi->fb); 
f* Set board control register to handle new color depth */ 
sa1100fb_set_truecolor(var- >bits_per_pixel >= 16); 

#ifdef CONFIG_SA1100_0MNIMETER 

#error Do we have to do this here? We already doit at init time. 
if (machine_is_omnimeter()) 

SetLCDContrast(DefaultLCDContrast); 
#endif 

sa1100fb_activate_var(var, fbi); 
fbi->palette_cpu[O] = (fbi->palette_cpu[O] & 

Oxcfff) 1 palette_pbs(var); 
} 

f* 
* sa1100fb_set_var(): 

* Set the user defined part of the display for the specified console 

*f 
static int 

sa1100fb_set_var(struct fb_var_screeninfo *Var, int con, struct fb_info *info) 
{ 

struct sa1100fb_info *fbi = (struct sallOOfb_info *)info; 
struct fb_var_screeninfo *dvar = get_con_var(&fbi->fb, con); 
struct display •display = get_con_display(&fbi->fb, con); 
int err, chgvar = 0, rgbidx; 
DPRINTK("set_var\n"); 
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I• 
* Decode var contents into a par structure, adjusting any 
* out of range values. 
•I 

err = sa1100fb_validate_var(var, fbi); 
if (err) 

return err; 
if (var->activate & FB_ACTIVATE_TEST) 

return O; 
if ((var->activate & FB_ACTIVATE_MASK) != FB_ACTIVATE_NOW) 

return -EINVAL; 
if (dvar->xres != var->xres) 

chgvar = 1; 
if (dvar->yres != var->yres) 

chgvar = 1; 
if (dvar->xres_virtual != var->xres_virtual) 

chgvar = 1; 
if (dvar->yres_virtual != var->yres_virtual) 

chgvar = 1; 
if (dvar->bits_per_pixel != var->bits_per_pixel) 

chgvar = 1; 
if (con< 0) 

chgvar = O; 
switch (var->bits_per_pixel) { 

#ifdef FBCON_HAS_CFB4 
case 4: 

#endif 

if (fbi->cmap_static) 
display->visual = FB_VISUAL_STATIC_PSElJDOCOLDR; 

else 
display->visual = FB_VISUAL_PSEUDOCOLOR; 

display->line_length = var->xres / 2; 
display->dispsw &fbcon_cfb4; 
rgbidx = RGB_8; 
break; 

#ifdef FBCON_HAS_CFB8 
case 8: 

#endif 

if (fbi->cmap_static) 
display->visual = FB_VISUAL_STATIC_PSEUDOCOLOR; 

else 
display->visual = FB_VISUAL_PSEUDOCOLOR; 

display->line_length = var->xres; 
display->dispsw &fbcon_cfb8; 
rgbidx = RGB_8; 
break; 

#ifdef FBCON_H.AS_CFB16 
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case 12: 
case 16: 

display->visual 
display->line_length 
display->dispsv 

FB_VISUAL_TRUECDLDR; 
= var->xres * 2 ; 

&fbcon_cfb16; 
display->dispsv_data fbi->fb.pseudo_palette; 
rgbidx = RGB_16; 
break; 

#endif 
default: 

} 

rgbidx = O; 
display->dispsv = &fbcon_dummy; 
break; 

= fbi->screen_cpu; 
display->line_length; 
fbi->fb.fix.type; 
fbi->fb.fix .type_aux; 

display->screen_base 
display->next_line 
display->type 
display->type_aux 
display->ypanstep = fbi->fb.fix.ypanstep; 
display->yvrapstep fbi->fb.fix.yvrapstep; 
display->can_soft_blank = 1; 
display->inverse = 0; 
•dvar = •var; 
dvar->activate &= -FB_ACTIVATE_ALL; 

!• 
* Copy the RGB parameters for this display 
* from the machine specific parameters. 

*I 
dvar->red = fbi->rgb[rgbidx]->red; 
dvar->green fbi->rgb[rgbidx]->green; 
dvar->blue = fbi->rgb[rgbidx]->blue; 
dvar->transp = fbi->rgb[rgbidx]->transp; 
DPRINTK("RGBT length = ¼d:¼d:¼d:¼d\n", 

dvar->red.length , dvar->green.length, dvar->blue.length, 
dvar->transp.length); 

DPRINTK("RGBT offset= ¼d:¼d:¼d:¼d\n", 
dvar->red.offset, dvar->green .offset, dvar->blue.offset, 
dvar->transp.offset); 

!• 
* Update the old var. The fbcon drivers still use this. 
* Once they are using fbi->fb.var, this can be dropped. 

•! 
display->var = •dvar; 
!• 

* If ve are setting all the virtual consoles, also set the 
* defaults used to create nev consoles. 

•! 
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} 

if (var->activate 1 FB_ACTIVATE_ALL) 
fbi->fb.disp->var = •dvar; 

I• 

• If the consolo has changed and the console has defined 
• a changevar function, call that function. 
•I 

if (cbgvar ü info 11 fbi->fb.changevar) 
fbi->fb .changevar(con); 

/ • If the current console is selected, activate the new var. •I 
if (con!= fbi->currcon) 

return O; 
sa1100fb_hw_set_var(dvar, f bi) ; 
return O; 

etatic int 

__ do_set_cmap(struct fb_cmap •cmap, int kspc, i nt con , 
struct fb_info •info) 

{ 

struct sa1100fb_info •fbi = (etruct sa1100fb_info •)info ; 
struct fb_cmap •dcmap • got_con_cmap(info, con); 
int err = 0; 
if (con == -1) 

con= fbi->currcon; 

I• no colormap allocated? (we always have "this" colour map allocated) •/ 
if (con>= 0) 

err = fb_alloc_cmap(lfb_display[con].cmap, fbi->palette_size, O) ; 
if (!err 11 con== fbi->currcon) 

err = fb_eet_cmap(cmap, kspc, ea1100fb_setcolreg, info); 
if (!err) 

fb_copy_cmap(cmap, dcmap, kspc? 0: 1); 
return err; 

} 

static int 

sa1100fb_set_cmap(struct f b_cmap •cmap, int kspc, int con, 
etruct fb_info •info) 

{ 

} 

struct display •disp = get_con_display(info, con); 
if (disp->visual == FB_VISUAL_TRUECOLOR) 

return -EINVAL; 
return __ do_set_cmap(cmap, kspc, con, info); 

static int 

sa1100fb_get_fix(struct fb_fix_ecreeninfo •fix, int con, struct fb_info •info) 
{ 
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} 

struct display *display = get_con_display(info, con); 
•fix = info->fix; 
fix->line_length = display->line_length; 
fix->visual = display->visual; 
return O; 

static int 

sa1100fb_get_var(struct fb_var_screeninfo •var, int con , struct fb_info •info) 
{ 

} 

•var= •get_con_var(info, con); 
return O; 

static int 

sa1100fb_get_cmap(struct fb_cmap •cmap , int kspc, int con, struct fb_in.fo •info) 
{ 

} 

struct fb_cmap •dcmap = get_con_cmap(info, con) ; 
fb_copy_cmap(dcmap, cmap, kspc? 0: 2); 
return O; 

I* 
* sa1100fb_switch(): 
* Change to the specified console. Palet te and video mode 
* are changed to the console's stored parameters. 

* 
* Uh oh, this can be called from a tasklet (IRQ) 

•! 
static int sa1100fb_switch(int con, struct fb_info •info) 
{ 

struct sa1100fb_info •fbi = (struct sa1100fb_info •)info; 
struct display •disp; 
struct fb_cmap •cmap; 
DPRINTK("con=¼d info->modename=¼s\n", con, fbi->fb.modename); 
if (con== f bi->currcon) 

return O; 
if (fbi->currcon >= 0) { 

disp = fb_display + fbi->currcon; 
disp->var = fbi->fb.var; 
if (disp->cmap.len) 

fb_copy_cmap(&fbi->fb.cmap, &disp->cmap, O); 
} 

fbi->currcon = con; 
disp = fb_display + con; 
fb_alloc_cmap(&fbi->fb.cmap, 256, O); 
if (disp->cmap.len) 

cmap = &disp->cmap; 
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} 

else 

cmap = fb_default_cmap(l << disp->var.bits_per_pixel); 
fb_copy_cmap(cmap, &fbi->fb.cmap, 0); 
fbi->fb.var = disp->var; 
fbi->fb.var .activate = FB_ACTIVATE_N0W; 
sa1100fb_set_var(&fbi->fb.var, con, info); 
return 0; 

static void sa1100fb_blank(int blank, struct fb_info •info) 
{ 

} 

struct sa1100fb_info *fbi = (struct sa1100fb_info • )info; 
inti; 

