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Abstract
Networks are a widely used and efficient paradigm to model real-world systems where basic units
interact pairwise. Many body interactions are often at play, and cannot be modelled by resorting to
binary exchanges. In this work, we consider a general class of dynamical systems anchored on
hypergraphs. Hyperedges of arbitrary size ideally encircle individual units so as to account for
multiple, simultaneous interactions. These latter are mediated by a combinatorial Laplacian, that is
here introduced and characterised. The formalism of the master stability function is adapted to the
present setting. Turing patterns and the synchronisation of non linear (regular and chaotic)
oscillators are studied, for a general class of systems evolving on hypergraphs. The response to
externally imposed perturbations bears the imprint of the higher order nature of the interactions.

1. Introduction

Network science [1, 2] has proved successful in describing many real-world systems [3–5], which, despite
inherent differences, share common structural features. Scholars have proved that dynamical processes and
hosting networks are indissolubly entangled with the ensuing patterns that reflect in fact the complex topology
of the supports to which they are anchored [6–8]. Random walks in crowded environment have been used
to unravel network topology [9], while leaky-integrate and fire models allowed to access to functional and
structural information in brains activity [10], just to mention a few.

Networks constitute abstract frameworks, where pairwise interactions among generic agents, represented
by nodes, are schematised by edges. Stated simply, two agents are connected if they interact. Hence by their
very first definition, networks encode for binary relationships among units. This descriptive framework is
sufficiently accurate in many cases of interest, although several examples exist of systems for which it holds true
just as a first order approximation [11, 12]. The relevance of high-orders structures has been indeed emphasised
in the context of functional brain networks [13, 14], in applications to protein interaction networks [15], to
the study of ecological communities [16, 17] and co-authorship networks [18, 19]. Despite the diversity of the
above models, they all have in common the fact that the interactions among individuals, being them neurons,
proteins, animals or authors, cannot be reduced to binary exchanges. The group action is the real drive of the
dynamics.

Starting from this observation, higher-order models have been developed so as to capture the many body
interactions among interacting units. The most notable examples are simplicial complexes [20–22] and hyper-
graphs [23–25], non trivial mathematical generalisations of ordinary networks that are currently attracting a
lot of interest. The concept of simplicial complexes is largely used in mathematics, e.g. in optimisation or alge-
bra. In the context of graphs theory simplicial complexes have been for instance invoked to address epidemic
spreading [26, 27] or synchronisation phenomena [28–30]. Our work is positioned in the framework of hyper-
graphs, a domain of investigation which is still in its infancy. In this respect, we mention applications to social
contagion model [31, 32], to the modelling of random walks [19] and to the study of synchronisation [33, 34]
and diffusion [32].

© 2020 The Author(s). Published by IOP Publishing Ltd
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Hypergraphs constitute indeed a very flexible paradigm: an arbitrary number of agents are allowed to inter-
act, thus extending beyond the limit of binary interactions of conventional network models. On the other hand,
hypergraphs define a leap forward as compared to simplicial complexes. In this latter case, in fact, if (say) 3
agents form a 2-simplex, also all binary interactions are accounted for. On the other hand, agents interacting
via a hypergraph do form a hyperedge, a unifying frame which encompasses the many body interactions as a
whole. Imagine that a subgroup of agents organised in the hyperedge, also interact with each other via a distinct
channel; this yields a new hyperedge, included in the former. A hypergraph can reproduce, in a proper limit, a
simplicial complex and, in this respect, provides a more general tool for addressing many body simultaneous
interactions.

Furthermore, the analysis of the models in the framework of hypergraphs turns out to be simpler as com-
pared to their simplicial complexes homologues. In these latter settings, the involved formulas get rapidly
cumbersome and, for this reason, applications are limited to low dimensional simplexes, i.e. 2 or 3-simplex. At
variance, one can efficiently handle very large hyperedges and, even more importantly, heterogenous distribu-
tion of hyperedges’ sizes, because all the information on the high-order structure of the embedding support
are stored in a matrix whose dimension depends only on the number of nodes [19, 32].

Starting on these premises, it is clear that many body interactions constitute a relevant and transversal
research field that is still in its embryonic stage, in particular as concerns studies that relate to hypergraphs.
Indeed, novel light could be shed on a large plethora of systems, usually defined on standard networks, by
accounting for generalised hypergraph architectures. This paper aims at taking one first step in this direction,
by expanding along different axes. We will begin by adapting to the hypergraph setting the master stability
function (MSF) [35] formalism. We will then consider the condition for the emergence of Turing patterns
[36] for reaction–diffusion systems on hypergraphs, the synchronisation of nonlinear oscillators [7] and of
chaotic orbits. It is here anticipated that for theoretical progress to be made one needs to characterise the
spectral properties of a properly defined operator, which implements diffusion on hypergraphs.

The MSF, is a powerful technique developed in [35] to analyse synchronisation and it basically amounts to
performing a linear stability analysis around a given equilibrium orbit, for a system of coupled interacting units.
A straightforward application of linear stability analysis is for instance found in the context of the celebrated
Turing instability, once the reference orbit is indeed a homogeneous fixed point.

In his seminal paper [36], Alan Turing set the mathematical basis of pattern formation. Initially proposed
to explain the richness and diversity of forms displayed in Nature, the theory elaborated by Turing is nowadays
an universally accepted paradigm of self-organisation [37–39]. The onset of pattern originates from the loss
of stability of an homogeneous equilibrium, as triggered by diffusion. Turing instabilities have been initially
studied for systems defined on continuous spatial domains and regular lattices [40]. More recently, the realm
of application of Turing ideas has been extended to account for reaction–diffusion dynamics hosted on a
complex network [41] and other related structures, such as multilayer networks [42, 43] or multigraphs [44]
just to mention a few. It is hence a natural question to generalise these studies to the broad framework of
hypergraphs.

Turing patterns emerge from the destabilisation of a homogeneous equilibrium, that is a stationary solu-
tion of the examined model. In many real cases, however the system is not bound to evolve close to a sta-
tionary solution, but instead displays periodic oscillations. Examples ranges from biology to ecology, passing
through physics [7, 45]: individual nonlinear oscillators can synchronise and thus exhibit a coherent collective
behaviour. Synchronisation, the spontaneous ability of coupled oscillators to operate in unison, has been stud-
ied for systems interacting via a complex and heterogeneous network of interlaced connections. To the best
of our knowledge, however, this analysis has never been attempted for systems defined on hypergraphs of the
type here considered. Let us observe that, although similar in their conception, the works [46, 47] deal with
hypernetworks, namely a network where several different links can connect two nodes, also called multigraph
in the literature. The interactions are hence pairwise.

The formalism of the MSF can be also applied to chaotic oscillators. The synchronisation of chaotic sys-
tems defined on hypergraphs has been studied in [33] by using the formalism of the MSF under two main
assumptions: (i) the work has been limited to p-hypergraphs, namely assuming that all the hyperedges have
the same size p; (ii) the coupling function was assumed to be invariant with respect to permutations of the
nodes, within each hyperedge. In this paper, we will relax both assumptions to deal with general hypergraphs
with heterogenous hyperedge size distribution and without putting forward any hypothesis on the form of the
coupling function.

