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ABSTRACT   

MPV17 is described as a mitochondrial inner membrane channel. Although its biological 

function remains elusive, mutations in the MPV17 gene result in hepatocerebral Mitochondrial 

DNA Depletion Syndrome (MDDS) in humans.  

In the first part of this study, we show that MPV17 silencing does not induce depletion in 

mitochondrial DNA content in cancer cells. We also show that MPV17 does not control cancer 

cell proliferation despite the fact that we initially observed a reduced proliferation rate in five 

MPV17-silenced cancer cell lines. ShRNA-mediated MPV17 knockdown performed in this 

work provided misguiding results regarding the resulting proliferation phenotype and only a 

rescue experiment was able to shed definitive light on the non-implication of MPV17 in cancer 

cell proliferation. Our results therefore emphasize the caution that is required when scientific 

conclusions are drawn from a work based on lentiviral vector-mediated gene silencing and 

clearly demonstrate the need to systematically perform a rescue experiment in order to ascertain 

the specific nature of the experimental results.  

In the second part of this study, we investigated the putative existence of circular RNAs 

(ciRNAs) derived from the MPV17 gene. CiRNAs are covalently closed RNA loop structures 

that have become rising stars in disease research. In this work, we identified many putative 

MPV17 ciRNAs, in need of further validation. Among them, one turned out to be common to 

Huh7 and HepG2 (hepatocellular carcinomas) and T98G (glioblastoma) cell lines, evocative of 

the hepatocerebral form of MPV17-related MDDS. We therefore hypothesize that ciRNAs 

might, at least partly, be accountable for the organ-specificity of the pathogenic phenotype seen 

in patients.  
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PREFACE 

This research work was originally focused on exploring the role of MPV17, an enigmatic 

protein located in the inner membrane of mitochondria, in cancer cell proliferation. Results 

relative to this aspect constitute the first part of this thesis. Indeed, while MPV17 is commonly 

investigated regarding its role in a rare hepatocerebral syndrome characterized by mtDNA 

depletion in patients who display mutations in this gene, we were serendipitously led to consider 

a relevant role of this protein in the context of cancer, notably in term of cell proliferation. The 

exploration of this hypothesis initially led us to suspect a functional connection between 

MPV17 and Activating Transcription Factor 4 (ATF4), a critical player driving several 

biosynthetic pathways indispensable for cell proliferation such as nucleotide synthesis and 

amino acid metabolism. Later on, our research uncovered unexpected and baffling results, 

emphasizing the care that needs to be taken regarding result interpretation when working with 

shRNA-mediated knockdown. While this first part revealed valuable technical and biological 

messages leading to a recently accepted publication in PLOS One (Canonne et al., 2020), it 

also incited us to look upon the importance of non-coding RNA classes in 

establishing/modulating cellular and molecular phenotypes. Thus, in the second part of this 

work, the aim was to precisely describe and characterize the potential MPV17 circular RNA 

(ciRNA) population in various cell lines. Beyond providing, for the first time, a proof of 

existence of such putative MPV17 ciRNAs, it also aimed at bringing more light on the 

disturbing results obtained in the first part of this work as well as on the crucial factors 

contributing to the tissue-specificity observed in MPV17-related disease. At the time of writing 

this document, results presented in the second part of this thesis, while inspirational, are still 

preliminary and are in need of further validations/investigations.  
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  INTRODUCTION 

1. MPV17 

MPV17 is a functionally elusive protein located on chromosome 2p23.3. It encodes a 176-

residue protein predicted to have four transmembrane domains (Weiher et al., 1990) (Karasawa 

et al., 1993) (Wong et al., 2007) (El-Hattab et al., 2009) (Fig 1). Originally thought to be in 

peroxisomes (Zwacka et al., 1994), MPV17 was then localized in the inner membrane of 

mitochondria (Spinazzola et al., 2006) (Trott and Morano, 2004) (Krauss et al., 2013). While 

mitochondrial DNA (mtDNA) defects/depletion and mitochondria ultrastructure alterations are 

unavoidable features of MPV17-related diseases, the resulting phenotypes present species-

specificities, despite a proven functional conservation between the different orthologs (see 

below).  

 

 

 

 

 

 

 

 

 

Figure 1 : Representation of MPV17 protein and localization of the missense pathogenic mutations.  

MPV17 is a protein located in the inner membrane of mitochondria. MPV17 molecular modeling predicts four 

transmembrane domains. Both C- and N-terminal residues are localized in the mitochondrial intermembrane space. 

The known missense pathogenic mutations in humans are indicated in pink. (El-Hattab et al., 2018) 
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In the following section, we will go through the current scientific literature regarding MPV17 

in order to apprehend its evasive function, going from its discovery and first characterization in 

mice to the most recent insight regarding its physio-pathological role.  

 

1.1. MPV17: from mouse to human. 

The group of Weiher was the first to shed light on the Mpv17 gene while generating transgenic 

mouse lines using retrovirus-based random insertional mutagenesis (Weiher et al., 1990). The 

homozygous Mpv17 mutant embryos (lacking MPV17 expression in all tissues, both at the 

mRNA and protein levels) develop normally but, as adults, suffer from nephrotic syndrome 

characterized by age-onset glomerulosclerosis and eventually die from kidney failure from 2-

month of age (Weiher et al., 1990). The ubiquitous expression of Mpv17 contrasts with this 

tissue-specific phenotype. Nonetheless, Schenkel and collaborators successfully rescued the 

renal Mpv17-/- mice phenotype by transgenesis with the human MPV17 ortholog, definitively 

proving the causal relationship between MPV17 loss-of-function and the kidney phenotype in 

mice (Schenkel et al., 1995). Doing so, they also enlightened a functional conservation between 

the human and murine MPV17 proteins that share 92 % homology (Karasawa et al., 1993) 

(Zwacka et al., 1994).  

Gottesberge and collaborators later offered a complement to the phenotype observed in Mpv17-

/-  mice by characterizing substantial abnormalities and degeneration in the mice inner ear 

(leading to hearing loss), more particularly in the stria vascularis, but also in the spiral ligament, 

and the organ of Corti (zum Gottesberge Meyer, Reuter and Weiher, 1996). The association of 

these two phenotypes may first seem singular, but the kidney and inner ear share some 

analogies. For example, some drugs present both nephrotoxic and ototoxic side effects (Begg 

and Barclay, 1995). Also, type IV collagen is a major component of both cochlea and 

glomerular basement membranes and mutations in any of the three cysteine-rich chain isoforms 
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of type IV collagen are responsible for Alport’s syndrome, characterized by deafness and 

alterations in the glomerular basement membrane, which is therefore reminiscent of the overall 

phenotype observed in Mpv17-/- mice (zum Gottesberge Meyer, Reuter and Weiher, 1996). 

However, no particular loss of type IV collagen was detected in the kidney and inner ear of 

Mpv17-/- mice (Reuter et al., 1998; unpublished data). In their search for a common mediator 

potentially responsible for the Mpv17-/- mice phenotype and based on the observation that both 

glomerular and cochlear basement membranes present alterations/thickening in these animals, 

Reuter and collaborators later linked Matrix MetalloProteinase-2 (MMP-2) to these 

pathological observations (Reuter et al., 1998). Indeed, the authors showed an inverse causal 

relationship between MPV17 and MMP-2 expressions in the kidney and inner ear of Mpv17-/- 

mice but also in Mpv17-negative fibroblasts (derived from Mpv17-/- mice skin) artificially 

overexpressing Mpv17, placing MMP-2 somewhere in the mediation process of the mechanism 

underlying the renal and ear phenotypes in mice (Reuter et al., 1998).  

Further studies conferred contradictory roles to MPV17 in Reactive Oxygen Species (ROS) 

metabolism. Zwacka and collaborators showed that skin fibroblasts from Mpv17-/- mice seem 

defective in ROS production (Zwacka et al., 1994). Contrariwise, the team later showed an 

excessive production of ROS in isolated glomeruli of Mpv17-/- mice (Binder et al., 1999). 

Beyond the fact that these studies were performed on different materials in terms of organ type 

and scale (cell culture of skin fibroblasts versus isolated glomeruli structures), the ROS 

detection methods were also different (fluorescent versus chemiluminescent dye), possibly 

generating compound-dependent bias. Nonetheless, the observation that MPV17 depletion 

leads to an excess of ROS in mice isolated glomeruli is compatible with the causal relationship 

usually described between the damaging effect of ROS and glomerulosclerosis (Wardie, 1994) 

(Johnson et al., 1994). Moreover, Binder and collaborators demonstrated that glomerular 

damage in Mpv17-/- mice can be prevented by interventional therapy with the ROS scavenger 
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drug dimethylthiourea, definitely incriminating ROS in the settlement of the renal phenotype. 

In addition, the authors noticed higher levels of lipid peroxydation products in the isolated 

glomeruli of Mpv17-/- mice compared to wild type littermates. Lipid peroxydation is the process 

during which polyunsaturated fatty acids are attacked by free oxygen radicals leading to the 

second generation of reactive aldehyde end-products such as MalonDiAldehyde (MDA) and 4-

HydroxyNonEnal (4-HNE). Those compounds are highly diffusible and form damaging 

(mutagenic/toxic) adducts with biomolecules such as DNA and proteins (Ayala, Muñoz and 

Argüelles, 2014). Accordingly, Binder and colleagues were able to prevent the settlement of 

the disease with a systemic treatment with probucol, a hypolipidemic agent also displaying 

powerful lipophilic antioxidant properties (Binder et al., 1999).  

However, the precise origin and role of ROS in the development of the disease are still unclear. 

Noteworthy, MMP-2 expression has been shown to be proportionately influenced by ROS 

content (Kawaguchi et al., 1996). Interestingly, Mpv17-/- mice progressively turn gray from 5-

month of age, which does not constitute a normal ageing sign for them. Viscomi and 

collaborators then suggested that ROS induction could account for this phenotype by damaging 

melanocytes (Viscomi et al., 2009).  

 

Of note, researchers were confronted to the disappearance of the kidney phenotype in Mpv17-/- 

mice after few generations (Spinazzola et al., 2006). Viscomi and collaborators were however 

able to witness it again, when noticing a time-shift onset of the disease. Indeed, while the first 

generations exhibited the phenotype from 2-month of age, the later ones only developed the 

disease from 18-month of age, concomitantly with a marked decrease in mtDNA content in 

glomerular tufts (Viscomi et al., 2009).  
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Altogether, in light of the present literature, it could be suggested that in Mpv17-/- mice kidneys, 

mtDNA depletion (notably in podocytes), concomitantly with a decrease in respiratory 

complexes proficiency, leads to an excess of ROS modifying cellular components and 

damaging the glomerular basement membrane. Also, a putatively ROS-induced MMP-2 

expression could further contribute to the basement membrane deterioration (Johnson et al., 

1992) (Knowlden et al., 1995), ultimately leading to its degeneration (Viscomi et al., 2009) 

(Reuter et al., 1998) (Binder et al., 1999) (Löllgen and Weiher, 2015) (Fig 2).  

 

 

 

 

 

Figure 2 : Representation of the putative mechanism mediating the nephropathic phenotype in MPV17-/- mice.  

The production of Reactive Oxygen Species (ROS) has a central involvement in the MPV17-dependent 

glomerulopathy in mice. The ROS-mediated generation of Lipid PerOxidation (LPO) adducts but also the 

suspected ROS-induced expression of Matrix MetalloProteinase 2 (MMP-2) would both contribute to the loss of 

glomeruli integrity.  

 

It was more than 15 years after the discovery and characterization of the mouse Mpv17 gene, 

that its human ortholog was pointed out as a causative agent of a rare autosomal recessive 

mitochondrial disorder called Mitochondrial DNA Depletion Syndrome (MDDS) marked by a 

highly reduced mtDNA copy number in affected tissues (El-Hattab et al., 2018).  There are 

three clinical presentations of MDDS: hepatocerebral, myopathic and encephalomyopathic. 

The genes responsible for the disease have been identified in only 20 % of the cases and, when 

determined, their function is implicated either directly or indirectly in mtDNA maintenance 

(Löllgen and Weiher, 2015). For example, mutations in the gene coding for the catalytic subunit 

of polymerase 𝛾, responsible for mtDNA replication, causes hepatocerebral MDDS (Ferrari et 

al., 2005).  
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To date, they are 100 known individuals affected by at least one of the 48 described MPV17 

pathogenic variants (46 % missense mutations (Fig 1), 12.5 % nonsense mutations, 12.5 % 

frameshift mutations, 17 % splice site mutations, 8 % inframe deletions and 4 % large deletions) 

(El-Hattab et al., 2018). The vast majority of these patients (96 %) suffers from the 

hepatocerebral form of MDDS and exhibits a severe mtDNA depletion in the liver (60-99 % 

reduction). This is correlated with a decreased activity of respiratory chain complexes, with a 

higher incidence for the complexes containing subunits encoded by the mitochondrial genome. 

The onset of the disease takes place early in life (neonatal period/infancy) and condemns the 

affected individual to a premature death due to liver dysfunction progressing into liver failure 

(El-Hattab et al., 2018). The remaining 4 % of the patients suffer from a late-onset 

neuromyopathic disease with, interestingly, mild or no liver involvement. This rarer phenotype 

is particularly associated with the p.R41Q mutation as half of the affected individuals are 

homozygous for this misense mutation. Another individual displays heterozygosity for three 

mutations in the MPV17 gene (misense mutations p.K88M and p.M89L and nonsense mutation 

p.L143*). The last individual is homozygous for the misense mutation p.P98L, and contrary to 

the other aforementioned ones, this particular mutation is also described in a homozygous 

patient part of the majoritary group presenting a hepatic phenotype. Interestingly however, this 

latter patient presents a better survival than the other patients also afflicted with liver 

manifestations as she was still alive at 25 years old, which strongly contrasts with the 

individuals’ deaths usually occuring in infancies/early childhood (El-Hattab et al., 2018). There 

is currently no treatment for MPV17-dependent MDDS, and liver transplantation does not 

constitute a sustainable alternative as 60 % of the attempts led to the death of the patients (El-

Hattab et al., 2018).    
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1.2. MPV17: from homeostasis to stress  

The species-specific phenotype of MPV17 mutants between human and mice seems intriguing 

at first sight, especially knowing that, similarly to humans, the mtDNA depletion is the most 

severe in the liver of mutant mice (up to 95 % reduction). Despite that fact, Mpv17-/- mice do 

not display a clinical hepatic phenotype (Dalla Rosa et al., 2016) (Spinazzola et al., 2006) 

(Viscomi et al., 2009). Moreover, hepatic mitochondria of Mpv17-/- mice clearly present 

substantial ultrastructure alterations (mitochondria ballooning surrounded by membranous 

structures, disappearance of the cristae and accumulation of amorphous material in the matrix) 

(Viscomi et al., 2009). Strikingly, mtDNA-dependent respiratory chain complexes in Mpv17-/- 

mice liver are able to maintain around 40 % of remaining respiratory activity compared to 

control littermates, which appears remarkable despite the strong reduction in mtDNA content 

(up to 95 % reduction) (Viscomi et al., 2009). This suggests the existence of an impressive 

compensatory mechanism enabling the Mpv17-/- mice to be extremely resistant to the settlement 

of a liver phenotype. The latter seems to take place at the transcriptional level, as the authors 

evidenced a higher mtDNA transcription efficiency in the liver of Mpv17-/- mice (Viscomi et 

al., 2009).  

Alhough Mpv17-/- mice die from kidney failure and not from liver damage, Bottani and 

collaborators evidenced an altered liver phenotype under specific stressful conditions. Indeed, 

they showed that Mpv17-/- mice displayed liver cirrhosis and failure when fed with a ketogenic 

diet (Bottani et al., 2014). The authors suggest that the respiratory defective mice would then 

be unable to consume the excess of NADH derived from fat metabolism. Of interest, virus-

mediated hepatic expression of the human MPV17 cDNA was able to prevent this diet-

dependent liver phenotype and to reverse the hepatic molecular alterations (restoration of 

mtDNA copy number and of respiratory complexes activity) (Bottani et al., 2014), confirming 
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the previous data showing an MPV17 functional equivalence between mouse and human 

(Schenkel et al., 1995).  

 

The observation that Mpv17-/- genotype is reflected in the phenotype only under stressful 

conditions correlates with the results obtained by Trott and collaborators while studying Stress-

inducible Yeast Mpv17 (Sym1), the yeast functional ortholog of MPV17 (Trott and Morano, 

2004). The authors showed that Sym1 is required for yeast growth on ethanol at elevated 

temperature, two known detrimental factors for viability. Indeed, SYM1 mutants fail to grow on 

ethanol at 37 °C, while growth is normal at 30 °C. This observation seems specific to ethanol 

as glycerol, another nonfermentable carbon source, did not lead to growth inhibition at 37 °C 

(Trott and Morano, 2004). Interestingly, both ethanol-based growth and elevated temperature 

independently induce an increased expression of Sym1 but only the synergetic effect of their 

combination leads to a growth defect in the mutants. More particularly, SYM1 mutants seem to 

undergo a temperature-dependent metabolic defect in the utilization of acetaldehyde, a 

metabolic intermediate in ethanol catabolism, whose accumulation would eventually become 

toxic and subsequently impair growth (Trott and Morano, 2004). Of interest, the yeast growth 

phenotype was partially rescued following complementation with human MPV17, proving an 

interspecies functional conservation between these two orthologs sharing 48 % homology 

(Trott and Morano, 2004) (Spinazzola et al., 2006).  

 

Dallabona and collaborators, contrary to Trott and colleagues, noticed an impaired SYM1 

mutant growth at 37 °C  in all tested aerobic carbon sources (glycerol, ethanol, lactate, acetate), 

suggesting a general respiratory impairment (Dallabona et al., 2010). The technical differences 

between the two studies include the strain ploïdy, the culture medium used and the yeast 

genotype. While the first paramater does not seem to bear much influence regarding the 
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phenotypical divergence, the growth medium nutrient composition could hypothetically mask 

some mutant phenotypes. However, because of their different types of supplementations, the 

relative richness of these two media is not easy to determine (the growth medium used by Trott 

and collaborators is the Synthetic Complete medium composed of 0.67 % bacto-yeast nitrogen 

base (without amino acids) with amino acids supplementation and the one used by Dallabona 

and colleagues is the Yeast Peptone medium composed of 1% bacto-yeast extract and 2% bacto-

peptone). Finally, the haploïd yeast strain used in the study of Dallabona and colleagues is 

auxotrophic for methionine. The fact that this amino acid is provided in the experiment appears 

to render this feature irrelevant. However, one could hypthesize that the methionine synthesis 

pathway occuring in the strain used in the study of Trott and colleagues somehow alleviates the 

general impaired oxidative growth phenotype through the metabolic intermediates/co-factors it 

may provide.  

Dallabona and colleagues also went further into the characterization of the yeast SYM1 mutant 

phenotype and detected mtDNA instability leading to the observation of “petite” colonies, 

concomitant with profound alterations in mitochondria (organelle ballooning, cristae 

flattening). Notably, they were able to partially rescue the oxidative growth defect following 

supplementation with specific Non-Essential Amino Acids (NEAA), namely asparagine, 

glutamine, aspartate or glutamate (Dallabona et al., 2010). As these amino acids allow the 

production of common Krebs cycle intermediates (⍺-ketoglutarate, oxaloacetate), this 

observation suggests a putative role of Sym1 in anaplerotic mitochondrial pathways (Fig 3). 

Further strengthening this hypothesis, the independent overexpression of genes encoding two 

mitochondrial transporters, 2-OxoDicarboxylate Carrier 1 (ODC1) and Yeast Mitochondrial 

Carrier 1 (YMC1), was able to suppress the defective respiratory growth phenotype (Dallabona 

et al., 2010). Odc1 is involved in the transport of ⍺-ketoglutarate, ⍺-ketoadipate and citrate 

between the cytosol and the mitochondria. The substrates of Ymc1 are unclear, but ⍺-
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ketoglutarate is suspected to be one of them and Ymc1 has been shown to be of importance for 

glutamate metabolism (Trotter et al., 2005). Interestingly, while both ODC1 and YMC1 

overexpressions were able to rescue the metabolic impairment caused by SYM1 deficiency, only 

Ymc1 was able to completely rescue the mtDNA instability (Dallabona et al., 2010). These 

authors then suggest that the defective oxidative growth and the mtDNA instability occur 

independently in SYM1 mutants. Also, they propose an implication of Sym1 in mitochondria 

morphology maintenance as structural alterations actually might precede mtDNA instability in 

mutants (Dallabona et al., 2010). This idea is reinforced with the results obtained in the 

zebrafish Danio rerio with spontaneous mutations in the MPV17 ortholog transparent (tra) 

gene (Martorano et al., 2019). Indeed, these authors observed an impairment of mitochondria 

ultrastructure (ballooning and cristae disappearance) and respiratory complexes (reduced 

abundance of OXPHOS subunits and lower basal respiration level in mutants) before mtDNA 

depletion. MtDNA-containing nucleoids being physically connected to the mitochondrial inner 

membrane, it is likely that a disorganisation of its ultrastructure could engender mtDNA defects.  

 

 

 

 

 

 

 

 

 

Figure 3 : Representation of the putative role of Sym1 as a bidirectional transporter of metabolic intermediates in 

yeast. 

Sym1 is speculated to be a channel transporting TriCarboxylic Acid (TCA) cycle derivatives between the cytosol 

and the mitochondrion in non-permissive conditions (i.e. high temperature). Particularly, its substrate could 
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include ⍺-ketoglutarate (2-oxoglutarate) and ⍺-ketoadipate (2-oxoadipate) (involved in glutamate metabolism).  

Adapted from (Löllgen and Weiher, 2015).  

 

Of interest, the defective ethanol-based growth phenotype of SYM1 mutants is complemented 

by the expression of both AtMPV17 and PyMPV17, the plant Arabidopsis thaliana and red algae 

Pyropia yezoensis MPV17 orthologs, respectively (Wi, Na, et al., 2020) (Wi, Park, et al., 2020). 

Both AtMPV17 and PyMPV17, located in mitochondria, contribute to osmotic stress tolerance. 

More specifically, while the germination and seedling growth of AtMPV17 mutants are 

comparable to wild type plants in stressless conditions, they are delayed during mannitol-

induced osmotic stress (Wi, Na, et al., 2020). ROS are known to increase in response to abiotic 

stresses (Choudhury et al., 2017). Interestingly, under osmotic stress, Chlamydomonas cells 

overexpressing PyMPV17 displayed a lower MDA content than wild type cells (Wi, Park, et 

al., 2020). Altogether, these studies reflect a protective role of MPV17 against oxidative 

damages occurring during osmotic stress/desiccation. The ROS implication in the settlement of 

the MPV17 mutant phenotype in plants/algae is reminiscent of what is observed in the mice 

mutant model. 

 

Altogether, these studies imply a role of MPV17 in cell/mitochondria (metabolic) homeostasis 

and stress coping. This correlates with data obtained from a synthetic model composed of 

purified MPV17/Sym1 into lipid bilayers, suggesting that MPV17 behaves as a channel with 

stress-dependent gating properties affected by membrane potential, oxidative and pH stress 

(Antonenkov et al., 2015) (Reinhold et al., 2012). MPV17 seems to be a weakly cation-selective 

channel with a size exclusion limit of 1.8 nm, suggesting that almost all mitochondrial solutes 

could potentially flux through it (Antonenkov et al., 2015). The channel would however be able 

to adopt an intermediate conformation, allowing a more selective transfer of reduced-size 

solutes like inorganic ions (maximum 0.8 nm), over larger metabolites (Antonenkov et al., 
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2015). Nonetheless, as the channel electrophysiological analyses have been performed from a 

reconstitution of the purified protein into lipid bilayers, these data have to be treated with 

caution considering the absence of Sym1/MPV17 interacting partners. Indeed, it has been 

shown that Sym1/MPV17 belong to a 600 kDa complex of yet unidentified composition 

(Bottani et al., 2014) (Dallabona et al., 2010). This absence of native environment could notably 

affect the ion selectivity of the channel.  

 

In a nutshell, MPV17 is thought to be a channel prone to open in conditions that are deleterious 

for the mitochondria in order to reinstate homeostasis. It then begs the question of the identity 

of the solute(s) transported through MPV17. While it is reasonable to wonder whether MPV17 

is a transporter of metabolic intermediates or not based on Dallabona and colleagues’ work 

(Dallabona et al., 2010), other studies tend to closely link MPV17 and deoxynucleotides. 

 

1.3. MPV17: from purine to pyrimidine  

Exploring the functional relevance of MPV17, the group of Dalla Rosa enlightened a role for 

the protein in the Mitochondrial deoxynucleotide Salvage Pathway (MSP) (Dalla Rosa et al., 

2016). Indeed, they first noticed that MPV17 expression was increased in quiescent human 

fibroblasts compared to proliferating ones. In addition, MPV17-deficient fibroblasts only 

exhibited mtDNA depletion (40 % reduction) in a state of quiescence. This resting state implies 

that the cells mostly rely on the MSP to provide deoxynucleotides for mtDNA replication. 

Indeed, nuclear DNA replication is suspended in non-proliferating cells and, as a consequence, 

cytosolic deoxynucleotide de novo synthesis is considerably reduced (Fig 4). Specifically, 

MPV17-deficient fibroblasts showed a decrease in some enzymes involved in the purine branch 

of the MSP (adenylate kinase 3 and deoxyGuanosine Kinase (dGK)). The mtDNA depletion in 

quiescent MPV17-deficient fibroblasts was concomitant with a dearth in mitochondrial 
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deoxynucleotides, also observed in Mpv17-/- mice liver, but not in other organs unaffected by 

mtDNA depletion. Importantly, a deoxynucleoside supplementation was able to rescue the 

mtDNA depletion in MPV17-deficient fibroblasts (the best results were obtained with a cocktail 

of deoxyguanosine, deoxyadenosine and deoxycytidine) (Dalla Rosa et al., 2016). Since the 

MSP is repressed in those cells, it is probable that the exogenous deoxynucleosides are first 

processed into deoxynucleotides in the cytosol and then imported into the mitochondrion 

through transporters implicated in the deoxynucleotide de novo synthesis, as suggested by the 

compensatory overexpression of Pyrimidine Nucleotide Carrier 2 (PNC2) in MPV17-deficient 

fibroblasts and Mpv17-/- mice liver, a key cytosol-to-mitochondria deoxynucleotide transporter 

normally repressed in resting cells. The authors therefore proposed the shortage of 

deoxynucleotides as the underlying cause of mtDNA depletion in MPV17 deficiencies. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 : Cytosolic and mitochondrial deoxynucleotide supply from the de novo and salvage pathways in 

proliferating and quiescent cells.   

In replicating cells, the cytosolic and mitochondrial deoxynucleotide pools are mostly sustained by the cytosolic 

de novo synthesis. To a lesser extent, the mitochondrion also relies on its own salvage pathway. In resting cells 

where nuclear DNA replication is suspended, the cytosolic deoxynucleotide de novo synthesis is strongly reduced 
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and the cytosolic salvage pathway is inexistent. MtDNA replication is still ongoing in quiescent cells, which then 

rely on the mitochondrial salvage pathway to provide, not only for their own DNA replication, but also for nucleus 

DNA repair. pRpp: phosphoRibosyl pyrophosphate; rNDP: riboNucleoside DiPhosphate; RNR: RiboNucleotide 

Reductase; NdR: deoxyRiboNucleoside; dNMP: deoxyriboNucleoside MonoPhosphate; dNDP: 

deoxyriboNucleoside DiPhosphate; dTDP: deoxyriboNucleoside TriPhosphate; TK1 (cytosolic) and TK2 

(mitochondrial): Thymidine Kinases; dGK: deoxyGuanosine Kinase; dCK: deoxyCytidineKinase; NMPK: 

deoxyriboNucleoside MonoPhosphate Kinase ; NDPK: deoxyriboNucleoside DiPhosphate Kinase. NT1 

(cytosolic) and NT2 (mitochondrial): deoxyNucleoTidases; PNP: Purine Nucleoside Phosphorylase; TP: 

Thymidine Phosphorylase. Asterisks refer to enzymes implicated in human diseases. (Saada, 2009) 

 

Mounting evidence intimately links MPV17 and purines. Besides the former observation that 

MPV17 deficiency particularly seems to affect the purine branch of the MSP, deoxyGuanosine 

TriPhosphate (dGTP) is the most depleted deoxynucleotide in Mpv17-/- mice liver (Dalla Rosa 

et al., 2016).  In addition, the dGK loss of function in humans also leads to a similar 

hepatocerebral MDDS (Mandel et al., 2001). Moreover, in the zebrafish Danio rerio, the 

MPV17 ortholog tra gene seems to be responsible for the maintenance of specific guanine 

crystal-filled cells (Krauss et al., 2013). Indeed, while tra mutants display mtDNA depletion, 

disruption of mitochondrial ultrastructure and defective respiratory complexes in liver similarly 

to the other vertebrate species (Martorano et al., 2019), they specifically exhibit a decreased 

pigmentation in iridophores, normally accounting for their silver/golden reflection due to the 

presence of large amounts of guanine crystals in specific organelles called iridosomes. The loss 

of iridophores leads to a reduction in melanophores (responsible for the dark stripes), eventually 

making the fish transparent. In iridophores, since iridosomes are highly demanding in guanine, 

the mitochondrial supply in guanine precursors may be limiting in physiological conditions as 

the reaction would be strongly shifted towards the production of guanine directed to iridosomes 

(Fig 5). The absence of Tra, providing that it allows directly or indirectly the transport of 

guanine precursors in the mitochondria, would disrupt the particular guanine-related 

equilibrium required in this particular cell type, leading to apoptosis (Krauss et al., 2013) 

(Löllgen and Weiher, 2015) (Fig 5). Noteworthy, the injection of human MPV17 mRNA was 
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able to increase in vivo the number of iridophores in zebrafish mutant larvae (Martorano et al., 

2019). 

 

 

 

 

 

 

 

 

Figure 5 : Representation of the putative mechanism underlying the transparent phenotype in MPV17 mutant 

zebrafish.  

