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Highlights 

• 3D PIC-MC model was set up with a carefully chosen, self-contained plasma 

chemistry scheme involving 18 species and 150 reactions. 

• The spatial distributions of all species differ significantly. 

• Density of hydrocarbon ions reaching the substrate grows linearly with power in 

both simulations and experiments, with matching slopes and relative 

concentrations.   

• Even though electron dissociative collisions are less probable than simple 

ionizations, the radical species they produce accumulate due to their slower 

diffusion. 

• The model predictions can be extrapolated to the high power-densities used in lab 

or in production.  
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Abstract 

A mixed PVD/PECVD deposition process of DLC films with acetylene precursor and 

graphite magnetron target was simulated using a 3D Particle-in-Cell Monte-Carlo (PIC-MC) 

code. The simulation comprises of a carefully chosen, self-contained plasma chemistry 

scheme involving 18 species and 150 reactions, and a dynamic deposition model that includes 

ion subplantation and the creation of dangling bonds. Mass spectroscopic measurements of 

neutrals and ions have been performed at substrate position in order to validate the 

simulation’s predictions. Despite the difficulty in performing reliable mass spectrometry in 

reactive plasmas and the impossibility of running PIC-MC simulations with powers and time 

scales comparable to the experiment, we were able to correlate the simulated and 
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experimental densities with varying discharge powers and acetylene contents. We showed that 

the relative concentrations vary spatially within the chamber due to differences in species’ 

diffusion, energy or creation area (plasma or chamber). The power dependence of the 

hydrocarbon ion densities was linear with similar slopes and relative concentrations in 

experiments and simulations. This is an indication that our model could be extrapolated to 

relevant experimental conditions and give quantitative predictions on densities, fluxes and 

energies of principal species, which could be used as input for film growth simulations. It can 

also form the basis for simulation frameworks of deposition processes that involve the 

decomposition of C2H2 in low-pressure plasmas (below 1 Pa) with complex reactor 

geometries and electromagnetic fields. 

1. Introduction 

Numerical simulation helps to understand the underlying physical mechanisms involved in 

complex processes and may reduce the need for costly experimental approach of trial and 

error. This is why the digitalization in the industry calls for representation of each involved 

production process by its digital twin. Consequently, the development of numerical 

simulation tools for plasma deposition processes is an ongoing effort of many research 

groups. For cold plasma systems, the Particle-in-Cell Monte-Carlo (PIC-MC) method has 

been used to simulate various discharge types [1–7] with the general goal to first compute the 

density of neutrals and charged particles in the gas phase and second understand or predict the 

growth of specific coatings.  

Among the large variety of coatings, hydrogenated amorphous carbon (a-C:H), a soft form of 

diamond-like carbon (DLC), are popular amongst scientists and industrials for their 

advantageous properties, such as moderate hardness, low friction coefficient, chemical 

inertness and optical transparency, making them practical for biomedical, tribological and 
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protective applications [8–10]. Nowadays, the development of new deposition methods (like 

Filtered arc or Catalytic plasma deposition) or new techniques (e.g., High-power impulse 

magnetron sputtering or HiPIMS) facilitates the production of harder forms of carbon 

coatings, like tetrahedral amorphous carbon (ta-C), which show improved physical properties 

compared to softer carbon films [11]. However, the low-pressure plasma deposition in a 

magnetron reactor with a reactive hydrocarbon precursor such as acetylene remains a popular 

and flexible method to generate smooth and soft DLC films which relies on combining 

plasma-enhanced chemical vapor deposition (PECVD) and physical vapor deposition (PVD) 

[12–14]. It has the advantage to be suitable for industrial upscaling [14] and it is often used in 

combination with other processes to create more complex film structures like multilayers [8] 

or doped films [9]. Moreover, this process allows the deposition on more complex substrate 

shapes, by using various techniques like substrate motion, multiple sources, or bias 

application to produce more homogenous film [26]. These methods can produce a variety of 

carbon coatings since the film physical properties can be tuned by adjusting the operational 

parameters. For example, depending on the pressure films ranging from very smooth to 

micro-structured can be created [13]. An important challenge is to deposit, in a reproducible 

way, the same homogeneous coatings on different complex substrate geometries. Commonly 

faced problems include bad film adhesion to substrates that requires the deposition of 

interfacial layers [15], or high compressive stress and delamination, which can be reduced by 

adjusting the bias, temperature or film thickness [16–18]. Inhomogeneity on substrates with 

complex shapes is another common pitfall, and could be reduced via substrate holder motions 

or the application of variable bias [19]. The flux ratio between the background gas (usually 

argon) and the hydrocarbon precursor (most often C2H2 or CH4) can also have a big impact on 

the H and sp3 content of films, which are among the most significant parameters for coating 

properties [8,14,20]. As seen from these few examples, deposition processes are highly 
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tunable and can become increasingly complex due to the high number of factors impacting the 

deposited film properties. Moreover, experimental diagnostics give only partial information 

on particle dynamics and do not allow a clear understanding of these processes. 

Unfortunately, not many modelling studies exist on this particular a-C:H deposition method 

from magnetron sputter sources.  

There is an abundant literature on similar processes involving pure PECVD with acetylene in 

different types of reactors and for different applications but they often involve higher 

pressures. Mao et al. [21] presented a 1D fluid model of an RF discharge in acetylene, 

including more than 400 reactions and 78 species (containing up to 12 carbon atoms), based 

on a previous model developed by De Bleecker et al. [22]. Like in most plasma fluid models, 

they used a two-term Boltzmann equation solver to obtain the electron energy distribution 

function (EEDF) and Chapman-Enskog theory for neutral transport. Their findings were 

successfully compared with the mass spectrometry measurements of Deschenaux et al. [23]. 