DPRINTK("sa1100fb_blank: blank=%d info->modename=%s\n", blank, 
fbi->fb.modename); 

switch (blank) { 
case VESA_P0WERD0WN: 
case VESA_VSYNC_SUSPEND: 
case VESA_HSYNC_SUSPEND : 

if (fbi->fb.disp->visual = FB_VISUAL_PSEUD0C0L0R 11 

fbi->fb.disp->visua1 = FB_VISUAL_STATIC_PSEUD0C0L0R) 
for (i = O; i < fbi->palette_size ; i++) 

sa1100fb_setpa1ettereg(i, 0, 0, 0, 0, info); 
sa1100fb_schedule_task(fbi, C_DISABLE); 
if (sa1100fb_blank_helper) 

sa1100fb_blank_helper(blank); 
break; 

case VESA_N0_BLANKING: 

} 

if (sa1100fb_blank_helper) 
sa1100fb_blank_helper(blank); 

if (fbi->fb.disp->visual == FB_VISUAL_PSEUD0C0L0R 11 

fbi->fb.disp->visual = FB_VISUAL_STATIC_PSEUD0C0L0R) 
fb_set_cmap(&fbi->fb.cmap, 1, sa1100fb_setcolreg, info); 

sa1100fb_schedule_task(fbi, C_ENABLE); 

static int sa1100fb_updatevar(int con, struct fb_info •info) 
{ 

} 

!• 

DPRINTK("entered\n"); 
return 0; 

* Calculate the PCD value from the clock rate (in picoseconds). 
* We take account of the PPCR clock setting. 
•! 
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static inline int get_pcd(unsigned int pixclock) 
{ 

} 

unsigned int pcd; 

if (pixclock) { 
pcd = get_cclk_frequency() * pixclock; 
pcd /= 10000000; 
pcd += 1; /• make up for integer math truncations •/ 

} else { 

} 

printk(KERN_WARNING "Please convert me to use the PCD calculations\n"); 
pcd = 0; 

return pcd; 

I• 
* sa1100fb_activate_var(): 
* Configures LCD Controller based on entries in var parameter. Settings are 
* only written to the controller if changes were made. 
•/ 

static int sa1100fb_activate_var(struct fb_var_screeninfo •var, struct sa1100fb_info •fbi) 
{ 

struct sa1100fb_lcd_reg new_regs; 
u_int pcd = get_pcd(var->pixclock); 
u_long flags; 
DPRINTK("Configuring SA1100 LCD\n"); 
DPRINTK("var: xres=¼d hslen=¼d lm=¼d rm=¼d\n", 

var->xres , var->hsync_len, 
var->left_margin, var->right_margin); 

DPRINTK("var: yres=¼d vslen=¼d um=¼d bm=¼d\n", 
var->yres, var->vsync_len, 
var->upper_margin, var->lower_margin); 

#if DEBUG_VAR 
if (var- >xres < 16 11 var->xres > 1024) 

printk(KERN_ERR "¼s: invalid xres ¼d\n", 
fbi->fb .fix.id, var->xres); 

if (var->hsync_len < 1 11 var->hsync_len > 64) 
printk(KERN_ERR "¼s: invalid hsync_len ¼d\n", 

fbi->fb.fix.id, var->hsync_len); 
if (var->left_margin < 1 Il var->left_margin > 255) 

printk(KERN_ERR "¼s: invalid left_margin ¼d\n", 
fbi->fb.fix.id, var->left_margin); 

if (var->right_margin < 1 11 var->right_margin > 255) 
printk(KERN_ERR "¼s: invalid right_margin ¼d\n", 

fbi->fb .fix.id , var->right_margin); 
if (var->yres < 1 11 var->yres > 1024) 

printk(KERN_ERR "¼s: invalid yres ¼d\n", 
fbi->fb.fix . id, var->yres); 
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if (var->vsync_len < 1 1 1 var->vsync_len > 64) 
printk(KERN_ERR "ï.s: invalid vsync_len Ï,d\n", 

fbi->fb .fix.id, var->vsync_len) ; 
if (var->upper_margin < 0 11 var->upper_margin > 255) 

printk(KERN_ERR "ï.s: invalid upper_margin ï.d\n", 
fbi->fb.fix.id, var->upper_margin); 

if (var->lower_margin < 0 Il var->lower_margin > 255) 
printk(KERN_ERR "¼s: invalid lower_margin Ï.d\n", 

fbi->fb.fix.id, var->lower_margin) ; 
#endif 

new_regs.lccrO = fbi->lccrO 1 

LCCRO_LEN I LCCRO_LDM I LCCRO_BAM 
LCCRO_ERM I LCCRO_LtlEnd I LCCRO_DMADel(O); 

new_regs.lccr1 = 

LCCR1_DisWdth(var->xres) + 

LCCR1_HorSnchWdth(var->hsync_len) + 
LCCR1_Begl..nDel(var->left_margin) + 

LCCR1_Endl..nDel(var- >right_margin); 
new_regs . lccr2 = 

LCCR2_DisHght(var->yres) + 

LCCR2_VrtSnchWdth(var- >vsync_len) + 
LCCR2_BegFrmDel(var->upper_margin) + 
LCCR2_EndFrmDel(var->lower_margin); 

new_regs.lccr3 = f bi->lccr3 1 

(var->sync t FB_SYNC_HOR_HIGH_ACT? LCCR3_HorSnchH: LCCR3_HorSnchL) 1 

(var->sync t FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL) 1 

LCCR3_ACBsCnt0ff; 
if (pcd) 

new_regs.lccr3 I= LCCR3_PixClkDiv(pcd); 
sa1100fb_check_shadow(tnew_regs, var, pcd); 
DPRINTK("nlccrO = Oxï.OBx\n", new_regs.lccrO); 
DPRINTK("nlccr1 = Oxï.OBx\n", new_regs.lccr1); 
DPRINTK("nlccr2 = Oxï.OBx\n", new_regs.lccr2); 
DPRINTK("nlccr3 = Oxï.OBx\n", new_regs.lccr3); 
/• Update shadow copy atomically •/ 
local_irq_save(flags); 
fbi->dbar1 = fbi->palette_dma ; 
fbi->dbar2 = fbi->screen_dma + 

(var->xres * var->yres * var->bits_per_pixel / 8 / 2); 
fbi->reg_lccrO = new_regs.lccrO; 
fbi->reg_lccr1 = new_regs.lccr1; 
fbi->reg_lccr2 = new_regs.lccr2; 
fbi->reg_lccr3 = new_regs . lccr3; 
local_irq_restore(flags); 

!• 
* Only update the registers if the controller is enabled 
* and something bas changed . 
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} 

•I 
if ((LCCRO != fbi->reg_lccrO) 11 (LCCR1 != fbi->reg_lccr1) 1 1 

(LCCR2 != fbi->reg_lccr2) 11 (LCCR3 != fbi->reg_lccr3) 11 

(DBAR1 != (Address) fbi->dbar1) 11 (DBAR2 != (Address) fbi->dbar2)) 
sa1100fb_schedule_task(fbi, C_REENABLE); 

return O; 

static void sa1100fb_backlight_on(struct sa1100fb_info *fbi) 
{ 

DPRINTK("backlight on\n"); 
#ifdef CONFIG_SA1100_FREEBIRD 
#error FIXME 

if (machine_is_freebird()) { 
BCR_set(BCR_FREEBIRD_LCD_PWR I BCR_FREEBIRD_LCD_DISP); 

} 

#endif 
#ifdef CONFIG_SA1100_BITSY 
#error FIXME 

if (machine_is_bitsy()) { 
set_bitsy_egpio(EGPIO_BITSY_LCD_ON 

EGPIO_BITSY_LCD_PCI 1 

EGPIO_BITSY_LCD_5V_ON 
EGPIO_BITSY_LVDD_ON); 

} 

#endif 
#ifdef CONFIG_SA1100_FREEBIRD 

if (machine_is_freebird()) { 
/• Turn on backlight ,Chester•/ 
BCR_set(BCR_FREEBIRD_LCD_BACKLIGHT); 

} 

#endif 
#ifdef CONFIG_SA1100_HUW_WEBPANEL 
#error FIXME 

if (machine_is_huw_webpanel()) { 
BCR_set(BCR_CCFL_POW + BCR_PWM_BACKLIGHT); 
set_current_state(TASK_UNINTERRUPTIBLE); 
schedule_task(200 *HZ/ 1000) ; 
BCR_set(BCR_TFT_ENA); 

} 

#endif 
#ifdef CONFIG_SA1100_0MNIMETER 

if (machine_is_omnimeter()) 
LEDBacklightOn(); 

#endif 
} 
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static void sa1100fb_backlight_off(struct sa1100fb_info •fbi) 
{ 

DPRINTK ( "backlight off\n") ; 
#ifdef CONFIG_SA1100_BITSY 
#error FIXME 

if (machine_is_bi tsy ()) { 
clr_bitsy_egpio(EGPIO_BITSY_LCD_ON 

EGPIO_BITSY_LCD_PCI 1 

EGPIO_BITSY_LCD_6V_ON 
EGPIO_BITSY_LVDD_QN); 

