
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

How computer science can assist theatrical practitioners?

Fontaine, Vincent

Award date:
2000

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/47903884-dc82-4428-bad5-e758165f9496

1

1
1
1
1
1
1
1
1
1
1
'I
1,
1
1
1
1
1
1
1
1
1

F acuités Universitaires Notre-Dame de la Paix

University of Namur, Belgium

Computer Science Department

How Computer Science

Can Assist

Theatrical Practitioners ?

Vincent Fontaine

Director: Prof. Jacques Berleur S. J.

Academic year 1999-2000

Master thesis presented in order to obtain the title of Maître en Informatique

English Français
(to) Sketch Esquisser, dessiner à grands traits

Sketching Dessin à main levée

Specifications Cahier des charges
Description précise, prescriptions

Stage Scène (en Pratique)

Stage acting Jeu de scène English Français
Stage design Décoration théâtrale

Stage des igner Décorateur de théâtre Actor Acteur

(Stage) direction Direction scénique Apron (stage) Avant-scène

(Stage) director Metteur en scène Audience Spectateurs

(to) Stage-manage Mettre en scène Back of the stage Dernier plan de la scène

Stage manager Régisseur (d'une pièce) Back stage Arrière-scène

Stage painter Peintre de décors Bottom stage Plancher de scène

(Stage) play Pièce de théâtre Brainwave Idée, trait génie, idée lumineuse

Stage playing Jeu de scène

Stagecraft Technique de la scène

Casting Théâtre : Distribution des r&les, casting
Informatique : Conversion explicite

de type

Stagehand Machiniste (to) Change of scene Changer de décor

Staging Mise en scène (en Pratique) Character Personnage

Theatre hall Salle théâtrale Comedian Comédien

Theatre manager Directeur de théâtre Computer graphies Infographie

Theatre production Mise en scène théâtrale Conductor Chef d'orchestre

Theatrical art Art théâtral Costume Costume

Vanishing point Point de fuite Costum(i)er Costumier

Walk-on (part) R&le : Figuration Craft Manuel, artisanal

Walk-on actors Acteur : Figuration Craft document Description précise, prescriptions de

Work Œuvre mise en scènes

(to) Direct Théâtre, Cinéma : Mettre en scène
une pièce, un film

Théâtre, Cinéma : diriger un film,
des acteurs, etc

4 Pocket French Translator Pocket French Translator

English Français English Français
Direction Théâtre : Mise en scène Performance Théâtre : Représentation

(en Pratique et en Abstraction) Cinéma : Séance
Cinéma, TV, Radio: Réalisation Musique : Interprétation

Director Théâtre : Metteur en scène Performer Théâtre :, Acteur
Cinéma, TV, Radio: Réalisateur Musique : Exécutant, interprète, artiste

Drama Art dramatique Placing in space Mise en espace, spatialisation
Le théâtre Play Pièce (de théâtre)

Drama critic Critique dramatique Playwright Dramaturge
Drama person Personne du drame Poetry Poésie
Drama work Œuvre dramatique

Practitioner Spécialiste, expert
Dramatic crit icism Critique dramatique Producer Théâtre : Metteur en scène
Dramatis person(ae) Personnage(s) Cinéma, TV, Radio : Producteur

Dramatist D ramaturge Production Théâtre : Mise en scène

Dress Costume
Cinéma, TV, Radio : Production

Dress rehearsal Répétition générale
Prompter Souffleur

Emotion Émotion Rehearsal Répétition (théâtrale)

Essence of the (drama) work Intentionnalité du texte, de l'œuvre

Feeling Émotion
Sensation

Representation Théâtre : Interprétation (de rôles)
Peinture : représentation

(to) Run Diriger, gérer un théâtre

Floor stage Plancher de la scène
Scenario Théâtre : Scénario

Footlights Rampe (de lumière) de l'avant-scène Scene Scène (en Pratique et en Abstraction)
Décor

Forestage Avant-scène
Scenecraft Scénographie

Front of the stage Premier plan de la scène
Scenery Décors

Front stage Avant-scène
Scenographer Scénographe

Ideas (wo)man Concepteur
Screenplay Cinéma : Scénario

Live theatre Théâtre de rue
Screenwriters Scénariste

Lighting technician Éclairagiste
Setting up and installation Aménagement

Mode! Maquette
Silent play Pièce muette

Narrative Récit, narration
Sketch Art : Esquisse, dessin à grand trait

(to) Perform Jouer, représenter une pièce Théâtre, TV : Sketch

2 Pocket French Translator Pocket French Translator 3

1
1
1 Abstract

1
1
1
1
1
1
1
1 Résumé

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1

T o the memory of Éric,

the first graduate of the family as an industrial engineer.

-Vincent

1
1

1•
1
1
1
1
1
1
1
1
1
1
1
1

1 1
1
1
1
1
1

Table of Contents

Introduction

State-of-the-Art

A) What is (Theatre) Direction? .. A-1

1) Where do brainwaves corne from? A-3

a) Unconscious process, intuition A-6

b) Poincaré's four phases of creativity A-8

c) Different senses of creativity .. A-13

d) Computer science creativity A-14

2) What about improvisation? A-18

3) What is theatre direction? A-21

a) Scenecraft, Drama, Theatrical Aesthetics and Theatre Direction A-21

b) How does the foundation of a play work? A-23

c) General theatrical aesthetics of theatre direction ... A-27

d) The theatrical aesthetic around the theatre direction A-31

4) Conclusion A-36

B) What is the relationship between real reality and virtual reality? B-1

1) Machines that produce images .. B-2

a) The real, actors and machines B-3

b) Similarity vs. Dissimilarity B-7

c) Materiality vs. Immateriality ... B-9

Table of Contents

2) The real and the virtual stage B-10

a) The two different classes of senses: the remote senses and the contact senses .B-12

b) The perfect illusion for misleading the senses B-14

c) The paradoxical situation .. B-15

d) Feeling and imaginary ... B-16

e) Does the virtual world need realism? .. B-16

Q Is the virtual a substitute of the real? B-18

g) The two kinds of virtual reality: the duplication and the new universe B-20

3) Conclusion B-22

C) The Visual Assistant project ... C-1

1) Introduction ... C-2

2) Computer and creativity .. C-3

3) Design of Visual Assistant software ... C-4

4) Goals of Visual Assistant C-6

5) Theatre Director's Requirements C-8

6) Computer vs. Theatre Studio ... C-11

7) Software development method .. C-13

8) Visual Assistant in academic theatre production .. C-15

9) Overview of the software ... C-17

10) Table of functionalities ... C-20

11) Conclusion ... C-32

D) Reusing of the existing knowledge ... D-1

1) Software Reuse ... D-2

2) Software Migration .. D-5

3) Reverse Engineering ... D-6

a) Difficulties of reconstructing architectures ... D-7

b) Static information is insufficient .. D-8

c) Reconstructing architecture in a vacuum ... D-10

11 Table of Contents

1
1
1
1
1
I l
1
11
1
1
1
1
1
,1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

4) Forward Engineering ... D-11

5) Re-Engineering .. D-12

6) Code translation .. D-13

7) Conclusion ... D-14

E) Software Architecture ... E-1

1) The object-oriented programming .. E-3

a) Important Object-oriented concepts use by C+ + .. E-3

b) A method to implement an object-oriented design ... E-8

c) Why using C + + language and not C language? E-16

d) And, what about the Java language? ... E-16

2) The architecture of object-oriented components E-18

a) Short description of the important components ... E-18

b) Other classes ... E-20

c) Description of the important components E-22

3) How can we design with event system? E-29

4) How can we draw a three-dimensional object on a two-dimensional screen? ... E-32

a) 3D World to 2D World E-33

b) 2D World to 3D World .. E-35

5) How can we save? ... E-36

6) How can we move in depth? .. E-39

7) Conclusion .. E-41

Conclusion

Bibliography

Appendix ... 1

1) French Translator ... 2

2) The code of the classes 1

3) The Lexer code ... 15

Table of Contents lll

1
1

1•
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1:

Acknowledgements

Many of my friends have graciously agreed to review specific chapters for con­

tent and/ or style. In addition, many of other friends have made numerous critical sug­

gestions. Here is an alphabetical list of them : Alain J ossart, Christian Willems,

Clémentine, Didier Roland, Elisabeth Gilen, Madalina, Moussa Wahid, Nora Condon,

Olfa Lamouchi and Roberto Giglioli.

I should not forget the contribution of Dominique Serron, theatre director, and

Pascal Georis, lighting technician. I thank them for their explanations about the theatre

field.

I want to express my gratitude towards my supervisors Professor J. Berleur S. J.
and Professor C. Beardon, at the University of Art and design of Plymouth, for their

understanding and support.

There are also a lot of people that I have not cited above but who helped me in

various ways. I thank all of them too.

Conventions used

Italics are used to indicate new terms, quotations and to put the stresses on different

components on a field or even on important words in close relationship.

Courier fontis used for programming codes.

Square brackets [] are used to add some missing word in quotations.

(s)he is used for he or she

He/ She is used for He or She

him/her is used for him or her

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1•
1
1
1
1

This work is composed of two sections. First, we will explore the different no­

tions that can be encountered in any artistic domain such as creativity, improvisation.

Then we specialise our analysis and explore the domain of theatre directors to under­

stand the diff erent components relevant to this profession.

Our interest in the theatre director field is legitimated by the fact that the soft­

ware visual assistant is intended, among others, to be used by them. Our aim here is to

understand this domain, so the software can response as much as possible to the needs

of the end users.

A chapter is developed about the virtual reality. The objective is to find out the

possibilities and the boundaries of this reality when dealing with the artistic domain in

general, and particularly with the theatre field.

The second section is more technical i.e. the stress is put on the programming

sicle of the work. Indeed we start by a subsection dealing with Visual Assistant and the

needs of the end users of this software and analyse in which way the software responses

to the requirements.

Another subsection deals with the reusing of existing knowledge. It is an oppor­

tunity and a learning experience for us to have a glance to the existing tools and meth­

ods and to place our works among what exists. The work performed is based on a Mac

version designed in C language and is intended to produce a PC version of the software

Visual Assistant designed in C + + language.

W e wend by the architecture of the program designed in this work, while ex­

plaining the major differences between C and C + + languages and the reason underly­

ing the choice of C + +, and not another language such as Java.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Over recent years there has been much interest in the relationship between

computers and theatre. In this section we will introduce some developments of the

digital technologies in the theatre field: on-line archives of theatrical materials, virtual

actors, use within performance, assistance for directors and assistance in theatre educa­

tion.

On-line archives

Hence archives of play texts, critical essays and review articles are, so far, the

richest resource for theatre within Internet. These sites have had time to evolve.

Among the most useful play archives, there is the Shakespeare Archive1 at the

Massachusetts Institute of Technology. Of course, we have a lot of other Shakespear­

ean sites.2 There is the possibility to access all Shakespeare's plays on-line. In addition,

each play is presented as a hypertext so the user is able to search for particular words or

phrases and learn of their background. Users can also participate in discussion groups

and find out other useful information on Shakespeare and performances of his plays.

Internet is also used to publish the work of less known living playwrights: it has

become a medium for them to advertise their work and perhaps get their particular

genius discovered by a theatre team or even a theatre manager.3 Other theatre profes­

sionals like designers, actors, scenographers ... are increasingly advertising themselves

on Internet.4 More, Internet is a general marketing tool for (local) theatres.5

1 http:/ /the-tech.mit.edu/Shakespeare/

2 http:/ /www.shakespeare.com

http:/ /www.rdg.ac.uk/ AcaDepts/In/Globe/home.html

http:/ /www.gh.cs.su.oz.au/ ~ matty/Shakespeare/

3 The Dramatic Exchange at http:/ /www.dramex.org/

ELAC on-line Plays at http:/ /www.perspicacity.com/elactheatre/index.html

Screenwriters and Playwrights Home Page at http:/ /www.teleport.com/ -cdeemer/scrwriter.htm
4 The British Actors' Register at http:/ /www.internet-ireland.ie/ power/ actor/ actor.htm

Richard Finkelstein's designs at http:/ /www.artsozoo.org/rf/

State-of-the-art a

On-line performances

Though there has been some use of Internet in live performance. For example,

George Coates' performance works6 uses real time Internet audience participation in him

theatre performance.

Another work is the Daisy's Amazing Discoveries7 (1996), that uses Internet to

introduce professional actors, by adapting them to the limitations of the current on­

line technologies, to make audiovisually and spatially oriented drama. A slideshow

with actors' voices is one of the many media Daisy uses.

David Blair and Tom Meyer (1997) have explored the possibility to tell stories

in multi-user three-dimensional environments incorporating synthetic actors. This in­

volves developing an Internet site, which can provide users and readers with text and

still and moving images related to a story in the order they request. It can also provide

three-dimensional environments in which to explore the narrative and the ability to

conduct dialogues with other users/ readers.

Talent Source at http:/ /www.talent.corn.au/ts/menu.html

5 Theatre Central at http:/ /www.theatre-central.com/

6 http://www.georgecoates.org/

7 http:/ /www.coronet.fi/ daisy/

b State-of the-art

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Il

1
1
1
1

Director's Assistant and Production Assistant

The Director's Assistant8 application provides a software environment in which a

director or a playwright can create various dramatic elements through which the dra­

matic whole of a play to be staged can be analysed and pre-designed. As the elements

and their relationships to each other are defined, the software will also be capable of

producing a variety of visualisations on the structure of the play under the pre-design

process. More elements and their contents are introduced and networked with each

other, allowing the user to try different approaches.

In order to bring the conceptual ideas into actual visualisations and into the fi­

nal realisation, and to facilitate even more real learning situations, the Director's Assis­

tant can be used together with the Visual Assistant9 software, the software of this disser­

tation, and the Production Assistant software. Production Assistant is basically a man­

agement system for controlling, booking and organising the required resources of a

drama performance, planning production schedules and marketing and overviewing the

representation information from different viewpoints. For example, from the view­

point of a theatre, a theatre director, or even a stage designer.

Scriptwriter's Assistant

The scriptwriting software, called Scenario 10
, allows the user to develop a simply

sketched-out idea into a play, a short or full-length movie script, a television series,

advertising scenarios, or even documentary film script. Scenario guides users by the

means of three series of questions helping them to corne doser and doser to their

topic, characters and scenes. lt is designed for a dassroom or a distance learning situa­

tion.

8 More information and beta version of the software can be obtained from http:/ /vconf.hut.fi/hamlet/

9 lt helps in the visualisation of potential set designs by bringing together a variety of newly created or

archiva! material within a simplified stage context.

10 Developed by SU.MA.FA Productions Ltd, Paris.

State-of-the-art C

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

_I

What is
(Theatre) Direction1

In this chapter, we will explain in the first step the notion of creativity and men­

tion some comments from man y authors and scientists. W e will try to present an ac­

count for the way of this strange feeling that is the creativity, especially in the field of

theatre. Most of this first partis based on the work of Margaret Boden2
• At once, we

will relate a definition given by Magaret Boden to creativity and a second definition

derived from the dictionary the Petit Robert about the subject. The aim is to get an

idea about the notion of creativity. After that, we will bring into the scope the remarks

of some authors who said creativity is an unconscious process, an intuition. Further­

more, we will define Poincaré's four phases of creativity to establish the link between

1 ln English, we can use (theatre) production or well (theatre) direction for the « mise en scène ». The two

generate some confusion because they have other meanings in the movies, television and radio fields.

(See appendix French Translator) W e have chosen (theatre) direction for this work.

2 Margaret Boden, Ihe Creative Mind, Abacus, London 1992.

the domains of Arts and Science. Is it possible to have the same sense in the two do­

mains? Next, we will define two different meanings of creativity, one historical and the

other psychological, to put emphasis on the importance of a discovery.

In the second step, we will define and explain what is improvisation. At the

same time, we will establish the difference between improvisation and drama3
•

In a third step, we will corne to the subject of this section, which is the theatre

direction. We will illustrate the work of the theatre director3. We will try to define the

task of the theatre director and how to relate it to the other components like scene­

craft3, drama, theatrical aesthetics. Moreover, we will explain the different steps to

make a play3 from the casting; until the dress rehearsaP.

Finally, we will see the basic theatrical aesthetics of the theatre direction. This

illustration will help understanding the domain of application of the Visual Assistant4

software. In fact, we prefer to define the theme of the software, because if those no­

tions are not previously defined, it is not easy to get the essence of this work. W e think

that after that, we have in hand all we need to become imbued with the job of theatre

directors.

3 See appendix French Translator
4 That is the developed software in this work. The Visual Assistant software aims to support theatre

people, especially the theatre directors, by sketching (See appendix French Translator) the visual tasks in

general.

A-2 What is (Theatre) Direction?

1
1
1
1
1
1
1
1
1

1

I l
1
1
1
1
1
1
1
1
1
1
1

1
1.
1
1
1
1
1
1
1
1
1 ,,
1

,.
1
1
1
1
1

11
Il

As said before, our starting point will be a trial of definition(s) of creativity. The

task is all but easy.

If we interpret this strictly, creativity would corne out from nothing, which is

impossible in our standpoint.

Colin Beardon provides us with another definition of creativity:

If we interpret strictly his definition, creativity would not corne from nothing,

and it is reduced here to a question of meaning. Furthermore, it is impossible before

practising to express the meaning. How does Colin Beardon define meaning? Does he

consider that everything has a meaning? Unfortunately, these questions will remain

unanswered; we did not find any clarification about the notion of meaning in any of

the author's articles.

5 See appendix French Translator

6 Ob. Cit., Margaret Boden, 1he Creative Mind, Abacus, p. 1

7 Colin Beardon, 1he design of software to support creative practice, in: Proceedings of /DA TER 1999,

Loughborough University 1999, p. 4

What is (Theatre) Di.rection? A-3

W e can also look at the definition of a dictionary8 to have another point of

v1ew:

T o understand this sentence, we have to look for the meaning of creation and

invention.

For the first one, i.e. creation, we have some different definitions, depending on

the context:

• " Term of religion: Action to give the existence, to rise from nothing. "10

• "Action to makeldo, to organise a thing that did not exist be/ore. "11

• " Term of pbysics: Creation of pairs: materialisation. "12

In the case of the second one, i.e. invention, we can also see some different

meanmgs:

• "Didactic: Action to find. "13

• "Action to create or to discover. "14

• "Imaginary thing, discovered thing. "15

• "Special word of the Arts language (technical, critic, historie, etc}:

ability to build in the imaginary. "16

8 Le petit Robert

9
« Pouvoir de création, d'invention: inventivité », Le Petit Robert.

10
« Terme de religion: Action de donner l'existence, de tirer du néant», Le Petit Robert.

11
« Action de faire, d'organiser une chose qui n'existait pas encore », Le Petit Robert.

12
« Terme de physique: Création de paires: matérialisation», Le Petit Robert.

13
« Didactique: Action de trouver » , Le Petit Robert.

14
« Action de créer ou de découvrir (qqch. de nouveau)», Le Petit Robert.

15
« Chose imaginaire, inventée » , Le Petit Robert.

16
« Mot spécial au langage des Arts (technique, critique, histoire, etc): Faculté de construire dans l'imagi­

naire » , Le Petit Robert.

A-4 What is (Theatre) Direction?

1
1
1
1
1
I l
1
1
1
1
1
1
1
1
1
1
1
1

1
1,
1

Il
1
1
1
1
1
1
1
1
1
1

1•
1
1
1
1

1•
1

~'

Now, we can analyse what the dictionary tries to tell us. First, we need power,

i.e. ability to have creativity and inventiveness. The use of the word power may suggest

that not everybody can do it and also that, if a persan has that capacity, it is neither

endless nor permanent.

What is creation? As Margaret Boden, the dictionary gives the same meaning in

the two first parts of its definition. But, it adds in the third part the capacity of materi­

alisation. In other words, creation is something that could be material or immaterial as

well. W e notice that the definition given by the dictionary enlarges the scope of crea­

tivity to make it encompass other kinds of creativity that were not taken into account

by the definition given by Margaret Boden.

What is invention? Is it the same as creation? Invention is the ability to build in

the imaginary17
, allowing us to go to the unreal world. W e can say that creation and

invention are very similar. Moreover, the definition of the dictionary about the crea­

tion talks about an idea of discovery from nowhere by the means of a certain power.

But, is it possible that this power cornes from nowhere? In the same way, is it possible

that discoveries corne from nowhere, with no previous acquisitions coming from the

past experiences?

By comparing the definitions of Colin Beardon, Margaret Boden and the defini­

tion given by the dictionary, we can conclude how difficult is the task that we are un­

dertaking, i.e. defining the creativity and its origins. This task seems to be more diffi­

cult than what we can think, no consensus is reached about the definition of creativity.

Indeed, let us interview several people about creativity, for example ten people,

it is probable to get ten different definitions, and if we will go further and ask these ten

persans to judge if some listed ideas are creative or not, we will be surprised of the re­

sult and certainly, there will be disagreement among this group whether an idea is crea­

tlve or not.

17 See invention's definition given from Le Petit Robert.

What is (Theatre) Direction? A-5

W e cannot deny that creativity exists and that it happens sometimes but the

question is how does it occur? Is it a mystery? Oris it something that science can ex­

plain? T o be more precise, the question can be divided into two parts, the first one will

be asking how does creativity happen and the second one being what makes it occur­

ring? These two questions guide us to look at two different sicles of creativity. The way

creativity happens is a puzzle, so it can be explained in scientific terms and as Margaret

Boden said:

The major issue is to know where creativity cornes from. lt is a mystery and

mysteries are beyond science.

All the definitions listed above do not provide us with a satisfactory answer

about the origins of creativity. But, what if we explore the track of intuition as origin

of creativity?

a) Unconscious process, intuition
Many researches indicate that creativity is nota matter of imaginary. They sim-

ply recall the sudden appearance of the solution to a problem that individuals had been

working on with no apparent success.

The suddenness of the solution is not its only strange feature. The answer to the

prior question may be of an unexpected kind. Picasso, for example, implied that he did

not form any expectations, that he could advance his art without having to look where

he was going:

18 Ob. Cit, Margaret Boden, The Creative Mind, p. 1

19
« Je ne cherche pas, je trouve », Picasso.

A-6 What is (Theatre) Direction?

1
1
1
1
1
I l
1
1
1
11
1
1
1
1
1
1
1
1
11
I '
tJ

1
1
1
1
1
1
1
1
1
1
1
1
1

1•
1
1
1
1
1
1

W e can also see that genius people are the same as we are. In fact, they have de­

veloped this sense of creativity more than normal people have, and this looks like

magic for usual people.

From the creation point of view, intuition is an enigma. Sometimes, it is experi­

enced as a sudden flash of insight, with no immediately preceding ideas in conscious­

ness. Hadamard23 is a case in point:

Insights do not corne from gods, and they do not corne from nowhere, either.

Flashes of insight need prior thought processes to explain them. If novelty is grounded

in prior ideas, can it really be novelty?

Coleridge25 regarded the unconscious as being crucial in the creation of poetry26
•

His poetic vision of Xanadu27 cornes to him in an opium-induced reverie. In this case,

the new ideas were fleeting, and easily lost through distraction.

20 W. Hildesheimer, Mozart, London 1983, p. 15

21 See appendix French Translator

22 Ibid., p. 15

23 (French: 1865-1963) mathematician who had a great influence on the mathematical French school at

the beginning of this century.

24 Koestler A., TheActofCreation, Picador, London 1975, p. 117

What is (Theatre) Direction? A-7

b) Poincaré's four phases of creativity
In the same way, Poincaré28 suggested that creativity requires the hidden com-

bination of unconscious ideas. He distinguished four phases of creativity:

• Preparation:

lt involves conscious attempts to solve the problem, by using or explic­

itly adapting familiar methods. There is often no apparent success. Seem­

ingly, as the experience is unproductive, it has also a frustrating taste.

• Incubation:

The conscious minci is focused elsewhere, on other problems, other pro­

jects, or even on a sightseeing trip. The fruitful novelties are initially

generated. Poincaré said that below the level of consciousness, ideas are

being continually combined with a freedom denied to waking, rational

thought. He insisted that this phase includes productive mental work,

not simply a refreshing rest.

• Illumination:

After that, cornes the flash of insight. Despite its unexpectedness as a

conscious experience, Poincaré ascribed a significant mental history:

"sudden illumination [is] a manifest sign of long,

unconscious prior work "29
•

• Evaluation:

Finally, deliberate problem solving takes over again. As the new concep­

tual insights are itemised and tested.

25 (English: 1772-1834) Poet, philosopher, dramatist, translator, journalist, preacher, critic, theoretician

of the religious, of the culture and the State. He is a great person of the English romantic literature re­

vival.

26 See appendix French Translator

27 N ame of the dream palace that Coleridge evoked in his poem Kubla Khan.

28 (French: 1854-1912) Engineer and PhD in mathematical sciences. He was professor of the university of

Caen, and after this, of the University of Paris. At thirty-three years old, he was member of the French

Academy.

29 Henri Poincaré, The foundations of sciences: science and bypothesis, The Value a/Science, Science and

Method, Washington 1982, p. 389

A-8 What is (Theatre) Direction?

1
1
1
1
1
1
1
1
1
11
1
1
1
11
1
1
1
1
1
11

i

1
1
1
.1
1
1
1
1
1
1 1,
1
1
1
1
1
1
1
1
1
1

Without ignoring the role of consciousness, Poincaré insisted that

ln the demains of mathematical and/ or scientific creativity, Poincaré's account

is well suited. Particularly, in the case of specific problems that were explicitly identi­

fied and explored during the preparation phase and used as a test in the evaluation31.

But it is not always that way in artistic creativity. The artists may have no clear goal in

mind. Moreover, painters, composers and theatre directors spend many hours evaluat­

ing their brainwaves. They sometimes imply that no such reflection is involved. As

quoted above, Picasso said: « Je ne cherche pas, je trouve. » This is not to show that Pi­

casso did not use no evaluation: How did he know that he had found it? When did he

find it? lt shows only that, in some cases, he judged that the novel structure did not

require any modification.

Complete illumination of this kind is comparatively rare. Composers usually

add corrections to their manuscript scores; art historians constantly discover the re­

jected first thoughts of the artist, hidden under the visible layers of paint; theatre direc­

tors try some different positions of characters12 on the stage32
, change the colours of the

costumes in relation with the scenery32 and the footlights32
, etc. In summary, the theatre

director adapts the stage directions in all the process of rehearsals.

30 Ob. Cit., Margaret Boden, 1he Creative Mind, p. 20

31 Normally, Poincaré said of verification and not of evaluation phase. ln fact, it's more opportune to

speak of evaluation in the domain of the art, the term verification being more suited for the scientific

domains.

32 See appendix French Translator

What is (Theatre) Direction? A-9

In short, Poincaré's four phases theory allows us to draw a conclusion about the

achievement of innovation in the artistic and scientific domains. Indeed, arts and sci­

ences achieve their innovations in broadly comparable ways.

What is the unconscious work, and why must it be preceded and followed by

consciousness? Poincaré's answer was that preparatory thinking activates potentially

relevant ideas in the unconscious, which are unknowingly combined there. A few are

insightfully selected because of their aesthetic qualities, and then refined by conscious

deliberation.

Obsessive ideas are sometimes so outlandish, and perhaps also disorganised, as

to be judged mad. Certainly, the dividing line between creativity and madness can be

unclear. Aristotle said that no great genius has ever been without madness, and Charles

Lamb33 wrote to his friend Coleridge:

But very often we can tell the difference. For instance, a" schizophrenic word­

salad" can have the both interpretations: the creativity and the madness.35 But it shows

no psychological structure comparable to Poincaré's four phases, and it rarely produces

ideas which others recognise as creative. At most, it may provide eues triggering some­

one else's creativity.

33 (English: 1775-1834) He was born in the strange district of the Inner Temple in London. He was poet

and essayist.

34 Livingston Lowes, The Road to Xanadu: A study in the ways of the Imagination, Constable, London

1951, p. 498

35 With full of surprises. Sorne psychiatrists can find that is creative.

A-10 What is (Theatre) llirection?

11
1
1
I,
1·

1
1
11
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1,
1

1
1
1
1
1
1
1
1
1
1
1 ,.
1
1
1
1
1
1
1

We can also see Koestler'6's remark. He said:

e histo~,of humgJ;} thought is/tùl ofi

hear of the anti-climaxes37
, the misse o unities, whic

Even an exciting idea can turn out to be a dead end. Still others are discarded in

error, their creator being blind to their significance. The mistake may be recognised

later by the creator, or it may not.

Poincaré attempted to answer this question by appealing to the creator's aes­

thetic sensibility:

'" ll the combination5cJof ideas] 'JPOuld be ~d in corisequenc
,,,,,, ~- .,,~J=\{~\~~~i;tt: '.d{ff~Pj.:é~L :· ·,.

automatism of the subliminal self, but only the interesting ones would bre

into the domain of consciousness. And this is still very mysterious. What is the

cause to pass the threshold, white others remain belo,w? /s it a simple chance
~~

which con/ers this privilege? Evident/y not ... What happens then? Among the
r:C·i:.,

·mbers 9/cpmbinq~if/a?:JJ blindlyJj:,rmed ~ sublimin{ll self, al ,
·»;;:-:-•,,::-: . " .::;:,·1::::r>«

all are without effect on the aesthetic sensibility. Consciousness will never know

them; only certain ones are harmonious, and, consequently, at once useful and

beautiful. Tbey will be capable of touching the speciàl sensibilit:y of the geometer

36 (Hungarian: 1905-1983) Talented novelist, essayist, farnous journalist and dreaded larnpoonist. He

belongs to the category of writers who have renounced to their mother language for writing in English.

37 i.e. deceptions.

38 Ob. Cit., Koestler A., The Act of Creation, p. 217

39 Ibid., pp. 391-392

What is (Theatre) Direction? A-11

The citation above describes the experiences of many creative people, including

Poincaré himself, and it allows for mistaken insights. But it does not tell us what fea­

tures make a combination seem harmonious, still less useful. Nor does it tell us what

sorts of combination or transformation are likely to be promising, or how their prom­

ise can be intuitively caught.

These questions about the origin and recognition of insightful ideas can be an­

swered only after being able to clarify the concept of creativity, only after distinguish­

ing mere newness from genuine originality. Without a coherent concept of creativity,

we cannot distinguish creative ideas from uncreative ideas. And if we cannot do this, we

cannot hope to discover the processes by which creative ideas arise.

People who want to demystify creativity usually say that it involves some new

combination of previously existing elements. Haramard, for example, wrote:

ln general, combination theories identify creative ideas as those, which involve

unusual or surprising combinations. Many psychologists assume that the more unusual

ideas are, the more creative they are.

40 Ob. Cit. , Koestler A. , The Act of Creation, p. 120

A-12 What is (Theatre} Direction?

1
1
1
J.
1

I l
1

1
1
1
l j
1
1
1
11
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

c) Different sen ses of creativity
From now, we can also see the definition of different senses of creativity. One

sense is psychological: P-creative, the other historical: H-creative. Both are used to de­

fine corresponding senses of creative (and creativity) which describe people.

• The psychological sense concerns ideas, as well in science, in music, in paint­

ing and in theatre, etc that are fundamentally novel with respect to the indi­

vidual mind which had that idea.

• The historical sense applies to ideas that are fundamentally novel with re­

spect to the whole of human history.

Although H-creativity is the more glamorous notion, and is what people usually

have in mind when they speak of real creativity, P-creativity is the more important for

our purpose. In fact, with Visual Assistant, we try to help each one to express his/her

creativity, with no regards to the previous existent creative works clone by the person

using the Visual Assistant or the work clone by others.

The familiar adulation of individuals' H-creativity underestimates the extent to

which discovery is a social process. It follows from all of this that no purely psycho­

logical criterion, indeed no single criterion, could pick out what are, by common con­

sent, the H-creative ideas. But this does not matter: in understanding how creativity is

possible, P-creativity is our main concern.

P-creativity is crucial for assessing the creativity of individual human beings,

their ability to produce original ideas. Ability is a power that is more or less sustained.

In other words, a person's creativity, like his/her intelligence, is a relativity long lasting

quality.

What is (Theatre) Direction? A-13

d) Computer science creativity
T o end this first point, we can say that there exists a set of creativity: art creativ-

ity, maths creativity, etc. But what about computer science creativity? Does it exist?

How do computer scientists capture the creativity of someone else inside a program?

There are computer programs and there are computational concepts. If a pro­

gram fails to match human thoughts, we cannot conclude that the theoretical concepts

underlying the program are irrelevant. Computer scientists are as creative as anyone

else in other fields, and new computational concepts, new kinds of programs and tech­

niques are continually developed.

A program is what computer scientists call an effective procedure. An effective

procedure does not need to be effective in the sense of performing the task for which it

is used: doing an addition, recognising a harmony, writing a sonnet, placing the charac­

ters on the stage, calculating the intensity of lights, doing the placing in space41 to ex­

press the distance and/ or the closeness, etc. All computer programs are effective proce­

dures, whether they succeed in the task, which we would like them to do, or not.

An effective procedure is a series of information processing steps which, because

each step is unambiguously defined, is guaranteed to produce a particular result. Given

the appropriate hardware, the program tells the machine what to do and the machine

can be relied upon to do it. The computer will do precisely what the program orders it

to do.

A program can also be defined as a series of rules, for example. The early artifi­

cial intelligence workers, who first defined heuristics as effective procedures, developed

the related concept of a search-space. This is the set of states through which a problem

solver could conceivably pass in seeking the solution to a problem. In other words, it is

the set of conceptual locations that could conceivably be visited. Conceivably here

means according to the rules.

41 Or even spatialisation. See appendix French Translator

A-14 What is (Theatre) llirection?

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Sorne of the most important human creations have been new representational

systems. They include forma! notations, such as Arabie numerals, chemical formulae,

or the staves, minims and crotchets used by musicians. Programming languages are a

more recent example, offering effective procedures of many different kinds. The com­

puter has its own notation and can represent the diff erent models made by the theatre

director. In fact, we can think that we do not have more reduction with the computer

notation than the craft document42 written by the theatre director.

A question one can ask here: could creativity be based on rules? Let us see what

is happening in music and theatre fields for instance. There are rules in music also

which define a metrical search space and no one could say that music is nota creative

action. Moreover, in the theatre field, we have a panoply of rules that must be re­

spected by the different stage persons: the theatre director must respect the disposition

of the characters, the ray of lights, etc; the scenographer42 must respect the size relation­

ship between objects and actors, etc.43 As music, theatre direction has a metrical search

space and no one can say that the theatre field is not creative. To conclude, we can say

that computer science could be as creative as any other field.

On the other sicle, one can ask whether constraints and creativity could exist

together, especially in the context of computer programs. People speak in terms of

rules and constraints in the way of making the software. The critics say that these rules

and constraints must be irrelevant to creativity, which is an expression of human free­

dom. But constraints on thinking are what make it possible. In fact, constraints map

from structural possibilities, another one by exploration and modification of the struc­

tural possibilities. Whether the added constraints to reach the new possibility are aes­

thetically pleasing, as opposed to being merely ingeniously productive, is another ques-

42 See appendix French Translator

43 See the next section of this chapter: W'hat is theatre direction?

What is (Theatre) Direction? A-15

If we drop all these constraints to provide new ones, we do not invite creativity

but confusion. W e do not want to say that the creative minci is constrained to do only

one thing. Even someone who accepts all the current constraints without modification

would have a choice to do it.

For example, J.S. Bach was constrained, by his own creative decision, to com­

pose a Fugue for the Forty-Eight in C minor, so he was constrained to do certain things

and not others. But within those musical constraints, he was free to compose an infi­

nitely large range of themes. Similarly, when we speak, we are not limited to say just

one thing because of the grammatical rules.

In the same manner, when a theatre director is constrained to make his/her

stage acting44
, that means that (s)he is constrained by his/her own creative decision to

do a thing and not another. But, within the constraints of his/her conception of good

theatre direction, (s)he can compose a lot of different manners to stage-manage44 the

play, to interpret the drama work, etc.

Margaret Boden invites us to explore another sicle of computer science. Pro­

grams could help explaining creativity, human thought processes, and the mental

spaces they inhabit, are largely hidden from the thinkers themselves. The sort of think­

ing that involves well-structured constraints can be better understood by comparing it

with problem solving programs, whose conceptual spaces can be precisely mapped.

Imprecise thinking, such as poetic imagery, can be understood computationally too.

The point of interest of Margaret Boden is important, sure, but is not the issue

here. Indeed, we are interested to another aspect, that consists in what sense programs

can modelise the creativity of someone and in which sense they can help to catch the

imperfect sicles of the product and help to enhance its quality.

44 See appendix French Translator

A-16 What is (Theatre) Direction?

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
,1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Sure, by modelising, the theatre director could save money and time. But what

we want is a little bit more than that. It could be how the programs could help

him/ her to express and visualise what (s)he intends to perform.