They confirmed, as in other studies [13,22], the prominence of C2nHx species plasmas due to 

the strength of acetylene triple bonds, and pointed out the role of anions in nanoparticle 

formation. Ariskin et al. [24] presented a hybrid model, which consists of a 1D fluid model 

with 146 chemical reactions and many species including 16 cations and 6 anions, of a 

capacitively coupled radio frequency discharge (CCRF). But instead of a two-term Boltzmann 

solver, they used a Particle-in-cell Monte-Carlo (PIC-MC) solver to obtain the electron energy 

distribution function (EEDF). They compared their results with a simpler approach that uses 

an approximated Maxwellian EEDF, and found a slight difference in densities and energies of 

charged species. They also showed that a relatively small amount of acetylene can have an 

important effect on the plasma behavior: the addition of only 5.8 % of acetylene to the 

background gas, composed mainly of argon, lowers the plasma density by a factor of 5, and 



 

9 
 
 

makes the mixture more electronegative. In another work, Mao et al. [25] used a hybrid model 

to simulate an inductively coupled plasma reactor for carbon nanotube or nanofiber synthesis 

from various feed gases, and found that with acetylene, higher decomposition rates and the 

formation of long neutral and ionic hydrocarbon chains occurred. In the work of Miyagawa et 

al. [26], a PIC-MC simulation of plasma immersion ion implantation (PIII) in nitrogen and 

acetylene was presented. In order to study the deposition precursors and their energies, 10 

hydrocarbon species were considered (C2H2+, C2H22+, C2H+, CH+, H+, C2H2, C2H, CH2, CH, 

H). Apart from elastic collisions, the authors considered only direct ionization, dissociative 

ionization and double-ionization of acetylene and nitrogen. They found that a positive pulse 

followed by a negative one was the most efficient bias mode for making plasma conformal to 

their substrate. C2H2+ and H were the prominent species, but, as they pointed out, this model 

might not be sufficient to identify deposition precursors, since no chemical reactions nor 

sticking coefficients were included. Gordillo-Vázquez et al. [27] developed a space-time 

averaged kinetic model to study the influence of the pressure and power on the deposition of 

DLC in an RF reactor within a mixture of Ar/H2 and 1 % of C2H2. They found that for high 

content of argon (95 %), the concentration in C2H, C2 and C2* grows as the pressure 

decreases. They also found that the electron density is not significantly influenced by the 

power, but increases with pressure.  

Experimental characterization of the plasma chemistry of low-pressure acetylene plasmas is a 

complex task, due to the great number of possible compounds and high deposition rates. No 

in-situ experimental studies of the magnetron PECVD in Ar/C2H2 itself exist (to authors’ best 

knowledge). However, there are some studies of this process from the perspective of sample 

characterization [13,14], and some were conducted on other acetylene-containing plasma 

discharges. For example, Baby et al. [28] did an experimental study on the chemistry of 
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Ar/C2H2 mixtures in capacitively and inductively coupled RF plasma (CCP and ICP) using 

mass spectrometric measurements. It was found that the injection of acetylene had an 

important impact on the discharge voltage, electron temperature and electron density. The 

dominant ion species for CCP was C2H2+ followed by Ar+ and C4H3+, whereas for ICP the 

argon ions dominated. This observation stems from the higher density and greater portion of 

medium energy (3-11 eV) electrons in ICP plasma discharges, which are below the acetylene 

ionization threshold at 11.4 eV, but can still ionize argon through the Penning ionization 

process. The main neutral species were H2, CH, C2, C2H, C2H2, C2H3, C2H4, C4, C4H, C4H2 

and C4H3. Similarly to Deschenaux et al. [23], Baby et al. did not observe the heavier species 

seen by De Bleecker et al. [22] and explained that charge transfer with the dominant argon 

species might lower the probability of chain polymerizations, hence diminishing the number 

of heavier hydrocarbons. Thiry et al. [14] noticed a substantial pressure-drop in an acetylene 

containing magnetron discharge, as did Baby et al. [28]. They attributed it to the dissociation 

of C2H2 and the deposition of generated radicals, as this pressure drop was proportional to the 

acetylene ratio. The ethynyl radical C2H has been commonly identified as being the most 

important DLC growth precursor [13,29,30] due to its abundance and high surface loss 

probability [31]. This radical is also highly reactive with the background C2H2. Benedikt [30] 

showed that in an expanding thermal plasma (ETP), the C2H density has a second order 

behavior with respect to the acetylene flow, since as when the C2H2 flow becomes important, 

C2H have a higher probability of reacting before reaching the substrate, and diacetylene 

species (e.g., C4H2, C4H and C4) become dominant. The author also proposed a quasi-1D 

chemistry model to demonstrate the role of other radicals in the deposition of a-C:H, like C3 

and C3H, which are said to originate from C2H2 collisions with C and CH radicals and have 

high sticking coefficients. 



 

11 
 
 

As demonstrated above, plasma processes with C2H2 involve a high number of species and 

reaction pathways. The aforementioned numerical studies are mainly based on computational 

fluid dynamics (CFD) and implement rather complex chemical reaction schemes; still, this 

allows to address only small or lower-dimensional simulation volumes. In case of magnetron 

sputtering at pressures below 1 Pa, CFD approaches are no longer valid [32]. Additionally, 

magnetron discharges are characteristically non-equilibrium processes; the magnetic plasma 

confinement and the non-thermal emission characteristics of sputtered species play a 

significant role in the deposition process, which cannot be studied simply with a fluid or 

hybrid model [32]. Nevertheless, studying a low-pressure process has certain advantages; it 

greatly simplifies the plasma chemistry and facilitates kinetic simulation approaches like PIC-

MC, which are generally more resource-demanding than CFD methods. 

The goal of the present study is therefore to simulate a low-pressure magnetron plasma 

discharge in C2H2 in order to predict the main neutral, radical and charged species 

concentrations. For this purpose, a 3D PIC-MC simulation model including a detailed plasma 

and surface description was set up. The simulations were validated with mass spectrometric 

measurements made in an experimental reactor in a similar configuration. This is a stepping 

stone in a longer effort of the authors to create a complete model of the smooth a-C:H 

deposition process. 

