Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

About adding utility and usability to FDNet
application au domaine de la construction

Achbany, Youssef; Jadoulle, Jérébme

Award date:
2004

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/71c9c99e-52f6-4816-8194-1fcc2bd0d053

Facultés universitaires Notre-Dame de la Paix — Namur
Institut d’Informatique
Année académique 2003 — 2004

About adding Utility and
~ Usability to FDNet
A Flat Distributed Network
Architecture

Youssef ACHBANY
Jérome JADOULLE

Mémoire présenté en vue de I’obtention du grade de Maitre en Informatique

Facultés universitaires Notre-Dame de la Paix — Namur
Institut d’Informatique
Année académique 2003 — 2004

About adding Utility and Usability to
FDNet
A Flat Distributed Network

Architecture

Youssef ACHBANY
Jérome JADOULLE

Mémoire présenté en vue de 1’obtention du grade de Maitre en Informatique

Illllllllllllllllll-lg

10 00/ 5 B,

VTS

oy wul UON T GEN SN S y Y AE En G IR EN S0 By A A e S -

Resume

Ces derniéres années, la robotique a connu d’énormes progrés, tant au niveau matériel que logiciel.
La robotisation croissante des jouets, qui derniérement abouti a la création du petit chien Aibo,
augmenta [’engouement de tous : utilisateurs, concepteurs et vendeurs.

Au niveau logiciel, une grande partie des travaux a été consacrée a la conception d’architectures
communes, utilisables sur nombre de robots différents, simplifiant ainsi la communication entre ces
derniers et la fabrication de leurs composants.

Plusieurs grandes institutions et entreprises poursuivant ce but ont donné de bons résultats. Mais les
avancées conviennent surtout a une robotique axée sur le jeu, principal moteur d’améliorations. Elles
ne peuvent, actuellement, pas étre transposées a d’autres milieux tels que celui de robots sauveteurs,
évoluant dans des environnements chaotiques pour sauver des vies.

C’est en vue de palier a ce manque que I’L’LR.S.1, « The International Rescue System Institute »,
méne depuis plusieurs années des recherches dans ce domaine. Ces recherches de création
d’architecture commune a des robots de types différents donnérent naissance a FDNet, diminutif de
« Flat Distributed Network Architecture ».

La premiére partie de ce mémoire introduira les travaux effectués en matiére d’architecture commune
qui ont inspiré FDNet. FDNet, dont les concepts et particularités vous seront présentés dans une
deuxiéme partie, conjointement a l’état d’avancement des recherches. Dans la troisiéme partie, nous
parlerons de notre contribution a cet ambitieux projet qu’est FDNet, a savoir le rendre plus utile et
utilisable pour des sauveteurs, leur permettant ainsi de ['utiliser sur le terrain.

Al N S M = aE T W T s b - g e EE e T O e ew e

Abstract

In the past years, robotic science has progressed a lot, in both hardware and sofiware levels. The
increasing robotisation of toys, which has recently led to the creation of Aibo, increased the interest of
everybody: users, creators and vendors.

At software level, a great deal of work has been concentred on the conception of common
architectures which, being usable on a lot of diverse robots, simplified the communication between
them and their components’ production.

Various institutions and enterprises following this aim have provided some good results. But the
advancements mainly concerned game-centred robotics, which is the main robotic enhancement
engine. Theses advancements can't, for the time being, be transposed to other fields such as the one
concerning rescue robots, robots evolving in chaotic environments to save lives.

1t is to make up for this lack that the LR.S.1, « the International Rescue System Institute », is working
on this field for some years. Theses researches about creating common architectures for different
types of robots gave birth to FDNet, acronym for “Flat Distributed NETwork architecture”.

The first part of this thesis will introduce the researches made upon the common architectures which
inspired FDNet. FDNet, whose concepts and particularities will be presented in a second part, also
describing the level of advancement of the researches. In the third part, we will talk about our
contribution to this ambitious project that FDNet is, namely to make it more useful and usable for
rescuers, allowing them to use it on the real world to try to save more lives.

Acknowledgments

First of all, we would like to thank Mr. Schobbens for having found us the place of the thesis
and Mr. Tadokoro for its subject. Mrs Tadokoro was of an incredible help for all the
administrative work too. Without theses three people, setting up this thesis would have purely
and simply been impossible.

Working for Mr. Tokuda and his RoQ team was a pleasure too. The differences in our
cultures and spoken language were all but problems thank to them. Working on enhancing
FDNet would not have been as pleasant and instructive if theses people hadn’t been present.

We are grateful to all the students we could meet in the laboratory. They were always
supporting us and have been at the base of some of the best moments we could have in Japan.
Thank you Takuma, Takumi, Kaoru, Ulrike, Akazawa, Minobe, Aki, Takemura, Nobuhiro
and all the others. -

Great thanks to I.R.S.I secretaries which helped us each and every time we were facing
difficulties. More particularly, let us thank Tomoko, who was a guide, a translator and an
animator but also, more than anyone else, a true friend. We will never forget what you have
done for us Tomoko. Itsumo Arigato.

Mr Nicolas Lambot, one of our best friends for a long time, was also with us there and shared
all the good moments with us while helping us during the more difficult ones. Nicolas, you

know it, no word is good enough to explain how we feel about you.

Last but not least, we would thank our families and our friends who have supported us
through our studies and without whom arriving here wouldn’t have been possible at all.

Minna-san, domé arigaté gozaimasu!

FEE SEN Ny SN T E S EE S S EE E Vs e SR wE T aE e mEm e

Table of content

Résumé 5
Abstract

Acknowledgments 9
Table of content 11
Table of figures 15
Table of Index 17
Glossary 21
PART 1 - FDNet 23
Chapter 1: Introduction to FDNet 25

Ii Concept : 25

A. Flexibility: 25

B. Extensibility: 26

C. Generic architecture: 27

II. FDNet in more details: 28

A. FDNet is a Flat Distributed Network architecture: 28

B. FDNet is based on the Human Imitation Model: 33

C. FDNet’s aim is to help rescuers to find victims in case of disasters: 35

I11. Current FDNet implementation: 36

IV. Development choices: 37

A. RoQ’s base Hardware: 37

B. FDNet environment: 37

C. FDNetA.P.I: 37

V. Conclusion: 39
Chapter 2: State of the Art 41

L ORIN: A common object model for robotic systems 41

II. Open-r: An Open Architecture for Robot Entertainment 43

II. Orca: Open Robot Controller Architecture 45
PART 2 47
Our contribution to FDNet 47
Chapter 3: Retro engineering 49

L. Motivations: 49

II. Analysis method: 50

I11. Conclusion: 51
Chapter 4: The Logger 53

I Introduction: 53

A. General purpose 53

B. General view 54

II. Specification: 55

A. Logical specification 55

B. Sequence diagrams 56

C. Physical specification 59

D. Improvements 59

I11. Database of the Network State Logger: 61

A. Preface 61

B. Specification of the tables 61

C. Remark: 63

IV. The Cache: 64

A. Preface 64

B. Cache architecture 64

C. Scheme of the cache 65

V. The Server 67
A. Preface 67

B. Server architecture 67

C. Scheme of the architecture 68

D. Remark 68
VL The Logger: 69
A. Role of the Logger 69

B. General architecture 69

C. Scheme of the architecture 70
VIIL Improvements 71
A. Introduction 71
B. Database access 71

C. Thread priority 73
VIII. The interface 76
A. Preview 76

B. Database information 76

C. Logger writer 77

D. Server Receiver 78

E. Server Sender 79

F. Memory and thread priority 80
Chapter S: The Human Interface 81
I. Introduction: 81
II. Human Interface’s Aims: 82
1. Definitions: 83
IV. Human Interface architecture: 83
V. Specification of the logical base: 84
A. FDNetwork specification: 84
VI The Module extension: 88
A. Introduction of a more complete division of FDNetworks: 89

B. Incremental loading: 91

C. Real Time modifications: 92

D. Easy network edition: 94
VIL The Interface’s static capabilities: 96
A. Load/save networks: 96

B. Network entities edition: 97
VIII. The dynamic capabilities: 102
A. Start/Stop the Network: 102

B. Edit the Network: Add/Delete Nodes and Connections: 102

C. Load/unload Modules: 104

D. View Network evolution: 105
IX. Human Interface’s Display: 106
A. The Graphically-based display: 107

B. The Text-Based Display: 116

X. The SpeedyDesign technique: 120
XI. Human Interface’s current limitations: 124
A. Enhancements concerning the NetworkInfo structure: 125

B. Enhancements concerning the FDNetworks’ Graphical Representation: 126

C. Enhancements concerning Human Interface’s integrity: 127
XII. Conclusion: 128
Chapter 6: Conclusions 129
It Conclusion about FDNet: 129
II. Personal conclusion: 130
Bibliography 131
Appendices 133
135

Appendix 1: Retro engineering on FDNet

1

Appendix 2: Retro engineering documents

Appendix 3: FDNetworks Structure definition file

141
149

Table of figures

FIGURE 1:; FDNETWORKS? FLEXIBILITY PROPERT Y sisssscssssnsssosssssssvisssvesssissesssrsssssassss ss36s5ssasess sousinonss sorsassnsssasussoss 26
FIGURE 2: AN EXAMPLE OF COOPERATION BETWEEN DIFFERENT KINDS OF ROBOTScoeerrurermrmurrerereeseesessesssnnnnns 27
FIGURE 3: AN ENTITY/ ASSOCIATION DIAGRAM REPRESENTING THE RELATIONS BETWEEN NODES AND

CONNECTIONS 5705 xvssspsssssssssssianeissssvssssoss st sssssrsssvmusssins s ssvssanvassssnssrs s fussress sussiss vossnnins HHauaNSHTASINIRTRRTERASOS 29
FIGURE 4: BASIC REPRESENTATION OF AN FDINETWORKccciuteeiiuueeeerssneeesesivsnnsaesessssssnsssessassssasssesssssassssssnnsessns 30
FIGURE 5: A SUB-NETWORK THAT CAN GENERATE THE MOTION OF THE ROBOTceceeiureerirueeeessnrecssneessseesssnessanes 31
FIGURE 6 FDINETS S PIAT CHARKCTERISTIC 1svsssssveissssosyisassssnssssssessssssssiassssais shossnsessssnssssiosssssesissssussivoasssnsninsss 32
FIGURE 7: THEROBOT RO ..o vasivasmsnsivsarsnssssissassassossnensssons sosiiosssssavensssssssuesssnons sasassssss sosss sssadssessnsamasssinsassas seasasnsn 36
FIGURE 8: IMPLEMENTATION OF FDNET IN VARIOUS LAYERS....c.ccccoveeeeesseneesssseessaasesssssassasssssssssnseassssssnssssssenaassssans 37
FIGURE 9: SCHEME REPRESENTING ORIN’S IMPLEMENTATION.ccveecsueeessureesssneesssssasssssasesssnssssssssesssassssnsesssasessans 42
FIGURE 10: GENERAL VIEW OF FDNET THAT SHOW THE RELATIONS BETWEEN THE DIFFERENT APPLICATIONS OF

B NET s ras trmnatmsisss st e evss B s i A s as o o3 e S T S e A DR s i vs B s el eoa s P s Sy 54
FIGURE 11: SCHEME AND STRUCTURE OF THE CACHE AND THE SIMPLE EVENT CONTAINERcccovevireeueeieneseesenenns 65
FIGURE 12: SCHEME AND STRUCTURE OF THE EXTENDED EVENT CONTAINER........cccceerrueeeeeerrsrsrreceesssasessessneessnns 66
FIGURE 13: ARCHITECTURE OF THE SERVER IN THREE LAYERS USED FOR THE LOGGERcccccesuiiurnirinrenienieennene 68
FIGURE 14;: GENERAL ARCHITECTURE OF THELIOGGER .; cussisssssssssssssvssssssssvisvsssssovssesssssssnsassorssnorsuspsssissssiosssnsvvssssd 70
FIGURE 15: DATABASE ACCESS IMPROVEMENT — SCENARIO 1cccceeeeeiuneecsssssnnseenccssssssseeressesssssessossassossesssnssssns 72
FIGURE 16: DATABASE ACCESS IMPROVEMENT — SCENARIO 2cccteirreereeisvneesessesssssssesesssessssssessssssssesssssssessssnsas 72
FIGURE 17: THREAD PRIORITY IMPROVEMENT — THE STATES OF THREADS AND CACHE IN THE BEGINNING 74
FIGURE 18: THREAD PRIORITY IMPROVEMENT — THE CACHE REACHES THE CRITICAL LEVELvvvveeeeiireeeeecneeennns 74
FIGURE 19: THREAD PRIORITY IMPROVEMENT — THE CACHE REACHES THE NORMAL LEVEL.....uvvvttiirireeeesiineeessans 5
FIGURE 20: THE NETWORKINFO STRUCTURE PROVIDES FDNETWORK INFORMATION TO THE HUMAN INTERFACE 85
FIGURE 21; THE NETWORKINFOSYSTEM ARCHITECTURE . «issssssussssissvssussisssassssvusassvonsossosasissisassssssnssssusssssauivssassonss 86
FIGURE 22 CONSEQUENCES'OF MODULE SUBDIVISION ioississssiisssssisssisssssssssasmrasvsnsssassssssisasssussssessssssisissmsussonsissins 90
FIGURE 23 INGCREMENTAT LOADINGIOP NMOBULES ..coivcissississsssissssssssssasissassssssssssssioisssassmsssiamsvssisisasisisissasassonnss 91
FIGURE 24: TRICK ALLOWING REAL-TIME MODIFICATIONSecovterurieeseeesrsresssssseessssessssssesesssseessssssssssesssssessssesses 92
FIGURE 25: THE FILE FORMAT USED IS HIDDEN TO THE FINAL USER.ccccveeerruteiessueeesssseesssnsessesssesesssesssssessssssssssens 96
FIGURE 26: INTERACTION BETWEEN NODES FROM DIFFERENT MODULES......ccccriuueierineeeisseeeesseseessesesssssssssessssessnns 98
FIGURE 27: MODIFICATION OF CONNECTIONS UPON CHANGES IN OTHER MODULEScutieriutiiiicreeeeeeeseneseseesones 99
FIGURE 28; REPLACEMENT OF A/DATA NODE ;.vosisiissssossssssssissssossunsivsinsssiossssssssisvoncassses ssssasssssasssssasssssssssssasssvnss 100
FIGURE 29; FUSION OF DATA NODES s :iscsvsisssssiansssiasssssssissssssssssssnssvesssssssissssosossssssssssssisssssssosesssassssossnssssssssssiss 101
FIGURE 30: REPERCUSSION OF MODIFICATIONS IN THE HUMAN INTERFACE ON THE FDNETWORK.......cccovveerneene 102
FIGURE 31: REPERCUSSION OF MODIFICATIONS IN THE FDNETWORK ON THE HUMAN INTERFACE.......ccccovveeunen. 103
FIGURE 32: UNLOADING MODULES IN A WORKING FDINETWORKccceeieruieicsneeersrneesssseescssssesssssssssssaserssssersesses 104
FIGURE 33: USING THE VIEWER TO ANALYZE THE EVOLUTION NETWORKcuvvvvieeeeesurereeeeesssssseesesssssseeesesssesesns 105
FIGURE 34: THE HUMAN INTERFACE’S DISPLAY — GRAPHICS AND TEXT BASED DISPLAYc.cvvvievurreeieneerneeesssenns 106
FIGURE 35: HUMAN INTERFACE GRAPHICALLY-DRIVEN FDNETWORK EDITION0cciveeerueesseeersresssecssecsnsessenses 109
FIGURE 36: SELECTING THE MODULE WHERE THE NETWORK ENTITIES CREATED HAVE TO BE ADDED INTO......... 110
FIGURE 37: HUMAN INTERFACE’S REACTION UPON USER ORDER.cccevuetiiuureressreeesesesssseseessseesssssessseessseessess 115
FIGURE 38: SPEEDYDESIGN TECHNIQUE — ASKING COMPONENTS TO UPDATE THEMSELVEScccvveeiiueeeisreeeineenns 120
FIGURE 39: SPEEDYDESIGN TECHNIQUE — ROLE OF THE COMPONENTS HANDLERcutttiiireeiunreeineeessesesseesenees 121
FIGURE 40: SPEEDYDESIGN TECHNIQUE — THE EXISTENCE OF HIERARCHY BETWEEN COMPONENTS.........cc0covueee. 122
FIGURE 41: A SUMMARY OF THE SPEEDYDESIGN PROGRAMMING TECHNIQUEccciiureireunieeeinrreesssseeseesessesssees 123
FIGURE 42: INTRODUCTION TO MULTI-LEVELS MODULE SUBDIVISION........ccuvetueieteeeseeiiseeeseessreesseesssesssseseesseesses 125

Gng Dt o sme wem oy DGO Sor say San mue S oy pud G Ma B Gud Sa MG e

Table of Index

A
ANALYZE ...ttt 53
ADICTOBE ot asi e dods T S v ST T s b i ducnsn e 44
Architecture.....25, 26, 27, 41, 43, 45, 64, 67, 83, 86
B
Behavior........ccoccvieireiciieicierecnneecsnseesseesseens 25, 26
|20 1§ =) 53,69, 71
C
Cachie: covsmmmmmssassvasi 55,69, 71, 73, 77, 80
AP CRICCIUNE. civisvissswsmswsivssisinsswssmisssmavissssesivnaiis 64
Definition : s.ovnwssiswsiasinisisssinsmasmssassssisasmires 21
SCHEME ssicisswinimmisosssinmnmssvsinsisssissisiisiossessssisiOD
Child...ciusssissmmivssssissmssisssssmnswssassessessmisisnsies 114
COMMON ..suasssssssossssssisossassausssvorssansissssoniansssss 25,27
ComPreNeRSION ...ssussesssevessssasimsnsssssisnsssssssussmsnssins 49
(070) 111110150 AU 83, 86, 87
G £ (7 oo, SV RS O DY o W 102, 109
Delete ... 102, 109
REGABP: .o vvimmsnsiomseovisvemsssmnasavesisinsssesssssonses 29, 87
REDIeSeRIAtIoN; .. cuswssessersisivsssisussssssnissvsnonss 126
WEHLET: c.vosuossuconsssssssassssnasvonsissonsspsiossnuusassnss 29, 87
CONLAINETeeveeieeereecaecereeeiaeeeeeeaeeaeesseesesereessees 64
Critical....cocvemmssnsssssonsssspsssssssisssassassanesssnsansssssnssess 73
D
Database ...ceusomsivsssines 53,55, 59,61,69; 71, 76, 77
DISPIAY o civisvimssiomsramsmsmvmssmsssimimsmvsssnmesnin 111
GPADRIG ocisss0smmsssspsssssassssonsssvasasonsszs oo ioss 106, 107
TORL o lvurismrassmnsiarsonirashossiossit stiass 106, 116
Documentationccoeeeveveevecveinennnens 49, 50, 51
1 1) S S SR O UL L S TR W 84
Dynamic......cecvueereevvecreeieesuesneens 25,31, 83,102,115
E
Edition......cccoceveeveciercreereens 94,97,109,117,118
V2 1717771 72111 SO 99
BASTO isvisvnssvssssivmsissisassasassosssssmisssmsassonsasossions 98
BOd=USEE ...cvominiemssmsesmmmsimisssisaisimmssnias 83
Enhancement......... 87,100, 112, 114, 122, 125, 127
| 377 s || UG O LR S 55, 64, 69, 71
CORLAINCE, corvssvesssmmossssmmessissssseisrvississsassmmsenienes 64
Container MORILOFccuecevueeevreeeecneannen 64
DIEIRIION, cxnesrsssonsimsssssssmmsiviisbviuensssmmsssssssisass 21
F
FDNet
O Mssvisvusvasssssarsasnsanemsvatiasiossasisssamsontessssssussassse 35
CONCEpt:ciisisiniissisiimissasessicsisasmsssasssiisss 25
CONCIUSTON. .o sseeasesensens 39
CONNECLION ...vcvveeeeeecriireeerriisessessessesessessesens 28
0K, s vinsesssnsourssvassnsssissstaneassess 50, 53, 55, 57, 69
development choicesccuceeeeecveeeeeennenn. 37
EXIENSIDIIILY ... 26

