
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

A contribution to C++ database development methodology

Lambers, Pascal

Award date:
1998

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/276d8bcc-9f48-48f4-9edc-ae4db73f5310

,;

FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX,

NAMUR

INSTITUT D'INFORMATIQUE

RUE GRANDGAGNAGE, 21, B-5000 NAMUR (BELGIUM)

A contribution to C++
database development

methodology

Pascal Lambers

Mémoire présenté en vue del' obtention du grade de

Licencié en Informatique

Année Académique 1997 - 1998

~S, i't>I\ S,I} S.::'.)

~'?)~Uo~

For the accomplishment of this thesis, I would like to thank:

- my promotor, Mr J.L.-Hainaut, who has always been available to steer me into the
right direction;

- Mr V. Englebert, for his inexhaustible technical assistance concerning C++,
database models and Voyager 2;

- Kirsten Bruyneels for her linguistic assistance on rereading this essay;
- to my parents, who have been paying my education for years but whom I hope to

release from this burden before long;
- to all the people from the DB-MAIN team I have besieged with questions on the

few occasions I did not find J.L.-Hainaut or V. Englebert.

ABSTRACT
This work is dedicated to the development of a methodology to design C++ object
oriented databases. Starting out from a conceptual entity-relationship model, the
investigation leads towards the definition of the C++ logical and physical models. For
both schemata, particular attention is paid to the transformations that have to be
performed to obtain them and the support the DB-MAIN CASE tool offers to do so.
Then, the structures appearing in the physical model are translated into C++ code.
The last chapters present a CASE tool that was developed to generate the C++ code
corresponding to the formerly defined physical model. Finally, the generated code and
the corresponding instructions are presented.

RESUME
Ce travail est consacré à la recherche d'une méthodologie de développement d'une
base de données C++. A partir d'un schéma conceptuel entité-association, la recherche
permet de définir des modèles C++ logique et physique. Pour les deux schémas,
beaucoup d'importance a été accordée aux transformations qui doivent être faites pour
les obtenir et au support que l'outil CASE appelé DB-MAIN offre pour le faire.
Ensuite, les structures qui apparaissent dans le modèle physique sont traduites en code
C++. Les derniers chapitres sont consacrés à la création d'un outil CASE pour générer
le code C++ correspondant au modèle physique défini précédemment. Finalement, le
code généré est présenté avec son mode d'emploi.

Contents

CONTENTS

I. Introduction .. 1
II. Context reminder ; .. 3

11.1. Database Development Methodology .. 3
II.2. The Conceptual Model .. 6

11.2.1. A General Approach of the Conceptual Model.. .. 6
11.2.2. Note on the Conceptual Model with regard to C++ ... 9

II.3. The Logical Model .. 9
11.3.1. The General Abstract Model.. ... 9
11.3.2. The C++ Logical Object Oriented Schema .. 9

11.4. Computer Aided Software Engineering .. 11
III. Declarative Structures in C++ Classes ... 13

111.1. Entity Types ... 13
III.2. Attributes and Attribute Types ... 14

IV. Logical Design of an Object Oriented Schema ... 17
IV.l. Analysis: .. 17
IV.2. A closer Look at the Transformations .. 17
IV.3. 'fransformation Plan ... 21

V. Physical Design of a C++ Object Oriented Schema ... 23
V.1. The Physical Schema ... 23
V.2. Translation of the Physical Schema .. 23

V.2.1. Object Collections .. 23
V.2.2. ldentifiers ... 25
V.2.3. Object Attributes .. 26
V.2.4. Cardinality Constraints ... 30
V.2.5. Types ... 31

VI. The DB-MAIN CASE Tool .. 33
VI.1. Assistance for Simple transformations: ... 33
VI.2. The Assist Menu .. 34
VI.3. Other useful Functions ... 36

VII. The C++ Generator ... 37
VII.1. A Restricted Model .. 37

VII.1.1. Overview of the Structures the C++ Generator can handle: 37
VII.1.2. Extra restrictions on the C++ object oriented logical model: 38
VII.1.3. Analysis Script to Validate the Schema .. 39

VIl.2. Chronological Overview of the Operations Performed by the Programme40
VIl.3. Sorne Technical Details of the C++ Generator41

VIII. Case Study ... 43
VIII.1. The Generated C++ Code .. 43
VIIl.2. An Example .. 47

VIII. 2.1. Conceptual design .. 4 7
VIII.2.2. Logical design .. 48
VIII.2.3. Physical design ... 49
VIII.2.4. Generating code ... 50

IX. Conclusion .. 53
X. Bibliography .. 55

iii

Contents

Appendices:

I. The Source Code of the C++ Generator (Lg.: Voyager 2) .. 59
II. The Generated C++ Code. Example 1 .. 85

II.1. Ph yscial Schema .. 85
II.2. The C++ Code Corresponding to the Sc hem a .. 86

III. The Generated C++ Code. Example 2 ... 93
111.1. Physical Schema ... 93
III.2. The C++ Code Corresponding to the Schema ... 94

Graphical presentations:

Figure 11.1 From conceptual to physical schemata ... 5
Figure II.2 Entity types: subtypes and supertypes .. 6
Figure 11.3 Relationship types .. 7
Figure II.4: Entity type CLIENT ... 7
Figure 11.5: Identifiers ... 8
Figure II. 6 The inverse constraint. ... 8
Figure II. 7 An object oriented logical schema .. 11
Figure IV .1 A closed chain of mandatory object attributes ... 19
Figure IV.2 An interrupted chain of object attributes ... 19
Figure IV.3 Detecting circular chains of object attributes .. 19
Figure IV.4 A functional relationship type to be transformed ... 20
Figure IV.5 Transforming object attributes .. 20
Figure IV. 6 Transforming object attributes .. 21
Figure V.1 Influence of object attributes on constructors ... 27
Figure V.2 Object attribute with cardinality [1-N] ... 30
Figure VII.1 Primary and secondary identifiers .. 38
Figure VIII.1 Conceptual schema of a team .. .47
Figure VIII.2 Logical schema of the Team48
Figure VIII.3 Physical schema of the team .. 49

iv

Introduction Chapter I

I. Introduction

This thesis has to be situated in the context of forward database design, a discipline that
includes, among others, the development of conceptual, logical and physical models, which are
methodological steps on the way towards the actual implementation of a database. Good
database design requires a stable methodology, which will be partly dependent on the database
management system used and on the language it supports. Whereas the conceptual model is
implementation independent, the logical and physical models depend on the database
management system used. As a consequence, the database development methodology has to be
partly adapted to the used database management system.

Although C++ is a powerful device to develop object oriented applications, one does not have
to be ail too familiar with the language to be able to find out that, as far as database design is
concemed, C++ makes a very poor environment. Whereas SQL offers devices such as
identifiers, access keys, foreign keys, obligatory fields, to name just a few of its treasures, C++
offers non of these. But maybe, C++ offers other structures, unknown to more frequently used
data base management systems, that can corne in handy to develop a database ... After ail, there
might be a way to design databases in C++ and to develop a corresponding methodology.

This thesis is a contribution to a C++ database development methodology. lt does not only try
to develop a one to design databases in C++, which is itself derived from a general database
developing methodology, but also investigates by which tools this development process can be
supported. After having explored the existing support tools and having demonstrated how
these existing tools can be expanded, for instance by means of validation scripts, I developed a
tool to generate the C++ code. This code corresponds to a formerly proposed physical model.

The structure of this thesis is as follows: The first chapter is a context reminder, a general
approach to database design methodology, in which special attention is paid to object oriented
database design and in which at the same time a first effort is made to define a C++ object
oriented logical model. The second chapter investigates which structures, contained by the
model defined in the former chapter, can be directly translated into C++ and, during this
process, the structures that do not exist in C++ become evident as well. On the basis of this
knowledge, the design methodology is fully developed in the next two chapters. Chapter three
is dedicated to the translation of the conceptual structures into logical ones and in the next
chapter, code, or rather pseudo-code to facilitate the lecture of the chapter, is developed for
the structures that cannot be immediately translated into C++.

The next step consists of investigating by means of which tools the newly developed
methodology can be supported. This is taken care of in the next two chapters. Chapter five
investigates on the one hand in which way the DB-MAIN CASE tool can provide existing help
and, on the other hand it demonstrates how the user can use the tool to develop even more
specific support according to his/her own specific needs. In chapter six, a tool is developed to
generate the C++ code corresponding to a physical model This was by far the most time
consuming part of the thesis. Although the programme that generates the code cannot yet
completely handle the object oriented models elaborated in the preceding chapters, it can
generate code for most of its structures. Still, a few extra constraints need to be imposed on
the formerly defined models and this is taken care of at the beginning of this chapter. To make
things more easy, an extra tool was designed to validate the simplified models.

1

Chapter 1 Introduction

The last chapter is a case study, based on the methodology developed in the former chapter. It
also investigates the code generated by the generator. The source code of the C++ generator
can be found in annexe 1, and in the following annexes some physical schemata are exposed,
accompanied by the corresponding C++ code generated by the C++ generator.

2

Context reminder Chapter II

rr. Context reminder

This first chapter comprises four parts. In the first part, the reader is reminded of the principles
of a good database development methodology and the quality criteria that should be aimed
for1

• The second and the third parts treat the conceptual and a logical schemata, and the last
part offers a general definition for CASE tools.

Il. 1. Database Development Methodology
Good database development consists of the following phases:

• studies of the users' requirements

During this first phase the client explains what he expects, wants and needs. In other words,
he expresses the necessities and requirements of the database he wants to see developed,
and which will be written down in text form. In this way, a semi-formal textual description
is obtained.
Important criteria of quality are completeness, correctness, readability. Moreover, the text
should not contain any redundancies, nor contradictions.

• conceptual design

The textual description taken care of in the first phase consists of factual sentences
describing the application domain (i.e. the problem to solve or the system to describe) in
terms of its concepts, properties and organising rules. In other words, such a text can be
interpreted as a linguistic expression of the future conceptual schema. Therefore, in this
phase, the text will be decomposed, and somewhat reworked, in order to obtain a list of
elementary propositions that are easy to interpret and to translate into entity-relationship
constructs. These elementary propositions are then interpreted and translated into entity­
relationship constructs. The users' requirements of the future database are now formalised
into a conceptual schema, of which the most important property should be correctness. This
criterion will be fulfilled if the conceptual schema expresses ail the meaning included in the
starting text in an elegant way. A more detailed presentation of the conceptual model can be
found in II.3.

The textual description may include some flaws, such as redundancies and conflicting
information, and can lack some important information as well. Consequently, the conceptual
analyst may be obliged to ask people from the application domain for additional
information. Of course, many other sources of information can be used to contribute to the
conceptual analysis, such as administrative and legal documents, observation of working
procedures, forms and other documents, screen layouts and printed reports, existing files
and databases, existing programs, etc. Sorne sources require more advanced techniques and
methods (reverse engineering for instance) but they are beyond the scope of this thesis.

1 Appropriate techniques to realise the mentioned quality criteria can be found in [HAINAUT, 96a] and
[HAINAUT, 96b].

3

Chapter II Context reminder

Important quality standards for the development of a conceptual schema are normalisation,
clarity, minimality2 and the respect of modelling standards.

• logical design

The conceptual schema, designed in the former phase, is an abstract piece of art and is not
operational or, in other words, it is independent of the Data Management System3 (DMS)
that will finally be used to implement the database. Logical design consists of designing an
operational expression4 of a1l the specifications included in the conceptual schema. A logical
schema is semantically equivalent to the conceptual schema it is derived from but dependent
on the model of a family of DMS. If, for example, the DMS is a relational one, a relational
logical schema will be designed. A more detailed description of a logical schema will be
presented in II.3.

Two important quality criteria to be taken into consideration are time and space efficiency.
It should be noted that these criteria are often not complementary: often the price to pay for
time efficiency is a loss of space efficiency and vice versa.

• physical design

Whereas the logical schema depends on the model of a family of D(B)MS, a physical
schema is compliant with a specific D(B)MS of this family. For instance, starting out with a
relational logical schema, which is SQL compliant, different physical schemata can be
designed, such as ORACLE 7, DB2 or SYBASE. Example:

2 I.e. no redundancies.
3 Data Management Systems (DMS) can either be Database Management Systems (DBMS) or plain

programming languages. There are different kinds of Database Management Systems. ORACLE, SYBASE,
DB2 and SQL-Server, for instance are relational DBMS which understand some kind of dialects of the SQL
language. IMS, IDMS, DATACOM/DB, TOTALK and IMAGE are examples of non relational DBMS. Also
plain programming languages offer data structure management systems, generally called File Management
Systems. To avoid having to distinguish these categories, one can talle about Data Management Systems, or
DMS.

4 I.e., an expression that can be processed or operated by software.

4

Context reminder Chapter II

Figure 11.1 From conceptual to physical schemata.

Physical design comprises two phases. The first one consists in developing an abstract
physical schema by augmenting the logical schema with technical specifications. Access
keys (indices) are added to the schema, the designer must specify which files (collections)
are available and in which file(s) the rows of each table will be stored, the in the D(B)MS
invalid names, reserved words for instance, are replaced by valid ones, technical
descriptions are added where necessary and redundant access keys are taken away. Through
the second phase, the physical schema is translated into the Data Definition Language of the
D(B)MS.

Important quality criteria to take into account are time and space efficiency. The available
tuning features of the D(B)MS should be fully exploited, and the designer should not lose
sight of the strengths and weaknesses of the host programming language. Finally, when the
physical schema is translated into the Data Definition Language, good programming
standards should be aimed for.

• implementation
During this phase, the database is put on the computer and made to work.

• exploitation procedures
Once the database implemented, certain functions and procedures are necessary to exploit
it. For instance, one has to write functions and procedures that are capable of modifying
data, update data, etc.

• utilisation
The database is being used ...

5

Chapter II Context reminder

• maintenance and evolution
. .. and has to be maintained. Databases that have been developed according to a rigid
database development methodology and whose documentation such as texts, conceptual,
logical, physical schemata, etc. have well been conserved, will be a lot easier and less time
consuming to be maintained. The maintenance of databases of which all or most of the
documentation has been lost, can be a very slow and cumbersome procedure. Nevertheless,
thanks to reverse engineering there is a way of redocumenting, reeningeering, maintaining,
etc. even those databases.

11.2. The Conceptual Mode/

11.2.1. A General Approach of the Conceptual Model
The conceptual schema discussed in this work is the Entity Relationship conceptual schema. It
comprises the following concepts:

Entity types
An entity type represents a class of concrete or abstract real-world entities, such as computers,
books, dreams and orders. It can also be used to model more computer oriented structures
such as record types, tables, segments, classes, etc. Instances of entity types are called entities.
The graphical representation of an entity type is a rectangle, as illustrated in Figure IL 1.

An entity type can be a subtype of one or more other entity types, called its supertypes. A
subtype inherits all the properties of its supertype. The collection of subtypes of an entity type
E is declared total (symbol T) if each E belongs to at least one subtype. This collection is
declared disjoint (symbol D) if each E belongs to at most one of its subtypes. If the collection
is both total and disjoint, it forms a partition (symbol P) of entity type E. In Figure II.2, entity
types MAN and WOMAN forma partition of entity type PERSON.

PERSON

MAN

Figure 11.2 Entity types: subtypes and supertypes

Relationship types
A relationship type is defined by a correspondence between two or more entities. Each entity
type that enters into a relationship with a relationship type plays a specific role. If a relationship
type creates a correspondence between two entity types, it is called binary, if it does so
between three or more of them, it is called N-ary. A relationship type with at least 2 roles
taken by the same entity type is called recursive or cyclic.

6

Context reminder Chapter II

Each role Roof an relationship type Reis characterised by its name, which is not obligatory,
and its cardinality [i-j], a constraint stating that each entity assuming role Ro must enter at
least i and at most j titnes into a relationship with Re. Generally, i is 0 or 1 and j 1 or N but as
long as i ~ j, i ~ 0 and j>0, they can take any value. Arole can be taken by more than one
entity type. If this is the case, it is called a moiti-ET role. The graphical representation of a
relationship type is a hexagon, as illustrated in Figure 11.3, in which a CLIENT orders from 0
up to N instances of PRODUCT and a PRODUCT can be ordered by 0 to N instances of
client.

Figure II.3 Relationship types

Attributes
An attribute is a quality or characteristic of an entity type or a relationship type. It can take
one or more values and groups of values. A value is a symbol used to represent an elementary
fact, often in the form of a character string. A few examples are 'John', 'Deeds', 'County
Road, '7', etc. Possible domain values are: boolean, numeric, char, etc. Graphically, an
attribute is placed in the lower part of the rectangle and hexagon, representing an entity type
and a relationship type respectively.

As illustrated in Figure II.4, an attribute has a cardinality [i-j] . The default cardinality is [1-1]
and can be omitted. Attributes can be single valued or multivalued, optional or mandatory and
atomic or compound. An attribute is optional if i=0 , it is single valued if j=l and as soon as
j>l, it is multivalued. If an attribute comprises other component attributes itself, it is
compound, otherwise atomic. When the domain of an attribute is an entity type, it is called an
object attribute, which will be further discussed in 11.3. In entity type CLIENT, represented
below, the attribute name is single valued and mandatory, first name is optional and
multivalued, address is mandatory, compound and single valued and comp is an optional
object attribute.

CLIENT
name
first name[0-N]
address

Street
number
city

comp [0-1]: *COMPANY

Figure II.4: Entity type CLIENT.

7

Chapter II Context reminder

lntegrity constraints
An integrity constraint is a property, which cannot be expressed by means of the basic concepts
of the schema, which the data corresponding to this schema should comply to. There are many
integrity constraints such as cardinality constraints, which have already been discussed,
inclusion constraints, exclusion constraints, identifiers, etc. Except for the identifier and the
inverse constraints, no special attention will be paid to them, because they are not tak:en into
account in the other chapters of this thesis.

An identifier mak:es it possible to identify unambiguously one and only one instance of an
entity type or a relationship type. The value or combination of values tak:en by an identifier
must be unique. The main identifier of a parent object is called the primary identifier, alI its
other identifiers are called secondary identifiers. A parent object can only have one primary
identifier. The identifier of an entity type can consist of:

-one or several of its attributes;
-at least one role assumed by this entity type;
-a group formed by one or more of its attributes and one or more of the roles it assumes.

In Figure 11.5 below, entity type CLIENT is identified by attribute number, which means that
two entities can not have the same values for this attribute.

CLIENT

uumber
name
first-name[l-N]
address

Street
number
citv

id:number

Figure 11.5: Identifiers.

An inverse constraint can be asserted between two object attributes, expressing that each is
the inverse of the other [DB-MAIN, 97]. For example, in Figure II.6, orders of CUSTOMER
and owner of ORDER are declared inverse object attributes. If c denotes the Owner of
ORDER entity o, then c must belong to the orders value set of CUSTOMER c.

CUSTOMER ORDER

cid IllJ!ll.Qid

cname date

caddress owner: *CUSTOMER

orders rO-Nl: *ORDEB id: numord

id: cid Jinv:owner
id' :orders [*]

inv

Figure 11.6 The inverse constraint.

8

Context reminder Chapter II

11.2.2. Note on the Conceptual Model with regard to C++
In C++, the collection of subtypes of an entity type is always disjoint: any instance of a
superclass belongs to at most one instance of the classes that inherit from this class. This can
be considered as an exception to the rule that a conceptual model is independent of the
database management system.

11.3. The Logical Mode/
This chapter consists of two parts. In the first part, the General Abstract Model (GAM) is
presented. The GAM contains all the general characteristics of a logical model. The second
partis an application of this GAM: the C++ logical object oriented schema.

11.3.1. The General Abstract Model

By means of the GAM, the general characteristics of a logical model are presented. Firstly, in a
logical model, multivalued attributes are extended, i.e. the way in which their values are
structured is determined. The possibilities are the following:

- set: unstructured collection of distinct elements;
- bag: unstructured collection of not necessarily distinct elements;
- list: sequenced collection of not necessarily distinct elements;
- unique list: sequenced collection of distinct elements;
- array: sequenced collection of cells that each contain an element;
- unique array: sequenced collection of cells that each contain a distinct element.

Secondly, access mechanisms (or access keys) are added. In a relational, ie. SQL based model,
foreign keys are added to enforce that the values of one or more columns of one table
correspond to the values of the identifier of another. It is also determined where the data are
going to be stored. Strongly related data could for instance be grouped and stored in the same
file. In this way, data that often have to be accessed at the same time are found in the same file.
Finally, the different entities are stored in a certain way, sometimes ordered, sometimes not. In
a relational based model, for example, there is no order between the different rows of a table.

11.3.2. The C++ Logical Object Oriented Schema
The C++ logical object oriented schema is just one possible application of the GAM. Other
possible applications are the logical SQL schema, the logical CODASYL schema, the logical
COBOL schema, etc.