The first part of this article describes the experimental setup and the PIC-MC model. The 

experimental apparatus is described in section 2.1. The numerical parametrization is described 

in section 2.2. The plasma chemistry reactions are listed, and their relative importance 

discussed in section 2.3. Subsequently, the surface reactions for the substrate, chamber walls, 

and target are presented in section 2.4. Both experimental and numerical results are shown 

and discussed in section 3. Finally, main conclusions are summarized in section 4. 
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2. Method Description 

2.1 Experimental Setup 

For this work, a small-size research reactor already described in [7] was used. The plasma was 

generated from a DC-powered unbalanced circular magnetron operated in fixed-current mode 

on a 2 inches graphite target. The pressure was set to 5 mTorr (0.66 Pa) with injection of 

argon and acetylene behind the cathode. The total mass flow was kept constant during 

experiments with variable acetylene/argon ratio, keeping a constant total pressure by adjusting 

the effective pumping speed via a throttle valve. The maximum effective pumping speed with 

a fully open throttle valve was 70 l s-1 as in [7] and the total mass flow was 12, 16 or 20 sccm 

depending on the experiment. Mass spectrometry measurements of the gas phase were 

performed using a quadrupole PSM003 mass spectrometer supplied by Hidden Analytical, 

equipped with a turbo-molecular pump reaching a typical pressure of 10−8 mbar and 

connected to the deposition chamber by a 100 µm in diameter extraction orifice, facing the 

magnetron target at distance of 10 cm. Mass spectrometry measurements of neutrals were 

performed in residual gas analysis (RGA) mode and in Secondary-ion mass spectrometry  

(SIMS) mode for the ions. Neutral species entering the mass spectrometer were ionized inside 

the spectrometer with a 70 eV electron source to allow their detection. In SIMS mode, the 

detector was calibrated with a low-power pure argon plasma. In order to compare with PIC-

MC simulation which are limited in attainable power, measurements were performed with the 

plasma ignited at power ranging from as low as 5 W up to 200 W (or, in terms of power 

density, from 0.25 to 9.87 W cm-2), with the aim of estimating the measurements dependence 

on power. 

2.2 Simulation Parameters 
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A parallelized PIC-MC software running on a Tier-1 cluster and developed at Fraunhofer IST 

[37, 38] was used. In order to keep the computational time reasonable, the chamber geometry 

was simplified by considering only a magnetron surrounded by a small bounding box, with a 

grounded substrate located at 80 mm from the target (see Figure 6). To take advantage of the 

parallelization, the chamber was cut into several volume segments or “quads”, which are 

simulated on separate CPUs. To avoid limitations due to too many communications between 

computing nodes, simulations were kept on single nodes by dividing the simulation volume 

by 5 in the longitudinal direction and by 2 in both other directions, for a total of 20 quads, or 

21 CPUs on the 24 available per nodes. The magnetron, composed of several cylindrical 

magnets, a metallic yoke, and a graphite target surrounded by a grounded shield, was 

modelled based on the one used in the experiments. The magnetic field was computed with a 

boundary element method solver (BEM) from the shape, remanence (1.4 T) and relative 

permeability (1.05) of the magnets. For a reference, the magnetic field value on the cathode-

target surface at the point where the field is tangential to the surface was 0.10 T. The time step 

in a PIC-MC simulation should be sufficiently small to resolve all relevant physical 

mechanisms; in particular it should be smaller than the angular frequency of the electron 

oscillations around the ions. The time step was set to 5 ´ 10-11 s, as it corresponds to a tenth of 

the oscillation period for an electron density of 1 ´ 1015 m-3. Another numerical constraint 

concerns the cell size, which must remain below 3.4 times the Debye length to properly 

resolve electrical potential gradients [5,34] which is close to 1 mm in this case. The cell sizes 

were adapted throughout the chamber (from 0.5 mm to 1.8 mm wide) to keep a more precise 

sampling close to the target where the particles have high energies. Charged and neutral 

species are represented with super-particles, which usually comprise a larger number of real 

particles via a statistical weight factor. Well-chosen weight factors are crucial since a certain 

amount in the order of 10 particles per cell are needed to give statistically accurate results and 
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allow all collision pathways to happen, while too many particles render the simulation time 

and the memory consumption impractical. To ignite the plasma, an initial population of 

charged species (e, Ar+, and C2H2+) with a small (1 ´ 1013 m-3) and uniform density was 

added. A list of the relevant simulation parameters and statistical weight factors is given in 

Table I. 

2.3 Plasma Chemistry 

In all low-pressure plasma sources electrons carry most of the kinetic energy due to their 

higher mobility, so the most important reactions to consider are the ones between electrons 

and the background gases. Since acetylene is used in many applications (fusion, thin film 

deposition, combustion, astrophysics, bio-medicine), an extensive number of measured and 

calculated cross sections are available. According to our best knowledge, the latest and most 

complete review of cross-sections of electron-acetylene collisions is given by Song et al. [35]. 

Collisions for many other hydrocarbons are also available in the article of Janev and Reiter 

[36], but they lack precision at low energies as they are based on experiments and theoretical 

calculations for fusion research. For elastic collisions between molecules, the variable soft 

sphere model was used with parameters taken from [37], and for elastic collisions between 

electrons and acetylene, which exhibit a resonance around 2.5eV, the recommended cross 

sections from [35] were used.  

Electron impact ionizations (EII) and Dissociative Ionizations (DI) collisions are the main 

source of ions for molecular precursors like acetylene, as the electrons carry most of the 

energy and the pressure is too low for the stepwise ionization to occur. The DI reactions are 

approximatively 10 times less probable than the EII, but they are important to include because 

they are the main producer of new reactive species. Acetylene does not naturally react with 

the substrates at low temperature. Hence, to deposit thin a-C:H films, it first needs to be 
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dissociated in more reactive hydrocarbon species. Dissociative excitation (DE) and 

dissociative recombination (DR) are two other sources for reactive species. DE is similar to 

DI in terms of cross sections and products for acetylene, but it does not produce charged 

species. DR is an electron-ion recombination followed by a dissociation (e.g. 𝐶"𝐻"$ + 	𝑒 →

𝐶"𝐻 + 𝐻), which is a fast reaction with no energy threshold, due to the Coulomb attraction 

between reactants and the possibility for the excess energy to be distributed amongst the 

products. Mul and McGowan [38] have provided cross sections for the dissociative 

recombination of electrons with C2+, C2H+, C2H2+ and C2H3+. The cross sections for DR 

reactions with hydrocarbons are weakly dependent on the species, inversely proportional to 

the electron energy, and really high for low energies (10-13 – 10-14 cm2). DR has higher 

probability to occur if ions are present in sufficient amounts and electrons have low energies. 