In zebrafish, mutations in the MPV17 ortholog transparent (tra) gene renders the fish transparent following the 

loss of a specific cell type named iridophores normally responsible for the golden/silver reflection in wild type 

(wt) animals (left). The particularity of these cells is to accumulate large amounts of guanine-based crystals in 

iridosomes, generating a physiological limiting supply of guanine precursors for the mitochondrion as they are 

substantially used for the generation of guanine appointed to iridosomes. Tra is thought to be involved in the 

transport of guanine precursors in mitochondria and in its absence, subsequent mtDNA depletion and 

mitochondrial dysfunction leads to the cell apoptosis (right). (Löllgen and Weiher, 2015) 

 

Finally, Moss and collaborators showed that, while riboAdenosine MonoPhosphate (rAMP) is 

the predominant ribonucleotide to be misincorporated in mtDNA of healthy mice liver, it is 

replaced by riboGuanosine MonoPhosphate (rGMP) in Mpv17-/- mice (Moss et al., 2017). This 

switch in ribosubstitution could be explained by the switch in the deoxynucleotide pool size. 

Indeed, while healthy mitochondria harbour a high amount of Adenosine TriPhosphate (ATP), 

predicting rAMP misincorporation, Mpv17-/- mice hepatic mitochondria display a higher 

rGTP/dGTP ratio due to dGTP shortage. However, this higher incorporation of rGMP was also 

occuring in tissues not affected by neither mtDNA depletion nor deoxynucleotide shortage, for 

example in mitochondria of Mpv17-/- mice brain. This tissue was however affected by mtDNA 
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deletions (Moss et al., 2017). Based on these findings, Moss and collaborators suggest a 

particular mechanism underlying MPV17-related MDDS. They propose that MPV17 deficiency 

would somehow lead to an inevitable increased misincorporation of rGMP in mtDNA. When 

this incorporation passes a certain threshold (that would be both time and tissue-dependent), 

mtDNA replication is hindered, causing stalling and deletions, further worsening into 

replication arrest and mtDNA depletion. Ultimately, the reduction in deoxynucleotides would 

reflect a cell attempt to readjust deoxynucleotide pools and slow down mtDNA replication in 

order to preserve fidelity (Moss et al., 2017) (Fig 6). 

 

 

 

 

 

 

 

 

 

Figure 6 : Model proposed by the group of Moss regarding the underlying mechanism of mtDNA depletion in 

MPV17-related disease. 

MPV17 deficiency leads to mitochondrial DNA (mtDNA) deletions (Δs) and mtDNA copy number (#) depletions. 

In Mpv17-/-  mice, an aberrant incorporation of riboGuanosine MonoPhosphate (rGMP) into mtDNA has been 

observed in both liver and brain compared to wild-type littermates (controls). The proportion of embedded rGMP 

is thought to be tissue and time-dependent but whenever a certain threshold is passed, high embedded rGMP levels 

cause stalling of mtDNA replication resulting in deletions. As an adaptive response, dGTP pool would be reduced 

in an attempt to restore homeostasis and slow down mtDNA replication. (Moss et al., 2017) 

 

Other recent studies rather implicate MPV17 in the pyrimidine metabolism as deoxyUridine 

TriPhosphate (dUTP) supplementation was the most effective in increasing iridophore number 

in tra-/- zebrafish embryos, compared to purine or complete deoxynucleotide supplementation. 
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Dihydroorotate deshydrogenase, located in the inner membrane of mitochondria, is the only 

mitochondrial enzyme involved in the de novo pyrimidine synthesis and catalyses the 

conversion of dihydroorotic acid into Orotic Acid (OA). The authors noticed a reduced activity 

of this enzyme in the liver of tra-/- larvae, and a significant rescue of the iridophore phenotype 

after supplementation of tra-/- embryos with OA (Martorano et al., 2019). 

Also, Alonzo and colleagues showed a 3-fold increase in uracil incorporation in mtDNA of 

MPV17-deficient HeLa cells, despite an increase in deoxyThymidine MonoPhosphate (dTMP) 

de novo and salvage biosynthesis pathways. Thus, they postulated that the apparent dTMP pool 

disruption accounting for the uracil misincorporation was due to an impaired mitochondrial 

access to a third source of cytosolic dTMP.  They therefore suggested that MPV17 is a dTMP 

carrier, as evidence supports the existence of such a specific transporter (Ferraro et al., 2006) 

(Fig 7). However, there are some limitations entailed to this study. First, the authors are 

attempting to provide insight into the mechanisms underlying the deoxynucleotide disturbed 

supply and mtDNA depletion in MPV17 deficiencies using a cell background and context in 

which no mtDNA depletion is detected when MPV17 is downregulated. Moreover, it is difficult 

to extrapolate results obtained in a specific cancer cell background to a completely different 

patient context. Finally, the use of only one shRNA and clonal populations as well as the 

absence of rescue experiment put a reasonable doubt in terms of result specificity. 
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Figure 7 : Representation of the putative role of MPV17 as a deoxyThymidine MonoPhosphate (dTMP) 

transporter.  

The mitochondrion can be supplied in dTMP via the de novo synthesis (in blue) from cytosolic deoxyUridine 

MonoPhosphate (dUMP) transported into the mitochondria through Pyrimidine Nucleotide Carrier 2 (PNC2) or 

via the mitochondrial salvage pathway which provides dT imported into the mitochondrion via PNC1. Alonzo and 

collaborators propose MPV17 as a third carrier supplying the mitochondrion with cytosolic dTMP (in red). 

(Alonzo et al., 2018)  

 

To sum up, MPV17 seems to be implicated in mitochondrial nucleotide homeostasis and while 

it is premature to attribute a function of nucleotide transporter to MPV17, this cannot be ruled 

out either.  

The literature also puts into perspective the chronology of events and their interdependence in 

MPV17 deficiencies. Indeed, does the shortage in deoxynucleotides account for the depletion 

in mtDNA (Dalla Rosa et al., 2016) or is it the actual opposite? (Moss et al., 2017). Likewise, 

is mtDNA depletion responsible for the respiratory complexes deficiency or are they both a 

(independent?) consequence of alterations in mitochondrial ultrastructure? (Martorano et al., 

2019) (Dallabona et al., 2010).  

 



INTRODUCTION 

32 

 

During this work, the investigation of MPV17 biological functions in the context of cancer led 

us to consider a role of the protein in cell proliferation, possibly mediated by Activating 

Transcription Factor 4 (ATF4). Thus, in the following part, we will focus on this pleiotropic 

transcription factor, a master regulator of cellular pathways essential for cell proliferation. 

 

2. ATF4 

ATF4 is a central transcription factor belonging to the family of ATF/Cyclic AMP Response 

Element Binding protein (CREB) (Ameri and Harris, 2008) (Karpinski et al., 1992) (Vallejo et 

al., 1993). ATF4 can bind as a homodimer or a heterodimer to a specific promoter sequence on 

its target genes called C/EBP:ATF4 Response Element (CARE). As ATF4 regulates the 

expression of plethora of genes involved in diverse biological pathways, a wide spectrum of 

trancriptional interacting partners with which it forms a heterodimer has been described, thus 

enabling a tailored response to a specific cell demand (Pakos-Zebrucka et al., 2016). ATF4 is 

frequently upregulated in malignant tissues (Ameri and Harris, 2008) and has been shown to 

drive angiogenesis (Chen et al., 2017), cancer cell migration (Zeng et al., 2019) and 

chemoresistance (Hu et al., 2016). In a first part, we will specifically focus on the cellular 

pathways controlled by ATF4 that are critical for cell proliferation and thus exploited by cancer 

cells.  In a second part, we will address the upstream regulators of ATF4. ATF4 is probably 

best known as the key effector of the Integrated Stress Response (ISR), an elaborate signaling 

network aiming at restoring cell homeostasis following a stress insult such as mitochondrial 

disturbance, nutrient deprivation, Endoplasmic Reticulum (ER) or oxidative stress. Cancer cells 

were shown to take advantage of the primarily pro-survival ISR in order to cope with the 

intrinsic challenges related to tumor growth (Wortel et al., 2017).  
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2.1. ATF4-controlled metabolic pathways in proliferating cells  

 

Because of their sustained proliferation rate, cancer cells are highly dependent on biosynthetic 

pathways such as the one-carbon metabolism, the serine biogenesis and the glutathione 

biosynthesis (Yang and Vousden, 2016) (Huggins et al., 2016). All these pathways controlled 

by ATF4 are represented in Fig 8 and detailed hereafter.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: ATF4-controlled one-carbon metabolism, serine biogenesis and glutathione synthesis.   

One-carbon metabolism (in red) is compartmentalized between the mitochondrion and the cytosol. In the 

mitochondrion, Serine HydroxyMethylTransferase 2 (SHMT2) catalyses the generation of Glycine (Gly) and 5,10-

methylene-TetraHydroFolate (5,10-methylene-THF) from tetrahydrofolate (THF) and Serine (Ser). 

MethyleneTetraHydroFolate Dehydrogenase cyclohydrolase 2 (MTHFD2) or MTHFD2-Like (MTHFD2L) then 

catalyses the oxidation of 5,10-methylene-THF into 10-formyl-THF, which is necessary for the generation of N-

formylMethionine-tRNA (fMet-tRNA), the mitochondrial translation initiator. MTHFD1L then catalyses the 

conversion of 10-formyl-THF into formate. Unlike the other one-carbon intermediates, formate can cross the 

mitochondrial membrane to the cytosol where it is used by MTHFD1 to produce 10-formyl-THF, which serves as 

a carbon donor for the purine synthesis, and to produce 5,10-methylene-THF which supports thymidylate synthesis 

and the Methionine (Met) cycle. Transport between mitochondrion and cytosol are indicated in dashed arrows. 

MTHFR: MethyleneTetraHydroFolate Reductase; TYMS: ThYMidilate Synthase; DHFRL1: DiHydroFolate 

Reductase Like 1; dUMP: deoxyUridine MonoPhosphate; dTMP: deoxyThymidine MonoPhosphate; SAM: S-

Adenosyl-Methionine; SAH: S-Adenosyl-Homocysteine; MS: Methionine Synthase.   
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The serine synthesis pathway (in blue) uses 3-PhosphoGlycerate (3PG), originating from the glycolysis or the 

gluconeogenesis, in a three-step enzymatic cascade. PHosphoGlycerate DeHydrogenase (PHGDH) catalyses the 

oxidation of 3PG into 3-PhosphoHydroxyPyruvate (3PHP), which is then converted into 3-PhosphoSerine (3PS) 

by PhosphoSerine AminoTransferase 1 (PSAT1). PhosphoSerine PHosphatase (PSPH) then catalyses the 

hydrolysis of 3PS into Ser. OA: OxaloAcetate; α-KG: α-KetoGlutarate; Glu: Glutamate; Pyr: Pyruvate; Ala: 

Alanine; aa= amino acids. Ser can also be supplied from the extracellular environment, in which case Asparagine 

(Asn) plays an important role as an amino acid exchanger. The cell can be provided in Asn via import or synthesis 

mediated by ASparagiNe Synthetase (ASNS) from its substrates Aspartate (Asp) and Glutamine (Gln). 

Glutathione is the most abundant antioxidant in the cell, and its synthesis (in green) from homocysteine, Ser, 

Glutamate (Glu) and Gly is essential for redox homeostasis. CTH: CystaTHionine lyase; SLC7A11: SoLute 

Carrier family 7, member 11; GPT2: Glutamate Pyruvate Transaminase; SLC1A5: SoLute Carrier family 1, 

member 5; GPX7, Glutathione PeroXidase 7; CBS: Cystathionine-Beta-Synthase; GLS: GlutaminaSe.  

The enzymes/actors transcriptionally controlled by ATF4 are highlighted in yellow. Dashed arrows symbolize 

multi-step reactions. Personal illustration realized from combined information from the literature (Yang and 

Vousden, 2016) (Huggins et al., 2016) (Krall et al., 2016) (Shen et al., 2020) (Andersona, Quintero and Stovera, 

2011) (Woeller et al., 2007).  

 

Folate-mediated one-carbon metabolism is a prime pathway for cell proliferation as it is 

essential for nucleic acid supply (Stover and Field, 2011). Indeed, de novo purine synthesis and 

de novo thymidylate synthesis both rely on the folate cycle which provides formate-mediated 

one-carbon moieties (Fig 8). Folate cycle occurs in a parallel way in both cytosol and 

mitochondrion and each compartment possesses its own set of enzymes (Ducker and 

Rabinowitz, 2017). The cycle however fluxes from mitochondrion to cytosol. Mitochondria, 

that harbour around 40 % of the total cellular folate pool (Yoon Soon Shin et al., 1976) (Lin, 

Huang and Shane, 1993), thus constitute the dominant branch in terms of formate synthesis. 

Indeed, this directionality of the cycle can be explained by a higher NADPH/NADP+ ratio in 

the cytosol when compared to mitochondria, thereby supporting serine formation in the former 

compartment by driving MethyleneTetraHydroFolate Dehydrogenase 1 (MTHFD1) activity in 

the direction of folate intermediates reduction (Ducker and Rabinowitz, 2017).  

Typically, in the mitochondrion, formate is generated from TetraHydroFolate (THF) and serine 

following a multi-step enzymatic cascade. In humans, THF supply requires vitamin B9 (folic 

acid) food intake. Formate is then exported to the cytosol where it is used to generate 
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intermediates, 10-formyl-THF and 5,10-methylene-THF, that feed purine synthesis and 

thymidylate synthesis, respectively (Ducker and Rabinowitz, 2017). Purine synthesis requires 

the bigger part of folate one-carbon units in proliferating cells, as 5,10-methylene-THF-

dependent thymidylate synthesis is only required for DNA replication, whereas 10-formyl-

THF-dependent purine synthesis is needed for both DNA and RNA synthesis. Besides 

providing the purine backbone with two carbon moieties, 10-formyl-THF, the most oxidized 

form of folate, also provides the cell with N-formylMethionine-tRNA (fMet-tRNA), the 

initiator tRNA required for the translation of proteins encoded by the mitochondria (Ducker 

and Rabinowitz, 2017). Of interest, the three mitochondrial enzymes supporting the folate 

cycle, namely Serine HydroxyMethylTransferase 2 (SHMT2), bifunctional 

MethyleneTetraHydroFolate Dehydrogenase/cyclohydrolase 2 (MTHFD2) and MTHFD1 Like 

(MTHFD1L) are regulated at the transcriptional level by ATF4 (Ben-Sahra et al., 2016) (S. 

Wang et al., 2015) (Fig 8).  

A third cellular purpose of the folate cycle is feeding the methionine cycle. Indeed, formate-

derived 5-methyl-THF, the most reduced form of formate, is destined to support the 

remethylation of homocysteine to methionine, thereby allowing the generation of S-Adenosyl-

Methionine (SAM) (Fig 8). The metabolic importance of SAM in the cell can be compared to 

the one of ATP as it is a strong methyl group donor involved in plethora of cellular processes, 

especially in epigenetics (Ducker and Rabinowitz, 2017).  

Consistently with their inherent rapid proliferation rate, cancer cells upregulate folate-mediated 

one-carbon metabolism (Ducker and Rabinowitz, 2017) (Yang and Vousden, 2016). In this 

context, MTHFD2 is of particular interest. MTHFD2 is normally expressed in embryogenic 

and undifferentiated tissues but absent in adult differentiated ones, where MTHFD2L ensures 

the enzymatic functions (Mejia and MacKenzie, 1985). However, MTHFD2 expression is 

reactivated and upregulated in proliferating malignant cells (Nilsson et al., 2014). In these cells, 
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MTHFD2 has also been shown to localize in the nucleus where it is suspected to ensure an 

enzymatic-unrelated function driving cell proliferation, as the overexpression of MTHFD2 

lacking its dehydrogenase activity is still successful in increasing the proliferation of human 

colon cancer cells. The observation that MTHFD2 overexpression alone is sufficient to increase 

cell proliferation reflects a putative important role of upstream signaling regulator (Gustafsson 

Sheppard et al., 2015).  

Serine is an important precursor of the folate cycle (Fig 8). This is especially true regarding the 

purine synthesis. Indeed, not only does it allow the generation of 10-formyl-THF, a carbon 

donor for the purine backbone, but its catabolism into glycine also provides carbon and nitrogen 

moieties to the purine skeleton (Ben-Sahra et al., 2016) (Fig 9). Catabolism of serine in the 

folate cycle constitutes a crucial source of glycine since CHO cells become auxotroph for 

glycine when their folate metabolism is disrupted (Taylor and Hanna, 1982) (McBurney and 

Whitmore, 1974).  

 

 

 

 

 

 

Figure 9 : Representation of a purine backbone.  

During the de novo purine synthesis, several actors contribute to the formation of the purine backbone by providing 

carbon and/or nitrogen moieties: Gly: Glycine; Ribose-5-P: Ribose-5-Phosphate; Formyl: 10-formyl-THF; 

Glutamine: Gln; Aspartate: Asp. (Ben-Sahra et al., 2016) 

 

There are two possible sources of serine for the cell: either from the endogenous serine 

biosynthesis pathway and/or from an exogenous supply by serine uptake (Fig 8). The serine 

biogenesis initiates from 3-phosphoglycerate and is supported by three cytosolic enzymes, all 
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transcriptionally regulated by ATF4: PHosphoGlycerate DesHydrogensase (PHGDH), 

PhosphoSerine AminoTransferase 1 (PSAT1) and PhosphoSerine PHosphatase (PSPH)  (Yang 

and Vousden, 2016) (Fig 8). 

The control of serine exogenous supply is highly dependent on asparagine. Indeed, besides its 

basic but prime role as a building block provider, asparagine is also an amino acid exchange 

factor that allows import of several amino acids, especially serine, alongside its own export 

(Krall et al., 2016). Asparagine is either directly imported from the extracellular environment 

or synthetized from glutamine and aspartate under the activity of the ASparagiNe Synthetase 

(ASNS), encoded by an ATF4-controlled gene (Krall et al., 2016) (Fig 8). 

In cancer cells, ATF4, as a regulator of amino acid homeostasis, is an actor of particular 

importance in this context of high bioenergetic demands (Mattaini, Sullivan and Vander 

Heiden, 2016). Thus, fibrosarcoma cancer cells silenced for ATF4 display a reduced 

proliferation rate, alleviated in the presence of NEAA (glycine, alanine, asparagine, aspartic 

acid, glutamic acid, proline and serine). More specifically, asparagine alone is able to rescue 

the survival of these cells that exhibit a severely reduced expression of ASNS, thus reflecting a 

defective ATF4-dependent asparagine biosynthesis (Ye et al., 2010). This observation 

underlines the major importance of asparagine for cancer cells. The latter even seems to favour 

asparagine over glutamine for amino acid import (Krall et al., 2016). The asparagine 

dependency of cancer cells is exploited therapeutically as the enzyme L-asparaginase that 

catalyses the degradation of asparagine is a common treatment for acute lymphoblastic 

leukaemia (Ertel et al., 1979). However, the inherent adaptability of cancer cells leads to the 

upregulation of ASNS abundance and activity in order to compensate the loss of exogenous 

asparagine supply, leading to treatment resistance (Hutson et al., 1997) (Aslanian, Fletcher and 

Kilberg, 2001).  
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Aside from their role in purine synthesis, serine and glycine are also essential for the cell redox 

homeostasis as they are important precursors for glutathione biosynthesis (Fig 8). Among other 

mechanisms, glutathione performs its antioxidant function as a substrate for glutathione 

peroxydases which are specific enzymes catalysing the reduction of hydrogen peroxyde and 

other peroxydes, a process that leaves glutathione in a disulfide oxidized state. In turn, oxidized 

glutathione will be further reduced by glutathione reductase, using NADPH coming from the 

pentose phosphate pathway (Lu, 2013). The synthesis of glutathione is composed of two major 

steps, the serine-dependent generation of 𝛾-glutamylcysteine, and the subsequent glycine-

dependent formation of glutathione (Lu, 2013). ATF4 regulates the transcription of many actors 

involved in glutathione synthesis in partnership with C/EBP𝛾 (Huggins et al., 2016) (Fig 8).  

Cancer cells are also highly dependent on ATF4 to maintain their oxidative homeostasis, 

challenged by higher ROS generation due to their accelerated metabolic activity. Thus, the 

silencing of ATF4 partner C/EBP𝛾 in lung cancer cells A549 reduced their proliferation, 

restored in the presence of N-Acetyl Cysteine (NAC) (Huggins et al., 2016).  

 

Hence, ATF4 is a major regulator of amino acid metabolism/transport, nucleotide synthesis and 

oxidative stress, making it indispensable for a proper cell proliferation. Atf4-/- MEFs are thus 

unable to grow unless supplemented with NEAA, reflecting an ATF4-dependent defective 

amino acid synthesis (Harding et al., 2003). Moreover, NEAA supplementation was necessary 

but not sufficient to completely restore the growth of Atf4-/- MEFs as they also require the 

presence of an antioxidant (glutathione, -mercaptoethanol (BME) or NAC), suggesting an 

impaired redox homeostasis and particularly an impaired glutathione biosynthesis as cysteine 

supplementation, an intermediate in glutathione biosynthesis, also restores the growth 

phenotype (Harding et al., 2003).  
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2.2. ATF4 upstream regulators  

Histone lysine DeMethylase 4C (KDM4C) has been identified as an important transcriptional 

regulator of ATF4 (Zhao et al., 2016). KDM4C catalyses the demethylation of histone 3 at 

lysine 9, thereby removing the repressive transcription marks of certain genes. It has been 

shown that KDM4C upregulates the ATF4-dependent serine biogenesis and subsequently 

cancer cell proliferation (Zhao et al., 2016).  

The ATF4-dependent upregulation of serine biogenesis and one-carbon metabolism in response 

to growth signals or oncogenes is also mediated by mammalian Target Of Rapamycin Complex 

1 (mTORC1), which increases ATF4 mRNA stability and translation (Park et al., 2017). 

mTORC1 is a major actor regulating cell growth and proliferation and its serine 2448 

phosphorylation-mediated activation has been shown to be dependent on the availability of 

amino acids (Chiang and Abraham, 2005). More specifically, mTORC1 activation is notably 

sensitive to the presence of leucine and arginine. Indeed, the binding of these amino acids to 

specific mTORC1 inhibitors (Sestrin1 and Castor 2, respectively) triggers the activation of the 

signaling pathway (Wolfson and Sabatini, 2017).   

Noteworthy, in a mouse model of mitochondrial myopathy carrying a mutation in the 

mitochondrial helicase Twinkle leading to mtDNA deletions, mTORC1 has been identified in 

muscle as the main executor of ATF4 activation, resulting in an ATF4-driven metabolic 

imbalance and aberration contributing to the disease progression (Khan et al., 2017). Therefore, 

beyond integrating environmental cues for cell growth, mTORC1 also responds to 

mitochondrial dysfunction via ATF4. Along those lines, ATF4 is generally activated following 

mitochondrial disturbances (Fig 10) (Quirós et al., 2017) (Kasai et al., 2019).  
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Figure 10 : ATF4 is activated in response to  mitochondrial disturbances.  

Various stresses affecting mitochondrial function can activate ATF4 (Kasai et al., 2019), leading to the expression 

of specific target genes (SEStriN2 (SESN2), Fibroblast Growth Factor 21 (FGF21), …) through binding to the 

consensus sequence Amino Acid Responsive Element (AARE). Thus, an inhibition of the oxidative 

phosphorylation caused by either genetic mutations (Cytochrome c assembly factor 10 (Cox10)-deficient mice) 

(Tyynismaa et al., 2010) (Fujita et al., 2007) or by treatment with a chemical compound like metformin (complex 

I inhibitor) (Kim, Jeong, Kim, et al., 2013) and oligomycin (complex V inhibitor) (Garaeva et al., 2016) has been 

shown to increase ATF4 expression. ATF4 is also activated in the context of metabolic dysfunction resulting for 

example from mutations in the gene coding for FrataXiN (FXN), a mitochondrial matrix protein necessary for the 

biosynthesis of iron-sulfur clusters (Huang et al., 2013). Metabolic dysfunction and subsequent ATF4 activation 

can also occur during mitochondrial aldehyde stress as shown in Aldehyde dehydrogenase 2 (Aldh2) mutant mice 

(Endo et al., 2009).  The actifvation of ATF4 has also been seen in a muscle-specific Autophagy-related 7 (Atg7) 

KO mouse model in which the mitophagy is defective (Kim, Jeong, Oh, et al., 2013). The impairment of 

mitochondrial dynamic, notably via deletion of mitochondrial fusion actors Mitofusin (Mfn) 1 and 2, also leads to 

ATF4 activation (Kim, Jeong, Oh, et al., 2013). Finally, ATF4 also responds to an imbalance between proteins 

coded by the mitochondria and proteins coded by the nucleus following mtDNA depletion (Bao et al., 2016) or 

doxycycline (inhibitor of mitochondrial translation) treatment (Michel et al., 2015).  

 

The ATF4 activation following mitochondrial impairment has often been shown to be driven 

by the ISR (S. F. Wang et al., 2016) (Michel et al., 2015) (Silva et al., 2009). The ISR is an 

intricate signaling pathway activated in response to various cellular stresses in order to restore 

homeostasis (Pakos-Zebrucka et al., 2016) (Fig 11, left). Upstream the pathway, four kinases 
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can be activated in response to distinct stresses. Double-stranded RNA-dependent Protein 

Kinase (PKR) is activated in response to viral infection, Heme-Regulated eukaryotic Initiation 

Factor 2𝛼 (eIF2𝛼) kinase (HRI) in response to heme deprivation (occurring mainly in the 

erythroid lineage), PKR-like Endoplasmic Reticulum Kinase (PERK) in response to 

endoplasmic reticulum (ER) stress and General Control Nonderepressible 2 (GCN2) is 

activated in response to amino acid deprivation (more specifically to uncharged tRNAs). The 

latter is of particular importance for cancer cells since nutrient supply at the core of the tumor 

is often limited due to the scarcity of blood vessels. Moreover, the activation of the PERK-

mediated axis of the ISR in cancer cells has been shown to be an adaptative response to hypoxic 

stress (Fels et al., 2005). Noteworthy, these four kinases can have overlapping actions and 

compensate for each other. For example, they are all activated following oxidative stress 

(Pakos-Zebrucka et al., 2016). Specifically, GCN2 can also be activated in response to the 

inhibition of mitochondrial protein translation. Indeed, Michel and collaborators showed that 

HeLa cells treated with doxycycline display an activation of the GCN2-mediated axis of the 

ISR (Michel et al., 2015).  
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Figure 11 : The Integrated Stress Response (ISR) (left) and the translational control of Activating Transcription 

Factor 4 (ATF4) (right).  

(Left) The ISR is activated by four major kinases, responding to specific cell stresses, namely General Control 

Nonderepressible 2 (GCN2), double-stranded RNA-dependent Protein Kinase (PKR), Heme-Regulated eukaryotic 

Initiation Factor 2𝛼 (eIF2𝛼) kinase (HRI) and PKR-like Endoplasmic Reticulum Kinase (PERK). They all 

converge towards the activation of eukaryotic Initiation Factor 2𝛼 (eIF2𝛼) kinase which, in turn, leads to an 

increase in ATF4 translation. The latter then regulates the expression of target genes aiming at restoring cell 

homeostasis. The ISR is terminated under the action of Protein Phosphatase 1 (PP1) which catalyzes the 

dephosphorylation of eIF2𝛼 by recruiting either the constitutively expressed Constitutive Repressor of eIF2𝛼 

Phosphorylation (CReP) or the ISR-induced Growth Arrest and DNA Damage-inducible protein 34 (GADD34). 

(Pakos-Zebrucka et al., 2016) 

(Right) The translation preinitiation complex composed of eukaryotic Initiation Factor 2𝛼 (eIF2𝛼), Met-tRNAMet, 

40S ribosomal subunit and GTP is involved in mRNA translation as it recognizes the start codon of transcripts. 

The complex formation is dependent on eIF2B as it catalyses the reconversion of inactive eIF2𝛼-GDP to active 

eIF2𝛼-GTP. Under physiological conditions, ribosomes scanning starts at upstream Open Reading Frame 1 

(uORF1) and promptly re-initiates at uORF2 which overlaps with ATF4 CDS, thereby preventing its expression. 

In the presence of a cellular stress, the phosphorylation of eIF2𝛼 impairs eIF2B activity. This favours the 

translation of ATF4 as a shortage of active complex eIF2𝛼-GTP delays ribosome scanning which thus re-initiates 

at ATF4 CDS instead of uORF2. (Pakos-Zebrucka et al., 2016) 
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The ISR activation leads to the phosphorylation of eIF2𝛼 at serine 51 (Fig 11, left). Under 

physiological conditions, eIF2𝛼 plays a major role in global mRNA translation and constitutes 

the 43S preinitiation complex together with Met-tRNAMet, 40S ribosomal subunit and GTP. 

This complex allows the recognition of the start codon upon which eIF2𝛼 catalyses the 

hydrolysis of GTP, thus inducing eIF2𝛼-GDP dissociation from the complex and allowing the 

formation of the complete 80S initiation complex with the binding of the 60S ribosomal subunit. 

eIF2B then promotes the formation of a new complex by catalysing the reconversion of inactive 

eIF2𝛼-GDP to active eIF2𝛼-GTP (Rzymski et al., 2009). Under cellular stress, the 

phosphorylation of eIF2𝛼 (PeIF2𝛼) increases the stability of the PeIF2𝛼-GDP-eIF2B complex 

and therefore prevents the formation of the active eIF2𝛼-GTP complex. This leads to a general 

decrease in mRNA 5’-cap-dependent translation and simultaneously to a preferential translation 

of a subset of mRNAs, including ATF4 whose 5’UnTranslated Region (5’UTR) is characterized 

by the presence of two upstream Open Reading Frames (uORFs). uORF1 acts positively 

towards ATF4 translation by facilitating ribosome re-initiation at ATF4 coding sequence. 

uORF2 acts negatively towards ATF4 translation as it overlaps with ATF4 coding sequence. 