In a recent work [34], the synchronisation phenomenon has been studied resorting again to the MSF, but
employing however a Laplace operator [48] which cannot account in full for the high order interaction at play.
The employed operator is defined from the hyper-adjacency matrix, which is solely capable to encode for the
number of incident hyperedges without gauging their sizes. Moreover authors assumed the coupling function
to depend on the average (arithmetic or geometric) value of the involved variables. Again, both assumptions
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are relaxed in the present work, because our Laplace operator takes into account both the number of incident
hyperedges but also their size. We will moreover make use of a generic coupling function.

The paper is organised as follows. We first review the formalism of hypergraphs and introduce a new com-
binatorial Laplace matrix for hypergraphs. We then turn to discussing the spectra of the newly introduced
Laplacian by emphasising its localisation properties. Then we present three applications, following the logic
path outlined above, and elaborate on the impact of high-order structures. We finally conclude and sum up of
our results.

2. Hypergraphs

Let us consider an hypergraph H(V , E), where V = {v1, . . . , vn} denotes the set of n nodes and E =
{E1, . . . , Em} the set of m hyperedges, that is for all α = 1, . . . , m: Eα ⊂ V, i.e. an unordered collections of
vertices. Note that if Eα = {u, v}, i.e. |Eα| = 2, then the hyperedge is actually a ‘standard’ edge denoting a
binary interaction among u and v. If all hyperedges have size 2 then the hypergraph is actually a network. If
an hyperedge contains all its subsets, then we recover a simplicial complex.

We can define the incidence matrix of the hypergraph [70], eiα, which carries information on how nodes are
shared among edges (see middle panel figure 1). More precisely

eiα =

⎧⎨
⎩

1 vi ∈ Eα

0 otherwise.
(1)

With such a matrix one can construct the n × n adjacency matrix of the hypergraph, A = eeT, whose entry
Aij represents the number of hyperedges containing both nodes i and j. Note that often the adjacency matrix
is defined by setting to 0 the main diagonal. Let us also define the m × m hyperedges matrix C = eTe, whose
entry Cαβ counts the number of nodes in Eα ∩ Eβ .

The adjacency matrix of the hypergraph allows one to define a Laplace matrix [34, 48], whose entries
are given by kiδij − Aij, where ki =

∑
j Aij denotes the number of hyperedges incident with node i. This matrix

generalises the (combinatorial) Laplace matrix for networks. However it does not account in full for the higher-
order structures encoded in the hypergraph. Notably, the sizes of the incident hyperedges are neglected.

To overcome this limitation, authors of [19] studied a random walk process defined on a generic hypergraph
using a new (random walk) Laplace matrix. It is worth mentioning that the transition rates of the associated
process, linearly correlates with the size of the involved hyperedges. Stated differently, exchanges are favoured
among nodes belonging to the same hyperedge (weighted according to its associated size). This allows in turn
to describe the tightness of high-order interactions among ‘close nodes’. More precisely:

LRW
ij = δij −

kH
ij∑

� �=ik
H
i�

,

where the entries of KH are given by

kH
ij =

∑
α

(Cαα − 1)eiαejα = (eĈeT)ij − Aij ∀ i �= j, kH
ii = 0, (2)

and Ĉ is a matrix whose diagonal coincides with that of C and it is zero otherwise.
From this random walk Laplace operator, one can straightforwardly derive the (combinatorial) Laplace

matrix,
LH = D − KH , (3)

that will be employed in this paper to investigate the effect of diffusion on higher-order structures. In the above
equation, matrix D contains on the diagonal the values kH

i =
∑

� �=ik
H
i� and zeros otherwise. It is clear from its

very definition that KH takes into account both the number and the size of the hyperedges incident with the
nodes. It can also be noted that KH can be considered as a weighted adjacency matrix whose weights have been
self-consistently defined to account for the higher-order structures encoded in the hypergraph (see right panel
of figure 1).

It is worth emphasising that the dynamics defined on this weighted network is equivalent [49] to the
dynamics on the corresponding hypergraph. This observation allows us to transport existing tools targeted
to networks’ analysis to the realm where nodes are made to interact via hypergraphs. In particular, studying
linear dynamical systems evolving on a hypergraph amounts to operating with standard n × n matrices, where
n stands for the number of nodes. In this respect, the analysis is straightforward, and avoid the complications
that are to be faced when dealing with simplicial complexes, where tensors are instead involved (see section 4).
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Figure 1. Hypergraph and networks. In the middle panel, a hypergraph is displayed. Hyperedges are coloured according to their
size (blue for size 2, red for size 3 and green for size 4). The hypergraph’s characteristics are encoded in the incidence matrix eiα.
Here, the information on how nodes are shared among hyperedges is stored. For ease of visualisation, we coloured the entries of
eiα by using the same colour-code that was used to highlight the size of the hyperedges. From the hypergraph, we can construct
the projected network, specified by the adjacency matrix A(π)

ij (left panel), where nodes belonging to the same hyperedge form a
complete clique of the suitable size. Alternatively, one can construct the equivalent weighted network (right panel) where the links
of the cliques of the projected network are now weighted according to the entries of matrix KH (the thicker the line the stronger the
weight of the link). The link (25) belongs to a hyperedge of size 3 and to another one of size 4. It is therefore the most important
of the collection and because of this it receives the largest weight, kH

25 = 5. Observe also the link (28): it belongs to two hyperedges
of size 3 and it is assigned a weight kH

28 = 4, larger than the one associated to the links that insist on the hyperedge of size 4.

Given a hypergraph one can construct the projected network, that is the network obtained by mapping
the nodes belonging to a hyperedge into a clique of suitable size (see left panel figure 1). If the hypergraph
contains only simple hyperedges, then this projection is invertible and, given a network, one can construct
a unique hypergraph whose projection coincides with the network itself [19]. Let us observe that the pro-
jected network keeps track of the many body interactions only though the cliques, i.e. relying on binary
exchanges.

Let us conclude this section by remarking that the operator LH, given by equation (3), admits (1, . . . , 1)T

as eigenvector associated to the zero eigenvalue. This latter homogeneous solution can be stable, so resilient, to
external perturbation for a system evolving on a hypergraph and subject to nonlinear reaction terms. Instabil-
ities can alternatively develop, depending on the specific explored setting. These issues will be addressed in the
following by assuming higher-order interactions encoded by the hypergraph, to link co-evolving populations.
Inspecting the stability of this generalised class of reaction–diffusion systems, amounts to studying the spec-
tra of the coupling operator. For this reason we shall begin hereafter by analysing the spectra of a hypergraph
Laplacian.