As we will show later, these are conditions that occur in magnetron discharges away from the 

plasma bulk. Since the computational limitations of the PIC-MC simulation are related to the 

absolute collision rate rather than to the number of possible reactions, all the DI, DE and DR 

reactions for C2H2 and C2H were included.  

Electrons can lose energy by inducing excitation of gas species upon impacts in excited states. 

This energy can be stored as electronic, vibrational, or rotational excitation. The stored 

electronic excitation energy can sometimes be released by photon emission with a precise 

wavelength. Several such excitations, followed immediately by photon de-excitation, were 

included for acetylene with fitted cross sections given in [39]. Vibrationally and rotationally 

excited states are usually responsible for the major part of energy exchange between electrons 

and molecules [30] in plasma reactors like ETP. In cold plasmas, if the vibrational-

translational relaxation is slow, the vibrational temperature can become much higher than the 

gas temperature. For example, temperatures of Trot = 1190 K and Tvib = 1940 K were measured 
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in an ETP plasma with argon and acetylene as precursors, by cavity ring down spectroscopy 

[40]. Acetylene has five main vibrational excitation energy levels with high cross sections at 

low energies between 0.1 and 10eV. The effect of vibrationally excited molecules is the 

increase of gas temperature, and it might have some effect on the electron temperature in the 

discharge. However, since accounting for the vibrational states in the simulations would turn 

out to be really costly in terms of memory usage, and since vibrational-translational collisions 

cross sections are not available in literature but they must however be slow at low pressure, 

the vibrational excitations were not included in the model. For rotational excitation, the only 

data available is from the ab initio theoretical calculation of Thirumalai et al. [41], which 

provides the cross sections for several energy level transitions for collisions at 10eV. The 

reason for this lack of experimental data is the high symmetry of acetylene, which makes 

those cross sections small and difficult to measure. For these reasons, rotational excitations 

were also not included in the model. 

Argon is notorious for having metastable states [28,42], and can stay excited longer and 

therefore have higher probability of being able to interact with other particles. Moreover, 

excited argon can ionize other molecules through the Penning process [43]. For this reason, 

metastable argon is an interesting species to study in various simulations or experiments 

involving a C2H2/Ar mixture. As reported by Gordillo-Vázquez et al. [44] the reaction 

𝐴𝑟∗,𝑛 = 2, ³𝑃3,"4 +	𝐶"𝐻" → 𝐶"𝐻"$ + 𝐴𝑟 + 𝑒 has a high rate of 3.5 ´ 10-10 cm3 s-1. However, 

the Penning ionization process involves the collision of three reactants, and an ionization 

through collisions with metastable argons consists of a chain of collisions. This makes these 

two processes less probable at low pressure, and thus they were not included.  

As discussed earlier, Mao et al. [21] demonstrated the importance of anions for the 

nanoparticle formation and included them with success in their model. Anions are easily 
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trapped in RF plasma discharges and react more than positive ions. However, since the 

magnetron mixed PVD/PECVD is a DC discharge, anions will be accelerated towards the 

substrate, hence anion trapping should not occur. As acetylene and electrons are the main 

reactants, the most probable source of anions in our case is dissociative electron attachments 

(DEA) [35]. These reactions are enhanced and exothermic due to the Coulomb attraction, but 

their resonant character means that they can be caused only by electrons with the right 

energies. In this work, those reactions were included without their products in order to verify 

their relative importance without adding complexity.  

The first order reactions between energetic electrons and the background gas create ions and 

several highly reactive radicals that can latter react in fast and sometimes exothermic 

reactions. In fact, mass spectrometric measurements reveal important concentrations of C4Hy 

species as it will be shown in the experimental section (Figure 1 and Figure 2), the presence 

of which can only be explained by secondary reactions. The computational cost of 

incorporating more species to a PIC-MC simulation is high because a sufficient amount of all 

the species in all the cells is required so that statistically accurate results could be obtained. 

Fortunately, in the case of acetylene, the subset of species generated from secondary reactions 

is restrained by the fact that the acetylene triple bond is hard to break. It was therefore 

possible to include most of the reactions between the species generated in first order reactions 

in our model, with more than 150 reactions for only 18 species. The complete list of reactions 

incorporated in the model is displayed in Table II and Table III along with typical reaction 

rates from one simulation. 

2.4 Surface Reactions 

The surfaces in the numerical model are the target, substrate and chamber walls, delimiting 

the simulation boundaries (see Figure 6). This simulation box is a subsection of the whole 
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experimental chamber. While the poles of the power supply are connected to the target and 

substrate, the surrounding box is set on floating potential, which has a similar effect as a 

buildup of a space charge in a larger volume. The box acts as a perfect pump for all generated 

species and as a pressure-controlled source for the two process gases, effectively maintaining 

a constant pressure in the volume by reinjecting Ar and C2H2 molecules with ratios 

corresponding to their initial partial pressure ratio. The model of a pressure-controlled source 

acts as an interface between an infinitely large chamber with homogenous gas composition 

and the simulation volume, which contains the plasma and many species that diffuse only 

outward. It was shown by changing the box size that this assumption was justified and the 

bounding box size was considered to have only a minor impact on species concentrations. For 

the grounded substrate, we developed a film growth model in order to study the film 

deposition and its effect on species concentrations in the surface vicinity. This model is based 

on complex amorphous carbon growth models described in literature [8,45–49], and it 

includes the growth by subplantation of ions and the growth due to the radicals sticking to the 

dangling bonds at the amorphous hydrogenated carbon film surface. The sticking probability 

of hydrocarbon radicals is generally lower than 1 and is dependent on the surface state 

