Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

Towards a generic static analyser for Java
a compiler and a simple analyser for two sub-languages of Java

Hayez, Cecile; Hendrickx, Patrick

Award date:
2000

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/8c180548-b55d-4bf2-aa44-2d5e0f0938f7

€5 Mo,
& %
§
= A
8 3
NV
> =
7N
FUNDP

INSTITUT D’INFORMATIQUE

Towards a Generic Static Analyser for
Java :
A Compiler and a Simple Analyser for Two
Sub-Languages of Java.

Cécile Hayez
Patrick Hendrickx

RUE GRANDGAGNAGE, 21 ¢ B-5000 NAMUR (BELGIUM)

Abstract:

This work has been done in the framework of a large project on abstract interpretation of Java.
The aim of this project is to develop a compiler and a static analyser for Java, which allows
some verifications and optimisations of the analysed programs. Isabelle Pollet has already
defined the abstract syntax used for the analysis: the LAS (Labelled Abstract Syntax). Here, we
have studied a sub-language of the Java language, the Vas-T'y-Frotte. In the framework of this
project, we have created a compiler composed of a parser and a type checker for this sub-
language. The type checker checks all the types of the program, and translates the program into
its abstract form. Doing this, it creates all the objects corresponding to the LAS. As the subset of
Java corresponding to the LAS has much more constraints than the VTF (Vas-T'y-Frotte), we
had to define functions to translate the VTF program into an equivalent program verifying all
the constraints of the LAS. To create the parser, we used the Java Compiler Compiler
(JavaCC). We have coded the objects of the LAS and the compiler in Java. We did not have the
time to create an analyser for this large sub-language, so we have created an analyser for a
simple subset of Java, as a separate work. This analyser has been written in CaML. It takes a
CaML representation of a Java program into its abstract form. We supposed that the phases of
parsing, translating to the very simple subset of Java, compiling have already been performed.
The analyser implements a multivariant algorithm, to create all the possible states of the

program.

Résumeé:

Cette these a été effectuée dans le cadre d'un projet plus vaste en interprétation abstraite. Le
but de ce projet est de développer un compilateur et un analyseur statique pour Java, qui
permettent l'optimisation des programmes analysés. Isabelle Pollet a déja défini la syntaxe
abstraite utilisée pour l'analyse: le LAS (syntaxe abstraite labellisée). Ici, nous avons étudié un
sous-langage de Java appelé Vas-T'y-Frotte. Dans le cadre de ce projet, nous avons créé un
compilateur composé d'un parseur et d'un vérificateur de types pour ce sous-langage. Le
veérificateur de types vérifie tous les types du programme, et traduit le programme sous sa forme
abstraite. Faisant cela, il crée tous les objets correspondant au LAS. Comme le sous-ensemble
de Java correspondant au LAS a beaucoup plus de contraintes que Vas-T'y-Frotte, nous avons
du définir des fonctions pour traduire un programme en VTF en un programme équivalent, mais
qui respecte les contraintes de LAS. Afin de créer le parseur, nous avons utilisé le Java
Compiler Compiler (JavaCC). Nous avons implémenté les objets de LAS et le compilateur en
Java. Nous n'avions pas le temps de créer un analyseur pour ce grand sous-langage, nous
avons donc créé un analyseur pour un sous-ensemble plus réduit de Java, en tant que travail
séparé. Cet analyseur a été implémenté en CaML. Il prend une représentation en CaML d'un
programme Java sous sa forme abstraite. Nous supposons que les phases de parsing, de
traduction dans le sous-ensemble de Java et de compilation ont déja été effectuées. L'analyseur
implémente un algorithme univariant, pour créer tous les états du programme.

Acknowledgement:

We specially wish to thank Professor Agostino Corstesi, Professor Baudouin Le Charlier and
Isabelle Pollet for the patience they have had, for the time they have spent to help us during
those months of hard labour. We also wish to thank them for the knowledge they have shared
with us and for all the work they have delivered to set this project up.

We wish to thank Karl Noben for the long hours of wrestling together with all the abstract
notions we have encountered doing this work.

We wish to thank Gyséle Henrard for all the facilities she gave us, concerning the organisation
of our internship in Venice — Italy.

We would finally like to thank Simone from Ottignies for the diverting hours we have spent and
for the ambiance she created into our cottage.

TABLE OF CONTENTS

1. INTRODUC GTION ..ooteueceereeeeeccserseccersersssessosssssssssssssssasassssssssssssssssesssssssssnsssssssassssss 11
1.1. Java 11
1.2. The Project 12
1.3. Structure of the Thesis 13
2. PRELIMINARY NOTIONS i.cccicosssssssscossisssssssassossssssssessssssssssonsanssssssssassonsssocessass 15
2.1. Definitions 15
2.1.1. Store and ENVITONIMENTcccoeeiriemimmmmessossesssessmsssnssssssssansonssssssssssessosssssssssssssssasssnsssss 15
212 B OF WPEOBIRID. .o onssinsmssmelion v s ass ssoness s ass S s PSS 15
2.1.3. SyntaxX and SEMAMEICS .o.:cisissscssssssisssissmssiesinissisvin ssastnssissssssmassisnst prossssmsmasranstns 16
2.1.4. Specialisation Ol 8 fYPe i immussimmtmmsmsmmmismmssssmmnsibi st nss s bombuasssounsssennnenss 16
2.2. Notations 17
e de ML SICIST A SSRAC AR, 1Y S Lo SPTR L R SUP 17
222, TranSTONEUIES. occcuinsmsmsissnvmisss bbbt ssesasmsvemesbsssedestavavs nossvsadbodsa 17

2. 2.3 JuaBtSSOIE, - shihef st vrwstresrsmsusmmvssy s A e S N A b e sl e e sesas 18
2.:2:4; NotatioNS O VATTADIS wuc oo coisissnisis i omoibisbsisssnstininsmis siaiess ifsisnospsnnmssnstisisssssidssonandsss 18
2.3. An Introduction to Abstract Interpretation 19
2.3.1. Al of the SUAHC ABBIYSESconmcissvesnmmssmmmonssassassessmsmsasussssnssonsnsssarsbsesnubsswesssibosann 19
2.3.2. Steps 0f @ Static ANALYSIS......ceevueeeeuieieeieeeieeceee ettt e enneas 19
2.3.3. The Definition of @ Concrete SEMANTICSceeveveeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeseeeeeeeeeeeeaeas 20
2.3.4. The Definition of an AbStract SEMANICSeeaaeaeaaeas 21
2.3.5. Computing the Abstract SEMANLICS.........ccccveeereeeeiieeeirieeeeee e eeaie e e e e 22
3. COMPILER: A PARSER AND A TYPE CHECKER.......cccotttmeueecereerennnnenecsansene 23
3.1. Introduction 23
3.2. Presentation of the Concrete Syntax 24
31.2.1. The' VIF BREic TYDES.......orsummmmummmsonssmmesssssssirodiios vessrsess it vassssbivsss 24
3.:2:2. VIE (oNEY INAMIES . scinsunissvssissssvomscivanssisinssvssvasnssssssossssrimisssiusmm i esvsmssimonisessi ae 25
3.2:3: The BYBR G WITF . ciomsusmmmummmsasasnsbesminiissinssseissmmsmasamsietraasitbesuans 26
3.3. The Labelled Abstract Syntax 27
3.3.0. General TACh:.coimrtisnisimssmmnnissmssssunsusmssssssosss snsinisssasssis s sat vorevavssssnssvevessrilosassens 27
3.3.2. LAS DEfINIION.......ueuveeeneiieiissesnreereiesssssssesserssssssssssssssrssssssessssssssssssasnnssssessssssssssesannns 29
3.3:3. Tree of thelCreated CIASSES. .. coviiiniisiosssssoiisnssisssssisssiossnsssssssissoss ssssvinnasnebodessadsssssssmnss 30
3.3.3.1. Package JAVADINL..........c.c.oouiieeeeeeeeee et 30
3.3.3.2. Package JAVADBINt.SAP........coouerieieeeeeeee ettt 31
3.3.4. EXpRRnRton BE IS CIEEBESconiiminmissisisismrontassmersssasasprssiosssssinrasssinsesnisssssiionssacss 32
340, COCRRBOR NI 2. ..ovcocnniminsimaimosssmessm A R AR 32
3.3.4.2. Package JavabINL.SAP.............ccconiririrreecccrecnennesaseansnsesssssessessasasssnssassasnsons 33

3.4. An Intermediate Internal Representation 34
3.4.1. Tree Of the Created ClaSSES......uuueeiiiiieeiieeeeeeeeeeeeeeeeereeeeeeeeeeeseeeeeseseeeeeeeeeesssssssssannnes 34
3.4.1.1. Package JavADbInNt.conCreteSyntaxcccvcueeeeiieesiieeeieeeeciee e 34
3.4.1.2. Package JavAbInt.concreteSyntax.IISplaycconussssmssssnssisinssassnissssssasssssass 34

3.4.2. Explanation: 0f the CIASSES «ssmmsmsmmssmsmisis s sasbun sesssssmvsvasait desnadersssicsssgosvs o ine
3.4.2.1. Package JavADbInt.cONCIeteSYNtaAX......ccccueeeeeieeeiieeeiieeeeee et e
3.4.2.2. Package JavAblnt.concreteSyntax.Displayccccoeceereiiiiiiniiiiiieniieneceieeeeee

3.5. Implementation of the Parser: Newlookl
3 0.1 Lexical ANBIYEE.o i iimssivenisnmmrmss e osssvssrssysnss domessioiins pusspesneassressssenss
3.5.:2. A PATSEE GOIETALOD , 1 ivnossssasnossssssssnsonssssnnsssshesas oo daiesnsons sa 555 iannanss assnh siussbsnnnsessmanin
3.5.3. Java Compiler Compiler Documentation.............cccceerreeiieiiieriiiiennieeecieeeeieeeeeaes
3.5.4. Left-Most Derivation versus Right-Most Derivation............ccccceeeeervernceenierseeenneenne
3.5.5; Bottont Up wersus Top DOWH DRISINE «..oemssaionsisimsmhes v sis sasisssvrmiassasnis
3.5.6. The K i LL(K) c.eeeeeuiieiieeieeieeeeteee ettt ettt et e
3.5.7. Stiucture OF the PAEBEYccoocececiirscemrosssosssssenmmonstissasinsbansisore sassitagsnss innrsmmsessnsisons

3.5.7.1; OPLONS PATAMEGIETS o somssmsmmsissssnissnsivmisnmsnssmssosinmis s ssissvassssssassssvsmss siomsssnsmsnd
3.5.7.2. Main MEthOds........coouiiiieiiieieeitete ettt
3503, DDoliniiom D 18 TORBIE: 5i....omminiossnssasisinpsininsxassasssas sbsssnis sios e s sy sminsprniabssisssisnnt
T R TR R SO WS- S
B0 BRAMDIE. ... e s e sissmme e nrmaspancsmashnnsmssonanninmsass cnsmusspsonsadiiinonnnanssinmm nimpetionntnn e moasnd
3.5.8. Nlook1 Class Documentation...........eeerueerreieerrieeerieieeeiieeeriieeeseee st eesiee e s s e sene e
3.5.9. Tree of the Created Classes..........cueevuerreeriierrieniereeeie ettt e e sereesnean

3.6. Type checking and translating the /IR
200 SRueTae GU I T V00 CIIKRI. ... omomsrmmimssmmasmsrssesosssns b o s s s
6.1 1. S YIAX CHEOKIING .. s oo ciemsenmsmnmssnosmesobesanminn onssesenssisnessinsans’ siob s s s ng brananomimosassoss
LR TR AIL s rumsnssics s s R A R S S
3.6.1.3. TYPE CHECKING....ccueeeeiieeieeeieiieeteeteete ettt et s et e eae et e e sneeeseesseeens
3.6.2. Algorithin of the TVpe ChSERE uumaiimmisissabissmassmms s ssssisssseaioss
363, Left 10 0. .cvvsovmmmrmmsesrosmmorsssionsssmessssvasevissssssmomassossusssssanssmsnsresssvessondsdonsurives prvassnsess

4. STATIC ANALYSIS BY ABSTRACT INTERPRETATION.......cceeeinueeccunncen.

4.1. Introduction

4.2. Syntax
&2 1A Very Small Suber OF TaVR. .o mmomiorsmss s in oo e G 6o mms
4.2.1.1. Constraints of the Language............ccccereeririiiiiiiieeiieniee e
4.2.1.2. The Syntax of VSS ...ttt

4. 0.2 THECODRIEIE BYIMIR. .. . sonivnssinosisiosvisinpmsinsssnnssiumsnsansssmitass mnmses soaioseasivmiiin s s a5 £ i eta

S 20T RIRErabs BOREREL . s o S e s s TR Ol SR

4.3. Semantics
4.3.1. CONCIELE SEMANTICS ...eevvvvrrrrnrererrreenrnesessessensenenesennseeseseesasaaseeseeesassessesssessssssssssssnsnnnnns
P T U T B 1< 1V o) o 1<
4.3.1.2. USEfUl FUNCLIONS ...ttt e e e e e e e e ee e e eeeeeeeeeeennns
4. 3713 Operational SEMANEICS .. v b v
4.3.2. ADSITACt SEMANTICS ...cceeeviiiiiiiiiiiiieeeeeereeeeeeaesesaeeeseaeassaeeaeeanaaereeseseseseseeeeereeeessennsrrrenes
TG TR0 TR B 1<) 411 ¥15 10 1 1<
4.3.2.2. USEIUI FUNCLIONSveeeeeeeeeeeeeeeeeeee ettt ee e e e e e e e s
4.3.2.3. The Concretisation FUNCHIONcccuvviiiiieiiiececiieeeeeee et e e e e e e
4.3.2.4. The ADSLract SEMANTICS.cceeeiiiiiieiiiereerereeeeeecirrrrerereeeeeeeeseeesssssseerreeseseeseensnns
4.3.3. Correctness Proof 0f the RUIESceeeviviiiieeieieiieeec ettt re e e e e e e e
4.3.3.1. REASOMING......eorureeriieeieetieettereteetee st eete et e st e et esate e sae s st e esseesseesseessseesasesnseenas
4.3.3:2. PTOOL i consnmmbmmmmsmmsmm s m s mmd s m i e it s s i e

4.4. Implementation
4.4.1. The Simplified Language............cooccerieiiiiniieieieeeteete et

57

58
58
58
60
61
62

63
63
63
64
66
71
71
73
75
77
83
83
84

85

4.4.2. The SLACAML=TRRRBIRLOLccciramvnumamnnn b o Momsvmsssmiss s sssssmsss 88

4.4.3. Multivariant AIZOTIthmocoiiiiiiiii e 89
444, ADSITACE DOMMIIL. ...cccorvcoonesveorsassrssncsnsassssassrastossssssnnssassnsssnnssensssnsssassseasassonsesasisnassssasas 90
LR T R R S ——— 91
B.8.0. Jefh 10 00 cc coovumiossnniosmmsssssnssssnsssavnsssasesessnssessunsssanssansmemsssvenssss st sssens e nsasss asansrsssuavasnrasss 95
4,4, 7. TCSt PEOUTAIMIS .. (oisivsvus ryssssnssssinssoats s uaassnsss o covs 48 s omis s5misad dpes Hadama e Sos i e s o 96
4.4.7.1. Translation of a Java program into its VSS formc.cccceevvevivviiieeniicnecrieenene 96
4.4.7.2. Translation of a VSS Program into its CaML Form...........cccocevriiiiiinieniiinens 98
4.4.7.3. Analyse of @ Program.............cccoooeeoieieieiiieeieecieeeee et cae e eae e e eneeenaeens 99

S TN L IBTEIN fuivsssnish risBanasssenssavssineianesassnnesrsarionssmsenssssnspasesssate .. 103
5.1. Summary 103
5.2. Critics 103
5.3. Future work 103
0. BEIBLEOGRAPHY i csssscvnsosssssnursnonssssnsesssnmsssasssossssnsesssunssassissssssnsessssansessnns 105
7. ANNEXE: SUMMARY OF THE LAS CLASSESiiiirnerccicnncccsnnnscssnnscsens 107
B TE T e T R R 107
112, PRCRa Sn I RN S IIRECORCEMIERUIIIK. . ..ooocivsasansnussinssreusssnspasmsuses s asss Sessass s saxavsamamsas 128
7.1.3. Package JavAblnt.concreteSyntax.Parserccouevveeevieniiiiiiiiieee e 133
1.1.4. Packnge Jav ADIL.CONCTAAES YIIAX. DASPIAYcconimimsmsmonsmmsissssvessnssansasisssasmmensnssanss 134
7.1.5. Package JavAblnt.concreteSyntax.ToOIScccueeuieeiiriiiiiiieeeecece e 134
71,0, PEORARS S IVEIIE SN oo -vcocosevosisossissmmmmmmmmisisasapmmatis s ossnd s AR R AR HERS 135

1. INTRODUCTION

Dear reader, in this introduction, we would like to talk about the project we are working on. In
order to do that we first explain the reasons why we are analysing the Java language, we then
introduce the project and we finally explain the structure of the thesis.

1.1. Java

Java is a simple object-oriented, platform-independent, multi-threaded, general-purpose
programming environment (/MCZQ96]). It is best for creating applets and applications for the
Internet and any other complex, distributed network. An Hyper Text Transfer Protocol server
can send a Java program to a client. This client can easily execute that program. This execution
can seem very simple. Thus for example, the executable code on a PC is not at all the same as
that executable code on a Macintosh. Of course, we could invent a way of communicating
between the PC and the Mach applications, but this would be less evolutionary.

Java goes well beyond this domain to provide a powerful general-purpose programming
language suitable for building a variety of applications. Java is described as having the
following features:

Simple: Java was designed to be like C++ for easy learning.

Robust: Java works hard to check for problems at compile and run-time.

Secure: Java code passes several tests before actually executing on the machine.
Multi-Threaded: Java multi-threading allows many simultaneous activities in one program.
Dynamic: Java takes advantage of as much object technology as possible.

But Java is, for the moment, not perfect. In fact, Java has still got lots of lacks of efficiency and
some lacks of security. Some of the problems due to the lacks of security of the Java language
are the following: There are no limits for the assignment of the memory of applets. The applets
are free to take control of the actions delivered by the client. For example, an applet could save
all the keyboard touches of the client. The applet could also take control of the web-cam or
other hardware configurations of the client. A badly disposed person could take advantage of
these lacks to get one’s credit card number or one’s password (/BCS97]). Like we have
explained above, the Java programs are thus been freed from the problems of compatibility
between the instruction sets of the various processors and operating systems. A machine
language called Java Byte codes is associated with the source language Java. The source
language Java is compiled in this machine language, and it is in this representation that the
program is interpreted. As Java Byte Code is interpreted, the execution time of a program
written in Java is 5 to 10 times superior to the execution time of a program written in C and then
compiled (/OTE]). It would be interesting to cure these lacks. In order to accomplish that, we
decided to analyse the language. And that is how our project is born.

11

1.2. The Project

The project we are working on is an inter-university project between three universities: The
universities of Louvain La Neuve, Namur and Venice. The actual group is composed of three
students, three teachers and one teaching assistant. The teaching assistant is Isabelle Pollet', and
most of our work is based on her DEA-thesis [IPO99] (DEA: Diplome d'Etudes Approfondies)
of last year (1999). The teachers involved into this project are Agostino Cortesi’, Baudouin Le
Charlier’ and Pascal Van Hentenryck®. The three students are Karl Noben and of course the two
of us.

Pascal Van Hentenryck is the internship tutor of Karl Noben, the student who works on the
graphical interface of the project in Louvain La Neuve. Agostino Cortesi is our internship tutor
in Venice. Baudouin Le Charlier is the supervisor of the project in Namur.

The goal of the project is to create a generic analyser for the Java language. This whole project
is composed of four parts. The first part is the DEA thesis of Isabelle Pollet (/IP0O99]). This
thesis makes the theoretical bases for our work.

The second part of the project is the implementation of a compiler for the sub-language of Java
called Vas-T"y-Frotte (/LC99a]). This language and the compiler are explained later in this
thesis. The compiler is decomposed into two major parts: the implementation of a parser and the
implementation of what we called a type checker. The language Vas-T’y-Frotte has been
written by Professor Le Charlier in March 1999, in the framework of his programming course.
We have created the compiler by our own.

The third part of the project is the graphical interface that can be applied on the analysis. Karl
Noben makes this part. It is designed to allow us to click on a certain point into a given program
in order to visualise the actual state of the local variables, the state of the parameters and lots of
other things that constitute the abstract state of a program.

For the fourth part of the project, we crated a simple static analyser for another, even smaller,
subset of the Java language called Very Small Subset. We have invented this Very Small Subset
in order to have a subset that would be simple enough to create a first outline of a static
analyser. For latter work, we could imagine a second static analyser onto a bigger subset or even
onto the actual Java language definition.

We could of course also say that there is a fifth part of the project, because some of the parts we
are working on are not finished and some other students are succeeding us next year, but we
will discuss this into the conclusion of the thesis.

After having explained the scoop of the project, we try to explain, in the next chapter, what
exactly an abstract interpretation is.

! Research and Teaching Assistant at the university of Namur.
? Professor at the university “Ca’foscari” of Venice.

? Professor at the university of Namur.

4 Professor at the university of Louvain La Neuve.

12

1.3. Structure of the Thesis

Chapter 2: Preliminary notions

The second chapter gathers all the basic notions and the notations we use in this work. You will
also find a summary on the bases of the abstract interpretation. These bases are useful for a
novice in the subject, who wants to go further in the reading of this thesis.

Chapter 3: The Compiler: a Parser and a Type Checker
The third chapter of the thesis is the chapter about the compiler we have created. This chapter is
divided into six major parts. The first part is the introduction. In this part we explain what is a
compiler and why we need a compiler in order to make a generic static analyser. The second
section of this chapter is devoted to the presentation of the concrete syntax of the sub-language
we are analysing. This sub-language is the so-called Vas-T"y-Frotte that we have introduced
into the section about the project.

The third and the fourth sections of this chapter make the link between the concrete and the
abstract syntax of the to analyse program. Indeed, a concrete representation of a program has
got an abstract equivalent representation. And that is the reason why we need to define an
abstract syntax that can be related to the concrete syntax by a concretisation function. It is
difficult to make the link directly between the concrete and the abstract syntax and that is the
reason why we have created an intermediate representation between the concrete and the
abstract representation. The third section is the section about the abstract syntax (Labelled
Abstract Syntax [TPO99]) and the fourth section deals with the intermediate representation.

Once we know all the basics about a compiler, we can carry on with the implementation of the
compiler. This compiler is split into two parts: the parser and the type checker. The fifth and the
sixth sections of the chapter are the section about this parser and the section about the type
checker.

Chapter 4: Static Analysis by Abstract Interpretation

In the fourth chapter we explain the work of a static analyser. This chapter is divided into five
sections. The first section is an introducing section.

In the second section we introduce the notion of a syntax. There are two syntax’s into a static
analysis. The first syntax is the concrete syntax. The second syntax is the abstract syntax.

There is of course a way to transform a program, written into the concrete syntax, into an
equivalent program representation of the abstract syntax. Here we have a concrete syntax
written into a subset of the Java language. This subset is called Very Small Subset of Java
(Hence: VSS). The abstract syntax is written in CaML.