By the means of the computer, we want to provide the theatre director with a

tool permitting him/her to put out the maximum of problems when (s)he realises a

new play. This with the aim to refine the raw ideas, to catch the imperfections and to

enhance the quality of what (s)he intends to produce, with a maximum of computer

assistance. This assistance is not intended to provoke a degradation of his/her creativ-

1ty.

What is (Theatre) Direction? A-17

Drama in its common usage suggests the hegemony of the prescribed script, i.e.

the written and the spoken word, but it is now universally accepted that theatre is a

matrix of many things, which are called languages in the field of theatre: colour, sound,

movement, staging46, etc.

ros . , .
* .
w -

the skill ofiusing bodies, space, a{l,human r~sources erate a coherent

bysica ession O an idea a situ . - - en perhaps a text); Ïo .

ne

, ment, a~,to do it à l'improvis(~6 as thr;~ugh taken by ~u~'h"'"1·se, without preco,,p-
.%f ::f=··' ''\)fr• ' qffa:-'

1 ceptions . . :t~& -~

W'here improvisation is most effective, most sp

by0'taboo
~ V-:,A(b?r?..At..

·intégrait

environm:,çnt or context. ~ nd consequenJl-y (simulta
* <:ir' l~\ . +jijJJft~,f#- @§

text in thé'most appropriate shape, making it recogni - . ~. ~

sly) ~esses that con-
=-:=:

others, 'realis
"'t';

it as act. ln that sénse imJJrovisâ.iion may corne close t

45 Forst A. and Y arrow R., Improvisation in Drama, Macmillan, London 1990, in the opening pages.

46 See appendix French Translator

47 (American: 1874-1963) He was poet and writer. His work has a important place in the American poesy

of this century.

48 Ob. Cit., Frost R. and Y arrow A., Improvisation in Drama.

A-18 What is (Theatre) Direction?

1
1
1
1
1
1
1
1
1
1
1
1
1
11
1

1

1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

Improvisation is probably one of the most important creative features that have

been (re)discovered this century. In the history of theatre prior to our modern area,

improvisation was usually relegated to the techniques of low comedy forms.

It is partly through the development of the avant-garde and jazz in the twenti­

eth century that it has become a prominent feature of all live arts. Eminent modern

theatre practitioners49 such as Constantin Stanislavski50 and V sevolod Meyerhold51 used

improvisatory techniques in their rehearsal processes. Antonin Artaud52 saw it as cen­

tral in the making of theatre:

It was not, however, until the work of Jacques Copeau54
, that improvisation

came to be used as a central creative element in the training of actors. Improvisation is

now well established as the starting point of all western theatre training, in every kind

of educational institution from the conservatoire to the university.

49 See appendix French Translator
50 (Russian: 1863-1938) He was actor, an important theatre director and theatre manager. Moreover, he

was a reforming theoretician of drama and lyric arts, and his work has influenced the theatre field.

51 (Russian: 1874-1940) He was the champion of anti-realistic theatricality and a more inventive theatre

director of the twentieth century. His work has extended the perspective of theatre direction to the

infinite.

52 (French: 1896-1948) He was in chronological order of his life: poet, actor, scenographer and theatre

director. His works have influenced the second half of the twentieth century.

53 Artaud Antonin, The theatre and Its Double, Caulder and Boyers, London 1970.

54 (French: 1879-1949) He was linked to the literature of his period, the first general manager of la Nou­

velle Revue Française, drama critic (See appendix French Translator) of !'Ermitage and la Grande Revue.

As he knew the loss of credit of theatre at his time, he lived with the wish to squeeze together theatre

and poetry. In fact, there were a lot of confusions between the two of them in his century. His effort was

to refine the techniques and the customs on the stage.

What is (Theatre) Direction? A-19

Improvisation has become the ground or basis of the creative process of training

performers55
• Every performer needs to understand and to gain the skill to improvise, be

it freely or within a rigidly prescribed text. Improvisation is the vehicle through which

the student actor develops his creative technique, it is a rehearsal tool, it is the means of

making new texts and, finally, it is the factor, which signifies all live theatre55
•

W e have discovered another dimension in the anistic field: improvisation. Our

question is: can a program encompass this dimension? lt is not easy to answer such a

question, especially if we think of improvisation as the act of the actors and not of the

theatre director to whom the program is designed. But if we think of improvisation as

something that the theatre director can do, our answer to the question above will be

positive.

55 See appendix French Translator

A-20 What is (Theatre) Di.rection?

1
1
1
1
1
1
1
1
1
l i
1
1
1
1
1 ,1
1
1
1
1

1
il
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

a) Scenecraft, Drama, Theatrical Aesthetics and Theatre

Direction
The subject seems simple and very restricted. But, if we think about it more, we

can see that, in reality, it is very complex and with an infinite area. For most people, it

is summarised by a material question. The theatre direction is reduced to the good or

bad performance of a drama work56
, to the exuberance of the dresses, and to the num­

ber of walk-on actors57
• W e can consider that theatre direction and scenecrafi are in close

relationship, but are very different:

56 In Art, the term dramatic bas not the same meaning. lt is the set of the theatrical activities, generally

seen at the professional level.

57 See appendix French Translator

58
« La scénographie n'est qu'une partie de la mise en scène. Elle s'occupe des aménagements matériels du

théâtre et de la représentation en perspective. Tandis que le rôle du metteur en scène est de s'occuper de la mise

en espace (spatialisation}; mais aussi de diriger l 'intention de l'œuvre, avoir une harmonie entre les acteurs,

les objets, la musique, le son, l'éclairage, les couleurs, les habits, et le texte original. » A conversation we had

with Dominique Serron, theatre director.

What is (Theatre) Direction? A-21

But, out of these considerations, we can see that the theatre direction merges

into the drama work. W e can consider that we have two different notions:

=n . '-'<:·--;tJJJ@Y';{"~=-X:···--·· ·~ -@-~-:m:·vmirl:m~-,, _, ,w··'t:;@··;ct/0.tr--.,,·'"'·'

• On one sicle, the drama, i.e. the own work of the poet, die a.rama-

tisf:i! , 4
-' u.

=·~r, -,-::, ::=:::. =3/: --- 9J-

he other siéle, the Niiection, i.e.~îh,e corn
.... , ,jfü····· ·,4•·

whô' converge to the performance, with regards to any degree.

These two different fields of Art can be in close relation. When a playwright59

thinks about the theatrical dispositions that they do not corne necessarily from the per­

sonality and the passion, (s)he makes theatrical art59
• When a comedian throws some

emotions into relief, to which the work's author has not given a sufficient importance,

(s)he does drama.

Although the limit between the two arts is not real, we do not examine drama,

but theatrical art. It is just for making the subject easier.

W e try to explain the general aspect that the performance must have and the de­

termination of the special effects of the acts, in which the play is decomposed.

W e want to discuss the development of the theatre direction of a play and its

theatrical aesthetics, but not about the theatrical architecture, or the decorative paint­

ing, the difficult perspective science, the programming of the set of light with the com­

puter, the placement of the scenery, etc.

The director must transpose the original work, and his/her role is to direct the

audience59's attention towards the world of the author and on the emotions that (s)he

wants to communicate. W e will just be interested in this most important aim of the

direction, which is to enable a good presentation to produce a maximum of feelings for

the audience, which would be amazed by the beauty of the work. W e have therefore

the director' s interpretation of the work. Of course, the director knows the general

emotions of a particular author, but (s)he can never retransmit the same emotions or

ideas of another persan entirely.

59 See French Translator

A-22 What is (Theatre) llirection?

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

J

" Theatrical aesthetics is the study of principles and the general or par­

ticula1rules, whfÀ:b govern .t/Je perform M, e of dr4:7JJ.~ work
, , =·-··=-(w-~--'' - =·\t· ,.- ·===·=·;;~·

production of emotions and beauty. "60

Finally, we must not forget the most important work of the director: human re­

lations. Good direction depends on the goodwill of everybody. Each person has its

merits, which must be valued and developed as much as possible. The director must

direct everyone under his/her responsibility as (s)he wants.

" The artistic part is fundamental, but there are many other things that

mûstWf3f' looked a uch as w,15rganisat of the p and espe ally com ,.u-

nication so that the team and the actors achieve what is expected from them. "61

b) How does the foundation of a play work?62

The role of the director is to adjust at the best the different steps and compo-

nents of a play. We can compare the director to a conductor63
: both must take into con­

sideration the aspects as the space stage, the needed material, the labour, the light, the

scripts and the period. In fact, a play is a real co-ordination work. The director is not

only the person who manages the place of the abjects and the actors, but also the co­

ordinator of what is the play. And we can say that the play is as a meticulous Swiss

watch: things are left to chance as less as possible.

w Becq de Fouquières Louis, L '.Art de la mise en scène: essai d'esthétique théâtrale, Entrevues, Marseille

1998, reediting of 1884, p. 10

61
« La partie artistique est fondamentale, mais il y a beaucoup d'autres choses qu'il faut regarder comme

l'organisation de la pièce, mais surtout la communication: faire ressentir à l'équipe, aux acteurs ce que l'on

attend d'eux. ». A conversation we had with Dominique Serron.

62 Based on conversations with Dominique Serron and Pascal Georis, lighting technician (See French

Translator).

63 See appendix French Translator

What is (Theatre) llirection? A-23

Firstly, the theatre director and the theatre manager64 have to reach an agree­

ment in terms of the choice of the text to run64
• Then, the theatre director composes a

team: stage manager64
, scenographer64

, costumers64
, lighting technicians64, actors, etc. Once

composed, the team will have meetings to co-operate for preparing the drama work. 65

After that, the director can put on the play by distributing all the roles to the

actors66
• This allocation of the roles is the most important part of the play because the

final success depends on it. Each actor studies his/her role and, after a certain time, we

cannot change the role between the actors.

While actors are working, the director sends the specifications64 to the scenogra­

pher. He/She is a specialist of the study of the theatrical material arrangements.

He/She makes the decoration of the stage: the plan of the stage, all the needed objects

of the play and if necessary the missing objects. Sorne of them make first a mode/64 of

the stage, that is a reduction of the real stage, to have an idea about the decoration. This

way, it is easier to speak to the director and to meet his/her requirements. We have a

dialog between the director and the scenographer, and the material must meet the

script as muchas possible. Moreover, all objects must correspond to the actors' charac­

tensucs.

64 See appendix French Translator

65 All the theatre directors do not always do this co-operation. Many theatre directors prefer directing

(See appendix French Translator). According to Dominique Serron, this co-operation is necessary because

the final result depends of the willingness and the participation of every one.

66 In this work we do not take into account the difference between comedian and actor. But we can see

that they may be different, as Louis Jouvet says: "The actor can play just some roles because he deforms other

roles by his personality, and that the comedian can play ail roles. The actor lives in the character, but the come­

dian is lived by the character". « L'acteur ne peut jouer tous les rôles; il déforme les autres selon sa personnalité.

Le comédien, lui, peut jouer tous les rôles. L'acteur habite un personnage, le comédien est habité par lui. »,

André Juvet, Réflexions de comédien, Sablon, Bruxelles - Paris 1944, p. 137

A-24 What is (Theatre) Direction?

1
1
1
1
1
1
1
1
1
l i
1 ,1
1
1
1
1
1
1
1
1

L

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

'

The size of the stage is very important, because the movements of the actors de­

pend on it. The director must arrange the recited script in relation to the length of the

movements on the stage. 67 In fact, if we change the size of the stage, we change also the

length of the script as said by the actors. In summary, the script must respect all the

space, the abjects, and the decoration of the play.

When all comedians have studied their roles, then cornes the composition called

rehearsa/68
• This is a long and meticulous work. The director must adapt the actor's

personality with regards to the person's character of the story of the play: such role

must be dull and such other role must be accentuated. This job needs a lot of time to

reach the perfect harmony between all the actors.

At the same time, the director studies the scenic movements: (s)he determines

the diff erent successive places that the characters must fill in relation to each other or

to the decoration. Of course, we do not need all the abjects of the stage in this kind of

rehearsal because the actors are professional, and they have a real sense of abstraction.

The direction regulates the entrances and the exits, which can require an arrangement

of the script. During the rehearsals, the costumes are made.

67 For Dominique Serron, drama works cannot be modified. We must integrally respect the original

message delivered by the drama works. So they cannot loose their sense or even contradict the author's

thoughts and brainwaves. Though, when a work's adaptation, in the context of a translation, is con­

cerned, changing paragraphs and words do turn out to be imperative to respect the author's original

world.

68 See French Translator

What is (Theatre) Direction? A-25

There are two different types of stage given by the theatre director. They not

only involve the actors but also everybody else related to the play. More, the latter

must take the stage directions given to the actors into account.

W e are within a drama framework, in which the theatre director can choose

how to represent the work, that is, (s)he is free, for example, to choose the abjects, the

way in which to place the actors, even to choose not to include abjects although they

appear in the text of the play. If we say: "I will open the window", one could very well

react as if the window was there, when in fact it is not.

In this way, we can create reality, in our three-dimensional space. We can create

reality as we can create the imaginary, by changing the abjects or by not including

them even though they are specified in the original text.

69 Close-up in cinematic terms.

A-26 What is (Theatre) Direction?

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Also, the director speaks with the lighting technician(s). He must make a special

atmosphere with regards to the meaning of the play by the help of colours, special ef­

fects of light. Moreover, the lighting technician must act as a guide to the audience in

the different successions of the parts of the play. For example, the lighting technician

focuses the actor who speaks7°.

Today, to reduce the cost, we have usually one piece of scenery for the whole

duration of the play. But, some plays of previous centuries needed a lot of different

pieces of scenery. That is the work of the lighting technician to create the illusion that

we are in a different area by the help of different sets of light or special effects.

If we have music in the play, we need choirs or/and music players. With music,

we can accentuate the feeling of the play, we can simulate an area, etc.

After the partial individual rehearsals, the combined rehearsals corne, where all

the accessories run the role that they must have, and at last the dress rehearsal is run

with the costumes.

Finally cornes the day of the first performance, where all is formalised by the

theatre director's interpretation of the play. All missing points in the performance,

outgoing the traced line in the rehearsal can floor the characters.

c) General theatrical aesthetics of theatre direction

This sentence cannot have a lot of contradictors. In fact, we can see the unjusti­

fied infatuation for such poet or such drama work at a specific period. But now, we

70 Except if it is a desired effect of the play.

71 Ob. Cit. , Becq de Fouquières Louis, L'A rt de la mise en scène: essai d'esthétique théâtrale, p. 15

What is (Theatre) Direction? A-27

know just these authors by the title of their works. The Art works depend on momen­

tary caprices of mode and feeling. But, some of them are eternal.

W e can also quote another sentence of the same author:

lt is not by increasing the representative effect of drama work, by the help of

theatre direction, that we can increase the intrinsic value.

On the other sicle, the representative effect is not created by just the theatre di­

rection. All drama works own by themselves a poetic value and a representative value.

Only, in the poet's imaginary, they are often in the reverse relation that we can see in

the theatre field, where the theatre direction modifies and sometimes sets clown the

proportion. We can say that the theatre direction is the blossoming, and delivered visi­

ble, of an ideal germ.

Let us mention the opinion of Louis Becq de Fouquières about the ideal theatre

direction; illustrating the subjective representation of the drama work:

W--w.· :-;-::.- •-- '7.

" The theatre direction is ;lways discreet, it seems it becomes obliterated,

ctin mo

everythi~g moves doser to us o.,: goes away in relation
:-~~=:=,

But this Fouquières's vision is not possible: the real performance is very differ­

ent of the ideal performance. When the stage designer74 or the theatre director immobi­

lises all things, which requires precise mobility and fleeting, the real performance de­

ceives in relation to what we had imagined. All the imperfections is accumulated: the

n Ob. Cit., Becq de Fouquières Louis, L 'Art de la mise en scène: essai d'esthétique théâtrale, p. 18

73 Ibid., pp. 23-24

74 See appendix French Translator

A-28 What is (Theatre) Direction?

1
1
1
1
11
1
1
1
1
1
1
1 ,,
11
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

'1
1
1
1
1
1
1

•

imperfect scenery, the imperfect movements, the imperfect diction, the imperfect cos­

tumes, etc are an insult to the poetic beauty of the drama work. 1

However it may be, the ideal performance will always be a model of what the

theatre director must have in mind, regarding the intellectual and moral necessities of

the audience who (s)he applies to.

Of course, the theatre direction can correct the weakness of a drama work, and

by its excess can derive the original attention of the intrinsic value of a drama work. In

fact, an abuse of the theatre direction could disturb the audience's judgement of the

object, which would be the principle occupation.

When we have some preoccupation on our mind, we can also listen to music,

see the objects of our environment. The intellectual, visual and hearing impressions are

f elt at the same time. The theatre director must play with these three notions, because

each of them interacts with the other. He must respect the proper intensity of each

sense, that is permitted for each one at a specified time.

W e see that the principal aim of arts is to allow intellectual, visual and hearing

impressions: the poetry the intellectual pleasure, the painting the visual pleasure and the

music the hearing pleasure. But for all three, it is impossible to have a good pleasure, if

they infringe on the two other impressions. In the case of the performance of a drama

work, the theatre director must respect the intensity of the different impressions.

He/She cannot put the intensity to another sense than the sense expected at a certain

time. In other words, (s)he cannot disturb the attention of the principal object. As said,

the excess of theatre direction can lead the drama into decadence.

But, in another way, we can say that the drama work can require a better thea­

tre direction. Without the help of the scenery, the costumes, the walk-on part75
, the

number of the different rooms, which can divert our minci, the play cannot face our

integral judgement.

W e are solicited by the three different senses at the same time. But we fall into

the sense that requires the most important place, by doing the loss of the two others.

Thus, there is a balance to find in the theoretical art. The art of the theatre director is

75 See appendix French Translator

What is (Theatre) Di,rection? A-29

to make the best choice of the manipulation of our three senses in order to remind us

the spirit of the drama work.

To respect what we said, we must look for the contradictions between the co­

ordinations. W e have a lot of contradictions, which corne from the imperfect diction of

the actors, or well from the poet himself. But, the theatre direction must not add some

new contradictions such as the details in the scenery, the discordance between the

walk-on actors, or even a costume that does not suit the spectacle.

The contrasts that result neither from the action nor from the adventure of the

drama work are the more powerful causes that disturb inevitably the attention of the

audience. The theatre direction should never contradict the poetic work, the idea that

we can have about the place of the play, the period of the action, the dresses, the habit

and the language of the characters.

The theatre direction must respect the drama truth in its integrity. lt does not

clumsily destroy the relations that the audience create with the characters. The artistic

theatre director requires more precaution than audaciousness. He/She must direct the

necessary visual impressions to the audience's eyes, and especially put out or attenuate

rays too sparkling. By this harmony, (s)he maintains the aims of the theatre direction,

and (s)he obtains that by a lot of necessary sacrifices.

The theatre direction is regulated by the rules of human spirit, and we cannot

limit it to the specific rules of an academy. But, we do not want to say that drama is a

result of coincidence. In fact, luck and Art are mutually exclusive: the first implies a

fortuitous conjunction, and the second a preliminary arrangement. And, we can say

that:

76 Ob. Cit., Becq de Fouquières Louis, L 'Art de la mise en scène : essai d'esthétique théâtrale, p. 102

A-30 What is (Theatre) Direction?

t ,,
1
1
1
1
1
1
1
1
1
1
1
I l
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

d) The theatrical aesthetic around the theatre direction

The stage design77

W e can see the scenery as an important area of the stage. W e can compare the

stage design to the painting, staying at a general point of view and without looking at

the mathematical aspect.

The scenery must respect the real perspective of the play. When the actors

move in the depth, they destroy the illusion of the stage design. But, this consideration

of the first order is not important in theatre. The audience accepts that, and when an

actor keeps its attention, it does not see the mathematical incoherence between the

characters and the stage design. Of course, we must, as far as possible, attenuate the

disproportion between the dramatis persans and the stage design.

lt becomes evident that the stage designer must avoid the representation of too

big abjects in the back stage77
• In fact, when an actor arrives at the level of this last plan,

we see the disproportion between the characters and the abjects of the back stage. Evi­

dently, as we are limited in the depth of the theatre stage, the plan of the back stage

represents in reality a plan that is further.

The scientific conditions of the theatre direction and the stage design do not

admit all the real possibilities. As any art, the theatrical art has its limits. That is why,

the theatre often coasts along the real and the imaginary.

But, the comparison between the painting and the stage design is not perfect:

painting represents a moment of an action, but the stage design must be adaptable to

the succession of different moments. For the same moment, the painter and the stage

designer cannot associate the nature and the human acts in the same manner. The

painter can catch the nature with an unfinished movement, but the stage designer will

be constrained to finish the movement. The stage designer must reproduce a general

impression, just like the theatre director.

77 See appendix French Translator

What is (Theatre) Direction? A-31

The dresses

The costume is a very important part in the visible sense: it produces our exter­

nal aspect. W e do not recollect the nudity of the persans that we meet.

W e can think a costume without the actor or actress. In fact, each time the role

will change between the actors, the dress will need a modification. The first rule of the

theatre dress is to be in accordance with the age, the stature and the feeling of the actor

who will wear the costume. Moreover, the costume must be changed according to the

appearance of the actor. The effect to produce by the help of the dresses is immutable,

but the means to produce it is alterable.

On the stage, the comedians can modify the costume in fonction of different

acts of the life: the characters have to be natural and true.

A-32 What is (Theatre) Direction?

1
1
1
1
1
1
1
I l
1
I l
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1 ('Il

(1)
l--<
('Il

s:::::

1
(1)

""d
""d
~

~

1
(1)

.....1

1
1
1
1
1
1

1 1
1
1
1

The theatre half8

lt is impossible that the theatre direction does not take care of the disposition

of our theatres and about the defective optical conditions in which the audience is

placed. W e can see the design of a theatre by this top view: (See Figure 1)

Theatre Axis or plan of symmetry
between left and right spectators

78 See appendix French Translator

What is (Theatre) Direction?

Optical convergence point

Axis in front of the prompter

Optical place: radix= 1/3 of width

Apron

Prompter box

Left spectators (audience)
in the left hidden area

!
!
1

Figure 1: Top View of a Standard Theatre Hall

A-33

The stage is like a trapezium79
, invariable in the width, but it can vary in height

and depth. On the left and on the right, we have the two areas that are more or less

invisible: the one on the left to a certain part of the audience on the left, and the other

on the right to certain people on the right. The obliqueness of the scenery can change

the invisible wide.

The optical convergence point is the excellent position on the stage. lt is just in

the front of the prompter80
• The central audience are in front of the stage and do not

have any problem to see the stage and the two hidden areas.

If an actor moves back to the back stage by following a parallel movement to

the theatre axis, every step moves him away from the audience and the footlights illu­

minate him less and less. If (s)he walks to the left, or even to the right, parallel to the

apron80
, (s)he cornes more and more invisible to an increasing part of the audience. But,

if he walks obliquely to the scenery, the two described effects are going to annul them­

selves.

W e can also use the different plans, parallel to the apron, to mark the impor­

tance of the actors. In fact, two comedians on the same plan have the same importance,

and if we place the two actors on different plans, the actor on the plan doser to the

apron has a more important role than the other.

To improve the depth illusion, we can light all things on the same plan with the

same intensity, but the more we go to the back stage, the more we can reduce the light

gradually.

W e can draw a circle, called the optical place, which is at the intersection of the

two axes, where all the points are lightened in the same way. The whole audience sees

this place, in which the actors' voice is carried without efforts.

lt results that the theatre direction must take this short description of the stage

and of the theatre into consideration. That is, the theatre direction must keep a good

proportion between the importance of a stage playing80 and the place on the stage where

it is played.

79 Of course, we have a lot of others kind of stage (circular, squared, etc).

80 See appendix French Translator

A-34 What is (Theatre) Direction?

1
1
1
1
1
I l
1
1
1
1
1
1
1
1
1
1
1
1
1
I l
,1

1
1
1
1
1
1
1
1
1
1
1
1
!,
1
1
1
1
1

1'
1'
1

In summary, there is always an aesthetic reason in the dénouement that closes

together or spreads the characters of the optical place. W e can see that the theatrical

rhythm follows in its movement the aesthetic rhythm, and the position of the actors is

not arbitrary. Of course, the theatre direction must take the position of the fixed ob­

jects such as a table, the scenery, etc into account.

The theatre direction can be considered not only as an Art, but also as a science,

which is founded on mathematics.

The walk-on part

In a general view, the walk-on part is subject to the rules that regulate the hier­

archical disposition of the characters. W e must sacrifice the details to the general view.

Of course, the theatre director must look at the relative place of each drama person81
,

but (s)he also must be interested in grouping the walk-on actors and in dividing the

walk-on part into harmonious parts, in such a way to have a general effect, and with­

out focusing on an individuality.

When a choir is used to play a passive role, it takes the place of a dramatis per­

son. Moreover, we can say that it is the principal dramatis person82
• It is important for

the theatre director to dominate it in order to improve the impression given by the

hearing sense. In fact, the choir can be used to put the spectators into anxiety, or also

into the feeling of a special place like, for example a church.

81 See appendix French Translator

82 Ob. Cit., Becq de Fouquières Louis, L 'Art de la mise en scène: essai d'esthétique théâtrale, p. 176

What is (Theatre) Direction? A-35

Creativity is a relative object, recovering a wide range of domains. That is the

reason why we do not get to a monolithic definition.

The theoreticians aside the origin of brainwaves to various factors: coming out

of nothing (Margaret Boden), a matter of creation or invention (Le Petit Robert), due

to a certain skill in certain circumstances, based on imaginary, previous experience or

not, resulting from intuition, manifesting itself unexpectedly, etc a consensus is far

from being reached.

Poincaré's postulates that creativity requires a merely gradua! process that con­

sists of a mutual activation of conscious and unconscious work, leading to creative

combinations and/ or transformations. Innovations though, can only be called creative

or uncreative according to a coherent concept of creativity.

What is more creativity has different senses according to whether it is regarding

the novel ideas of just an individual (P-creativity) or the whole of human history (H­

creativity).

In the field of computer science, creativity is possible. Even if a program is an

affective procedure, creativity can be expressed within the rules (of a representational

system e.g.), in any domain. Visual Assistant intends to support the individual skills of

a theatre director, who can freely modify stage-managing and interpretation while ob­

serving the rules constrained by lighting, size-relationship, etc.

Margaret Boden shows us that computer programs can handle well structured as

well as imprecise constraints by modelisation. Visual Assistant offers such a modelisa­

tion to a theatre director so (s)he can have a general view in advance, which enables

him/her to exploit his/her creativity in a more efficient way.

A-36 What is (Theatre) Di,rection?

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

' 1
1

:j

1
1
1
1
1
1
1
1
1
1 1,
1
1
1
1
1
1
1
1
1
1

Improvisation can resort to creativity. It is developed itself from a low comedy

form to a prominent technique (in all live arts) and practised in every kind of educa­

tional institution. Seen as a part of the theatre director's work, improvisation can be

programmed. Theatre direction cannot be reduced to just the exterior result of the per­

formance.

Theatrical art covers a more general and essential aspect of the performance and

the development of direction, multiple and not leaving anything to chance. A director

must synthesise all components (effects, aesthetics, decoration, placement, lighting, etc)

into an artistic performance, transmitting as well as possible the original message of the

dramatist (according to his/her own interpretation), trying to reach an optimal com­

munication. A theatre director must be extremely versatile.

After the preparatory measures (agreement with the manager, forming of the

team of actors, scenographer, lighting technicians, etc), (s)he allocates the roles. Later

on, (s)he can specify the taken measures in interaction with the current rehearsals.

A theatre director must take the essences of a work into account, the placing in

the space (which makes us enter in the field of drama psychology) within his/her artis­

tic freedom.

His/Her task is to build up a relationship between reality and imaginary. The

lighting, scenery and music have their part in this process. Every single thing is to be

assembled harmoniously by the dress rehearsal and the light performance.

The theatre director has also an aesthetic role(s). He has to make a work blos­

som in a way the poetic and intrinsic value speak, in spite of the imperfection of all

components. Therefore, (s)he must make best use of the intellectual, visual and hearing

effects in the spirit of the drama work.

In brief, co-ordination in theatre is a key to success. Stage design (painting, fixed

objects, etc) should do not be too disproportionate to the dramatis persons. The optical

condition and construction of the theatre hall have to coincidence with the lighting,

the actor' s movements and placements, etc.

Art and Science converge in the person of the theatre director.

What is (Theatre) Direction? A-37

1
11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

What is the relationship between
real reality and virtual reality ?

This chapter will try to find out the differences between the real world and the

virtual world, the limits in representing objects coming from our everyday lives, in

some new dimensions that are not so well known to us, but that our imaginary had

already dreamed about. These new dimensions are included in the virtual reality.

The major part of this chapter is based on a book1 dealing with new technolo­

gies in the cinematographic world. Seeing that the two worlds2 are similar in some

way, we have adapted the flashing ideas from the already mentioned book, while being

conscious and taking into account the differences of the two domains.

1 Frank Beau, Philippe Dubois, Gérard Leblanc, Cinéma et dernières technologies, De Boek, Bruxelles

1998.

2 Cinematographic and theatrical, the last being the subject of this writing.

W e will try in this section to answer some questions that artists themselves are

thinking about. W e will have three sub-sections:

1. The first one will tackle the question dealing with the relationship between

machinism and humanism in the artistic domain.

2. The second will be about the degree of similarity, analogy to the original ob­

ject included in the images produced by machines.

3. The last one will deal with the question of materiality and immateriality.

Let us try to tackle first in a general way the question of what may be called the

machines of images or pictures, but with a stress being put on computers. In other

words, our interest will be especially on the new technologies.

As far as images are concerned, the term new technologies is used to designate

the technical tools related to computer science, which enable someone to produce vis­

ual objects.

Everyday we see some bleeding of luggage words, that form a chronological list:

"firstly electronic, then synthetic, digital, virtual, cyber and artificial again. "3 This his­

torical classification shows the evolution of the terminology of this domain, and shows

that we always turn on the two notions that are immateriality and technology, which

are unified to make computer graphics4. The latter is the combination of computers and

graphies, which can produce an immaterial world.

Let us note that computers are not the first machines, in a historical perspective,

that are used to produce images. Indeed, we can say that any image requires a technol­

ogy of production. From its origins, technology is simply an expertise or a know-how.

In fact, wood engraving, the Egyptian paintings and classical painting could be consid­

ered as machines of images that suppose the existence of a device instituting a technical

3 Frank Béau, « Désordre Numérique », Cinéma et dernières technologie, De Boek, Bruxelles 1998, p. 47

4 Computer-aided pictures creation process. See appendix French Translator.

B-2 What is the relationship between real reality and virtual reality ?

1
1
1
1
1
11
1
1
1
11
1
1
1
11
1
1
1
I l

1
1
1

1
il
1
1

1•
1
1
1
1
1
1
1
1
1

1•
1•
1
1
1
1
1

sphere to constitute images: it is a know-how that needs at the same time tools (these

tools could vary from rules, proceedings to materials) and a functioning (that could be

a process, an action, etc).

The use of computers to produce images is not as novel as modern discourse is

trying to convince us. Our aim is not to discuss or list the different technologies of

images, but we wanted to point out that the problems related to the virtual world or

the world produced by means of representations of objects of the real world using

computers are not specific to this new technology.

We will try here below, among other to explore the relation between the tech­

nique and the aesthetics of the representation.

a) The real, actors and machines
W e will start this sub-section by a question:

The use of computers to produce images does not imply that the image is pro­

duced by the computer, i.e. that the image produced will remain an image clone by a

human being and is the result of his/her imagination. lt is very important to note that,

because it is in this breach that all the humanistic part of art will be lodged: the charac­

teristics of the artist's personality, the character's personality, the sketcher style, the

painter's touch, the genius of his/her art, the theatre director's interpretation of the

drama work, etc.

So, the machines as tools corne between man and the world. Within the system

of symbolic constructs, which is the main part of representation, these machines are

the intermediaries that use the principle of representation. They will enable someone

to represent the objects of the real world as images.

What is the relationship between real reality and virtual reality ? B-3

At this point of this talk, we can daim that if computers are used as tools, they

cannot prevent the artist, the theatre director, etc in any way from his/her genius, nor

will they remove the characteristics of the theatre director' s personality. W e can even

say that computers are similar to any other tool i.e. if they are very well used and used

for their appropriate fonctions. They will provide the user with the expected result.

The increase of the complexity not only of the machines but also the tools of

representation are, in our sense, due to the fact that we want the virtual reality to be

doser to the real reality, even more, we want the two worlds to behave in the same

way and more precisely the virtual world is asked to encompass the real world. With a

software, in this work the Visual Assistant, we design the system with many symbols

of construction that represent an approximation of the reality.

Is the technical progress coming with the machines able to improve the artistic

domain? Moreover is the ,use of machines in the artistic domain a negation of art? To

answer this question, we can, on the one hand, state Baudelaire's opinion:

m co ce t at t e · ,a,s con ri

materialpr, h artistiag

Does the machine coagulate the ideas of creativity by depriving it of all artistic

madness? The answer is very difficult and depends upon the degree of purism of every-

one.

5 « Je suis convaincu que les progrès mal appliqués de la photographie ont beaucoup contribué, comme d'ailleurs

tous les progrès purement matériels, à l'appauvrissement du génie artistique français, déjà si rare ... »,

Baudelaire, « Le public moderne et la photographie», in: Salon, 1859.

B-4 What is the relationship between real reality and virtual reality ?

1
1
1
1
1
1
1
11
1
1
1
1
1
1
I l
1
1

•1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1

1
1

On the other hand, we can also consider Grary' s opinion:

1

/" Th,;~, is a theoretical C1,(t , decisive tha~ thè,: · ,- n ofconti7tn,ipy .

could ~ to tbink the technical existence of the camer:.a obs;;,ra6 tha; can see the

connection between pictoria!'îikeness and photograp1Jic figuration. That

amounJs to demonstrate, on pe one band, th~t the J olution of the mech~; isa-

tion (i.e. the story of the technologies) and, on the oiher band, the question 6f
,,, HÜ.

nisrft and the ,arti ~,ry ~:t!0the esd4~tic!

very different. The growth ofone is not necessarily correlated on the progres-
... ,,.,. fü(,=

sion or the regression of the ôiher one. "'

According to Grary, the technologies and Art have no influence on each other,

but correlation between them could exist. Thus, for his part, Grary does not lock the

new technologies as Baudelaire did it.

If we have a look at the history of the machines of images, we can note that

there are different kinds that we will enumerate here below. Our aim is not to relate

the panoply of machines of images, but the objective is to try to understand the speci­

ficity of computers as machines of images among a range of others. (See Table 1 on

next page)

The first phase will be called catching. An example of this machines is the cam­

era obscura, which is a machine of pre-configuration, i.e. it organises the gaze, repro­

duces, mimes, controls the visual perception of the human eye.

6 L'invention de la camera osbcura (chambre obscure dite aussi chambre noire) comme moyen de

reproduction d'une image et son exploitation perspective remonte au temps d'Aristote. En 1611, la

chambre obscure qui était une salle est devenue un appareil portatif réalisé, semble-t-il, par un moine

allemand Johan Zahn. Niepce en 1826 reprendra l'usage de la camera obscura avec une plaque sensible

pour fixer l'image reçue, comme l'avait déjà fait l'alchimiste arabe Getel qui, dès le XVIe siècle, utilisait

du nitrate d'argent. L'appareil photo était né.

7 J. Crary, Technique of the Observer. On Vision and Modernity in the Nineteenth Century, Cambridge,

Mass. , MIT Press, October Book, 1990.

What is the relationship between real reality and virtual reality ? B-5

The second phase, called inscription, appeared with photographie images. In this

phase the machine will go further than the machines of the first layer by inscribing the

image.

The third phase will be called visualisation: the machines of this kind used in the

camera will have as arole to receive the visual object: this means that we cannot visual­

ise the images without the machine, a mechanism of projection is needed.

Then cornes the phase of transmission: the machines allow the direct remote communi­

cations with the possibility of multicasting. An example of the machines of this kind is

the television.

Real Beginning of the Period Machines Examples

I Period of Aristotle Catching Camera obscura
c::

XVIth Inscription 0 - II Camera (,:1
..., <l)
u ~

End of XIXth ;::j (1.) III Visualisation Movies -0 ...c:: 8 ...,
Television o..

<l) 0
p::: IV After middle of the XXth Transmission Video

Internet

-(,:1 c:: (1.)

The last quarter Computer graphies ot)~
V) V Virtuality V)

of the XXth century <l) ...,

New technologies ~ :.::
0

Table 1: The different phases of machines

Finally, it is the era of the virtual images, which started a few years ago. The

machines here have a specificity that has to be pointed out. Indeed, the computers

really change the cycle; they do not behave as the machines of the other four phases

where each layer extends the functionalities of the machines of the previous phase.

Computers row up towards the source of the network of representation. Indeed, with

the image produced by computers, we can say computers generate the real itself. In the

phase of new technologies, there is no need of all the tools of the previous phases, be­

cause they do not reproduce the real, but they create their own real.

B-6 What is the relationship between real reality and virtual reality ?

