
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

About adding utility and usability to FDNet

application au domaine de la construction

Achbany, Youssef; Jadoulle, Jérôme

Award date:
2004

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/71c9c99e-52f6-4816-8194-1fcc2bd0d053

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I'
1
1
1
1

Facultés universitaires Notre-Dame de la Paix- Namur
Institut d'Informatique

Année académique 2003 - 2004

A.bout adding Utility and
, Usability to FDNet

A Flat Distributed Network
Architecture

Youssef ACHBANY
Jérôme JADOULLE

Mémoire présenté en vue de l'obtention du grade de Maître en Informatique

1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Facultés universitaires Notre-Dame de la Paix - Namur
Institut d'Informatique

Année académique 2003 - 2004

About adding Utility and Usability to
FDNet

A Flat Distributed N etwork
Architecture

Youssef ACHBANY
Jérôme JADOULLE

Mémoire présenté en vue de l'obtention du grade de Maître en Informatique

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1.
1
1

1
1
1
1
1
1
1
1

Résumé

Ces dernières années, la robotique a connu d'énormes progrès, tant au niveau matériel que logiciel.
La robotisation croissante des jouets, qui dernièrement abouti à la création du petit chien Aibo,
augmenta l 'engouement de tous: utilisateurs, concepteurs et vendeurs.

Au niveau logiciel, une grande partie des travaux a été consacrée à la conception d'architectures
communes, utilisables sur nombre de robots différents, simplifiant ainsi la communication entre ces
derniers et la fabrication de leurs composants.

Plusieurs grandes institutions et entreprises poursuivant ce but ont donné de bons résultats. Mais les
avancées conviennent surtout à une robotique axée sur le jeu, principal moteur d 'améliorations. Elles
ne peuvent, actuellement, pas être transposées à d'autres milieux tels que celui de robots sauveteurs,
évoluant dans des environnements chaotiques pour sauver des vies.

C'est en vue de palier à ce manque que l !L 'IRS.1, « The International Rescue System Institute »,
mène depuis plusieurs années des recherches dans ce domaine. Ces recherches de création
d 'architecture commune à des robots de types différents donnèrent naissance à FDNet, diminutif de
« Flat Distributed Network Architecture ».

La première partie de ce mémoire introduira les travaux effectués en matière d 'architecture commune
qui ont inspiré FDNet. FDNet, dont les concepts et particularités vous seront présentés dans une
deuxième partie, conjointement à l'état d'avancement des recherches. Dans la troisième partie, nous
parlerons de notre contribution à cet ambitieux projet qu 'est FDNet, à savoir le rendre plus utile et
utilisable pour des sauveteurs, leur permettant ainsi de l'utiliser sur le terrain.

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Abstract

In the past years, robotic science has progressed a lot, in both hardware and software levels. The
increasing robotisation of toys, which has recently led to the creation of Aibo, increased the interest of
everybody: users, creators and vendors.

At software level, a great deal of work has been concentred on the conception of common
architectures which, being usable on a lot of diverse robots, simpli.fied the communication between
them and their components 'production.

Various institutions and enterprisesfollowing this aim have provided some good results. But the
advancements main/y concerned game-centred robotics, which is the main robotic enhancement
engine. Theses advancements can 't, for the time being, be transposed to other fields such as the one
concerning rescue robots; robots evolving in chaotic environments to save lives.

It is to make up for this lack that the IR.SI, « the International Rescue System Institute », is working
on this field for some years. Theses researches about creating common architectures for dif.ferent
types of robots gave birth to FDNet, acronym for "Flat Distributed NETwork architecture ".

The first part of this thesis will introduce the researches made upon the common architectures which
inspired FDNet. FDNet, whose concepts and particularities will be presented in a second part, also
describing the level of advancement of the researches. In the third part, we will talk about our
contribution to this ambitious project that FDNet is, namely to make it more use.fui and usable for
rescuers, allowing them to use it on the real world to try to save more lives.

1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
'I
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Acknowledgments

First of ail, we would like to thank: Mr. Schobbens for having found us the place of the thesis
and Mr. Tadokoro for its subject. Mrs Tadokoro was of an incredible help for all the
administrative work too. Without theses three people, setting up this thesis would have purely
and simply been impossible.

Working for Mr. Tokuda and his RoQ team was a pleasure too. The differences in our
cultures and spoken language were all but problems thank: to them. Working on enhancing
FDNet would not have been as pleasant and instructive iftheses people hadn't been present.

We are grateful to all the students we could meet in the laboratory. They were always
supporting us and have been at the base of some of the best moments we could have in Japan.
Thank: you Takuma, Takumi, Kaoru, Ulrike, Akazawa, Minobe, Aki, Takemura, Nobuhiro
and all the others.

Great thank:s to I.R.S.I secretaries which helped us each and every time we were facing
difficulties. More particularly, let us thank: Tomoko, who was a guide, a translator and an
animator but also, more than anyone else, a true friend. We will never forget what you have
done for us Tomoko. Itsumo Arigato.

Mr Nicolas Lambot, one of our best friends for a long time, was also with us there and shared
all the good moments with us while helping us during the more difficult ones. Nicolas, you
know it, no word is good enough to explain how we feel about you.

Last but not least, we would thank: our families and our friends who have supported us
through our studies and without whom arriving here wouldn't have been possible at all.

Minna-san, dômô arigatô gozaimasu!

1
1
1

1
1
1
1
1

1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
)

1
1
1
1
1
1
1

Table of content
R~umé 5 ---------------------------------
Ab s tract 7

Acknowledgments 9

Table of content 11

Table of figures 15

Table of Index 17

Glossary 21

PARTl-FDNet 23

Chapter 1: Introduction to FDNet _____________________ 25
I. Concept : 25

A. Flexibility: 25
B. Extensibility: 26
C. Generic architecture: 27

II. FDNet in more details: 28
A. FDNet is a Flat Distributed Network architecture: 28
B. FDNet is based on the Human Imitation Model: 33
C. FDNet's aim is to help rescuers to find victims in case of disasters: 35

III. Current FDNet implementation: 36
IV. Development choices: 37

A. RoQ's base Hardware: 37
B. FDNet environment: 37
C. FDNet A.P.I : 37

V. Conclusion: 39

Chapter 2: State of the Art _______________________ 41
I. ORiN: A common object mode! for robotic systems 41
II. Open-r: An Open Architecture for Robot Entertainment 43
III. Orca: Open Robot Controller Architecture 45

PART2 47 --------------------------------
O u r contribution to FDNet 47

Chapter 3: Retro engineering _______________________ 49
I. Motivations: 49
Il. Analysis method: 50
III . Conclusion: 51

Chapter 4: The Logger _________________________ 53
I. Introduction: 53

A. General purpose 53
B. General view 54

Il. Specification: 55
A. Logical specification 55
B. Sequence diagrams 56
C. Physical specification 59
D. Improvements 59

III . Database of the Network State Logger: 61
A. Preface 61
B. Specification of the tables 61
C. Remark: 63

IV. The Cache: 64
A. Preface 64

_I

_I
B. Cache architecture 64
C. Scheme of the cache 65 1 V. The Server 67
A. Preface 67
B. Server architecture 67

1 C. Scheme of the architecture 68
D. Remark 68

VI. The Logger: 69
A. Rote of the Logger 69 1 B. General architecture 69
C. Scheme of the architecture 70

VII. Improvements 71

1 A. Introduction 71
B. Database access 71
C. Thread priority 73

VIII. The interface 76 1 A. Preview 76
B. Database information 76
C. Logger writer 77

1 D. Server Receiver 78
E. Server Sender 79
F. Memory and thread priority 80

Chapter 5: The Human Interface 81 1
1

1. Introduction: 81
Il. Human lnterface's Aims: 82
III. Definitions: 83 1 IV. Human Interface architecture: 83
V. Specification of the logical base: 84

A. FDNetwork specification: 84

1 VI. The Module extension: 88
A. Introduction ofa more complete division ofFDNetworks: 89
B. Incremental Ioading: 91
C. Real Time modifications: 92 1 D. Easy network edition: 94

VII. The Interface's static capabilities: 96
A. Load/save networks: 96

1 B. Network entities edition: 97
VIII. The dynamic capabilities: 102

A. Start/Stop the Network: 102
B. Edit the Network: Add/Delete Nodes and Connections: 102 1 C. Load/unload Modules: 104
D. View Network evolution: 105

IX. Human Interface's Display: 106

1 A. The Graphically-based display: 107
B. The Text-Based Display: 116

X. The SpeedyDesign technique: 120
XI. Human Interface's current limitations: 124 1 A. Enhancements conceming the Networklnfo structure: 125

B. Enhancements conceming the FDNetworks' Graphical Representation: 126
C. Enhancements conceming Human Interface's integrity: 127

1 XII. Conclusion: 128

Chapter 6: Conclusions 129
1. Conclusion about FDNet: 129

1 Il. Persona) conclusion: 130

Bibliography 131

Appendices 133 1
Appendix 1: Retro engineering on FDNet 135

1
1

1
1
I'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Appendix 2: Retro engineering documents __________________ 141

Appendix 3: FDNetworks Structure definition file 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Table of figures

FIGURE 1: FDNETWORKS' FLEXIBILITY PROPERTY 26
FIGURE 2: AN EXAMPLE OF COOPERATION BETWEEN DIFFERENT KINDS OF ROBOTS 27
FIGURE 3: AN ENTITY/ ASSOCIATION DIAGRAM REPRESENTING THE RELATIONS BETWEEN NODES AND

CONNECTIONS 29
FIGURE 4: BASIC REPRESENTATION OF AN FDNETWORK 30
FIGURE 5: A SUB-NETWORK THAT CAN GENERATE THE MOTION OF THE ROBOT 31
FIGURE 6: FDNET'S "FLAT" CHARACTERISTIC 32
FIGURE 7: THE ROBOT ROQ 36
FIGURE 8: IMPLEMENTATIONOFFDNET INVARIOUS LAYERS 37
FIGURE 9: SCHEME REPRESENTING OR!N'S IMPLEMENTATION 42
FIGURE 10: GENERAL VIEW OF FDNET THAT SHOW THE RELATIONS BETWEEN THE DIFFERENT APPLICATIONS OF

FDNET 54
FIGURE 11: SCHEME AND ST-RUCTURE OF THE CACHE AND THE SIMPLE EVENT CONTAINER 65
FIGURE 12: SCHEME AND STRUCTURE OF THE EXTENDED EVENT CONTAINER ... 66
FIGURE 13: ARCHITECTURE OF THE SER VER IN THREE LA YERS USED FOR THE LOGGER 68
FIGURE 14: G ENERAL ARCHITECTURE OF THE LOGGER 70
FIGURE 15: DATABASE ACCESS IMPROVEMENT-SCENARIO 1 72
FIGURE 16: DATABASE ACCESS IMPROVEMENT - SCENARIO 2 72
FIGURE 17: THREAD PRIORITY IMPROVEMENT-THE STATES OF THREADS AND CACHE IN THE BEGINNING 74
FIGURE 18: THREAD PRIORITY IMPROVEMENT - THE CACHE REACHES THE CRITICAL LEVEL 7 4
FIGURE 19: THREAD PRIORITY IMPROVEMENT- THE CACHE REACHES THE NORMAL LEVEL.. 75
FIGURE 20: THE N ETWORKINFO STRUCTURE PR OVIDES FDNETWORK INFORMATION TO THE HUM AN lNTERF ACE 85
FIGURE 21: THE N ETWORKINFO SYSTEM ARCHITECTURE 86
FIGURE 22: CONSEQUENCES OF MODULE SUBDIVISION 90
FIGURE 23:]NCREMENT AL LOADING OF MODULES 91
FIGURE 24: TRICK ALLOWING REAL-TIME MODIFICATIONS 92
FIGURE 25: THE FILE FORMAT USED IS HIDDEN TO THE FINAL USER 96
FIGURE 26: INTERACTION BETWEEN NODES FROM DIFFERENT MODULES 98
FIGURE 27: MODIFICATION OF CONNECTIONS UPON CHANGES IN OTHER MODULES 99
FIGURE 28: REPLACEMENT OF A DATA NODE 100
FIGURE 29: FUSION OF DATA NODES 101
FIGURE 30: REPERCUSSION OF MODIFICATIONS IN THE HUMAN INTERFACE ON THE FDNETWORK 102
FIGURE 31: REPERCUSSION OF MODIFICATIONS IN THE FDNETWORK ON THE HU MAN INTERFACE 103
FIGURE 32: UNLOADING MODULES IN A WORKING FDNETWORK 104
FIGURE 33 : USING THE V IEWER TO ANAL YZE THE EVOLUTION NETWORK 105

FIGURE 34: THE HUMAN lNTERFACE'S DISPLAY - GRAPH1CS AND TEXT BASED DISPLA Y 106
FIGURE 35: H UMAN INTERFACE GRAPHICALLY-DRIVEN FDNETWORK EDITION .. 109
FIGURE 36: S ELECTING THE MODULE WHERE THE NETWORK ENTITIES CREATED HAVE TO BE ADDED INTO 110
FIGURE 37: HUMAN INTERFACE'S REACTION UPON USER OROER 115
FIGURE 3 8: SPEEDYD ESIGN TECHNIQUE -AS KING COMPONENTS TO UPDA TE THEMSEL VES 120

FIGURE 39: SPEEDYD ESIGN TECHNIQUE- ROLE OF THE COMPONENTS HANDLER 121

FIGURE 40: SPEEDYD ESIGN TECHNIQUE - THE EXISTENCE OF HIERARCHY BETWEEN COMPONENTS 122
FIGURE 41: A SUMMARY OF THE SPEEDYDESIGN PROGRAMMING TECHNIQUE 123
FIGURE 42: INTRODUCTION TO MULTI-LEVELS MODULE SUBDIVISION 125

:i
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

Table of Index

A

Analyze 53
Apertos 44
Architecture 25, 26, 27, 41, 43, 45, 64, 67, 83, 86

B

Behavior 25, 26
Buffer 53 , 69, 71

C

Cache , ... 55, 69, 71 , 73, 77, 80
Architecture : 64
Definition 21
Scheme : 65

Child 114
Common 25, 27
Comprehension 49
Connection 83 , 86, 87

Add 102, 109
Delete 102, 109
Reader 29, 87
Representation 126
Writer 29, 87

Container 64
Critical 73

D

Database 53, 55, 59, 61 , 69, 71 , 76, 77
Display 111

Graphie 106, l 07
Text 106, 116

Documentation 49, 50, 51
DTD 84
Dynamic 25, 31 , 83, 102, 115

E

Edition 94, 97, 109, 117, 118
Advanced 99
Basic 98

End-User 83
Enhancement.. 87, 100, 112, 114, 122, 125, 127
Event 55, 64, 69, 71

Container 64
Container Monitor 64
Definition 21

F

FDNet
aim 35
Concept 25
Conclusion 39
Connection 28
Core 50, 53 , 55, 57, 69
development choices 37
extensibility 26

Fait Distributed Network Architecture 28
jlexibility 25
human imitation 33
lmp/ementation 36
Network 28
Node 28

FDNetwork
Definition 21

G

Graphie 84, 109, 111
Overview 108

Graphie Network
Definition 21

Graphie Panel
Definition 21

H

Human Interface
Aim 82
Architecture 83
Conclusion 128
Definition 22
Definition 83
Disp/ay 106
Dynamic capabi/ities 102, 115
Introduction 81
Limitation 124
Module 88
Specification 84
SpeedyDesign 120
Static capabi/ities 96

I

I.R.S.I 25
lmplementation 102
lmprovement

Database Access 71
Module 88
Thread priority 73

Incremental loading 91
Index 64
Intelligence 25, 28, 30, 31 , 33
Intelligent 26

J

JARA 41
Java 37, 59, 86

L

Layer 26, 37
Load 91 , 93,98, 115
Logger

Cache 64
Database 61
Genera/ architecture 69

General view 54
Improvement 71
Interface 76
Introduction 53
Logger Writer 69
Raie 69
Scheme of the architecture 70
Server Receiver .. 69
Server Sender 69
Specijication 55

M

Memory 59, 71 , 91 , 93, 98, 115
Merge 101
Module 84, 86, 87, 88, 89, 90, 91 , 93, 100, 125

Adding 99
Advanced 117
Basic 117
Co/or ... 113
De/eting 99
Load 91 , 92, 98, 104
Main 91
Name 99
Panel.. 112, 113
Unload 104

Monitoring 64

N

NED0 41
NetCommandEvent 80
NetwokEvent 80
Network

Evolution 105
Frame 117
Load 102
Start 102
Stop 102

Network command 57, 64
Definition 21

Network state 53, 56, 64
Definition 21

Networklnfo 85, 87
Neural mode! .. 33
Neural network ... 28

Definition 21
Node 86, 87, 88

Add 102, 109
Co/or 114
Data ... 28, 83, 87
Delete 102, 109
Merge 101
Name 89, 100
Parameter 28, 92, 118, 125
Relation 28, 83, 87
Replace 100

Normal 73

0

Open-R 43, 44
ORCA 45

ORiN 41

p

Parent 114
Placement 126
Priority 73

R

Real-time .. 53, 92, 93
Recognition mode) 28, 34
Recognizing 111
Reconfiguration 25
Replace 100
Repository 84, 85
Rescue 25, 27, 81
Retro engineering

Conclusion : 51
Definition 22
How 50
Why 49

Robot 81
Definition 22
group 27
rescue 27
Rescue 55

RoQ 36, 38, 39

s
Scientist

Computer 81
Electronic 81

Self-organization 25, 34
Sensor 34

Definition 22
Sequence diagram 56
Server 76

Advantage 67
Architecture 67
Client 67
Connection 67
Definition 22
Factory 67
Receiver 69, 78
Scheme 68
Sender' 69, 79

Sony ... 43
Source code 49, 50
Specification

Logica/ 55, 84
Physica/ 59

Static 83, 96
Supervisor 64
System 25, 26, 81

T

TCP 59
Thread

Definition 22
Priority 73, 80

Timer 71

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Toshiba 45

u
Usability 88, 124
Utility 88, 91, 124

V

Viewer 53, 55, 58, 69, 71 , 105
Definition 22

X

XML 84, 85

1
1
1
1
Il
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
'I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

About adding utility and usability to FDNet

Glossary

Cache: A temporary storage area for frequently-accessed or recently-accessed data. Having
certain data stored in cache speeds up the operations of the pro gram.

Connection: An interaction happening between a Data and a Relation. Connections can either
be Readers or Writers. ·

Data: Any piece of information that can be used by Relations.

Event: An occurrence that is significant to a program, and which may call for a response from
the program.

FDNetwork: A construction ofNetwork Entities with the FDNet architecture.

Graphie Panel: The frame, in the Human Interface, where the Graphie Representation of the
edited FDNetwork is displayed.

Graphie Network: File containing all the positioning information concerning the graphie
representation of an FDNetwork. Upon loading of an FDNetwork, the Human Interface
searches for this file in order to display the FDNetwork in a correct way in the Graphie Panel.

Network command: There are many network commands - connect Reader/Writer, disconnect
Reader/Writer, create Data/Relation, destroy Data/Relation ... A network command includes
connection information that describes an event notification.

Network Definition: A succession of Datas and Relations, themselves followed by a list of
the Connections that theses Nodes have between them.

Network Entity: A Network Entity is either a Node or a Connection.

Network state: A network state represents either the value of a Node at a given time or the
network connection information. Network connection information is a "network change"
event and says, for example, that a Data N ode was disconnected or suppressed.

Neural network: A neural network is an interconnected assembly of simple processing
elements, units or nodes, whose functionality is loosely based on the animal neuron. The
original inspiration for the technique was from examination of bioelectrical networks in the
brain formed by neurons and their synapses. The processing ability of the network is stored in
the inter-unit connection strengths, or weights, obtained by a process of adaptation to, or
learning from, a set of training patterns. In a neural network, simple nodes (or "neurons", or
"units") are connected together to form a network of nodes, hence the term "neural network".

Node: Either a Data or a Relation.

Reader: A link between a Data and a Relation allowing the Relation to read the value of the
Data it is connected to.

Facultés Universitaires Notre-Dame de la Paix - Namur

About adding utility and usability to FDNet

Relation: A processing agent, whose aim is to take some Data in entry and to compute it in
some way to create new Data.

Retro engineering: (or Reverse engineering) is the process oftaking something (a device, an
electrical component, a software program, etc.) apart and analyzing its workings in detail to
understand how it works.