[45,48,49]. In particular, it depends on the availability of dangling bond sites (not terminated 

by hydrogen bonds) on the surface of the growing a-C:H film. In this model, we included 

surface state dependence by declaring two types of surface sites, each with specific reactions: 

high sticking coefficients for radicals on dangling bond and small ones on H-terminated sites, 

H removal from ions impact, surface bonded hydrogen desorption from reaction with H or 

C2H, as well as the fast H absorption reaction on free sites. Some radicals, like the atomic 

carbon created by target sputtering, have a high sticking probability even on H-terminated 

sites due to the availability of more than one valence electron. Another important way of 

creating dangling bonds is by ion impact, and a yield of one surface hydrogen atom by ion 
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impact was assumed. The complete set of plasma chemical and surface reactions onto the 

substrate is given in Table IV.  

The target surface had to have a different surface model due to the incoming energetic flux of 

ions. To simplify the simulation, target poisoning was not considered. Hence, to compare the 

simulation with experiments, we had to stay in the regime of reduced deposition on target 

compared to target sputtering, or keep plasma ignited for only short periods of time and 

perform etching between each measurement. With these precautions, it was assumed that the 

target remains pure graphite. The sputtering of carbon atoms was defined with a 0.03 yield for 

all ions impinging the target. This yield value comes from SRIM simulations [50] with argon 

ions impinging a graphite target at 200 eV with normal incidence. This energy was chosen 

based on typical discharge voltage at these low power densities. With the price of added 

complexity, different yields for each ion as well as energy and angular dependence could have 

been used. However, this is a reasonable approximation since Ar+ is the dominant ionic 

species in most cases and the discharge voltage does not vary significantly. The sputtered 

particles energy follows a Thompson distribution [51] defined by a 7.41 eV binding energy. 

The SRIM calculations showed that ion backscattering is a rare event, so ions are set to be 

implanted upon impact. However, in order to avoid creating an artificial pressure gradient, the 

C2H2+ and Ar+ were set to recombine on the target surface and be released with thermal 

energy. Upon impact, ions are known to yield secondary emitted electrons (SEE), which is an 

important mechanism sustaining plasma in magnetrons. The SEE yield was set to 0.11, and 

electron energies were chosen randomly from a uniform distribution within an energy interval 

of 0 to 10 eV. These values are standard for metallic targets, but they are unknown for a 

graphite target (to the authors’ knowledge), and graphite probably has a lower SEE yield. 

According to Depla et al. [52], the SEE yield is reciprocal to the discharge voltage for a given 
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current. The main impact of a higher discharge voltage would be to increase the energy of 

ions impinging the substrate, which would in turn slightly increase the electron and carbon 

yield. The energy gained by electrons traversing the sheath would also rise, which might 

affect the position of the sheath, as well as the electronic temperature in the plasma bulk [52]. 

3. Results 

3.1 Experimental results 

Mass spectrometry measurements were conducted on an argon-acetylene plasma for several 

flux ratios and imposed currents. To avoid possible bias due to the target pollution, 

measurements were limited to low powers and short times. Also, before most experiments, the 

target was etched with a plasma in pure argon at 0.66 Pa and 50 W for several minutes. Figure 

1b shows a typical residual gas analysis (RGA) spectrum obtained with 20 % C2H2 at 0.02 A 

and 0.66 Pa. The acetylene ratio is defined as: 

𝑟 =
𝐹6787

𝐹9: + 𝐹6787
, (1) 

where 𝐹9: and 𝐹6787 are the argon and acetylene injected flows. Several known cracking 

patterns (CPs) [53] are depicted in Figure 1a to help the injected species and pollutants 

identification. The peaks associated with water vapor (16, 17, and 18 u), and with carbon 

monoxide (or nitrogen) and carbon dioxide (28, 44 u) were present even before any gas 

injection, and remained mostly unchanged for all pressures. Therefore, they probably resulted 

from the presence of residual gases in the chamber and detector. Many peaks can be attributed 

to acetone, which is used as an acetylene solvent and was present as impurity in the C2H2 

bottle. Most peaks were unchanged after the plasma ignition (see Figure 1b). The only 

changes are the lower intensity of acetylene and acetone related peaks (26 and 58 u), and the 

higher intensity of hydrogen (1 u), dihydrogen (2 u) and diacetylene peaks (48, 49 and 50 u). 
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Similar RGA measurements were conducted by increasing the power up to 200 W, and no 

additional peaks were found up to mass 60 u.  

All peaks originating from the cracking of the acetylene and acetone molecules receded with 

plasma ignition, which indicates that the C2H2 and C3H6O molecules were consumed inside 

the plasma phase. It was found that subtracting the CPs relative peak intensities from both 

plasma-on and plasma-off spectrums as in [54] did not reveal remaining concentrations of 

those product species with more than 1 ´ 102 – 1 ´ 103 count s-1. Some technics could have 

been used for circumventing these limitations, e.g., the use of triple differential pumping or 

Bayesian analysis (see for example [55]). However due to these low intensities and the fact 

that some peaks are common between the C2H2 and C3H6O molecules, it was impossible to 

extract reliable information on the generation of reactive dissociation products like C2H. 

It is clear that the decrease of the acetylene peaks ( -1.4 ´ 105  count s-1) cannot be 

counterbalanced by the increase of any other peaks (< 3.4 ´ 104 count s-1), even considering 

possible calibration error or sensitivity bias. This means that acetylene concentration in the 

chamber diminished significantly. This decrease has to be attributed to loss by ionization or 

loss by dissociation. Figure 2 presents the main positive ions peaks (empty marker) for 20 % 

acetylene and varying power, and shows that the main cations were singly-ionized acetylene, 

with other prominent ionic species being C4H3+,	C4H2+,	Ar+	and	C2H3+. Interestingly, the 

relative peak intensities remained similar for all powers and their absolute values increased 

linearly with increasing power, this is probably due to the linear increase of the electron 

density with power as further explained in the simulation section. However, the measurements 

done at the lowest power (2 W) had a much lower intensity and reduced the linear fits quality. 