} 

#endif 
#ifdef CONFIG_SA1100_FREEBIRD 
#error FIXME 

if (machine_is_freebird()) { 
BCR_clear(BCR_FREEBIRD_LCD_P'WR I BCR_FREEBIRD_LCD_DISP 

/•! BCR_FREEBIRD_LCD_BACKLIGHT •/ ); 
} 

#endif 
#ifdef CONFIG_SA1100_0MNIMETER 

if (machine_is_omnimeter()) 
LEDBacklightOff(); 

#endif 
} 

static void sa1100fb_power_up_lcd(struct sa1100fb_info •fbi) 
{ 

DPRINTK("LCD power on\n"); 
#if defined(CONFIG_SA1100_ASSABET) &:k !defined(ASSABET_PAL_VIDEO) 

if (machine_is_assabet()) 
BCR_set(BCR_LCD_ON); 

#endif 
#ifdef CONFIG_SA1100_HUW_WEBPANEL 

if (machine_is_huw_webpanel()) 
BCR_clear(BCR_TFT_NP'WR); 

#endif 
#ifdef CONFIG_SA1100_0MNIMETER 

if (machine_is_omnimeter()) 
LCDPowerOn(); 

#endif 
} 

static void sa1100fb_power_down_lcd(struct sa1100fb_info •fbi) 
{ 

DPRINTK("LCD power off\n"); 
#if defined(CONFIG_SA1100_ASSABET) && !defined(ASSABET_PAL_VIDEO) 

if (machine_is_assabet()) 
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BCR_clear(BCR_LCD_ON); 
#endif 
#ifdef CONFIG_SA1100_HUW_WEBPANEL 

// dont forget to set the control lines to zero(?) 
if (machine_is_huw_webpanel()) 

BCR_set(BCR_TFT_NPWR); 
#endif 
} 

static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi) 
{ 

u_int mask = O; 
if ((fbi->reg_lccrO & LCCRO_CMS) == LCCRO_Color && 
(fbi->reg_lccrO & (LCCRO_DuallLCCRO_Act)) ! = 0) { 
mask = GPIO_LDD11 1 GPIO_LDD10 1 GPIO_LDD9 1 GPIO_LDD8; 
if (fbi->fb.var.bits_per_pixel > 8) 

mask 1= GPIO_LDD15 1 GPIO_LDD14 1 GPIO_LDD13 1 GPIO_LDD12; 
} 

#ifdef CONFIG_SA1100_FREEBIRD 
#error Please contact <rmkGarm.linux.org.uk> about this 

if (machine_is_freebird()) { 

} 

#endif 

f* Color single passive *f 
mask I= GPIO_LDD15 1 GPIO_LDD14 1 GPIO_LDD13 1 GPIO_LDD12 

GPIO_LDD11 1 GPIO_LDD10 1 GPIO_LDD9 1 GPIQ_LDD8; 

#ifdef CONFIG_SA1100_BITSY 
#error Please contact <rmkGarm.linux.org.uk> about this, preferably with a patch! 

I* 
* This should be covered by the above test, so this is redundant. 

*f 
#if 0 

if (machine_is_bitsy()) { 

} 

#endif 
#endif 

I* color single active *I 
mask I= GPIO_LDD15 1 GPIO_LDD14 GPIO_LDD13 GPIO_LDD12 

GPIO_LDD11 1 GPIQ_LDD10 GPIO_LDD9 GPIO_LDD8; 

#ifdef CONFIG_SA1100_CERF 
#error Please contact <rmkCarm.linux.org.uk> about this 

if (machine_is_cerf()) { 
I* GPI015 is used as a bypass for 3.8" displays *I 
mask I= GPIO_GPI015; 
mask 1= GPIO_LDD15 1 GPIO_LDD14 1 GPIO_LDD13 1 GPIO_LDD12 

GPIO_LDD11 1 GPIO_LDD10 1 GPIO_LDD9 1 GPIO_LDD8; 
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} 

#endif 

} 

if (mask) { 
GPDR l= mask ; 
GAFR I= mask; 

} 

static void sa1100fb_enable_controller(struct sa1100fb_info *fbi) 
{ 

DPRINTK("Enabling LCD controller\n"); 
I* 

* Make sure the mode bits are present in t he first palette entry 
*I 

fbi->palette_cpu[O] &= Oxcfff; 
fbi->palette_cpu[O] 1= palette_pbs(&fbi->fb .var); 
I* Sequence from 11 .7.10 *I 
LCCR3 = fbi->reg_lccr3 ; 
LCCR2 = fbi->reg_lccr2 ; 
LCCR1 = fbi->reg_lccr1; 
LCCRO = fbi->reg_lccrO & -LCCRO_LEN; 
DBAR1 = (Address) fbi->dbar1; 
DBAR2 = (Address) fbi->dbar2 ; 
LCCRO I= LCCRO_LEN; 

#ifdef CONFIG_SA1100_GRAPHICSCLIENT 
#error Where is GPI024 set as an output? Can we fit this in somewhere el se? 

if (machine_is_graphicsclient()) { 
Il From ADS doc again ... same as disable 
set_current_state(TASK_UNI NTERRUPTIBLE); 
schedule_timeout(20 * HZ I 1000) ; 
GPSR 1= GPIO_GPI024; 

} 

#endif 

} 

DPRINTK("DBAR1 = %p\n11
, DBAR1); 

DPR1NTK("DBAR2 = %p\n", DBAR2); 
DPRINTK("LCCRO = Ox%08x\n" , LCCRO) ; 
DPRINTK("LCCR1 = Ox%08x\n", LCCR1); 
DPRI NTK("LCCR2 = Ox%08x\n", LCCR2); 
DPRINTK("LCCR3 = Ox%08x\n" , LCCR3); 

stati c void sa1100fb_disable_controller(struct sa1100fb_info *fbi ) 
{ 

DECLARE_WAITQUEUE(wait, current); 
DPRINTK ( "Disabling LCD controller\n") ; 

#ifdef CONFIG_SA1100_GRAPHICSCLIENT 
#error Where is GPI 024 set as an output? Can we fit this in somewhere else? 
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if (machine_is_graphicsclient()) { 
GPCR 1= GPI0_GPI024; 
set_current_state(TASK_UNINTERRUPTIBLE); 
schedule_timeout(20 *HZ/ 1000); 

} 

#endif 
#ifdef C0NFIG_SA1100_HUW_WEBPANEL 
#error Move me into sa1100fb_power_up_lcd and/or sa1100fb_backlight_on 

if (machine_is_huw_webpanel()) { 

} 

// dont forget to set the contr ol lines to zero(?) 
DPRINTK("ShutDown HuW LCD controller\n"); 
BCR_clear(BCR_TFT_ENA + BCR_CCFL_P0W + BCR_PWM_BACKLIGHT); 

#endif 

} 

add_wait_queue(&fbi->ctrlr_wait, &wait) ; 
set_current_state(TASK_UNINTERRUPTIBLE); 
LCSR = 0xffffffff; /• Clear LCD Status Register •/ 
LCCR0 &= -LCCR0_LDM; !• Enable LCD Disable Done Interrupt •/ 
enable_irq(IRQ_LCD); /• Enable LCD IRQ•/ 
LCCR0 &= -LCCR0_LEN; /• Disable LCD Controller •/ 
schedule_timeout(20 *HZ/ 1000); 
current->state = TASK_RUNNING; 
remove_wait_queue(&fbi->ctrlr_wait, &wait); 

/•This is my contribution. ALAIN DEC0STRE•/ 
static struct tq_struct pm_len_task; 

long my_stop; 

struct pm_len_arg { 

}; 

struct sa1100fb_info •info; 
int delay_dis; 
int delay_en; 

static struct pm_len_arg my_pm_len_arg; 

static void pm_len_function(struct pm...len_arg •my_arg) { 

} 

while (my_stop==0) { 
sa1100fb_disable_controller(my_arg->info); 
schedule_timeout(my_arg->delay_dis) ; 
sa1100fb_enable_controller(my_arg->info); 
schedule_timeout(my_arg->delay_en); 

} 
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static void sa1100fb_enable_pm_len(struct fb_delay •del, struct sa1100fb_info •fbi) 
{ 

} 

my_stop = O; 
my_pm_len_arg.delay_dis = del->dis; 
my_pm_len_arg.delay_en = del->en; 
my_pm_len_arg.info = fbi; 

pm_len_task.routine = (void •)(void •) pm_len_function; 
pm_len_task.data = tmy_pm_len_arg; 
schedule_task(tpm_len_task); 

static void sa1100fb_disable_pm_len() { 
my_stop = 1; 

} 

/•End of my contribution. ALAIN DECOSTRE•/ 

static struct fb_ops sa1100fb_ops = { 

}; 