Falt Distributed Network Architecture............. 28
JIeXIBIlIEY . s isvasassisiassnississvnsssssissamassssnssionssis 25
RUMAR TMIEQLION.oveveeeeereecreereireereeaeiaenes 33
IMplementationcisoisssimsisssmaiosssmsinsessos 36
NEBWOTE isisvivisvsiissivasavsivssssesvisssssasassasssonssssvoss 28
INOTE v issiwimsisamisissivsssassinsssissvisormissisnssessassss 28
FDNetwork
DESRHION s wsvisssssssisssssisivsivsssssssssnsssmsnissssns 21
G
1 1L 84,109, 111
OVEIVIEW ..cevevereerreiereisireesisessasssaesssesssaesseenns 108
Graphic Network
DefiRItiON.c.eeecrerereeeeerircreeeeseeereesseeaesaeiaeans 21
Graphic Panel
D11 £ Lo T e o 21
H
Human Interface
1 o 82
APCRILECIUF.......eveeveerecrecerecrecreereeaeeseeaenens 83
CONCTUSTON..ovavseinusssisenssssesmssnsssiissanssisinisvossions 128
DIBLIRIEION.oooviirersossommsssossisssssessossussssssssssasnnsos 22
Dl IiOn o e S i s 83
BISPUAY 5. i cmsesiuicdeisssmisairshe i e o) 106
Dynamic capabilities.................oeenn.... 102, 115
INEPOAUCHION. ... 81
LIMIIATON . covvsvseosarsosisnossonssvnsrsiussonsssaonissssnns 124
MOQUIL. ... corsessrmsmssssavssosrmnsssssssasssmsssssasaonssssanon 88
SPecifiCcation.............eceeeerceveneeereeeceeeraenns 84
SPeedyDesigncouvueeeverieeienrrerreireeaeisenes 120
Static capabilitiescooecuveveeenieereeernenenns 96
I
e e R N I 0 O 25
Implementationc.c.ceceeercnecunnsenseccannrnsesenes 102
Improvement
Database ACCESS........uuuuueeveeveeceeeeeieeeeresnenns 71
Module............ocueeeeeeeeeeereeeeeeeeeeeenes 88
Thread DFIOTILYcvivssasvississississsisssisswsnasivisssonss 73
Incremental Joading........cosuwnienemssiassssasssssisasanss 91
FAOCK 5. il dpssnnms frsbissnmosnssussseesnss s aaTe o 64
Intelligence........ccceevecrerrecrrennennen. 25,28, 30, 31, 33
LB 112) 171 01 SOV DU NP 26
J
JARA: i ccsvmssvsnesmisssissssrssssmmemssswsussasssssssssinssasisss 41
FAVE csnispsionsossunessississssionssnisnasasvassvas moseasos 37, 59, 86
L
LAYCT s iicananamsssissismisissseasmssinssisssmssisssssnsasasy 26, 37
{7077 (N 91,93, 98, 115
Logger
AR s T R 64
Databasecceeeeeeeeeeiveeeeeereeeeeeeeieeirenenns 61
General architecturecoeeeeeevveenne. 69

GeNEral VIiewccvveueereeeieeesresseosesseessesssssens 54
Improvement................ecvevveceeeceeecneeesrerennns 71
IUETHACE .. .ciconsssansssssoncnsssrssssensosnsosssnsassnsansassnsss 76
IRIPOAUCHIONoovveeeeccrrecrecrieceeeeecseeniens 53
Logger-WrHer i svsisssswisississamssosssmssvinns 69
RO e lee S S T T e ST e s ivsTsy 69
Scheme of the architecturecouuu.... 70
SEIVEEr RECEIVEF ...u.eccccceerevieeeciinreeesrinsesseisrenens 69
Server Senderecceeeeeceieeieeieeiirirenaens 69
SPECIfiCALIONcoeueeeeacraeeeireseeereecreceeesesaeens 55
M
1Y (511 10) o 2 59,71,91, 93,98, 115
MERC = et e ot M i s 101
Module......... 84, 86, 87, 88, 89, 90, 91, 93, 100, 125
T WS RN, 99
AAVanced........c.coovsiassssassissnsassusssnsisissessinsese 117
BBSIC) e oesesovastdins Bt e s B e e 117
T 113
DEIBIING o, ccoosonsumssmsassamsonesiassasnsssesimemismssninsss 99
LOGd....unaeeeeeeeeeeecreeeecireeccrnennns 91, 92, 98, 104
MQIR oo aaaaee s 91
INAIC........uveeeeeeccreeeeeecirsaseeecrneseeeeesssseeesanasaenns 99
PaAnel..........ucoeeeeereeeeeereeeereeireeesseseeesnens 112,113
IO o cisuvnviossssnasionimsassosssssssssssssornassasisrans 104
MOBIOIING: c.cisssssscusinmsississssnasisinsisivssnenisississiities 64
N
NEDQ.......ccconierireruricssreecsnsnsssssnessaneessssssssnesssassans 41
NetCommandEvent..........ccoceieieereieereeceeinesnennes 80
NEtWOKEVENL..........cccveereeeierieereenenecneecrecnneenaens 80
Network
EVOIULION w....veeeeeeeeeeeeeeeecveeveeecneneseiaenanns 105
FFAME coraavaaaeeeeeeeeeeeeeeeeeeeeccccirannaneeeeeeeenssnanes 117
LOQU...ounaaaaacreeeeeeeieeeeeeeerrreeeeeesaaaesesaneenns 102
N 777 SRS 102
O s i T T T TSI 102
Network command...........cccuveeveerveeiveeieencnennns 57, 64
PEHRION e S T T s 21
NEtWOrK Statecccovveeeerreeerinereniseeesinenenns 53, 56, 64
DESIHON: o5 ssemimsimi iy R 55 21
NetworkInfo.......ccoeevveevvecvereiirecneereenreecneeenes 85, 87
Neural model...........cccccnesoneosessarcsonssssonssssassssnassases 33
Neural NEtWOTK.......ccoueeevevieriiiecreeireeseeerresaeenenns 28
DDGTIRIEION s ossssssisnsisssussissassanvsnsomsinammssnns 21
INOAB nscesssvoss iivsssasaisibssdss isssmisossiassvinias 86, 87, 88
AL osnserposasassivsistassissm i gl o 102, 109
Y5157 T T SR S S LS 114
BUFHG - ocociinssnsusssinessnsissssmaiosssssoossivavasruss 28, 83, 87
PIBIBHE . isinsensssissisrnssasonssnaseosasssassnessnononss 102, 109
MBEEE . cusnusovssisssunssiossssomemsesesvassasssavesavossses 101
NAME: cvinvicinssmnssorssasmiviissis R nEs s 5o 89, 100
Paramieter;....cisesesssssisssinnsnsss 28,92, 118, 125
RelQLIONoaeeeveecrieeceeecnreccirreeanes 28, 83, 87
RBPIHCR o, vusvsvssssusrmmssssnsassossssssnivannssussisssiosensss 100
NOAL .. covisisssissosssossnssessossivissnssnssssssvasessossasesiossio 73
o
IPBHERY. . cciciosssiconsisussnsssassnssssssssizeinisasessinis 43, 44
ORIECAS ..cocniisiinssonsonsasssissicossmsmsssrssiisiinessiossvisasanes 45

ORIN o cvnesimmmmusnivsssonsisssssminssmaesasassessiss s gssessassans 41
P
PArOnt ccscisssssmssmsrissssnsvesiasmrmimms sy ssivsasiises 114
PIACSINCIIL vsvusssoseesisssnssmmsmsssssvrsenessssivssssasnsssnssasss 126
PRAOTHY scvnesssissinmsmmsnsaisaasosssmssosvasssss b isessessnss 73
R
REAI-HINE cvovisvinsnsmssmasssssnssssasnsssrssssvsssnsasins 53,92,93
Recoghition: mode] wmisssssssssmsssssssssusosensss 28, 34
RBOOSHIZING. vvsssssnvovessssosnnsnisrssvssonsosessatisins ssssss 111
ReECONFIGUIBHION. ...couirvessasssrserisssanssssisserssmssnsssssasses 25
REPIACE: . rsvussnmsnssevisemssnsorsesmisssssseasissssisiss 100
RODOBHOTY ssevessississsivivsisisvssssomassosnsssnsnssanoinss 84, 85
RESCUC ...cceeetrirreeeriecirrereeereeinnnereesennaeeens 25,217, 81
Retro engineering
CONCTUSTION. s ciscvssvisvonsississosssisssasssssisssnsivnsusssssnto 51
DYCTIATION s cisvussvnrsssssasssvsmmassvsnsisorsassiimssavivinss 22
HOW coxissincissvissssuissispisnessissssssssssasssisssssomsomsansaing 50
WO convissvssvommisissssammsnsinsssissnssisisnsnisshmombonsressuist 49
ROBOE, ssxvssvusmsenesRrsonsiseonvetssvasss ST B AT TGS 81
DEAIHION, i oncvensnsssussensessscissassmsssussssissonsassanssnns 22
B OUD oxsssfinssnse s Bemes ns ST T S A B 27
BOSOUE e ryonsvusssavesestondinsbessiss CaTTER TS aadvansens 21
o T L 55
RO ¢ 1sneeresstonrnssesssnsersvsgansiossessansniisasinsesond 36, 38, 39
S
Scientist
COMIPULEL o ovsnssissassusssosivssisssssssassssssssssasasovaiss 81
ECCTRONIC sosivmirinssssssssssnsisssvasssivsssamssssososmisssinsa 81
Sel-OrgatIZatION . cocvocsavsesssissosonsssnssassossstinnas 25,34
RO 5oy rooyredse i vnysTns s SO VAT A TaE e 34
DRI . ivsssesnanesisssdinimaiGmssrm SRy oaes 22
SOqUEHCE GIARTANcosmensssrsssassissmasmsuanissssnsnoss 56
BOIVEL: covevserosmssvossmsensssssssasobasmosseissimressanssusiissennssy 76
ARVARIAGE s xievoscsissssssssmsaisisimmssyiiny et 67
APCRITECTUNE cuscivesaisssorsassssmnmssssossissisnsunsnssassins 67
18717 7 RN ORI SR 67
Ty e L (R e R 67
DETIIION. oo ivnssnssesssissisinimmmsiiisssseramos 22
FACIOTY soxscovusssrsssnvossosimussisasssssnsnionsasssassansonsss 67
RECOIVEF i uvrsirssosisssmisinsssvessvssisvssmusasssionsos 69, 78
SCHEME wivvsssvvismirsssvwmsvesssssassrmoasnssossas ayeasssvns 68
R 117 L2 oSO 69, 79
SORY isvsuivrssssnvessisvsssvsssspssassssssens sessosabasssbsnesssibion 43
SOUTCL COUR ouuavsvesiasssirmssossssmsnssnsssassasiosssansss 49, 50
Specification
LOSIBAL s svsiissssviivsnnssnssnssssmsnmsnsnssssionssiss 55, 84
PRYSICAL ..criissessssnssessissomsisssonsosnssssnssansessnssase 59
SHARC: ioscssvvssmss SdssnisssesT eSS ds P eR NSRS Ar Y 83, 96
SUDRTVASOL scousssusvssesssanssssssionsassnsasssensorsrassaasusionts 64
SYBIIN csscvsniusmssmsnssssnmoimsmssupmmensssnssonsenissos 25, 26, 81
T
TCP ... cosincasissnississsasssssssssssisssivisoaissosrmassssniriiiasims 59
Thread
Definition............isssissvssivesvemsssssvacimumsieesins 22
PHIOPIHY «.ccoisconisinesarsinsimssassmisssinsissrinios 73, 80
THMNETL . ccooccossicsinsssssiassissmaisssnisasinisussssnssmesvsmssssnsnss 71

—-—------—--n-

éag Suxi OaG S5 Wk MO O Sl onp a0 MG R A PO O AN e Gt ooy G B

TOSBIDR. c.ssnsvmmmvsssmmmoranismsvammumsmsisng 45
U

HISABIIE. . . iisr s nisitt i i et 88, 124
LT d | A S L WL s PO 88,91, 124

vV

VHOWET: . oiincsmssuessusesiosnsontnes 53, 55, 58, 69, 71, 105
DS IRION svesi5- b vssossssonsenssisssamssssonsassassanusnsnsiasss 22

X

XIS oo s T o e SO S TR TS T R e 84, 85

About adding utility and usability to FDNet

Glossary

Cache: A temporary storage area for frequently-accessed or recently-accessed data. Having
certain data stored in cache speeds up the operations of the program.

Connection: An interaction happening between a Data and a Relation. Connections can either
be Readers or Writers.

Data: Any piece of information that can be used by Relations.

Event: An occurrence that is significant to a program, and which may call for a response from
the program.

FDNetwork: A construction of Network Entities with the FDNet architecture.

Graphic Panel: The frame, in the Human Interface, where the Graphic Representation of the
edited FDNetwork is displayed.

Graphic Network: File containing all the positioning information concerning the graphic
representation of an FDNetwork. Upon loading of an FDNetwork, the Human Interface
searches for this file in order to display the FDNetwork in a correct way in the Graphic Panel.

Network command: There are many network commands - connect Reader/Writer, disconnect
Reader/Writer, create Data/Relation, destroy Data/Relation ... A network command includes
connection information that describes an event notification.

Network Definition: A succession of Datas and Relations, themselves followed by a list of
the Connections that theses Nodes have between them.

Network Entity: A Network Entity is either a Node or a Connection.

Network state: A network state represents either the value of a Node at a given time or the
network connection information. Network connection information is a “network change”
event and says, for example, that a Data Node was disconnected or suppressed.

Neural network: A neural network is an interconnected assembly of simple processing
elements, units or nodes, whose functionality is loosely based on the animal neuron. The
original inspiration for the technique was from examination of bioelectrical networks in the
brain formed by neurons and their synapses. The processing ability of the network is stored in
the inter-unit connection strengths, or weights, obtained by a process of adaptation to, or
learning from, a set of training patterns. In a neural network, simple nodes (or "neurons", or
"units") are connected together to form a network of nodes, hence the term "neural network".

Node: Either a Data or a Relation.

Reader: A link between a Data and a Relation allowing the Relation to read the value of the
Data it is connected to.

Facultés Universitaires Notre-Dame de la Paix - Namur

About adding utility and usability to FDNet

Relation: A processing agent, whose aim is to take some Data in entry and to compute it in
some way to create new Data.

Retro engineering: (or Reverse engineering) is the process of taking something (a device, an
electrical component, a software program, etc.) apart and analyzing its workings in detail to
understand how it works.

Robot: A mechanical device that performs a task that would otherwise be done by a human.
Robots can be useful for jobs that are boring or dangerous for humans to perform. The
simplest robots are capable only of repeating a programmed motion; the most sophisticated
models can use sensors and artificial intelligence to distinguish between objects, understand
natural language, and make decisions. Robots can be programmed or operated by remote
control.

Sensor: An electronic device used to measure a physical quantity such as temperature,
pressure or loudness and convert it into an electronic signal of some kind (e.g a voltage).
Sensors are normally components of some larger electronic system such as a computer control
and/or measurement system.

Server: The entity in a client/server architecture that supplies files or services. The entity that
requests services is called the client. The client may request file transfer, remote logins,
printing, or other available services.

Thread: In programming, a thread is one part of a larger program that can be executed
independent of the whole.

Human Interface: (or User interface) The means by which a user interacts with a computer.
The interface includes input devices such as a keyboard, mouse, stylus, or microphone; the
computer screen and what appears on it; the way commands are given, etc. With a command-
line interface, only text appears on the screen, and the user must type in commands; with a
graphical user interface, windows, mice, menus, and icons are used to communicate with the

computer.

Viewer: 1t is an important application that allows users to analyze the Network state in order
to follow its evolution. This application was done by Mr. Lambot' and is integrated in the

Human Interface.

By “Writer”, we imply a link between a Data and a Relation allowing the Relation to write
the value of the Data it is connected to.

! [Lambot 2003]

Facultés Universitaires Notre-Dame de la Paix - Namur

PART 1 - FDNet

Chapter 2: State of the Art

Chapter 1: Introduction to FDNet

I. Concept:

The International Rescue System Institute [[.R.S.1.] is a Japanese organization that
works on the robots field, particularly on rescue robots. The role of this kind of robot is to
help rescuers finding victims after an earthquake or a disaster that destroys the environment,
making it dangerous. The world in which the rescue robot operates is thus very complicated.
Regarding this environment, the topography is unique in every place, every time. Unexpected
situations can always occur while the robot works among the debris. Even a situation
envisaged is rather complicated and can’t be apprehended perfectly. The first issue is how the
rescue robot can cope with that complexity in order to act in such environment.

It is not possible to prepare the robots to fit each kind of environment, one after the
other. Because of various trade-offs, the conception of a complete robot behavior is
impossible. Therefore rescue robot must have some form of intelligence, a software
architecture that combines the various fundamental technologies and new skills dynamically
learnt in that specific place. This architecture is FDNet, a Flat Distributed Network
Architecture.

FDNet is especially based on three previous architectures, namely ORiN, ORCA and
Open-R. In fact, there were many previous studies about robot architecture, but none of them
could respond exactly to our expectations. These architectures have no structure to perform
dynamic self-organization or dynamic reconfiguration, making them unusable for the rescue
robots.

Instead of trying to modify theses architectures, I.R.S.I researchers took the interesting
characteristics from them to create a specific and common architecture for all rescue robots:
FDNet. Like its bases, FDNet is a flexible, extensible and generic architecture.

Because of the complexity and the differences between environments, a rescue robot
can’t be totally autonomous. Under these conditions, the robot needs to be ordered and
monitored by a human operator. But, it isn’t realistic to think of a human always giving
detailed movement orders to the robot. It is necessary for the robot to be half autonomous.
By half-autonomy, we imply that the robot must be able to perform advanced tasks given
simple orders, but to wait for specific ones when it falls under conditions where human
judgment becomes necessary.

This is the reason why a common software architecture that shows flexibility

regarding both software and hardware is needed, the goal being to be able to describe an
intelligent system with that architecture.

Page 25 of 149

Chapter 2: State of the Art

To build this flexibility, the system must be able to do three things:
1. First, it has to be based on basic behaviors, not too simple to bear a minimal meaning
but not too complicated to be easily ordered.
2. Secondly, the system must provide an intelligent ordering system to be able to
construct advanced behaviors from the simpler ones.
3. Finally, the system must be able to create new behaviors according to the environment
in which it is executed. Being able to learn from its own work will greatly improve

system’s performances.

O Basic behavior

() Learnt behavior

O Advanced behavior

X O Sensor
O Ordering node

A—

Figure 1: FDNetworks’ flexibility property.

By creating advanced behaviors, based upon both basic and learnt ones, the robot will
be able to find answers to problems specifically encountered on the field. Robot’s reactions
will then be exactly fitted for the actual environment he is maneuvering in.

FDNet is created by using various layers. By dividing the architecture in different
layers, it is easy to limit the impacts of future changes or improvements to the layer concerned
by theses changes. This extensibility allows, for example, equipping robots with the most
suitable sensors anytime, changing them as the environment change.

Page 26 of 149

Chapter 2: State of the Art

L.R.S.I researchers wanted to create a common architecture usable for all rescue robots
whatever their type, with a common protocol allowing them to exchange data. This is
FDNet’s most important feature.

Rescue robots’ ultimate goal is to help rescue injured people. Therefore, the best way
to ensure that victims can be found and saved has to be put in place. Finding victims means
to be able to get the best and the most complete information about the environment and to be
able to discover the injured people using this information.

Various proposals have been made so far. For example, creating a group of robots
consisting of “crawler robots”, “legged robots” and “flying robots” has been thought of a lot.
The flying robots provide general information about the environment and supervise crawlers
and the legged robots, whose more specific researches will ensure victims can be found.

- ——
- -

-~ ® @ TNl
® " 1: The Helicopter Robot is
?. Y. \ deployed on the devastated scene
b and will flight over the
. ! environment to provide

- -

A information to the network.
2: Based on the information
received from the Helicopter
robot, the FDNetwork will give it
orders to make general researches
after casualties.

\ 3: When something interesting is
M found, the FDNetwork sends the

Crawler robots inside the debris

to make more specific research

; | for human lives.

Figure 2: An example of cooperation between different kinds of robots

However, it is currently difficult to exchange information between these robots
because each one has its own protocols and architectures. If all of them where using the same
common protocol and the same architecture, not only would it be possible to make each robot
able to discuss with each other, but it would also be possible to reduce their creation time, lots
of complex problems encountered by a team being already resolved by other ones.

Page 27 of 149

Chapter 2: State of the Art

Il. FDNet in more details:

Now that you have been introduced to FDNet’s purpose, concept and origin, we will
present each of its particularities in more details, basing ourselves on FDNet’s definition.

FDNetisa lat 'istributed work architecture based on the human imitation model,
allowing a pool of robots to cooperate in order to help rescuers to find victims in case of

disasters.

By Network, I.R.S.I Researchers imply that an information network is used to create
robot’s intelligence. The robots having to be half autonomous, they have to be able to take
some decisions like, for example, determining which direction is better to reach injured
persons in a fragile terrain. To represent this intelligence, a neural-like network is used.

FDNetworks are made of two main components: the Nodes and the Connections.
While Nodes consist of either raw information or processing objects, Connections are to be
viewed as links between the Nodes, allowing the processing objects to access the information

they need.

There are two kinds of Nodes:
1. Data Node': This kind of Node represents Network’s raw information, which can
either arise directly from the Base Network itself or from the environment robots
evolve in, by using sensors and cameras. New Datas can also be processed by using

Relation Nodes.
All information contained in the Network is considered to be a feature. In other

words, any data’s value is decided in the same way: the device-level feature is decided
in the same way that the system-level feature is.