In a C++ logical object oriented schema,

the following structures and constraints can be expressed:
• entity types without attributes
• atomic and compound attributes
• object attributes
• single valued and multivalued attributes
• optional and mandatory attributes
• identifiers consisting of one or several attributes
• multivalued identifiers
• inverse constraints

9

Chapter II Context reminder

• (foreign keys)

and the following structures cannot be expressed:
• collections of non disjoint subtypes
• roles
• relationship types without attributes
• relationship types with attributes

Remarks:
1. In object oriented database design, foreign keys should be avoided. The reason is that

physically, in C++, foreign keys become either copies of or pointers to values of one or
several data members5 forming an identifier of an object from another class. Object
attributes are translated into pointers to other objects and from there on, any data member
of those objects can be accessed. Thus, only one pointer has to be stored to be able to
access any data member of the object pointed to. Therefore, object attributes are a lot more
efficient and economical. Moreover, object oriented databases without foreign keys are
more flexible since each foreign key must correspond to an identifier whereas there is not
the case for pointers pointing to objects. Consequently, relationship types should rather be
transformed into object attributes than into foreign keys.

2. A distinction was made between relationship types without attributes and relationship types
with attributes because both objects will be subjected to a different transformation to obtain
a logical schema from a conceptual schema.

The way in which the structures that cannot be expressed in the logical model, are transformed
will be discussed in chapter IV, Logical Design of an Object Oriented Schema, in which I'll
pay special attention to object attributes and to some conditions related to them. Chapter VI,
The DB-MAIN CASE Tool, discusses how the DB-MAIN CASE tool can be a trustworthy
assistant to perform transformations.

5 In C++, attributes become data members.

10

Context reminder Chapter II

Example of an (C++) object oriented logical model [DB-MAIN, 97]:

DOCUMENT
AUTHOR

~
title

name

date-published
first-name[0-1]

key-word[0-10) documents[l-N]: *DOCUMENT

reservation[0-N] - inv: documents[*]

PROJECT

~
p-name

date-reserved company
by: *BORROWER employees[0-N]: *BORROWER

authors[0-N]: *AUTHOR id: p-code
id: doc-id id':p-name
id': reservation[*].by
inv: authors[*) ,_

id': ernployees[*] ,_
inv

BOOK
lSllN

~
publisher
copies[0-N]

ser-number
date-acquired

BORROWER

ll:.id
name
address

REPORT location Street

re121:irt-id store

project shelf

id: report-id row
borrowing[0-N]

borrow-date

number
city

phone[l-5)
responsible[0-1): *BORROWER
assigned-to[0-1): *PROJECT

end-date[0-1] id: p-id

borrower: *BORROWER inv: assigned-to -
project: *PROJECT

id:ISBN
id': copies[*).ser-number
id': copies[*].borrowing[*].borrow-date

Figure II. 7 An object oriented logical schema.

11.4. Computer Aided Software Engineering
Computer aided Software Engineering (CASE) tools provide automated support for many of
the system analysis and design methods available to the information systems developer. They
provide an environment to draw and redraw diagrams, to generate system documentation, to
generate code structures and database schemata, etc.

Besides the DB-MAIN CASE tool, an example that is worthwhile being mentioned is Rational
Rose. This tool can be used to apply the Unified Modelling Language (UML) [Muller, 97],
and goes with a C++ generator.

11

Declarative Structures in C++ Classes Chapter III

III. Declarative Structures in C++ Classes

Compared to SQL for instance, C++ is a very poor language to implement a database. It offers
very few declarative structures or, in other words, very few structures found in physical models
that can be directly and implicitly expressed. This chapter gives an overview of the declarative
structures that do exist in C++. For each structure, the corresponding code will be represented
together with a few indispensable comments conceming language specific characteristics.

Ill. 1. Entity Types

Entity types are translated into classes.
eg: entity type 'Person'

1 Personl

becomes the following C++ class:

class Person {

} ;

Subtypes and Supertypes are translated into subclasses and superclasses. As I have already
mentioned, the collection of subtypes is always disjoint in C++. As a consequence, if a
collection of subtypes is total, it automatically forms a partition of its supertype. However, it is
possible to make a distinction between total and non total collections of subtypes. One can
create a total collection of subtypes by declaring a virtual data member of the superclass to be
a pure virtual function. A virtual function is 'made pure' by the initializer = 0 [Stroustrup,
97]. A class with one ore more pure virtual functions is an abstract class, and no objects of
that class can be created.

eg:
The following schema, in which entity types MAN and WOMAN form a partition of
entity type PERSON,

Person

Woman

is translated into C++ by three classes. In class Person, member function f() is declared
to be a pure virtual function, so that no more objects of class Person can be created. In
classes Man and Woman, the JO member functions are overridden, so that they are no
longer virtual and by means of' : public Person', it is expressed that classes Man and
W oman are subclasses that inherit publicly from class Person.

13

Chapter III Declarative Structures in C++ Classes

class Persan {

virtual vaid f (= 0

} i

class Man: public Persan {

virtual void f ();

} i

class Waman: public Persan {

virtual vaid f ();

} i

111.2. Attributes and Attribute Types
Simple attributes are translated into data members.

eg: attribute name of type char and with length 30 of entity type person

Person
name

becomes the following data member

class Persan {

char name[31];

} i

C++ provides member functions, equivalent to methods in Delphi, to access and then
set, get or modify the values of data members. They are not represented in this example.
Since strings are null terminated, in C++, the length of the data member is obtained by
adding 1 to the length of the corresponding attribute. Data members are always optional
and to mak:e them mandatory, the programmer has to add additional code. This holds for
multivalued attributes as well.

Attributes can be of different types. The following types can be immediately translated in C++
types:

TYPE C++
Boolean bool
Char char
Compound<*> struct
Float float
Numeric, Integer int (for small numbers, <32768.)

double (for larger numbers)
float (if there are decimal digits)

14

Declarative Structures in C++ Classes Chapter III

("') Compound attributes are translated into structures, which are equivalent to records in Delphi
and many other programming languages.

Eg: The following compound attribute address of entity type Person

Person
address

Street
number
city

becomes in C++

class Person {

} i

struct Taddress {
char street;
int nu.rober;
char city;

} address;

Similar to 'street', which is a data member of type 'char', address is a structure of type
'Taddress'.

Collection types: Although one can make a distinction between sets, bags, lists, unique lists,
arrays and unique arrays, as explained on page 9, only arrays can be directly implemented in
C++. There are three different situations to be discussed:

1. Arrays of simple types (integers, characters, floats, ...)
To create an array of O to 5 integers, for example, one writes in C++:
int myint[5];

2. Arrays of compound types. Example of an array of O to 5 five addresses of type t_address:

struct t_address {
char street;
int nu.rober;
char city;

} Address[5];

15

Chapter III Declarative Structures in C++ Classes

3. Arrays of strings cannot be immediately translated into C++. The only way to implement
them is by means of arrays of pointers.
Example:
char* s[5);
s[l] = new char[25];

s is an array of five pointers to characters. By means of 'new', enough space is reserved for
the pointer to point to the first character of a string of 25 characters.

For other non declarative structures and constraints such as identifiers, object collections,
object attributes, object relationships and cardinality constraints, etc., the programmer has to
write additional code. In chapter V, Physical Design of a C++ Object Oriented Schema, you
find the algorithms and pseudo-code, which the programmer can develop to implement non
declarative structures and constraints.

16

Logical Design of an Object Oriented Schema Chapter IV

IV. Logical Design of an Object Oriented Schema

This chapter discusses the transformations that have to be performed to transform a conceptual
entity relationship schema into a C++ logical object oriented schema. ldeally, the
transformations used during the logical design phase should ail be reversible and semantically
equivalent but unfortunately, this is not the case.

As has been concluded on page 9, conceptual schemata contain three structures that cannot be
expressed in the C++ object oriented logical schemata: collections of non disjoint subtypes,
(multi-ET) roles and relationship types.

IV. 1. Analysis:
1. Collections of non disjoint subtypes. It is not possible for an entity type E to belong to more

than one of its subtypes. Unfortunately, a semantically equivalent transformation does not
exist here. If, in the conceptual model, the collection of subtypes is total and non disjoint
(T), it has to be transformed into a collection that forms partition of its supertype (P) and if
it is non total and non disjoint (-), it will have to be transformed in a non total and disjoint
one (D).

Another possibility consists of suppressing the superclass and adding its attributes to a11 its
subtypes. An entity that was to belong to several of its subtypes will now exist several times
in the database. This causes redundancy.

2. Multi-ET roles, i.e. roles that are taken by more than one entity type, prevent relationship
types from being transformed in into object attributes, a transformation which is described
in the next step. Therefore, they must be transformed into relationship types.

3. Relationship types.
• Transformation of non functional relationship types into entity types.

Non functional relationship types are N-ary relationship types, relationship types with
attributes or binary, man y to many relationship types.

• Transformation of functional relationship types into object attributes.
Functional relationship types are binary, one to many relationship types without
attributes.

IV.2. A closer Look at the Transformations
In the next paragraphs, I will give a detailed analysis of each transformation. Later, in chapter
VI, I will investigate to which extent the DB-MAIN CASE tool can assist the user through this
transformation process.

Transforming non disjoint collections of entity types:
Passing from disjoint collections of entity types to disjoint (D) ones, is not really a
transformation properly speaking. In fact, by doing this one merely changes the semantics of
the schema.

17

Chapter IV Logical Design of an Object Oriented Schema

Transforming multi-ET roles into relationship types:
When a multi-ET role is transformed into a relationship type, the relationship type holding this
role is split up into two equivalent ones with the same cardinalities, namely the cardinality of
the multi-ET role and the cardinality of the original role at the other side.

Transforming non functional relationship types:
When a non functional relationship type R is transformed into an entity type E, each one of the
original roles is transformed into a one to many or sometimes one to one relationship type. The
basic propagation rules of this transformation are:
• Cardinality propagation:

For each role with cardinality [I-J] in R, there is a new relationship type with cardinalities
[I-J] , [1-1] . The [1-1] cardinality is placed at the side of the newly created entity type E.

• Attribute propagation:
The attributes of R are associated to the entity type E obtained by the transformation.

• Identifier propagation:
The identifiers of R are translated for entity type E as follows: each role is replaced by the
corresponding role of the new relationship type, and each attribute is kept unchanged.

Remark:
As has been said before, the above discussed transformation is reversible. A relationship type R
that has been transformed into an entity type E can be retransformed into a relationship type
and if both these transformations are performed, the original situation will be recovered. The
conditions on the entity type E to be transformed into a relationship type are:
• E takes at least two roles;
• the cardinalities of these roles must be [1-1] for the obvious raison that each E entity must

be linked to one and only one entity of the other side, in the same way the (future)
corresponding relationship will be made of one and only one entity of each kind;

• all these roles belong to distinct relationship types, because otherwise one of the relationship
types would be cyclic, and it would not be possible to replace it by a role.

• E has at least one implicit or an explicit identifier. The raison is that all relationships of the
same kind are distinct, and cannot be made of the same entities and attribute values.

Transforming functional relationship types:
The transformation of functional relationship types, i.e. binary, one to many relationship types
without attributes, to object attributes is undoubtedly the most critical phase of this logical
design process. There are two problems concerning this transformation process. In the first
place, this complexity directly results from the decision I made to create/ generate a non
transaction-oriented database. The difference between this and a transaction-oriented database
and why the use of object attributes is limited as a consequence of the choice not to work with
a transaction-oriented C++ database, are explained in V.3, for the physical representation of
object attributes cannot be left out of this discussion. In the second place, this transformation
process is complex because it imposes certain choices to be made.

18

Logical Design of an Object Oriented Schema Chapter IV

1. Restrictions on object attributes:
In the C++ object oriented logical schema I propose, it is not possible to have a circular chain
of mandatory object attributes, i.e. a closed chain of mandatory object attributes in such a
way that the type of the one corresponds to the next class in the chain.

Example:

IB~*BI k~cl IA,:A 1
Figure IV.1 A closed chain of mandatory object attributes.

In this logical schema, class A contains an object attribute to class B, class B one to class C
and to close the chain, class C one to class A.

As will be discussed in more detail in V.3., the raison of this restriction is that, in non
transaction-oriented databases, an A object cannot be created before its corresponding B
object, which cannot be created before its corresponding C object, which itself cannot be
created before its corresponding A object, etc.

As soon as this chain of mandatory object attributes is interrupted by making at least one of
them optional, also a non transaction-oriented database can deal with the situation. In the
example below, one can first create an instance of B, then one of A, of which the object
attribute B points to the newly created class B, and then one of C, of which the object attribute
A corresponds to the newly created class C.

IB~*BI le [:il, .J IA,:A 1

Figure IV.2 An interrupted chain of object attributes.

However, it is far more easy to detect these circular chains before the relationship types have
been transformed, as demonstrated in the example below:

~-NŒ}l-1~

o-N--@---1-1

Figure IV.3 Detecting circular chains of object attributes

19

Chapter IV Logical Design of an Object Oriented Schema

2. How to transform and which choices are to be made:
Before a relationship type can be transformed into an object attribute, two preconditions have
to be fulfilled:
- the relationship type is binary and without attributes;
- both roles are mono-ET1

•

The designer has to decide which entity type will contain the object attribute. It can be placed
in one entity type or in each entity type (with an inverse constraint between the two object­
attributes).

G}-0-1-0-o-~

Figure IV.4 A functional relationship type to be transformed.

In the schema represented above, the object attribute obtained by the transformation can be
placed in class A, in class B or in both classes with an inverse constraint between the two
object-attributes.

Graphical representation of the three situations:

(1)

(2)

(3)

A
B[0-1]: *E
inv: B

B
A[O-NJ: *A
id': A[*]

B
A[O-N]: *A

r----- id': A[*]
inv

Figure IV.5 Transforming object attributes

1 I.e. roles that are taken by only one entity type.

20

Logical Design of an Object Oriented Schema Chapter IV

In (1), for each instance of B, the 0-N associated A classes can be found directly: they
correspond to the values of object attribute A. For each instance of A, to find back the
associated instance of B, the database must progressively search ail the object attributes of type
A of every B instance.
In (2), for each instance of A, the associated B class can be found directly since it corresponds
to the value of object attribute B. However, to find the A classes corresponding to an instance
of B, it is necessary to search object attribute B of every A instance.
In(3), the database can irnmediately find the corresponding class(es) for both classes. Once
more, the inverse constraint between the two object attributes expresses that each one is the
inverse of the other.

Although the three possibilities are semantically equivalent, they have a repercussion on
database optimisation. If access time is more important than keeping the size of the database
minimal, then the object attribute should be placed in both entity types. If size is more
important than access time, the object attribute should be placed in the entity type from which
the majority of the accesses towards the corresponding entity types are made.

However, in one situation, there is only a choice between two options: if the :rrununum
cardinality of one role is O and that of the other >0. In this situation, the object attribute
corresponding to the relationship type to be transformed cannot be placed in the entity type
that plays the role with the cardinality >0. The following example makes clear why:

0-o-N-@--1-1-ŒJ
Figure IV.6 Transforming object attributes.

If, in Figure IV.6, R were transformed into an object attribute ObjA contained by A, ObjA
could not be obligatory since because the role 0-N it is possible that some instances of a are
related to O instances of B. However the role 1-1 should be translated into an obligatory
attribute.

IV.3. Transformation Plan

In conclusion of this chapter, I present the following transformation plan to obtain a C++
object oriented logical schema:
1. Collections of non disjoint subtypes

• To be transformed into collections of disjoint subtypes. This is a non semantically
equivalent transformation.

2. Multi-ET roles
• To be transformed into relationship types.

3. Non functional relationship types
• To be transformed into entity types.

4. Functional relationship types
• Firstly, the minimum cardinality of object attributes has to be adapted in such a way

that there are no circular chains of mandatory object attributes, then
• functional relationship types are to be transformed into object attributes.

21

Physical Design of a C++ Object Oriented Schema Chapter V

V. Physical Design of a C++ Object Oriented Schema

The first part of this chapter is dedicated to the adaptations of the logical schema that are
necessary to obtain a physical schema. The rest of the chapter analyses how non C++
declarative structures are translated into C++ code.

V.1. The Physical Schema
To obtain a physical schema, the last elements that need to be taken care of are names and
technical descriptions. The names of classes, attributes, etc. are directly derived from
conceptual names. They do not necessarily satisfy the naming conventions of C++, which are
as follows: names must always start with a letter and may contain letters, digits and
underscores (_). Neither can names be words reserved for the target language. Although the
length of names is not restricted, some C++ compilers will only distinguish two names if they
there is a difference among the first 32 characters. For some elements in the schema, it can be a
good idea to add a technical description, i.e. technical comments and recommendations that
can be useful to the programmer or the database manager.

V.2. Translation of the Physical Schema
Many important constructs and integrity constraints that are necessary to express essential
properties of the application domain to be described, can not directly be expressed in C++. To
implement them, the programmer has to develop code him/herself. In this chapter, five such
constructs and integrity constraints are discussed: object collections, identifiers, object
attributes, cardinality constraints, and some attribute types. For each of them, I'll propose
algorithms and pseudo code, which are one way to implement them in C++ and which
correspond to the code generated by the C++ generator discussed in chapter VIL Together
with the declarative structures discussed in chapter III, these five constructs are the ingredients
of a physical schema;

V.2.1. Object Collections

To express the properties of the above-mentioned C++ logical schema, two kinds of object
collection are necessary: collections of objects from one class, representing an entity type, and
collections of values of a multivalued attribute.

Collections of objects (class instances):
Collections of objects that collect ail the instances of a class can be simulated by lists. The main
advantage is that the number of objects that can be added to a list is undetermined. Bach newly
created object of class C is added to the list of objects from its class. The performance of the
database can be augmented if this list takes the form of a 'double chain' of pointers to make it
possible to navigate back AND forth. Unique lists can be obtained by checking whether the
identifier constraint (cf. infra) is respected before adding an object to the list.

23

Chapter V Physical Design of a C++ Object Oriented Schema

Each object of class C contains a pointer 'first' to the first object of the list, a pointer
'previous' to the object preceding it in the list, a pointer 'next' to the object placed right behind
it in the list and the member functions to get, set and modify the values of these three data
members1

•

class Person {O

c * next;
C * previous;
C * first;
corresponding member functions

} ;

Whenever an object O of class C is created, its constructor will execute the following lines:
1. next <- NULL; (1)
2. previous <- former_object_in_list; (2)
3. IF previous-exits THEN previous_object.next <- this_object

ELSE first <- this object
4. former_object <- this_object

Comments: 0 is added as the last object and therefore the value of 'next' becomes NULL (1).
The global variable 'former_object_in_list' is assigned to 'previous' (2). If there is a previous
object in the list, its data member 'next' will be assigned a pointer to object O.

When, later on, 0 is destroyed, its destructor will execute the following algorithm:

IF next_exits THEN
if previous_exists then (1)

l
previous_object.next <- next;
next_object.next.previous <- previous;

else (2)

ELSE

1

next_object .previous <- NULL;
first <- next;

if previous_exists then (3)

1

previous_object .next <- NULL;
former_object <- previous;

else (4)

1

former_object <- NULL;
first <- NULL;

Comments: Before being able to restore the list without 0, the algorithm bas to detect O's
position in the list. 0 can be situated in the middle (1), at the end (2), in the beginning (3) of
the list or O can be the only object in the list (4).

1 To simplify the pseudo code the member functions are left away. In real C++ code, previous_object.next f­
next, for instance, will become get_previous()->next = next;

24

Physical Design of a C++ Object Oriented Schema Chapter V

Collections of values of multivalued attributes:
1. Lists and unique lists of attributes can be implemented in the same way as lists and unique

lists of objects. In chapter VIII, another way of implementing them will be proposed.
2. Arrays have been discussed in chapter III. Unique arrays can be obtained by checking code

equivalent to the one discussed in V.2.2.
3. The algorithms to simulate bags and sets will not be discussed.

V.2.2. ldentifiers
An identifier is an attribute, or a set of attributes, that designates a property which is unique for
each instance of a class. Since in C++ this uniqueness cannot be declared, it must be
procedurally enforced. Before a new instance can be added to the collection of already existing
objects of a certain class, a procedure has to compare the identifier of this instance with the
identifiers of ail the other instances to check its uniqueness. Only in case of uniqueness, the
new instance can actually be created. ldeally, this 'checking procedure' is called by the object's
constructor, who'll refuse to construct the object if the identifier constraint is not respected.
The following algorithm demonstrates what such a 'checking procedure' would look like:

A new object 'NO', of which attrl and attr2 form the primary identifier and attr3 is a
secondary identifier, can only be created if the following fonction retums 'true':

Function boolean Check_identifier (attrl: Tattrl, attr2: Tattr2, attr3:
Tattr3)

for each object in Get_list_of_objects() do (1)
IF

1

O.attrl = NO.attrl and O.attr2 = NO.attr2 (2)
or (3)
o.attr3 = NO.attr3

THEN return false
return true;

Remarks:
(1) In fact, Get_list_of_objects() retums a list of pointers to objects, but here it is far more

easy to represent them as objects.
(2) Between the comparisons of different attributes that form one identifier, the algorithm

uses logical operator 'and': as soon as one attribute value is unique, the identifier
constraint is respected.

(3) Between the different identifiers (primary and secondary identifiers) logical operator 'or' is
used: in order to be able to create an object, ail its identifier constraints have to be
verified.

25

Chapter V Physical Design of a C++ Object Oriented Schema

The constructor of an object start as follows:
if Check_identifier(...) then
destroy_this_object() (1)
throw an exception

else
(continue construction)

Remark: (1) Destroy_this_object cornes down to the object's calling its own destructor.