Under physiological conditions, ribosomes tend to re-initiate at uORF2, therefore leading to 

low levels of ATF4 protein. Under cellular stress however, a dearth of the active complex 

eIF2𝛼-GTP delays ribosome re-initiation, leading them to scan downstream uORF2 and re-

initiate translation at ATF4 ORF (Rzymski et al., 2009) (Fig 11, right). The ATF4 protein then 

proceeds to a fine regulation of adaptive genes in order to alleviate the cellular stress or brings 

upon cell death if the stress insult is too severe (Pakos-Zebrucka et al., 2016). 

 

 

 

 



OBJECTIVES 

44 

 

OBJECTIVES 

In a previous work conducted in URBC and aiming at characterizing the mitochondrial 

biogenesis in stem cell plasticity, an increased expression of MPV17 was noticed during 

mesenchymal stem cell differentiation towards hepatocytic lineage (Wanet et al., 2017) (data 

deposited in NCBI's Gene Expression Omnibus through GEO Series accession number 

GSE75184). Unexpectedly, MPV17 silencing had no impact on hepatogenic differentiation and 

mitochondrial DNA, while it significantly reduced the proliferation of culture-expanding Bone 

Marrow Mesenchymal Stem Cells (BM-MSC) and Umbilical Cord-MSC (UC-MSC) from 

different donors (Wanet A, personal communication). This observation is in accordance with 

the work of Choi and colleagues who showed that MPV17 knockdown reduces the proliferation 

of NSC34 cells, a mouse motor neuronal cell line (Choi et al., 2015). As MPV17 has been 

implicated in stress responses (Dallabona et al., 2010) (Bottani et al., 2014) and has been 

described as a channel with stress-dependent gating properties (oxidative and pH stress, etc) 

(Antonenkov et al., 2015), we then wondered if MPV17 could have a role in the proliferation 

of human cancer cells, as they inherently experience oxidative and metabolic stress. Moreover, 

according to Protein Atlas, MPV17 expression is associated with an unfavourable prognostic in 

liver cancer patients (www.proteinatlas.org/ENSG00000115204-MPV17/pathology) further 

suggesting a role of the protein in the process of oncogenicity.   

In order to explore the putative role of MPV17 in the control of cancer cell proliferation, we 

will use a loss-of-function approach and silence MPV17 expression in different cancer cell lines 

by lentivirus-mediated delivery of shRNAs.  
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MATERIALS AND METHODS 

Cell culture  

Human hepatoma cell lines Huh7 and HepG2 cells were grown in Dulbecco’s Modified Eagle’s 

Medium (DMEM) 1g/L glucose (Life technologies, #31885). Human renal embryonic cell line 

HEK293T was cultured in DMEM 4.5g/L glucose (Life technologies, #41965), human 

pulmonary adenocarcinoma cell line A549 and human squamous cell carcinoma cell line SQD9 

in MEM GlutaMAX-1 (Life technologies, #42360), and human hepatoma cell line Hep3B in 

Roswell Park Memorial Institute medium 1640 (Life technologies, #21875). All those media 

were supplemented with 10 % Foetal Bovine Serum (FBS) (Life technologies, #10270) and 

used in a 5% CO2 humid atmosphere at 37 °C. Huh7 cells (JCRB0403) were kindly provided 

by Prof. Sven Diederichs (DKFZ, Heidelberg, Germany). HepG2 (ATCC, HB-8065) were 

kindly provided by Prof. Luc Bertrand (UCL, Woluwe, Belgium). A549 cells (ATCC, CCL-

185) were kindly provided by Dr Jacques Piette (ULg, Liege, Belgium). SQD9 cells were 

obtained from UCL (Vanessa Bol, Woluwe, Belgium). HEK293T (CRL-11268) and Hep3B 

(HB-8064) were purchased from ATCC. All these cell lines were used within 20 passages.  

 

Plasmid amplification  

Escherichia coli Stbl3 or CcdB survival strain was transformed with the plasmid to amplify by 

heat shock. Precisely, a mix of 1 µL of plasmid and 100 µL of bacteria was gently vortexed, 

placed 30 min on ice, 1 min on a 42 °C heat block and immediately put back on ice for 2 min. 

A volume of 250 µL of Luria Bertani broth (LB) (Carl Roth, X964) was added to the 

transformed bacteria and the tube was incubated 1 h under 225 rpm agitation. A volume of 100 

µL of transformed bacteria was then spread on petri dish (Greiner bio-one, 664160) with 1.5 % 

agar (VWR, 84609) LB containing ampicillin (Sigma Aldrich, 10835242001) at 50 µg/mL and 
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grown overnight at 37 °C. The next day, one colony was picked and amplified in mini culture 

for 8 h and in maxi culture overnight. Plasmids were then extracted and purified using HiPure 

Plasmid Filter Maxiprep Kit (Invitrogen, K210017) according to the manufacturer’s 

recommendations.   

 

Lentivirus production 

HEK293T were seeded at 4x106 cells in 75 cm2 culture flask (Corning, #430641U). The next 

day, the DNA mixture and the lipofectamine solution were prepared separately. The DNA 

mixture was composed of 0.4 µg of the envelope-encoding vector pCMV-VSVG (Addgene, 

#8454), 3.6 µg of the packaging vector psPAX2 (Addgene, #12260) and 4 µg of the expressing 

plasmid (Table 1), in 240 µL of 5 % opti-MEM (Invitrogen, #31985). The lipofectamine 

solution was composed of 16 µL of lipofectamine 2000 (Invitrogen, #11669) in 240 µL of 5 % 

opti-MEM. Both preparations were incubated for 5 min at room temperature, combined, 

incubated for 30 min at room temperature and added in the flask. After 18 h, the medium was 

renewed and at 48 h and 72 h post-transfection, the medium was collected and filtered on 0.45 

µm steriflip (Millipore, SE1M003M00). Lentiviruses were titrated by Reverse Transcription 

quantitative Polymerase Chain Reaction (RT-qPCR) according to manufacturer’s 

recommendations (Lentivirus qPCR Titer Kit, Applied Biological Materials, LV900).  

 

MPV17 silencing  

Sub-confluent cells were transduced with the adequate lentiviruses in the presence of 60 µg/mL 

protamine sulphate (Sigma-Aldrich, P4020), a positively-charged molecule favouring the 

binding of lentiviral particles to the cell membrane by reducing repulsion forces. Briefly, for 

the constitutive silencing of MPV17, cells were transduced with different shRNA-encoding 

vectors (pLKO.1-puro shNT, sh127649, sh128669, sh129921, sh131201, sh131038), selected 
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for 6 days with puromycin (Sigma-Aldrich, P8833) at 2.5 µg/mL and let to recover for 2 days 

without puromycin. They were then seeded and allowed to grow for 4 days before assessing the 

proliferation (Fig 12a). 

For the inducible silencing of MPV17, cells were transduced or not with pLKO-puro-IPTG-

3xLacO encoding sh129921, selected for 6 days with puromycin (Sigma-Aldrich, P8833) at 2.5 

µg/mL and let to recover for 2 days. MPV17 silencing was then obtained by incubation of the 

transduced cells with 0.1 mM of IsoPropyl ß-D-1-ThioGalactopyranoside (IPTG) (Sigma-

Aldrich, I6758), renewed daily for 5 days unless stated otherwise. Cells were then seeded and 

allowed to grow for 4 days in presence of IPTG renewed daily (unless stated otherwise) before 

assessing the proliferation (Fig 12b). 

 

 

 

 

 

 

 

 

Figure 12 : Experimental timelines of MPV17 silencing in the constitutive and inducible expression models. 

Cells were transduced and puromycin-selected with a vector allowing a constitutive (a) or an inducible (b) MPV17 

silencing. After 2 days of recovery, cells were either seeded and allowed to grow for 4 days before assessment of 

proliferation (a) or treated with 0.1 mM of IsoPropyl ß-D-1-ThioGalactopyranoside (IPTG) for 5 days to induce 

MPV17 silencing prior to the seeding. The proliferation was then assessed after 4 days of growth in the presence 

of IPTG renewed daily (b). 
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Proliferation assessment  

• Cell counting  

Cells were seeded in 25 cm2 culture flask (Corning, #430639) and grown for 4 days. Cells were 

rinsed with Phosphate Buffered Saline (PBS) pH 7.4, detached using 0.05 % trypsin-EDTA 

(ThermoFisher, 25300) and centrifuged for 5 min at 200 g. The pellet was resuspended in 

culture medium and cell suspension density was counted in a Neubauer chamber. Doubling 

time was calculated as follow: time*ln(2) / (ln(number of cells at the end of the experiment) - 

ln(number of seeded cells)).  

• MTT assay 

This colorimetric assay, based on the enzymatic reduction (mainly catalysed by mitochondrial 

succinate dehydrogenase) of a tetrazolium dye to water insoluble formazan, is used as an 

indicator of cell proliferation (Mosmann, 1983). Cells were seeded in 24-well culture plates as 

indicated (Corning, #3524), grown for 4 days and incubated for 1 h with 500 µL of 3-(4,5-

diMethylThiazol-2-yl)-2,5-diphenyl-2H-Tetrazolium bromide (MTT) (Sigma-Aldrich, 

M2128) (2.5 µg/mL in PBS) at 37 °C. Cells were then lysed for 1 h in lysis buffer (9 % sodium 

dodecyl sulphate, 60 % N, N-dimethylformamide, pH 4.7), and absorbance was measured with 

a spectrophotometer (xMark, Bio-Rad) at 570 nm. 

• Protein content: Folin protein assay  

This colorimetric method is based on the reaction of peptide bonds with copper ions under 

alkaline conditions followed by the reduction of phosphomolybdic-phosphotungstic acid by 

aromatic amino acids which generates a blue end product (heteropolymolybdenum blue). Cells 

were seeded in 24-well culture plates as indicated (Corning, #3524), grown for 4 days and 

rinsed twice with PBS. The bovine serum albumin (VWR, 0332) protein standards and samples 

were incubated 30 min in the presence of 200 µL of 0.5 M sodium hydroxide, then 10 min with 
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750 µL of a solution A (1.96 % sodium carbonate, 0.02 % sodium and potassium tartrate and 

0.01 % copper sulphate) and finally 30 min with 75 µL of Folin and Ciocalteu’s phenol reagent 

(Sigma-Aldrich, F9252) diluted twice in distilled water. Absorbance was measured with a 

spectrophotometer (xMark, Bio-Rad) at 740 nm (LOWRY et al., 1951).  

• Cyquant cell proliferation assay  

This commercial assay allows the quantification of DNA following the binding of a fluorescent 

dye. Cells were seeded in 24-well culture plates (Corning, #3524) and grown for 4 days. DNA 

content was then measured using Cyquant cell proliferation assay (ThermoFisher, C7026) 

according to the manufacturer’s recommendations.  

 

Cell lysates and Pierce protein assay 

Cells were seeded in 75 cm2 culture flask as indicated (Corning, #430641U), rinsed once with 

PBS and lysed with radioimmunoprecipitation assay buffer (20 mM tris hydroxymethyl, 150 

mM sodium chloride, 1 mM EDTA, 1 mM EGTA, 1 % sodium deoxycholate, 10 % glycerol, 1 

% NP40, pH 7.6) supplemented with protease inhibitor cocktail (Sigma-Aldrich, 11697498001) 

and phosphatase inhibitor buffer (25 mM sodium orthovanadate, 250 mM 4-

nitrophenylphosphate, 250 mM ß-glycerophosphate, 125 mM sodium fluoride). Lysates were 

sonicated 3 x 10 sec (amplitude 50) and centrifuged (10 min, 15000 g). Cleared cell lysates 

were assessed for protein content with Pierce 660 Protein Assay Reagent (ThermoFisher, 

22660) according to the manufacturer’s recommendations.  

 

Western blotting analysis 

Amounts of 20 µg of protein samples were prepared in loading buffer (0.03 M Tris-

hydrochloride acid; pH 6.8, 0.04 M sodium dodecyl sulphate, 0.4 M BME, 5 % glycerol, 0.15 
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mM bromophenol blue), boiled for 5 min, resolved on polyacrylamide gel and transferred on a 

nitrocellulose membrane (Bio-Rad). Membrane was blocked for 1 h at room temperature in 

Odyssey Blocking Buffer (OBB) (LI-COR, P/N 927) diluted twice in PBS and incubated 

overnight at 4 °C with the primary antibody diluted in OBB with 0.1 % Tween-20 (OBB-T). 

For the particular detection of MPV17, the membrane was treated prior to blocking step with 

Super Signal Western Blot Enhancer (ThermoFisher, 46640) according to the manufacturer’s 

recommendations. The next day, membrane was rinsed 3 x 5 min in PBS with 0.1 % Tween-20 

(PBS-T), incubated with secondary antibody diluted in OBB-T 0.1 % for 1 h at room 

temperature, rinsed 3 times in PBS-T 0.1 %, dried and scanned with the Odyssey Infrared 

Imager (LI-COR, 9120). For the description of the antibodies used in this study, see Table 2. 

 

Construct for MPV17 overexpression  

MPV17 mRNA was reverse transcribed (Transcriptor First Strand cDNA kit, Roche, 

04379012001) using a specific primer (5’-AGGTGGAAACGATGGAGTGA-3’). A PCR was 

then performed using a forward primer containing a restriction site for BamH1 (F: 5’-

AGGATCCAGGAAGCATGGCA-3’) and a reverse primer containing a restriction site for 

Sal1 (R: 5’-AGTCGACGGCAGGCTTAGA-3’). PCR products were purified using Wizard SV 

Gel and PCR Clean-Up System (Promega, A9281). An amount of 1 µg of PCR product and 

pLenti PGK Green Fluorescent Protein (GFP) Puro (Addgene, #19070) (Fig 13) was digested 

with BamH1, purified, restricted with Sal1, purified and finally ligated with T4 DNA ligase 

(Biolabs, M0202S) to construct the pLenti PGK MPV17 Puro plasmid. Lentiviruses were 

produced as described above.  
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Figure 13 : Map of the plasmid used for the generation of MPV17 overexpressing plasmid.  

The map of pLenti PGK Green Fluorescent Protein (GFP) Puro plasmid (Addgene, #19070) used for the generation 

of MPV17 overexpressing plasmid is detailed here.  

 

 

Rescue experiment 

HepG2 cells were transduced with pLenti PGK GFP puro or pLenti PGK MPV17 puro-

containing lentiviruses and selected for 6 days with puromycin (2.5 µg/mL). Cells were then 

transduced with PLKO.1-puro vector constitutively encoding sh129921 or shNT (Table 1). 

Cells were then allowed to recover and generate MPV17-targeting shRNA for 5 days, seeded 

and allowed to grow for 4 days. Cell proliferation was assessed by MTT assay at day 1 and day 

4. To overexpress MPV17, we used MPV17-silencing and MPV17-overexpression vectors that 

were both bearing the resistance to puromycin. This obviously constitutes an obstacle in the 

selection of the cells that are double transduced. However, we decided to proceed further based 

on the knowledge that the sh129921-encoding vector robustly led to a very efficient 

transduction rate (nearly 100 %), therefore allowing to bypass the need for an ensuing antibiotic 

selection.  
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mtDNA content determination 

DNA was extracted with the Wizard Genomic DNA Purification Kit (Promega, A1120) 

according to the manufacturer’s recommendations. qPCR for mtDNA amplification was 

performed on the gene encoding NADH Dehydrogenase 2 (ND2) using the forward primer 5’-

TGTTGGTTATACCCTTCCCGTACTA-3’ and the reverse primer 5’-

CCTGCAAAGATGGTAGAGTAGATGA-3’. For the normalization with nuclear DNA, the 

gene encoding Beclin was amplified with the forward primer 5’-

CCCTCATCACAGGGCTCTCTCCA-3’ and the reverse primer 5’- 

GGGACTGTAGGCTGGGAACTATGC-3’. Real time PCR was performed with SYBR Select 

Master Mix (ThermoFisher, 4472908). mtDNA copy number was calculated according to the 

following formula: 2*2^-Ct (where Ct=Ctmean ND2 – Ctmean Beclin). 

 

RNA extraction and RT-qPCR 

RNA was extracted with RNeasy Mini kit (Qiagen, 74104) according to manufacturer’s 

recommendations and QIAcube (Qiagen). RT was performed with GoScript™ Reverse 

Transcription Mix (Promega, A2791) according to the manufacturer’s recommendations. qPCR 

was performed with SYBR Select Master Mix (ThermoFisher, 4472908). We used the 2-Ct 

method to assess the relative mRNA expression. For the description of the primers (IDT) used 

in this study, see Table 3. 

 

Supplementations with formate, deoxynucleosides, asparagine, NAC, NEAA 

and/or BME.  

Cells were seeded at 8×103 cells/cm2 and grown for 4 days in the presence/absence of 1, 5 or 

10 mM of formate (Sigma-Aldrich, 71539) in DMEM with 0.1% FBS or in the 
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presence/absence of 0.7 mM asparagine (Sigma-Aldrich, A4284)  or in the presence/absence of 

50 M of Thymidine (dThd) (Sigma-Aldrich, T1895), deoxyCytidine (dCtd) (Sigma-Aldrich, 

D3897) deoxyAdenosisne (dAdo) (Sigma-Aldrich, D8668) and deoxyGuanosine (dGuo) 

(Sigma-Aldrich, D0901) or 50 M of dCtd, dAdo, dGuo or in the presence/absence of 0.1, 0.5, 

5, 10 M of NAC (Sigma-Aldrich, A7250) or in the presence/absence of 100 M of NEAA 

(Gibco, 11140035) and/or 25, 50 or 100 M  of BME (Sigma-Aldrich, 63690).  

While dAdo, dCtd, and dThd were diluted in distilled water, dGuo was diluted in ammonium 

hydroxyde (NH4OH) 1M (Sigma-Aldrich, 338818) and heated 3 min at 105°C in order to 

achieve dissolution. When necessary, pH was readjusted.  

 

RNA sequencing  

Huh7 cells were transduced with shRNA non-target lentiviral vector (shNT) or vector targeting 

MPV17 expression (sh129921). RNA quality was analysed with the Bioanalyzer 2100 

(Agilent). RNA samples (n=4) were sent to Genomic Core Leuven (Belgium) for RNA 

sequencing and data were analysed with Ingenuity Pathway Analysis (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis). 

 

Immunohistochemistry 

Liver paraffin embedded slices of 5 µm thickness (kindly provided by Professors Mustapha 

Najimi and Etienne Sokal, UCL) were incubated 2 x 5 min in xylene (ThermoFisher, 

X/0200/21), 2 x 3 min in isopropanol (VWR, 20842.330) and 10 min in 1% H2O2 (VWR, 

23.613.446) / methanol prepared extemporaneously. They were then washed 3 min in tap water, 

3 min in demineralized water, incubated 30 min in the 98°C water bath with the “Target 

Retrieval Solution 1x” pH 6.1 (Dako, S169984-2) and let to cool down for 15 min at room 

temperature. Slices were then washed 5 min in tap water, 2 x 3 min in PBS and incubated 1 h 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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at room temperature with a solution of PBS-2 % Normal Goat Serum (NGS) (ThermoFisher, 

16210064). They were then incubated with the primary antibody anti-MPV17 (Table 2) diluted 

1/100 in a solution of PBS-0.5 % NGS overnight at 4°C and, the next day, they were washed 3 

x 3 min in PBS-T 0.05 % baths and 3 min in PBS. Slices were then incubated 30 min at room 

temperature with the secondary antibody EnVision-HRP anti-rabbit (Dako, K400311) before 3 

washes of 3 min in PBS-T 0.05 % and one additional 3-min wash in PBS. They were then 

incubated 4 min at room temperature in the DAB solution (Dako, K346811), washed 5 min in 

running tap water, incubated 5 min in Mayer Hematoxyline and washed 5 min in running tap 

water. Finally, slices were incubated 3x 3 min in isopropanol, 3x 3 min in xylene and mounted 

on coverslip with Entellan glue (Merck Millipore, 107960).  

 

Statistical analyses 

Data are expressed as the mean ± Standard Error of the Mean (S.E.M). Figure plotting was 

performed with Prism software. Statistical analysis was performed using a one-tailed Mann-

Whitney Test or a two-tailed Wilcoxon signed rank Test (⍺ = 5 %; *: p<0.05; **: p<0.01; ***: 

p<0.001; ****: p<0.0001).  
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Vector Supplier and reference 

pLKO.1-puro sh131201 

Sigma-Aldrich 

SHCLND-NM_002437 

TRCN0000131201 

pLKO.1-puro sh128669 

Sigma-Aldrich 

SHCLND-NM_002437 

TRCN0000128669 

pLKO.1-puro sh127649 

Sigma-Aldrich 

SHCLND-NM_002437 

TRCN0000127649 

pLKO.1-puro sh129921 

Sigma -Aldrich 

SHCLND-NM_002437 

TRCN0000129921 

pLKO.1-puro sh131038 

Sigma-Aldrich 

SHCLND-NM_002437 

TRCN0000131038 

pLKO.1-puro shNT 
Sigma-Aldrich 

SHC016-1EA 

pLKO-puro-IPTG-3xLacO 

sh129921 

Sigma-Aldrich 

09301606MN 

TRCN0000129921 

Table 1 : List of the plasmids used for MPV17 silencing.  

The vectors backbone and encoding shRNA are specified along with their references. 
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Antibody Supplier and reference Dilution 

Anti -Actin 
Sigma-Aldrich 

A5441 
1/10000 

Anti-ASNS 
Proteintech 

14681-1-AP 
1/2000 

Anti-ATF4 
Santa Cruz 

Sc-390063 
1/1000 

Anti-ATF4 
Cell Signaling 

#11815 lot 3 
1/1000 

Anti-eIF2𝛼 
Santa Cruz 

Sc-133132 
1/1000 

Anti-GAPDH 
Abcam 

128915 
1/10000 

Anti-mouse IgG 

IRDye 680RD Goat 

LI-COR 

926-68070 
1/10000 

Anti-mouse IgG 

IRDye 800CW Goat 

LI-COR 

926-32210 
1/10000 

Anti-MPV17 
Proteintech 

10310-1-AP 
1/1000 

Anti-MTHFD2 
Proteintech 

12270-1-AP 
1/500 

Anti-mTORC1 
Cell Signaling 

#2972 
1/1000 

Anti-PeIF2𝛼 (ser51) 
Cell Signaling 

#9721 
1/1000 

Anti-PmTORC1 (ser2448) 
Cell Signaling 

#2971 
1/1000 

Anti-rabbit IgG 

IRDye 800CW Goat 

LI-COR 

926-32211 
1/10000 

Anti-rabbit IgG 

IRDye 680RD Goat 

LI-COR 

926-68071 
1/10000 

Anti-TFIID (TBP) 
Santa Cruz 

Sc-204 
1/500 

Anti-Tubulin 
Sigma-Aldrich 

T5168 
1/10000 

Table 2 : List of antibodies and their working dilutions used for western blotting.  

The antibodies used for western blot analysis are specified with their reference and working dilutions. 
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Target gene Forward primer (5’→3’) Reverse primer (5’→3’) Company 

ATF4 GCCAAGCACTTCAAACCTCA GCATCCTCCTTGCTGTTGTT IDT 

KDM4C CCGATGACTCTTGTGAAGCAGC GACTTCGTCTGCCAAAGGTGGA IDT 

MPV17 GCTCAGGAAGCATGGCACTCT AATGTCACCCAGGCCCATCA IDT 

MTHFD1L TGCTCTACAATGCCTGTTCC AAGGGGAATCTCTTCTGGCT IDT 

MTHFD2 TGGCTGCGACTTCTCTAATG CCTTCCAGAAATGACAACAGC IDT 

PHGDH GCGGAAAGTGCTCATCAGT GCAGAGCGAACAATAAGGC IDT 

PSAT1 CGTTCACCCTAAACTTGGGA AGTCAAACTCCACACCATGC IDT 

PSPH GACTCATAGCAGAGCAACCC CCTGAACATTTCGCTCCTGT IDT 

SHMT2 GCATGAGAGAGGTGTGTGAT TGAGTAGTGGTGGTGACGAT IDT 

Table 3 : List of primers used for qPCR. 

 The target genes and their associated primers as well as the provenance of the primers are specified.  
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RESULTS 

MPV17 is overexpressed in several tumours. 

Taking advantage of The Genome Cancer Atlas (TGCA) database, we showed that the 

abundance of MPV17 transcript is significantly higher in tumours of 10 different tissues, 

including liver, bile duct, and colon (Fig 14a). This was confirmed at the protein level by 

immunohistochemistry staining performed on liver tumour biopsies from patients with 

adenocarcinoma (Fig 14b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 : Analysis of MPV17 expression in cancer tissues.  

The Cancer Genome Atlas (TCGA), a public platform allowing the analysis of gene expression data sets generated 

by RNA sequencing (http://cancergenome.nih.gov), has been used to determine the expression level of MPV17 in 

various tumour tissues (T) versus healthy tissues (N). P values were calculated with the two-tailed Wilcoxon signed 
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rank Test (⍺ = 5 %; *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001; NS: not significant) (a). Detection of 

MPV17 by immunohistochemistry in a paraffin-embedded biopsy of a liver adenocarcinoma (kindly provided by 

Professors Mustapha Najimi and Etienne Sokal, UCL). A strong signal for MPV17 is associated with the tumour, 

while the abundance of the protein is low in adjacent normal tissue (b).   

 

 

MPV17 silencing is robustly associated with a decreased proliferation rate in different 

cancer cell lines.  

In this study, we first assessed the effects of three commercially available shRNAs targeting 

MPV17 mRNA: sh129921, sh127649 and sh131038. Using western blot analysis, the efficiency 

of gene silencing was evaluated by assessing the abundance of MPV17 in Huh7 cells transduced 

with these three shRNA-encoding lentiviral vectors. Both sh129921 and sh127649 led to an 

efficient knockdown of the gene while sh131038 did not efficiently induce MPV17 silencing 

(Fig 15a).  

We then demonstrated that Huh7 cells silenced for MPV17 with sh129921 and sh127649 

displayed a severely decreased proliferation rate, as quantified by three different proliferation 

assays, namely the doubling time (Fig 15b), the MTT assay (Fig 15c), and the total protein 

content (Fig 15d). The reduced cell proliferation phenotype was correlated with MPV17 

knockdown efficiency as no decreased proliferation rate was observed in Huh7 cells transduced 

with the vector encoding sh131038, the only shRNA that turned out to be inefficient in the 

knockdown induction.  

To discard the possibility of a putative cell type or cancer type-specific phenotype, we next 

assessed the impact of sh129921 on the proliferation of two other human hepatoma cell lines, 

Hep3B and HepG2 cells, and two non-liver cancer cell lines, A549 cells, derived from a human 

pulmonary adenocarcinoma and SQD9 cells, a human squamous cell carcinoma cell line. 

Interestingly, Hep3B (Fig 15e), A549 (Fig 15f), SQD9 (Fig 15g) and HepG2 (data not shown) 

cells transduced with sh129921-encoding vector also displayed a reduced proliferation 

phenotype.  
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Figure 15 : Effect of shRNA-mediated MPV17 knockdown on the proliferation of cancer cell lines.  

Huh7 cells were transduced with non-target shRNA lentiviral vectors (shNT) or with shRNA lentiviral vectors 

targeting MPV17 expression (sh129921, sh127649, sh131038). Hep3B, A549 and SQD9 cells were transduced 

with lentiviral shNT- or sh129921-containing vectors. Cells were selected for 6 days with puromycin (2.5 g/mL). 

Cells were seeded at 8×103 cells/cm2 (a, b, c, d, Huh7; g, SQD9), 5×103 cells/cm2 (e, Hep3B) and 2.7×103 cells/cm2 

(f, A549) and grown for 4 days. MPV17 protein abundance was assessed by western blot analysis (a, Huh7). A 

representative western blot of 3 independent biological replicates (2 for sh131038) is shown (left) along with the 

western blot quantification of all the biological replicates (quantification with Image J software, data expressed as 

relative protein abundance to cells transduced with shNT-encoding vectors, right). Proliferation was then assessed 

by manual counting to calculate the doubling time (b, Huh7; e, Hep3B; f, A549; g, SQD9), by MTT assay (c, 

Huh7) and by the total protein content (d, Huh7). Data are presented as mean ± S.E.M of 3 independent biological 

replicates (2 for sh131038). P values were calculated with the one-tailed Mann-Whitney Test (⍺ = 5 %; *: p<0.05; 

**: p<0.01; ***: p<0.001). 

 

MPV17 silencing is not associated with mtDNA copy number depletion. 

As MPV17 deficiency is associated with MDDS, we assessed whether MPV17 silencing was 

accompanied by depletion in the mtDNA content or not, possibly accounting for the associated 
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decreased proliferation rate. Indeed, such mitochondrial defect has been shown to impair cell 

cycle progression (Mineri et al., 2009). However, MPV17 silencing did not lead to a reduction 

of mtDNA content in any of the tested cancer cell lines (Fig 16). This result is in agreement 

with observations from the literature regarding studies performed on other proliferating 

cancerous and non-cancerous cell types. Indeed, Alonzo and collaborators did not find any 

reduction of mtDNA content in MPV17-silenced HeLa cells (Alonzo et al., 2018). Also, Dalla 

Rosa and collaborators showed that fibroblasts from MPV17-deficient patients did not display 

any reduced mtDNA content when proliferating (Dalla Rosa et al., 2016).  

 

 

 

 

 

 

 

Figure 16 : Assessment of mtDNA content in MPV17-silenced cancer cell lines.  

Huh7 (a), Hep3B (b) and A549 (c) cells were transduced with non-target shRNA- (shNT) or sh129921-containing 

lentiviral vectors. Transduced cells were selected for 6 days with puromycin (2.5 g/mL). DNA was then extracted 

and mtDNA content was assessed by qPCR using NADH dehydrogenase 2 as a specific marker of mtDNA content 

and beclin for normalization with nuclear DNA. Results are presented as mean ± S.E.M of 3 independent biological 

replicates and are expressed in relative copy number to the nuclear DNA. P values were calculated with the one-

tailed Mann-Whitney Test (⍺ = 5 %; NS; *: p<0.05; **: p<0.01; ***: p<0.001). 