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
l i

1
11
1
1
1
1
1
1
1
1
1
1

1•
1
1
1

Il

1
1
1
1

In fact , the object to be represented is a piece of the computers: the software

generates it, it does not exist outside this software. The software creates the abjects and

models them in its way. The computers are not machines of representation as it was

the case for the other machines: they are machines of design. The computers produce

their own reality, which is also the image. In other words, the two extreme points of

the process8 are joined and connected to form a unique thing. The representation pre­

supposes the existence of a distance between the object and its figuration. With com­

puters, we can say that this presupposition looses its value and meaning, because the

fondamental difference between the object and its figuration disappears.

The subjective instances of the device are themselves software's instances: the

creator is a programmer, the spectator is a user of the software9
• Not only there is no

real now, but also no representation. Sorne critics go further and consider that there are

no images. For them even the synthetic picture does not exist: the synthesis is just a set

of possibilities anticipated by the program. These critics add that with computers the

gaze of the artist disappears no magic and no miracles are produced of virtual world.

b) Similarity vs. Dissimilarity
W e will try to tackle in this sub-section the question of realism of the images

produced by computers. A central idea that one can found in almost all the machines

of images is the mimesis of the reality i.e. the hope of producing the total image, an

image that is so similar to the reality that it will wholly reproduce real.

According to Philippe Dubois10
, this idea is achieved with the images produced

by computers. Indeed from the moment that the machine does not reproduce but gen­

erates its own reality, which is an image. It is clear that the question of similarity will

have no meaning. He goes further and says that it is no longer the image that mimes

the world, it is the real that becomes similar to the image.

8 The object and the image, the source and the result.

9 One calls that the interactivity.

10 Dubois Philippe, La ligne générale (des machines à images), Cinéma et dernières technologies, De Boek,

Bruxelles 1998, pp. 19-39

What is the relationship between real reality and virtual reality ? B-7

But, in our case of Visual Assistant, it is really important to have a great similar­

ity of the real. ln the conclusion of the chapter The Visual Assistant project, we see a

remark made by Dominique Serron11 who stresses the fact that the theatre is based on

impressionism. If we do not reproduce the real with a maximum of similarity, we make

surrealism, and not impressionism.

c) Materiality vs. lmmateriality
This section deals with the question of materiality of images. If we have a glance

at a painting, its materiality is directly felt by all the five senses. It is this materiality

that makes the painting unique and gives it its artistic value.

ln the theatre field, we can also see the materiality of the stage by each of our

five senses. That is the materiality of the script, of the stage, of the actors, of the stage

objects, etc enables the possibility of making the play unique each time that it is run,

by giving its artistic value that it is immaterial.

What about the images produced by computers? The immateriality of the vir­

tual world is extreme. lndeed, we are far from the materiality of the paintings and of

the theatre stages. According to Philippe Dubois, the virtual images are more abstrac­

tions than images 12
• It is not even a way of seeing things of the mind, it is the product

of a complex process of calculation.

He added that the represented movement of an object, a body, just as one sees

them on the screen, does not exist effectively in any real picture. The movement picture

is a kind of fiction that exists just for our eyes and in our brain. Outside that, the

movement picture does not exist in so far as an object or a matter. That is a brief cross­

ing that gives the illusion just the time of a regard and disappears so quickly that one

caught only a glimpse on it.

11 Theatre Director

12 As normally defined.

B-8 What is the relationship between real reality and virtual reality ?

1
1
1
1
1
1
1
11
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

The most representative definition of the virtual reality, as it is called, is the fol­

lowing: " The realisation of a world with physical quality but giving to the spectator, by

adequate excitation of all the sensorial system, a feeling with perfect impression to be in in­

teraction with a physical world. "13

The term feeling is added to the term impression and the first one includes the

second. W e are concerned with simulating, imitating or recreating the feelings of the

reality and, in some way, to corne close to the natural perception. One may wonder if

the user of a system can have comparable feelings with those lived through a real expe-

nence.

If within the Cartesian tradition, it is true that the senses outwit us (sight, hear­

ing, touch, taste and smell), it seems that we are from now on technically able to out­

wit the senses. lt is a form of trompe l 'œil, enlarged to all our senses.

On the one hand, the stimuli built by the systems trend to reproduce the stim­

uli felt in the reality. And on the other hand, the type of perception, induced by the

device, copies closely the one required by the reality, and tries to include the felt stim­

uli in the reality with the minimum of shifts and distortions as possible.

The two perspectives do not coïncide entirely, and it is not because of the pre­

sent technical limits of the systems. In fact, we have the character of the simulation,

which cannot be exceeded. In other words, we are in the reality without really being in

it. The systems invite us to live in an illusion that looks like the reality, but which has

just the appearances of the reality.

13
« La réalisation d'un mode n'ayant aucune réalité physique mais donnant à l'utilisateur, par excitation

adéquate de tout son système sensoriel, une sensation avec l'impression parfaite d'être en interaction avec un

monde physique. », Philippe Coiffet, Mondes imaginaires, Hermès, Paris 1995.

What is the relationship between real reality and virtual reality ? B-9

Why is it so important to have the feeling 'to be in interaction with a physical

world'? And, why ask if the generated feelings by computers look like the feelings of

the reality? May some unreal feelings exist? Maintaining these questions and differen­

tiation will allow the possibility of comparing of the real reality and the virtual reality

to express the feeling that one can have in front of the possible confusion of the two

realities and to point out the dangers.

Let us note that some authors14 talk about the existence of different layers of re­

ality: real reality, virtual reality, augmented reality and imaginary reality. Here one can

wonder about the danger of confusing the different realities and even the danger of

forgetting about the existence of the real reality.

In all the speeches about the new technologies, which have usually a promo­

tional oration, they speak with a maximum of reductions and a limited conception

about what has existed before computer. Moreover, the new technologies practitioners

speak of what we are missing if we do not use these technologies, and the technical

possibility offered by the new technologies to be elsewhere than where we are in the

reality. In other terms, that is the realisation of the ubiquity15
•

With the new technologies, we want to go beyond the human limits, which the

technical limits are one of its manifestations. In the real reality, we are afflicted by a

lack of feeling 16 that the simulation systems could fill. Thanks to the new electronic me­

dia, our perception could be breaded, the performance of each one of our senses could

be improved. W e can go further and say that new senses could corne to light.

To produce the feeling of the reality, we can say that the virtual stage must be

more realistic than the movies and recognised without difficulties by the operator, it

has to look like, as muchas possible, a stage of the real life. Its interpretation should

not have more complexity than the difficulties that we have in the most common ges-

14 Like Philippe Quéau who is a specialist in the virtual domain.

15 T o seem to be everywhere at the same time.

16 Jean-Marc FICK, Cybergoût et sensorialité numérique, in: Champs Visuels n° 5, L'Harmattan, Paris 1997.

B-10 What is the relationship between real reality and virtual reality ?

1
1
1
1
1

1

11
1
1
1
1

•1
1
1
1
1
1
1

' 1
1
1
1

1
11

1'
1
1
1

1,

1
1

1'
1

1'
1•
1
1
1
1
1

1•
1
1

ture of the everyday lif e. W e speak about the gestures that we execute with pro­

grammed models, not by the means of a computer. So we need not forget the acquired

knowledge. In fact, it is only insofar as we allow the user to insert his/her regular ac­

tions in stereotypes scenarios that we can adapt ourselves to the technical imperfections

of present systems.

Most of the systems are impressed and dominated by the obsession of the realism.

In fact, if a system has not enough degree of realism then we do not have the possibility

of confusion between the real and the virtual; it cannot be possible to substitute a vir­

tual stage to a real stage. All the means will be used for leaving clown the illusion pro­

duction conditions to the operator.

As the remark in the point about similarity, we can take care the Dominique

Serron's remark. In fact, she says that the virtual stage must be perfectly the same as

the real stage, without providing a feeling of artificiality. She says that the drama is

founded on impressionism, and the virtual image gives an impression of surrealism

coming from their artificiality.

a) The two different classes of senses:

the remote senses and the contact senses

Our body is constituted by a number of different senses: the sense of sight, of

hearing, of touch, of taste and of smell. At the base of the virtual reality systems, the

general trend consists of the simulation of the senses technically easy to represent arti­

ficially. In fact, we have placed in the first sentence the senses, by the degree of diffi­

culty of simulation. Actually, it is easy to represent the sense of sight, but at the oppo­

site, it is really difficult for representing the sense of taste.

With the senses of sight and hearing, as in the plays17 and in the movies, we have

an impression of presence and not an impression of reality. It is normal, owing to the

17 lt exists some plays without any sounds, i.e. silent plays or well art of mime. lt exists one play without

the sight sense.

What is the relationship between real reality and virtual reality ? B-11

fact that these systems have no technical capacities to simulate other senses than the

sight and the hearing.18

W e can say that we have two classes of senses: the remote senses and the contact

senses. In the first one, we have the senses of sight, of hearing and of smell, and in the

second one, we have the senses of touch and taste.

All researches have studied the synthesis of the remote senses because they are

considered more important that the other class. Also, their restitution of the feeling

does not require any simulation of a physical contact with the object from where it

cornes.

W e do not discuss more about the senses of sight and of hearing because they

are common. But in the case of the smell, we can make the odours with a special

chemical device. But, a real problem is to stop the odours instantaneously to have a

synchronisation with the other senses like the sight, the hearing or the touch. In fact,

we cannot stop them without delay and the odours remain for a long period once

made. In brief, we cannot physically simulate this sense now with an immediate syn­

chronisation with the other senses. Of course, in the theatre field, the audience can

smell the odours from the stage. But, are these odours in concordance with the repre­

sented world in play? In fact, the spectators receive the odours of what it is on the

stage, but not the odours of what the director represent in his play.

Among the contact senses is the tactical sense, the more synthesised because it

allows the possibility to act directly on the simulated object as in the reality and also

because it is the most technically easy to simulate, in regards with the other contact

senses. To simulate this sense, the technologies use one or two electronic gloves, which

contains a lot of captors that act with the palm of hands. This sense has a real possibil­

ity of use in the theatrical field. In fact, the spectators stay in their seat, and it is possi­

ble to give them gloves, or different captors to reproduce this sense.

18 H. Rheingold qualifies the movies as partial virtual reality, in his book: La réalité virtuelle, Dunod,

Paris 1993.

B-12 What is the relationship between real reality and virtual reality ?

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

,

Sorne researchers try to simulate the other contact sense, that is to say the sense

of taste, but it is experimental. They use a device that they put in the mouth, just on

the tangue. This device simulates chemically the taste. W e can think that we will use

this sense in theatrical field, maybe with some boundaries. For example, we can imag­

ine a play that it can require the delivery of some edible things to the spectators before

the performance, and the spectators are invited to eat the things in some events during

the performance.

b) The perfect illusion for misleading the senses
So far so good, we have seen all the senses with no interactions, thinking that

they are additional. But, they interact continually in the real life. How to co-ordinate

the feeling coming from all the senses? At the start, each sense is isolated, considered by

itself, analysed and synthesised, in its autonomous specificity.

The synthesis of each one is more or less complicated, but their resolution is

always seen in the same way. It is about to imitate the senses to have a maximum of

chance to mislead them. From a scientific point of view, the sensorial processes of the

human are badly known at this day. And more, the present applications are imperfect.

T o confuse the simulated stage and a stage of the real life, it is essential that the

operator does not feel any interference for his/her sight and movements. That is im­

possible with the devices of nowadays: electronic helmet with visor, electronic gloves,

etc. Even when they can adapt themselves on the best of the human senses, we cannot

forget their existence.

On the one hand, let us see the case of the sight. T o have a real three­

dimensional stage, we need two pictures, one for each eye. More, we also may have the

feeling of the relief and have the possibility of moving and taking a direction.

On the other hand, to have an impression of discontinuity of the stage, we need

a minimum of fourteen pictures per second, otherwise the human eye perceive just a

succession of continuous pictures.

Finally, we have also some physical characteristics of the pictures. In fact, a high

level of pixels is required so that the picture can make us forget about its materiality.

More, it needs enough light, with as many colours as we have in the reality, and with

What is the relationship between real reality and virtual reality ? B-13

the information of the texture of the areas and the material of the objects for make us

recalling the materials such as stone, wood, cloth, skin, etc. A too big difference could

kill the illusion.

The trigger of the action is determined by the combination of visual stereotypes

that have to be the most realistic, and by providing the functional information allow­

ing some types of action. Approximately recreated, the feelings call to mind the form,

the weight, the volume, the texture of an object, and make possible the recognition of

this object and its catch in a pre-built scenario. The real hand, that is the command or­

gan, sets the virtual hand in action, and the 'virtual' hand returns the feelings that it has

in the virtual stage to the real hand. 19

c) The paradoxical situation
A paradoxical situation has to be pointed out: instead of reaching some new un-

known worlds, the simulated reality brings the perceived back to the already known.

More, it succeeds very imperfectly in that because of the conception of the realism that

it brings into operation, and of the present limits of the systems. Thus, we reach a kind

of reduction that we schematise in two times:

Firstly, we try to promote the insertion of the operator into the system to ad­

just this system to a behaviour highly regarded as normal. W e continue the automatism

linked to the generated practices by the organisation of the social life. W e lead the pro­

gramming of the system towards the reduced conception of the human behaviour2°.

W e remove all deviation from the normality and if found that we should not do so, a

learning is needed; in other words, an adaptation time is required. Of course, that could

upset the good training of the interactive system in real time. By reducing the human

behaviour to a standard and statistical normality, we produce just an approximate imi­

tation of it.

19 The real hand set the virtual hand in motion by the mean of a glove, for example.

20 In other words, we lead the programming towards the same standard behaviour (normal as it is called)

for all the people, coming from the majority of them.

B-14 What is the relationship between real reality and virtual reality ?

Secondly, we try to separate the humane part of man and all the factors that

could lead to think and to transform his behaviour from the feelings that he receives

from an external world21.

d) Feeling and imaginary
The simulation of the direct or indirect contact with an object allows to physio-

logically release a feeling, but not the imaginary associated toit. Or, all the feelings we

have at present time, firstly, reactivate some old feelings and some previous synaes­

thetic22 associations that we have already felt or that we have already imagined, and

secondly, embed all of that in some new associations and transform them. The ques­

tion now, will be what about the feelings generated by simulation?

The simulation produces feelings, which have different meanings, depending on

whether we try to recreate the elementary feelings (as hot, cold, rough, etc) or to deal

with the imaginary that the elementary feelings awake, and by means of which, they

will be extended, transformed and deepen. Taking into account the sensitive reactions,

that do not have an uniformed well-defined physiological role, implies that the feelings

are no longer limited to their strictly informative fonction and attract the level and the

degree of attention needed for the artistic work.

e) Does the virtual world need realism?
W e will deal here with another kind of question:

The images included in the virtual world have clone a radical and qualitative

break-down with all the different kinds of preceding images. So, why do we want in the

virtual world to amplify and to extend some qualities of other kinds of images such as

cinematographic images that the specialists of the virtual world declare as outdated?

21 It can be real or simulated.

22 In other words, the associations between the feelings that we can have at the same time. The associa­

tions corne from a first feeling, that is the starter.

What is the relationship between real reality and virtual reality ? B-15

In all the systems of imagery, the real pre-exists to the image and it is there that

we can find the novelty and the split introduced by the new technologies: the image

pre-exists now to the real. As we have said previously, the machines of vinuality design

their own real. (See Table 1, p. 6)

Let us have a close look at the field of painting. lt is based on the observation of

the visible real, and accomplishes some transformations to restore this real. Philippe

Quéau quotes:

In fact, the real is painted with a realistic illusion coming from the sight of the

natural perception. When we see a painting, we recombine the visual real across the

picture made by the painter, which is just his/her interpretation of the visual real.

Besicles that, in the field of movies, we can define the movies as an automatic re­

cord of the movement that it recreates visually. For this one, we have the same previ­

ous notion like in painting. In fact, when we see the movies, we reconstruct the visual

movement of the reality across the filmed movies by the cameraman's style.

In the domain of theatre, we can find some theatre directors that have no close­

ness with the reality. In fact, some characters can mimic the objects that they are inten­

tionally not present on stage. Moreover, some drama works are surrealist, and the spec­

tators must interpret themselves the play.

23 « Les systèmes d'écriture classiques cherchent à saisir le monde dans la précision du tracé, la finesse de

l'observation. Ils cherchent à croquer le réel, à le cerner avec sa part d'ombre et de lumière. » , quoted by Phil­

ippe Quéau.

B-16 What is the relationship between real reality and virtual reality ?

'I
1
1
1
1
1
Il

1
Il

1
Il

1
1
1
1
1
1
1
1
1

Whether the real pre-exists or not to the image, the representation of the real

cannot be thought outside the interactions between the person who composes the im­

age and the object, real or not, to which the composition is applied.

The interaction varies with the habits of perception proper to each historical

period. Even, for the same period, the interaction varies according to the pre-built rep­

resentations. These pre-built representations are strongly related to the education and

the culture which modify and program the sight one can have of the world.

W e can say that the split introduced by computer science is not really a novelty.

lt is just more apparent than in other fields.

If we know that in every artistic domain24
, the perfect realism is never an objec­

tive in itself then we remain with no answer about our question on the realism that

people are expecting from the virtual world.

f) 1s the virtual a substitute of the real?

If we know that the artistic approach consists of making things visible and not

representing the visible, we can then say that it is excessive to speak about the substitu­

tion of the virtual to the real. It is just another kind of sight that someone is having

inside the real world besicles that a category of virtual consists on restoring the sensible

appearance of the real.

lt seems that what artists 'reproach' to the virtual world is the absence of artistic

intentionality and they argue that digitising an object consists among other things to

choose some strokes and excluding some others. By doing that, there is, according to

them, a kind of reduction of the set of possible. That is a lack of realism attributed to

24 Painting and movies are only examples.

What is the relationship between real reality and virtual reality ? B-17

the virtual world, or the lack of realism is the essence of the artistic approach. In fact,

the artistic gesture consists precisely in operating some choices as far as the image is

concerned.

The theatre director, when his/her script is based on an existent textbook, does

in some way a choice of what (s)he must take, and what (s)he must leave, what to em­

phasise and what to tarnish. 25

As a consequence, this argument cannot be accepted and we have to explore

other sicles to prove the absence of artistic intentionality within the virtual world. The

only thing that we can confirm at this level is that while artists and the specialists of

the virtual world are doing the same thing about the images, i.e. making choices, there

is a diff erence between them in doing that. Indeed the choices performed by the artist

appear as a kind of innovation26
, which is missing in the images provided by the virtual

world.

But, nowadays, the choices performed in the virtual world are clone in fonction

of some constraints coming from a certain conception of the realism and not in fonc­

tion of a project of rebuilding the world from some artistic options. These artistic op­

tions are the only ones able to create some new original worlds independently of the

technical tools and means used. The Art has never waited for whatever perfect realism

for existing as Art. In the artistic domain, the relationship with perfect realism was

never an objective in itself and is only achieved by a re-creation of the real.27

25 But, Dominique Serron does not agree with this method. She prefers have the whole of the drama

work. (See chapter: What is 1beatre Direction)
26 This innovation could be the expression of his experience, his dreams or his imaginary.

27 Gérard Leblanc, Quelle autre scène ? (Réel/Virtuel), Cinéma et dernières technologies, De Boeck,

Bruxelles 1998, p. 64

B-18 What is the relationship between real reality and virtual reality ?

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1 1,
1
1
1
1
1
1
1
1
1
1
1
1
1
1

g) The two kinds of virtual reality:

the duplication and the new universe
Confusion is maintained between two modes of solicitation of senses: the first is

in the everyday life and the second is in the artistic practice. In the artistic practice, the

senses are related to what one can do on the imaginary. The systems of simulation re­

vive an old question in the domain of the Art: "The interaction between Art and Life"28
•

But, we have to remove the confusion that exists between the two modes of so­

licitations of senses. Besicles that the virtual has to tie up with a philosophical tradition

that considers it, as said by Aristotle: « puissance en acte », as a component of the real

included in the present time. These two modes have achieved to enable us to consider

the virtual as a technique that has appropriated a concept older than itself, i.e. the con­

cept of the interaction between Art and Life.

In this way, the virtual could be seen as an opened direction on some original

forms of life. The forms of life are achieved by a certain kind of materialisation of the

1magmary.

The recreation of feelings has to deal with two different types of things. Firstly,

it can bring into existence, under other forms, things that already exist. Secondly, it can

bring into existence things that are only in our imaginary.

28 Gérard Leblanc, Quelle autre scène ? (Réel/Virtuel), Cinéma et dernières technologies, De Boeck,

Bruxelles 1998.

29 Ibid.

What is the relationship between real reality and virtual reality ? B-19

Depending on the subject of the recreation of feelings, i.e. something that has

existed or something belonging to the imaginary, we can have two different kinds of

virtuality:

1. The first is in the order of duplication. The simulated reality substitutes the

reality by redoubling it. lt becomes integrated necessarily in the previously

constructed representations. lt will just (re)produce stereotypes derived from

the reality.

2. The second is able to allow the existence of more than one universe that

have ever been lived. The presuppositions are radically different from those of

the first kind of virtuality. With this second type of virtuality, we could

perceive some other things and we could do things, which we do not have in

the normalised life, which is conducted by the social organisation of day-to­

day life.

Allowing the interaction between the contact senses will enable the creation of

some worlds that has never existed. Every artistic project tries to create such worlds.

The systems of simulated reality could allow some of these worlds. The condition to

reach it, is that not only the artists could use the existent software but also they can

contribute in the elaboration of new ones by integrating some new dimensions, which

could reduce the gap, and help to take into account the specificities and requirement of

their field.

B-20 What is the relationship between real reality and virtual reality ?

1
1
1
1
1
1
1
1
)1

1
1
1
1
1
1
1
1
1
1
1

1
'I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

This chapter is for this work as a light, something that enables the programmer

that will design a program for an artistic purpose, to understand first the difficulties

and the limitation of what he is attempting to do. Second to understand and to explore

the questions that the artists are rising about the use of computers in their demains.

This chapter can be seen like a bridge that enables to fill the gap between the

two participating parts, i.e. the programmer and the artist. Especially to allow the pro­

grammer to understand the boundaries of what is possible to do with the virtual reality

and what the artist reproach to the virtual reality.

What is the relationship between real reality and virtual reality ? B-21

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

W e describe in this chapter the Visual Assistant software and also the current

development. The majority of this section is derived from Colin Beardon's research1
•

we have also used the previous dissertation of Frédéric Miche2
• We try to defend the

use of this software, especially in the academic theatre production.

lt is really important to justify the need of this software, and particularly in the

field where we want it to be used. Of course, some other fields are likely to use it also,

but that is not the issue here.

W e will try to find out how it can help the work of the theatre production, and

we will try to compare the Visual Assistant to a studio. In fact, we want to prove that

1 Especially the Visual Assistant website at: http:/ /www.esad.plym.ac.uk/projects/VA.html

and Colin Beardon, Computers and Improvisation: Using the Visual Assistant for Teaching, Digital

Creativity, 1999, vol. 10, n° 3, pp. 153-166

2 Frédéric Miche, Chapter Four, Visual Assistant: A support for creative practices for theatre, Computer

Sketching: How Software Tools Can Enhance Human creativity?, Institute of Computer Science (FUNDP),

Namur 1999.

the software is useful and that it can change all the work of the teachers and the stu­

dents. We are convinced that it can improve the visual creativity.

At the end, we explain the characteristics of Visual Assistant. The use of the dif­

ferent components of the software is explained by the means of a practical user guide

that we added in the end of this chapter.

The Visual Assistant is a software designed and developed in a research program

to explore the possibility of creative advantages with digital technologies. The theatre is

the field of this investigation and we try to see the potentiality of those technologies in

enabling the production artists to better express, communicate and develop their visual

and spatial ideas.

ln the environment of creative people, the ideas about what the computer could

play a role in bringing a wonderful aspiration may seem surprising.

The Visual Assistant project aims to produce computer software that requires

little expertise, yet can allow anyone to express visual and spatial ideas relevant to a

performance.

In the academic field, the Visual Assistant aims to offer a new and creative ap­

proach towards this understanding by providing a flexible environment where a stu­

dent can be designer, director, actor and audience at the same time.

Of course, some softwares already exist for such purpose in the form of 2D im­

age processing or 3D model building and multimedia applications. But, all of these

softwares cannot do what the artists in the field of the theatre want.

3 Colin Beardon, Computers and Improvisation: Using the Visual Assistant for Teaching, p. 153

C-2 The Visual Assistant project

1
1
1
1
1
1 i

1
1 ,,

1

1
1
1
1
1
1
1
1
1
1
1

r ~
1
1
1
1

W e have investigated this notion in a previous chapter. W e have shown that the

notion of creativity is open to debate. W e have said that the creativity is not easy to

define, and we have tried to understand this strange feeling by exploring authors' opin­

ions, and philosophers' ideas about the subject.

For the purpose of our work, 1
1
1
1
1

,,, t;m n~ ro

1
1
1
1
1
1
1
1
1
1

~,-r
whi "' . ,

All disciplines, all human practices, involve a degree of such creativity and in all

practices it seems inevitable that cornes a later stage at which a more forma! mode of

interaction is needed in order for a specific outcome to be materialised.

To date, computer technology has been mainly associated with less creative and

more systematic mode of working. Computers have typically been used for the de­

tailed construction and transformation of ideas and they have become useful for pro­

ducing a final clean product. Many artists and designers think of the computer as a

means of copying with the detailed and technical aspects of their creative work and

many would see it as inherently opposed to the processes of true creativity. That oppo­

sition may have historical reasons, but it is the core attitude of the development of the

Visual Assistant Software.

4 Colin Beardon, Digital Creativity in the 21 st Century, p. 4

The Visual Assistant project C-3

The Visual Assistant project aims to address the following research question:

lt does not assume a positive answer, but rather, seeks through new software de­

sign and interaction of this into creative practices, to elicit a clear positive answer.

Meaningful and useful software needs to be grounded in the practical concepts

of its intended users and provide a code within which interesting designs and artefacts

can be produced. But, all of these softwares cannot do what the artists in the field of

the theatre want6
:

• Sketching:

Sketching stage of a design is necessary to work with ill defined ideas and all ex­

isting software require too much detail.

• 2D and 3D representations:

2D graphies does not enable the proper exploration of three-dimensional space,

whereas 3D modelling requires technical skills that are not easily achieved.

• Look and feel:

None of the interfaces look and feel like a theatre, they look and feel like a

computer interface.

5 Art. Cit., Colin Beardon, Digital Creativity in the 21st Century, in: Proceedings of ICFAD '99, p.4

6 Colin Beardon and Terry Enright, The Visual Assistant: designing software to support creativity, in:

Proceedings of CADE '99 Conference, University of Teesside 1999, p. 1

C-4 The Visual Assistant project

1
1
1
J
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
11,

1
Il

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Visual Assistant software provides an imaginary space into which two­

dimensional images can be placed and manipulating in three dimensions, in order to

quickly create visualisations relevant to performance. The Visual Assistant software is

based around three concepts of representational forms7:

• Sketching:

Sketching is taken as a mode of expression in which detail is less important.

There is also certain plasticity about the sketch itself, in that it is a disposable

medium. lt is not intended to be permanent but rather a quick attempt to cap­

ture something. If it fails one can dispose of the product without regret and try

agam.

• 2D and 3D representations:

The computer screen represents 2D objects quite well, and it can simulate

2 ½ D 8 through the layering of images, but 3D representation on a flat com-

puter screen is never intuitive. W e struggle with pitch and roll versus pan and

zoom; there are too many things to do within a flat surface.

• Collage9
:

Computer graphies has extended the tyranny of the fixed-point perspective. For

computers, geometry provides the ideal abstraction for representing space in

two dimensions. Artists and designers have moved on. Through collage, for ex­

ample, it has been possible to avoid closure and to allow the viewer to contrib­

ute to meaning. lt provides a natural medium for deconstructing messages and

placing them in new contexts where they convey new meanings. lt employs a

combination of borrowing and re-presenting which is familiar to many in the

theatre world.

7 Art. Cit., Colin Beardon, Digital Creativity in the 21 st Century, p. 5

8 W e can use the sight illusion to represent the 3D objects on a 2D plan. By the means of the perspective,

we match the 3D objects to their correspondent 2D objects, which are on the 2D plan.

9 Arts: a picture made by sticking other pictures, photographs, cloth, etc onto a surface.

The Visual Assistant project C-5

The Visual Assistant has a clear context of use. Of course, there is no guarantee

that it will be used in the way we intend10
, but the design approach anticipates this

phenomenon. lt concerns a number of people involved in the real production of play,

each with a distinct role and with a great need for co-ordination and co-operation.

Usually, few people are likely to be involved in the visual realisation, but all have ready

access to the play text. Could there be a role for digital technology in providing a

common canvas for the visual and spatial aspects of a production? What could such

software be like?

The software was designed for users who are primarily interested in the theatre

and are probably not at all interested in computers. We can see the Colin Beardon's

initial design objectives for the software11
• These aims seem to be drawn from his expe­

riences of working with theatre students.

• It must be very simple to learn:

someone should be able to see someone else using it and then confidently use it

himself/herself. The principle interest of the users is theatre, not computers.

They do not want a manual or a tutorial to read.

• It must be simple to use:

there is little point in providing 96 options when most users will only use 12.

More, as the previous point, the theatre, not computers, interests the users ..

• lt should give meaningful results quickly:

there is a tightly iterative process of producing and evaluating.

• lt should use visual imagery and locate it spatial/y:

constructive geometry is insufficient, for example, without texture mapping,

but we have to keep it simple.

1° Colin Beardon, Sue Gollifer, Christopher Rose, Suzette Worden, Computer Use by Artists & Design­

ers, Computers and Design in Context, in: Proceedings of MIT Press, Cambridge (Mass.) 1997, pp. 27-50

11 Art. Cit., Colin Beardon, Digital Creativity in the 21 st Century, p. 5
Art. Cit., Colin Beardon, The Visual Assistant: designing software to support creativity, p. 2

C-6 The Visual Assistant project

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

• Products should be disposable:

we do not want so much resources spent on a computer model that the user sees

the model as more important than the real world. lt should not matter if the

product is transformed or destroyed.

• It must be a believable world:

the screen should look like a theatre, not a computer. When acting on the com­

puter screen we should be thinking as a theatre person.

• What happens should be like sketching:

it should not matter if work is irretrievably transformed or destroyed and user

can always try again. The Visual Assistant should rather be seen as a theatre im­

age-making sketchbook rather than as a theatre design tool. In fact, the Visual

Assistant has been developed as a sketching tool to offer artists and designers

tools that can be used during the initial stages of the creation process, which

does not need details before its final stages.

• It should support process rather than product:

particularly processes that lead to clearer understanding and better actions in

the real world, e.g. a better perception of a play to put on.

• It should present a believable 'language-game':

when acting on the computer screen user should be thinking as a theatre per­

son. That is, the software tool should move aside, hide behind the theatre prac­

titioner. lt should become free and easy for its user rather than constrain

him/her to submit to its sequence of proceedings.

• It should support person-to-person dialogue:

the main role of the output is to serve as a common sketchpad to support criti­

cal discussions. Anyone can express an idea and anyone else can explore and talk

aboutit.

• It should be able to lead to a more detailed mode!:

ideally, if a successful outcome arises, it should be possible to go from what has

been produced here to software designed to add greater precision.

Colin Beardon, The design of software to support creative practice, in: Proceedings of IDA TER 1999,
Loughborough University 1999, p. 5

The Visual Assistant project C-7

Visual Assistant is not only intended for students, but for most of people in­

volved in a play. As a consequence, we propose to complete the goals of Visual Assis­

tant as stated in the previous section, by getting the requirements of theatre directors.

In this way, we can have another investigation besicles the objectives from the Colin

Beardon's works. In fact, Colin Beardon has seen the requirements in theatre education

but not th ose coming from the prof essional theatrical field.

The major expectation of Dominique Serron from computer science would be

the ability to calculate the contact between audience and actors. That is to say, the

computer would calculate the distance between the audience's position and the stage's

organisation: how to place the audience, at which distance should they be from the

stage, how much distance should there be between one spectator and the other, in

which type of seat, position13
•••

Not only should software permit to calculate that information, it should also be

able to simulate the different feasible placings.

The aim of such an approach is to discover the emotions certain placings pro­

vide, because the emotions the direction wants to arouse do depend on the spatial ar­

rangements of all stage elements such as the audience, the actors, the stage and the scen­

ery.

The theatre director would like to be in the audience's place in order to make

out the emotions that are generated in it. Doing so, (s)he wants to succeed in transmit­

ting it his/her own interpretation of the play.

On a more specific domain of scenecraft, it would be interesting to view cos­

tumes, scenery and particularly the colour's intensity, the latter being the most impor­

tant. Visualising the costumes and the diff erent type of cloths existing on the screen

could be a tool. Moreover, every costume consists of various cloths, which can be

12 A conversation we had with Dominique Serron, theatre director.

13 That is to say standing, sitting, lying, etc.

C-8 The Visual Assistant project

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1•
11
1
1
1
1
Il

1
1
1
1
1
1
1
1
1
1
1
1
1
1

combined to see what matches or clashes. The possibility of modifying the cloth's col­

ours can also be a help, colours being determinant to make cloths assemble or not.

Concerning scenery, a library of themes and abjects combinable, in order to

provide a certain effect, could base its conception. Moreover, the stage dimension and

its depth must be modifiable to think up the space arrangement.

The colour issue is very important. Actually, it would be marvellous to assem­

ble all the elements to get a general impression of the colours. An example: suppose

that we choose to dressa character of little importance to the stage action in black,

according to his/her tiny role. Then the other actors' colours, the projector's intensity,

the scenery painting might still cause the one we wanted to be secondary, to become

the major visual attraction to the audience. Then simulation will give us a preview of

that undesirable effect.

The computer access must be as simple as possible, its manipulation easy and

comprehensible for an artist, and all habits of the computer world avoided so it is

adapted better to the theatre branch. lt would be great to talk to the computer: as a

director's job demands the giving of instructions and the coordination of the different

elements by his/her voice, a vocal characteristic would be just out standing. On the

other hand, the mouse, keyboards and screen are convenient, if their handling is ex­

plained.

Prints also have to be an essential element of the software. They would enable

us to fix the ideas for the stage arrangements or to compare different arrangements. W e

could even show them to other persans and talk about them.

At last, it would be useful to have a three-dimensional view of the theatre hall 14
:

the stage, lighting, audience placement, ... a virtual helmet would permit to visualise

and to talk around in this virtual reality15
• To build oneself an approximate image of

the placement, lightning and distance effects ... to obtain a sketching out of the produc­

tion. And, why not filming this virtual reality to save it on a videotape to visualise it

for many and to discuss about?

14 Through that is maybe a matter for science fiction or the experimental domain. (See appendix French

Translator)
15 See chapter: What is the relationship between real reality and virtual reality?

The Visual Assistant project C-9

Visual Assistant replies in some needs: it enables the scenecraft, the design of

scenery. Next, the colour management is possible with Visual Assistant. lt permits to

assemble all the elements to get a general impression of the colours.

Furthermore, Visual Assistant allows the possibility to catch pictures from li­

braries coming from CD-ROM or even Internet16
• In this way, we can try the combi­

nation of different abjects, in order to try the different effects. Moreover, we can

change the stage dimension and its depth to think up the space arrangement. 17

Its manipulation is easy and comprehensible for an artist, and it tries to put out

all habits of the computer world in the way to provide the computer science adapted to

the theatre branch. The mouse, keyboards and screen are the input-output system. W e

think that is an easy system to learn.

Finally, we can save the work made with Visual Assistant on dises. Further­

more, we can save this work as pictures that we can print with paint software. It en­

ables us to fix the ideas for the stage arrangements or to compare different arrange­

ments with printed pictures.

16 See point about on-li ne archives in state-of the-art

17 Just in version Macintosh at this time.

C-10 The Visual Assistant project

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
) ,

1
I, ,,
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Let us quote Spolin's book:

W e can interpret the Spolin' s remark in the field of this work and see that the

environment of the computer can be analogous to that of the theatre studio thus ena­

bling students to use the same techniques of improvisation in virtual as they do in ac­

tual space. The diff erence being that the emphasis in virtual space is visual while in ac­

tual space it is pbysical, including voice. Educationally the combination and juxtaposi­

tion of these two learning environments can significantly aid the educative process for

theatre students by emphasising the physical alongside the visual.

The theatre practitioners are those who can perceive and conceive performance

from all perspectives, but most of the time, visual is the less represented area in artistic

schools.

The computer, like the studio, can become a site of play where the emphasis is

on eradicating blockages, challenging stereotypes, being receptive to the unexpected,

and the unusual. Sorne of the formal characteristics of play, as the creativity or the im­

provisation, can be seen in the studio or on the computer.