2. Relation node”: Bears the same meaning in FDNet than the neuron specified in the
recognition model or in neural networks. By using input Datas, Relation nodes can
also calculate new Datas’ value. In this case, the Relations will work with the help of
“servants”: agents having specific functions. Relations can only calculate the value of
directly linked Datas. But through the use of servants, they can access FDNetwork’s
whole structure. This way, Relations can perform Network’ dynamic self-
organization / reconfiguration.

Relations and Datas can have parameters. These parameters can be used to initialize a
Node and to influence its behavior. Note that parameters are only represented as strings in the
FDNet architecture. It means that they have no type, and don’t bear any meaning by
themselves. The Nodes using them will give them their meaning.

! To refer to Data Nodes, the term « Data » will also be used.
% To refer to Relation Nodes, the term « Relation » will also be used.

Page 28 of 149

Chapter 2: State of the Art

Relation and Data Nodes are linked by Connections, which can be of two types:
e Reader Connection: A Connection between a Data and a Relation where the relation
can read the data’s value.
e Writer Connection: A Connection between a Data and a Relation where the relation
can write a new value in the data.

Data"+(ﬁ”’ » Relation

Connection

Figure 3: An entity/ Association diagram representing the relations between Nodes and Connections

Page 29 of 149

Chapter 2: State of the Art

The example below will show you a basic representation of an FDNetwork to help you
visualize how its components are organized in order to create Robot’s intelligence.

| Nodes v
Data Information from the system or the environment
Relation Active computing module

| Connections ;

Writer

Used by a Relation to read a Data’s value
Used by a Relation to write a Data’s value

Figure 4: Basic representation of an FDNetwork

Page 30 of 149

Chapter 2: State of the Art

The example below will show you the dynamism that exists in FDNetworks. It
represents a sub-network that can generate the motion of a robot using the cooperation of
many movement formation agents. The movements dynamically created are computed basing
on the information received from different kinds of sensors, whose aim is to provide real-time
information about robot’s condition.

“1 want to keep a balance.” 7l want to walk.”™
Phvsical mformation

Physical

A present posture mformation

keep a balance

did \ candidate
CatGRane of a next posture

of a next posture :
I I'he result

of the judgment

@ DATA(quantity of the feature,
or sct of those)

I Rolation(neuron , processing unit,
or sub-network)

the goal value
of a next posture

Figure 5: A sub-network that can generate the motion of the robot

The Datas in entry of this sub-network (“Physical information”, “A present posture™)
give information about robot’s current physical state and posture. Aside from theses Datas,
coming from real-time sensors, the sub-network also needs to know robot’s intentions (“I
want to keep a balance”, “I want to walk™) in order to decide robot’s next posture.

Theses Datas are read by different Relations (“keep a balance”, “walk™) who
independently calculate a candidate value for the next posture. Theses candidates will, along
with a Data representing the result of robot’s judgment about moving or not, will be
integrated to calculate the next posture the robot has to take.

Note that all is not necessary white or black. The decision can be, for example, that
the robot has to move, but just a little. In this case, the integration will give a higher
importance to robot’s balance but will not just stand still for all that.

In fact, as all Relations are just programming, anything wanted can be computed. The
main problem faced by researchers is not to compute Datas the way they like but to possess

the right information at the right time and to know exactly what to do with it in order to create
a usable output.

What we want to say here is that, although intelligence programming can be somewhat
difficult to achieve, the researchers have to focus more on what intelligence is to be

Page 31 of 149

Chapter 2: State of the Art

programmed instead. This is one of the reasons why our participation to the FDNet project is,
as you will see in the following chapters, an important one.

In the example above, it is important to note that “The goal value of a next posture” is,
in fact, the same data as “a present posture”. This Data just receive a new value from one of

its “child” Relation.

Figure 6: FDNet’s “Flat” characteristic

This fact represents the “Flat” characteristic in the definition. The Networks are said
to be “Flat” because, through the use of Connections, any Relation can be connected to any
Data, whatever their meaning. Inside an FDNetwork, there is no hierarchical structure or
different component levels. All Nodes and Connections have the same status in the Network

and are processed in the same way.

Self-organization comes from this fact. New features can be dynamically constructed
using information coming from any Node in the Network, whatever the type of information

they bear.

The term “Distributed” is used to point the fact that, in FDNet, a group of robots and
machines can work together from the intelligence of a single Network. It means that each
robot doesn’t especially have its own FDNetwork but can share 1t with other robots, all
contributing to Network’s global intelligence.

For example, in the Figure 2, the flying robot can provide information to the network
that will be very useful for the crawler robots to narrow their researches.

Page 32 of 149

Chapter 2: State of the Art

Before the specification of FDNet’s architecture, the researchers have adopted a
recognition model. In FDNet project, the outline of human imitation is assumed for the
rescue robots to solve most of the problems. They have done many researches in which they
transposed some human features to a robot and studied the application to the robot. Next is an
overview of this research.

Human with strategy

Imitation
-

Lobot with strategy

Human Imitation Model is used in FDNet for more than one purpose. First of all,
Network’s intelligence is based on the neural model, meaning that human intelligence is, to a
certain extend, imitated by FDNet.

After researches about what rescuers do when working in devastated environments,
LR.S.I. Researchers found that humans do two particular movements when moving around to
find victims: first, they tap the ground where they are planning to move in order to see if it is
stable and after, they slowly move their weight forward and analyze their own position in
order to be sure that the new position they are in is stable too.

Following the “Human Imitation Model”, I.R.S.I researchers tried to transpose this
information about movement inside FDNet model. Conclusions made clear that it is not only
important for a robot to move around to imitate human rescuers actions but also, it is
necessary to take care of the way it moves and to analyze the “feeling” he has about its own
position in order to take the best movement choices.

To make the best work possible here was quite important because moving on

devastated environments is one of the main tasks of FDNet robots. If this task cannot be
performed correctly, none of the following ones will be possible to achieve.

Page 33 of 149

Chapter 2: State of the Art

In order to achieve this requirement, FDNet model was expanded to include an
“Active movement sense”. This means that, gathering information coming from sensors
(tapping the ground in order to see if it is stable), motion, intentions and environment, FDNet
robots develop a perception-like ability. Their movements thus become more precise.

The information acquisition and recognition was realized by creating an “FDNet
neuron formation” efficient for the specified purpose. This formation can be updated each
time a common recognition model between robots and humans can be found.

Note that what are transposed are the high-level tasks humans execute. By doing this
instead of transposing low-level ones, researchers can enhance their robots with abilities
specifically thought for them. For example, four-legged robots (such as the one you see in the
picture below) will never move the same way as human being do even if the intentions about

moving are the same.

This is where self-organization can show its true power. It can become the base for
great enhancements because it can produce features that would be very difficult to find while
examining Human beings. Indeed, if it is quite easy to create a general scheme of the way a
human being moves, it is a lot more complicated to find all the specificities of the same

movement.

Basing on the transposition of high-level Human tasks, self-organization will be able
to reconstruct a “Human-like model” by finding an organization which allows producing the
same results as a human being.

Human) (Robot)

{Flat Distributed Architecture)

Human Intentions Robot Intentions
O o : j

Stimuli
Image Touch

A“ V.-‘

Sense Receptor

groping molion of ReQ

greping melion of human -

Page 34 of 149

Chapter 2: State of the Art

FDNet is, as said before, a common architecture especially created for rescue robots.
Indeed, previous studies on robot architectures were for entertainment (Open-R) and
industrial robot (ORiN and ORCA) but none of them could be easily transposed to be used
with rescue robots, theses ones having particular needs.

As rescue robots are the base of the architecture, FDNet has been specifically created
to ensure it can respond to theses robots needs and thus is able to solve the important
problems presented first'.

' Report to FDNet’s concepts in this chapter.

Page 35 of 149

Chapter 2: State of the Art

lll. Current FDNet implementation:

First of all, the creation of a complex rescue robot has been started some years ago and
is still under development. The rescue robot that can be seen here below, named RoQ
(Robotic Platform for Rescue), serves as the base platform used to construct FDNet and test

its abilities.

Figure 7: The robot RoQ

FDNet implementation started at the same time. It is still a work in progress and much
time will be necessary to have it work perfectly, though a beta version is already showing

some of its potential.

Page 36 of 149

Chapter 2: State of the Art

Development choices:

Quadruped robot TITAN-VIII

PC (Pentium-IIT 800MHz, 512MB RAM)

Device Network
o Angle of inclination meter, Infrared rays sensor
o Ultrasonic sensor, CCD camera

Tactile sensor at the sole

Wheel movement mechanism

Ankle mechanism

The Linux operating system (kernel Linux 2.4.4)
Real time extension RTLinux 3.1

Java language(Java2 SE 1.4.1 01)

postgreSQL DataBase (V. 7.1.3) .

CORBA Middleware (OpenORB 1.2.0)

Without entering too deeply in the details, we can say that FDNet’s API is defined
within the following layers:

The Network layer (CORBA): It is the place where Connections and information
transmission are implemented.

The Programming language layer(Java, C++): It is where the real functions and
behaviors of the Relation and Data objects are implemented.

Distributed Computer

. v g !
Device| |Device | |Device |

RoQ i

b FDNet
i 4 [ST
CORBA
Java VM i
i Java VM
JNI native method i
%3 i
I Linux i!
RT thread i
; I Other OS
| RTLinux I
f
PC :
) ¥ !
i
i
i

Figure 8: Implementation of FDNet in various layers

Page 37 of 149

Chapter 2: State of the Art

While Java/CORBA was selected because of Java’s portability feature the
implementation on RTLinux is used to control the parts that are time critical (i.e. a defined
response time is expected). For example the control of each RoQ Robot’s joint is mounted as
a real-time task of the RTLinux and can be available directly for the other components.

Page 38 of 149

Chapter 2: State of the Art

V. Conclusion:

Following FDNet’s definition, we gave you an idea of FDNet’s aim, its capabilities
and its potential power. Though it is still far from being a completely usable architecture, its
implementation is advancing well and tests that have already been made, mostly about human
imitation model, are satisfactory enough to give a strong will to further continue its
development.

Of course, being under construction, a lot of parts still need improvements and
enhancements (and, as you will see in the following chapters, some very interesting
enhancements have been thought of) but the base is well defined already, putting a powerful
rescue robot architecture at researchers disposal.

In the near future, the test robot — RoQ — will be improved and more and more capable
prototypes will be created. At the same time, FDNet will have its bugs corrected and the tests
between the network architecture and the robot will lead to providing answers to some of the
questions at the base of FDNet development.

Later on, FDNet’s distributed component implementation will allow seeing how a pool

of robots using the same intelligence can perform and will give life to lots of future
researches.

Adding to this all the ideas that nobody can think of at the time being, we are certain
that FDNet research holds a big potential which will clearly lead to important advancements,
at least in the rescue robot field and probably in general robotic science too.

Page 39 of 149

Nllll'lllllllllllllll“

ﬁ

Chapter 2: State of the Art

Chapter 2: State of the Art

FDNet’s architecture is based on 3 main architectures: ORiN, Open-R and Orca.
FDNet researchers have deeply studied and analyzed theses architectures to find their
advantages and weaknesses in order to improve FDNet’s conception.

The main ideas of theses three architectures will now be presented to give you a
glimpse of FDNet’s origins and working.

I. ORiIN: A common object model for robotic systems

As a three-year project of NEDO (New Energy and Industrial Technology
Development Organization), JARA (Japan Robot Association) started "the Development of a
standard interface that provides a unified access mean" from 1999. The outcome of this
project was ORiN' (Open Robot interface for the Network). In other words, ORiN is a
system for standardizing communications interface between personal computers and robot
controllers.

In general, robots’ accessing methods differ from manufacturer to manufacturer. By
standardizing this access, ORIN transfers data” stored in the controllers of various industrial
robots onto personal computer. Once transferred, this data can be easily accessed via

networks and shared amongst application monitoring robot operations, equipment diagnoses
and even for production control.

ORIN is expected to improve the productivity of manufacturing facilities, these having
only one standard to follow. More than this, it would also expand the scope of automation
application through Know-how accumulation, every manufacturer being able to use
concurrent concepts in their own creations. By standardizing the interface and data file
specifications (through the use of standardized applications), this system also enables users
(software houses) to exchange data with any robot conforming to the ORiN interface.

ORIiN provides the following advantages:
e Uniform data exchange is possible between robots created by different manufacturers.

¢ ORIN being an Open specification, conform application can be developed by third
parties.

e Ease of configuring multi-vendor systems.
Worldwide standardization through proposal to ISO.

ORIN expected to bring about the following economic effects:
e Increased competitiveness in manufacturing.
e Expansion of the robot market.
e Entry of the software industry into the robot market.
e Creation of a robot engineering industry.

' See [JARA 1999], [Inukai 2003]
2 For example: Robot’s position information, number of parts to be assembled, number of defective parts, etc...

Page 41 of 149

Chapter 2: State of the Art

To achieve the above-mentioned objectives, it was decided to configure ORIN with
provider, kernel and application logic layers.

The provider layer compensates for the differences in expression and/or protocol of
robot controller data among various manufacturers and transfers data to the kernel layer,
which is configured based on RAO (Robot Access Object) and RDF (Robot Definition

Format).

RAO applies DCOM distributed object model technology to provide network
transparency and uniform robot access, while RDF uses XML to provide files for defining
structural models of robots with expandability. This enables ORiN to accept individual robot
differences thus allowing it to be continuously used in the future.

Windows PC Windows PC

layer

5
B
o
g

Standard IF :

RAD: Robot Access
Object provides the

unified access method
to robot data based on

Robots in the market

Orin Architecture

Figure 9: Scheme representing ORiN’s implementation.

Page 42 of 149

Chapter 2: State of the Art

Il. Open-r: An Open Architecture for Robot Entertainment

Sony Corporation has proposed an open architecture for autonomous robot systems,

which aimed particularly, but not exclusively, entertainment applications. In order to achieve
system extension and reconfiguration capabilities for mechanical, electrical, and software
systems, they have proposed an architecture with the following features:

1. A common interface for various components such as sensors and actuators;

2. A mechanism for obtaining information on functions of components and their
configurations;

3. A layered architecture for hardware adaptation, system services, and application
providing efficient development of hardware and software components. A software
platform provides an environment for agent design so that designers can customize
their recognition and control algorithms. This is based on Apertos, a fully object-
oriented real-time distributed operating system which allows each physical and
software component to be defined uniformly as an object.

The outcome of this project is Open-R' and its goal is to establish a draft standard for

mobile robots and their software systems. This standard would allow different companies and
researchers interested in entertaining robots to build their own products and prototype systems
using readily available components which meet Sony’s specifications.

Their open architecture and standard target entertainment applications for three reasons:

L

Complete Agent: A robot for entertainment requires a complete autonomous physical
agent. Instead of research and development activities focusing on specific perceptual
functional components such as speech and visual cognitive subsystems, a complete agent
promotes and accelerates research activities involving combination of subsystems and
whole robot systems.

Technology Level: Robots for entertainment applications do not require such high
performances in speech recognition and visual information processing that are required in
mission-critical industrial applications. While there exist special and difficult
requirements in entertainment applications themselves, limited capabilities or
performances can cause a certain kind of excitement to users in most game playing
situations such as RoboCup(soccer games by robot agents). This implies many existing Al
technologies can be implemented for these kinds of applications.

Emerging Industry: Sony’s researchers believe that they will be able to create a
completely new market in the near future by introducing this kind of robot product sharply
focused on entertainment applications. After the Gold Rush of Internet and cyberspace,
people will eagerly seek real objects to play with and touch. Robot Entertainment provides
tangible physical agents and an undoubted sense of reality.

By establishing a standard for entertainment robot software as well as robot parts,

manufacturers can produce and sell their own commodities using the standard. Al researchers
often spend large amounts of time customizing hardware. Readily available components allow
researchers to construct customized robots for their research platform minimizing time
consuming hardware and software hacking.

' See [Fujia & Kageyama 1997]

Page 43 of 149

Chapter 2: State of the Art

Below are Open-R system architecture’s main features:

¢ Open Architecture: Open-R defines a set of standard interfaces for physical and
software components and a programming framework, so that anyone can design
extensions to the basic robot system within this standard.

e Configurable Physical Components: Open-R defines a common interface for all
robot components for flexible and extensible robot configuration. This includes a
mechanism for obtaining information on component function and configuration for
interactive applications. Along with object-oriented software architecture, the Open-R
provides Plug-and-Play capabilities for physical robots.

e Object-Oriented Robot OS: Open-R employs Apertos, a fully object-oriented dis-
tributed real-time operating system. This enables to define all physical and software
components uniformly as distributed “objects".

In Robot Entertainment, there will be various applications, such as a pet-type robot, a
game-type robot, or a tele-presence robot, which may be fully autonomous, or remote
controlled semi-autonomous.

For these applications, the following are considered to be common requirements:
e stand-alone application
e extensibility
e friendly application development tools.

The AIBO entertainment robot uses OPEN-R as a standard
interface. Facilitating modularised hardware and modularised
software, this interface greatly expands the capabilities of AIBO
entertainment robots.

The main advantage of working with Sony’s AIBO is that it is an
accomplished and stable development platform. In addition, it
features state of the art hardware and a free and downloadable
software-programming tool. This enables universities to fully
gear resources and focus to programming in the area of Artificial
Intelligence. -

Sony Corporation has developed a prototype small biped
entertainment robot "SDR-4X" that can adapt its performance to
its environment and situations found in the home to further
develop the possibility for a biped-walking robot.

The robot uses the same OPEN-R architecture as Sony's four-
legged autonomous Entertainment Robot "AIBO". Two
technologies applying the OPEN-R architecture, the "actuator”
that moves the joints and "Whole Body Coordinated Dynamic
Control” for real-time control of the joints realize the biped

walking motion of the SDR-4X.

Page 44 of 149

Chapter 2: State of the Art

lli. Orca: Open Robot Controller Architecture

To make robot technology become widely used, and to make various robots appear in
the market, robotic parts - including mechanism, hardware, and software - should be produced
as components with open interface. A lot of activities have been done on research and
development for robot technologies in the world. However, the robot technologies so far
cannot be reused because of incompatibility of the robotic parts. With the open interface, it
becomes possible to use the robotic parts to build a wide variety of robot systems. Some
people are confident that robotic technologies and know-how's can be accumulated for reuse
with these reusable robotic parts.

To reach this hope, the Toshiba Corporation researches leaded to the creation of Open
Robot Controller Architecture (ORCA') which allows making the reusable robotic parts
(software / hardware) to enable easy built-up of robot controllers. ORCA also allows
manufacturers to quickly and easily integrate robotic parts developed by third parties into
their systems, achieving efficient development of advanced robots in a relatively short period.
Speech processing systems, image processing systems, robot control systems, and so on, are
easily mixed up to build a robot system.

Toshiba’s researchers have proposed Robot Technology (RT) reference model as an RT
software layer structure. The structure consists of five layers:
e The physical layer;
The I/0 link layer;
The actuator control layer;
The motion control layer;
The task layer.

ORCA has been defined according to the RT reference model. With the RT reference
model, a developer can concentrate on a layer for which he develops software, because the
software can utilize software for the lower layers with the open interface.

ORCA utilizes distributed object technology to abstract the communication between
robots and between components. The distributed object technology enables developers to
program a whole robot software system in object oriented manner. In ORCA, we can treat all
robots as objects, and all the objects are defined with open interface. With the use of the
distributed object technology HORB, the robot objects can be distributed anywhere in
networks and they can be used directly from any node in the networks.

ORCA also consists of various interfaces and classes containing robot control software
and acting as the ORCA’s API specification. In order to use ORCA, developers have to
implement the APIs defined in the interfaces. This ensures that any ORCA user will be able
to use ORCA-based controller created by any other developer in the world.

! See [Ozaki 2003] and [Toshiba Corporation 2003]

Page 45 of 149

Chapter 2: State of the Art

Toshiba Corporation had developed a sophisticated home robot that could
carry out multiple tasks around home. “ApriAlpha” integrates voice
recognition and voice synthesis technologies that allow it to hold
conversations with people, and image recognition technology that allows
it to recognize people whose features are recorded to the robot’s memory.

Apridlpha integrates Open Robot Controller Architecture (ORCA), which
allows simple additions of new functions and upgrades of present
Sfunctions.

Page 46 of 149

PART 2
Our contribution

to FDNet

- Namur

Notre-Dame de la Paix

Chapter 3: Retro engineering

Chapter 3: Retro engineering
I. Motivations:

The work we had to do had strong relations with the work already done by FDNet
programmers. In fact, we had to create programs that would be used between Robot’s
intelligence (FDNet) and the users, allowing them to unleash the full power of this network
architecture without having to deal with its complexity.

In an environment like this one, it is clear that we had to understand FDNet’s logic,
structure and architecture completely before even thinking about our own work.

A common way to achieve this work (understanding how FDNet works) would be to
have a general explanation about what the application does, to see it run (if possible), to read
its specification and its source code and to discuss all along with the team, to understand their
way of thinking and their point of view about the way they want the application to be done.