The third section of this chapter explains everything about the semantics and the transition rules
between the different states. We have also incorporated a sub-section explaining the manner of
proving the correctness of the transition rules.

The fourth section of the chapter is devoted to the implementation of the static analyser. In this
section you can find the algorithm we have chosen, the domain we are analysing, the
implementation itself and some test programs we have written.

13

Thus we have had to write a translator between the concrete and the abstract syntax. In order to
create an easy translator for those syntax’s we had to create a simplified language. This
language is a Fortran based equivalent language to the VSS. The goal of this simplified
language is to make the VS language easier to parse and to translate into the abstract syntax.

Chapter 5: Conclusion

This is the fifth and also the last chapter of the thesis. In this chapter you can read a conclusion
of our thesis. You can also find what exactly is the advancement of our work. And some tips for
later works in this domain. This chapter could for instance be interesting for the students who
are following us up in our research and work.

14

2. PRELIMINARY NOTIONS

2.1. Definitions

2.1.1. Store and environment
The environment and the store are the two functions that define the state of the memory.

The first function, the environment, associates a value to a variable. This value can be seen, for
example, as the address of the variable in the memory. The domain of the environment consists
of the list of the names of all the accessible variables: the local variables, the formal parameter
names of the current method and the variable this. null corresponds to a non initialised variable,
or a variable with the value null; undef corresponds to a non defined variable.

The store associates a float, a boolean, an integer -for basic types-, string, instance... to a value.
With the store and the environment, you can find the instance,... of all the active variables of
the program.

The store will most of the time be noted 's' (s, for the corresponding abstract store) and the
environment '¢' (e, for the abstract environment).

Var ILoc Value

an ﬂ |
Vo w

2.1: Store and environment definition

integer v, = 105
boolean v, = true

2.1.2. State of a program

The state of a program, at a certain point of its execution, can be defined as all the information

about the state of the memory at this point and the information needed to find the next state in

the execution of the program. In general, the information contained is:

e The current statement (or a label which allows to find the statement)

e A stack containing all the information about the successive method and constructor calls.
This information is needed to find the following statement when we are at the end of a
method or a constructor.

The current environment
e The current store

The state will be noted this way: <p, P, e, s >

15

2.1.3. Syntax and semantics

A general language is defined buy its syntax and its semantics. Those can be considered as
given with the language. If you study a sub-language of an existing language, you will probably
have to redefine the concrete syntax and semantics, with the constraints of the sub-language. In
other cases, you will maybe want to add some information in the abstract syntax, in the aim to
improve the analysis. The abstract syntax has to be redefined in that case.

The concrete syntax of a language is all the rules that define the way a program has got to be
written in that language. These rules give the explanation of the 'text' of the program.

The semantics rules are rules about the way the language works. They tell what to do when you

encounter one or another statement, they tell how the store, the environment are modified...
They define the transitions between the states of the program.

2.1.4. Specialisation of a type
As there can be some inheritance between two types in Java, the structure of the types can be
seen as a set of trees. We consider that a type t is a specialisation of another type t' if the type t'
is an archetype of t. We use this notation:

t<t & textendst or 3It" tq textendst" and t" <t

16

2.2. Notations

2.2.1. Syntax definitions

In our work, we often have to define some syntax's. In this aim, we use a representation close to
the BNF (Backus-Naur Form). Here is an explanation of the syntax we use:

Terms in bold and italic are keywords or symbols of the defined syntax.
Terms just in italic represent non-terminal terms.

(term)’ represents O or 1 time the term.

(term)* represents 0, 1 or several times the term.

(term)” represents at least 1 time the term.

| represents the notion 'or'

Here is a simple example, for a better comprehension of our notations:

Litterals: firstname, name, streetname, townname (strings), number, pc, phone number
(integers) , box (character)

somone ::= firstname name , address , phone

address ;== street streetname , number (box)? ; pc - townname
| road roadname , number (box)? ; pc - townname

phone ::= no_phone | (phone_number)+

Some examples of someone could be:
Anne Dupont, MainRoad, 2; 4345 - Florennes, no_phone
Christine Ferie, SwordStreet, 54 B ; 5000 — Namur, 081654731 071568435

This notation will be used all along our work.

2.2.2. Transition rules
A transition rule explains the passage between two successive states of the program during its
execution.

In our work, we use this notation:
<initial_state> —» < final_state >

Where { current_label } current statement { following_label }
Constraints on final_state, using the initial state and the current_statement

Example:
< pa P: (e9 S) & —F < q: Pa (e[vl/Val(ea S, V2)]9 S) >

Where {p } affectv,v,{q}
v; € VarName

17

2.2.3. Lists, sets...

A set of objects will often be written { objy, ... obj, }
When you have a set S, P(S) represents the set of all the subsets of S.
For example:

IfS={ab}

P(S)={{}, {a}, {b}, {a, b} }

A stack of a list 1 will be noted this way: | = head::list_rest
where head is the first item of the list and list_rest is the rest of the list (and is a list itself).

2.2.4. Notations of variables

Concerning another notation, from now on, we use the terms 'return label', 'return
environment'... to represent the label where we come back after the end of a method call (i.e.
after the return statement), or the environment of the calling method. This environment
becomes the current environment when we come back to the method at the end of the method or
constructor call.

The target variable in a method call is defined like this:
A method call has the following syntax: var; = var,.meth(param_I)
As var; is the return variable, var, is the target variable.

We also want to notice that when we want to speak about the local variables of a program, we
will use explicitly the 'local' word. When we simply use the word 'variable', we mean a general
variable, which can be a local variable or a field.

18

2.3. An Introduction to Abstract Interpretation

2.3.1. Aim of the Static Analysis

The abstract static analysis has got two principal aims: the optimisation and the correction of
programs.

In almost every static analysis, a program execution is considered as a succession of states. It is
a succession of concrete states in the concrete case, and a succession of abstract states in an
abstract analysis.

The static analysis allows, for example, to give an approximation of the types of the variables at
each point of a program. Instead of making an analysis of the types, you can analyse the values
of the variables. If you are analysing integer variables, you can try to know, at a certain point of
a program, if one of the variables is positive, negative, null, or if it can be any of them...

Keeping this in mind, you can optimise your program. If you see that, at a certain point, a
variable is always positive. And you know that you have to apply a certain function on integers
at that point of the program. Then you can simplify that function (this means that you can use
another function that returns exactly the same results for positive values but that does not check
the negative values) because lots of functions are easier to apply on positive integers than on
negative integers.

You can prove the correctness of the pre- and the post-conditions of the methods of your
program, studying the characteristics of the variables at the beginning and at the end of the
methods.

2.3.2. Steps of a Static Analysis

In this introduction we give you an overview of what is the abstract analysis. It can seem a little
bit boring for people being every day in this domain, but it certainly can do no harm to return all
the way back to the basics.

The abstract analysis is made of three major parts:
e The definition of the concrete semantics

e The definition of the abstract semantics
e The derivation of a static analysis

19

2.3.3. The Definition of a Concrete Semantics
The execution of a program is considered as a succession of states of the program.
We first have to define, exactly, the information contained in a state of the program.

Afterwards, we have to define the transition rules between the concrete states, i.e. the semantics
itself.

A program can have an infinity of different executions, and an execution can be infinite. The
number of possible states of the program can be infinite.

A simple example is this one:
class class_name
{

int x=0;

public static void main (String args [])

{

while true
{
x=x+1;
}

}

}

The execution of this program is infinite, and the store will be different (the variable x will take
all the integer values one by one during the execution), at each passage in the loop. The program
passes trough an infinity of different states.

As it is impossible to consider all the different executions of a program, in the concrete case, it
is impossible to analyse the general behaviour of the program.

20

2.3.4. The Definition of an Abstract Semantics

To analyse the general behaviour of a program, we have to consider all the possible executions
of the program. We define an abstract semantics, in order to do this.

The difference between concrete and abstract semantics is that we make some approximations
to make all the sets finite, in the abstract case. The aim is to limit the number of possible states
of a program. The most important set to define is the AType, i.e. the set of the abstract types.
Most of time, this set is the same than the concrete set Type, or a set of subset of Type.

One way of defining all the sets of the abstract semantic is to create a function that would make
the correspondence between the concrete and the abstract objects.
There are two ways to define this function:
You can define an abstraction function, which associates the corresponding abstract object to a
concrete object (state, type, environment, store, and so on), or a concretisation function, which
associates the corresponding set of concrete objects to an abstract object.
In fact, the two functions can be defined, but most of the time, only one is necessary.
Here is an example:
In the concrete case, a concrete store associates its value to a location of a variable.
Let's go back to the previous example:
class class_name
{
int x=0;

public static void main (String args [])

{

while true
{
4. x=x+1;
}

}

}

The concrete store always changes during the execution, at the label /, associating all
the possible natural numbers to the variable 'x'. As there is an infinity of different
concrete stores (which belongs to the concrete state), there is an infinity of states.

Let's define an abstract domain that is finite, associated to the variables. It could be, for
example, the set {-, 0, +}, corresponding to the negative/null/positive values of the
variables.

The concretisation function is:
Ce()={v|v<0}

Cc(0)={v|v=0}
Cc(H={v|v>0}

21

If we note s a store and s, an abstract store, the concretisation function (Cc) for the
stores is:

Ce(sa)={s|VIelLoc:s () e Cc(sa(l)

The abstract store, in the abstract case, will associate:
the value 0 the first time
} to the location of 'x', at the label /.

the value + afterwards

In this simple example we have defined, there is only one label (one statement), we can
see that there are only 2 possible abstract states with the given abstract domain. The
states correspond to the two possible abstract stores.

Once we have defined the function for all the objects contained in the states, all the rules of the
concrete semantics have got to be translated. The created rules will be based on the abstract
states instead of the concrete sates.

2.3.5. Computing the Abstract Semantics

Once we have created all the possible states of a program, we can try to draw some interesting
information.

If the abstract domain is defined as being all the types of the programs, we can get, for example,
all the dynamic types of the variables at a certain point of a method.

In the example we have developed before, we can conclude that, in this program, the variable 'x'
is always >= 0. This information is obvious in such a simple program, but can be less evident in
large programs. You can use this information to prove an invariant of the program that could
say that x >= 0, or simply use it to create the invariant of the program.

In fact, the algorithm, which creates all the possible abstract states of a program, already exists.
Depending on the choice of the algorithm, the result is more or less precise but the speed of
execution also depends on the choice of the algorithm. Once you have all that states, you can
just takes all the states corresponding to a certain point of the program.

22

3. COMPILER: A PARSER AND A TYPE CHECKER

3.1. Introduction

Like explained in the introductory chapter, the aim of the project, at long term, is to make a
static analysis of the Java language. It is not possible to achieve such an ambitious goal directly.
So, we try to do it step by step. We therefore begin the analysis by constructing a compiler. This
compiler is very important for latter work. In fact the compiler is a tool that allows us to create
the required structures for the static analyse. This compiler is not a common compiler like we
know them. It does not generate some executable code like most of the compilers do. This
particular compiler generates a tree corresponding to the abstract syntax of the language we are
analysing.

It is of course not possible to make, directly, an analysis of Java, so we decide to analyse a
subset of this language. This language is a subset of the Java language and is thus easier to
analyse than the real Java. In fact, for an analysis of the complete Java language, we just need
some more time and some more experience in the Java finesses. But the biggest part of the
delivered work is, and would stay, identical for a bigger language to analyse. So, in fact, we are
making a first sketch of the big and ambitious project.

Some big parts of our work are based on existing materials. These materials are the concrete
syntax and the abstract syntax we are using. The concrete syntax we are using is the VTF
created by Professor Le Charlier in 1999 (/LC99a]). This language contains all the important
features of an object oriented language. The language is very much based on the Java language
definition. The only thing that makes the two languages differ is that the V'TF is a subset of the
Java language and that the VTF thus has got a smaller definition as the Java language. The
abstract syntax we decide to use as correspondence to the V'TF concrete syntax is the Labelled
Abstract Syntax that has been written by Isabelle Pollet in the framework of her DEA thesis of
1999 in Namur (/IPO99]). This thesis has been written in order to make some theoretical
basements for a static analyse of the Java language (the project we are working on right now).

This chapter is divided into five major sections. The first section is the presentation of the
concrete syntax. The second section is the presentation of the abstract syntax. For people who
are interested into more detailed information about those syntax's we refer to: /[LC99a] and
[IPO99]. After these two sections, there is a section explaining an intermediate representation
of the syntax's we needed in order to pass from the concrete to the abstract syntax. And finally,
we have got the two sections explaining the implementation of the compiler. This compiler is
split into two parts: the parser and the type checker. The parser takes a text of a program and
translates this one into the intermediate representation. The type checker takes the intermediate
representation and translates this one into the abstract syntax representation.

23

3.2. Presentation of the Concrete Syntax

Every parser or type checker needs a language to analyse. We decide to analyse the language
called VTF. In this section we try to explain what exactly the syntax of VTF is, what this syntax
means and why we take this particular syntax.

3.2.1. The VTF Basic Types

The VTF language contains three basic types: booleans (boolean), integers (inf) and floating
point numbers (floaf). The operations defined on the basic types are:

e boolean equality ==
difference I=
logical and &
logical or |

o int : addition +
subtraction -
multiplication "
division /
rest of the division %
equality ==
difference I=
lower than <
lower or equal <=
greater than >
greater or equal =

e float : addition +
subtraction -
multiplication "
division /
equality ==
difference b=
lower than <
lower or equal <=
greater than >
greater or equal S

24

3.2.2. VTF (long) Names

In the VTF language we decide to use two different sorts of names: the (shorf)-names and the
long-names. From now on, we decide to use the word 'name’ instead of short-name. A name is
an identifier, this means that it is a set of letters and figures with the only constraint that a name
must begin with a letter. A long-name is a set of names separated by dots.

The use of the (long)-names is defined as following. The local variables and the parameters
have only got names, the packages have only got long-names. The other nameable notions have
got the two sorts of names. These notions use names for the declarations and long names for the
use of those notions. The constructors and the methods are not identified by their long-names
but by their names and the list of types of the parameters.

The scoop of the names is the package in witch the notions are declared. If a variable tree is, for
instance, declared in the package Java.List, the scoop of free is the package Java.List. This
means that the variable free is not accessible from elsewhere than in this package.

The uniqueness of the (long)-names is defined as this: packages have got different long-names.
Classes in the same package have got different names. Fields of the same class have got
different names. Methods (and constructors) of the same class have got different signatures (a
signature is like we have explained above: a name and the list of the types of the parameters).
Field and method names of a class are different than the class-name itself. Variables declared in
the same block of instructions have got different names. The parameters of a constructor or a
method have all got different names.

There is a notion that is called hide. If a local variable is declared with the same name as a field
of that class, then we say that the field loses his scoop. This means that, for using the field, we
have to use the long name of the field, in the scoop of the variable, instead of the name. This
rule is also applicable to the parameter names instead of the local variables.

The scoop of the nameable notions is defined by the accessibility attributes. These attributes
have got the same names and the same functions as in Java: private, public and protected.

29

3.2.3. The Syntax of VTF

Atomic sets litt

nclasse, nvar, nmethode, nchamp, npackage

Build sets
prog = (package npackage)’ (import longnclasse ; | import npackage.* ;)*
{ defclass™ }
defclass o= (public)’ (abstract)’ class nclasse (extend (longnclasse | nclasse))’
{ (declchamp declmethcon declmethabs declconstr)” }
type n= int | bool | float | nclasse | longnclasse
declchamp ::= (public | protected | abstract)’ (final)’ (static)’ type nchamp (= expr)’ ;
declmethcon :: = (public | protected | private)’ (final)’ (abstract)’ (ty e | void) nmethode
((type nvar (, type nvar))’) { (Instr)’ }
declmethabs ::= (public | protected)’ (abstract)’ (type | void) nmethode
((type nvar (, type nvar)')') ;
declconstr ::= (public | protected | private)’ nclasse ((type nvar (, type nvar)"))
{ ((super | this) ((expr (, expr))’) ;) (Instr)" }

instr = type nvar (= expr)’ ;

| nvar=expr;

| (desinst. |nclasse | longnclasse.)’ nmethode ((expr (, expr)’)’) ;

| return ((expr)) ;

| if (cond) Instr

| if (cond) Instr else Instr

| while (cond) Instr

| {(nstr)*}
primdes n= nvar

| nchamp

| longnchamp

| nclasse.nchamp
vardes ;= primdes

| desinst.nchamp
desinst ;= this | super | vardes

| mew (nclasse | longnclasse) ((expr (,expr)))

| (desinst. | nclasse. | longnclasse.)’ nmethode ((expr (, expr)’)’)
expr n= null | litt | expr op expr | desinst

Im 3.1: Concrete syntax of VIF
26

3.3. The Labelled Abstract Syntax

3.3.1. General Idea

The abstract syntax we are explaining in this section is called Labelled Abstract Syntax, hence
LAS. We decide to make this syntax a “labelled” syntax. It is important to have a labelled
syntax in order to make an analysis on the transitions of the operational semantics. We need the
labels to make it possible to locate the statements in a univocal way in a given program. And
that is the reason why the labels have got to follow a certain logic.

All the statements and all the method and constructor declarations contain a label. For each
statement in the middle of a statement list we have got the label of the statement and the label of
the following statement. There are two special statements, the refurn and the if-statement. The
return-statement does only contain one label. This is the label of the statement itself. The if-
statement contains three labels: the label of the statement, the label of the if part of the statement
and the label of the else part of the statement.

For instance:

then else
15 if condition 16 25

16 toto .= true ; 17 25 toto := false ; 26

24 return (toto) ;

Im 3.2: the three labels of the if-statement

The LAS does not correspond exactly to the concrete syntax VTF. In the VTF syntax there are
loops (while) while the LAS does not accept those loops. We must simulate those by an if-
statement with some special labels. We can see that the following V'TF loop is equivalent to the
following LAS if-statement. As we think a little bit about the while-statement, we discover that
the labels are placed in a special way. Indeed, we can see that the second label of the last
statement refers to the beginning of the loop and that the condition of the loop in fact exactly
looks like an if-statement. We can more easily see that on the image Im 2.3.

11... 12 0. 12
12 while condition 13 16 12 if condition 13 16
: do e then €.
» 13 statementl 14 ¢ e 13 statementl 14
14 statement2 15 14 statement2 15
15 statement3 12 - d 15 statement3 12 - :
: od : Ji
Lge 16... 10 A—— .

Im 3.3: while versus if loops

27

In the VTF syntax there are access modifiers, static properties, package declarations and import
declarations, while the LAS ignores those. Another difference between those two syntax’s is that
the LAS has only got abstract classes with at least one abstract method while the V'7TF can have
an abstract class without any abstract method. An LAS class also contains an explicit
constructor, what is not necessary in the V'TF. In the LAS all the fields are initialised when they
are declared, what, once again, is not necessary in the VTF. In the LAS there is another
constraint that tells us that, in every method or constructor, the last statement is a return
statement, V'TF does not need this. The order of the variable declarations is also important in the
LAS while not in the VTF. All the variable declarations are done in front of the rest of the
statements of the methods in the LAS. A constructor call is always assimilated to an assignment
in the LAS while it could be an expression in the VTF syntax.

In fact we have got to translate the programs written in V7F into the LAS. For this translation all
the differences between the two language definitions (syntax definitions) must disappear. So
instead of making a simple translation, we are creating a translator that makes some adaptations
before the real translation job. This translator is explained in the section 3.6. about the type
checker. In fact the type checker is made of two essential parts, the syntax checking part and the
translation part.

Knowing all the differences between VTF and LAS we can take a look at the LAS-definition.

28

3.3.2. LAS Definition

Atomic sets lab
litt

nclasse, nvar, nmethode, nchamp

Build sets
prog

defclass

lype
declchamp

declmethode

declconstr

instr

appel

des

desinst

expr

defclass”

nclasse [extend nclasse) declchamp” declmethode” declconstr”
bot | int | bool | nclasse | void

type nchamp expr

type nmethode (type nvar)’
| type nmethode (type nvar)” (type nvar)” lab instr*

nclasse (type nvar)’ (type nvar)” lab prem lab znstr
| nclasse (type nvar) (type nvar) lab super expr " lab mstr
| nclasse (type nvar)” (type nvar)” lab this expr” lab instr*

lab affect des expr lab

| lab if expr lab lab

| lab skip lab

| lab proc appel lab

| lab return [expr]

| lab fonc nvar appel lab

| labconstr nvar nclasse expr” lab

type this nmethode expr”
| type super nmethode expr
| type nvar nmethode expr”
type nvar

| type nchamp

| type desinst nchamp

type this | type super | des

type null | type litt | desinst | (expr)’ op expr | (expr) (op expr)’

Im 3.4: LAS definition

29

3.3.3. Tree of the Created Classes

Here, we are developing the structure of all the classes created to represent the objects defined
in the LAS. All these objects will be created by the type checker during its translation of the /IR
program into LAS.

Afterwards, we present a brief description of all these classes, to explain exactly what they
represent. A more detailed specification of all these classes can be found in the annexes.

3.3.3.1. Package JavAblnt

[b] l Extended by...

=)

(simpleType] [Nclasse]
declProc
declConstr DeclMethode

[cellOfListOfTypes] [cellOfGraphProc] [TypePourEnv]

L listOfTypes] [graphProc] [defClass) [Env]

Im 3.5: Classes of the package JavAbInt

30

3.3.3.2. Package JavAbInt.SAP

[cellOfListOfExpr

l Extended by...

[tableOfNvars

[elementOfEnsOfNvars j

e 0] [)

Null] [Affect]

Im 3.6: Classes of the package JavAbInt.SAP

31

32

3.3.4. Explanation of the Classes

3.3.4.1. Package JavAblInt

Abstract class Val: an instance of Val represents a Java value that can be one of those :
A boolean
An integer
A floating point number (the basic types are defined in the /LC99a], p.3)

An undefined value (type bot) (as defined in the typed and in the labelled abstract
syntax in [IPO99], parts 1.3 and 1.4)
An instance of a class
Abstract class Base: an instance of Base represents a value of a basic type that can be one of
those:
A boolean

An integer
A floating point number (the basic types are defined in the [LC99a], p.3)

Class Bool: an instance of Bool represents a Java value of boolean type
Class Int: an instance of Inf represents a Java value of integer type

Class Ni: an instance of Ni represents a not initialised value (for a basic type) or null (for a
non basic type)

Class Inst: an instance of Inst represents a Java value of a non basic type i.e. an instance of
a class

Abstract class Type: an instance of Type represents a Java type. This can be :

boolean, int, float (the basic types defined in the /LC99a], p.3)

void (as used in /LC99a] and defined in [/IPO99], part 1.2.4)

bot (as defined in the typed and in the labelled abstract syntax in [I/PO99],
parts 1.3 and 1.4)

a class name (as defined in the [LC99a], part 2.2)

Class Nclasse: an instance of Nclasse represents a Java class type. It contains all the
information available for the class.

Class cellOfListOfTypes: an instance of cellOfListOfTypes is a type of a list of types

Class listOfTypes:
-Implements a domain "list of types"
-Implements the ordering induced by the ordering on types on lists of types:

By definition,
(TL s Tmy<=(T1, ... T'h)
iff
m = n and
Ti <=T'i (for all i: 1<= i<= m(=n)).