This is probably due to cathode pollution, which creates instability in plasma at such low 

powers, because the carbonated redeposited layer is dielectric and is not etched fast enough. 
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The measured ion peak intensities were fitted together with the simulated densities, with the 

commonly made assumption that a quadrupole mass spectrometer gives intensities that are 

proportional to densities [55]. A common spectrometric intensity-to-density conversion factor 

for all species with value 1.28e8 m−3 s count−1 was chosen to get the best overall fits between 

the simulation and experimental lines for hydrocarbons. A good match was observed between 

simulated and experimentally observed slopes and relative densities for all hydrocarbon ions. 

However, the Ar+ density and its spectrometric intensities differed a lot. The origin of that 

discrepancy is unclear, but it seems that it could be linked to the slight difference of pressure 

between the simulation and the experiment (see Figure 5 and related discussion below).  If the 

mass spectrometer response for each species was absolutely calibrated or if individual 

conversion factor were used, the argon ion intensity might be in fact in accordance with its 

simulated density. However, in the absence of absolute calibration choosing to have only one 

conversion factor for all spectral lines reduces the number of fitted parameters from 11 

parameters in the first case to 15 in the latter.  

The RGA measurements with a varying Ar/C2H2 ratio and fixed current are summarized in 

Figure 3 next to corresponding neutral densities from simulations. The main peak intensities 

were obtained by subtracting the average values of every peak during the plasma-on and 

plasma-off phases for each Ar/C2H2 ratio at constant initial pressure and pumping speed. This 

subtraction reveals only the peaks whose intensity increased, hence it is possible that other 

neutral species were present in the chamber in abundance but masked by the cracking of 

acetylene and acetone in the detector as discussed above. The main peaks (threshold of 4000 

count s-1) were for H, H2, C4H2, C4H, and C4H4. According to [53], the cracking pattern for H2 

contains a peak at mass 1 u which corresponds to only 2 % of the main peak; it therefore 

cannot explain the observed amount of atomic hydrogen observed (roughly 50 % of H2 



 

23 
 
 

intensity), so atomic hydrogen must be present in the chamber in the spectrometer vicinity. 

The main neutral species were in order of importance H2, H and C4H2, whereas in the 

simulation they were C2H, H, H2 and C4H2. This discrepancy might stem from the short 

simulation times as explained further in the discussion. However, all measured peak 

intensities and simulated densities increased linearly with acetylene content which is a sign 

that the origin of the observed species must be, as in the simulations, linked to the electron 

dissociations of acetylene hence proportional to the electron and the acetylene density.  

The main positive ion peaks were measured in SIMS mode with a varying Ar/C2H2 ratio at 16 

mA, and the resulting points are shown in Figure 4. Since the detection of ions with a MS 

facing an unbalanced magnetron can saturate the detector, the distance between the MS and 

the magnetron were set to 18 cm instead of the 10 cm used for other experiments. At low 

acetylene content Ar, Ar2+ and ArH+ where the dominant ionic species, but after only 12.5 % 

acetylene, C2H2+ became the dominant species. We observed a decrease of argon related ions 

intensities for increasing ratios, and an increase of all hydrocarbon ions intensities. The total 

ion intensity decreased initially with acetylene injection but then increased after a ratio of 

7.5% acetylene, following the general increase of hydrocarbon ions. The main hydrocarbon 

ions were C2H2,3+, C4H2,3,4+, and C6H4,5+, which all contained pair number of carbon atoms. 

Interestingly, this increase in intensity depended on ions’ number of carbon atoms, with a 

small increasing rate for C2H2,3+ a bigger one for C4H2,3,4+, and an even steeper increase for 

C6H4,5+. The initial decrease of total ion density, probably associated with a similar decrease 

in electronic density, could be attributed to several causes, for example: acetylene low 

ionization threshold and large cross-section compared to argon, cathode pollution, pressure 

variations. Indeed, while the initial pressure was kept constant at 5 mTorr before plasma 

ignition, the pressure systematically dropped when the plasma was ignited and when 
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acetylene was present. This phenomenon is due to the fact that reactive species condensation 

on the chamber walls affects the total pressure more than the competing effect of acetylene 

splitting in the plasma, as shown by D. Thiry et al. [14]. 

Figure 5 presents the intensity of main ion peaks for different initial pressures with a 4% ratio 

of acetylene and a current set to 100 mA. It suggests that the pressure had indeed a big impact 

on the measured ion peaks: for a small pressure variation of around 3mTorr (or 0.133 Pa), a 

variation of more than one order of magnitude of the intensities is observed. One possible 

explanation of this phenomenon is that at higher pressure, ions have more probability to 

recombine with low energy electrons, or to react with acetylene creating new ionic species, 

thus diminishing the number of C2H2+ and Ar+ ions reaching the detector. The pressure 

change could also have an impact on the electron mean free path, reducing their energy and 

hence reducing the electronic temperature and ionization rate. Interestingly, Figure 5 shows 

that C2H2+ is promoted for high pressures and its concentration raises above that of Ar+, even 

though acetylene represents only 4 % of the background gas, which means that either 

acetylene gets ionized easier than argon or charge transfer reactions tend to promote acetylene 

ions over argon ones.  