Robot: A mechanical device that performs a task that would otherwise be done by a human.
Robots can be useful for jobs that are boring or dangerous for humans to perform. The
simplest robots are capable only of repeating a programmed motion; the most sophisticated
models can use sensors and artificial intelligence to distinguish between objects, understand
natural language, and make decisions. Robots can be programmed or operated by remote
control.

Sensor: An electronic device used to measure a physical quantity such as temperature,
pressure or loudness and convert it into an electronic signal of some kind (e.g a voltage).
Sensors are normally components of some larger electronic system such as a computer control
and/or measurement system.

Server: The entity in a client/server architecture that supplies files or services. The entity that
requests services is called the client. The client may request file transfer, remote logins,
printing, or other available services.

Thread: In programming, a thread is one part of a larger program that can be executed
independent of the whole.

Human Interface: (or User interface) The means by which a user interacts with a computer.
The interface includes input devices such as a keyboard, mouse, stylus, or microphone; the
computer screen and what appears on it; the way commands are given, etc. With a command­
line interface, only text appears on the screen, and the user must type in commands; with a
graphical user interface, windows, mice, menus, and icons are used to communicate with the
computer.

Viewer: It is an important application that allows users to analyze the Network state in order
to follow its evolution. This application was done by Mr. Lambot1 and is integrated in the
Human Interface.

By "Writer", we imply a link between a Data and a Relation allowing the Relation to write
the value of the Data it is connected to.

1 [Lambot 2003]

Facultés Universitaires Notre-Dame de la Paix - Namur

1
1
1
1
1
1
1
1
1
1
1
1
J
1.
1
1
1
1
1
1
1

1
1

Chapter 2: State of the Art

1
1
1
1
1
1
1
1 PART] -F et
1
1
1
1
1
1
1
1
1
1

Page 23 of 149

1

--~,
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 2: State of the Art

Chapter 1: Introduction to FDNet

1. Concept :

The International Rescue System Institute [I.R.S.I.] is a Japanese organization that
works on the robots field, particularly on rescue robots. The role ofthis kind of robot is to
help rescuers finding victims after an earthquake or a disaster that destroys the environment,
making it dangerous. The world in which the rescue robot operates is thus very complicated.
Regarding this environment, the topography is unique in every place, every time. Unexpected
situations can always occur while the robot works among the debris. Even a situation
envisaged is rather complicated and can't be apprehended perfectly. The frrst issue is how the
rescue robot can cope ~th that complexity in order to act in such environment.

It is not possible to prepare the robots to fit each kind of environment, one after the
other. Because ofvarious trade-offs, the conception of a complete robot behavior is
impossible. Therefore rescue robot must have some form of intelligence, a software
architecture that combines the various fundamental technologies and new skills dynamically
learnt in that specific place. This architecture is FDNet, a Flat Distributed Network
Architecture.

FDNet is especially based on three previous architectures, namely ORiN, ORCA and
Open-R. In fact, there were many previous studies about robot architecture, but none ofthem
could respond exactly to our expectations. These architectures have no structure to perform
dynamic self-organization or dynamic reconfiguration, making them unusable for the rescue
robots.

Instead of trying to modify theses architectures, I.R.S.I researchers took the interesting
characteristics from them to create a specific and common architecture for all rescue robots:
FDNet. Like its bases, FDNet is a flexible, extensible and generic architecture.

A. Fle.xibility:

Because of the complexity and the differences between environments, a rescue robot
can't be totally autonomous. Under these conditions, the robot needs to be ordered and
monitored by a human operator. But, it isn't realistic to think of a human always giving
detailed movement orders to the robot. It is necessary for the robot to be half autonomous.
By half-autonomy, we imply that the robot must be able to perform advanced tasks given
simple orders, but to wait for specific ones when it falls under conditions where human
judgment becomes necessary.

This is the reason why a common software architecture that shows flexibility
regarding both software and hardware is needed, the goal being to be able to describe an
intelligent system with that architecture.

Page 25 of 149

Chapter 2: State of the Art

To build this flexibility, the system must be able to do three things:
1. First, it has to be based on basic behaviors, not too simple to bear a minimal meaning

but not too complicated to be easily ordered.
2. Secondly, the system must provide an intelligent ordering system to be able to

construct advanced behaviors from the simpler ones.
3. Finally, the system must be able to create new behaviors according to the environment

in which it is executed. Being able to learn from its own work will greatly improve
system' s performances.

0

Figure 1: FDNetworks' flexibility property.

Ü Basic behavior

Q Learnt behavior

Q Advanced behavior

0 Sensor

<> Ordering node

By creating advanced behaviors, based upon both basic and learnt ones, the robot will
be able to find answers to problems specifically encountered on the field. Robot's reactions
will then be exactly fitted for the actual environment he is maneuvering in.

B. Extem.ihility:

FDNet is created by using various layers. By dividing the architecture in different
layers, it is easy to limit the impacts of future changes or improvements to the layer concemed
by theses changes. This extensibility allows, for example, equipping robots with the most
suitable sensors anytime, changing them as the environment change.

Page 26 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1•
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1

Chapter 2: State of the Art

C. Generic arcltitect11re:

I.R.S.I researchers wanted to create a common architecture usable for ail rescue robots
whatever their type, with a common protocol allowing them to exchange data. This is
FDNet's most important feature.

Rescue robots' ultimate goal is to help rescue injured people. Therefore, the best way
to ensure that victims can be found and saved has to be put in place. Finding victims means
to be able to get the best and the most complete information about the environment and to be
able to discover the injured people using this information.

Various proposais have beenmade so far. For example, creating a group of robots
consisting of "crawler .robots", "legged robots" and "flying robots" has been thought of a lot.
The flying robots provide general information about the environment and supervise crawlers
and the legged robots, whose more specific researches will ensure victims can be found.

1: The Hclicoptcr Robot is
deployed on the devastated scene
and will flight over the
environment to provide
information to the network.

2: Based on the information
received from the Helicopter
robot, the FDNetwork will give it
orders to make general researches
after casualties.

3: When something interesting is
found, the FDNetwork sends the
Crawler robots inside the debris
to make more specific research
for human lives.

Figure 2: An example of cooperation between different kinds of robots

However, it is currently difficult to exchange information between these robots
because each one has its own protocols and architectures. If all of them where using the same
common protocol and the same architecture, not only would it be possible to make each robot
able to discuss with each other, but it would also be possible to reduce their creation time, lots
of complex problems encountered by a team being already resolved by other ones.

Page 27 of 149

Chapter 2: State of the Art

Il. FDNet in more details:

Now that you have been introduced to FDNet's purpose, concept and origin, we will
present each of its particularities in more details, basing ourselves on FDNet's de:finition .

.. ~~ ::-,-,"':.\·..::·' ,~ ,.- . ~

i ,a ': at ·' ,istributcd ' worl<.-architcéturc bascd on the human imitation modcl.
a~lowi~~~.ffôi 'or'robots to· coop~r~te in order to h~lp rcscucrs to find victims in case of
d1sasters. ,,~ .

;, ~ ,
' . •.:... ~ ~ . ~ . ~

A. FDNet i.'i a Flat Di.,·tributed Network arcl,itecture:

By Network, I.R.S.I Researchers imply that an information network is used to create
robot's intelligence. The robots having to be half autonomous, they have to be able to take
some decisions like, for example, determining which direction is better to reach injured
persons in a fragile terrain. To represent this intelligence, a neural-like network is used.

FDNetworks are made oftwo main components: the Nodes and the Connections.
While Nodes consist of either raw information or processing objects, Connections are to be
viewed as links between the Nodes, allowing the processing objects to access the information
they need.

There are two kinds ofNodes:
1. Data Node1

: This kind ofNode represents Network's raw information, which can
either arise directly from the Base Network itself or from the environment robots
evolve in, by using sensors and cameras. New Datas can also be processed by using
Relation Nodes.
All information contained in the Network is considered to be a feature. In other
words, any data's value is decided in the same way: the device-level feature is decided
in the same waf that the system-level feature is.

2. Relation node : Bears the same meaning in FDNet than the neuron specified in the
recognition model or in neural networks. By using input Datas, Relation nodes can
also calculate new Datas' value. In this case, the Relations will work with the help of
"servants": agents having specific functions. Relations can only calculate the value of
directly linked Datas. But through the use of servants, they can access FDNetwork's
whole structure. This way, Relations can perform Network' dynamic self­
organization / reconfiguration.

Relations and Datas can have parameters. These parameters can be used to initialize a
Node and to influence its behavior. Note that parameters are only represented as strings in the
FDNet architecture. It means that they have no type, and don't·bear any meaning by
themselves. The Nodes using them will give them their meaning.

1 To refer to Data Nodes, the term «Data» will also be used.
2 To refer to Relation Nodes, the term « Relation » will also be used.

Page 28 of 149

1
1
1
1

•1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 2: State of the Art

Relation and Data Nodes are linked by Connections, which can be oftwo types:
• Reader Connection: A Connection between a Data and a Relation where the relation

can read the data' s value.
• Writer Connection: A Connection between a Data and a Relation where the relation

can write a new value in the data.

Data ~---~-----------1Relation
r--1. . . 1. ..

Connection

Nodes can be linked with as many Connections as needed but a Connection, whatever its type
(Reader or Writer) always connects a Data Node to a Relation Node.

Figure 3: An entity/ Association diagram representing the relations between Nodes and Connections

Page 29 of 149

Chapter 2: State of the Art

The example below will show you a basic representation of an FDNetwork to help you
visualize how its components are organized in order to create Robot' s intelligence.

I
I

I

I
I

;

;
;

;

I
I
I
1
1
1
1
\
\
\
\

\
\

\
\

\

' '

l Nodes
Data
Relation

;
;

;

' ' '

l Connections

\\ rit c r

...

Seoson

------------------- --1 FDNetwork ..
...

' \

..................

--- --- ---

Information from the system or the environment
Active computing module

Used by a Relation to read a Data' s value
Used by a Relation to write a Data' s value

;

\
\

\
\

\
\

I

I
I

I

\

I

\
\
\
1
1
1
1
I

I
I

;
I

Encoder

Figure 4: Basic representation of an FDNetwork

Page 30 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 2: State of the Art

The example below will show you the dynamism that exists in FDNetworks. It
represents a sub-network that can generate the motion of a robot using the cooperation of
many movement formation agents. The movements dynamically created are computed basing
on the information received from different kinds of sensors, whose aim is to provide real-time
information about robot's condition.

Pln·.ïcal inf'hr nauon

l.'.i.md 1(h l

• DATAll111ai1tity o f lhc foature.
or 5Cl oHhMc)

- Rolation(neuron , processing unit ,
or sub--notwo rk~

/
·and1 ut

Phvsit"II
mfommtion

decis~· n walk

Î . a ncxt posture
T h.: resul,t

the goal valu ...
l fa ne.x t postur ·

Figure 5: A sub-network that can generate the motion of the robot

The Datas in entry of this sub-network ("Physical information", "A present posture")
give information about robot's current physical state and posture. Aside from theses Datas,
coming from real-time sensors, the sub-network also needs to know robot's intentions ("I
want to keep a balance", "1 want to walk") in order to decide robot' s next posture.

Theses Datas are read by different Relations ("keep a balance", "walk") who
independently calculate a candidate value for the next posture. Theses candidates will, along
with a Data representing the result ofrobot's judgment about moving or not, will be
integrated to calculate the next posture the robot has to take.

Note that all is not necessary white or black. The decision can be, for example, that
the robot has to move, but just a little. In this case, the integration will give a higher
importance to robot's balance but will notjust stand still for all that.

In fact, as all Relations are just programming, anything wanted can be computed. The
main problem faced by researchers is not to compute Datas the way they like but to possess
the right information at the right time and to know exactly what to do with it in order to create
a usable output.

What we want to say here is that, although intelligence programming can be somewhat
dif:ficult to achieve, the researchers have to focus more on what intelligence is to be

Page 31 of 149

Chapter 2: State of the Art

programmed instead. This is one of the reasons why our participation to the FDNet project is,
as you will see in the following chapters, an important one.

In the example above, it is important to note that "The goal value of a next posture" is,
in fact, the same data as "a present posture". This Datajust receive a new value from one of
its "child" Relation.

1

/
I

\

' -.....
' \

The Data here above bas its value
overwritten by one if its children. There are
no restrictions in the way the Connections
are made.

Figure 6: FDNet's "Flat" characteristic

r------
1 1

--- ll>i 1
1 1 ______ ..

This fact represents the "Flat" characteristic in the definition. The Networks are said
to be "Flat" because, through the use of Connections, any Relation can be connected to any
Data, whatever their meaning. Inside an FDNetwork, there is no hierarchical structure or
different component levels. Ali Nodes and Connections have the same status in the Network
and are processed in the same way.

Self-organization cornes from this fact. New features can be dynamically constructed
using information coming from any Node in the Network, whatever the type of information
they bear.

The term "Distributed" is used to point the fact that, in FDNet, a group of robots and
machines can work together from the intelligence of a single Network. It means that each
robot doesn't especially have its own FDNetwork but can share it with other robots, all
contributing to Network's global intelligence.

For example, in the Figure 2, the flying robot can provide information to the network
that will be very useful for the crawler robots to narrow their researches.

Page 32 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 2: State of the Art

B. FDNet is based on tlle Hum"" Imitation Mode/:

Before the specification ofFDNet's architecture, the researchers have adopted a
recognition model. In FDNet project, the outline ofhuman imitation is assumed for the
rescue robots to salve most of the problems. They have done many researches in which they
transposed some human features to a robot and studied the application to the robot. Next is an
overview of this research.

Human Imitation Madel is used in FDNet for more than one purpose. First of all,
Network's intelligence is based on the neural model, meaning that human intelligence is, to a
certain extend, imitated by FDNet.

After researches about what rescuers do when working in devastated environments,
I.R.S.I. Researchers found that humans do two particular movements when moving around to
find victims: first, they tap the ground where they are planning to move in order to see if it is
stable and after, they slowly move their weight forward and analyze their own position in
order to be sure that the new position they are in is stable too.

Following the "Human Imitation Madel", I.R.S.I researchers tried to transpose this
information about movement inside FDNet model. Conclusions made clear that it is not only
important for a robot to move around to imitate human rescuers actions but also, it is
necessary to take care of the way it moves and to analyze the "feeling" he has about its own
position in order to take the best movement choices.

To make the best work possible here was quite important because moving on
devastated environments is one of the main tasks ofFDNet robots. If this task cannot be
performed correctly, none of the following ones will be possible to achieve.

Page 33 of 149

Chapter 2: State of the Art

In order to achieve this requirement, FDNet model was expanded to include an
"Active movement sense". This means that, gathering information coming from sensors
(tapping the ground in order to see if it is stable), motion, intentions and environment, FDNet
robots develop a perception-like ability. Their movements thus become more precise.

The information acquisition and recognition was realized by creating an "FDNet
neuron formation" efficient for the specified purpose. This formation can be updated each
time a common recognition model between robots and humans can be found.

Note that what are transposed are the high-level tasks humans execute. By doing this
instead of transposing low-level ones, researchers can enhance their robots with abilities
specifically thought for them. For example, four-legged robots (such as the one you see in the
picture below) will never move the same way as human being do even if the intentions about
moving are the same.

This is where self-organization can show its true power. It can become the base for
great enhancements because it can produce features that would be very difficult to find while
examining Human beings. Indeed, if it is quite easy to create a general scheme of the way a
human being moves, it is a lot more complicated to find all the specificities of the same
movement.

Basing on the transposition ofhigh-level Human tasks, self-organization will be able
to reconstruct a "Human-like model" by finding an organization which allows producing the
same results as a human being.

Human Robot 1

Page 34 of 149

1
1
I'
1
1
1
1
1
1
1
1
1
1
.1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 2: State of the Art

C. FDNet' aim Ï5 to help re.\·cuer.,· to fi11d victi,m i11 case of tfü·asters:

FDNet is, as said before, a common architecture especially created for rescue robots.
Indeed, previous studies on robot architectures were for entertainment (Open-R) and
industrial robot (ORiN and ORCA) but none ofthem could be easily transposed to be used
with rescue robots, theses ones having particular needs.

As rescue robots are the base of the architecture, FDNet has been specifically created
to ensure it can respond to theses robots needs and thus is able to solve the important
problems presented first1

•

1 Report to FDNet's concepts in this chapter.

Page 35 of 149

Chapter 2: State of the Art

Ill. Current FDNet implementation:

First of all, the creation of a complex rescue robot has been started some years ago and
is still under development. The rescue robot that can be seen here below, named RoQ
(Robotic Platform for Rescue), serves as the base platform used to construct FDNet and test
its abilities.

Figure 7: The robot RoQ

FDNet implementation started at the same time. It is still a work in progress and much
time will be necessary to have it work perfectly, though a beta version is already showing
some of its potential.

Page 36 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 2: State of the Art

IV. Development choices:

• Quadruped robot TITAN-VIII
• PC (Pentium-III 800MHz, 512MB RAM)
• Devi ce N etwork

o Angle of inclination meter, Infrared rays sensor
o Ultrasonic sensor, CCD camera

• Tactile sensor at the sole
• Wheel movement mechanism
• Ankle mechanism

B i:- e- , io

• The Linux operating system (kemel Linux 2.4.4)
• Real time extension R TLinux 3 .1
• Java language(Java2 SE 1.4.1 01)
• postgreSQL DataBase (V. 7.1.3) .
• CORBA Middleware (OpenORB 1.2.0)

.PI.
Without entering too deeply in the details, we can say that FDNet's API is defined
within the following layers:

• The Network layer (CORBA): It is the place where Connections and information
transmission are implemented.

• The Programming language layer(Java, C++): It is where the real functions and
behaviors of the Relation and Data objects are implemented.

' ---- --------- ------- --------- ----- -- •• ··-·-·· ··-· -·· · - - 1

i
! -~ FDNet -'

Co'RBAI
1

JavaVM
Java VM

JNI native method l~
1

1 1 Linux
RT thread

1

Other OS

RTLinux

PC

D1:vicel joevice I loeviœ Distributed Computer

. RoQ . ·-·-·· ··-·-·-····-·-·-····-·-····-·-·-····---·· -------J ! ,__ _______ ___J

Figure 8: Implementation of FDNet in varions layers

Page 37 of 149

Chapter 2: State of the Art

While Java/CORBA was selected because of Java' s portability feature the
implementation on R TLinux is used to control the parts that are time critical (i.e. a defined
response time is expected). For example the control of each RoQ Robot's joint is mounted as
a real-time task of the RTLinux and can be available directly for the other components.

Page 38 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

• 1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

'1
1

1
1
1
1
1
1

Chapter 2: State of the Art

V. Conclusion:

Following FDNet's definition, we gave you an idea ofFDNet's aim, its capabilities
and its potential power. Though it is still far from being a completely usable architecture, its
implementation is advancing well and tests that have already been made, mostly about human
imitation model, are satisfactory enough to give a strong will to further continue its
development.

Of course, being under construction, a lot of parts still need improvements and
enhancements (and, as you will see in the following chapters, some very interesting
enhancements have been thought of) but the base is well defined already, putting a powerful
rescue robot architecture at researchers disposai.

In the near future, the test robot - RoQ - will be improved and more and more capable
prototypes will be created. At the same time, FDNet will have its bugs corrected and the tests
between the network architecture and the robot will lead to providing answers to some of the
questions at the base of FDNet development.

Later on, FDNet's distributed component implementation will allow seeing how a pool
ofrobots using the same intelligence can perform and will give life to lots of future
researches.

Adding to this ail the ideas that nobody can think of at the time being, we are certain
that FDNet research holds a big potential which will clearly lead to important advancements,
at least in the rescue robot field and probably in general robotic science too.

Page 39 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

_,

Chapter 2: State of the Art

Chapter 2: State of the Art

FDNet's architecture is based on 3 main architectures: ORiN, Open-Rand Orca.
FDNet researchers have deeply studied and analyzed theses architectures to find their
advantages and weaknesses in order to improve FDNet's conception.

The main ideas of theses three architectures will now be presented to give you a
glimpse ofFDNet's origins and working.

1. ORiN: A co.mmon object model for robotic systems

As a three-year project ofNEDO (New Energy and Industrial Technology
Development Organization), JARA (Japan Robot Association) started "the Development of a
standard interface that provides a unified access mean" from 1999. The outcome ofthis
project was ORiN1 (Open Robot interface for the Network). In other words, ORiN is a
system for standardizing communications interface between persona! computers and robot
controllers.