But we had to face here with a major problem: the language spoken and chosen to
write the documentation, the Japanese language.

First, the programmers couldn’t speak English enough to allow us to discuss with them
about the project. They could read English but no spoken interaction was really possible. In
such an environment, reading the most possible documentation, specification and notes and
trying to understand the most part by ourselves is far more preferable.

But we had to face the problem that no documentation was available for us. In fact, there
was very little general explanation about the project and no specification at all. The only
thing that seemed to be present in this field was code documentation...which was written in
Japanese. As the programmers had no time to translate the comments and/or to explain us
how the whole application worked, we had to read the source code, without any comment at
all, and to understand it the most possible.

Doing this kind of work is a very difficult task. To maximize our comprehension

capacity, we decided of a structure allowing us to write down every thing we understood and,
by advancing in our understanding, to recreate our own documentation.

Page 49 of 149

Chapter 3: Retro engineering

Il. Analysis method:

This is the structure we decided to use for documenting all the source code we read. Note
that the code was also a work in progress and was still being heavily modified when we
started this “Retro-Engineering” process.

The name of the class described. This name is Case Sensitive
If the class is abstract, its name will be written in blue.

If the class is an interface, its name will be written in orange.
Extends The name of the class that this class extends; null if no extension.
Implements The name(s) of the interface(s) this class implements; null if no implementation
is made

UGG GTRGELCEE The main aim of the class. This is a general explanation of what the class has
been created for. This explanation must help any programmer to understand the
structure of the code inside the class better and to give him an idea of the
relations that this class has with the other ones (if any).

Comments Any specific comment that doesn’t fall In the “aim” group here above.
Questions are written here in red color.

Property name Name of the property. Case sensitive

Property use The reason why this property has been created.
Comments Any other comment concerning this property
Questions are written here in red color.
Method name Name of the method. Case sensitive
Method use The reason why this method has been created for. The explanation must be
clear and general. It doesn’t explain the inside of the method, only what it does.
Comments Any comment, technical or not, fall here.

Questions are written here in red color.

The aim was to make the documentation in several loops, each time answering the
questions written in red and writing new questions down.

At the same time as this documentation’s creation, we created schemes of the dynamic
interactions between the classes, schemes of the database tables, general schemes of way
FDNet worked logically and so on. These schemes allowed us to have a better overview

about the work done by FDNet.
We decided to limit our work to FDNet’s core packages. Theses packages contained all

the base information concerning network entities, the relations between them and so on. This
limitation was set because we had little time for us to produce quite an amount of work too.

Page 50 of 149

Chapter 3: Retro engineering

lll. Conclusion:

To use a retro engineering process in a case like the one we faced was really a difficult
job. It took us more than one month (with three people) to read the core packages and to have
a first draft of FDNet’s implementation. To produce the schemes required us to read the code
more than one time and we must admit that we still have some questions which haven’t found
any answer.

Nevertheless, the retro engineering system we decided to use (for which an example is
given in annexes 1 and 2) appeared to be a good choice. It allowed us to understand the most
of FDNet, which is already interesting, but, more than this, it constituted our documentation
for the rest of the training session. Without this retro engineering system, it is clear that

achieving the work we were asked to do at the very beginning of the training session wouldn’t
have been possible.

Page 51 of 149

Chapter 4: The Logger

Chapter 4: The Logger

. Introduction:

We have created a system which acts as a buffer between the FDNet core and the database
because the database and the core don’t work at the same speed. Indeed, the core creates so
much information that it cannot be saved in real-time. A buffer system has then been
implemented; its role being to save all data to be put in the database in memory (thus being
able to keep up with the core’s speed) and to save it in the database at a later time (thus
working at database’s speed).

This system can also share information about the network states because we wish to analyze
the states of the FDNet network in real time (through the FDNet viewers).

To attain these objectives, we have created a network state logger. This logger is able to store
the network states and share them rapidly with the FDNet viewers (which have to work in a
constant delayed time).

Page 53 of 149

Chapter 4: The Logger

To understand the function of the logger, we must have a general view of the FDNet project.
Below, we have a scheme that sets the place of the logger in this project and the interaction
with the other elements that already exist.

FDNet Network Editor/ FDNet Data-Relation Network

FDNet Network Definition ~ ~ =~~~ W TTTTToTiToTTTmToTTTmmmTemTeeoes

Language Inetrpreter ;

% [TDRet Data Logger]
: Y, ' :

: Data Processor :

SQL Y O network command

SQL
\ nutwgrk states
> ITOP (CORBA)
Database TCP'
T : RN\

Data Cache(Data Delivery Agent)

Robot, RoQ
. TCP

L vtk states ¥ \ """ :

FDNet Network State Viewer
Figure 10: General view of FDNet that show the relations between the different applications of FDNet

Page 54 of 149

RoQ Dynamics Simulator

Chapter 4: The Logger

Il. Specification:

This part of the document was used to agree, with all people that work in the FDNet project,
on what the logger must do and how the logger interacts with the other components of the
project. .

We define all elements that must intervene in the creation of the logger and the FDNet cache.

The Logger:

Considering that the database server is slow compared to the processing speed of the logger,
the logger must have a cache. The events sent by the core are stored in this cache. A delayed
writing must also be implemented between the logger and the database.

This cache must also allow the viewer to monitor some events created by a specific object. As
a reminder, the logger must work in real time with the core and the viewer. So the access
speed to this cache is very important and has to be very fast. We must also manage the multi
access and take care of the integrity of the values contained in this cache.

The cache must also make a difference between the events monitored' and not monitored.
Only the events that are not monitored can be deleted from the cache and saved into the
database.

The Core:

The FDNet core is the heart of the project. It represents the low level control on the rescue
robot and also contains all basic functionalities needed to create, configure and update the
network. It also sends some information about the state of the network.

A cache must be implemented in the FDNet core. The utility of this cache is to receive some
events from a node and store it. After that, the cache must send theses events to the logger.

This cache uses the same logic than the cache used by the logger. But the core doesn’t need to
monitor events contained in its cache. So we must define a general concept for the cache that
can be used for the logger and the core.

The viewer:

The logger has network states that must be accessible by the FDNet Network State Viewer.
We want to analyze the network by using the interface and the viewer. To analyze the
network, we need the network state information contained in the logger cache.

So, to allow the viewer to access to specific network state information, we must implement a
server on the logger for the viewer.

' An event is monitored by the viewer to analyze the network state

Page 55 of 149

Chapter 4: The Logger

Scheme 1: The FDNet core sends a network state, here value of a data, to the Logger.

Network State Logger
FDNet Core
2: Send network state
Data Cache
Cache
. - 1: send
3: Save Comment:
. 1: A Data sends a network state to the cache of the core.

2: The FDNet core sends this information (network state) to the Logger @
cache and erases this information from its cache.
3: The Logger cache receives the network state and stores it in the database

with a delayed writing.

Page 56 of 149

Chapter 4: The Logger

Scheme 2: The FDNet core reads/writes connection information and sends network command event to the logger.

Network State Logger
FDNet Core
2: Send network command event
Cache \
\ 1: Read/Write
3: Write
Comment:

1: The FDNet core reads/writes current connection information directly in the database.

2: The FDNet core sends a network command event because we want to analyze the network state by
using the Logger information.

3: The logger writes this event in the database.

Page 57 of 149

Chapter 4: The Logger

Scheme 3: A viewer wants network information.
Network State Logger .
gg Viewer
2: Send response
Cache #
1: send request
Comment:

1: A viewer tells to the logger that it wants to receive the state of a
_certain data.

2: The logger receives this information and sends all events requested
by this viewer.

Page 58 of 149
N N N N R N I N N S N R e N I MR Il BB B BeE e

Chapter 4: The Logger

Data Base:

We use the relational database PostgresSQL 7.0.

Programming Language:

We use the object oriented language java, because we want to use an object oriented method
to program the logger and it must work on different operating system.

Operating system:

Using the Java language, the logger works on the Windows and Linux operating systems.

Communication:

» Logger - Viewer: We use a TCP connection and a streaming service

» Logger - FDNet core: We use a TCP connection and a streaming service

In this part, I will present you some ideas to improve the logger functionalities.

Creating an interface for the logger containing information described here below would be
interesting. Note that this interface has been accepted and done. You can find more details
about it at the end of the logger part.

Logger’s parameters:

These are the parameters used by the Logger at work time:

» Logger’s address: The IP address used by the FDNet core or Viewer to connect to
the logger

TCP port used by the FDNet core

TCP port used by the viewer

Cache’s size: The memory size available for the Logger cache during the
execution.

YV VVY

This information could be changed while the logger is not working. That way, it is easier for a
person to change the Logger properties.

Page 59 of 149

Chapter 4: The Logger

Logger’s real-time information:

This information shows how the logger is actually working:

» Size of the cache used

» Size of the cache free

» Information contained by the logger cache: I don’t know if it is very useful to see
this information. We can for example search all information about a certain data
and display it. This part is going to be more specified later.

» Number of viewer and core connected to the logger with their IP Address.

With this interface you can also start and stop the logger.

Page 60 of 149

Chapter 4: The Logger

lll. Database of the Network State Logger:

In this document, we specify the database tables necessary for the network state logger.
To save data and relation values, we have tables ‘datavalue log’ and ‘procvalue log’. And to
save network command events, we use the table ‘netcommand log’.

Table:
datavalue log

Role of the table:

This table stores all values of a data node during its life.

Scheme:

datavalue_log

sourceid: integer
time: bigint
value: text
typeValue : Byte

Pk: sourceid.time

Definitions of the attributes:

sourceid: The FDNet identification (ID) of the data
time: The time when the value was assigned to the data
value: The value of the data at this moment.

typeValue : The type of the value (Boolean, long,...)

VVVYVY

Page 61 of 149

Chapter 4: The Logger

Table:

procvalue log

Role of the table:

This table stores all values of a relation node during its life.

Scheme:

procvalue_log

sourceid: integer
time: bigint
value: text

Pk: sourceid.time

Definitions of the attributes:

» sourceid: The FDNet identification (ID) of the data
» time: The time at which the value was assigned to the data
» value: The value of the data at the present moment.

Table:

netcommand_log

Role of the table:

This table stores all network event commands.

Scheme:

netcommand_log

id_db: integer
sourceid: integer
sourcetype: text
command: text
params_id: text
params_type: text
time: bigint

Pk:id _db

Page 62 of 149

Chapter 4: The Logger

Definitions of the attributes:

» id_db: The database identification of the tuple. It is set automatically by the database
when a tuple is inserted in this table.

sourceid: The identification of the source that creates this command

sourcetype: The source type

command: The command type of the event. There are four commands (connect,
disconnect, create and destroy).

params_id: The FDNet identification (id) of the command parameter.

params_type: The Parameter type of the command. We have four type (reader, write,
data and proc)

time: The time when the value was assigned to the data

YV VYV VVYVY

We have split the table “/ogValue” (deﬁned by the student Mr Pujol) into two tables,
“datavalue_log” and “procvalue_log” because we want to improve the access speeds to the
database.

With two tables, we also use less memory space than with one table, because the type of the
value is not necessary to know if the value is from a data or a relation.

Page 63 of 149

Chapter 4: The Logger

IV. The Cache:

For the logger and the FDNet core, we use a cache to stock events that represent some
changes in the network. We have two kinds of events, network state events and network
command events. We have defined a common cache architecture. This architecture is
designed to be generic and is very fast.

General architecture

In this cache we have two event containers. One is for the events that represent the network
state. The other is for the events that contain the network command.

We must also monitor some events, in particular network state events. To do that, we have
created a special event container that extends the normal event container and adds the
monitoring of the event.

So in the cache, we have an event container for the network command events and an event
container with monitoring functions for the network state events. In the future, if we also want
to monitor the network command events, we just have to change its event container. It is also
easy to add another type of event in this cache. This makes the cache architecture very
flexible and generic.

The Event Container architecture

An event Container stores all events. Each event has the identifier number of the data or
relation that creates it. A same Node (Data or relation) can create a lot of events at different
times. An event is accessed by using its identifier and also, occasionally, the time when the
event was created. Then to improve the access to a specific event, we must have an index on
the identifier and the time of the event.

This index is implemented by using an array that contains the identifier of all nodes. Each
entry of this array contains all events that the node has created and these events are sorted by
time in the array. This is an easy way to get all events (sorted by time) that a specific node has
created.

The Event Container Monitor architecture

An event Container with monitoring functions is the same as a normal event container, but
with some improvement to implement the monitoring of the events.

A monitor can be set on a node. When a monitor is set on a node, all events that this node has
created must be available for the entities that need them. When an event has been sent to all
supervisors, this event is no more interesting for the supervisors and becomes unavailable for
them until a new supervisor is added for the node that has created this event.

To improve the access and the processing, we have duplicated the index of the event
container.

Page 64 of 149

Chapter 4: The Logger

There is an index for all events monitored and an index for the others.

The added index has the same structure than the other index. In other words, this new index
contains an array with the identifier of all nodes, and for each entry of this array we have
another array with all events created by this node and sorted by time.

Event Container for
Network command

Cache

Event Container with
Monitoring for Network state

Simple Event Container

Ident 1 Ident 2 Ident x
\ 4 y
Event : Event : Event :
ident 1, ident 2, ident x,
time x1 time yl time z1
Event : Event : Event :
ident 1, ident 2, ident x,
time x2 time y2 time z2
Event : Event : Event :
ident 1, ident 2, ident x,
time xn time ym time zt

Figure 11: Scheme and structure of the cache and the simple event container

Page 65 of 149

Chapter 4: The Logger

Figure 12: Scheme and Structure of the extended event container

Page 66 of 149

Extended Event Container
Events not supervised
—> Ident 1 Ident 2 Ident x
Event : Event : Event :
ident 1, ident 2, ident x,
time x1 time yl time z1
Event : Event : Event :
ident 1, ident 2, ident x,
time x2 time y2 time z2
Event : Event :
ident 1, ident 2,
time xn time ym
Events supervised: In this example, we have a supervisor on the node ‘Ident 1’ and ‘Ident x’
» Ident 1 Ident x
Event : Event :
ident 1, ident x,
time time z3
xn+ vl
Event :
ident x,
time z4
Event : .
ident 1, lidvent)
time i : ent x,
xn+ vr time zt

Chapter 4: The Logger

V. The Server

To add and read information contained in the logger, we have implemented two TCP servers.
One of these servers must receive events from the FDNet core and store them in the logger’s
cache. The other server must give all events requested by viewers. To respond to these
requirements, we have defined a TCP server in a general way.

General architecture

The server must be able to receive many clients. Then all processing necessary to respond to a
client must be done in another thread.

To respond to this requirement, we use an architecture with three layers for the server: server,
factory and connection.

The server creates a factory and the role of this factory is to receive all client connections
from the server. When a new client is received by the factory, it creates and delegates a
specific thread, a connection, to respond to this new client.

So for each client received by the factory, a new thread is created.

Advantage of the architecture
S J

This architecture has many advantages. With this architecture, the server doesn’t respond
itself to the client request. Its mission is only to get the new client and send it to its factory. So
the server is available very quickly and often. The server can thus receive and serve a lot of
clients simultaneously.

another advantage of this architecture is that the factory creates and manages all connections
with the clients . It is possible to limit the number of clients served by the server in the same
time. You can also check the state of all client connections (activated, ended,...). It is very
useful with an interface where you can follow the connections established with the logger.

Page 67 of 149

Chapter 4: The Logger

Client 2 New Client
Client 1 Server
4
Work Add new
together Client
Connection 2 Factory
New Connection for client 2 e

Connection 1

New Connection for client 1

Figure 13: Architecture of the server in three layers used for the Logger

We saw that two servers were used for the logger. Each server uses the architecture described
above. Thanks to the object oriented language, we use many common components for the
two servers. In fact, only the connection class is different for the servers. We use two different
child classes of the connection class.

When the factory creates the connection object for a client, the factory gets the constructor of
one of the children of the connection class, and creates an instance of this child. Like this, we
have created a very generic server and factory. To use this class and architecture for another
server, you only need to create a child of the connection class for your server. After that, you
just have to call the constructor of this class to the factory and your server is ready to work.

Page 68 of 149

Chapter 4: The Logger

VI. The Logger:

The logger has three principal roles in the FDNet project.

The logger must act like-a buffer between the FDNet core and the database. Because of the
speed difference between the core and the database, we need something that receives all
events sent by the core, stores them in a cache and writes them in the database.

The logger must be able to receive all requests from viewers and respond to them by sending
all events they ask for. To achieve that, the viewers also need to get the events stored in the
logger cache and in the database.

To summarize, the logger must receive all events from the FDNet core and store them in the
cache. It must be able to write all events from the cache into the database. Finally, it must also
be able to send all events to the viewers to respond to their requests.

Like explained before, the logger has three main missions. The architecture of the logger
follows the same logic, because the components are designed by objective. Here is a
presentation of every part of this architecture.

Server Receiver

This part of the logger must receive events from the FDNet core and store them in the Logger
cache. This server uses the same methods as the TCP server described in the beginning of this
document. The cache also has the same functions as the cache defined before.

This part has been improved to empty the FDNet core cache in a very fast and efficient way to
avoid filling up the core’s memory completely.

Logger writer

The mission of this logger’s part is to read all events from the logger cache and to write them
into the database. This part is very important because if the logger takes too much time to
achieve these tasks, the cache may fill up more rapidly than it empties. The consequence of
this problem is that the memory could be too shallow to stock all events. Consequently, this
part has been improved to be very fast and to keep the integrity of the events in the same time.

Server Sender

The third and last part of the logger is the server that sends all events requested by the viewer.
This part must check the database and the cache to make sure the events requested are enabled
for the viewers.

Page 69 of 149

Chapter 4: The Logger

Logger FDNet Core
Viewer
TCP - Server Sender
Client

AA

.‘_ Server Receiver TCP Client
i

Connection
Logger Writer Manager

Figure 14: General architecture of the Logger

Page 70 of 149
BN NN W GEN N W BN EE I S NN DN s N N MY e Y N s e

Chapter 4: The Logger

Vil. Improvements

The logger must be very fast to succeed in its three missions. It must receive and fill its cache
very quickly and efficiently to avoid using up all memory of the core cache. But it must also
empty its cache rapidly and write all events in the database. Finally, it must also reply to the
viewers’ requests by sending all events they ask for. The logger uses only one cache and each
one of the three logger’s parts use this cache to add, get or delete its content. So we look after
the integrity and value of the events.

Another difficulty in the logger’s improvement is that some improvements can affect others.
For example, if you want to respond rapidly to a viewer request, you must avoid accessing the
database because of its slowness. Consequently, you must keep a lot of events in the cache.
But if you want to keep more events in the cache, you can’t empty it and send its events into
the database. A lot of other problem like this exists and may arise when trying to improve a
mission of the logger.

In this part, we present the most important improvements that we have applied to the logger.

The access to the database is very slow and the logger must empty the cache in a very fast
way. In fact, a lot of events come from the core and are stored into the logger’s cache. The
exchange of information between the logger and the core must be done in real time. So this
cache fills up very fast and is emptied very slowly because of the database access. The cache
has a size limit and an ‘out of memory’ exception appears when we overstep this limit. This
exception is a way to crash the logger and to lose many events.

We must improve the access speed to the database. Write one event per access is not a good
idea. We must use a buffer between the logger and the database. This buffer must contain all
events that we want to write into the database. This buffer is filled with events and when it
becomes full, we write the content of the buffer into the database in one single access.

With this technique, there is a need for a timer that starts in the beginning. If the buffer fills up
before the end of the timer, it is stopped and the content of the buffer is written. After that, the
timer is restarted. If the timer expires and the buffer is not empty, the content of this buffer is
written into the database. The timer is used because we don’t want to keep an event longer
than ‘x’ seconds into the buffer (‘x’ represents a value in seconds >0).

We must also pay attention to the consistency and the integrity of the data. The cache of the
logger is accessed to write and read events. The logger must share some events with the
viewer. To present the events to the viewer that requested them, the logger must check the
database and its cache to find the events. To keep a good coherence, the buffer must be
emptied (as a reminder, the buffer contains the events to save into the database) and its
content must be written into the database before reading the content of the database.

Page 71 of 149

Chapter 4: The Logger

To understand how this technique works, let’s analyze the following schemes:

» The buffer becomes full before the end of the timer

Event 1 Logger
2: flush Event 2 1: write
Event x
3: Restart

0: Start < ;

Figure 15: Database access improvement — Scenario 1

» The timer expires and the buffer isn’t full

Event 1 Logger
Event 2 1: write

4: flush

2: Expired
5! Restart

0: Start < ;

Figure 16: Database access improvement — Scenario 2

Page 72 of 149

Chapter 4: The Logger

Different improvements can be done in this domain, but as we have seen, an improvement can
influence others. For example, if you want to increase the efficiency of the information
exchanged between the logger and the viewer, you must keep many events in the logger’s
cache. To do so, you must decrease the amount of exchanges between the logger and the
database, and postpone the writing of the events. You must also be careful for the size of the
cache, because it fills up very quickly. The operations to fill the cache (receive events from
the core and write them into the cache) are happening faster than the operations to empty it
(read events from the cache and save them into the database). Improvements are definitely not
easy to do. You must pay attention to the way you implement the improvements. It is easier to
choose a static way to implement the improvements, but it is not very efficient and viable.