Abstract class declProc: an instance of declProc represents a procedure (i.e. a method or a
constructor) declaration

Class declConstr: an instance of declConstr represents a constructor declaration.
Class declMethode: an instance of decIMethode represents a method declaration.
Class defClass: an instance of defClass represents a class, with all its proprieties.
Class Env: an instance of Env represents a local semantics environment.

Class TypePourEnv: Contains the static information relative to an environment

Class cellOfGraphProc: class that represents a cell in the list graphProc, corresponding to
one procedure

Class graphProc:
- Implements a graph of procedure of "same kind" (constructors of same name and type).
- Allows one to find a procedure with a given signature.
- Allows one to find the list of procedures whose list of types is minimally greater that a
given list of types.
3.3.4.2. Package JavabInt.SAP

class cellOfListOfExpr: an instance of cellOfListOfExpr represents a cell of a list of
expressions used in a method or a constructor call

Abstract class Expr: This class implements the expressions of the V'TF grammar. It's useful
to have a type that gathers all the expression types.

class Null: an instance of Null represents the null expression in Java

Abstract class Instr: this class implements the set of statements accepted by the VTF
grammar. Every statement is uniquely represented.

Class Affect: this class implements the statement “assignment”

Class tableOfNvars: This class is used when translating a declaration of procedure from /RR
to SAP. All parameters must be added before the first local variable is (added).

Class elementOfEnsOfNvars: this class implements an element of the set “ensOfNvar”

33

3.4. An Intermediate Internal Representation

The internal representation we have defined is a direct translation of the V'TF syntax into a tree

structure form.

e The basic structure for the litterals, the identifiers, the operators and the keyword is the
lexeme structure.

e Another structure is the sentence structure. It is used to represent more complex pieces of
the program (an expression, a declaration, a statement...). It is a list of objects of type
construct.

A terminal is an occurrence of a lexeme in a sentence.
The construct is a general structure that can be either a terminal or a sentence.

To verify the correctness of the /IR structures created by the parser, we need to visualise them.
In that aim, we have created a class containing several display methods. In fact, we could have
added those display methods into the classes construct, lexeme and terminal, instead of creating
a whole new display-class. We did not do this because we did not create the classes of the
package JavAbint.concreteSyntax by our own. Those classes have been created by Professor Le
Charlier. So, because we did not want to change the inside of those classes, we had to create a
new class that uses the foString methods created by Professor Le Charlier to display the wanted
information.

3.4.1. Tree of the Created Classes

3.4.1.1. Package JavAblnt.concreteSyntax

3 Extended by...
[lexeme

"
[construct

[sentence] { terminal]

Im 3.7: Classes of the package JavAbInt.concreteSyntax

3.4.1.2. Package JavAblnt.concreteSyntax.Display

[[IRDisplay]

Im 3.8: Classes of the package JavAbInt.concreteSyntax.Diplay

34

3.4.2. Explanation of the Classes

3.4.2.1. Package JavAblnt.concreteSyntax

Class lexeme: This class implements the set of lexical items that are relevant for the
Intermediate Internal Representation of V'TF programs. These are:

- Identifiers (/JLS96] chapter 3 section 8)

- Keywords (/JLS96] chapter 3 section 9)

- Literals (/JLS96] chapter 3 section 10)

- Operators (/JLS96] chapter 3 section 12)

Here we use the classification of Chapter 3 of Java Language Specification [JLS96], from
which we eliminate irrelevant symbols. Moreover, only the symbols defined in VTF are
recognised. Every lexical item is uniquely represented.

Class construct: A construct either is a terminal (lexeme) or a sentence. In the latter case, it
is, in fact, an instance of a non-terminal, i.e. a data structure exhibiting the value and
structure of this non-terminal instance.

Class sentence: A sentence consists of
- A "main cell" containing
+ The sort of the sentence (statement, expression, etc.)
+ The reference to the first construct of the sentence
+ The reference to the last construct of the sentence
P.S.: both pointers are null if the sentence is empty
- A sequence of objects of type construct represents the sentence in a structured way.

Class terminal: A terminal (lexeme) is an occurrence of a lexeme in a sentence.

3.4.2.2. Package JavAblInt.concreteSyntax.Display

Class IIRDisplay: this class contains all the methods that allow the displays an object of
type IIR.

35

3.5. Implementation of the Parser: Newlookl

3.5.1. Lexical Analyser

The questions we try to answer in this sub section are:
e What is a lexical analyser?

e Why do we use those analysers?

e Do we really need a lexical analyser?

A lexical analyser is a tool that partitions an input program text into the smallest meaningful
sequences of characters. This tool then attaches these smallest meaningful sequences of
characters to the tokens. And this tool also eliminates the white spaces and the comments from
the text program (/SA498a] slides 1 till 7). This enables us to resolve a large class of problems
like text processing, code enciphering and compiler writing. In our case, we use such a lexical
analyser in order to make a parser. Making a parser consists in two major steps. The first step is
the lexical analysis and the second step is the generation of the parser. lex is one of the best
known lexical analysers

It is not essential to use a pre-made tool like /ex to handle problems of this kind. It is of course
possible to write a program in a standard language to handle them. The advantage using this
kind of tools is that it offers a faster and easier way to create programs to perform lexical
analysis. Its weakness is that it often produces programs that are longer and execute more
slowly than hand-coded programs that do the same task. In many applications size and speed are
minor considerations, and the advantages of using pre-made tools considerably outweigh these
disadvantages.

3.5.2. A Parser Generator

Here, we try to answer some questions about a parser generator:
e What is a parser generator?
e What do we use those tools for?

A parser generator is a tool that takes a language, as argument, and that produces a parser for
this language. A parser is a tool that translates a program from one language into an other. The
source languages are often programming languages like Fortran, Pascal, C or Java. And the
derivation languages are often tree forms of the source programs. These tree representations can
be analysed by a compiler. In our case, we can see that the tree representation of the source code
is the ZIR. The name of our parser is Nlookl and the explanation of this parser and the
generation of it can be found in the next sub-sections.

36

3.5.3. Java Compiler Compiler Documentation

Like we try to explain in the sub-sections above, there are two parts in the making of a parser.
The making of a parser is divided into the syntactical analyser and the parser generating part. In
our case we use a tool called Java Compiler Compiler (JavaCC for more information and for a
downloadable version of the Java Compiler Compiler, we refer to the following address
[JavaCC1]) in order to generate the parser. This tool creates a parser for the language you give
him as source file.

Now we know that the creation of a parser is split into two different steps. The first step is to
decompose the language into tokens (lexical analysis), and the second step is to generate a
syntactical tree corresponding to the language given as argument (parser generation). The
language we chose to make a parser for is V'TF. This language is explained at section 3.2. With
this JavaCC tool we create our parser called Newlookl.

There are two different kinds of parsers: top down parsers and bottom up parsers. The major
difference between the two is the way they look at the string of tokens. The top down parser
starts with the start symbol and ends with the string of tokens, while the bottom up parser starts
with the string of tokens and ends with the start symbol. For more information on the top down
and bottom up parsers, we refer to section 3.5.5. Bottom Up versus Top Down Parsing.

The source file for JavaCC is composed of a number of sections:

Option Parameters
Main Methods
Definition of the Tokens
Parsing Methods

JavaCC is much like lex and yacc ([LexYacc]) together because like those tools JavaCC creates
a parser from a template file. However, while yacc produces a bottom up (LALR(1)) parser,
JavaCC creates a top down (LL(k)) parser. But in our case we decide not to use the possibility
of creating an LL(k) (for k # 1) parser but an LL(1) parser. We try to explain the meaning of the
k in LL(k) in the sub-section 3.5.6. called the k in LL(k) ([JavaCC2]). The notions like LL(k),
top down and bottom up are explained in the next sub sections or for more detailed information
we refer to [INFO2108].

37

3.5.4. Left-Most Derivation versus Right-Most Derivation

In the left-most derivation you have got to find the leftmost non-terminal, in the string, and
apply a production to it. This explanation is not that intuitive, but gets comprehensible with the
following simple example (/S498b]). In this example you can see how a left-most derivation
takes place:

Qi —

<expr> <op> <expr>
b T JE
*

num (<expr>)
/I\ }
<expr> <op> <expr>

a

num

num

7l]
+

Im 3.9: Left-Most derivation

In a right-most derivation, on the other hand, you have got to find the right-most non terminal,
in the string and apply a production on it. In the following example you can see how a right-
most derivation takes place:

{/QTP\

<expr> <0p> <expr>
0o T |
num * (<expr>)
el ™ }
<expr> <op> <expr>
6]l [s]] Ld|
-

Im 3.10: Left-Most derivation

38

3.5.5. Bottom Up versus Top Down parsing

We normally scan from left to right. In these left to right parsers, we have got two different kind
of parsers. The LL and the LR parsers. The LL parsers are what we call Left to right, Left most
derivation. These parsers reflect the top down parsers. This means that the parser starts with the
root (or the top) and processes the sentence all the way down to the leaves (or the bottom). This
is explained on the image 3.11. LR on the other hand is the acronym for Left to right, Right
most derivation. These kind of parsers reflect the bottom up kind of parsers. This means that the
parser starts with the leaves (or the bottom) and processes the sentence until it comes to the root
(or the top). This is explained on the image 3.12. The difference between the top down and the
bottom up parsers is explained with some more detailed examples into /S498b] slides 90 till
108.

Im 3.12: The bottom up way to look at a sentence tree

39

3.5.6. The k in LL(k)

When we speak about a Left to right, Left most derivation parser, we often use the acronym
LL(k). In this term, the & means that the parser looks k tokens in advance before taking a
decision. This means that the parser keeps a stack with the read tokens and that this stack can
grow up to a height of k levels. This stack helps the parser decide when there is an ambiguity.
When there is no ambiguity, it is clear that the parser can decide directly and that it does not
need the stack.

For instance:

class identifier extends identifier

this example is easy to parse because there are some keywords to identify what sort of
line this is. In fact, we can say that this production could be recognised by an LL(1)
parser.

The second example, on the other hand, is more difficult. As we can see there are two
productions that begin with an identifier, so, the parser has got to remember these identifiers and
look ahead. The second token is different in the two productions. This example could thus be
solved by an LL(2) parser.

1 identifier = identifier ;
Vs.
2 identifier identifier = ...

VTF is not an LL(1) grammar but VTF is not an LL(k) grammar either. In fact VTF is an LL(0)
grammar. Thus it is not possible to implement a parser, simply using the lookahead option of
JavaCC. So we decide not to use this option at all.

40

3.5.7. Structure of the Parser

3.5.7.1. Options Parameters

As we have seen in the previous sub section, it is not possible to make an LL(c) parser directly
using the options of JavaCC. Thus we decide to let all the parameters of JavaCC to their default
values.

In the following example we show you that the VTF grammar is an LL(c0) grammar because
even if the & is big, 7 could still be bigger. And thus, we do not know how many tokens we have
to read before being sure that we have a field designator or a method call.

A field designator can have the following form:
name.meth;(param_1;).methy(param_12).name,. ... name, field name

And a method call
name.meth;(param_1;).methy(param_l,).name,. ... name;. meth_name(param_1l)

Im 3.13: LL(g

The only difference is that in the case of a method call, it ends with an identifier (a string)
followed by a list of parameters (between brackets). While it only ends by an identifier, in the
case of a field name. We can not know the number of tokens we have to read before to decide.
In fact, we have got to adapt the number of tokens to look ahead dynamically during the parsing
of the to analyse program.

From an implementation point of view, we decide to make a skeleton of the to parse program
using the default value of the lookahead option of the JavaCC. And we add some code to this
skeleton in order to take care of all the problems involved with the fact that the grammar is an
LL(c0) grammar. JavaCC is implemented so that it allows us to add some Java code in the

middle of the parser. So we use this opportunity to create an LL(20) parser that accepts the VTF
grammar.

41

3.5.7.2. Main Methods
The class Nlookl, i.e. the parser, contains two main methods:

e The TestVarDesign method tests if an object of type senfence representing a variable
designator contains a parameter list. If the object does not contain such a list, then it means
that the sentence can represent a long class name

pre : the sentence in entrance is a variable designator
it only contains identifiers and effective parameter lists
post : true if the sentence does not contain a parameter list

e The IIRParser method is the main method of the class, which will be automatically called at
the execution of the Parser. It can return a ParseException, which is a class of exceptions
defined by the compiler compiler, JavaCC.

Pre: this method takes the text file of a Java program, that is supposed to be syntactically
correct, following this definition of "syntactical correctness", as argument:

A program in entrance of this method is "syntactically correct" in our terms if it
respects the rules that are not checked by the parser. These rules can be found in the
documentation of the parser (sub-section 3.5.8. Nlookl class documentation).

Post: this method returns the syntactic tree of the program given as argument,
corresponding to the //R definition. The return value is a sentence.

3.5.7.3. Definition of the Tokens

Before defining all the tokens of the language, we have got to define the characters the parser
has got to skip. There are the white spaces, the end-of-line characters and the tabulations and, of
course, the two types of comments ('// eol'or'/* *I).

Then, we have got to define all the tokens of the grammar.

e The tokens corresponding to the operator keywords: general mathematics operators
and comparison operators.

e The tokens of the literal values of our language: booleans, floating point numbers and
integers.

e The basic keywords of the language: the access modifiers (public, abstract, ...) and
the keywords associated to the statements (if, else, super, ...).
The tokens corresponding to the basic types: int, boolean and float.

e The tokens of the identifiers in general: strings beginning by a letter, containing letters,
digits or the character ' '.

42

3.5.7.4. The Parsing Methods
Each method corresponds to the treatment of a part of the program.

Our methods are:
MainProg()
Declaration()
Statement()
Design()
Operator()
ExprLitt()
Expression()
Input()

The only argument of the methods is the text of the to analyse program. The methods return the
syntactic tree of the (part of) program, they have analysed, into the //R form.

The Input method treats the whole program text followed by the end-of-file character. It calls
the MainProg method and is called by the main method I/RParser of the parser.

Each method has the following form:

returned_structure type method name()

{
Local variables
H
{ ?
code line ({Javacode })
(| codeline {Javacode })*
}

A code line is a succession of tokens or calls to other methods. It represents a sequence of words
in the program text. The Java code is what has got to be executed when the parser encounters

that sequence of words in the program. In our program, it is the creation of the corresponding
IIR structure.

The best way to understand all this is to look at a concrete example.

43

3.5.7.5. Example
Here is a typical example you can find in the JavaCC documentation (/InriaJavaccEx]).

This simple grammar recognises a set of left braces followed by the same number of right
braces and finally followed by an end of file.

A legal string has got the form:
n{}n, n{{{{{}}}}}"

Some illegal strings are:

OGO T G 8.

The method Input() also prints the number of pair of braces on the screen.

PARSER_BEGIN(Simple3)

public class Simple3 {
public static void main(String args[]) throws ParseException {
Simple3 parser = new Simple3(System.in);
parser.Input();
3

PARSER_END(Simple3)

SKIP :

{ nn
| "\t"
I "\n"
] n \r" }

TOKEN :
{ <LBRACE: "{">
| <RBRACE: "}"> }

void Input() :
{ int count; }

{
count=MatchedBraces() <EOF>

{ System.out.printin("The levels of nesting is " + count); }

}

int MatchedBraces() :
{ int nested_count=0; }

{
<LBRACE> [nested _count=MatchedBraces() | <RBRACE>

{ return ++nested_count; }

}

Im 3.14:example of simple grammar

44

3.5.8. Nlookl Class Documentation

public class Nlookl

An instance of the class Nlookl is a special object, containing the stream of characters with the
code of the to parse program given as input and different information on the tokens and on the
options of the parser.

sentence IIRParser (InputStream)

Pre: this method takes the text file of a Java program that is supposed to be syntactically
correct, following the definition of "syntactical correctness" as argument.

Post: this method returns the syntactic tree of the program given as argument, corresponding
to the /IR definition. The return value is a sentence.

In the IIRParser precondition, we use the notion of "syntactical correctness". Here is a
definition of what this notion exactly means in this method. The parser methods check that the
construction given in entrance follows the rules of the V'TF syntax. But they do not check the
following rules:

e They do not check that the declarations (after the package and the import declarations) are
class declarations.

e They do not check that the declaration in entrance has got allowed access modifiers.
Ex: the method would accept a class defined as protected and static.

e They do not check that the declarations in the body of a class are allowed declarations (not a
class declaration).

e They do not check that a field is not declared with the type void.

e They do not check that a field or a method is declared with an identifier.
Ex: you can declare int = 1;

e They do not check that the statements defined in a simple method (not a constructor) are
different from a constructor call.

e They accept that a designator is only followed by a semicolon but they should not accepted
that.
Ex: it accepts toto; which does not mean anything.

e They do not check that a designator has got two consecutive lists of parameters.
Ex: you can have toto.add(x,y)(z)

A program in entrance of this method is "syntactically correct" in our terms if it respects the
rules that are not checked by the parser. Our parser could be improved by adding code that tests
all these constraints. This is, of course, possible in a theoretical point of view, but in a practical
point of view, it is much easier to make all these verifications in the type checking part of the
compiler, while creating the objects of the LAS.

45

3.5.9. Tree of the Created Classes

package JavAblnt.concreteSyntax.Parser

All theses classes are created by JavaCC, using the file Nlookl.jj.

Nlookl

ASCII_CharStream

Nlook1TokenManager

ParseException

Token

{ Nlook1Constants

TokenMgrError

Im 3.15: Classes of the package JavAbInt.concreteSyntax.Parser

See more detailed documentation about JavaCC for an explanation of these classes ([JavaCC1]

and [JavaCC2]).

46

3.6. Type checking and translating the IIR

3.6.1. Structure of the Type Checker

The type checker has got several functions. These are the syntax checking, the translation and
the type checking. Thus, in fact, we have chosen a wrong name for this tool. But we actually
implemented the tool using this name, so we decide to keep the name, keeping in mind that it
does not only check the types of the /IR.

3.6.1.1. Syntax Checking

The type checker completes the syntax checking because the parser does not check everything.
The list of things that are not checked by the parser can be found in the sub-section 3.5.8.
Nlookl Class Documentation.

3.6.1.2. Translation

The type checker translates the JIR-program into a LAS form. This translation is not that easy
because the LAS contains a lot of constraints. Therefore we have to transform the program and
to make some restrictions.

For example, every class contains at least one constructor in the LAS. So if the initial program
does not contain a constructor, a default constructor is created by the type checker. In fact that is
exactly what the real Java compiler does.

The translation rules between /IR and LAS can be seen as the translation rules between VTF and
LAS because the /IR is a direct translation of V'TF in a tree structure.

For the rest of this sub section we speak about an abstract syntax called S4. This syntax is
defined into [IPO99] (p.13-17 called 1.2 une premiére syntaxe abstraite). It is a simple vertion
of an abstract syntax and the LAS is derived from this simple syntax.

In the following table, you can find an easy comparison between VTF and SA4, with all the
translations rules. The translation rules between S4 and LAS can be found in the thesis of
Isabelle Pollet (/IPO99]). The blue text references to the different transformations that have to
be done for the translations. These transformations are explained in more details after the tables.
The structures written in red are the structures that undergo the transformations.

47

Here is an explanation of the translation rules:

Vas-T'y-Frotte

Abstract syntax (S. A.)

prog :: =
(package npackage ;)
(import nclasse ; | import npackage. ™ ;)*
(defclass)”

prog :: = (defclass)"

Restriction : package, import

defclass :: =
(public)’ (abstract)’ class nclasse

(extends nclasse)’
(declchamp | declmeth

2 defclass ::
ncIasse (exteml nclasse)’
declchamp* declmethode* declconstr*

Lasmad
AAAARAARAARRANANANAANALAN AR

| declconstr)* <§ Restriction : access modi ifier @
X abstract property P
% Transformation : explicit constructor
&
declchamp :: Edeclchamp n=
(public | protected | pnvate) (final)’ (static)’ ¢ type nchamp expr
type nchamp (= expr)’ ; ;
§§ Restriction : access modifier ®
% Transformation : initialisation is needed @
g
declmeth :: = % declmethode :: =
((public | protected | private)’ (final)’ g type nmethode (type nvar)*
(static)’ (void | type) nmethode i | type nmethode (type nvar)*

((type nvar)*) { (instr)* }

g; (type nvar)* instr"

| (public | protected)’ abstract (void | type) & Restriction : access modifier

3
nmethode ((type nvar)*)) % Transformation : at least one statement in a concrete
22 method declaration ®
9 In S.A., declvar is not a statement
% 25” transformed into : (type nvar)*
& ’
%Remarks : InSA., voidis a basic type
g
declconstr :: = < declconstr :: =

(public | protected | private)’ nclasse < (nclasse (type nvar)* (type nvar)* prem instr'

((bype mar)*) © | nclasse (ype mvar)* (type nvary*

{ ((this | super) ((expr)*) ;)’ (instr)* } ; super expr* instr*
4 * *
8 | nclasse (type nvar)* (type nvar)
% this expr* instr’)
3
E% Restriction : access modifier

& Transformation : Constructor type prem ©

%; At least one statement
S

48

2
Vas-T'y-Frotte 3% Abstract syntax (S. A.)
type :: = (int| boolean | float | nclasse) § type :: = (int | bool | float | nclasse | void)
éRemarks : InSA. andin V.T.F. : we don't consider
b the so-called type String
% In S.A. : addition of the type float
instr:: = g instr:: =
i .
[ge];e::;;e()?:egfr £ % | Z}';e,ct des expr
| (desinst | nclasse)’ nmethode ((expr)*) ; § | ifexpr (instr)* (instr)*
| return ((expr))’; i § | proc appel :
| if (expr) instr (else instr)’ | return (expr)’
: :Iv:u'le () ix}pr) instr § : whilz expr (instr)*
instr, cast des type expr
é | fomc nvar appel
& | constr nvar nclasse expr*
S
S
xappel
2 this nmethode expr*
é | super nmethode expr*
% | nvar nmethode expr*
K
§ Transformation : In S.A, declarations and a ectatmns
§§ are split into two parts. “
% In S.A., all the variables are
§< declared before the statements
<§ In S.A., the function and the
X constructor calls are not considered
% as expression, unlike in V.T.F. ©
§< In S.A., in a call of a method of this
% class or of the super class, the this
§< or the super is always explicit 7
In S.A., all the while statement are
% translated in their corresponding
§§ if form ®
X
des :: = nvar | nchamp | desinst.nchamp §§ des :: =nvar | nchamp | desinst nchamp
desinst :: = % desinst ::
super S super
| this é | this
| des des
| mew nclasse ((expr)*) %
| (desinst | nclasse)’.nmethode ((expr)*)
expr:: = % expr
null % null
| lint §§ | lin
| desinst g | desinst
| (expr)’ op expr | op expr*
| (expr)(opexpr)
Restriction : the brackets in the expressions
§ operators are always prefixed

49

e Restrictions

 The "package" and the "import" declarations and the access modifier information are not
considered in the abstract syntax. There are no static methods or fields in S.A. The compiler
simulates these with a dynamic method called Static_Ref. This method takes a picture of all the
static fields and methods. With this picture, we are able to make dynamic references to all the
static fields and methods. In this way, a static method call is transformed into a dynamic method
call, but with a reference to the Static_Ref method. For the fields, we instanciate those, once and
for all, into this Static_Ref method.