In general, robots' accessing methods differ from manufacturer to manufacturer. By
standardizing this access, ORiN transfers data2 stored in the controllers of various industrial
robots onto persona! computer. Once transferred, this data can be easily accessed via
networks and shared amongst application monitoring robot operations, equipment diagnoses
and even for production control.

ORiN is expected to improve the productivity of manufacturing facilities, these having
only one standard to follow. More than this, it would also expand the scope of automation
application through Know-how accumulation, every manufacturer being able to use
concurrent concepts in their own creations. By standardizing the interface and data file
specifications (through the use of standardized applications), this system also enables users
(software houses) to exchange data with any robot conforming to the ORiN interface.

ORiN provides the following advantages:
• Uniform data exchange is possible between robots created by different manufacturers.
• ORiN being an Open specification, conform application can be developed by third

parties.
• Ease of configuring multi-vendor systems.
• Worldwide standardization through proposa! to ISO.

ORiN expected to bring about the following economic effects:
• Increased competitiveness in manufacturing.
• Expansion of the robot market.
• Entry of the software industry into the robot market.
• Creation of a robot engineering industry.

1 See [JARA 1999], [Inukai 2003]
2 For example: Robot' s position information, number of parts to be assembled, number of defective parts, etc . ..

Page 41 of 149

Chapter 2: State of the Art

To achieve the above-mentioned objectives, it was decided to configure ORiN with
provider, kemel and application logic layers.

The provider layer compensates for the differences in expression and/or protocol of
robot controller data among various manufacturers and transfers data to the kemel layer,
which is configured based on RAO (Robot Access Object) and RDF (Robot Definition
Format).

RAO applies DCOM distributed object model technology to provide network
transparency and uniform robot access, while RDF uses XML to provide files for defining
structural models of robots with expandability. This enables ORiN to accept individual robot
differences thus allowing it to be continuously used in the future.

1
1
1
1
1
1
1 .--,

St[mdard IF

_,..-------
RAO: Robot Access
Ob ect prov1des the
nified access method

to robot data based on
DCOM

Provider: Vender
dependen in erface to
absorb differences such
as com umcation
protocols

Robots in the market

Windows PC

Orin Archi.tcdurc

Figure 9: Scheme representing ORiN's implementation.

Page 42 of 149

Windows PC

RDF: Robot Definition
Format

Defines vender
specific robot models
(XML format)

1
1
1
1
1
1
1

• 1
1
1
1
1
1
I_

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 2: State of the Art

Il. Open-r: An Open Architecture for Robot Entertainment

Sony Corporation has proposed an open architecture for autonomous robot systems,
which aimed particularly, but not exclusively, entertainment applications. In order to achieve
system extension and reconfiguration capabilities for mechanical, electrical, and software
systems, they have proposed an architecture with the following features :

1. A common interface for various components such as sensors and actuators;
2. A mechanism for obtaining information on functions of components and their

configurations;
3. A layered architecture for hardware adaptation, system services, and application

providing efficient development of hardware and software components. A software
platform provides an environment for agent design so that designers can customize
their recognition and control algorithms. This is based on Apertos, a fully object­
oriented real-time distributed operating system which allows each physical and
software component to be defined uniformly as an object.

The outcome ofthis project is Open-R1 and its goal is to establish a draft standard for
mobile robots and their software systems. This standard would allow different companies and
researchers interested in entertaining robots to build their own products and prototype systems
using readily available components which meet Sony's specifications.

Their open architecture and standard target entertainment applications for three reasons:
1. Complete Agent: A robot for entertainment requires a complete autonomous physical

agent. Instead of research and development activities focusing on specific perceptual
functional components such as speech and visual cognitive subsystems, a complete agent
promotes and accelerates research activities involving combination of subsystems and
whole robot systems.

2. Technology Level: Robots for entertainment applications do not require such high
performances in speech recognition and visual information processing that are required in
mission-critical industrial applications. While there exist special and difficult
requirements in entertainment applications themselves, limited capabilities or
performances can cause a certain kind of excitement to users in most game playing
situations such as RoboCup(soccer games by robot agents). This implies many existing AI
technologies can be implemented for these kinds of applications.

3. Emerging Industry: Sony's researchers believe that they will be able to create a
completely new market in the near future by introducing this kind of robot product sharply
focused on entertainment applications. After the Gold Rush of Internet and cyberspace,
people will eagerly seek real objects to play with and touch. Robot Entertainment provides
tangible physical agents and an undoubted sense of reality.

By establishing a standard for entertainment robot software as well as robot parts,
manufacturers can produce and sell their own commodities using the standard. AI researchers
often spend large amounts of time customizing hardware. Readily available components allow
researchers to construct customized robots for their research platform minimizing time
consuming hardware and software hacking.

1 See [Fujia & Kageyama 1997]

Page 43 of 149

Chapter 2: State of the Art

Below are Open-R system architecture's main features:

• Open Architecture: Open-R defines a set of standard interfaces for physical and
software components and a programming framework, so that anyone can design
extensions to the basic robot system within this standard.

• Configurable Physical Components: Open-R defines a common interface for all
robot components for flexible and extensible robot configuration. This includes a
mechanism for obtaining information on component function and configuration for
interactive applications. Along with object-oriented software architecture, the Open-R
provides Plug-and-Play capabilities for physical robots.

• Object-Oriented Robot OS: Open-R employs Apertos, a fully object-oriented dis­
tributed real-time operating system. This enables to define all physical and software
components uniformly as distributed "objects".

In Robot Entertainment, there will be various applications, such as a pet-type robot, a
game-type robot, or a tele-presence robot, which may be fully autonomous, or remote
controlled semi-autonomous.

For these applications, the following are considered to be common requirements:
• stand-alone application
• extensibility
• friendly application development tools.

ERS-7

The AIBO entertainment robot uses OPEN-Ras a standard
interface. Facilitating modularised hardware and modularised
software, this interface greatly expands the capabilities of AIBO
entertainment robots.
The main advantage of working with Sony 's AIBO is that il is an
accomplished and stable deve/opment platform. ln addition, it
features state of the art hardware and a free and down/oadable
software-programming too/. This enables universities to Jully
gear resources andfocus to programming in the area of Artificial
Intelligence. -

Sony Corporation has deve/oped a prototype small biped
entertainment robot "SDR-4X" that can adapt its performance to
its environment and situations found in the home to further
develop the possibility for a biped-walking robot.
The robot uses the same OPEN-R architecture as Sony'sfour­
legged autonomous Entertainment Robot "AIBO". Two
technologies applying the OPEN-R architecture, the "actuator"
that moves the joints and "Whole Body Coordinated Dynamic
Control"for real-time contrai of the joints realize the biped
walking motion of the SDR-4X

Page 44 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 2: State of the Art

Ill. Orca: Open Robot Controller Architecture

To make robot technology become widely used, and to make various robots appear in
the market, robotic parts - including mechanism, hardware, and software - should be produced
as components with open interface. A lot of activities have been done on research and
development for robot technologies in the world. However, the robot technologies so far
cannot be reused because of incompatibility of the robotic parts. With the open interface, it
becomes possible to use the robotic parts to build a wide variety of robot systems. Sorne
people are confident that robotic technologies and know-how's can be accumulated for reuse
with these reusable robotic parts.

To reach this hope, the Toshiba Corporation researches leaded to the creation of Open
Robot Controller Architecture (ORCA 1) which allows making the reusable robotic parts
(software/ hardware) to enable easy built-up ofrobot controllers. ORCA also allows
manufacturers to quickly and easily integrate robotic parts developed by third parties into
their systems, achieving efficient development of advanced robots in a relatively short period.
Speech processing systems, image processing systems, robot control systems, and so on, are
easily mixed up to build a robot system.

Toshiba's researchers have proposed Robot Technology (RT) reference modelas an RT
software layer structure. The structure consists of five layers:

• The physical layer;
• The 1/0 link layer;
• The actuator control layer;
• The motion control layer;
• The task layer.

ORCA has been defined according to the RT reference model. With the RT reference
model, a developer can concentrate on a layer for which he develops software, because the
software can utilize software for the lower layers with the open interface.

ORCA utilizes distributed object technology to abstract the communication between
robots and between components. The distributed object technology enables developers to
program a whole robot software system in object oriented manner. In ORCA, we can treat all
robots as objects, and all the objects are defined with open interface. With the use of the
distributed objecttechnology HORB, the robot objects can be distributed anywhere in
networks and they can be used directly from any node in the networks.

ORCA also consists ofvarious interfaces and classes containing robot control software
and acting as the ORCA's API specification. In order to use ORCA, developers have to
implement the APis defined in the interfaces. This ensures that any ORCA user will be able
to use ORCA-based controller created by any other developer in the world.

1 See [Ozaki 2003] and [Toshiba Corporation 2003]

Page 45 of 149

Chapter 2: State of the Art

Toshiba Corporation had deve/oped a sophisticated home robot that could
carry out multiple tasks around home. "ApriAlpha" integrates voice
recognition and voice synthesis technologies that al/ow it to hold
conversations with people, and image recognition technology that al/ows
it to recognize people whose features are recorded to the robot 's memory.

ApriAlpha integrates Open Robot Controller Architecture (ORCA), which
al/ows simple additions of new functions and upgrades of present
functions.

Page 46 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

'

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

il
1

1

il

••

About adding utility and usability to FDNet

PART2
Our contribution

to FD et

Facultés Universitaires Notre-Dame de la Paix - Namur

---~-~ - - --

1
1
1
1
1
1
-1
1
1
1
1
1
1
1
1
1
1
·1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 3: Retro engineering

Chapter 3: Retro engineering

1. Motivations:

The work we had to do had strong relations with the work already done by FDNet
programmers. In fact, we had to create programs that would be used between Robot's
intelligence (FDNet) and the users, allowing them to unleash the full power ofthis network
architecture without having to deal with its complexity.

In an environment like this one, it is clear that we had to understand FDNet's logic,
structure and architecture completely before even thinking about our own work.

A common way to achieve this work (understanding how FDNet works) would be to
have a general explanation about what the application does, to see it run (if possible), to read
its specification and its source code and to discuss all along with the team, to understand their
way of thinking and their point of view about the way they want the application to be done.

But we had to face here with a major problem: the language spoken and chosen to
write the documentation, the Japanese language.

First, the programmers couldn't speak English enough to allow us to discuss with them
about the project. They could read English but no spoken interaction was really possible. In
such an environment, reading the most possible documentation, specification and notes and
trying to understand the most part by ourselves is far more preferable.

But we had to face the problem that no documentation was available for us. In fact, there
was very little general explanation about the project and no specification at all. The only
thing that seemed to be present in this field was code documentation .. . which was written in
Japanese. As the programmers had no time to translate the comments and/or to explain us
how the whole application worked, we had to read the source code, without any comment at
all, and to understand it the most possible.

Doing this kind of work is a very difficult task. To maximize our comprehension
capacity, we decided of a structure allowing us to write down every thing we understood and,
by advancing in our understanding, to recreate our own documentation.

Page 49 of 149

Chapter 3: Retro engineering

Il. Analysis method:

This is the structure we decided to use for documenting all the source code we read. Note
that the code was also a work in progress and was still being heavily modified when we
started this "Retro-Engineering" process.

Extends
Implements

Aim of the class

Comments

Property name
Property use
Comments

The name of the class described. This name is Case Sensitive
If the class is abstract, its name will be written in blue.
If the class is an interface, its name will be written in oran~e.
The name of the class that this class extends; null if no extension.
The name(s) of the interface(s) this class implements; null if no implementation
is made
The main aim of the class. This is a general explanation ofwhat the class has
been created for. This explanation must help any programmer to understand the
structure of the code inside the class better and to give him an idea of the
relations that this class bas with the other ones if an .
Any specific comment that doesn' t fall In the "aim" group here above.
Questions are written here in rcd color.

. Case sensitive

Any other comment concerning this property
Questions are written here in red color.

Name of the method. Case sensitive
The reason why this method has been created for. The explanation must be
clear and eneral. It doesn't ex Iain the inside of the method, onl what it does.
Any comment, technical or not, fall here.
Question are written here in red color.

The aim was to make the documentation in several loops, each time answering the
questions written in red and writing new questions down.

At the same time as this documentation's creation, we created schemes of the dynamic
interactions between the classes, schemes of the database tables,_general schemes ofway
FDNet worked logically and so on. These schemes allowed us to have a better overview
about the work done by FDNet.

We decided to limit our work to FDNet's core packages. Theses packages contained ail
the base information concerning network entities, the relations between them and so on. This
limitation was set because we had little time for us to produce quite an amount of work too.

Page 50 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
I l
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 3: Retro engineering

Ill. Conclusion:

To use a retro engineering process in a case like the one we faced was really a difficult
job. It took us more than one month (with three people) to read the core packages and to have
a first draft ofFDNet's implementation. To produce the schemes required us to read the code
more than one time and we must admit that we still have some questions which haven' t found
any answer.

Nevertheless, the retro engineering system we decided to use (for which an example is
given in annexes 1 and 2) appeared to be a good choice. It allowed us to understand the most
ofFDNet, which is already interesting, but, more than this, it constituted our documentation
for the rest of the training session. Without this retro engineering system, it is clear that
achieving the work we·were asked to do at the very beginning of the training session wouldn't
have been possible.

Page 51 of 149

1
11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 4: The Logger

Chapter 4: The Logger

1. Introduction:

A. Genera/ purp(}SI!

We have created a system which acts as a buffer between the FDNet core and the database
because the database and the core don't work at the same speed. lndeed, the core creates so
much information that it cannot be saved in real-time. A buffer system has then been
implemented; its role being to save all data to be put in the database in memory (thus being
able to keep up with the core's speed) and to save it in the database at a later time (thus
working at database's speed).

This system can also share information about the network states because we wish to analyze
the states of the FDNet network in real time (through the FDNet viewers).

To attain these objectives, we have created a network state logger. This logger is able to store
the network states and share them rapidly with the FDNet viewers (which have to work in a
constant delayed time).

Page 53 of 149

B. General view

Chapter 4: The Logger

1
1
1

To understand the function of the logger, we must have a general view of the FDNet project.

1 Below, we have a scheme that sets the place of the logger in this project and the interaction
with the other elements that already exist.

FDNet Network Editor/
FDNet ·etwork Definition

Language Inetrpreter

FDNet Data Lo 1er

network command

Ua taùase ~

networ
'

TCP

D
Data Cachc(Data O•livery Agent)

TCP
TCP

i--- - -- -- ---- - ---
'
' '

'
' '

~

FD et Data-Relat i on Network
- . - -- .. - - -... - -- .. - - - - .. - -- - .. -- --- -- .. - --- -.

Data Processor

IIOP (CORBA)

Rescue Robot, RoQ

/
f IOP

IIOP .ln
_.; _ - ~~

~
D

'
'
'

RoQ Oynamics Simu lator :o
'. · --· · · · · -· · · · · · · · · · · · · · · · · · ·- -· ·- · · · · · · · · · · · · · · -FDNet -Human Interface

FDNct Network State Viewer

Figure 10: General view of FDNet that show the relations between the di(ferent applications of FDNet

Page 54 of 149

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

Chapter 4: The Logger

Il. Specification:

A. logicnl specijication

This part of the document was used to agree, with all people that work in the FDNet project,
on what the logger must do and how the logger interacts with the other components of the
project.

We define all elements that must intervene in the creation of the logger and the FDNet cache.

The Logger:

Considering that the database server is slow compared to the processing speed of the logger,
the logger must have a cache. The events sent by the core are stored in this cache. A delayed
writing must also be implemented between the logger and the database.

This cache must also allow the viewer to monitor some events created by a specific object. As
a reminder, the logger must work in real time with the core and the viewer. So the access
speed to this cache is very important and has to be very fast. W e must also manage the multi
access and take care of the integrity of the values contained in this cache.

The cache must also make a diff erence between the events monitored 1 and not monitored.
Only the events that are not monitored can be deleted from the cache and saved into the
database.

The Core:

The FDNet core is the heart of the project. It represents the low level control on the rescue
robot and also contains all basic functionalities needed to create, configure and update the
network. It also sends some information about the state of the network.

A cache must be implemented in the FDNet core. The utility ofthis cache is to receive some
events from anode and store it. After that, the cache must send theses events to the logger.

This cache uses the same logic than the cache used by the logger. But the core doesn't need to
monitor events contained in its cache. So we must define a general concept for the cache that
can be used for the logger and the core.

The viewer:

The logger has network states that must be accessible by the FDNet Network State Viewer.
We want to analyze the network by using the interface and the viewer. To analyze the
network, we need the network state information contained in the logger cache.
So, to allow the viewer to access to specific network state information, we must implement a
server on the logger for the viewer.

1 An event is monitored by the viewer to analyze the network state

Page 55 of 149

Chapter 4: The Logger

B. Sequence diagrams

Scheme 1: The FDNet core sends a network state, here value of a data, to the Logger.

Network State Logger 1

FDNetCore 1

2: Send network state

Data Cache li..~1-------4-----------------------;---,'
~---~'~ 1

3: Save

H

DB

Comment:

1: A Data sends a network state to the cache of the core.

2: The FDNet core sends this information (network state) to the Logger
cache and erases this information from its cache.

3: The Logger cache receives the network state and stores it in the database
with a delayed writing.

Cache

1: send

Data

1

Page 56 of 149

--------------------­
Chapter 4: The Logger

Scheme 2: The FDNet core reads/writes connection information and sends network command event to the logger.

Network State Logger

FDNetCore

2: Send network command event

Cache

1: Read/Write
3: Write

DB

Comment:

1: The FDNet core reads/writes current connection information directly in the database.

2: The FDNet core sends a network command event because we want to analyze the network state by
using the Logger information.

3: The logger writes this event in the database.

Page 57 of 149

Chapter 4: The Logger

Scheme 3: A viewer wants network information.

Network State Logger

Cache

------ -

2: Send response

1: send request

Comment:

1: A viewer tells to the logger that it wants to receive the state of a
certain data.

2: The logger receives this information and sends all events requested
by this viewer.

Page 58 of 149

Viewer

- - - - -i
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 4: The Logger

r Physical 5pecificatio11

Data Base:

We use the relational database PostgresSQL 7.0.

Programming Language:

We use the object oriented language java, because we want to use an object oriented method
to program the logger and it must work on different operating system.

Operati11g system:

Using the Java language, the logger works on the Windows and Linux operating systems.

Communication:

► Logger - Viewer: We use a TCP connection and a streaming service

► Logger - FDNet core: We use a TCP connection and a streaming service

D. lmprovement5

In this part, I will present you some ideas to improve the logger functionalities.
Creating an interface for the logger containing information described here below would be
interesting. Note that this interface has been accepted and done. You can find more details
about it at the end of the logger part.

Logger 's parameters:

These are the parameters used by the Logger at work time:

► Logger's address: The IP address used by the FDNet core or Viewer to connect to
the logger

► TCP port used by the FDNet core
► TCP port used by the viewer
► Cache' s size: The memory size available for the Logger cache during the

execution.

This information could be changed while the logger is not working. That way, it is easier for a
person to change the Logger properties.

Page 59 of 149

Chapter 4: The Logger

Logger's real-time ill/ormatioll:

This information shows how the logger is actually working:

► Size of the cache used
► Size of the cache free
► Information contained by the logger cache: I don't know if it is very useful to see

this information. W e can for example search all information about a certain data
and display it. This part is going to be more specified later.

► Number of viewer and core connected to the logger with their 1P Address.

With this interface you can also start and stop the logger.

Page 60 of 149

1
1
1
1
1
I '

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 4: The Logger

Ill. Database of the Network State Logger:

A. Pre/ace

In this document, we specify the database tables necessary for the network state logger.
To save data and relation values, we have tables 'datavalue _log' and 'procvalue _log'. And to
save network command events, we use the table 'netcommand_log'.

B. SpecijicatitJn of the tables

Table:
datavalue_log

Role of the table:

This table stores all values of a data node during its life.

Sclieme:

datavalue _ log

sourceid: integer
tirne: bigint
value: text
typeValue: Byte

Pk: sourceid,tirne

Definitions of the attributes:

► sourceid: The FDNet identification (ID) of the data
► time: The time when the value was assigned to the data
► value: The value of the data at this moment.
► type Value : The type of the value (Boolean, long, ...)