18 Spolin V., Improvisation for the theatre, Pitman Publishing, London 1963.

The Visual Assistant project C-11

As said by Huizinger:

What about the graphical interface? Visual Assistant software seems to be a user­

friendly environment that has the elements needed to promote a sense of creative free­

dom. The remaining technicalities are comparable to the techniques, conventions and

rules that apply in the studio. The more we play the more we become familiar with the

software, and the more rules we create the greater becomes our knowledge of the envi­

ronment which is generating the playing. There is a tension that occurs in all the crea­

tive processes between spontaneity and discipline.

W e think that the Visual Assistant software is a powerful tool and environment

to develop and promote visual creativity. Its application in the study of theatre prom­

ises a breakthrough for it is both a complementary site for the training of visual per­

ception, and a dynamic sketching and storage for pictures.

19 Huizinger J., Homo Ludens, Beacon Press, New-York 1955.

C-12 The Visual Assistant project

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1 ,,
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
_J

Visual Assistant software is primarily for people working in the theatre and

concerned with performance, but it may have many other fields of application. It is an

essay to see the limits of representations in two dimensions or even in three dimen­

sions. The software allows the users to import, to draw, to modify 2D graphical abjects

and to manipulate these abjects within 3D space.

T o design the software, we can examine uses of language in the artistic field, and

in this way, we can understand working practices and design better products. But, the

problem in the case of art and design is that is not primarily text or speech based.

Moreover, the meaning of the software must not be defined by the software de­

signer or the computer or the end user, but it is negotiated by their collaboration. The

partnership is really important in the fields where we have just an abstract things to

think the software. In our case, we want to make software for creativity which is an

abstract notion. W e can define the creativity as the search for meaning or for the ex­

pression of meaning. But, the meaning therefore cannot pre-exist the practice20
• The

more we involve the user in the design process, the better software will emerge. In fact,

users can say directly what they need and may help to discover some new ideas and

mistakes.

The biggest problem, we have in our case, is the usability of creative practitio­

ners to test a field of work which is very different from their experience. In fact, the

computers are only used to perform clearly defined tasks; typically to transfer informa­

tion unambiguously from sender to recipient with the minimum of information loss.

In this way, there is no recognition that the computer might be used in conjunction

with imagination, or even with play. More the computers are used primarily to convey

information encoded as letters and numbers within a limited two-dimensional plane. In

that way, there is no recognition that multimedia computing generates subtleties of

meaning which can be harnessed to great effect.

20 We have tried to explain this notion in the chapter about creativity.

The Visual Assistant project C-13

W e can see the preliminary investigations of Colin Beardon to explain the mis­

understanding between artists and designers, which are for him unlike users of soft­

ware:

Through this anecdotal remark, he said that the artists could not understand the

problems of software designers. In fact, they cannot understand the process generate

and test used by the computer field:

The designers refuse to engage in a constructive criticism of the tools and crea­

tive users deliberately try to subvert the intentions of software designer. Knowing that,

it is really difficult to make software implying the creative practitioners.

From another point of view, the major organisational problem has been the

software and the computing equipment. The initial decision was token to develop the

software for the Apple Macintosh; but it created a problem when many users switched

to PC platforms.

21 Art. Cit., Colin Beardon, The design of software to support creative practice, p. 3

22 Ibid. , p. 3

C-14 The Visual Assistant project

1
1
'I
1
1
1
1
1
1
I l
1
1

' 1
1
1
1
1
1
1
1

1
1
1
1
Il

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

The Visual Assistant software has been used in several teaching workshops with

purely educational purposes. lt offers many advantages in this field:

• Ease-of-design;

• Rapid prototyping: sketching;

• Re-education theatre students;

• And, last but not least, cheaper than setting theatre properties on an actual

stage.

lts use in academic theatre production could help to educate the students on the

right track.

In theatre production, students have to learn a lot of methods: how to design

stage sets, how to move the actors on the stage, how to put the objets on the stage, how

to make the shifting of the actors and the objects, etc. Of course, this is a rather costly

activity, both in money and time. Each student should need a real theatre stage; a

physical theatre for a whole classroom, one student at a time, one stage for each stu­

dent at a time.

Moreover, it also means that we should have real objects like furniture. It is

time consuming to place all the objects, and there is a need of a warehouse for stocking

all these objects. And, if a student would choose an object by mistake, and after (s)he

has try it on the stage, (s)he says that it is not the good object: should we buy another

one if it is not in our stock? W e can consider that the change of position of the object

can improve the time of arrangement. In fact, some of them are very heavy, and we

should have some people just for managing the stock, the order of objects, and the ob-
. .
Jects movmg.

Finally, what about people or dummies for the students to figure out where to

place everything and which space they need on the stage? It is realisable to book a lot

of people who do a lot of things out of our activity. And the most important, labour is

very expensive. Evidently, this is not realist and feasible.

The Visual Assistant project C-15

As a result, an objective of the Visual Assistant software is to save time and

money by allowing the students to use a computer to decorate a stage, to move the

actors on a stage, to place the object on a stage ... In this way, the students have a pre­

liminary idea of what they want. Of course, they can do their stage in life-sized if it is

necessary.

N ow we have access to the television and movies from early childhood that

many students conceive many aspects of the theatre in terms of television or movie

techniques. The close-up desire is probably the best example of this observation. In

fact, the close-up has no place in the theatre field. Further, they also think about thea­

tre only in terms of words: the words of a play text, the words of critics and theoreti­

cians, the word written by students and the words presented by lecturers. Theatre is

more about doing, it is about action and space and light and many other things. If

computers are to be used in this field of creative practice to real advantage, then there is

a real need for a range of visualisation software designed for theatre practitioners to

help address this imbalance. T o correct their visual and spatial skills, they need to de­

velop their skill of stage designers by the use of real physical stage. But, as said before,

it is not realisable because it is often impracticable and expensive. But, the Visual Assis­

tant software offers such potentialities since it represents the stage as a whole, using 2D

pictures as theatre properties or actors and the possibility to explore spatiality by set­

ting out abjects in a 3D virtual space. The Visual Assistant software does provide an

accessible and fairly quick means of getting students to think visually about a play, not

just in terms of particular pictures to be included but also in terms of colour, mood,

atmosphere ... By providing a sketching environment, man y ideas can be explored, dis­

cussed and amended.

C-16 The Visual Assistant project

1
1
1
1
1
l i
1
1
1
J,

1
1
11

1
1
1
1
1
1
1

1•
1
1
1
1
1 ,,
1
1
1
1
1
1
1
1
1
1
1
1
1

As said before, 3D modelling softwares produce accurate 3D models of theatre

layout and stage and set design such an approach assumes a knowledge of detail and a

spending time that may not be available or even desirable when ideas are in formation.

The Visual Assistant provides a quick way of creating the general impression generated

by a stage, or other 3D space, so that the important concepts are clarified and can be

discussed.

.. tain logic,,

eometry. The unfpmprqmising lack

or:s not to be ':t . . ·

' The Visual Assistant software enables the user to collect textual and graphical

material and to organise it visually. It builds upon the visual and spatial qualities of

objects on the screen, rather than their formai (any semantic information such as object

type, name, etc.), physical (location, size, image) or textual properties (any written

comments). It enables the user to construct abstract or quasi-realistic representations -

the latter ones could actually become real stage sets for real theatre plays.

The software locates visualisations within three dimensions and the user is pre­

sented by a space. There are two-fixed viewpoints: from 600 units in front of the

stage24
, and one from directly above the stage looking clown.

23 Art. Cit., Colin Beardon, The design of software to support creative practice, p. 4

24 See chapter: Software Architecture

The Visual Assistant project C-17

Let us take a look to the software's interface: (See Figure 1)

Menu

Back of stage Front of stage

Floor stage

Toolbox

Figure 1: Visual Assistant's interface (in Front View)

The fondamental architecture of the Visual Assistant software is that it contains

a sequence of stages, each of which contains a number of objects25
• Objects can be im­

ported graphie images, one of a number of predefined constructs (circle, rectangle, and

line) or a pencil drawn object. Once entered the image can be manipulated by changing

its size, flipping it, erasing portions of it, recolouring it, turning it into a pattern ...

Each stage is bounded by a three-dimensional box in perspective 2 ½ into

which objects can be placed. All objects in the stage have a visual two-dimensional rep­

resentation. When viewed from above the various images appear as lines with width

but minimal depth.

25 Called StageObject in chapter: Software Architecture

C-18 The Visual Assistant project

1
1
1
1
1
1
1
1
1
1
I l

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

They can be moved around in this top view and the moves are permanent, i.e.

they take effectif the user changes back to front view. By moving the ends of abjects in

top view, abjects can be rotated around their centre point (i.e. they do not need to face

the front of the stage). Back to the front view, the moved abjects appear greater or

smaller if they have been moved forward or backward respectively. Objects rotated in

the top view appear like a trapezoid in the front view. In fact, this simulates a perspec­

tive effect due to a leaned object.

In the front view, one can see an outlined rectangle, which represents the back

of the stage, with four lines linking its corners with the corners of the display area. T o­

gether, they represent a box bounding the stage. This box, called the Wireframe, can be

switched on/ off if a designed stage requires no spatial limits.

With the software, we can make a movie with thirty stages in a sequence. There

is an option to play the sequence of stages and this displays a simplified animation,

rather like a slide show.26

26 At this time, this characteristic is not implemented in the PC version. But built architecture of PC

version takes care about this future functionality.

The Visual Assistant project C-19

The below tables show all functionalities implemented in the software27
• We

have put the two columns for the versions: one for the PC version28
, and another one

for the Mac Version. W e can see that the PC version has less options implemented be­

cause it is a prototype version, and the development is not totally finished, but all basic

functionalities are implemented, and we can load and save our works. In this manner,

we can give our attempts to some friends to discuss about the work to improve it.

• WorldMenu

First, we have the general functionalities that allow loading and saving of Visual

Assistant works, i.e. plays or scenes, with the Visual Assistant Software. Sorne func­

tionalities have three dots " ... " to show that this process executes the displaying of a

new window, on the main window, to catch information from user.

(See Figure 2 and Table 1, which is on the next page)

Input

1 Output

Figure 2: World Menu

27 These tables explain the functionalities of the two versions that we can find on the CD-ROM provided

with this work.

28 ln this column, a cross 'X' represents the functionalities implemented by myself and a 'C' the func­

tionalities implemented by Colin Beardon.

C-20 The Visual Assistant project

1
1
1
1
1
1
1
1
1
1
1
1
1
1

' 1
1
1
1
1

1
1
1
1
1
1

' 1
1
1
1
1
1
1

Table 1: functionalities to save or to load the play (Menu World)

()

~+
~ :;,;--

o Il ~ ~ ~
::S O.. C ('1:, "1
rt O C ~ "6·
::r i:: -
(l) cr-

C rt
~ 0 (l)

2.. '

l&I New Will create a new, empty environment. If the current
environment has been altered since the last New, Load
or Save command then users will be asked if they wish
to save the present environment.

~ Open ... Will load a saved environment. If the current environ-
ment has been altered since the last New, Load or Save
command then users will be asked if they wish to save
the present environment. Users will be asked to iden-
tify the file they wish to load (usually called ".va") . If
successfully identified, the environment will be loaded.

~ Save Will save the current environment with the same file-
name as the last Save or Load command. The saved file
will contain all the images used in the environment.
The previous version of the file will be automatically
replaced. If no previous Save or Load command has
been issued, the effect will be the same as 'Save as .. .'.
This command is only available if the environment has
been altered since the last New, Load or Save corn-
mand.

~+
Save As ... Will prompt users for a folder in which to create a new

folder to save the current environment. If a folder al-
ready exists with that filename, users will asked to pro-
vide another name. The environment will be saved as a
text file in VRML 2.0 format '.wrl' along with '.gif' or
'.jpeg' files for all associated images. This makes it
readable in any VRML browser.

ffiJ Export to Saves a flat 2D image of the stage as a JPEG file.
JPEG ...

~ Quit Will quit the Visual Assistant and return to the desk-
top. If the current environment has been altered since
the last New, Load or Save command then users will be
asked if they wish to save the present environment
before quitting.

The Visual Assistant project

~ ~
~

(J
,_
~ ~ - ~

~ ~ -
X X

X X

X X

X X

X

X X

C-21

• Stage Menu

Second, we have the functionalities that allow the management of the diff erent

stages. These functionalities are applicable on all the current stage that we see on the

screen. (See Figure 3 and Table 2)

Figure 3: Stage Menu

Table 2: functionalities about Stage (Menu Stage)

()

1:f +
~ ~ ~ :,;--

o Il ~ ~ (") (")
(')

::, O.. C ~ "'t

? ~ rt O C ~ ~-
!J ::r C - ~ cr C !JI ~ rt ;::s 0 ~ --2... '

~ Front View Changes the viewpoint to a position directly facing the
centre of the back wall and at approximately one stage
depth from the front of the stage.

X X

~ Top view This command permits viewing from a point directly
on top of the stage. Objects will appear as thick black
lines. When selected with the cursor, a full size image
will appear and this may be dragged and dropped any-

X X
where within the stage limits. The effect of changes
made in Top View will be permanent and will be re-
flected when you return to Front View.

w Play This will play through the 20 stage settings in se-
quences. lt is a simple animated sequence with some in-
between. The toolbox and menu bar will be hidden

X
for the playback. Use the space bar to interrupt the
playback if desired.

Stage Shape This command permits to change the kind of stage:
trapezoidal, circular, square, ...

C-22 The Visual Assistant project

1
1
1
1
1
1
1
1

' 1
1
1
1
1
1
1

' 1
1
1

_J

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

()

i=f+
~ ~ ~ :,:;--

o Il ~ :::;:, r") r") n
::;:l O.. C (1:, "'t - ~ ,.. 0 C ~ ~- ~

~ ::r s:: - -(b cr"
~ C VI ,.. - ;::s ..__, 0 (b

2.. 1

~ Object Click on an object and it will be removed from the
to Floor scene and pasted to the floor (and shown in perspec-

tive). Once on the floor it can be flipped, patterned, X C
etc. and removed from the floor by using the 'Floor to

Object' tool.

~ Floor to Ob- Click on the floor: if it contains an object then that
JeCt object will be restored as an ordinary object in the

scene (at the same location, size, etc. as it occupied be-
X C

fore it was pasted to the floor). The floor will resume a
plain colour.

• Draw an Object Menu

Third we have the functionalities that allow drawing the standards shapes.

More, we have the Import ... functionality that enables to take pictures from files. (See

Figure 4 and Table 3, which is on the next page)

Standard shapes

Picture from file

Figure 4: Draw An Object Menu

The Visual Assistant project C-23

Table 3: Functionalities to draw new Stage Objects (Menu Draw an Object)

()

~+
~ ~ "i::I ::,;-

o Il '::"i ~ (') (')
(;

::l O.. C t'1:) ""t ? ~ rt O C ~ ~-
::r s:: - - ~
(b cr" C V1 ~ ;::t --0 (b

2.. 1

[!] Circle Create a new circle at bottom - front of stage.
X X

Figure Create a new figure at bottom - front of stage. X X

êtJ Import ... You will be asked to select a PICT, GIF or JPEG file.
A picture, in the same proportions as the original im-
age, but reduced if necessary to fit the screen, will ap-
pear centred on the screen (located at the front of the
stage). The image of the object will be shown as 'trans- X X
parent' (i.e. all white pixels will be transparent). All
images are represented internally using thousands of
colours at 72 dpi.

(S] Line Create a straight line in the current colour. The width
of the line is determined by pen size. (One way to
change this is to double-click on the line tool.)

X X

~ Pencil Enables you to draw with a pencil. If you start drawing
on an existing object (at the front of the stage and non-
angled), then your drawing will add to that object, oth-
erwise it will create a new object. The thickness of the
line is determined by the line size (which can be
changed by clicking two times on the pencil tool). The
colour of the pencil is the current colour. You canuse X X
multiple strokes and change the pen size and colour,
but when you select any other tool then the drawing
will stop. A new drawn object scan be moved, resized,
coloured, flipped, erased, etc. and grouped, just like
any other object.

~ Rectangle Create a new rectangle at the centre - front of the
stage. X X

C-24 The Visual Assistant project

1
1
1
1
1
1
1
1

' 1
1
11
1
1

11
1 ,1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

'

• Modify an Object

Fourth we have the functionalities that allow to modify the characteristics of

drawn objects on the stage. Moreover, we have Undo fonction that enables to cancel

the last operation. (See Figure 5 and Table 4)

Figure 5: Modify an Object Menu

Table 4: Functionalities to modify an Stage Object (Menu Modify an Object)

()

~+
~ ~ "t, :;,;--

o Il V, ("')
~ o.. ~ ~ (") (")

"'!

? ~ et, ~-..... 0 0 ~ ::ri::::: - ~
(1) c:ï

0 V1 ~ ,_. ;:s 0 (1) -2... 1

[li Undo U ndoes the previous command.
X X

~ Delete Click on an abject to permanently remove it.
X X

The Visual Assistant project C-25

()

g-: +
:,;-
o Il
:::, o... ~ :::.,

n,
n O C ~ ::r ç: -
(b r:::r
M -0 (b

2.. 1

l!!.I Duplicate

li] Paste

H Group Ob-
JeCtS

lr2] +
Face Front

1!1+ Face Sicle

lr2] Move on Plan

C-26

~ ~ ~ n (") (")

""! - ~ ~- ~
~ ... -....

C ÏJl ~ .:s --
Create a duplicate copy of any object.

X X

Enables you to create a new object using an image in
the clipboard copied from some other application. X

Combines two or more objects into a single object.
This operation cannot be undone. The cursor will
change to a white cross. When you click on the first
object the cursor will change to a red cross. When you
click on subsequent objects, the two objects will be X C
combined. This will continue until you select another
tool. The objects must be at the front of the stage and
not angled.

Forces object to face front and move to the front of the
stage. X

Forces object to be at right angles to the front of the
stage. It will avoid locations too close to the centre, as
the object tends to be hard to locate.

X

Enables you to move an object on a vertical plane from
the front view. By selecting an object to be moved in
this way, a dotted rectangle will appear indicating the
vertical plane in which the object can move. As the
distance from the front of the stage is fixed, the object
will not get larger or smaller. If in Top View, the ob-
jects (represented by thin rectangles) can be moved

X X
around the stage by picking them up from the black
square at their centre. Object can also be angled by
picking up either end and dragging up or clown the
screen. The object will then 'rotate' around its centre.
When you return to Front View, the object will appear . .
m perspective.

The Visual Assistant project

1
1
1
1
1
1
1
1

1

1

1
1
1
1
1
J
1
1
1
1
1
1 1,
1
1
1
1

Move in Enables you to move an object on a horizontal plane
Depth from the front view. By selecting an object to be

moved in this way, a dotted trapezoid will appear indi-
cating the horizontal plane in which the object's centre
can move. As the cursor moves away from the centre
of the screen and towards the top or bottom, so the
object will move towards the front or back of the
'stage' (and hence get larger or smaller).

Flip horizon- Clicking once on an object will cause it' s image to be
tal flipped horizontally (i.e. right becomes left and left

becomes right)

Flip vertical Clicking once on an object will cause it's image to be
flipped vertically (i.e. top becomes bottom and bottom
becomes top).

Resize Enables you to resize an object. When clicking on an
object a green rectangle will appear indicating its size
(necessary for images shown as 'outline' or 'transpar-
ent'). When the cursor crosses this line with the mouse
button depressed, the line will turn red and the object
will be resized to the position of the cursor. If the shift
key is held clown when commencing this operation the
original proportions of the object will be retained.
When the button on the mouse is released the object's
new size will be retained.

Clean Clean an image by (trying to) eliminate stray white
Pixels pixels, especially around the edge.

Fix Pattern Makes a pattern become fixed. This enables the current
pattern to be made into a component of a further pat-
tern. The operation is forced if you use an eraser on a

atterned ob · ect.
Pattern Allows the image on an object to be changed to a re-

peating pattern (or vice versa). Users click on the ob-
ject and the image will be reduced so that it is a maxi-
mum of 60 pixels in any direction and is repeated to fill
the same space as before. If appropriate, the patterned
surface will be shown in perspective.

The Visual Assistant project

X X

X X

X X

X X

C

X C

X C

C-27

Resize
Pattern

Eraser

Maximise

T ransparency

C-28

If you click on an abject with a pattern, then a resizing
process will follow (see 'Resize' above). A red rectangle
will indicate the size of the repeating pattern which can C
be resized.

Selects the eraser tool which enables you to erase any
part of an image. The thickness of the eraser can be set
by changing the pen size. (One way to do this is to
double-click on the eraser tool.) The eraser will force
the abject to be transparent. The eraser tool can only X C
be used on abjects at the front of the stage and not an-
gled (if necessary an option is presented to make them
so).

Forces abject to its maximum size (i.e. full stage height
and full width or depth). The operation can only be X C
undertaken on ob · ects facin front or sicle.
If you click on an abject, the transparency of the image
will change, i.e. if it is currently 'transparent' (all white
pixels are invisible) it will become 'opaque' (i.e. all

X C
white pixels within a white rectangle will be shown). If
it is not transparent, it will become transparent.

The Visual Assistant project

1
1

' 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1

' 1
1
1
1
1
1
1
1
1
1
t
1
1
1
1
1

()

f:f- +
:;,:;--

• Colour Menu

Fifth, we have the functionalities that manage the colour characteristics of the

software. The first piece of the menu is to express the current colour. The second en­

able the painting of stage objects or even the current stage/ scene. The third allows the

possibilities about the luminosity of the stage objects or even the current the

stage/ scene. The last are not implemented in the PC version. lt allows specifying the

place of a spotlight.

(See Figure 6 and Table 5)

Figure 6: Colour Menu

Table 5: Functionalities about Colours (Menu Colour)

~ ~ ~ V, o Il (")

::l o.. ~ :::;:, (") (")

ni "1 ..--.. ~
rt O C ~ ~- ~
::r-ç:: -
(1) 0-
rt
0 (1)
0 1

........

.....
C
;:s

Pick Colour Opens the colour picker to select a new colour.

Copy Colour Make the current colour equal to the colour of the
chosen pixel.

Black Set current colour to black.

The Visual Assistant project

,-.,. ~
~ ~ .._

X X

X X

X X

C-29

n
g: +
:,:;--
0 Il
::::1 o.. ~ ~
,-t O O ~
::, C -
C'b cr
8 (D
0 1

C-30

White Sets the current colour to off-white (i.e. not transpar­
ent).

Flood Object Paste the current colour to an object. All non-white
pixels in the object's image will be set to the current

X X

colour. If the floor is selected, it will be set to the cur- X X
rent colour. Similarly for the background colour.

Tint Object

Tint Scene

Darker Ob­
Ject

Lighter
Object

Click on an object and it will take the current colour
but retain the light/ dark shading of the original image.
If the current colour is black or white, then this will
change the image to greyscale.

Tint all objects in the scene. Cannot be undone.

Click on an object to make it darker by 10%.

Click on an object to make it lighter (by 10%)

Darker Scene Darken all objects in the scene by 10%. Cannot be
undone.

Lighter
Scene

Edit Filter

Move Filter

Make all objects in the scene lighter. Cannot be un­
done.

Invokes a dialogue window that allows you to switch
the filter on/ off, set the colour of the light, set its
brightness and angle of diffusion, as well as its shape
(circular or elliptical)

Click on the screen and the centre of the light filter
will move to where the mouse is clicked.

X C

X

X X

X X

X

X

X

X

The Visual Assistant project

1
1
1
1
1
.1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

'

1
1
1
1
1
1
1
1
1
I ,

1
1
1
1
1
1
1

1
1
1

n ~+
:;,:;--

W e can suggest that the items of this later piece of menu are not in a nice position.

A best position is the Preferences menu for the Edit Fi/ter, and the Stage menu for the

Move Fi/ter.

• Preferences Menu

Sixth, we have the user's preferences. We can change the size of the pencil, and

also some different customisable options: Show/Hire Help text, Show/Hire Menu Bar,

Show/Hire Position of Pointer, Show/Hire Time Line, Use/Not Use Transparency and

Show/Hire Wireframe. (See Figure 7 and Table 6)

Figure 7: Preferences Menu

Table 6: Visual Assistant's Preferences (Menu Preferences)

~ ~ "'O
~ o Il n

:::i o.. ~ ::;.. ~ ~

("I:) "! ,_ ~
rt O C ~ ~- ~ ::r-c- ~ - ~
(b cr

C Î.11 ~ rt ;::s 0 (b
..._.

0 1

........

[i] + Options ... Produces a dialogue box that will enable you to switch
the menu bar, the tool panel, the wireframe and the
help text on/ off. lt can also enable / disable the default

X X option to move an object if dragging occurs when no
appropriate tool is selected.

Il]+ Pen Size ... Open a dialogue window to reset the size of the pen
(for Pencil, Line and Eraser tools) X X

• HelpMenu

This functionality is not implemented in the current version, but we have en­

abled the possibility to provide help in next version of Visual Assistant.

The Visual Assistant project C-31

The use of computers only to retrieve information, or to detail drafting or

modelling, may miss a great opportunity to explore in a deeper way within theatre and

performance education.

On the one hand, Visual Assistant software can be seen as a more general visu­

alisation tool for theatre. lt is a 3D sketchpad or scrapbook that allows the possibilities

to work with pictures to help us visually understand a play and to communicate simple

ideas about a performance in a visual form. ·

On the other hand, this is a preliminary in a longer process to design a real

scene. It is a way of working out the ideas without committing oneself to the time in­

volved in building significant models.

W e think that Visual Assistant software has something new to help profession­

als as well as educators and students in the field of theatre to improve their creative

activities. W e are convinced that the Visual Assistant software is a well-designed sketch­

ing tool for theatre practices and that it increases the freedom to communicate visually,

but also to play visually, to act visually and to improvise visually.

Let us see Dominique Serron's remark about Visual Assistant software:

Her observation is very relevant. Indeed, Visual Assistant has to reconstitute as

well as possible the theatre universe, avoiding the modification of its nature. Now,

Visual Assistant gives the feeling to make surrealistic art, whereas the real essence of

theatre is to be an impressionistic art. It is true that surrealism does exist in the theatre

field, still it does not make it its main base.

29
« L'effet de 'collage' donne à Visual Assistant une impression de surréalisme des scènes, alors que l'essence

même du théâtre est l'impressionnisme (c'est-à-dire transmettre les sentiments de l'œuvre) » coming from a
conversation we had with Dominique Serron.

C-32 The Visual Assistant project

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

1•
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L

Reusing of the
existing knowledge

This chapter covers the different approaches for building new softwares by us­

ing other previous knowledge coming from old developments and libraries of reusable

components. This is not a complete work about the subject but just an introduction in

the field. In this work, we are dealing with a migration of a software running on a Mac

platform to a PC platform. Besicles this, while the Mac version of the software is de­

signed by using the C language, the PC version will use C + + language. Our goal was,

among others, to build a reusable software which is, in our sense, a suitable quality of

every software clone nowadays. W e are conscious that a gap exists between the re­

quirements of the user and the implemented system, which means that a kind of se­

mantic degradation is inevitable. To capture the maximum of the underlying semantics

and to catch some of the lost ones, one needs to explore the different methodologies

and knowledge from other fields such as the reverse engineering. We propose to inves­

tigate the different fields, to have an idea about the contribution of each one and to be

aware of the difficulties related to this work.

The software reuse exists since the beginning of the computer science. W e find

different means for doing that: publication of algorithms and ideas, high-level pro­

gramming languages, and packages.

The publication of algorithms and ideas has been very important for the devel­

opment of computing. The presence of standard textbooks in a sector is an indicator of

its maturity, and is an important tool through which the reuse of ideas takes place.

The most obvious example of reuse is the use of high-level programming lan­

guages. In such languages, many frequently used combinations have been packaged into

single constructs at the higher level2. Thus the high-level language provides a special

notation for selecting generic constructs, instantiating them with the appropriate pa­

rameters, and finally composing them to build softwàre systems.

The packages have also been an important aspect of the software reuse. As the

publication at the first point, the procurement of standard packages is an important

example of reuse, and the availability of a wide range of products is again an indicator

of the maturity of a sector of technology. The packages that are defined rigidly are sel­

dom useful. Sorne flexibility is essential providing through a range of capabilities, from

the simple parameterisation, the configuration following some elaborate build script3,

1 Bott F. and Ratcliff e M., Reuse and design, Software Reuse and Reverse Engineering in Practice, edited by

Hall P.A.V., Chapman & Hall, London 1992, pp. 35-36

2 For example, the subroutine entry and exit with parameter passing.

3 This is usually clone for making an operating system.

D-2 Reusing of the existing knowledge

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

- -- --

1
1
1
1
1
1
1.
1
1
1 1,
1
1
1
1
1
1 1,

1

1•
1

L

until the modification of the package at the source level. A package may be seen as a

form of software component4
•

In our case, we have used a high-level programming language using the object

orientation. The object-oriented languages embrace the concepts of encapsulation5, mes­

saging, classe6, polymorphism7 and inheritance8
, and make code reuse easier.9 These dif-

f erent concepts of this language are very usefol to create interesting implementation

architectures with reusable components, but also for capturing the representation of a

domain. The oriented-object models a domain by identifying entities and their behav-

10ur.

With the oriented-object the structure of the system is based on interactions be­

tween entities. The fonctions and the data are grouped together into classes according

to abstractions that they represent. The objects are like people who communicate, en­

acting their behaviour of their job, providing different services to each other. And the

architecture is the mean for allowing the co-operation between the abjects.

Designing reusable components is not just a matter of deciding what data and

fonctions should be encapsulated. Components only become usable in the context of

architectures. Architecture does not corne out of nowhere, but evolves from agree­

ments on computational mechanisms, paradigms and other inventions that they have

underwent evolution.

4 The term component is very wide: it includes executable code, but also more abstract objects such de­

signs, algorithms, specifications and requirements.

5 Information and/ or implementation details which are hidden.

6 Describes the form and the behaviour of objects, and it is used as a dise matrix, a canvas, a mould for

making as many objects as we want that have the characteristics described in the class.

7 A code is said to be polymorph if it can be transparently used on instances of different types. Polymor­

phism allows us to write code in terms of generic type and have it work correctly for any special type

issued from the generic type.

8 Concept of hierarchy allows programmers to reuse not only the implementation, but also the interface

of another object.

9 See chapter Software Architecture.

Reusing of the existing knowledge D-3

The architectural view focuses on frameworks 10 of generalised ideas and sees re­

use as an issue of plugability. Compatibility with the architecture of the new applica­

tion requires our components to behave consistently with other components. A com­

ponent becomes usable when it fits into an architecture, and to be reusable it must pos­

sess the following qualities: it anticipates other contexts of use, the component is find­

able, it is able to be understood, all the services it requires can be provided.

10 A set of co-operating classes that makes up a reusable design for a specific class of software. A frame­

work provides architectural guidance by partitioning the design into abstracts and defining their respon­

sibilities and collaborations. A developer customises the framework to a particular application by sub­

classing instances of framework classes.

D-4 Reusing of the existing knowledge

1
1
1
1
1
1

' 1
1
1
'I
1
1
1
1
1
1
1
'I
1

1
1
1
1
1
1

' 1
1
1
1
1
1
1
1
1
1
1
1
1
t

Software Migration cakes place between an existing source system to an intended

target system. A system can be an operating system, a machine (Power PC, Intel, AS400,

...), or even a virtual machine such the virtual machine Java.

It is a tedious, expensive and time-consuming effort that must be managed care­

fully. It may take anywhere between six months to two years. 13 If clone correctly, mi­

gration can produce significant payoffs.

System migration is a good opportunity to rearchitect. Rearchitecture, if cho­

sen, requires starting from scratch with requirement gathering and project planning.

Rearchitecture involves a combination of application software architectures, and user

interface reengineering. W e can make code conversion in the way to adapt and/ or to

improve the software to migrate with the new technologies such object-oriented archi­

tecture.

Object-oriented technologies can play a key role in migrations by using object

wrappers around the components being transitioned. They allow portability of appli­

cation components.

11 Umar Amjad, Application (Re}Engineering: Building Web-Based Applications and dealing with Legacies,

Prentice Hall, Piscataway (New Jersey) 1997, p. 535

12 Ibid., p. 534

13 Ibid. , p. 535

Reusing of the existing knowledge D-5

7

,,, -se ngineenng 1s ••• t e proc~ o goin k ward t ·" ug t e
- . p ~ • i

e cycle"14~,.in t · " ... extract[i · cification15 of a sys-
·= dwlt >: \F .Afb==-'

rom .~ functional O ec'tS an n onshi S...
16 like

" ... gener'iîie new information a!Jout sofiwd~e such as 1/1-ithesising*~bstrac- é

ThêFextr4"ètiontôf d~ umirJ,tizti 8 atlâ ifi~ion ofi111 ,,
t

rL software [çomesJ.from the code ~'tSelf."19

W e can break the reverse engineering in a family of tasks with three levels: at

the implementation level, at the design level, and at the business level. In this work, we

are interested by the implementation and the design levels.

The implementation level is concerned with documenting code characteristics

such as program structure, control flow complexity, internai data complexity and stan­

dards violations.

The design level is attended with documenting design characteristics such as

modularity, coupling, cohesion, data and file design complexity.

14 Software Reuse and Reverse Engineering in Practice, edited by Hall P.A.V., Chapman & Hall, London

1992.

15 i.e. " .. . the embedded knowledge ... ". Holloway S., Re-engineering Business Systems to use the next gen­

eration of software, Software Reuse and Reverse Engineering in Practice, p. 275

16 Ibid., p. 275

17 Müller Hausi A., Reverse Engineering Strategies for Software Migration, ACM, (?Canada?) 1997, p. 660

18 i.e. the redocumentation principle that " ... is the production ofsemantically equivalent representation (on

paper or not} of the target system at whatever level of abstraction is being addressed. " Frazer A., Reverse

engineering - hype, hope or here?, Software Reuse and Reverse Engineering in Practice, p. 215

19 Hall P.A.V., Editorial Introduction, Software Reuse and Reverse Engineering in Practice, edited by Hall

P.A.V., Chapman & Hall, London 1992, p. xiii

D-6 Reusing of the existing knowledge

1
1
1
1
1
1
1
_,

1
1
1
1
1
1
1
1 ,,
1
1
1
1

1
1
1
1
1
1
1
1 1,

1

1
1
Il
1
1
1
1

' 1
1
1
1

The business level is attended with documenting in a non-procedural way the

business fonctions that a system performs. Therefore the descriptions obtained are de­

sign independent.

A key aspect of reverse engineering is that with a code only system, the process

is bottom-up. Reverse engineering strategies have become used in environments, which

require levels of documentation top-clown. Such strategies raise the question of infor­

mation validation. For example, how can you validate the higher-level data flow dia­

grams20 if the lower levels of information are not available?

a) Difficulties of reconstructing architectures
When we develop a system, the evolution of a lot of software properties is

really critical to have a success with the product. However, reasoning about the in­

tended architecture of a system is distinct from reasoning about its realised architecture.

When we design and eventually proceed to the implementation of architecture, faith­

fulness to the principles of the intended architecture is not always easy to achieve. This

is particularly true in cases where the intended architecture is not completely specified,

and documented or disseminated to different members of the whole project.

This problem is exacerbated during maintenance and evolutionary develop­

ment, as a drift and erosion of the architecture. However, if we wish to transfer our

reasoning about the properties of the intended architecture of a system to the proper­

ties of the implemented system, we must understand to what degree the realised archi­

tecture conforms to or is like the intended architecture.

W e can measure the architectural conformity if the two architectures to be

compared are available: the intended architecture and the architecture that is realised in

the implemented system. The former21 should be documented early in the system life-

20
" A dataflow diagram is a partial image of the way of working of an information system or /rom a part of

the information system; it shows graphically the production, the flow and the destination of messages in the

organisation". Bodart F. and Pigneur Y., Conception assistée des systèmes d'information: Méthode - Modèles

- Outils, Masson, Paris 1989, second edition, p. 98

21 That is the ideas man (see appendix French Translator) i.e. the person who begins the development of

the system.

Reusing of the existing knowledge D-7

time and maintained throughout all the process. However, the latter typically exists

only in the artefacts such as source code, makefiles22 and, occasionally, designs that are

directly realised in the code23
• In addition, it is unusual that an implementation lan­

guage provides explicit mechanisms for representation of architectural constructs.

Therefore, facilities for the reconstruction of a software architecture from the artefacts

is critical in measuring architectural conformity.

Beyond this point of measuring architectural conformance, software architec­

ture reconstruction also provides important leverage for the reuse of software assets.

The ability to identify the architecture of an existing system that meets some goals fos­

ters reuse of the architecture in systems with similar goals. In other words, if we find

what the architecture of an existing system does, we can take it for developing a new

architecture. Consequently, architectural reuse is the cornerstone practice of product line

development that keeps the acquired knowledge of the past.

b) Static information is insufficient
A significant quantity of information may be extracted from static artefacts of

software system such as source code, makefiles, and design models, using techniques

that include parsing and lexical analysis. Unfortunately, system models extracted using

these techniques provide a minimum of information to describe the run-time nature of

the system. The primary factor contributing to this deficiency is the widespread use of

programming language features, operating system primitives and middleware24 func­

tionality. From that the specification of many aspects of system has been deferred until

the run-time analysis. These mechanisms permit systems to be designed with low cou­

pling and a high degree of flexibility. But they obscure the architecture reconstruction

process.