I• 

ovner: THIS_MODULE, 
fb_get_fix: ea1100fb_get_fix, 
fb_get_var: sa1100fb_get_var, 
fb_set_var: sa1100fb_set_var, 
fb_get_cmap: ea1100fb_get_cmap, 
fb_eet_cmap: ea1100fb_eet_cmap, 
fb_enable_controller: 
fb_diaable_controller: 

ea1100fb_enable_controller, 
ea1100fb_disable_controller, 

fb_enable_pm_lon: 
fb_disable_pm_len: 

sa1100fb_enablo_pm_len, 
sa1100fb_dieable_pm_len 

• sa1100fb_handle_irq: Handlo 'LCD DONE' interrupts. 
•I 

static void sa1100fb_handle_irq(int irq, void •dev_id, struct pt_regs •regs) 
{ 

} 

I• 

struct sa1100fb_info •fbi = dev_id; 
unsigned int lcsr = LCSR; 
if (lcsr l LCSR_LDD) { 

} 

LCCRO I= LCCRO_LDH; 
wake_up(lfbi->ctrlr_wait); 

LCSR = lcsr; 

• This function muet be called from task context only, since it will 
• sleep when disabling the LCD controller, or if we get two contending 
• processes trying to alter state. 
•I 
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static void set_ctrlr_state(struct sa1100fb_info •fbi, u_int state) 
{ 

u_int old_state; 
down(&fbi->ctrlr_sem); 
old_state = f bi->state; 
switch (state) { 
case C_DISABLE_CLKCHANGE: 

I• 
* Disable controller for clock change . If the 
* controller is already disabled, then do nothing. 
•I 

if (old_stat e != C_DISABLE) { 
fbi->state = state; 
sa1100fb_disable_controller(fbi); 

} 

break; 
case C_DISABLE: 

I• 
* Disable controller 

•! 
if (old_stat e != C_DISABLE) { 

fbi->state = state; 
sa1100fb_backlight_off(fbi); 

} 

if (old_state ! = C_DISABLE_CLKCHANGE) 
sa1100fb_disable_controller(fbi); 

sa1100fb_power_down_lcd(fbi); 

break; 
case C_ENABLE_CLKCHANGE: 

!• 
* Enable the controller after clock change . Only 
* do this if we were disabled for the clock change. 

•! 
if (old_state == C_DISABLE_CLKCHANGE) { 

fbi->state = C_ENABLE; 
sa1100fb_enable_controller(fbi); 

} 

break; 
case C_REENABLE: 

f* 
* Re-enable the controller only if it was already 
* enabled. This is so we reprogram the control 
* registers. 
•! 

if (old_state == C_ENABLE) { 
sa1100fb_disable_controller(fbi); 
sa1100fb_setup_gpio(fbi); 
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sa1100fb_enable_controller(fbi); 
} 

break; 
case C_ENABLE: 

I* 
* Power up the LCD screen, enable controller, and 
* turn on the backlight. 

*I 
if (old_state != C_ENABLE) { 

fbi->state = C_ENABLE; 
sa1100fb_setup_gpio(fbi); 
sa1100fb_power_up_lcd(fbi); 
sa1100fb_enable_controller(fbi); 
sa1100fb_backlight_on(fbi); 

} 

break; 
} 

up(&fbi->ctrlr_sem); 
} 

I* 
* Our LCD controller task (which is called when we blank or unblank) 
* via keventd. 

•! 
static void sa1100fb_task(void *dummy) 
{ 

struct sa1100fb_info *fbi = dummy; 
u_int state = xchg(&fbi->task_state, -1); 
set_ctrlr_state(fbi, state); 

} 

#ifdef CONFIG_CPU_FREQ 

I* 
* CPU clock speed change handler. We need to adjust the LCD timing 
* parameters when the CPU clock is adjusted by the power management 
* subsystem. 

*I 
static int 
sa1100fb_clkchg_notifier(struct notifier_block *nb, unsigned long val, 

void *data) 
{ 

struct sa1100fb_info •fbi TO_INF(nb, clockchg); 
u_int pcd; 
switch (val) { 
case CPUFREQ_MINMAX: 

I* todo: fill in min/max values *f 
break; 

case CPUFREQ_PRECHANGE: 
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set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); 
break; 

case CPUFREQ_POSTCHANGE: 

} 

pcd = get_pcd(fbi->fb.var.pixclock); 
fbi->reg_lccr3 = (fbi->reg_lccr3 & -oxff) 1 LCCR3_PixClkDiv(pcd); 
set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); 
break; 

return O; 
} 

#endif 

#ifdef CONFIG_PM 

static int 
sa1100fb_pm_callback(struct pm_dev •pm_dev, pm_request_t req, void •data) 
{ 

} 

struct sa1100fb_info •fbi = pm_dev->data; 
DPRINTK("pm_callback: %d\n", req); 
if (req == PM_SUSPEND 11 req == PM_RESUME) { 

int state = (int)data; 
if (state == 0) { 

/• Enter DO. •/ 
set_ctrlr_state(fbi, C_ENABLE); 

} else { 

} 

/• Enter D1-D3. Disable the LCD controller. •/ 
set_ctrlr_state(fbi, C_DISABLE); 

} 

DPRINTK("done\n"); 
return O; 

#endif 

/• 
* sa1100fb_map_video_memory(): 
* Allocates the DRAM memory for the frame buffer. This buffer is 
* remapped into a non-cached, non-buffered, memory region to 
* allow palette and pixel writes to occur without flushing the 
* cache. Once this area is remapped, all virtual memory 
* access to the video memory should occur at the new region. 

•! 
static int init sa1100fb_map_video_memory(struct sa1100fb_info •fbi) 
{ 

!• 
* We reserve one page for the palette, plus the size 
* of the framebuffer. 
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} 

•I 

fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE); 
fbi->map_cpu = consistent_alloc(GFP_KERNEL, fbi->map_size, 

&:fbi->map_dma); 
if (fbi->map_cpu) { 

} 

fbi->screen_cpu = fbi->map_cpu + PAGE_SIZE; 
fbi->screen_dma = fbi->map_dma + PAGE_SIZE; 
fbi->fb.fix.smem_start = fbi->screen_dma; 

return fbi - >map_cpu? 0: -ENOKEM; 

/• Fake monspecs to fill in fbinto structure•/ 
static struct fb_monspecs monspecs __ initdata = { 

30000, 70000, 60, 65, 0 /• Generic •/ 
}; 

static struct sa1100fb_info • __ init sa1100fb_init_fbinfo(void) 
{ 

struct sa1100fb_mach_info •inf; 
struct sa1100fb_info •fbi; 

fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(struct display) + 
sizeof(u16) * 16, GFP_KERNEL); 

if ( !fbi) 
return NULL; 

memset(fbi , 0, sizeof(struct sa1100fb_info) + sizeof(struct display)); 
fbi->currcon = -1; 
strcpy(fbi->fb.fix.id, SA1100_NAME); 
fbi->fb.fix.type FB_TYPE_PACKED_PIXELS; 
fbi->fb.fix.type_aux = O; 
fbi->fb.fix.xpanstep 0; 
fbi->fb.fix.ypanstep = O; 
fbi->fb.fix.yvrapstep = O; 
fbi->fb.fix.accel = FB_ACCEL_NONE; 
fbi->fb.var.nonstd = O; 
fbi->fb.var.activate = FB_ACTIVATE_NOW; 
fbi->fb.var.height = -1; 
fbi->fb.var.width -1; 
fbi->fb.var.accel_flags = O; 
fbi->fb.var.vmode = FB_VHODE_NONINTERLACED; 
strcpy(fbi->fb.modename, SA1100_NAME); 
strcpy(fbi->fb.fontname, "Acorn8x8"); 
fbi->fb.fbops = tsa1100fb_ops; 
fbi->fb.changevar = NULL; 
fbi->fb.switch_con 
fbi->fb.updatevar 
fbi->fb.blank 

= sa1100fb_switch; 
sa1100fb_updatevar; 
sa1100fb_blank; 
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} 

fbi->fb.flags 
fbi->fb.node 

= FBINFO_FLAG_DEFAULT; 
= -1; 

fbi->fb.monspecs = monspecs; 
fbi->fb.disp = (struct display •)(fbi + 1); 
fbi->fb.pseudo_palette = (void •)(fbi->fb.disp + 1); 
fbi->rgb[RGB_8] = &rgb_8; 
fbi->rgb[RGB_16] = &def_rgb_16; 
inf = sa1100fb_get_machine_info(fbi); 
fbi->max_xres 
fbi->fb.var.xres 

inf->xres; 
inf- >xres; 

fbi->fb.var.xres_virtual = inf->xres; 
= inf->yres; f bi->max_yres 

f bi->fb.var .yres = inf->yres; 
= inf->yres; 

inf->bpp; 
fbi - >fb.var.yres_virtual 
fbi->max_bpp 
fbi->fb.var.bits_per_pixel 
fbi->fb.var .pixclock 
fbi->fb.var.hsync_len 
fbi->fb.var.left_margin 
fbi->fb.var.right_margin 
fbi->fb.var.vsync_len 
fbi->fb.var.upper_margin 
fbi->fb. var.lower_margin 
fbi->fb .var.sync 
fbi->fb.var.grayscale 
fbi->cmap_inverse 
fbi->cmap_static 
fbi->lccrO 
fbi->lccr3 
fbi->state 
fbi->task_state 

inf->bpp; 
= inf->pixclock; 
= inf->hsync_len; 

inf->left_margin; 
inf->right_margin; 
inf->vsync_len; 
inf->upper_margin; 
inf->lower_margin; 

inf->sync; 
= inf->cmap_greyscale; 