V.2.3. Object Attributes

As a consequence of what was concluded in 1/.3.2.,The C++ Logical Object Oriented
Schema, no attention will be paid to foreign keys and this discussion will exclusively be
dedicated to object attributes. In this third part of the chapter, I will first present the physical
representation of object attributes, then I'll explain why object attributes can be a problem for
non transaction-oriented databases and finally I'll give a detailed analysis of the algorithms that
must be implemented in C++ to comply with the integrity constraints at ail times.

The physical representation of object attributes:
An entity type containing object attributes, will be translated by a class containing data
members holding the address of an object of the corresponding type. From now on, data
members corresponding to object attributes will be referred to as member classes. Example:

player
team [0-1]: *te

becomes in C++:

class player {

team * ptr_to_team;
player(... , team * ateam, ...) ;

} i

When a class contains a member class of type C, its constructor will contain an argument
which corresponds to this member class. When the constructor is called, the corresponding
parameter, will be a pointer or a list of pointers to the object(s) of class C with which object 0
enters into relationship. If the object attribute is mandatory, this pointer is obligatory and
cannot be at NULL to indicate that the pointer points to nothing, but if the object attribute is
optional, this pointer can be set at NULL, for example, if the object it points to has not (yet)
been created.

26

Physical Design of a C++ Object Oriented Schema ChapterV

Object attributes and non transaction-oriented databases
In a transaction-oriented database, it is possible temporarily not to respect the database's
integrity constraints, namely from the beginning until the end of a transaction. In this way, it
becomes a lot easier to add, change and remove data to and from the database. For example, in
order to change the identifying 'membership_id' of a class 'person', the old membership_id has
to be taken away before it can be replaced and at that very moment the identity constraint is
not respected.

On the contrary, in a non transaction-oriented database, the integrity constraints have to be
fulfilled at ail times. Therefore, if the physical schema contains circular chains of mandatory
object attributes (cf. IV.2), in the end, the constructors of ail these classes will contain a
mandatory (list of) pointer(s) to the object(s) of the class they enter into a relationship with.
Since it is not possible to put one of these pointers temporarily at NULL, because one of the
objects has not (yet) been created, it is never possible to create even the first object of the
chain. Destructors will pose the same problem.

In order to create a transaction-oriented database, software should be added to batch the data
until ail the objects have been created before these data can actually be added to the database.
Of course, the code necessary to implement the database will become a lot more complex.

Guaranteeing permanent validity of the database with respect to object attributes:
In this part of the chapter, I shail present the different cardinalities that can be attributed to
object attributes and for each one of them, discuss the functions and procedures the C++
database should be provided with to take care of the integrity constraints.

1. Supposition: the database contains only optional object attributes with cardinality [0-1 J.
For each such attribute, contained by class C, class C should be equipped as follows:
C' s constructor: to each member class contained by class C must correspond one formal
argument. When an object O of class C is created, the corresponding parameters will be
pointers which will be assigned by the constructor to the corresponding member classes. Since
the minimum cardinality is 0, the value passed can always be NULL.

Example:

C
dd[0-1]: *D
bb[0-1]: *B

Figure V.1 Influence of object attributes on constructors

27

ChapterV Physical Design of a C++ Object Oriented Schema

corresponds to:

IIClass
class c { ...

B * bb;
D * dd;
C(... , B * mybb, D * mydd, ...) ;

..• } i

11 constructor
C: :C(... , B * mybb, D * mydd, ...) { ...

bb=mybb;
dd=mydd;

... }

C's destructor:
When object Ois destroyed, it is necessary that ail the pointers toit contained by other objects,
are set at NULL. Since it is known which classes contain member classes of type C, one
possible solution consists in making C's destructor cail a function that accesses to every single
object of ail the classes with member classes of type C in order to find pointers to the object it
is cailed by, i.e. 0, and set them at NULL. This is an easy solution, and only a few lines of
code suffice to implement it in C++. By using a template, it is even possible to write this
function only one time for each class C and use it to delete pointers to objects of any class.
This can work on condition that ail the member classes of one particular type share the same
name, regardless of the class they belong to. In the example below, for instance, it is expected
that ail member classes pointing to objects of type C are cailed 'cptr'.

Example:
template <class T>
function boolean Delete_Pointers_In_foreign_objects

while (ptr)
if ptr->cptr = = this

1
ptr->cptr=NULL
ptr= T: :get_next();

Remarks:

(T * ptr, C * this)

(1) ptr will be a pointer to the first object of the list of objects from its class.
(2) Every destructor contains a pointer named this to the object it is cailed by.

(1) (2)

Unfortunately, this solution is a very slow one for large databases: to find one pointer, the
function would have to pass through the whole list of objects of a certain class. lt would be
much more efficient if each object stored the pointers to those objects containing a pointer to
itself. To make this work, each object O of class Chas to be provided with one data member
for each class that contains a member class of type C. It would then be up to the constructor of
each object to provide pointers to those objects and store them. There are two possible
situations. In the first place, when an object O is created, its constructor receives pointers to
other objects that need a pointer to O. These pointers can allready be stored by the constructor

28

Physical Design of a C++ Object Oriented Schema ChapterV

of O. Later, when other objects are created that also contain a pointer to 0, the constructor of
those objects must provide O with a pointer to themselves.

2. Supposition: the database contains object attributes with cardinality [l -1 J:
Managing o bject attributes with cardinality [1-1] is very similar to managing o bject attributes
with cardinality [0-1] . There are two big differences. Firstly, the [1-1] cardinality is
translated into C++ by cornpulsory pointers. The constructor of an object O will have to do
the same work as for object attributes with cardinality [0-1] except for one thing: in the very
first place, it has to check whether the objects pointed to by these compulsory pointers do
actually (already) exist. If this is not the case, 0 cannot be created and its constructor must call
its destructor. This can only work on condition that the user or the intermediate programmer
puts pointers to objects that do not yet exist at NULL. Then the constructor will simply work
as follows:

class::class(...) {
if PtrToCompulsoryobject= = NULL then {
delete this;

}

throw ErrorMessage;
}

The main drawback to this system is that if the user forgets to put compulsory pointers at
NULL, the system will not work, because as soon as a pointer is declared, it contains a random
value different from NULL.

Just as in the case of cardinality [0-1], O's destructor has to find all the objects that contain a
compulsory pointer to the object that has called it. However, because of the [1-1] cardinality
the member classes are mandatory now and cannot be set at NULL. Consequently, O's
destructor has to call the destructors of the objects containing a pointer to the object is was
called by, i.e. O. This must be done because objects that contain a compulsory pointer to an
object O can no longer exist when Ois destroyed or the integrity constraints of the database
would be violated. This can be done as in the example below:

Supposition: object O is destroyed and objptrl and objptr2 are two pointers to objects that
contain a compulsory pointer to O.

class::~class() {
delete objptrl;
delete objptr2;

}

(1)

29

Chapter V Physical Design of a C++ Object Oriented Schema

Remark: (1) delete objptrl will call the destructor of the object pointed to by objptrl. This
destructor could itself call destructors of other objects, etc. As has been mentioned before, this
would not work for circular chains of mandatory attributes, because then each destructor
would call another destructor in an endless loop. This could be resolved by a system putting
flags in objects to make sure the loop is interrupted.

3. Supposition: the database contains object attributes with cardinality [0-N J and [1-N J:
The system would work similarly to what has been presented in the two preceding cases.
However, due to the maximum cardinality N, it becomes indispensable to work with lists of
pointers. An object attribute with maximum cardinality N, will be translated by a list of pointers
to other objects. For the constructor of an object, this does not make a lot of difference. It
receives lists of pointers and if the minimum cardinality is 1, it has to check whether the length
of the lists is superior to zero. For the destructor, the system becomes a bit more complex, as
is demonstrated on the basis of the situation schematised in Figure V.2.

Figure V.2 Object attribute with cardinality [1-N]

If an instance I of class A is destroyed, its destructor must search in the list of instances of
class B for pointers to I. Each instance can contain a list of one or more pointers to instances
of A, in its data member aa. If I' s destructor finds that this list contains a pointer to I, it has to
remove this pointer from the list. However, if this pointer is the only one contained by the list,
I's destructor has to destroy the object containing this pointer because, due to the [1-N]
cardinality, it cannot exist without possessing a pointer to at least one instance of A.

V.2.4. Cardinality Constraints

In C++, as soon as a variable of any type is declared, the memory reserved to place the values
of these variables will always contain some random information of the corresponding type. A
boolean variable, for instance, will always be either at true or atfalse. As a consequence, even
though an attribute is mandatory, i.e. when its minimum cardinality is 1, the corresponding data
member will still be optional because it is impossible for a constructor to determine whether its
arguments have been assigned a value to or whether they merely contain random values.

However, there is a way to make a distinction between mandatory and optional attributes
anyway: by means of pointers, which can be set at NULL, if they point to nothing. To make
this work, it becomes necessary to convert every data member of an object into a pointer to
this data member. For example, instead of a data member of type int, a data member is needed,
that points to a value of type int. If the C++ database is implemented in this way, the user,
programmer or program that provides the data to be stored in the database have to respect

30

Physical Design of a C++ Object Oriented Schema ChapterV

only one convention: if there is no value for a variable, it must be set at NULL. A pointer
named my_int_ptr pointing to an integer is declared as follows:

int * my_int_ptr;

V.2.5. Types

In the DB-MAIN CASE tool, which will be further discussed in chapter VI, there are, three
types that cannot be immediately translated into C++, namely Date, VarChar and Object Type.

Date:
This type can be converted either in char [11] , i.e. an array of 11 characters, or in double. The
advantage of saving a date as an array of eleven characters is that is can be saved as
'dd/mm/füj' or 'dd-mm-füj', i.e. ten digits, two separation characters such as /,-, etc. and one
extra character because C++ strings are null-terminated. The disadvantage is that it is
impossible to perform mathematical operations on strings, which could for instance be used to
calculate the number of days before an order is expired. Therefore, it is better to translate this
type into 'double' in order to store a date as a 32-bit value.

Varchar:
Although C++, does not directly provide a type such as 'varchar', it is not impossible to
implement this type as demonstrated in the following example:

char* s;
s = new char [n] ;

s is a pointer to a array of characters. When memory is allocated to s by means of 'new', n
specifies the number of characters the array will be able to contain. Consequently, n can be
determined at run time.

Unfortunately, this only possible way of implementing Db-Main's Varchar is rather
cumbersome. To store a string, John for instance, an algorithm would have to be written to do
the following operations:

n = strlen ("John")
s = new char [n];
s[O] = 'J';
s[l] = 1 0 1

;

s[3]='h';
s[4]='n';
s[5]='\0';
Remark: (1) John=

+ 1; (1)

four characters + '\0'

31

ChapterV Physical Design of a C++ Object Oriented Schema

Object type:
As has already been demonstrated earlier in this chapter, object types are translated into C++
by the name of the class and are not any different from other user defined types. The only
inconvenience is that if the type of a data member is a class, this class must have been declared
before. If a type is used before its declaration, the compiler will give an error message. If two
classes have each other as member class, it will become necessary to declare at least one of the
classes first and define them later. Example.:

class Person;
class Team;

//declaration of classes

class Person { //definition of classes

Team: ptr_to_myteam

} ;

class Team {

Person: ptr_to_mypers[0-11)

} ;

32

The DB-MAIN CASE Tool Chapter VI

VI. The DB-MAIN CASE Tool

The DB-Main case tool is one of the many results of the DB-Main programme, which is a
research, development and technology transfer programme developed by the Computer
Science Institute of the University of Namur. It is dedicated to database applications
engineering, and more specifically to the reverse engineering, re-engineering, migration,
integration, maintenance and evolution of such systems.

The DB-Main CASE tool can be used either as a tool set to support system engineering, or as
a CASE tool development environment (i.e. a CASE tool factory). The tool offers basic
support for most forward and reverse engineering activities. In this chapter, I analyse how it
can support the abject oriented database developing methodology by means of transformation
scripts, analysis scripts and some other useful functions. I will not give an exhaustive list of all
the existing functions, but just focus on the ones that are particularly useful for the proposed
abject oriented database design. A complete list of all the functions available in the tool can be
foundin [DB-MAIN,95] and [DBMAIN,97].

V/.1. Assistance for Simple transformations:

The table below presents the functions that can be used to transform a conceptual schema into
a C++ abject oriented logical schema:

Action: Command:

Making the collection of subtypes disjoint Click on the subtype and mark the
corresponding Disjoint check box.

Transforming multi-et roles Click on the multi-ET role to be transformed
and execute the command
Transform\r,2le\mulû-ET-> rel-types

Transforming non functional relationship types Click on the relationship type to be
into entity types transformed and execute the command

Transform\Rel-type\ ->Enûty type

Transforming functional relationship types into If necessary, adapt the cardinalities (to avoid
abject attributes circular chains of mandatory attributes) by

double clicking on the concerned cardinality.
Click on the relationship type(s) to be
transformed and execute the command
Transform\Rel-type\->Qbject type

33

Chapter VI The DB-MAIN CASE Tool

The table below presents some functions that can be used to translate the now obtained schema
into a C++ abject oriented physical schema:

Action: Command:
Name processing (a list of C++'s reserved Transform\Name processing ...
keywords can be found in Borland C++' s To replace hyphens (-) by underscores (_):
online help. Add patterns, search for-, replace by _

For each of the transformations above, when you execute one of the commands the dialogue
box that will appear on screen will guide you through the rest of the process.

Vl.2. The Assist Menu

Apart from these loose transformations, the DB-MAIN tool offers much more sophisticated
help, which can be found in the Assist menu (Assist). This menu comprises a series of expert
assistants dedicated to specific classes of problems. Two of these experts are particularly useful
with respect to this thesis.

Assist\Global transformation:
The global transformation assistant carries out selected actions on selected abjects in order to
salve structural problems. For each outstanding class of constructs (the problem), the assistant
proposes one or several transformations that replace them by equivalent constructs (the
solution). The user can build, save and reuse customised transformation scripts dedicated to
specific complex problems. A script is a sequence of operations that can be performed by an
assistant. [DB MAIN ,97]

After having made all collections of subtypes disjoint and having made sure there will not be
any circular chains of abject attributes once the schema transformed, the following script will
suffice to obtain a C++ logical abject oriented schema:

script:
Split rel-types with Multi-ET roles
Complex rel-types into entity types
Binary rel-types without attributes into objects

To obtain a C++ abject oriented physical schema, one more line should be added to the script.
This can be done by selecting Name Processing in the Global Transformations box and
consequently by clicking on 'Add'. The script is completed by one line, namely

Name processing.

34

The DB-MAIN CASE Tool ChapterVI

Remark: As has been explained in Chapter V, there are always two or three equivalent ways to
transform relationship types into object attributes. The choice is up to the user in function of
the C++ code he/she finally wants to generate. However, the assistant will not leave this choice
up to the user, but will always transform objects according to the third possibility, i.e. by
adding an inverse constraint.

Assist\S,chema analysis:
The analysis assistant is able to detect specified structural problems of any complexity in the
current schema. A structural pattern is defined by an object type and properties which the
objects have to satisfy. Every time a rule is defined, it can be added to the text box 'rules' in
order to form a script, which can be created, saved, reloaded and reused by the user. The
assistant can be used in two ways, namely to validate the current schema, and to search the
schema for specified objects. [DB-MAIN,97]

validation (press button valida te)
The assistant searches the current schema for objects that do not satisfy the rules specified in
the script. These objects are presented in a diagnostic window which can be used as a notepad.
When a diagnostic message is selected, the assistant makes the offending object current in the
schema.

search (press button search)
The assistant searches the current schema for ail the objects that satisfy the rules specified in
the script.

The following set of rules can be used to validate a C++ logical object oriented schema:

DISJOINT_jn_ISA(no)
ALL_RT(no)
ALL_ROLE(no)
ALL_REF(no)
ALL_KEY(no)

(meaning: disjoint ISA)
(meaning: no relationship types)
(meaning: no roles)
(meaning: no reference keys, but object attributes instead)
(meaning: no access keys)

Remark: this script does not detect circular chains of object attributes as they have been
defined in chapter N.

The following rules can be added to the script to validate a C++ physical object oriented
schema in which there are no more hyphens (-):

NO_CHARS_in_LIST_NAMES(-)
NONE_in_LIST_NAMES(this, if, while)

35

Chapter VI

V/.3. Other useful Functions

Using generators:

The DB-MAIN CASE Tool

The DB-MAIN CASE tool allows the user to generate code corresponding to a physical
schema. Physical schemata can be translated into different languages such as SQL,
CODASYL, C++, COBOL, etc. This is done by calling a corresponding program, written in
Voyager2. The Voyager 2 development tool consists of a compiler named comp_v2.exe. This
compiler accepts a Voyager 2 programme (file *.v2) and produces a precompiled file with the
extension .oxo. Programs written in Voyager 2 can be called by executing the commands:

File\Execute Voyager .. .
f.ile\Continue Voyager .. .
f.ile\Rerun Vo.I:ager ...
by clicking on the corresponding buttons on the toolbar for special mouse and key actions.

36

The C++ Generator Chapter VII

VII. The C++ Generator

The C++ generator, of which the source code can be found in Appendix 1, has been written in
Voyager 2. Its name is genercpp.oxo. It generates the C++ code corresponding to the physical
object oriented C++ schema discussed in chapter V. Unfortunately, the C++ generator cannot
(yet) handle a1l the structures allowed in the formerly discussed model. Therefore, I have to
introduce some extra restrictions on the logical and physical models. I also wrote an analysis
script, which is included on the diskette, that can serve to validate a logical object oriented
C++ schema once it is entirely adapted to the capabilities of the programme.

V/1.1. A Restricted Mode/

Vll.1.1. Overview of the Structures the C++ Generator can handle:
- Entity types:

Entity types can comprise O to N (object) attributes, a primary identifier, (a) secondary
identifier(s), 0 to N subtypes and O to N supertypes. Multiple inheritance is not supported.
Once more, IS-A relations must always have the disjoint attribute.

- Attributes:
- Attributes are always optional, i.e. the minimum cardinality is always O.
- The cardinality of single valued, atomic attributes must be 0-1. The deepness of

attributes is unlimited, i.e. they can be 'wrapped' into an endless number of compound
ones.

- The cardinality of multivalued, atomic attributes must be 0-N. They are always
implemented as lists.

- The cardinality of single valued compound attributes must be 0-x, with x< +00 because
they are always implemented as arrays. Idem dito for the cardinality of multivalued,
compound attributes.

- The cardinality of object attributes is always 0-1 or 0-N, in which case they are
implemented as lists. They can belong to compound attributes and their deepness is
unlimited. They can belong to one or more compound and multivalued attributes,
although this would probably not make much sense.

- Atomic attributes can be of the following types and are translated into specified C++
types:

- char(+ specified length): translated into char [length]
- varchar: translated into char [maxlength]
- numeric: translated into int if the length of the number is strictly inferior to five

digits and the number of decimal digits equals zero, translated into double if the
length of the number is superior or equal to five digits. If the number of decimal
digits does not equal zero, it is translated into float.

- date: translated into double
- float: translated into float
- object attribute: translated by a pointer to an object of the corresponding class
- boolean: translated into bool

37

Chapter VII

Example:

CompoundMultivalAttr [0-3]
ObjectAttr [0-N J
CompoundMultivalAttr [0-6]

SinglevalCompoundAttr [0-2)

AtomicMultivalAttr [0-N]
ObjectAttr [0-1]

SinglevalAtomicAttr [0-1]
SinglevalAtomicAttr [0-1]

- Identifiers:

The C++ Generator

- Identifiers can comprise one to many single valued, atomic attributes, which can be part
of single valued, compound attributes. Identifiers cannot consist of groups.

- The deepness of single valued, atomic attributes is unlimited.
- Identifiers can be primary or secondary1

.

Example:

Demo
attrl[0-1]

attr 11 [0-1]
attrl 11 [0-1]
attr112 [0-1]

attr2[0-l]
attr3[0-1]

attr31 [0-1]
attr32[0-l]

id': attrl.attrl l.attrll 1
id': attrl.attrl 1.attr112

attr2
attr3.attr31

Figure VII.1 Primary and secondary identifiers

Vll.1.2. Extra restrictions on the C++ object oriented logical model:

With regard to the C++ object oriented logical model defined in II.3, there are some
restrictions, namely the schema cannot take:
- any (object) attribute with any minimum cardinality > O.
- single valued, atomic attributes with maximum cardinality x, with 1 < x <N.
- compound attributes implemented as lists.

1 Since the minimum cardinality of attributes is always 0, identifiers are in fact always secondary. Still, the
programme would not be troubled by primary identifiers.

38

The C++ Generator Chapter VII

- identifiers comprising multivalued attributes or compound attributes. However, for single
valued, compound attributes consisting exclusively of single valued, atomic attributes, it
suffices to declare all its atomic attributes identifier to obtain the same effect.

- identifiers comprising multivalued, compound attributes or attributes being part of such
attributes. However, this would be very unhappily chosen identifiers anyway.

- although some of these structures have already been mentioned in II.3. the C++ generator
cannot take referential keys, access keys, relationship types or collections

Vll.1.3. Analysis Script to Validate the Schema.