22 Used to define the compilation process for a software project.

23 By using, for example, an architecture description language.

24
• A term used to describe software that sits below the application and hides the different operating

systems, databases, network systems and protocols. lt provides implementation independent

programming interfaces for an application.

• Medium layer software, i.e. more abstract and at a higher level than traditional operating systems,

providing an infrastructure for applications.

D-8 Reusing of the existing knowledge

1
1
1
1
1
1
1
1
1
l i
1
1
1
11
1
1
11
1
1
1

_, 1

1
1
11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

In particular, static extraction techniques can provide only limited insight into

the run-time nature of systems constructed using such techniques, because many of the

details determine actual communication and control relationships simply do not exist

until run-time, and hence cannot be recognised until run-time.25 However, for doing

this work, one needs a specific tool for the reconstruction and it does not exist on the

market because it is not easy for such tools to gather such information. It is very usefol

to exploit the abstract syntax trees, using parsing techniques such as in compiler ap­

proaches. Furthermore, there are a lot of products on the market that use these tech­

mques.

N ow, we must see how we may extract dynamic information from running sys­

tem. Sorne techniques to accomplish this, include profiling and user defined instrumen­

tation. The first technique is used for system performance analysis. T o use this method,

one can compile a specific system with a special flag that instructs the compiler to in­

strument the code such that it records information coming from fonction invocation

during execution. After that, the system is exercised and recorded information is ana­

lysed. This technique may be used to determine actual fonction invocations, augment­

ing our statically extracted models with improved information concerning polymor­

phie fonctions and fonctions executed through fonction pointers. 26

In a similar fashion, the second technique, which is user defined instrumenta­

tion, is a mean for adding special purpose tracing fonctionality of a system to allow

monitoring its operation. For example, instrumentation can be added to the applica­

tion code responsible for interprocess communications to determine the system run­

time communication. In addition, it is sometimes possible to instrument libraries, or

even the operating system. This allows the instrumentation of systems without modi­

fying any application code and requires less application specific knowledge.

25 For example, relationships among communicating processes might be determined via an initialisation

file or even dynamically based upon the availability of processing resources.

26 For example, in C or C + +.

Reusing of the existing knowledge D-9

c) Reconstructing architecture in a vacuum
Unfortunately, it is frequent by the case that the efforts to reconstruct the soft-

ware architectures of systems must contend with a complete lack of pre-existing archi­

tectural information. This often occurs when the system being analysed is particularly

old. There are no longer any designers or developers that can relate architectural in­

formation, or the system intended architecture was never documented. Furthermore,

these are typically the situations in which we are most interested in recovering anar­

chitecture. In particular, it is common for such systems to be involved in ongoing

maintenance or even undergoing a more global re-engineering effort as modernisation

or porting, for example.

Successful architecture reconstruction revolves around the acquisition of archi­

tectural constraints and patterns that capture the fondamental elements of the architec­

ture. Regardless of the mode of development of a system, its evolutionary state, or its

age, such constraints and patterns are always present. However, they are rarely cap­

tured explicitly even when a truly architecture based development process is followed.

Thus, the primary task of the reconstruction analyst is the acquisition of this informa­

tion by means other than search for documentation.

D-10 Reusing of the existing knowledge

1
1
1
1
1
1
·1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1

11
1

1
1
1
1
1
1
1
1
1
1
1
Il
1
1
1
1
1
1
1

-~· -

1

" Forward Engineering is the process by whiqfl, some abstract high level

specifi:ations obtained by the reverse engineering are used to reconstitute a sys-

f ~ tem in a new form. "
27

__ l
W e can divide the forward engineering in a family of tasks in three levels: code

re-implementation, application re-design, and revision of the specifications with develop­

ment of a new application architecture.

In all cases, the forward engineering is the last thing when dealing with re­

engineering. At the beginning, we use the reverse engineering to have a degree of ab­

straction of a system. At the end, we use the forward engineering for reconstituting the

studied system to another improved form.

Furthermore, we choose the forward engineering methods with regards to the

reverse engineering methods used. In other words, the level that we use in the forward

engineering depends upon the level that we have used in the reverse engineering to

study the system.

A lot of problems can be solved thanks to the forward engineering phase, by

firstly classifying the specifications found during the reverse engineering work. For

example, the complex procedure control flows, the complex interna! data usage, the

poor program structure, the poor design decomposition, the poor data or file design

across one or more programs and databases, the hard coded boundaries, the standards

violations ... can be all eliminated. A successful forward engineering must be able to

remove clearly defined types of problems.

27 Ob. Cit., Software Reuse and Reverse Engineering in Practice, edited by Hall P.A.V.

Reusing of the existing knowledge D-11

" o ware e-engineerz.ng is t e pro"ts erz.ng a su -
Sfa· ,,, ... , ·füël ·'=\@/ -:,~

et sys reconsti[ute it in ~ ,riew "28 t erse

engineering a su/Jjectll~ste~ t~+; ;;~hosen s1!~
1

"'

tuting the;';ystem by means of fo-fward engiJeering.

Re-engineering can be broken into two phases: the first is the reverse engineer­

ing and the second is the forward engineering. Of course, we can break these two

phases into a family of activities.

Re-engineering concerns some forms of restructuring work at the program level,

and the reverse engineering is the process of abstracting back to some high level specifi­

cation. But, these notions lack of strictness, and it is not easy to find a simple classifica­

tion of all the terms. In fact, all these notions are not independent and depend on each

other. For example, even to re-engineer a single program it is necessary to reverse engi­

neer it to a higher level of abstraction than the code level. Then it is necessary to for­

ward engineer it in a new application.

28 Art. Cie., Müller Hausi A., Reverse Engineering Strategies for Software Migration, p. 659

29 Art. Cie., Frazer A., Reverse engineering - hype, hope or here?, Software Reuse and Reverse Engineering

in Practice, p. 215

D-12 Reusing of the existing knowledge

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1'
1
1
1
1
1
1
1
1
11
1
1

Code translation is a transcription fine by fine. Of course, it enables some little

obligatory own adaptation of the target language, but we do not rethink the source

code. The new system will reflect the code complexity, design errors and architecture

errors contained in the original. The re-engineering and code conversion are not a code

translation:

• The re-engineering implies some significant changes to give an improvement

of the original.

• The code conversion implies redesign, adaptation and/ or improvement of

the original code.

30 Ob. Cit. , Software Reuse and R everse Engineering in Practice, edited by Hall P .A. V.

Reusing of the existing knowledge D-13

W e have surveyed software reuse, software migration, reverse engineering, for­

ward engineering, re-engineering and code translation. Reuse is implemented with ac­

cumulating libraries of components, in which we can have designs, specifications, as

well as code. Migration is a set of different activities, which have the same aim to take a

software from an existing source system to an intended target system. Reverse engi­

neering is a method for obtaining components in order to assist in the understanding of

code before making changes. Code translation is mechanical extraction of a description

of an application and its implementation in another language, like an adapted eut and

paste.

To improve a complete system, or to transfer it into a new operational envi­

ronment, we can firstly use reverse engineering, in order to have all the knowledge

about the system, secondly, we canuse re-engineering to complete the task.

In reuse, the major problem is the component description, component match­

ing, and component adaptation. In software migration the major problem are an ex­

pensive undertaking that may take anywhere between six months to two years and the

need to consider for expected applications to support critical business functionality for

long time periods. In reverse engineering the major problems are the use of the infor­

ma! information of the natural language embedded in comments and documentation,

and also the systematic use of testing.

D-14 Reusing of the existing knowledge

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
~

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Ten years ago 4GL3i,s were seen as a technical solution to a more general pro­

ductivity problem. Apart from a mixed result from using 4GL's, most 4GL users now

find that they will have great difficulty to re-engineer 4GL systems because there are no

reverse engineering tools available to support these languages. Sorne 4GL vendors daim

that the maintenance work is eut by up to 90%. But the inability to reverse engineer a

4GL system means that the user may face the ultimate maintenance crisis which a 4GL

was presumably meant to avoid. The dilemma is to throw away a system and most of

the knowledge it contains, or to redevelop a replacement from scratch.

First, Visual Assistant was developed by Colin Beardon for Mac platform with

C language. Second the previous year, Frédéric Miche and Colin Beardon have worked

on the first PC version, which is written in C + + Builder. Third, we have worked on

the second PC version by using the two previous works.

ln this work, we have used a mixture of all the categories of reuse knowledge,

that we have described in this chapter. In fact, we have used the software reuse in order

to make use of the existent functionalities and the available algorithms. It is obvious to

use the software migration because it is the essence of our work, which is to migrate a

Mac software to a PC software.

We have also made re-engineering. First, we have made reverse engineering be­

cause the two first versions did not have any documentation or specification. Second,

we have used forward engineering to reconstitute the software in a new form by using

the synthesising abstractions coming from the reverse engineering.

Finally, we have made some code translation. C+ +, which is based on the C

language, is the programming language used for the PC versions. Note that C is the

programming language for the Mac version.

31 Fourth Generation Languages i.e. languages that use automatic painters softwares to draw the diHerent

application windows and also their graphical/visual objects. The programming tool used for migrating

Visual Assistant to PC platform is C+ + Builder: it is a 4GL.

Reusing of the existing knowledge D-15

1
1
1
1
1
1
1
1
1
1

Il

1
1
1
1
1
1
1
1
1

L

oftware

This chapter will present the organisation of the software developed in this

work. In other words, we will explain the interaction of the different components

of the system. The software was originally designed for Macintosh platform; it had

to be migrated to a PC platform, the reasons behind this migration seem to be the

relative importance of the PC market compared to the Macintosh market. lndeed,

the PC market represents 90% of the microcomputing world market.

W e will also investigate the method adopted in this work, to represent on

computer monitors, which are two dimension systems, abjects originated from the

reality, which is three dimensions. We have already established in the chapter deal­

ing with virtual reality, that it is possible to design interfaces allowing a three­

dimension sight, it is the case for example, when electronic helmet with visor is

used. This kind of device is very expensive and not really spread, it is why we have

opted for a traditional representation on our traditional two-dimension monitors.

Besicles that, the monitor is very well known by the public and can be found eve­

rywhere. All these reasons make monitors familiar to people more than any other

device.

The software designed here was originally developed in C language, and

while doing its migration, it was asked to convert it to C + + language. The reasons

of this choice will be explained as well as some fondamental concepts of C + + ac­

cording to the Satir and Brown's book1
•

1 Gregory Satir and Doug Brown, C+ +: 1be Core Language, O 'Reilly, USA 1996.

E-2 Software Architecture

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

1
1
1
1

1•
1 1,
1
1
1
1
1
1
1
1
1
1
1
1
1
1

The language chosen for the development of this Visual Assistant software is

C + +. This language extends the popular programming language C to support ob­

ject-oriented programming2
• To understand C+ +, we must first understand object­

oriented programming and w~at C+ + adds to C to support this new way of pro­

gramming. But this is not the aim of this work. W e suppose that the reader knows

this new way of thinking in the field of computer science.

Object-oriented programming is not very new. We do not need an object­

oriented programming language to program using object; this can be clone in C lan­

guage by simulating some concepts if necessary, as did the first C+ + implementa­

uon.

But a language like C+ + makes object-oriented programming easier, be­

cause it directly supports the creation and use of objects. Moreover, it obliges the

programmer to have an obligatory canvas allowing a better programming. In fact,

in C + +, it is obligatory to use and to think in object-oriented.

For the understanding of the design of the architecture of the software, We

will describe, in a brief way, the fondamental object-oriented functionalities. We

consider these functionalities as the most important and interesting ones of C + +

for a good development of the application designed in this work.

a) Important Object-oriented concepts use by C++

Let us describe the important concepts of the C + + language, and try to com­

pare it with the C language. In fact, as in this work we deal with the migration of a

Mac software written in C to a PC software designed in C + +. lt is worth starting

with a comparison between the two languages to demonstrate the reasons underly­

ing the change of language.

2 Object-oriented programming focuses on the objects that make up a program, rather than the fonc­

tions and the data.

Software Architecture E-3

To be more formai, object-oriented programming languages usually support a

few key features. Every object philosophy includes a slightly different set. But, we

can describe the more important ones:

• The first is the abstraction.

This notion means the creation of a well-defined interface3 for an object.

Proper abstraction separates the implementation of an object from its interface. In

C language, abstraction involves wrapping a data structure with a fonctional inter­

face. And a whole object is created by data and fonctions together.

The C + + language recognises this relationship by allowing us to group data

and fonctions that use it together using a class. The class is the fondamental addition

of the C + + language, with regards to the C language.

On one hand, the class allows the standard concept of abstraction thanks to

the principle of protecting its private information from access by other classes.

On the other hand, several classes can collaborate so as to make a complex

abstraction by sharing private information without allowing other classes to violate

the combined abstraction.

A class describes the form and the behaviour of objects. It is like a stamp, or

even a matrix, out of which we can press as many objects as we want. A class is es­

sentially a new type we are adding to the programming language.

• The second is the encapsulation.

This means keeping the implementation details of our abstractions private,

i.e. hidden outside of the scope of the implementation just to avoid a bad access to

these details. Proper encapsulation both encourages and enforces the hiding of im­

plementation details.

Moreover, it makes our code reliable and easier to maintain because we

know exactly what can be clone with the abstractions that we implement. In fact, all

3 An interface defines a list of methods, that the user can see and use, by hiding the complexity of the

implementation.

E-4 Software Architecture

1
1
1
1
1
11
1
1
11
1
1
1
1
1
1
1
1
1
1
1
1

1

1
1
1
1
1
1
1
11
1

1•
1
1
1
1
1

11
1
1

is very centralised in our abstraction, which is like a bubble that separates the inter­

nai parts of our abstraction from all other parts of the program.

The class is the unit of encapsulation. The class is encapsulated through ac­

cess contra/, that is, by controlling who has access to the class members. As pro­

grammer, we can declare which class members are accessible to users of the class

and which are accessible only to the class itself. The members accessible outside the

class create the interface to the class, this is the capsule that encloses the implemen­

tation details.

Each access contra/ specifier determines which users can access the class mem­

bers as follows. First, the class members following a public label can be accessed

from any user by means of the fonctions4 that are in this public part of the class.

These create the class interface. Second, the class members following a private label

can only be accessed inside the member fonctions of the class5
• Private members

create the class implementation. Third, there is also the access control specifier pro·

tected. The class members following a protected label are like the class members

following a private label except they are accessible by the derived classes6
• If we

want a good object-oriented programming, we cannot use this last specifier. In fact,

this one kills the protection allowed by the C + + language, and we can program

without it by using just the two specifiers public and private.

W e can simulate that in C language by separating the interface fonctions and

the implementation of them in two different files. In this manner, the users of the

fonctions use the file with the interface and cannot see the hidden implementation.

4 It is possible to place also public data, but it is not really nice in the object-oriented programming

because that kills the encapsulation principle.

5 Also by the friends fonctions. A class can make an individual function a friend. This fonction then

has access to the class private members without itself being a member of the class. This principle

allows the possibility of two or more classes to work together very closely by co-operating to create

a single abstraction. Friendship can be misused as any features that let us suspend a language's nor­

mal security. W e can use friendship to create a unified interface out of more than one class, never as

a work-around for improperly designed abstractions.

6 Derived class are defined in the next point about the hierarchy.

Software Architecture E-5

When we see this tip, we can say that the C + + language has drastically improved

this primitive form of encapsulation.

• The third is the ability of having a hierarcby.

When we make a new abstraction, we often have in mind that we have made

previously the same abstraction, but maybe with some different details. It could be

really nice if we could be able to reuse some good abstractions without rewriting

them.

W e can reuse a good abstraction as a basis of man y other abstractions. In this

way, we create hierarchies of abstractions. Object-oriented programming provide

three mechanisms for building these hierarchies: composition7
, derivation8 and tem­

plates.

The composition allows us to create objects with other objects as members.

W e call the principle composition because we compose larger objects out of snialler

ones, and we have the impression of inserting the small objects to make bigger ones.

The derivation allows a class to use not only another class for its implemen­

tation, but also to share its interface. Of course, it is possible to simulate derivation

in C language, but is not common.

Does derivation reduce the protection by encapsulation? The power of deri­

vation is that it is a close form of sharing that maintains encapsulation between the

two classes. It means that if we derive a class from another one, called base class, it is

impossible for the new created class, called derived class, to access any information

that is member of the private part of the base class.9

In the last way, the template allows programmers to make a definition of a

class with parameterised parts. W e can write code in C language that does the same

by using casts10
• W e can use cast in C + + too, of course, but that is not type-safe.

7 Alternatively aggregation or layering.

8 Or also inheritance
9 But it is possible if we use the protected access control specifier in the base class.

10 To convert a variable from one type to another type by explicitly indicating the type convertion.

E-6 Software Architecture

1
1
11
I l
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Using templates to manipulate an array of any type allows flexibility without sacri­

ficing type safety. So templates allow a more powerful kind of hierarchy.

• The last is the polymorphism.

Polymorphism allows us to use objects of different classes of a same hierar­

chy in the same code. ln other words, this polymorphie code can be transparently

used on instances of different classes. A typical example of this notion is a group of

diff erent planes: rectangles, ovals, squares, circles, triangles, etc. Each shape knows

how to draw itself, calculate its area, and so on. Of course, every type of shape does

this differently, but they all share this ability. Polymorphism allows us to write

code in terms of generic shape type and have it work correctly for any actual shape.

The generic shape is polymorphic11 because at any particular point during

program execution it can be a rectangle, an oval, etc. Polymorphism requires the

generic shape to behave differently at run-time depending on the actual type of

shape.

The dynamic typing nature of this mechanism is difficult to mesh with the

static typing nature of C language. Of course, we can realise the polymorphism in

C language, but with some degree of hackery because the C language does not di­

rectly support polymorphism.

To achieve the switch at the run-time between the good implemented func­

tions with regards to the run-time type of the object pointed, we use polymorphie

functions 12
• We need this sort of functions because the compiler cannot know the

run-time at the compilation. If we do not make our function as polymorphie, the

executed fonction will always be the function of the generic class and not the func­

tion of the class of the real object13
• Why not make, by default, all the functions

polymorph as in Java? Because the virtual functions are a little slower than the tra­

ditional functions.

11 Literally many forms.

12 Also called Virtual Functions.

13 The compiler will solve the executed fonction at the compilation.

Software Architecture E-7

b) A method to implement an object-oriented design

At this point we discuss how to implement an object-oriented design. Ob­

ject-oriented design involves partitioning classes, and assigning responsibilities to

them. W e do not discuss object-oriented design details, but generic object-oriented

design of any object-oriented languages.

The design is a critical step in developing code, especially object-oriented

code. W e cannot save time by cutting corners during object-oriented design if we do

not want to loose time during implementation, debugging and maintenance. In fact ,

object-oriented design is the foundation of our application, as the foundation of a

building. When we construct the floors of a building, it is very complicate to

change the base of the construction if we have a problem unless by destroying the

building.

When we have defined classes and their functional interface, there are a vari­

ety of ways to implement these classes. That means that it is not just a matter of

coding, and that the differences of coding can be subtle, and indeed critical. W e

must remind the different possibilities of object-oriented language: templates, deri­

vation, composition, and polymorphie fonctions. But, when should we use this

principle or this other principle? W e discuss here a technique for deciding how to

make this decision among others. This approach is not just the only way to do;

there are a lot of other manners. More decisions can be swayed by far too many

special circumstances that we cannot summarise here.

To see a method is really nice to have an idea of the subject. We see in Table

1 on the next page a summary of the method. Moreover, we find an example for

each case, in order to understand the theoretical approach.

E-8 Software Architecture

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1

1
Il
1

1
~
>-t

1
.....
0
>-t
M

'<

1 :::::s
p..
(1)
en
(")
(1)

1 :::::s

8-:
:::::s

1,
(1Q

0
>-t p..
(1)
>-t

1
1
1
1
1
1
1
1
1
1

11
1
1
1

Two classes have exactly
the same code, but they just
handle two different datatypes

W e do not want all of the
functional interface

T
..... ······H······

E

There is no change in behaviour.. . .. ····-~--- ...
behind the functional interface.

Otherwise

•
•
•
•

Table 1: Choosing the Relationship between Two Classes

Use templates

Use composition

Use derivation

Use derivation plus
polymorphie functions

• Two classes have exactly the same code ⇒ Use templates

The first question is whether the two classes can have the same code applied

to different types. If so, we canuse the template mechanism. An example is a stack

of integers and a stack of pullovers. The code for push () , pop () , and any other

member fonctions of the stacks will be the same except for the type of the object

they are manipulating.

Example: we can illustrate this table with a stack class. lts functional inter­

face off ers four fonctions that we can apply to the class: Push () , Pop () ,

Clear () 14
, and PrintOnScreen () . For simplifying the explanation, we define

a simple class with no dynamic. ln fact we use a static table to keep the data of the

stack and we also use a static number of elements in the stack defined by

STACK SIZE.

class IntegerStack
{ public:

IntegerStack(void) { NumberOfitems = O; }
void Push(int Integer);
int Pop();

14 Delete ail objects of the stack.

Software Architecture E-9

} ï

void Clear () ;
void PrintOnScreen()ï

private:
int NumberOfitems;
int DataOfTheStack[STACK_SIZE];

Now, we want two stack classes, one that works with integers, and the other

that works with pullovers. As said previously in the first point of the table, we

would use the template principle. In fact, there is no difference in the code for any

type we want to store because the stack does not look inside an object, so it does

not care what type it is storing. W e can adapt the previous integer class in a general

form thanks to the templates mechanism.

template<class kind>
class Stack

{ public:
Stack(void) { NumberOfitems = O; }
void Push(kind Integer);
kind Pop() ï
void Clear () ;
void PrintOnScreen()ï

private:
int NumberOfitems;
kind DataOfTheStack[STACK_SIZEJ;

} ï

We can see above that the Stack class is a class of kind type. Of course,

kind is nota type, but can catch all the 'realist type' to make a stack of the speci­

fied type. In our case, we can make the two different classes, which we would want,

by specialising15 the general form of the template.

Stack<int> OwnintegersStack;
Stack<pullover> OwnPulloversStack;

15 Specialisation by opposition to generalisation.

E-10 Software Architecture

1
1
1
1
1
11
1
1
1

•1
11
1
1
1
1
1

1
1
1
1

1
1
1
1
1
1
1
1
1
1

11

1
1
1
1
1
1
1
1
1
1

• We do not want al! of the functional interface ⇒ Use composition

The next question is whether a class, called using class, uses the entire fonc­

tional interface of another class, called providing class. Of course, the derivation

principle might work if we want to add all fonctions from the fonctional interface

of the providing class to the fonctional interface of the using class, but not if we

want to subtract some fonctions from the fonctional interface of the providing

class.

At the opposite, we use the composition concept, which is making an object

of the providing classa data member of using class. In this manner, we can define

whatever fonctional interface we want for the using class. In fact, it is not obliga­

tory with the composition concept to put the fonctions from the providing class.

Example: we can suppose that we want an unprintable stack. lt would have

Push () , Pop () , and Clear (), but not PrintOnScreen () . The code is not

the same for the two classes, so we can go to the second question. W e do not want

the entire fonctional interface, so we use the composition technique as specified in

this second question:

class UnprintableintegerStack
{ public:

UnprintableintegerStack(void) {};
void Push(int Integer);
int Pop();
void Clear () ;

private:
IntegerStack Stack;

} ;

void UnprintableintegerStack::Push(int Integer)
{ Stack.Push(Integer);

}
int UnprintableintegerStack::Pop()

{ return Stack.Pop();
}

UnprintableintegerStack::Clear()
{ Stack. Clear () ;

}

Software Architecture E-11

As we can see, we have removed the PrintOnScreen () fonction and de­

fined the rest by calling the corresponding fonction for the instantiated Inte­

gerStack object placed by composition in the new defined stack above.

Now, if there happens to be any polymorphie fonctions 16 for which we do

not want the default behaviour, then we need to define an intermediate class be­

tween the using class and the providing class. This intermediate class derives from

the providing class and allows to define the new behaviour of the polymorph fonc­

tions which are properly defined in the providing class. Then we use composition

mechanism by making an object of type of the intermediate classa data member of

the using class.

Example: we can suppose that we want, as in the previous example, an un­

printable stack, but we do not want to delete all the object of the stack when we

call the clear () fonction. We want just to delete the first object in the stack, but

in opposition to the pop () fonction, this new behaviour for the c lear () fonc­

tion does not return the object it deletes.

The intermediate class:

class UnclearableintegerStack: public I ntegerStack
{ public:

UnclearableintegerStack(void) {}
void Clear(); // overriding polymorphie function

private:
IntegerStack Stack;

} ;

UnclearableintegerStack::Clear()
{ Stack.Pop(); // We do not return the value that
} // Pop() takes out of the stack.

16 Pure or not.

E-12 Software Architecture

11
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1

1
1
1
11

1
1
1
1
1
1

1 1
1
1

The providing class needs its c lear () fonction to be polymorphie. In fact,

it is only possible to override the polymorphie fonction, what we cannot do with

the static and traditional fonctions. In this way, we prefix the fonction by the key­

word virtual in the providing fonctional interface of the class.

The providing class:

class IntegerStack
{ public:

virtual void Clear();

private:

} ;

The using class becomes:

class UnprintableintegerStack
{ public:

UnprintableintegerStack(void)
{ NumberOfitems = O;
}

void Push(int Integer);
int Pop();
void Clear();

private:
UnclearableintegerStack Stack;

} ;

void UnprintableintegerStack::Push(int Integer)
{ Stack.Push(Integer);
}

int UnprintableintegerStack::Pop()
{ return Stack.Pop();
}

UnprintableintegerStack::Clear()
{ Stack.Clear(); // delete the first integer
} // in the stack

Software Architecture E-13

• There is no change in behaviour behind the functional interface
⇒ Use Derivation

The last question in the table asks whether there is any difference in the be­

haviour of any of the fonctions that a class, called derived class, derives from an­

other class, called base class. If there are no diff erence in the behaviour then we have

a normal derivation mechanism. We can add fonctions and data to the derived class,

but there are no changes to the fonctional interface or even the behaviour of those

fonctions defined in the base class.

Example: Suppose we want a reversible stack. The code is not the same as

IntergerStack, so we cannot use the template mechanism. We want to keep all

the fonctional interface of IntegerStack, so we do not have to resort to compo­

sition principle. W e do not want to change any of the behaviour behind fonctional

interface of IntegerStack, so we can use the normal derivation system. We just

want to add another fonction, ReverseStack () :

class ReversibleintegerStack: public IntegerStack
{ public:

} ;

ReversibleintegerStack (void) {}
void ReverseStack(void);

• Otherwise ⇒ Use derivation plus polymorphie functions

If the derived class needs a different behaviour for at least one fonction de­

rived from the base class, then we need polymorphie fonctions. In this case, the

polymorphie fonctions need to be there already in the base class. If not, we need to

adapt the base class to make these fonctions polymorphie. If we are using a class

from a predefined library, and the fonctions we want to change are not polymor­

phie, then we cannot use the derivation mechanism. W e must use the composition.

E-14 Software Architecture

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Example: we want a Roman numeral stack. That is, it is still a stack of inte­

gers but printed as Roman numerals. Again we want to keep all of the interface

fonctions, but we want to change the behaviour of one of them, print () . Of

course, we need print () to be a polymorphie fonction in the fonctional interface

of the IntegerStack class, or even we have to adopt the IntegerStack class

to change the characteristics of print () fonction to make it polymorphie. If it is

all right, we can derive the new RomanintegerStack from the base class In­

tergerStack.

The derived class:

class RomanintegerStack: public IntegerStack
{ public:

RomanintegerStack(void) {}
void Print(void);// overriden only if print() is

}; // polymorphie in the base class

The base class:

class IntegerStack
{ public:

virtual void Print();

private:

} ;

Software Architecture E-15

c) Why using C++ language and not C language?

W e can get into a lot of trouble with C + + language if we are not careful. In

fact, its concepts are very complex and powerful, and we need some experience of

practising it. Why then would we use C + +? We find that when pushing the com­

puter to its limits, we can write code more elegantly in C + + than in C. lt allows

programmers to centralise various tasks, the most typical being memory manage­

ment. C language can compete in run-time performance, but the code usually ends

up looking pretty ugly. Other languages can compete in elegance, but usually with

a significant run-time performance penalty17. As in the developed software Visual

Assistant, fast and elegant code is really important, we have used C + + language.

d) And, what about the Java language?

There are a lot of differences between C + + and Java. But, only four differ­

ences between C + + and the traditional use of Java, are very important.

Two differences are in consideration of Java: in its traditional use, Java pro­

vides the possibility to have a portability of the run-time and, in all uses, it forbids

the direct manipulation of the pointers helping to avoid bugs. The other two differ­

ences go in consideration of C + +: the speed of the run-time is really fast, by com­

paring with the traditional use of Java, and it allows the direct manipulation of the

pointers for greater flexibility.

What are the two kinds of use of Java? The first, which is the traditional

one, allows the portability not only of the code, but also especially of the com­

piled18 run-time. The latter allows an acceptable speed.

ln the first case, Java makes a semi-compiled run-time. ln this case, the code

is compiled in a pseudo-code that is directly executed on a virtual machine. 19 By

definition of a virtual machine, the semi-compiled Java code can run on all operat­

ing systems that have their specific Java virtual machine installed. This virtual ma-

17 Like Java, Smalltalk, etc. W e discuss about Java language in the next point.

18 W e murder the language with the compiler term. In fact, we use in the meaning: compiled and

linked.
19 Of course, it exists Java operating systems, but there are used by few people.

E-16 Software Architecture

1
1
1
1
1
1
1
1
1
1
1
1
1
11
1
1
1
1
1
1

1
1
1
1
1

,.
1
1
1
1
1
1
1
1
1
1
1
1
1
1

chine translates the semi-compiled instructions in the owner language of the operat­

ing system that runs below the virtual machine. This manner allows the portability

of the applications without being slaved over the provider's operating system and

without making different versions for every customer using a different system.

In the second, Java makes a compiled run-time of our application. This run­

time depends upon the machine and cannot be transferred on another operating

system. W e need a specific compiler for each operating system.

In fact, in the case of our Visual Assistant application, we need speed, i.e.

small answer time. Indeed, we use permanently graphical objects. These objects

require a lot of computing time. W e can advance that Java, which is semi-compiled

is twenty times slower than the C+ +.20 But, one can say, why do not use Java in its

compiled version? If doing so, we just should loose the principal advantage of Java,

i.e. its run-time portability. Besicles that, even in its compiled version, Java is slower

than C + +. Let us notice that it is established that Java allows less programming

errors than C + +. This property of Java is derived from the fact that it is impossible

to manipulate directly the content of pointers.

In summary, C + + permits us a big speed for Visual Assistant, and a great

flexibility, mainly through the direct manipulation of the content of pointers. And

at the opposite, Java allows us to have a portable run-time on different platforms.

From my personal point of view, it is be more suitable to develop the PC

version of Visual Assistant using the Java language. Indeed, the transition from C to

C + + is effort consuming, and to switch from C to Java would have consumed the

same amount of effort. The Java version would have permitted to have a centralised

development of the application Visual Assistant, which would have allowed to get

the same run-time of the PC and the Mac versions. Choosing Java, the evolution of

the software would have become very easy. If the choice of C+ + instead of Java is

due to the speed, one can argue that the computers are more and more faster, and

that the handicap of Java will sure overcome in the near future.

Let us note that Visual Assistant has also to run on old computers, in order

to prevent new investment. But, this fact could also be a handicap in the future.

20 Bruce Eckel, Thinking in Java, Prentice Hall, New Jersey, second edition, p.817

Software Architecture E-17

a) Short description of the important components

0 0
Object

Object
Object

Object

Object
Object

Object Object
Object

Time

Figure 1: Theatre as a succession of different pictures, as a movie

Deriving from what we have seen earlier, we can say that a play, according

to the visual sense, is a succession of object movements in space and time. These

objects are within a three-dimensional space, which is the theatrical stage.

We can try to modelise our architecture following what is in the described

abstract representation. Evidently, as the Visual Assistant software use is concerned

with only the sight sense, we have limited ourselves to the description of the visual

aspect of the theatre.

In this definition, one can see three important notions:

• Pbysical abjects

• Three-dimensional space

• Passage of time

E-18 Software Architecture

•1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

As a consequence, we can try to make a correspondence between the men­

tioned notions with the abstractions of our object-oriented architecture. W e have

modelised three classes; each one corresponds to an abstraction.

~- - - ------ -- ------ --
/ TWorld ·--=, < oComposition (bvsevera l TStaQe) : TStaQe r

--- - ~Composition (by one TMydate Object) : TMyDate

~ ---------- - - - --
/

1 1--,: -11 .. n .-- _____ _

Composition (by one TMydate Object) ___-- ,,,, TStageObject "----~ --._ ·,,,

/
1

<_ oComposition : TStaQe (
---~omposition(byseve ral TCoord_3D objects) : TCoord_)

,-.. . ../ '---"""O 1 1 .. 1r\ __!3~ -r --~-
, TMyDate -- ; · Composition (byseveral TStage) / ' ,.__ .+ 1..n

I =----(1..n
Month : int

' ,,tDay : int \ j Composition (by seve ral TStageObject Co mpositi on (by several TCoord_2D objects)

.,Yea r : int..,)) ?
l.,_,,.,..,,,

1
__ 1 Composition(by sevjeral TCoord_3D objects __ 1 --.......

__ __,..,. - O .. n ___ , '-

~,,.,,,. .,.,-- ---TStage --------~ TCo ord:-2D -)
. . . X: int <-.. __ qCompos1t1on (by several TStageObJect) : TStage (____ ~ , ..,_______ :y: int \ ---- ../ < ~ -----....._ ~Composition : TStageObject

·. --. _ ____,- __ -- ---- - --- TC oord_3D •~ ___,..-J _,-

ô X: int (
à Y: int

- '-- 6Z : int ,
~Composition : TStageObject

,_ ~-------
Figure 2: The Three Important Classes (design in Boosh notation)

We have divided the architecture in three principal classes. (see Figure 2)

• TWorld

• TStage

• TStageObject

The mould of ail the abjects corresponding to the physical objects of theatre is

the TStageObj ect class. Examples for such physical objects are the characters,

the circles, etc. These physical objects belong to a theatrical stage, within a three­

dimensional space. We have modelised this by the means of the TStage class.

Knowing that the physical objects are contained within the stage, we have used a

relation of composition between the TStageObject and TStage classes. The

objects of the first class are data members of the second class. These theatrical stages

allow the movement of physical objects, so, a passage of time.

Software Architecture E-19

In order to modelise this last dimension, we can see a succession of stages

that are related to time unit. Each stage has fixed objects, in a position dependent on

the time. In other words, we can compare the different TStage objects to the pic­

tures of the movies, which are showed ½4
th second21 each. When we run these im-

ages, we get an impression of movement of the objects.

W e have used the TWor ld class to represent the set of the succession of

stages. We have also used a relation by composition between the TWorld and

TStage classes. The reason underlying this choice is that the instances of the

TStage class belong to the sequence materialised by the TWor ld class.

b) Other classes

Before describing these components, we have to see the other components

used in the software because the explanation of the components of the previous step

refers to the other classes.

On another sicle, we have defined two other classes, which enable us to cap­

ture the two-dimensional and three-dimensional positions of the objects: TCo­

ord _ 2 D to keep the position in the two-dimensional space, and TCoord_3D to

keep the positions in a three-dimensional space.

W e have also the predefined classes from Borland C + + Builder that we use

in the Visual Assistant software. The first is TList that enables to store and main­

tain elements in a list. Of course, this class is very useful to keep the trace of the

TStageObject in a list, which is in a TStage object. This class also allows us to

keep trace of the different TStage objects in a list, which is in the unique TWorld

object. Of course, this list is dynamic and only the limits of memory bounds the

number of elements.

21 In the standard movies, we have twenty-four pictures per second.

E-20 Software Architecture

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1 1,
1

1'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

The class offers these different services:

• Add or delete the abjects in the list.

• Rearrange the abjects in the list.

• Locate and access abjects in the list.

• Sort the abjects in the list.

Another class is Tcanvas. lt provides an abstract drawing space for abjects,

which must paint their own images. We use TCanvas as a drawing surface for ab­

jects that draw an image of themselves. Standard window controls such as edit con­

trols or list boxes do not require a canvas, as Windows draws them. W e can see the

abjects from this classas a painting. In fact, all the fonctions of this class enables us

to define the characteristics of a painter: which pen to use, which colour, ... This

class allows also to load a picture from a file on a disk or other sources, and it en­

ables to modify the loaded picture. The allowed fonctionalities are:

• T o specify the type of brush, pen to use.