= inf->cmap_inverse; 
inf->cmap_static; 

inf->lccrO; 
inf->lccr3; 
C_DISABLE; 

= (u_char)-1; 
fbi->fb.fix.smem_len = f bi->max_xres * fbi->max_yres * 

fbi->max_bpp / 8; 
init_waitqueue_head(&fbi->ctrlr_wait); 
INIT_TQUEUE(&fbi->task, sa1100fb_task, fbi); 
init_MUTEX(&fbi->ctrlr_sem); 
return fbi ; 

int __ init sa1100fb_init(void) 
{ 

struct sa1100fb_info •fbi; 
int ret; 
fbi = sa1100fb_init_fbinfo(); 
ret = -ENOMEM; 
if ( !fbi) 

goto failed; 
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/• Initialize video memory •/ 
ret = sa1100fb_map_video_memory(fbi); 
if (ret) 

goto failed; 

ret = request_irq(IRQ_LCD, sa1100fb_handle_irq, SA_INTERRUPT, 
fbi->fb.fix.id, fbi); 

if (ret) { 

printk(KERH_ERR "sa1100fb: failed in request_irq: ¼d\n", ret); 
goto failed; 

} 

lif defined(CONFIG_SA1100_ASSABET) U defined(ASSABET_PAL_VIDEO) 
if (machine_is_assabet()) 

BCR_clear(BCR_LCD_ON); 
lendit 
#ifdef CONFIG_SA1100_FREEBIRD 

#error Please move this into sa1100fb_power_up_lcd. 
if (machine_is_freebird()) { 

BCR_set(BCR_FREEBIRD_LCD_DISP); 
mdelay(20); 

} 

#endif 

BCR_set(BCR_FREEBIRD_LCD_PWR); 
mdelay(20); 

sa1100fb_set_var(lfbi->fb.var, -1, lfbi->fb); 
ret = register_framebuffer(lfbi->fb); 
if (ret < 0) 

goto failed; 
#ifdef CONFIG_PH 

I• 

• Note that the console registers this as well, but we want to 
• power down the display prior to sleeping. 
•I 

fbi->pm = pm_register(PH_SYS_DEV, PH_SYS_VGA, sa1100fb_pm_callback); 
if (fbi->pm) 

fbi->pm->data = fbi; 
#endif 
#ifdef CONFIG_CPU_FREQ 

fbi->clockchg.notifier_call = sa1100fb_clkchg_notifier; 
cpufreq_register_notifier(lfbi->clockchg); 

lendit 

/• 
• Ok, now enable the LCD controller 
•I 

set_ctrlr_state(fbi, C_ENABLE); 

/• This driver cannot be unloaded at the moment•/ 
HOD_INC_USE_COUNT; 
return O; 
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failed: 

} 

if (fbi) 
kfree(fbi); 

return ret; 

int init sa1100fb_setup(char •options) 
{ 

#if 0 
char •this_opt; 
if (!options 11 !•options) 

return O; 
for (this_opt = strtok(options, ","); this_opt; 

this_opt = strtok(NULL, ",")) { 
if ( !strncmp(this_opt, "bpp:", 4)) 

if 

if 

} 

if 

current_par.max_bpp = 
simple_strtoul(this_opt + 4, 

(!strncmp(this_opt, "lccrO:", 6)) 
lcd_shadow.lccrO = 

simple_strtoul(this_opt + 6, 
(!strncmp(this_opt, "lccr1:", 6)) 
lcd_shadow.lccr1 = 

simple_strtoul(this_opt + 6 , 
current_par.max_xres = 

(lcd_shadow.lccr1 k Ox3ff) + 

(!strncmp(this_opt, "lccr2:", 
lcd_shadow.lccr2 = 

simple_strtoul(this_opt 
current_par.max_yres = 

(lcd_shadow. 

6)) 

+ 6, 

NULL, 

NULL, 
{ 

NULL , 

16; 

{ 

NULL, 

lccrO k LCCRO_SDS)? ((lcd_shadow. 
lccr2 k Ox3ff) + 

1) * 

0); 

O); 

O); 

O); 

2 : ((lcd_shadow.lccr2 k Ox3ff) + 1); 
} 

if (!strncmp(this_opt, "lccr3:", 6)) 
lcd_shadow.lccr3 = 

simple_strtoul(this_opt + 6, NULL, O); 
} 

#endif 
return O; 

} 
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Appendix E 

fb.h 

#ifndef _LINUX_FB_H 
#define _LINUX_FB_H 
#include <linu.x/tty.h> 
#include <asm/types.h> 
/• Definitions of frame buffers 
#define FB_MAJOR 29 
#define FB_MAX 
/• ioctls 

32 /• sufficient for now •/ 

Ox46 is 'F' 
#define FBIOGET_VSCREENINFO Ox4600 
#define FBIOPUT_VSCREENINFO Ox4601 
#define FBIOGET_FSCREENINFO Ox4602 
#define FBIOGETCMAP Ox4604 
#define FBIOPUTCMAP Ox4606 
#define FBIOPAN_DISPLAY Ox4606 
/• Ox4607-0x460B are defined below •/ 
/• #define FBIOGET_MONITORSPEC Ox460C •/ 
/• #define FBIOPUT_MONITORSPEC Ox460D •/ 
/• #define FBIOSWITCH_MONIBIT Ox460E •/ 
#define FBIOGET_CON2FBMAP Ox460F 
#define FBIOPUT_CON2FBMAP Ox4610 
#define FBIOBLANK Ox4611 /• arg: 0 or vesa level + 1 •/ 
#define FBIOGET_VBLANK _IOR('F', Ox12, struct fb_vblank) 
#define FBIO_ALLOC Ox4613 
#define FBIO_FREE Ox4614 
#define FBIOGET_GLYPH Ox4616 
#define FBIOGET_HWCINFO Ox4616 
#define FBIOPUT_MODEINFO Ox4617 
#define FBIOGET_DISPINFO Ox4618 
/•I add those six lines•/ 
#define FBIODIS_CTRLR Ox460C 
#define FBIOEN_CTRLR Ox460D 
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#define FBIOPMLEN_ON Ox4619 
#define FBIOPMLEN_OFF Ox461A 
#define FBIODARKENS Ox461B 
#define FB_TYPE_PACKED_PIXELS 0 I* Packed Pixels 
#define FB_TYPE_PLANES 1 /• Non interleaved planes•/ 
#define FB_TYPE_INTERLEAVED_PLANES 2 / • Interleaved planes •/ 

/• Text/attributes •/ #define FB_TYPE_TEXT 3 
#define FB_TYPE_VGA_PLANES 4 !• EGA/VGA planes •/ 
#define FB_AUX_TEXT_MDA 0 
#define FB_AUX_TEXT_CGA 1 
#define FB_AUX_TEXT_S3_MMIO 2 
#define FB_AUX_TEXT_MGA_STEP16 
#define FB_AUX_TEXT_MGA_STEP8 
#define FB_AUX_VGA_PLANES_VGA4 
#define FB_AUX_VGA_PLANES_CFB4 
#define FB_AUX_VGA_PLANES_CFB8 
#define FB_VISUAL_MON001 

I• Monochrome text •/ 
/• CGA/EGA/VGA Color text •/ 
/• S3 MMIO fasttext •/ 
3 I* MGA Millenium I: text, attr, 14 reserved bytes•/ 
4 /• other MGAs: text, attr, 6 reserved bytes•/ 

0 /• 16 color planes (EGA/VGA) •/ 
1 I* CFB4 in planes (VGA) •/ 
2 /• CFB8 in planes (VGA) •/ 

0 !• Monochr. 1=Black O=White •/ 
#define FB_VISUAL_MON010 1 /• Monochr. l=White O=Black •/ 

I• True color •/ #define FB_VISUAL_TRUECOLOR 2 
#define FB_VISUAL_PSEUDOCOLOR 3 /• Pseudo color (like atari) •/ 
#define FB_VISUAL_DIRECTCOLOR 4 /* Direct color *I 
#define FB_VISUAL_STATIC_PSEUDOCOLOR 5 /* Pseudo color readonly •/ 
#define FB_ACCEL_NONE O /• no hardware accelerator •/ 
#define FB_ACCEL_ATARIBLITT 1 /• Atari Blitter •/ 
#define FB_ACCEL_AMIGABLITT 2 /• Amiga Blitter •/ 
#define FB_ACCEL_S3_TRI064 3 
#define FB_ACCEL_NCR_77C32BLT 
#define FB_ACCEL_S3_VIRGE 5 
#define FB_ACCEL_ATI_MACH64GX 
#define FB_ACCEL_DEC_TGA 7 
#define FB_ACCEL_ATI_MACH64CT 