The following analysis script can serve to detect those objects that do not comply with the
logical schema proposed in this chapter:

ALL_ COLL(no)
not DISJOINT_in_ISA(no)
ALL_RT(no)
ALL_ROLE(no)
MIN_CARD _of_ATT(0 0)
GROUP _per_GROUP(0 0)
ALL_KEY(no)
ALL_REF(no)

meaning: no collections<•>
ISA must always be disjoint<'">
no relationship types<*>
no roles<•>
minimum cardinality is always o<•>
groups cannot comprise groups
no access keys<-•>
no reference keys<'')

V2_CONSTRAINT_on_ATT E:\DBMAIN\genercpp.OXO ma:x_rep_si_attr_0_or_NC!l
meaning: this function is included in the C++ generator and verifies whether the maximum

cardinality of atomic attributes is either 1 or N.

V2_ CONSTRAINT_on_ATT E:\DBMAIN\genercpp.OXO Ma:x_rep_co_attr _not_NC!l
meaning: this function is included in the C++ generator and verifies whether the maximum

cardinality of compound attributes is different from N.

V2_ CONSTRAINT_on_ATT E:\DBMAIN\genercpp.OXO Check_all_card_for_idc!l
meaning: this function is included in the C++ generator and verifies whether the maximum

cardinality of compound attributes containing simple attributes that are (part
of) an identifier, is 1.

<•> If this object makes part of the schema from which code is generated, the C++
generator will just deny it and still generate a programme that can be compiled.

<1> In the script 'validgen.ana', the directory E:\DBMAIN\CplusplO.OXO should be made
conform to the place where the C++ generator is stored on the computer.

39

Chapter VII The C++ Generator

To validate the physical schema, two more rules can be added:
NO_CHARS_in_LIST_NAMES(-) meaning: no hyphens
NONE_in_LIST_NAMES(this, if, while2

) meaning: the names of the schema,
entity types, rel-types, attributes,
roles and groups aren't in the list
<list>.

V/1.2. Chronological Overview of the Operations Performed by the Programme

The C++ generator 'writes' the C++ programme in the following order:

- include statements
- an enumeration holding one value for each class
- forward class declarations
- for each class: class definition (any class is generated before any of its subtypes)

- public data members
- private data members (and declarations + definitions of inline member functions if

the class has one or more identifier(s)).
- declarations of public data members

- global variables
- initialisation of static variables
- for each class: definition of its non-inline member fonctions:

- constructor
- call to function that checks identifier(s)
- code to assign values to data members
- code to insert object into list of objects of its class
- code to initialise lists and iterators related to data members corresponding to

multivalued attributes with cardinality O-N3
•

- code to manage relations defined by object attributes

- destructor
- destruction of lists and iterators
- removal of object from its list
- code to keep cardinality constraints concerning relations defined by object

attributes intact.

- get_first() to get the first object of the list
- get_next() to get the next object in the list
- get_previous() to get the previous object in the list
- what() to find which classa pointer is pointing (in case of inheritance)
- find_id() to detect whether the identifier constraint has been respected for a new

object

2 An exhaustive list of all C++'s reserved words can be found in Borland C++'s online help.
3 Why this is done after having assigned values to the data members will be explained in the next chapter.

40

The C++ Generator Chapter VII

- fonction delete_one_class(...) to delete ail the objects of a specified class (by means of a
template).

- fonction send_error_message(. ..) to send a message corresponding to the detected error.
- empty main programme, that reminds the user to work with the C++ exception handling

mechanism.

V/1.3. Some Technical Details of the C++ Generator.

The C++ generator, named GenerCpp.oxo is a programme written in Voyager 2, which is an
imperative language with original characteristics such as a primitive type list with garbage
collection and declarative requests to the predefined repository of the DB-MAIN tool
[ENGLEBERT, 96] . The source code of the programme is represented in appendix I.

GenerCpp makes a list of ail the entity types contained by the logical schema it has to generate
code from. This is done by a 'depth first search' algorithm to make sure that any supertype
always precedes ail its subtypes in the list. Classes are generated in compliance with the order
in which they figure into this list. If subtypes were generated before their supertypes, the
generated programme would not compile. The programme will walk through this list time and
again to make sure that for each block of code, the classes will always appear in the same
order.

Many fonctions and procedures of the programme needed to be recursive. This was inevitable
because, in the logical and physical schemata, a supertype can contain an unlimited number of
subtypes and vice versa, the 'deepness' of an attribute contained by x compound attributes is
not restricted, an identifier can comprise x attributes, etc. This flexibility in the schemata is only
possible if the programme treats certain objects recursively.

Since the same information has to be retrieved from the schema at different moments, the
programme is chopped up into numerous fonctions and procedures according to this criterion.
For instance, whether a class has subtypes has to be known at five different places in the
programme. This is taken care of by a boolean fonction called CheckldYesNo(...).

41

Case Study Chapter VIII

VIII. Case Study

This final chapter comprises two parts. Whereas in chapters three and five, C++ code and
pseudo-code were suggested for each structure from a rather theoretical point of view, the first
part of this chapter will give an overview of the code that is actually generated by the C++
generator, taking into account some practical considerations. The second part is a practical
application of the methodology elaborated in the previous chapters, stretching from conceptual
design to code generation. The chapter does not include entirely generated programmes, which
can be found in the appendices.

VIII. 1. The Generated C++ Code
The code is discussed according to the order in which it is generated, i.e. as it is listed in the
previous chapter.

- include statements:
There are three include statements:
#include <string.h>, #include<stdio.h>,#include<iostream.h>,
and when at least one attribute has cardinality 0-N, a fourth include statement is generated:
#include " .. \lists\tlist.h", which is a call to a library necessary to implement lists, with a
relative path name.

- an enumeration holding one value for each class:
This value will be composed by the concatenation of "w_" and the name of the class and will
be used by virtual member fonction What().

- forward class declarations:
As has been said before, declaring the classes before defining them is necessary as soon as
there are class members. The name of a class is f01med by the concatenation of "c"+ the
name of the corresponding entity type in the physical schema. Entity type Persan, for
instance, becomes class cPerson. This permits the user to create classes inheriting from the
generated class listening to the name of the corresponding entity type. By putting the derived
classes in other .h and .cpp files, the user can change the physical schema later on and
regenerate C++ code, which will then be completely compatible to the files containing the
derived classes added by the user.

-class definition
- If the class is a derived one, the name of its base class will be indicated. Classes always

inherit publicly from their base class.
- public data members:

All data members corresponding to attributes in the physical schema are public. They are ail
wrapped into a structure of which the name is formed as follows: <class name> _buf and the
corresponding type will be named t_c<class name> _buf. Since no methods are generated to
access them, they have to be accessed directly. For compound attributes, a structure will be
generated bearing the name of the attribute and with as type name t_ <attribute name>.

43

Chapter VIII Case Study

Multivalued attributes with cardinality [0-N] are implemented as lists of elements of the
corresponding type. For each list, an iterator is generated to walk through it. The code will
be:
Tlist <attribute type> * <attribute name>;
Titer <attribute type> * i_ <attribute name>;

(list)
(iterator)

Multivalued compound attributes, with cardinality 0-X (X<N), are implemented as arrays
the length of which is the maximum cardinality of the corresponding attribute.

- private data members and inline member fonctions:
To be able to insert each object in a list of objects of its class, each object contains three
private data members: next, previous and first. The last one is a static data member, to
avoid having to generate a global variable instead. They contain pointers to the next,
previous and first class respectively.

If the object has one or more identifiers, the member fonctionfind_id(...) will be generated.
The function has one argument for each data member belonging to at least one identifier
(primary or secondary).

Also only in the case of at least one identifier, two more private boolean data members are
generated: initO_N_attr and inserted_into_list, accompanied by the four member functions
to get and to set their values. They are necessary for the following reason: when the
constructor initialises the lists of an object and inserts the object into the list of objects of its
class, the destructor has to do the reverse operation. If the identifier constraint is not
respected, the object will be destroyed before these two operations are performed and the
destructor cannot destroy what has not been initialised before. Therefore, the constructor
will put these data members at true if the work has been done and at false if not. The
destructor will only act when they are at true.

- declarations of public data members:
The remaining member fonctions are the constructor, the destructor, the static member
fonction get_first(), get_next(), get_previous() and the virtual member fonction what().

Member function What() retums a value of the formerly defined enumeration. It can be used
to find out to which class of objects a pointer points to. For example:
if (mypointer->What() = = w_Person) { ... }
The member fonction is declared virtual to allow each derived class to provide its own
version. Moreover, since the function is useless for abstract base classes, which correspond
to ISA-relations with the attribute Total, in such cases, it is declared pure virtual by the
initialiser =0 and no objects of that abstract class can be created. When What() is declared
in a derived class, this class will no longer be abstract.

44

Case Study Chapter VIII

- global variables:
For each class, a pointer named <class name> Jormer points to the last object that has been
created of this class. When this global variable is declared, it is set at NULL. It is used by the
constructor to get a hold of a pointer to the previously created object of the same class.

- initialisation of static variables:
The pointer first of each class is set at NULL before the first object of the class is created.

- definition of the constructor:
The constructor of a base class takes only one argument: a structure of type t_ <class
name> _buf which serves as buffer and contains all the data members of that class. The
constructor of an inherited class takes one argument for each of its base classes up along the
hierarchy. The constructor always uses reference parameters to avoid a senseless
consumption of time and space.

Depending on what follows, some local variables might be generated. Then if, the object has
at least one identifier, data members initO_N_attr and inserted_into_list are set at false,
before a call is made to find_id(...) . If this function detects a double identifier, it will call the
object's destructor and throw an error message, otherwise the creation of the object
continues.

The function memcpy(...), pre-existing in C++, assigns the values to the data members
controlled by the user. It also takes reference parameters. Thanks to this function the whole
buffer is assigned at once.

Finally, the object is inserted into the list of objects of its class, and the lists corresponding to
attributes with cardinality O-N are initialised, whereby, in case of identifiers inserted_into_list
and initO_N_attr are immediately set at true.

- definition of the destructor:
Depending on the work the destructor of a class will have to do, some local variables might
be generated. Then, in case of one or more identifiers, the destructor tests whether
inserted_into_list is at true and if so, deletes the lists and their corresponding iterators. The
same holds for the next step: in case of one or more identifiers, the destructor tests whether
inserted_into_list is at true and if this is the case, it takes the object out if its list, otherwise
this is done right away. Finally, the destructor, who knows which objects of which classes
may contain pointers to the object by which it is called, searches all those objects for pointers
to this object and either sets those pointers at NULL, or, if it is a list of pointers, it removes
the pointer from this list. In this way, the destructor keeps intact the cardinality constraints
conceming relations defined by object attributes.

- definition of member functions get_ftrst(), get_next(), get_previous
These fonctions merely retum the first, next and previous object respectively.

45

Chapter VIII Case Study

- definition of member function what()
As has been said before, this fonction returns a value of the previously defined enumeration.
The only particularity of it is that, it is only defined outside of its class if it is not pure virtual
(cf. supra.), i.e. if it does not belong to an abstract class.

- definition of member functionfind_id(..)
This fonction takes as argument all the data members that are part of an identifier. However,
if a data member belongs to more than one identifier, it only appears one time as an
argument. Then, the fonction will walk: through the list of objects of its class and check for
each identifier if the object to be created has unique values.

- definition of stand alone function delete_one_class(S *aptr)
The fonction is preceded by the statement template <class S>. In this way, the function can
take a pointer to the first object of a list of any class and delete ail of them.

- definition of stand alone function send_error _message(int catchint)
This fonction calls an error message appropriate to the integer it receives. Right now, its only
usable message is the one sent when a double identifier is detected. It fonctions according to
C++' s exception handling mechanism.

- definition of the main programme
The main programme is exclusively generated to make the programme compilable. It also
suggests the user to use the C++ exception handling mechanism when creating objects.

To create a new object, the user is suggested to work as demonstrated in the example:

cPerson::t_cPerson_buf persl = {100, "Smith", "John"};

try {

}

cPerson * first_pers = new cPerson(persl);
for (i=l; i<3; i++) {

first_pers->cPerson_buf.luckynumbers->
AddLast(new int (i));

}

catch(int i) {
end_error_message(i);

(1) The values are passed to the structure (struct) fonctioning as buffer.
(2) The object is created.

(1)

(2)
(3)

(4)

(3) The values are added to the list corresponding to one of the object's data members by the
method AddLast(...). The user does not have to worry about the initialisation and the
destruction of any list. Furthermore, such lists can be treated by means of the following
self-evident fonctions: First(), Last(), Current(), AddFirst(cell *c), AddLast(cell *c),
Remove() and Length().

46

Case Study Chapter VIII

(4) If a double identifier is detected, an error message is sent by the constructor, and caught
righthere.

V/11.2. An Example
This example shows how the formerly developed methodology can be applied. lt stretches
from conceptual design to code generation and supposes the designer uses the DB-MAIN tool
to guide him/her through this process.

Vlll.2.1. Conceptual design

The conceptual schema represented in Figure VIII.1. presents the following real-world: a
Team, consisting of soccer players, which is identified by its number and which also has a
name, comprises O to N instances of Member. Each Member is a Person, identified by the
combination of his name and first name. A Person can have O to N nicknames and 1 to 5
addresses (street, number, city and for each address O to 5 telephone numbers). Each member
has an identifying number and it is also indicated whether he has already received his salary for
the current month or not. Each member has a car, which is identified by its number plate, is of
a certain make and can be shared by O to N members.

Person
llllllli<
first-name
nicknames[O-N]
address [1-5] arra

street
number
city
tel[0-5]

id: name
Team first-name

+
~0-N-

team-num
team-name
id: team-num

1-1

Member Car
ID!.lmberid

r--0-1-0--o-N-
numbtr-plat!.l

oaid make
id: memberid id: number-plate

Figure VID.1 Conceptual schema of a team.

47

Chapter VIII Case Study

Vlll.2.2. Logical design

In order to conserve the schema developed in the former paragraph, it suffices to execute the
command f.roduct/Copy schema. A new version name has to be specified, for instance
'logical', because, in this way, the schema expresses its main characteristic. The schema must
be transformed into a C++ logical object oriented one, according to the transformation plan
presented on page 21. Since there are neither collections of none disjoint subtypes, nor multi­
ET roles or non functional relationship types, only functional relationship types need being
transformed. This process can be assisted by the assist menu: Assist/Global
transformations. The script comprises only one line: "binary rel-types without att. into
objects". Unfortunately, when this transformation is performed, the schema still has a few
characteristics that genercpp.oxo cannot deal with. Therefore, the schema has to undergo
three more transformations: firstly, the inverse constraints have to be taken away and the
minimum cardinality of ail the attributes needs to become one1

, and secondly, the maximum
cardinality of atomic attributes must be either 1 or N. To take away the inverse constraints,
the designer must select the corresponding groups and delete them by pushing on the delete
button. Since the maximum cardinality of attribute tel must be either 1 or N, the designer is
obliged to set it at N, and in this way it will be implemented as an unlimited list of telephone
numbers. The final C++ logical object oriented schema is represented in Figure VIII.2.

Persan Car
nam1.,[Q-l] numb1.,r-plat1.,[Q- l]
first-nam1.,[Q-l] make[0-1]
nicknames[0-N] Member[0-N]: *Membe1
address[0-5] array id: number-plate

street[0-1]
number[0-1]
city[0-1]
tel[0-N]

id:name
first-name

?
Member

m1.,mb1.,rid[Q-l l Team

paid[0-1] t1.,am-num[Q-l]
Car[0-1]: *Car team-name[0-1]
Team[0-1]: *Tearr Member[0-N]: *Membe1
id: memberid id: team-num

Figure VID.2 Logical schema of the Team.

1 In fact, if the designer does not perform these transformations, genercpp.oxo will still generate exactly the
same code: it just denies the inverse constraint and supposes the minimum cardinality is zero.

48

Case Study Chapter VIII

Vlll.2.3. Physical design

In the first place, the designer should execute the command froduct/Copy schema and
specify a new version name, for instance 'physical'. To obtain the C++ object oriented physical
schema, it suffices to replaces all hyphens by underscores since none of the names coïncide
with a reserved word. Once this is done, the designer can test the validity of the schema by
loading the validation script validgen.ana by means of the command Assist/S,chema
analysis/load. When the script is loaded, it must be assured that the path towards
genercpp.oxo held by the last three functions is the correct one. Now, it suffices to click on
OK to check whether the script is valid. If this is the case, the message 'the schema verifies
ail rules' will appear on screen. The validated physical model is presented in Figure VIII.3.

Person Car
name[0-11 number plate[0-1]
first name[0-1] make[0-1]
nicknames[0-N]

Member[0-N]: *Member
address[0-5] array

id: number_plate Street [0-1]
number[0-1]
city[0-1]
tel[0-N]

id:name
first_name

?
Member

memberid[0-1] Team

paid[0-1] team num[Q-1 l
Car[0-1]: *Car team_name[0-1]
Team[0-1]: *Tearr Member[0-N]: *Membe1

id: memberid id: team_num

Figure VID.3 Physical schema of the team.

49

Chapter VIII Case Study

Vlll.2.4. Generating code

By executing the command E,ile/Execute Voyager, the designer can call genercpp.oxo to
generate the code corresponding to the physical schema. The generated code is completely
represented in appendix III. This paragraph will only highlight the most important parts of it.

To begin with, entity type Person is translated by class cPerson, which is a base class:

class cPerson {
public:

struct t_cPerson_buf {
char name [2 5 J ;
char first_name[25];
Tlist <char>* nicknames;
Titer <char>* i_nicknames;
struct t_address {

char street[31];
int number;
char city[17];
Tlist <double>* tel;
Titer <double>* i_tel;

} address[SJ;
} cPerson_buf;

private:
cPerson* next;
cPerson* previous;
static cPerson* first;
bool initO_N_attr;
bool inserted_into_list;
cPerson * find_id(char name[25],char first_name[25]);
void set_initO_N_attr(bool value) { initü_N_attr=value; }
bool get_initü_N_attr() { return initO_N_attr; }
void set_inserted_into_list(bool value) { inserted_into_list=value; }
bool get_inserted_into_list() { return inserted_into_list; }

public:

} ;

cPerson(t_cPerson_buf &cPerson_bu);
~cPerson () ;
static cPerson * get_first();
cPerson * get_next();
cPerson * get_previous();
virtual w_class what() = O;

All the data rnembers corresponding to attributes of entity type Person, are wrapped into one
structure, named cPerson_buf. For both name andfirst_name, space for 25 characters will be
reserved. Nicknames corresponds to a multivalued attribute with cardinality 0-N and
consequently, it is translated by a data member that can hold a list accompanied by its iterator
to walk through it, called i_nicknames. Address is a structure itself, because it corresponds to a
compound attribute. It subsumes number, an integer because the number was specified to tak:e
strictly less then five digits, city, tel, and i_tel. Tel can hold a list of doubles, because it was
specified in the physical schema that the number would be composed of 10 digits. Since
address corresponds even to a compound multivalued attribute with cardinality [0-5], its
length is specified between square brackets: [5] .

50

Case Study Chapter VIII

Since Persan has both an identifier and multivalued attributes it also has the data members and
member fonctions to take care of them: initO_N_attr, inserted_into_list, find_id(...), etc. The
last fonction of the class What() is declared pure virtual, because persan is an abstract class,
which can have no instances.

Enough has been said about constructors, but I would like to attract the readers attention to
the place in the constructor of cPerson where the list nicknames is initialised:

cPerson: :cPerson(t_cPerson_buf &cPerson_bu)
{ ...
inti;
// Initialise lists for multivalued attr
for (i=0; i<5; i++) {
cPerson_buf.address[i] .tel= new Tlist<double>(TLIST_REMOVE_WITH_NEW);
Person_buf.address[i] .i_tel= new iter<double>(cPerson_buf.address[i] .tel);
} ;

};//end constructor

First an integer i is generated to be able to generate a for loop (although thisinteger could have
been declared within the for loop). Tuen, lists tel and their iterators i_tel are initialised, ail five
of them because they belong to address. The destructor will deallocate memory afterwards.
TLIST_REMOVE_WITH_NEW, indicates that when the list is destroyed, its elements are
destroyed as well. For lists of pointers to abjects, this will become T_UST_NOT_REMOVE,
because these abjects have to remain untouched and are merely removed from the list.

Finally, I would like to draw the attention to the definition of the constructor of class
cMember, which inherits from cPerson and starts as follows:

cMember: :cMember(t_cMember_buf &cMember_bu, t_cPerson_buf cPerson_bu):
cPerson(cPerson_bu)

{

}

Since cMember has cPerson as base class it has two arguments, one structure for cPerson and
one for the class by which it is called. The rest of the code can be found in appendix III.

51

Conclusion Chapter IX

IX. Conclusion

In conclusion, I shall make an evaluation of this work, which covers five areas: the suitability
of the aid offered by the DB-MAIN CASE tool, the C++ generator, the aptness of the C++
language as a database management system and, finally, the generated code.

The DB-MAIN CASE tool proves to be perfectly suitable for object oriented database design.
It appeared perfectly possible to write transformation scripts to help obtain the C++ object
oriented logical and physical schemata. However, there is one drawback to the transformation
assistant, namely when it transforms relationship types into object attributes. As has been
discussed in chapter IV, there are always two or three semantically equivalent ways to
transform object attributes. Unfortunately, the assistant does not leave the choice up to the
designer but always takes the possibility with the inverse constraint. In fact, this choice should
be up to the designer who can do soin compliance with the criteria outlined in chapter IV.