3.2 Simulation results 

Several simulations were run with power setpoints ranging from 0.1 to 1.0 W (5 ´ 10-3 to 5 ´ 

10-2 W cm-2), and relative concentrations of argon and acetylene ranging from 0 % to 90 %, 

defined as: 

	𝑟 =
𝑃6787

𝑃9: + 𝑃6787
, (2) 

with P9:  and PH7I7 being the initial partial pressures of argon and acetylene, respectively. A 

stable plasma ignition was obtained in all cases, with charge densities ranging from 1 ´ 1014 
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to 1 ´ 1016 m-3, and with a maximum ionization degree of 1 ´ 10-4. Typical computation time 

were as long as 50 h for a physical discharge simulation time of 50 µS. Drifting ionization 

zones or “spokes” were present on most of the simulations, and can be seen as an asymmetry 

in Figure 6. For a typical simulation with a power of 0.8 W and an acetylene ratio of 20% the 

spoke was rotating in the opposite of the 𝐸K⃗ 	× 	𝐵K⃗  drift direction with a period of around 30 µs. 

This phenomenon has been described in recent experimental articles [56] and reproduced with 

PIC-MC simulations [33]. However, since they were not the primary interest of this study, 

their effects on densities and other observables were minimized by averaging densities over 

time and space. The electron energy distribution functions (EEDF) were calculated across the 

chamber from electrons’ velocity distribution and the results were fitted with Maxwellian or 

Bi-Maxwellian distribution functions. For the plasma bulk, the EEDFs were Bi-Maxwellian 

with Te1 ≈ 2 eV and Te2 ≈ 10 eV. This Bi-Maxwellian distribution is a known characteristic 

distribution for electrons in magnetron plasmas. One population of electrons is made highly 

energetic by the sheath-target potential difference, and another population resulting from 

ionization in the plasma bulk has a lower mean energy [32, 57]. This feature together with the 

spokes are often missing from other models (e.g. fluid models) and justify the choice of the 

PIC-MC approach, as explained in section 1. 

The simulation with 20 % acetylene and 0.8 W has been chosen as an arbitrary representative 

simulation it will be referred as “S1” in the following to ease discussion. Densities in this 

simulation were averaged inside cylindrical, 1mm-thick slices across all the chamber. The 

resulting density profiles for each time step of S1 from 0 to 50 µs are visible in Figure 7. The 

equilibrium for charged species was reached faster than for neutrals, as the bulk density of 

electrons and main ions increased very slowly after 5 µs, whereas C2H, H, C and CH kept 

increasing even after 20 µs. For most species, the maximum density was located in the plasma 
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bulk, at the edge of the plasma sheath, around 5 mm away from the cathode. The main species 

in the bulk were the radicals C2H and H, which accumulated gradually slower as their 

concentrations were approaching an equilibrium. The C2H3+, C4H2+ and C4H3+ density 

profiles had a maximum outside of the plasma bulk because they were mainly produced by 

recombination of C2H2+ ions with C2H2. The C2H and H2 species were distributed more 

homogenously than the other radicals because they were produced not only in the bulk but 

also during recombinations in the rest of the chamber. The density profile of C was nearly a 

straight line for all time steps, with a slope decreasing with the distance from target. This 

linear profile results from the fact that sputtered carbon atoms have a high kinetic energy, 

which induces a fast diffusion and a reduced loss of momentum via collisions with the 

background gas molecules. In addition to differences in longitudinal profiles, species had 

different lateral profiles: charged species formed a narrow beam throughout the chamber, due 

to the unbalanced magnetic field configuration, whereas the radicals formed a wider beam 

because they diffused thermally from the bulk where they were created. The widest diffusion 

cone was the one of carbon atoms due to simulation’s wide angular distribution for sputtered 

particles. Figure 8 compares vertical cuts of the densities of C atoms and C2H2+ cations and 

the profile of their respective absorptions onto surfaces. The aforementioned difference in 

diffusion spread of sputtered atoms and ions can be seen on this figure, as well as the impact 

it would have in terms homogeneity of the resulting substrate absorption. 

Table II and III contain all the reactions that were included in our model, as well as the 

observed reaction rates in S1, averaged between 30 and 40 µs in the whole simulation volume. 

From these rates, some conclusions regarding the choice of reactions and species can be 

made. For example, the main reactions producing new species were indeed the DE and DI 

reactions, followed by DR ones, as discussed in section 2.3. The DEA were non-neglectable 
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with rates up to 1 ´ 1015 m-3 s-1 for the 𝑒	 +	𝐶"𝐻" 	→ 𝐶"𝐻O 	+ 	𝐻 reaction. Adding them could 

indeed be interesting if, for example, more data on anions could be experimentally obtained, 

or if anions effects on deposition were to be considered. The fastest reactions not involving 

electrons were charge transfers and reactions between acetylene and C2H, H or C2H2+. In 

particular, the dissociative recombination of C2H2 and C2H2+ was responsible for the 

production of the majority of the diacetylene species. 

Figure 9 shows a general view, built upon Figure 7, of the species present in the chamber at a 

moderate acetylene ratio (i.e., 20%) 40 µs after plasma ignition. The sputtered carbon flux 

was not among the dominant species as it was always two orders of magnitude less 

concentrated than the other species. Moreover, this difference increases with the distance. 

This means that the sputtered atoms contribution to deposition decreases relatively to the 

hydrocarbon ions and radicals’ contributions if the substrate is set further away from the 

cathode. The sputtered carbon atoms did not participate much in the plasma chemistry since 

the fastest reaction involving C was 𝐶"𝐻"$ + 𝐶 → 𝐶P𝐻$ + 𝐻 with a rate of 1 × 1012 m-3 (see 

Table III). Since the production of sputtered atoms is proportional to the ions flux towards the 

cathode which is itself proportional to the electronic density and hence to the power, it would 

be rather simple to extrapolate the C flux towards the substrate for higher powers. The density 

profile of radicals was decreasing faster with distance than the one of ions, hence the 

contribution of radicals to film growth compared to the one of subplanted hydrocarbon ions 

should also depend on the distance from the target and get less important the further the 

substrate is set. This is an important result to improve film deposition as it shows that the 

growth precursor concentrations are non-homogenous in the chamber, and therefore the types 

of films produced via this deposition method will depend on the location of the substrate. 
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Figure 10 shows the densities in the plasma bulk (defined as a cylindrical volume parallel to 

the target with a 20 mm radius and 20 mm height) for all species included in the simulation 

after 20 µs, for many simulations differing from S1 only in power (right) or only in ratio (left). 