3. Localisation of eigenvectors

One can prove [19] that LH is symmetric, non-negatively defined and its largest eigenvalue equals 0. More-
over, let

(
Λα

H

)
1�α�n

be the set of its eigenvalues of LH, then Λn
H � · · ·Λ2

H > Λ1
H = 0, and its eigenvectors,(

�φα
)

1�α�n
form an orthonormal basis, �φα · �φβ = δα β . As already observed, �φ1 ∝ (1, . . . , 1). Finally LH

reduces to the Laplace matrix defined on networks once all the hyperedges have size 2. In the following we will

denote by (Λα)1�α�n the eigenvalues of the Laplace operator of the projected network, L, and
(
�ψα

)
1�α�n

the

associated eigenvectors. Based on the well known properties of L and assuming the network to be connected,
we have Λn � · · ·Λ2 > Λ1 = 0 and the eigenvectors do form an orthonormal basis.

Localisation of eigenmodes is a phenomenon relevant to many fields of science, e.g. the Anderson locali-
sation in disordered systems [50, 51], with a particular relevance to dynamics. For this reason we decided to
start our analysis by studying the localisation properties of the Laplacian eigenvectors for the hypergraph (3)
and compare them with the corresponding quantities obtained for the projected network. Results reported in
figure 2 show that the localisation is more evident for a hypergraph, than for the associated projected network.
In the left panel of figure 2, we present the eigenvectors for the Laplace matrix stemming from the hypergraph
(ordered for increasing eigenvalue Λα

H) as a function of the nodes indexes (ordered for increasing kH
i ). In the
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Figure 2. Laplacian eigenvectors. We report the absolute values of the components of the eigenvectors, �φα, ordered for increasing
eigenvalues and nodes degree (right panel) and nodes hyper degree (left panel). Entries larger than 0.015 are pictured in black,
while the remaining ones in white. The projected network is a scale free network made of 500 nodes and generated by using the
configuration method with γ = −2 and kmin = 2. The corresponding hypergraph is obtained from the latter by transforming all
the m-cliques into hyperedges of size m.

Figure 3. Distribution of hyperedges sizes. We report the distribution of hyperedges sizes for a hypergraph whose scale free
projected network is made by 500 nodes and built using the configuration method with γ = −2 and kmin = 2. One can observe
the presence of relatively large hyperedges responsible for high-order interactions.

right panel, the same quantity is displayed for the Laplace matrix computed from the projected network. In
this latter case, the nodes are ordered for increasing degree. By visual inspection (entries larger than 0.015 are
coloured in black while the remaining ones are drawn in white), one can clearly appreciate the dark squarish
zones, associated to small or medium rank eigenvectors, which appear in the left panel of figure 2: eigenvectors
are found with relatively large entries across many nodes, i.e. a strong localisation. On the right panel, simi-
lar structures are present but much weaker. A substantially analogous behaviour is observed for high ranked
eigenvectors, e.g.α� 400 in the left panel and α ∼ 500 in the right one, for which only few entries display very
large values, pointing hence to an even stronger localisation (see the thin dark ‘line’ in the top right corners in
both panels).

To illustrate our results, we employed as projected network a scale free network made by n = 500 nodes,
built by using the configuration model with γ = −2 and kmin = 2 [5]. The associated hypergraph is obtained
by transforming all the maximal m-cliques into hyperedges of size m. The distribution of hyperedges sizes is
reported in figure 3.

A more quantitative measure of the localisation, can be obtained by using the inverse participation ratio
(IPR) [52]. For an n-dimensional vector, v, this is defined as

P(v) =

∑
iv

4
i(∑

iv
2
i

)2 . (4)

The above quantity ranges in [1/n, 1], where the lower bound is attained for a vector with uniform entries.
The upper limit is hit when all entries are 0 but one, which equals 1. In figure 4 we report the IPR computed for
the eigenvectors of the hypergraph (blue dots) and the projected network (black dots) used in figure 2. We can
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Figure 4. IPR. We report the IPR of the eigenvectors of the hypergraph (blue dots) and of the associated projected network (black
dots) used in figure 2. We can observe that in the case of the hypergraph the IPR is always larger than that obtained for the
corresponding projected network, while the eigenvectors associated to the largest eigenvalues are more localised for the case of the
network.

observe that in the case of the hypergraph, the IPR is always larger than the homologous quantity computed
for the projected network, except for very high ranked eigenvectors (say, the last 5 ones).

In the next section we will show that the localisation which manifests on hypergraph, leaves macroscopic
imprints on the dynamics of systems subject to many-body, higher-order interactions. This issue will be
discussed in the following section.

4. Dynamical systems on hypergraphs

In the remaining part of this paper we will consider the behaviour of dynamical systems defined on hyper-
graphs. In particular, we will analyse the consequences of dealing with higher-order couplings, exploiting to
this end the spectral characteristics highlighted above. More specifically, assume n copies of the same low
dimensional dynamical system to be hosted on each node of a given collection. This defines the local dynam-
ics of the inspected system. Units belonging to different nodes are assumed to interact through higher-order
structures identified as hyperedges. Many body interactions promote a preferential interaction among nodes
belonging to the same large hyperedge. The nodes can be imagined to identify different spatial locations. For
this reason we will denote by aspatial the system composed by one isolated dynamical unit, and use spatial to
refer to its multi-dimensional version made of mutually entangled components.

As already mentioned the newly introduced (combinatorial) Laplace matrix (3) admits a homogeneous
eigenvector associated to the zero eigenvalue. This will allow us to probe (in)stability of interconnected sys-
tems evolving close to reference orbits. For the sake of completeness, we will consider three distinct applications
that cover several relevant research domains. We will begin by imposing a generalised diffusive coupling among
nodes as exemplified by the aforementioned Laplace matrix (3). Working in this framework, we will study the
emergence of Turing patterns, that is the conditions that promote the emergence of a stable heterogeneous solu-
tion. We will then turn to considering the synchronisation between nonlinear oscillators, diffusively coupled
via higher-order combinatorial Laplacians. Finally, we will analyse the synchronisation of chaotic oscillators,
in the setting of interest where higher-order interactions are at play. The formalism of the MSF, will be used
to tackle the problem analytically. Projected networks will be employed as reference benchmarks to bring into
evidence the role of hypergraphs and related higher order interactions.

Consider a d-dimensional system described by local, i.e. aspatial, equations:

dx

dt
= F(x) x ∈ R

d, (5)

and fix a reference orbit, s(t). Let us observe that the latter can also be a fixed point. Assume further n identical
copies of the above system coupled through a hypergraph, namely each copy is attached to a node of a hyper-
graph. Moreover, each unit belongs to one (or more) hyperedge. Units sharing the same hyperedge are tightly
coupled, due to existing many body interactions. In formulas:

dxi

dt
= F(xi) − ε

∑
α:i∈Eα

∑
j∈Eα ,j�=i

(Cα α − 1)
(

G(xi) − G(xj)
)

,

where xi denotes the state of the ith unit, i.e. anchored to the ith node, ε the strength of the coupling and G a
generic nonlinear coupling function. The elements Cαα of matrix C denote the size of the hyperedge Eα. The
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factor −1 account for the fact that j should be different from i. Recalling the definition of eiα one can rewrite
the previous formula as

dxi

dt
= F(xi) − ε

∑
α,j

eiαejα(Cα α − 1)
(

G(xi) − G(xj)
)

= F(xi) − ε
∑

j

kH
ij

(
G(xi) − G(xj)

)
= F(xi) − ε

∑
j

(
δijk

H
i − kH

ij

)
G(xj)

= F(xi) − ε
∑

j

LH
ij G(xj), (6)

where we have used the definition of kH
i =

∑
jk

H
ij and LH

ij given by (3). Let us stress once again that all the
high-order structure is encoded in an n × n matrix and there is no need for tensors as in the case of simplicial
complexes: this simplifies the resulting analysis.