The C++ generator is certainly not yet a complete programme. It could be improved on three
levels. It should be able to deal with physical schemata that are semantically richer, and also to
generate code that can store data permanently and that provides a user interface. ln the
following paragraphs, l'11 discuss each level in more detail.

As far as the first level is concemed, not being able to deal with quite some integrity
constraints is certainly the programme's most important shortcoming. Cardinality constraints in
particular are undoubtedly the programme's weak point. The programme cannot yet handle
obligatory attributes, nor is it capable of generating single valued atomic attributes with a
maximum cardinality different from 1 or N, implementing compound multivalued attributes as
list, etc. Furthermore, it cannot generate the inverse constraint, identifiers comprising one or
more multivalued attributes, to mention just the most important shortfalls. The most
straightforward improvement that can be made to the programme consists of making it capable
of handling mandatory attributes having 1 as minimum cardinality. This would be a great step
forward in retum for the insertion of relatively few lines of code. In addition, it becomes ever
more easy to extend the programme because an increasing number of functions and procedures
that have been written before, can be reused.

But also other steps to ameliorate the programme should be taken, apart from those
concerning the semantics of the physical schema. To begin with, the generated code provides
no means to store any data permanently. Instead it can only work with volatile data. This
should be taken care of to make the programme really interesting. ln a later stage, one could
start thinking of adding an interface to use the generated programme. Edit boxes could for
instance be provided to retrieve data from the keyboard, with an OK to enable to user to store
the data. Dialogue boxes could appear to inform the user of a violation of an integrity
constraint, and so on. Of course, every user will use the generated code for a different
purpose, but one could think of generating an interface according to the desires the user
expresses when the programme is generated.

53

ChapterIX Conclusion

Ali these adaptations will lead to the expansion of genercpp.oxo, which was written in
Voyager 2. This language is remarkably powerful when it cornes to working with lists and the
DB-MAIN repository. Unfortunately, it does not allow to split up a programme into different
modules and this might become annoying if the generator is to become a very large
programme. It is also a pity that there is not yet a debugger for Voyager 2.

A few conclusions can also be drawn concerning the aptness of the C++ as a database
management system. Although C++ makes a very poor environment for database design with
very few declarative structures, as has been ascertained in chapter three, it does have a few
positive characteristics as well. For instance, its inheritance system can be immediately used to
translate ISA-relations, except for non disjoint ones, and C++ structures are a perfect device to
translate compound attributes. For many other structures found in the physical schema, extra
code has to be added to implement them, which is a time consuming job. But after all, as soon
as some programme has been developed to generate the necessary code, time can no longer be
an objection.

Finally, the generated code canuse some criticism as well. Its most urgent need is
standardisation. At some points, certain ways of coding were chosen to facilitate the creation
of programme that generates the code. For this reason, the parameter of the constructor of a
base class, for instance, has only one argument, namely a C++ structure and the data it
contains are all passed to the object by the function memcpy(). In fact, the constructor should
have one argument for each attribute, and the values should be assigned to the object' s data
members one by one. This way, the user will be able to work with the object's constructor in
the way he/she is most familiar with. After all, generating one argument for each data member
is not all that difficult, but unf ortunately this became only clear once I had written the fonction
that checks the uniqueness of the identifier.

Moreover, the generated code lacks standardisation in yet another area. Namely, it does not
have member fonctions to get, set and modify the values of those data members that
correspond to attributes. Such fonctions are only generated for data members that belong
standard to every object, such asfirst, next, previous, inserted_into_list, and so on. In this
way, the generated programme does not get too long, especially if it is generated for a physical
schema with deeply nested attributes contained by compound multivalued attributes. However,
some users who are rather keen on object oriented programming might not like the idea of
having to access objects directly. Especially not when sometimes they have to and other times
they can not. This is the case, because, for instance, to work with lists generated for
multivalued attributes, member functions do have to be used. This is due to the fact that the
libraries the programme uses to implement these lists contain member functions such as
AddLast() to add elements to the lists, etc.

Certainly, the generated code is has a lot of powerful sides too. It is very compact and its
constructors and destructors are smart enough to allocate memory, to deallocate memory, to
insert the object into and remove an object from the list of objects from its class, to be
considerate of subclasses and relationships with other classes, and so on. But the longer I
worked on it, the wider became the range of possibilities I thought of to make the programme
ever more powerful!

54

Bibliography

X. Bibliography

[AMMERAAL, 95) Ammeraal L., "Basiscursus C++ ", Schoonhoven, Academic Service
Informatica, 1995.

[BATINI, 92) Batini C., Ceri S., Navathe S. B., "Conceptual Database Design: an Entity­
Relationship Approach ", The Benjamin/Cummings Publishing Company, Redwood City,
United States, 1992.

[BODART, 94] Bodart F., Pigneur Y., "Conception assistée des systèmes d'information.
Méthode, modèles, outils", Masson, Paris, 1994.

X

[COBUILD, 93) "Collins Cobuild English Usage", The University of Birmingham, London,
HarperCollins Publishers, 1993.

[DATE, 95) "Date C.J., "An Introduction to Database Systems - Volume I (6th edition),
Addison-Wesley, 1995.

[DB_MAIN, 95) "DB_MAIN Tutorial. Volume 1: Introduction to Database Design", DB­
Main Project, Institut d'Informatique, FUNDP, Namur, 1997.

[DB-MAIN, 97) "The DB-MAIN Database Engineering CASE tool - Version 3 - Functions
Overview", DB-Main project, Institut d'Informatique, FUNDP, Namur, 1997.

[ENGLEBERT, 96) Englebert V., "Voyager II, Reference Manual", Institut
d'informatique, FUNDP, Namur, 1996.

[HAINAUT, 97) Hainaut J-L., Englebert V., Hick J-M., Henrard J., Roland D.,
"Contribution to the Reverse Engineering of 00 Applications - Methodology and Case
Study", Institut d'informatique, FUNDP, Namur, 1997.

[HAINAUT, 96a] Hainaut J-L., "BASES DE DONNEES - Technologie et Conception.
Première Partie: Conception d'une base de données", syllabus, Institut d'Informatique,
FUNDP, Namur, 1996.

[HAINAUT, 96b] Hainaut J-L., "BASES DE DONNEES - Technologie et Conception.
Seconde Partie: Technologie des bases de données", syllabus, Institut d'Informatique,
FUNDP, Namur, 1996.

[HAINAUT, 96c] Hainaut J-L., Roland D., Henrard J., Englebert V., Hick J-M., "DE­
MAIN, A General-purpose CASE Environment for Advanced Database Applications
Engineering", Institut d'Informatique, FUNDP, Namur, 1996.

[OXFORD, 95), "OXFORD Advanced Leamer's Dictionary", Oxford, Oxford University
Press, 1995.

[MULLER, 97), Muller P-A., "Modélisation objet avec UML", Eyrolles, Paris, 1997.

55

X Bibliography

[STROUSTRUP, 97) Stroustrup B. "The C++ Programming Language", Addison Wesley,
Reading, Massachusetts, 1997.

56

APPENDICES

I. The Source Code of the C++ Generator (Lg.: Voyager 2) ... 59
II. The Generated C++ Code. Example 1 .. 85

II.1. Physcial Schema .. 85
II.2. The C++ Code Corresponding to the Sc hem a .. 86

III. The Generated C++ Code. Example 2 ... 93
III.1. Physical Schema ... 93
III.2. The C++ Code Corresponding to the Schema ... 94

57

The Source Code of the C++ Generator (Lg.: Voyager 2) Appendix I

1. The Source Code of the C++ Generator (Lg.: Voyager 2)
Remarks:
(1) The corresponding .oxo file, named genercpp.oxo to run the programme is delivered on

the diskette in the back cover of the thesis.
(2) The first three functions in the programme are export functions that are not part of the

C++ generator itself. They are called by the validation script to validate the C++ logical
object oriented schema.

!**
** Programme generating C++ **
** Written in Voyager2 **
** by Pascal Lambers août 1998 **
**!

string: REMARK="/1", file_name, BLANCS=" ";
string: insertion;
file: out;
schema: sch;

/*---
export f. to validate the C++ logical 00 schema, for which this progr
can generate C++ code. DOES NOT MAKE PART OF THE CODE GENERATOR!!
The max. card. of a si attr must be either 0 or N!

--*!
export function integer Max_rep_si_attr_0_or_N (attribute: at, string: car)
{
if GetType(at) = SI_ATTRIBUTE then {

if at.max_rep <> 1 and at.max_rep <> N_CARD then { return 0; }
else { return 1; } ;

}
else { return 1; } ;
}

/*---
export f. to validate the C++ logical 00 schema, for which this progr
can generate C++ code. DOES NOT MAKE PART OF THE CODE GENERATOR!! The
max. card. of a co attr can't be N!(because N is implemented as a list)

--*/
export function integer Max_rep_co_attr_not_N(attribute: at, string: car)
{
if GetType(at)= CO_ATTRIBUTE then {

if at.max_rep = N_CARD tben { return 0; }
else { return 1; };

else { return 1; }
}

59

Appendix I The Source Code of the C++ Generator (Lg.: Voyager 2)

/*--
export f. to validate the C++ logical 00 scbema, for wbicb this progr
can generate C++ code. DOES NOT MAKE PART OF THE CODE GENERATOR!! The
max. card. of the co_attr to wbicb si_attr being part of an identier
belong, is always 1 !

---*/
export function integer Cbeck_all_card_for_id(group: gr, string: st)
real_component: rc;
integer: typeint, i;
si_attribute: siattrib;
cursor: cur;
list: idattrlist;
{

}

if gr.primary or gr.secondary then {
for rc in GetListOfComponents(gr) do {

typeint:= GetType(rc);
switch (typeint) {

case SI_ATTRIBUIB: siattrib:=rc;
cur:= member(idattrlist, siattrib);
iflsVoid(cur) then {

AddLast(idattrlist,siattrib);
};

case CO_ATTRIBUIB: CbercbeAttrLesPlusLoins(idattrlist, rc);
} ; /*end switcb*/
}; /*end for*/

for siattrib in idattrlist do { /*idattrlist contains si attr*/
if CountTbisBrancb(siattrib,0) > 0 then { return O; } ;

};
}; /*end if*/
return 1;

/*---
Proc generating #includes in the beginning of the C++ progr

---* /
procedure Gestionlnclude()
data_object : a;
list : attlist;
cursor: ac;
si_attribute: sa;
integer: print_yes_no;
{
printf(out,["#include <String.h>\n"]);
printf(out,["#include <stdio.b>\n"]);
printf(out,["#include <iostream.h>\n"]);
/* If at least one attribute bas cardinality 0-N the following

include bas to be genereated: (Relative path name!) */
attlist:= DATA_OBJECT[a]{@SCH_DATA:[scb] with GetType(a) = SI_ATTRIBUIB};
attacb ac to attlist;
print_yes_no:= O;
while IsNoVoid(ac) and print_yes_no= 0 do {

sa:= get(ac);
if sa.min_rep = 0 and sa.max_rep = N_ CARD then

{ print_yes_no:=1; };
ac>>;

60

The Source Code of the C++ Generator (Lg.: Voyager 2)

}

if print_yes_no=l then {
printf(out,["#include \" .. \\lists\\tlist.h\"\n"]);

};

/ * ---
Proc generating global variables

-- * /
procedure GenererV arGlobales(entity _type: enti)
{
printf(out,["c",enti.name," * "]);
printf(out,["c",enti.name,"_former = NULL;\n"]);
}

l*--
F. for the creation of a file where the C++ generated progr will be
stored. Retums an integer: 0 if creation ok, 1 if not.
---* /

fonction integer OuvreFichier()
{
file_name:=BrowsePrint("Save C++ Generation As ... ",
"CPP Files (*.cpp)l*.CPPIAll Files(*.*)!*.*", "CPP");
out:=OpenFile(file_name,_ W);
iflsVoid(out) then {
retum 1;
}
else {

return O;
};

}

/ *--
F. returning a list of all the supertypes of an ET
---*!

fonction list GiveListDeSuperTypes(entity _type: entity _t)
entity_type: et;
cluster: clu;
sub_type: sub;

{
return ENTITY _TYPE[et]{ENTITY _CLU: CLUSTER[clu]{CLU_SUB:

SUB_TYPE[sub]{@ENTITY_SUB:[entity_t]}} };

}

/ * ---
Fonction retourning the supertype of an ET.
Precondition: the supertype exists!!!!!
--* /

fonction entity_type FindSuperType(entity_type: et)
{
return GetFirst(GiveListDeSuperTypes(et));
/* Pour l'instant l'héritage multiple n'est pas permis,

et la liste ne consistera que d'un seul élément */

61

Appendix I

Appendix I The Source Code of the C++ Generator (Lg.: Voyager 2)

/*---
Recursive F. searching the ET to which a given attr. belongs
precond.: dobj MUST be owned by an ENTITY _ TYPE!
--* /

function entity_type GetOwningEntityType(attribute: attr)
list: mylst;
owner_of_att: ow;
entity _type: ent;
attribute: attrib;
co_attribute: coattr;
{
mylst:= OWNER...OF_ATT[ow]{OWNER_ATT:[attr]};
ow:= GetFirst(mylst);
ifGetType(ow)= ENTITY_TYPE then {

ent:= ow;
retum ent;

};
coattr:= ow;
retum GetOwningEntityType(coattr);

}

l*--
F. retuming the type of an obj attr, i.e. another ET
precond: objat.type=OBJECT_ATT!t
-----------------------------. ---------------------------------* /

function entity_type RetumTypeOfObjAttr(si_attribute: objat)
data_object: dato;
entity _type: myent;

{
dato:= GetFirst(DATA_OBJECT[dato]{DOMAIN:[objat]});
myent:=dato;
retum myent;

}

l*---
F. giving a corresponding C++ type (as a string)
for a simple attribute
---* /

fonction string FindCppType(si_attribute: si)
entity _type: ent;
{ switch (si.type) {

case DATE_ATT:
retum "double";

case CHAR_A TT:
retum "char";

case V ARCHAR_ATT:
retum "char";

case NUM_A TT:
if si.decim = 0 then { if si.length>4 then { retum "double"; } else { retum "int";} }
else { retum "float"; };

case FLOAT_ATT:
retum "float";

case BOOL_ATT:
retum "bool";

62

The Source Code of the C++ Generator (Lg.: Voyager 2)

}

case OBJECT_ATI:
ent:= ReturnTypeOfObjAttr(si);
switch (si.max_rep) {

case 1 : return "c" + ent.name +" *";
case N_CARD: retum "c" + ent.name;
otherwise : retum "error";

};
};

l*---
F. retuming the size of an attr. of type DATE_ATI, CHAR_ATI,
or V ARCHAR_ATI. P. ex.: (30) pour char(30)

--*!
function string FindSize(si_attribute: si)
{ switch (si.type) {

/* une date prend 8+1 caractères p.ex.: 13-02-98 */
!* + 1 because strings en C++ are null terminated */
/*case DATE_ATI:

}

return "["+Strltos(9)+"]";*/
case CHAR_ATI:

return "["+Strltos(si.length + 1)+"]";
otherwise:

return ""; /*càd retourner une chaîne vide*/
};

/ * ---
f. that treats simple attributes (of any level)
---* /

procedure TreatSiAttr(si_attribute: si_a, string: tab)
si_attribute: sss;

{
tab:= StrConcat(tab, BLANCS);
sss:= si_a;
printf(out,tab);
if sss.min_rep = 0 and sss.max_rep = N_CARD then

{ printf(out,["Tlist <",FindCppType(sss),"> * ",sss.name,
";\nll]);

}
else { printf(out, [FindCppType(sss)," ",sss.name, FindSize(sss),";\n"]);
};
if sss.min_rep = 0 and sss.max_rep = N_CARD then

{ printf(out,[tab,"Titer <",FindCppType(sss),"> * i_",sss.name,
";\n"]); };

}

/* ---
f. retouming the "header" of a C++ "struct"
---* /

fonction string OpenStruct(owner_of_att: ow)
{
return StrConcat(StrConcat("struct t_",ow.name)," {\n");
}

63

Appendixl

Appendix I

/* ---
fonction closing a C++ "struct". "[max_rep]" of
"compound attribute" included if <>1 !!

---* /
fonction string CloseStruct(owner_of_att: ow)
string: helpstr;
{
helpstr:= "} "+ow.name;
if ow.max_rep <> 1 then

The Source Code of the C++ Generator (Lg.: Voyager 2)

{ helpstr:= helpstr+"["+Strltos(ow.max_rep)+"]"; };
retum helpstr+";\n";
}

/*---
Recursive proc. generating a C++ "struct" for each
compound attribute of an entity type and a struct "TBuffer"
containing all attributs of a given ET.

--* /
procedure MakeStructures(owner_of_att: o, string: insertion_initiale)

attribute: at;
list: l_at;
cursor: d;
integer: t;

{
insertion:= StrConcat(insertion, BLANCS);
printf(out, [insertion, Opens truct(o)]);

l_at:= AITRIBUTE[at]{@OWNER_AIT:[o]};
attach d to Lat;
while IsNoVoid(d) do {
t:= GetType(get(d));
switch(t) {

case SI_ATTRIBUTE: TreatSiAttr(get(d), insertion);
case CO_ATTRIBUTE: MakeStructures(get(d), insertion);
otherwise: printf(out, [insertion, BLANCS, "Error!"]);

};
d»;
};

printf(out,[insertion, CloseStruct(o)]);
insertion:= insertion_initiale;
}

/*--
Procedure generating a "Forward class declaration"

--* /
procedure GenerForwardClassDecl(entity _type: et)
{
printf(out,["\nclass c" ,et.name,"; "]);

}

/*---
F .retourning a list of an ET's SubTypes

---* /
fonction list GiveListDeSubTypes(entity_type: entt)
entity _type: enti;

64

The Source Code of the C++ Generator (Lg.: Voyager 2)

{

sub_type: subt;
cluster: clu;

retum ENTITY _TYPE[enti]{ENTITY _SUB: SUB_ TYPE[subt]
{@CLU_SUB: CLUSTER[clu]{@ENTITY_CLU:[entt]}} };

}

/*---
F. retuming list of ail obj. attr. refering to 'en' but
not belonging to 'en'.

---* /
fonction list MakeListOtForeignObjAttrTo(entity _type: en)
data_object: dataobj;
list: helplis, retumlist;
si_attribute: siatt;

{
helplis:= DATA_OBJECT[dataobj]{@SCH_DATA:[sch]

with GetType(dataobj)=SI_A TTRIB UTE};

}

for siatt in helplis do {
if siatt.type=OBJECT_ATT and

GetOwningEntityType(siatt)<>en then {
if RetumTypeOfObjAttr(siatt)=en
then { AddLast(retumlist,siatt); };

};
};

retum retumlist;

/*---
Proc. generating a "class" for each ET

---* /
procedure GenererClasse(entity_type: ent, list: id_attr_l)

owner_of_att: own;

{

attribute: att;
lis t: AttrList;
cursor: cur;
integer: t, within_class;
entity _type: supertype;

printf(out,["\nclass c" ,ent.name]);

/* le TE peut avoir des supertypes */
if Length(GiveListDeSuperTypes(ent)) <> 0 then

{
supertype:= FindSuperType(ent);
printf(out,[": public c", supertype.name]);

};
printf(out," {\n");
printf(out,["public:\n"]);

/* Partie qui s'occupe des attributs, qui crée des "struct" */
own:=ent;
AttrList:= ATTRIBUTE[att]{@OWNER_ATT:[own]};
attach cur to AttrList;
printf(out, [BLANCS, "struct "]);

65

Appendix I

Appendixl The Source Code of the C++ Generator (Lg.: Voyager 2)

}

printf(out, ["t_c" ,ent.name, "_buf {\n"]);
while IsNoVoid(cur) do {

t:= GetType(get(cur));
switch(t) {

case SI_ATTRIBUTE: TreatSiAttr(get(cur), BLANCS);
case CO_ATTRIBUTE:

insertion:= BLANCS;
MakeS tructures(get(cur), insertion);

otherwise: printf(out, [insertion, BLANCS, "error!"]);
};
cur>>;

};

printf(out,[BLANCS,"} "]);
printf(out, ["c" ,ent.name, "_buf; "]);

/* Les attributs next, previous and first */
printf(out,["\nprivate: "]);
printf(out,["\n",BLANCS,"c",ent.name,"* next;"]);
printf(out,["\n" ,BLANCS," c" ,ent.name, "* previous; "]);
printf(out,["\n" ,BLANCS, "static c" ,ent.name, "* first; "]);
/*data member & inline member fcts for classes with identifiers*/
if Length(id_attr_l)>0 then {
prin tf(out, ["\n" ,BLANCS, "bool initO _N_attr; "]);
printf(out,["\n" ,BLANCS, "bool inserted_into_list; "]);
GenerCheckldentifier(ent, 1,id_attr_l);
printf(out,["\n",BLANCS, "void set_init0_N_attr(bool value)"]);
printf(out," { initO_N_attr=value; }");
printf(out,["\n" ,BLANCS, "bool get_initO_N_attr() { "]);
printf(out," retum init0_N_attr; } ");
printf(out,["\n" ,BLANCS,"void set_inserted_into_list(bool value)"]);
printf(out," { inserted_into_list=value; } ");
printf(out,["\n",BLANCS,"bool get_inserted_into_list()"]);
printf(out,[" { retum inserted_into_list; } "]);