/• Cybervision64 (S3 Trio64) •/ 
4 /• RetinaZ3 (NCR 77C32BLT) •/ 
/• Cybervision64/3D (S3 ViRGE) •/ 
6 !• ATI Mach 64GX family •/ 
/• DEC 21030 TGA •/ 
8 /• ATI Mach 64CT family •/ 

#define FB_ACCEL_ATI_MACH64VT 9 /• ATI Mach 64CT family VT class •/ 
#define FB_ACCEL_ATI_MACH64GT 10 /• ATI Mach 64CT family GT class •/ 
#define FB_ACCEL_SUN_CREATOR 11 /• Sun Creator/Creator3D •/ 
#define FB_ACCEL_SUN_CGSIX 12 !• Sun cg6 •/ 
#define FB_ACCEL_SUN_LEO 13 /• Sun leo/zx •! 
#define FB_ACCEL_IMS_TWINTURBO 14 /• IMS Twin Turbo •/ 
#define FB_ACCEL_3DLABS_PERMEDIA2 15 /• 3Dlabs Permedia 2 •/ 
#define FB_ACCEL_MATROX_MGA2064W 16 /• Matrox MGA2064W (Millenium) •/ 
#define FB_ACCEL_MATROX_MGA1064SG 17 /• Matrox MGA1064SG (Mystique) •/ 
#define FB_ACCEL_MATROX_MGA2164W 18 /• Matrox MGA2164W (Millenium II)•/ 
#define FB_ACCEL_MATROX_MGA2164W_AGP 19 !• Matrox MGA2164W (Millenium II)•/ 
#define FB_ACCEL_MATROX_MGAG100 20 /• Matrox GlOO (Productiva GlOO) •! 
#define FB_ACCEL_MATROX_MGAG200 21 /• Matrox G200 (Myst, Mill, ... ) •/ 
#define FB_ACCEL_SUN_CG14 22 / • Sun cgfourteen •/ 
#define FB_ACCEL_SUN_BWTWO 23 /• Sun bwtwo •/ 
#define FB_ACCEL_SUN_CGTHREE 24 !• Sun cgthree •/ 
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#define FB_ACCEL_SUN_TCX 25 I• Sun tex •! 
#define FB_ACCEL_MATROX_MGAG400 26 /• Matrox G400 •I 
#define FB_ACCEL_NV3 27 !• nVidia RIVA 128 •! 
#define FB_ACCEL_NV4 28 !• nVidia RIVA TNT •! 
#define FB_ACCEL_NV5 29 /• nVidia RIVA TNT2 •! 
#define FB_ACCEL_CT_6555x 30 /• C&:T 6555x •I 
#define FB_ACCEL_3DFX_BANSHEE 31 !• 3Dfx Banshee •! 
#define FB_ACCEL_ATI_RAGE128 32 /• AT! Rage128 family •/ 
#define FB_ACCEL_IGS_CYBER2000 33 !• CyberPro 2000 •! 
#define FB_ACCEL_IGS_CYBER2010 34 !• CyberPro 2010 •! 
#define FB_ACCEL_IGS_CYBER5000 35 /• CyberPro 5000 •! 
#define FB_ACCEL_SIS_GLAMOUR 36 /• SiS 300/630/540 •! 

struct fb_fix_screeninfo { 

char id[16]; /• identification string eg "TT Builtin" •/ 

}; 

unsigned long smem_start; /• Start of frame buffer mem • / 

__ u32 smem_len; 
__ u32 type; 

/• (physical address) •/ 
/• Length of frame buffer mem •/ 

/• see FB_TYPE_* •/ 
__ u32 type_aux; /• Interleave for interleaved Planes•/ 
__ u32 visual; /• see FB_VISUAL_• •! 
__ u16 xpanstep; /• zero if no hardware panning •/ 
__ u16 ypanstep; /• zero if no hardware panning •/ 
__ u16 ywrapstep; /• zero if no hardware ywrap •/ 
__ u32 line_length; /• length of a line in bytes •/ 
unsigned long mmio_start; /• Start of Memory Mapped I/0 •I 

/• (physical address) •/ 
__ u32 mmio_len; /• Length of Memory Mapped I/0 •/ 
__ u32 accel; !• Type of acceleration available •/ 
__ u16 reserved[3]; /• Reserved for future compatibility •/ 

/• Interpretation of offset for color fields: All offsets are from the right, 
* inside a "pixel" value, which is exactly 'bits_per_pixel' wide (means: you 
*canuse the offset as right argument to <<) . A pixel afterwards is a bit 
* stream and is written to video memory as that unmodified. This implies 
* big-endian byte order if bits_per_pixel is greater than 8. 

•! 
struct fb_bitfield { 

__ u32 offset; 
__ u32 length; 

/• beginning of bitfield 
/• length of bitfield 

__ u32 msb_right; /• != 0 : Most significant bit is •/ 

/• right •/ 
}; 

#define FB_NONSTD_HAM 1 
#define FB_ACTIVATE_NOW 0 
#define FB_ACTIVATE_NXTDPEN 1 
#define FB_ACTIVATE_TEST 2 

/• Hold-And-Modify (HAM) •/ 
/• set values immediately (or vbl)•/ 
/• activate on next open •/ 
/• don't set, round up impossible•/ 

189 



#define FB_ACTIVATE_MASK 15 
/• values •! 

#define FB_ACTIVATE_VBL 16 
#define FB_CHANGE_CHAP_VBL 32 

/• activate values on next vbl •/ 
/• change colormap on vbl •/ 

#define FB_ACTIVATE_ALL 64 /• change all VCs on this fb •/ 
#define FB_ACCELF_TEXT 1 /• text mode acceleration •/ 
#define FB_SYNC_HOR_HIGH_ACT 1 /• horizontal sync high active •/ 
#define FB_SYNC_VERT_HIGH_ACT 2 /• vertical sync high active •/ 
#define FB_SYNC_EXT 4 /• external sync •/ 
#define FB_SYNC_COHP_HIGH_ACT 8 /• composite sync high active •/ 
#define FB_SYNC_BROADCAST 16 /• broadcast video timings •/ 

/• vtotal = 144d/288n/576i => PAL •/ 
/• vtotal = 121d/242n/484i => NTSC •/ 

#define FB_SYNC_ON_GREEN 32 /• sync on green•/ 
#define FB_VHODE_NONINTERLACED O /• non interlaced •/ 
#define FB_VMODE_INTERLACED 1 /• interlaced •/ 
#define FB_VHODE_DOUBLE 2 /• double scan •/ 
#define FB_VHODE_HASK 255 
#define FB_VHODE_YWRAP 256 /• ywrap instead of panning 
#define FB_VMODE_SMOOTH_XPAN 612 /• emooth xpan possible 
#define FB_VMODE_CONUPDATE 512 /• don't update x/yoffset 

etruct fb_var_screeninfo { 
__ u32 xres; /• visible resolution •/ 
__ u32 yres; 

/• virtual resolution •! 

(internally used) •/ 
•I 

__ u32 xres_virtual; 
__ u32 yres_virtual; 
__ u32 xoffset; /• offset from virtual 

/• resolution 
to visible •I 

__ u32 yoffset; 
__ u32 bits_per_pixel; 
__ u32 grayscale; 
struct fb_bitfield red; 

•I 
/• guess what •I 

/• != 0 Graylevels instead of colors •/ 

struct fb_bitfield green; 
/• bitfield in fb mem if true color, •/ 
/• else only length is significant •/ 

struct fb_bitfield blue; 
struct fb_bitfield transp; /• transparency •/ 
__ u32 nonstd; /• != 0 Non standard pixel format•/ 
__ u32 activate; /• see FB_ACTIVATE_• •/ 
__ u32 height; /• height of picture in mm •/ 
__ u32 width; 
__ u32 accel_flags; 
/• Timing: All values 
__ u32 pixclock; 
__ u32 left_margin; 
__ u32 right_margin; 
__ u32 upper_margin; 
__ u32 lower_margin; 
__ u32 hsync_len; 

/• width of picture in mm •/ 
/• acceleration flags (hints) •/ 

in pixclocks, except pixclock (of course)•/ 
/• pixel clock in ps (pico seconds)•/ 
/• time from eync to picture •/ 
/• time from picture to sync •/ 
/• time from sync to picture 

/• length of horizontal sync 
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__ u32 vsync_len; 
__ u32 sync; 

/• length of vertical sync •/ 
/• see FB_SYNC_* •/ 

__ u32 vmode; /• see FB_VMODE_* •/ 
__ u32 reserved[6]; /• Reserved for future compatibility •/ 

} ; 

/•I add this declaration•/ 
struct fb_delay { 

long dis; 
long en; 

}; 

struct fb_cmap { 
__ u32 start; 
__ u32 len; 
__ u16 •red; 

/• First entry •/ 
/• Number of entries •/ 
/• Red values •/ 

__ u16 *green; 
__ u16 •blue; 
__ u16 •transp; /• transparency, can be NULL •/ 

}; 

struct fb_con2fbmap { 
__ u32 console; 
__ u32 framebuffer; 

}; 

/• VESA Blanking Levels •/ 
#define VESA_NO_BLANKING 0 
#define VESA_VSYNC_SUSPEND 1 
#define VESA_HSYNC_SUSPEND 2 
#define VESA_POWERDOWN 3 

struct fb_monspecs { 

__ u32 hfmin; !• hfreq lower limit 
__ u32 hfmax; !• hfreq upper limit 
__ u16 vfmin; !• vfreq lower limit 
__ u16 vfmax; !• vfreq upper limit 
unsigned dpms : 1; !• supports DPMS •/ 

}; 

(Hz) •! 
(Hz) •! 
(Hz) •! 
(Hz) •! 