® The abstract property of a class is not completely saved in the abstract syntax. A class is
abstract if and only if it contains at least one abstract method. On the other hand, a class can
contain no abstract method, but being declared as an abstract class in VTF. However, a class that
contains an abstract method must be declared as an abstract class.

e Transformations

(A class contains at least one explicit constructor in the SA. If the class does not contain one,
the compiler creates a default constructor.

In the case of a class extending another class, which contains a constructor without arguments,
the default constructor is:

ClassName ()

{

super ();

}

In the other cases, it is:
ClassName ()

{
}

@ All the fields of a class are declared and initialised at the same time in the abstract syntax. If a
field declaration in ¥'TF does not contain an initial value, the compiler assigns one to this field.
If the field type is a class type, the initial value is null.
For the basic types, its default value is:

int : 0

float : Of

boolean : false

@ A constructor or a concrete method contains at least the return statement in the abstract
syntax. If needed, this statement is added at the bottom line of the statement list by the compiler.
For a constructor, or a method with veid as return type, the added statement is:

return ;

@ All the local variables are declared before the statements in the abstract syntax. In the case of
a VTF program containing a variable declaration combined with an assignment, this statement is
transformed into two parts, during the translation from the V'TF into the abstract syntax LAS.

50

peasE s e |

For instance:

type nvar = expr ;

Becomes:
type '
type nvar (in the other variable declarations)
fpe...
affect nvar expr (in the statements)

© A constructor is one of the three different types in the abstract syntax:
prem: when it is a primal constructor (it does not call another constructor)
this: when the constructor calls another constructor of the same class
super: when the constructor calls a constructor of the super class

© A function call or a "mew" call is not considered as an expression in the abstract syntax. This
call is always associated to an assignment. When the compiler encounters one of these
procedure calls elsewhere than in an assignment, while translating a VTF program into its LAS
form, it creates a new internal variable and decomposes the statement as follows:

return (x.toString ()) ;

becomes:

fonc Tmp_1 x toString
return Tmp 1

Similarly,
NewList = list.addCell (rew Cell (info, next));
becomes:

constr Tmp_2 Cell info next
Jonc NewList list addCell Tmp_2

? In a call of a method of this class or of the super class, the this or the super keyword is
explicit in the abstract syntax. That keyword is added by the compiler when it is absent in the
VTF program.
For instance,

MethCall (EffParam);

Becomes:

proc this MethCall EffParam

51

® In the definition of the abstract syntax, the while statements do not exist anymore. To
translate a program from its V'TF form to its abstract syntax form, we have to translate the while
statements into their corresponding if statement.

For instance:

while (bool)
{ stat }

Becomes:

01 if (Tmp_3)
{
stat
jump to 01
}

3.6.1.3. Type Checking

The type checker checks all the types in the program and translates the program at the same
time. The type checker verifies different things:

e It verifies that the value returned by a method corresponds to the return type found in the
declaration of the method.

e [t verifies, in the case of a method or a constructor call, that the types of the real parameters
correspond to the types of the formal parameters of the called method or constructor. This
verification includes the target parameter of the method.

e [t verifies, in the case of an assignment, that the type of the assigned value (or variable)
corresponds to the type of the target variable.

e [t verifies the type of the conditions (they must be of type boolean, of course) in the if
statements.

e It verifies that all the types used in the program (extended type, type of a declared variable
or field, type returned by a method...) have been declared before their use.

e [t verifies the validity of the types of the expressions used with the arithmetic operators.

It also verifies other things:

It verifies that a variable is not declared two times somewhere in the program

It verifies that there are no duplicate definition of a method in the program

It verifies that there are no unreachable statements in the program. The type checker can
detect some unreachable statements but it can not detect all of them.

When the type checker encounters an error in the program, it throws an exception. We have
created a sub-class of the basic class exception (CheckTypeException) so we can add some
useful information in the exception message returned. In this way, we have optioned for
simplicity, because it could have been possible to continue parsing the whole program and
return a list of errors instead of stopping after the first encountered problem. This seemed to be
too difficult to handle for a first version of our type checker. It can, of course, change in later
versions of this type checker.

52

3.6.2. Algorithm of the Type Checker

The first method of the type checker, the method CheckProgram, checks the validity of the
given program, creating all the LAS structures corresponding to the program. It calls several
other methods, including the most important one: the method CheckStatement. The other
methods do not use specific algorithms; they are intuitive (CheckExpr, CheckClass...).

Our method CheckStatement receives a statement as argument. At the first call, this statement is
the first statement of the considered method (constructor). This statement is a sentence of sort
"STATEMENT". It returns the LAS structure Instr corresponding to the /IR statement.

Before applying this method, we suppose that another method has already been applied.

This other method, CheckReturn, checks that:

e All the return statements, contained in the method, are well placed
[.e.: all statements of the method can be reached
To check that, we have got to check that any of the refurn statements and any of the
"blocked if statement" are followed by other statements.
We call a "blocked if statement" an if ... else where the then AND the else statement lists
finish with a return or a "blocked if".

e If the treated method must return a result, it finishes with a refurn statement or with a
"blocked if".
Here, we do not check if the type of the returned expression corresponds to the return type
of the method.

The method CheckStatement considers the case of an empty list of statements (the given
sentence is null) as a special case. We have not implemented this part of the method yet, but it
does not seem to be too difficult to do. The principle is:

e At the level 0, the method creates a return statement

e At a higher level, it returns a skip statement found in the hashtable defined just below.

The current if structure information is kept in a hashtable (used as a stack) in which:
e The key is the level of the corresponding if
e The object is a structure containing:
e Two skip statements, corresponding to the last statements of the then and the else
statement lists
® A boolean which says if we are treating the then or the else part of the if.
The current level is the size of the hashtable (corresponding to the number of nested if
statements encountered).

53

The method CheckStatement is a recursive method, for which the basic case is when the given
statement is the last one (no following statement).

In the basic case,
o [fthe current statement is not a return, we have got to check the current level.

e If we are at level is 0 we have got to add a return statement, with a default value, if
needed. This comes from the fact that in the LAS definition, all methods are
supposed to finish with a refurn statement. The VTF language does not have this
constraint.

e Otherwise, we have to check if we are in a then or an else part of an if.

We put the skip statement found in the hashtable corresponding to the then or the
else, as following statement.
e In the case of a return, there is no following statement.
The label of the return is the first statement of the method. This information is kept in a
global variable.

In the general case,

e The method treats the current statement.

e [t calls the method recursively on the following statement.

e It adds the reference to the Instr structure of the following statement as label of the current
one.

It is simple to put the label of a basic statement, but it is quite difficult for if (and nested if)

statements.

e In the case of an if; this corresponds to put the statement following to the if as label for the
two associated skip statements.

e Ifan ifis the last statement of a then or an else statement list, the statement following to the
nested if'is the skip of the if at the upper level.

We are going to show here how the hashtable with the if structure is built.

Ex:
if we have :

statl;
stat2;
if exprl
Istat3;}
else
{stat4;
if expr2
i
else {stat5;}

/

stat6

54

Its SAP representation will be:

1 statl 2
2 stat2 3
3 ifexprl (4, 6)
4 stat3 5 // then part
5 skip 11
6 stat4 7 /] else part
7 if expr2 (8, 9)
8 skip 11 // then part
9 stat5 10 // else part
10 skip 11
11 stat6 12
12 i

While entering an if;
e A level is added in the hashtable :
e The key is the size of the hashtable + 1 (the new current level)
e The object is a structure with two new skip statements
e The method is recursively called with the then and the else statement lists. The boolean in
the hashtable is put to the corresponding value before these calls.
e The method puts the statement following to the if, as labels of the skip. The level is
removed of the hashtable when we leave the if statement.

We have not thought about the while statement yet. One possible way to resolve the problem is
to transform the /IR while statement into the corresponding /IR if statement, and then call the
method on the IIR if.

Another point to consider is the treatment of the variables. We use two global variables.
One of type tableOfNvars, which contains:

e All the internal variables

e The fields of the current class

e The accessible local variables

One of type AllVariables, which contains:

e All the internal variables

e The fields of the current class

e All the encountered variables

The AllVariables structure is a hashtable in which:

e The key is the index of the variable

e The object is a structure that contains its name, its type...

On this hashtable, we have defined methods that return the information needed to create the
typePourEnv structure.

Keeping in mind that we have to keep all the information about the translation from //R to LAS,
we are thinking about using an hashtable with:

e For key, the LAS structure a statement

e For object its /IR structure

But we have not implemented that yet. Later we will probably just have to add those lines into
the code.

55

3.6.3. Left to do

The program is not finished yet. If most of the algorithm has already been implemented, we
need to finish it and to test it.

As the whole algorithm explained above has been implemented in only one method, the code is
quite hard to read, and we have to divide the code into several smaller methods, to make the

code more comprehensible.

Anyway, all the classes and methods we have built have been specified. You can find those
specifications in annexe. You can also get a copy of the code (/ZAP00]). In fact, the code is too
large to be included in this work.

56

4. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

4.1. Introduction

This second part of our work, the syntactical analyser, has been done in the framework of the
course of abstract interpretation of Professor Le Charlier.

An analyser in the framework of the large project would have been impossible to build in the
small time we had. We chose to analyse a more simple language (the VSS: very small subset of
Java), to be able to go further in the implementation of the analyser.

This work is an implementation in CaML of an analyser. In this case, we consider that the
program has already been transformed to verify the constraints of VSS, parsed and translated in
its abstract form. The program is supposed to be correct.

The analyser takes the tree of the program (abstract form), applies the multivariant algorithm
(which is explained in details in this chapter) and returns all the possible states of the program.
The treatment of all that states, to draw useful information, is not performed buy the analyser,
and has to be done by the user. This improvement of the analyser could be interesting in the
framework of a further work.

57

4.2. Syntax

4.2.1. A Very Small Subset of Java

4.2.1.1. Constraints of the Language

The programming language we are studying here is a very simple sub-language of the
programming language Java, the VSS.

In fact, this language has got the following limitations. Most of them have be done, among other
things, because we did not have a lot of time for this part of the work, and we preferred to
concentrate on the essential.

58

There are no basic types anymore. We only work with class instances. This basic limitation
is very useful. We don't have to treat anymore with all sorts of value. All values are
instances.

There are no static fields or static procedures. The only static method is the main method.
For an easy treatment, we consider that the main method must be found in a special class:
the main class. This class only contains the main method, she does not contain any fields or
constructors and no instance of that class can be created.

This limitation really simplifies the analysis. In fact, the treatment of static fields and
methods is a specific treatment, quite complex. We chose to forget all that and to
concentrate our efforts on the analysis of general fields and methods.

There are no conflicts between method names. It is impossible to find two methods with the
same name except in the case of the redefinition of a method in a subclass. In that case the
two methods have thus the same parameter types.

This simplifies the treatment of method call. The methods can be identified by their name
and the name of the class in which there are defined. It is easier to find the method to apply,
as we don't have to compare the types of the arguments to find the good one. This
comparison is not very difficult to code in a theoretical point of view, but the code added
would be heavy and it would make the code less comprehensible, without interesting
advantages.

All the fields of the classes are private. The only way to access to them is using methods. In
this way, we do not have to handle long-name (instance_name.field name).

There are no more access modifiers considered (private, protected, public...). All the
methods are considered as public. This limitation was already present in the first part of the
works. The parser accepted the access modifiers but they were completely forgotten by the
compiler. The access modifiers complicate the analysis, as you always have to verify that
you are allowed to use the field or the method you want to.

There are no procedures, but only functions. All the methods return a value. From the
syntactical point of view, all the methods end with the statement refurn expr. The
constructors always ends with the statement return this. The only method that does not end
with a return statement is the method main. This allows us to treat only one kind of return.
Anyway, a program can always be transformed to return something. You can always returns
null at the end of the method, and at the method call, put the mock returned value in a mock
internal value.

e All classes contain exactly one constructor. The fact that there is maximum one constructor
has the same reason than the fact that the methods have all different names. In fact, we
decide to have at least one constructor, in the same way than a real Java compiler, which
creates a default constructor in classes without constructor.

There is a constraint that we should have added, but we thought about it too late:

We could say that the return variables in the method and in the constructor calls have to be local
variables. This is not very restrictive, as all calls in which the return variable is a field can been
translated to respect this constraint.

For instance:

ﬁéld_name = designator.method name (param_list);

Can be translated into:

var_name = designator.method name (param_list);
field name = var name;

We will see that lots of translation rules concerning the method and the constructor calls have to
be defined two times, once for the case of a local variable, once for the case of a field. This
simple restriction would have limited all these transition rules to one case.

59

4.2.1.2. The Syntax of VSS

The syntax of our language is the following:

A program is a number of class declarations followed by a Main Class.

A class definition is a number of field declarations, a constructor declaration followed by a
number of method declarations.

A constructor declaration is a list of statements.

A method declaration is a list of statements.

A list of statements is a number of variable declarations and a set of statements.

The main method is the only method that is really required, this method is made of a list of
statements.

The Main Class is the only indispensable class. This class is made of the main method.

Compulsory Item

Is composed of...
Program

60

Class
Definitions

Main Class

Method
declarations

Field
declarations

Constructor

y Main Method
declarations

Variable
Declarations

Statements

Im 4.1: syntax of VSS

4.2.2. The Concrete Syntax

Ild::=la.z,A Z] ([a..z,A..Z0..9])*

¢ ::= true | false | DontKnow
ClassName ::= Id

MethName ::= Id

VarName ::= Id

FieldName ::= Id

FieldDecl ::= ClassName FieldName ;
VarDecl ::= ClassName VarName ;
FormalParamList ::= ClassName VarName (, ClassName VarName)"
Des ::= VarName | this | FieldName
Expr ::= Des | null

Cond ::=c
| Des.instanceOf (ClassName)

Stat ::= Des = new ClassName((Expr (,Expr)’)’) ;
| Des = Expr ;
| Des = Des.MethName ((Expr (,Expr)')?)
|if (Cond) {(Stat)’} (else { (Stat)" })’ ;

ConstrDecl ::= ClassName ((FormalParamList)’)
{ WarDecl)" (super((Expr (Expr)')’);)’ (Stat)” return this ; }

MethDecl ::= (ClassName) MethName ((FormalParamList)")
{ VarDecl)" (Stat)" return (Expr) ; }

ClassDef ::= class ClassName (extend ClassName)' { (FieldDecl)* ConstrDecl (MethDecl)" }
MainMethod ::= void main ((FormalParamList)’) { VarDecl)" Init (Stat)" Fin }
MainClass ::= class ClasseMain { MainMethod }

Prog ::= (ClassDef)" MainClass

Im 4.2: concrete syntax of VSS

61

4.2.3. The Abstract Syntax

Here is the abstract syntax we used.

ClassName ::= Id

MethName ::= Id + {main)

VarName ::= Id

FieldName ::= Id

FieldDecl ::= ClassName FieldName
VarDecl ::= pt var ClassName VarName pt
Des ::= VarName | this | FieldName

Expr ::= Des | null

Cond ::=c¢
| instanceOf Des ClassName

Stat ::= pt affect Des Expr pt
| pt new Des ClassName Expr* pt
| pt proc Des Des MethName Expr* pt
| pt if Cond pt pt

ConstrDecl ::= ClassName (ClassName VarName)* (VarDecl)*
(pt super (Expr)* pt)’ (Stat)* (pt return this)

MethDecl ::= ClassName MethName (ClassName VarName)* (VarDecl)* (Stat)*
(pt return Expr)

ClassDef ::= ClassName (extend ClassName)' (FieldDecl)* ConstrDecl (MethDecl)*
MainMethod ::= main (ClassName VarName)* (VarDecl)* Init (Stat)* Fin

MainClass ::= MainMethod

Prog ::= (ClassDef)* MainClass

Im 4.3: abstract syntax of VSS

62

4.3. Semantics

4.3.1. Concrete Semantics

4.3.1.1. Definitions

In our concrete semantics, a state looks like:

5 State = ILabel X Stack X (IEnv X Store)

where
[Env = VarName + {this} = ILoc + {null} + {undef}
We can assume that: V e € IEnv: (e this) € ILoc

We can consider that the store returns an instance, because the simple language we are studying
in this work has not got any basic types. The ClassName value is the type of the instance.

The instance is defined here as a function from the field names to the locations. In fact, it can be
seen as the environment associated to the fields.

Store = [Loc = (ClassName X lInstance) + {undef}
lInstance = IFieldName -> ILoc + {null} + {undef}

Remark: In this work, the instance of a variable contains all the fields of the class, and the fields
of the inherited classes, even if those are private. The access will just be limited to the allowed
fields. For that reason, in the case of calls to the super constructor, the variable this stays the
same when you enter in the constructor. The only difference will be that you will not have
access to the same fields.

Stack = {(U}, L2,... Up) [N €N A Vi:l<i<n:v; e (Env X IPtsProg X ReturnVar)}

Each item of the concrete stack contains the following information:
e An environment

e A return label

e The name of the return variable and its descriptor (var or field)

The descriptor of the return variable is useful for the treatment of the return statement, which
corresponds to an assignment of the returned value into the return variable.

ReturnVar = {field | var} X Des

[Des = VarName + {this} + IFieldName

63

4.3.1.2. Useful Functions

The function Val simply returns the value of the given designator, using the given environment
and the given store.

If the function Val is applied on a local variable or this, the function simply applies the
environment function. If the given variable is a field, we use the environment and the store to
get the location function associated to the current instance. We apply this location to find the
value of the field.

As the program is supposed to be correct, we can assume that the variable belongs to the
domain of the environment i.e. that we are looking for the value of a declared variable.

Val IEnv X Store XIDes -> ILoc + {null} + {undef} :
ev if v e VarName + {this} i
(e, s, V) ~> { lv where s (ethis)=(t,1) if v € IFieldName :

The function getType takes an instance as argument. It returns the type of the given instance.
This type is the name of a class.

getType linstance - ClassName
(t,e) ~> t

The function Type returns the dynamic type of any variable. In the case of an instance, this
function uses the getType function defined just above.

Type [Env X Store X IDes = ClassName +{null} +{undef}
undef if s(Val (e, s, v)) = undef
(e, s, v) ~> null if s(Val (e, s, v)) = null
projl (s (Val (e, s, v))) otherwise

There is a notion of inheritance between the types in Java. When you define a class, you can
assume that it extends another class. The aim of the function archeType is to return the inherited
(i.e. extended) type of a given type. If the given type has no inherited type, the function returns
null. The function is determined by the program to be analysed.

We assume that ClassName only contains the names of the classes declared in the program.

: archeType ClassName -> ClassName +{null} :
t ~> {t’tqtextendt’

null else

e —

64

In a program, there are several method calls. To treat them, we have to know at which statement
we have to jump (the first statement of the called method). A method is identified by its name
and by the name of the class in which it is defined. A same method can be redefined in a sub-
class. The getMeth function takes a method as argument, and returns the label of the first
statement of the called method.

The program is supposed correct and the method is supposed to exist.

getMeth IMethName X ClassName - [Label
(m,t) ~> p:first label of the method m in the class t

f
i
i
i
i

The getConstr function is similar to the getMeth function. It returns the label of the first
statement of the constructor of the given type.

getConstr ClassName - ILabel
t ~> p: first label in the constructor of the class t

In the case of a constructor call (new statement), a new instance of the given type has got to be
created. In this instance, all the fields have got the default value null. When the instance is
created, the statements in the constructor are applied on it. The function newlnst creates a new
instance of the given type and returns the associated value. The store is modified as it now
associates the created instance to the new value.

newlnst Store X ClassName - ILoc X Store
(s,t) ~> ,s"
where dom (s') = dom (s) U {I}
1 ¢ dom (s)

s'(e)=<t,i>
getTypei=t
V f e dom (i) : i (f) = null i

65

4.3.1.3. Operational Semantics

Variable declaration
In the case of a simple declaration, only the environment is modified. A new local variable has
got to be created. At the beginning, this local variable has got the default value null. The
environment is modified as it now associates null to the new variable. The new label (i.e. the
following statement) is the one following the declaration.

<p’P’(e9S)> —=> <q,P,(C[V/nuII],S) >
Where {p}vartv{q}

Affectation

There are two different cases for an assignment, depending on the descriptor of the modified
variable (field or var). The new value of the variable is the one corresponding to the assigned
value (that value is an instance because there are no basic types).

In the case of an assignment to a local variable, we only modify the environment. It associates
the value of the assigned instance to the target variable. The new label is the one following the
assignment.

< 28 P, (ea S) > —> < 9, P’ (e[v|/Val(e, S, VZ)]’ S) >

| Where {p}affectviv:{q}
: v, € VarName

In the case of an assignment in a field, we have to modify the "environment of the fields": the
function of the instance associated to this. The new function of the instance associates the value
of the assigned instance to the modified variable. The new store is modified to replace the old
instance of this by the new one. The new label is the one following the assignment.

<p,P,(e,s)> —> <q,P,(e,s’)>
Where {p }affectviv,{q}
vl € IFieldName
(t, €’) = s(e this)
e’ =¢e’[vy/Val(e, s, v1)]

a s’ = s[e(this)/(t,)]

66

Statement “if”

A if statement consists of a condition followed by two labels. The first one corresponds to the
statement to carry out if the condition is evaluated to frue, the second label corresponds to the
statement to execute if the condition is evaluated to false.

In this work, we consider two kinds of condition.

The first one is the condition "istanceOf v t", which returns the value frue when the variable is
of the type t or a specialisation of the type t, false elsewhere.

The second kind of condition is the use of boolean constants ¢ which are evaluated with an
evaluation function C. We consider this function as written. The function takes the boolean
constant, the environment and the store as argument.

An if corresponds to a simple jump to the first or to the second label, following the fact that the
condition is evaluated to frue or false. The only thing that will be modified in the state will be
the label of the current statement.

InstanceOf condition evaluated to true.

<p,P,(e,8)> —> <q,P,(e,9)>
Where {p }ifinstanceOf vt{q} {r}
Type (e, s, v) <t

InstanceOf condition evaluated to false.

<p,P,(e,5)> —> <r,P,(e,5)>
Where {p }ifinstanceOfvt{q} {r}
not (Type (e, s, v) <t)

Boolean constant evaluated to tfrue.

<p’P5(e’S)> =y <an5(esS)>
Where {p}ifc{q}{r}
C(c,e,s) where C is the evaluation function

Boolean constant evaluated to frue.

<p,P,(e,s)> —> <r,P,(e,s)>

| Where {p}ifc{al}ir}
: not C (c, €, s)

67

Method Call

The method/constructor calls and the return statements are treated using a stack. Each time we
encounter a method or a constructor call, we add some information on the stack: the label of the
statement following the call, the 'return variable' (with its descriptor: field/local variable) which
receive the returned value and the current environment. This information is used when we
encountered the refurn statement of the called method. It is useful to come back in the calling
method and continue after the call statement, to find the current environment, the next statement
to execute and to perform the assignment of the returned value into the return variable.

The new environment, in the called method, corresponds to an empty environment (or L) which
has been updated with the local variable declarations corresponding to the parameters of the
method and the assignments of the effective parameters to these formal parameters.

The new label corresponds to the label of the first statement of the called method.