Page 61 of 149

Table:

procvalue_log

Role oftlte table:

Chapter 4: The Logger

This table stores all values of a relation node during its life.

Scl1eme:

procvalue _ log

sourceid: integer
time: bigint
value: text

Pk: sourceid,time

Definitio11s of the attributes:

► sourceid: The FDNet identification (ID) of the data
► time: The time at which the value was assigned to the data
► value: The value of the data at the present moment.

Table:

netcommand _log

Role of the table:

This table stores all network event commands.

Scl,eme:

netcommand _ log

id db: integer
sourceid: integer
sourcetype: text
command: text
params _id: text
params_type: text
time: bigint

Pk: id db

Page 62 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 4: The Logger

Defi11itio11s of the attributes:

► id_db: The database identification of the tuple. It is set automatically by the database
when a tuple is inserted in this table.

► sourceid: The identification of the source that creates this command
► sourcetype: The source type
► command: The command type of the event. There are four commands (connect,

disconnect, crea{e and destroy).
► params_id: The FDNet identification (id) of the command parameter.
► params_type: The Parameter type of the command. We have four type (reader, write,

data and proc)
► time: The time when the value was assigned to the data

C. Ren1llrk:

We have split the table "log Value" (defined by the student Mr Pujol) into two tables,
"datavalue _log" and ''procvalue _loi' because we want to improve the access speeds to the
database.

With two tables, we also use less memory space than with one table, because the type of the
value is not necessary to know if the value is from a data or a relation.

Page 63 of 149

Chapter 4: The Logger

IV. The Cache:

A. Pre/ace

For the logger and the FDNet core, we use a cache to stock events that represent some
changes in the network. W e have two kinds of events, network state events and network
command events. We have de:fined a common cache architecture. This architecture is
designed to be generic and is very fast.

B. Cache arcl,itect11re

Ge11eral arcltitecture

In this cache we have two event containers. One is for the events that represent the network
state. The other is for the events that contain the network command.
We must also monitor some events, in particular network state events. To do that, we have
created a special event container that extends the normal event container and adds the
monitoring of the event.

So in the cache, we have an event container for the network command events and an event
container with monitoring functions for the network state events. In the future, if we also want
to monitor the network command events, we just have to change its event container. It is also
easy to add another type of event in this cache. This makes the cache architecture very
flexible and generic.

Tite Eve11t Co11tai11er architecture

An event Container stores all events. Each event has the identifier number of the data or
relation that creates it. A same Node (Data or relation) can create a lot of events at different
times. An event is accessed by using its identifier and also, occasionally, the time when the
event was created. Then to improve the access to a specific event, we must have an index on
the identifier and the tirne of the event.

This index is implemented by using an array that contains the identifier of all nodes. Each
entry of this array contains all events that the node has created and these events are sorted by
time in the array. This is an easy way to get all events (sorted by.time) that a specific node has
created.

Tite Eve11t Co11tai11er Monitor architecture

An event Container with monitoring functions is the same as a normal event container, but
with some improvement to implement the monitoring of the events.
A monitor can be set on a node. When a monitor is set on a node, all events that this node has
created must be available for the entities that need them. When an event has been sent to all
supervisors, this event is no more interesting for the supervisors and becomes unavailable for
them until a new supervisor is added for the node that has created this event.

To improve the access and the processing, we have duplicated the index of the event
container.

Page 64 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Il

Chapter 4: The Logger

There is an index for ail events monitored and an index for the others.

The added index has the same structure than the other index. In other words, this new index
contains an array with the identifier of all nodes, and for each entry of this array we have
another array with ail events created by this node and sorted by tirne.

C. Scheme of the cache

Event Container for
Network command

!dent 1 !dent 2

! !
Event : Event:
ident 1, ident 2,
time xi time yl

Event: Event:
ident 1, ident 2,
time x2 timey2

Event: Event :
ident 1, ident 2,
time xn timeym

Cache

1
Simple Event Container

!
1

Event Container with
Monitoring for Network state

1

!dent x
1

!
Event:
ident x,
time z1

Event:
identx,
time z2

Event:
ident x,
time zt

Figure 11: Scheme and structure of the cache and the simple event container

Page 65 of 149

Events not supervised

1 Ident 1

!
Event:
ident 1,
time xi

Event:
ident 1,
time x2

Event :
ident 1,
time xn

1 !dent 2

+
Event:
ident 2,
time yl

Event:
ident 2,
timey2

Event:
ident 2,
timeym

Chapter 4: The Logger

1 Extended Event Container 1

j 1dent x

+
Event:
identx,
time zl

Event:
identx,
time z2

Events supervised: In this example, we have a supervisor on the node '!dent 1 ' and '

!dent 1
1

1 !dent x

+ +
Event : Event:
ident 1, identx,
time time z3
xn+ vl

Event:
ident x,
time z4

Event :
ident 1, Event :

time identx,

xn+ vr time zt

Figure 12: Scheme and Structure of the extended event container

Page 66 of 149

11
1
1
1
1 , 1
1
1
1
1
1

dent x' 1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 4: The Logger

V. The Server

A. Pre/ace

To add and read information contained in the logger, we have implemented two TCP servers.
One ofthese servers must receive events from the FDNet core and store them in the logger's
cache. The other server must give all events requested by viewers. To respond to these
requirements, we have defined a TCP server in a general way.

B. Server architecture

General architecture

The server must be able to receive man.y clients. Then all processing necessary to respond to a
client must be done in another thread.

To respond to this requirement, we use an architecture with three layers for the server: server,
factory and connection.
The server creates a factory and the role of this factory is to receive all client connections
from the server. When a new client is received by the factory, it creates and delegates a
specific thread, a connection, to respond to this new client.
So for each client received by the factory, a new thread is created.

Advantage of the architecture

This architecture has many advantages. With this architecture, the server doesn't respond
itself to the client request. Its mission is only to get the new client and send it to its factory. So
the server is available very quickly and often. The server can thus receive and serve a lot of
clients simultaneously.

another advantage ofthis architecture is that the factory creates and manages all connections
with the clients . It is possible to limit the number of clients served by the server in the same
time. Y ou can also check the state of all client connections (activated, ended, ...). It is very
useful with an interface where you can follow the connections established with the logger.

Page 67 of 149

Chapter 4: The Logger

C. Sclteme of tlte arcltitect11re

Client 2 New Client
-

Client 1
~ Server ---- -
~

~

Work Addnew
Client together

1 Connection 2
1,

~

~ Factory New Connectionfor client 2
Con nection 1 ~

~

New Connection or client 1 fi

Figure 13: Architecture of the server in three Iayers used for the Logger

D. Remark

We saw that two servers were used for the logger. Each server uses the architecture described
above. Thanks to the object oriented language, we use many common components for the
two servers. In fact, only the connection class is different for the servers. We use two different
child classes of the connection class.

When the factory creates the connection object for a client, the factory gets the constructor of
one of the children of the connection class, and creates an instance of this child. Like this, we
have created a very generic server and factory. To use this class <Uld architecture for another
server, you only need to create a child of the connection class for your server. After that, you
just have to call the constructor of this class to the factory and your server is ready to work.

Page 68 of 149

1
1
1
1
1
1
1
1
1
1
1

•1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 4: The Logger

VI. The Logger:

A. Role of the Logger

The logger has three principal roles in the FDNet project.

The logger must act like·a buffer between the FDNet core and the database. Because of the
speed difference between the core and the database, we need something that receives all
events sent by the core, stores them in a cache and writes them in the database.

The logger must be able to receive all requests from viewers and respond to them by sending
all events they ask for. To achieve that, the viewers also need to get the events stored in the
logger cache and in the · database.

To summarize, the logger must receive all events from the FDNet core and store them in the
cache. It must be able to write all events from the cache into the database. Finally, it must also
be able to send all events to the viewers to respond to their requests.

B. Ge11eral arcl,itecture

Like explained before, the logger has three main missions. The architecture of the logger
follows the same logic, because the components are designed by objective. Here is a
presentation of every part of this architecture.

Server Receiver

This part of the logger must receive events from the FDNet core and store them in the Logger
cache. This server uses the same methods as the TCP server described in the beginning of this
document. The cache also has the same functions as the cache defined before.
This part has been improved to empty the FDN et core cache in a very fast and efficient way to
avoid filling up the core's memory completely.

Logger writer

The mission of this logger' s part is to read all events from the logger cache and to write them
into the database. This part is very important because if the logger takes too much time to
achieve these tasks, the cache may fill up more rapidly than it empties. The consequence of
this problem is that the memory could be too shallow to stock all events. Consequently, this
part has been improved to be very fast and to keep the integrity of the events in the same time.

Server Se11der

The third and last part of the logger is the server that sends all events requested by the viewer.
This part must check the database and the cache to make sure the events requested are enabled
for the viewers.

Page 69 of 149

C. Sc/1eme of the architecture

Viewer

TCP
Client

Figure 14: General architecture of the Logger

Chapter 4: The Logger

Logger

Server Sender

Server Receiver

Logger Writer

FDNetCore

TCP Client

Connection
Manager

Page 70 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 4: The Logger

VII. lmprovements

A. /11trod11ction

The logger must be very fast to succeed in its three missions. It must receive and fill its cache
very quickly and efficiently to avoid using up all memory of the core cache. But it must also
empty its cache rapidly and write a11 events in the database. Finally, it must also reply to the
viewers' requests by sending all events they ask for. The logger uses only one cache and each
one of the three logger's parts use this cache to add, get or delete its content. So we look after
the integrity and value of the events.

Another difficulty in the logger's improvement is that some improvements can affect others.
For example, if you want to respond rapidly to a viewer request, you must avoid accessing the
database because of its slowness. Consequently, you must keep a lot of events in the cache.
But ifyou want to keep more events in the cache, you can't empty it and send its events into
the database. A lot of other problem like this exists and may arise when trying to improve a
mission of the logger.

In this part, we present the most important improvements that we have applied to the logger.

B. Datab,ne access

The access to the database is very slow and the logger must empty the cache in a very fast
way. In fact, a lot of events corne from the core and are stored into the logger's cache. The
exchange of information between the logger and the core must be done in real time. So this
cache fills up very fast and is emptied very slowly because of the database access. The cache
has a size limit and an 'out of memory' exception appears when we overstep this limit. This
exception is a way to crash the logger and to lose many events.

We must improve the access speed to the database. Write one event per access is nota good
idea. We must use a buffer between the logger and the database. This buffer must contain all
events that we want to write into the database. This buffer is filled with events and when it
becomes full, we write the content of the buffer into the database in one single access.

With this technique, there is a need for a timer that starts in the beginning. If the buffer fills up
before the end of the timer, it is stopped and the content of the buffer is written. After that, the
timer is restarted. If the timer expires and the buffer is not empty, the content of this buffer is
written into the database. The timer is used because we don't want to keep an event longer
than 'x' seconds into the buffer ('x' represents a value in seconds >O).

We must also pay attention to the consistency and the integrity of the data. The cache of the
logger is accessed to write and read events. The logger must share some events with the
viewer. To present the events to the viewer that requested them, the logger must check the
database and its cache to find the events. To keep a good coherence, the buffer must be
emptied (as a reminder, the buffer contains the events to save into the database) and its
content must be written into the database before reading the content of the database.

Page 71 of 149

Chapter 4: The Logger

To understand how this technique works, let's analyze the following schemes:

► The buffer becomes full before the end of the timer

Event 1

2:flush Event 2 1: write

Logger

3: Restart

0: Start

Figure 15: Database access improvement- Scenario 1

► The timer expires and the buffer isn't full

Event 1

4:flush
Event 2

,- :f:: :~ :-~' ,: ',~ ~~- :·~-~:-~7- .
1 ' .. •

; ~; ~r , ;. -. -- ~::1~~~i~I' ~
Ï ,/'-":~1,J•- ,, '•1,,-.... ~~ '•r~ ,:S:,:, · •. "4 g,t)J'.ft...,iit\;~ l ~L •~•t1'?. ~, 1 1 -.. t ✓,t"t~:-t~,

- ~ . . ~ ~ '

3:flush

0: Start

Figure 16: Database access improvement - Scenario 2

Page 72 of 149

1: write

2: Expired

5: Restart

Logger

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 4: The Logger

C Tl1read priority

Different improvements can be done in this domain, but as we have seen, an improvement can
influence others. For example, ifyou want to increase the efficiency of the information
exchanged between the logger and the viewer, you must keep many events in the logger's
cache. To do so, you must decrease the amount of exchanges between the logger and the
database, and postpone the writing of the events. Y ou must also be careful for the size of the
cache, because it fills up very quickly. The operations to fill the cache (receive events from
the core and write them into the cache) are happening faster than the operations to empty it
(read events from the cache and save them into the database). Improvements are definitely not
easy to do. Y ou must pay attention to the way you implement the improvements. lt is easier to
choose a static way to implement the improvements, but it is not very efficient and viable.

The best way to solve this kind of problem is to choose a solution that checks the most of the
requirements and this solution must also create some dynamic priority for all the
improvements. For example, you can· empty the cache slowly, but when this cache become
nearly full, you must revalue the priority of the improvements.

This solution with dynamic priority has been chosen in the construction of the logger. It is
implemented by using the thread priority. Let's see the functioning of the thread priority. The
logger is composed of three main threads: two Servers and a thread that writes ail events from
the cache into the database (we call this thread the writer). In the beginning, all threads have
the same priority. Because of the slowness of the database access and the amount of events
exchanged between the logger and the FDNet core (as a reminder, the logger and the FDNet
core work in real time), the cache size increases rapidly. When the cache size reaches a limit
(a critical size defined by the user) the priority of the writer thread is increased (normal
priority to high priority) to empty the cache faster. When the cache reaches a normal size
defined by the user, we decrease the priority of the writer thread (high priority to normal
priority).

T o implement this technique and to check the current available size of the cache, we need to
know the total cache size which is given by the user and expressed in Byte, Megabyte or
Gigabyte. W e also need to define the size of each event stored by the cache and the number of
events stored in the cache at a specific moment. The critical and normal thresholds,
represented by a percentage of the cache size, must also be defined by the user. To calculate
the size of an event, represented here by a java object, we use the 'Serializable' property of
Java.
First, we calculate the maximum number of events that the cache can store. Once this has
been done, we define the critical number of events that the cache can store by using the
critical percentage and the maximum number of events. We do the same operation to obtain
the normal number by using the normal percentage instead of the critical percentage. To know
if the priority of the writer thread has to be changed, we compare the critical and normal
number with the number of events stored in the cache at this particular moment.

Page 73 of 149

Chapter 4: The Logger

Let' s see the following scheme to understand how the thread priority works:

► In the beginning, the cache is empty and all threads of the logger have the same
priority

Logger

Server Sender
Priority: Normal

Server Receiver
Priority: Normal

Logger Writer
Priority: Normal

Figure 17: Thread priority improvement- The states of threads and cache in the beginning

► The cache reaches the critical level and the priority of the writer thread is changed

Critical level

lncrease priorilv

Logger

Server Sender
Priority: Normal

Server Receiver
Priority: Normal

Logger Writer
Priority: High

Figure 18: Thread priority improvement - The cache reaches the critical level

Page 74 of 149

Chapter 4: The Logger

► The cache reaches the normal level and the priority of the writer thread is changed

Normal level

Decrease priortty

Logger

Server Sender
Priority: Normal

Server Receiver
Priority: Normal

Logger Writer
Priority: Normal

Figure 19: Thread priority improvement-The cache reaches the normal Jevel

Page 75 of 149

Chapter 4: The Logger

VIII. The interface

A. Preview

All information that you enter in the logger interface is saved in a file that is read when you
launch the interface. If this file doesn't exist, the fields of the interface are set to default
values.

B. Database i1tformatio

This part of the interface is used to set the properties of the connection with the database
server. The logger must save information into the database, which can be on another
computer. To improve the utility of the logger, we have created a panel in the interface to
allow the user to enter the 1P address of the computer where the database server is running,
the port of this server and the name of the database.

File Help

Memer 8 Priorit ro erties
Logger W-iter properties

Information to reach the database seNet

Database server configuration

Server Address : C 192.168.1 .6~

Server Port : 1
-;-32 1

Dlltt1base name : 1
cnet-0~

Usern81l1e :
1

youssef

- --

start

Page 76 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 4: The Logger

C. Logger writer

This panel is used to set the properties of the thread that reads events from the logger's cache
and that writes them into the database (the writer thread). The panel is divided in three sub­
panels; each sub-panel represents a different part of the writer thread.

The first sub-panel is used to enter the delay writing in milliseconds used by the logger to
write into a buffer used between the logger and the database. So if you want, you can delay
the writing of the events. It allows keeping more events into the cache and it also allows
sharing the events with the viewer faster.

The second sub-panel is used to improve the access to the database. In fact, it is possible to
send a packet of events· simultaneously instead of one by one. The size of this packet as well
as the value of the timer can be defmed. This timer represents the maximum interval between
each flush of the buffer that contains all events that we must write into the database. This part
of the logger is explained in the section about improvements.

The last sub-panel allows creating a new connection with the database when the previous
connection is accidentally stopped. Y ou can set the number of essays and the delay between
each essay. r------;;;;;:--=======;;;;;;;;;;;;;;;;;;=;;;;;;;;;====;;;;~=i==i::~

File Help

Server Receiver Server Sen .e!'.-e = ,,1.L -. """"'""""')@ltllPl'.,~J;l;î!:~Jll:l:ll;J~~,,,...,..,,,,_....1.
Database properties \ Logger \/Vriter_ properties ·

Properties of the Lo9{Jer's Writer that writes events into the database :

\llh'iting Delay (in milli second) :

Properties of the events wrlten in the database

Number of events by group :

Time to wail before write :

[1000 1 [- ~1
Properties of the reconneclion to the database

Try to reconnecl : ~rue

Nuni>er of essay :

Wailing delay (in second) :

start Stop

Page 77 of 149

Chapter 4: The Logger

D. Server Receiver

With this frame, it is possible to set the properties of the server that receives all events from
the core.

The first sub-panel is used to set the port and the maximum number of client that it can serve
simultaneously. The second sub-panel is used to check the state of a11 client connections that
are connected with the server. The value of the connection state can be 'waiting', ' activated'
and ' stopped'.

- - ------ ~--------
- H ---.r----===""-'-'-=-===~----....... ab11Se..nrone

Server Receiver Server Sender Memory & Priority properties

Propreties for the LOJ;JJ;Jer's seNer that receives events from FDNet core :

1
Server Port : 5555 1

Mexinlln number of clients : 100 1

Details of the connections received by this server

Ctient Address Ctient Port State

192.200.1 .4 50 Finished

1192.200.1 .3 50 Connected

192.200.1 .2 50 Connected

192.200.1 .1 50 Connected

Start Stop

Page 78 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1

Chapter 4: The Logger

E. Server Se11der

With this frame, it is possible to set the properties of the server that responds to viewer clients
by sending all events they ask for. The content ofthis panel has the same meaning as the
previous panel.

El
File Help

Dalabase ptope . ie
Server Receiver i Server Sender i · · Memory & Priority properties

Properties for the Logr;er's seNer that sends events from FDNet core :

Server Port :

Maximum nurrrber of clients :

Details of the connections received by this server

Client Address ' Client Port stale

192.200.1 .1 50 Connected 1r.9
192.200.1 .2 50 Connected
192.200.1 .3 50 Connected
192.200.1 .4 50 Finished

11

1 l'JI

start Stop

Page 79 of 149

Chapter 4: The Logger

F. Memory a11d t/,read priori(r

This panel is used to set all information needed to use the thread priority improvement.
The first sub-panel contains the size in Bytes of the different events that are used in the
project represented by "NetwokEvent" and ''NetCommandEvent" objects. It is also possible
to set the size of the cache that can be used by the logger.

With the second sub-panel, you can whether choose to use the thread priority or not. It is also
there that the percentages (representing the critical and the normal threshold) of the cache can
be defined.

File Help

Memory and Prioriti; confi!}uration :

Memory Properties :

---,

Size of a NetworkEvert Object (in Byte): 167

---,

Size of a NetCommandEvent Objed (in Byte) : 223

Capacity of the cache :

Priority Properties :

Enable Threads Priority : ~r_ue _____ ~I
Criical size of the cache : % o1 the cache size

Normal size of the cache : % o1 the cache size

start

Page 80 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11

1
Il

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

Chapter 5: The Human Interface

Chapter 5: The Human Interface

1. Introduction:

As said in the introduction, the FDNet technology is powerful but quite complicated to
use. In the optic ofFDNet's creators, the technology is to be used by a lot of people, ranging
from computer scientists (of course) to electronic scientists, which, even if they know some
things about computers, are perhaps not at ease with every piece of knowledge needed to
create an FDNetwork from scratch. The fact is that we think that they shouldn't have to!