};
/* heads ofmember functions*/
printf(out,["\npublic:"]);
/* constructeur */
printf(out,["\n" ,BLANCS,"c" ,ent.name]);
within_class:= 1; /* l="true" */
HeadOfConstruct(ent, within_class);
printf(out,";");
/* destructeur */
printf(out,["\n",BLANCS,"~c",ent.name,"();"]);
printf(out,["\n" ,BLANCS,"static c" ,ent.name," * get_first();"]);
printf(out,["\n" ,BLANCS, "c" ,ent.name," * get_next(); "]);
printf(out,["\n" ,BLANCS," c" ,ent.name," * get_previous(); "]);

/* what() */
GenerWhat(ent, within_class);

printf(out,"\n};\n"); /* End of class! 1 */

66

The Source Code of the C++ Generator (Lg.: Voyager 2)

/*--
Proc. generating a typedef "w_class" containing an
énumération refering to each class that will be generated
---* /

procedure GenerEnumTypes(list: l_ent)
entity _type: ent;
integer: i;
cursor: c;
string: ESPACES;
{
ESPACES:= Il

Il,

' printf(out,"\ntypedef enum {");
attach c to l_ent;
i:=0;
while IsNoVoid(c) do {

i:=i+l;
if i mod 5 = 0 then { printf(out,["\n",ESPACES]); };
/* aller à la ligne chaque fois après 5 classes */
ent:= get(c);
printf(out, ["w _" ,ent.name]);
C>>;
iflsNoVoid(c) then { printf(out,", "); };

};
printf(out,"} w_class;");
}

l*---
F. creating a list of all the ET in a schema in a way that
each superclass precedes its subclasses (otherwise an
inherited class risks being generated before its 'mother' class
---*/

fonction list ConstruireListeTriee()
data_object: data;
list: liste_triee;
entity_type: enti;

{
for enti in DATA_OBJECT[data] {@SCH_DATA:[sch]

with GetType(data) = ENTITY_TYPE}
do {

if Length(GiveListDeSuperTypes(enti)) = 0 then
{
AddLast(liste_triee, enti);
ifLength(GiveListDeSubTypes(enti)) <> 0 then

{

};
}

SearchDepthFirst(enti, liste_triee);
};

return liste_triee;
}

67

Appendix I

Appendix I The Source Code of the C++ Generator (Lg.: Voyager 2)

/*--
Recursive proc. walking through the ET of a tree doing 'depth search
first' As long as an ET bas still subtypes, the proc. is called
again.
--* /

procedure SearchDepthFirst(entity_type: ent, list: list_tri)
list : liste_sub_ent;
cursor: cur;
entity _type: et;

{
liste_sub_ent:= GiveListDeSubTypes(ent);
if Length(liste_sub_ent) <> 0 then

{
for et in liste_sub_ent do

};

{
AddLast(list_tri, et);
SearchDepthFirst(et, list_tri);
}

/*--
Function making a unique list of attributes that are (part of) an
identif. Hopefully this list is always made in the same order ...
---* /

function list MakeListOfldAttr(entity_type: ent)
data_object: dat;
list: idattrlist;
group: grr, groupy;
real_component: rc;
integer: typeint;
si_attribute: siattrib;
cursor: c;
{
dat:= ent;
//ClearList(idattrlist);
for groupy in GROUP[grr]{@DATA_GR:[dat] with grr.primary or grr.secondary}
do

}

{
for rc in GetListOfComponents(groupy) do {

typeint:= GetType(rc);
switch(typeint){

case SI_ATTRlBUTE: siattrib:=rc;
c:= member(idattrlist, siattrib);
iflsVoid(c) then { AddLast(idattrlist,siattrib); } ;

case CO_ATTRlBUTE: ChercheAttrLesPlusLoins(idattrlist,rc);
//si attr immediately added to idattrlist!

}

};
}

return idattrlist;

68

The Source Code of the C++ Generator (Lg.: Voyager 2)

/*---
Proc generating a f. to destroy ALL the objects of
one class. Can take any class: because of its template!
---*/

procedure GenerGarbageCollector0 {
printf(out, "\n\n//delete all objects of one class");
printf(out,"\ntemplate <class S>");
printf(out,"\nvoid delete_one_class(S * aptr) {");
printf(out,["\n" ,BLANCS, "while(aptr) { "]);
printf(out,["\n",BLANCS," delete aptr;"]);
printf(out,["\n",BLANCS," aptr = S::get_first0;"]);
printf(out,["\n" ,BLANCS,"}"]);
printf(out, "\n} ");
}

/*--
Proc. generating a f. which sends an error message to the
screen in case of try, throw, CATCH.

--*/
procedure GenerSendErrorMessage(){
printf(out, ["\n\n//Send error message."]);
printf(out,["\nvoid send_error_message(int catchint) { "]);
printf(out,["\n",BLANCS,"if (catchint==ll)"]);
printf(out,[" printf(\"ID is not repected. "]);
printf(out," Object not created!\\n\");");
printf(out,["\n",BLANCS,"if (catchint==22) { printf(\"Obligatory"]);
printf(out," value remained empty.\\n\");");
printf(out, "\n ");
printf(out,["printf(\"Object not created!\\n\");\n } "]);
printf(out, "\n} ");
}

/*--
Proc. generating the scripts a C++ schema
Generates in the file "out" the C++ script of "sch"
---------------------------·--------------------------------------* /

procedure GenererCPP()

{

list: I; /* On va garder cette liste de TE pour pouvoir l'utiliser
plusieurs fois sans perdre l'ordre exacte des TE.*/

list: id_attr_lst;
/*To have a unique list of attr that are (part o0 an

identif. for a given ET*/
entity_type: ent;
integer: within_class;

l:= ConstruireListeTriee0;
/* I sera ch x parcourue dans le même ordre*/

printf(out,[REMARK, "Fichier C++ genere par GenerCpp.exe\n\n"]);
Gestionlnclude0;
GenerEnumTypes(l);

/* Forward declaration ofmember classes*/
printf(out, '\n');
forent in I do { GenerForwardClassDecl(ent); };

69

Appendix I

Appendix I The Source Code of the C++ Generator (Lg.: Voyager 2)

}

/* Generation des classes C++, une "class" pour chaque TE.*/
printf(out, "\n");
for ent in 1 do {
GenererClasse(ent,MakeListOfldAttr(ent));

};

/* Generation des variables globales. */
printf(out, ["\n \n" ,RE MARK," global variables \n "]);
forent in 1 do { GenererVarGlobales(ent); };

/* Inititilisation des "static members" ("first") */
printf(out,["\n\n" ,REMARK,"initiation static members"]);
forent in 1 do { InitStaticMember(ent); };

/* Generation les "member fonctions". La liste des TE
parcourue ds le même ordre que ds la boucle précédente*/
printf(out,["\n"]);
for ent in 1 do {

printf(out, ["\n" ,REMARK, "member fonctions of class c" ,ent.name]);
GenerConstructeur(ent);
GenerDestructeur(ent);
GenerGetFirst(ent);
GenerGetNext(ent);
GenerGetPrevious(ent);
within_class:= 0;
GenerWhat(ent, within_class);
id_attr_lst: =MakeListOfldAttr(ent);
if Length(id_attr_lst)>0 then

{ GenerCheckldentifier(ent, within_class,id_attr_lst); } ;
printf(out,"\n");
};

/* stand alone functions */
GenerGarbageCollectorO;
GenerSendErrorMessage();

/* Generation du programme principal */
GenerProgrPrincipal();

/* ---
function returning a list of all the components of a group
---*/

fonction list GetListOfComponents(group: gr)
real_component: rc;
component: co;
{
return REAL_COMPONENT[rc]{REAL_COMP: COMPONENT[co]{@GR_COMP:[gr]} };
}

70

The Source Code of the C++ Generator (Lg.: Voyager 2)

/* --
fonction killing all elements of a list (leaving 'ghosts')
--* /

procedure ClearList(list: listtoclear)
cursor: killcursor;
{
attach killcursor to listtoclear;
while IsNoVoid(killcursor) do
{ kill(killcursor);
killcursor>>;

};
}

/* ---
procedure that prints the exact arguments of
procedure 'check id'
--* /

procedure PrintFindldArguments(list :arglist)
si_attribute: argument;
integer: i;
cursor: c;

{
printf(out,"(");
i:=0;
attach c to arglist;
while IsNoVoid(c) do {
argument:=get(c);
i:=i+l;
if i mod 5 = 0 then { printf(out,["\n"," "]); };
printf(out, [FindCppType(argument)," ",argument.name,FindSize(argument)]);
c>>;
iflsNoVoid(c) then { printf(out,","); };
}
printf(out,")");
} /* end procedure* /

/* --
Generation of fonction checking primary and secondary
identifiers of each ET. precond.: there are identifiers
--*/

procedure GenerCheckldentifier(entity_type: myent, integer: in_class,
list: my _id_attr_list)

string: classname, ptrname, D_BLANCS, str;
group: grbidon, gr;
data_object: data;
list: idattrlist, grlist;
cursor: bidoncursor, gg, cc;
si_attribute: siattrib;
real_component: rc;
integer: typeint;
{

data:= myent;
grlist:= GROUP[gr]{@DATA_GR:[data] with gr.primary or gr.secondary};

D_BLANCS:= BLANCS+ BLANCS;

71

Appendix I

AppendixI

classname:= "c" + myent.name;
ptmame:= "p" + myent.name;
ifin_class=0 tben { printf(out,"\n"); };
printf(out,["\n"]);
ifin_class=l tben { printf(out,BLANCS); };
printf(out,[classname," * "]);
ifin_class=0 tben { printf(out,[classname,"::"]); };
printf(out, "find_id");

PrintFindldArguments(my_id_attr_list);
if in_class= 1 tben {

printf(out,";");
retum; /*end of tbis function!*/

};
printf(out, "\n{");

The Source Code of the C++ Generator (Lg.: Voyager 2)

printf(out,["\n ",classname," * ",ptmame,";"]);
printf(out,["\n ",ptmame," = ",classname,"::get_first();"]);
printf(out,["\n while(" ,ptmame,"){ "]);
printf(out,["\n", BLANCS, "if("]);

/*generate code tbat checks each group of identifiers*/
attach gg to grlist;
while IsNo Void(gg) do {
printf(out,["\n",D_BLANCS,"("]);

ClearLis t(idattrlist);
grbidon:=get(gg); /*grbidon eitber primary or sec id */
for rc in GetListOfComponents(grbidon) do {

typeint:= GetType(rc);
switch (typeint) {
case SI_ATTRIBUIB: siattrib:=rc;

bidoncursor:= member(idattrlist, siattrib);
if Is Void(bidoncursor) tben {

AddLast(idattrlist,siattrib);
};

case CO_ATTRIBUIB: ChercheAttrLesPlusLoins(idattrlist, rc);
} ; /*end switch*/

}; /*end for*/
attach cc to idattrlist;
while IsNoVoid(cc) do {
siattrib:= get(cc);
ifFindCppType(siattrib)="char" tben {

printf(out, ["strcmp(", ptmame, "->",
MakeStringOfAttrHierarchy(siattrib," ", 1, 105),

" . ",siattrib .name,",", siattrib .name, ") == 0"]);
}

else {
printf(out, [ptmame,"->",

MakeStringOfAttrHierarchy(siattrib," ", 1, 105),
".",siattrib.name," == ",siattrib.name]);

}; /* end if*/
cc>>;
ifisNoVoid(cc) tben { printf(out,[" &&\n",D_BLANCS," "]); };
};

printf(out,[")" ,D_BLANCS]);
gg>>;
iflsNoVoid(gg) tben { printf(out,["\n",D_BLANCS,"11"]);}
}; /*end while*/

72

The Source Code of the C++ Generator (Lg.: Voyager 2)

printf(out,["\n",D_BLANCS,") { retum (",ptrname,
"); } /*end if statement*/"]);

printf(out,["\n ", ptrname," = ",ptrname,"->get_next();"]);
printf(out,["\n } /*end while*/"]);
printf(out,["\n retum(NULL);"]);
printf(out, "\n} ");
} /*end GenerCheckidentifier*/

/* --
Recursive f. generating a list with the most profound attr.
i.e. simple attr., in the hierarchy of decomposable attr.
--* /

procedure ChercheAttrLesPlusLoins(list: l_simple_att, owner_of_att: ow)
list: list_bidon;
attribute: attrib;
cursor: dd;
integer: t;
{
list_bidon:= ATTRIBUTE[attrib]{@OWNER_ATI:[ow]};
attach dd to list_bidon;
while IsNoVoid(dd) do {
t:= GetType(get(dd));
switch(t) {
case SI_ATTRIBUTE: AddLast(l_simple_att,get(dd));
case CO_ATTRIBUTE: ChercheAttrLesPlusLoins(l_simple_att, get(dd));
};

dd>>;
}; /*end while*/

}

/* --
recursive f. building C++ code to access a 0-N attr, no matter
how deep the access bas to be made. If generbuffemame= 1 then the
name of the buffer of the classeis added to the result string
--* /

function string MakeStringOfAttrHierarchy(attribute: oa, string: sst,

{

integer: generbuffemame, integer: integ)
list: lisst;
owner_of_att: owner;
entity _type: ETbidon;
attribute: attr_bidon;
string: strbidon;

lisst:= OWNER_OF _ATI[owner]{OWNER_ATI:[oa]}; /*list of 1 element*/
owner:= GetFirst(lisst);
if GetType(owner)<>ENTITY _ TYPE then {
attr_bidon:= owner;
if l<attr_bidon.max_rep and attr_bidon.max_rep<N_CARD then {

strbidon:= attr_bidon.name + "["+ StrSetChar("x",0,AscToChar(integ))
+ "]";

integ:= integ + 1;
}

else { strbidon:= attr_bidon.name; };
sst:= MakeStringOfAttrHierarchy(attr_bidon, sst, generbuffemame, integ)

+ "." + strbidon;

73

Appendix I

Appendix I

return sst;
}

if generbuffemame = 1 then {
ETbidon:= owner;
sst:= "c" + ETbidon.name + "_buf" + sst;
};

retum sst;
}

The Source Code of the C++ Generator (Lg.: Voyager 2)

/*---
F. testing whether their are attributes of cardinality [0-N]
returns 1 or 0
--* /

fonction integer TestifO_NAttrAndRemoveOthers(list: llst)
cursor: d;
si_attribute: ssiat;

attach d to llst; /*lst contains only si_attr*/
while IsNoVoid(d) do {
ssiat:=get(d);
if ssiat.min_rep<>0 or ssiat.max_rep<>N_CARD then { kill(d);};
d>>;
}; /*only O-N attr are kept in lst*/
if Length(llst)=0 then { return 0; } else { return 1; } ;

}

/* --
recursive proc generating 'for(.. .' loops for the con­
structor and the destructor for each multiv attr 0-X, X<N
--* /

procedure GenerForLoopsMultAttr(attribute: oatt, integer: integ,
integer: open_loop)

list: li;
owner_of_att: owne;
attribute: atr;
{
li:= OWNER_OF_ATT[owne]{OWNER_ATT:[oatt]}; /*listof 1 element*/
owne:=GetFirst(li);
if GetType(owne) <> ENTITY _ TYPE then {
atr:= owne; /* because owne.max_rep doesn't exist*/
if l<atr.max_rep and atr.max_rep<N_CARD then {

switch (open_loop) {
case 1 : printf(out,["\n",BLANCS,"for (", AscToChar(integ),

"=0; ",AscToChar(integ), "<",Strltos(atr.max_rep),
"; ",AscToChar(integ),"++) {"]);
integ:= integ + 1;

case O: printf(out,[BLANCS,"};"]);
}; /* end switch */

};
GenerForLoopsMultAttr(owne, integ, open_loop);
};

}

74

The Source Code of the C++ Generator (Lg.: Voyager 2)

/* --
proc counting the number of integers needed to manage loops
"for (i:=1; ...)", for the treatment of the given list of attr.
--* /

function integer CountNumOflntegersNeededFor(list: lst_of_att)
attribute: attrib;

{

}

integer: respro, resprov;

resprov:= O;
for attrib in lst_of_att do {

}

respro:= CountThisBranch(attrib, 0);
ifrespro > resprov then { resprov:=respro; };

return resprov;

/* --
recursive f. counting the number of multiv compound attr
on its way from a simple attr to its root (a compound attr)
---* /

fonction integer CountThisBranch(attribute: my_attr,

{

integer: sumofthisbranch)
list: branchlist;
owner_of_att: ow;
attribute: atrbidon;

branchlist:=OWNER_OF_ATT[ow]{OWNER_ATI:[my_attr]}; /*lelement in list*/
ow:=GetFirst(branchlist);
if GetType(ow) <> ENTITY _ TYPE then {

atrbidon:= ow; /* ow.maxrep doesn't exist */
if 1 <atrbidon.max_rep and atrbidon.max_rep<N_CARD then {

sumofthisbranch:= CountThisBranch(atrbidon, sumofthisbranch) + 1; }
return sumofthisbranch;

};
}

/* --
Proc generating a call, made by constructors, to "Findld(...)"
precond: at least 1 identififier.
---* /

procedure GenerCallToProcedureFindld(entity_type: ent)
list: argumentlst;
cursor: cur;
attribute: at;
integer: i;
{
argumentlst:= MakeListOfldAttr(ent);
printf(out,["\n",BLANCS,"//check identifier(s)"]);
printf(out,["\n" ,BLANCS, "if (find_id("]);
i:=0;
attach cur to argumentlst;
while IsNoVoid(cur) do {
at:=get(cur);
i:=i+l;
ifi mod4 = 0 then { printf(out,["\n",BLANCS,BLANCS]); };
printf(out,["c" ,ent.name, "_bu",

MakeStringOfAttrHierarchy(at,"",0,105), ".",at.name]);
cur>>;

75

Appendix I

Appendix I

iflsNoVoid(cur) then { printf(out,", "); };
};

The Source Code of the C++ Generator (Lg.: Voyager 2)

printf(out,["))\n",BLANCS,BLANCS,"{ delete(this); throw 11; }"]);
}

/* ---
proc printing all the Integer Variables needed for the constructor,
destructor, etc.
--* I

procedure PrintlntegerV ariablesNeeded(integer: turnmetoascii,
integer: numofint)

integer: countme;
{
ifnumofint>0 then { printf(out, ["\n", BLANCS, "int "]);}
else { return; }
countme:=0;
while countme < numofint do {
printf(out,AscToChar(turnmetoascii));
countme:= countme + 1;
if countme < numofint then { printf(out,", "); };
turnmetoascii:= turnmetoascii + 1;
};

printf(out,";");
}

/* ---
proc generating the constructor of a class (head + definition)
---* I

procedure GenerConstructeur(entity_type: entti)
entity _type: supent;
integer: within_class, ascii_int,numofint, hlpnumofint;
list: 1st, lstforeignobjattr,lst_of_id_attr;
attribute: at;
si_attribute: siat;
cursor: d, al;
string: str;

{
lst_of_id_attr:=MakeListOfldAttr(entti);
asciUnt:=105;
numofint:= 0;
within_class:= 0;
printf(out,["\nc" ,entti.name,": :c" ,entti.name]);
HeadOfConstruct(entti, within_class);
printf(out, "\n{ ");

/*after two following calls, 1st contains simple, 0-N attr*/
ChercheAttrLesPlusLoins(lst, entti);
ifTestlfO_NAttrAndRemoveOthers(lst) then {

numofint:= CountNumOflntegersNeededFor(lst); };

/*preparations for object attributes*/
lstforeignobjattr:=MakeListOfForeignObjAttrTo(entti);
hlpnumofint:= CountNumOflntegersNeededFor(lstforeignobjattr);

if blpnumofint > numofint then { numofint:= hlpnumofint; } ;
PrintlntegerV ariablesNeeded(ascii_int, n umofint);

76

The Source Code of the C++ Generator (Lg.: Voyager 2)

if Length(lst_of_id_attr)>0 then {
printf(out,["\n" ,BLANCS, "set_init0_N_attr(false); "]);
printf(out, ["\n" ,BLANCS," set_inserted_into_list(false); "]);
GenerCallToProcedureFindld(entti);

};

printf(out,["\n",BLANCS,"//pass values to data members"]);
printf(out,["\n" ,BLANCS, "memcpy(&"]);
printf(out,['c',entti.name,"_buf, &"]);
printf(out,['c',entti.name, "_bu, sizeof("]);
printf(out,['c',entti.name,"_bu));"]);

printf(out,[11\n",BLANCS, 11//add object to list"]);
printf(out,["\n",BLANCS,"next = NULL;"]);
printf(out,["\n",BLANCS, "previous = "]);
printf(out,['c',entti.name, "_former;"]);
printf(out,["\n" ,BLANCS,

"if (get_previousO) { get_previous()->next = this;} "]);
printf(out, " else { first = this;}; ");
printf(out,[BLANCS, 11\n"]);
printf(out, [BLANCS, 'c' ,entti.name, "_former = this; "]);
if Length(lst_of_id_attr)>0 then {

printf(out, ["\n" ,BLANCS," set_inserted_into_list(true); "]);
} ;

/*Generate code to initialize ail the 0-N attr lists + iterators*/
attach al to 1st;
while IsNoVoid(al) do {
siat:= get(al);
printf(out, ["\n\n",BLANCS,"// Initialise lists for multivalued attr"]);
GenerForLoopsMultAttr(siat, ascii_int, 1); /*1= open loops! */
/*initialization itself*/
str:= MakeStringOfAttrHierarchy(siat, str, 1, ascii_int) + "."