By exploiting the fact that
∑

jL
H
ij = 0 for all i = 1, . . . , n, it is immediate to conclude that the aspatial refer-

ence solution s(t) is also a solution of equation (6). A natural question that arises is hence to study the stability
of the homogeneous solution for the system in its coupled variant.

To answer to this question one introduces the deviations from the reference orbit, i.e. δxi = xi − s. Assum-
ing this latter to be small, one can derive a self-consistent set of linear equations for tracking the evolution
of the perturbation in time. To this end, we make use of the above expression in equation (6) and perform a
Taylor expansion by neglecting terms of order larger than two, to eventually get:

dδxi

dt
= DF(s(t))δxi − ε

∑
j

LH
ij DG(s(t))δxj, (7)

where DF(s(t)) (resp. DG(s(t))) denotes the Jacobian matrix of the function F (resp. G) evaluated on the
trajectory s(t).

Remember that LH is symmetric. Hence, there exists a basis formed by orthonormal eigenvectors, �φα,
associated to eigenvalues Λα

H (see section 3). We can then project δxi on this basis and obtains for all α:

dδyα
dt

=
[
DF(s(t)) − εΛα

HDG(s(t))
]
δyα, (8)

where δyα is the projection of δxi on the αth eigendirection.
Let us finally conclude this section by observing that from equation (8) one can derive the MSF, i.e. the most

general framework to address questions that pertain to the stability of the reference orbit. Despite its generality,
the latter can only be handled numerically, except very few exceptions. In the following we begin by studying the
setting where s(t) is a constant solution. In this case the equation (8) simplifies because the right-hand side is no
longer time dependent and the problem reduces to a classical study of Turing instability. Indeed, the rightmost
term in equation (6) can be seen as a sort of generalised Fickean diffusion (see section 4.1). If the reference
orbit is instead periodic in time, one can investigate the conditions which drive the synchronisation of regular
oscillators. In this case the MSF can be analysed by resorting to the Floquet machinery. In the following, we
have however chosen to study the synchronisation of Stuart–Landau (SL) oscillators via higher-order couplings
(see section 4.2). Working in this setting, the MSF becomes again time independent and the analysis closely
resembles the one carried out for addressing the onset of Turing instabilities. As a final step, we will turn to
studying the case where s(t) is a chaotic trajectory (see section 4.3).

4.1. Turing patterns on hypergraphs
The Turing instability takes place for spatially extended systems: a stable homogeneous equilibrium becomes
unstable upon injection of a heterogeneous, i.e. spatially dependent, perturbation once diffusion and reac-
tion terms are simultaneously at play. Let us first consider two generic nonlinear functions f(u, v) and g(u, v)
describing the local dynamics ⎧⎨

⎩
u̇ = f (u, v)

v̇ = g(u, v).
(9)

Then assume to replicate such system on all the nodes of a given hypergraphs, and label ui and vi the corre-
sponding concentration. Here the index i refers to the specific node to which the dynamical variables are bound.
Finally, assume that two nodes, i and j, communicate if they belong to the same hyperedge and moreover the
strength of the interaction (which results in an effective transport across the involved nodes) is mediated by
both the number of shared hyperedges and their sizes. Indeed, nodes belonging to the same hyperedge exhibit
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a higher-order interaction and we consequently assume that spreading among them is more probable than
with nodes associated with other hyperedges or smaller ones. From a microscopic point of view, imagine to
deal with a walker belonging to a given node. The walker assigns to all its neighbours a weight that gauges the
size of the hyperedges and the number of incident hyperedges, and then she performs a jump with a probabil-
ity proportional to this weight. This represents a higher-order extension Ficks’ law: the rate of change of ui is
proportional to

u̇i ∼
∑
α:i∈Eα

∑
j∈Eα ,j�=i

(Cα α − 1)(ui − uj),

where use has been made of matrix C, as introduced above, the −1 reflects the fact that the walker must leave
the actual node it belongs to. Recalling the definition of eiα one can rewrite the previous formula as

u̇i ∼
∑
α,j

eiαejα(Cα α − 1)(ui − uj) =
∑

j

kH
ij (ui − uj) =

∑
j

(
δijk

H
i − kH

ij

)
uj =

∑
j

LH
ij uj,

where we have used the definition of kH
i =

∑
jk

H
ij and LH

ij .
So in conclusion a reaction–diffusion processes on hypergraphs, where the diffusion takes into account the

higher-order interactions among nodes in the same hyperedge, can be described by the following system

⎧⎪⎪⎨
⎪⎪⎩

u̇i = f (ui, vi) + Du

∑
j

LH
ij uj

v̇i = g(ui, vi) + Dv

∑
j

LH
ij vj

, (10)

where Du and Dv are effective diffusion coefficients of species u and v. At first sight, the above model seems
to solely account for binary interactions. However, higher-order interactions are also present, as encoded in
the matrix LH. This is thus a compact formalism allowing to overcome the computational issues intrinsic to
simplicial complexes. Finally, let us observe that if the hypergraph is a network, i.e. the hyperedges have size
2, |Eα| = 2∀α, then LH reduces to the standard Laplace matrix. Thus equation (10) converges to the standard
reaction–diffusion system defined on a network.

The condition for the emergence of a Turing instability can be detected by performing a linear stability
analysis about the homogeneous equilibrium. More precisely, the latter is assumed to be stable with respect
to homogeneous perturbations, while it loses its stability for heterogeneous perturbations once diffusion is at
play, Du > 0 and Dv > 0. The linear stability analysis can be performed by following the standard procedure
[41, 42, 53, 54]:

(a) By linearising the model (10) around the equilibrium, (ui, vi) = (ū, v̄) for all i

⎧⎪⎪⎨
⎪⎪⎩

˙δui = ∂uf (ū, v̄)δui + ∂vf (ū, v̄)δvi + Du

∑
j

LH
ij δuj

˙δvi = ∂ug(ū, v̄)δui + ∂vg(ū, v̄)δvi + Dv

∑
j

LH
ij δvj,

where δui = ui − ū and δvi = vi − v̄; for x = u, v we denoted by ∂xf (ū, v̄) and ∂xg(ū, v̄) the derivatives
of f and g evaluated at the homogeneous fixed point.

(b) By expanding the perturbations on the eigenbasis, �φα, α = 1, . . . , n, of LH, that is:

δui(t) =
∑
α

ûα(t)φα
i and

δvi(t) =
∑
α

v̂α(t)φα
i .

(c) By starting from the ansatz, ûα(t) ∼ eλα t and v̂α(t) ∼ eλαt , we can compute the dispersion relation, i.e.
the linear growth rate λα = λ(Λα

H) of the eigenmode α, as a function of the Laplacian eigenvalue Λα
H .