One of the main prqblems faced in Robotic Rescue Systems field is that the people
creating the robots (electronic scientists) have to learn skills which are separate from their
field of work (computer skills). They have to because, in general, teams are too tiny and only
composed of electronic scientists. Often, this lack of computer scientists leads to poor results
because the skills required to produce computer programs are not polished enough to produce
good quality softwares.

The skills required to become a good computer scientist and a good electronic engineer
being quite different, we cannot force electronic engineers to become good in computer
science too. They should only have to bother about their own specialties. As a programmer
will never have to be able to create computer circuitry to make good computer programs
(even if it can help him become better), we cannot ask an electronic engineer to be able to
code perfect high level applications.

Electronic engineers should only have to bother about creating robot abilities and design
the way they work using applications handling ail computer related specificities for them.
This would allow them to work a lot faster (lifecycle would be highly reduced because of lots
of problems solved automatically by the application) and a lot more well (specialists would
only be asked to use their specific capabilities).

FDNet's Human Interface is an application going this way. Programmed by true
computer scientists (at least wanting to become part of them), its architecture is designed to
ensure that electronic engineers will be able to focus on their own work while relying on the
Human Interface for all details they should not be bothered with.

Of course, for the time being, the Human Interface is only at its infant stage and quite a
fair amount of work still has to be done in order to achieve this idea we are writing about but
the version we could complete gives a glimpse of the potential of using an application of this
kind to work on the programming part of rescue robots.

Page 81 of 149

Chapter 5: The Human Interface

Il. Human lnterface's Aims:

Prior to the existence of the Human Interface (Further called H.I.), FDN et users had to
write down the FDNetworks they wanted to test completely by hand. It means that ifthey
wanted to test a special part oftheir robot (R.O.Q), they were forced to write down a huge
quantity of code just to make simple tests. This had some serious implications:

• Users could not easily test robot's additions or modifications.
• Due to the amount ofwork required to write an FDNetwork, even a little one,

more complicated tests were impossible to handle without an application helping
the tester.

• Writing a complete FDNetwork including robot's full intelligence was impossible,
or at least, working on an efficient intelligence was unfeasible.

H.l's main goal is to hide all computer related aspects ofwriting FDNetworks to allow
Electronic engineers to focus on their own work. Giving a simple way for FDNet users to edit
the FDNetworks allows them to manage the robot(s) before and while they are functioning.

Editing FDNetworks easily allows electronic engineers to:
• Reduce the Lifecycle of robot prototypes by allowing them to test directly the physical

modifications they make to the robots.
• Enhance robot capabilities by giving them the power to create more advanced

networks in a highly reduced time.
• Create more robust networks by hiding them their complexity and by controlling the

actions available for every part of the network they are working on.

The H.I. is then a very important addition to FDNet and its use will allow FDNet to fulfill
its greatest contract: Providing rescue robots engineers with a completely distributed network
without forcing them to acquire new skills, unrelated to their own work

Page 82 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

Ill. Definitions:

The aim of the human interface is to give a simple way for FDNet users to manage
the robot(s) before and while they are functioning.

By managing, we express the following things:
a. Allowing adding new information and processing agents dynamically and

connecting them together to make them work in a specific way.
b. Allowing modifying the currently used network "on the fly".
c. Load network definitions, make them work and save the potentially made

modifications.

By "Data", we imply any piece of information that can be used by relations.
By "Relation", we imply a processing agent, whose aim is to take some data in entry and to
compute it in some way to create new data.
A "Node" is either a data or a relation.
By "Reader", we imply a link between a Data and a Relation allowing the Relation to read
the value of the Data it is connected to.
By "Writer", we imply a link between a Data and a Relation allowing the Relation to write
the value of the Datait is connected to.
By "Connection", we imply an interaction happening between a data and a relation.
Connections can either be Readers or Writers
By "Network Definition" we imply a succession of data and relations, themselves followed
by a list of the connections that theses nodes have between them.

IV. Human Interface architecture:

The Human Interface will consist of 2 different main parts. Theses are:

a. The logical base: this part consists of the Network Repository and its access system.
This is the base of the architecture. Its aim is to handle all the low level tasks that
have to be performed in order to be able to interact with FDNetworks.

b. The end-user part: While the first part only focuses on handling low level access to
FDNetworks, this part will handle all the interactions with the end-user. In fact, this
part consists of what is generally called the front-end. It will be divided in three
specific points:

• The static capabilities;
• The dynamic capabilities;
• The display of all this information in an easy to understand yet

powerful way.

Following will be a specification of each of theses parts. At the end of the specification,
you should be able to understand how FDNet's Human Interface really works and know every
aspect of the methods we used to resolve the problem of its creation.

Page 83 of 149

Chapter 5: The Human Interface

V. Specification of the logical base:

The first thing that the Human Interface must be capable to do is to save user-created
FDNetworks to allow them to reuse the networks at a later time. But to reuse a network
doesn' t only means that the Human Interface has to be capable to load/save it. More thanjust
this, the information loaded has to be easily usable at work-time; it means that, when the
Human Interface displays graphies, all the content behind them has to be fetched in single
logic entity.

The Human Interface is divided into two main parts:
• The logical part; whose aim is to share all information about a loaded FDNetwork.
• The graphical part which will use the logical part to display the N etwork in a user

friendly manner and will allow users to edit theses networks without showing them all
their specificities.

The repository system used to store FDNetworks is based upon the XML file and the
system we used to share all FDNetwork information in work-time (i.e. inside the Human
Interface) is called the "Networklnfo" 1

.

A. FDNetwor/i. ~pecijication:

Find in annex n° 3 the DTD file used to ensure that FDNetworks stored in XML files are
valid. In this DTD are written all constraints about FDNetworks, constraints which will have
a great impact on the Human Interface itself.

Note that, when we were asked to program the Human Interface, the FDNet repository
system was already decided and the DTD was totally defined too. Inserting changes in this
definition was risky because the FDNet project was already running for two years when we
were teamed up with the Japanese people and FDNetwork files had already been created. We
did some modifications to the Network definition, _as you will see with the introduction of
FDNet Modules, but the original idea concerning the definition was not modified at all (the
modifications followed the same logic as the part already defineq).

1 "Networklnfo" was originally the name given to the principal Java class implementing the Logic part of the
Human Interface but we decided to use it to define the whole logic system too.

Page 84 of 149

11

1
1
1
1
1
1
1
1
1
1
1
1
1
I l
1

•i
1
1
1
I l

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

Network/11/0 system aims:

As explained here above, the ''Networkinfo" system has been created to share all the
logical information about an FDNetwork inside the Human Interface. It can be seen as an
intermediate layer between the FDNetwork repository (the XML structure) and the Human
Interface.

lts aim is double: .
Handle all operations on the repositories, thus saving and loading FDN etwork
definitions.
Place all the information read from the repository at the Human Interface's disposal in
an easy yet powerful and complete manner.

Human Interface 1 X

Networklnfo 1

ô

,---------------,---~
1 Human Interface n I X 1 -,

Human Interface 2

ô

X 1
1
1
1
1
1
1
1
1

+-:

Figure 20: The Networklnfo structure provides FDNetwork information to the Human Interface

The Figure 20 shows that the Networklnfo system directly interacts with the repository to
provide the information read in a more convenient way to the Human Interface(s).

This way of doing things is really interesting for two reasons:
• Architecture choices in the repository imply changes only in the Networklnfo layer,

the Human Interface is not even aware of them.
• Specific needs by Human Interfaces can be programmed easily, as long as the

information can be found in any way inside the repository.

This latter point was used lots of time since the Human Interface we programmed had
some very particular needs. With the system here above, once the Networklnfo system reads
FDNetwork's information inside the repository, it can compute it in complex ways in order to
provide it to the Human Interface.

Page 85 of 149

Chapter 5: The Human Interface

Networkltifo system architecture:

Following is the Networkinfo system architecture. This architecture is implemented as a
set of Java classes. Each level (Network, Module, Node ...) provides particular services based
on information it stores.

Network

Module

Node

Node 1
1
1

1 1

... - - - - ---- - -- - -·

Connection

Connection ,
1
1

~ - --- --- ---- - _:

Module -~
1
1

1 1
____________ ,

Figure 21: The Networklnfo system architecture

Data

Relation

Reader

Writer

As you can see, a Network is a gathering of modules, each ofwhich can contain Nodes
and Connections. Nodes and Connections bear the same definition as the one given in the
first chapter.

The Network level is the most general one. Aside from containing all information about
the FDNetwork read from the repository and services applying to the network itself, it also
contains all the services applying to more than one module at a time.

Following is a set of services that can be found at this level:
• Add/delete a module to/from the network;
• List all the modules found in the network;
• Change the name of a module;
• Replace one node by another one (handling integrity constraints related to the node

replaced)
• Find all connections linking a specific node (search is made inside all modules the

network is made of)

Page 86 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

Services provided here can be very advanced and help to create astonishing abilities really
easily. As all information can be found starting from the Networklnfo level, even very
specific changes can be done from here.

The Module level is an enhancement we decided to apply to FDNet structure as soon as
when we started our analysis. The reasons why we decided to add this level will be explained
just here below, after the explanation of this schema. For now, let's just say that the Module
leveljust allows dividing an FDNetwork into more tiny parts, each ofwhich can be treated
separately. •

At this level, you will find all information related to one specific Module:
• Module's name;
• lts load modifier (Does this Module has to be loaded in memory when user starts the

network or not?)
• Datas, Relations, Readers and Writers quantity contained in the Module

You will also find here all services related to gathering of Nodes and Connections, such as:
• Retrieve information about a Node/Connection existing inside the Module.
• Retrieve all Connections related to a specific Node (existing inside the Module).
• Delete a Node/Connection existing inside the Module and, in the case of a Node,

delete all the Connections related to it too.

Nodes and Connections, apart from being the most specific levels in an FDNetwork, are
also the only ones containing "real" information about the network itself.

Network and Module levels are only structural levels: they allow putting some order in a
network but they don't contain a bit of information about network' s capabilities. The levels
that are really modeling an FDNetwork are the Node and Connection levels:

• Data Nodes contains the code allowing to fetch (from sensors) or create (from
information inside the Network while it is working) values and to provide them to the
Relation Nodes.

• Relation Nodes contains code related to Robot' s intelligence. They read values found
in the Data Nodes and compute them in a specific way to create new Datas as output.

• Reader and Writer Connections are the links between the Data and Relation Nodes.
As such, they contain information about how the links have to be done, the way the
links work and so on.

Services related to gathering information about the Nodes and the Connections can be
found in these levels.

lt is also interesting to note that Nodes do not know links they have with other Nodes. AU
information about linking is to be found in the Connections. Nodes can only provide
information about themselves but Connections provide information about the two Nodes they
are connecting (A Data and a Relation). This is an important fact since it has serious
implications in the whole architecture.

Page 87 of 149

Chapter 5: The Human Interface

VI. The Module extension:

The module extension is an improvement we decided to bring about in order to improve
FDNet scalability and utility. In fact, before using the new module level, all Nodes and
Connections were part of the same unique entity. This was quite a limitation:

• Two Nodes could not have the same name;
• Since an FDNetwork was a single entity, working on a specific part of it was

impossible;
• Dividing an FDNetwork into smaller, clearer pieces was impossible;
• Upon work-time, FDNetwork had to be entirely loaded before it was possible to

launch it.

As we had to create a User Interface that could be used easily, we liad to look at FDNet' s
structure with a sharp eye, in order to find the best way possible to make it simple without
limiting its power.

This way of looking at FDNet allowed us to find this flaw in the architecture as soon as in
the first part of our work: the understanding part. The "Module extension" could then be
thought directly in the analysis part and be simply included in the Human Interface at
implementation time.

Inserting this improvement at the very beginning of the process even enhanced its own
utility: Every time we had to think about ways to implement specific parts of the Human
Interface,_the Module system was present in our minds and gained capabilities that would
have not been possible to discover otherwise.

We will now explain the main improvements we found out through the use of the Module
extension. For each improvement will be explained how can Modules enhance FDNet utility
and usability. Sorne examples will also be provided and a little discussion about future
possible modifications will close the subject.

Page 88 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

.4.

Chapter 5: The Human Interface

/111roductio11 of a more complete dfrisio11 of FDNetworks:

Two Nodes cannot have the same name in the Network
It is now possible for Nodes to have the same name, as long as the Modules in
which the reside are different

Example:

Network

Lcfl Ann Ri!!hl Arm

r--
1 Without Modules, all the information defining the robot would exist in the same :
1 namespace: the Network. 1
l--J

With the introduction of the « Module level » enhancement, all robot information can be
separated in more than one namespace.
As you see here in the example, the network has been divided into 3 parts:

• The main part (containing all mandatory information, robot's base) ;
• The left arm ;
• The right arm.

r--
Due to constraints (2 nodes cannot have the same name in the same network), Nodes from
the left leg and the right leg will have to be named differently. For example, thoses
names can be chosen:

LeftArmShoulder
LeftArmFront
RightArmShoulder
RightArmFront

Note that, using this style, it is not possible to ask questions like the following ones to the
Network:

"How many arms does the robot have?"
"Ofhow many parts consists one arm?"
"Are there fingers to robot's Arms?"

Page 89 of 149

Chapter 5: The Human Interface

By using the Modules as an intermediate level, we can change the constraints to: « Two
Nodes cannot have the same name in the same Module». This adds a tremendous clarity
to the robots (and the bigger the Network, the bigger the profit) and allows us to add a
whole new set of possible services to the FDNet architecture. Questions like the ones
asked before can now find an answer easily.

Figure 22: Consequences of Module subdivision

As you see in the Figure 22, adding the Module level is really interesting for the clarity of
the network. It is far easier to work since you can <livide the network in pieces, each one of
them having a particular meaning. With a good division into Modules, an FDNet user will
make networks easier to understand and to maintain.

Also note that, with the introduction of this division, a whole new set of questions about
network's structure can be resolved easily.

Page 90 of 149

1

1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

B.

Chapter 5: The Human Interface

lllcreme11tal /oadinl(:

The entire network must be loaded in memo at the same time
Every Module contains information about when it has to be loaded: At start
time or not.

As you know since we have discussed about this already, FDNetworks can be quite huge.
Loading entire FDNetworks as soon as a little part ofthem is needed can be a big problem (in
terms of speed, of memory usage, on utility, ...)

The use of the Module extension corrects this problem quite well by attaching some
information to every Module contained in an FDNetwork. This information is called the
"LoadModifier".

Network •. , .. ''UUUCI nim: ·••
Main Yes
LeftArm Yes
RightArm no

Len Arm Right Arm

Figure 23: Incremental loading of Modules

Figure 23 shows that when the user will want to load the FDNetwork in memory to use it,
two Modules will really be loaded: "Main" and "LeftArm". The "RightArm" Module will not.
All information relative to it will still be available but the Module will simply not be usable as
soon as it is not loaded.

Also note that the "Main" Module is a special one. It MUST be loaded at start time. In
fact, this Module is always present in an FDNetwork and its aim is to contain all the core
functionalities.

For example, the creator of a vacuum cleaner robot will always want the robot to be able
to clean the floor. But, vacuum cleaners can corne with lots of accessories, which you don't
especially use all the time. The "Cleaning" part of the network.will be written in the "Main"
module while all the functionalities related to the use of accessories will be written in
Modules.

Currently, the "Incremental loading" only consist of telling if a Module has to be loaded at
start time or not. It will be interesting to bring this improvement to a further step (Load
Modules only if other Modules are loaded, load after some time, unload automatically upon
reception of special events, ...) if the current implementation is really used.

Page 91 of 149

Chapter 5: The Human Interface

Real Time nwdijit·ations:

lt is false to think that creating real network functionalities in real-time is
ossible

Modules can be loaded any time needed and thus, prepared before work-time
and started when they are necessary, thus giving the impression that
functionalities are added to the Robots while it is workin .

One of the requests we had to fulfil was that FDNetworks had to be still modifiable in
real-time (i.e. while they are loaded in memory and are actually doing something interesting).
This job had to be handled by the Human Interface too and could be improved a lot too.

In fact, before the introduction of Modules, if a user wanted to add some functionality in
FDNetworks, he had to create all the network entities (Nodes, Connections) on the fly! Since
creating a real functionality (even a basic one) requires at least 20 entities, we can say that to
modify FDNetworks ' structure in real-time is not possible.

We realized that the only things that are modifiable in real-time are Nades' parameters.
Even if it seems to be very little, setting special values to parameters of Nades can totally
change the way an FDNetwork works. Creating special Entity constructions whose aim is to
receive parameters in real-time and to react to them is quite straightforward.

The idea here is to create a complete network at the beginning (i.e. at edition time) but to
fill it with parts that will do nothing unless special values are read from datas modified in real­
time.

Network Part 1

User making real-time
modifications to Data Nodes

Figure 24: Trick allowing real-time modifications

Page 92 of 149

Network Part 2

•I
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

In the example shown in Figure 24, the three parts (Parts 1&2 and Real-Time zone) are
loaded in memory and the FDNetwork is already working. Parts 1&2 will never be directly
updated by the User; only Data Nodes from the "Real-time zone" will be.

At the beginning, the Datas from the real-time zone are filled with values such as they
don't have any influence on the values computed by Relations reading them. It means that the
network will work as if the real-time zone had no influence at all.

Upon modifications made by the User, (through the Orange arrows), Relations reading
Datas in the real-time zone will change their way ofworking. Of course, theses Relations
have to be prepared to the values they read from the "real-time Datas" but, if this is done, it
can really become possible to drive a Network easily.

Note that the real-time Datas can be read by "real-time Relations" too, which will create
other real-time Datas (which can, of course, be used to further direct Network's work).

This system can work very well but will become messy on big networks. Having lots of
parts loaded but doing absolutely nothing most of the time (real-time datas staying
unmodified) will lead to misunderstandings and is not very efficient in terms of memory
usage.

Using the modules will simply wipe this problem out. In fact, As FDNetworks are
separated in Modules, allowing to load some of them or not (may it be at start time (Point 2)
or not) becomes a trivial problem. They allow a far more advanced network handling than the
original version ofFDNet.

Solving this problem will simply consist of creating specialized modules at edition time,
theses modules consisting on Nodes and Connections constructions handling specific
functionalities, and to load/unload them at work-time just whenever needed. Real-time
modification is then properly handled, the modules loaded in memory automatically reading
Datas needed to perform their functionalities.

Of course problems arise:
- What to do with modules that need Datas from other Modules (dependencies)?
- How can we solve problems consisting of Modules incompatibilities?
- How can we handle more than one Module doing the same activity?

Lots of problems like this one have to be solved in order to improve the way FDNet works
but this is an implementation problem (which, in fact, can and has been (partially) solved).

Page 93 of 149

Chapter 5: The Human Interface

D. Easy 11etworli editio11:

~ When editing an FDNetwork, so many entities can exist that it is nearly
impossible to understand network' s structure and edit it with full
comprehension.

1 At edition time, allow users to Show/Hide Modules.

Perhaps the most interesting thing about Modules is this ability. Modules containing
information about all the entities they contain, it is really easy to show/hide Entities on a
Module basis. We can also think about enhancements that benefit from this fact. Setting all
the Nodes and Connections of Modules to special colours, for example, will also greatly help
the user while creating the FDN etworks.

Page 94 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

- ---~--~ --------- --- ------ -----------------

Chapter 5: The Human Interface

The end-user part:

This part consists of all what the final user can see and all the functionalities created to
enhance bis experience as an FDN etworks creator.

The end-user part of the Human Interface can be divided in three distinct branches:
The static capabilities:
All the capab'ïlities related to the preparation of a Network. It means its creation
while it is not loaded on any Robot.
The dynamic capabilities:
All the capabilities related to synchronization between the interface and the
Network while it is working (i.e. : real-time capabilities)
The display:.
This part consists of the wrapping used to make it possible for the user to use all
the capabilities included in the Human Interface.

Page 95 of 149

Chapter 5: The Human Interface

VII. The lnterface's static capabilities:

A. Loatl/save 11etworks:

The Network repository being used, loading and saving FDNetworks is easily achieved.
In fact, file structure is not even known by the end user. Users don't have to bother about file
format anymore.