• T o draw and fill a variety of shapes and lines.

• To paint graphie images.

• To enable a response to changes in the current image.

The TBi trnap class contains an internal image of the bitmap graphie and

automatically manages its drawing. A bitmap is a powerfol graphie abject used to

create, manipulate (scale, scroll, rotate, and paint), and store images as files on a

disk.

To represent our abjects from the TCanvas class, we must use a TBi trnap

class. In fact, the TBi trnap class contains the fonction to display the picture that it

has in its TCanvas field. In other words, we can create dynamically a TCanvas

abject, but we cannot display it without the use of a TBi trnap abject.

Software Architecture E-21

I

c) Description of the important components

Above, we have the complete architecture that we have shortly described in

the previous point. W e can explain the different classes with their fonctions and

properties to understand the behaviour of each.22 (See figure 3)

,,,-,---..
,-- --- / -~ --......_

/ TWorld ~

/

~ListOfSt.ag•OnThnWorld : TList•
•currentSbge : TSt.ge •)
~WorldNamef'351 : char

/ oc:;;;;~~:~t~~~ ~ies~v~~~1,!,s~:1~~)~s;~~~at,1
•Add_NewStage(vold) : int (
~Oelete SbAe(lnt) : void

' ♦c;,et NumberOfSt.i1geOnThisWorld(void) : lnt
~Get StaaeNumbel('lnt) : TStaae • \

' ..__, ~et_CurrentSt.1ge(void) : TSbge •
'- -.Set CurrentStaae(TSt.1ae •) : void

•set_WorldName(char•) : void

\
♦set Autho(char •) : void j

♦set_D.ateCrution(TMyO.ite) : void
. \ c,tset OateCrutionYeal(int) : void _,,

Composition (by one TMydi1te Object) flt~Set D.ateCreatlonMonth(int) : void'
~ . ,t,set_D.ateCrutionDay(int) : void

,--.~ __,/"' · ~ ... ~ ~ele.aseTextOfTheWorldForS.ving(void) : vold

\

1

/

J
I

/
/
/

TStageObJect

,4>1Dentifier : int
.. TimeStart : i nt

., TimeEndStop : lnt
Q)storageOriginalBMP : Graphics::TBitmap•

Qi;storagePattemedBMP : Graphlcs::TBitmap•
,.Stori1g1Angl1dBMP : Graphlcs::TBitmap•

.p atterned : bool
4t,center 30 : TCoord 30
-Size 30 : TCoord 30

TMyOate (0 .. 1 ' /,,,.

(~Mooth : iot / .-..-
-~•y : lnt 1 .. n
.. Yur : inL,Ï

/
/

/

lrSetHoriz : int
ffSetVert : lnt
illBoard : bool

~

viousPositionFront : TRect
viousPositionTop : TRect
ewPositionFront: TRect
ewf>ositionTop : TRect

I

/

l ./' Composition (by sevar.11 TStage)
._/ /

I
/

- ----- / .,.,.....~1
./ "-----

TStage '
ll>ustOfStageObjectlnThlsStage : TUst• \

·S•lectedObjectBvTheMouse : TStageObject•
.FloorColour : TColour
dl,.staQeColour : TColour

I

/~~~ l friend class TStage

\
4-composition (by several TStageObject) : TStageObjeet /

♦rstaaeO// Constr. O .. n 1 \
♦rstag-<:oonst TStage &)// Copy Constr. ~Composition (bysevera l TStageObj•ct~

•Add NewStaQeObieci:'void) : TStageObieet• '-
♦oup/lcation_StageObject(TStageObject•) : TStage 1

•obiect•
~eleh!_StageObjectNumbe(int) : void l

.. Mf:rRedRect,naleF ront : TRect
~ergedRectangleTop : TRect

~NumberOfSta1110blecttnst.1ncied lnTheClass : static int
6Composition : TStage

ocompositlon(bv several TCoord 30 oblects) : TCoord 30
♦Composition (byseveral TCoord_20 objects) : TCoord_20

♦rst,geObiectO// Oefau1t Constr.
♦rstageObject(const TStageObject &) Il Copy Constr.

._ TSU11eObiect(') Il Oestr.
♦s,t_NewPositionTop(TRect) : void
•set NewPositionFron(TRect) : void
♦o,t_NewPositionTop(void) : TRect
•oet NewPositionFroni:'void) : TRect
♦o,t_PreviousPositionTop(vold) : TRect
♦oet PreviousPosltionFront(vold) : TRect
♦Get_MergeRectangleTop(vold) : TRect
•o•t MergeRect,naleFron(void) : TRect
♦oet_StorageOriginalBMP(void) : TGri1phic•
•set StorageOriAinal8MP(Ans:iSbin11) : vold

♦oelete StageObîectNumberlnThelin:"int) : void \
'-....... ♦1nsertion(int position. TStageObject•) : vo id \

♦o,t StoraReOri11inal8MPC,1n,1va,Cwold) : TC,nvas•
♦set_StorageOriginalBMPWidth(int) : void
♦oet Stori111eOriAinalBMPWidth(void) : int
♦set_Stori1geOrigin1IB~PHelgh(lnt) : void
♦Get StorageOri11inalBMPHeiah(void) : int

"\. ♦\.JpgradeTh1I01ntifierOfAIIObiectSince(int) : void
\ ♦ReluseTextOfTheStageForSavi ng(vold) : void)

•oat StaRtOb1ectNumbe(1nt) TStageOb1ect •

\
♦oet_L,stSti1g10bJect(vo 1 d) TStageObJect •
• o ,t NumberOfstage ln ThisStaR•(vo1d) 1nt

♦Get_SelectedObiectBvTheMouse(void) : TStageObJect •

\
♦o,t_StageColour(void) : TColour
♦5,t SbgeColou(TColour) void

\ ♦o,t_FloorColou(vo1d) TColour "' --- ,,,.-/

1
" 1

♦o,t_StorageOrigina lB MPtransparency(_void) : bool
Cltset Slze 30(int X. int Y. int Z) : void

♦oet_Slze_30_X(vold) : int
•oet Size 30 Y(void) : int
♦Get_Size_30 _Z(void) : int

Compos1bon(bysever,t TCoord_30 obJects) \ ,l,set Center 3D(lnt X. lnt Y. lntZ) : vold

/

~ :::~-~:~~::-;~-~::11~/j~~~
· ♦Get_Center_30_Z(void) : int ~

• - - -✓ - - \ •o•t IDeotofot(voidl mt
TCo ord_30 0 .. 1 ♦set_Storage011glnalB~PCopyR1ct(TC,nns• , TRect) : void

(

. •R•luseTextOfTheSta11eOblectForSav1na(vo1d) void
~ X: int ♦Get NumbuOfStag10bJectlnstanc1edlnTheClass(vo1d) stati c int
6 Y: ! nt Composition (bysevera l TCoord_20 objtcts) ~•t MergedRecti1nRl•Fron(vold) votd

/

....._ ,ôZ : int / ~Set_MergetRecto1ng leTop(vold) vo l d
c:>Composition : TStageObject \ i=tset IOenbfiel(int) void

'-- - __, 4t'tncruseOfOne_numberOfStageObjectlnstanciedlnTheClass(void) : stati c void
;,.o,ctuseOfOne_numberOfStageObjectlnstanciedlnTheCl as:s(void) : stati c -- ---, \ /

/ - ~ord_2D "
1
(') ~ /

~ .t;X : int
..__ , ,>Y : lot \

~Composition : TStageObject

' ---. ----
Figure 3: The Three Important Classes with fonctions and properties

(design in Boosh notation)

22 The complete code of the classes is in Appendix,

E-22 Software Architecture

r
1

1

'

I
I

\

1
'
1

r

I

I

1

/

1
1
1
1
1
11

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1.

1
1
1
1
1
1
1
1
1
1
1
1
1

• TStageObject

The data member the most important is StorageOriginalBMP. lt en­

ables the capture of the picture of the object in the computer memory. This class is

used, not only for drawing objects, but also for picking pictures from a library.

StorageOriginalBMP is a TCanvas object creates dynamically, and it needs to

be placed in a TBi tmap object for its displaying.

There are also the data members to keep the positions 2D of the object:

PreviousPositionFront, PreviousPositionTop, NewPosition­

Front, NewPosi tionTop. All of these data members are a TRect type, i.e. a

structure keeping the co-ordinates of the upper-left corner and the lower-right cor­

ner. In fact, all pictures are captured in a rectangle that represents the area of the

object.

(Left, Top)

(Right, Bottom)

Figure 4: Representation of TRect type

W e can explain the different variables as follows:

struct
{ int

int
int
int

} ;

TRect
Left;
Top;
Right;
Bottom;

• The "Previous ... " data keep the previous positions when the "New ... " data

change.

• The "New ... " data keep the new positions.

• The "Top ... " data keep the positions in the top view, i.e. from the above of

the stage.

• And the "Front ... " data keep the positions of the front view, i.e. the normal

sight of the stage for a spectator.

Software Architecture E-23

All of these data are generated by the correspondent followed fonctions:

Set_NewPositionFront,Get_NewPositionFront,

Set_NewPositionTop, Get_NewPositionTop,

Get_PreviousPositionFront,Get_PreviousPositionTop.

W e can remark that we do not have at disposa! fonctions to change the

"Previous ... " variables. In fact, we do not need them because the fonctions man­

aging the "New ... " data modify automatically the correspondent variable

"Previous ... " to keep the previous value of the "New ... " variables.

W e also have data members to keep the 3D co-ordinates of the centre of the

object: Center_3D, and another variable to keep the size of the object in relation

to this centre: Size_3D. We have member fonctions of the class at one's disposa!

to change and to get the information. As the 2D and 3D co-ordinates are in doser

relations, it is important that when we modify one of them, we automatically mod­

ify the other. In fact, all the programmed fonctions respect this characteristic. In

this manner, we never confuse the two kinds of co-ordinates. We have not put the

two fonctions for the conversion between the two worlds in a class because, if we

do so, we instantiate the class just one time to have an object that provides the con­

version fonctions. But, we can do that if we want to keep the two fonctions in a

centralised place. In the Visual Assistant software, we have put the global variables

in a class to have this sort of variables in one place, but we know that we instanciate

the class just one time during an execution of the software.

We have the TimeStart and TimeStop data members to enable us to

manage the succession of our different stages like a movie. These two data define

respectively the beginning and the end of the moment of the apparition of the stage.

Finally, this class is characterised by another functionality. lt is 'friend' of

the TStage class. By the definition of friend, the fonctions of the TStage class

can modify the data members of the TStageObject class. This functionality de­

creases the encapsulation, but does not suppress all the security because it is the

class itself that declares its friends.

E-24 Software Architecture

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

1 1

1
11
'I
1

11
1
1
1
1
1·

1
:I
1
1

As we have seen, this class is a good abstraction to manage and to represent

the objects of our software. lt is the mould of these objects, and we can create our

new objects by instantiating the class whenever we want to have all the objects we

wish. The management of the object is achieved by the different fonctions that the

objects take from their mould.

• TStage

Now, our objects need a stage to stay. We propose another abstraction to

manage the objects on a stage: the TStage class.

As we have said, this class is the abstraction of the stage in our theatre. But

this is not really true. In fact, it is a theatre stage without the fourth dimension, in

other words, that is a theatre stage with the objects and the actors without move­

ment. Of course, we can move, and change the objects properties, but at the end of

our modification, the stage is static. If we want to make some movement, we would

need some different stages and simulate the moving of the things in our theatre.

The data members represent all things what we have on our stage theatre: a

set of the objets and actors ListOf StageObjectinThisTheatre, the stage

colour and the floor colour. Moreover, we have another data member, which is the

selected object or actor on which we want to apply a fonction as move deep, change

colour ...

Of course, all these data in the private part are hidden to all other classes,

and we have a lot of fonctions in the TStage to manage these private data mem­

bers.

First, we have the fonctions to supervise the TStageObject. The

Add_NewStageObject fonction allows us to add a new TStageObject with

the default values for its data member. In fact, the new TStageObject is placed

on the centre of the screen. If we have already the same object on the centre, the

constructor of the TStageObject changes automatically the position by doing a

small shift to the bottom-right to inform the user that (s)he already has one object

on screen.

Software Architecture E-25

Another one is the Duplicate_StageObject with which we can copy

an object. The new created object has the same properties as those of the copied

object, but the constructor changes automatically the position of the new object, in

relation with the copied object. The aim of this change of position is to inform the

user that (s)he has two abjects on the screen now, by the means of a ting shift be­

tween the object to copy and the copied object.

We have two fonctions to change the colours: Set_StageColour for the

walls and Set_FloorColour for the floor of the theatre stage.

The next fonctions are the "Get ... " fonctions. W e have three fonctions of

this sort for the TStageObject, that allow us respectively: to get the current

TStageObject selected by the mouse, to get the object specified by its identifier,

to get the last inserted TStageObject in the list. Two other 'Get .. .' fonctions

concern the colours: Get_StageColour for the walls and Get_FloorColour

for the floor of the theatre stage.

We also have the fonctions to delete the TstageObject. Two fonctions

are used: one Delete StageObjectNumber to remove a TStageobject of

the list, and the other Delete_StageObjectNumberinTheList to delete a

TStageobject by removing it of the list and of the memory.

Finally, we have a fonction ReleaseTextOfTheStageForSaving to

save the stage theatre in a file. This fonction releases a specific script with all the

characteristics of the stage theatre. Of course, this fonction automatically calls the

fonction ReleaseTextOfTheStageObjectForSaving for all TStageOb­

ject in it. In this manner, this last fonction generates the text for all the TSta­

geobject, and the ReleaseTextOfTheStageForSaving fonction of the

stage pastes these scripts in order to complete its own script. At the end, the fonc­

tion must save all scripts of the stage theatre.

Now, we need an object to get together the different TStage to simulate

the movement of the TStageObject on our virtual stage theatre. This is achieved

by the TWorld class, which is the abstraction to represent the dynamics between

E-26 Software Architecture

1
1
1
1
1
1
I·
1
1
1
1
1
1
1
1
1
1
1 ,1
1

' 1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1

11
'I
1

1•
1

the different TStage elements, just like the movies where we have a lot of differ­

ent pictures allowing the movements of objects.

• TWorld

This abstraction manages the different static theatre stages moulded by the

previous class. Of course, we have just one instance at a time in the Visual Assistant

software. In fact, we can do more than one work at the same moment.

We have three data members in the private part: one List0fSta­

ge0nThisWorld to collect the different TStage in a sequence, a pointer on the

current TStage on the screen to know which TStage we want to manage by the

means of the operations, and a string to capture the name of the work.

When we instantiate our world, the constructor automatically adds a default

TStage object, because there is no sense to have a world without at least one thea­

tre stage, by calling the Add_NewStage fonction which is the fonction to add a

new theatre stage with no TStage0bject.

We may have some other different fonctions. We have the "Set_ ... " fonc­

tions. One Set_CurrentStage to show the specified TStage on the screen

which is considered as the current stage. Another one Set_DateCreation to

change or to fill the creation date of our work. Another one Set_Author to seize

the author's name. And the last one Set WorldName to fill the name of our

work.

Sorne reverse fonctions, called "Get_ ... ", allow us to read the different char­

acteristics set by the "Set_ ... " fonctions. Get_CurrentStage returns the current

stage that we see on the screen, Get_StageNumber returns the specified stage by

its identifier, which is the number in the dynamic sequence of stages.

W e also have a different "Get ... " fonction: the

Get_Number0fStage0bject0nThisWorld is just a fonction to return the

number of stages in our work.

Software Architecture E-27

When we want to delete a TStage, we use the Delete Stage fonction

to delete all the TStageObject on the stage. Therefore, the fonction automati­

cally calls the corresponding Delete_StageObject fonction of the TStage to

delete. When it is clone, the fonction deletes the TStage.

Finally, we have a fonction ReleaseTextOfTheWorldForSaving to

save all the stages in a file. This fonction releases a specific script with the all charac­

teristics of the different stages of our world. This script includes all the objects and

actors placed on the different stages of interest. Of course, this fonction automati­

cally calls the fonction ReleaseTextOfTheStageForSaving for all TStage

in it, and all the stages in the world call the fonction Rele aseTextOfTheSta­

geObjectForSaving for each TStageob ject. So, this last fonction makes the

text for all the TStage, and the ReleaseTextOfTheWorldForSaving fonc­

tion of the world pastes these scripts in the way to complete its own script. At the

end, the fonction must save all scripts of our world.

E-28 Software Architecture

1
1
1
i
1
1
1
1
1
1
1
1

' 1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

The Visual Assistant software runs on an event system. All events are owned

by the operating system, and are associated to an application and a fonction23
,

which is executed when the event arrives. The events are generated by the mouse,

the keyboard, the operating system, the internal dock, etc. When an event is pro­

duced, the operating system places it in a FIF024 queue, and controls the queue

with regard to the arrival order of the events. Quickly, the system dispatches the

events from the list to the corresponding application and the associated fonction is

executed.

In our case, we have three important events: ButtonMouseDown, Mouse­

Move, and ButtonMouseUp. The associated fonctions are as follows: (See Table 2)

Events Associated Functions

ButtonMouseDown StageMouseDown(TObject *Sender, TMouseButton
Button, TShiftState Shift, int X, int Y)

MouseMove StageMouseMove(TObject *Sender, TShiftState
Shift, int X, int Y)

ButtonMouseUp StageMouseUp(TObject *Sender, TMouseButton
Button, TShiftState Shift, int X, int Y)

Table 2: Associated Functions to Events

All these signatures of the fonctions are specified by the C + + Builder, and

we cannot change them. In fact, the system cannot dispatch the events if it does not

know where is the corresponding fonction.

The ButtonMouseDown event is used to implement any special processing

that should occur as the result of pressing a mouse button. It can respond to left,

right, or centre mouse button presses and shift key plus mouse-button combina­

tions. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel co-ordinates

of the mouse pointer in the Sender object, i.e. in our case the drawn stage on our

screen.

23 Or script in some other languages.

24 First ln First Out, i.e. we respect the priority of coming.

Software Architecture E-29

The MouseMove event is used for something happening when the mouse

pointer moves within the control. The parameters are identical to those of the pre­

vious fonction.

The ButtonMouseUp is utilised to implement special processing when the

user releases a mouse button. The parameters are identical to those of the first fonc­

tion.

Now that we have explained a few concepts of the event programming, we

can see how Visual Assistant software runs internally. (See figure 5 on the next

page)

T o allow the communication between the events, i.e. for example to enable

the MouseMove to know on which object we have clicked before and to generate

the event MouseButtonDown, we use some different global variables stored in a

class. W e have no choice, there are no other means to allow the communication

between events: all fonctions can change the variables and we have no security. On

another hand, with the class we have centralised the code for the global variables.

The name of this kind of global variables for the three events is materialised by the

prefix "Can ... " (See figure 5). Let us briefly describe the features of our figure that

we have numbered in sequence:

• W e choose the tool we want to use in the toolbox or in the menu.

• After that, we click on the stage25
• We have two cases. W e have chosen an op­

eration, which needs the MouseMove and the ButtonMouseUp events: Pen­

cilFreeHand, Line, MoveonPlan, MovelnDeep. Or even, we have chosen an opera­

tion which needs just a click and can work endlessly. 26

• W e need to use the event MouseMove for the four specified operations in the

previous point. In case of the moves, we change the positions of the shape and

in the case of the drawing, we draw like when we use a pen.

• In this last event, we finish the work of the four operations: in the case of the

move, we apply the new position, and in the case of drawing we store the new

shape in the list of stage abjects.

25 Thus, the mouse button is clown.

26 i. e. ail other tools than those described in the previous case.

E-30 Software Architecture

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1i
1

1
1
1
1
1
1
1
1
1
1
1

1
1

1

Choose Visual Assistant's Tool:
see the chapter about the
Visual Assistant Project

Click on object:
EventButtonMouseDown

Figure 5: Explanation of
Event System used

<1)

...c: .., ..,
<I)

. 2.,

...c: ..,
-~

<I)

C:
.9
~

--0
<1)
<1)

C: <I)

-5 5
1 ~

<I) <1)
C:
0 --5

-~ Q)
.... ...c:
<1) ..,

o..
0

C
~
0
Cl
Q)
00 ..,
::l C:
0 <1)

::E: >
<1)

C
0
.µ

tl .µ
o.. ::l
0 Ill

Line: Set CanDraw to True
Set OriginLinePoint and EndLinePoint to (X,Y)

PencilFreehand:
Set CanDrawPencilFreeHand to True
Set OriginFreeHandPencilPoint to (X,Y)

MoveO~Plan: Set CanMoveOnPlan to True

MoveinDeep: Set CanMovelnDeep to True

Rectangle: Resize: FlipHoriz:
Circle: Pattern: FlipVert:
DuplicateObject: FixPattern: T ransparency:
Group: ResizePattern: CleanPixel:
ObjectFloor: Maximise: ColourCopy:
DeleteObject: FaceFront: TintObject:
Eraser: FaceSide: LightObject:

Flood: DarkObject:

Move the mouse with button already clown: Leave the mouse's button
EventButtonMouseUp Event MouseMove

IF FrontView THEN
IF CanDrawShape THEN

Erase Previous Shape
Set New Position to (X, Y)
Draw New Shape on New Position

ELSE
IF CanDrawFreeHandPencil THEN

Continue Drawing of Free Hand Line
Set End Position to (X, Y)

ELSE
IF CanMoveOnPlan THEN

Change Position to (X,Y)
ELSE

IF CanMovelnDeep THEN
Change Position to (X,Y)
Sort Ail Stage's Objects

END-IF
END-IF

END-IF
END-IF

ELSE
IF TopView THEN

IF CanMoveOnPlan THEN
Change Position to (X,Y)

END-IF
END-IF

END-IF

Software Architecture

IF FrontView THEN

To paint the
objects with
regards of

their depth:
we draw the

stage on
screen from

the back
plan to the
front plan.

IF CanDrawShape THEN
Store Shape as Object of Current Stage
Set CanDrawShape to False

ELSE
IF CanDrawFreeHandPencil THEN

Set End Position to (X, Y)
Store Shape as Object of Current Stage
Set CanDrawFreeHandPencil to False

ELSE
IF CanMoveOnPlan THEN

Change Position to (X,Y)
ELSE

IF CanMovelnDeep THEN
Change Position to (X,Y)

,-------uort Ail Stage's Objects
END-IF

END-IF
END-IF

END-IF
ELSE

IF TopView THEN
IF CanMoveOnPlan THEN

Change Position to (X,Y)
Sort All Stage's Objects

END-IF e
END-IF Idem

END-IF

E 31

The aim of the software is to represent objects in three dimensions whereas, on

our screen, it will be bidimensional. W e can see how to represent an object with its

three dimensions co-ordinates on our screen with a simulated 3D representation. In

fact, we use the default of our vision, and we use an illusion with a vanishing poini27

to represent the object. W e have such an illusion on the depth of the screen. W e

achieve this principle by the two fonctions described below, which allow us to

switch the two worlds. These fonctions are used in relation with another fonction

that resolves the size of the object depending of its 3D position.

Let us first schematise our method. In figure 6, W e have placed the 2D co­

ordinates of the stage back27 and of the forestage27
• W e have also placed a circle with

its 2D co-ordinates. W e suppose that the size of our theatrical stage is (800 X 600) 28
•

2D (0,0)
3D (0,0,0)

◄

(200,150)
(0,0,600)

2D (340,420)
3D (300,500,400)

►
Width

Depth: from O to 600
stage's front = 0
stage's bottom = 600

2D (600,450)
3D (800,600,600)

2D (800,600)
3D (800,600,0)

Figure 6: General representation of a stage with 2D and 3D co-ordinates

v See appendix French Translator

28 W e must read (800 X 600) as Width = 800 and Height = 600. Another version of Visual Assistant

exists with the (1024 X 768) resolution. This latter version is on the CD-ROM provided with this

work.

E-32 Software Architecture

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

la~

·I 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

a) 3D World to 2D World

int Convert3Dto2D(int MiddleLine, int 3D Coord, int Deep)
{ int Dl= VfTB.Get_UserToScreenDist() + Deep;

int D2 = VfTB.Get_UserToScreenDist();
float Hl= 3D_Coord - MiddleLine;
float H2 =(Hl/ Dl) * D2;

return (MiddleLine + H2);
}

The fonction Convert3Dto2D (...) allows us to switch from the 3D world

to the 2D W orld. In fact, we use the fonction in two steps: first with the X co­

ordinates, and then with the Y co-ordinates. W e also give the stage depth to solve

the X and Y co-ordinates in 2D. Moreover, if we calculate the 2D X co-ordinate, we

need the middle of stage width, and in the case of the 2D Y co-ordinate, we need the

middle of stage height. The VfTB. Get_UserToScreenDist () allows us to

have a distance between the user and the screen. In fact, the vanishing point and the

perceptive are calculated according the distance.

We have in the three tables (see Table 3, Table 4 and Table 5 on the next

page) of the example the calculation of our previous stage: the 2D positions of the

back stage, the 2D positions of the centre of the circle.

The columns of these tables must be read as follows: the MiddleLine is

the middle of the corresponding dimension as explained before, 3D _ Coord is the

3D X or 3D Y position, the Depth is the 3D Z position, and 'Result' is the re­

turned value of the fonction, i.e. the 2D X or 2D Y position. All the results are ob­

tained for a distance equal to 600 (600 is the distance between the screen and the

user).

Software Architecture E-33

Table 3: we can solve the position of the back stage. Two first lines are for the

co-ordinates of the upper left corner of the rectangle and the other lines are for the

co-ordinates of the lower right corner of the rectangle.

MiddleLine 3D Coord Depth Result
Corner Top Left X 400 0 600 = 200

Corner Top Left Y 300 0 600 = 150

Corner Bottom Right X 400 800 600 = 600

Corner Bottom Right Y 300 600 600 = 450

Table 3: Position of the Back Stage

Table 4: we can solve the position of the front stage. We need four calls of the

fonction. Two for the co-ordinates of the upper left corner of the rectangle that we

can read in the two first lines and two for the co-ordinates of the lower right corner

of the rectangle that we can read in the two last lines of the table.

MiddleLine 3D Coord Depth Result
Corner Top Left X 400 0 0 = 0

Corner Top Left Y 300 0 0 = 0

Corner Bottom Right X 400 800 0 = 800

Corner Bottom Right Y 300 600 0 = 600

Table 4: Position of the Front Stage

Table 5: we can solve the position of the centre of the circle. W e need to use the

fonction twice. The first line is for the X co-ordinate and the last for the Y co­

ordinate.

MiddleLine 3D Coord Depth Result
Center 2D X 400 300 400 = 340

Center 2D Y 300 500 400 = 420

Table 5: Position of the Centre of the Circle

E-34 Software Architecture

1
1
1
1
1
1
t
1
1
1
1
1
1
1
1
1
1
1
1
1

1

1
1
1
1
1
1
1
1
11

1

1 1,
1
1
1
1

W e can now write a new fonction for solving in one step the 2D X and Y

co-ordinates:

TCoord 2D Convertion3DTo2D(int MiddleWidth,
int MiddleHeight,
int X, int Y, int Z)

{ TCoord 2D.X = Convert3Dto2D(MiddleWidth, X, Z);
TCoord 2D.Y = Convert3Dto2D(MiddleHeight, Y, Z);

return TCoord 2D;

}

b) 2D World to 3D World

int Convert2Dto3D(int MiddleLine, int 2D Coord, int Deep)
{ int Dl= VfTB.Get_UserToScreenDist();

}

int D2 = VfTB.Get_UserToScreenDist() + Deep;

float Hl= 2D_Coord - MiddleLine;
float H2 =(Hl/ Dl) * D2;

return (MiddleLine + H2);

This fonction allows us to switch from the 2D world to the 3D W orld. As

the previous fonction , we use the fonction in two steps: first with the X co­

ordinate, and then with the Y co-ordinate. W e need the depth being fixed. W e need

the middle of the corresponding dimension. W e can see that we also need the depth

of the object, i.e. the third dimension. ln fact, we need to known the value of the

depth, when we use the fonction for the conversion from the 3D to the 2D because

a same position in 2D can give a set of position along a line in 3D, and we have to

find the correct position on this line.

Software Architecture E-35

Let us use just one table explaining the fonction: the 3D positions of the cen­

tre of the previous circle. The columns of the table must be read as follows: the

MiddleLine is the middle of the corresponding dimension, 2 D _ Coord is the 2D

X or 2D Y position, the Depth is the 3D Z position, and Resul t is the returned

value by the fonction, i.e. the 3D X or 3D Y position.

Table 6: We can solve the position of the centre of the circle by using the fonc­

tion twice. The first line is for the X co-ordinate and the last for the Y co-ordinate.

MiddleLine 2D Coord De th Result
Center 3D X 400 340 400 300

Center 3D Y 300 420 400 500

Table 6: Position of the Centre of the Circle.

Of course, we could have written another fonction for solving in one fonc­

tion call the 3D X and Y co-ordinates:

TCoord 3D Convertion2DTo3D(int MiddleWidth,
int MiddleHeight,
int X, int Y, int Z)

{ TCoord 3D.X = Convert2Dto3D(MiddleWid th, X, Z);
TCoord 3D.Y = Convert2Dto3D(MiddleHeight, Y, Z);
TCoord 3D.Z = Z;

return TCoord 3D;
}

W e have opted for a standard ASCII file and own representation of the Vis­

ual Assistant W orks. The advantage is that we can easily use a lexer29 to read the

generated files. W e can see below the BNF30 of the saved files that describes the

content of files and stages:

29 A lexer can analyse a text to find same patterns. The normal use of the lexer is to generate a pro­

gram.

30 Backus-Naur Form

E-36 Software Architecture

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
t
1
1
1
1
1
1
1
1
1
1
1
1
1

<VA> ::- [Visual Assistant 1.0]<World>

<World> ::- [World]{WorldName}<String>{Author}<String>
{DateCreation}Month:<Integer>/Day:<Integer>
/Year:<Integer><ListStage>

// We cannot have more than one 'World' by Visual Assistant file

<Liststage> ::- <Stage> 1 <Stage><Liststage>

<Stage> ::- <StageProperties> 1 <StageProperties><ListStageObject>

<StageProperties> ::- [Stage]{FloorColour}<Integer>
{StageColour}<Integer>

<ListStageObject> ::- <StageObject> 1 <StageObject><ListStageObject>

<StageObject> ::- <empty> 1 [StageObject]{TimeStart}<Integer>
{TimeStop}<Integer>{StorageOriginalBMP}<BMP>
{StoragePatternedBMP}<BMP>{StorageAngledBMP}<BMP>
{Patterned}<Boolean>{Center_3D}<Coord_3D>
{Size_3D}<Coord_3D>{OffSetHoriz}<Integer>
{OffSetvert}<Integer>{BillBoard}<Boolean>
{PreviousPositionFront}<Rectangle>
{PreviousPositionTop}<Rectangle>
{NextPositionFront}<Rectangle>
{NextPositionTop}<Rectangle>
{MergedRectangleFront}<Rectangle>
{MergedRectangleTop}<Rectangle>

// empty = we can have 'Stage' without 'StageObject'

<empty> ::- empty
<String> : : -
<BMP> : :-
<Boolean> ::- True I False

<Integer> ::- <Digit> 1 <Digit><Integer>
// It is obligatory to have at least one digit

Digit : :- 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 I 8 1 9

<Coord_3D> ::- <Integer>;<Integer>;<Integer>
<Rectangle> ::- <Integer>;<Integer>;<Integer>;<Integer>

Software Architecture E-37

7

The saved file respects the same decomposition that for the classes: World,

Stage and StageObject. The ASCII characteristic of the file enables us to modify the

file with a text editor. W e can see example of a saved Visual Assistant file to explain

the power of a lexer31
:

(Visual Assistant 1 . 0]
(World]{WorldName}Monde{Author}Auteur

{DateCreation}Month:4/Day:11/Year:2000
[Stage]{FloorColour}45{StageColour}65
[StageObject]{Patterned}False{Center_3D}304;196;0{Size_3D}l00;100;0

{OffSetHoriz}0{OffSetVert}0{BillBoard}False
{PreviousPositionFront}0;0;0;0
{PreviousPositionTop}0;0;0;0
{NewPositionFront}254;146;354;246
{NewPositionTop}254;386;354;398
{MergedRectangleFront}0;0;354;246
{MergedRectangleTop}0;0;354;398

[StageObject]{Patterned}False{Center_3D}l35;135;0{Size_3D}l61;28;0
{OffSetHoriz}0{OffSetVert}0{BillBoard}False
{PreviousPositionFront}0;0;0;0
{PreviousPositionTop}0;0;0;0
{NewPositionFront}l21;55;149;216
{NewPositionTop}l21;386;149;398
{MergedRectangleFront}0;0;149;216
{MergedRectangleTop}0;0;l49;398

W e can see that it is easy to understand the meaning of the saved file. The

advantage of this method is that the lexer format looks like the BNF format. W e

define our grammar in BNF and then we write the lexer file32
• In the lexer file, we

mix the grammar with some little C language code to describe how to save our ob­

jects from Visual Assistant. After writing, we execute the lexer software on the

lexer file, and it returns a fully C file, which we can introduce in our project. In

other words, the lexer software has written the C language code for us.

31 Sorne carriage returns and tabulations are used to enable the reading easier.

32 The code of the lexer of Visual Assistant is in the Appendix.

E-38 Software Architecture

1
1
1
1

1
1
1
J
1
1
1

' 1
1
1
1
1
1
1

1
1
1
J,

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-1

1

W e have a 2D screen, and we want to simulate the 3D with the illusion en­

abled by the vanishing point and the perspective. W e have already mentioned the

question, but how can we make visible the depth movements on the screen when

we are on the front view?

First, we have four different quadrants on our screen, on each we have dif­

ferent directions for the vanishing point. (See Figure 7)

The beginnings of the arrows are on the front of
the stage and the ends on the back of the stage.

Down-Right
Down-Left

Change direction X-Axis

Up-Right

Up-Left

Change direction Y-Axis

• On the intersection of the two axes, we have just one point for the depth.
• On the Y-Axis, we have a vertical movement line for the depth.
• On the X-Axis, we have a horizontal movement line for the depth.

Figure 7: The Four Quadrants, the Vanishing Point, and the depth movements

Software Architecture E-39

As we see, the back of the stage is materialised by the illusion of the decreas­

ing in size of the rectangle from the front of the stage. T o obtain this result, we

need two axes:

• Above the X-Axis, we move from the front to the back by downward on

the screen

• Below the X-Axis, we move from the front to the back by upward on

the screen

• Left the Y-Axis, we move from the front to the back by moving right on

the screen

• Right the Y-Axis, we move from the front to the back by moving left on

the screen

Of course, the movement line does not have always the same inclination. In

fact, if we are on the upper-left quadrant and if we project the point on the corner

of the front stage to the back stage, the movement line, which have its beginning

point is on the front stage and its end point on the back stage, is very oblique. But,

if we are on the upper-left quadrant and if we project a point close the Y-Axis from

the front to the back, the movement line, which have its beginning point is on the

front and its end point on the back, is still oblique, but more vertical. For each

point we have a diff erent movement line for the projection of the point from the

front to the back.

In the fonction that achieves the move in depth, we can see the four cases.

The fonction calculates, before a movement, on which quadrant the object is. The

fonction uses the conversion fonction Convert3Dto2D (...) , which is described

in the point 3D World to 2D World, in order to have the new position 3D in rela­

tion with the 2D position of the pointer of the mouse. After that, the fonction

must resize the object to have illusion of the depth. To do that, it calls a fonction

that enables the resizing of the object in relation with the 3D position.

E-40 Software Architecture

1
1
1
1
1
1
1
l 1

J
1

' 1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
t
1
1
1
1
1
1
1
1
1
1
1
1
1
1

In this chapter we have discussed C+ +. Firstly, we have recalled the object­

oriented programming used by C + +. After that, we have seen a method, among a

lot of other methods, that we have used to make our PC version of Visual Assistant

software.

In fact, we have chosen this method of object-oriented programming to have

a good architecture where it is easy to add some new functionalities, to add the re­

maining functionalities coming from the Mac version, and to manage the future

evolution of computers.33

Secondly, we have discussed the architecture made in this work. First, we

have explained in a general way the classes by linking classes as a representation of

reality abstractions. Next, we have seen the classes in depth and we have looked at

the different relationships between the classes.

Thirdly, we have illustrated the event system to understand the working of

the software. In fact, we are used to procedural softwares, but the event programs

are very different. Their executions are not executed independently of their external

environment, which provides events.

Fourthly, we have explained the more important fonctions of the software.

W e have seen the graphical problems, i.e. how to do the transition between the

two-dimensional and the three-dimensional worlds and how to move an object in

depth with a two-dimensional representation on the screen. Moreover, we have

seen how to use a parser to read the saved files, which contains the work we have

made previously with the software on the same or another machine.