As it is can be straightforwardly proved, the linear growth rate is the real part of the largest root of the
second order equation

λ2
α − λα

[
tr J0 + Λα

H(Du + Dv)
]
+ det J0 + Λα

H(Du∂vg + Dv∂uf ) + DuDv(Λα
H)2 = 0, (11)

where J0 =

(
∂uf ∂vf
∂ug ∂vg

)
is the Jacobian matrix of the reaction part evaluated at the equilibrium (ui, vi) =

(ū, v̄), tr (resp. det) is its trace (resp. determinant). The concept of dispersion relation is close to that of Lya-
punov exponent: the existence of eigenvaluesΛα̃

H for which the dispersion relation takes positive values, implies

8
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Figure 5. Turing patterns on hypergraphs. Main panels: the dispersion relation for the Brusselator model defined on the
hypergraph—panel (a)—and the projected network—panel (b). One can observe that in both cases there are eigenvalues for
which the dispersion relation is positive (red dots); the blue line represents the dispersion relation for the Brusselator model
defined on a continuous regular support. Being both Laplace matrices symmetric, the dispersion relation computed for the
discrete spectra lies on top of the one obtained for the continuous support. Insets: the Turing patterns on the hypergraph (panel
(a)) and the projected network (panel (b)). We report the time evolution of the concentration of the species ui(t) in each node as a
function of time, by using an appropriate colour code (yellow associated to large values, blue to small ones). In the former case,
nodes are ordered for increasing hyper degree while in the second panel for increasing degree. One can hence conclude that nodes
associated to large hyper degrees display a large concentration amount for species ui. This yields a very localised pattern. The
hypergraph and the projected network are the same used in figure 2.

that the system goes unstable via a typical path first identified by Alan Turing in his seminal work. Stated dif-
ferently, the projections of the perturbations δui and δvi on the critical modes ûα̃(t) and v̂α̃(t) will exhibit an
exponential growth eλα̃t . At variance, if the dispersion relation is negative the system cannot undergo a Turing
instability: any tiny perturbation fades away and the system settles back to the homogeneous equilibrium; all
the modes decay exponentially to 0 and so do the projections of the perturbations δui and δvi.

To provide a concrete example, we assume the reaction kinetic to be modelled by the Brusselator scheme
[55, 56]. This is a nonlinear model defined by f(u, v) = 1 − (b + 1)u + cu2v and g(u, v) = bu − cu2v, where b
and c act as tunable parameters. We first show an example of Turing pattern emerging in both the hypergraph
and its related projected network (the same used in the previous section). In the main panels of figure 5 the
dispersion relations are reported: a subset of eigenvalues exists which is associated to positive values of the
dispersion relation, for both the hypergraph—panel (a)—and the projected network—panel (b). In the insets
of figure 5 we display the ensuing patterns. Nodes are ordered for increasing hyper degree (resp. degree) for the
hypergraph (resp. the projected network). One can clearly observe that, in the case of the hypergraph, patterns
are strongly localised in nodes associated to larger hyper degree.

From figure 5 one can also observe that the domain of definition of the eigenvalues for the hypergraph
cover a much wider range, as compared to that associated to the projected network. This observation can open
the way to settings where patterns emerge only for systems defined on top of hypergraphs and not on the corre-
sponding projected networks. In this case, patterns are the result of the higher-order interaction among nodes.
To challenge this scenario, let us consider a small network built by using the Barabási–Albert algorithm [1]
with 20 nodes. For each iteration of the generative algorithm, 3 new nodes are attached to the already existing
ones, according to a preferential attachment scheme; because of the small size of the network, our goal here is
not to resolve the scale free nature of the network but to obtain a hierarchical structure where 3-cliques, and
larger ones, are mutually connected. We identify the complete cliques and build the associated hypergraph by
assuming each m-clique to form a hyperedge with size m. We then turn to considering the resulting hyper-
graph and the associated projected network as the underlying support for the dynamics (10). The dispersion
relation can be computed (see main panels of figure 6): observe that the homogenous equilibrium is stable
even in presence of diffusion on the network while it looses stability in the case of the hypergraph. In this latter
setting Turing patterns are hence expected to develop. This can be checked by computing the time evolution of
the species density ui(t) both on the hypergraph and the projected network. By inspection of figure 6 one can
appreciate that heterogenous patterns develop in the former case (see inset in the panel (a) of figure 6). Patterns
are instead lacking in the latter scenario, i.e. when the Brusselator model hosted on the projected network (see
inset in the panel (b) of figure 6).

4.2. Synchronisation of Stuart–Landau oscillators on hypergraphs
In the previous section we studied the emergence of Turing patterns for reaction–diffusion systems defined
on a hypergraph so as to account for many body interactions. These patterns originate from a symmetry
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Figure 6. Many body induced Turing patterns. Main panels: the dispersion relation for the Brusselator model defined on the
hypergraph (panel (a)) and the projected network (panel (b)). In the former case eigenvalues are found for which the dispersion
relation is positive (red dots) while for the system defined on the projected network this conclusion does not hold. The blue line
represents again the dispersion relation for the Brusselator model on a continuous support. Insets: because the condition for
Turing instability is satisfied for the hypergraph Laplace matrix, Turing patterns emerge on the hypergraph (panel (a)). At
variance, patterns do not manifest on the projected network (panel (b)). We report the time evolution of the concentration of
species ui(t), on each node, as a function of time by using a proper colour code (yellow associated to large values, blue to small
ones). In the former case nodes are ordered for increasing hyper degree while in the latter for increasing degree. The hypergraph
and the projected network are obtained by means of the Barabási–Albert algorithm [1] with 20 nodes. Every iteration, 3 newly
added nodes are attached to the existing ones.

breaking instability induced by an externally imposed perturbation acting on systems initially close to a
stationary homogeneous equilibrium. In many relevant problems, systems display periodic solutions. It is
therefore important to investigate the stability of isolated periodic orbits and, even more essential, to study
the dynamics of extended systems which combine several replica of the same nonlinear oscillators. Imagine
that individual oscillators are evolving in phase and introduce a non homogeneous perturbation. If the system
is globally stable the perturbation gets eventually re-absorbed and the oscillators display a synchronous dynam-
ics [7]. Otherwise the perturbation develops in time and the system evolves towards a distinct, heterogeneous,
attractor.

To study the synchronisation via a hypergraph, we consider individual units obeying to a SL equation [57,
58]. This is a paradigmatic model of nonlinear oscillators, often invoked for modelling a wide range of phe-
nomena, from nonlinear waves to second-order phase transitions, from superconductivity and superfluidity
to Bose–Einstein condensation [59]. Besides, the SL equation can be considered as a normal form for systems
close to a supercritical Hopf-bifurcation. In this respect, the results here presented are more general than the
specific setting explored.