This is a great improvement from before since, without Human Interface, users had to
create their FDNetworks entirely by hand, forcing them to understand XML File format and
to resolve by themselves the constraints.

cnel2.,crrl 1

~ ?xml ,~r., ar,• " l ··· " ~ncod1nq• " [UC- J P" ?I
< 1DOC TYP! cnet SYSTEK "· ./src/cnet.dtd">

<cnet naroe~ •roq">
_, '- -H .• Cl<Ol- - >

<dstructure>
<nan1e>roq</name>
<host>shell</host>
<path>cnet.device.common</ pat
<clasl!l>startData</ clal!ls>
<param>boolean</ param>
<param>false </param>

</ ds t ructure>
• 1 --rioi,•iw:,-0.iaî:ut , •:illù (Vl __ .,

<dl!l t ructure>
<name>jointO </ nSll!e>
<host >shell</ host>
<path>cnet.device.rt</ path>
<clasl!l>rtData</class>
<param>joint</ parlllll>
<param>O</ paran1>

</ dstructure >
<dstructure>

<name>jointl</ name >
<hol!l t>shell</ host>
<pat h>cnet.device.rt</ path>
<class>rtData</c lass>
<par am>joint </ param>

Users now only see an easy to understand graphie
display of the networks they are creating. They
don't even know the format used to save the
networks.

Figure 25: The file format used is hidden to the final user.

Page 96 of 149

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
I J
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

B. Network e11tities editio11:

The main aim of the Human Interface is to allow users to create and edit FDNetworks,
may it be from scratch or not (editing a previously loaded FDNetwork). Editing a network
means to be able to edit all the entities a network consist of. Theses entities are:

- The Network itself;
- Network' s Modt:1les;
- Modules ' Data & Relation Nodes;
- Modules' Reader and Writer Connections.

We have separated the edition task in two parts, parts related to dependencies. In fact,
editing an entity can have implications of two types:

- Basic Edition: Edition have influence on the entity edited only;
- Advanced Editi.on: Edition also has influence on other entities as well.

Theses two kinds of edition will be specified and described here below.

Page 97 of 149

Chapter 5: The Human Inte,face

Basic edition:

With the current version, Network's basic edition only allows to change Network' s name.
The name of a Network, as its identifier says, only allows giving a name to the Network. This
parameter has no serious implications for the time being.

Modules can have their loading modifier edited. As said before, this parameter allows
users to specify if a Module is to be loaded directly when the Network is loaded in memory or
not. Note that, for the time being, no dependency checks are made to know if Modules have
relations with other ones.

Figure 26: Interaction between Nodes from different modules

We have here 2 Modules
(The green and the orange
rectangles).

As you can see, the green
module, at the blue relation,
needs an "orange data" to
calculate its output data.

But, even if the Orange
Module isn 't loaded in
memory, it is still possible to
load the green one: failures
due to dependencies will
have to be resolved by the
blue relation itself.

But a failure for 1
entity(relation here) doesn't
mean a failure of the whole
module.

It would be interesting, for future versions, to ask the user if he wants to resolve
Modules dependencies and to load what is necessary for "his" Module to work properly.

Nodes, may they be Datas or Relations, can have their parameters modified at any time. lt
is possible to add, edit and/or remove Node's parameter without ~y problem.

Page 98 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

Adva11ced editio11:

Nearly ail the edition possible can be seen as advanced edition. This is due to the fact
that, every FDNet information being related to each other, every time we edit information, we
have to ensure that related information is still coherent. Dependencies must be kept correct.

On the Module level:

Adding a new Module to the Network:
Upon Module addition, we have to ensure that the name of the module is not yet used inside
the network (As seen while explaining the Networklnfo system, two modules cannot have the
same name).

Deleting a module fron:z the Network:
Module deletion is a little trickier: If the Network consist of more than one Module (which
will nearly always be the case), there will be interactions between modules. While deleting a
Module, interactions of its entities will have to be resolved. The resolution method chosen is
the deletion of every Connection related to Nodes deleted, whatever the Module they exist in.

ModGreen
There is here a dependency from
ModGreen to 1< h 1n11" . Upon
deletion of one of the two Modules,
the link between the two will have to
be deleted

Note that the connection here above
MUST be deleted whatever the
module it exist in. Deleting the

1 , ,, 1 .1 , will cause the deletion of
this connection even if it is included
inside ModGreen.

Figure 27: Modification of Connections upon changes in other Modules

Mod rano
"'

Note that, even if the Connections are deleted, no Node is. Nodes dependencies are not
resolved, but we will discuss about it a little bit later.

Changing Module 's name:
It will only be possible to give another name to a Module if none has the same.

Page 99 of 149

Chapter 5: The Human Interface

On the Node level:

Due to the enhancements provided through the use of Modules, Nodes can now have the
same name if they exist in different Modules. But, what happens when you try to give to a
Node a name already used inside the same Module?

In fact, instead of just preventing the user to do so, we have created two functionalities
allowing him to choose the best way to make changes inside the Module. Theses two
functionalities are called "Replace Node" and "Merge Nodes".

They allow very powerful, high level modifications in an instant. They will now both be
explained to you.

Replace Node: Overwriting a Node with another one, deleting ail Connections from
the replaced Node and using only the ones from the Replacement one.

Replacing a Node will handle for the user all the problems related to finding existing
Node with the same name, to delete it and to respect constraints from the Connections.

······· •.
: :
~ : ,

,

, , ,

D
Before Replacement:

We have 2 Data Nodes having two
different names. We will change the
name "Data2" to "Datai" ... which
already exists inside the module.

There will be a conflict, resolved by
asking the Human Interface to Replace
"Datai" by "Data2"

Figure 28: Replacement of a Data Node

After Replacement:

"Datal" has been deleh.:d with ail its
related Connections. "Data2" had its
name changed to Datai and ail its
Connections stay connected to it.

Replacing Nodes is a really interesting system. Frequently, users will want to override
old versions of Datas with new ones. This system allows users to create "beta versions"
of their Datas, replacing the currently used version of a Data with its enhanced beta
version when this one is ready to be used.

Page 100 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

Merge nodes: Using information from two Nodes to create an only resulting one.
AH the previous Connections will be redirected to the merged node.

Merging Nodes is the most powerful ability currently implemented in the Human
Interface. Although it is easy to understand the meaning, it is not that easy to use it. But a
good comprehension of this ability will provide the user with shortcuts while editing
networks. ·

Before merge:

W e have 2 Data Nodes having two
different names. We realize that theses
two Datas could be merged as one.

Instead of creating a new one from
scratch, deleting the two old Datas, we
will take advantage of the merge
method.

Figure 29: Fusion of Data Nodes

After merge:

Neither "Data]" nor "Data2" have
been deleted. Instead, ail their
information has been used to create a
new merged Data, which will have, up
to a point, the Old Datas information.

It is possible to merge any kind ofNodes, Datas or Relations.

If, while merging Nodes, it is found that information is duplicated, the user will be asked
which information he wants to save in the resulting N ode. For example, while merging
parameters, the user will be asked ifhe wants to save parameters from the first Node only,
from the second one only or from both of them.

Note also that all the Connections from the old Nodes are redirected to the merged one.

Page 101 of 149

Chapter 5: The Human Interface

VIII. The dynamic capabilities:

As explained before, through the use of the Human Interface, it must be possible to view
loaded network's work. More than this, the Human Interface must also provide users with
tools allowing them to edit FDNetworks at work time.

This part will explain the functionalities implemented to ensure that users have a good
control over the networks they are using.

Note that the implementation of some of the dynamic capabilities has been done by
another Belgian student while we were in J apan. If you want more information about how
theses particular parts of the Human Interface have been done, please refer to Mr Lambot's
thesis1

•

The Human Interface allows, of course, to start selected FDNetworks and to stop them
whenever decided. Starting a network means to connect to the computer which will host the
Network itself and to create this network by providing to the host all information related to
the entities the network is made of.

One of the requirements the Human Interface had to fulfill was its ability to make
modifications to already started FDNetworks. This part gives an answer to the requirement
by transferring a11 edition orders received by the Human Interface to the loaded Network.

Human Interface

1
1

--------~-------~-----
-- 1

1
1
1 ______ j ________ _

1

1

FDNetwork

o ---------~------------0
1
1
1

Here, the user added one Reader, one f I ti n, one and one Data . Each tirne an addition
has been done, FDNetwork has been asked to update itselfwith the information provided in the
Human Interface.

Figure 30: Repercussion of modifications in the Human Interface on the FDNetwork

1 See [Larnbot 2003]

Page 102 of 149

I l
1
1
1
1
1
1
1
1
1
1
1
1
I l

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

Note also that, as loaded FDNetworks can produce new entities by themselves too, the
Modifications made inside the network also have to be transferred to the Human Interface.

Human Interface

1
1
1
1
1
1

-------- ~------------,, 1

1
1
1

----- L----------1
1
1
1 ,,

--------- ~--------------
'

FDNetwork

o -------- i-------------0
1
1

'

Here, the network, through its own work, decided to produce one Reader, one Relation , one
and one Data . Upon modification in the Network, the Human Interface is asked to

update itself.

Figure 31: Repercussion of modifications in the FDNetwork on the Human Interface

Page 103 of 149

Chapter 5: The Human Interface

As explained when presenting the "Module extension", it is possible to modify the
network in Real-Time through loading and unloading Modules anytime. While unloaded
Modules will simply stop to work, newly loaded Modules will start their ownjob depending
on the entities already available and provide their output to any Relation needing them. As
FDNet is a fiat network, no dependencies between Modules are checked. It is the role of an
entity to handle the cases when necessary information (a Data existing in a currently not
loaded Module) is unavailable.

Human Interface FDNetwork

Here, we have two different Modules. While the frrst one is started, which means that the creation
order has been sent to the Network, the second one is not started and thus doesn't exist in the
working network.
Note that pointing to a Relation that doesn't exist in the FDNetwork is
deleted from the Network too. It will be recreated as soon as its two Connected Nodes exist in the
Network at the same time.

Figure 32: Unloading Modules in a working FDNetwork

It is currently impossible to unload Modules from the working network without having to
delete them. FDNet specification (in its current state) doesn't allow this kind of ability (upon
"unload Module order", all the Nodes and Connections plus their dependencies will be
deleted from the network). We think that the working FDNetwork should be able to put
Modules "on hold" without necessarily delete them. This could enhance FDNet in some
cases.

Page 104 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

D. J 'iew Vetwork evolutirm:

One of the biggest requirements concerning the dynamic abilities was to be able to follow
Data Nodes' values evolution at work-time. This required creating what has been called the
"FDNetwork State Viewer", which allows users to see the evolution ofData's values in Real­
Time in a graphical manner.

The « Network State Viewer » allows
following the evolution of Datas' value
in a graphical manner.

The viewer, as the rest of the
Human Interface, provides lots of
options allowing the user to have
a better understanding of the
FDNetworks. f!l' Follow Graph Ewlutlon o 100 micro s / pixel

0 10 micro s I pixel

set avalua...

Figure 33: Using the Viewer to analyze the evolution network

As the ''Network State Viewer" constitutes the main work ofMr Lambot, please refer to
his thesis1 in order to have a full explanation of its capabilities.

1 [Lam bot 2003]

Page 105 of 149

Chapter 5: The Human Inte,face

IX. Human lnterface's Display:
This section will consist of the specification1 of the display the Human Interface provides.

The display is just the choices we made to ensure the user will be able to use the Human
Interface toits greatest extend. It can be seen as the wrapping used to appeal the user.

In terms of logic functionalities, this part produces nothing. It doesn' t provide the user
with tricks allowing him to create better networks. It has no influence on FDNet's "Utility"
aspect.

But concerning the "U sability" aspect, this part is the most important one. W e are sure
that, without a good interface thought for users and reviewed by them, even the best
functionalities will be underexploited. This is why we made every effort to produce an easy
to use yet powerful interface.

The Human Interface provides 2 different types ofNetwork edition:
A graphically-based display;
A text-based display.

During the edition of its FDNetworks, the user will certainly need the abilities oftheses
two display types, abilities that we will present to you now.

(,raphics bast-d 1>1 pla\ Tcxt bascd Display

0
OK Cancel

Networklnfo & Repositories

Figure 34: The Human lnterface's display - Graphies and Text based display

1 As the Human Interface is quite complex to apprehend, remember to use the Glossary to have quick
explanation of terms you are not familiar with.

Page 106 of 149

1
1
1

1
1
1
1
1
1

1
1
1
11
1
I l
1

i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

A. The Gr11phically-ba\ed tli.\play:

Rt l,t1on2 Re!,t ,o n1

FIie C:\programmatlon\FDnetworks\Slmpleîestfdn selected ...
Parsing of File C:\programmation\FDnetworks\SimpleTest.fdn started ...

I est Network Information :
Number of Modules : 3

The graphically-based display is the main response to the usability requirement. Indeed,
as it was very important for users to have a user-friendly interface at disposai. As we said in
this chapter's introduction, electronic engineers don't want to and don' t have to be
programming gurus to create their robots ' intelligence.

Pay attention to the fact that we do not say here that programming the robot intelligence
can be done by someone who doesn't understand computer science. But, as it is one of the
aims ofFDNet, allowing users to reuse parts created by other ones also means that they have
to be able to use third-party programmed components without having to touch to the code.
When we say that the Human Interface has to be easy to use, we want to say that an electronic
engineer working on assembling his own robots from different parts has to be able to create
an intelligent and working network without having to understand the code inside the
components programmed by other people.

Page 107 of 149

Chapter 5: The Human Interface

During our researches about what was needed by users, we found that:
It must be possible to have a graphie overview of the FDNetwork created;
To a certain extend, FDNetwork edition must be possible in a graphical way;
Selecting entities inside this network in order to receive some general information about
them is important to have a quick idea of what particular parts of the FDNetwork do;
Having some abilities at disposai allowing a user to easily recognize FDNetworks parts
would allow greater understanding in a shorter period of time;
Dynamic capabilities have to be easily accessible.

The following pages will explain to you how each point has received an answer and how
this answer has been implemented.

Tite grapltic overview:

A complete graphie representation system has been implemented in order to make it
possible for a user to visualize the FDNetwork he is editing. This representation displays
every FDNetwork entity with a particular shape, upon which user can perform some tasks.

\

•lcul•t•R .. r~~v•r•godOutp1-----~ C•lcul•teRobotMovemonl

/
. ...__./

Nodes can be dragged and dropped anywhere in the Graphie Panel in order to allow the
user to organize his Graphie Network as he wishes to. As they ~ways connect Nodes,
Connections cannot be moved by themselves but will, of course, follow the Nodes when they
are moved.

This graphie ordering is saved at the same time as the FDNetwork edited itself (While
FDNetworks will be saved in files bearing the .FDN extensions, Graphie Networks will be
saved in .FDG files). Upon loading of an existing FDNetwork, the related Graphie
Representation will be loaded too, if it exists. If not, all the entities will be drawn at a
predefined place (the upper left corner of the Graphie Panel).

Page 108 of 149

i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

Grapl,ical(v-drive11 FDNetwork editio11:

Graphical representations ofFDNetworks have advantages and drawbacks. It allows
having a general view of the FDNetwork edited and gives an idea ofwhat the FDNetworks do
quite easily. But, on the other hand, it doesn't show complex information, or the way the
information is displayed simply doesn't allow the user to see specific constructions. This is
why we decided to limit Graphic' s representation' s editing capabilities.

But, even if some edition functions are not allowed due to their inadequacy with the
Graphie Representation doesn' t mean that no edition is possible at all.

While in graphie edition mode, it is possible to:
Add Nodes and Connections through the use of the Add Entities Action Panel.
Edit Nodes by l)ouble-clicking on them directly on the Graphie Representation.
To use the Merge and Replace functions by giving the same name to two Nodes of the
samekind.

• fONel Hu111d11 Inter foce l~ lfg I@

fie --- Hlllp

OK ClnHI

Clicking on the buttons will display frames
related to the button clicked, allowing the user
to add Entities. After the user bas entered the
needed information, the Data will be added on
the Graphie Representation (which will be
updated according to the changes made).

Figure 35: Human Interface Graphically-driven FDNetwork edition

Page 109 of 149

Chapter 5: The Human Interface

The Human Interface also allows you, through the use of the Module Selection Action
Panel, to select the Module in which you will add the Entities.

FIi Nltwar1C HIIP

D11pl•Y Ill

J Oilplay nono

Rtl .1t1on1 : 1

main

Clicking on a Module name will select the
module.

Here, the main Module is selected,
meaning that ail the entities added from
now on will be added inside this module.

The Module Selection Action Panel allows
you to select the Module in wbicb you want
to add the entities (wben clicking inside the
Add Entities Action Panel)

It a1so allows the user to view the quantity
of Modules contained in the edited
FDNetwork and receive some information
aboutthem.

Figure 36: Selecting the Module where the network entities created bave to be added into.

lt is also possible to edit already existing Nodes by double-clicking on them. This will
display the same kind ofwindow as when you add Nodes in the FDNetwork, the only
difference being that the fields are already filled with edited Node' s information.

Page 110 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

Disp/ay E11tities i11formatio11:

Hum.an Interface' s Graphie Display also allows the user to receive some information
about Nodes1

• Upon clicking on Nodes inside the Graphie Representation, the Node
Information Action Panel will be updated with general information coming from this Node.

In the current version of the Hum.an Interface, this panel allows to:
View Node 's name and the Module in which it resides;
View where Node's implementation class is stored;
Send a new value to this Node, while the FDNetwork is working (i.e. in real-time)

" FDl'let Human Interface 1-11 Li lrgi
Rie Natwork Help

R1l.1bon 1

!Host : l i, 27 .0.0.1

œ;,i_] !classes

fëi •n:J =ID=at~a ___ ~

"Recog11izi11g" abilities:

The user bas clicked on "Datai"
Data Node, thus updating the Node
Infonnation Action Panel with its
information.

Nearly aU infonnation about Nodes
can be seen inside this Panel.

Under this term, we gather ail abilities implemented in the Graphically-based display
allowing the user to easily recognize parts of his FDNetworks while he is editing it. This is
very important too since, as FDNetworks can become very big, it can become very difficult to
find a precise entity.

The "recognizing" abilities have been implemented at two levels: the Module level and the
Entity level.

1 Due to the representation chosen to display Connections (lines), selecting them is quite difficult in the Graphie
Representation. This is the reason why it is currently not possible to receive any information about Connections
in the Graphie Representation.

Page 111 of 149

Chapter 5: The Human Interface

1: Enhancements at Module level:

It is possible to hide and display any module in one mouse click. Doing this, the user can
focus on what is interesting him, instead ofhaving the screen filled with entities which have
nothing to do with the current work the user is achieving.

... ----•-.....

~ •it•.a!1•d 1~·11li• I

'\ .i

' ,.._ .. ~·

MocMel

Numbor of modulu : 15

Dlrpl•y •Il

Dlrpl•y non•

As you see here on
the left, the only
Module displayed is
the "main" Module.

. r ,,3!J"' .io!J~i:o'

ispeoifio modifio,tions : 1

The Module Panel
allows you to
hide/display any other
Module by clicking
on its name in the
"Specific
Modifications" table
and to change the
value selected in the
"Displayed"
ComboBox.

C~lcul.taRobotMov1m1nt

' ! ,

Note that the 4 Data Nodes displayed in grey
are not owned by the Main module. But, as
the Connections of the "main" Module have
to be displayed too, the Nodes connected by
theses Connections stay visible.

-----....
\ '

•• , ••• ,tC1,,I~ • C.ii lc11IM•lt•botMcum• nt ~ · .,,,.~J"' n,:i

Name Ois la... Btarted
Frontleft ifalse Dlsable
F~ontRlg ... ais~_ _ ~isa~
Rearlefl false Dlsable
RearRlghtfalse Dlsable
main true Dlsable

!Module .. iected : 1

frontl..811
.,

fëô);~ 1 No cholce • I

!Actiwily : 7

started
Disable

FrontRlg .. . false Dlsable
RearLeft true ,Disable
RearRi htfalse Disable
main 1true Dlsable

Modulo selootod : ., --- . --
Reart.efl

litrw ..

!Nocholœ •I

When user decides to display another Module (here the «RearLeft » Module), it is automatically
displayed again. AU the Nodes tbat have been greyed before tum back to their normal colour {here,
red).