 

The decreased proliferation rate in MPV17-silenced cells is associated with a decrease in 

the abundance of ATF4.  

In order to determine the molecular mechanisms underlying the decreased proliferation rate in 

MPV17-silenced cancer cells, a transcriptomic analysis was performed. The RNA sequencing 

analysis was conducted on Huh7 cells transduced with sh129921- or shNT-encoding vectors. 

We performed an Ingenuity Pathway Analysis (IPA) on the RNA sequencing results, focusing 

on transcriptional regulators potentially responsible for a reduced proliferation capacity. In this 
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regard, the functional activities of ATF4 and MYC were predicted to be the most strongly 

inhibited as illustrated by their negative Z-scores (-2.792 and -4.635, respectively). The Z-score 

reflects the activation state of an upstream regulator by taking account “of known directional 

effects of one molecule on another or on a process, and the direction of change of molecules in 

the dataset” (Fakiola et al., 2019). ATF4, frequently upregulated in cancer cells (Wortel et al., 

2017), is an attractive candidate in the attempt to elucidate the molecular mechanisms 

underlying the reduced proliferation phenotype in MPV17-silenced cancer cells as it has been 

shown that ATF4 not only up-regulates the expression of genes encoding actors implicated in 

amino acid uptake and metabolism (Harding et al., 2003) (Malmberg and Adams, 2008) (Shu 

Wang et al., 2015) but also promotes, indirectly, nucleotide synthesis (Ben-Sahra et al., 2016), 

two essential aspects for cell proliferation. Therefore, its decreased abundance could readily 

explain a reduced proliferation rate, as exemplified in the literature and presented in the 

introduction (Ye et al., 2010) (Huggins et al., 2016) (Harding et al., 2003).  

The MYC proto-oncogene is also of great interest as it promotes cell cycle progression 

(Bouchard, Staller and Eilers, 1998) (Dang, 2013). We therefore decided to investigate both 

these transcription factors. While MYC western blotting analysis was technically challenging 

and so far inconclusive, the reduction of ATF4 transcript abundance was readily confirmed at 

the protein level in sh129921 and sh127649-encoding vector transduced Huh7 cells (Fig 17a) 

as well as in sh129921-encoding vector transduced Hep3B (Fig 17b) and A549 (Fig 17c) cells, 

when compared with control cells transduced with shNT-containing vector. 

 

 

 

 

 



RESULTS 

63 

 

 

 

 

 

 

 

 

 

Figure 17 : ATF4 protein abundance following MPV17 knockdown in Huh7, Hep3B and A549 cells.  

Huh7 cells (a) were transduced with non-target shRNA lentiviral vectors (shNT) or with shRNA lentiviral vectors 

targeting MPV17 expression (sh129921, sh127649, sh131038). Hep3B (b) and A549 (c) cells were transduced 

with lentiviral shNT- or sh129921-containing vectors. Cells were selected for 6 days with puromycin (2.5 g/mL) 

before assessing ATF4 protein abundance by western blot analysis. For each cell line, a representative western 

blot of 3 (2 for sh131038) independent biological replicates is shown (left) along with the western blot 

quantification of all the biological replicates (quantification with Image J software, data expressed as relative 

protein abundance to untransduced (unt) cells, right). P values were calculated with the one-tailed Mann-Whitney 

Test (⍺ = 5 %; *: p<0.05; **: p<0.01; ***: p<0.001). 

 

Altogether, these results seem to strongly support an involvement of MPV17 in cancer cell 

proliferation as MPV17 silencing is consistently accompanied by a reduction of both cell 

proliferation rate and ATF4 protein abundance. We therefore further investigated the ATF4-

dependent cellular pathways potentially responsible for the reduced proliferation phenotype. 

During our investigation, we noticed that SHMT2, MTHFD2 and MTHFD1L transcript 

expression levels were reduced in sh129921-mediated MPV17-silenced Huh7 cells (Fig 18a, b, 

c), suggesting an ATF4-dependent impairment of the folate cycle, a consequential shortage of 

formate supply and, in fine, a reduced nucleotide synthesis. However, a formate 

supplementation had no effect on the proliferation of  MPV17-silenced cells (Fig 18d).  
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Figure 18 : Despite a downregulation of several transcripts involved in the folate cycle in MPV17-silenced cells, 

a formate supplementation does not rescue the reduced proliferation rate.  

Huh7 cells were transduced with non-target shRNA- (shNT) or sh129921-containing lentiviral vectors. 

Transduced cells were selected for 6 days with puromycin (2.5 g/mL). RNA was extracted and RT-qPCR was 

performed to assess SHMT2 (a), MTHFD2 (b) and MTHFD1L (c) transcript levels (data expressed relatively to 

untransduced cells (Unt)). Results are presented as mean ± S.E.M for 3 independent biological replicates. 

MTHFD2 protein abundance was also assessed by western blot analysis. A representative western blot of 3 

independent biological replicates is shown (left) along with the quantification with Image J software of all three 

biological replicates (right) and data are expressed as relative protein abundance to untransduced cells (Unt) (e). 

Cells were seeded at 8×103 cells/cm2 and grown for 4 days in the presence/absence of increasing formate 

concentration. Proliferation was then assessed by manual counting to calculate the doubling time, n=1 (d). P values 

were calculated with the one-tailed Mann-Whitney Test (⍺ = 5 %; *: p<0.05; **: p<0.01; ***: p<0.001). 

 

An explanation could lie in the observation that while MTHFD2 mRNA expression is strongly 

downregulated in MPV17-silenced cells, this is not the case at the protein level. It is in fact the 

opposite as the protein abundance is significantly higher in MPV17-silenced cells compared to 

control (Fig 18e), suggesting either a translational compensation, or an increased stability of 

MTHFD2 protein in these cells. 
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Nonetheless, a potential proper formate supply does not necessarily exlude a depletion in 

nucleotide synthesis. Indeed, MPV17-silenced cells could suffer from a shortage of an upstream 

actor of the folate cycle, serine. Enticingly, sh129921-mediated MPV17-silenced Huh7 cells 

display reduced transcript expression levels of the three ATF4-controlled genes encoding for 

the enzymes driving the serine biosynthesis, namely PHGDH, PSAT1 and PSPH (Fig 19a, b, 

c). As serine can also be taken up by the cell from the extracellular environment in an 

asparagine-dependent way, we also investigated the availability of this critical amino acid for 

the cells. As the Huh7 cells culture medium (DMEM) does not contain asparagine, the latter 

would be most likely synthetized under the ASNS activity. Interestingly, ASNS protein 

abundance is decreased in MPV17-silenced cells (Fig 19d). These results could suggest a 

depletion in serine in MPV17-silenced cells, leading to a depletion in glycine and a consequent 

decrease in purine synthesis. Thus, an asparagine supplementation was conducted in an attempt 

to restore the normal proliferation phenotype in MPV17-silenced cells. Although it resulted in 

a mild enhancement of the proliferation rate for MPV17-silenced cells, this effect was also 

observed in the control condition, indicating no net restoration of the proliferation of MPV17-

silenced cells relatively to control (Fig 19e).  
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Figure 19 : Effect of MPV17 silencing on key actors regulating serine supply.  

Huh7 cells were transduced with non-target shRNA- (shNT) or sh129921-containing lentiviral vectors. 

Transduced cells were selected for 6 days with puromycin (2.5 g/mL). RNA was extracted and RT-qPCR was 

performed to assess PHGDH (a), PSAT (b) and PSPH (c) transcript levels (data expressed relatively to 

untransduced cells (Unt). Results are presented as means ± S.E.M for 3 independent biological replicates. ASNS 

protein abundance was also assessed by western blot analysis. A representative western blot of 3 independent 

biological replicates is shown (left) along with the quantification with Image J software of all three biological 

replicates (right) and data are expressed as relative protein abundance to untransduced cells (Unt) (d). Cells were 

seeded at 8×103 cells/cm2 and grown for 4 days in the presence/absence 0.7 mM Asparagine (Asn). Proliferation 

was then assessed by Cyquant assay. n=1, 3 technical replicates (e). P values were calculated with the one-tailed 

Mann-Whitney Test (⍺ = 5 %; *: p<0.05; **: p<0.01; ***: p<0.001). 

 

As neither formate nor asparagine supplementations succeeded to restore the reduced 

proliferation phenotype, even partially, and because deoxynucleotide synthesis is dependent on 

plethora of actors, controlled or not by ATF4, we decided to directly supplement the cells with 

deoxynucleosides to circumvent any hurdle. However, sh129921-mediated MPV17-silenced 

Huh7 cells showed no improvement in proliferation rate under this treatment (Fig 20a). 

 

As ATF4 is also an important regulator of glutathione-related redox homeostasis, we 

hypothesized that the reduced abundance of ATF4 may lead to a disturbance in the redox 

balance and therefore a decreased cell proliferation that could be alleviated by supplementation 
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with an antioxidant like NAC. This hypothesis is supported by the literature (Huggins et al., 

2016), by the suspected shortage of actors implicated in glutathione biosynthesis, namely serine 

and glycine, and by data provided by the RNA sequencing on MPV17-silenced cells. Indeed, 

reduced transcript levels of enzymes implicated in the synthesis of glutathione such as 

cysthationine gamma-lyase (log2 fold change = -1,456 ; p-value = 2,14E-0,8) and cysthationine 

synthase (log2 fold change = -0,584 ; p-value = 2,34E-0,6) have been observed in MPV17-

silenced cells compared to control. However, a NAC supplementation was not able to restore 

the proliferation phenotype of MPV17-silenced Huh7 cells (Fig 20b).  

 

As a single supplementation may not be sufficient to restore the reduced proliferation rate 

(Harding et al., 2003), in the way that ATF4 drives several important pathways, we attempted 

a double supplementation allying a cocktail of NEAA and the antioxydant BME. This double 

supplementation was however unsuccessful (Fig 20c).  
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Figure 20 : Effect of deoxynucleoside, N-AcetylCysteine (NAC) and Non-Essentiel Amino Acid/ ß-

Mercaptoethanol (NEAA/BME) supplementations on MPV17-silenced cells proliferation.  

Huh7 cells were transduced with non-target shRNA- (shNT) or sh129921-containing lentiviral vectors. 

Transduced cells were selected for 6 days with puromycin (2.5 g/mL). Cells were seeded at 8×103 cells/cm2 and 

grown for 4 days in the presence/absence of 50M of deoxyThymidine (dThd), deoxyCytidine (dCtd), 

deoxyAdenosisne (dAdo) and deoxyGuanosine (dGuo) diluted in ammonium hydroxide (NH4OH) 1M or 50 M 

of dCtd, dAdo, dGuo (a); in the presence/absence of increasing concentrations of NAC (b); in the presence/absence 

of increasing concentrations of BME and/or 100 M of NEAA (c). Proliferation was then assessed by manual 

counting to calculate the doubling time (a; n=1), or by protein content dosage (b and c; n=1; 3 technical replicates). 

 

Simultaneously to the rescue attempt of the ATF4-associated proliferation phenotype, we also 

investigated the upstream actors responsible for the reduced ATF4 abundance. The different 

hypothesis proposed are summarized in Figure 21. 

 

 



RESULTS 

69 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 : How could MPV17 and ATF4 be functionally connected?  

ATF4 abundance can be regulated either at the transcriptional level (Lysine DeMethylase 4C (KDM4C)) or at the 

translational level (active mTORC1 and PeIF2𝛼). KDM4C is a histone modifying enzyme catalysing the removal 

of methyl groups (Me) from the trimethylated lysine 9 of histone 3, thereby activating the transcription of genes 

such as ATF4. The increased abundance of this transcription factor allows the expression of its target genes 

favouring cell proliferation. Noteworthy, MPV17 (Sym1) has been implicated in the homeostasis/transport (?) of 

Krebs cycle intermediates such as 𝛼-KetoGlutarate (𝛼-KG). However, whether or not MPV17 is a direct 

transporter of metabolic intermediates still remains to be determined.  As KDM4C is dependent on 𝛼-KG, its 

activity could be negatively affected by the functional loss of MPV17. 𝛼-KG has also been shown to induce 

mTORC1 activation. Therefore, a shortage in this intermediate could also hinder mTORC1 activity, resulting in a 

decrease in ATF4 translation. The phosphorylation of eIF2𝛼 following a cellular stress (symbolized by a 

thunderbolt) leads to an increased translation of ATF4. One could speculate that, in cancer cells, the homeostasis 

keeper MPV17 and the integrated stress response positively regulate each other and ensure coping with 

bioenergetically demanding processes. Among those three upstream regulators of ATF4, the ones that we showed 

not implicated in the ATF4 reduced abundance observed in MPV17-silenced cells are greyed. Only the KDM4C-

dependent mechanism is therefore left coloured but its implication in ATF4 reduced abundance and its direct 

functional link with MPV17 are in need of further investigations. Dashed arrows symbolize flux.  

 

As a reminder, a decreased abundance of ATF4 could be due to a reduced activation of the ISR, 

resulting in lower level of eIF2𝛼 phosphorylated form (itself leading to a decrease in ATF4 

translation). The uncontrolled growth of cancer cells demands a strong adaptive response to 

cope with the increased metabolic load. In this regard, cancer cells often exploit the ISR 
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(Nguyen et al., 2018). For example, in response to nutrient deprivation, a fibrosarcoma cell line 

has been shown to activate the GCN2-PeIF2𝛼-ATF4 pathway to maintain metabolic 

homeostasis and survival (Ye et al., 2010). As MPV17 is described as a homeostasis keeper, 

one could hypothesize that the increased expression of MPV17 observed in cancer cells (Fig 

14a) participates in their accommodation to such substantial resource expenditure. One could 

also speculate that the ISR and MPV17 are, in this regard, positively interconnected. 

Interestingly, it has been shown that Sym1 is activated by the mitochondrion-nucleus retrograde 

response, a homeostasis-driven signaling pathway inducing nuclear genes expression in 

response to mitochondrial stress (Dallabona et al., 2010). However, our results showed no 

change in PeIF2𝛼 level, excluding an upstream role of this particular actor in ATF4 reduced 

abundance (Fig 22a).  

As a reminder, Sym1 has been described as a stress-induced bioenergetic modulator and 

suspected to be implicated in Krebs cycle intermediates homeostasis (Dallabona et al., 2010), 

notably regarding -ketoglutarate. Interestingly, it has been described that -ketoglutarate 

stimulates mTORC1 activation (Durán et al., 2012). One could therefore hypothesize that a 

shortage of -ketoglutarate in MPV17-silenced cells is the underlying cause of a mTORC1-

dependent ATF4 reduced protein level (Fig 21). However, the mTORC1 phosphorylation state 

in MPV17-silenced cells did not seem to predict a decreased activation of the complex (Fig 

22b).  

Of interest, both ATF4 and KDM4C transcript expression levels were significantly 

downregulated in MPV17-silenced cells (Fig 22c). Even though the transcript level is not 

necesseraly representative of the protein abundance/activity, these preliminary results suggest 

that a decreased level of KDM4C could be responsible for the ATF4 reduced abundance in 

MPV17-silenced cells. In addition, the activity of KDM4C could be hindered by a putative 
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MPV17 knockdown-dependent shortage of -ketoglutarate as KDM4C requires -

ketoglutarate as a substrate (Mosammaparast and Shi, 2010) (Fig 21).  

 

 

 

 

 

 

Figure 22 : Assessment of mTORC1 and eIF2𝛼 phsophorylation and ATF4 and KDM4C transcript abundances in 

MPV17-silenced cells.  

Huh7 cells were transduced with non-target shRNA- (shNT) or sh129921-containing lentiviral vectors. 

Transduced cells were selected for 6 days with puromycin (2.5 g/mL). PmTORC1(ser2448) and mTORC1 (a), 

PeIF2𝛼(ser51) and eIF2𝛼 (b) protein abundances were assessed by western blot analysis. A representative western 

blot of 3 independent biological replicates is shown. In parallel, RNA was also extracted and RT-qPCR was 

performed to assess ATF4 and KDM4C transcript levels (data expressed relatively to untransduced cells (Unt)). 

Results are presented as mean ± S.E.M for 3 independent biological replicates. P values were calculated with the 

one-tailed Mann-Whitney Test (⍺ = 5 %; *: p<0.05; **: p<0.01; ***: p<0.001). 

 

As the supplementations we performed in order to restore the reduced proliferation rate in 

MPV17-silenced cells were all unsuccessful, we intended to directly restore ATF4 expression 

in these cells, in order to definitely conclude whether the proliferation phenotype settlement is 

conditional on ATF4 abundance, or not. In the affirmative case, the supplementation 

experiments would be performed again and this time we would ensure that the supplemented 

molecules are indeed properly taken-up by the cell.  

We however eventually did not pursue neither with this experiment nor with further 

investigation of ATF4 upstream regulators in light of the unforeseen results we simultaneously 

obtained and that are presented hereafter.  
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MPV17 silencing is not always consistently associated with a reduced proliferation 

phenotype. 

Pursuing our analysis further, we observed that the sh129921-encoding vector transduced Huh7 

cells were able to adapt along the passages and progressively restored the proliferation rate (Fig 

23a), although MPV17 protein abundance was still strongly reduced (Fig 23b).   

 

 

 

 

 

 

 

Figure 23 : Evolution of Huh7 proliferation rate and MPV17 protein abundance in sh129921-mediated MPV17 

knockdown.  

Huh7 cells were transduced with non-target shRNA- (shNT) or with sh129921-containing lentiviral vectors. 

Transduced cells were selected for 6 days with puromycin (2.5 g/mL). At 13 and 31 days after the transduction 

(PTD: post-transduction day), cells were seeded at 8×103 cells/cm2 and grown for 4 days. Proliferation was then 

assessed by manual counting to calculate the doubling time (a) and MPV17 protein abundance was analysed by 

western blot (b). P values were calculated with the one-tailed Mann-Whitney Test (⍺ = 5 %; NS; *: p<0.05; **: 

p<0.01; ***: p<0.001). n=3. 

 

As we observed a progressive recovery of the decreased proliferation rate along passages, we 

therefore aimed at generating an IPTG-inducible sh129921 expression model in Huh7 cells. 

Strikingly, while we observed a strong MPV17 knockdown in this inducible expression model, 

with a silencing efficiency comparable to the one observed in the constitutive silencing model 

(Fig 24a, b), the cell proliferation rate was unchanged (Fig 24d). Moreover, ATF4 did not 

display a decreased protein abundance (Fig 24c).  
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Figure 24 : MPV17 and ATF4 abundances and Huh7 cell proliferation rate following inducible sh129921-

mediated MPV17 knockdown.  

Huh7 cells were transduced, or not (Unt), with inducible sh129921 lentiviral vector. Transduced cells were selected 

for 6 days with puromycin (2.5 g/mL). Cells were then incubated for 5 days in the presence of 0.1 mM of IPTG 

to induce MPV17 silencing. Cells were seeded at 8×103 cells/cm2 and grown for 4 days in daily-renewed medium 

containing IPTG. RNA was extracted and RT-qPCR was performed to assess MPV17 transcript level (data 

expressed relatively to respective control (Ctl), n=3) (a). MPV17 (b) and ATF4 (c) protein abundances were also 

assessed by western blot analysis after 5 days (MPV17) and 9 days (MPV17; ATF4) of IPTG induction. For each 

protein, a representative western blot of 3 independent biological replicates is shown (left) along with the western 

blot quantification of all the biological replicates (quantification with Image J software, data expressed as relative 

protein abundance to respective controls (Ctl) for MPV17 and untransduced (unt) cells for ATF4, right). 

Proliferation was then assessed by manual counting to calculate the doubling time (d). As a comparison, we 

performed at the same time and on the same cells a similar experiment with the constitutive expression of sh129921 

(mediating MPV17 knockdown) as described in Fig 12. P values were calculated with the one-tailed Mann-

Whitney Test (⍺ = 5 %; *: p<0.05; **: p<0.01; ***: p<0.001). n =3.  

 

This absence of effect of MPV17 silencing on the cell proliferation rate in the inducible 

expression system could have several origins. First, the IPTG molecule itself could have an 

unexpected effect on Huh7 cells proliferation, even though IPTG is not known to be 

metabolized (Politi et al., 2014). Second, the reduced proliferation phenotype in the inducible 
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expression system might need more time to settle down. Indeed, in the constitutive system, 

MPV17 is silenced for a total of 9 days before assessing the cell proliferation, as opposed to 

only 5 days in the inducible model (see “Materials and Methods” Fig 12). A third difference 

between the two approaches is that in order to ensure a proper knockdown of MPV17 in the 

inducible model, the culture medium was changed every day in order to renew the IPTG, as 

opposed to every two or three days in the constitutive silencing model. One could thus 

hypothesize that this daily medium renewal could prevent the settling of the reduced 

proliferation phenotype by discontinuing the putative intercellular communication. These three 

hypotheses were tested but failed to explain the different phenotypical outcomes observed for 

the constitutive or inducible expression models (Fig 25 and 26). 

 

 

 

 

 

 

Figure 25 : Effect of IPTG on Huh7 cells proliferation following constitutive sh129921-mediated MPV17 

knockdown.  

Huh7 cells were transduced with non-target shRNA- (shNT) or with sh129921-containing lentiviral vector. 

Transduced cells were selected for 6 days with puromycin (2.5 g/mL). Cells were seeded at 8×103 cells/cm2 and 

grown in the presence or in the absence of 0.1 mM of IPTG. After 4 days, cell proliferation was assessed by MTT 

assay. To mimic the conditions found in the inducible model of expression, the IPTG-containing medium was 

renewed daily. We therefore included a control in which no IPTG was present while the medium was also changed 

every day (Ctl). Data are presented as mean ± S.E.M (3 biological replicates). P values were calculated with the 

one-tailed Mann-Whitney Test (⍺ = 5 %; NS; *: p<0.05; **: p<0.01; ***: p<0.001). 
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Figure 26 : Effect of the duration of the IPTG pre-treatment and the medium change frequency on Huh7 cells 

proliferation in response to inducible sh129921-mediated MPV17 knockdown.  

Cells were transduced, or not (Unt), with inducible sh129921 lentiviral vectors and selected for 6 days with 

puromycin (2.5 g/mL). Cells were then incubated for 14 days in the presence of 0.1 mM of IPTG to induce 

MPV17 silencing and culture medium was changed daily (a, b, c) or every 2 days (d, e, f). Cells were seeded at 

8×103 cells/cm2 and grown for 4 days in the presence of IPTG in the same conditions. MPV17 protein abundance 

was assessed by western blot analysis (a, d) and quantified with Image J software (b, e). Proliferation was then 

assessed by manual counting to calculate the doubling time (c, f). Data are presented as mean ± S.E.M of 3 

independent biological replicates. P values were calculated with the one-tailed Mann-Whitney Test (⍺ = 5 %; NS; 

*: p<0.05; **: p<0.01; ***: p<0.001). 

 

These considerations led us to evaluate on Huh7 cells the effect of two additional commercially 

available shRNAs, sh128669 and sh131201, targeting different regions of the MPV17 transcript 

(Fig 27).  

 

 

 

 

 

 

Figure 27 : Localisation of the shRNA-targeted sites on MPV17 transcript.  

The effects of several commercially available shRNAs directed against MPV17 transcript were assessed in Huh7 
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cells. Each shRNA Sigma Aldrich reference (sh128669, sh131201, sh131038, sh127649 and sh129921) is 

indicated above its target site. Each grey box represents an exon of MPV17 transcript (NM002437.5). A line 

indicates the 5’UTR and 3’UTR of the MPV17 transcript.  

 

Both shRNAs strongly reduce the abundance of MPV17 protein (Fig 28a) but no significant 

effect on the proliferation rate was observed (Fig 28c, d, e). Also, the abundance of ATF4 was 

not affected by MPV17 knockdown mediated by either sh128669 or sh131201 (Fig 28b).  

Thus, ATF4 reduced abundance does correlate with the proliferation rate but the putative link 

between the reduced proliferation phenotype (and therefore ATF4) and MPV17 protein 

abundance remains to be established.  

 

 

 

 

 

 

 

 

Figure 28 : Effect of MPV17-targeting sh128669 and sh131201 on Huh7 cells proliferation, MPV17 and ATF4 

protein abundances.  

Cells were transduced with non-target shRNA lentiviral vectors (shNT) or with shRNA lentiviral vectors targeting 

MPV17 expression (sh128669 and sh131201). Transduced cells were selected for 6 days with puromycin (2.5 

g/mL). Cells were seeded at 8×103 cells/cm2 and grown for 4 days. The abundance of MPV17 (a) and ATF4 (b) 

proteins was assessed by western blot analysis. For each protein, a representative western blot analysis of 3 

independent biological replicates is shown (left) along with the western blot quantification of all the biological 

replicates (quantification with Image J software, data expressed as relative protein abundance to cells transduced 

with shNT-encoding vectors (a, MPV17) or untransduced (unt) cells (b, ATF4), right). Proliferation was then 

assessed by manual counting to calculate the doubling time (c), by MTT assay (d) and by the total protein content 

(e) and data are presented as mean ± S.E.M (3 biological replicates). P values were calculated with the one-tailed 

Mann-Whitney Test (⍺ = 5 %; NS; *: p<0.05; **: p<0.01; ***: p<0.001). 
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In conclusion, we found that sh129921, sh127649, sh128669 and sh131201 all led to a strong 

MPV17 knockdown while the resulting proliferation rates were highly variable. This lack of 

consistency led us to suspect a putative involvement of MPV17 isoforms that would be 

differentially affected according to the shRNA used.  

Therefore, we next interrogated the Genotype-Tissue Expression (GTEx) Consortium (2008, 

NIH) portal, that inventories the impact of genetic variations on gene expression within major 

tissues in the human body from post mortem donors. The GTEx Portal proposes 22 MPV17 

isoforms, including two major ones i.e. a short predominant isoform and a long one (first and 

second upper transcripts on Fig 29, respectively). This long isoform referenced in RefSeq as 

NM002437.5 encodes the MPV17 protein that we detected on western blot while the translation 

of all the other MPV17 isoforms is not experimentally demonstrated, although some of them 

display the presence of an ORF. However, among the 22 isoforms, we observe that all the 

transcripts potentially targeted by sh129921 (1, 2, 3, 12, 13, 14, 15, 16 and 18) are also targeted 

by either sh128669 (15, 16) or sh131201 (1, 18) or both (2, 3, 12, 13, 14). The same kind of 

observation stands for the transcripts targeted by sh127649 (1, 2, 3, 5, 12, 13, 14, 15, 16, 18, 

19, 21), providing no clear explanation about the different proliferation phenotypes observed 

for each pair of shRNAs (sh129921/sh127649 versus sh128669/131201) (Fig 29).  
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Figure 29 : Localisation of the shRNA-targeted sites on the MPV17 transcript isoforms referenced in human liver.  

The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director 

of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for 

the analysis described in this manuscript and this Fig. were obtained from the GTEx Portal on 02/05/19. We 

indicated the Sigma Aldrich reference of each shRNA targeting MPV17 transcripts (sh128669, sh131201, 

sh131038, sh127649 and sh129921) above its targeted site. Each box represents an exon in MPV17 transcript 

isoforms. The darker the purple, the more abundant the transcript (as referred by Log 10 (Trancripts Per Million 

(TPM))). The 3’UTR is located on the left of the image, and the 5’UTR on the right. We added a down-oriented 

arrow that indicates both shRNAs providing the reduced proliferation phenotype, while “ = “ indicates both 

shRNAs leading to an unchanged proliferation rate. Red triangles indicate the localization of the divergent primers 

used in Fig 39 in the second part of this thesis.  

 

Altogether, the absence of effect of the inducible sh129921 on the cell proliferation rate, 

combined with the observation that, at least, two different shRNAs targeting MPV17 (sh131201 

and sh128669) have no effect on the proliferation of Huh7 cells, despite a strong decrease in 

the MPV17 protein abundance, suggest that the decreased proliferation rate of transduced cells 

observed for two shRNAs (sh129921 and sh127649) is not related to a reduced MPV17 protein 

abundance. In an attempt to shed light on this question, we eventually performed a rescue 

experiment. 
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Rescuing MPV17 does not restore the proliferation phenotype. 

As Huh7 cells could neither be efficiently transfected nor transduced with the MPV17-

expressing vector, HepG2 cells were used for the rescue attempt. Indeed, as mentioned before, 

we also observed the reduced proliferation rate in this hepatoma cell line silenced for MPV17. 

This cell line turned out to be the most receptive to the lentiviral MPV17-expressing vector. 

Since a rescue experiment consists in re-introducing the shRNA-mediated silenced mRNA, it 

requires the use of a re-introduced mRNA lacking the shRNA targeted sequence (in this case, 

the 3’UTR region).  

We were compelled to perform MPV17 overexpression before inducing the constitutive 

knockdown mediated by sh129921. The justification of this chronology resides in the 

observation that, on the contrary to shNT-encoding vector transduced cells, sh129921-encoding 

vector transduced cells were not able to stand a second round of transduction due to cell death. 

This suggests that MPV17-silenced cells are distressed, in accordance with their decreased 

proliferation rate. This aspect is therefore not compatible with a short-term assessment of cell 

proliferation.  

MPV17 knockdown was properly induced in the overexpression control. Indeed, cells double 

transduced with pLenti GFP, as a control, and then with pLKO.1 sh129921, displayed a strong 

reduction of MPV17 abundance accompanied by the decreased proliferation rate (Fig 30a, b, 

c). As expected, the reduced proliferation phenotype was absent in pLenti GFP and pLKO.1 

shNT double-transduced cells (Fig 30b, c). Cells double-transduced with pLenti MPV17 and 

pLKO.1 shNT suitably overexpressed MPV17 (Fig 30a). It is interesting to emphasize the fact 

that MPV17 overexpression, on its own, has no significant effect on cell proliferation (Fig 30b, 

c). This observation can be reconciled with the idea that MPV17 is described as a channel. 

Thus, the qualitative state of MPV17 (open/closed) would be more relevant than its quantitative 

state. Finally, cells double-transduced with pLenti MPV17 and pLKO.1 sh129921 
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overexpressed MPV17 but lost the expression of the endogenous protein (Fig 30a). 