Consider an ensemble made of n nonlinear oscillators and label with Wi their associated complex
amplitude. Each oscillator obeys a complex SL equation

d

dt
Wj = Wj − (1 + ic2)|Wj|2Wj,

where c2 is a real parameter and i =
√
−1. Let us observe that the former admits the limit cycle solution

WLC(t) = e−ic2t .
We then assume the oscillators to be coupled via a many body diffusive-like interaction which can be

described by the discrete Laplacian matrix (3), returning thus the system

d

dt
Wj = Wj − (1 + ic2)|Wj|2Wj − (1 + ic1)K

∑
k

LH
jk Wk, (12)

where c1 is a second real parameters and K is a suitable parameter setting the coupling strength. Based on
the properties of the Laplace matrix, one can prove that the limit cycle solution, WLC(t), is also a solution of
equation (12). To characterise the stability of the latter to heterogeneous perturbation we resort to a method
similar to the one discussed above. Indeed we rewrite Wj using polar coordinates as:

Wj(t) = WLC[1 + ρj(t)]eiθj(t). (13)
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Assuming |ρi(t)| and |θi(t)| to be small, one can insert the (13) into equation (12) and then linearise the
resulting equation, to get:

d

dt

(
ρj

θj

)
=

(
−2 0
−2c2 0

)(
ρj

θj

)
− K

(
1 −c1

c1 1

)∑
k

LH
jk

(
ρk

θk

)
. (14)

Remark that, even if we are perturbing around a limit cycle, namely a time dependent solution, the coeffi-
cients of the linearised equations do not depend on time, owing to the specific structure of the GL equation.
This observation will simplify the successive analysis, which will follow closely that discussed in the preceding
section for the case of a Turing instability. In the next section we will instead deal with a problem for which
the linearised dynamics yields a time dependent Jacobian.

To proceed further we expand the perturbations ρj and θj on the Laplacian eigenvectors basis

(
ρj

θj

)
=

n∑
α=1

(
ρα
θα

)
φα

j , (15)

inserting the latter into (14), and by using the orthonormality of the eigenvectors, we obtain:

d

dt

(
ρα
θα

)
=

(
−2 0
−2c2 0

)(
ρα
θα

)
− KΛα

H

(
1 −c1

c1 1

)(
ρα
θα

)
. (16)

We put forward the ansatz of exponential growth for each mode as it is customarily done in the case of Turing
instability, that is ρα ∼ eλαt and θα ∼ eλα t and we eventually obtain a condition formally equivalent to the
dispersion relation

λ(Λα) = −(1 + KΛα) +
√

(1 + KΛα)2 − KΛα
[
2(c1c2 + 1) + (1 + c2

1)KΛα
]
, (17)

Let us observe that λ(Λ1) = 0, signifying that the reference orbit is a limit cycle and thus neutral stable.
On the other hand if Rλ(Λα) is positive for some α > 1, the perturbation grows exponentially in time, and
the initial homogeneous state proves unstable. Conversely, if Rλ(Λα) < 0, for every α, the perturbation fades
away and the system converges back to the fully synchronised state. Expanding (17) for small KΛα we get

λ(Λα) ∼ −KΛα(1 + c1c2) + · · · .

By recalling that λ(0) = 0, K > 0 and Λα > 0 for α > 1, one can conclude [60] that λ(Λα) > 0 for some
α if and only if 1 + c1c2 < 0, that is a necessary and sufficient condition for the loss of stability of the fully
synchronised solution.

The numerical results reported in figure 7 complement the analytical theory discussed above. In panel (a) of
figure 7 we present the dispersion relation and the heterogeneous patterns emerging for both the hypergraph
and the associated projected network, for K = 1, c1 = 0.5 and c2 = −10. The dispersion relation is positive
over a finite domain and the patterns (represented by RWj(t)) that develop as follow the instability are pretty
localised. In panel (b) of figure 7, the parameters are set to the values K = 1, c1 = 1 and c2 = −0.9. The dis-
persion relation is non positive and the system displays synchronised oscillations: the imposed perturbation
dies out and the oscillators evolve at unison.

4.3. Master stability function on hypergraphs
In the previous section we have analysed the synchronisation of an ensemble made of SL oscillators defined
on a hypergraphs. To this end we employed a straightforward generalisation of the techniques presented in
section 4.1, when investigating the emergence of Turing patterns. The use of the dispersion relation has been
made possible because, for coupled SL equations, the variational problem yields a time independent Jacobian,
once evaluated on the periodic homogeneous solution (14). This is not true for generic nonlinear oscillators.
To overcome this problem one can however resort to the formalism of the MSF [35], as introduced above. The
aim of this section is thus to study the MSF in its full generality for systems defined on hypergraph. In partic-
ular, we will set to analyse the synchronisation of nonlinear chaotic oscillators coupled through a hypergraph
and compare the outcome of the analysis to that obtained when operating the system on the corresponding
projected network.

Let us consider again equation (8) and replace now in the latter equation εΛα by a generic parameter κ > 0
and thus also the projection δyα by a generic ‘perturbation’ vector δy

dδy

dt
= [DF(s) − κDG(s)] δy. (18)
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Figure 7. Synchronisation for SL system. Main panels: the dispersion relation for the SL system defined on the hypergraph and
the projected network is shown for two sets of parameters. In panel (a) (K = 1, c1 = 0.5 and c2 = 10) this choice yields to a loss
of synchronisation. Indeed there are eigenvalues associated to positive values of the dispersion relation and the resulting patterns
are heterogeneous (see insets (a1) for the projected network and (a2) for the hypergraph). In both insets nodes are ordered for
increasing hyper degree, resp. degree, for hypergraph, resp. projected network. The localisation is stronger when the dynamics is
hosted on the hypergraph. In panel (b) the chosen parameters (K = 1, c1 = 1 and c2 = −0.9) result in the emergence of a
globally synchronised state, the dispersion relation being always negative. This can be appreciated by looking at the insets [(b1) for
the projected network and (b2) for the hypergraph] where we report RWj as function of time.

The largest Lyapunov exponent of equation (18) is called the MSF [35]. Let us denote it by λ(κ) to emphasise
its dependence on the parameter κ > 0. If for all κ, λ(κ) < 0, then δy decays to 0. At variance, if there exists
κ > 0 such that λ(κ) > 0, then δy will grow. Back to equation (8) one can conclude that if for a given ε there
exists α such that λ(εΛα) > 0, then the associated δyα grows in time. Thus individual units deviate from the
reference solution s(t). On the other hand if for all α one has λ(εΛα) < 0 then the system reaches a globally
synchronised state: all units will follow at the unison the same chaotic orbit. Let us observe that λ(0) > 0 being
the reference orbit, s(t), a chaotic one.

To proceed in the analysis we assume linear coupling functions [61]: in this way the MSF simplifies, since
DG is a constant matrix. Moreover, we will assume the matrix DG to have only one non zero element, say DGba

which denotes the existence of a coupling between the ath and the bth component of x.
Let us observe that the variational equation still contains explicitly the time variable via the Jacobian of

the reaction part, DF(s(t)), which is indeed evaluated on the chaotic orbit. Hence to compute the MSF we
have to solve a non autonomous system of ODEs, to study the evolution of the norm of δy(t) and then use the
definition of the maximum Lyapunov exponent λ(κ) = limt→∞

log ‖δy(t)‖
t . This can result in a tricky exercise.