If the return variable is a local variable:

<p,P,(e,s)> —> <r, <e, q, (var, v ret)>::P, (e’,s)>
Where {p }procv retvmv,, vy, ...,v,{q}
v_ret € VarName
r = getMeth (m, Type(e, s, v))
e’ = L[this/Val(e, s, v), u;/Val(e, s, vy), ... u/Val(e, s, v,)]

Where the u; are the formal parameters of the method m

If the return variable is a field:

<p,P,(e,8)> —> <r, <e,q, (field, v ret)>: :P, (¢’,s)>
Where {p }procv retvmvy, vy, ...,v, {q}
v_ret € IFieldName
r = getMeth (m, Type (e, s, V))
e’ = L[this/Val(e, s, v), u;/Val(e, s, vy), ... u/Val(e, s, v,)]

i Where the u; are the formal parameters of the method m

68

Constructor Call (“new”)
The case of a constructor call is similar to the case of a method call.

If the return variable is a local variable

<p,P,(e,s)> —> <r, <e", q, (var, v ret)>::P, (¢’,5’)>
Where {p}newv rettvy, vy, ..,v, {q}
v_ret € VarName
r = getConstr (t)
s’ = proj(newlnst(s, t))
e" = e [v_ret/proj;(newlnst(s, t))]
e’ = L[this/ proj,(newlnst(s, t)), u,/Val(e, s, vy), ... u/Val(e, s, v,)]

where the u; are the formal parameters of the constructor of the class t

If the return variable is a field

<p,P,(e,s)> —> <r, <e", q, (field, v ret)>::P, (¢’,5")>
Where {p}newv rettvy, vy, ..,v, {q}
v_ret € IFieldName
r = getConstr (t)
s’ = projy(newlnst(s, t))
e" = e [v_ret/proj,(newlnst(s, t))]
e’ = L[this/ proj;(newlnst(s, t)), u,/Val(e, s, vy), ... u/Val(e, s, v,)]

where the u; are the formal parameters of the constructor of the class t

69

“return” statement

The case of a return statement corresponds to a simple assignment of the returned value into a
variable. The "return" information is found on the top of the stack. The new environment is the
one found in the stack, modified by the assignment of the returned value in the 'return variable'.
The new label is the one found on the top of the stack. The top of the stack is removed from the
stack.

In the case of a return in a constructor, the returned variable is the variable this, which is the
instance created and initialised by the constructor.

If the return variable is a local variable

<p, <€’, q, (var, v_ret)>: :P, (e,8)> ——> <q, P, (¢’[v_ret/ Val(e, s, V)], s) >

Where {p } returnv

If the return variable is a field

<p, <€, q, (field, v_rety> : :P, (e,s)> —> <q,P,(e’,s")>
Where {p } returnv
(t, linst) = s(e(this))
linst’ = linst[v_ret/Val(e, s, v)]
s’ = s[e(this)/(t, linst’)]

“super” constructor call

This last case is the case of the constructor call of the inherited class. This case is similar to the
constructor call. The information added in the stack is the same in both cases, the environment
is also modified in the same way. The new label corresponds to the label of the first statement of
the called constructor.

The internal_v variable is a new internal local variable that is only used because we have to
collect the variable this returned by the called constructor. As, when we call the constructor, we
let the variable this as the current one, it will be directly modified, and we do not need the
internal variable.

<p,P,(e,s)> —> <r, <e,q, (var, internal v)>::P, (¢’,s)>
Where { p } superv,, vy, ..., vy {q}
internal v € VarName
t = archeType(Type(e, s, this))
r = getConstr (t)
e’ =e[u/Val(e, s, vy), ... u/Val(e, s, v,)]
Where the u; are the formal parameters of the constructor of the class t

70

4.3.2. Abstract Semantics

4.3.2.1. Definitions

We should first define an abstract domain. For the theoretical definition of the semantics, we
have decided to define a generic abstract domain AType, which will be chosen later, at the
implementation.

Here, we are defining an abstract state, in order to define a transposition from the concrete
semantics to the abstract semantics.

Concrete state: <p, P, (e, s) >
Abstract state: < p, P,, (€, Sa), ncl, nm>

AEtat = IPtsProg X Stack X (IEnv X Store) X ClassName X MethName

e We add the names of the current class and of the current method in the abstract state. This
information is often useful, for example to get the abstract instance corresponding to this
but is not accessible anymore. In an abstract state, we can only get the abstract type of this,
not its concrete type.

e p: We decide not to do any abstraction on the labels. Thus we represent the labels by labels
in the abstract syntax. Anyway, the number of labels is finite in a program.

e ¢, the abstract environment is a function which associates an abstract type (the dynamic
type) to variable names (locale variable or the pseudo-variable this). The number of local
variables and the number of possible abstract types are finite.

e, € AEnv: VarName + { this } > AType |

e s, the abstract store takes a concrete type (the name of a class) as argument and returns an
abstract instance (Alnst), which is an aggregate of all the concrete instances of the given

type.

Obviously, the number of concrete types is finite. It is the number of classes defined in the
program (without the main class).

The number of abstract instances is finite, as there is only one instance by concrete type.
An abstract instance and an abstract store are defined as follows:

Alnst: [FieldName - AType
sa. € AStore: ClassName - Alnst + { undef }

The first time that a concrete instance of a certain type is created, we create the
corresponding abstract instance. It corresponds to the abstract environment for the types. At
the beginning, we set the abstract types of the different fields to a default value
corresponding to L.

71

72

When we encounter an assignment of a value into a field, we do update the existing abstract
instance. The new abstract type of a field is the union of its previous abstract type and the
abstract type of the assigned value.

P,: We are going to gather all the information of the concrete stack associated to a method.
In fact, we aggregate all the abstract environments corresponding to the method.

We have to notice that what we consider as the abstract environment of a program is the
abstract environment after the declarations of all the local variables of the program.

All the information about the return points in the corresponding method (found in the
concrete stack) is put into a list.

We also keep the name of the class in which the method is defined. This information is
useful to update the 'current class' field of the abstract state after a refurn statement.

P, € APile : (IMethName X ClassName) 2>
(AEnv X P(ILabel X TypeAppel)) + {undef}

TypeAppel = {field | var} X Des

In this way, the size of the stack is limited to the number of different methods, and the size
of the list in the items of the stack is limited to the number of label of the method.

We can notice that, in the abstract case, the stack is defined as a function, which takes a
method name and a class name as argument (i.e. the identifier of a method). The method
name is not an identifier as a method can be redefined in an inherited class. The function
returns the abstract environment of the method and a list of information about return points
(the label of the return point and the information on the variable that will get the returned
value).

At the beginning, the function returns undef for all the method identifier.

The first time we encounter a method / constructor call in a given method, we create an
entrance in the function for the method, adding all the information (abstract environment,
...). When we encounter others calls in the method, we aggregate the new abstract
environment and the one that was already associated to the method. Then we add the
information on the return variable in the set.

4.3.2.2. Useful Functions

We can first assume a function of abstraction on the types, which defines the correspondence
between the sets ClassName and AType. The implementation of this function will depend on
the choice of the abstract domain. We will do that choice later.

Abs ClassName > AType

t ~> the abstract type corresponding to the concrete type t

{
i
i
i
i

The TypeAbs function takes a designator as argument. It returns the abstract type of this
designator. As the concrete environment associates values to variables and the abstract
environment associates abstract types to designator, this function is implemented in the same
way than the function Val in the concrete case.

TypeAbs AEnv X AStore X IDes X TypeCour - AType

ey (V) if v.e VarName + {this}
(g Sa V) ~> (sa TypeCour) v if v e IFieldName

The SousType function just verifies if two abstract types are compatible. We only know the
abstract dynamic type of the variables. This function is used in the case of a refurn statement.
We will see that we do not have enough information in the abstract stack to find exactly the
return point. We have to test most of the possible return points of the stack. To perform a first
selection, we decided to test the compatibility between the return variable and the value returned
by the method / constructor. The SousType function is used here to verify the compatibility
between the two types.

SousType AType X AType = Boolean
(tl’ tz) ~> frue & 3 t3 tq tH1<t3 A Hh<t;

The NewAbslInst function is similar to the newlnst function in the concrete case. It is used in the
case of a mew statement. It returns a new abstract instance (4Insf) of the given type. The
returned Alnst is initialised as follows: it associates the dynamic type bottom to all the field of
the instance. bottom is the AType which corresponds to the concrete type of null.

NewAbsInst ClassName - Alnst
t ~> the new abstract instance of type t

The UnionAbs function implements the abstract union of two abstract types. This union
corresponds to a superior limit of the two types in the abstract domain. Once again, the
implementation of this function depends on the choice of the abstract domain.

UnionAbs AType X AType > AType
(t,t) ~> t

73

We also use a function that aggregates two environments.

The two given environments must have the same domain. What does the function is creating a
new environment on the same domain that the two given ones. For each variable in the domain,
the new environment will return the abstract union of the two abstract types associated to the
variable, by the two environments in entrance.

This function is used when we update the stack in a method/constructor call. We have seen that
all the return information in an abstract stack is gathered for each method. The first time we
encounter a method/constructor call in a method, we create an entrance in the abstract stack for
this method (do not forget that the abstract stack is a function), using the current abstract
environment.

When we encounter other method/constructor calls, we have to add the information on the
return point in the list associated to the current method. The abstract environment in the stack is
the union of the current abstract environment and the environment that already contained in the
stack.

UnionEnvAbs AEnvX AEnv > AEnv

: (e €’) ~> & | dom(e,””) = dom(e,”) = dom(e,) :
i AV x € dom(e,”) : e,”’(x) = UnionAbs(e,’(x), e,(X)) :

The archeType function of the concrete case is still used in the abstract case, to get the inherited
class in the case of a super constructor call.

74

4.3.2.3. The Concretisation Function

To create the link between the abstract and the concrete objects, we need to define either an
abstraction or a concretisation function. Here, we chose to use a concretisation function. The
concretisation function associates an abstract object to a set of concrete corresponding objects
(state, environment, store, type...).

CC (< p, Pas (ea9 Sa)9 nCL nm >) o
{<p,P, (e, s),ncl,nm>|(P,s) € Cc(P,) A(e,s) € Cc(es) As € Cc(Sa)
A ncl = Type (e, s, this) }

The information on the current method and the current class has been added afterwards, after
implementation. It is why it does not appear in the concrete states. It should be added there to be
able to add some constraints in the concretisation function, which would define the 'nm' item in
the abstract state.

We did not add it because we did not have the time to remake all the transition rules of the
concrete semantics. The fact to add the name of the current method in the state obliges us to
modify the concrete stack. We must add the name of the calling method in the stack to find the
current method at the end of a method or a procedure call.

e A concrete store belongs to the concretisation of an abstract store if the instance associated
to each variable in the concrete store belongs to the concretisation of the abstract instance
associated to the concrete type of the variable, in the abstract store.

The concretisation function for the instance is defined here with an intermediate function:
the AbsType function. This function transforms a given concrete instance into a semi-
concrete instance (Clnst). A semi-concrete instance associates its concrete type to a field. It
is a compromise solution between the concrete instance (IInstance: IFieldName - ILoc)
and the abstract instance (Alnst: I[FieldName > AType).

The AbsType function is defined as follows:

AbsType: lInstance X Store = Clnst
Where Clnst = IFieldName = ClassName + {null} + {undef}

AbsType (i, s) = i. while tX=1X if x € {null, undef}
ic X = proji(s (i x)) else (hyp : i = instance of s)

o Here we define the concretisation function for the instance. It transforms an abstract
instance into a semi-concrete instance.

Cc: Alnst 2 P (Clnst)
Cc(ia) = { i; € ClInst | dom (i) = dom (i) A V x € dom (i) : ic X € Cc (1, X) }
e The concretisation function for the stores is:

Cc: Astore - P (Store)

Cc(sa)={s e Store| V1 e dom (s) : AbsType (i, s) € Cc(sat) wheresl=(t, i)}

75

76

The concrete types of the fields of the concrete instance have to belong to the
concretisation of the abstract types (respectively) of the field of the abstract instance.

The concretisation function for the environment is defined as follows:
Cc: AEnv = IEnv X Store
Cc(el) = { (e, s) | dome(e) =dom(e,) A Vv edom(e): Type(e,s, v) € Cc (elV)) }

The concrete (found using the concrete environment and store) type of each variable has got
to belong to its abstract type (returned by the abstract environment).

The concretisation function for the abstract stack is:
Cc: AStack = Stack X Store

Cc(Py)={(P,s)| V m e IMethName, t € ClassName : V <e,p,v>e Ptge~ (m, t):
Je,t, L, tap|<e, L, t>e P, A<p,(tap,v)> € LA (e, s) € Cc(ea) }
where tap = type de v (var or field)

In this definition, “e ~ (m, t)” means that e is an environment associated to the method m in
the class t.

For all triplet < environment e, label I, "return variable" v > of the concrete stack, the
abstract stack associates to the pair method_name, class_name:
e The abstract environment found with the concrete environment e
e Alist of labels / abstract type of the "return variable", which contains at least the pair
(1, abstract type of v).

4.3.2.4. The Abstract Semantics

Variable declaration

In the case of a variable declaration, a new variable is created (added in the environment
domain). Its initial value is the default value corresponding to the concrete type boffom. In most
of the abstract type domains, which are defined as sets of concrete types, it corresponds to an
empty set. The environment is modified as follows: at the declared variable, the environment
associates the abstract type corresponding to botfom. For the other variables, the new
environment associates the same value than the last environment.

<p, Py (€5 8,), ncl,nm> —— <gq, P, (e, [v/ bottom], s,), ncl, nm >
Where {p}vartv{q}

Assignment

The new abstract type of the variable is simply the abstract type of the assigned value.

<p, Py, (€3 S5), ncl, n m > ——
< q, P, (e,[v1/ TypeAbs (&, Ss V2)], Sa), ncl, nm >
Where {p }affectviv2{q}

v, € VarName

In the case of an assignment in a field, the instance corresponding to the current class is
modified in the same way that the environment in the previous case.

<p, Py (€y So), ncl,nm > —— < q, P, (e, S,°), ncl, nm >
Where {p } affectviv,{q}
vl € IFieldName
i, = sa(ncl)
i,” = i5[vy/ TypeAbs (e, Sa, V2)]

Sa’ = Sa[nel/iy’]

1

Statement “if”

In the case of the if statements, the treatment is similar to the concrete case. It is a jump to a
certain label of the program, depending on the value of the condition.

Case of an instanceOf condition evaluated to frue

: <p, Py (€5 82), ncl, nm > —— <q, P,, (&, S,), ncl, nm >
i Where {p}ifinstanceOf vt{q} {r}
V t' € Cc (TypeAbs(e, s, v, ncl)): t' <t

Case of an instanceOf condition evaluated to false

: <p, P, (es Sy), nc, nm > —— <gq, P, (e, s,), ncl, nm >
: Where {p}ifinstanceOfvt{q} {r}
: V t' € Cc (TypeAbs(e, s, v, ncl)): not SousType (t', t)

Case of an instanceOf condition evaluated to don't know

<p, Py, (€, 82), ncl,nm > —— < q, P, (€, s,), ncl, nm >
where {p }ifinstanceOfvt{q} {r}

in the other cases

X € {q,1}

Case of a boolean constant evaluated to frue

<p, Py, (€5 8,), ncl, nm > —— <gq, P, (e, s,), ncl, nm>
Where {p}ifc{q}{r}
C (c, e, S,)
where C is an evaluation function of the boolean constants

Case of a boolean constant evaluated to false

<p, Py (€4 o), ncl,nm > —— <gq, P,, (e, s,), ncl, nm >

Where {p}ifc{q}{r}
not C (c, €, S,)

r
i
i
i
i
i
i
i
i

where C is an evaluation function of the boolean constants

b st set s el

Case of a boolean constant evaluated to don't know

<p, Py (€4 Sp), ncl,nm > —— <gq, P, (e,, s,), ncl, nm >
Where {p}ifc{q}{r}
C (c, e, s,) = don't know

where C is an evaluation function of the boolean constants

78

Method call

When we encounter a method call, we have to add the information into the abstract stack. The

way information is added in this stack has already been explained after its definition.

In the abstract case, there are several following possible states, as a method can be redefined in
a sub-class, and we do not have a definite information about the concrete type of the target

variable.

There are two cases: the variable that will get the returned value is a 'local variable' or a 'field'.
The only difference is that the information added in the stack is (var, var_id) or (field, field_id).

Case of a local variable

<p, Py, (€s So), ncl,nm > —— <r, P, (e, s,), ncl',m>
Where {p}procv retvmvy, vy, ...,v,{q}
v_ret € VarName
ncl' € Ce (TypeAbs (e,, Sa, V))
r = getMeth (m, ncl")
e,” = L[this/Abs(ncl)),
u,/ TypeAbs (e,, Sa V1), -.. Uy/ TypeAbs (e,, Sa, Vi)l
where the u; are the formal parameters of the method m

P, [(nm, ncl)/<e,, {<q,(var,v_rety>} >] if P, (nm, ncl) = undef
P,’= P, [(nm, ncl)/<UnionEnvAbs (e,, e, init),
{<putapi>, ... <pntap,>, <q(var, v_ret)>}>]

if P, (nm, ncl) = <e, init, { <py, tap; >, ... <pp, tap;> } >

Case of a field

<p, P, (€ Sy), ncl,nm > —— <r, P, (e, s,), ncl’, m>
Where {p}procv retvmvy, vy, ...,vy{q}
v_ret € IFieldName
ncl' € Cc (TypeAbs(e,, S, V)
r = getMeth (m, t)
e, = L[this/TypeAbs(e,, s,, V)),
uy/ TypeAbs (e,, S, V1), --. Uy/ TypeAbs (e, Sa Vo)l

where the u; are the formal parameters of the method m

P, [(nm, ncl)/< UnionEnvAbs (e,, €, init),
Pa,: {<pbtap1>,--'<pmtapn>; <qa(field’ V_I'et>)}>]

ifPa (nm, DCI) =< eLinits { < Pi, ta'pl Zs o0 R Pns tapn> }>

P, [(nm, ncl)/< e,,{<q,(field,v_rety}>}>] if P, (nm, ncl) = undef

79

Constructor call (“new”)
The case of a constructor call is similar to the case of a method call. The environment and the
stack are modified in the same way. The new label corresponds to the first statement of the
called constructor.

Case of a local variable

<p, Py (€5 Sa), ncl,nm > —— <r, P, (e, s,), t, t>
Where {p}mewv rettvy, vy, ...,v,{q}
v_ret € VarName
r = getConstr (t)

e,” = L[this/Abs(t), u;/ TypeAbs (&, Sa V1), ... Uy TypeAbs (e,, Sa Vo)l
where the u; are the formal parameters of the constructor of the class t

8 = { S, [t/NewAbslInst(s,, t)] if s,(t) = undef

Sa else

P, [(ncl, nm)/<e,, {<q, (var, v_ret) >} >]if P, (ncl, nm) = undef
P,’ = | P,[(ncl, nm)/< UnionEnvAbs (e,, e, init),
{<putap>,...<pntapy>,<q, (var, v_ret)>}>]
if P, (ncl, nm) = <e, init, { <p;, tap; >, ... <p,, tap,> } >

Case of a field

<p, Py (€3, S0), ncl, m> —— <r, P, (e,,8,),t,t>
Where {p}mewv rettvy, vy, ..., vy {q}
v_ret € [FieldName
r = getConstr (t)

e, = L[this/Abs(t), uy/ TypeAbs (€, Sa V1), ... Uy TypeAbs (e,, Sa, Vy)]

where are u; are the formal parameters of the constructor of the class t

8’ = { s, [t/NewAbslInst(s,, t)] if s,(t) = undef

8 else

P, [(ncl, nm)/< e,, {<q, (field, v _ret)>} >] if P, (ncl, nm) = undef
P,” = | P,[(ncl, nm)/<UnionEnvAbs (e, €, init),
{<putap>.,...<py.tap,>,<q,(field,v_ret)>} >]
if P, (ncl, nm) = <e,, {<p.tap;>,...<pp.tap,>}>

80

“return’ statement

The case of the return statement corresponds to an assignment of the returned value into the
"return variable". The environment in this case is modified in the same way than for an
assignment.

The problem is to find the "return information" in the stack. We don not have any information
about the method we come from. So we have to test all the possible return labels of the stack.

A way to only test a part of them is to test the compatibility (i.e. to see if they have a common
archetype in the hierarchy of concrete types) of the abstract type of the returned value and the
abstract type of the variable that should receive it. If they are not, we don't consider that "return
label".

In the abstract case, we do not have to remove an item of the list (in the concrete case, the first
item of the stack is removed). Several successive calls from the same statement of a method (for
example in a recursive method) is represented by only one label/"return information" in the
stack.

The difference between the cases of the local variable and the field is the same than in the
assignment.

Case of a value returned into a local variable

<p, P, (€, Sy, ncl,nm> —— <q, P, (e, s,), ncl', nm' >

Where { p} returnv

<e,’,q> € {<env,pts> |3 nm' € IMethName, ncl' € ClassName
tq P, (nm', ncl') = <env, list>
A F v _ret € IDes | <pts, (var, v_ret) > € list

A SousType (TypeAbs(e,,s,, V), TypeAbs(e,’,s,,v_ret) }

e,”” = e,’[v_ret/ UnionAbs(TypeAbs (e, s, V_ret), TypeAbs (e,, S, V)]

P, [(nm', cI') / undef] if P, (nm', cl') = <e,, {<q, tap>}>
Py = ¢ Pu[(nm', cI') / < ey, {<py, tap; >, ...< pu, tap, >} >]

if Py(nm', cl') = < e,,{<py, tap;>,...<pn, tap, >,<q,(var,v_ret)>}>

81

Case of a value returned into a field

<p, Py (€, s,),ncl,nm> —— <q, P, (e,”’, s,’), ncl', nm' >

Where {p } returnv

<e,’,q> € {<env,pts> |3 nm' € IMethName, cl' € ClassName
tq P, (nm', cl') = <env, list>
A 3 v _ret e IDes | <pts,(field,v_ret)> € list
A SousType (TypeAbs(e,,s,,V), TypeAbs(e,’,s,,v_ret) }

(typ, ia) = sq(ncl’)
ia” = ig[v_ret/ UnionAbs(TypeAbs (i, S,, V_ret), TypeAbs (e,, sa, V)]
Sa. = Sa[ncl'/(typ, 1,7)]

eﬁ’ 3 eﬂ’

P, [(nm', cl') / undef) if P, (nm', cl')= <e,, {<q,tap>}>
Pa’ = Pa [(nm" CI') 1= €a, {< P tapl >’ RS Pns ta'pn >} >]
if Py(nm', cl') = <e,, {<p.tap;>,...<pntap, >, <q,(field,v_ret)>}>

“super” constructor call

The call to the super constructor can be considered as a simple method call and can be treated in
a similar way. It does not work as a constructor call as the instance has already been created (it
is the current instance) and does not have to be created anymore.

<p, Py, (€ S5), ncl, nm > —— <r, P, (&), s,), ncl', ncl' >
Where {p}supervy,v,,..,va{q}
internal v € VarName

ncl' = archeType(ncl)
r = getConstr (ncl')

e, = e, [uy/ TypeAbs (e, Sa V1), --. Uy/ TypeAbs (e, Sy, Vi)l
where the u; are the formal parameters of the constructor of the class ncl'

(P, [(ncl, nm)/< e,, {<q,(var,internal v)>},TypeCour() >]
P if P, (ncl, nm) = undef
4 P, [(ncl, nm)/<UnionEnvAbs (e,, e, init),

{<p.tap;>, ... <pwtap,>, <q,(varinternal v)>}>]

if P, (ncl, nm) = < e,_init, {<py,tap,>, ...<p,tap,>}>

82

4.3.3. Correctness Proof of the Rules

Here, we only develop the proof of one rule to give an example. The other rules are proved in a
similar way.