Remarkably, these cells exhibited the reduced proliferation phenotype (Fig 30b, c). 

 

 

 

 

 

 

Figure 30 : Effect of MPV17 rescue on the proliferation of MPV17-silenced HepG2 cells.  

Cells were first transduced with pLenti GFP or pLenti MPV17 and selected for 6 days with puromycin (2.5 g/mL). 

Cells were then transduced with shNT or sh129921-encoding lentiviral vectors and let to recover for 5 days to 

allow MPV17 silencing. Cells were then seeded at 1.5×104 cells/cm2 and grown for 4 days before assessing MPV17 

protein abundance (a).  A representative western blot analysis of 3 independent biological replicates is shown (left) 

along with the western blot quantification of all the biological replicates (quantification with Image J software, 

data expressed as relative protein abundance to cells transduced with shNT and GFP-encoding vectors, right). Cell 

proliferation assessment by MTT assay was also performed at day 1 and day 4. The ratio day 4/day 1 is then 

calculated in order to correct any putative seeding differences that could mask or mislead to a partial phenotype 

rescue (c). Micrographies were taken at the phase contrast microscope before adding the lysis buffer for the MTT 

assay on day 4 (b). Data are presented as mean ± S.E.M (3 biological replicates). P values were calculated with 

the one-tailed Mann-Whitney Test (⍺ = 5 %; NS; *: p<0.05; **: p<0.01; ***: p<0.001). 

 

The results obtained in this first part of this thesis work were puzzling and while not implicating 

the protein MPV17 in cancer cell proliferation, they do not exclude a role of putative MPV17 

non-coding transcripts. This aspect is further discussed in the part “General discussion, 

conclusion and perspectives”. Beyond the important biological message that MPV17 protein is 

not involved in cancer cell proliferation, these results enlightened an equally essential technical 

message, also further discussed, related to the caution required in terms of result interpretation 

when working with shRNA-mediated knockown as well as the requirement to perform a rescue 

experiment. These valuable messages resulted in a recent publication in PLOS One (Canonne 

et al., 2020).  
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INTRODUCTION 

CiRNAs, seemingly present in all eukaryotic species (Wang et al., 2014), originate from non-

canonical backsplicing and consists in the circularization of a pre-mRNA following the 

covalent joining of a downstream splice donor with an upstream splice acceptor. These 

cyclisation events lead to a variety of ciRNAs composed of one or more exons and even introns 

and lacking the conventional 5’and 3’ ends of linear RNAs (Barrett and Salzman, 2016) (Lasda 

and Parker, 2014) (Xu et al., 2018) (Jeck et al., 2013) (Fig 31). 

 

 

 

 

 

 

 

 

 

 

Figure 31 : Possible structural combinations of circular RNAs (ciRNAs).  

CiRNAs originate from the non-canonical backsplicing of pre-mRNAs. This process results in a heterogeneous 

population of cyclized molecular entities, exclusively exonic, intronic or exonic-intronic. The colored boxes 

represent different exons of a pre-mRNA and the dark line symbolizes introns bordering these exons. Adapted 

from (Huang et al., 2017). 

 

First disregarded by the scientific community and considered as biologically irrelevant splicing 

artefacts constituting transcriptional noise, ciRNAs are now actively studied and ever-growing 

evidence suggest their functional importance in core biological processes.  
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1. CiRNA biogenesis   

The observation that ciRNAs are not expressed in the same abundance as their cognate linear 

form (Memczak et al., 2013) (Jeck et al., 2013) (Salzman et al., 2012) suggests that their 

biosynthesis is dependent on specific mechanisms. Bioinformatic analyses on human genome 

revealed that ciRNA generation seems to be favoured by several pre-mRNA features. First, 

ciRNA-forming exons tend to be threefold longer than non-circularizing exons (Jeck et al., 

2013). Second, flanking introns of circularizing exons also tend to be threefold longer than 

those flanking non-circularizing exons. Of note, the average size of a human exon is 145 bp 

while the one of an intron is 3.4 kbp (Tropp, 2012). Third, there is a twofold stronger possibility 

to encounter Alu inverted repeat elements in the flanking introns of circularized exons than in 

those of non-circularized exons (Jeck et al., 2013). Alu elements are 55-million-year-old most 

abundant repetitive elements in primate’s genomes, with an average length of 300 bp (Häsler 

and Strub, 2006).  The base-pairing of Alu inverted repeat elements in the flanking introns of 

ciRNA-forming exons promote ciRNA generation by bringing closer backsplicing sites (Lasda 

and Parker, 2014) (Fig 32A, left).  
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Figure 32 : Molecular mechanisms driving circular RNAs (ciRNAs) biosynthesis.  

(A) CiRNA biogenesis can be molecularly driven in cis by intron-pairing of inversely oriented complementary 

sequences such as Alu sequences (left). These events are finely regulated by RNA binding proteins in trans. Thus, 

by catalyzing the Adenosine to Inosine (A-I) conversion in Alu sequences, Adenosine Deaminase Acting on RNA 

(ADAR) weakens the duplex interaction in the base-pairing event and inhibits the subsequent ciRNA formation 

(middle). RNA binding proteins can also act positively on ciRNA generation. Indeed, QuaKIng (QKI), by forming 

homodimers, brings closer backsplicing sites and thereby allows ciRNA formation (right).  

(B) Lasso-like structures generated during conventional linear splicing can favour backsplicing. For example, a 

lariat composed of introns and exons following exon skipping event can undergo backsplicing-mediated 

circularization and give rise to an exon-intron containing ciRNA (EIciRNA) or an exonic ciRNA (EciRNA) when 
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further linear splicing is taking place (left). An intron-containing lariat failing to be 2’-5’-debranched and 

subsequently degraded can also generate a ciRNA (right).  

 

RNA Binding Proteins (RBP) have also been implicated in ciRNA biogenesis. Indeed, Conn 

and collaborators demonstrated that QuaKIng (QKI) actuates the circularization of pre-mRNAs 

in immortalized human mammary epithelial cells during Epithelial to Mesenchymal Transition 

(EMT). QKI binds recognition motifs present in the adjacent introns of ciRNA-forming exons, 

thereby creating a bridge necessary to the circularization event (Conn et al., 2015) (Fig 32A, 

right). In this study, QKI is likely responsible for the biogenesis of around one third of all 

ciRNAs differentially expressed during EMT. Strikingly, the engineered incorporation of these 

consensus binding sites in introns flanking exons that are not ordinarily undergoing 

circularization is sufficient to induce ciRNA formation (Conn et al., 2015).  

 

Whether enabled by consensus sequences and/or mediated by proteins, the generation of a 

ciRNA is favoured by the spatial proximity of the backsplicing sites. Jeck and collaborators 

proposed a third ciRNA biogenesis model allowing this proximity and in which the intermediate 

step of a lariat generation during conventional linear splicing of a pre-mRNA favours the 

formation of ciRNAs. More specifically, canonical splicing of a pre-mRNA involving exon 

skipping events could lead to the circularization of those skipped exons in the way that the 

lasso-like structure they form allows a spatial proximity between potential backsplicing sites 

(Jeck et al., 2013) (Fig 32B, left). On a similar note, intronic ciRNAs (IciRNAs) biogenesis 

constitutes a particular case since it can be exempt of the backsplicing step. Thus, during 

conventional linear splicing, the generation of an intron-containing lariat can escape 

degradation and be trimmed of its 3’-single strand, giving rise to a ciRNA (Zhang et al., 2013) 

(Fig 32B, right). The resistance to degradation of some intronic lariats is dependent on specific 
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GU-rich consensus sequences near their 5’ splice site and C-rich consensus sequences near their 

2’-5’-phosphodiester branchpoint (Zhang et al., 2013). 

 

However, as ciRNA expression appears to be cell-type/developmental-stage specific (Conn et 

al., 2015) (Rybak-Wolf et al., 2015) (Salzman et al., 2013), a simple spatial proximity of the 

backsplicing sites does not seem to be sufficient to control by itself ciRNA formation and 

suggests the existence of other trans-acting regulatory factors. Hence, studies have implicated 

RBP in the fine regulation of this process, as illustrated by Adenosine Deaminase Acting on 

RNA (ADAR). ADAR catalyses the hydrolytic deamination reaction supporting the Adenosine 

to Inosine (A-I) conversion in RNA (Häsler and Strub, 2006). Interestingly, A-I editing 

essentially occurs in Alu elements (Häsler and Strub, 2006). In this manner, ADAR weakens 

the base pairing of inversely oriented Alu sequences in flanking introns of ciRNA-forming 

exons and thereby reduces ciRNA biogenesis (Fig 32A, middle). Accordingly, RNA 

interference and shRNA-based ADAR1 knockdown has been shown to increase the biogenesis 

of some ciRNAs in human HEK293T and SH-SY5Y cells (independently from their cognate 

linear mRNAs) as well as in P19 mouse cells, wherein introns bordering circularized exons also 

harbour reverse complementary matches (Ivanov et al., 2015) (Rybak-Wolf et al., 2015).  

 

Literature also describes some proteins as (back)splicing regulators of their own pre-mRNA. 

As an example, Ashwal-Fluss and collaborators demonstrated that Muscleblind (Mbl), a protein 

involved in both muscle and ocular system development in Drosophila (Begemann et al., 1997), 

promotes the biosynthesis of the ciRNA (ciMbl) originating from its own pre-mRNA through 

binding specific consensus sites localized in the exon 2 and exon 2-flanking introns and thereby 

favouring a looping structure (Ashwal-Fluss et al., 2014). This ability of Mbl to promote 

circular over linear splicing of its own pre-mRNA in a protein-dependent manner constitutes 
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an original way to exert a negative feedback control on its linear transcript/protein abundance. 

Moreover, Mbl is in turn sequestered by ciMbl, further regulating Mbl splicing isoforms and 

protein expression (Fig 33).  

 

 

 

 

 

 

 

 

 

 

Figure 33 : Muscleblind (Mbl) promotes the circularization of its own pre-mRNA.  

Muscleblind (Mbl) protein controls the generation of its own circular RNA transcript isoform by binding specific 

sequences localized on exon 2 and exon 2-adjacent introns. Thus, a low Mbl protein level is favourable to the 

linear splicing of the pre-mRNA while a high protein level induces its backsplicing. Moreover, ciMbl offers a 

second level of negative feedback by tethering Mbl. Inspired from (Barrett and Salzman, 2016) 

 

Gene promoters are also able to preferentially drive the expression of ciRNAs over their linear 

cognates. As an example, murine Sex-determining region Y (Sry) gene gives rise to both linear 

and circular RNAs. The former is localized in the developing genital ridge and is involved in 

male sex determination, and the latter is found in the germ cells of adult testis. The 

discriminative use of a distal promoter instead of a proximal one in adult testis cells allows the 

specific generation of the ciRNA as it produces a long inverted-repeat-containing transcript 

capable of circularization (Hacker et al., 1995).  
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CiRNA biogenesis is thought to implicate the spliceosome. First, canonical splicing signals 

have been found adjacently to the backsplicing sites of ciRNAs (Jeck et al., 2013) (Memczak 

et al., 2013). Second, mutations of these signals suppress circularization (Ashwal-Fluss et al., 

2014), and third, isoginkgetin-mediated spliceosome inhibition drastically decreases ciRNA 

biogenesis (Starke et al., 2015). In a recent study however, Liu and collaborators detected a 

substantial number of ciRNAs with no canonical splicing sites in HeLa cells and human brain 

(Liu et al., 2020). Moreover, they also discovered particular ciRNAs for which the junction 

point does not occur at a typical exon/intron or exon/exon junction but rather resides inside an 

intron and/or an exon (Liu et al., 2020). Noteworthy, the authors found that these interior 

ciRNAs (int ciRNAs) are more abundant than canonical ciRNAs. Moreover, beyond the 

canonical splicing signal AG/GU, they enlightened the presence of a novel motif adjacent to 

the backsplicing site of both canonical ciRNAs and int ciRNAs, namely AC/CU (Liu et al., 

2020). Interestingly, they also uncovered the existence of Short Homologous Sequences (SHS) 

adjacent to the backsplice site of both canonical ciRNAs and int ciRNAs, up to 34 nt in size. 

Overall, the discovery of both SHS and the novel AC/CU motif support the existence of a more 

complex mechanism underlying ciRNA biogenesis, and possibly distinct ones according to the 

type of ciRNAs (Liu et al., 2020).  Specifically, the authors hypothesize that the biogenesis 

mechanism dependent on SHS could be based on template switching (Fig 34).  

 

 

 

 

 

Figure 34: Pre-mRNA sequence features driving circular RNAs (ciRNAs) backsplicing.  

CiRNAs are thought to be generated 1) via a specific canonical splicing signal (AG/GU) under the action of the 

spliceosome, 2) through an unknown mechanism implicating the newly discovered signal AC/CU, 3) following 
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template switching enabled by short homologous sequences located on either side of the back-fusion point. 

Inspired from (Liu et al., 2020).  

 

Studies show that there are thousands of ciRNAs in human cells and that they emerge from 

roughly 15-20% of the transcriptome (Jeck et al., 2013) (Conn et al., 2015) (Glažar, 

Papavasileiou and Rajewsky, 2014). This information, together with their dynamic expression 

discussed above, their extended half-lives (up to 48h) (Jeck et al., 2013) and the fact that they 

are evolutionary conserved (Rybak-Wolf et al., 2015) (Memczak et al., 2013) (Jeck et al., 

2013), are compelling evidence that they are more than random inactive splicing by-products 

and that they bear important biological functions.  

 

2. CiRNA functions   

Concrete information regarding the biological functions of ciRNAs are multiplying but still 

remain limited and cannot be extrapolated to all ciRNAs. The biological functions of ciRNAs 

currently proposed are presented in Fig 35 and detailed hereafter.  

 

 

 

 

 

 

 

 

 

Figure 35 : Proposed biological functions of circular RNAs (ciRNAs).  

CiRNAs can indirectly increase mRNA translation by sequestering miRNAs (a). Similarly, ciRNAs can also 

interact with proteins, constituting RNA Binding Protein (RBP) sorting/scaffolding/tethering agents (b). Recently, 

it was reported that ciRNAs can be translated into proteins with a functional domain (c). CiRNAs are generally 
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thought to compete with the production of their cognate linear mRNA (d). Finally, ciRNAs have been shown to 

act as transcriptional regulators increasing gene expression. This has been specifically described for Exonic-

Intronic ciRNAs (EIciRNAs) whose intronic part would bind U1 small nuclear RiboNucleoProtein particle (U1 

snRNP) and further interact with RNA polymerase II (pol II), enhancing the expression of their parental genes (e).  

 

The structure of ciRNAs tends to inform about their biological functions. While Exonic ciRNAs 

(EciRNAs), the most prevalent class of ciRNAs, are more associated with an activity of miRNA 

sponges in the cytoplasm, Exon-Intron containing ciRNAs (EIciRNAs) and IciRNAs seem 

more prone to act as transcription regulators in the nucleus (Xu et al., 2018).  

 

The miRNA sponge function of ciRNAs was first uncovered with circular RNA Sponge for 

miR-7 (ciRS-7). Antisense ciRS-7 derives from the Cerebellar Degeneration Related 1 (CDR1) 

gene and is highly expressed in mammalian brain (Hansen et al., 2011).  Its potent miR-7 

sponge function was first illustrated by the work of Memczak and collaborators, wherein either 

morpholino-driven inhibition of miR-7 or human ciRS-7 overexpression in Danio rerio both 

led to a similar phenotype of impaired brain development (Memczak et al., 2013). In various 

studies, the ciRS-7/ miR-7 axis has been shown to carry out diverse biological functions, 

ranging from osteoblastic differentiation through Growth Differentiation Factor 5 (GDF5) 

upregulation (X. Li et al., 2018) to the promotion of oesophageal cancer cell proliferation and 

metastasis via HomeobOX 13 (HOXB13) upregulation (R. Li et al., 2018). Interestingly, as 

much as ciRS-7 is able to act as a miRNA sponge, it can be as easily targeted and degraded by 

one miRNA, namely miR-671 (Hansen et al., 2011). As such, Memczak and collaborators 

hypothesised that ciRS-7 could act as a miR-7 transporter, whose scheduled delivery in specific 

subcellular compartments would be dependent on miR-671 action (Memczak et al., 2013).  

This is only one example of an ever-expanding list of ciRNAs acting as miRNA sponges, 

thereby trans-regulating the expression of their own cognate linear forms or, in most cases so 

far uncovered, the expression of separate actors (Yu and Kuo, 2019).  
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CiRNAs generally interact with proteins (Hentze and Preiss, 2013) (Huang et al., 2020). More 

specifically, they can display RBP-sponge abilities, illustrated earlier with the ciMbl-Mbl 

interaction (Ashwal-Fluss et al., 2014), and also exemplified by the ciForkhead bOX O3 

(ciFOXO3)- Cyclin Dependent Kinase 2 (CDK2)- p21 complex. Indeed, ciFOXO3 sequesters 

CDK2, thereby preventing its binding to cyclin E, an interaction essential for the G1-S 

transition of the cell cycle. Moreover, ciFOXO3 also binds p21 and therefore enhances the 

innate inhibitory effect of p21 on CDK2. Thus, the formation of this ternary complex blocks 

the progression of the cell cycle (Du et al., 2016). The scaffolding properties of ciRNAs are 

also illustrated by ciAngiomotin-like 1 (ciAmotl) that has been shown to bind and assist 

Phosphoinositide-Dependent Kinase1 (PDK1)-mediated phosphorylation of Protein Kinase B 

(PKB) in Murine Cardiac Fibroblasts (MCF), leading to its nuclear translocation and 

subsequent cardioprotective action (Zeng et al., 2017). In another study, ciAmotl1 has been 

shown to act as a sorting agent and promote tumorigenesis by retaining c-myc in the nucleus 

(Q. Yang et al., 2017). 

 

CiRNAs are also described as gene transcription regulators. Indeed, Li and collaborators 

demonstrated in HeLa cells that some EIciRNAs are nucleus-localized and interact with RNA 

Polymerase II (Pol II), U1 small nuclear ribonuclear particle and the promoter of their parental 

genes, thereby inducing their transcription (Li et al., 2015). In addition, Zhang and collaborators 

have shown in human cells (HeLa and H9) that antisense-oligonucleotide-mediated knockdown 

of several IciRNAs also led to a diminished transcription of their parental genes seemingly via 

modulation of Pol II activity (Zhang et al., 2013). Moreover, ciRNAs transcriptional activity is 

not restricted to their parental genes as demonstrated by a multifaceted approach for ciRas 

Homolog family member bT1 (ciRHOT1). Indeed, ciRHOT1, overexpressed in HepatoCellular 

Carcinoma (HCC), associates with Tip60, a histone acetyltransferase involved in chromatin 
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remodelling, to promote the expression of Nuclear Receptor subfamily 2 group F member 6 

(NR2F6), a transcription factor of poor prognosis in HCC (L. Wang et al., 2019).  

 

Interestingly, ciRNAs have also been shown to act on the translational level, as exemplified by 

ciAntisense Non-coding RNA in the Inhibitor of cyclin-dependent kinase 4 Locus (ciANRIL) in 

HEK293T cells. By binding Pescadillo homolog 1, an assembly factor involved in rRNA 

processing, ciANRIL is able to decrease ribosome biogenesis (Holdt et al., 2016).  

In addition, Abdelmohsen and collaborators demonstrated in HeLa cells that the translation of 

Poly(A)-Binding Protein Nuclear 1 (PABPN1), involved in the poly(A) tail formation of 

mRNAs, is modulated by its cognate circular form. More precisely, ciPABPN1 competes for 

the binding of the translational activator HuR, thereby reducing its availability and leading to  

the inhibition of PABPN1 mRNA translation (Abdelmohsen et al., 2017).  

 

It is only very recently that ciRNAs revealed their fascinating ability to encode proteins, until 

then only imagined based on computational analysis (Chen et al., 2016) and studies on 

engineered ciRNAs (Wang and Wang, 2015) (Chen and Sarnow, 1995). Since ciRNAs are 

inherently deprived of 5’-cap, the translation of the circular transcript is driven by Internal 

Ribosome Entry Sites (IRES) that allows recruitment of ribosomes internally (Hellen and 

Sarnow, 2001). Additionally, ciRNA translation has been shown to be mediated by the base 

modification N6-methyladenosine (Y. Yang et al., 2017).  

Using artificial expression-vector constructs and CRISPR-based flagging techniques as well as 

dual luciferase vector system, Legnini and collaborators demonstrated that mono-exonic ciZiNc 

Finger protein 609 (ciZNF609), differentially expressed during human and murine myogenesis, 

has a potential for an IRES-dependent translation. However, the function of the protein encoded 

by ciZNF609 remains to be fully characterized.  
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Similarly, bi-exonic ciF-BoX/WD repeat-containing protein 7 (ciFBXW7) has been shown to 

encode a 185-amino-acid protein able to reduce the proliferation of glioma cells (U251 and 

U373) both in vitro and in vivo (Yang et al., 2018). The protein encoded by ciFBXW7 

(ciFBXW7185) performs its anti-proliferative function by antagonizing c-myc stabilization. C-

myc stabilization is mediated by the de-ubiquitinating enzyme Ubiquitin Specific Peptidase 28 

(USP28) by inhibiting FBXW7α, a component of the Skp1-Cul1-F Box (SCF) ubiquitin ligase 

encoded by the linear form of FBXW7 pre-mRNA. Through competing for USP28 binding, 

ciFBXW7185 prevents USP28-mediated FBXW7α inhibition, thereby allowing the subsequent 

FBXW7α-dependent degradation of c-myc (Yang et al., 2018).  

This example of a translated ciRNA playing a role of decoy for its linear cognate is also 

illustrated by ciß-catenin. As shown in immortalized liver cancer cells, the 370-amino-acid 

protein encoded by ciß-catenin acts as a competitive bait for Glycogen Synthase Kinase 3ß 

(GSK3ß), thereby preventing the GSK3ß-induced degradation of ß-catenin (Liang et al., 2019). 

ß-catenin is then free to translocate in the nucleus and promote the transcription of pro-

oncogenic genes, placing ciß-catenin as a central pro-malignancy actor.  

To date, ten ciRNAs have been shown to translate into proteins. Among those functionally 

characterized, the majority act as tumour suppressors (Huang et al., 2020).  

 

The functional research regarding ciRNAs is nascent, making the points discussed above only 

the tip of the iceberg in term of biological importance of ciRNAs. It clearly appears that ciRNAs 

embody a powerful class of molecular actors with obvious relevance in terms of cell physiology 

but also pathology, with proven decisive implications in diseases ranging from  atherosclerosis 

and neurogenerative diseases to diabetes and cancer (Xu et al., 2018) (Holdt, Kohlmaier and 

Teupser, 2018b). Standardized and robust genome-wide approaches as well as stringent 
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biochemical techniques are therefore essential to properly identify and characterize those 

central players. 

 

3. CiRNA identification 

RNA-sequencing dataset analysis using specific computational methods is generally the first 

approach used to identify ciRNAs (Salzman et al., 2012). In principle, ciRNA detection is 

achieved by identifying reads matching a putative backsplice junction, as exons would then 

appear in a non-colinear order (Zhang et al., 2014). In order to exclude false positives, RNA-

sequencing analysis are performed in a paired-end fashion.  

The burst in ciRNA research in the last decades led to plethora of data from RNA-sequencing 

analyses that are now gathered in databases. To name only one, circBase is an exhaustive and 

user-friendly database unifying collected ciRNAs (Glažar, Papavasileiou and Rajewsky, 2014).  

 

Samples destined for ciRNA identification are generally enriched/purified beforehand. 

Common strategies, for example, consist in depleting ribosomal RNAs and/or treating the 

samples with 3’-5’ exoribonuclease RNAse R which decays linear mRNAs (Iparraguirre et al., 

2019). Notably, the latter step allows the degradation of specific chimeric transcripts that can 

be filtered in by mapping algorithms and constitute false positives. Those particular transcripts 

can originate from trans-splicing, when a pre-mRNA is spliced with another, or genome 

(tandem) duplication which results in exon(s) repetitions (Fig 36) (Jeck and Sharpless, 2014). 

In both cases, an apparent resulting backsplice sequence would in fact not arise from a ciRNA 

but from a linear transcript. However, RNAse R treatment entails some limitations. Indeed, 

some linear mRNAs may be resistant to such treatment (Vincent and Deutscher, 2006) (Szabo 

and Salzman, 2016). Also, a more disturbing observation is that some ciRNAs are degraded by 
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the enzyme, although lacking 3’end, as it is observed for ciRS-7 (Jeck et al., 2013) (Szabo and 

Salzman, 2016).  

 

 

 

 

 

 

Figure 36 : The different origins of spurious backsplice junctions that might occur and complicate circular RNA 

(ciRNA) identification.  

Trans-splicing and genomic duplication might lead to products displaying a misleading backsplice junction 

erroneously associated with ciRNAs. In these examples, one might mistakenly consider the existence of a single-

exon ciRNA originating from the exon 2 of the presented transcript. (Barrett and Salzman, 2016) 

 

The putative ciRNAs identified/predicted by high throughput methods like RNA-sequencing 

are generally validated by RT-qPCR using primers targeting the backsplice junction. Those 

primers are called “outward-facing” or “divergent” as their 3’ends oppose each other when 

mapped on the genome/linear transcript. This common and potent biochemical method is 

however not devoid of bias. More specifically, artefactual products due to template switching 

can arise during the Reverse Transcription (RT) step. A template switching event consists in 

the dissociation of the extending cDNA strand from its RNA template followed by a homology-

driven re-hybridation of the cDNA on another RNA template (Fig 37) (Jeck and Sharpless, 

2014) (Barrett and Salzman, 2016). Later amplified during PCR, this aberrant product is easily 

misconstrued for a ciRNA as it gives rise to a spurious backsplice junction. Template-switching 

artefacts are quite treacherous in the way that they have shown replicability properties and 

sometimes a higher abundance than experimentally validated products of interest (Wu et al., 

2014).  
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Figure 37 : Mechanism of homology-driven template-switching event.  

During the reverse transcription step, the reverse transcriptase (RTase) can switch from one template to another. 

This phenomenon is favored by the presence of homologous sequences in the mRNA template and the resulting 

product can be misinterpreted as a circular RNA due to the generation of an apparent backsplice junction.  
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OBJECTIVES 

This second axis of the thesis is focused on the exploration of MPV17 ciRNAs. Indeed, ciRNAs 

are a research hotspot, notably as therapeutic agents and targets. Moreover, the putative 

existence of MPV17 ciRNAs might provide some clues for yet unexplained observations 

performed in the first part of the thesis, where different MPV17 shRNAs have been associated 

with various proliferation phenotypes, despite a similar effect on the MPV17 protein 

abundance.  

Thus, this work aims at 1) investigating the putative existence of MPV17 ciRNAs, which would, 

in and of itself, already constitute a valuable finding and 2) exploring their function(s) and 

relevance in terms of pathology, if any. Indeed, as mentioned in the introduction, ciRNAs 

dysregulation bears substantial pathological impact. Also, in regard to the hepatocerebral 

phenotype associated with MPV17 pathology, the mammalian brain has been shown to be the 

richest organ in terms of ciRNA abundance and variety, suggesting a critical regulatory role of 

ciRNAs in brain development and function (You et al., 2015) (Sekar and Liang, 2019) (cf 

introduction, ciRS-7 and ciFBXW7). Moreover, liver ciRNAs seem to be involved in hepatic 

proliferation as well as energy metabolism (Li et al., 2017), suggesting that the loss of a ciRNA 

could have a negative impact on liver integrity. Around 40 % of total ciRNAs present in an 

organ are specific to this organ (Xu et al., 2017), explaining how the loss of one ciRNA could 

give rise to tissue-specific pathologies. Finally, ciRNAs have been implicated in mitochondrial 

function and dynamics (Zhao et al., 2019) (Wang et al., 2017).  

This work is realised in collaboration with URVI (University of Namur), under the supervision 

of Dr. Damien Coupeau and Prof. Benoît Muylkens, as their team is more qualified and 

experienced in term of circular RNA research.  
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MATERIALS AND METHODS 

RNA extraction   

Total RNA was extracted from 90% confluent cells (T75 flask) with TRI Reagent (Sigma, 

T9424) according to manufacturer’s recommendations. Briefly, 1 mL of TRI Reagent was 

added to the cells. After complete lysis, 200 µL of chloroform were then added to the samples 

which were vigorously shaken, allowed to stand 10 min at room temperature and centrifuged 

for 15 min at 12 000g at 4 °C. The aqueous phase was retrieved and 500 µL of isopropanol 

were added. Samples were allowed to stand 10 min at room temperature and centrifuged for 15 

min at 12 000g at 4 °C. Pellets were then washed twice with ethanol 75 %, air-dried and 

dissolved in 50 µL of distilled water.  

 

DNase and RNase treatments   

An amount of 20 µg of RNA was incubated for 20 min at 37 °C in the presence of 4 µL of 

DNase I (NEB, M0303S) and 10 µL of DNase I 10 X reaction buffer (NEB, B0303S) in a total 

volume of 100 µL. A volume of 2 µL of DNase I was then added once more to the mix and 

another 20 min incubation at 37 °C was performed. DNase I treatment was followed by a 

purification step. More specifically, the solution volume was adjusted to 300 µL with distilled 

water and an equal volume of phenol-chloroform-isoamyl alcohol mixture (Sigma-Aldrich, 

77618) was added. The solution was vortexed for 30 sec and then centrifuged at 12 000 g for 

15 min at 4 °C. A volume of 300 µL of chloroform: 3-methylbutanol (49: 1) (Sigma-Aldrich, 

19392) was then added to the retrieved upper aqueous phase (approximately 300 µL). The 

solution was then vortexed for 30 sec and centrifuged at 12 000 g for 15 min at 4 °C. Volumes 

of 600 µL of 100 % ethanol and 100 µL of 3 M sodium acetate were then added to the retrieved 

upper aqueous phase (approximately 300 µL). The solution was incubated for 1h at -80 °C and 
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centrifuged at 15 000 g for 20 min at 4 °C. The pellet was then washed with 75% ethanol, 

centrifuged at 12 000 g for 5 min at 4 °C, quickly air-dried and resuspended in 50 µL of distilled 

water. An amount of 7 µg of RNA was then incubated for 1 h at 37 °C with 2 µL of RNase R 

(Lucigen, RNR07250) and 10 µL of 10 X reaction buffer (Lucigen, RNR07250) in a total 

volume of 100 µL. The sample was then re-purified as described above and ultimately 

resuspended in 11 µL of distilled water.  