Indeed if λ(κ) > 0 then the norm can quickly increase to produce an overflow. On the other hand, if λ(κ) < 0,
then ‖δy(t)‖ shrinks below round-off error. For this reason we employed in our analysis the mean exponential
growth of nearby orbits (MEGNO) algorithm [62, 63]. This is an improved chaos indicator that allows to rapidly
discriminate between chaotic and regular orbits. The method makes it possible for the Lyapunov exponent to
be consequently recovered. For these reasons, MEGNO has been largely used in the framework of planetary
systems [64, 65], satellites and spatial debris [66–68] and also generic nonlinear dynamical systems [63]. The
method overcomes the above mentioned limitation by performing a sort of time average of the norm of the
deviation vector (see appendix A).

Without loss of generality we will use the Lorenz model [69] for a demonstrative application:

⎧⎪⎪⎨
⎪⎪⎩

ẋ = σ(y − x)

ẏ = x(ρ− z) − y

ż = xy − βz.

(19)

In the following we will fix the model parameters to the ‘standard values’, β = 2, σ = 10 and ρ = 28 for which
the system exhibits the chaotic orbit with a ‘butterfly shape’. Once we couple the above ODE using high-order
interactions, i.e. the hypergraph, we get

d

dt

⎛
⎝ xi

yi

zi

⎞
⎠ =

⎛
⎝ σ(yi − xi)

xi(ρ− zi) − yi

xiyi − βzi

⎞
⎠− σ

∑
j

LH
ij E

⎛
⎝ xj

yj

zj

⎞
⎠ , (20)
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Figure 8. MSF and synchronisation for the Lorenz system I. We report the MSF for the Lorenz model for linear couplings, 1 → 1
(main panels) and two choices of the coupling strengths ε = 3 ((a) panel) and ε = 10 ((b) panel). For a small coupling strength
(panel (a)), the MSF is negative in correspondence of the eigenvalues of the Laplace matrix defined on the hypergraph (green
dots), while the MSF can assume positive values once evaluated on the spectrum of the Laplace matrix for the projected network
(red dots). In the former case, the system synchronises (see inset (a2)) while in the latter it does not (see inset (a1)). For larger
coupling strengths (panel (b)) the MSF is negative for both the hypergraph and the projected network and thus, in both cases, the
systems do synchronise (see insets (b1) and (b2)).

where the constant 3 × 3 matrix E encodes for the coupling among the three variables and its entries
take values 0 or 1. For instance if E21 = 1 and otherwise Eij = 0, (noted for short 1 → 2) then the growth
rate of the second variable, y, depends on the first one, x, that is ẏi ∼ −ε

∑
jL

H
ij xj (discarding the reaction

part).
We are now in a position to adapt the above described theory, i.e. linearise about the reference orbit and

project the perturbation on the eigenbase of the Laplace matrix, to equation (8) for the case of the Lorenz
system. We will in particular compute the MSF to check the stability of the homogeneous states obtained by
replicating chaotic Lorenz trajectory on each node of the collection. In the main panel of figure 8 we report the
MSF for the coupling scheme, 1 → 1, that in the classification proposed in [61], corresponds to classΓ1, namely
the MSF is monotone decreasing and it has a single root. We consider in particular two values of the coupling
strength ε = 3 (panel (a)) and ε = 10 (panel (b)). For (sufficiently) small coupling strength (panel (a)), the
MSF evaluated on the discrete spectrum of the hypergraph Laplace matrix (green dots) is always negative and
thus the system synchronises to the chaotic reference orbit, as shown in the inset (a2). On the other hand the
MSF for the projected network (red dots) takes positive values: the chaotic oscillators cannot synchronise, as
we can appreciate from inspection of inset (a1). For large enough coupling strength (panel (b)), both spectra
yeld a negative MSF (green and red dots in panel (b)) and hence, in both cases, the systems do synchronise
(see insets (b1) and (b2)).

From these results one can draw a first conclusion. Once we fix the coupling strength ε, the sign of the MSF
depends on the spectrum of the Laplace matrix for the hypergraph, LH. Similarly for the projected network.
However, as we observed in section 3 the eigenvalues of the hypergraph Laplacian extend over a large portion
of the real axis, as compared to what it happens when considering the projected network. Hence the coupling
scheme 1 → 1 favours the synchronisation on the hypergraph, provided the coupling strength is sufficiently
small. Said figuratively, one can act on the ‘knob’ ε and have the spectra to slide on the MSF: by progressively
reducing the value of ε one can force the spectrum of the projected network to enter the zone where the MSF
is positive, whereas for the same value of ε the spectrum of the hypergraph is still associated to a negative
MSF.

In figure 9 we report a similar analysis for the coupling schemes 1 → 2 ((a) panel) and 3 → 3 (panel (b)). In
the classification proposed in [61] the former corresponds the class Γ2, two zeros, while the latter to Γ3, three
zeros. From the results shown in figure 9, one can conclude that the system behaves similarly for couplings
3 → 3 and 1 → 1: if the coupling is sufficiently large (here ε = 20), synchronisation is found on the hypergraph
but not on the corresponding projected network. This generalises our previous observation to all couplings
belonging to an odd class Γ2m+1.

The reported behaviour is reversed once we consider couplings that belong to an even class. As we can
appreciate from inspection of figure 9 panel (a) one can choose a sufficiently small coupling to have the MSF
negative on the projected network (red dots), while it takes positive values, when the problem formulated on
the hypergraph (green dots).
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Figure 9. MSF and patterns for the Lorenz system II. We report the MSF for the Lorenz model using the linear couplings, 1 → 2
((a) panel) and 3 → 3 ((b) panel). In the former case we can observe that, for the chosen value of the coupling strength, ε = 2.4,
the projected network yields a negative MSF (red dots) and thus the systems synchronises (inset (a1)), Conversely, the hypergraph
possesses unstable eigenmodes (green dots) and the system goes consequently unstable (inset (a2)). The opposite behaviour is
displayed in the case of the 3 → 3 coupling for ε = 20 (panel (b)): here the projected network exhibits unstable eigenmodes (red
dots) while the hypergraph shows a negative MSF (green dots). The inset (b1) testifies on the absence of synchronisation for the
projected network, while in the inset (b2) synchronisation is shown to occur on the hypergraph. Calculating the MSF proves less
stable for the setting analysed in panel (b). The blue solid line refers to the average computed over 200 independent runs of the
MEGNO algorithm. The shaded region (light blue) refer to the associated standard deviation.

5. Conclusion

In this work we took a step forward in modelling dynamical systems on networks. The aim of the work is
to account for high-order interactions among coupled units. In particular we focussed on the hypergraphs,
a very versatile setting where to model systems endowed with many-body interactions. Indeed one can easily
represent such high-order interactions via the hyperedge, so as to overcome the limitations intrinsic to dealing
with binary exchanges.