33 The different manners used to make the migration of Visual Assistant from the Mac platform to

the PC platform are described in the chapter Reusing the existing knowledge

Software Architecture E-41

1

11
1
1
1
J
1
1
1
1
1
1
1
1
1
1
1
1
1
1

'

Conclusion

W e have tried to define some notions that one can encounter in the artistic field

such as creativity and improvisation. W e have shown that the notion of creativity is

open to debate and that no consensus is reached about its origins. W e went further and

tried to see the different steps involved in this phenomenon i.e. creativity, with the

hope to be provided by more clarifications or at least a track that we can follow to un­

derstand creativity. Unfortunately, the Poincaré's four phases of creativity apply only

scientific creativity and not to the artistic creativity which is our main issue in this

work. After adopting one of the definition given to creativity, we have explored

whether the computer scientists are themselves creative and how they can capture and

modelise the creative activities of theatre artists. We have shown that computer scien­

tists are as creative as any other person in artistic fields or in any other field. W e have

also shown that although programs are governed by unambiguous rules, they offer a

means to artists to express their creativity. We have established that the critics (which

say that rules/ constraints are opposite to freedom, which is the essence of any artistic

activity) are not founded.

Then we have explored the theatre direction and we have tried to understand

how does it work. The aim here is to understand the requirements of one of the end

users of the software Visual Assistant.

At once we have tried to find out the possibilities and boundaries of the virtual

reality when it deals with the artistic field, and to understand and to develop an analy­

sis of the criticism of the virtual reality. Note that this criticism is arisen especially by

art1sts.

Conclusion 1

W e have presented in some detail the software Visual Assistant, and we have

analysed whether it meets the requirements of the end users. The software designed in

this work is based on a Mac version implemented in C language. This software runs

now on a PC platform and was implemented through the use of C + + language.

W e have started by exploring different fields dealing with the reuse of software.

Then we have presented the architecture of the software and have clone a presentation

of C + + language and its comparison with C language.

Although the PC version is available on the Internet, we think that a lot of

work have to be clone before the software Visual Assistant deserves to be used espe­

cially by theatre directors.

2 Conclusion

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
l
1
1
1
1
1
1
1
1
1
1
1
1
t
1

Bibliography

Artaud Antonin, The theatre and Its Double, Caulder and Boyers, London 1970.

Bass L., Clements P. and Kazman R., Software Architecture in Practice, Addison-Wesley,
1997.

Baudelaire, Le public moderne et la photographie, in: Salon, 1859.

Beardon Colin and Enright Terry, Computers and Improvisation: Using the Visual
Assistant for Teaching, Digital Creativity, United Kingdom, University of Plymouth,
1999, Vol. 10, No. 3, pp. 153-166.

Beardon Colin and Enright Terry, The Visual Assistant: designing software to support
creativity, in: Proceedings of (Computers in Art & Design Education) CADE '99 Confer­
ence, University of Teesside, 5-7 April 1999. This paper can be found at
http://www.esad.plym.ac. uk/ personal/ C-Beardon/ papers/ paper9901.html

Beardon Colin and Tuomola Mika, Thematic Network Project: Multimedia Learning
for the Theatre, InterELIA (European League of Institutes of the Arts), issue three,
Winter 1997-1998, pp. 17-22.

Beardon Colin, Creative practices and the design of virtual environments, United
Kingdom, Exeter School of Arts and Design. This paper can be found at
http://www.esad.plym.ac. uk/V A/ papers/2001.html

Beardon Colin, Digital creativity in the 21st Century, in: Proceedings of ICFAD '99.

Beardon Colin, Gollifer Sue, Rose Christopher, Worden Suzette, Computer Use by
Artists & Designers, in: M. Kyng and L. Mathiassen (Eds.) Computers and Design in
Context, MIT Press, Cambridge (Mass.), 1997, pp. 27-50. This paper can be found at
http:/ /www.esad.plym.ac.uk/personal/C-Beardon/papers/9510.html
under the title Designers as users.

Beardon Colin, Multimedia Learning Tools for the Theatre, 1998. Paper presented at
the MESH Conference, London 1-2 October 1997. This paper can be found at
http:/ /www.esad.plym.ac.uk/personal/C-Beardon/papers/9701.html

Beardon Colin, The design of software to support creative practice, 1999. Paper pre­
sented at the International Conference on Design and Technology Educational Research
and Curriculum Development (!DATER 99), University of Loughborough, 23-25 August

Bibliography

1999.
This paper can be found at
http:/ /www.esad.plym.ac.uk/personal/C-Beardon/papers/paper9902.html

Beardon Colin, The Visual Assistant website at:
http://www.esad.plym.ac.uk/VA/index.html
http:/ /www.esad.plym.ac.uk/projects/VA.html

Beardon Colin, The Visual Assistant: institutional perspectives on the development of
software, United Kingdom, Exeter School of Arts and Design. This paper can be found
at
http://www.esad.plym.ac. uk/V A/ papers/9701.html

Beau Frank, Dubois Philippe, Leblanc Gérard, Cinéma et dernières technologies, De
Boek, Bruxelles 1998.

Becq de Fouquières Louis, L 'Art de la mise en scène: essai d'esthétique théâtrale, Entre­
vues, Marseille 1998, reediting of 1884.

Blair D. and Mayer T., Tools for an Interactive Virtual Cinema. in: Trappl, R. and
Petta, P (Eds.) Creating Personalities for Synthetic Actors: towards autonomous personality
agents, Springer, Berlin, pp. 83-91.

Bodart F. and Pigneur Y., Conception assistée des systèmes d'information : Méthode - Mod­
èles - Outils, Masson, Paris 1989, second edition.

Boden Margaret A., The creative mind: myths and mechanisms, Abacus, London 1992.

Boden Margaret A., What is creativity?, in: Boden, Margaret A. et al., Dimensions of
creativity, MIT Press, Cambridge (Mass.), 1994.

Bott F. and Ratcliffe M., Reuse and design, Software Reuse and Reverse Engineering in
Practice, edited by Hall P.A.V., Chapman & Hall, London 1992, pp. 35-51

British Actors' Register website at:
http://www.internet-ireland.ie/ power/ actor / actor .htm

Burrows David, Visual Assistant, OutLine, Wimbledon School of Art, Theatre De­
partment, issue 8, autumn 1999.

CADE 99 Conference at:
http:/ /www.tees.ac.uk/CADE99/

Carrière Jeromy S. and Kazman Rick, The Perils ofReconstructing Architectures, ACM,
Carnegie Mellon University, Pittsburgh (Florida), 1998.

Clarinval André, Le language C, Institute S1-Laurent Sup', September 1994.

..
11 Bibliography

1
1
1

1

' 1
1
1
1
1

'
1
1
1
1
1

1
1
1
1
1
1
1
1
t
1

' 1
1
1
1
1
1
1
t
1

'

Computers in Art & Design Education (CADE) website at:
http:/ /esad.plym.ac.uk/CADE/

Crary J., Technique of the Observer. On Vision and Modernity in the Nineteenth Century,
Cambridge, Mass., MIT Press, October 1990.

Daisy's Amazing Discoveries website at:
http:/ /www.coronet.fi/ daisy/

Digital Creativity journal website at:
http:/ /www.swets.nl/ sps/journals/ dc1.html

Director's Assistant website at:
http:/ / vconf.hut.fi/hamlet/

Distributed Video Production website at:
http:/ / viswiz.gmd.de/DVP /Public/ deliv/ deliv.413/ deliv.413.html#V A

Dramatic Exchange website at:
http://www.dramex.org/

Eckel Bruce, Thinking in C: Foundations for Java & C + +, Prentice Hall, New Jersey

Eckel Bruce, Thinking in C + + : Standard Libraries & Advanced Tapies, Prentice Hall,
New Jersey,Vol. 2, second edition, 2000.

Eckel Bruce, Thinking in C+ +, Prentice Hall, New Jersey, Vol. 1, Second Edition, 13
January 2000.

Eckel Bruce, Thinking in Java, Prentice Hall, New Jersey, first edition.

Eckel Bruce, Thinking in java, Prentice Hall, New Jersey, second edition.

ELA Con-fine Plays website at:
http://www.perspicacity.com/ elactheatre/index.html

FickJean-Marc, Cybergoût et sensorialité numérique, in: Champs Visuels n°5,
L'Harmattan, Paris 1997.

Forst A. and Yarrow R., Improvisation in Drama, Macmillan, London 1990.

Frazer A., Reverse engineering - hype, hope, or here?, Software Reuse and Reverse En­
gineering in Practice, edited by Hall P.A.V., UNICOM Applied Information Technology,
Chapman & Hall, Vol. 12, London 1992, pp. 209-243.

George Coates' performance works website at:
http:/ /www.georgecoates.org/

Bibliography 111

Goldsack S.J ., Re-engineering software for distributed execution, Software Reuse and
Reverse Engineering in Practice, edited by Hall P.A.V., UNICOM Applied Information
Technology, Chapman & Hall, Vol. 12, London 1992, pp. 357-386.

Hall P.A.V., Editorial Introduction, Software Reuse and Reverse Engineering in Practice,
edited by Hall P.A.V., UNICOM Applied Information Technology, Chapman & Hall,
Vol. 12, London 1992, pp. xiii-xvii.

Hall P.A.V., Software reuse, reverse engineering, and re-engineering, Software Reuse
and Reverse Engineering in Practice, edited by Hall P.A.V., UNICOM Applied Informa­
tion Technology, Chapman & Hall, Vol. 12, London 1992, pp. 3-32.

Hildesheimer W., Mozart, London 1983.

Hodgson R., The impact of software reuse on object-oriented methods, Software Reuse
and Reverse Engineering in Practice, edited by Hall P .A. V., UNICOM Applied Informa­
tion Technology, Chapman & Hall, Vol. 12, London 1992, pp. 159-205.

Holloway S., Re-engineering business systems to use the next generation of software,
Software Reuse and Reverse Engineering in Practice, edited by Hall P.A.V., UNICOM
Applied Information Technology, Chapman & Hall, Vol. 12, London 1992, pp. 271-282.

Huizinger J., Homo Ludens, Beacon Press, New-York 1955.

Jones R., How applicable is the object-oriented approach to the IS environment?, Soft­
ware Reuse and Reverse Engineering in Practice, edited by Hall P .A. V., UNICOM Ap­
plied Information Technology, Chapman & Hall, Vol. 12, London 1992, pp. 137-157.

Juvet André, Réflexions de comédien, Sablon, Bruxelles - Paris 1944.

Koestler A., The Act of Creation, Picador, London 1975.

Kruzela I. and Brorsson M., Software Reuse and Reverse Engineering in Practice, edited
by Hall P.A.V., UNICOM Appliedinformation Technology, Chapman & Hall, Vol. 12,
London 1992, pp. 521-534.

Laurel B., The computer as Theatre, Academic Press, 1990.

Livingston Lowes, The Road to Xanadu: A study in the ways of the Imagination, Consta­
ble, London 1951.

McCullough Malcolm, Abstracting craft: The practiced digital hand, MIT Press, Cam­
bridge (Mass.), 1998 for the paperback (First published in 1996).

McGill R., Reverse engineering - not yet?, Software Reuse and Reverse Engineering in
Practice, edited by Hall P.A.V., UNICOM Applied Information Technology, Chapman &
Hall, Vol. 12, London 1992, pp. 245-252.

lV Bibliography

1
1
1
1
1
J

' 1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
t
1
1

Miche Frédéric, Computer Sketching: How Software Tools Can Enhance Human Creativ­
ity?, Master's degree dissertation, Institute of Computer Science (FUNDP), Namur
1999.

Müller Hausi A., Reverse Engineering Strategies for Software Migration, A CM, (?Can­
ada?), University of Victoria, 1997, p. 660.

Müller Robert C., "Enhancing creativity, innovation and co-operation", in AI & Soci­
ety (the journal of human-centred systems and machine intelligence), Volume 7 Num­
ber 1, Springer-Verlag, London 1993.

Munro M., Software maintenance, reuse and reverse engineering, Software Reuse and
Reverse Engineering in Practice, edited by Hall P.A.V., UNICOM Applied Information
Technology, Chapman & Hall, Vol. 12, London 1992, pp. 573-584

Oualline Steve, Practical C+ + Programming, O'Reilly, USA, January 1997.

Paxson Vern, Flex, March 1995.

Philippe Coiffet, Mondes imaginaires, Hermès, Paris 1995.

Poincaré Henri, The foundations of sciences: science and bypothesis, The Value of Science,
Science and Method, Washington 1982.

Prechelt Lutz, Technical opinion: comparing Java vs. CIC + + efficiency differences to in­
terpersonal differences, Communications oftheACM, Vol. 42, No. 10, October 1999, pp.
109-112.

Quéau Philippe, Le virtuel: vertus et vertiges, collection Milieux, editions Champ Val­
lon/LN.A., Seyssel 1993.

Rezvani Serge, Théâtre: Dernier Refuge de l'imprévisible Poétique, collection Apprendre,
Actes Sud-Papiers, June 2000.

Rheingold H., La réalité virtuelle, Dunod, Paris 1993.

Richard Finkelstein's Designs website at:
http:/ /www.artsozoo.org/rf/

Ryle G ., The concept of mind, Hutchinson, London 1949.

Satir Gregory and Brown Doug, C+ +: The Core Language, O'Reilly, USA 1996.

Screenwriters and Playwrights website at:
http:/ /www.teleport.com/ ~cdeemer/scrwriter.htm

Shakespeare Archive website at the Massachusetts Institute of Technology website at:
http:/ /the-tech.mit.edu/Shakespeare/

Bibliography V

Shakespearean websites at:
http://www.shakespeare.com
http://www.rdg.ac.uk/ AcaDepts/In/Globe/home.html
http:/ /www.gh.cs.su.oz.au/ ~ matty/Shakespeare/

Somerville Ian, Software engineering, Addison-Wesley,?, 19??.

Spolin V., Improvisation for the theatre, Pitman Publishing, London 1963

Stroustrup Bjarne, The C+ + Programming Language, Addison-Wesley, New Jersey,
1991, second edition

Talent Source website at:
http://www.talent.com.au/ts/ menu.html

Theatre Central website at:
http://www.theatre-central.com/

Theatre Department of Wimbledon School of Art website at:
http://www.wimbledon.ac. uk/ thatre/ techarts/index.htm

Umar Amjad, Application (Re)Engineering : Building W eb-Based Applications and
dealing with Legacies, Prentice Hall, Piscataway (New Jersey) 1997.

W al ton P., The management of reuse, Software Reuse and Reverse Engineering in Prac­
tice, edited by Hall P.A.V., UNICOM Applied Information Technology, Chapman &
Hall, Vol. 12, London 1992, pp. 505-520.

Warden R., Re-engineering - a practical methodology with commercial applications,
Software Reuse and Reverse Engineering in Practice, edited by Hall P.A.V., UNICOM
Applied Information Technology, Chapman & Hall, Vol. 12, London 1992, pp. 283-305.

Winograd Terry, Bennett John, De Young Laura, Hartfield Bradley et al., Bringing
design to software, ACM Press, Baltimore (Md.), 1996.

Vl Bibliography

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

'

~I ~-·- ·------- --
1

11
1

1
1
1
1
1
1
1
1

1 1,
1

1
1
1
1
1
1
1
1

Appendix

English

Actor

Apron (stage)

Audience

Back of the stage

Back stage

Bottom stage

Brainwave

Casting

(to) Change of scene

Character

Comedian

Computer graphies

Conductor

Costume

Costum(i)er

Craft

Craft document

(to) Direct

Direction

2

Français

Acteur

Avant-scène

Spectateurs

Dernier plan de la scène

Arrière-scène

Plancher de scène

Idée, trait génie, idée lumineuse

Théâtre : Distribution des rôles, casting
Informatique : Conversion explicite

de type

Changer de décor

Personnage

Comédien

Infographie

Chef d'orchestre

Costume

Costumier

Manuel, artisanal

Description précise, prescriptions de
\ mise en scenes

Théâtre, Cinéma : Mettre en scène
une pièce, un film

Théâtre, Cinéma : diriger un film,
des acteurs, etc

Théâtre : Mise en scène
(en Pratique et en Abstraction)

Cinéma, TV, Radio: Réalisation

Appendix - French Translator

1
1
1

,,
t
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1 1

1•
1
1
1
1
1
1

' 1
1
1
1
1
1
1

1
1
1
1

English

Director

Drama

Drama critic

Drama person

Drama work

Dramatic criticism

Dramatis person(ae)

Dramatist

Dress

Dress rehearsal

Emotion

Essence of the (drama) work

Feeling

Floor stage

Footlights

Forestage

Front of the stage

Front stage

Ideas (wo)man

Live theatre

Lighting technician

Model

Narrative

(to) Perform

Performance

Appendix - French Translator

Français

Théâtre : Metteur en scène
Cinéma, TV, Radio : Réalisateur

Art dramatique
Le théâtre

Critique dramatique

Personne du drame

Œuvre dramatique

Critique dramatique

Personnage(s)

Dramaturge

Costume

Répétition générale

Émotion

Intentionnalité du texte, de l' œuvre

Émotion
Sensation

Plancher de la scène

Rampe (de lumière) de l'avant-scène

Avant-scène

Premier plan de la scène

Avant-scène

Concepteur

Théâtre de rue

Éclairagiste

Maquette

Récit, narration

Jouer, représenter une pièce

Théâtre : Représentation
Cinéma : Séance

3

English

Performer

Placing in space

Play

Playwright

Poetry

Practitioner

Producer

Production

Prompter

Rehearsal

Representation

(to) Run

Scenario

Scene

Scenecraft

Scenery

Scenographer

Screenplay

Screenwriters

Setting up and installation

Silent play

Sketch

4

Français

Musique : Interprétation

Théâtre :, Acteur
Musique : Exécutant, interprète, artiste

Mise en espace, spatialisation

Pièce (de théâtre)

Dramaturge

Poésie

Spécialiste, expert

Théâtre : Metteur en scène
Cinéma, TV, Radio: Producteur

Théâtre : Mise en scène
Cinéma, TV, Radio: Production

Souffleur

Répétition (théâtrale)

Théâtre : Interprétation (de rôles)
Peinture : représentation

Diriger, gérer un théâtre

Théâtre : Scénario

Scène (en Pratique et en Abstraction)
Décor

Scénographie

Décors

Scénographe

Cinéma : Scénario

Scénariste

Aménagement

Pièce muette

Art : Esquisse, dessin à grand trait
Théâtre, TV : Sketch

App endix - French Translator

1
1
1
1
1
J
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1

1
1

English

(to) Sketch

Sketching

Specifications

Stage

Stage acting

Stage design

Stage designer

(Stage) direction

(Stage) director

(to) Stage-manage

Stage manager

Stage painter

(Stage) play

Stage playing

Stagecraft

Stagehand

Staging

Theatre hall

Theatre manager

Theatre production

Theatrical art

Vanishing point

Walk-on (part)

Walk-on actors

Work

Appendix - French Translator

Français

Esquisser, dessiner à grands traits

Dessin à main levée

Cahier des charges
Description précise, prescriptions

Scène (en Pratique)

Jeu de scène

Décoration théâtrale

Décorateur de théâtre

Direction scénique

Metteur en scène

Mettre en scène

Régisseur (d'une pièce)

Peintre de décors

Pièce de théâtre

Jeu de scène

Technique de la scène

Machiniste

Mise en scène (en Pratique)

Salle théâtrale

Directeur de théâtre

Mise en scène théâtrale

Art théâtral

Point de fuite

Rôle : Figuration

Acteur: Figuration

Œuvre

5

1
1
1
1
1
1
1
1

1

1
1
1

#ifndef TypeCPP
#define TypeCPP

1/---
#include <vcl.h>
#include <stdlib.h>
#include <except.h>
#include <math.h>
#include <time.h>
#pragma hdrstop

#include "Type.h"

//---
#pragma package(smart_ init)
#pragma resource "*.dfm"
TWinType *WinType;

/1---
_fastcall TWinType::TWinType(TComponent* Owner)

: TForm(Owner)
{

}

//---
// type for all operations in Virtual Assistant

enum TVATools { // World
E_tsNoTool,
E_tsNewWorld, E_tsOpenWorld, E_ tsSave, E_tsSaveAs,
E_tsExport, E_ tsQuit,

//Stage
E tsFrontView, E_ tsTopView, E_ tsStageinfo,
E tsPla, E_ StageShape, E_ tsObjectFloor, E_ tsFloorObject,

// Draw an Object
E_tsCircle, E_ tsFigure, E_ tslmport, E_ tsLine, E_tsFreehand, E_ tsRectangle,

// Modify an Object
E_ tsUndo, E_ tsDeleteObject, E_ tsDuplicate, E_tsPaste,
E_ tsGroup, E_ tsFaceFront, E_tsFaceSide,
E_ tsMovePlan, E_tsMoveDeep, E_ tsFlipHoriz, E_tsFlipVert,
E_ tsResize, E_ tsCleanPixel, E_ tsFixPattern, E_tsPattern,
E_ tsResizePattern, E_tsEraser, E_tsMaximise, E_tsTransparency,

Il Colour
E_ tsColourPick, E_tsColourCopy, E_tsColourWhite,
E_ tsColourBlack, E_tsFlood, E_ tsTintObject, E_tsTintScene,
E_tsLightObject, E_tsDarkObject, E_ tsLightScene,
E_tsDarkScene, E_tsEditFilter, E_tsMoveFilter,

// Preferences
E_ tsPencilSize, E_tsOptions, E_tsBrushStyle

// Help

Appendix - the C + + Code of Visual Assistant

Il The Wireframe is SHOW or HIDE
enum TWireframeMode { E_ ShowWireFrame, E HideWireFrame };

Il Top View or Front View
enum TView { E_ FrontView, E_ TopView };

Il For the return of the functions
enum TReturn { E_ OK, E ThereisAProblem };

Il Display mode for the objects
enum TDisplayMode { E_ dmWhole, E_ dmObjectClipRect_FrontView, E_ dmObjectClipRect_TopView,

E_ dmMergedClipRect };

Il Sense of the deep for the X-Axis
enum TSenseX { E_ BackLeftToFrontRigth, E_ FrontLeftToBackRigth };

Il Sense of the deep for the Y-Axis
enum TSenseY { E_ FrontBottomToBackUp, E_ FrontUpToBackDown };

11---
class TCoord 3D
{ Il use the constructor, destructor and copy constructor by default

Il because you have no dynamic variable (with new and delete!)
public : int X, Y, Z;

} ;

class TCoord 2D
{ Il use the constructor, destructor and copy constructor by default

Il because you have no dynamic variable (with new and deletel)
public : int X,Y;

} ;

class TMyDate
{ Il use the constructor, destructor and copy constructor by default

Il because you have no dynamic variable (with new and delete!)
public : int Month, Day, Year;

} ;

11---
Il The objects on the Stage
Il Use this Class just in the Stage's Class
class TStageObject
{ public : Il NOT use the constructor, destructor and copy constructor by default

Il because you have some dynamic variables (with new and delete!)
Il I have not define the operator =, because I assign the pointer !!!

TStageObject(); Il Constructor
TStageObject(const TStageObject & ObjectToCopy); Il Copy Constructor
-TStageObject(); Il Destructor

void Set_ NewPositionTop(TRect rectangle);
void Set_NewPositionFront(TRect rectangle);
TRect Get_NewPositionTop(void) { return NewPositionTop; }
TRect Get_NewPositionFront(void) { return NewPositionFront; }
TRect Get_ PreviousPositionTop(void) { return PreviousPositionTop; }
TRect
TRect
TRect

Get_ Pr eviousPositionFront(void)
Get_ MergedRectangleFront(void)
Get_MergedRectangleTop(void)

TGra hic* Get Stora eOri inalBMP void

{ return
{ return
{ return

PreviousPositionFront; }
MergedRectangleFront; }
MergedRectangleTop; }

return Stora

Appendix - the C + + Code of Visual Assistant

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1·
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1

1
1

Narne) ; }

z; }

Il

void Set_StorageOriginalBMP(AnsiString FileNarne) { StorageOriginalBMP->LoadFromFile(File-

TCanvas* Get_StorageOriginalBMPCanvas(void) { return StorageOriginalBMP->Canvas; }

void
int
void
int
bool

Set_StorageOriginalBMPWidth(int Width) { StorageOriginalBMP->Width = Width; }
Get_StorageOriginalBMPWidth(void) { return StorageOriginalBMP->Width; }
Set_StorageOriginalBMPHeight(int Height) { StorageOriginalBMP->Height = Height; }
Get_StorageOriginalBMPHeight(void) { return StorageOriginalBMP->Height; }
Get_StorageOriginalBMPTransparency(void) { return StorageOriginalBMP->Transparent; }

void Set_Size_3D(int X, int Y, int Z) { Size_3D.X = X; Size 3D.Y = Y; Size 3D.Z = Z; }
int Set_Size_ 3D_ X(int X) { Size 3D.X X; }
int Set_Size_ 3D_ Y(int Y) { Size_3D.Y = Y; }
int Set_Size_ 3D_ Z(int Z) { Size_3D.Z = Z; }
int Get_Size_3D_X(void) { return Size_3D.X; }
int Get_Size_3D_Y(void) { return Size_3D.Y; }
int Get_Size_3D_Z(void) { return Size_3D.Z; }

void Set_Center_3D(int X, int Y, int Z) { Center_3D.X X; Center 3D . Y

int Set_Center_3D_ X(int X) { Center 3D.X X• , }
int Set_Center_3D_Y(int Y) { Center 3D.Y Y; }
int Set_Center_3D_Z(int z) { Center 3D.Z Z; }
TCoord_3D Get_Center_3D(void) { return Center_3D; }
int Get_ Center_3D_ X(void) { return Center_ 3D.X; }
int Get_Center_3D_Y(void) { return Center_3D.Y; }
int Get_Center_3D_Z(void) { return Center_3D.Z; }

int Get_IDentifier(void) { return IDentifier; }

void Set_StorageOriginalBMPCopyRect(TCanvas* Canvas, TRect Source);

void RePosition_NewPositionTopAndPreviousPositionTop(int argument);
void ReleaseTextOfTheStageObjectForSaving(void);

Il Number of StageObject for all Stage ! !!

Y; Center 3D.Z

static int Get_NumberOfStageObjectinstantiedinTheClass(void) { return TSta­
geObect::NumberOfStageObjectinstantiedinTheClass; }

private

Il
Il

Il
Il

Il

int IDentifier; Il Identifier of the StageObject in the list
int Timestart;
int TimeEndStop;

Graphics::TBitmap* StorageOriginalBMP; Il Picture of the StageObject on the screen
Graphics::TBitmap* StoragePatternedBMP;
Graphics::TBitmap* StorageAngledBMP;

bool Patterned;
TCoord_ 3D Center_ 3D;
TCoord_3D Size_3D;
int OffSetHoriz;
int OffSetVert;
bool BillBoard;
TRect PreviousPositionFront;

TRect PreviousPositionTop;
TRect NewPositionFront;
TRect NewPositionTop;
TRect MergedRectangleFront;
TRect MergedRectangleTop;

TRect ImageTop;

void Set_MergedRectangleFront(void);
void Set Mer edRectan leTo void;

Appendix - the C + + Code of Visual Assistant

1
void Set_IDentifier(int NewIDentifier) { IDentifier NewIDentifier; } 1
Il GLOBAL VARIABLES -- CLASS ' VARIABLES
Il THIS IS THE -- DECLARATION --
Il How many instancieted StageObject do you have? ·1
Il Number of StageObject for all Stage !!!
static int NumberOfStageObjectinstantiedinTheClass;
static void IncreaseOfOne_NumberOfStageObjectinstantiedinTheClass(void) { TStageOb-

1 ject::NumberOfStageObjectinstantiedinTheClass++; }
static TReturn DecreaseOfOne_ NumberOfStageObjectinstantiedinTheClass(void);

Il This class is a friend because she changes the IDentifer
friend class TStage;

} ;

TStageObject::TStageObject()
{ IncreaseOfOne_NumberOfStageObjectinstantiedinTheClass();

Set_ IDentifier(NumberOfStageObjectinstantiedinTheClass 1); Il the first IDentifier is 0 1

Il initialisation of variables

Il initialization of rectangles
PreviousPositionFront = Rect(0,0,0,0);
PreviousPositionTop = Rect(0,0,0,0);
NewPositionFront = Rect(0,0,0,0);
NewPositionTop = Rect(0,0,0,0);

Il ImageTop = Rect(0,0,0,0);

Il BitMaps' Allocation
StorageOriginalBMP = new Graphics::TBitmap;
StorageOriginalBMP->TransparentColor = clWhite;

StorageOriginalBMP->Transparent = true;
StorageOriginalBMP->Canvas->CopyMode = cmSrcCopy;

Set_ Size_ 3D(StorageOriginalBMP->Height, StorageOriginalBMP->Width, 0);
Set_ Center_ 3D(NewPositionFront.Left + (StorageOriginalBMP->Width I 2), NewPositionFront.Top +

(StorageOriginalBMP->Height I 2), 0);

}

TStageObject::-TStageObject()
{ TStageObject::DecreaseOfOne_ NumberOfStageObjectinstantiedinTheClass();

Il Delete the Bitmap
delete StorageOriginalBMP;

}

TStageObject::TStageObject(const TStageObject & ObjectToCopy)
{ Il Just the IDentificator is different between the both!I!

IncreaseOfOne_NumberOfStageObjectinstantiedinTheClass();
Set_ IDentifier(NumberOfStageObjectinstantiedinTheClass - 1

Il
Il

int TimeStart;
int TimeEndStop;

Il I have seen no copy constructor in the bitmap ' s class !!!
StorageOriginalBMP = new Graphics::TBitmap;
StorageOriginalBMP->Assign(ObjectToCopy.StorageOriginalBMP);

Il
Il

Graphics::TBitmap* StoragePatternedBMP;
Gra hics::TBitm ledBMP;

Il Copy Constructor

); Il the first IDentifier is 0

Appendix - the C + + Code of Visual Assistant

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
,.

1
1
1
11
1

'

1

Patterned = ObjectToCopy.Patterned;

// Use the copy constructor of TCoord_3D !!!

Center_ 3D = ObjectToCopy.Center_ 3D;
Size_ 3D = ObjectToCopy.Size_ 3D;

OffSetHoriz = ObjectToCopy.OffSetHoriz;
OffSetVert = ObjectToCopy.OffSetVert;
BillBoard = ObjectToCopy.BillBoard;

// Use the copy constructor of TRect Ill

Previ ousPositionFront = ObjectToCopy.PreviousPositionFront;
PreviousPositionTop = ObjectToCopy.PreviousPositionTop;
NewPositionFront = ObjectToCopy.NewPositionFront;
NewPositionTop = ObjectToCopy.NewPositionTop;
// TRect ImageTop;

void TStageObject::Set_ NewPositionTop(TRect rectangle)
{ PreviousPositionTop = NewPositionTop;

NewPositionTop = rectangle;
Set_MergedRectangleTop();

void TStageObject::Set_ NewPos i tionFront(TRect rectangle)
{ Previ ousPositionFront = NewPositionFront;

NewPositionFront = rectangle;
Set_MergedRectangleFront();

void TStageObject::Set_ MergedRectangleFront(void)

min(PreviousPositionFront.Left,
min(PreviousPositionFront.Top,
max(PreviousPositionFront.Right,

NewPositionFront.Left);
NewPositionFront.Top);
NewPositionFront.Right);

{ MergedRectangleFront.Left
MergedRectangleFront.Top
MergedRectangleFront.Right
MergedRectangleFront.Bottom max(PreviousPositionFront.Bottom, NewPositionFront.Bottom);

}

void TStageObject::Set_ MergedRectangleTop(void)
min(PreviousPositionTop.Left,
min(PreviousPositionTop.Top,
max(PreviousPositionTop.Right,

NewPositionTop.Left);
NewPositionTop.Top);
NewPositionTop.Right);

{ MergedRectangleTop.Left
MergedRectangleTop.Top
MergedRectangleTop.Right
MergedRectangleTop.Bottom max(PreviousPositionTop.Bottom, NewPositionTop.Bottom);

void TStageObject::Set_StorageOriginalBMPCopyRect(TCanvas* Canvas, TRect Source)
{ // Specifies how the a graphical image is copied onto the canvas

// cmSrcCopy = Copies the source bitmap to the canvas
StorageOriginalBMP->Canvas->CopyMode = cmSrcCopy;
StorageOriginalBMP->Canvas->CopyRect(Rect(0, 0, StorageoriginalBMP->Width, StorageOriginalBMP­

>Height), Canvas, Source);

}

/*void TStageObject::RePosition_NewPositionTopAndPreviousPositionTop(int argument)
{ int HalfWidth = Get_ StorageOriginalBMPWidth() / 2;

NewPositionTop = PreviousPositionTop = Reet(Center_ 3D.X - HalfWidth, (argument - Center_3D.Z) - 6,
Center_ 3D.X + HalfWidth, (argument - Center_ 3D.Z) + 6);

} */

TReturn TStageObject::DecreaseOfOne_ NurnberOfStageObjectinstantiedinTheClass(void)
{ if (TStageObject::NurnberOfStageObjectinstantiedinTheClass >= 1)

TSta eob·ect::NurnberOfSta eob·ectinstantiedinTheClass--;

Appendix - the C + + Code of Visual A ssistant

return E_ OK;
}

else return E_ThereisAProblem;

void TStageObject::ReleaseTextOfTheStageObjectForSaving(void)
{ char IntegerToAnString[lS];

char AnString[l024];

Il I use an object "memo " to stock the text that should be saved.
// Why? Because it is comfortable to manipulate a text in an "memo"
Il and an "memo" have no limit with the size of the text ...
// Besides, this object has its visible" property" to false.

WinType->TextStageObjectSaving->Lines->SetText(" "); // the list of strings is Empty

// Flag for the Beginning of the StageObject
AnString[0] = '\0'; // The String is empty
StrCat(AnString, " [StageObject]");

/ /Streat (AnString, "{TimeStart}") ;

//Streat(AnString, "{TimeEndStop}");
Il++
// Streat(AnString, "{StorageOriginalBMP }");
// StorageOriginalBMP->SaveToFile(Streat("", itoa(IDentifier)))
Il++

//StrCat(AnString, "{StoragePatternedBMP}");

//Streat(AnString, " {StorageAngledBMP}");

StrCat(AnString, "{Patterned}");
if (Patterned == true)

{ Streat (AnString, "True") ;

}
else

{ Streat(AnString, "False");

}

Streat(AnString, "{Center_3D}");

itoa(eenter_3D.X, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat(AnString, ";");
itoa(eenter_3D.Y, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
StrCat(AnString, "; ") ;
itoa(eenter_3o.z, IntegerToAnString, 10);
StrCat(AnString, IntegerToAnString);

Streat(AnString, "{Size_3D}");
itoa(Size_ 3D.X, IntegerToAnString, 10);
StrCat(AnString, IntegerToAnString);
StrCat(AnString, ";");
itoa(Size_ 3D.Y, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat(AnString, "; ");
itoa(Size_3o.z, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);

(i) Streat AnStrin , " OffSetHoriz " ;

Appendix - the C + + Code of Visual Assistant

1
1
1
1
1
1
1
1

' 1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

' ,,
1

1
1

t
1
1

itoa(OffSetHoriz, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);

Streat(AnString, " {OffSetVert}");
itoa(OffSetVert, IntegerToAnString, 10);
Str eat(AnString, IntegerToAnString);

Streat (AnString, "{BillBoard}");
if (BillBoard) Streat(AnString, "True");
else Streat(AnString, "False");

Streat(AnString, "{PreviousPositionFront} ");
itoa(PreviousPositionFront.Left, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat(AnString, "; ");
itoa(PreviousPos'itionFront.Top, IntegerToAnString, 10);
Streat(AnStri ng, IntegerToAnString);
Streat (AnString, " ; ");
itoa(PreviousPositionFront.Right, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat (AnString, " ; ") ;
itoa(PreviousPositionFront.Bottom, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);

Streat(AnStri ng, " {PreviousPositionTop}");
itoa(PreviousPositionTop.Left, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat(AnString, " ; ");
itoa(PreviousPositionTop.Top, Integer ToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat (AnString, " ; ") ;

itoa(PreviousPositionTop.Right, IntegerToAnString, 10);
StrCat(AnString, IntegerToAnString);
Streat (AnString, ";");
itoa(PreviousPositionTop.Bottom, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);

Streat(AnString, "{NewPos i t i onFront}");
itoa(NewPositionFront.Left, IntegerToAnStri ng, 10);
Streat(AnString, IntegerToAnString);
St reat(AnString, "; ");
itoa(NewPositionFront.Top, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat(AnString, " ; ");
itoa(NewPositionFront.Right, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat (AnStri ng, "; ");
itoa(NewPositionFront.Bottom, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);

Streat(AnString, "{NewPosit i onTop}");

itoa(NewPositionTop . Left, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Str eat (AnString, " ; ");
itoa(NewPositionTop.Top, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat(AnString, "; ");
itoa(NewPositionTop.Right, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat(AnString, ";");
itoa NewPositionTo .Bottom, Inte erToAnStrin, 10 ;

Appendix - the C + + Code of Visual Assistant

- 1

(i)

}

Streat(AnString, IntegerToAnString);

Streat(AnString, " {MergedRectangleFront}");
itoa(MergedRectangleFront.Left, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat (AnString, ";");
itoa(MergedRectangleFront.Top, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat (AnString, " ; ") ;
itoa(MergedRectangleFront.Right, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat (AnString, " ; ") ;
itoa(MergedRectangleFront.Bottom, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);

Streat(AnString, "{MergedRectangleTop} ");
itoa(MergedRectangleTop.Left, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat (AnString, "; ") ;
itoa(MergedRectangleTop.Top, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat (AnString, " ; ") ;
itoa(MergedRectangleTop.Right, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);
Streat(AnString, ";");
itoa(MergedRectangleTop.Bottom, IntegerToAnString, 10);
Streat(AnString, IntegerToAnString);

Il Add the new String at the end of the list
Il Append() is the same of Add(), but with no return value
WinType->TextStageObjectSaving->Lines->SetText(AnString);

Il variables' Allocation
Il THIS IS THE -- DEFINITION

1
1
1
1
1
1
1
1
1
1
1
1

int TStageObject::NumberOfStageObjectinstantiedinTheelass
piler initialise the variable to 1 !?!