 

Reverse Transcription (RT) 

Volumes of 2 µL of dNTPs mix (Eurogentec, NU-0010) and 1 µL of random primers (NEB, 

S1230) were added to the 11 µL of purified sample enriched in ciRNAs. The sample was 

incubated for 3 min at 94 °C and then immediately placed on ice for at least 1 min. Volumes of 

1 µL of dithiothreitol (Uptima, 054721), 1 µL of SuperScript IV (Thermo Fisher, 00789728) 

and 4 µL of its 5X buffer (Thermo Fisher, LT-00789839) and 1 µL of RNase OUT (Thermo 

Fisher, 10777019) were added to the sample. The mix was incubated for 10 min at room 

temperature, for 1 h at 53 °C and finally for 10 min at 80 °C. One µL of RNase H (Thermo 

Fisher, 18021014) was then added to the sample, before an incubation at 37 °C for 20 min.  

For MPV17 specific RT, 1 µL of a mix of two MPV17-targeting primers (5’- 

AATGTCACCCAGGCCCATCA- 3’ and 5’ -GAGAAAGCAGCCTAGAAAACACG- 3’) 

was used instead of random hexamers. The rest of the protocol is identical to what is described 

above except that the step which consists in incubating the samples 10 min at room temperature 

is excluded.  

 

Nested PCR 

For the first PCR and for each condition, the reaction mix was composed of 27.25 µL of distilled 

water, 1.5 µL of dNTPs mix (Eurogentec, NU-0010), 5 µL of forward primer at 2 µM, 5 µL of 
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reverse primer at 2 µM (see Table 4), 0.25 µL of GoTaq DNA Polymerase (Promega, M3001), 

10 µL of 5X Green GoTaq Reaction Buffer (Promega, M7911) and 1 µL of cDNA (pure or 

diluted, as stated).  The programmed conditions for cDNA amplification consisted in an initial 

denaturation at 94 °C for 3 min, followed by 25 cycles consisting in 30 sec at 94 °C, 30 sec at 

56 °C, 1min 30 sec at 72 °C and a final extension at 72 °C for 7 min. For the second PCR, 1 µL 

of the first PCR product (pure or diluted, as stated) was further amplified (see Table 4 for 

primers) for 35 cycles in the same conditions described above. 
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ID Forward primer (5’→3’) Reverse primer (5’→3’) Company 

pGEM®

-T Easy 
TGTAAAACGACGGCCAGTG (PU) CAGGAAACAGCTATGACCA (RPU) Eurogentec 

 Fig39 

ciRNA 1 

First level 

nested 

PCR 

TAATGGACTGTCAGCCCAGGAC GAGAAAGCAGCCTAGAAAACACG IDT 

Fig39 

ciRNA 1 

Second 

level 

nested 

PCR 

GACTGTCAGCCCAGGACAACTG CTAGAAAACACGGGGCAAAGC IDT 

Fig39 

ciRNA 2 

First level 

nested 

PCR 

GGTTTTACAGGGATAAAAAAGGG GTCTTCTTCCCCTGGGCTGT IDT 

Fig39 

ciRNA 2 

Second 

level 

nested 

PCR 

CAGGGATAAAAAAGGGGGATT TTCTTCCCCTGGGCTGTCAG IDT 

Fig39 

ciRNA 3 

First level 

nested 

PCR 

TTCTACCTGGTCCCCCTTCA GTTGGCTAACTGCACAGCAGG IDT 

Fig39 

ciRNA 3 

Second 

level 

nested 

PCR 

CTACCTGGTCCCCCTTCATTA TGCACAGCAGGCCATAGAT IDT 

Table 4:  List of primers used for nested PCR.  

The primers sequence, identification and provenance are specified.  
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PCR screening for sequencing 

PCR amplification products were recovered using the NucleoSpin Gel and PCR Clean-up kit 

(Macherey-Nagel, 740609.250) according to manufacturer’s recommendations. A volume of 3 

µL of cleaned-up PCR products was incubated overnight at 12 °C with 1 µL of pGEM®-T Easy 

(Promega, A137A), 5 µL of 2X ligation buffer (Promega, C671X) and 1 µL of T4 DNA ligase 

(Promega, M180A). The next day, 50 µL of competent TG1 E. coli in LB were electroporated 

5 msec at 2500 V with 1.5 µL of ligation product using the ECM 399 Electroporation System 

(BTX). Bacteria were then immediately resuspended in 150 µL of LB medium, spread on LB-

agar (Sigma Aldrich, L2897) Petri dishes (Greiner bio-one, 664160) ) containing 100 µg/mL of 

ampicillin (PanReacApplichem, A0839), 160 µg/mL of IPTG (VWR, 43714) and 120 µg/mL 

of X-Gal (5-bromo-4-chloro-3-indolyl--D-galactopyranoside) (VWR, IN115A) and incubated 

overnight at 37 °C. The next day, several white bacteria colonies were randomly picked with a 

sterile toothpick that was then plunged into a 96-well plate for PCR amplification. The reaction 

mix was composed of 11.5 µL of distilled water, 0.4 µL of dNTPs mix (Eurogentec, NU-0010), 

2 µL of Universal Primer (PU) at 2 µM, 2 µL of Universal Reverse Primer (RPU) at 2 µM (see 

Table 4), 0.1 µL of GoTaq DNA Polymerase (Promega, M3001) and 4 µL of 5X Green GoTaq 

Reaction Buffer (Promega, M7911) and 1 µL of cDNA.  The programmed conditions for cDNA 

amplification consisted in an initial denaturation at 94 °C for 3 min, then 94 °C for 30 sec, 55 

°C for 30 sec, 72 °C for 1 min for 35 cycles and a final extension at 72 °C for 7 min. PCR 

products were then run on a 1.5 % agarose gel containing 0.005% Midori green 

(Nippongenetics, MG04) and bacteria containing PCR amplicons of interest were then sent for 

sequencing at Eurofins Genomics (Les Ulis, France).  
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RESULTS 

Three potential ciRNAs originating from the MPV17 gene are listed in CircBase 

(http://www.circbase.org/) (Fig 38), although not being experimentally validated yet. Among 

them, two long MPV17 ciRNAs were identified by the group of Salzman in H1 human 

embryonic stem cells and/or in human keratinocytes, after applying an improved computational 

method on publicly available RNA sequencing data from the ENCODE database (Salzman et 

al., 2013). In a similar way, the group of Rybak-Wolf enlighted the putative existence of a third 

small MPV17 ciRNA in human cerebellum (Rybak-Wolf et al., 2015).  

 

 

 

 

 

 

 

 

 

Figure 38 : MPV17 circular RNAs (ciRNAs) predicted by RNA-sequencing followed by computational analysis. 

Three ciRNAs derived from the MPV17 gene are reported in CircBase. Each grey box represents an exon of the 

long MPV17 coding transcript. A dashed arrow delimits and indicates the circular nature of each ciRNA sequence.  

 

Our first approach did not consist in specifically designing primers flanking the backsplice 

junction of those ciRNAs. Instead, as we were interested in having a full overview of the 

potential ciRNA landscape in Huh7 cell line, divergent primers were strategically placed inside 

selected exons of MPV17 transcripts, thereby allowing the full-length amplification of various 

putative ciRNAs, comprising not only those described in CircBase but also other putative 

http://www.circbase.org/
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unidentified ciRNAs. Specifically, we designed two sets of outward-facing primers in two 

different exons of the long MPV17 coding transcript and one in a specific exon of the short 

MPV17 non-coding transcript, described in GTEx Portal as the most abundant MPV17 non-

coding transcript in human healthy liver (Fig 29).  

Only one set of primers allowed the amplification of a putative ciRNA (Fig 39a, ciRNA 3, red 

arrow) as shown by the enriched presence of a single band in Huh7 sample treated with RNAse 

R compared to untreated sample. PCR product sequencing indicated that this presumed ciRNA 

spreads over five exons on the long MPV17 transcript and that the circularization event would 

take place in the fourth and the last exons (5’→ 3’) (Fig 39b). Interestingly, the junction point 

is located inside these exons and is flanked by the SHS “GCCCU”, overall reminiscent of an 

int ciRNA.  

 

 

 

 

 

 

 

 

 

 

 

Figure 39 : Detection of putative MPV17 circular RNAs (ciRNAs) in Huh7 cells.  

(a) RNA was extracted from Huh7 cells and treated or not with RNAse R to eliminate linear RNAs. RNA was 

then reverse transcribed (RT) or not. Nested PCR was then performed (Ta= 56 °C) using different pairs of primers 

in order to detect putative ciRNAs and PCR products were resolved on agarose gel. The MPV17 transcript regions 

targeted by the primers (red arrows) are indicated by a black arrow, pointing the exon (grey box) in which the 



RESULTS 

105 

 

primers are localized. For the ciRNA 2, the primers are localized in an exon that is not shared with the long isoform, 

therefore distinguished and appearing in darker grey. (b) Localization on the long MPV17 coding isoform of the 

putative ciRNA detected with the third set of primers (ciRNA 3) (shown by the red arrow in (a)). The two end 

points of the red line should be imagined joined to form a circularized structure. The detail of the sequence around 

the supposed backsplice junction is indicated in order to outline the existence of a Short Homologous Sequence 

(SHS) flanking the circularization event (in bold).  

 

Unfortunately, we were not able to replicate this result on another biological Huh7 sample 

(originating from the same frozen cell vial, passage +1). Instead, we detected another putative 

ciRNA, that we originally thought to be similar to the first one we previously amplified (Fig 

40a, blue arrow). Furthermore, diverse starting dilutions of cDNA material and various 

annealing temperatures both led to the amplification of different putative ciRNAs (Fig 40a, b). 

Noteworthy, most of the detected putative ciRNAs are also int ciRNAs. Most of them (except 

number 2) also display the presence of SHS in the flanking sequence of their backsplice 

junction. Two of them, number 1 and 2, share one upstream backsplicing site as well as the 

presence of the canonical splicing signal AG/GU (red triangles) (Fig 40b). Noteworthy, the 

third exon of MPV17 transcript (5’ → 3’) is predicted to be alternatively spliced (NCBI, 

transcript ID: XM_017004152.1). This event would occur at the exact same position of the 

upstream backsplicing site shared by ciRNAs number 1 and 2.  
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Figure 40 : Second replicate for the detection of putative MPV17 circular RNAs (ciRNAs) in Huh7 cells.  

(a) RNA was extracted from Huh7 cells and treated with RNAse R to eliminate linear RNAs. RNA was then 

reverse transcribed and a nested PCR was performed (Ta= 56 °C or 58 °C) on different dilutions of starting cDNA 

material (1, 1/10 or 1/100). PCR products were then resolved on agarose gel. The blue arrow shows a putative 

ciRNA whose localization on the long MPV17 coding transcript is indicated by a blue line. The two end points of 

the blue line should be imagined joined to form a circularized structure. The detail of the sequence around the 

supposed backsplice junction is indicated in order to outline the existence of a Short Homologous Sequence (SHS) 

flanking the circularization event (in bold). NC: negative control (PCR performed on water). (b) The localization 

on the long MPV17 coding transcript of other detected putative ciRNAs  (1, 2, 3 and 4) are also indicated as well 

as the detail of the sequence around the supposed backsplice junction. A red triangle outlines the existence of the 

canonical splicing signal AG/GU.  

 

To shed more light on MPV17 ciRNAs existence and robustness, we decided to investigate the 

potential expression of the ciRNAs detected in Huh7 cells in other different human cell lines, 

namely AICS cells (induced pluripotent stem cells), HEK293T cells (embryonic kidney), HeLa 

cells (cervix adenocarcinoma), HepG2 cells (hepatocellular carcinoma), PANC1 cells 

(pancreatic epithelioid carcinoma), KP4 cells (pancreatic ductal carcinoma) and T98G cells 

(brain glioblastoma). Huh7 cells were still investigated as well and another putative ciRNA (Fig 

41a, 1), although not previously detected, was amplified in these cells, adding more variability 

to the existing results, since this biological sample comes from the same extracted RNA 

material used in Fig 40 but originates from independent RNAse R treatment and RT.  
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Enticingly, although not previously detected in Huh7 cells, the same putative ciRNA was 

amplified in both Huh7 and T98G cells (Fig 41a, 2 and 3), leaning the balance towards a 

genuine existence. Its circularization event occurs at a typical exon/exon junction, constituting 

the only ciRNA in this work presenting this particular feature.  

 

 

 

 

 

 

 

 

 

 

Figure 41 : Detection of putative MPV17 circular RNAs (ciRNAs) in several human cell lines.  

(a) RNA from eight different cell lines was extracted and treated with RNAse R to eliminate linear RNAs. RNA 

was then reverse transcribed and a nested PCR was performed (Ta= 56 °C) on different dilutions of material (1/100 

or 1/1000 of the first PCR product engaged in the second round of the nested PCR). PCR products were then 

resolved on agarose gel, purified, screened and sequenced. The localization on the long MPV17 coding transcript 

of detected ciRNAs (1, 2 and 3) is indicated as well as the detail of the sequence around the supposed backsplice 

junction. NC: negative control (PCR performed on water). (b) The localization on the long MPV17 coding 

transcript of putative ciRNAs presenting multi-rolling reverse transcription characteristics is indicated as well as 

the detail of the sequence around the supposed backsplice junction. For each putative ciRNA (4, 5, 6, 7, and 8), 

the number of detected rolls (see Fig 42) is indicated on the right of their corresponding localization on the MPV17 

transcript. For the particular case of HepG2 and KP4 cells, where clear bands are not particularly visible because 

of the smear aspect, the detected ciRNAs are referred as « # », « #’ » for HepG2 cells and « * » for KP4 cells.  

 

AICS and HeLa cells display the same electrophoretic profile but with a slight shift in size (Fig 

41a). This ladder-like profile is reminiscent of RT multi-rolling events, which could constitute 

a strong sign in favour of the presence of ciRNAs. Indeed, divergent primers like the ones used 
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in this study lead to ciRNA amplification providing that rolling events occur during the RT, a 

common occurrence when dealing with ciRNAs. Thus, thanks to strand displacement, the 

enzyme reverse transcribes several times in a row the ciRNA sequence, leading to a linear 

cDNA composed of several repetitions of the ciRNA sequence. Depending on the number of 

rolls during RT and the random targeting of the primers during PCR, this event gives rise to a 

ladder-like aspect on agarose gel, composed of several multimers (Fig 42).    

 

 

 

 

 

 

 

 

 

Figure 42 : Rolling Reverse Transcription (RT) is necessary for the detection of complete circular RNAs (ciRNAs).  

Since the final RT product of a ciRNA is a linear cDNA, only an event of rolling during RT would enable the 

amplification of a ciRNA with divergent primers (red arrows). Depending on the number of rolls and the random 

placement of the primers during PCR, this amplification results in diverse products composed of various 

repetitions of the same ciRNA sequence (possibility 1 and 2). 

 

The cloning and sequencing of these PCR products indeed revealed that the ladder-like profiles 

of AICS and HeLa cells are due to rolling events, highlighting the possible existence of one 

ciRNA in each cell type. While these two ciRNAs are inherently different, they are closely 

overlapping and present one downstream backsplicing site that varies only by one nucleotide 

in terms of position (Fig 41b). AICS ciRNA also shares an upstream backsplicing site with one 

ciRNA detected in Huh7 cells (Fig 41a, 1). 
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While the electrophoretic profiles of HepG2, PANC1 and KP4 cells appeared smeared, we 

nonetheless decided to attempt cloning and sequencing the PCR products, as a ladder-like 

profiles can sometimes be discerned (Fig 41a, 1/1000, HepG2 and KP4). While most of the 

results were MPV17-specific but seemingly irrelevant and due to technical artefacts, some 

amplified products displayed rolling characteristics. Thus, in HepG2 cells, two PCR products 

(“ # ” and “ #’ ”) are different concatemers of the same sequence. In the KP4 cells, one PCR 

product (“ * ”) display seven repetitions of the same sequence (Fig 41b). 

 

In order to “clean” the smeared signal obtained for HepG2, KP4 and PANC1 cell lines, we 

performed, on the same RNA samples, an RT using primers specifically targeting MPV17.  

 

 

 

 

 

 

 

 

 

 

 

Figure 43 : Detection of putative MPV17 circular RNAs on HepG2, KP4 and PANC1 cells following specific 

MPV17 Reverse Transcription (RT).  

RNA from HepG2, KP4 and PANC1 cell lines was extracted and treated with RNAse R to eliminate linear RNAs. 

RNA was then reverse transcribed using two specific MPV17-targeting primers and a nested PCR was performed 

(Ta= 56 °C) on different dilutions of material (1, 1/100 or 1/1000 of the first PCR product engaged in the second 

round of the nested PCR). PCR products were then resolved on agarose gel, purified, screened and sequenced. The 

localization on the long MPV17 coding transcript of detected ciRNAs is indicated as well as the detail of the 

sequence around the supposed backsplice junction. When present, multi-rolling RT events are detailed. NC: 

negative control (PCR performed on water). The empty symbol represents the absence of the indicated sequence.  
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The specific RT successfully allowed the amplification of distinct products for each cell line 

(Fig 43). Enticingly, we detected in HepG2 cells (Fig 43, 1) the same putative ciRNA 

previously amplified in both Huh7 and T98G cell lines (Fig 41, 2 and 3).  

Among the diverse putative ciRNAs identified in PANC1 cells (Fig 43, 2 and 3 and 4), one of 

them presents an exon missing around half of its canonical sequence (Fig 43, 2). However, no 

alternative splicing of this particular exon has been described/predicted so far.  

Finally, we detected once more multi-rolling RT events in KP4 cells, originating from the 

putative presence of a ciRNA that, while closely resembling the ciRNA detected in Fig 41, 

remains a distinct ciRNA species.  
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GENERAL DISCUSSION CONCLUSION AND 

PERSPECTIVES 

In this thesis work we studied the putative role of MPV17 in cancer cell proliferation. While 

MPV17 silencing did not lead to depletion in mtDNA content in the tested cancer cell lines, in 

accordance with the literature (Dalla Rosa et al., 2016) (Alonzo et al., 2018), the resulting 

proliferation phenotypes associated with MPV17 shRNA-mediated knockdown were unsettling 

and inconclusive, leading us to perform a rescue experiment that eventually excluded a role of 

MPV17 protein in cancer cell proliferation. The intriguing and somewhat misleading results we 

obtained during this investigation clearly demonstrate the need to systematically perform a 

rescue experiment in order to ascertain the specific nature of the experimental results.  

 

In our study, we tested five shRNAs targeting MPV17. The shRNA-dependent variable 

phenotypical outcomes in Huh7 cells led us to consider a putative contribution of MPV17 

transcript isoforms and/or the possible existence of off-target effects.  

Despite the fact that we could not find any correlation between the shRNA-targeted MPV17 

transcript isoforms and the proliferation phenotype, it is not sufficient to preclude this 

hypothesis as there is no guaranty that the MPV17 transcript isoforms spectrum described in 

GTEx portal in human healthy liver is conserved in the Huh7 cell line.  

It is also interesting to note that the predictive alignment (BLAST, ncbi) of sh129921 and 

sh127649, the two shRNAs associated with a reduced proliferation phenotype, on human 

transcripts did not highlight the putative existence of a shared off-target mRNA. Again, this 

observation is however not sufficient to exclude a putative off-target effect as it could be taking 

place through separate effectors for each shRNA. Noteworthy, a cross-analysis between the 

predicted off-target mRNAs (obtained from the BLAST alignment of sh129921 sequence on 
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human transcripts) and the RNA sequencing analysis put into light two mRNAs slightly 

downregulated in sh129921-encoding vector transduced Huh7 cells compared to shNT-

encoding vector transduced cells. One of them, with a fold change of 0.7, codes for ADhesion 

G protein-coupled Receptor A3 (ADGRA3). This cell membrane receptor is associated with a 

good outcome regarding colorectal cancer as it inhibits the Wnt/β-catenin signaling pathway 

(Wu et al., 2018). The second mRNA, with a fold change of 0.77, codes for Nuclear Factor 1-

A type (NF1-A). Knowing that this transcription factor increases a glioblastoma cell line 

proliferation by repressing p21 (Lee et al., 2014), its downregulation could explain the reduced 

proliferation rate that we observed. However, it is intricate to predict the biological impact of 

such a moderate mRNA downregulation. Also, whether the downregulation of those mRNAs 

is indeed due to a direct off-target effect from sh129921 or if it is just a secondary consequence 

of MPV17 silencing is difficult to foresee.  

 

However, the most intriguing observation in this work was that the same shRNA (sh129921), 

expressed either constitutively or induced with IPTG, resulted in different effects on cell 

proliferation. The emergence of the inducible lentiviral vectors, which enable a reversible and 

fine tuning of gene knockdown, allows further characterization of gene function, a better ease 

in studying genes for which knockdown ends up being too deleterious or lethal for the cell, as 

well as timeframe selection in a developmental process (Martínez, 2010). In this study, we 

resorted to this tool to overcome a progressive compensation/adjustment of the cells following 

MPV17 knockdown. The transient nature of the inducible knockdown would theoretically 

prevent this compensation to settle.  

Cell adaptation following gene tampering is not surprising in itself, especially coming from 

cancer cells as they are well-known plasticity masters. Upon gene invalidation, cells strive to 

achieve a new equilibrium which, when attained, is outlined by a gene expression readjustment 
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(El-Brolosy and Stainier, 2017). In trivial cases, the compensation comes from the 

(over)expression of a paralog or another actor possessing overlapping function with the 

repressed gene (Dooley et al., 2019) (O’Leary et al., 2013). For example, upon KInesin Family 

member 11 (KIF11) inhibition in mammalian cells, KIF15 compensates for the absence of the 

motor protein to drive bipolar spindle assembly during cell mitosis, although KIF15 is not 

essential when KIF11 is fully active (Tanenbaum et al., 2009). Sometimes, the cell adaptation 

is more challenging and compels more complex cellular networks. This is exemplified in the 

epidermal growth factor like 7 (egfl7) zebrafish mutants, in which a phenotype of vascular 

defect is prevented by the upregulation of a set of genes and proteins, including several family 

members of the extracellular matrix elastin microfibril interfacer (emilin) gene (Rossi et al., 

2015) (Cerikan et al., 2016). Depending on a study objective, this concept of cellular adjustment  

is important in driving the relevant choice of a gene invalidation method, i.e. acute (e.g. siRNA-

mediated knockdown) or prolonged (e.g. shRNA-mediated knockdown or CRISPR/Cas9-

driven KnockOut (KO)). Indeed, the resulting phenotypes from one or the other method have 

often been reported as diverging because of genome remodelling occurrence (Rossi et al., 2015) 

(Cerikan et al., 2016) (Hall et al., 2013) (Williams et al., 2015). For example, while a fasting 

condition is necessary to induce phenotypes of hypoglycaemia and hypertriglyceridemia in 

Ppara  KO mice, those phenotypes are already visible in normally fed mice depleted in Ppara 

via siRNA. Peroxisome Proliferator-Activated Receptor α (PPARα) is a ligand-activated 

transcription factor regulating fatty acid metabolism. During fasting, the energy supply greatly 

relies on fatty acid oxidation in the liver. While the acute knockdown model demonstrates that 

PPARα function is impactful regardless of the fed state, the chronic knockdown model suggests 

the settlement of compensatory mechanisms during development allowing lipid and glucose 

homeostasis to a certain extent, i.e. in stress-less non-fasting conditions (De Souza et al., 2006). 

Thus, while acute gene depletion does not usually let enough time to the cells to adapt and 
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therefore allows a direct view of a potential gene function, this approach does not authentically 

reflect (compensatory) phenotypes that might take place over time in in vivo disease models. 

On the contrary, during prolonged gene invalidation, although cell adaptation in response to a 

gene loss may hinder the study of the gene function, it can also enlighten important adaptive 

mechanisms (Cerikan et al., 2016). Thus, while it is reasonable to consider all those techniques 

based on their advantages/drawbacks in terms of specificity/off-target risks, invalidation gene 

potency/homogeneity and their associated technical challenges, one should also not lose sight 

from the fact that these techniques lead to different cell states in terms of subsequent genome 

intervention. Furthermore, when this genome intervention is simple, meaning when the gene 

invalidation releases a negative feedback loop resulting in a compensatory expression of a 

paralog for example, the same compensatory phenotypes may be visible in both acute and 

prolonged gene invalidation approaches. For example, the cell cycle regulatory protein 

RetinoBlastoma Like 1 (RBL1) compensates for the absence of its family member RBL2 in 

both acute and prolonged gene invalidation in T lymphocytes and breast cancer cells (Jackson 

and Pereira-Smith, 2006) (Mulligan, Wong and Jacks, 1998) (El-Brolosy and Stainier, 2017). 

On the contrary, when a compensatory phenotype, if present, is only visible in the prolonged 

gene invalidation model, a more complex set of actors/course of events is probably at play. This 

is exemplified by the opposed phenotypes obtained in Dedicator Of CytoKinesis 6 (DOCK6)-

KO versus siDOCK6-treated HeLa cells. The loss of the guanine nucleotide exchange factor 

encoded by this gene leads to a severe collapse of the actin cytoskeleton in the acute knockdown 

model. This dramatic defect is however not visible in the KO model, in which elaborate 

compensatory mechanisms are triggered following the time-dependent accumulation of G-actin 

(Cerikan et al., 2016). Also, in the particular case of the KO approach, it could reveal that an 

upstream trigger, like the genomic lesion or the mutant RNA, is necessary for the settlement of 

the cell compensatory mechanisms (El-Brolosy and Stainier, 2017). As an example, the 
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knockout of  β-actin in primary MEFs is accompanied by a compensatory expression of γ-actin 

which remains upregulated even after the re-introduction of β-actin, suggesting that the cells 

accommodate in response to an upstream trigger (Tondeleir et al., 2012).  

 

An explanation for the opposed proliferation phenotypes observed in the constitutive and 

inducible sh129921-expression models could reside in the fact that the shRNA is expressed at 

a higher level in the constitutive model. Indeed, it is recommended by Sigma Aldrich to ensure 

a minimum of 70 % knockdown in a constitutive model, before switching to an inducible one. 

This recommendation reflects the risk of obtaining a less potent gene silencing with an 

inducible vector when compared to a constitutive one due to a lower shRNA expression.  

In our experimental conditions, the observation that MPV17 knockdown at the protein level 

was quite comparable in both expression models does not preclude a higher expression of the 

shRNA in the constitutive expression system, which could either increase the risk of off-

targeting or favour a better targeting of some non-coding MPV17 transcript isoforms. A 

working perspective for this matter is to quantify the expression of sh129921 in both 

constitutive and inducible expression models. However, while a confirmed higher expression 

of sh129921 in the constitutive expression model compared to the inducible one would 

definitely strengthen both these hypotheses, it would not allow to discriminate which one is 

likely responsible for the reduced proliferation phenotype.  

 

While most researchers are confident in their interpretation of a particular gene function when 

a consistent phenotype is observed with at least two different shRNA sequences targeting a 

transcript, we and others experienced that this is not sufficient and that a rescue experiment is 

an all-encompassing insurance of the veracity of the scientific conclusions (Peretz et al., 2018). 

However, as properly reported by Peretz and collaborators, “Rescue experiments are a good 
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way to ensure specificity and are being added to an increasing number of studies, although, 

based on a survey of scientific literature, this is probably limited to less than 0.1 % of studies” 

(Peretz et al., 2018). Our work stresses the imperative necessity to perform a rescue experiment 

in each study carrying out shRNA-mediated gene knockdown. Nevertheless, the benefit of a 

rescue experiment often matches its technical complexity. In terms of limitations while 

performing a rescue experiment, we can mention that the re-expression of the silenced gene, 

generally at a higher level than the normal endogenous one, might, in itself, lead to undesired 

effects (Peretz et al., 2018). In addition, the random integration of the vector can also lead to 

additional off-target effects. A rescue experiment is also stressful for the cells as they undergo 

another round of lentiviral transduction as well as the action of a second selective antibiotic. In 

this study, for the rescue experiment, we had to perform the overexpression of MPV17 before 

the actual knockdown of the protein, as the combined stresses due to MPV17-silencing and the 

second round of transduction repeatedly led to severe cell death. We were also compelled to 

perform the rescue experiment on HepG2 cells instead of Huh7 cells as the efficiency of 

transduction with the overexpression plasmid was very low in the last cell type.  

Although the rescue experiment should undeniably be an indispensable control in every 

experiment based on shRNA-induced knockdown, it is not totally dependable as the absence of 

rescue of a particular observed phenotype does not necessarily mean that the effect observed 

with the shRNA was due to off-target effects. Indeed, in ideal circumstances, every splice 

variant targeted by the shRNA should be restored in the rescue experiment, which might not 

always be realistic (Peretz et al., 2018). In this work, the reintroduction of the only known 

MPV17-coding transcript refuted any role of the protein in cancer cell proliferation. 

 

On a side note, we would like to mention that we could have performed this work on a three-

dimensional (3D) cell culture model as it ensures more realistic cell responses compared to a 
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two-dimensional (2D) model (Chaicharoenaudomrung, Kunhorm and Noisa, 2019). This is 

especially relevant regarding cancer cells since 3D cell culture can better mimic cell 

architecture and interaction as well as microenvironment. Notably, 2D cell culture fails to 

reproduce the differential zones inside a tumor, typically composed of a necrotic centre, an 

intermediate quiescent viable zone and a proliferating periphery. Stress-responsive MPV17 

could therefore be of particular importance in the deeper layers of the tumor, more deprived in 

nutrients, oxygen and growth factors. However, this natural gradient is not represented in a 2D 

cell culture model (Chaicharoenaudomrung, Kunhorm and Noisa, 2019). 