The best way to solve this kind of problem is to choose a solution that checks the most of the
requirements and this solution must also create some dynamic priority for all the
improvements. For example, you can empty the cache slowly, but when this cache become
nearly full, you must revalue the priority of the improvements.

This solution with dynamic priority has been chosen in the construction of the logger. It is
implemented by using the thread priority. Let’s see the functioning of the thread priority. The
logger is composed of three main threads: two Servers and a thread that writes all events from
the cache into the database (we call this thread the writer). In the beginning, all threads have
the same priority. Because of the slowness of the database access and the amount of events
exchanged between the logger and the FDNet core (as a reminder, the logger and the FDNet
core work in real time), the cache size increases rapidly. When the cache size reaches a limit
(a critical size defined by the user) the priority of the writer thread is increased (normal
priority to high priority) to empty the cache faster. When the cache reaches a normal size
defined by the user, we decrease the priority of the writer thread (high priority to normal

priority).

To implement this technique and to check the current available size of the cache, we need to
know the total cache size which is given by the user and expressed in Byte, Megabyte or
Gigabyte. We also need to define the size of each event stored by the cache and the number of
events stored in the cache at a specific moment. The critical and normal thresholds,
represented by a percentage of the cache size, must also be defined by the user. To calculate
the size of an event, represented here by a java object, we use the ‘Serializable’ property of
java.

First, we calculate the maximum number of events that the cache can store. Once this has
been done, we define the critical number of events that the cache can store by using the
critical percentage and the maximum number of events. We do the same operation to obtain
the normal number by using the normal percentage instead of the critical percentage. To know
if the priority of the writer thread has to be changed, we compare the critical and normal
number with the number of events stored in the cache at this particular moment.

Page 73 of 149

Chapter 4: The Logger

Let’s see the following scheme to understand how the thread priority works:

» In the beginning, the cache is empty and all threads of the logger have the same
priority

Logger

Server Sender

‘W/ Priority: Normal

Write operation Server Receiver
Priority: Normal

<
-~

Read and delete operations

Figure 17: Thread priority improvement — The states of threads and cache in the beginning

—| Logger Writer

Priority: Normal

» The cache reaches the critical level and the priority of the writer thread is changed

Logger

Server Sender
Priority: Normal

Critical level

Server Receiver

Priority: Normal

—| Logger Writer
Priority: High

Increase priorit)

Figure 18: Thread priority improvement — The cache reaches the critical level

Page 74 of 149

T R e T

Chapter 4: The Logger

» The cache reaches the normal level and the priority of the writer thread is changed

Logger

Server Sender

Priority: Normal

Server Receiver

Priority: Normal

Normal level

Decrease priority ~ Logger Writer
Priority: Normal

Figure 19: Thread priority improvement — The cache reaches the normal level

Page 75 of 149

Chapter 4: The Logger

VIII. The interface

All information that you enter in the logger interface is saved in a file that is read when you
launch the interface. If this file doesn’t exist, the fields of the interface are set to default
values.

This part of the interface is used to set the properties of the connection with the database
server. The logger must save information into the database, which can be on another
computer. To improve the utility of the logger, we have created a panel in the interface to
allow the user to enter the IP address of the computer where the database server is running,
the port of this server and the name of the database.

{ ' - ander __ Memory & Priority properties |

il Database properties | Logger Writer properties
Information to reach the database server

i.‘ Database server configuration

1 ShevsilBem: 192168.164 | ,

Server Port: 5432

Pi S S| {

f — |

f Database name : 7 cnet-OS | ‘

f

{ !

| User name : youssef

?; A — - AT —— i

| : B : A RO

|

|

I

?

|

g

|

i [&ﬂl’t] ot (2] 9]

{

Page 76 of 149

Chapter 4: The Logger

This panel is used to set the properties of the thread that reads events from the logger’s cache
and that writes them into the database (the writer thread). The panel is divided in three sub-
panels; each sub-panel represents a different part of the writer thread.

The first sub-panel is used to enter the delay writing in milliseconds used by the logger to
write into a buffer used between the logger and the database. So if you want, you can delay
the writing of the events. It allows keeping more events into the cache and it also allows
sharing the events with the viewer faster.

The second sub-panel is used to improve the access to the database. In fact, it is possible to
send a packet of events simultaneously instead of one by one. The size of this packet as well
as the value of the timer can be defined. This timer represents the maximum interval between
each flush of the buffer that contains all events that we must write into the database. This part
of the logger is explained in the section about improvements.

The last sub-panel allows creating a new connection with the database when the previous
connection is accidentally stopped. You can set the number of essays and the delay between
each essay.

7
v’ép“
F SN -7 PPN TR, S8

| File Help

Server Receiver | Server Sender iorf UBS s,
Database properties I Logger Wiiter properties H

Properties of the Logger's Writer that writes events into the database :

Wiiting Delay (in milli second) : 0 {

Properties of the events written in the database

Number of everts by group : 1000 |

Time to wait before write : 2000 |

J {Properties of the reconnection to the database

Try to reconnect : ’lrue '
Number of essay : { 5 '

Waiting delay (in second) : 5

st)

Page 77 of 149

Chapter 4: The Logger

With this frame, it is possible to set the properties of the server that receives all events from
the core.

The first sub-panel is used to set the port and the maximum number of client that it can serve
simultaneously. The second sub-panel is used to check the state of all client connections that
are connected with the server. The value of the connection state can be ‘waiting’, ‘activated’

and ‘stopped’.

| m— RS ALOnGrties ! _ Looger Writer properties
i I Server Receiver | Server Sender i Memory & Priority properties
é Propreties for the Logger's server that receives events from FDNet core |
y“ e ————————— e e ———— e S e e e e et e et e
n Server Port ; ‘ 5555
Maximum number of clients : | 100 |
Details of the connections received by this server
: (e————— o et bttt ettt S = — i
-2l Cliert Address Cliert Port | Stete P
1 1192.200.1 4 50 Finished =
11192.2001.3 50 Connected
11192.2001.2 50 Connected
, 192.200.1 1 50 Connected
1 [Start J Stop
¥
Page 78 of 149

Chapter 4: The Logger

With this frame, it is possible to set the properties of the server that responds to viewer clients
by sending all events they ask for. The content of this panel has the same meaning as the
previous panel.

. File Help
Dstabase prope i " Locer Writer properties
Server Receiver H Server Sender H Memory & Priority properties
Propetties for the Logger's server that sends events from FONet core :
T D s _—
Server Port : | 5556 | |
A 1
Maximurn number of clierts : 100
i Details of the connections received by this server
|| CientAddress ' Ciient Port State |
; | 1192.2001 1 50 Connected [~]
i | 1182.2001.2 50 Connected
{ {1192.2001.3 50 Connected
192.200.1.4 50 Finished
i i
- |
s i PSSR |
[Start] Stop
Page 79 of 149

Chapter 4: The Logger

This panel is used to set all information needed to use the thread priority improvement.
The first sub-panel contains the size in Bytes of the different events that are used in the

project represented by “NetwokEvent” and “NetCommandEvent” objects. It is also possible

to set the size of the cache that can be used by the logger.

With the second sub-panel, you can whether choose to use the thread priority or not. It is also
there that the percentages (representing the critical and the normal threshold) of the cache can

be defined.

= » S méﬁerti~%s N = , R) .;-;:,.,‘::iu_
File Help

Detabase properties |

f Server Receiver i Server Sender

Memory and Priorily configuration :

Memory Properties :

t Size of a NetworkEvent Object (in Byte) : 167?

} e S03 R

;_ Size of a NetCommandEvent Object (in Byte) : 223 |

! ; : |
{ Capacity of the cache : 512 Mb H
i . s e
{ | Priority Properties : R — }
1| Enable Threads Priority : true , ,
| |
’k ' Critical size of the cache : BUE« % of the cache size {
! o7 Tos !
t ol |
i‘ Normal size of the cache: 50@; % of the cache size E
! ok ;
'f !
{ i
| a
1 s
| [s] "

Page 80 of 149

Chapter 5: The Human Interface

Chapter 5: The Human Interface

l. Introduction:

As said in the introduction, the FDNet technology is powerful but quite complicated to
use. In the optic of FDNet’s creators, the technology is to be used by a lot of people, ranging
from computer scientists (of course) to electronic scientists, which, even if they know some
things about computers, are perhaps not at ease with every piece of knowledge needed to
create an FDNetwork from scratch. The fact is that we think that they shouldn’t have to!

One of the main problems faced in Robotic Rescue Systems field is that the people
creating the robots (eléctronic scientists) have to learn skills which are separate from their
field of work (computer skills). They have to because, in general, teams are too tiny and only
composed of electronic scientists. Often, this lack of computer scientists leads to poor results
because the skills required to produce computer programs are not polished enough to produce
good quality softwares.

The skills required to become a good computer scientist and a good electronic engineer
being quite different, we cannot force electronic engineers to become good in computer
science too. They should only have to bother about their own specialties. As a programmer
will never have to be able to create computer circuitry to make good computer programs
(even if it can help him become better), we cannot ask an electronic engineer to be able to
code perfect high level applications.

Electronic engineers should only have to bother about creating robot abilities and design
the way they work using applications handling all computer related specificities for them.
This would allow them to work a lot faster (lifecycle would be highly reduced because of lots
of problems solved automatically by the application) and a lot more well (specialists would
only be asked to use their specific capabilities).

FDNet’s Human Interface is an application going this way. Programmed by true
computer scientists (at least wanting to become part of them), its architecture is designed to
ensure that electronic engineers will be able to focus on their own work while relying on the
Human Interface for all details they should not be bothered with.

Of course, for the time being, the Human Interface is only at its infant stage and quite a
fair amount of work still has to be done in order to achieve this idea we are writing about but
the version we could complete gives a glimpse of the potential of using an application of this
kind to work on the programming part of rescue robots.

Page 81 of 149

Chapter 5: The Human Interface

Il. Human Interface’s Aims:

Prior to the existence of the Human Interface (Further called H.I.), FDNet users had to
write down the FDNetworks they wanted to test completely by hand. It means that if they
wanted to test a special part of their robot (R.0.Q), they were forced to write down a huge
quantity of code just to make simple tests. This had some serious implications:

e Users could not easily test robot’s additions or modifications.

e Due to the amount of work required to write an FDNetwork, even a little one,
more complicated tests were impossible to handle without an application helping
the tester.

e Writing a complete FDNetwork including robot’s full intelligence was impossible,
or at least, working on an efficient intelligence was unfeasible.

H.I’s main goal is to hide all computer related aspects of writing FDNetworks to allow
Electronic engineers to focus on their own work. Giving a simple way for FDNet users to edit
the FDNetworks allows them to manage the robot(s) before and while they are functioning.

Editing FDNetworks easily allows electronic engineers to:
e Reduce the Lifecycle of robot prototypes by allowing them to test directly the physical
modifications they make to the robots.
e Enhance robot capabilities by giving them the power to create more advanced
networks in a highly reduced time.
e Create more robust networks by hiding them their complexity and by controlling the
actions available for every part of the network they are working on.

The H.I. is then a very important addition to FDNet and its use will allow FDNet to fulfill

its greatest contract: Providing rescue robots engineers with a completely distributed network
without forcing them to acquire new skills, unrelated to their own work

Page 82 of 149

Chapter 5: The Human Interface

lll. Definitions:

The aim of the human interface is to give a simple way for FDNet users to manage
the robot(s) before and while they are functioning.

By managing, we express the following things:
a. Allowing adding new information and processing agents dynamically and
connecting them together to make them work in a specific way.
b. Allowing modifying the currently used network “on the fly”.
c. Load network definitions, make them work and save the potentially made
modifications.

By “Data”, we imply any piece of information that can be used by relations.

By “Relation”, we imply a processing agent, whose aim is to take some data in entry and to
compute it in some way to create new data.

A “Node” is either a data or a relation.

By “Reader”, we imply a link between a Data and a Relation allowing the Relation to read
the value of the Data it is connected to.

By “Writer”, we imply a link between a Data and a Relation allowing the Relation to write
the value of the Data it is connected to.

By “Connection”, we imply an interaction happening between a data and a relation.
Connections can either be Readers or Writers

By “Network Definition” we imply a succession of data and relations, themselves followed
by a list of the connections that theses nodes have between them.

IV. Human Interface architecture:

The Human Interface will consist of 2 different main parts. Theses are:

a. The logical base: this part consists of the Network Repository and its access system.
This is the base of the architecture. Its aim is to handle all the low level tasks that
have to be performed in order to be able to interact with FDNetworks.

b. The end-user part: While the first part only focuses on handling low level access to
FDNetworks, this part will handle all the interactions with the end-user. In fact, this
part consists of what is generally called the front-end. It will be divided in three
specific points:

e The static capabilities;

e The dynamic capabilities;

e The display of all this information in an easy to understand yet
powerful way.

Following will be a specification of each of theses parts. At the end of the specification,

you should be able to understand how FDNet’s Human Interface really works and know every
aspect of the methods we used to resolve the problem of its creation.

Page 83 of 149

Chapter 5: The Human Interface

V. Specification of the logical base:

The first thing that the Human Interface must be capable to do is to save user-created
FDNetworks to allow them to reuse the networks at a later time. But to reuse a network
doesn’t only means that the Human Interface has to be capable to load/save it. More than just
this, the information loaded has to be easily usable at work-time; it means that, when the
Human Interface displays graphics, all the content behind them has to be fetched in single

logic entity.

The Human Interface is divided into two main parts:
e The logical part; whose aim is to share all information about a loaded FDNetwork.
e The graphical part which will use the logical part to display the Network in a user
friendly manner and will allow users to edit theses networks without showing them all

their specificities.

The repository system used to store FDNetworks is based upon the XML file and the
system we used to share all FDNetwork information in work-time (i.e. inside the Human
Interface) is called the “NetworkInfo™".

Find in annex n°® 3 the DTD file used to ensure that FDNetworks stored in XML files are
valid. In this DTD are written all constraints about FDNetworks, constraints which will have
a great impact on the Human Interface itself.

Note that, when we were asked to program the Human Interface, the FDNet repository
system was already decided and the DTD was totally defined too. Inserting changes in this
definition was risky because the FDNet project was already running for two years when we
were teamed up with the Japanese people and FDNetwork files had already been created. We
did some modifications to the Network definition, as you will see with the introduction of
FDNet Modules, but the original idea concerning the definition was not modified at all (the
modifications followed the same logic as the part already defined).

! “NetworkInfo” was originally the name given to the principal Java class implementing the Logic part of the
Human Interface but we decided to use it to define the whole logic system too.

Page 84 of 149

Chapter 5: The Human Interface

NetworklInfo system aims:

As explained here above, the “NetworkInfo” system has been created to share all the
logical information about an FDNetwork inside the Human Interface. It can be seen as an
intermediate layer between the FDNetwork repository (the XML structure) and the Human
Interface.

Its aim is double: ,
- Handle all operations on the repositories, thus saving and loading FDNetwork
definitions.
- Place all the information read from the repository at the Human Interface’s disposal in
an easy yet powerful and complete manner.

r |
: Human Interface n X I
=1
Human Interface 1 X Human Interface 2 X 1
1
I
1
1
i
1
1
I
I
] 1
YY) 'Y Y . E
1
'y
NetworklInfo 1 NetworklInfo 2

A 4

Figure 20: The NetworkInfo structure provides FDNetwork information to the Human Interface

The Figure 20 shows that the NetworkInfo system directly interacts with the repository to
provide the information read in a more convenient way to the Human Interface(s).

This way of doing things is really interesting for two reasons:
e Architecture choices in the repository imply changes only in the NetworkInfo layer,
the Human Interface is not even aware of them.
e Specific needs by Human Interfaces can be programmed easily, as long as the
information can be found in any way inside the repository.

This latter point was used lots of time since the Human Interface we programmed had
some very particular needs. With the system here above, once the NetworkInfo system reads
FDNetwork’s information inside the repository, it can compute it in complex ways in order to
provide it to the Human Interface.

Page 85 of 149

Chapter 5: The Human Interface

NetworklInfo system architecture:

Following is the NetworkInfo system architecture. This architecture is implemented as a
set of Java classes. Each level (Network, Module, Node...) provides particular services based
on information it stores.

Network
Module Ehata
Node
T Relation
INEOR— Reader
Connection
Connection Writer
Module |

Figure 21: The NetworkInfo system architecture

As you can see, a Network is a gathering of modules, each of which can contain Nodes
and Connections. Nodes and Connections bear the same definition as the one given in the
first chapter. 3

The Network level is the most general one. Aside from containing all information about
the FDNetwork read from the repository and services applying to the network itself, it also
contains all the services applying to more than one module at a time.

Following is a set of services that can be found at this level:
e Add/delete a module to/from the network;
e List all the modules found in the network;
e Change the name of a module;
e Replace one node by another one (handling integrity constraints related to the node

replaced)
¢ Find all connections linking a specific node (search is made inside all modules the

network is made of)

Page 86 of 149

Chapter 5: The Human Interface

Services provided here can be very advanced and help to create astonishing abilities really
easily. As all information can be found starting from the NetworkInfo level, even very
specific changes can be done from here.

The Module level is an enhancement we decided to apply to FDNet structure as soon as
when we started our analysis. The reasons why we decided to add this level will be explained
just here below, after the explanation of this schema. For now, let’s just say that the Module
level just allows dividing an FDNetwork into more tiny parts, each of which can be treated
separately. -

At this level, you will find all information related to one specific Module:
e Module’s name;
e Its load modifier (Does this Module has to be loaded in memory when user starts the
network or not?)
e Datas, Relations, Readers and Writers quantity contained in the Module

You will also find here all services related to gathering of Nodes and Connections, such as:
e Retrieve information about a Node/Connection existing inside the Module.
e Retrieve all Connections related to a specific Node (existing inside the Module).

e Delete a Node/Connection existing inside the Module and, in the case of a Node,
delete all the Connections related to it too.

Nodes and Connections, apart from being the most specific levels in an FDNetwork, are
also the only ones containing “real” information about the network itself.

Network and Module levels are only structural levels: they allow putting some order in a
network but they don’t contain a bit of information about network’s capabilities. The levels
that are really modeling an FDNetwork are the Node and Connection levels:

e Data Nodes contains the code allowing to fetch (from sensors) or create (from
information inside the Network while it is working) values and to provide them to the
Relation Nodes.

e Relation Nodes contains code related to Robot’s intelligence. They read values found
in the Data Nodes and compute them in a specific way to create new Datas as output.

e Reader and Writer Connections are the links between the Data and Relation Nodes.
As such, they contain information about how the links have to be done, the way the
links work and so on.

Services related to gathering information about the Nodes and the Connections can be
found in these levels.

It is also interesting to note that Nodes do not know links they have with other Nodes. All
information about linking is to be found in the Connections. Nodes can only provide
information about themselves but Connections provide information about the two Nodes they
are connecting (A Data and a Relation). This is an important fact since it has serious
implications in the whole architecture.

Page 87 of 149

Chapter 5: The Human Interface

VI. The Module extension:

The module extension is an improvement we decided to bring about in order to improve
FDNet scalability and utility. In fact, before using the new module level, all Nodes and
Connections were part of the same unique entity. This was quite a limitation:

e Two Nodes could not have the same name;

¢ Since an FDNetwork was a single entity, working on a specific part of it was

impossible;

e Dividing an FDNetwork into smaller, clearer pieces was impossible;

Upon work-time, FDNetwork had to be entirely loaded before it was possible to
launch it.

As we had to create a User Interface that could be used easily, we had to look at FDNet’s
structure with a sharp eye, in order to find the best way possible to make it simple without
limiting its power.

This way of looking at FDNet allowed us to find this flaw in the architecture as soon as in
the first part of our work: the understanding part. The “Module extension” could then be
thought directly in the analysis part and be simply included in the Human Interface at
implementation time.

Inserting this improvement at the very beginning of the process even enhanced its own
utility: Every time we had to think about ways to implement specific parts of the Human
Interface, the Module system was present in our minds and gained capabilities that would
have not been possible to discover otherwise.

We will now explain the main improvements we found out through the use of the Module
extension. For each improvement will be explained how can Modules enhance FDNet utility
and usability. Some examples will also be provided and a little discussion about future

possible modifications will close the subject.

Page 88 of 149

Chapter 5: The Human Interface

| Two Nodes cannot have the same name in the Network

| It is now possible for Nodes to have the same name, as long as the Modules in

___ | which they reside are different

Example:

Network

main

Left Arm Right Arm

-
1 Without Modules, all the information defining the robot would exist in the same :
I

ll namespace: the Network.
—— o

With the introduction of the « Module level » enhancement, all robot information can be
separated in more than one namespace.
As you see here in the example, the network has been divided into 3 parts:

e The main part (containing all mandatory information, robot’s base) ;

e The left arm ;

e The right arm.