Page 112 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

It is also possible to change the color of a whole Module in the same Module Panel.
Just by selecting the color wanted, all the entities contained in the Module will be displayed in
that color.

.,.-----.....
(....

~'- 11t:J tt d 01 11 ~•I

1 ' \ /
' \. ~--r

\

.. ,~.,,..- ----..... \ '\\ ,/.,.,.,.---.'\ ... ,
' ' ' f.1t. 1.ig ... 1Jüi.:tpi----J C~l c ul.at,..RCtb,:itMo'W'.:.m~ri t .,_ _ _,,_b\,!"1 ragl>ld 0 utp)

\ / \ _/ ~==,,,____ ,, ____ .,.,.

/

/ - ~ /~~-

(>< ,,,_',p• • d)

'
(···•··)

.... __ _ _____ .,

The Module Panel allows selecting between 16
basic colours or, if the user wants to fine-tune the
colours, to select between any colouring possible.

Page 113 of 149

Modul;-;;~d :J
lmaln

~ ispl '"Y•d : J ,..cl tr=•.c.---• ... 1

Chapter 5: The Human Interface

2: enhancements at the Entity level:

Entities themselves have been granted with some very powerful visual enhancements. As
said before, it is possible to change the size of the graphie representation of a node. It is also
possible to change the color of any Node, using the same system as for the Modules.

But, more than this, it is possible, for any Node in the edited FDNetwork, to change the
color of all its parents and/or all its children. The parents (ancestors) are all the Nodes and the
Connections whose work have an impact of the Node selected. The children (successors) are
all the Nodes and the Connections depending on the Node selected.

For example, to find the children of a Data Node, we select all its Reader Connections to
find all the Relations reading this Data. All the Writers of theses Relations will be selected
too and so on.

This extremely powerful enhancement allows the user to know where any Node cornes
from or where it is used very simply. This capability enhances the utility of the Human
Interface greatly. Indeed, most of the time, the user wants to have a quick idea of the way its
FDNetwork is laid out and this is particularly the aim ofthis enhancement.

-Gr- . 0-u--
' . {'•r.1•;:t.•101.1-: ,;

/

, .
C1 eul.1t•'-•:>otUevt:nent ~ •.:..r•.-::,u·.'

!

As you can see on the right, ail the children of the
selected node have been coloured in the selected
colour (here green)

Upon right-clicking on the Data Node at the
upper-left corner, a scrolling menu appeared and
the user selected the "change children colour''
submenu.

r-
[""''''"'''"'

j Wc1: ~·t•·J I f,h.,.•,t·,1'1•)
, 1 (,1

,;

, \
f • aç11~1,1,I

\ ·'
, ~

f l ')td:vt~ I
'· I

~-•. , ,,-.,,ri

'

Page 114 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Inte,face

Accessihility of Dy11amic Capahilities:

The last main requirement to fulfill was to allow FDNetworks edition at work-time. As
said while explaining Hum.an Interface' s Dynamic Capabilities, the user of an FDN etwork has
to be able to edit it even when the network is loaded in memory and working.

In fact, this requirement has been implemented in a very smooth way since, even when the
edited FDNetwork is loaded in memory, nothing changes for the user: Every action available
at creation time is still available at work time.

The Hum.an Interface is aware of edited network's state. When it is loaded in memory and
working, all user orders will first be sent to the FDNetwork before being applied inside the
Graphie representation. Should an order be refused by the working FDNetwork, the Interface
would display an error ,message telling that the update cannot be done. This way~ Hum.an
Interface's Network and working Network always stay consistent with each other.

Q Order is being sent A,. _____b_y_th_e_U_se_r _ _,

Yes

Upon modification made by the user, the Hl will first see if the FDNetwork is
currently worldng or not.

- If , the modification is directly applied to Network's representation.
- If e , User's modification will first be sent to the Network itself, to be

applied.
o If , a message is sent to the HI to explain to the

user why there was an error. No changes are being made to the
Network representation.

o If then· \Hn· no error. , the HI can update itself according to the
change made.

Figure 37: Human lnterface's reaction upon user order.

Page 115 of 149

Chapter 5: The Human Interface

B. TJ,e T ext-B<1sed Display:

While the first part of the Human Interface allows the user to create and edit his
FDNetworks by working with their graphie representation, this part will allow him to do it
through the use of forms.

[!lolwoO.N• mo : ~l 11111

1~-;~., !!;~1.i] 3

:~• Nai,;J 1Module1

~ •stat:] IVN • j S..

1,,.-...... r ëonn.:aanii

~~ 1 ~I D■la _ _ ~ ~ '! ' J
.----...,,..,.,,.. IP• th ,-]

c, .. , 1

true
true
true

ParamelllrValue

..........
Modu&e 1ntormat.1en

IIINMl1 ...

osl4.DataPalh4.DataClass4
ost3.DalaPall3.DataClass3

The Text-Based Display has been created to fulfill the following requirements:
Human Interface has to provide numeric information about edited FDNetwork's
structure;
Human Interface has to allow complete edition of any èntity contained inside the
FDNetworks;
Human Interface is also simply another edition way provided to the User.

F ollowing will be the presentation of each of the abilities created in order to respond to
theses requirements.

Page 116 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

Chapter 5: The Human Interface

FDNetworks in 11umbers:

The different frames created will give the user numeric information about the
FDNetworks edited. How many Modules are contained in the FDNetwork? How many Data
Nodes are there in the "main" Module? And so on.

This kind of information can be interesting for users wanting to see their networks from
another point ofview. for example, possessing this information will allow a user to know if
some of the Modules he created are too big (which will cause them to load more slowly) or
too tin y (It would then be interesting to merge some of them to reduce their overall quantity in
the FDNetwork).

FDNetworks complete' edition:

Using frames to allow users to edit their FDNetworks brings power impossible to obtain
while using the Graphie Representation. Tables, combo boxes, ordered lists and so on .. .
U sing all of theses components inside forms will help a hum.an interface creator to display
lots of information in a simple yet powerful way. This is what has been done on FDNet's
Hum.an Interface.

Basically, FDNetworks' text-based edition has been implemented in three frames:
The Network frame: Giving the user basic information about his FDNetwork
(Network's name, Modules name and quantity) and allowing him to add Modules inside
this FDNetwork.
The Basic Module frame: Giving general information about each Module (Name,
quantity and names ofNodes and Connections) and allowing the user to edit and delete
each of them.
The Advanced Module frame: This frame is the most important one of the three. While
the two first frames focus on giving structural information about FDNetworks, this
frame will allow the user to work on the Entity level.

Instead of explaining how each function of each frame works, we will directly focus on
the most important frame, the Advanced Module frame, and explain the idea around its
creation.

Page 117 of 149

Chapter 5: The Human Interface

ECllt moclule

!Module Name : l [rontl e11

LL~ al start : 1 no • I

(Nodes 1 ~ 1

l0at• • I jHost : _j Jroq s l
IAveraaedOUtputfL 1 '!:J p;~ :_.- 1 IFrontLefl Delete] 1

[c,.;-7 lr.ioveOutput

Add

liong
EdH

- ___ ..J Del.te

Parameter Number ParameterT e Parameter \lalue
0 Object- unset long

Object - unset 150

This frame allows editing anything about a Module, from its name to the parameter of one
of its Data Node. It is divided in three parts:

1. Module information: Allows changing Module's name and Load Modifier.
2. Contained Entities Information: Allows creation and edition ofNodes and

Connections.
3. Contained Entities Parameters Information (only forNodes) : Allows creation and

edition ofNodes parameters.

This frame helps the user a lot in his edition work since it carries out all the problems that
could be encountered while editing FDNetworks. }Iere below are explained some examples
about what this frame is capable of doing:

All frame's components (buttons, text fields, tables, . . .) are .evaluated in real-time to be
sure their state is consistent. For example, if the user types in the name of an already
existing Data Node while trying to create a new one, this Data' s information (Host,
path, class and all parameters) will be automatically loaded and "Save & Delete"
buttons will change their behavior in consequence.
While creating Connections, only existing Nodes will be selectable to connect. This
ensures the user will not create Connections connecting nothing (which leads to errors).
Upon deletion ofNodes, all the related Connections are deleted too.

All the relations between FDNetworks entities are handled by the Networklnfo
architecture. This means that the Networklnfo architecture handles all the constraints
applying to the FDNetworks (like, for example "Connections can only exist iftheir two
connected Nodes exist too").

Page 118 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
.I
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

As saidjust before, the frame will change its component states automatically, upon user
changes. This is done to ensure the user will benefit of the best experience possible but how
did we do this?

In fact, this was one of the main problems encountered while creating the Human
Interface. This frame contained so many components (27 actually!) that programming all the
interactions between ail ofthem was nearly impossible. To cope with this problem, we had to
find another way to program Human Interfaces. We called it "the SpeedyDesign technique"
and it was a total success.

Page 119 of 149

Chapter 5: The Human Interface

X. The SpeedyDesign technique:

Human Interface programming is quite simple to understand. A frame only consists of
other components such as text fields, buttons combo boxes and so on. AU theses components
can be interacted with through the use of events, which are called by the system.

For example, in Java, to react to a click on a button, you willjust have to tell to the button
itself which method call upon mouse click and put all the needed code inside this method.
This way of doing things is really simple to understand although quite powerful. It seems to
allow the programmer to maintain its code easily since all the code related to clicking on the
button will be found in the same method.

But the fact is that, programming like this will lead to incoherence in user code, which
will not be maintainable anymore. The problem is that, by programming this way,
components' state is modified by other components. As more and more components are
added to the frame and as more and more interactions have to be created, this ultimately leads
to impossible to predict component behavior.

While programming the Advanced Module frame shown here above, the point of collapse,
as we called it, was reached and forced us to stop development to find a way to correct the
problem. The point of collapse is a point where it is impossible to add a new component to
your frame. This component will lead to so many changes in the frame that it will become too
hard to code.

After analyzing the problem we found out that its base lies in the fact that a component
can have its state modified by lots of other components, leading to the spreading of code
related to it.

The key to having a maintainable code is then to have it written in a single place. This is
the base of the SpeedyDesign technique. Since a component will always have to be able to
modify its own state, the only way to have only one entry point is to force a component state
to be modifiable only by itself.

Although it might seem very restrictive, this constraint is not a big deal. In fact, instead of
directly changing other components' state, a component will sim_ply ask them to update
themselves by telling them that he has been modified.

1 Component 1 1-.....__ I bave modified myself. Please
update yourself in order to stay
consistent

Component 2 1

Figure 38: SpeedyDesign technique - Asking components to update themselves

Page 120 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

And this solves the problem! There is now only one place where the programmer will
have to code in order to update a component' s state. If the state of one component depends on
the state of another one, it will just have to look how this component is behaving in order to
know how to be updated.

As we found out that this technique was quite useful, we tried to see if it was not possible
to further enhance our way of coding to make it even better. And it was possible.

In fact, there is still one problem here. Every component has to know every other
component in order to ask them to update themselves ifnecessary. It means that, each time a
component is added to the frame, every other component have to be reviewed in order to
ensure consistency.

To correct this prol;,lem, we introduced the component handler. The component handler's
aim is to centralize every update calls in one single point. When a component updates itself,
instead of asking to every other component to update themselves, it will just tell to the
component handler that it has updated itself. The component handler will transfer all the
update calls himself.

Component 1

Component 3

Components
handler

Component4

Component2

Component 5

When component 1 is updated (user click), it tells it to the component handler which knows that the
component 5 is related to component l and will then ask it to update itself. The same system can be
applied to every component.

This way, ail the interactions between components are handled in one single place. Upon addition ofa
new component, a single modification in the component handler will have to be done.

Note that, if the state of the new component is important for other components too, theses components will
have to modify their update method too. But modifications will have to be done in one method only.

Figure 39: SpeedyDesign technique - Role of the components handler

While programming the Advanced Module frame and trying to find all the relations
between all the components in order to program the component handler correctly, we found
that there were still more enhancement to perform.

Page 121 of 149

Chapter 5: The Human Interface

This enhancement concemed the quantity of times that the "update" methods are called by
the component handler. Up until now, if a component has to be updated by n components, its
update method will not be called n times but a number of times between n and n! times. This
is due to the fact that, at its current state, the SpeedyDesign works with "ancestors -
descendant" relations where it should only work with "parent - child" ones.

To understand this enhancement, the following definitions have to be introduced:

Ancestor: A component is said to be the ancestor of another one if a modification in
his state will have impact on the state of the other component.

Descendant: A component is said to be the descendant of another one its state can be
updated through updates to the other component.

Parent: A component is said to be the parent of another one ü knowing its state is
essential for the computation of this other component.

Child: A component is said to be the child of another one if knowing the state of this
other component is essential for the computation of the state ofthis component.

Descendant

Component 1 Child

L ~_.__----: __ ___,Child
Component 2 -

Parent

L Component3

Ancestor

Figure 40: SpeedyDesign technique - The existence of hierarchy between components

As you see in the Figure 40, "Component 1" is the parent of "Component 2" and the
ancestor of "component 3". Upon update of the state of"Component l" the component
handler will call the update method of "Component 2" and the update of"Component 3".
But the problem is that, when "Component 2" will be updated, "Component 3"'s update
method will be called again.

The resolution ofthis problem lies in the definitions themselves: Upon update of a
component, the component handler has to call the update methods of its children only and not
is descendant.

Page 122 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

To find descendants and the children is not difficult. It only requires the programmer to
create the functional dependencies graph for the components and to sort them in levels by
putting ail the components that have no children in the same level and start again with the
graph in which the components put in level have been removed.

Note that it is not possible to have a loop (a Component which is, at the same time, the
ancestor and the descendant of another one). Indeed, Human Interfaces always follow leveled
information patterns. And in case the programmer has loops in his interface, rearranging his
frame in order to remove the loop would still be possible.

The scheme below summarizes the SpeedyDesign programming technique:

Without SpeedyDesign Technique:

(
Component 1

Component2 Component 3

Component4

Function-driven updates:
Each component handles the update related to
the fonctions be is at the base of. For bis
handled updates, the component bas to update
itselfbut also all the other components inside
the frame too.

With SpeedyDesign technique :

1 Component 1

~ y Component 4
Component2

Components
handler

Object-driven updates:

Component3

Components are only asked to do what they
really have been designed to: to display
information handled by the logic part of the
interface (here the component handler).

Upon updates, they only alert the component
handler of their new state. The component
handler will ask the other components to
update themselves to respond to user's actions
coherently.

Figure 41 : A summary of the SpeedyDesign programming technique

Page 123 of 149

Chapter 5: The Human Inte,face

XI. Human lnterface's current limitations:

The Human Interface we programmed, although already usable, is still a work in progress.
To program a project as big as this one in the tirne irnparted is not possible. All the abilities
presented here in the thesis are implemented and already working but they could be enhanced
a lot.

FDNet architecture itselfbeing still a work in progress, FDNetworks are still complicated
to create. Due to this fact, the Human Interface has not really been used on real FDNetworks
and a lot oftesting still has to be done in order to make it fully respond to FDNet researchers.

This fact set apart, we would like here to introduce you to the enhancements that we think
would be interesting to work on. Theses enhancements would allow coming nearer to the
utility and usability factors that we said would be achieved through Human Interface's
creation.

When all the enhancements listed here below and all the testing related to them will be
done, the Human Interface will truly become a powerful addition to FDNet project.

Page 124 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

A. E11hanceme11ts co11cemi11g the Network/11/0 tructure:

Giving a defi1tife type fo parameters:

In FDNet' s current specification, Nodes parameters don' t have a definite type. Any
information is stored in "string" format and only the Node containing the parameters knows
what he has to do with them. If parameters were directly saved with a type, we could check it
in the Hum.an Interface to ensure that created FDNetworks are more reliable.

Multi-leveled Module subdivisio1t:

Concerning Modules, only one level is allowed. It is not possible to have Modules
contained in other Moqules. W e think that Modules will play a very important part later in
FDNet development and are sure that this ability - having Modules contained in other ones -
would be extremely useful. It would allow a more complete FDN etwork subdivision that
would benefit to everybody. The scheme below introduces you an example ofwhat theses
sub-modules could allow if they were implemented:

Network

Robot 1 Robot 2

Through the use of more tban one Module level, it would really be possible to achieve one ofFDNet's
reaJ aim easily: To have a single "'head" handling a pool of robots aU working together to rescue
people.

Using more than one Module level allows the user to divide bis Network a lot more correctly. In the
example above, you can see that the two robots are included in one module but. at the same time, each
robot is divided in more parts. Through the use of Human lnterface's editing abilities, this division
would allow an user to focus more easily on the work he wants to achieve.

Figure 42: Introduction to multi-Ievels Module subdivision

Page 125 of 149

Chapter 5: The Human Interface

B F u·,-.,.,,,..,,lls concerning the FDNet 1orks' Grapllical Repre e11tation:

Com1ectio11 Entities representation:

For the time being, through the use of the Graphical Representation, it is only possible to
interact with Nodes. Due to current Connection representation (a simple line), mouse
interactions are not possible. Enhancing Connections' representation (An arrow with the
narne of the connection in the middle of this arrow for example) in order to allow the user to
receive more information about them and to edit them would increase Graphical
Representation's utility.

J11tellige11t placement:

When an already existing FDNetwork is loaded in the Human Inte_rface for the first time,
all the entities are displayed one above the other in the upper left corner of the Graphical
Representation. It is clear that a better placement system has to be implemented.

This problem also appears each time new Entities are added to FDNetworks. Newly
added Network Components are not placed in an intelligent way (they are placed at the top
left until the user drags them to another place). Creating an intelligent system placing Nodes
in consistent places based upon the Module they exist in and the Connections they possess
would allow more easiness of use.

Of course, this is not an easy-to-implement enhancement and it is the reason why it has
not been done. But, if the Human Interface is to be used in real situations, this will have to be
done.

Page 126 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 5: The Human Interface

C. Enhancements conceming Hunra11 lflterface' integrity:

Representation system harmo11izatio11:

FDNet's Hu.man Interface could have its overall integrity enhanced. lndeed, the two
different representation systems (Graphical Representation and Text-based Representation) do
not provide the same functionalities even if they are based on the same information. Of
course, there will always be some differences between the two representation systems but it is
clear that in the current Hu.man Interface, some differences are not justified and abilities could
be implemented in the same way. Users would have it easier to master the Hu.man Interface
and would be able to do better work in less time.

Errors a11d exceptions handling:

Even if all the mechanisms needed already allow it, handling errors and exceptions in a
better way has to be done. The Hu.man Interface contains a Status Bar showing important
information to the user. But this Status Bar has been neglected until now and must be
improved to handle more errors and exceptions.

Interface Revisions:

Until now, the interface is still in beta version. It is clear that some options are missing,
some of them are not useful, bugs have to be found and corrected and so on. This kind of
errors/enhancements can only be found with extensive use.

Page 127 of 149

Chapter 5: The Human Interface

XII. Conclusion:

FDNet is a complex system that one cannot easily understand. It requires the user the
have some knowledge of robots, of cognitive science and of computer science just to grasp its
concepts. Even when concepts are understood, using FDNet to produce something really
useful is quite complicated.

When this kind of problem arises, there are usually two main ways to correct them: The
first one is just to make the system simpler, by removing parts that are not useful and by using
tricks to simplify the important ones.

The second one has to be used for systems that are known to be complex no matter how
you use them. For theses systems, the technique is to create adaptive tools that will help users
to apprehend system' s complexity over time while providing more and more complex abilities
as users rmprove.

The Human Interface can be seen as one tool of this kind. It will, at the beginning, give
the user a straightforward and easy to use graphical representation of the networks he tries to
create, while at the same time, provide functions to make Networks' edition simpler.

At a second time, it will offer more advanced functions and another edition mode: the
Text-based edition mode. This one will give users more power over the FDNetworks they are
creating through providing them with complete sets of edition abilities.

Even if our Human Interface is far from being perfect, it is already usable to a point that it
can really enhance FDNet users' work. All FDNet computer aspects have been hidden and it
is now possible to create FDNetworks while focusing only on the work to be done.

Of course, a lot of enhancements will have to be done in the future ifFDNet is to be used
but Human Interface's current implementation already shows the power it can unleash. We
are confident that this part of the project is a milestone for FDNet users and that FDNet's
success will depend on tools like this one.

Page 128 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 6: Conclusion

Chapter 6: Conclusions

1. Conclusion about FDNet:

The aim of OUI work was to enhance FDNet's Utility and Usability through the creation of a
Logger and a Human Interface.