 

In a nutshell, our work demonstrates that MPV17 does not induce depletion in mtDNA content 

in cancer cell lines and that MPV17 does not control their cell cycle/proliferation. Importantly, 

in the future, rescue experiments should be a requirement in any study involving shRNA in 

order to silence a gene and analyse its subsequent effects on a particular phenotype. While the 

absence of rescue of the phenotype is not a strict indicator of specificity of the results, the 

restoration of the phenotype surely is a strong argument in favour of the specificity of any 

shRNA-induced phenotype of interest.  

 

These results however do not exclude the fact that the observed reduced proliferation phenotype 

might still be MPV17-dependent although the protein itself would not be at play. Indeed, as 

discussed above, MPV17 non-coding transcript isoforms might be accountable for the reduced 

proliferation phenotype, as consolidated by their large diversity proposed by the GTEx Portal. 

A work perspective would therefore be to exhaustively characterize the population of MPV17 

non-coding transcripts in Huh7 cells (paired-end RNA sequencing analysis) and determine if 

they are indeed differentially targeted by each shRNA as well as in the two sh129921-

expression models. However, the implication of another class of MPV17 non-coding 
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transcripts, namely ciRNAs, should also be considered. Despite being both referenced in 

databases (GTEx Portal and CircBase), the genuine existence of either linear and/or circular 

MPV17 non-coding transcripts has not been experimentally demonstrated yet. While both 

categories are relevant regarding our study and definitely in need of further characterization, 

we decided, within the time imparted that we had left, to pursue with the investigation of 

MPV17 circular transcripts. Indeed, considering the ever-growing evidence that ciRNAs 

regulate various, if not all, biological processes, we deemed the characterization of MPV17 

ciRNAs appealing and promising. Also, studies extensively associated ciRNAs and cell 

proliferation (Feng et al., 2019) (X. Wang et al., 2019) (Yang et al., 2019). For example, the 

silencing of ciHomeodomain-Interacting Protein Kinase 3 (ciHIPK3), which sponges miR-149, 

suppresses A549 cell proliferation (Lu et al., 2020). The second part of this work was therefore 

focused on exploring the MPV17 ciRNA landscape.  

 

The investigation of MPV17 ciRNAs led to the detection of many and in several cell types. A 

majority of the ciRNAs detected in Huh7 cells presented SHS in the flanking sequences of the 

backsplice junction. This feature could be a sign of template-switching-driven biogenesis or 

might as well be a technical artefact. The lack of reproducibility of the results, at both technical 

and biological levels, could be an indicator of non-specificity or, on the contrary, highlight the 

complexity and diversity of existing MPV17 ciRNAs. Indeed, it has been described that a single 

gene can express one to ten different ciRNA isoforms (Holdt, Kohlmaier and Teupser, 2018a) 

(Szabo and Salzman, 2016) as exemplified, for the first time, with the Deleted in Colorectal 

Carcinoma (DCC) gene which displays four potential ciRNA splice variants (Nigro et al., 

1991). One could also presume a finely-tuned expression of each ciRNA, down to the single 

cell level. All of this would therefore lead to random PCR-amplification preference.  
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In other investigated cell types (AICS, HeLa, KP4, PANC1 cells), signs of multi-rolling events 

during the RT strengthened the legitimate existence of the detected ciRNAs but no shared 

ciRNA was identified. Noteworthy, we did not validate, in the particular cell types explored in 

this study, the MPV17 ciRNAs listed in CircBase. Remarkably, none of the putative ciRNAs 

detected in Huh7 cells is selectively targeted by the two shRNAs leading to a reduced 

proliferation phenotype, offering no possible candidate accountable for the different 

phenotypical outcomes obtained with the different shRNAs used.  

 

Hepatocerebral MPV17-related MDDS is still enigmatic in the way that affected individuals 

present a broad spectrum of clinical manifestations, even when bearing the same mutation, 

offering no clear genotype-phenotype correlation (El-Hattab et al., 2018).  However, the 

survival rate is slightly higher for individuals with biallelic missense pathogenic variants, 

notably for the particular mutation p.R50Q (El-Hattab et al., 2018). Recently, the group of 

Gilberti conducted a valuable study in a yeast model enlightening the molecular/functional 

consequences of seven MPV17 missense point mutations (equivalent to the ones found in 

affected human individuals) (Gilberti et al., 2018). Expectedly, they confirmed that all 

pathogenic variants displayed mtDNA instability  and a severely compromised growth at 37°C 

in the presence of ethanol as previously described and discussed in the introduction (Trott and 

Morano, 2004) (Dallabona et al., 2010). Similarly to what is observed in patients, the 

respiratory phenotype of the p.R50Q mutant was the mildest, closely followed by the p.G24W 

mutant. While all mutants displayed the presence of Sym1 protein, its relative abundance was 

highly variable among the different mutants. Specifically, Sym1 abundance in the p.R50Q 

mutant remained unchanged compared to control, while the p.G24W mutant displayed an 

extreme instability/degradation of the protein. Interestingly however, the residual protein in 

p.G24W mutant turned out to be the most capable one, if not the only one, to assemble with its 
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interacting partners, with no information however regarding the resulting functionality of the 

complex.  

Altogether, these observations reflect the intricacy in attempting to determine the specific 

consequences of a particular genotype. Thus, it appears legitimate to wonder if other players 

than the protein, at the transcript level, could also be differentially affected by the diverse 

mutations and further modulate the phenotype variability. Moreover, the tissue-specific 

manifestation of the disease, despite the ubiquitous MPV17 expression, is also puzzling. 

CiRNAs are attractive candidates to consider in attempt to shed light on those interrogations, 

as evidenced by the specific and enthralling presence of one common ciRNA in Huh7, HepG2 

and T98G cells. The tissues from which these cancer cell lines are derived (liver for Huh7 and 

HepG2 and brain for T98G) are reminiscent of the hepatocerebral form associated with 

MPV17-dependent MDDS. Following a mutation on the MPV17 gene, one could therefore 

speculate that the functional loss of this particular ciRNA could partake in the settlement of the 

tissue-restricted phenotype observed in MPV17-mutated patients, providing that this particular 

ciRNA carries a crucial biological function in these organs. To further investigate this idea, we 

could attempt to detect this ciRNA expression in specific healthy human and mice tissues as 

well as patients/mutated mice tissues. In the case scenario that this ciRNA would be specifically 

detected in mice kidneys, this would constitute an exciting lead in understanding the species-

specific phenotypes observed in MPV17 deficiencies. Also, the partake of this ciRNA in 

MPV17-related MDDS could be determined with a rescue experiment. The re-expression of a 

ciRNA has already been successfully performed, both in vitro and in vivo, in several studies in 

the context of heart failure and stroke (Zeng et al., 2017) (K. Wang et al., 2016) (Bai et al., 

2018). Astonishingly, in these studies, a local protective effect of the ciRNAs was noticed 

despite a systemic delivery.  
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In terms of work perspectives, a primary imperative step will be to validate the authenticity of 

this ciRNA, first by reaching reproducibility of the results, at both technical and biological 

levels and second, by ensuring its actual circularity. While the design of primers aiming at 

amplifying the backsplice junction of the putative ciRNA is an interesting work perspective, it 

would not exclude the possibility of RT-generated template-switching artefacts. For this 

purpose, the circular nature of the putative ciRNA will be further ascertain by Northern 

Blotting, with a probe specific to the ciRNA backsplice junction (Schneider et al., 2018). The 

biochemical validation of a putative ciRNA is a critical step that should be ironclad and 

rigorous. However, the literature shows that a significant amount of studies only rely on RNAse 

R treatment and RT-qPCR-mediated amplification of the backsplice junction to validate the 

circularity of the ciRNA (Pfafenrot and Preußer, 2019). As discussed in the introduction of the 

second part of the thesis, those methods entail deceitful limitations, as illustrated by RT-

generated template switching artefacts (Fig 37). Therefore, more stringent techniques like 

Northern Blotting should always be implemented during the experimental validation of a 

ciRNA, despite its recognized challenging realisation. 

Once both the authenticity and the tissue/species-specific expression of the ciRNA are 

demonstrated,  the deciphering of its function will be tackled. To do so, a first relevant approach 

could consist in an RNA sequencing analysis of cells presenting a knockdown or 

overexpressing the ciRNA (versus appropriate controls). Differentially expressed actors would 

then be examined in terms of pathologic/MDDS relevance and the ones displaying an 

expression (inversely) proportional to the one of the ciRNA in both conditions would be 

considered as the most relevant candidates. In the eventuality that the candidate and ciRNA 

expressions show a positive correlation, one could hypothesize that the ciRNA acts as a miRNA 

sponge. Binding sites of the miRNAs known to target the candidate would then be researched 

on the ciRNA sequence. If a miRNA sponge activity is suspected, this hypothesis would be 
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tested using dual luciferase reporter assay and RNA pull-down assay coupled with RT-qPCR. 

An RNA pull-down assay, using a specific ciRNA probe, coupled with mass-spectrometry 

analysis would also be a method of choice to identify putative interactions between the ciRNA 

and proteins. MPV17 ciRNA could be critical for the functional regulation of actors involved 

in deoxynucleotide supply/synthesis or in mitochondrial integrity/homeostasis, either by 

stabilizing them, increasing their expression/translation or by determining their subcellular 

localization. Referring thereto, the localization of MPV17 ciRNA will be determined by 

Fluorescence In Situ Hybridization and/or by cellular fractionation.  

 

To conclude, over the last decades, the non-protein coding genome, and more particularly the 

emerging class of ciRNAs, has been gaining prominence, notably in the context of human 

diseases. Since more than 98% of the genome does not encode proteins (Lander, 2011), the 

relevance of non-coding RNAs in core biological processes is still likely largely 

underestimated. Along those lines, we decided to explore the existence of MPV17 ciRNAs, as 

they might account for the different proliferation phenotypes observed in Huh7 cells 

successfully silenced for MPV17 with different shRNAs. So far, none of the putative MPV17 

ciRNAs detected in Huh7 cells could explain the phenotypical differences. However, our data 

are highly preliminary and in need of further investigation/validation.  

Because each organ possesses a specific functional subnetwork of genes, a mutation affecting 

an ubiquitous protein usually only impacts specific tissues (Kitsak et al., 2016). The tissue and 

context-specific expression of ciRNAs make them potent players in terms of cell type-specific 

interactomes. Therefore, we suggest that MPV17 ciRNA might partake in MPV17-related 

MDDS, as the selective expression of a putative ciRNA in Huh7, HepG2 (liver) and T98G 

(brain) cells might be a valuable preliminary observation in the attempt to explain the particular 

hepatic and neurologic damages observed in patients. 
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Figure 44 : Summary figure describing the main findings of this thesis.  

In this work, we depleted MPV17 (pink) from the Huh7 cancer cell line using four different shRNAs and obtained 

confusing results. Indeed, MPV17 invalidation led to a reduced proliferation phenotype in only half of the cases 

(sh129921 and sh127649) and the inducible expression of one of the shRNA (sh129921) associated with the 

reduced proliferation phenotype resulted in the absence of this phenotype. We eventually excluded a role of 

MPV17 protein in cancer cell proliferation by performing a rescue experiment. Noteworthy, when present, the 

reduced proliferation phenotype was consistently associated with a reduced ATF4 abundance, which is consistent 

with its functional role as a master regulator of cellular pathways that are crucial for cell proliferation (nucleotide 

synthesis, amino acid metabolism). However, whether ATF4 decreased abundance is indeed the upstream causal 

event driving the reduced proliferation phenotype is yet undetermined. Two main hypotheses can be brought 

forward in the attempt to explain the disturbing results that we obtained, and so far, none of them can be completely 

infirmed or confirmed. First, the reduced proliferation phenotype associated with two different shRNAs can result 

from off-target effects that are common and well-known from the scientific community. Second, the reduced 

proliferation phenotype could still be a consequence of on-target effects but in this case, it would not be related to 

MPV17 protein but rather to a differential targeting of MPV17 non-coding transcripts (purple). This later 

population can comprise both linear and circular transcripts but their respective genuine existence has not been 

validated yet. 
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Abstract

MPV17 is described as a mitochondrial inner membrane channel. Although its function

remains elusive, mutations in the MPV17 gene result in hepato-cerebral mitochondrial DNA

depletion syndrome in humans. In this study, we show that MPV17 silencing does not

induce depletion in mitochondrial DNA content in cancer cells. We also show that MPV17

does not control cancer cell proliferation despite the fact that we initially observed a reduced

proliferation rate in five MPV17-silenced cancer cell lines with two different shRNAs. How-

ever, shRNA-mediated MPV17 knockdown performed in this work provided misguiding

results regarding the resulting proliferation phenotype and only a rescue experiment was

able to shed definitive light on the implication of MPV17 in cancer cell proliferation. Our

results therefore emphasize the caution that is required when scientific conclusions are

drawn from a work based on lentiviral vector-based gene silencing and clearly demonstrate

the need to systematically perform a rescue experiment in order to ascertain the specific

nature of the experimental results.

Introduction

MPV17 is a functionally elusive protein localized in the inner membrane of mitochondrion

and for which the encoding gene is located on chromosome 2p23-21 [1] [2] [3] [4]. MPV17

loss-of-function causes a rare autosomal recessive mitochondrial disorder called Mitochon-

drial DNA Depletion Syndrome (MDDS) marked by a highly reduced mitochondrial DNA

(mtDNA) copy number in affected tissues.

To date, there are 100 known individuals affected by one of the 48 described MPV17 patho-

genic variants (approximately half of which are missense) [5]. The vast majority of these

patients (96%) suffer from the hepato-cerebral form of MDDS and exhibit a severe mtDNA

depletion in the liver (60–99% reduction). This is correlated with a decreased activity of respi-

ratory chain complexes. The onset of the disease takes place early in life (neonatal period/

infancy) and condemn the affected individual to a premature death due to liver dysfunction

progressing into liver failure. The remaining 4% of the patients suffer from a late-onset ence-

phalomyopathic disease with mild or no liver involvement [5].
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Although the current knowledge about MPV17 and its homologs have been recently

reviewed [6], the function of MPV17 is still obscure. There are evidence supporting that

MPV17 might be a channel with stress-dependent gating properties [7] [8] involved in nucleo-

tides homeostasis [9] [3] [10] [11] [12].

In a previous work, we found an increased expression of MPV17 during stem cells hepato-

genic differentiation while performing a transcriptomic analysis in order to characterize the

mitochondrial biogenesis in this process ([13], data deposited in NCBI’s Gene Expression

Omnibus through GEO Series accession number GSE75184). Unexpectedly, we observed that

while MPV17 silencing had no impact on hepatogenic differentiation, it significantly reduced

the proliferation of expanding Bone Marrow Mesenchymal Stem Cells (MSC) and Umbilical

Cord-MSC from different donors, suggesting a role of MPV17 in cell proliferation (unpub-

lished data). This is in accordance with the work of Choi and colleagues who showed that

MPV17 knockdown reduces the proliferation of NSC34 cells, a mouse motor neuronal cell line

[14]. As MPV17 has been implicated in stress response [15] [16] and has been described as a

channel with stress-dependent gating properties (oxidative and pH stress,. . .) [7], we then

wondered whether MPV17 could have a role in the proliferation of cancer cells or not, as they

inherently experience oxidative and metabolic stress.

In order to explore the putative role of MPV17 in the control of cancer cell proliferation, we

used a loss-of-function approach. Gene silencing and/or overexpression is generally the first

approach in order to investigate gene expression/function and lentiviruses are now widely

used to deliver transgenes that integrate into the host genome for gene expression tampering.

In this study, while demonstrating that MPV17 does not control neither cell proliferation nor

mtDNA content in cancer cells, our experimental results illustrate and emphasize the impor-

tance of carrying out a rescue experiment when working with shRNA-mediated knockdown.

Results

MPV17 is overexpressed in several tumours

Taking advantage of The Genome Cancer Atlas (TGCA) database, we show that the abun-

dance of MPV17 transcript is significantly higher in tumours of 10 different tissues, including

liver, bile duct, and colon (Fig 1A). This is confirmed at the protein level by immunohis-

tochemistry staining performed on liver tumour biopsies from patients with adenocarcinoma

(Fig 1B).

MPV17 silencing is robustly associated with a decreased proliferation rate

in different cancer cell lines

In this study, we first assessed the effects of three commercially available shRNAs targeting

MPV17 mRNA: sh129921, sh127649 and sh131038. Using western blot analysis, the efficiency

of gene silencing was evaluated by assessing the abundance of MPV17 in Huh7 cells trans-

duced with these three shRNA-encoding lentiviral vectors. Both sh129921 and sh127649 led to

an efficient knockdown of the gene while sh131038 did not efficiently induce MPV17 silencing

(Fig 2A).

We then demonstrated that Huh7 cells silenced for MPV17 with sh129921 and sh127649

displayed a severely decreased proliferation rate, as quantified by three different prolifera-

tion assays, namely the doubling time (Fig 2B), the MTT assay (Fig 2C), and the total pro-

tein content (Fig 2D). The reduced cell proliferation phenotype was correlated with MPV17
knockdown efficiency as no decreased proliferation rate was observed in Huh7 cells
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transduced with the vector encoding sh131038, the only shRNA that turned out to be ineffi-

cient in the knockdown induction.

To discard the possibility of a putative cell type or cancer type-specific phenotype, we

next assessed the impact of sh129921 on the proliferation of two other human hepatoma cell

lines, Hep3B and HepG2 cells, and two non-liver cancer cell lines, A549 cells, derived from

a human pulmonary adenocarcinoma and SQD9 cells, a human squamous cell carcinoma

cell line. Interestingly, Hep3B (Fig 2E), A549 (Fig 2F), SQD9 (Fig 2G) and HepG2 (data not

shown) cells transduced with sh129921-encoding vector also displayed a reduced prolifera-

tion phenotype.

MPV17 silencing is not associated with mtDNA copy number depletion

As MPV17 deficiency is associated with MDDS, we assessed whether MPV17 silencing was

accompanied by depletion in the mtDNA content or not, possibly accounting for the associ-

ated decreased proliferation rate. However, MPV17 silencing did not lead to a reduction of

mtDNA content in any of the tested cancer cell lines (Fig 3). This result is in agreement with

the work of Dalla Rosa and collaborators who showed that proliferating fibroblasts from

MPV17-deficient patients do not display any reduced mtDNA content [9]. It is also in accor-

dance with the recent work of Alonzo and collaborators who did not find any reduction of

mtDNA content in MPV17-silenced HeLa cells [12].

The decreased proliferation rate in MPV17-silenced cells is associated with

a decrease in the abundance of ATF4

In order to determine the molecular mechanisms underlying the decreased proliferation

rate in MPV17-silenced cancer cells, a transcriptomic analysis was performed. The RNA

sequencing analysis was performed on Huh7 cells transduced with sh129921 or shNT-

encoding vectors. Among the differentially expressed genes, we focused on transcrip-

tional regulators potentially responsible for a reduced proliferation capacity. The activat-

ing transcription factor 4 (ATF4) frequently upregulated in cancer cells [17], was

Fig 1. Analysis of MPV17 expression in cancer tissues. The Cancer Genome Atlas (TCGA), a public platform allowing the analysis of gene expression

data sets generated by RNA sequencing (http://cancergenome.nih.gov), has been used to determine the expression level of MPV17 in various tumour

tissues (T) versus healthy tissues (N). P values were calculated with the two-tailed Wilcoxon signed rank Test (α = 5%; �: p<0.05; ��: p<0.01; ���: p<0.001;
����: p<0.0001; NS: not significant) (a). Detection of MPV17 by immunohistochemistry in a paraffin-embedded biopsy of a liver adenocarcinoma. A

strong signal for MPV17 is associated with the tumour, while the abundance of the protein is low in adjacent normal tissue (b).

https://doi.org/10.1371/journal.pone.0229834.g001
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downregulated in MPV17-silenced cells (Z-score = -2,792; P = 1,38E-14). It has been

shown that ATF4 not only up-regulates the expression of genes encoding actors impli-

cated in amino acid import and metabolism [18] [19] [20] but also promotes, indirectly,

purine synthesis [21], two essential aspects for cell proliferation. Based on this knowledge,

ATF4 was an attractive candidate in the attempt to elucidate the molecular mechanisms

underlying the reduced cell proliferation. The reduction of ATF4 transcript abundance

was confirmed at the protein level in sh129921 and sh127649-encoding vector transduced

Huh7 cells (Fig 4A) as well as in sh129921-encoding vector transduced Hep3B (Fig 4B)

and A549 (Fig 4C) cells, when compared with control cells transduced with shNT-con-

taining vector.

Altogether, these results seem to strongly support an involvement of MPV17 in cancer cell

proliferation as MPV17 silencing was consistently accompanied by a reduction of both cell

proliferation rate and ATF4 protein abundance.

Fig 2. Effect of shRNA-mediated MPV17 knockdown on the proliferation of cancer cell lines. Huh7 cells were

transduced with non-target shRNA lentiviral vectors (shNT) or with shRNA lentiviral vectors targeting MPV17
expression (sh129921, sh127649, sh131038). Hep3B, A549 and SQD9 cells were transduced with lentiviral shNT-

encoding vectors or with sh129921-containing vectors. Cells were selected for 6 days with puromycin (2.5 μg/mL).

Cells were seeded at 8×103 cells/cm2 (a, b, c, d, Huh7; g, SQD9), 5×103 cells/cm2 (e, Hep3B) and 2.7×103 cells/cm2 (f,

A549) and grown for 4 days. MPV17 protein abundance was assessed by western blot analysis (a, Huh7). A

representative western blot of 3 independent biological replicates (2 for sh131038) is shown (left) along with the

western blot quantification of all the biological replicates (quantification with Image J software, data expressed as

relative protein abundance to cells transduced with shNT-encoding vectors, right). Proliferation was then assessed by

manual counting to calculate the doubling time (b, Huh7; e, Hep3B; f, A549; g, SQD9), by MTT assay (c, Huh7) and by

the total protein content (d, Huh7). Data are presented as mean ± S.E.M of 3 independent biological replicates (2 for

sh131038). P values were calculated with the one-tailed Mann-Whitney Test (α = 5%; �: p<0.05; ��: p<0.01; ���:

p<0.001). Full blots are presented in S6 Fig.

https://doi.org/10.1371/journal.pone.0229834.g002
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MPV17 silencing is not always associated with a reduced proliferation

phenotype

Pursuing our analysis further, we observed that the sh129921-encoding vector transduced

Huh7 cells were able to adapt along the passages and progressively restored the proliferation

rate (Fig 5A), although MPV17 protein abundance was still strongly reduced (Fig 5B).

As we observed a recovery of the decreased proliferation rate over time, we therefore aimed

at generating an IPTG-inducible sh129921 model in Huh7 cells. Strikingly, while we observed

a strong MPV17 knockdown in this inducible expression model, with a silencing efficiency

Fig 3. Assessment of mtDNA content in MPV17-silenced cancer cell lines. Huh7 (a), Hep3B (b) and A549 (c) cells were transduced with non-target shRNA

lentiviral vectors (shNT) or with sh129921-containing vectors. Transduced cells were selected for 6 days with puromycin (2.5 μg/mL). DNA was then extracted

and mtDNA content was assessed by qPCR using NADH dehydrogenase 2 as a specific marker of mtDNA content and beclin for normalization with nuclear

DNA. Results are presented as means ± S.E.M of 3 independent biological replicates and are expressed in relative copy number to the nuclear DNA. P values

were calculated with the one-tailed Mann-Whitney Test (α = 5%; NS; �: p<0.05; ��: p<0.01; ���: p<0.001).

https://doi.org/10.1371/journal.pone.0229834.g003

Fig 4. ATF4 protein abundance following MPV17 knockdown in Huh7, Hep3B and A549 cells. Huh7 cells (a) were transduced with non-target

shRNA lentiviral vectors (shNT) or with shRNA lentiviral vectors targeting MPV17 expression (sh129921, sh127649, sh131038). Hep3B (b) and

A549 (c) cells were transduced with lentiviral shNT-encoding vectors or with sh129921-containing vectors. Cells were selected for 6 days with

puromycin (2.5 μg/mL) before assessing ATF4 protein abundance by western blot analysis. For each cell line, a representative western blot of 3 (2 for

sh131038) independent biological replicates is shown (left) along with the western blot quantification of all the biological replicates (quantification

with Image J software, data expressed as relative protein abundance to untranduced (unt) cells, right). P values were calculated with the one-tailed

Mann-Whitney Test (α = 5%; �: p<0.05; ��: p<0.01; ���: p<0.001). Full blots are presented in S6 Fig.

https://doi.org/10.1371/journal.pone.0229834.g004
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comparable to the one observed in the constitutive silencing model (Fig 6A and 6B), the cell

proliferation rate was unchanged (Fig 6D). Moreover, ATF4 did not display a decreased pro-

tein abundance (Fig 6C).

This absence of effect of MPV17 silencing on the cell proliferation rate in the inducible

expression system could have different origins. First, the IPTG molecule itself could have an

unexpected effect on Huh7 cells proliferation, even though IPTG is not known to be metabo-

lized [22]. Second, the reduced proliferation phenotype in the inducible expression system

might need more time to settle down. Indeed, in the constitutive system, MPV17 is silenced

for a total of 9 days before assessing the cell proliferation, as opposed to only 5 days in the

inducible model (see “Materials and Methods”, S1 Fig). A third difference between the two

approaches is that in order to ensure a proper knockdown of MPV17 in the inducible model,

the culture medium was changed every day in order to renew the IPTG, as opposed to every

two or three days in the constitutive silencing model. One could thus hypothesize that this

daily medium renewal could prevent the settling of the reduced proliferation phenotype by

discontinuing the putative intercellular communication. These three hypotheses were tested

but failed to explain the different phenotypical outcomes observed for the constitutive or

inducible expression models (see S2 and S3 Figs).

These considerations led us to evaluate on Huh7 cells the effect of two additional commer-

cially available shRNAs, sh128669 and sh131201, targeting different regions of the MPV17
transcript (see S4 Fig). Both shRNAs strongly reduce the abundance of MPV17 protein (Fig

7A) but no significant effect on the proliferation rate was observed (Fig 7C, 7D and 7E). Also,

the abundance of ATF4 was not affected by MPV17 knockdown mediated by either sh128669

or sh131201 (Fig 7B). Thus, ATF4 reduced abundance correlates with the proliferation rate

but the putative link between the reduced proliferation phenotype (and therefore ATF4) and

MPV17 remains to be established.

In conclusion, we found that sh129921, sh127649, sh128669 and sh131201 all led to a strong

MPV17 knockdown while the resulting proliferation rates were highly variable. This lack of

consistency led us to suspect a putative involvement of MPV17 isoforms that would be differ-

entially affected according to the shRNA used.

Fig 5. Evolution of Huh7 proliferation rate and MPV17 protein abundance in sh129921-mediated MPV17 knockdown. Huh7 cells

were transduced with non-target shRNA lentiviral vectors (shNT) or with sh129921-containing vectors. Transduced cells were selected

for 6 days with puromycin (2.5 μg/mL). At 13 and 31 days after the transduction (PTD: post-transduction day), cells were seeded at

8×103 cells/cm2 and grown for 4 days. Proliferation was then assessed by manual counting to calculate the doubling time (a) and MPV17

protein abundance was analysed by western blot (b). P values were calculated with the one-tailed Mann-Whitney Test (α = 5%; NS; �:

p<0.05; ��: p<0.01; ���: p<0.001). n = 3. Full blots are presented in S6 Fig.

https://doi.org/10.1371/journal.pone.0229834.g005
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Therefore, we next interrogated the Genotype-Tissue Expression (GTEx) Consortium

(2008, NIH) portal, that inventories the impact of genetic variations on gene expression within

major tissues in the human body from post mortem donors. The GTEx Portal proposes 22

MPV17 isoforms, including two major ones i.e. a short predominant isoform and a long one

(see S5 Fig). This long isoform referenced in RefSeq as NM002437.5 encodes the MPV17 pro-

tein that we detected on western blot while the translation of all the other MPV17 isoforms is

not experimentally demonstrated. However, among the 22 isoforms, we observe that all the

transcripts targeted by sh129921 (1, 2, 3, 12, 13, 14, 15, 16 and 18) are also targeted by either

sh128669 (15, 16) or sh131201 (1, 18) or both (2, 3, 12, 13, 14). The same kind of observation

stands for the transcripts targeted by sh127649 (1, 2, 3, 5, 12, 13, 14, 15, 16, 18, 19, 21), provid-

ing no clear explanation about the opposite proliferation phenotypes observed for each pair of

shRNAs (sh129921/sh127649 versus sh128669/131201) (see S5 Fig).

Altogether, the absence of effect of the inducible sh129921 on the cell proliferation rate,

combined with the observation that, at least, two different shRNAs targeting MPV17
(sh131201 and sh128669) have no effect on the proliferation of Huh7 cells, despite a strong

Fig 6. MPV17 and ATF4 abundances and Huh7 cells proliferation rate following inducible sh129921-mediated MPV17 knockdown. Huh7 cells were

transduced, or not (Unt), with inducible sh129921 lentiviral vector. Transduced cells were selected for 6 days with puromycin (2.5 μg/mL). Cells were then

incubated for 5 days in the presence of 0.1 mM of IPTG to induce MPV17 silencing. Cells were seeded at 8×103 cells/cm2 and grown for 4 days in daily

renewed medium containing IPTG. RNA was extracted and RT-qPCR was performed to assess MPV17 transcript level (data expressed relatively to

respective control (Ctl), n = 3) (a). MPV17 (b) and ATF4 (c) protein abundances were also assessed by western blot analysis after 5 days (MPV17) and 9

days (MPV17; ATF4) of IPTG induction. For each protein, a representative western blot of 3 independent biological replicates is shown (left) along with the

western blot quantification of all the biological replicates (quantification with Image J software, data expressed as relative protein abundance to respective

controls (Ctl) for MPV17 and untransduced (unt) cells for ATF4, right). Proliferation was then assessed by manual counting to calculate the doubling time

(d). As a comparison, we performed at the same time and on the same cells a similar experiment with the constitutive expression of sh129921 (mediating

MPV17 knockdown) as described in S1 Fig. P values were calculated with the one-tailed Mann-Whitney Test (α = 5%; �: p<0.05; ��: p<0.01; ���: p<0.001).