Due to constraints (2 nodes cannot have the same name in the same network), Nodes from :
the left leg and the right leg will have to be named differently. For example, thoses
names can be chosen:

- LeftArmShoulder

- LeftArmFront

- RightArmShoulder

- RightArmFront

Note that, using this style, it is not possible to ask questions like the following ones to the
Network:

“How many arms does the robot have?”

“Of how many parts consists one arm?”

“Are there fingers to robot’s Arms?”

Page 89 of 149

Chapter 5: The Human Interface

By using the Modules as an intermediate level, we can change the constraints to: « Two
Nodes cannot have the same name in the same Module ». This adds a tremendous clarity
to the robots (and the bigger the Network, the bigger the profit) and allows us to add a
whole new set of possible services to the FDNet architecture. Questions like the ones
asked before can now find an answer easily.

Figure 22: Consequences of Module subdivision

As you see in the Figure 22, adding the Module level is really interesting for the clarity of
the network. It is far easier to work since you can divide the network in pieces, each one of
them having a particular meaning. With a good division into Modules, an FDNet user will
make networks easier to understand and to maintain.

Also note that, with the introduction of this division, a whole new set of questions about
network’s structure can be resolved easily.

Page 90 of 149

Chapter 5: The Human Interface

| The entire network must be loaded in memory at the same time

Every Module contains information about when it has to be loaded: At start
| time or not.

As you know since we have discussed about this already, FDNetworks can be quite huge.
Loading entire FDNetworks as soon as a little part of them is needed can be a big problem (in
terms of speed, of memory usage, on utility,...)

The use of the Module extension corrects this problem quite well by attaching some
information to every Module contained in an FDNetwork. This information is called the
“LoadModifier”.

Network

main

I

Left Arm Right Arm

Figure 23: Incremental loading of Modules

Figure 23 shows that when the user will want to load the FDNetwork in memory to use it,
two Modules will really be loaded: “Main” and “LeftArm”. The “RightArm” Module will not.
All information relative to it will still be available but the Module will simply not be usable as
soon as it is not loaded.

Also note that the “Main” Module is a special one. It MUST be loaded at start time. In
fact, this Module is always present in an FDNetwork and its aim is to contain all the core
functionalities.

For example, the creator of a vacuum cleaner robot will always want the robot to be able
to clean the floor. But, vacuum cleaners can come with lots of accessories, which you don’t
especially use all the time. The “Cleaning” part of the network will be written in the “Main”
module while all the functionalities related to the use of accessories will be written in
Modules.

Currently, the “Incremental loading” only consist of telling if a Module has to be loaded at
start time or not. It will be interesting to bring this improvement to a further step (Load
Modules only if other Modules are loaded, load after some time, unload automatically upon
reception of special events,...) if the current implementation is really used.

Page 91 of 149

Chapter 5: The Human Interface

| Tt is false to think that creating real network functionalities in real-time is
| possible

| Modules can be loaded any time needed and thus, prepared before work-time
- | and started when they are necessary, thus giving the impression that

| functionalities are added to the Robots while it is working.

One of the requests we had to fulfil was that FDNetworks had to be still modifiable in
real-time (i.e. while they are loaded in memory and are actually doing something interesting).
This job had to be handled by the Human Interface too and could be improved a lot too.

In fact, before the introduction of Modules, if a user wanted to add some functionality in
FDNetworks, he had to create all the network entities (Nodes, Connections) on the fly! Since
creating a real functionality (even a basic one) requires at least 20 entities, we can say that to
modify FDNetworks’ structure in real-time is not possible.

We realized that the only things that are modifiable in real-time are Nodes’ parameters.
Even if it seems to be very little, setting special values to parameters of Nodes can totally
change the way an FDNetwork works. Creating special Entity constructions whose aim is to
receive parameters in real-time and to react to them is quite straightforward.

The idea here is to create a complete network at the beginning (i.e. at edition time) but to
fill it with parts that will do nothing unless special values are read from datas modified in real-

time.

modifications to Data Nodes

O

=

o

Real-time zone

Network Part 2

Network Part 1

Figure 24: Trick allowing real-time modifications

Page 92 of 149

Chapter 5: The Human Interface

In the example shown in Figure 24, the three parts (Parts 1&2 and Real-Time zone) are
loaded in memory and the FDNetwork is already working. Parts 1&2 will never be directly
updated by the User; only Data Nodes from the “Real-time zone” will be.

At the beginning, the Datas from the real-time zone are filled with values such as they
don’t have any influence on the values computed by Relations reading them. It means that the
network will work as if the real-time zone had no influence at all.

Upon modifications made by the User, (through the Orange arrows), Relations reading
Datas in the real-time zone will change their way of working. Of course, theses Relations
have to be prepared to the values they read from the “real-time Datas™ but, if this is done, it
can really become possible to drive a Network easily.

Note that the real-time Datas can be read by “real-time Relations” too, which will create
other real-time Datas (which can, of course, be used to further direct Network’s work).

This system can work very well But will become messy on big networks. Having lots of
parts loaded but doing absolutely nothing most of the time (real-time datas staying
unmodified) will lead to misunderstandings and is not very efficient in terms of memory
usage.

Using the modules will simply wipe this problem out. In fact, As FDNetworks are
separated in Modules, allowing to load some of them or not (may it be at start time (Point 2)

or not) becomes a trivial problem. They allow a far more advanced network handling than the
original version of FDNet.

Solving this problem will simply consist of creating specialized modules at edition time,
theses modules consisting on Nodes and Connections constructions handling specific
functionalities, and to load/unload them at work-time just whenever needed. Real-time
modification is then properly handled, the modules loaded in memory automatically reading
Datas needed to perform their functionalities.

Of course problems arise:
- What to do with modules that need Datas from other Modules (dependencies)?
- How can we solve problems consisting of Modules incompatibilities?
- How can we handle more than one Module doing the same activity?

Lots of problems like this one have to be solved in order to improve the way FDNet works
but this is an implementation problem (which, in fact, can and has been (partially) solved).

Page 93 of 149

Chapter 5: The Human Interface

" When editing an FDNetwork, so many entities can exist that it is nearly
‘| impossible to understand network’s structure and edit it with full
| comprehension.

" | At edition time, allow users to Show/Hide Modules.

Perhaps the most interesting thing about Modules is this ability. Modules containing
information about all the entities they contain, it is really easy to show/hide Entities on a
Module basis. We can also think about enhancements that benefit from this fact. Setting all
the Nodes and Connections of Modules to special colours, for example, will also greatly help
the user while creating the FDNetworks.

Page 94 of 149

Chapter 5: The Human Interface

The end-user part:

This part consists of all what the final user can see and all the functionalities created to
enhance his experience as an FDNetworks creator.

The end-user part of the Human Interface can be divided in three distinct branches:

- The static capabilities:
All the capabilities related to the preparation of a Network. It means its creation
while it is not loaded on any Robot.

- The dynamic capabilities:
All the capabilities related to synchronization between the interface and the
Network while it is working (i.e. : real-time capabilities)

- The display:
This part consists of the wrapping used to make it possible for the user to use all
the capabilities included in the Human Interface.

Page 95 of 149

F———-—-———-—--—-—

Chapter 5: The Human Interface

VIl. The Interface’s static capabilities:

The Network repository being used, loading and saving FDNetworks is easily achieved.
In fact, file structure is not even known by the end user. Users don’t have to bother about file
format anymore.

This is a great improvement from before since, without Human Interface, users had to
create their FDNetworks entirely by hand, forcing them to understand XML File format and
to resolve by themselves the constraints.

] i ,
Users now only see an easy to understand graphic
k2xmi version="1.0% encoding="EUC-JP" 7§ display of the networks they are creating. They
<!DOCTYPE cnet SYSTEM "../src/cnet.dtd"> don,t even hlow the format used to save the
! <cnet name="roq"> networks.
| <=Lk, » (D} ——>
| <dstructure>

I

i <name>rog</name>
i <host>shell</hosty>
§ <path>cnet.device.common</path

: <class>startData</class> —
! <param>boolean</param>

{ <param>false</param>

i </dstructure>

f o tewRoOuipd GhaTuE Who vy -->
<dstructure> &
<name>joint0</name> i
<host>shell</host> 1
i <path>cnet.device.rt</path> N,
i <class>rtData</class> K_\ \.\
4 <param>joint</paream> \
f <param>0</param> > -
ﬂ </dstructure>
<dstructure> =
<name>jointl</name> -
<hostyshell</host> \
; <path>cnet.device.rt</path> e _

<class>rtData</class>
<param>joint</param>

Figure 25: The file format used is hidden to the final user.

Page 96 of 149

Chapter 5: The Human Interface

The main aim of the Human Interface is to allow users to create and edit FDNetworks,
may it be from scratch or not (editing a previously loaded FDNetwork). Editing a network
means to be able to edit all the entities a network consist of. Theses entities are:

- The Network itself;

- Network’s Modules;

Modules’ Data & Relation Nodes;
Modules’ Reader and Writer Connections.

We have separated the edition task in two parts, parts related to dependencies. In fact,
editing an entity can have implications of two types:

- Basic Edition: Edition have influence on the entity edited only;

- Advanced Edition: Edition also has influence on other entities as well.

Theses two kinds of edition will be specified and described here below.

Page 97 of 149

Chapter 5: The Human Interface

Basic edition:

With the current version, Network’s basic edition only allows to change Network’s name.
The name of a Network, as its identifier says, only allows giving a name to the Network. This
parameter has no serious implications for the time being.

Modules can have their loading modifier edited. As said before, this parameter allows
users to specify if a Module is to be loaded directly when the Network is loaded in memory or
not. Note that, for the time being, no dependency checks are made to know if Modules have

relations with other ones.

We have here 2 Modules
(The green and the orange
rectangles).

As you can see, the green

Kl ‘ module, at the blue relation,
' | needs an “orange data” to

.| calculate its output data.

But, even if the Orange
y : _ 4 ; Module isn’t loaded in
| ' | memory, it is still possible to

A ‘ || load the green one: failures
(0 ' | due to dependencies will

—

have to be resolved by the
blue relation itself.

L /ﬂ: 4 | Buta failure for 1
\ /] \ | | entity(relation here) doesn’t
| mean a failure of the whole

module.

Figure 26: Interaction between Nodes from different modules

It would be interesting, for future versions, to ask the user if he wants to resolve
Modules dependencies and to load what is necessary for “his” Module to work properly.

Nodes, may they be Datas or Relations, can have their parameters modified at any time. It
is possible to add, edit and/or remove Node’s parameter without any problem.

Page 98 of 149

Chapter 5: The Human Interface

Advanced edition:

Nearly all the edition possible can be seen as advanced edition. This is due to the fact
that, every FDNet information being related to each other, every time we edit information, we
have to ensure that related information is still coherent. Dependencies must be kept correct.

On the Module level:

Adding a new Module to the Network:

Upon Module addition, we have to ensure that the name of the module is not yet used inside
the network (As seen while explaining the NetworkInfo system, two modules cannot have the
same name).

Deleting a module from the Network:

Module deletion is a little trickier: If the Network consist of more than one Module (which
will nearly always be the case), there will be interactions between modules. While deleting a
Module, interactions of its entities will have to be resolved. The resolution method chosen is
the deletion of every Connection related to Nodes deleted, whatever the Module they exist in.

:\‘1()('(1!\1‘” =R : Y '
There is here a dependency from O ‘

ModGreen to ModOrange, Upon (

| % i i

deletion of one of the two Modules,
the link between the two will have to
be deleted

Note that the connection here above ; ;
MUST be deleted whatever the "
module it exist in. Deleting the {

MaodOranee will cause the deletion of 5
this connection even if it is included ‘ ——
inside ModGreen.

ModOranee |

Figure 27: Modification of Connections upon changes in other Modules

Note that, even if the Connections are deleted, no Node is. Nodes dependencies are not
resolved, but we will discuss about it a little bit later.

Changing Module’s name:
It will only be possible to give another name to a Module if none has the same.

Page 99 of 149

Chapter 5: The Human Interface

On the Node level:

Due to the enhancements provided through the use of Modules, Nodes can now have the
same name if they exist in different Modules. But, what happens when you try to give to a
Node a name already used inside the same Module?

In fact, instead of just preventing the user to do so, we have created two functionalities
allowing him to choose the best way to make changes inside the Module. Theses two
functionalities are called “Replace Node” and “Merge Nodes”.

They allow very powerful, high level modifications in an instant. They will now both be
explained to you.

Replacing a Node will handle for the user all the problems related to finding existing
Node with the same name, to delete it and to respect constraints from the Connections.

......

......
“yee

X
Before Replacement: After Replacement:
We have 2 Data Nodes having two “Datal” has been delcted with all its

different names. We will change the
name “Data2” to “Datal”...which
already exists inside the module.

related Connections. “Data2” had its
name changed to Datal and all its
Connections stay connected to it.

There will be a conflict, resolved by
asking the Human Interface to Replace
“Datal” by “Data2”

Figure 28: Replacement of a Data Node

Replacing Nodes is a really interesting system. Frequently, users will want to override

old versions of Datas with new ones. This system allows users to create “beta versions”
of their Datas, replacing the currently used version of a Data with its enhanced beta
version when this one is ready to be used.

Page 100 of 149

Chapter 5: The Human Interface

Merging Nodes is the most powerful ability currently implemented in the Human
Interface. Although it is easy to understand the meaning, it is not that easy to use it. But a
good comprehension of this ability will provide the user with shortcuts while editing
networks. '

{/ Merged
Data

Before merge: After merge:

We have 2 Data Nodes having two
different names. We realize that theses
two Datas could be merged as one.

Neither “Datal” nor “Data2” have
been deleted. Instead, all their
information has been used to create a
new merged Data, which will have, up

Instead of creating a new one from to a point, the Old Datas information.

scratch, deleting the two old Datas, we
will take advantage of the merge
method.

Figure 29: Fusion of Data Nodes

It is possible to merge any kind of Nodes, Datas or Relations.

If, while merging Nodes, it is found that information is duplicated, the user will be asked
which information he wants to save in the resulting Node. For example, while merging
parameters, the user will be asked if he wants to save parameters from the first Node only,
from the second one only or from both of them.

Note also that all the Connections from the old Nodes are redirected to the merged one.

Page 101 of 149

Chapter 5: The Human Interface

VIIl. The dynamic capabilities:

As explained before, through the use of the Human Interface, it must be possible to view
loaded network’s work. More than this, the Human Interface must also provide users with
tools allowing them to edit FDNetworks at work time.

This part will explain the functionalities implemented to ensure that users have a good
control over the networks they are using.

Note that the implementation of some of the dynamic capabilities has been done by
another Belgian student while we were in Japan. If you want more information about how
theses particular parts of the Human Interface have been done, please refer to Mr Lambot’s

thesis'.

The Human Interface allows, of course, to start selected FDNetworks and to stop them
whenever decided. Starting a network means to connect to the computer which will host the
Network itself and to create this network by providing to the host all information related to
the entities the network is made of.

One of the requirements the Human Interface had to fulfill was its ability to make
modifications to already started FDNetworks. This part gives an answer to the requirement
by transferring all edition orders received by the Human Interface to the loaded Network.

Human Interface FDNetwork

lecoscctbeacccalbcccccccncccnas

¢
&

Here, the user added one Reader, one Relation, one and one Data. Each time an addition
has been done, FDNetwork has been asked to update itself with the information provided in the
Human Interface.

Figure 30: Repercussion of modifications in the Human Interface on the FDNetwork

! See [Lambot 2003]

Page 102 of 149

Chapter 5: The Human Interface

Note also that, as loaded FDNetworks can produce new entities by themselves too, the
Modifications made inside the network also have to be transferred to the Human Interface.