4.3.3.1. Reasoning

The proof of the abstract rules use this reasoning:

At a concrete level, the rule characterises the passage from the state “c” to the state “c’
c—>¢c’

At an abstract level, the passage is from the state “a”
To the state “a’ ”: a——>a’

Or to the states {a,..., a,} : a—>{a’,...,a,} (case of a return,
method call...)

If we take as hypotheses that: ¢ € Cc(a)
lLe.c=<p,P,(e,s)> and a=<p’, Py, (€ S4) >

p=p
A (e,s) e Cc(ea)
A seCc(sa)

A (P,s) e Cc(P,)

We have to show that: ¢’ e Cqa’)
Orthat:3 a7 € {a,"...,a,} | ¢’ € C(a))

e During all the proof, we have:
c=<p,P, (e, 5)>
A a=<p, P, (€ S2) >

e In our proofs, when it is written that something is proven 'by hypothesis', it means that it is a
consequence of the fact that ¢ € Cc(a).

83

4.3.3.2. Proof

The case we are developing here is the case of a variable declaration. We chose a basic case as
the aim here is not to convince you of the correctness of the rules (this correctness has already
been developed in /[ZAP00b]), but to give you an example of the reasoning we used. This
example is quite easy to understand, without additional explanation.

{pivartviq}

¢’=<q,P,(e’,s)> where e’ = e [V/undef]
a’=<4q, P, (e, s5) > where e, = e,[v/bottom]

¢ e Ccla) >?¢ eCu@)
* q=q ok
o (e,5)e? Cc(e)
@ Vv € dom(e) : Type(e’, s, vi) € Cc(ea'(vi))

@ Vvi#v:Type(e, s, vi) € Ccles’ (Vi)
A Type(e’, s, v) e Cc(ed'(v))

& Vv #=v:Type(e, s, vi) € Co(euvi)) ok by hypothesis (c € Cc(a))
= (e,) € Cc(ea))
A undef € Cc (bottom) ok by definition of the
concretisation function on
the types
e se?Cc(sa) ok by hypothesis
e (P,s) e 2Cc(Py) ok by hypothesis

The others proofs can be found in the annexes of this work. They are enough detailed to be
understood.

84

4.4. Implementation

4.4.1. The Simplified Language

We decide to make the implementation of the static analyser into the CaML language. In order
to make some test-programs, it is very important for us to create a translator between the VSS
and the CaML representation of the abstract structures hidden behind the Java code. Therefore it
is also important to find a language easier to translate than the real Java language. We need to
invent a language definition that would allow us to translate the VSS code directly line by line
into CaML functions. We call this intermediate language: the Simplified Language, witch we
will from now on call SL. In the SL definition we write, we use a little artefact for an easier
recognition of the class declarations, the statements and the comments. Therefore we decide to
begin every line with a number. This number is made of two figures. That way we can easily
recognise the different sort of lines, this is done for a rapid and easy parsing and translating of
the SL into the CaML functional representation. Here we also can see that it is not always
necessary to use some pre-made tools like JavaCC, lex or yacc in order to create a parser. In
fact, thanks to the little artefact we use, it is possible to recognise every line by reading the
tokens one by one. For the reading of the tokens we created a little function that reads a string
until it crosses a white space, so we do not need to use a pre-made lexical analyser either. We
easily cut the input file into tokens with this function. The system we use, is the following:
Every variable declaration begins with the number “01”, every field declaration with the
number “02”...

Here is the syntax of the SL, every example we give could be one of the lines of the SL-program
we give to the “mini_parser” as argument.

01: a field declaration

Example: 01 String fieldl

e 02: a variable declaration
Example: 02 1 String variablel 2

In this example and for the rest of this document we mark the labels in red, this is only done
for a didactic reason. Here we have got a “String” typed “variablel”.

e (3: an affectation statement
Example: 03 2 c fieldl v variablel 3

We affect « variablel » into « fieldl ».

85

86

04: a constructor-call statement

Example: 04 3 v variablel String c fieldl v variable2 END 4

The assigned variable is “variablel”, the constructor name is “String” and the string “c
fieldl v variable2 END” represents a list of effective parameters, in this case a field and a
variable. We decide to represent every list as follows: item 1 item2 item3 END. The keyword

END is the representation of the end of the list and has got the same function as the ::f] of
the CaML language.

05: a procedure-call statement

Example: 05 4 v variablel v variable2 method] v variable3 v variable4 END 5
VSS: variablel = variable2.methodel (variable3, variable4);

06: an if statement

Example: 06 5 condition 6 15

The label that refers to the if part of the statement is the label 6 and the label that refers to
the else part of the statement is the label 15.

07: a super-call statement

Example: 07 6 v variablel v variable2 v variable3 END 7
VSS: super (variablel, variable2, variable3),

08: a return statement

Example: 08 7 v variablel

VSS: return (variablel);

09: a constructor declaration

Example: String Boolean v variablel Boolean v variable2 END
VSS: String (Boolean variablel, Boolean variable2)

10: a method declaration

Example: String Methodl Boolean v variablel END

VSS: String Methodl (Boolean variablel)

e [1: a main method declaration
Example: 11
There is, of course, a list of statements in the main method, but this list is created

automatically with the lines that are written above this one. Before a line containing the
number "11", there must at least be a number of declarations, statements and so on.

e [2: a class definition

Example: Matrix Array

Here we create the declaration of the class “Matrix” witch extends the class “Array”.
e 13: “Main Class” definition

Example: 13

This class is created automatically.
e [4: a program declaration

Example: 14

Like for the Main Class, the program declaration is created automatically.
e //:acomment line

Example: // this is how a comment looks like

”****************************ﬁ

/] *** This could be a comment ***//
”****************************”

Once we have the SL, it is easier for us to make some test-programs and thus it is easier to test
the correctness of the syntactical analyser. Instead of writing test-programs in CaML, we have
to write them in SL and use a direct translator. The next step of our work is then writing this
direct translator: the SL-CaML-Translator. Of course the SL is not that intuitive so it is not
possible to write a program directly into SL. We first have to write them into VSS and then we
have to make a hand-translation of it into SL. Once this translation is done SL-CaML-Translator
translates the program in CaML.

87

4.4.2. The SL-CaML-Translator

The SL-CaML-Translator takes a text file as argument. This text file is the representation of the
SL-program. The translator returns a text file of the CaML representation of the abstract
structures of the program. The abstract syntax types of the program are defined below. They are
used like defined in the sub-section about the Simplified Language. The numbers 01 to 14 are
used for DeclChamp, Instr, DeclConstr, DeclMeth, DefClasse, MethMain, MainClasse and
Prog.

01 » DeclChamp = Field declarations.

02to 08 = Instr = Statements or variable declarations.
09 » Dconstr = Constructor declarations.

10 » DeclMeth = Method declarations.

11 » MethMain = Main methods.

12 » DefClasse = Class definitions.

13 » MainClasse =~ = Main Class definitions.

14 » Prog = Program declarations.

type NomClasse = noType | NCl of string;;type NomMeth = NM of string;;
type PtProg = nolabel | Pt of int;;

type Des = this | NV of string | NCh of string | null;;

type Expr DES of Des;:;

C of bool | InstOf of (Des * NomClasse);:;

type Cond

type Instr = DVar of (PtProg * NomClasse * Des * PtProg)
| affect of (PtProg * Des * Expr * PtProgq)
| new of (PtProg * Des * NomClasse * Expr list * PtProg)
| proc of (PtProg * Des * Des * NomMeth * Expr list * PtProg)
| ifInstr of (PtProg * Cond * PtProg * PtProgq)
| rien
| super of (PtProg * Expr list * PtProg)
| return of (PtProg * Expr);:;

In the statements, the value 'rien' is used in a constructor, to replace the super statement, if the
constructor does not contain one.

type DeclConstr = DConstr of (NomClasse * (NomClasse * Des) list
* Instr list)i;

type DeclMeth = DMeth of (NomClasse * NomMeth * (NomClasse * Des) list
¥ Instr list):y

Il

type DeclChamp DChp of (NomClasse * Des);;

Il

DClass of (NomClasse * NomClasse * DeclChamp list *
DeclConstr * DeclMeth list);;

type DefClasse

type MethMain = main of ((NomClasse * Des) list * Instr list);:;
type MainClasse = mainClass of MethMain;;

type Prog = Prog of DefClasse list * MainClasse;;

88

4.4.3. Multivariant Algorithm

The implementation of the analyser corresponds to the implementation of an algorithm. This
algorithm takes an abstract state of the program and creates the set of the accessible abstract
states beginning at the given state. Of course, depending on the algorithm and the definition of
the abstract state, you will get a more or less precise information. You choose an algorithm
following the degree of precision you want to get for your analysis.

Some algorithms create all possible states, it is more precise than programs that aggregate the
states they find (approximations), but the number of states of a program can be very huge. The
analysis can become hard. Other algorithms just gather some states together, doing
approximations. The information you get is less precise, but the number of created states is less
important, you can gain in memory place and in analysis time.

The definition of the abstract objects is important too. If there is a too large approximation in
the definition, it is possible that, for some translation rules, to many states are created. It is the
case in our work. In the case of return statement, we do not keep enough information in the
abstract stack to find the calling method, so we have to test all the possible return points of the
stack. A lot of useless states are created. We could add some information in the stack to limit
the numbers of bad states.

An important point in the definition of the abstract objects is to compare the gains and the losses
adding some information in the states. It can cost a lot in memory place and in treatment time,
but you can sometimes gain a lot too.

For the choice of the algorithm, we had to choose between the two algorithms we had studied in
the course of 'Interpretation Abstraite' of Mr Le Charlier (/INFO3105]): the univariant and the
multivariant algorithm. It is possible to find or create other algorithms.

As this work was to test on small programs, we decided to implement the multivariant
algorithm. This algorithm returns more precise information, but the number of states created is
really more important. If this algorithm is used on large programs, it could be that the number of
created states is two large to be handled.

Here is a more detailed explanation of this algorithm:

S: the states to develop
R: the states already developed

Initialisation:
S = {<po, Po, (€0, 50) >}; R = {};

While S # {} do
Choose <p, P, (e,s)> € S;
S=8\{<p,P, (e, s)>};
R=RU{<pP, (e s5)>};
S=8U({{<p,P.(¢,5)>:<p.P,(e,5)> —> <p,P,(e,s)>}\R)

The code we have created is a direct translation of this algorithm into the code CaML.

89

4.4.4. Abstract Domain

Our abstract domain AType can be seen as the set ClassName itself, as there is a one-to-one
transformation between the abstract domain and the type domain. At an abstract type
corresponds the set containing this concrete type and all the concrete types that inherit from this

type.

At a certain point of the program, the abstract type of a program represents its dynamic type.

If a variable has got a certain concrete declaration type, the types of the values that can be
assigned to that variable inherit from the declaration type.

Here are some mathematical definitions:

e Type = ClassName + {null}
e AType = ClassName + {bottom}

Here is a recursive definition of the concretisation function for the types:

Cc : AType 2> P(Type)
t ~> {ttqt'<t} if t # bottom
null if t = bottom

Here is the definition of the union of two abstract types:

YV to, ta € A : AbstractUnion (1, t)) =t" |t."€e A A t,<t" A t/<t" A
Vt" e A | LSt AR g : gt)

We can here defined the union of two abstract types (4bstractUnion):
In the abstract case, the union of two abstract types is the more specialised type that is inherited
by the two given abstract types.

Another function that has got to be defined here is the SousType function. The concrete type
structure can be seen as a forest of different trees of types. We consider that two types are
compatibles if they belong to the same tree. In the abstract domain, it is translated by the fact
that there exists an abstract type that is the abstract union of the two given abstract types:
SousType (t,, ta) & 3It," € A | t," = AbstractUnion (t,, t;)

90

4.4.5. The Analyser

Architecture of the implementation in CaML

Definition of the types related to the abstract syntax

Definition of the types related to the abstract states

General functions on lists / functions (functions appartient, taille... | update ...)
Hierarchical structure of the types:

Tree structure:

e Leaf: concrete type

e Node: concrete type + tree list (the types which extend the current concrete
type)

J\
4\
VAN

Im 4.4: hierarchical structure of the types

Useful function: addition of a type, a function that get all the A7ypes from the
structure (that get the A domain).

e Structure for the information about the method and the constructor calls: this
information is useful to update the new label and the new environment during the
treatment of a method call.

The structure is a n_uplet list with:

For a method:

e The method name

e The label of the first statement of the method
e The list of the names of the formal parameters
L]

The name of the class in which the method is defined. This information is useful
to update the "current type" field in the state after the method call.

For a constructor:

e (Class name (= name of the constructor)

e Label of the first statement of the constructor
e List of the names of the formal parameters

91

&

Function to add a method or a constructor in the table, to research some information
using a method name or a constructor name.

Structure of the instances: we keep the list of the field names and types of each
class.

Pair list:
o (field type, field name)

Function to add a field in the list.

Function to create all the structures: it takes a program as argument, and it creates
the type structure, the instance structure, the table for the method and the
constructor calls, and a labelisation function (function that associates the
corresponding statement to a label).

creer_struct : Prog -> Branchement list * TypeArbre list * ClasseStruct * (PtProg -> Instr)

e Arguments:
e A program written following the types of the abstract syntax defined
before.
e Results:

The table with the information for the method and the constructor calls
The type structure of the program

The structure of the instances (fields)

The labelisation function

The functions defined in the 3.3.2.2 point (useful functions for the abstract
semantics). These functions are used by the functions of the algorithm.

Implementation of the algorithm:
e Implementation of the different rules of transition:

Rule: xxxxx -> AEtat -> AEtat list
Where AEtat==PtProg * APile * AEnv * AStore

Arguments:

e Different structures (xxxxx): structures needed, chosen between all the
structures created.

e The initial state

Results:
e The list of the final states

The function that implement the rules are:
regle dvar

regle affect

regle new

regle if

regle super

regle return

e etats suiv: function that, using all the transition rules, implement a general

transition:
etats_suiv :
AEtat -> Branchement list * TypeArbre list * ClasseStruct * (PtProg -> Instr)
-> AEtat list

Arguments:

e The initial state

e The table with the information for the method and the constructor call
e The types structure

e The instances structure

e The labelisation function

Results:

e The list of the different states directly accessible from the initial state.

e algo mult: implements the multivariant algorithm

algo mult : Branchement list * TypeArbre list * ClasseStruct * (PtProg -> Instr)
-> AEtatlist -> AFtatlist -> AEtat list

Arguments:

The table with the information for the method and the constructor call
The types structure

The instances structure

The labelisation function

The list of the abstract states to treat (the set S in the algorithm)

The list of the abstract states already treated (the set R in the algorithm)

Results:
e The list of the abstract states the program passes through, during an
execution, if its initial state belongs to the set S.

e multivariant: that function takes a program as argument. It calls the function
that creates all the structure. Then it calls the algo mult function, after having
initialised all the arguments (creation of the first state, ...)

multivariant : prog -> AEtat list

Arguments:

e A program written following the types of the abstract syntax defined
before.

Results:

e The list of the abstract states the program passes through, during an
execution.

93
o

IMPLEMENTATION OF THE ALGORITHM

Multivariant

[struct algo_mult

etats_suiv

Transition rules...

! { !

STRUCTURES DE DONNEES TYPES ET FONCTIONS SUR
LES ETATS ABSTRAITS
Function of
Type Structure By
P labellisation Types of the abstract

syntax and states

Table used for the
calls

Instance Structure

Functions defined in the
points 3.3.1.2 and 3.2.2.2

§ } !

FONCTIONS GENERIQUES

Basic functions on lists Basic functions on functions

k.

Im 4.5: Architecture of the implementation in CaML

4.4.6. Left to do

There are still a few bugs we have to correct in the CaML program we have written. We have to
test it too. At the moment, it only works on very simple examples. The program has problem to
treat return statements and to come back after a method call. It also returns invalid abstract
stores.

Some improvements are scheduled too:

e Our program doesn't allow the redefinition of a method in a sub-class, as a method is only
defined by its name in the stack. We have to modify the stack to use, as identify of the
methods, their name and the name of the class in which they are defined.

e [t could be interesting to create functions that filters the results returned by the multivariant
function, to help the user in his analysis

95

4.4.7. Test Programs

4.4.7.1. Translation of a Java program into its VSS form

The translation of a Java program into its VSS form includes a lot of transformations. This is due
to the fact that our VSS language has a lot of constraints. Some information of the Java program
can be translated to stay in the VSS program, but sometimes, it is impossible to translate and we
have to delete some information.

Some instances of transformation are the addition of a constructor in all classes and the addition
of a return statement in all methods and constructors, the creation of a empty class veid as this
type is not defined in VSS.

Here is a simple example of translation:

Java Example VSS Translation of Java Example
public class Test] class Testl
{ i
public void Test1() Testl()
{ {
1 return this; 2
b H
} .}
public class ClasseMain i class ClasseMain
{ N
public static void main (String args []) void main ()
{ o
: _init
var Testl t1 = new Testl (); g------- 4-p 1 2varTestl t1;3
: 75 3tl =new Testl (); 4
tl = null; "4 t1 = null; noLabel
: end
} P
} P

96

As you can see we have removed all the access modifiers of the Java example in order to
translate it into the VSS. You can also see that we have added the labels to the statements and
the declarations. We have, indeed, also split one declaration combined with an assignment into
two statements. And we have grouped all the variable declarations.

This way we have translated the small example into the following text:

class Testl
{
Testl()
{
1 return this;
}
}
class ClasseMain
{
void main ()
{
init
2 var Testl t1; 3
3tl = new Testl (); 4
4 t1 = null, noLabel
end
}
h

We can now translate this text into the CaML form representing the abstract syntax. In order to
translate this text we first have to translate the VSS program into a SL equivalent. Once this is
done we have got to use the SL-CaML-Translator which does the rest.

|
,

4.4.7.2. Translation of a VSS Program into its CaML Form

First, we have to write the program into its SL form. This form is less intuitive than the Java
form, but it is still possible to write it by hand.

08 1 this this // Return statement
09 Testl END // Constructor declaration
12 Testl notype // Class declaration
02 2 Testl t1 3 // Variable declaration
04 3 vtl Testl END 4 // Constructor call
03 4 v t1 null null nolabel /I Assignment
be careful, null is always written this way (null null) in SL
11 // Main Method declaration
13 // Main Class declaration
14 // Program declaration

Afterwards, we use the translator to translate the SL program into its CaML form, which is not
intuitive at all. The translator returns the following results:

let Instrl = return (Pt(l) , (DES (this)));;
let Constrl = DConstr (NCl ("Testl"), [], [Instrl]);:;

let DClassel = DClass (NCl ("Testl"), NC1l ("notype"), []1, Constrl, []);::

let Instr2 = DVar (Pt(2) , NCl ("Testl") , NV ("t1") , Pt(3))::
let Instr3 = new (Pt(3) , NV ("tl1l"), (NC1l ("Testl"™)), []1 , Pt(4))::
let Instrd4d = affect (Pt(4) , NV ("tl") , (DES (null)) , Pt(nolabel));:

let MethMain = main ([], [Instr2; Instr3; Instrd]);;
let MainClasse = mainClass (MethMain);;

let Programme = Prog ([DClassel], MainClasse);;

Once the program is translated into the SL, we can use the analyser to make the analysis on the
program. We have done this for this little test program.

98

4.4.7.3. Analyse of a Program

Here are the results of the analysis of a very simple program by our analyser. The analyser
returns all the states the program goes through.

The VSS program is:

class Testl
{
Testl()
{
1 return this, noLabel
}
}
class ClasseMain
{
void main ()
{
init
2 var Testl t1; 3
3 t]l = new Testl (); 4
4 t1 = null, noLabel
end
}
¥
I[ts CaML form is:
PRO: Prog =
Prog
([DClass

(NCI1 "Testl", noType, [],
DConstr (NCI "Test1", [], [rien; return (Pt 1, DES this)]), [])],
mainClass |
(ClasseMain
(1,
[DVar (Pt 2, NCI1 "Test1", NV "t1", Pt 3);
new (Pt 3, NV "t1", NCI "Test1", [], Pt 4);
affect (Pt 4, NV "t1", DES null, noLabel)])))

What the multivariant function returns is:

[Pt 4, (INM "main"], <fun>), ([NV "t1"], <fun>), <fun>, NCI " ClasseMain ",
NM "main";
Pt 1, ((NM "main"], <fun>), ([this], <fun>), <fun>, NCI "Test1", NM "Test1";
Pt 3, ([], <fun>), ([NV "t1"], <fun>), <fun>, NCI " ClasseMain ", NM "main";
Pt 2, ([], <fun>), ([], <fun>), <fun>, NCI " ClasseMain ", NM "main"

99

The store, the environment and the stack functions do not appear clearly in the results. We have
to catch these functions and to catch them to know the values they returned.

After a few tests, we can see that what the multivariant function returned is this list of states:

e State 1:
@
[

e State 2:
e

e State 3:

Label: 4

Stack:

e Domain: NM "main" i.e. the method main

e stack(main)=pile_info(([NV "t1"], <fun>), [Pt 4, NV "t1"], NCI "ClasseMain")
return environment (abstract env of the method): domain {t1}, func
call labels: Label 4, return variable t1
class of the method: ClassMain

Environment:

e Domain: [NV "t1"] i.e. {t1}

e Environment (t1) = LST [] i.e. abstract type bottom

Store: (the domain of the store is the set of all the defined classes)

e Store (Test 1) = no_inst

Current class: ClasseMain

Current method: main

Label: 1

Stack:

e Domain: []

Environment:

e Domain: {this}

e Environment (zhis) = LST [NCI "Test1"] i.e. abstract type Test]
Store:

e Store (Test 1) = no_inst

Current class: Test1

Current method: Test!

Label: 3

Stack:

e Domain: []

Environment:

e Domain: {t1}

e Environment (t1) = bottom
Store:

e Store (Test 1) = no_inst
Current class: ClasseMain
Current method: main

100

e State 4:
e Label: 2
e Stack:
e Domain: []
e Environment:
e Domain: []
e Store:
e Store (Test 1) = no_inst
e Current class: ClasseMain
Current method: main

As this example is very simple, there is nothing to analyse in these results. The aim here was to
show you the information returned by out program.

101

5. CONCLUSION

5.1. Summary

Our thesis consists of the creation of a compiler and an analyser for subsets of the programming
language Java.

We have built the compiler in the framework of a larger project, during our internship in Venice
— Italy. We have written the compiler in Java. We have created it for a quite large sub-language
of Java: the VTF (Vas-T'y-Frotte). The compiler is composed of two main parts: a parser and a
type checker. The compiler creates the abstract representation of a given program. Doing this, it
creates the Java objects corresponding to the LAS.

We have also written an analyser for a smaller subset of Java. We have implemented this one in
CaML. When we want to use this analyser, we suppose that the given program has already
passed through a compiler. In fact, we do this compiling work without any compiling tool, and
then we use a simple translator to get the accurate CaML structures. The analyser implements
the multivariant algorithm: it creates all the possible states of the given program.