Full blots are presented in S6 Fig. n = 3.

https://doi.org/10.1371/journal.pone.0229834.g006
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decrease in the MPV17 protein abundance, suggest that the decreased proliferation rate of

transduced cells observed for two shRNAs (sh129921 and sh127649) is not related to a reduced

MPV17 protein abundance. In an attempt to shed light on this question, we eventually per-

formed a rescue experiment.

Rescuing MPV17 does not restore the proliferation phenotype. As Huh7 cells could

neither be efficiently transfected nor transduced with the MPV17-expressing vector, HepG2

cells were used for the rescue attempt. Indeed, as mentioned before, we also observed the

reduced proliferation rate in this hepatoma cell line silenced for MPV17. This cell line turned

out to be the most receptive to the lentiviral MPV17-expressing vector. Since a rescue experi-

ment consists in re-introducing the shRNA-mediated silenced mRNA, it requires the use of a

shRNA targeting the 30UTR of the targeted mRNA. Thus, the reintroduced transcript that

lacks 30UTR is not affected by the shRNA.

We decided to perform MPV17 overexpression before inducing the constitutive knock-

down mediated by sh129921. The justification of this chronology resides in the observation

that, on the contrary to shNT-encoding vector transduced cells, sh129921-encoding vector

transduced cells were not able to stand a second round of transduction due to cell death. This

suggests that MPV17-silenced cells are distressed, in accordance with their decreased prolifera-

tion rate. This aspect is therefore not compatible with a short-term assessment of cell

proliferation.

MPV17 knockdown was properly induced in the overexpression control. Indeed, cells dou-

ble transduced with pLenti GFP, as a control, and then with pLKO.1 sh129921, displayed a

strong reduction of MPV17 abundance accompanied by the decreased proliferation rate (Fig

8A, 8B and 8C). As expected, the reduced proliferation phenotype was absent in pLenti GFP

Fig 7. Effect of MPV17-targeting sh128669 and sh131201 on Huh7 cells proliferation, MPV17 and ATF4 protein abundances. Cells were

transduced with non-target shRNA lentiviral vectors (shNT) or with shRNA lentiviral vectors targeting MPV17 expression (sh128669 and

sh131201). Transduced cells were selected for 6 days with puromycin (2.5 μg/mL). Cells were seeded at 8×103 cells/cm2 and grown for 4 days. The

abundance of MPV17 (a) and ATF4 (b) proteins was assessed by western blot analysis. For each protein, a representative western blot analysis of 3

independent biological replicates is shown (left) along with the western blots quantification of all the biological replicates (quantification with

Image J software, data expressed as relative protein abundance to cells transduced with shNT-encoding vectors (a, MPV17) or untranduced (unt)

cells (b, ATF4), right). Proliferation was then assessed by manual counting to calculate the doubling time (c), by MTT assay (d) and by the total

protein content (e) and data are presented as mean ± S.E.M (3 biological replicates). P values were calculated with the one-tailed Mann-Whitney

Test (α = 5%; NS; �: p<0.05; ��: p<0.01; ���: p<0.001). Full blots are presented in S6 Fig.

https://doi.org/10.1371/journal.pone.0229834.g007
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and pLKO.1 shNT double-transduced cells (Fig 8B and 8C). Cells double-transduced with

pLenti MPV17 and pLKO.1 shNT suitably overexpressed MPV17 (Fig 8A). It is interesting to

emphasize the fact that MPV17 overexpression, on its own, has no significant effect on cell pro-

liferation (Fig 8B and 8C). This observation can be reconciled with the idea that MPV17 is

described as a channel. Thus, the qualitative state of MPV17 (open/closed) would be more rele-

vant than its quantitative state. Finally, cells double-transduced with pLenti MPV17 and

pLKO.1 sh129921 overexpressed MPV17 but lost the expression of the endogenous protein (Fig

8A). Remarkably, these cells exhibited the reduced proliferation phenotype (Fig 8B and 8C).

Discussion

In this work we studied the putative role of MPV17 in cancer cell proliferation. While MPV17
silencing did not lead to depletion of mtDNA content in the tested cancer cell lines, in accor-

dance with literature [9] [12], the resulting proliferation phenotypes associated with MPV17
shRNA-mediated knockdown were unsettling and inconclusive, leading us to perform a rescue

experiment that eventually excluded a role of MPV17 in cancer cell proliferation. The intrigu-

ing and somewhat misleading results we obtained during this investigation clearly demon-

strate the need to systematically perform a rescue experiment in order to ascertain the specific

nature of the experimental results.

In this work, we tested five shRNAs targeting MPV17. The highly variable phenotypical out-

comes in Huh7 cells led us to consider a putative contribution of MPV17 transcript isoforms

or the possible existence of an off-target effect. Despite the fact that we did not find any corre-

lation between the shRNA-targeted MPV17 transcript isoforms and the proliferation pheno-

type, it is not sufficient to preclude this hypothesis as there is no guaranty that the MPV17
transcript isoforms spectrum described in GTEx portal in human healthy liver is conserved in

our model.

It is also interesting to note that the predictive alignment (BLAST, ncbi) of sh129921 and

sh127649 on the human transcripts did not highlight the putative existence of a shared off-tar-

get mRNA. Again, this observation is however not sufficient to exclude a putative off-target

effect as it could be taking place through separate effectors for each shRNA.

Fig 8. Effect of MPV17 rescue on the proliferation of MPV17-silenced HepG2 cells. Cells were first transduced with pLenti GFP or pLenti MPV17 and

selected for 6 days with puromycin (2.5 μg/mL). Cells were then transduced with shNT or sh129921-encoding lentiviral vectors and let to recover for 5 days to

allow MPV17 silencing. Cells were then seeded at 1.5×104 cells/cm2 and grown for 4 days before assessing MPV17 protein abundance (a). A representative

western blot analysis of 3 independent biological replicates is shown (left) along with the western blots quantification of all the biological replicates

(quantification with Image J software, data expressed as relative protein abundance to cells transduced with shNT and GFP-encoding vectors, right). Cell

proliferation assessment by MTT assay was also performed at day 1 and day 4. The ratio day 4/day 1 is then calculated in order to correct any putative seeding

differences that could mask or mislead to a partial phenotype rescue (c). Micrographies were taken at the phase contrast microscope before adding the lysis

buffer for the MTT assay (b). Data are presented as mean ± S.E.M (3 biological replicates). P values were calculated with the one-tailed Mann-Whitney Test (α
= 5%; NS; �: p<0.05; ��: p<0.01; ���: p<0.001). Full blots are presented in S6 Fig.

https://doi.org/10.1371/journal.pone.0229834.g008
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However, the most intriguing observation in this work was that the same shRNA, expressed

either constitutively or induced by IPTG, resulted in different effects on cell proliferation. The

emergence of the inducible lentiviral vectors, which enable a reversible and fine tuning of gene

knockdown, allows further characterization of gene function, a better ease in studying genes

for which knockdown ends up being too deleterious or lethal for the cell, as well as timeframe

selection in a developmental process [23]. In this study, we resorted to this tool to overcome

an apparent progressive compensation/adjustment of the cells following MPV17 knockdown.

The transient nature of the inducible knockdown would theoretically prevent this compensa-

tion to settle. However, we unexpectedly observed that the constitutive and inducible

approaches led to different phenotypical outcomes, despite using the same shRNA sequence

(sh129921). An explanation to this observation could reside in the fact that the shRNA is

expressed at a higher level in the constitutive model. Indeed, it is recommended by Sigma

Aldrich to ensure a minimum of 70% knockdown in a constitutive model, before switching to

an inducible one. This recommendation reflects the risk of obtaining a less potent gene silenc-

ing with an inducible vector when compared to a constitutive one due to a lower shRNA

expression. In our experimental conditions, the observation that MPV17 knockdown at the

protein level was quite comparable in both expression models does not preclude a higher

expression of the shRNA in the constitutive expression system, which could either increase the

risk of off-targeting or favour a better targeting of some non coding MPV17 transcript

isoforms.

While most researchers are confident in their interpretation of a particular gene function

when a consistent phenotype is observed with at least two different shRNA sequences targeting

a transcript, we and others experienced that this is not sufficient and that a rescue experiment

is an all-encompassing insurance of the veracity of the scientific conclusions [24]. However, as

properly reported by Peretz and collaborators, “Rescue experiments are a good way to ensure

specificity and are being added to an increasing number of studies, although, based on a survey

of scientific literature, this is probably limited to less than 0.1% of studies” [24]. Our work

stresses the imperative necessity to perform a rescue experiment in each study carrying out

shRNA-mediated gene knockdown. Nevertheless, the benefit of a rescue experiment often

matches its technical complexity. In terms of limitations while performing a rescue experi-

ment, we can mention that the re-expression of the silenced gene, generally at a higher level

than the normal endogenous one, might, in itself, lead to undesired effects [24]. In addition,

the random integration of the vector can also lead to additional off-target effects. Although the

rescue experiment should undeniably be an indispensable control in every experiment based

on shRNA-induced knockdown, it is not totally dependable as the absence of rescue of a par-

ticular observed phenotype does not necessarily mean that the effect observed with the shRNA

was due to off-target effects. Indeed, in ideal circumstances, every splice variant targeted by the

shRNA should be restored in the rescue experiment, which might not always be realistic [24].

In this work, the reintroduction of the only known MPV17-coding transcript refuted any role

of the protein in cancer cell proliferation.

In conclusion, our work demonstrates that MPV17 does not induce depletion of mtDNA

content in cancer cell lines and that MPV17 does not control their cell cycle/proliferation.

Importantly, in the future, rescue experiments should be a requirement in any study involving

shRNA in order to silence a gene and analyse its subsequent effects on a particular phenotype.

While the absence of rescue of the phenotype is not a strict indicator of aspecficity of the

results, the restoration of the phenotype surely is a strong argument in favour of the specificity

of any shRNA-induced phenotype of interest. Noteworhty, we believe that sh129921 requires

further investigation as its robust effect on cell proliferation of different cancer cell lines could

bring to light a promising actor that could be exploited in the fight against cancer.
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Materials and methods

Cell culture

Cells were grown in Dulbecco0s Modified Eagle0s Medium (DMEM) low glucose (Life technol-

ogies, #31885) for human hepatoma cell lines Huh7 and HepG2 or in DMEM high glucose

(Life technologies, #41965) for human renal embryonic cell line HEK293T, or in MEM Gluta-

MAX-1 (Life technologies, #42360) for human pulmonary adenocarcinoma cell line A549 and

human squamous cell carcinoma cell line SQD9, or in Roswell Park Memorial Institute

medium 1640 (Life technologies, #21875) for human hepatoma cell line Hep3B, supplemented

with 10% foetal bovine serum (Life technologies, #10270) in a 5% CO2 humid atmosphere at

37˚C. SQD9 cells were obtained from UCL (Vanessa Bol, Woluwe, Belgium). Huh7 cells

(JCRB0403) were kindly provided by Prof. Sven Diederichs (DKFZ, Heidelberg, Germany).

HepG2 (ATCC, HB-8065) were kindly provided by Prof. Luc Bertrand (UCL, Woluwe, Bel-

gium). Hep3B were purchased from ATCC (HB-8064). A549 cells (ATCC, CCL-185) were

kindly provided by Dr Jacques Piette (ULg, Liege, Belgium). HEK293T were obtained from

ATCC (CRL-11268).

Lentivirus production

HEK293T were seeded at 4x106 cells in 75 cm2 culture flask (Corning, #430641U). The next

day, the DNA mixture and the lipofectamine solution were prepared separately. The DNA

mixture was composed of 0.4 μg of the envelope encoding vector pCMV-VSVG (Addgene,

#8454), 3.6 μg of the packaging vector psPAX2 (Addgene, #12260) and 4 μg of the expressing

plasmid (Table 1), in 240 μL of 5% opti-MEM (Invitrogen, #31985). The lipofectamine

Table 1. List of plasmids used for MPV17 silencing.

Vector Reference

pLKO.1-puro sh131201 Sigma-Aldrich

SHCLND-NM_002437

TRCN0000131201

pLKO.1-puro sh128669 Sigma-Aldrich

SHCLND-NM_002437

TRCN0000128669

pLKO.1-puro sh127649 Sigma-Aldrich

SHCLND-NM_002437

TRCN0000127649

pLKO.1-puro sh129921 Sigma -Aldrich

SHCLND-NM_002437

TRCN0000129921

pLKO.1-puro sh131038 Sigma-Aldrich

SHCLND-NM_002437

TRCN0000131038

pLKO.1-puro shNT Sigma-Aldrich

SHC016-1EA

pLKO-puro-IPTG-3xLacO sh129921 Sigma-Aldrich

09301606MN

TRCN0000129921

The vectors backbone and encoding shRNA are specified along with their references.

https://doi.org/10.1371/journal.pone.0229834.t001

PLOS ONE MPV17 does not control cancer cell proliferation

PLOS ONE | https://doi.org/10.1371/journal.pone.0229834 March 10, 2020 11 / 18

https://doi.org/10.1371/journal.pone.0229834.t001
https://doi.org/10.1371/journal.pone.0229834


solution was composed of 16 μL of lipofectamine 2000 (Invitrogen, #11669) in 240 μL of 5%

opti-MEM. Both preparations were incubated for 5 min at room temperature, combined, incu-

bated for 30 min at room temperature and added in the flask. After 18 h, the medium was

renewed and at 48 h and 72 h post-transfection, the medium was collected and filtered on

0.45 μm steriflip (Millipore, SE1M003M00). Lentiviruses were titrated by Reverse Transcrip-

tion quantitative Polymerase Chain Reaction (RT-qPCR) according to manufacturer0s recom-

mendations (Lentivirus qPCR Titer Kit, Applied Biological Materials, LV900).

MPV17 silencing

Sub-confluent cells were transduced in presence of 60 μg/mL protamine sulphate (Sigma-

Aldrich, P4020). The next day, they were selected for 6 days with puromycin (Sigma-Aldrich,

P8833) at 2.5 μg/mL. Experimental timelines of MPV17 silencing with the constitutive and

inducible vectors are detailed in S1 Fig. Briefly, for the constitutive silencing of MPV17, cells

were transduced with different shRNA-encoding vectors (pLKO.1-puro shNT, sh127649,

sh128669, sh129921, sh131201, sh131038), selected as described above and let to recover for 2

days without puromycin. They were then seeded and allowed to grow for 4 days before assess-

ing the proliferation.

For the inducible silencing of MPV17, cells were transduced or not with pLKO-puro-IPTG-

3xLacO encoding sh129921, selected as described above and let to recover for 2 days. MPV17
silencing was then obtained by incubation of the transduced cells in the presence of 0.1 mM of

IsoPropyl ß-D-1-ThioGalactopyranoside (IPTG) (Sigma-Aldrich, I6758), renewed daily for 5

days unless stated otherwise. Cells were then seeded and allowed to grow for 4 days in presence

of IPTG renewed daily (unless stated otherwise) before assessing the proliferation.

Proliferation assessment

Cell counting. Cells were seeded in 25 cm2 culture flask (Corning, #430639) and grown

for 4 days. Cells were rinsed with Phosphate Buffered Saline (PBS) pH 7.4, trypsinized with

0.05% trypsin-EDTA (ThermoFisher, 25300) and centrifuged for 5 min at 200 g. The pellet

was resuspended in culture medium and cell suspension density was counted in a Neubauer

chamber. Doubling time was calculated as follow: time�ln(2) / (ln(number of cells at the end of

the experiment)—ln(number of seeded cells)).

MTT assay. Cells were seeded in 24-well culture plates (Corning, #3524), grown for 4

days and incubated for 1 h with 500 μL of tetrazolium dye MTT (Sigma-Aldrich, M2128)

(2.5 μg/mL in PBS) at 37˚C. Cells were then lysed for 1 h in lysis buffer (9% sodium dodecyl

sulphate, 60% N, N-dimethylformamide, pH 4.7), and absorbance was measured with a spec-

trophotometer (xMark, Bio-Rad) at 570 nm.

Protein content: Folin protein assay. Cells were seeded in 24-well culture plates (Corn-

ing, #3524), grown for 4 days and rinsed twice with PBS. The bovine serum albumin (VWR,

0332) protein standards and samples were incubated 30 min in presence of 200 μL of 0.5 M

sodium hydroxide, then 10 min with 750 μL of a solution A (1.96% sodium carbonate, 0.02%

sodium and potassium tartrate and 0.01% copper sulphate) and finally 30 min with 75 μL of

Folin and Ciocalteu0s phenol reagent (Sigma-Aldrich, F9252) diluted twice in distilled water.

Absorbance was measured with a spectrophotometer (xMark, Bio-Rad) at 740 nm [25].

Cell lysates and pierce protein assay

Cells were seeded in 75 cm2 culture flask (Corning, #430641U), rinsed once with PBS and

lysed with radioimmunoprecipitation assay buffer (20 mM tris hydroxymethyl, 150 mM

sodium chloride, 1 mM EDTA, 1 mM EGTA, 1% sodium deoxycholate, 10% glycerol, 1%
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NP40, pH 7.6) supplemented with protease inhibitor cocktail (Sigma-Aldrich, 11697498001)

and phosphatase inhibitor buffer (25 mM sodium orthovanadate, 250 mM 4-nitrophenylpho-

sphate, 250 mM ß-glycerophosphate, 125 mM sodium fluoride). Lysates were sonicated 3 x 10

sec (amplitude 50) and centrifuged (10 min, 15000 g). Cleared cell lysates were assessed for

protein content with Pierce 660 Protein Assay Reagent (ThermoFisher, 22660) according to

the manufacturer0s recommendations.

Western blotting analysis

Amounts of 20 μg of protein samples were prepared in loading buffer (0.03 M Tris-hydrochlo-

ride acid; pH 6.8, 0.04 M sodium dodecyl sulphate, 0.4 M β-mercaptoethanol, 5% glycerol,

0.15 mM bromophenol blue), boiled for 5 min, resolved on polyacrylamide gel and transferred

on a nitrocellulose membrane (Bio-Rad). Membrane was blocked for 1 h at room temperature

in Odyssey Blocking Buffer (OBB) (LI-COR, P/N 927) diluted twice in PBS and incubated

overnight at 4˚C with the primary antibody diluted in OBB with 0.1% Tween-20 (OBB-T). For

MPV17 detection, membrane was treated prior to blocking step with Super Signal Western

Blot Enhancer (ThermoFisher, 46640) according to the manufacturer0s recommendations.

The next day, membrane was rinsed 3 x 5 min in PBS with 0.1% Tween-20 (PBS-T), incubated

with secondary antibody diluted in OBB-T 0.1% for 1 h at room temperature, rinsed 3 times in

PBS-T 0.1%, dried and scanned with the Odyssey Infrared Imager (LI-COR, 9120). For the

description of the antibodies used in this study, see Table 2.

Construct for MPV17 overexpression

MPV17 mRNA was reverse transcribed (Transcriptor First Strand cDNA kit, Roche,

04379012001) using a specific primer (50-AGGTGGAAACGATGGAGTGA-30). A PCR was then

Table 2. List of antibodies and their dilutions used for western blotting.

Antibody Reference Dilution

Anti-MPV17 Proteintech 1/1000

10310-1-AP

Anti-ATF4 Santa Cruz 1/1000

Sc-390063

Anti-ATF4 Cell Signaling 1/1000

#11815 lot 3

Anti-tubulin Sigma-Aldrich 1/10000

T5168

Anti -actin Sigma-Aldrich 1/10000

A5441

Anti-GAPDH Abcam 1/10000

128915

Anti-rabbit IgG LI-COR 1/10000

IRDye 800CW Goat 926–32211

Anti-mouse IgG LI-COR 1/10000

IRDye 680RD Goat 926–68070

Anti-rabbit IgG LI-COR 1/10000

IRDye 680RD Goat 926–68071

Anti-mouse IgG LI-COR 1/10000

IRDye 800CW Goat 926–32210

The antibodies used for the western blot analysis are specified with their reference and working dilutions.

https://doi.org/10.1371/journal.pone.0229834.t002
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performed using a forward primer containing a restriction site for BamH1 (F: 50-AGGATCCA
GGAAGCATGGCA-30) and a reverse primer containing a restriction site for Sal1 (R: 50-AGT
CGACGGCAGGCTTAGA-30). PCR products were purified using Wizard SV Gel and PCR

Clean-Up System (Promega, A9281). An amount of 1 μg of PCR product and pLenti PGK

GFP Puro (Addgene, #19070) was digested with BamH1, purified, restricted with Sal1, purified

and finally ligated with T DNA ligase (Biolabs, M0202S) to construct the pLenti PGK MPV17

Puro plasmid.

Rescue experiment

HepG2 cells were transduced with pLenti PGK GFP puro or pLenti PGK MPV17 puro-con-

taining lentiviruses and selected for 6 days with puromycin (2.5 μg/mL). Cells were then trans-

duced with PLKO.1-puro vector constitutively encoding sh129921 or shNT (Table 1). Cells

were then allowed to recover and generate MPV17-targeting shRNA for 5 days, seeded and

allowed to grow for 4 days. Cell proliferation was assessed by MTT assay at day 1 and day 4. To

overexpress MPV17, we used MPV17-silencing and MPV17-overexpression vectors that were

both bearing the resistance to puromycin. This obviously constitutes an obstacle in the selec-

tion of the cells that are double transduced. However, we decided to proceed further based on

the knowledge that the sh129921-encoding vector robustly led to a very efficient transduction

rate (nearly 100%), therefore allowing to bypass the need for an ensuing antibiotic selection.

mtDNA content determination

DNA was extracted with the Wizard Genomic DNA Purification Kit (Promega, A1120)

according to the manufacturer0s recommendations. qPCR for mtDNA amplification was per-

formed on the gene encoding ND2 (NADH Dehydrogenase 2) using the forward primer 50-
TGTTGGTTATACCCTTCCCGTACTA-30 and the reverse primer 50-CCTGCAAAGATGGTA-
GAGTAGATGA-30. For the normalization with nuclear DNA, the gene encoding Beclin was

amplified with the forward primer 50-CCCTCATCACAGGGCTCTCTCCA-30 and the reverse

primer 50- GGGACTGTAGGCTGGGAACTATGC-30. Real time PCR was performed with

SYBR Select Master Mix (ThermoFisher, 4472908). mtDNA copy number was calculated

according to the following formula: 2�2^-ΔCt (where ΔCt = Ctmean ND2 –Ctmean Beclin).

RNA extraction and RT-qPCR

RNA was extracted with RNeasy Mini kit (Qiagen, 74104) according to manufacturer0s recom-

mendations and QIAcube (Qiagen). RT was performed with GoScript™ Reverse Transcription

Mix (Promega, A2791) according to the manufacturer0s recommendations. qPCR was per-

formed with SYBR Select Master Mix (ThermoFisher, 4472908). We used the 2-ΔΔCt method to

assess the relative mRNA expression. The MPV17 primers used in this study are the following:

F: GCTCAGGAAGCATGGCACTCT; R: AATGTCACCCAGGCCCATCA.

RNA sequencing

Huh7 cells were transduced with shRNA non-target lentiviral vector (shNT) or with shRNA

vector constitutively targeting MPV17 expression (sh129921). RNA quality was analysed with

the Bioanalyzer 2100 (Agilent). RNA samples (n = 4) were sent to Genomic Core Leuven (Bel-

gium) for RNA sequencing and data were analysed with Ingenuity Pathway Analysis (QIA-

GEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis).
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Immunohistochemistry

Slices were incubated 2 x 5 min in xylene (ThermoFisher, X/0200/21), 2 x 3 min in isopropanol

(VWR, 20842.330) and 10 min in 1% H2O2 (VWR, 23.613.446) / methanol prepared extempo-

raneously. Slices were washed 3 min in tap water and 3 min in demineralized water. Slices

were then incubated 30 min in the 98˚C water bath with the “Target Retrieval Solution 1X” pH

6.1 (Dako, S169984-2) and let to cool down for 15 min at room temperature. Slices were

washed 5 min in tap water, 2 x 3 min in PBS and incubated 1 h at room temperature with a

solution of PBS-2% Normal Goat Serum (NGS) (ThermoFisher, 16210064). Slices were then

incubated with the primary antibody anti-MPV17 (Table 2) diluted 1/100 in a solution of PBS-

0.5% NGS, overnight at 4˚C. Slices were washed 3 x 3 min in PBS-T 0.05% baths and 3 min in

PBS. Slices were then incubated 30 min at room temperature with the secondary antibody

EnVision-HRP anti-rabbit (Dako, K400311). Slices were washed 3 x 3 min in PBS-T 0.05%

and 3 min in PBS. Slices were then incubated 4 min at room temperature in the DAB solution

(Dako, K346811) and washed 5 min in running tap water. Slices were incubated 5 min in

Mayer Hematoxyline and washed 5 min in running tap water. Slices were finally incubated 3x

3 min in isopropanol, 3x 3 min in xylene and mounted on coverslip with Entallan glue.

Statistical analysis

Data are expressed as the mean ± Standard Error of the Mean (S.E.M). Figure plotting was per-

formed with Prism software. Statistical analysis was performed using a one-tailed Mann-Whit-

ney Test or a two-tailed Wilcoxon signed rank Test (α = 5%; �: p<0.05; ��: p<0.01; ���:

p<0.001; ����: p<0.0001).

Supporting information

S1 Fig. Experimental timelines of MPV17 silencing in the constitutive and inducible mod-

els. Cells were transduced and puromycin-selected with a vector allowing a constitutive (a) or

an inducible (b) MPV17 silencing. After 2 days of recovery, cells were either seeded and

allowed to grow for 4 days before assessment of proliferation (a) or treated with 0.1 mM of Iso-

Propyl ß-D-1-ThioGalactopyranoside (IPTG) for 5 days to induce MPV17 silencing prior to

the seeding (b). The proliferation was then assessed after 4 days of growth in presence of IPTG

renewed daily.

(PPTX)

S2 Fig. Effect of IPTG on Huh7 cells proliferation following constitutive sh129921-me-

diated MPV17 knockdown. Huh7 cells were transduced with non-target shRNA lentiviral

vectors (shNT) or with sh129921-containing vector. Transduced cells were selected for 6 days

with puromycin (2.5 μg/mL). Cells were seeded at 8×103 cells/cm2 and grown for 4 days in the

presence or in the absence of 0.1 mM of IPTG. To mimic the conditions found in the inducible

model of expression, the IPTG-containing medium was renewed daily. We therefore included

a control in which no IPTG was present while the medium was also changed every day (Ctl).

Data are presented as mean ± S.E.M (3 biological replicates). P values were calculated with the

one-tailed Mann-Whitney Test (α = 5%; NS; �: p<0.05; ��: p<0.01; ���: p<0.001).

(PPTX)

S3 Fig. Effect of the duration of IPTG pre-treatment and of the medium change frequency

on Huh7 cells proliferation in response to inducible sh129921-mediated MPV17 knock-

down. Cells were transduced, or not (Unt), with inducible sh129921 lentiviral vectors and

selected for 6 days with puromycin (2.5 μg/mL). Cells were then incubated for 14 days in the

presence of 0.1 mM of IPTG to induce MPV17 silencing and culture medium was changed
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daily (a, b, c) or every 2 days (c, d, e). Cells were seeded at 8×103 cells/cm2 and grown for 4

days in presence of IPTG in the same conditions. MPV17 protein abundance was assessed by

western blot analysis (a, d) and quantified with Image J software (b, e). Proliferation was then

assessed by manual counting to calculate the doubling time (c, f). Full blots are presented in S6

Fig. Data are presented as mean ± S.E.M of 3 independent biological replicates. P values were

calculated with the one-tailed Mann-Whitney Test (α = 5%; NS; �: p<0.05; ��: p<0.01; ���:

p<0.001).

(PPTX)

S4 Fig. Localisation of the shRNA-targeted sites on MPV17 transcript. The effects of several

commercially available shRNAs directed against MPV17 transcript were assessed in Huh7

cells. Each shRNA Sigma Aldrich reference (sh128669, sh131201, sh131038, sh127649 and

sh129921) is indicated above its target site. Each grey box represents an exon of MPV17 tran-

script (NM002437.5). A line indicates the 30UTR and 50UTR of MPV17 transcript.

(PPTX)

S5 Fig. Localisation of the shRNA-targeted sites on the MPV17 transcript isoforms refer-

enced in human liver. The Genotype-Tissue Expression (GTEx) Project was supported by the

Common Fund of the Office of the Director of the National Institutes of Health, and by NCI,

NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analysis described in this

manuscript and this Fig. were obtained from the GTEx Portal on 02/05/19. We indicated the

Sigma Aldrich reference of each shRNA targeting MPV17 transcripts (sh128669, sh131201,

sh131038, sh127649 and sh129921) above its targeted site. Each box represents an exon in

MPV17 transcript isoforms. The darker the purple, the more abundant the transcript (as

referred by Log 10 (TPM)). The 30UTR is located on the left of the image, and the 50UTR on

the right. We added an asterisk (�) that indicates both shRNAs providing the reduced prolifer-

ation phenotype, while ø indicates both shRNAs leading to an unchanged proliferation rate.

(PPTX)

S6 Fig. Full-length blots of the cropped blots presented in this work. Protein immunostain-

ing was performed with secondary antibodies coupled to infrared dyes (IRDye; green: 800nm/

red: 700 nm). a: Full blot of the one presented in Figs 2A and 7A; b: Full blot of the one pre-

sented in Figs 4A and 7B (Anti-ATF4 from Santa Cruz); c: Full blot of the one presented in Fig

8A; d: Full blot of the one presented in Fig 4C (Anti-ATF4 from Cell Signaling); e: Full blot of

the one presented in Fig 4B (Anti-ATF4 from Cell Signaling); f: Full blot of the one presented

in Fig 5B; g: Full blot of the one presented in Fig 6B; h and i: Full blots of the ones presented in

S3 Fig; j: Full blot of the one presented in Fig 6C (Anti-ATF4 from Santa Cruz).

(DOCX)
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