#define FB_VBLANK_VBLANKING Ox001 /• currently in a vertical blank •/ 
#define FB_VBLANK_HBLANKING Ox002 /• currently in a horizontal blank •/ 
#define FB_VBLANK_HAVE_VBLANK Ox004 /• vertical blanks can be detected •/ 
#define FB_VBLANK_HAVE_HBLANK Ox008 /• horizontal blanks can be detected •/ 
#define FB_VBLANK_HAVE_CQUNT Ox010 /• global retrace counter is available •/ 
#define FB_VBLANK_HAVE_VCOUNT Ox020 /• the vcount field is valid •/ 
#define FB_VBLANK_HAVE_HCOUNT Ox040 /• the hcount field is valid •/ 
#define FB_VBLANK_VSYNCING Ox080 /• currently in a vsync •/ 
#define FB_VBLANK_HAVE_VSYNC Ox100 /• verical syncs can be detected •/ 
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struct fb_vblan.k { 
__ u32 flags; 
__ u32 count; 
__ u32 vcount; 
__ u32 hcount; 

/ • FB_VBLANK flags •/ 
!• counter of retraces since boot •! 
/ • current scanline position•/ 
/• current scandot position • / 

__ u32 reserved[4]; /• reserved for future compatibility •/ 
}; 
#ifdef __ IŒRNEL __ 

#if 1 /• to go away in 2 . 5 . 0 •I 
extern int GET_FB_IDX(kdev_t rdev); 
#else 
#define GET_FB_IDX(node) 
#endif 
#i nclude <linux/fs.h> 
#include <linux/init.h> 

(MINOR(node)) 

#include <linux/devfs_fs_kernel.h> 

st ruct fb_info; 
struct fb_info_gen; 
struct vm_area_struct ; 
struct file; 

I• 
* Frame buffer operations 
•I 

struct fb_ops { 

/• open/release and usage marking • / 
struct module •owner; 
i nt (•fb_open)(struct fb_info •info, int user); 
int (•fb_release)(struct f b_info • info , i nt user) ; 
/• get non settable parameters •/ 
int (•fb_get_fi x)(struct fb_fix_screeninfo •fi x , int con, 

struct f b_info •info) ; 
/• get settable parameters •/ 
int (•fb_get_var)(struct fb_var_screeninfo •var, int con, 

struct f b_info •info); 
/• set settable parameters •/ 
int (•fb_set_var)(struct fb_var_screeninfo • var , int con, 

struct fb_info •info); 
/ • get colormap •/ 
int (•fb_get_cmap)(struct fb_cmap •cmap, int kspc, int con , 

struct fb_info •info); 
I• set colormap • / 
int (•fb_set_cmap)(struct f b_cmap •cmap, int kspc, int con , 

struct fb_info •info); 
/• pan di splay (optional) •/ 
int (•fb_pan_display)(struct fb_var_screeninfo •var , int con , 

struct fb_info •info); 
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}; 

/• perform fb specific ioctl (optional) •/ 
int (•fb_ioctl)(struct inode •inode, struct file •file, unsigned int cmd, 

unsigned long arg, int con, struct fb_info •info); 
/• perform fb specific mmap •/ 
int (•fb_mmap)(struct fb_info •info , struct file •file, struct vm_area_struct •vma); 
/• switch to/from raster image mode•/ 
int (•fb_rasterimg)(struct fb_info •info, int start); 
void (•fb_disable_controller)(struct fb_info •info);//I add this line 
void (•fb_enable_controller)(struct fb_info •info);//I add this line 
void (•fb_enable_pm_len)(struct fb_delay •del,struct fb_info •info);//I add this line 
void (•fb_disable_pm_len)();//I add this line 

struct fb_info { 
char modename[40]; 
kdev_t node; 

/• default video mode•/ 

int flags; 
int open; 

#define FBINFO_FLAG_MODULE 1 
struct fb_var_screeninfo var; 
struct fb_fix_screeninfo fix; 
struct fb_monspecs monspecs; 
struct fb_cmap cmap; 
struct fb_ops •fbops; 
char •screen_base; 
struct display •disp; 

!• 

!• 

/• Has this been open already ? •! 
Low-level driver is a module •! 

I• Current var•/ 

!• Current fix •/ 
!• Current Monitor specs •/ 
I• Current cmap •/ 

I• Virtual address •! 
initial display variable•/ 

struct vc_data •display_fg; 
char fontname[40]; 
devfs_handle_t devfs_handle; 

/• Console visible on this 
/• default font name •/ 

display •/ 

}; 

!• Devfs handle 
devfs_handle_t devfs_lhandle; /• Devfs handle 
int (•changevar)(int); /• tell console var has 
int (•switch_con)(int, struct fb_info•); 

/• tell fb to switch consoles•/ 
int (•updatevar)(int, struct fb_info•); 

/ • tell fb to update the vars•/ 

for new name 
for compat. 
changed •/ 

symlink 

void (•blank)(int, struct fb_info•); /• tell fb to (un)blank the screen •/ 
/• arg = 0: unblank •/ 
/• arg > 0: VESA level (arg-1) •/ 

void •pseudo_palette; /• Fa.ke palette of 16 colora and 
the cursor's color for non 

palette mode•/ 
/• From here on everything is device dependent •/ 
void •par; 

#ifdef MODULE 

#define FBINFO_FLAG_DEFAULT FBINFO_FLAG_MODULE 
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#else 
#define FBINFO_FLAG_DEFAULT 0 
#endif 

I• 
* This structure abstracts from the underlying hardware. It is not 
* mandatory but used by the 'generic' frame buffer operations. 
* Read drivers/video/skeletonfb.c for more information. 
•I 

struct fbgen_hwswitch { 
void (•detect)(void); 

}; 

int (•encode_fix)(struct fb_fix_screeninfo •fix, const void *par, 
struct fb_info_gen • info) ; 

int (•decode_var)(const struct fb_var_screeninfo •var, void *par, 
struct fb_info_gen •info); 

int (•encode_var)(struct fb_var_screeninfo •var, const void •par , 
struct fb_info_gen •info); 

void (•get_par)(void •par, struct fb_info_gen •info); 
void (•set_par)(const void •par , struct fb_info_gen •info); 
int (•getcolreg)(unsigned regno, unsigned •red, unsigned •green, 

unsigned •blue, unsigned •transp, struct fb_info •info); 
int (•setcolreg)(unsigned regno, unsigned red, unsigned green, 

unsigned blue, unsigned transp, struct fb_info •info); 
int (•pan_display)(const struct fb_var_screeninfo •var, 

struct fb_info_gen *info); 
int (•blank)(int blank_mode, struct fb_info_gen •info); 
void (•set_disp)(const void *par, struct display •disp, 

struct fb_info_gen •info); 

struct fb_info_gen { 
struct fb_info info; 

}; 

/• Entries for a generic frame buffer device •/ 
/• Yes, this starts looking like C++ •/ 
u_int parsize; 

struct fbgen_hwswitch •fbhw; 
/• From here on everything is device dependent *f 

I• 
* 'Generic' versions of the frame buffer device operations 
•I 

extern int fbgen_get_fix(struct fb_fix_screeninfo •fix, int con, 
struct fb_info •info); 

extern int fbgen_get_var(struct fb_var_screeninfo •var, int con, 
struct fb_info •info); 

extern int fbgen_set_var(struct fb_var_screeninfo •var, int con, 
struct fb_info •info); 

extern int fbgen_get_cmap(struct fb_cmap •cmap, int kspc, int con, 
struct fb_info •info); 
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extern int fbgen_set_cmap(struct fb_cmap *Cmap, int kspc, int con, 
struct fb_info *info); 

extern int fbgen_pan_display(struct fb_var_screeninfo *var, int con, 
struct fb_info *info); 

I* 
* Helper functions 

*I 
extern int fbgen_do_set_var(struct fb_var_screeninfo *Var, int isactive, 

struct fb_info_gen *info); 
extern void fbgen_set_disp(int con, struct fb_info_gen *Ïnfo); 
extern void fbgen_install_cmap(int con, struct fb_info_gen *info); 
extern int fbgen_update_var(int con, struct fb_info *info); 
extern int fbgen_switch(int con, struct fb_info *info); 
extern void fbgen_blank(int blank, struct fb_info *info); 