Human Interface ' FDNetwork
'
'
'
]
]
)
1
1
1
.....
awee | L
A : i
»: 1 ? '
r nil G, 1 x
x | - -:
. - 4 -
~~~~~~~~~ l:---__-——_____—
'
1)
........ P (PSS R e PR
O : Q
'
:

Here, the network, through its own work, decided to produce one Reader, one Relation, one
and one Data. Upon modification in the Network, the Human Interface is asked to
update itself.

Figure 31: Repercussion of modifications in the FDNetwork on the Human Interface

Page 103 of 149




Chapter 5: The Human Interface

As explained when presenting the “Module extension”, it is possible to modify the
network in Real-Time through loading and unloading Modules anytime. While unloaded
Modules will simply stop to work, newly loaded Modules will start their own job depending
on the entities already available and provide their output to any Relation needing them. As
FDNet is a flat network, no dependencies between Modules are checked. It is the role of an
entity to handle the cases when necessary information (a Data existing in a currently not
loaded Module) is unavailable.

Human Interface FDNetwork

Q\/Q\
O] | &

Here, we have two different Modules. While the first one is started, which means that the creation

order has been sent to the Network, the second one is not started and thus doesn’t exist in the

working network.
Note that teader Cong © pointing to a Relation that doesn’t exist in the FDNetwork is

deleted from the thwork too It will be recreated as soon as its two Connected Nodes exist in the
Network at the same time.

Figure 32: Unloading Modules in a working FDNetwork

It is currently impossible to unload Modules from the working network without having to
delete them. FDNet specification (in its current state) doesn’t allow this kind of ability (upon
“unload Module order”, all the Nodes and Connections plus their dependencies will be
deleted from the network). We think that the working FDNetwork should be able to put
Modules “on hold” without necessarily delete them. This could enhance FDNet in some

cases.

Page 104 of 149




—-—-——-—-—--—--—-i

Chapter 5: The Human Interface

D. View Network evolution:

One of the biggest requirements concerning the dynamic abilities was to be able to follow
Data Nodes’ values evolution at work-time. This required creating what has been called the
“FDNetwork State Viewer”, which allows users to see the evolution of Data’s values in Real-
Time in a graphical manner.

Figure 33: Using the Viewer to analyze the evolution network

As the “Network State Viewer” constitutes the main work of Mr Lambot, please refer to
his thesis' in order to have a full explanation of its capabilities.

! [Lambot 2003]

Page 105 of 149



Chapter 5: The Human Interface

IX. Human Interface’s Display:
This section will consist of the specification’ of the display the Human Interface provides.
The display is just the choices we made to ensure the user will be able to use the Human
Interface to its greatest extend. It can be seen as the wrapping used to appeal the user.

In terms of logic functionalities, this part produces nothing. It doesn’t provide the user
with tricks allowing him to create better networks. It has no influence on FDNet’s “Utility”

aspect.

But concerning the “Usability” aspect, this part is the most important one. We are sure
that, without a good interface thought for users and reviewed by them, even the best
functionalities will be underexploited. This is why we made every effort to produce an easy
to use yet powerful interface.

The Human Interface provides 2 different types of Network edition:
- A graphically-based display;
- A text-based display.

During the edition of its FDNetworks, the user will certainly need the abilities of theses
two display types, abilities that we will present to you now.

Text based Display

LeglMover
123768

Shell
Device.move
mover

Figure 34: The Human Interface’s display — Graphics and Text based display

' As the Human Interface is quite complex to apprehend, remember to use the Glossary to have quick
explanation of terms you are not familiar with.

Page 106 of 149




Chapter 5: The Human Interface

¥ FDMet Human Interface

F

(DntaZchlacc)

R R :

EFHe Ciprogrammation\F Dnetworks\SimpleTestfdn selected...

EParsing of File C:\programmation\F Dnetworks\SimpleTest.fdn started...
test Network information :

| Number of Modules : 3

|

...................................................................

The graphically-based display is the main response to the usability requirement. Indeed,
as it was very important for users to have a user-friendly interface at disposal. As we said in
this chapter’s introduction, electronic engineers don’t want to and don’t have to be
programming gurus to create their robots’ intelligence.

Pay attention to the fact that we do not say here that programming the robot intelligence
can be done by someone who doesn’t understand computer science. But, as it is one of the
aims of FDNet, allowing users to reuse parts created by other ones also means that they have
to be able to use third-party programmed components without having to touch to the code.
When we say that the Human Interface has to be easy to use, we want to say that an electronic
engineer working on assembling his own robots from different parts has to be able to create
an intelligent and working network without having to understand the code inside the
components programmed by other people.

Page 107 of 149




Chapter 5: The Human Interface

During our researches about what was needed by users, we found that:

- It must be possible to have a graphic overview of the FDNetwork created;

- To a certain extend, FDNetwork edition must be possible in a graphical way;

- Selecting entities inside this network in order to receive some general information about
them is important to have a quick idea of what particular parts of the FDNetwork do;

- Having some abilities at disposal allowing a user to easily recognize FDNetworks parts
would allow greater understanding in a shorter period of time;

- Dynamic capabilities have to be easily accessible.

The following pages will explain to you how each point has received an answer and how
this answer has been implemented.

The graphic overview:

A complete graphic representation system has been implemented in order to make it
possible for a user to visualize the FDNetwork he is editing. This representation displays
every FDNetwork entity with a particular shape, upon which user can perform some tasks.

[ -2:.)‘3»':-11.’|utp‘§
]

ﬁv‘»:—lagedlilutr-‘l \,
( h ——

_\ CalculateRobotMovement

__ﬁﬁ _ Relabons Nodes are
‘ dasplayed as reciangles

CalculateRea . FoveragedOutp)

Readers and Wriiets
JIWHBM&)& S
ST chﬂuLw

‘;".’»»r..—n,l’lu ﬁ‘?
~ gz (MovnSpnd MoveModfne)
Nodes can be dragged and dropped anywhere in the Graphic Panel in order to allow the

user to organize his Graphic Network as he wishes to. As they always connect Nodes,
Connections cannot be moved by themselves but will, of course, follow the Nodes when they

are moved.

This graphic ordering is saved at the same time as the FDNetwork edited itself (While
FDNetworks will be saved in files bearing the .FDN extensions, Graphic Networks will be
saved in .FDG files). Upon loading of an existing FDNetwork, the related Graphic
Representation will be loaded too, if it exists. If not, all the entities will be drawn at a
predefined place (the upper left corner of the Graphic Panel).

Page 108 of 149




Chapter 5: The Human Interface

Graphically-driven FDNetwork edition:

Graphical representations of FDNetworks have advantages and drawbacks. It allows
having a general view of the FDNetwork edited and gives an idea of what the FDNetworks do
quite easily. But, on the other hand, it doesn’t show complex information, or the way the
information is displayed simply doesn’t allow the user to see specific constructions. This is
why we decided to limit Graphic’s representation’s editing capabilities.

But, even if some edition functions are not allowed due to their inadequacy with the
Graphic Representation doesn’t mean that no edition is possible at all.

While in graphic edition mode, it is possible to:
- Add Nodes and Connections through the use of the Add Entities Action Panel.
- Edit Nodes by Double-clicking on them directly on the Graphic Representation.
- To use the Merge and Replace functions by giving the same name to two Nodes of the
same kind.

= FDNet Human Interface

INewData

/ N ost: | [127.0.0.1 J
Datat Bl T 3
\_ ) (i [Path: | [NewTestRobot |
g [Class: | |Actuator]

l» "
by i

Figure 35: Human Interface Graphically-driven FDNetwork edition

Page 109 of 149



Chapter 5: The Human Interface

The Human Interface also allows you, through the use of the Module Selection Action
Panel, to select the Module in which you will add the Entities.

= FDNet Human Interf

Clicking on a Module name will select the
module.

Here, the main Module is selected,
meaning that all the entities added from
now on will be added inside this module.

| Specitic maditcations: |

4l 1=
Al

| stanted 1/
___ Disable !
St .| l ¢

Figure 36: Selecting the Module where the network entities created have to be added into.

It is also possible to edit already existing Nodes by double-clicking on them. This will
display the same kind of window as when you add Nodes in the FDNetwork, the only
difference being that the fields are already filled with edited Node’s information.

Page 110 of 149




Chapter 5: The Human Interface

Display Entities information:

Human Interface’s Graphic Display also allows the user to receive some information
about Nodes'. Upon clicking on Nodes inside the Graphic Representation, the Node
Information Action Panel will be updated with general information coming from this Node.

In the current version of the Human Interface, this panel allows to:
- View Node’s name and the Module in which it resides;
- View where Node’s implementation class is stored;
- Send a new value to this Node, while the FDNetwork is working (i.e. in real-time)

= FDNet Human Interface

e

i Neeaanee

|Data1

[Host: | hM—A-—‘J
i [Path: ] [classes ]
| fcinm:]

| Relationt | s e R
Sendiapalvei fiepaddy |

= |
Esme ] |

“Recognizing” abilities:

Under this term, we gather all abilities implemented in the Graphically-based display
allowing the user to easily recognize parts of his FDNetworks while he is editing it. This is
very important too since, as FDNetworks can become very big, it can become very difficult to
find a precise entity.

The “recognizing” abilities have been implemented at two levels: the Module level and the
Entity level.

" Due to the representation chosen to display Connections (lines), selecting them is quite difficult in the Graphic
Representation. This is the reason why it is currently not possible to receive any information about Connections
in the Graphic Representation.

Page 111 of 149




Chapter 5: The Human Interface

1: Enhancements at Module level:

It is possible to hide and display any module in one mouse click. Doing this, the user can
focus on what is interesting him, instead of having the screen filled with entities which have
nothing to do with the current work the user is achieving.

4

Fozmagedlulpy \| CaloulateR A j‘»\w«'»iua;‘f-uiﬁ‘]

MoveSpeed

Note that the 4 Data Nodes displayed in grey
are not owned by the Main module. But, as
the Connections of the “main” Module have
to be displayed too, the Nodes connected by
theses Connections stay visible.

wactu] Py FrontLeft ifalse Disable

— . RearRightfalse  |Dis

. ftrue
3 umunku% porwtagedc .:,‘F, ____ CaloulateRobotmcvement | @
. | —

|
[

O
~ "
.r/ e
,,»—"\‘ ‘/,’—ﬁ-\
Eensartiuty i / \ P .
i / \ / \
‘ f
[ MoveSpead MovaModiiac
\ /
/ /
‘\\‘__/"‘ SR i

Page 112 of 149




Chapter 5: The Human Interface

It is also possible to change the color of a whole Module in the same Module Panel.
Just by selecting the color wanted, all the entities contained in the Module will be displayed in
that color.

l .

: IModnng_' selected : l

A e

————
AN

) { X
puretagesiutpl } CaleulateRobotMovemert | 7[‘4,‘..qr3.;.;d*_|u(;p"
! / | !

X

Page 113 of 149




Chapter 5: The Human Interface

2: enhancements at the Entity level:

Entities themselves have been granted with some very powerful visual enhancements. As
said before, it is possible to change the size of the graphic representation of a node. It is also
possible to change the color of any Node, using the same system as for the Modules.

But, more than this, it is possible, for any Node in the edited FDNetwork, to change the
color of all its parents and/or all its children. The parents (ancestors) are all the Nodes and the
Connections whose work have an impact of the Node selected. The children (successors) are
all the Nodes and the Connections depending on the Node selected.

For example, to find the children of a Data Node, we select all its Reader Connections to
find all the Relations reading this Data. All the Writers of theses Relations will be selected

too and so on.

This extremely powerful enhancement allows the user to know where any Node comes
from or where it is used very simply. This capability enhances the utility of the Human
Interface greatly. Indeed, most of the time, the user wants to have a quick idea of the way its
FDNetwork is laid out and this is particularly the aim of this enhancement.

Upon right-clicking on the Data Node at the
upper-left corner, a scrolling menu appeared and
the user selected the “change children colour”
submenu.

As you can see on the right, all the children of the
selected node have been coloured in the selected
colour (here green)

Page 114 of 149




Chapter 5: The Human Interface

Accessibility of Dynamic Capabilities:

The last main requirement to fulfill was to allow FDNetworks edition at work-time. As
said while explaining Human Interface’s Dynamic Capabilities, the user of an FDNetwork has
to be able to edit it even when the network is loaded in memory and working.

In fact, this requirement has been implemented in a very smooth way since, even when the
edited FDNetwork is loaded in memory, nothing changes for the user: Every action available
at creation time is still available at work time.

The Human Interface is aware of edited network’s state. When it is loaded in memory and
working, all user orders will first be sent to the FDNetwork before being applied inside the
Graphic representation. Should an order be refused by the working FDNetwork, the Interface
would display an error message telling that the update cannot be done. This way, Human
Interface’s Network and working Network always stay consistent with each other.

Working FDNetwork

el \ Al
S ; i

Is Network
working ?

Yes

Figure 37: Human Interface’s reaction upon user order.

Page 115 of 149




Chapter 5: The Human Interface

B. The Text-Based Display:

While the first part of the Human Interface allows the user to create and edit his
FDNetworks by working with their graphic representation, this part will allow him to do it
through the use of forms.

lost4. DataPath4.DataClass4

ost3.DataPaih3.DataClass3

The Text-Based Display has been created to fulfill the following requirements:
- Human Interface has to provide numeric information about edited FDNetwork’s

structure; :
- Human Interface has to allow complete edition of any entity contained inside the

FDNetworks;
- Human Interface is also simply another edition way provided to the User.

Following will be the presentation of each of the abilities created in order to respond to
theses requirements.

Page 116 of 149




Chapter 5: The Human Interface

FDNetworks in numbers:

The different frames created will give the user numeric information about the
FDNetworks edited. How many Modules are contained in the FDNetwork? How many Data
Nodes are there in the “main” Module? And so on.

This kind of information can be interesting for users wanting to see their networks from
another point of view. For example, possessing this information will allow a user to know if
some of the Modules he created are too big (which will cause them to load more slowly) or

too tiny (It would then be interesting to merge some of them to reduce their overall quantity in
the FDNetwork).

FDNetworks complete edition:

Using frames to allow users to edit their FDNetworks brings power impossible to obtain
while using the Graphic Representation. Tables, combo boxes, ordered lists and so on...
Using all of theses components inside forms will help a human interface creator to display
lots of information in a simple yet powerful way. This is what has been done on FDNet’s
Human Interface.

Basically, FDNetworks’ text-based edition has been implemented in three frames:

- The Network frame: Giving the user basic information about his FDNetwork
(Network’s name, Modules name and quantity) and allowing him to add Modules inside
this FDNetwork.

- The Basic Module frame: Giving general information about each Module (Name,
quantity and names of Nodes and Connections) and allowing the user to edit and delete
each of them.

- The Advanced Module frame: This frame is the most important one of the three. While
the two first frames focus on giving structural information about FDNetworks, this
frame will allow the user to work on the Entity level.

Instead of explaining how each function of each frame works, we will directly focus on

the most important frame, the Advanced Module frame, and explain the idea around its
creation.

Page 117 of 149




Module Name: | [Frontien | @
Loadatstart: | [no v |_Sawve | |
@ﬁé}] Data v g | [sms ] |
[ | re—— [FrontLeft | | Delste | j
[MoveOutput |
Parameters | |
3 . L ] S [
EER e rea— |
I ——-; | Edﬂ ]
Lv' Iu."_ ’ I@g;‘:frf‘""""‘t_—f“ﬁ”‘!_ RNy oy o ___.é elete i
Parameter Number _ |____Parameter Type_ 'jF!a meter Value
Q0 o R ey Object-unset fng L
M |Object-unset 1150 =
a #
i

This frame allows editing anything about a Module, from its name to the parameter of one
of its Data Node. It is divided in three parts:

i ¥
2,

3,

Module information: Allows changing Module’s name and Load Modifier.
Contained Entities Information: Allows creation and edition of Nodes and

Connections.
Contained Entities Parameters Information (only for Nodes): Allows creation and

edition of Nodes parameters.

This frame helps the user a lot in his edition work since it carries out all the problems that
could be encountered while editing FDNetworks. Here below are explained some examples
about what this frame is capable of doing:

All frame’s components (buttons, text fields, tables,...) are evaluated in real-time to be
sure their state is consistent. For example, if the user types in the name of an already
existing Data Node while trying to create a new one, this Data’s information (Host,
path, class and all parameters) will be automatically loaded and “Save & Delete”
buttons will change their behavior in consequence.

While creating Connections, only existing Nodes will be selectable to connect. This
ensures the user will not create Connections connecting nothing (which leads to errors).
Upon deletion of Nodes, all the related Connections are deleted too.

All the relations between FDNetworks entities are handled by the NetworkInfo
architecture. This means that the NetworkInfo architecture handles all the constraints
applying to the FDNetworks (like, for example “Connections can only exist if their two
connected Nodes exist t0o™).

Page 118 of 149




Chapter 5: The Human Interface

As said just before, the frame will change its component states automatically, upon user
changes. This is done to ensure the user will benefit of the best experience possible but how
did we do this?

In fact, this was one of the main problems encountered while creating the Human
Interface. This frame contained so many components (27 actually!) that programming all the
interactions between all of them was nearly impossible. To cope with this problem, we had to
find another way to program Human Interfaces. We called it “the SpeedyDesign technique”
and it was a total success.

Page 119 of 149




Chapter 5: The Human Interface

X. The SpeedyDesign technique:

Human Interface programming is quite simple to understand. A frame only consists of
other components such as text fields, buttons combo boxes and so on. All theses components
can be interacted with through the use of events, which are called by the system.

For example, in Java, to react to a click on a button, you will just have to tell to the button
itself which method call upon mouse click and put all the needed code inside this method.
This way of doing things is really simple to understand although quite powerful. It seems to
allow the programmer to maintain its code easily since all the code related to clicking on the
button will be found in the same method.

But the fact is that, programming like this will lead to incoherence in user code, which
will not be maintainable anymore. The problem is that, by programming this way,
components’ state is modified by other components. As more and more components are
added to the frame and as more and more interactions have to be created, this ultimately leads
to impossible to predict component behavior.

While programming the Advanced Module frame shown here above, the point of collapse,
as we called it, was reached and forced us to stop development to find a way to correct the
problem. The point of collapse is a point where it is impossible to add a new component to
your frame. This component will lead to so many changes in the frame that it will become too

hard to code.

After analyzing the problem we found out that its base lies in the fact that a component
can have its state modified by lots of other components, leading to the spreading of code

related to it.

The key to having a maintainable code is then to have it written in a single place. This is
the base of the SpeedyDesign technique. Since a component will always have to be able to
modify its own state, the only way to have only one entry point is to force a component state
to be modifiable only by itself.

Although it might seem very restrictive, this constraint is not a big deal. In fact, instead of
directly changing other components’ state, a component will 51mply ask them to update
themselves by telling them that he has been modified.

Cotipanent 1 I have modified myself. Please
update yourself in order to stay
consistent

Component 2

Figure 38: SpeedyDesign technique — Asking components to update themselves

Page 120 of 149




Chapter 5: The Human Interface

And this solves the problem! There is now only one place where the programmer will
have to code in order to update a component’s state. If the state of one component depends on
the state of another one, it will just have to look how this component is behaving in order to
know how to be updated.

As we found out that this technique was quite useful, we tried to see if it was not possible
to further enhance our way of coding to make it even better. And it was possible.

In fact, there is still one problem here. Every component has to know every other
component in order to ask them to update themselves if necessary. It means that, each time a
component is added to the frame, every other component have to be reviewed in order to
ensure consistency.

To correct this problem, we introduced the component handler. The component handler’s
aim is to centralize every update calls in one single point. When a component updates itself,
instead of asking to every other component to update themselves, it will just tell to the
component handler that it has updated itself. The component handler will transfer all the
update calls himself.

Component 1 Component 2
Components
handler
Component 3 ‘% Component 5
4
Component 4

When component 1 is updated (user click), it tells it to the component handler which knows that the
component 5 is related to component 1 and will then ask it to update itself. The same system can be
applied to every component.

This way, all the interactions between components are handled in one single place. Upon addition of a
new component, a single modification in the component handler will have to be done.

Note that, if the state of the new component is important for other components too, theses components will
have to modify their update method too. But modifications will have to be done in one method only.

Figure 39: SpeedyDesign technique — Role of the components handler

While programming the Advanced Module frame and trying to find all the relations
between all the components in order to program the component handler correctly, we found
that there were still more enhancement to perform.

Page 121 of 149




Chapter 5: The Human Interface

This enhancement concerned the quantity of times that the “update” methods are called by
the component handler. Up until now, if a component has to be updated by n components, its
update method will not be called n times but a number of times between n and n! times. This
is due to the fact that, at its current state, the SpeedyDesign works with “ancestors —
descendant” relations where it should only work with “parent — child” ones.

To understand this enhancement, the following definitions have to be introduced:

Descendant

Component 1 [« Child

Child

E

~—+#| Component 2

| Component 3
y

Ancestor

Figure 40: SpeedyDesign technique — The existence of hierarchy between components

As you see in the Figure 40, “Component 1” is the parent of “Component 2” and the
ancestor of “component 3”. Upon update of the state of “Component 1” the component
handler will call the update method of “Component 2” and the update of “Component 3”.
But the problem is that, when “Component 2” will be updated, “Component 3”’s update
method will be called again.

The resolution of this problem lies in the definitions themselves: Upon update of a
component, the component handler has to call the update methods of its children only and not

is descendant.

Page 122 of 149




Chapter 5: The Human Interface

To find descendants and the children is not difficult. It only requires the programmer to
create the functional dependencies graph for the components and to sort them in levels by
putting all the components that have no children in the same level and start again with the
graph in which the components put in level have been removed.

Note that it is not possible to have a loop (a Component which is, at the same time, the
ancestor and the descendant of another one). Indeed, Human Interfaces always follow leveled
information patterns. And in case the programmer has loops in his interface, rearranging his
frame in order to remove the loop would still be possible.

The scheme below summarizes the SpeedyDesign programming technique:

Without SpeedyDesign Technique: With SpeedyDesign technique :

Component 1

Component 1

‘.

- ¥ Component 4

= %

Component 2

]
1
1
1
1
1
R }
}
}
1
1 -
1
Component 3 : .
1 *
1
1 \. Components
¥ ]
1
1
]
1
1
1
I
1
]

A 4

Component 2

handler

Component 4

Component 3

Figure 41: A summary of the SpeedyDesign programming technique

Page 123 of 149




Chapter 5: The Human Interface

Xl. Human Interface’s current limitations:

The Human Interface we programmed, although already usable, is still a work in progress.

To program a project as big as this one in the time imparted is not possible. All the abilities
presented here in the thesis are implemented and already working but they could be enhanced

a lot.

FDNet architecture itself being still a work in progress, FDNetworks are still complicated
to create. Due to this fact, the Human Interface has not really been used on real FDNetworks
and a lot of testing still has to be done in order to make it fully respond to FDNet researchers.

This fact set apart, we would like here to introduce you to the enhancements that we think
would be interesting to work on. Theses enhancements would allow coming nearer to the
utility and usability factors that we said would be achieved through Human Interface’s

creation.

When all the enhancements listed here below and all the testing related to them will be
done, the Human Interface will truly become a powerful addition to FDNet project.

Page 124 of 149




Chapter 5: The Human Interface

Ernhancements concerning the NetworkInfo structure:

Giving a definite type to parameters:

In FDNet’s current specification, Nodes parameters don’t have a definite type. Any
information is stored in “string” format and only the Node containing the parameters knows