Starting from a microscopic process which takes place on the hypergraph, i.e. a random walk biases towards
the size and the number of hyperedges a node belongs to, we defined a new combinatorial Laplace operator
which generalises the concept of diffusive interaction to a multidimensional setting. This operator reduces to
the standard combinatorial Laplacian once the hypergraph converges back to an ordinary network. In this
respect, the newly introduced Laplacian can be rationalised as a natural extension of the usual operator.

In this framework we considered dynamical systems defined on top of hypergraphs and analysed the sta-
bility of the associated homogeneous equilibria. In particular we extended the MSF to this formalism and
investigated the specificity of Turing patterns for the generalised proxy of reaction–diffusion systems on hyper-
graphs. We also analysed the synchronisation of periodic and chaotic orbits, shedding light on the role exerted
by high-order couplings.

In all the inspected cases, the spectral properties of the novel Laplace operator are central in shaping the
ensuing patterns, which appear remarkably localised, as illustrated with reference to the Turing setting. Further,
hypergraphs can enhance or impede the synchronisation, as compared to what it happens on the corresponding
projected network, depending on the specificity of the imposed couplings.

Appendix A. Compute the MSF using MEGNO

To compute the MSF one has to solve equation (8). By discarding the partitioning into reaction and coupling
parts, one can rewrite the previous equation as

dδxi

dt
=

∑
j

Jij(t)δxj,

that is a time dependent ODE, often named variational equation. The latter should thus be solved together
with the evolution of the reference trajectory

dxi

dt
= F(xi),

where again we combine in F the reaction and the coupling parts.
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Then calling δx(t) = δx(t; δx0) the solution of the variational equation with initial datum δx(0) = δx0, the
MEGNO [62, 63], can be defined as:

Ys(t) :=
2

t

∫ t

0

δ̇(τ)

δ(τ)
τ dτ , (A1)

where [δ(τ)]2 = ‖δx(τ )‖2 = (δx(τ), δx(τ )), i.e. the norm of the vector δx, being (·, ·) the scalar product.
We also emphasised that the MEGNO is being computed with respect to the reference orbit s(t). A trivial
computation gives:

d

dt
δ2 = 2δδ̇

=

(
d

dt
δx, δx

)
+

(
δx,

d

dt
δx

)
= (J δx, δx) + (δx,J δx), (A2)

hence
δ̇(s)

δ(s)
=

(Hδx, δx)

δ2
, (A3)

where H = (J T + J )/2 is the Hermitian part of J .
Together with the MEGNO one usually defines also the (time)-averaged MEGNO:

Ȳs(t) :=
1

t

∫ t

0
Ys(τ) dτ. (A4)

Y(t) could in principle display large oscillations for large t, so limiting its effective predictive power. At variance,
it can be shown that the average-MEGNO is well behaved and allows to study the dynamics for long times.
Indeed the main feature of the average-MEGNO (and/or the MEGNO) is to allow to distinguish between
regular orbits, for which ¯Y(t) → 0, and irregular orbits, for which Ȳ(t) grows unbounded. More precisely,
Ȳ(t) ∼ λt/2 where λ is the largest Lyapunov characteristic number (or maximal Lyapunov exponent) of the
orbit s(t). Let us observe that for regular orbits, MEGNO is able to differentiate between periodic ones, Y(t)→0,
and quasi-periodic ones, Y(t) → 2.

Let us observe that one can overcome the problem of the growth of δ in case of chaotic orbits by employing
the following trick. Assume δx to represent a solution of the variational equation. Then one can introduce the
‘reduced vector’ w, w = δx/δ, whose evolution is given by:

ẇ = J w − (Hw, w).

It can easily proven that ‖w(t)‖ = 1. Indeed

d

dt
‖w‖2 =

(
d

dt
w, w

)
+

(
w,

d

dt
w

)

= (J w, w) − (Hw, w)‖w‖2 + (w,J w) − (Hw, w)‖w‖2

= 2(Hw, w)(1 − ‖w‖2) = 0,

where use has been made of the fact that ‖w(0)‖ = 1.

ORCID iDs

Timoteo Carletti https://orcid.org/0000-0003-2596-4503
Duccio Fanelli https://orcid.org/0000-0001-8545-9424

References

[1] Albert R and Barabási A-L 2002 Rev. Mod. Phys. 74 47
[2] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D-U 2006 Phys. Rep. 424 175
[3] Newman M E 2010 Networks: An Introduction (Oxford: Oxford University Press)
[4] Barabási A-L et al 2016 Network Science (Cambridge: Cambridge University Press)

[5] Latora V, Nicosia V and Russo G 2017 Complex Networks: Principles, Methods and Applications (Cambridge: Cambridge University
Press)

[6] Castellano C, Fortunato S and Loreto V 2009 Rev. Mod. Phys. 81 591

[7] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93

[8] Barrat A, Barthlemy M and Vespignani A 2001 Dynamical Processes on Complex Networks (Cambridge: Cambridge University
Press)

15

https://orcid.org/0000-0003-2596-4503
https://orcid.org/0000-0003-2596-4503
https://orcid.org/0000-0001-8545-9424
https://orcid.org/0000-0001-8545-9424
https://doi.org/10.1103/revmodphys.74.47
https://doi.org/10.1103/revmodphys.74.47
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1103/revmodphys.81.591
https://doi.org/10.1103/revmodphys.81.591
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002


J.Phys.Complex. 1 (2020) 035006 (16pp) T Carletti et al

[9] Asllani M, Carletti T, Di Patti F, Fanelli D and Piazza F 2018 Phys. Rev. Lett. 120 158301
[10] Adam I et al 2019 arXiv:1910.05761
[11] Benson A R, Gleich D F and Leskovec J 2016 Science 353 163
[12] Lambiotte R, Rosvall M and Scholtes I 2019 Nat. Phys. 15 313
[13] Petri G, Expert P, Turkheimer F, Carhart-Harris R, Nutt D, Hellyer P J and Vaccarino F 2014 J. R. Soc. Interface 11 20140873
[14] Lord L-D, Expert P, Fernandes H, Petri G, Van Hartevelt T, Vaccarino F, Deco G, Turkheimer F and Kringelbach M 2016 Frontiers

Syst. Neurosci. 10 85
[15] Estrada E and Ross G 2018 J. Theor. Biol. 438 46
[16] Abrams P A 1983 Am. Nat. 121 887
[17] Grilli J, Barabás G, Michalska-Smith M J and Allesina S 2017 Nature 548 210
[18] Patania A, Petri G and Vaccarino F 2017 EPJ Data Sci. 6 18
[19] Carletti T, Battiston F, Cencetti G and Fanelli D 2020 Phys. Rev. E 101 022308
[20] Devriendt K and Van Mieghem P 2019 J. Complex Netw. 7 469
[21] Courtney O T and Bianconi G 2016 Phys. Rev. E 93 062311
[22] Petri G and Barrat A 2018 Phys. Rev. Lett. 121 228301
[23] Berge C 1973 Graphs and Hypergraphs (Amsterdam: North-Holland)
[24] Estrada E and Rodríguez-Velázquez J A 2005 arXiv:physics/0505137
[25] Ghoshal G, Zlatíc V, Caldarelli G and Newman M E 2009 Phys. Rev. E 79 066118
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