I* drivers/video/fbmem. c *I 
extern int register_framebuffer(struct fb_info *fb_info); 
extern int unregister_framebuffer(struct fb_info *fb_info); 
extern int num_registered_fb; 
extern struct fb_info *registered_fb[FB_MAX]; 
I* drivers/video/fbmon.c *I 
extern int fbmon_valid_timings(u_int pixclock, u_int htotal, u_int vtotal, 

const struct fb_info *fb_info); 
extern int fbmon_dpms(const struct f b_info *fb_info); 
I* drivers/video/fbcmap.c *I 
extern int fb_alloc_cmap(struct fb_cmap *cmap, int len, int transp); 
extern void fb_copy_cmap(struct fb_cmap *from, struct fb_cmap *to, 

int fsfromto); 
extern int fb_get_cmap(struct fb_cmap *cmap, int kspc, 

int (*getcolreg)(u_int, u_int *, u_int *, u_int * , 
u_int * , struct fb_info *), 

struct fb_info *fb_info); 
extern int fb_set_cmap(struct fb_cmap *cmap, int kspc, 

int (*setcolreg)(u_int, u_int, u_int, u_int, u_int, 
struct fb_info *), 

struct fb_info *fb_info) ; 
extern struct fb_cmap *fb_default_cmap(int len); 
extern void fb_invert_cmaps(void); 

struct fb_videomode { 
const char *name; 
u32 refresh; f* 
u32 xres; 
u32 yres; 
u32 pixclock; 
u32 left_margin; 
u32 right_margin; 

I* optional *I 
optional *I 
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u32 upper_margin; 
u32 lower_margin; 
u32 hsync_l en; 
u32 vsync_len; 
u32 sync; 
u32 vmode; 

}; 

#ifdef MODULE 

static inline int fb_find_mode(struct f b_var_screeninfo *Var, 

struct fb_info *info, const char *mode_option, 
const struct fb_videomode *db, 

{ 

} 

unsigned int dbsize, 
const struct fb_videomode *default_mode, 
unsigned int default_bpp) 

extern int __ fb_try_mode(struct fb_var_screeninfo *Var , 
struct fb_info *info, 

I* 

const struct fb_videomode *mode , 
unsi gned int bpp); 

• FIXHE: How to make the compiler optimize vga640x400 away if 
* default_mode is non-NULL? 
•I 

static const struct fb_videomode vga640x400 = { 

I* 640x400 © 70 Hz, 31.5 kHz hsync •/ 
NULL, 70, 640, 400, 39721 , 40, 24 , 39, 9, 96 , 2, 
0, FB_VMODE_NONI NTERLACED 
}; 

i f (!default_mode) 
default_mode = &vga640x400; 
if (!default_bpp) 
default_bpp = 8; 
r eturn __ fb_try_mode(var, info , default_mode, default_bpp); 

#else 

extern i nt __ init fb_find_mode(struct fb_var_screeninfo •var, 

struct fb_info *info, const char •mode_option, 
const struct fb_videomode *db , 

#endif 

unsigned int dbsize, 

const struct fb_videomode •default_mode , 
unsigned int default_bpp); 

#endif I* __ KERNEL __ *I 

#if 1 
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#define FBCMD_GET_CURRENTPAR 
#define FBCMD_SET_CURRENTPAR 

OxDEAD0005 
OxDEAD8005 

#endif 

#if 1 /• Preliminary •/ 
!• 

* Hardware Cursor 
•! 

#define FBIOGET_FCURSORINFD 
#define FBIOGET_VCURSORINFO 
#define FBIOPUT_VCURSORINFO 
#define FBIOGET_CURSDRSTATE 
#define FBIOPUT_CURSORSTATE 

struct fb_fix_cursorinfo { 
__ u16 crsr_width ; 
__ u16 crsr_height; 
__ u16 crsr_xsize; 
__ u16 crsr_ysize; 
__ u16 crsr_col orl; 
__ u16 crsr_color2; 

} ; 

struct fb_var_cursorinfo { 
__ u16 width; 
__ u16 height ; 
__ u16 xspot; 
__ u16 yspot; 
__ u8 data[!]; 

}; 

struct fb_cursorstate { 
__ s16 xoffset; 
__ s16 yoffset; 
__ u16 mode; 

}; 

Ox4607 
Ox4608 
Ox4609 
Ox460A 
Ox460B 

/• width and height of the cursor in•/ 
/• pixels (zero if no cursor) •/ 
/• cursor size in display pixels•/ 

/• colormap entr y for cursor color1 •/ 
/• colormap entry for cursor color2 •/ 

/• field with [height][width] 

#define FB_CURSOR_DFF 0 
#define FB_CURSOR_ON 1 
#define FB_CURSOR_FLASH 2 
#endif /• Preliminary •/ 
#endif /• _LINUX_FB_H •! 
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Appendix F 

sall00fb.h 

I• 
• linux/drivers/video/sa1100fb.h 
* -- StrongARM 1100 LCD Controller Frame Buffer Device 

* 
• Copyright (C) 1999 Eric A. Thomas 
* Based on acornfb.c Copyright (C) Russell King. 

"' 
* This file is subject to the terms and conditions of the GNU General Public 
* License. See the file C0PYING in the main directory of this archive 
* for more details. 
•! 

!• 
* These are the bitfields for each 
* display depth that we support. 

•I 
struct sa1100fb_rgb { 

}; 

!• 

struct fb_bitfield red; 
struct fb_bitfield green; 
struct fb_bitfield blue; 
struct fb_bitfield transp; 

• This structure describes the machine which we are running on. 

•! 
struct sa1100fb_mach_info { 

u_long pixclock; 
u_short xres; 
u_short yres; 
u_char bpp; 
u_char hsync_len; 
u_char left_margin; 
u_char right_margin; 
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}; 

u_char 
u_char 
u_char 
u_char 
u_int 

u_int 
u_int 

vsync_len; 
upper_margin; 
lower_margin; 
sync; 
cmap_greyscale:1 , 

cmap_inverse : 1, 
cmap_static:1, 
unused : 29; 

lccrO; 
lccr3; 

/• Shadows for LCD controller registers •/ 
struct sa1100fb_lcd_reg { 

}; 

Ward lccrO; 
Ward lccr1; 
Ward lccr2; 
Ward lccr3; 

#define RGB_8 (0) 
#define RGB_16 (1) 
#define NR_RGB 2 

struct sa1100fb_info { 
struct fb_info fb; 
signed int currcon; 
struct sa1100fb_rgb •rgb[NR_RGB] ; 
u_int 
u_int 
u_int 

!• 

max_bpp; 
max_xres; 
max_yres; 

* These are the addresses we mapped 
* the framebuffer memory region to. 

•! 
dma_addr_t 
u_char * 
u_int 

u_char * 
dma_addr_t 

u16 * 
dma_addr_t 
u_int 
dma_addr_t 
dma_addr_t 
u_int 
u_int 
u_int 

map_dma; 
map_cpu; 
map_size; 
screen_cpu; 
screen_dma; 
palett e_cpu; 
palette_dma; 
palette_size; 
dbar1; 
dbar2; 
lccrO; 
lccr3; 
cmap_inverse:1, 
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u_int 
u_int 
u_int 
u_int 

cmap_static:1, 
unused:30; 

reg_lccrO; 
reg_lccr1; 
reg_lccr2; 
reg_lccr3; 

volatile u_char 
volatile u_char 

state; 
task_state; 
ctrlr_sem; struct semaphore 

wait_queue_head_t ctrlr_wait; 
struct tq_struct task; 

#ifdef CONFIG_PM 
struct pm_dev •pm; 

#endif 
#ifdef CONFIG_CPU_FREQ 

struct notifier_block clockchg; 
#endif 
}; 

#define __ type_entry(ptr, type,member) ((type •)((char •)(ptr)-offsetof(type,member))) 
#define TO_INF(ptr,member) __ type_entry(ptr,struct sa1100fb_info,member) 
#define SA1100_PALETTE_MODE_VAL(bpp) (((bpp) & Ox018) << 9) 
!• 

• These are the actions for set_ctrlr_stat e 
•! 

#define C_DISABLE (O) 
#define C_ENABLE (1) 
#define C_DISABLE_CLKCHANGE (2) 
#define C_ENABLE_CLKCHANGE (3) 
#define C_REENABLE (4) 
#define SAUOO_NAME "SA1100" 
!• 

• Debug macros 
•! 

#if DEBUG 
# define DPRINTK(fmt, args ... ) printk("¼s: " fmt, __ FUNCTIQN __ , ## args) 
#else 
# define DPRINTK(fmt, args ... ) 
#endif 
!• 

• Minimum X and Y resolutions 
•! 

#define MIN_XRES 64 
#define MIN_YRES 64 
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