5.2. Critics

It took us, first, a lot of time to learn the Java language, which was about new for us. We also
lost lots of time learning the bases of the abstract interpretation. We would have needed some
more time to finish and to test the compiler we created in Venice — Italy.

It is a pity that we attempted the course about the abstract interpretation after our internship. We
would have lost less time trying to understand all the documentation we found, as our
knowledge in the subject was about null.

5.3. Future work

The analyser we made in the context of our course was meant as a simple example. It is
important not to begin directly with a complete analyser. It would have been to difficult to
implement a large analyser, with lots of details and subtleties of a complete language. The
simple analyser could be a good starting point for latter work. Now, it would be interesting to
continue the project in which we created our parser and our type checker. Once the type checker
will be finished, we could imagine creating an analyser. This analyser would be implemented in
Java, and would be quite more complex than the little one we wrote in CaML.

It is already scheduled that two other students leave next year to a university in the United
States to work on the continuation the whole project.

103

6. BIBLIOGRAPHY

[LC99a]: LE CHARLIER, Baudouin. Définition du langage Vas-T"y-Frotte,
Facultés Universitaires Notre-Dame de la Paix, Namur — Belgium, Institut d'informatique,
Notes de cours, Mars 1999

[IPO99]: POLLET, Isabelle.

Sémantiques operationnelles et domaines abstraits pour l'analyse statique de Java,
Facultés Universitaires Notre-Dame de la Paix, Namur — Belgium, Institut d'informatique,
Memoire de DEA (Diplome d'Etudes Approfondies), Septembre 1999

[ZAPOOb]: HAYEZ, Cécile and HENDRICKX, Patrick. Interprétation Abstraite,
work related to the course of “Interprétation Abstraite” course of the third maitrise in
information sciences

[INFO3105]: LE CHARLIER, Baudouin. Course: Interprétation Abstraite,
Facultés Universitaires Notre-Dame de la Paix, Namur — Belgium, Institut d'informatique,
Academic year 1999- 2000

[JLS96]: GOSLING, James, JOY, Bill and STEELE, Guy. Java Language Specification,
Addison — Wesley, Java Series, 1996,
Download this book at: http://www.java.sun.com/docs/books/jls/ -

[InriaJavaccEx]: Inria, Javacc Documentation. (page consulted in July 2000).
URL: http://falconet.inria.fr/~java/tools/JavaCC/examples/

[JavaCC1]: Javacc Documentation. (page consulted in July 2000)
URL.: http://www.cs.um.edu.mt/~java/javacc-docs/DOC/index.html

[JavaCC2]: Javacc Documentation. (page consulted in July 2000)
URL: http://www kluge.net/mqp/report.html

[LexYacc]: Lex - Yacc Documentation. (page consulted in July 2000)
URL: http://www.combo.org/lex_vacc_page/

[SA98a]: AMARASINGHE, Saman. Lecture 2: Lexical Analysis, September 1998
URL: http://ceylon.lcs.mit.edu/6035/lecture2/index.htm

[SA98b]: AMARASINGHE, Saman. Lecture 3: Intro to Syntax Analysis, September 1998
URL: http://ceylon.lcs.mit.edu/6035/lecture3/index.htm

[ZAP0O0]: Cécile Hayez: cecile_hayez@yahoo.fr
Patrick Hendrickx: patje@tartopom.com

105

7. ANNEXE: SUMMARY OF THE LAS CLASSES

7.1.1. Package JavAbInt

Abstract class Val

an instance of Val represents a Java value that can be one of those :

a boolean
an integer
a floating point number (the basic types defined in the LC99a, p.3)

an undefined value (type bot) (as defined in the typed and in the labelized
abstract syntax in IPO99, parts 1.3 and 1.4)
an instance of a class

Fields
these are the unique instances of Val, representing the not initialized values of Java :
public static final Ni Null uninitialized value of type bot
public static final Ni undefBOOL uninitialized value of type boolean
public static final Ni undefINT uninitialized value of type int

public static final Ni undefFLOAT uninitialized value of type float

Constructors
protected Val(Type t)
creates a value of type t

Arguments :
t is the type of the new value

Public methods
Val undef(Type t)
returns the uninitialized value corresponding to the type t

Arguments :
t is the type of the uninitialized value

Type getType()
returns the type of the current value

abstract boolean equals(Val v)
returns the truth value of the statement :
"this value is equal to the value v"

Argument :
v is the value to compare with the current one

107

Abstract class Base

an instance of Base represents a value of a basic type that can be one of those :

a boolean
an integer
a floating point number
(the basic types defined in the LC99a, p.3)
Constructors
protected Base(Type)

creates a value of the basic type t

Arguments :
t is the type of the new value

an instance of Bool represents a Java value of boolean type

Constructors
Bool (boolean v)
creates a boolean of value v

Arguments :
v is the value of the new Bool

Public methods
boolean getVal()
returns the current boolean value

boolean equals(Val w)
Returns the truth value of the statement :
"this boolean value is equal to the boolean value w"

Arguments :
w is the value to compare with the current boolean value

Class Int
an instance of Int represents a Java value of type int
Constructors
public Int(int v)

creates an integer of value v

Arguments :
v is the value of the new Int

108

Public methods
int getVal()
returns the current integer value

boolean equals(Val w)
Returns the truth value of the statement :
"this integer value is equal to the integer value w"

Argument :
w is the value to compare with the current integer value

Class Ni

an instance of Ni represents a not initialized value (for a basic type) or null (for a non
basic type)

Constructors
protected Ni(Type t)
creates an uninitialized value of type t
pre : t should be bot or a class name

Arguments :
1 is the type of the new uninitialized value

Public methods
boolean equals(Val v)
Returns the truth value of the statement :
"this uninitialized value is equal to the uninitialized value v"

Arguments :
v is the uninitialized value to compare with the current value

Class Inst
an instance of Inst represents a Java value of a non basic type i.e. an instance of a
class
Constructors
public Inst (Nclasse n, Inst s, Val[] ¢)
creates a value of a non basic type with the following information :
Arguments :
n is the type of the value (a class name)
s is the reference to the super class
c is the array containing the values of the class fields
Public methods

Nclasse getNclasse()
returns the type of the class

Inst getSuper()
returns the reference to the super class

109

Val getVal(int i)
returns the value of the field of index i

Arguments :
i is the index of the researched field

void setVal(int i, Val v)
gives the value v to the field of index i

Arguments :
i is the index of the modified field
v is the new value of the field

boolean equals(Val v)
Returns the truth value of the statement :
"this instance of class is the same as the instance v"

Arguments :
v is the instance to compare with the current instance of class

Abstract class Type

an instance of Type represents a Java type.
This can be :

boolean, int, float (the basic types defined in the LC99a, p.3)

void (as used in LC99a and defined in IPO99, part 1.2.4)

bot (as defined in the typed and in the labelized abstract syntax in
IP0O99, parts 1.3 and 1.4)

a class name (as defined in the LC99a, part 2.2)
Fields
these are the unique instances of Type, representing the basic types of Java :
public static final Type BOOL basic type boolean
public static final Type FLOAT basic type float
public static final Type INT basic type int
public static final Type BOT type for uninitialized variables of non basic
ype
public static final Type VOID type void
Public methods
boolean equals(Type t)

Returns the truth value of the statement :
"this type is equal to the type t"

Arguments :
t is the type to compare with the current type

110

boolean lowerThan(Type t)
Implements the strict ordering corresponding to <=_{pi}
(defined in IPO99 : Def 1.4, page 21)

returns the truth value of the statement "this < {pi} t".

Arguments :
t is the type to compare with the current type

boolean lowerOrEqual(Type t)
Implements the ordering <= {pi} (defined in IPO99 : Def 1.4, page 21)

returns the truth value of the statement "this <=_{pi} t".

Arguments :
t is the type to compare with the current type

Ni undef()
creates a instance of Ni of the current type
Pre : the current type is a basic type different from BOT and from VOID.

String toString()
creates a String representation of the current type, to allow its display

Class simpleType

an instance of simpleType represents a basic type of Java.
This can be : boolean, int, float, void or bot

The type bot is defined in the typed and in the labelized abstract syntax in IPO99, parts
1.3and 1.4)

Class Nclasse

an instance of Nclasse represents a Java class type.
It contains all the information available for the class.

Constructors

Nclasse (String c, Nclasse p)
Creates a class type, with the given characteristics.

Pre : a class with the characteristics ¢ and p does not exist yet

Arguments :
c is the name of the class type that must be created

p is the reference to the super class

Public methods

void putDefClass(defClass d)
Associates "this" type with its companion class.
Is not public because it should be used only when the companion class is

created.

Arguments :
d is the companion class to associate with.

111

boolean isArcheType()
Says whether "this" type is an "archetype”, i.e., a type without ancestor.

Nclasse getSuperType()
returns the reference to the super class

Ni undef()
creates a uninitialized value of "this" type

String nomComplet()
returns the entire name of the class.

public static boolean existe (String c) ,
tests if the entire name of class given as argument exists.

Arguments :
c is the name of the researched class

public static Nclasse trouver (String c)
returns the reference to the class with the entire name given as argument.
returns null if ensNclasse does not contain a class with the entire name given
as argument.

Arguments :
¢ is the name of the researched class

defClass getDefClass()
Returns the class associated to this type or null if the link has not been
established yet.

boolean lowerOrEqual(Nclasse t)
Implements the ordering <= {pi} (defined in IPO99 : Def 1.4, page 21)
returns the truth value of the statement "this <= {pi} t".

Arguments :
t is the instance to compare with "this"

boolean lowerThan(Nclasse t)
Implements the ordering <= {pi} (defined in IPO99 : Def 1.4, page 21)
returns the truth value of the statement "this < {pi} t".

Arguments :
T is the instance to compare with "this"

Type epsich (String Nchamp)
Implements the function epsilon_ch defined in IPO99, page 21. Definition 1.6
returns the type of the field given as argument.

Arguments :
Nchamp is the name of the field whose type must be searched

112

Type epsim(String m, listOfTypes It)
Implements the function epsilon m defined in IPO99, page 21. Definition 1.6
returns the return type of the method given as argument. If no compatible

method has been declared, it returns null.

Arguments :
m is the name of the method

It is the list of the arguments types of the method

Type epsic(listOfTypes It)
Implements the function epsilon c defined in IPO99, page 21. Definition 1.6
returns the class type if a compatible constructor has been defined.

Otherwise, it returns null.

Arguments :
It is the list of the arguments types of the constructor

Class cellOfListOfTypes
an instance of cellOfListOfTypes is a type of a list of types

Fields
Type v The current type
cellOfListOfTypes next The next type of the list
Constructors
cellOfListOfTypes(Type t, cellOfListOfTypes c)
creates a list of types with the following information :
Arguments :
t is the type of the new cell
c is the following cell of the list
Class listOfTypes
Class description:
-Implements a domain "list of types".
-Implements the ordering induced by the ordering on types on lists of
types :
By definition,
Tl ... Tm)<=(T1,..,Th
i
m =n and
Ti <=T% (forall i: I<=i<= m(=n)).
Constructors

public listOfTypes()
creates a new empty list

113

public listOfTypes(Type t)
creates a new list of types containing the type t.

Arguments :
t is the only type contained in the list

public listOfTypes(Type t1, Type t2)
creates a new list of types with two types t1 and t2

Arguments :
t1 is the first type of the list
12 is the second type of the list

public listOfTypes(Type t1, Type t2, Type t3)
creates a new list of types with two types t1, t2 and t3

Arguments :
t1 is the first type of the list
12 is the second type of the list
13 is the third type of the list

Public methods

void addBefore(Type t)
adds a new type in front of the list

Arguments :
t is the type added in front of the list

void addAfter(Type t)
adds a new type at the end of the list

Arguments :
t is the type added at the end of the list

Type getType (int i)
returns the type of index i.
if'i is out of the list bounds, it returns null.
pre:i>0

Arguments :
i is the index of the needed type

boolean equals(listOfTypes It)
returns the truth value of the statement
""this" list of types is equal to the list of types It".

Arguments :
It is the list of types to compare with the current list of types

boolean lowerThan(listOfTypes It)
return the truth value of the statement
""this" list of types is strictly lower than the list of types It".

Arguments :
It is the list of types to compare with the current list of types

boolean lowerOrEqual(listOfTypes It)
return the truth value of the statement
""this" list of types is lower or equal to the list of types It".

Arguments :
It is the list of types to compare with the current list of types

int arity()
Returns the number of types in the list

String toString()
Returns a String representation of the list of types that can be displayed.

static void main(String[] args)
main function that displays a test program

Arguments :
String [] is the given program

Abstract class declProc

an instance of declProc represents a procedure (i.e. a method or a constructor)

declaration
Fields
private graphProc mygraph graphProc corresponding to the current
procedure
private listOfTypes myListOfTypes list of the types of the arguments of the
procedure
private TypePourEnv myTypePourEnv the local environment of the procedure
private Instr firstInstr the first statement of the procedure
Constructors

protected declProc (listOfTypes, graphProc)
creates an instance of declProc, corresponding to the concrete
method whose properties are given as arguments

Arguments :
listOfTypes is the list of the argument types of the method
graphProc is the graph associated to the method

protected declProc (listOfTypes, graphProc, TypePourEnv, Instr)
creates an instance of declProc, corresponding to the concrete
method whose properties are given as arguments

Arguments :
listOfTypes is the list of the argument types of the method
graphProc is the graph associated to the method
TypePourEnv is the local environment of the method
Instr is the reference to the list of statements of the method

115

Public methods
void putGraph(graphProc)
gives a value to the graphProc mygraph

Arguments :
graphProc is the new value of mygraph

void putTypePourEnv(TypePourEnv)
gives a value to the local environment

Arguments :
TypePourEnvy is the new value to give to the local environment

void putFirstInstr(Instr)
gives a value to the list of statements

‘ Arguments :
‘ Instr is the reference to the list of statements of “this” procedure

listOfTypes listOfTypes()
returns the list of the types of the arguments
TypePourEnv getTypePourEnv()
returns the local environment
Instr getFirstInstr()
returns the list of statements

Class declConstr
an instance of declConstr represents a constructor declaration.
Fields
final public static String PREM first constructor
final public static String SUPER constructor based on a constructor of the super
class
final public static String THIS constructor based on a constructor of this class
private String mysort sort of the construct: one of the above
mentioned
private listOfExpr myListOfExpr list of the expressions used for the call to
another constructor
(of the super class or of the current class)
declConstr myTwinOrFather the constructor to execute first.
Constructors

public declConstr(String, listOfTypes, graphProc)
Constructs an instance of the class, of the sort given as String argument

Arguments :
String is the sort of the constructor (“prem”, “this” or “super”)
listOfTypes is list of the arguments types of the constructor
graphProc is the graph associated to the constructor

116

public declConstr(listOfTypes, graphProc)
Creates an instance of the class, for an obsolete constructor

Arguments :
listOfTypes is list of the arguments types of the constructor
graphProc is the graph associated to the constructor

public declConstr(String, listOfTypes, graphProc, declConstr, listOfExpr,

TypePourEnv, Instr)
Creates an instance of the class, of the sort given as String argument, about
which we have all the information

Arguments :
String is the sort of the constructor (“prem”, “this” or “super”)
listOfTypes is list of the arguments types of the constructor
graphProc is the graph associated to the constructor
declConstr is the super or the twin constructor

listOfExpr is the list of effective parameters used to call the super or the
twin constructor

TypePourEnv is the local environment of the constructor
Instr is the list of statements of the constructor

Public methods
void putListOfExpr (listOfExpr)
instanciates the listOfExpr myListOfExpr

Arguments :
listOfExpr is the new value of myListOfExpr

void putTwinOrFather(declConstr)
instanciates the field myTwinOrFather

Arguments :
declConstr is the new value of myTwinOrFather

String getSortOfConstr()
Returns the sort of the construct

listOfExpr getListOfExpr()
Returns the listOfExpr myListOfExpr

declConstr getTwinOrFather()
Returns the constructor to execute first.

static declConstr newPremConstr(listOfTypes, graphProc)
Returns a new constructor of type "prem"”

Arguments :

listOfTypes is the list of the arguments types of the constructor
graphProc is the graph associated to the constructor

static declConstr newPremConstr(listOfTypes, graphProc, TypePourEnv, Instr)
Returns a new constructor of type "prem" for which we give all the information

Arguments :

117

listOfTypes is the list of the arguments types of the constructor
graphProc is the graph associated to the constructor
TypePourEnv is the local environment of the constructor

Instr is the list of statements of the constructor

static declConstr newSuperConstr(listOfTypes, graphProc)
Returns a new constructor of type "super"”

Arguments :

listOfTypes is the list of the arguments types of the constructor
graphProc is the graph associated to the constructor

static declConstr newSuperConstr(listOfTypes, graphProc, declConstr, listOfExpr,

TypePourEnv, Instr)

Returns a new constructor of type "super” for which we give all the information

Arguments :

listOfTypes is the list of the arguments types of the constructor
graphProc is the graph associated to the constructor
TypePourEnv is the local environment of the constructor

Instr is the list of statements of the constructor

static declConstr newThisConstr(listOfTypes, graphProc)
Returns a new constructor of type "this"

Arguments :

listOfTypes is the list of the arguments types of the constructor
graphProc is the graph associated to the constructor

static declConstr newThisConstr(listOfTypes, graphProc, declConstr, listOfExpr,

TypePourEnv, Instr)

Returns a new constructor of type "this" for which we give all the information

Arguments :

listOfTypes is the list of the arguments types of the constructor
graphProc is the graph associated to the constructor
TypePourEnv is the local environment of the constructor

Instr is the list of statements of the constructor

String toString()

Returns a string representation of a declConstr to be displayed

Class declMethode

an instance of decIMethode represents a method declaration.

final public static String ABSTRACT
final public static String CONCRETE
private String mysort

private String myname
private Type myResultType

abstract method

concrete method

the sort of the method : one of the
above mentioned

name of the method

the result type of the method

118

Constructors
public decIMethode (String, Type, String, listOfTypes, graphProc)
creates an instance of decIMethod, corresponding to the method whose
properties are given as arguments

Arguments :
String is the sort of the method
Type is the return type of the method
String is the name of the method
listOfTypes is list of the arguments types of the method
graphProc is the graph associated to the method

public decIMethode (String, Type, String, listOfTypes, graphProc, TypePourEnv, Instr)
creates an instance of declMethod, corresponding to the method whose
properties are given as arguments

Arguments :
String is the sort of the method
Type is the return type of the method
String is the name of the method
listOfTypes is list of the arguments types of the method
graphProc is the graph associated to the method
TypePourEnv is the local environment of the method
Instr is the list of statements of the method

public declMethode (Type, String, listOfTypes, graphProc)
creates an instance of declMethod, corresponding to the concrete method whose
properties are given as arguments

Arguments :
Type is the return type of the method
String is the name of the method
listOfTypes is list of the arguments types of the method
graphProc is the graph associated to the method

public declMethode (Type, String, listOfTypes, graphProc, TypePourEnv, Instr)
creates an instance of decIMethod, corresponding to the concrete method whose
properties are given as arguments

Arguments :
Type is the return type of the method
String is the name of the method
listOfTypes is list of the arguments types of the method
graphProc is the graph associated to the method
TypePourEnv is the local environment of the method
Instr is the list of statements of the method

Public methods
String getSortOfMethode()
returns the sort of the method

String getName()
returns the name of the method

119

Type getType()
returns the result type of the method

static decIMethode newAbstractMethode(Type, String, listOfTypes, graphProc)
creates an instance of decIMethod, corresponding to the abstract method whose

properties are given as arguments

Arguments :
Type is the return type of the method
String is the name of the method
listOfTypes is list of the arguments types of the method
graphProc is the graph associated to the method

static decIMethode newConcreteMethode(Type, String, listOfTypes, graphProc)
creates an instance of decIMethod, corresponding to the concrete method whose
properties are given as arguments

Arguments :
Type is the return type of the method
String is the name of the method
listOfTypes is list of the arguments types of the method
graphProc is the graph associated to the method

static declMethode newConcreteMethode(Type, String, listOfTypes, graphProc,

TypePourEnv, Instr)
creates an instance of decIMethod, corresponding to the concrete method whose

properties are given as arguments

Arguments :
Type is the return type of the method
String is the name of the method
listOfTypes is list of the arguments types of the method
graphProc is the graph associated to the method
TypePourEnv is the local environment of the method
Instr is the list of statements of the method

String toString()
creates a string representation of the decIMethod, to allow its display

an instance of defClass represents a class, with all its proprieties.

Fields
private Hashtable ensOfNames
set of simple names of all fields and methods for this class. A method name is
completed with "()" to make it different from the corresponding field name

private Nclasse myType The type associated to this class
private int nbrOfChamps number of fields

private int nextlchamp counter of fields

private String [] Nchamp array with the names of the fields

private Type [] Tchamp array with the types of the fields

120

private int nbrOfMethodeNames number of methods

private int nextimethodeName counter of methods

private String [] MethodeName array with the different method names

private Type[] MethodeType array with the result types of the methods

private graphProc [] graphOfMethodes array with the graphProc of the methods

private int nbrOfConstr number of constructors

private graphProc graphOfConstr graphProc associated with the constructors
Constructors

public defClass(Nclasse, int, int)
Creates a new defClass and links it to the type t. No field, method, or
constructor is created.

Argument :
Nclasse is the Type associated to the class
int is the number of fields declared in this class
int is the number of different method names

Public methods
int addChamp(String, Type)
If the class does not contain a field named by the String in argument, a new
field is added to the class. Moreover, the index of this field is returned. If such a
field already exists, the value -1 is returned.

Argument :
String is the name of the new field
Type is the type of the new field

int getichamp(String)
Check whether a field already exists. Return the index of the field s or -1 ifit
doesn't exist (yet). Can be used to "convert” the name of a field to its
corresponding index.

Argument :
String is the researched field

int addMethodeName(String, Type)
If the class does not contain a "MethodeName" as the given String, a new
MethodeName is added to the class. Moreover, the index of this MethodeName
is returned. If such a "MethodeName" already exists, the value -1 is returned.

Argument :
String is the name of the new method
Type is the return type of the new method

int getMethodeName(String)
Checks whether a "MethodeName" already exists. Returns the index of the
"MethodeName" or -1 ifit doesn't exist (yet). Can be used to "convert" the
MethodeName to its corresponding index.

Argument :
String is the name of the to get method

121

decIMethode addMethode(String, Type, listOfTypes)

Roughly speaking, this method adds a new method to "this" class.

The following precondition are checked:

1) another method with the same signature doesn't exist.

2) other existing methods with the same name have the same type t.

If any precondition is violated the null value is returned.

Otherwise the reference to the declaration of the new method is returned

Argument :
String is the name of the new method
Type is the return type of the new method
listOfTypes is the list of arguments types of the method

decIMethode addMethode(deciMethode)

Roughly speaking, this method adds a new method to "this" class. It is assumed
that the method is "sufficiently” initialized.

The following precondition are checked:

1) another method with the same signature doesn't exist.

2) other existing methods with the same name have the same type.

If any precondition is violated the null value is returned.

Otherwise the reference to the declaration of the new method is returned.

Argument :
declMethode is the object corresponding to the to add method

declConstr addConstr(listOfTypes)

Roughly speaking, this method adds a new constructor to "this" class.