+ siat.name;
printf(out,["\n", BLANCS,str, "="]);
printf(out,["\n",BLANCS, BLANCS, "new Tlist<", FindCppType(siat),">"]);
if siat.type=OBJECT_ATT then

{ printf(out,["(TLIST_NOT_REMOVE);"]); }
else { printf(out,["(TLIST_REMOVE_WITH_NEW/*TLIST_NOT_REMOVE*/);"]); };
str:="";
str:= MakeStringOfAttrHierarchy(siat, str, 1, ascii_int) + ".i_"

+ siat.name;
printf(out, ["\n" ,BLANCS,str, "="]);
printf(out, ["\n",BLANCS, BLANCS, "new Titer<", FindCppType(siat),">"]);
str:="";
printf(out,["(", MakeStringOfAttrHierarchy(siat,str, 1,ascii_int),

". ",siat.name, ");\n"]);
GenerForLoopsMultAttr(siat, asciUnt, 0); /*0= close loops! */
al>>;
}; /*end while-statement*/
ifLength(lst_of_id_attr)>0 then {
printf(out,["\n",BLANCS,"set_init0_N_attr(true);"]);

};
printf(out, "\n}; //end constructor");

}

77

Appendixl

Appendix I The Source Code of the C++ Generator (Lg.: Voyager 2)

/* --
proc. generating the parametre of a classe's constructor
The Boolean in_class makes clear whether we are dealing with
the head of a constuctor within a class definition or ouside
of it.

--* /
procedure HeadOfConstruct(entity_type: entt, integer: in_class)
integer: compteur;
string: ESPACIO;
entity_type: supertype;
{
printf(out,["(t_c",entt.name,"_buf &c",entt.name,"_bu"]);
ifLength(GiveListDeSuperTypes(entt)) <> 0 then

{
printf(out, ",\n");
if in_class=0 then
{ ESPACIO:=StrBuild(5 + (2*StrLength(entt.name))); }

else
{ ESPACIO:=StrBuild(2 + StrLength(entt.name)) + BLANCS; }

ArgumDesSuperClasses(entt, ESPACIO);

if in_class = 0 then
{
ESPACIO:= StrBuild(3 + StrLength(entt.name));
supertype:= FindSuperType(entt);
printf(out,["):\n" ,ESPACIO, "c" ,supertype.name, "("]);
compteur:= 0; /*to do "\n" after a certain nbr of arguments*/
PassArgToBaseConstructor(supertype, ESPACIO, compteur);
}

};
printf(out,')');
}

/* --
procédure qui s'occupe dans le paramètre d'un constructeur des
arguments concernant les superclasses d'une classe. Elle se
déplace récursivement vers la classe souche.
Précondition: la superclasse de ent existe.
--*/

procedure ArgumDesSuperClasses(entity_type: ent, string:SPACE)
entity_type: sup_ent;

{
sup_ent:= FindSuperType(ent);
printf(out,[SPACE,"t_c",sup_ent.name,"_buf']);
printf(out,[" c" ,sup_ent.name, "_bu"]);
ifLength(GiveListDeSuperTypes(sup_ent)) <> 0 then

}

{
printf(out, ",\n");
ArgumDesSuperClasses(sup_ent, SPACE);

};

78

The Source Code of the C++ Generator (Lg.: Voyager 2)

/* ---
Recursive proc generating the arguments of a constructor
of a superclasse, which is called by the constructor of the
subclass.
--*/

procedure PassArgToBaseConstructor(entity _type: ent,
string: SPACE, integer: i)

{
printf(out,["c" ,ent.name, "_bu"]);
if Length(GiveListDeSuperTypes(ent))<>Ü then

{
printf(out,", ");
i:= i + 1;
if i mod 3 = 0 then /* On va aller à la ligne*/

{
printf(out,['\n',SPACE]);

};
PassArgToBaseConstructor(FindSuperType(ent),SP ACE, i);
};

/* --
proc printing a ptr variable of type 'atype' if at least 1
of the elements in 'alst', which contains simple attr, is of type

'atyp'. The name of the variable is 'nameofvar'
--* /
procedure PrintPtrVariableüffype(string: atype,string: nameofvar,list: alst)
si_attribute : attri;
{
for attri in alst do {
if FindCppType(attri)=atype then {

printf(out,["\n" ,BLANCS,atype," * ",nameofvar,"; "]);
return;

};
};
}

/* --
proc. generating the destructor of a class

--* /
procedure GenerDestructeur(entity _type: entti)
string: D_BLANCS, T_BLANCS, pointerstr, str;
list: lstt, lstforeignobjattr,lst_of_id_attr;
cursor: curs;
si_attribute: siat, objat;
integer: ascii_int, numofint,hlpnumofint, printyn;
entity _type: owningET;
{
lst_of_id_attr:=MakeListüfldAttr(entti);
ascii_int:=105;
numofint:=0;
D_BLANCS := StrConcat(BLANCS,BLANCS);
T_BLANCS:= StrConcat(BLANCS,D _BLANCS);
printf(out,["\n\nc",entti.name, "::~c",entti.name, "() { "]);

/* prep. for attr 0-N. structure: cfr comments for GenerConstructeur!*/
ChercheAttrLesPlusLoins(lstt, entti);

79

Appendix I

Appendixl The Source Code of the C++ Generator (Lg.: Voyager 2)

if Testlf0_NAttrAndRemoveüthers(lstt) then
{ numofint:= CountNumüflntegersNeededFor(lstt); };

/*prep for obj attr. with pointers pointing to this entity type*/
lstforeignobjattr:=MakeListütForeignübjAttrTo(entti);
hlpnumofint:= CountNumüflntegersNeededFor(lstforeignobjattr);
if hlpnumofint>numofint then { numofint:=hlpnumofint; } ;

/* print variables */
PrintlntegerVariablesNeeded(ascii_int, numofint);

/*print other variables ifnecessary*/
if Length(lstt)>0 then {

};

//PrintPtrV ariableOIType("bool", "bp" ,lstt);
//PrintPtr V ariableOIType(" int", "ip" ,lstt);
//PrintPtrVariableOIType("char", "cp" ,lstt);
//PrintPtrV ariableOIType("float", "fp" ,lstt);
//PrintPtr V ariableOIType(" double"," dp" ,lstt);

/*Print pointer to entti if it bas at 1st 1 foreign obj attr 0-N*/
printyn:=0;
for objat in lstforeignobjattr do {
if objat.max_rep=N_CARD then { printyn:=1; };

};
ifprintyn=l then {
printf(out,["\n",BLANCS,"c",entti.name," * op;"]);

}

/*Print pointer to classes containing a foreig attr pointing to entti */
for objat in lstforeignobjattr do {
owningET:= GetüwningEntityType(objat);
printf(out,["\n" ,BLANCS, "c" ,owningET.name," * ",owningET.name, "po; "]);
};

/* code to deallocation all lists and iterators if any*/
attach curs to lstt;
if Length(lstt)<> 0 then {

printf(out,["\n" ,BLANCS,"/ /Destroy lists and reiterators"]);
};
if Length(lst_of_id_attr)>0 then {
printf(out,["\n" ,BLANCS, "if (get_init0_N_attr()) { "]);

};
while IsNoVoid(curs) do
{
siat:= get(curs);
str:="";
GenerForLoopsMultAttr(siat, asciUnt, 1); /*1= open loops! */
printf(out,["\n" ,BLANCS,"delete "]);
str:= MakeStringOfAttrHierarchy(siat,str,l,ascii_int) + ".i_" + siat.name;
printf(out,[str," ;"]);
str:="";
printf(out,["\n",BLANCS,"delete "]);
str:= MakeStringOfAttrHierarchy(siat,str,l,ascii_int) + "." + siat.name;
printf(out,[str," ;"]);
GenerForLoopsMultAttr(siat, ascii_int, 0); /*0= close loops! */
curs>>;
}

80

The Source Code of the C++ Generator (Lg.: Voyager 2)

if Length(lst_of_id_attr)>0 then {
printf(out,["\n",BLANCS,"} //end if getO_N_ ... "]);

};

printf(out,["\n" ,BLANCS, "//fake object out of list. "]);
if Length(lst_of_id_attr)>0 then {
printf(out,["\n" ,BLANCS," if (get_inserted_into_listO) { "]);

};
printf(out,["\n" ,BLANCS, "if (get_next()) { "]);
printf(out,["\n",D_BLANCS, "if (get_previous()) { "]);
printf(out, ["\n ", T _BLAN CS," get_previous()-> next = next; "]);
printf(out,["\n", T_BLANCS," get_next()->previous = previous; "]);
printf(out,["\n",D_BLANCS,"}"]);
printf(out,["\n",D_BLANCS,"else {"]);
printf(out,["\n", T _BLANCS," get_next()->previous = NULL; "]);
printf(out,["\n",T_BLANCS,"first = next;"]);
printf(out,["\n",D_BLANCS,"};"]);
printf(out,["\n" ,BLANCS,"}"]);
printf(out,["\n",BLANCS,"else"]);
printf(out,["\n",D_BLANCS,"if (get_previous()) {"]);
printf(out,["\n", T_BLANCS, "get_previous()->next = NULL;"]);
printf(out,["\n" ,T_BLANCS]);
printf(out,['c' ,entti.name," _former = previous; "]);
printf(out,["\n" ,D _BLANCS,"}"]);
printf(out,["\n" ,D _BLANCS," else { "]);
printf(out,["\n" ,T_BLANCS]);
printf(out,['c',entti.name,"_former = NULL;"]);
printf(out,["\n",T_BLANCS,"first = NULL;"]);
printf(out,["\n",BLANCS, "} //end if']);
if Length(lst_of_id_attr)>0 then {

printf(out,["\n",BLANCS,"} //end if get_inserted_ ... "]);
};

if Length(lstforeignobjattr)>0 then {
printf(out,["\n" ,BLANCS]);
printf(out,["//Management of foreign obj attr with pointers toc"]);
printf(out,entti.name);

}/*end if*/

for objat in lstforeignobjattr do {
GenerForLoopsMultAttr(objat, ascii_int, 1);
owningET:= GetOwningEntityType(objat);
printf(out,["\n" ,BLANCS,owningET.name, "po=c" ,owningET .name,

":: get_first(); "]);
printf(out,["\n ",BLANCS, "while (" ,owningET.name, "po) { "]);

switch (objat.max_rep) {
case 1:
printf(out,["\n" ,D_BLANCS,"if (" ,owningET.name, "po->c",

owningET.name, "_buf',
MakeS tringOfAttrHierarchy(objat," ", 0,ascii_int),
"." ,objat.name," == this) { "]);

printf(out,["\n" ,T_BLANCS,owningET.name, "po->c",
owningET.name, "_buf',
MakeStringOfAttrHierarchy(objat," ",0,ascii_int),
". ",objat.name," = NULL; "]);

printf(out,["\n",D_BLANCS,"} "]);

81

Appendixl

Appendix I The Source Code of the C++ Generator (Lg.: Voyager 2)

case N_CARD:
printf(out,["\n",D_BLANCS,"if ("]);
printf(out,["\n" ,D _BLANCS,"(" ,owningET.name, "po->c" ,owningET.name,

"_buf',MakeStringOfAttrHierarchy(objat,"",0,ascii_int),
".",objat.name,"->Length() != 0) &&"]);

printf(out,["\n" ,D _BLANCS," ",owningET.name," po->c" ,owningET.name,
"_buf' ,MakeStringOfAttrHierarchy(objat, "" ,0,ascii_int),
"." ,objat.name," ->Member(this))"]);

printf(out,["\n",D_BLANCS," {"]);
printf(out,["\n",D_BLANCS,"for(op=",owningET.name,"po->c",

owningET.name, "_buf',
MakeStringOfAttrHierarch y(objat," ",0 ,ascii_int),
".i_" ,objat.name, "->Init(); "]);

printf(out,["\n",T_BLANCS,"op;"]);
printf(out,["\n",T_BLANCS,"op=",owningET.name,"po->c",

owningET.name, "_buf',
MakeStringOfAttrHierarchy(objat," ",0,ascii_int),
".i_",objat.name,"->More())"]);

printf(out,["\n",T_BLANCS,"{"]);
printf(out,["\n",T_BLANCS," if(op == this) {"]);
printf(out,["\n", T_BLANCS," delete ",owningET.name, "po->c",

owningET.name, "_buf',
MakeS tringOfAttrHierarchy(objat," ",O,ascii_int),
".i_" ,objat.name, "-> Whole();"]);

printf(out,["\n", T _BLANCS,"} ",REMARK, "end if']);
printf(out,["\n" ,D _BLANCS,"} ",REMARK, "end for"]);
printf(out,["\n",D_BLANCS,"} ",REMARK,"end if']);

otherwise: printf(out,"error! max card must be 1 or N");
} ; /*end switch*/

printf(out,["\n",D_BLANCS,owningET.name,"po=",
owningET.name, "po->get_next(); "]);

printf(out,["\n",BLANCS,"} ",REMARK,"end while\n"]);
GenerForLoopsMultAttr(objat, ascii_int, 0);

};/*end for*/
printf(out, "\n}//end of destructor");
} /* fin GenerDestructeur */

/* ---
proc. generating the method Get_First() of a class

---* /
procedure GenerGetFirst(entity_type: entti)
{
printf(out,["\n\nc" ,entti.name," * c" ,entti.name, "::get_first()"]);
printf(out,["\n",BLANCS,"{ return first; }"]);
}

/* ----------. --
proc generating the method Get_Next() of a class

--*/
procedure GenerGetNext(entity _type: entti)
{
printf(out,["\n\nc" ,entti.name," * c" ,entti.name, ": :get_next()"));
printf(out, ["\n" ,BLANCS," { return next; } "]);
}

82

The Source Code of the C++ Generator (Lg.: Voyager 2)

/* --
procédure générant la méthode Get_Previous() d'une classe

--* /
procedure GenerGetPrevious(entity _type: entti)
{
printf(out, ["\n\nc" ,entti.name," * c" ,entti.name,": :get_previous() "]);
printf(out,["\n",BLANCS," { return previous; } "]);
}

/ * --
proc generating the method What() of a class

--* /
procedure GenerWhat(entity_type: entti, integer: in_class)
list: I;
cursor: c;
entity _type: e;
sub_type: sub;
cluster: clu;
integer: pure_virtual; /*Boolean*/

{
/* voire si what is pure_ virtual */
pure_ virtual:= 0;
l:=ENTITY _TYPE[e] {ENTITY _SUB :SUB_TYPE[sub]{ @CLU_SUB :CLUSTER[clu]

{ @ENTITY _CLU:[entti]}} }; /* liste des ss_types de entti */
attach c to I;
if lsNo Void(c) then

{
clu:= _GetFirst(ENTITY_CLU,entti); /* le clu du premier ss_type */
if (lsNoVoid(clu.disjoint)) and (IsNoVoid(clu.total)) then

{ pure_virtual:=1;}
else

};

{ if (IsNoVoid(clu.total)) and (IsVoid(clu.disjoint)) then {

};

if in_class = 1 then /* to avoid having 2x the same message*/
{ print("Warning: in C++, subclasses are always disjoint.\n");
print(["Consequently, the subclasses of c",entti.name,
"are not only total,\nbut even forma partition!\n"]); };

};

if in_class = 1 then
{
printf(out,["\n",BLANCS,"virtual w_class what()"]);
ifpure_virtual = 1 then { printf(out," = 0"); };
printf(out, ';');
}; /* end if statement */

if (in_class = 0) and (pure_ virtual = 0) then
{

}

printf(out,["\n\nw_class c",entti.name,"::what()"]);
printf(out,["\n",BLANCS,"{ return w_",entti.name,"; }"]);

};

83

Appendix I

Appendixl The Source Code of the C++ Generator (Lg.: Voyager 2)

/* --
proc. generating the code that initialises the "static members"
--* /

procedure InitStaticMember(entity_type: enti)
{
printf(out, ["\ne" ,enti.name," * c" ,enti.name,": :first = NULL; "]);
}

/* ---
Proc. preparing the fonction "main()" of the C++ programme
--* /

procedure GenerProgrPrincipal()
{
printf(out, "\n\nint main()");
printf(out, "\n{ ");
printf(out,["\n",BLANCS,"try {"]);
printf(out,["\n" ,BLANCS,"}"]);
printf(out,["\n" ,BLANCS, "catch(int i) { "]);
printf(out,["\n",BLANCS,BLANCS,"send_error_message(i);"]);
printf(out,["\n" ,BLANCS,"}"]);
printf(out,['\n',BLANCS,"return O;"]);
printf(out, "\n} ");
}

/* --------------------------
Main programme

-----------------------------* /
begin

end

if not(OuvreFichier()) then {
sch:=GetCurrentSchema();
if not(Is Void(sch)) then {

SetPrintList("" ,"", '"');
GenererCPP();
CloseFile(out);
print("\nOK!\n");

};
};

84

The Generated C++ Code. Example 1 Appendix II

Il. The Generated C++ Code. Example 1
This appendix comprises a few examples of object oriented physical schemata and their
corresponding C++ code generated by the C++ generator. The code is delivered on the
diskette in the back cover of this thesis, together with all the C++ files necessary to take care
of lists corresponding to multivalued attributes with cardinality 0-N.

11.1. Physcial Schema

Person
id Qbar num[Q-1]
name[0-1]
first_name[0-1]
testatt[0-5]

demo[O-N]
luckynumbers[O-N]
nicknames[O-N]
id: id_char_num
id':name

first_name

Types of the attributes:
id_char_num: numeric
name: char, 14
first_name: char, 29
testatt: compound
demo: numeric
luckynumbers: numeric
nicknames: char

85

Appendixll The Generated C++ Code. Example 1

11.2. The C++ Code Corresponding to the Schema
Remark: The code contained by the main programme and by the function list_pers()
underneath is not generated by the C++ generator, but has been added to make an executable
programme the output of which is represented as well.

The programme tries to create five instances of persans, each of them having a list of lucky
numbers. Two of them are not constructed because of a double identifier detected by the
constructor. The function List_pers() walks through the list of persans created by the main
programme and prints their names, first names and lists of lucky numbers on screen.

C++ code:

//Fichier C++ genere par GenerCpp.exe

#include <string.h>
#include <stdio.h>
#include <iostream.h>
#include " .. \lists\tlist.h"

typedef enum { w _person} w _class;

class cPerson;

class cPerson {
public:

struct t_cPerson_buf {
int id_char_num;
char name[15];
char first_name[30];
struct t_testatt {

Tlist <char> * demo;
Titer <char> * i_demo;

} testatt[5];
Tlist <int> * luckynumbers;
Titer <int> * i_luckynumbers;
Tlist <char> * nicknames;
Titer <char> * i_nicknames;

} cPerson_buf;
private:

cPerson* next;
cPerson* previous;
static cPerson* first;
bool initO_N_attr;
bool inserted_into_list;
cPerson * find_id(int id_char_num,char name[l5],char first_name[30]);
void set_initO_N_attr(bool value) { initO_N_attr=value; }
bool get_initO_N_attr() { retum initO_N_attr; }
void set_inserted_into_list(bool value) { inserted_into_list=value; }
bool get_inserted_into_list() { return inserted_into_list; }

public:
cPerson(t_cPerson_buf &cPerson_bu);
~cPerson();
static cPerson * get_first();
cPerson * get_next();

86

The Generated C++ Code. Example 1

cPerson * get_previousO;
virtual w_class what();

};

// global variables
cPerson * cPerson_former = NULL;

//initiation static members
cPerson * cPerson::first = NULL;

//member functions of class cPerson
cPerson: :cPerson(t_cPerson_buf &cPerson_bu)
{
inti;
set_init0 _N_attr(false);
set_inserted_into_list(false);
//check identifier(s)
if (find_id(cPerson_bu.id_char_num, cPerson_bu.name, cPerson_bu.first_name))

{ delete(this); throw 11; }
/ /pass values to data members
memcpy(&cPerson_buf, &cPerson_bu, sizeof(cPerson_bu));
//add object to list
next=NULL;
previous = cPerson_former;
if (get_previous()) {get_previous()->next = this; } else {first = this; };
cPerson_former = this;
set_inserted_into_list(true);

// Initialise lists for multivalued attr
for (i=0;i<5; i++) {
cPerson_buf.testatt[i].demo=
new Tlist<char>(TLIST_REMOVE_ WITH_NEW/*TLIST_NOT_REMOVE*/);

cPerson_buf.testatt[i] .i_demo=
new Titer<char>(cPerson_buf.testatt[i].demo);

};

// Initialise lists for multivalued attr
cPerson_buf.luckynumbers=
new Tlist<int>(TLIST_REMOVE_ WITH_NEW/*TLIST_NOT_REMOVE*/);

cPerson_buf.Uuckynumbers=
new Titer<int>(cPerson_buf.luckynumbers);

// Initialise lists for multivalued attr
cPerson_buf.nicknames=
new Tlist<char>(TLIST_REMOVE_ WITH_NEW/*TLIST_NOT_REMOVE*/);

cPerson_buf.i_nicknames=
new Titer<char>(cPerson_buf.nicknames);

set_init0_N_attr(true);
} ; //end constructor

cPerson::~cPerson() {
inti;
char* cp;
int * ip;
int * fp;

87

Appendix II

AppendixII

//Destroy lists and reiterators
if (geUnitO_N_attr()) {
for (i=O; i<S; i++) {
delete cPerson_buf.testatt[i] .demo;
delete cPerson_buf.testatt[i].i_demo;

};

delete cPerson_buf.luckynumbers;
delete cPerson_buf.i_luckynumbers;
delete cPerson_buf.nicknames;
delete cPerson_buf.i_nicknames;

} //end if getO_N_ ...