what he has to do with them. If parameters were directly saved with a type, we could check it
in the Human Interface to ensure that created FDNetworks are more reliable.

Multi-leveled Module subdivision:

Concerning Modules, only one level is allowed. It is not possible to have Modules
contained in other Modules. We think that Modules will play a very important part later in
FDNet development and are sure that this ability - having Modules contained in other ones —
would be extremely useful. It would allow a more complete FDNetwork subdivision that
would benefit to everybody. The scheme below introduces you an example of what theses
sub-modules could allow if they were implemented:

Network

Head

Robot 1 ;/ ¥ Robot 2

mam mam

Left Arm

Right Arm Left Arm I Right Arm

Figure 42: Introduction to multi-levels Module subdivision

Page 125 of 149



Chapter 5: The Human Interface

Connection Entities representation:

For the time being, through the use of the Graphical Representation, it is only possible to
interact with Nodes. Due to current Connection representation (a simple line), mouse
interactions are not possible. Enhancing Connections’ representation (An arrow with the
name of the connection in the middle of this arrow for example) in order to allow the user to
receive more information about them and to edit them would increase Graphical
Representation’s utility.

Intelligent placement:

When an already existing FDNetwork is loaded in the Human Interface for the first time,
all the entities are displayed one above the other in the upper left corner of the Graphical
Representation. It is clear that a better placement system has to be implemented.

This problem also appears each time new Entities are added to FDNetworks. Newly
added Network Components are not placed in an intelligent way (they are placed at the top
left until the user drags them to another place). Creating an intelligent system placing Nodes
in consistent places based upon the Module they exist in and the Connections they possess
would allow more easiness of use.

Of course, this is not an easy-to-implement enhancement and it is the reason why it has
not been done. But, if the Human Interface is to be used in real situations, this will have to be

done.

Page 126 of 149




Chapter 5: The Human Interface

Representation system harmonization:

FDNet’s Human Interface could have its overall integrity enhanced. Indeed, the two
different representation systems (Graphical Representation and Text-based Representation) do
not provide the same functionalities even if they are based on the same information. Of
course, there will always be some differences between the two representation systems but it is
clear that in the current Human Interface, some differences are not justified and abilities could
be implemented in the same way. Users would have it easier to master the Human Interface
and would be able to do better work in less time.

Errors and exceptions handling:

Even if all the mechanisms needed already allow it, handling errors and exceptions in a
better way has to be done. The Human Interface contains a Status Bar showing important
information to the user. But this Status Bar has been neglected until now and must be
improved to handle more errors and exceptions.

Interface Revisions:

Until now, the interface is still in beta version. It is clear that some options are missing,
some of them are not useful, bugs have to be found and corrected and so on. This kind of
errors/enhancements can only be found with extensive use.

Page 127 of 149




Chapter 5: The Human Interface

Xll. Conclusion:

FDNet is a complex system that one cannot easily understand. It requires the user the
have some knowledge of robots, of cognitive science and of computer science just to grasp its
concepts. Even when concepts are understood, using FDNet to produce something really
useful is quite complicated.

When this kind of problem arises, there are usually two main ways to correct them: The
first one is just to make the system simpler, by removing parts that are not useful and by using
tricks to simplify the important ones.

The second one has to be used for systems that are known to be complex no matter how
you use them. For theses systems, the technique is to create adaptive tools that will help users
to apprehend system’s complexity over time while providing more and more complex abilities
as users improve.

The Human Interface can be seen as one tool of this kind. It will, at the beginning, give
the user a straightforward and easy to use graphical representation of the networks he tries to
create, while at the same time, provide functions to make Networks’ edition simpler.

At a second time, it will offer more advanced functions and another edition mode: the
Text-based edition mode. This one will give users more power over the FDNetworks they are
creating through providing them with complete sets of edition abilities.

Even if our Human Interface is far from being perfect, it is already usable to a point that it
can really enhance FDNet users’ work. All FDNet computer aspects have been hidden and it
is now possible to create FDNetworks while focusing only on the work to be done.

Of course, a lot of enhancements will have to be done in the future if FDNet is to be used
but Human Interface’s current implementation already shows the power it can unleash. We
are confident that this part of the project is a milestone for FDNet users and that FDNet’s
success will depend on tools like this one.

Page 128 of 149




Chapter 6: Conclusion

Chapter 6: Conclusions

I. Conclusion about FDNet:

The aim of our work was to enhance FDNet’s Utility and Usability through the creation of a
Logger and a Human Interface.

In term of Utility, the Logger allows saving the state of the working FDNetworks at different
moments, thus allowing the users to analyze them in order to enhance their understanding. This
is the reason why the Logger shares this information between the different Viewers. The Human
Interface introduced the concept of Module, allowing users to create FDNetworks divided in
such a way that they become a lot more powerful.

But it is in term of Usability that FDNet has been improved the most. Before our arrival,
L.R.S.I researchers had focused their work on developing a network architecture allowing them
to control a pool of rescue robots. But, even if their work was useful concerning the problem to
resolve, it was not very usable.

The Human Interface is the incarnation of FDNet usability. Indeed, it allows to easily create,
edit, update and delete a network configuration. Also, starting and stopping an FDNetwork can
be done in just one or two mouse clicks. Analyzing the network evolution is done by using the
Viewers' integrated to the Human Interface. Through the use of the Human Interface, FDNet
can be used by people coming from diverse discipline (computer science, electronic engineering

).

Nevertheless, the Human Interface would not be usable if the Logger was not providing it
with working FDNetworks’ information. It has been done in such a way that this information
can nearly be given in real-time to numbers of different clients (Human Interfaces, viewers...).
The Logger was also granted a Human Interface allowing its administrator to configure it and
start it in an easy way.

All this work done allows us to say that we think to have fulfilled our mission of making

FDNet a lot more useful and usable and hope that this work will influence positively the project
in the future.

! Refer to Mr Nicolas Lambot’s work to have more information on this subject.

Page 129 of 149




Chapter 6: Conclusion

Il. Personal conclusion:

At first it seemed very difficult to work along with the Japanese researchers at the
International Rescue System Institute. To have a discussion about the work to be done was quite
complicated because of the differences in the languages spoken. To have an explanation about
FDNet itself - the base of our work - was not even possible.

But we tried hard and, by using retro engineering methods on FDNet’s source code, we could
understand more and more about it everyday. By that time, our relations with the Japanese
people had become far better since the fear of speaking English and the shyness we were all
facing at the beginning had disappeared.

Having to read on all the source code in order to understand FDNet, although it was an
extremely difficult task, appeared to be one of the best choices we made. Indeed, having all the
code in our minds, we could think of the best architecture possible for our own work: The
Logger and the Human Interface.

More than just producing a good Human Interface and a good Logger, we could introduce
very interesting enhancements to FDNet itself. Enhancements that will, we hope, be continued
by other researchers in the years to come.

But it would have been impossible to think about theses enhancements if FDNet was not an
interesting project to work on at the beginning. We are now sure that it holds a great potential in
term of helping rescuers to saving lives and are honored to have had the chance to participate to
its creation, as little as our work may seem to be in the future.

Youssef and Jérome

Page 130 of 149




About adding utility and usability to FDNet

Bibliography

Fumio Ozaki, “Open Robot Controller Architecture (ORCA)”,
http://staff.aist.go.jp/t.kotoku/fvi/AIM2003.htmI#TANIE (20 July 2003) (Date of access May
2004)

JARA, “Specification of Orin”, http://www.jara.jp/E_ORiIN/En_ORiN.htm (1999)(Date of
access May 2004 )

Lambot Nicolas, “FDNet: Enhancing Human Interface with Dynamic Capabilities” 2003

Masahiro Fujia and Koji Kageyama, "An Open Architecture for Robot Entertainment",
Proceedings of the First International Conference on Autonomous Agents, ACM Press, 1997

Toshiba Corporation, “Toshiba to Bring its New “ApriAlpha” Concept Model Robot to
ROBODEX 2003, http://www.toshiba.co.jp/about/press/2003_03/pr2001.htm (20 March
2003)(Date of access May 2004)

Toshihiro Inukai, “ORiN: A common object model for robotic systems”,
http://staff.aist.go.jp/t. kotoku/fyi/AIM2003.htmI#TANIE (20 July 2003) (Date of access May
2004)

Yosihisa Koji, “Flat-distributed network architecture (FDNet) for rescue robots”, 2002

Facultés Universitaires Notre-Dame de la Paix — Namur







About adding utility and usability to FDNet

Appendices

Facultés Universitaires Notre-Dame de la Paix — Namur







Annex 1: Retro Engineering on FDNet

Appendix 1: Retro engineering on FDNet

This annex consists of the schemes created while retro engineering the programming work
done on FDNet. The schemes represent all the classes found in FDNet’s core packages. Doing
this kind of work allowed us to obtain a general view of FDNet classes static interactions.

It also gives an idea of how FDNet works. By using theses schemes while trying to

understand the code written by the I.R.S.I researchers gave us new ideas about what the code
was doing and where to look to find an answer to our questions.

Page 135 of 149




Annex 1: Retro Engineering on FDNet

This is the classes hierarchy of the “cnet.core.” package of FDNet project.

As written just right in the legend : leaend
e the classes written in blue are abstract;
e the interfaces are written in orange; Class ———* Extends
e a class/interface extending another one will have a black arrow
arriving to itself.. _ - Abstract Class T || Implements
e a class/interface implementing another one will have a red arrow :
arriving to itself —-— Sl
e underlined and italic text means that the class comes from Interface Class
another package; => comes from another
package

Page 136 of 149

EEE SN NN W N N NN BN BB BEN BEN BN BEN BEN ABE BEE BEN B Wy B e



Annex I: Retro Engineering on FDNet

Rl i i 1
P FDEdgeDelegate |
’,’fl Il - e . " - - . -
i, LT ¢ i o)
FDObject
FDNode DataStructure DataStructureImpl
\l ProcStructure » ProcStructurelmpl /
//' ConnectordServer \
> FDNodeDelegate Data Datalmpl
ConnectorClient Proc » Proclmpl
— — - R— ‘——-—>

Servant > Helper

Page 137 of 149




Annex 1: Retro Engineering on FDNet

WriterImpl

‘\‘ gii,‘.

WiterAdapter [

OutputOperation

Connector \

InputOperation \

FDEdgeDelegate

ConnectorOperation

AN

WriterStructure

FDObject

Reader e
~

8 e
ReaderImpl

y

\: ReaderAdapter

ReaderAdapterParent /

== -5 B T g ReaderStructure

FDEdge

Page 138 of 149
BEN N S R Oy EE R Y N N N GEN GG Ty BBE OO BEN MaM WS e e



Annex 1: Retro Engineering on FDNet

/ NoMore / InternalWarning

Exception »  userException > InternalError
\ XML _cnetException InternalException
callException \; NoSuchID
IlleagalValue
Illeagal Type
ProcStructurePool  |——» ProcStructurePoollmpl Listener > EventListener
DataStructurePool » DataStructurePoolImpl \ \ ReleaseListener
. ReturnListener
ConnectionPool
PushListener
PullListener

Page 139 of 149




Annex 1: Retro Engineering on FDNet

CreateWriterInstance Paste -—— ActivePaste
CreateReaderInstance )
StaticPaste
CreateProcInstance
CreateDatalnstance
) ConnectionLoader
WriterMap
ReaderMap
Policy

Page 140 of 149
-----,-------—--------




Annex 2: Retro Engineering documents

Appendix 2: Retro engineering documents

The following documents show you how our retro engineering process was performed.
You can see them as a snapshot of our understanding of one part of FDNet’s core packages
(here, cnet.core.Servant).

As a snapshot, the information it contains is not especially true. Most of what is written
comes from the understanding we could have of FDNet’s way of working. It thus means that

it can still contain errors or information that is too vague to have a real meaning.

It also contains all the questions we were asking to ourselves at this time. This means that
none of the questions asked here had found any answer at that moment.

Basing on theses documents, we could try to speak with FDNet researchers in order to try
to understand them and to enhance our own understanding of FDNet.

Page 141 of 149




Annex 2: Retro Engineering documents

Study of the classes in package cnet.core.Servant :

Class Servant comes from
“cnet.core” package
Servant —> Visitor
Reflect
Paste
Iterator Linkagelterator

The scheme here below explains how the paste and the Reflect servants work:

Connection

Page 142 of 149




Annex 2: Retro Engineering documents

Extends
Implements

Aim of the class

Comments

Property name

Property use
Comments

Method name
Method use
Comments

Method name

Method use
Comments

Method name
Method use

Comments

Property name
Property use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

cnet.core.Servant

FDObject

null

This class is handling the Servant system.

A servant is a mechanism that allows an information (an FDObject of a

“cnet.util. TYPE" type) to be shared on the network. The servant object is an API used
by a RELATION to access the network. Relation can only access their directly
connected Datas but, through the use of servants, the whole network is reachable.

A servant is not linked to any relation at all. Servants are indeed shared objects called
by Relations to execute some specific work.

Servants have tree mechanisms. It means that there are root servants, parentServants,
ChildServants and so on.

Servants that are fathers of other ones contain the Class definition of all their
ChildServants and can then instanciate any ChildServant on demand.

A lot of the methods whose aims are to handle the different HashTable are declared
Static. It means that all these methods can be called from anywhere in the code and
exist only once. It also means that theses static methods are shared among all the
instances of Servant Class.

static private HashMap ServantClasses

Static HashMap. It contains all the ServantClasses used at a certain time in the program

HashTable of the classes having the role of Servant ?

static void setServantClass(String servant name, String class_name)

Adding a Servant class to the Servant HashMap

The Servants added like this will be reachable from any other instance of Servant class.

static protected Class getServantClass(String servant name)

Returns the class associated with the String passed in parameter.

By having this class, it will be possible to create new instances of the Servant (or classes
extending it) and to use it on the network.

static protected boolean containsServantClass(String servant name)

Allows Servants to know if a specific servant, whose class name is given in parameter,
is already added in the HashMap ServantClasses

static private Server server;

See cnet.Server for more information
Question : What is a Server?

static void setServer(Server s)

Sets a new server for this Servant

static Server getServer()

Get the server currently used by this servant

Page 143 of 149




Annex 2: Retro Engineering documents

Property name static private HashMap instances

Property use A hashMap containing the instances of the Servant Classes

Comments As it is a HashMap only one instance can be associated with a Servant(Class) Name.

Property name private long instance counter;

Property use Allows to count the number of instances currently held inside HashMap instances

Comments

Method name static private String createName()

Method use Creates a new instance name for the Servant Class to add it in the HashMap instances.
The first free position will be used to create the name.

Comments Names are of the format : %servantName:[NumberOfCurrentInstance]

Method name Static void setServantInstance(String servant_name, Servant servant_instance)

throws ClassNotFoundException

Method use Adds in the HashTable instances a new instance of the Servant class

Comments

Method name static protected Servant getServantInstance(String servant name)

Method use Allows to get a servant already contained in the instances HashMap

Comments

Method name static protected void releaseServantInstance(String servant name)

Method use Delete a Servant from the list of the existing instances

Comments

Property name private HashMap children;

Property use Allows the Servant to creates a tree where he can finds all his child and parent servants

Comments A servant has only one Parent. This property is not static <> every Servant has it’s own
children HashMap.

Method name public final Servant getParent()

Method use Returns the Parent Servant of this Servant.

Comments

Method name protected final void setParent(Servant p)

Method use Allows to add the Parent Servant of this servant in the children HashMap

Comments

Method name final protected void setChildServant(String name, Servant p)

Method use Add a children of this Servant in the children HashMap

Comments

Method name final protected Servant getChildServant(String name)

Method use gives a specific child Servant with the help of its name

Comments

Methad name final protected void releaseChildServant(String name)

Method use Delete a servant from the children HashMap.
It means that the servant deleted will not be a child if oursefl anymore

Comments

Page 144 of 149




Annex 2: Retro Engineering documents

Property name
Property use
Comments

Property name
Property use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

Property name
Property use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

Method name
Method use

Comments

Property name
Property use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

private FDObject object;

The object that this Servant is sharing.

A servant only serves one FDObject.

private Type[] type;

Contains information about FDObject’s data type.

Defined in the "cnet.util" package

protected FDObject getFDObject()

returns Servant's FDObject

protected cnet.core.Servants.Node getObjectData()

Returns the node associated to the FDObject contained in the Servant

protected Type[] getObjectType()

gives the type of the Object of the Servant

private HashMap returnListener;

The ReturnListener is a callBack mechanism that allows a servant to tell to relation that
has called it that its work is done

ReturnListener getListener(String name)

Gets the ReturnListener whose name correspond to the one passed in parameter

protected void setListener(String name, ReturnListener listener)

Add a ReturnListener to the returnListener HashMap

protected void releaseListener(String name)

remove the ReturnListener whose name is passed as parameter from the returnListener
HashMap

String servant_name;

Give a name to the current Servant

What is this name? The Class’s name? Something with a structure or something
without any structure at all?

void setName(String s)

Sets the name of the Servant

protected String getName()

Gives the Servant’s name

Page 145 of 149




Annex 2: Retro Engineering documents

Method name
Method use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

Method name
Method use

Comments

Method name
Method use

Comments

Method name
Method use
Comments

Method name

Method use

Comments

Method name

Method use
Comments

Method name

Method use
Comments

void setID(ID[ ] s)

Set Servant’s ID. IDJ[ ] is a property inherited from FDObject

The ID of each object in FDNet is a unique attribute given by the system at runtime.
The ID allows finding a specific object in the System and is used as identifying

information for everybody.
This mechanism is not yet implemented

protected ID[ ] getID()

Gives Servant’s ID

This mechanism is not yet implemented

protected Servant()

Basic Servant constructor

No code => this does nothing, not even any initialisation
I'he Constructor is protected. What is the use of specifying a protected constructor?
What is the meaning? What do they want to achieve by doing this?

protected Servant(FDObject obj,Type[] t)

We initialise a servant by initialising the FDObject that is bound to it and by associating
a type to this FDObject.

It appears that a Servant serves one and only one FDObject (1o verify).
What kind of object can be passed as parameter? relations only?

protected Servant(FDObject obj, Type[] t)

This is not an FDObject that we receive anymore to initialise the servant but another

servant.
This servant, passed in parameter will be known by the currently constructed Servant as

it's parent.

this is here that the HashMap "children" is used.

public void init(String name, Servant p)

Initialisation of a Servant by using another one as this Servant’s father

Rem : The first Parameter (String name) is never used in the method. It's not use
passing it...
protected void finalize()

This method is called when the Servant (ourself) wants to destroy itself.
The aim is to free memory and to destroy the links we have with our Servants Parents.
The Servant Parent will receive the order to remove us from it's children HashTable.

There seems to be an error in this method’s code. Look in the code to find more

explanation about it

public Object sendMessage(String serverClass, String message, Object[] args)
throws Illegal ArgumentException, IllegalAccessException, InstantiationException,
InvocationTargetException, ClassNotFoundException

This methods calls a specific method of a specific class by passing it args parameters

All is done dynamically => Creation of class, instanciation and so on...

public Object sendMessage(String serverClass, String message, Object[] args,
ReturnListener 1)
throws Illegal ArgumentException, IllegalAccessException, InstantiationException,
InvocationTargetException, ClassNotFoundException

This methods calls a specific method of a specific class by passing it args parameters

Same as above but we have now a listener mechanism.

Page 146 of 149




i

Annex 2: Retro Engineering documents

Method name
Method use
Comments

Method name
Method use
Comments

Method name

Method use
Comments

Extends
Implements
Aim of the class
Comments

Extends
Implements
Aim of the class

Comments

Method name
Method use
Comments

Method name
Method use
Comments

Method name
Method use
Comments

public Servant getRootServant()

Returns the servant that is the father of all other ones

Uses the “children” HashMap to getthe information

public Servant getServant()

Returns our self (this Servant)

public Servant getServant(String servant_name)
throws InstantiationException, IllegalAccessException, ClassNotFoundException

Returns a specific Servant object corresponding with the "servant _name" parameter

cnet.core.Servants. Visitor

Servant in cnet.core

null

The aim of this servant is to search for data in the datapool.

cnet.core.Servants.Reflect

Servant in cnet.core

null

The reflect servant is called by Paste servants and its aim is to fetch information about
datas (and give it back to the Paste servants to let them connect the datas with the
calling relation).

See the schema about this at the beginning of this study (Tengo First group)

How and when do we connect the reflect servants with the nodes?
Does each node (Relation/Data) have it’s reflect servant?

public String getName()

Returns the name of the node contained in the FDObject associated to the Reflect

public ID[] getID()

Returns the ID of the FDObject contained in the Reflect.

public ID[] getClassID()

What is this ClassID? When is it used?

Page 147 of 149




Annex 2: Retro Engineering documents

Extends
Implements
Aim of the class

Comments

Method name
Method use
Comments

Method name
Method use
Comments

Method name
Method use

Comments

Method name
Method use

Comments

Extends
Implements
Aim of the class

Comments

Extends
Implements
Aim of the class

Comments

cnet.core.Servants.Paste

Servant in cnet.core

null

This is the paste Servant used to connect a data object with a relation.

The aim of a Paste Servant is to connect data to relations.

It gets reference of the data node to connect it to the relation. It is the paste servant that
is able to connect data to relation.

How the things work :
1. Paste Servant get a Reader object from the Data object with the “getReader”

method. At this time, the Reader is created by the Data object .

2. The servant passes the Reader to the Relation by calling Relation's setReader()
method. The Relation is now connected to the data

3. The Paste Servant is not refered anymore and can die (go back to a servant

pool).

protected void raw_paste(Connection the connection)

Pastes the connection to the Relation

This method currently has no implementation!

public void create(Connection new_connection)

Creates the connection to the data to pass it to the Relation

'his method currently has no implementation!

public void activate(Connection the connection)

Activating a connection means creating the link between the data and the relation that
needs it.

public void paste(Connection new _connection)

Creates a connection to connect the data to the relation and pastes it so that the 2 are
connected.

cnet.core.Servants.Iterator

Servant in cnet.core

null

The aim of this servant is to trace the network (follow).
The aim is to know another relation’s id

We currently have no information about this class.
There is no implementation... .
We need more CUH\R‘L‘IL’ information about this servant.

cnet.core.Servants.Linkagelterator

Iterator

null

The aim of this servant is to trace the network (follow).
The aim is to know another relation’s id

We currently have no information about this class.
There is no implementation...
We need more complete information about this servant

Page 148 of 149




Annex 3: FDNetworks Structure definition file

Appendix 3: FDNetworks Structure definition file

This is the DTD file used to ensure that the XML network definition file is valid:
The Module extension is written in green.

<?xm1 version="1.0" encoding="EUC-JP"7>

<!ELEMENT path (#PCDATA)>
<!ELEMENT host (#PCDATA)>
<!ELEMENT class (#PCDATA)>
<!ELEMENT param (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT pstructure (name, host,path,class,param*)>
<!ELEMENT dstructure (name, host,path,class,param*)>

<!ELEMENT proc (#PCDATA)>
<!ELEMENT data (#PCDATA)>
<!ELEMENT exist EMPTY>
<!ATTLIST exist

value (yes|no) "yes">

<!ELEMENT read (name?, (data|dstructure), (proc|pstructure),exist?)>
<!ELEMENT write (name?,data,proc,exist?)>

<!ELEMENT connection (read|write)*>

<!ELEMENT module ((pstructure|dstructure)*,connection#*)>
<!ATTLIST module

name CDATA #REQUIRED

loadatstart CDATA value (yes|no) “no”>

<!ELEMENT cnet ((pstructure|dstructure)*, connection*,module*)>
<!ATTLIST cnet
name CDATA #IMPLIED>

Page 149 of 149