In term ofUtility, the Logger allows saving the state of the working FDNetworks at different
moments, thus allowing the users to analyze them in order to enhance their understanding. This
is the reason why the Logger shares this information between the different Viewers. The Human
Interface introduced the concept of Module, allowing users to create FDNetworks divided in
such a way that they become a lot more powerful.

But it is in term ofUsability that FDNet has been improved the most. Before our arrivai,
I.R.S.I researchers had focused their work on developing a network architecture allowing them
to control a pool of rescue robots. But, even if their work was useful concerning the problem to
resolve, it was not very usable.

The Human Interface is the incarnation ofFDNet usability. Indeed, it allows to easily create,
edit, update and delete a network configuration. Also, starting and stopping an FDNetwork can
be done in just one or two mouse clicks. Analyzing the network evolution is done by using the
Viewers1 integrated to the Human Interface. Through the use of the Human Interface, FDNet
can be used by people coming from diverse discipline (computer science, electronic engineering
...).

Nevertheless, the Human Interface would not be usable if the Logger was not providing it
with working FDNetworks' information. It has been done in such a way that this information
can nearly be given in real-time to numbers of different clients (Human Interfaces, viewers ...).
The Logger was also granted a Human Interface allowing its administrator to configure it and
start it in an easy way.

All this work done allows us to say that we think to have fulfilled OUI mission of making
FDNet a lot more useful and usable and hope that this work will influence positively the project
in the future.

1 Refer to Mr Nicolas Lambot's work to have more information on this subject.

Page 129 of 149

Chapter 6: Conclusion

Il . Persona! conclusion:

At first it seemed very difficult to work along with the Japanese researchers at the
International Rescue System Institute. To have a discussion about the work to be done was quite
complicated because of the differences in the languages spoken. To have an explanation about
FDNet itself - the base of our work - was not even possible.

But we tried hard and, by using retro engineering methods on FDNet's source code, we could
understand more and more aboutit everyday. By that time, our relations with the Japanese
people had become far better since the fear of speaking English and the shyness we were all
facing at the beginning had disappeared.

Having to read on all the source code in order to understand FDNet, although it was an
extremely difficult task, appeared to be one of the best choices we made. Indeed, having all the
code in our minds, we could think of the best architecture possible for our own work: The
Logger and the Human Interface.

More thanjust producing a good Human Interface and a good Logger, we could introduce
very interesting enhancements to FDN et itself. Enhancements that will, we hope, be continued
by other researchers in the years to corne.

But it would have been impossible to think about theses enhancements if FDNet was not an
interesting project to work on at the beginning. We are now sure that it holds a great potential in
term ofhelping rescuers to saving lives and are honored to have had the chance to participate to
its creation, as little as our work may seem to be in the future.

Youssef and Jérôme

Page 130 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

About adding utility and usability to FDNet

Bibliography

Fumio Ozaki, "Open Robot Controller Architecture (ORCA)",
http://staff.aist.go.jp/t.kotoku/fyi/ AIM2003 .html#TANIE (20 July 2003) (Date of access May
2004)

JARA, "Specification of Orin", http://www.jara.jp/E ORiN/En ORiN.htm (1999)(Date of
access May 2004)

Lambot Nicolas, "FDNet: Enhancing Human Interface with Dynamic Capabilities" 2003

Masahiro Fujia and Koji Kageyama, "An Open Architecture for Robot Entertainment",
Proceedings of the First International Conference on Autonomous Agents, ACM Press, 1997

Toshiba Corporation, "Toshiba to Bring its New "ApriAlpha" Concept Model Robot to
ROBODEX 2003", http://www.toshiba.co.jp/about/press/2003 03/pr2001.htm (20 March
2003)(Date of access May 2004)

Toshihiro Inukai, "ORiN: A common object model for robotic systems",
http://staff.aist.go.jp/t.kotoku/fyi/AIM2003.html#TANIE (20 July 2003) (Date of access May
2004)

Yosihisa Koji, "Flat-distributed network architecture (FDNet) for rescue robots", 2002

Facultés Universitaires Notre-Dame de la Paix - Namur

1
1
1
I l
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 --- - -

1
1
1
1
1
1
1
1

' I
1
1
1
1
1
1
1
1
1
1
1
1

About adding utility and usability to FDNet

Facultés Universitaires Notre-Dame de la Paix-Namur

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Annex 1: Retro Engineering on FDNet

Appendix 1: Retro engineering on FDNet

This annex consists of the schemes created while retro engineering the programming work
done on FDNet. The schemes represent all the classes found in FDNet's core packages. Doing
this kind of work allowed us to obtain a general view ofFDNet classes static interactions.

It also gives an idea ofhow FDNet works. By using theses schemes while trying to
understand the code written by the I.R.S.I researchers gave us new ideas about what the code
was doing and where to look to find an answer to our questions.

Page 135 of 149

Annex 1: Retro Engineering on FDNet

This is the classes hierarchy of the "cnet.core." package of FDNet project.

As written just right in the legend :
• the classes written in blue are abstract;
• the interfaces are written in orange;
• a class/interface extending another one will have a black arrow

arriving to itself.
• a class/interface irnplernenting another one will have a red arrow

arriving to itself
• underlined and italic text rneans that the class cornes frorn

another package;

Leaend
----C-la_s_s __ ___,I

Abstract Class

Interface

Extends

~ lmplernents

Class
=> cornes frorn another

package

Page 136 of 149

Annex 1: Retro Engineering on FDNet

,,,'

,-------,
,'llfl FDEdgeDelegate 1

,' - - - - - - - -. ,,'

,,,,,,
,,-,,--__,,,-- ~. - . FoE:i°g~ - . -:

, _,,,,,/ - , - • - • - • - • 1

FDObject

FDNode

ProcStructure

ConnectorClient

Servant Helper

DataStructure

ProcStructurelmpl

Connector erver

FDNodeDelegate

Page 137 of 149

DataStructurelmpl

Data Datalmpl

Proclmpl

Annex 1: Retro Engineering on FDNet

Writerlmpl

WriterAdapter
\\-riter

FDEdgeDelegate
Connector

ConnectorOperation

InputOperation

WriterStructure

FDObject

Readerlmpl

ReaderAdapter ReaderAdapterParent

ReaderStructure

FDEdge

Page 138 of 149

--------------------­
Annex 1: Retro Engineering on FDNet

NoMore InternalW arning

Exception user Exception InternalError

XML_ cnetException InternalException

callException NoSuchID

IlleagalValue

IlleagalType

.___P_ro_c_t_ru_c_t_u_r_e_P_oo_l___.1---..,►1 ProcStructurePoollmpl Li tener E entLi tener

DataStructure Pool DataStructurePoollmpl ReleaseListener

Connection Pool ReturnListener

PushListener

PullListener

Page 139 of 149

1 CreateWriterlnstance

1 CreateReaderlnstance

1 CreateProclnstance

1 CreateDatalnstance

WriterMap

ReaderMap

Annex 1: Retro Engineering on FDNet

Pa~ H~ __ A_ct_~_e_P_M_t_e __

StaticPaste

ConnectionLoader

Policy

Page 140 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Annex 2: Retro Engineering documents

Appendix 2: Retro engineering documents

The following documents show you how our retro engineering process was performed.
You can see them as a snapshot of our understanding of one part ofFDNet's core packages
(here, cnet.core.Servant).

As a snapshot, the iriformation it contains is not especially true. Most of what is written
cornes from the understanding we could have ofFDNet's way ofworking. It thus means that
it can still contain errors or information that is too vague to have a real meaning.

It also contains all the questions we were asking to ourselves at this time. This means that
none of the questions ~ked here had found any answer at that moment.

Basing on theses documents, we could try to speak with FDN et researchers in order to try
to understand them and to enhance our own understanding ofFDNet.

Page 141 of 149

Annex 2: Retro Engineering documents

Study of the classes in package cnet.core.Servant :

Servant Visiter

Reflect

Paste

Iterator

Class SL'n ant comL's from
··cnL't.u lrL' ·· pac kagL'

Linkagelterator

The scheme here below explains how the paste and the Re:flect servants work:

Relation .. - .. - .
' ' ', Cali

~---....... '
Rctlcel ,

\
\

Paste

Rep.

Connection

Cali

Retlccl

1. The Relation calls a Paste Servant to ask. it
to be connected to a specitic Daia.

2. The Pasto Servant calls the Reflect Servants
to get Data and Relation IDs.

3. With the belp of the lDs, the Paste Servant
can collect ail the information needed in the
repository to create the Connection between
the Data and the Relation.

4. The Connection (reader/writer) is created by
the Servant.

Page 142 of 149

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Extends
Implements
Aim of the class

Comments

.,Property name

.. Property use
,. Comments

Method name
Method use
. Comments

. Method name
Method use
Comments

Method name
Method use

Comments

Property name
Property use
Comments

Method name
_ Method use
__ Comments

Method name
Method use

_Comments

Annex 2: Retro Engineering documents

cnet. core. Servant
FDObject
null
This class is handling the Servant system.

A servant is a mechanism that allows an information (an FDObject ofa
"cnet.util.TYPE" type) to be shared on the network. The servant object is an API used
by a RELATION to access the network. Relation can only access their directly
connected Datas but, through the use of servants, the whole network is reachable.

A servant is not linked to any relation at all. Servants are indeed shared objects called
by Relations to execute some specific work.

Servants have tree mechanisms. It means that there are root servants, parentServants,
ChildServants and so on.

Servants that are fathers of other ones contain the Class definition of all their
ChildServants and can then instanciate an ChildServant on demand.
A lot of the methods whose aims are to handle the different HashTable are declared
Static. It means that all these methods can be called from anywhere in the code and
exist only once. It also means that theses static methods are shared among all the
instances of Servant Class.

static private HashMap ServantClasses
Static HashMap. It contains all the ServantClasses used at a certain time in the program
HashTable of the classes having the role of Servant?

static void setServantClass(String servant name, String class name)
Adding a Servant class to the Servant HashMap
The Servants added like this will be reachable from any other instance of Servant class .

static protected Class getServantClass(String servant name)
Returns the class associated with the String passed in parameter.
By having this class, it will be possible to create new instances of the Servant (or classes
extending it) and to use it on the network.

static protected boolean containsServantClass(String servant name)
Allows Servants to know if a specific servant, whose class name is given in parameter,
is already added in the HashMap ServantClasses

static private Server server;

See cnet.Server for more information
Question : What is a Server?

static void setServer(Server s)

Sets a new server for this Servant

static Server getServerO
Get the server currently used by this servant

Page 143 of 149

Property name
. Property use
_Çomments

Property name
Property use

.. Comments

Method name
Method use

Comments

Method name

_ Method use
Comments

Method name
Method use
Comments

Method name
Method use

_ Com.ments

Property name
Property use
Comments

Method name
Method use
Comments

Met'1od name
Method use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

Method name
Method use

Comments

Annex 2: Retro Engineering documents

static private HashMap instances
A hashMap containing the instances of the Servant Classes
As it is a HashMap only one instance can be associated with a Servant(Class) Name.

private long instance counter;
Allows to count the number of instances currently held inside HashMap instances

static private String createNameO
Creates a new instance name for the Servant Class to add it in the HashMap instances.
The first free position will be used to create the name.
Names are of the format: %servantName:[NumberOfCurrentlnstance]

Static void setServantlnstance(String servant_name, Servant servant_ instance)
throws ClassNotFoundException

Adds in the HashTable instances a new instance of the Servant class

static protected Servant getServantlnstance(String servant name)
Allows to get a servant already contained in the instances HashMap

static protected void releaseServantlnstance(String servant name)
Delete a Servant from the list of the existing instances

private HashMap children;
Allows the Servant to creates a tree where he can finds all bis child and parent servants
A servant bas only one Parent. This property is not static ~ every Servant has it's own
children HashMap.

public final Servant getParent()
Returns the Parent Servant of this Servant.

protected final void setParent(Servant p)
Allows to add the Parent Servant of this servant in the children HashMap

final protected void setChildServant(String name, Servant p)
Adda children ofthis Servant in the children HashMap

final protected Servant getChildServant(String name)
gives a specific child Servant with the help of its name

final protected void releaseChildServant(String name)
Delete a servant from the children HashMap.
lt means that the servant deleted will not be a child if oursefl anymore

Page 144 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1

, Property name
Property use
Comments

Property name
Property use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

Property name
Property use
Comments

Method name
Method use
Comments

. Method name
Method use
Comments

1

Method name
Method use

Comments

Property name
Property use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

Annex 2: Retro Engineering documents

private FDObject object;
The object that this Servant is sharing.
A servant only serves one FDObject.

private Type[] type;
Contains information about FDObject's data type.
Defined in the "cnet.util" package

protected FDObject getFDObjectO
returns Servant's FDObject

protected cnet.core.Servants.Node getObjectDataO
Retl,lrns the node associated to the FDObject contained in the Servant

protected Type[] getObjectType()
gives the type of the Object of the Servant

private HashMap returnListener;

The ReturnListener is a callBack mechanism that allows a servant to tell to relation that
has called it that its work is doue

ReturnListener getListener(String name)
Gets the ReturnListener whose name correspond to the one passed in parameter

protected void setListener(String name, ReturnListener listener)
Add a ReturnListener to the returnListener HashMap

protected void releaseListener(String name)
remove the ReturnListener whose name is passed as parameter from the returnListener
HashMap

String servant name;
Give a name to the current Servant
What is this name'? The Class ' s name'? Something with a structure or something
without anv structure at all'?

void setName(String s)
Sets the name of the Servant

protected String getName()
Gives the Servant's name

Page 145 of 149

Method name
Method use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

Method name
Method use

Comments

Method name
Method use
Comments

Annex 2: Retro Engineering documents

void setID(ID[] s)
Set Servant's ID. ID[] is a property inherited from FDObject
The ID of each object in FDNet is a unique attribute given by the system at runtime.
The ID allows finding a specific object in the System and is used as identifying
information for everybody.
This mechanism is not et im lemented

protected ID[] getIDO
Gives Servant's ID
This mechanism is not yet implemented

protected Servantü
Basic Servant constructor
No code=> this does nothing, not even any initialisation
The Constructor is protected. What 1s the use of specifymg a protected constructor?
What is the meanin •? What do the want to achieve b doin° this?

protected Servant(FDObject obj,Type[] t)
We initialise a servant by initialising the FDObject that is bound toit and by associating
a e to this FDOb"ect.
lt appears that a Servant serves one and only one FDObject (to verify).
What kind of ob1ect can be assed as arameter? relations onl ?

protected Servant(FDObject obj,Type[] t)
This is not an FDObject that we receive anymore to initialise the servant but another
servant.
This servant, passed in parameter will be known by the currently constructed Servant as
it's arent.
this is here that the HashMap "children" is used.

ublic void init(String name, Servant p)
Initialisation ofa Servant by using another one as this Servant's father
Rem : The tirst Parameter (String name) i never used in the method. lt's not use
assing it... •

protected void finalizeO
This method is called when the Servant (ourselt) wants to destroy itself.
The aim is to free memory and to destroy the links we have with our Servants Parents.
The Servant Parent will receive the order to remove us from it's children HashTable.
There seems to be an error in this method's code. Look in the code to find more
ex lanation about it.

public Object sendMessage(String serverClass, String message, Object[] args)
throws IllegalArgumentException, IllegalAccessException, InstantiationException,
InvocationTar etExce tion, ClassNotFoundExce tion

This methods calls a specific method of a specific class by passing it args parameters
Ail is done dynamically => Creation of class, instanciation and so on ...

public Object sendMessage(String serverClass, String message, Object[] args,
RetumListener 1)

throws UlegalArgumentException, IllegalAccessException, lnstantiationException,
InvocationTar etExce tion, ClassNotFoundExce tion

This methods calls a specific method of a specific class by passing it args parameters
Same as above but we have now a listener mechanism.

Page 146 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

1
1
1
1
1
1
1
1
1
1
1
1

1•
1
1
1
1
1
1

1 1 u

Method name
Method use
Comments

Method name
Method use
Comments

Method name

Method use
Comments

Extends
Implements
Aim of the class
Comments

Extends
Implements
Aim of the class

Comments

Method name
Method use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

Annex 2: Retro Engineering documents

public Servant getRootServant()
Returns the servant that is the father of all other ones
Uses the "children" HashMap to getthe information

public Servant getServant()
Returns our self(this Servant)

public Servant getServant(String servant_ name)
throws lnstantiationException, IllegalAccessException, ClassNotFoundException

Retums a specific Servant object corresponding with the "servant name" parameter

cnet.core.Servants.Visitor
Servant in cnet.core
null
The aim ofthis servant is to search for data in the datapool.

cnet.core.Servants.Reflect
Servant in cnet.core
null
The reflect servant is called by Paste servants and its aim is to fetch information about
datas (and give it back to the Paste servants tolet them connect the datas with the
calling relation).
See the schema about this at the be innin ofthis stud Ten o First
How and when do we connect the reflect servants with the nodes?
Does each node (Relation/Data) have it's reflect servant?

public String getName()

Returns the name of the node contained in the FDObject associated to the Reflect

public ID[] getIDO
Returns the ID of the FDObject contained in the Reflect.

public ID[] getClassID()

What is this ClasslD? When is it used?

Page 147 of 149

Extends
Implements
Aim of the class

Comments

Method name
Method use
Comments

Method name
Method use
Comments

Method name
Method use

Comments

Method name
Method use

Comments

Extends
Implements
Aim of the class

Comments

Extends
Implements
Aim of the class

Comments

Annex 2: Retro Engineering documents

cnet.core.Servants.Paste
. • I 1 . .

This is the paste Servant used to connect a data object with a relation.
The aim of a Paste Servant is to connect data to relations.
It gets reference of the data node to connect it to the relation. It is the paste servant that
is able to connect data to relation.
How the things work :

1. Paste Servant get a Reader object from the Data object with the "getReader"
method. At this time, the Reader is created by the Data object .

2. The servant passes the Reader to the Relation by calling Relation's setReader()
method. The Relation is now connected to the data
The Paste Servant is not refered anymore and can die (go back to a servant
ool.

protected void raw_paste(Connection the connection)
Pastes the connection to the Relation
This method currently has no ,mplementation!

public void create(Connection new connection)
Creates the connection to the data to pass it to the Relation
This rnethod currently has no 1mplernentat1on!

public void activate(Connection the connection)
Activating a connection means creating the link between the data and the relation that
needs it.

public void paste(Connection new connection)
Creates a connection to connect the data to the relation and pastes it so that the 2 are
connected.

cnet.core.Servants.Iterator
Servant in cnet.core
null
The aim ofthis servant is to trace the network (follow).
The aim is to know another relation's id
We currently have no information about this class.
There is no implementation... .
We need more corn lete information about this ervant.

cnet.core.Servants.Linkagelterator
Iterator
null
The aim ofthis servant is to trace the network (follow).
The aim is to know another relation's id
We currently have no information about this class.
There is no implementation .. .
We need more com lete information about this servant.

Page 148 of 149

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Annex 3: FDNetworks Structure definitionfile

Appendix 3: FDNetworks Structure definition file

This is the DTD file used to ensure that the XML network definition file is valid:
The Module extension is written in green.

<?xml version="l.O" encodi ng="EUC-JP"?>

<!ELEMENT path
<!ELEMENT host
<!ELEMENT class
<!ELEMENT param

<!ELEMENT name

(#PCDATA)>
(#PCDATA)>
(#PCDATA)>
(#PCDATA)>

(#PCDATA)>

<!ELEMENT pstructure
<!ELEMENT dstructure

(name,host,path,class,param*)>
(name,host,path,class,param*)>

<!ELEMENT proc
<!ELEMENT data
<!ELEMENT exist
<!ATTLIST exist

(#PCDATA)>
(#PCDATA)>

EMPTY>

value (yeslno) "yes">

<!ELEMENT read (name?,(dataldstructure),(proclpstructure),exist?)>
<!ELEMENT write (name?,data,proc,exist?)>

<!ELEMENT connection (readlwrite)*>

<!ELEMENT module ((pstructureldstructure)*,connection*)>
<! ATTLIST module

name CDATA #REQUIRED
loadatstart CDATA value (yeslno) "no">

<!ELEMENT cnet ((pstructureldstructure)*,connection* ,module*)>
<!ATTLIST cnet

name CDATA #IMPLIED>

Page 149 of 149

1
11
1
1
1
1
1
1
11
1
1
1
1
1
1
1
1
1
1
1
1