/ffake object out of list.
if (geUnserted_into_list()) {
if (get_next()) {

}

if (get_previous()) {
get_previous()->next = next;
get_next()->previous = previous;

}
else {

get_next()->previous = NULL;
first = next;

} ;

else
if (get_previous()) {

get_previous()->next = NULL;
cPerson_former = previous;

}
else {
cPerson_former = NULL;
first = NULL;

} //end if
} //end if get_inserted_ ...

}//end of destructor

cPerson * cPerson::get_first()
{ retum first; }

cPerson * cPerson::get_next()
{ retum next; }

cPerson * cPerson: :get_previous()
{ retum previous; }

w_class cPerson::what()
{ retum w _Person; }

The Generated C++ Code. Example 1

88

The Generated C++ Code. Example 1

cPerson * cPerson::find_id(int id_char_num,char name[15],char first_name[30])
{
cPerson * pPerson;
pPerson = cPerson::get_first();
while(pPerson){
if (

(pPerson->cPerson_buf.id_char_num == id_char_num)
Il
(strcmp(pPerson->cPerson_buf.name,name) == 0 &&
strcmp(pPerson->cPerson_buf.first_name,first_name) == 0)

) { return (pPerson); } /*end if statement*/
pPerson = pPerson->get_next();
} /*end while*/
return(NULL);
}

//delete ail objects of one class
template <class S>
void delete_one_class(S * aptr) {

while(aptr) {
delete aptr;
printf("\nDelete");
aptr = S::get_first();
}

}

//Send error message.
void send_error_message(int catchint) {
if (catchint==l 1) printf("ID is not repected. Object not created!\n");
if (catchint==22) { printf("Obligatory value remained empty.");

printf("Object not created!\n");
};

int main(){
void list_pers();
inti;

cPerson::t_cPerson_bufpersl = {100, "Simpson", "Tom"};
try {

cPerson * first_pers = new cPerson(persl);
for (i=l; k3; i++) {
first_pers->cPerson_buf.luckynumbers-> AddLast(new int (i));
}

}
catch(int i) {

send_error_message(i);
}

cPerson: :t_cPerson_buf pers2 = { 100, "Garver", "Tessa"};
try {
cPerson * sec_pers = new cPerson(pers2);
for (i=4; i<7; i++) {
sec_pers->cPerson_buf.luckynumbers->AddLast(new int (i));

}
}

89

Appendix II

Appendix II

catch(int i) {
send_error_message(i);

cPerson::t_cPerson_bufpers3 = {144, "Merckx", "Axel"};
try {
cPerson * third_pers = new cPerson(pers3);
for (i=7; i<9; i++) {

third_pers->cPerson_buf.luckynumbers->AddLast(new int (i));
}

}
catch(int i) {

send_error_message(i);
}

cPerson::t_cPerson_bufpers4 = {384, "Merckx", "Axel"};
try {
cPerson * fourth_pers = new cPerson(pers4);
for (i=3; i<9; i++) {
fourth_pers->cPerson_buf.luckynumbers->AddLast(new int (i));

}
}
catch(int i) {

send_error_message(i);

cPerson::t_cPerson_bufpers5 = {385, "Gevers", "Gert"};
try {
cPerson * fifth_pers = new cPerson(pers5);
for (i=2; i<S; i++) {

fifth_pers->cPerson_buf.luckynumbers->AddLast(new int (i));
}

}
catch(int i) {

send_error_message(i);

cout <<"tester cPerson: "<<endl;
list_pers(); printf("\n ");

delete_one_class(cPerson::get_first());
list_pers(); printf("\n");

cout<< "Press any key and then ENIBR!";
int pf;
cin >> pf;

return O;
}

90

The Generated C++ Code. Example 1

The Generated C++ Code. Example 1

//function to print list
void list_pers() {
int * ip;
char* cp;
cPerson * pe;
pe = cPerson::get_first();
while (pe) { //the following if-test is only necessary for a base class!
if (pe->what() == w_Person) {

printf("%s\t\t%s\n" ,pe->cPerson_buf.name, pe->cPerson_buf.first_name);

/*Print list 'luckynumebers'*/
for (ip=pe->cPerson_buf.i_luckynumbers->lnit(); ip;

ip=pe->cPerson_buf.i_luckynumbers->More()) {
printf("%d\n", *ip);
};

/*Print list 'nicknames'*/
for (cp=pe->cPerson_buf.i_nicknames->lnit(); cp;

cp=pe->cPerson_buf.i_nicknames-> More()) {
printf("%c\n", *cp);
};

/*Print list 'testatt[l].demo'*/
for (cp=pe->cPerson_buf.testatt[l].i_demo->lnit(); cp;

cp=pe->cPerson_buf.testatt[l].i_demo->More()) {
printf("%c\n", *cp);

};
};
pe = pe->get_next();
}

}

Output of the programme:

91

Appendix II

AppendixII The Generated C++ Code. Example 1

1/.3.

92

The Generated C++ Code. Example 2 Appendix III

Ill. The Generated C++ Code. Example 2

111.1. Physical Schema

Person Car
name[0-1] number nlate[0-1] first name[0-1] make[0-1]
nick:names[0-N] Memberf0-Nl: *Membe
address[0-5] array

id: number_plate street[0-1]
number[0-1]
city[0-1]
telro-Nl

id:name
first_name

?
Member

memberid[0-1] Team
paid[0-1] team num[0-1]
Car[0-1]: *Car team_name[0-1]
Teamf0-11: *Ti>Jlr 1 Memberr0-Nl: *Membe
id: memberid id: team_num

Remark: The code of this schema is represented because it shows how the generator deals with
inheritance, with single valued and with multivalued attributes.

93

Appendix III The Generated C++ Code. Example 2

111.2. The C++ Code Corresponding to the Schema

//Fichier C++ genere par GenerCpp.exe

#include <string.h>
#include <stdio.h>
#include <iostream.h>
#include " .. \lists\tlist.h"

typedefenum {w_Car, w_Person, w_Member, w_Team} w_class;

class cCar;
class cPerson;
class cMember;
class cTeam;

class cCar {
public:

struct t_cCar_buf {
char number_plate[l l];
char make[24];
Tlist <cMember> * Member;
Titer <cMember> * i_Member;

} cCar_buf;
private:

cCar* next;
cCar* previous;
static cCar* first;
bool initO_N_attr;
bool inserted_into_list;
cCar * find_id(char number_plate[l l]);
void set_initO_N_attr(bool value) { initO_N_attr=value; }
bool get_initO_N_attr() { return initO_N_attr; }
void set_inserted_into_list(bool value) { inserted_into_list=value; }
bool get_inserted_into_list() { return inserted_into_list; }

public:
cCar(t_cCar_buf &cCar_bu);
~cCar();
static cCar * get_first();
cCar * get_next();
cCar * get_previous();
virtual w _class what();

};

class cPerson {
public:

struct t_cPerson_buf {
char name[25];
char first_name[25];
Tlist <char> * nicknames;
Titer <char> * i_nicknames;
struct t_address {
char street[31];
intnumber;
char city[l 7];
Tlist <double> * tel;

94

The Generated C++ Code. Example 2

Titer <double> * i_tel;
} address[5];

} cPerson_buf;
private:
cPerson* next;
cPerson* previous;
static cPerson * first;
bool initO_N_attr;
bool inserted_into_list;
cPerson * find_id(char name[25],char first_name[25]);
void set_initO_N_attr(bool value) { initO_N_attr=value; }
bool get_initO_N_attr() { return initO_N_attr; }
void set_inserted_into_list(bool value) { inserted_into_list=value; }
bool get_inserted_into_list() { return inserted_into_list; }

public:
cPerson(t_cPerson_buf &cPerson_bu);
~cPerson();
static cPerson * get_first();
cPerson * get_next();
cPerson * get_previous();
virtual w _class what() = O;

};

class cMember: public cPerson {
public:

struct t_cMember_buf {
int memberid;
bool paid;
cCar * Car;
cTeam * Team;

} cMember_buf;
private:

cMember* next;
cMember* previous;
static cMember* first;
bool initO_N_attr;
bool inserted_into_list;
cMember * find_id(int memberid);
void set_initO_N_attr(bool value) { initO_N_attr=value; }
bool get_initO_N_attr() { return initO_N_attr; }
void set_inserted_into_list(bool value) { inserted_into_list=value; }
bool get_inserted_into_list() { return inserted_into_list; }

public:
cMember(t_cMember_buf &cMember_bu,

t_cPerson_buf cPerson_bu);
~cMember();
static cMember * get_first();
cMember * get_next();
cMember * get_previous();
virtual w_class what();

} ;

95

Appendix III

Appendix III

class cTeam {
public:
struct t_cTeam_buf {

int team_num;
char team_name[31];
Tlist <cMember> * Member;
Titer <cMember> * i_Member;

} cTeam_buf;
private:
cTeam * next;
cTeam* previous;
static cTeam* first;
bool initO_N_attr;
bool inserted_into_list;
cTeam * find_id(int team_num);
void set_initO_N_attr(bool value) { initO_N_attr=value; }
bool get_initO_N_attr() { return initO_N_attr; }

The Generated C++ Code. Example 2

void set_inserted_into_list(bool value) { inserted_into_list=value; }
bool get_inserted_into_list() { return inserted_into_list; }

public:
cTeam(t_cTeam_buf &cTeam_bu);
~cTeam();
static cTeam * get_first();
cTeam * get_next();
cTeam * get_previous();
virtual w _class what();

};

//global variables
cCar * cCar_former = NULL;
cPerson * cPerson_former = NULL;
cMember * cMember_former = NULL;
cTeam * cTeam_former = NULL;

//initiation static members
cCar * cCar::first = NULL;
cPerson * cPerson::first = NULL;
cMember * cMember::first = NULL;
cTeam * cTeam::first = NULL;

/ /member functions of class cCar
cCar::cCar(t_cCar_buf &cCar_bu)
{
set_initO _N_attr(false);
set_inserted_into_list(false);
//check identifier(s)
if (find_id(cCar_bu.number_plate))

{ delete(this); throw 11; }
/ /pass values to data members
memcpy(&cCar_buf, &cCar_bu, sizeof(cCar_bu));
//add object to list
next= NULL;
previous = cCar_former;
if (get_previous()) {get_previous()->next = this;} else {first = this;};
cCar_former = this;
set_inserted_into _list(true);

96

The Generated C++ Code. Example 2

// Initialise lists for multivalued attr
cCar_buf.Member=
new Tlist<cMember>(TLIST _NOT_REMOVE);

cCar_buf.i_Member=
new Titer<cMember>(cCar_buf.Member);

set_init0_N_attr(true);
} ; //end constructor

cCar:: ~cCarO {
cMember * Membetpo;
//Destroy lists and reiterators
if (get_init0_N_attr()) {
delete cCar_buf.i_Member;
delete cCar_buf.Member;
} //end if getO_N_ ...
//Take object out of list.
if (get_inserted_into_list()) {
if (get_next()) {

}

if (get_previous()) {
get_previousO->next = next;
get_next()->previous = previous;

}
else {

get_next()->previous = NULL;
first = next;

};

else
if (get_previous()) {

get_previous()->next = NULL;
cCar_former = previous;

}
else {

cCar_former = NULL;
first = NULL;

} //end if
} //end if get_inserted_ ...
//Management of foreign obj attr with pointers to cCar
Membetpo=cMember::get_first();
while (Memberpo) {
if (Membetpo->cMember_buf.Car == this) {

Memberpo->cMember_buf.Car = NULL;
}
Membetpo=Membetpo->get_next();

} //end while

}//end of destructor

cCar * cCar: :get_first()
{ retum first; }

cCar * cCar::get_next()
{ retum next; }

cCar * cCar::get_previous()
{ retum previous; }

97

Appendix III

Appendix III

w _class cCar: :what()
{ return w_Car; }

cCar * cCar::find_id(char number_plate[l l])
{
cCar * pCar;
pCar = cCar::get_first();
while(pCar){
if (

(strcmp(pCar->cCar_buf.number_plate,number_plate) == 0)
) { return (pCar); } /*end if statement*/

pCar = pCar->get_next();
} /*end while*/
return(NULL);
}

/ /member functions of class cPerson
cPerson::cPerson(t_cPerson_buf &cPerson_bu)
{
inti;
set_init0 _N_attr(false);
set_inserted_into_list(false);
//check identifier(s)
if (find_id(cPerson_bu.name, cPerson_bu.first_name))
{ delete(this); throw 11; }

//pass values to data members
memcpy(&cPerson_buf, &cPerson_bu, sizeof(cPerson_bu));
//add object to list
next= NULL;
previous = cPerson_former;

The Generated C++ Code. Example 2

if (get_previous()) {get_previous()->next = this;} else {first = this;};
cPerson_former = this;
set_inserted_into_list(true);

// Initialise lists for multivalued attr
cPerson_buf.nicknames=
new Tlist<char>(TLIST_REMOVE_ WITH_NEW/*TLIST_NOT_REMOVE*/);

cPerson_buf.i_nicknames=
new Titer<char>(cPerson_buf.nicknames);

// Initialise lists for multivalued attr
for (i=0; i<5; i++) {
cPerson_buf.address[i] .tel=
new Tlist<double>(TLIST_REMOVE_ WITH_NEW/*TLIST_NOT_REMOVE*/);

cPerson_buf.address[i].i_tel=
new Titer<double>(cPerson_buf.address[i]. tel);

};
set_init0_N_attr(true);

} ; //end constructor

98

The Generated C++ Code. Example 2

cPerson::~cPerson() {
inti;
//Destroy lists and reiterators
if (get_initO_N_attr()) {
delete cPerson_buf.i_nicknames;
delete cPerson_buf.nicknames;
for (i=O; i<5; i++) {
delete cPerson_buf.address[i] .i_tel;
delete cPerson_buf.address[i] .tel; } ;
} //end if getO_N_ ...
/ffake object out of list.
if (get_inserted_into_list()) {
if (get_next()) {

}

if (get_previous()) {
get_previous()->next = next;
get_next()->previous = previous;

}
else {

get_next()->previous = NULL;
first = next;

};

else
if (get_previous()) {

get_previous()->next = NULL;
cPerson_former = previous;

}
else {

cPerson_former = NULL;
first = NULL;

} //end if
} //end if get_inserted_ ...

}//end of destructor

cPerson * cPerson::get_first()
{ return first; }

cPerson * cPerson::get_next()
{ return next; }

cPerson * cPerson::get_previous()
{ return previous; }

cPerson * cPerson::find_id(char name[25],char first_name[25])
{
cPerson * pPerson;
pPerson = cPerson::get_first();
while(pPerson) {
if (

(strcmp(pPerson->cPerson_buf.name,name) == 0 &&
strcmp(pPerson->cPerson_buf.first_name,first_name) == 0)

) { return (pPerson); } /*end if statement*/
pPerson = pPerson->get_next();
} /*end while*/
return(NULL);
}

99

Appendix III

Appendix III

/ /member functions of class cMember
cMember::cMember(t_cMember_buf &cMember_bu,

t_cPerson_buf cPerson_bu):

{
cPerson(cPerson_bu)

set_initO_N_attr(false);
set_inserted_into _list(false);
//check identifier(s)
if (find_id(cMember_bu.memberid))

{ delete(this); throw 11; }
//pass values to data members
memcpy(&cMember_buf, &cMember_bu, sizeof(cMember_bu));
//add object to list
next= NULL;
previous = cMember_former;

The Generated C++ Code. Example 2

if (get_previous()) {get_previous()->next = this;} else {first = this;};
cMember_former = this;
set_inserted_into_list(true);
set_initO_N_attr(true);

} ; //end constructor

cMember::~cMember() {
cMember * op;
cCar * Carpo;
cTeam * Teampo;
if (get_initO_N_attr()) {
} //end if getO_N_ ...
/ffake object out of list.
if (get_inserted_into_list()) {
if (get_next()) {

}

if (get_previous()) {
get_previous()->next = next;
get_next()->previous = previous;

}
else {

get_next()->previous = NULL;
first = next;

};

else
if (get_previous()) {
get_previous()->next = NULL;
cMember_former = previous;

}
else {
cMember_former = NULL;
first = NULL;

} //end if
} //end if get_inserted_ ...
//Management of foreign obj attr with pointers to cMember
Carpo=cCar: :get_first();
while (Carpo) {
if (
(Carpo->cCar_buf.Member->Length() != 0) &&
Carpo->cCar_buf.Member->Member(this))
{
for (op=Carpo->cCar_buf.i_Member-> Init();
op;

100

The Generated C++ Code. Example 2

op=Carpo->cCar_buf.i_Member->More())
{
if(op == this) {
delete Carpo->cCar_buf.i_Member-> Whole();
} //end if

} //end for
} //end if
Carpo=Carpo->get_next();

} //end while

Teampo=cTeam: :get_first();
while (Teampo) {
if (
(Teampo->cTeam_buf.Member->Length() I= 0) &&
Teampo->cTeam_buf.Member->Member(this))
{
for (op=Teampo->cTeam_buf.i_Member->Init();
op;
op=Teampo->cTeam_buf.i_Member-> More())
{
if(op == this) {
delete Teampo->cTeam_buf.i_Member->Whole();
} //end if

} //end for
} //end if
Teampo=Teampo->get_next();

} //end while

}//end of destructor

cMember * cMember::get_first()
{ return first; }

cMember * cMember::get_next()
{ return next; }

cMember * cMember: :get_previous()
{ return previous; }

w_class cMember::what()
{ return w _Member; }

cMember * cMember::find_id(int memberid)
{
cMember * pMember;
pMember = cMember::get_first();
while(pMember){
if (

(pMember->cMember_buf.memberid = memberid)
) { return (pMember); } /*end if statement*/

pMember = pMember->get_next();
} /*end while*/
return(NULL);
}

101

Appendix III

Appendix III

/ /member fonctions of class cTeam
cTeam::cTeam(t_cTeam_buf &cTeam_bu)
{
set_init0 _N _attr(false);
set_inserted_into_list(false);
//check identifier(s)
if (find_id(cTeam_bu. team_num))

{ delete(this); throw 11; }
/ /pass values to data members
memcpy(&cTeam_buf, &cTeam_bu, sizeof(cTeam_bu));
//add object to list
next= NULL;
previous = cTeam_former;

The Generated C++ Code. Example 2

if (get_previous()) {get_previous()->next = this;} else { first = this;};
cTeam_former = this;
set_inserted_into_list(true);

// Initialise lists for multivalued attr
cTeam_buf.Member=
new Tlist<cMembet>(TLIST_NOT_REMOVE);

cTeam_buf.i_Member=
new Titer<cMembet>(cTeam_buf.Member);

set_init0_N_attr(true);
} ; //end constructor

cTeam::~cTeam() {
cMember * Membetpo;
//Destroy lists and reiterators
if (get_init0_N_attr()) {
delete cTeam_buf.i_Member;
delete cTeam_buf.Member;
} //end if getO_N_ ...
//Take object out of list.
if (get_inserted_into_list()) {
if (get_next()) {

}

if (get_previous()) {
get_previous()->next = next;
get_next()->previous = previous;

}
else {

get_next()->previous = NULL;
first = next;

};

else
if (get_previous()) {

get_previous()->next = NULL;
cTeam_former = previous;

}
else {
cTeam_former = NULL;
first = NULL;

} //end if
} //end if get_inserted_ ...

102

The Generated C++ Code. Example 2

//Management of foreign obj attr with pointers to cTeam
Memberpo=cMember:: get_firstO;
while (Memberpo) {
if (Memberpo->cMember_buf.Team == this) {

Memberpo->cMember_buf.Team = NULL;
}
Memberpo=Memberpo->get_next();

} //end while

}//end of destructor

cTeam * cTeam::get_first()
{ retum first; }

cTeam * cTeam: :get_next()
{ return next; }

cTeam * cTeam: :get_previous()
{ retum previous; }

w _class cTeam: :what()
{ retum w_Team;}

cTeam * cTeam: :find_id(int team_num)
{
cTeam * pTeam;
pTeam = cTeam::get_first();
while(pTeam){
if (

(pTeam->cTeam_buf.team_num == team_num)
) { return (pTeam); } /*end if statement*/

pTeam = pTeam->get_next();
} /*end while*/
retum(NULL);
}

//delete ail objects of one class
template <class S>
void delete_one_class(S * aptr) {

while(aptr) {

}

delete aptr;
aptr = S::get_first();
}

//Send error message.
void send_error_message(int catchint) {

if (catchint== 11) printf("ID is not repected. Object not createdl\n");
if (catchint==22) { printf("Obligatory value remained empty.\n");

printf("Object not createdl\n");
}

}

103

Appendix III

Appendix III

int main()
{

}

try {
}
catch(int i) {

send_error_message(i);
}
return O;

The Generated C++ Code. Example 2

104