0; Il When it's initialise to 0, the corn-

1/---
Il e l ass for slide of the Stage
class TStage
{ public : TStage();

-TStage();
TStage(const TStage & StageToeopy);

TStageObject * Add_NewStageObject(void); Il return the New StageObject created

1
1
1

TStageObject * Duplicate_ StageObject(TStageObject * ObjectToeopy); Il ereate a NewStageOb- 1
ject and Duplicate it

void Delete_ StageObjectNumber(int IDentifier); Il Free the StageObject and Put it out of
the List

Il

void Delete_ StageObjectNumberinTheList(int IDentifier); Il Put an Object out of the List 1
void Insertion(int Position, TStageObject * StageObjectToinsert);
void UpgradeTheIDentifierOfAllObjectSince(int SinceObject);
void ReleaseTextOfTheStageForSaving(void);

void ShiftStageObject(int PreviousPosition, int NewPosition);
TStageObject * Get_ StageObjectNumber(int IDentifier);
TStageObject * Get_ LastStageObject(void);
int Get_NumberOfStageObjectinThisStage(void);

Appendix - the C + + Code of Visual Assistant

1

1
1

1
1
1
1
1
1

1
1
1
1
1
1
1

1

1
1

- - 7

TStageObject * Get_SeletedObjectByTheMouse(void) { return SeletedObjectByTheMouse; }
void Set_SeletedObjectByTheMouse(TStageObject * StageObject) { SeletedObjectByTheMouse

StageObject; }

TColor Get_ StageColour(void) { return StageColour; }
void Set_StageColour(TColor Argument) { StageColour = Argument; }

TColor Get_ FloorColour(void) { return FloorColour; }
void Set_FloorColour(TColor Argument) { FloorColour = Argument; }

private : TList * ListOfStageObjectinThisStage;
TStageObject * SeletedObjectByTheMouse; Il Used by the three event on the Stage

Down, MouseMove, MouseUp

} ;

TColor FloorColour; Il TColor = Signed Integer on 4 bytes ...
TColor StageColour;

TStage::TStage() Il Default Constructor
{ ListOfStageObjectinThisStage = new TList;

SeletedObjectByTheMouse = NULL;

TStage::-TStage() Il Destructor
{ ListOfStageObjectinThisStage->Clear();

Il I don"t know if clear() do the delete or not !?!

delete ListOfStageObjectinThisStage;

TStage::TStage(const TStage & StageToCopy) Il Copy Constructor
{ int Sweeper;

}

TStageObject * ObjectToCopy;

Il Copy all StageObjects
for (Sweeper = 0; Sweeper < StageToCopy.Get_NumberOfStageObjectinThisStage(); Sweeper++)

{ ObjectToCopy = StageToCopy.Get_StageObjectNumber(Sweeper);

}

Il create a new StageObject "CopiedObject" by copying "ObjectToCopy"
TStageObject * CopiedObject(ObjectToCopy);
ListOfStageObjectinThisStage->Add((void *) CopiedObject);

SeletedObjectByTheMouse = StageToCopy.SeletedObjectByTheMouse;
FloorColour StageToCopy.FloorColour;
StageColour = StageToCopy.StageColour;

TStageObject * TStage::Add_NewStageObject(void)
{ TStageObject * NewStageObject;

NewStageObject = new TStageObject;

Il The index begin at 0 111
ListOfStageObjectinThisStage->Add((void *) NewStageObject);
Il Put the New as Current : copy the pointer, not the StageObject
SeletedObjectByTheMouse = NewStageObject;

return NewStageObject;

TStageObject * TStage::Duplicate_ StageObject(TStageObject * ObjectToCopy)
{ Il Copy Constructor used

TStageObject * NewStageObject;
NewSta eob'ect = new TSta eOb'ect * Ob'ectToCo

Appendix - the C + + Code of Visual Assistant

Meuse-

}

Il The index begin at O !! !

ListOfStageObjectinThisStage->Add((void *) NewStageObject);

Il Put the New as Current : copy the pointer, not the StageObject
SeletedObjectByTheMouse NewStageObject;

return NewStageObject;

void TStage::Delete_StageObjectNumber(int IDentifier)
{ TStageObject * StageObjectToDelete, * StageObjectAtTheSweeper;

int Sweeper;

Il Delete the specified StageObject and change the Count and
Il IDentifier of the other StageObjects
StageObjectToDelete = Get_ StageObjectNumber(IDentifier);
delete StageObjectToDelete;
Il Delete the pointer in the list and the list change all IDentifier after
Il the DeletedObject : 0 1 2 3 4 5 6 count 7
II Delete : 0 1 x 3 4 5 6 count 6
Il After : 0 1 2 3 4 5 count 6
ListOfStageObjectinThisStage->Delete(IDentifier);
Il Change all IDentifier property of the StageObject after the DeletedObject
Il because the TList have changed the IDentifier property in TList
for (Sweeper = IDentifier; Sweeper < Get_ NumberOfStageObjectinThisStage(); Sweeper++)

{ StageObjectAtTheSweeper = Get_ StageObjectNumber(Sweeper);
Il TStage is A FRIEND CLASS !!!!

StageObjectAtTheSweeper->Set_IDentifier(Sweeper);

}

1
1
1
1
1
1

1
1
1
1

voi d TStage::Delete_StageObjectNumberinTheList(int IDentifier) Il Put an Object out of the List and 1
NOT delete it

{ Il Delete the pointer in the list and the list change all IDentifier after of the other objects

}

Il the DeletedObject : 0 1 2 3 4 5 6 count 7

Il Delete : 0 1 X 3 4 5 6 count 6

Il After : 0 1 2 3 4 5 count 6
ListOfStageObjectinThisStage->Delete(IDentifier);

Il Change all IDentifier property of the StageObject after the DeletedObject
Il because the TList have changed the IDentifier property in TList
UpgradeTheIDentifierOfAllObjectSince(IDentifier);

void TStage::Insertion(int Position, TStageObject * StageObjectToinsert)
{ if (Position== Get_ NumberOfStageObjectinThisStage())

{ ListOfStageObjectinThisStage->Add((void *) StageObjectToinsert);
StageObjectToinsert->Set_ IDentifier(Get_NumberOfStageObjectinThisStage() - 1); Il This class

is a Friend

}
else

{ ListOfStageObjectinThisStage->Insert(Position, (void *) StageObjectToinsert);
StageObjectToinsert->Set_ IDentifier(Position); Il This class is a Friend

}

}

Il Change all IDentifier property of the StageObject after the InsertedObject
Il because the TList have changed the IDentifier property in TList
UpgradeTheIDentifierOfAllObjectSince(Position + l);

oid TSta e::U radeTheIDentifierOfAllob ·ectSince int Sinceob ·ect

Appendix - the C + + Code of Visual Assistant

1
1
1
1
1
1
1
1
1

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

{ int Sweeper;
TStageObject * StageObjectAtTheSweeper;

// Change all IDentifier property of the Stageobject after the Deleted, Inserted, •.. , Object
// because the TList have changed the IDentifier property in TList
for (Sweeper = SinceObject; Sweeper < Get_ NumberOfStageObjectinThisStage(); Sweeper++)

{ StageObjectAtTheSweeper = Get_StageObjectNumber(Sweeper);
// TStage is A FRIEND CLASS ! !!!

StageObjectAtTheSweeper->IDentifier = Sweeper;

}

}

void TStage::ReleaseTextOfTheStageForSaving(void)
{ // I use an object " memo" to stock the text that should be saved.

// Why? Because it is comfortable to manipulate lines of strings

}

// with this type of object.
// Besides, this object has its visible" property" to false.

int Sweeper;
TStageObject * StageObjectAtCurrentSweeper;
char AnString(l024];
char IntegerToChar[lSJ;

WinType->TextStageSaving->Lines->SetText(" "); // all the memo is Empty
AnString[0J = ' \0'; // The string is now empty

// Flag for the Beginning of the Stage
// the first line of the TextforSaving is reserved
// for the properties of the Stage
Streat (AnString, " (Stage J ") ;

Streat (AnString, " {FloorCol our} ");
itoa(FloorColour, IntegerToChar, 10);
Streat(AnString, IntegerToChar);

Streat(AnString, " {StageColour} ");
itoa(StageColour, IntegerToChar, 10);
Streat(AnString, IntegerToChar);

WinType->TextStageSaving->Lines->SetText(AnString);

for (Sweeper = 0; Sweeper < Get_NumberOfStageObjectinThisStage(); Sweeper++)
{ // Take the StageObject at the Current Sweeper

StageObjectAtCurrentSweeper = Get_ StageObjectNumber(Sweeper);
StageObjectAtCurrentSweeper->ReleaseTextOfTheStageObjectForSaving();
// After the ReleaseText ... function, the property Text of

}

/ / the meme WinType->TextStageObjectSaving contain the Text fo the current StageObject

// Add the New ReleaseText to the end of the text of the memo
WinType->TextStageSaving->Lines->Append(WinType->TextStageObjectSaving->Lines->GetText());

/*// THIS FUNCTION DOESN ' T RUN : YOU HAVE NEED OF TO CHANGE ALSO THE IDENTIFIER
void TStage::ShiftStageObject(int PreviousPosition, int NewPosition)
{ // Changes the position of two items in the list of StageObjects

ListOfStageObjectinThisStage->Exchange(PreviousPosition, NewPosition);
} * /

TSta eOb 'ect * TSta e::Get Sta eOb ' ectNumber int IDentifier

Appendix - the C + + Code of Visual Assistant

{ Il Items from O to [nurnber of StageObjects - l]

}

if (IDentifier < Get_ NurnberOfStageObjectinThisStage()
return (TStageObject *) ListOfStageObjectinThisStage->Items[IDentifier];

else
return NULL;

TStageObject * TStage::Get_LastStageObject(void)
{ int Nurnber;

}

Nurnber = Get_ NurnberOfStageObjectinThisStage();

Il You have at the minimum one object 1

if (Nurnber > 0)
return (TStageObject *) ListOfStageObjectinThisStage->Items(Nurnber - l];

else
return NULL;

int TStage::Get_ NurnberOfStageObjectinThisStage(void)
{ return ListOfStageObjectinThisStage->Count;

}

11---
Il Class for the World
class TWorld
{ public : TWorld();

-TWorld();

int Add_ NewStage(void); Il return the IDentifier of the New Slide

void Delete_ Stage(int IDentifier);

int Get_NurnberOfStageOnThisWorld(void);
TStage * Get_ StageNurnber(int IDentifier);
TStage * Get_ CurrentStage(void) { return CurrentStage; }

void Set_CurrentStage(TStage * Stage) { CurrentStage = Stage; }
Il Copy just the 31 first caracters !!!

void Set_WorldNarne(char * Narne) { strncpy(WorldNarne, Narne, 31); }
Il Copy just the 31 first caracters !!!

void Set_Author(char * Narne) { strncpy(Author, Narne, 31); }
void Set_DateCreation(TMyDate Daturn) { DateCreation.Year

DateCreation.Month

Daturn.Year;
Daturn.Month;

Datecreation.Day Daturn.Day; }
void Set_DateCreationYear(int Year) { DateCreation.Year = Year; }
void Set_DateCreationMonth(int Month) { DateCreation.Month = Month; }
void Set_DateCreationDay(int Day) { DateCreation.Day = Day; }

void ReleaseTextOfTheWorldForSaving(void); Il Create the Text of the world for saving in
the memo TexwtorldSaving

} ;

private : TList * ListOfStageOnThisWorld;
TStage * CurrentStage;
char WorldNarne[35];
char Author[35];
TMyDate DateCreation;

TWorld: :TWorld()
ListOfSta eOnThisWorld new TList;

Appendix - the C + + Code of Visual Assistant

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

CurrentStage = NULL;

// IT is possible for to create a constructor with parameters
// if you use the new keyword for an dynamical use???
strcpy(Author,"");
strcpy(WorldName,"");
DateCreation.Day = 0;Datecreation.Month

TWorld::-TWorld()
{ ListOfStageOnThisWorld->Clear();

delete ListOfStageOnThisWorld;

int TWorld::Add_NewStage(void)
{ TStage * NewStage;

NewStage = new TStage;

0;DateCreation.Year O;

// The New Stage is now the Current
CurrentStage = NewStage;

copy the pointer, not the stage 1

// The index begin at 0 !!!

return ListOfStageOnThisWorld->Add((void *) NewStage);

void TWorld::Delete_Stage(int IDentifier)
{ // Delete the specified StageObject and change the Count and

// IDentificater of the other StageObjects
ListOfStageOnThisWorld->Delete(IDentifier);

}

int TWorld::Get_NwnberOfStageOnThisWorld(void)

{ return ListOfStageOnThisWorld->Count;

}

TStage * TWorld::Get_StageNumber(int IDentifier)
{ // Items frorn 0 to (number of Stages - l]

if (IDentifier < Get_NumberOfStageOnThisWorld()
return (TStage *) ListOfStageOnThisWorld->Iterns(IDentifier);

else
return NULL;

void PutCurrentDate(TMyDate * DateCreation)
{ tirne t Now = tirne(0); // Get current Date and Tirne

struct trn * DateAndTirne = localtirne(&Now); // Convertion

}

DateCreation->Month
Datecreation->Day
DateCreation->Year

DateAndTirne->trn_mon + 1;
DateAndTirne->trn_rnday;
1900 + DateAndTime->trn_year;

void TWorld::ReleaseTextOfTheWorldForSaving(void)
{ TStage * StageAtTheCurrentSweeper;

int Sweeper;
char AnString[l024J;
char IntegerToChar[l0J;

WinType->TextStageSaving->Lines->SetText(""); // all the rnerno is Ernpty
AnString(0J = '\0'; // The string is now ernpty

// Fla for the CO th of Visual Assistant

Appendix - the C+ + Code ofVisual Assistant

Streat(AnString, "[Visual Assistant 1.0J{Macversion}eolin BEAR­
DON{PeVersion}Vincent_FONTAINE@yahoo.com");

WinType->TextWorldSaving->Lines->SetText(AnString);

AnString[0J = '\0'; // The string is now empty
// Flag for the Beginning of the World
Streat(AnString, "[World]") ;
Streat(AnString, "{WorldName}");
Streat(AnString, WorldName);
Streat(AnString, "{Author}");
Streat(AnString, Author);

Streat(AnString, " {Dateereation}Month:");
// if there are no saving before, I put the current date
if ((Dateereation.Month == 0) && (Dateereation.Day == 0) && (Dateereation.Year

Date(&Dateereation);

itoa(Dateereation.Month, IntegerToehar, 10);
Streat(AnString, IntegerToehar);
Streat(AnString, "/Day:");
itoa(Dateereation.Day, IntegerToehar, 10);
Streat(AnString, IntegerToehar);
Streat (AnString, " /Year:");
itoa(Dateereation.Year, IntegerToehar, 10);
Streat(AnString, IntegerToehar);

// Put the properties of the World in the first line
WinType->TextWorldSaving->Lines->Append(AnString);

// Items from 0 to (number of Stages - l]
for (Sweeper = 0; Sweeper < Get_NumberOfStageOnThisWorld(); Sweeper++)

{ StageAtTheeurrentSweeper = Get_ StageNumber(Sweeper);

0)) Puteurrent-

// Make the Text for the Stage at the current Sweeper in the memo TextStageSaving
StageAtTheeurrentSweeper->ReleaseTextOfTheStageForSaving();

}

}

// eall AddStrings to add the strings from another TStrings object to the list
WinType->TextWorldSaving->Lines->Append(WinType->TextStagesaving->Lines->GetText());

// Put the EOF at the beginning of a new line
Il PS : When you append nothing, you add an hide '\n' ...
WinType->TextWorldSaving->Lines->Append("");

#endif

Appendix - the C + + Code of Visual Assistant

1
1
11
1 1

1
1
I·
1
1
1
1
1
1
1
1
1
1
t
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

/• Scanner for the definition of the Visual Assistant Saving Files•/

/* Composition of this file •!
!• Definition Section */

/* %% */

!• Rules Section = Pattern Action */

!• %% •!
!• User Subroutines •!
!• •!

/• The Parser copy the " %{ %} " completely to the output C file•/
%{ #include <stdio.h>

#include <s tring.h>
#include "lexer.h";

#define HEADER 70575
#define PROPERTY 28178
#define ENDOFFILE 66668

/* if you want to debug the file, define DEBUGGING_LEXER and the FILE*/
#define DEBUGGING_LEXER

FILE* FICHIER;

!• You have also the debug of FLEX. For to use it, define FLEX_DEBUG •/
/* #define FLEX_DEBUG */

/• void yyerror(char *s); •!
char endroit[l00];

/• Definition of all regular start states */
%x VA_STATE VA_STATE_ l VA_ STATE_2 VA_ STATE_ 3 EXITVA_STATE

%x WORLD_STATE WORLDSTRING_ STATE WORLDDATE_STATE WORLDDATEVALUE_STATE EXITWORLD_ STATE
%x STAGE_STATE STAGEVALUE_STATE EXITSTAGE_STATE

%x STAGEOBJECT_STATE STAGEOBJECT_ INTEGER_VALUE_ STATE STAGEOBJECT_3D_COORDONATE_ VALUE_STATE
%x STAGEOBJECT_BOOLEAN_VALUE_STATE STAGEOBJECT_TRECT_COORDONATE_VALUE_STATE

%x ENDOFLEXER_ STATE

%%

/* ** */

/* ****************** Visual Assistant Line ******************************* */
/* ** */

/* BEGIN is the "INITIAL" State */
/• • denotes the pattern must start at the beginning of a line */
/• Doesn't run with the STATES?!? •/

· " [Visual Assistant 1. 0]" BEGIN VA_STATE;

<VA_ STATE>"{Macversion}"

<VA_ STATE_ l>"Colin BEARDON"

strcpy(endroit, " Header: [VA] ");

#if defined(DEBUGGING_LEXER)
fprintf(FICHIER,"#HEADER: %s#\n" ,endroit);

#endif

BEGIN VA_STATE_l;

strcpy(endroit, "Property:{MacVersion}");

#if defined(DEBUGGING_LEXER)
fprintf(FICHIER,"#PROPERTY : %s#\n",endroit);

#endif

BEGIN VA_STATE_2;

strcpy(endroit, "MacversionColin");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n",endroit);
#endif

Appendix - the lexer code

7

- ___ __J

<VA_ STATE_ 2>"{PCVersion} " BEGIN VA_ STATE_ 3;

strcpy(endroit, "Property:{PCVersion}");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n",endroit);
#endif

<VA_ STATE_ 3>"Vincent_ F0NTAINE@yahoo.com" BEGIN EXITVA_ STATE;
strcpy(endroit, "PCVersionVincent");
#if defined(DEBUGGING_ LEXER)

fprintf(FICHIER, "#PROPERTY : %s#\n",endroit);
#endif

/* *** */
/* ****************************** World Line ****** ************************* */
/* *** */

<EXITVA_ STATE> " [World] { "

<WORLD_ STATE> "WorldName} "

<WORLD_ STATE>"Author}"

<WORLD_ STATE> " DateCreation} "

BEGIN WORLD_ STATE;
strcpy(endroit , "Header:[World]");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER, "#HEADER : %s#\n",endroit);
#endif

BEGIN WORLDSTRING_ STATE;
strcpy(endroit, "Property: {WorldName}");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n" ,endroit);
#endif

BEGIN WORLDSTRING_ STATE;

strcpy(endroit, "Property: {Author}");

#if defined(DEBUGGING_ LEXER)
fprintf(FICHIER,"#PROPERTY

#endif

BEGIN WORLDDATE_STATE;

%s#\n" ,endroit) ;

strcpy(endroit, "Property:{DateCreation}");

#if defined(DEBUGGING_ LEXER)
fprintf(FICHIER, "#PROPERTY : %s #\ n " ,endroit);

#endif

!• you needn't to place { between "" because you are in the [] */
/• In this context (between []), " denotes the negation 111 •/

<WORLDSTRING_STATE> [• {\n] *" { " BEGIN WORLD_ STATE;

<WORLDSTRING_ STATE>[" {\n]*\n

/* You may change the order
/ * MM/JJ/YY or JJ/MM/YY or

<WORLDDATE_ STATE>"Month: "

yytext[yyleng - l] = '\0'; /• Put out the " { " • !
/• yyleng = strlen(yytext) •/

#if defined(DEBUGGING_ LEXER)
fprintf(FICHIER, "#WORLDSTRING { : %s#\n " ,yytext);

#endif

BEGIN STAGE_ STATE;
yytext[yyleng - l] - '\0 ' ; /• Put out the " { " •/

/• yyleng = strlen(yytext) •/

#if defined(DEBUGGING_LEXER)
fprintf(FICHIER,"#WORLDSTRING \\n : %s#\n",yytext);

#endif

of the properties for the date•!

*/
BEGIN WORLDDATEVALUE_ STATE; /* Go for read the integer for the Month •/

strcpy(endroit, "Property:{DateCreation}:Month ");
#if defined(DEBUGGING_LEXER)

f rintf(FICHIER , "#PROPERTY : %s#\n",endroit);

Appendix - the lexer code

1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
I·
1
1
1
1
1
1
1
1
1
1
1
1

1

<WORLDDATE_ STATE> "Day:"

<WORLDDATE_STATE>"Year:"

<WORLDDATEVALUE_STATE>[0-9]*\n

<WORLDDATEVALUE_STATE>[0-9]* " {"

<WORLDDATEVALUE_STATE>[0-9]*"/"

#endif

BEGIN WORLDDATEVALUE_STATE; /* Go for read the integer for the Day*/
strcpy(endroit, "Property:{DateCreation}:Day");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n " ,endroit);
#endif

BEGIN WORLDDATEVALUE_STATE; /• Go for read the integer for the Year */

strcpy(endroit, "Property:{DateCreation}:Year");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n",endroit);
#endif

BEGIN EXITWORLD_STATE; /* Exit the World property */
yytext[yyleng - l] = '\0' ; /• Put out the " \n " */
#if defined(DEBUGGING_LEXER)

fprintf (FICHIER, "#WORLDDATE \\n : %s#\n", yytext);
#endif

BEGIN WORLD_STATE; /* Return ta World property */
yytext[yyleng - l] = ' \0 ' ; /* Put out the"{" */
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#WORLDDATE { : %s#\n",yytext);
#endif

BEGIN WORLDDATE_ STATE;
yytext[yyleng - l] = '\0'; /•

#if defined(DEBUGGING_LEXER)
fprintf(FICHIER, "#WORLDDATE

#endif

/• Return ta Date Property •/
Put out the "/" •/

/ : %s#\n " ,yytext);

/* *** */

/*****************************Stage Line ******************************* •/

/* *** */

<EX ITWORLD_ STATE>"[Stage]{ "

<STAGE_ STATE>"FloorColour} "

<STAGE_STATE>"StageColour} "

BEGIN STAGE_STATE;
strcpy(endroit , "Header: [Stage]");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER ,"#HEADER : %s#\n " ,endroit);
#endif

BEGIN STAGEVALUE_ STATE ;
strcpy(endroit, "Property:{FloorColour}");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER, "#PROPERTY : %s#\n" ,endroit);
#endif

BEGIN STAGEVALUE_STATE;
strcpy (endroit, "Property:{StageColour} ");

#i f defined(DEBUGGING_LEXER)

fprintf(FICHIER, "#PROPERTY : %s#\n" ,endroit);

#endif

/* "- "? denotes zero or one 11
-

11 •!
!• I think it 's exist

<STAGEVALUE_STATE>"-"?[0-9]*\n
negative colours Il! •/

BEGIN EXITSTAGE_ STATE; /* Exit the Stage property */

yytext[yyleng - l] = '\0'; /• Put out the "\n" •/
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#STAGESTRING \\n : %s#\n ",yytext);
#endif

Appendix - the lexer code

<STAGEVALUE_STATE> "-"?(0-9]* " {" { BEGIN STAGE_STATE; /* Return to the Stage Property */

yytext(yyleng - l] = '\0 ' ; /* Put out the " { " */
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#STAGESTRING { : %s#\n " ,yytext);
#endif

/* *** */
/* ************************* StageObject Line **************************** */

/* ************* ** */

<EXITSTAGE_STATE>"[Stage]{ "

<EXITSTAGE_STATE> " [StageObject]{ "

BEGIN STAGE_STATE; /* a second stage after an other one */

strcpy(endroit, "Header:(Stage]");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n",endroit) ;
#endif

BEGIN STAGEOBJECT_STATE;
strcpy(endroit, "Header:[StageObject] ");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n " ,endroit);
#endif

/* It's obligatory in a file for to have (That's the minimum)
- The (Visual Assistant 1.0] header

- the [World] header
- One [Stage] header

Dus, it's just possible for to have the EOF after to have

the tree previous headers. Into the bargain, the EOF it's
just possible at the beginning of a new line! */

<EXITSTAGE_STATE><<EOF>> BEGIN ENDOFLEXER_ STATE;
strcpy(endroit, "End Of File ");

<ENDOFLEXER_STATE>.*\n*

<STAGEOBJECT_STATE>" TimeStart}"

<STAGEOBJECT_STATE>"TimeStop}"

#if defined(DEBUGGING_ LEXER)

fprintf(FICHIER,"#%s#\n",endroit);

#endif

strcpy(endroit, "IT'S IMPOSSIBLE ••. AFTER EOF");

if defined(DEBUGGING_ LEXER)
fprintf(FICHIER,"#%s#\n " ,endroit);

#endif

BEGIN STAGEOBJECT_TRECT_COORDONATE_ VALUE_ STATE;

strcpy(endroit, "Property:{TimeStart} ");

#if defined(DEBUGGING_ LEXER)
fprintf(FICHIER , "#PROPERTY : %s#\n",endroit);

#endif

BEGIN STAGEOBJECT_ TRECT_COOROONATE_VALUE_ STATE;
strcpy(endroit, "Property: {TimeStop}");

#if defined(DEBUGGING_LEXER)
fprintf(FICHIER , "#PROPERTY : %s#\n",endroit);

#endif

<STAGEOBJECT_ STATE>"StorageOriginalBMP}"
BEGIN STAGEOBJECT_TRECT_COORDONATE_VALUE_ STATE ;

strcpy(endroit, "Property:{StorageOriginalBMP} ");

#if defined(DEBUGGING_LEXER)
fprintf(FICHIER , "#PROPERTY : %s#\n ",endroit);

#endif

<STAGEOBJECT_ STATE>"StoragePatternedBMP} "
BEGIN STAGEOBJECT_TRECT_COORDONATE_ VALUE_ STATE;
strcpy(endroit, "Property: {StoragePatternedBMP}");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER, "#PROPERTY : %s#\n",endroit);
#endif

Appendix - the lexer code

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

<STAGEOBJECT_ STATE>"StorageAngledBMP} "

<STAGEOBJECT_STATE>"Patterned}"

<STAGEOBJECT_STATE>"Center_3D}"

<STAGEOBJECT_ STATE>"Size_3D } "

<STAGEOBJECT_STATE>"OffSetHoriz}"

<STAGEOBJECT_STATE>"OffSetVert}"

<STAGEOBJECT_ STATE>" BillBoard}"

BEGI N STAGEOBJECT_TRECT_ COORDONATE_VALUE_STATE;

strcpy(endroit, "Property:{StorageAngledBMP} ");
#if defined(DEBUGGING_LEXER)

fpr i ntf(FICHIER,"#PROPERTY : %s#\n",endroit);
#endif

BEGIN STAGEOBJECT_BOOLEAN_VALUE_STATE;
strcpy(endroit , "Property: {Patterned}");
#if defined(DEBUGG+NG_LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n",endroit);
#endif

BEGIN STAGEOBJECT_3D_COORDONATE_VALUE_STATE;

strcpy(endroit, "Property: {Center_3D}");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER, "#PROPERTY : %s#\n",endroi t);
#endif

BEGIN STAGEOBJECT_3 D_COORDONATE_VALUE_STATE;

strcpy(endroit, "Property: {Size_ 3D}");
#if defined(DEBUGGING_ LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n",endroi t);
#endif

BEGIN STAGEOBJECT_INTEGER_VALUE_STATE;

strcpy(endroit, "Property:{OffSetHoriz}");

#if defined(DEBUGGING_LEXER)
fprintf(FICHIER,"#PROPERTY : %s#\n",endroit);

#endif

BEGIN STAGEOBJECT_INTEGER_VALUE_ STATE;

strcpy (endroit, "Property: {OffSetVert} ");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER, "#PROPERTY : %s#\n",endroit);
#endif

BEGIN STAGEOBJECT_ BOOLEAN_ VALUE_ STATE;

strcpy(endroit, "Property:{BillBoard} ") ;
#if defined(DEBUGGING_ LEXER)

fprintf(FICHIER, "#PROPERTY : %s#\n",endroit);
#endif

<STAGEOBJECT_STATE> "PreviousPositionFront} "
BEGIN STAGEOBJECT_ TRECT_ COORDONATE_ VALUE_ STATE;
strcpy(endroit, "Property:{PreviousPositionFront}");
#if defined(DEBUGGING_ LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n",endroit);
#endif

<STAGEOBJECT_STATE>"PreviousPositionTop}"

BEGIN STAGEOBJECT_ TRECT_ COORDONATE_VALUE_ STATE;

strcpy(endroit, "Property:{PreviousPositionTop} ");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER, "#PROPERTY : %s#\n",endroit);
#endif

<STAGEOBJECT_ STATE>" NewPositionFront}"
BEGIN STAGEOBJECT_ TRECT_COORDONATE_ VALUE_ STATE;

strcpy(endroit , "Property:{NewPositionFront}");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n",endroit) ;

Appendix - the lexer code

<STAGEOBJECT_STATE>"NewPositionTop}"

#endif

BEGIN STAGEOBJECT_ TRECT_ COORDONATE_VALUE_STATE;
strcpy(endroit, "Property:{NewPositionTop}");
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n",endroit);
#endif

<STAGEOBJECT_STATE> "MergedRectangleFront}"
BEGIN STAGEOBJECT_ TRECT COORDONATE VALUE STATE;
strcpy (endroit, "Property: {MergedRectangleFront} ") ;
#if defined(DEBUGGING_ LEXER)

fprintf(FICHIER, "#PROPERTY : %s#\n",endroit);
#endif

<STAGEOBJECT_STATE>"MergedRectangleTop}"
BEGIN STAGEOBJECT_TRECT_COORDONATE_ VALUE_STATE;
strcpy(endroit, "Property:{MergedRectangleTop} ");
#if defined(DEBUGGING_ LEXER)

fprintf(FICHIER,"#PROPERTY : %s#\n",endroit);
#endif

/* The open { must to be on the same line that the rule to match !!! */
<STAGEOBJECT_BOOLEAN_VALUE_STATE>[Ff) [Aa] [Ll] [Ss) [Ee) " {" 1 [Tt] [Rr] [Uu) [Ee) " { " {

BEGIN STAGEOBJECT_ STATE; /* Return to the StageObject Property */
yytext[yyleng - l] = '\0 '; /* Put out the"{ " */
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER, "#STAGEOBJECT_ BOOLEAN
#endif

: %s#\n",yytext);

<STAGEOBJECT_BOOLEAN_ VALUE_STATE>[Ff][Aa)[Ll][Ss)[Ee] \ n l [Tt][Rr)[Uu)[Ee]\n
BEGIN EXITSTAGE_ STATE; /* Return to the StageObject Property */

yytext[yyleng - l] = '\0' ; /* Put out the " {" */
#if defined(DEBUGGING_ LEXER)

fprintf(FICHIER,"#STAGEOBJECT_BOOLEAN \\n : %s#\n",yytext);
#endif

<STAGEOBJECT_INTEGER_VALUE_STATE>"-"?[0-9]*"{"
BEGIN STAGEOBJECT_STATE; /* Return to the StageObject Property */
yytext[yyleng - l] = ' \0'; /* Put out the " {" */
#if def ined(DEBUGGING_LEXER)

fprintf(FICHIER,"#STAGEOBJECT_INTEGER : %s#\n",yytext);
#endif

<STAGEOBJECT_INTEGER_VALUE_ STATE>"- "? [0-9]*\n
BEGIN EXITSTAGE_ STATE; /* Return to the StageObject Property */
yytext[yyleng - l] = ' \ 0'; /• Put out the "{" •/
#if defined(DEBUGGING_ LEXER)

fprintf(FICHIER,"#STAGEOBJECT_ INTEGER \\n : %s#\n",yytext);
#endif

<STAGEOBJECT_3D_COORDONATE_VALUE_ STATE> " - "? [0-9J*"; "" - "? [0-9] *" ; "" - " ?[0 -9J * " { "
BEGIN STAGEOBJECT_ STATE; /* Return to the StageObject Property */
yytext[yyleng - l] = ' \0'; /* Put out the " { " •/
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#STAGEOBJECT_COORDONATE_3D %s#\n",yytext);
#endif

<STAGEOBJECT_3D_COORDONATE_VALUE_STATE>"-"?[0-9]*";""-"? [0-9)*";" " - " ?[0-9J*\n
BEGIN EXITSTAGE_ STATE; / * Return to the StageObject
yytext[yyleng - l] = '\0' ; /* Put out the"{"
#if defined(DEBUGGING LEXER)

Appendix - the lexer code

Property •!
*/

1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1

1•
1
1
1
1
1
1
1
1
1
1
1
1
1

fprintf(FICHIER,"#STAGEOBJECT_COORDONATE_3 D \\n

#endif

%s#\n " , yytext) ;

<STAGEOBJECT_TRECT_COORDONATE_VALUE_STATE>" -"?[0-9]* " ; "" - " ?[0-9]* " ; ""-"? [0-9]* " ; "" - "? [0-9]*"{ "
BEGIN STAGEOBJECT_ STATE; /* Return te the StageObject Property */
yytext[yyleng - l] = '\0 ' ; /* Put out the "{" •!
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#STAGEOBJECT_COORDONATE_ TRECT %s#\ n",yytext);

#endif

<STAGEOBJECT_TRECT_ COORDONATE_VALUE_ STATE>"-"?[0-9]*"; " "-"?[0-9]* " ; "" - "? [0-9]* " ;" "-"?[0-9]*\n
BEGIN EXITSTAGE_STATE; /• Return te the StageObject Property */
yytext[yyleng - l] = '\0 ' ; /* Put out the "{" •!
#if defined(DEBUGGING_LEXER)

fprintf(FICHIER,"#STAGEOBJECT_ COORDONATE_ TRECT \\n : %s#\n",yytext);

#endif

int main(int NumberOfArguments, char **Arguments)

char ReturnMessage[l00];

}

int code;

!• I write all in an output file for te debug the lexer •!
#if defined(DEBUGGING_ LEXER)

if ((FICHIER = fopen("debug .txt", "w")) == NULL)
perror("\n Can't create \"debug.txt\'"'); /• C Function •/
return -4;

#endif

if (NurnberOfArgurnents == 2)

if ((yyin = fopen(Arguments[l], "r"))

{ strcpy(ReturnMessage, "\n");

strcat(ReturnMessage, Arguments[!]);

NULL)

strcat (ReturnMessage, " : Can ' t open specified Saving File (return -1)\n");

code= -1;

else

else

if (!yylex()) /• if (yylex() == 0) •/
strcpy(ReturnMessage,"\nSaving File OK (return l)\n");
code= l;

else
strcpy(ReturnMessage, "\nSaving File KO (return -2)\n");
code= -2;

strcpy(ReturnMessage, "\ nBad nurnber of arguments
code= -3;

put the name of the Saving File! (return -3)\n ");

if (code != l) perror(ReturnMessage); /• if you have an errer ! */

#if defined(DEBUGGING_ LEXER)

fprintf(FICHIER,ReturnMessage);

fclose(FICHIER);
#endif

return code; /• return the code for te see if you have an errer•!

Appendix - the lexer code