This precondition is checked: another constructor with the same signature
doesn't exist. If this precondition is violated the null value is returned.
Otherwise the reference to the declaration of the new constructor is returned.

Argument :
listOfTypes is the list of arguments types of the constructor

declConstr addConstr(declConstr)

Roughly speaking, this method adds the constructor c to "this" class.

This precondition is checked: another constructor with the same signature
doesn't exist.

If this precondition is violated the null value is returned.

Otherwise the reference to the declaration of the new constructor is returned.

Argument :
declConstr is the object corresponding to the to add constructor

Type epsiOch (String)

returns the type of the field given as argument, this field must have been
declared in the class itself.

Argument :
String is the name of the to get field

122

Type epsich (String)
returns the type of the field given as argument, this field can have been declared
in the class itself or in a super class.

Argument :
String is the name of the to get field

Type epsim(String, listOfTypes)
returns the result type of the method given as argument, if no compatible
method has been declared, it returns null.

Argument :
String is the name of the to get method
listOfTypes is the list of the arguments types of the to get method

Type epsic(listOfTypes)
returns the class type if a compatible constructor has been defined. Otherwise,
it returns null.

Argument :
listOfTypes is the list of the arguments types of the to get constructor

declMethode mostSpecificMethode(String, listOfTypes)
This is a "more informative" version of epsim. If there is a (unique of course!)
most specific method as given whose signature is more general or equal to the
given one, the reference to this method is returned. The null reference is
returned, otherwise.

Argument :
String is the name of the to get method
listOfTypes is the list of the arguments types of the to get method

declConstr mostSpecificConstr(listOfTypes)
This is a "more informative" version of epsic. If there is a (unique of course!)
most specific constructor Nameofthisclass(listOfTypes) whose signature is more
general or equal to the given one, the reference to this constructor is returned.

The null reference is returned, otherwise.

Argument :
listOfTypes is the list of the arguments types of the to get constructor

Nclasse getType()
Returns the type associated to this class.

int getNumberOfFields()
Returns the number of fields

String getNameOfField(int)
Returns the name of the field of the given index w

Argument :
int is the index of the to get field

123

Fields

Type getTypeOfField(int)
returns the type of the field of the given index

Argument :
int is the index of the to get field

String toString()
Returns an external (printable) representation of this defClass

Class Env
An instance of Env represents a local semantic environment.
private TypePourEnv infostat contains the “static” information of the environment

private Val[] v variables values
private Inst thisRef the current instance (alias this).

Constructors

public Env(TypePourEnv, Inst)
Creates a new instance of Env, with the given information
All the variables are set to “undef”.

Argument :
TypePourEnv is the information about the “static” environment
Inst is the reference to the instance of the current class

Public methods

Val getVal (int)
returns the value of the variable of the given index

Argument :
int is the index of the to get variable

void setVal(int, Val)
gives a new value to the variable of the given index

Argument :
int is the index of the to modify variable
Val is the new value of the variable

Type getType(int)
returns the type of the variable of the given index

Argument :
int is the index of the to get variable

String getNom(int)
returns the name of the variable of the given index

Argument :
int is the index of the to get variable

124

int getNbrVar()
returns the number of variables of the environment

Type getTypeOfThis()
returns the type of the current class

Class TypePourEnv

Contains the static information relative to an environment
Fields

private int nombreDeVariables number of the variables

private Type[] type type of the variables

private String[] nom name of the variables

private Nclasse typeOfThis fype of the current instance (alias this).

Constructors
public TypePourEnv(Nclasse, int, Type[], String[])
Creates a new instance of TypePourEnv with the given information

Argument :
Nclasse is the Type associated to the current class
int is the number of variables
Type[] is the array with the types of the class variables
String[] is the array with the names of the class variables

Public methods

Type getType(int)
Returns the type of the variable of index i

Argument :
int is the index of the to get variable

String getNom(int)
Returns the name of the variable of index i

Argument :
int is the index of the to get variable

int getNbrVar()
Returns the number of variables

Type getTypeOfThis()
Returns the type of the current instance

public String toString()
Returns an external (printable) representation of this TypePourEnv.

125

Class cellOfGraphProc

class that represents a cell in the list graphProc, corresponding to one procedure
Fields

declProc v information on the procedure
cellOfGraphProc next next cell on the list

Constructors
cellOfGraphProc(decIProc, cellOfGraphProc)
creates an instance of cellOfGraphProc

Arguments :

declProc is the value of the cell (the information on a procedure)
cellOfGraphProc is the next cell in the list

Class graphProc

Class description:
-implements a graph of procedure of "same kind" (constructors or same name

and type).
-allows one to find a procedure with a given signature.

-allows one to find the list of procedures whose list of types is minimaly
greater that a given list of types.
Fields
static String METHODE procedure of type method
static String CONSTR procedure of type constructor
private final String sortOfGraph One of the above's.

private final Nclasse classOfGraph class associated with the graph
private String methodName common name of the methods of the graph
private Type methodType common result type of the methods of the graph

private cellOfGraphProc first first cell of the list of cellOfGraphProc

Constructors
public graphProc(Nclasse)
creates an instance of a graphProc of type constructor, containing the
information given as argument

Arguments :
Nclasse is the name of the class

public graphProc(Nclasse, String, Type)
creates an instance of a graphProc of type method, containing the information
given as argument

Arguments :
Nclasse is the name of the class
String is the name of the method
Type is the return type of the method

126

Public methods
cellOfGraphProc listOfMostSpecificProcs (listOfTypes, cellOfGraphProc)
Pre: oldlist is a list of Procs with the same arity as the arguments listOfTypes
all those methods have a list of types greater or equal to the arguments
listOfTypes the list of types are not comparable two by two.

This method merges the list of Procs of this graph, whose list of arguments
types is greater or equal to the arguments listOfTypes, to the arguments
cellOfGraphProc Only most specific Procs are returned.

Thus if a Proc is less specific than another, only the latter is kept in the list.

If a Proc in oldlist has the same list of types as a Proc in the graph, the latter is
not added to the returned list.

Arguments :
listOfTypes is the list of arguments types
cellOfGraphProc is the old list of types that must be merged with the
new one.

declMethode addMethode(listOfTypes)
if a method, whose list of types corresponds to the arguments listOfTypes,
already exists in the graph, null is returned.
Otherwise, such a method is *created* and then added to the graph.
the reference to the method declaration is returned.

Arguments :
listOfTypes is the list of arguments types of the to add method.

declMethode addMethode(declMethode)
if a method, whose list of types is the same as the to add method, already exists
in the graph, null is returned. Otherwise, this method is added to the graph. The
reference to the added method is returned.

Arguments :
declMethode is the to add method.

declConstr addConstr(listOfTypes)
if a constructor, whose list of types corresponds to the arguments
listOfTypes, already exists in the graph, null is returned.
Otherwise, such a constructor is *created* and then added to the graph.
the reference to the constructor declaration is returned.

Arguments :
listOfTypes is the list of arguments types of the to add constructor.

declConstr addConstr(declConstr)
if a constructor, whose list of types is the same as the to add constructor,
already exists in the graph, null is returned. Otherwise, this constructor is
added to the graph.
The reference to the added constructor is returned.

Arguments :
declConstr is the to add constructor.

127

boolean existProc(listOfTypes)
Checks whether a Proc declaration with specific list of arguments types
already exists in this graph.

Arguments :
listOfTypes is the to check list of arguments types

String toString()
Returns an external (printable) representation of this graphProc.

7.1.2. Package JavAbInt.concreteSyntax

Class lexeme

This class implements the set of lexical items that are relevant for the intermediate internal
representation of VTF programs. These are

- Identifiers (3.8)

- Keywords (3.9)

- Literals (3.10)

- Operators (3.12)
Here we use the classification of Chapter 3 of JLSpec, from which we eliminate irrelevant
symbols. Moreover, only the symbols defined in VIF are recognized. Every lexical item is
uniquely represented.

Fields
static Hashtable ensLexeme set of all the lexemes
The sorts of lexeme :

public final static String IDENTIFIER an identifier

public final static String LITERAL a literal

public final static String OPERATOR an operator

public final static String KEY TYPE a type name

public final static String KEY ACCES an access modifier

public final static String KEY COMMANDE a statement keyword

public final static String KEYWORD a general keyword

specific lexemes :

public final static lexeme ALL_CLASS the symbol “*” in a package
declaration

public final static lexeme CLASS the keyword “class”

public final static lexeme EXTENDS the keyword “extends”

public final static lexeme IMPORT the keyword “import”

public final static lexeme PACKAGE the keyword “package”

public final static lexeme SUPER the keyword “super”

public final static lexeme THIS the keyword “this”

public final static lexeme BOOLEAN the keyword “boolean”

public final static lexeme FLOAT the keyword “float”

public final static lexeme INT the keyword “int”

public final static lexeme VOID the keyword “void”

public final static lexeme STATIC the keyword “static”

128

public final static lexeme ABSTRACT
public final static lexeme FINAL

public final static lexeme PRIVATE

public final static lexeme PACKAGE _MOD

public final static lexeme PROTECTED
public final static lexeme PUBLIC

public final static lexeme AFFECT
public final static lexeme WHILE
public final static lexeme RETURN
public final static lexeme NEW
public final static lexeme IF

public final static lexeme ELSE

public final static lexeme LTH
public final static lexeme LEQ
public final static lexeme GTH
public final static lexeme GEQ
public final static lexeme EQ
public final static lexeme NEQ
public final static lexeme MOD
public final static lexeme PLUS
public final static lexeme MINUS
public final static lexeme MULT
public final static lexeme DIV
public final static lexeme AND
public final static lexeme OR

public final static lexeme FALSE
public final static lexeme NULL
public final static lexeme TRUE

private String sortOfLexeme
private String valueOfLexeme

Constructors

private lexeme(String, String)

the keyword “abstract”

the keyword “final”

the keyword “private”

when there is no specific access
modifier

the keyword “protected”

the keyword “public”

the assignment

the statement “while”
the statement “return”
the keyword “new”
the keyword “if”

the keyword “else”

operator("<"
operator("<=")
operator(">")
operator(">=")

operator("=="
operator("!=")
operator(""%")

operator("+"
operator("-")
operator("*")
operator("/")
operator("&")
operator("|")

the keyword “false”
the keyword “null”
the keyword “true”

the sort of the lexeme
the value of the lexeme

Creates a new lexeme with the given information

Arguments :

String is the sort of the lexeme
String is the value of the lexeme

Public methods
String getSort()
returns the sort of the lexeme

String getValue()
returns the value of the lexeme

129

static lexeme lexemeOf{String, String)
Converts a string v of sort s to a lexeme.
Precondition: v actually is of sort s. (No checking!)

Arguments :
String is the sort of the lexeme
String is the value of the lexeme

static lexeme identifierOf(String)
Converts an identifier v to a lexeme.
Precondition: v actually is an identifier. (No checking!)

Arguments :
String is the value of the lexeme

static lexeme literalOf(String)
Converts a literal v to a lexeme.
Precondition: v actually is a literal. (No checking!)

Arguments :
String is the value of the lexeme

static lexeme keywordOf{String)
Converts a keyword v to a lexeme.
Precondition: v actually is a keyword. (No checking!)

Arguments :
String is the value of the lexeme

static lexeme operatorOf(String)
Converts an operator v to a lexeme.

Precondition: v actually is an operator. (No checking!)

Arguments :
String is the value of the lexeme

Class construct

A construct either is a terminal (lexeme) or a sentence. In the latter case, it is in _fact an
instance of a non terminal, i.e., a data structure exhibiting the value and structure of

this non terminal instance.

Fields
public static String TERMINAL a construct of type “terminal”
public static String SENTENCE a construct of type “sentence”
private construct next The next construct in a sentence
private String sortOfConstruct either TERMINAL or SENTENCE
Constructors

protected construct(String, construct)

Creates an instance of construct with the given information

Arguments :
String is the sort of the construct

130

construct is the next construct in the sentence

protected construct (String)

Creates an instance of construct with no following construct

Arguments :
String is the sort of the construct

Public methods
construct getNext()
returns the next construct in a sentence

void setNext(construct)
set a construct as the next of the current one

Arguments :
construct is the new next construct

String getSort()
returns the type of the construct

Class sentence

A sentence consists of
- a "main cell” containing

both pointer are null if the sentence is empty;

Fields
final public static String ABSTR_METHOD_DECL
final public static String CLASS_DECL
final public static String CONCR_METHOD_ DECL
final public static String CONTRUC_DECL
final public static String FIELD DECL
final public static String IMPORT_DECL
final public static String PACKAGE_DECL
final public static String VAR_DESIGN
final public static String SUPER_DESIGN
final public static String THIS DESIGN
final public static String PROGRAM
final public static String NOM
final public static String LIST PARAM_EFF
final public static String LIST PARAM_FORM
final public static String PARAM_FORM
final public static String STATEMENT
final public static String LIST STATEMENT

final public static String EXPRESSION
final public static String APPEL_PROC
final public static String APPEL NEW
final public static String APPEL_CONSTR

+ the sort of the sentence (statement, expression, efc.)
+ the reference to the first construct of the sentence
+ the reference to the last construct of the sentence

- a sequence of constructs representing in a structured way the sentence.

an abstract method declaration
a class declaration

a concrete method declaration
a constructor declaration

a field declaration

an import declaration

a package declaration

a variable name

the “super” designator

the “this” designator

a program

a name

a list of effective parameters

a list of formal parameters

a formal parameter

a statement

a statement list

an expression
a method call
a “new” call
a constructor call

131

final public static String CAST a cast

private construct first The first construct in a sentence.
private construct last The last construct in a sentence.

private String sortOfSentence either STATEMENT or EXPRESSION or ...

Constructors
public sentence(String, construct)
Creates an instance of sentence with the given information

Arguments :
String is the sort of the sentence
construct is the next construct in a sentence

public sentence(String)
Creates an instance of sentence with the given information

Arguments :
String is the sort of the sentence

Public methods
construct getFirstConstruct()
returns the first construct of the sentence

construct getLastConstruct()
returns the last construct of the sentence

void addFirstConstruct(construct)
adds a new construct at the beginning of the sentence

Arguments :
construct is the to add construct

void addLastConstruct(construct)
adds a new construct at the end of the sentence

Arguments :
construct is the to add construct

String getSort()
returns the sort of the sentence

Class terminal

A terminal (lexeme) is an occurrence of a lexeme in a sentence.
Constructors
public terminal(lexeme I, construct c)
Creates an instance of terminal with the given information

Arguments :
lexeme is the lexeme of the new terminal
construct is the next construct in a sentence

132

public terminal (lexeme 1)
Creates an instance of terminal with the given information

Arguments :
lexeme is the lexeme of the new terminal
construct is the next construct in a sentence

Public methods
lexeme getLexeme()
returns the lexeme of “this” terminal

7.1.3. Package JavAblInt.concreteSyntax.Parser

class Nlookl

An instance of the class Nlookl is a special object, containing : the stream of characters
with the code of the to parse program given as input, and different information on the
tokens and on the options of the parser.

Public methods
sentence [[RParser (InputStream)
this method returns the syntactic tree of the program given as argument,
corresponding to the IIR definition. The return value is a sentence.

Arguments :
InputStream is the text file of a Java program, that is supposed to be
syntactically correct, following the definition of "syntactical
correctness”.

In the IIRParser precondition, we use the notion of "syntactical correctness".
We will define here what this notion exactly means in this method.

The parser methods check that the construction given in entrance follow the
rules of the VTF syntax. But they don't check the following rules :

- it doesn't check that the declarations (after the "package"” and the
"import" declarations)
are class declarations.

- it doesn't check that the declaration in entrance has got allowed access
modifiers.

ex : the method would accept a class defined as "protected” and "static”

- it doesn't check that the declarations in the body of a class are allowed
declarations (not a class declaration)

- it doesn't check that a field is not declared with the type "void"

- it doesn't check that a field or a method is declared with an identifier.
; ex : you can declare : int = 1;

- it doesn't check that the statements defined in a simple method (not a
constructor) are different of a constructor call.

133

- it accepts that a designator is only followed by a semicolon but it
shouldn't be accepted.

- it doesn't check that a designator has got two consecutive lists of
parameters.
ex : you can have : toto.add(x,y)(z)

A program in entrance of this method is "syntactically correct” in our terms if
it respects the rules that are not checked by the parser.

That parser could be improved by adding code that would test all these
constraints. At the moment, the main method of the class CheckType checks all
these unchecked rules.

7.1.4. Package JavAblnt.concreteSyntax.Display

Class IIRDisplay

Public methods
static void ConstructDisplay (construct)
this method displays a object of type construct (sentence or lexeme) by calling
the corresponding method and initializing the level

Arguments :

construct is the to display construct

7.1.5. Package JavAbInt.concreteSyntax.Tools

public class CheckType

An instance of CheckType represents a special object, containing a main method
which cerates objects corresponding to the SAP grammar and checks the types of a
program given in entrance.

Fields
private static String CurrentClass the class which we deal with

Public methods
static void main(String args[]) throws Exception
this method calls the paser Nlookl, which creates an IIR tree.
Creating the SAP objects, it checks the syntax rules (not checked by the
parser) and all the type checking rules defined in the thesis "semantiques

operationnelles et domaines abstraits pour l'analyse statique de java” from
Isabelle Pollet (from p.25)

Arguments :
String is the file with the entrance program

134

class CheckTypeException

an instance of CheckTypeException represents a particular exception thrown by the
CheckType program.

Constructors
CheckTypeException (String)
This method creates an instance of CheckTypeException, reporting to the given
error message

Arguments :
String is the Exception message to throw

Public methods
static void ThrowException (int, String, String) throws CheckTypeException
The methods creates a CheckTypeException, with the exception messages
reporting to the different errors :

Arguments :
int is the number corresponding to the error message
String is the information needed to create an explicite message
(method name, invalid access modifier...)
String is the name of the class where the error occured

7.1.6. Package JavabInt.SAP

class cellOfListOfExpr

an instance of cellOfListOfExpr represents a cell of a list of expressions used in a |
method or a constructor call |

Fields
Exprv the expression of the current cell
cellOfListOfExpr next the following cell

Constructors

cellOfListOfExpr(Expr, cellOfListOfExpr)
creates an instance of cellOfListOfExpr with the given values

Arguments :
Expr is the expression of the to create cell
cellOfListOfExpr refers to the next cell of the list

Public methods

Type getType()
returns the type of the expression of "this" cell or null if the expression has

not been initialized

Abstract class Expr

135

This class implements the expressions of the VI'F grammar. It's useful to have a type
that gather all the expression types...

Fields
final public static String NULL the "null” value
final public static String LITT the expression is a litteral (int, float or boolean)
final public static String TERME an predefined operator applied on expressions
final public static String EXPRDES a designator
private String sortOfExpr the sort of the expression (one of the above-
mentioned)
Constructors
Expr(String)
creates an instance of Expr, of the given sort
Arguments :
String is the sort of the to create Expr
Public methods
String sortOfExpr()

returns the sort of the expression

abstract void putType(Type)
gives a value to the type of the expression

Arguments :
Type is the type of the expression

abstract Type getType()
returns the type of the expression

String prefToString()
allows the display of "this"

String suffToString()
allows the display of "this"

public_class Null extends Expr
an instance of Null represents the "null” expression in Java

Fields
private Type type the type of the expression

Constructors
public Null()
creates a new instance of Null

public Null(Type t) { super(NULL); putType(t);}
creates an instance of Null, whose type is known

Arguments :
Type is the type of the to create "null” expression

136

Public methods

void putType(Type)
gives a value to the current null expression

Arguments :
Type is the type of "this" expression

Type getType()
returns the type of "this" expression

void fulls()
gives to "this" expression the type of the "null” value

String toString()
allows the display of the expression

Abstract class Instr

This class implements the set of statements accepted by the VIF grammar. Every
statement is uniquely represented.

Fields
the sorts of statements
final public static String AFFECT an assignment
final public static String IF the statement “if”
final public static String WHILE the statement “while”
final public static String SKIP the statement “skip”
final public static String PROC a procedure call
final public static String RETURN the statement “return”
final public static String FONC a method call
final public static String CONSTR a constructor call
private String sortOflnstr the sort of the statement
private Instr lab The next Instr
Constructors
Instr(String s)
Instr(String s, Instr 1)
Public methods |
String sortOfInstr() |
Instr getNext()
void putNext(Instr 1)
Class Affect
This class implements the statement “assignment”
Fields
private Des des the designator of the current assignment
private Expr expr the expression of the current assignment

157

Constructors

Affect() creates an Instr of type AFFECT
public Affect(Instr 1) creates an Instr of type AFFECT with “1” as following
statement

public Affect(Des d, Expr e, Instr 1)
creates an Instr of type AFFECT with “1” as following

63

statement, “e” as expression and “d” as designator

Public methods
Des getDes() returns the designator of the current assignment
void putDes(Des d) puts a designator into the current assignment
Expr getExpr() returns the expression of the current assignment
void putExpr(Expr €) puts an expression into the current assignment
String toString() creates a string to allow the display of the
current assignment
Class tableOfNvars

This class is used when translating a declaration of procedure from IRR to SAP.
- All parameters must be added before the first local variable is (added).

Fields
private int nbrOfParams =0 number of parameters
private int nbrOfVars =0 total number of parameters and local variables
private int nbrOfPVIs = 0 total number including "internals"”

private String [] arrayOfNames array with the name of the variables
private Type [] arrayOfTypes array with the type of the variables

private listOfTypes | “listOfTypes” corresponding to the parameters
private Hashtable ensOfNvars ser of variables

Public methods
void makeDataStructures()

This method creates the arrays with the types and the
names of the variables, using the numbers of
variables and the information in the Hashtable.

int addParam (String p, Type tp)
This method adds a parameter in the table. It also
modifies the counters of variables and returns the
index of the variable in. It returns —1 if the variable
has already been defined.

int addLocalVar(String v, Type tv)
This method adds a local variable in the table. It also
modifies the counters of variables and returns the
index of the variable in. It returns —1 if the variable
has already been defined.

int addInternalVar(Type ti)
This method adds an internal variable in the table. It
also modifies the counters of variables and returns
the index of the added variable It returns —1 if the
variable has already been defined.

int getVarIndex(String s)
This method returns the index of a variable in the table.
1t returns —1 if the variable has not been defined yet.

Type getVarType(String s)
This method returns the type of a variable. If the
variable has not been defined yet, it returns “null”

138

| static String internalName(int i)
This method transforms an integer into an internal
variable name.
String [] getArrayOfNames()
This method returns the array containing the names
of the variables of the current tableOfNvars.
Type [] getArrayOfTypes()
This method returns the array containing the types of
the variables of the current tableOfNvars.
listOfTypes getListOfTypes()
This method returns a “listOfTypes” containing the
types of the variables given as parameters.
int getNbrOfParams()
This method returns the number of parameters
int getNbrOfLocalVars()
This method returns the number of local variables
int getNbrOflnternalVars()
This method returns the number of internal variables
int getNbrOfNvars()
This method returns the total number of variables

Class elementOfEnsOfNvars

this class implements a element of the set “ensOfNvar”

Fields
String n name of the variable
Typet type of the variable
inti index of the variable
Constructors

elementOfEnsOfNvars(String nl, Type t1, int il)

139