The averaged densities of all produced species inside the bulk evolved linearly with power 

and remained proportional to the electron density. In terms of ratio, two populations with 

constant relative concentrations could be distinguished in Figure 10: the first order species 

(C2H2+, C2H+, H, C2, H2, and CH), which originated mostly in direct reactions between 

electrons and acetylene, and the second order species (C4H3+, C4H2+, C2H3+, C2H3, and C4H2), 

which were primarily generated in collisions between these first order species and the 

background acetylene (see Table III). The second population was more sensitive to a change 

in C2H2, and this stems from the fact that the reaction rates depend on the density of both 

reactants. Hence, while the first order species varied linearly with the C2H2 ratio and the 

power (Figure 2 and Figure 10), the second order species varied linearly with power but in a 

quadratic manner with the acetylene ratio. The mean electron density in the bulk increased 

also linearly with the ratio of acetylene as can be seen in Figure 10 and in the following linear 

regression fits:	

𝑛Q(𝑟𝑎𝑡𝑖𝑜) = 2.84193 × 10ZP × 𝑟𝑎𝑡𝑖𝑜 + 4.83609 × 10Z\[𝑚OP](𝑟" = 0.8765) (3)
𝑛Q(𝑝𝑜𝑤𝑒𝑟) = 1.54640 × 10Zd × 𝑝𝑜𝑤𝑒𝑟 + 1.47808 × 10Z\[𝑚OP](𝑟" = 0.9908),

 

with ne the electron density. This could be explained by noticing that the lower ionization 

threshold of acetylene and larger ionization cross-section makes plasma ignition easier in an 

acetylene rich mixture, and more electrons are generated via ionization for the same power.  

3.3 Discussion 

In order to compare simulated densities with the mass spectrometric results, the densities were 

averaged in a cylindrical volume (10 mm height and 20 mm radius) located in front of the 
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substrate in several simulations with parameters similar to S1, but with different powers or 

ratios. The results compared with mass spectrometric measurements are shown in Figure 2, 

Figure 3 and Figure 4. Despite the low power and the short simulation time, the simulated ion 

densities and the experimental ones were tightly correlated, as can be seen in Figure 2. 

Indeed, the main hydrocarbon ions in the simulations were C2H2+, C4H3+, C4H2+, and C2H3+, 

respectively, and their densities varied linearly with power with similar relative 

concentrations. However, the Ar+ densities were higher than the C2H2+ one in the simulation, 

while the spectrometric measurements suggest that it should be the opposite.  

Some reactions were more important away from the plasma bulk rather than close to it. For 

example, the dissociative recombinations have a high probability of occurring at lower 

energies, meaning they play a significant role far from the target, where the electron 

temperature remained around 2 eV. Similarly, reactions between ions, molecules and radicals 

occurred principally away from the plasma where they were generated, and hence the 

concentrations of the different species evolved differently across the chamber, as seen in 

Figure 7. For example, due to the acetylene molecule polarizability, the charge transfer with 

the argon ion is a fast and even exothermic reaction [60] that will tend to promote the 

acetylene ions over the argon ones: 

𝐶"𝐻" + 𝐴𝑟$ → 𝐶"𝐻"$ + 𝐴𝑟 + 4.86	𝑒𝑉 (4) 

Indeed, this reaction happened at a very fast rate in the simulations (around 8.3e17 m-3 s-1) as 

seen in Table III. 

The mass spectrometric measurements showed that the ions peaks intensities decrease with 

pressure, that the C2H2+ ions get promoted at higher pressure over the Ar+ ones and that an 

increased C2H2 ratio lead to a decreased ion count. All these observations suggest that 
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collisions like charge transfers and ions recombinations which happen on the ions’ path 

towards the substrate (or detector) and that are amplified at higher pressure or higher C2H2 

ratio are important and could explain for example the discrepancy observed between the 

simulated and measured Ar+ density in Figure 2. Indeed, if the simulation were run for longer 

times, or if the pressure in the simulation was higher, the charge transfer between Ar+ and 

C2H2+ would have favored C2H2+ density over Ar+ ones even more. Nonetheless, the good 

agreement of the slopes and relative densities of hydrocarbon ions between simulations and 

experiments in Figure 2, is a validation of the simulated ions production in the plasma and of 

the latter reactions in the chamber as the observed hydrocarbon ion species depend on both 

mechanisms.  

The evolution of ions densities with acetylene ratio, presented in Figure 4 and Figure 10, 

showed a good qualitative agreement between simulation and experiments. There were some 

discrepancies between the two figures, for example the point where the density of C2H2+ 

crosses the one of Ar+ is around 12.5 % in the experiment, while it is closer to 50 % in the 

simulations. However, we observed in both cases an increase of hydrocarbon ion densities 

proportional to the acetylene ratio. In particular, species identified in Figure 10 as “First-

order” and “Second order” are clearly identifiable on Figure 4. A notable exception to this 

comparison is the C2H3+ ions. They seem to follow the evolution of C2H2+ and C2H+ on 

Figure 4, placing them in the “First-order” group, even though they clearly belong to the 

“Second-order” group based on their evolution in the simulations, as seen on Figure 10. This 

probably stems from the fact that C2H3+ is produced mainly via the addition of H to C2H2+ 

and, as explained earlier, radical densities did not reach equilibrium during simulations.  

Figure 3 shows the dependence of neutrals densities on the ratio in the simulations and 

experiments. It shows that the evolutions were still linear in both cases, but the main species 
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in the simulations were C2H and H whereas, experimentally, C2H could not be observed, and 

the H intensity was smaller than that of H2. However, as Figure 7 reveals, the non-charged 

species did not attain an equilibrium and the concentrations of C2H and H diminished in favor 

of C4H2 species and H2, as most molecule-molecule reactions incorporated in the model tends 

to favor C4H2 and H2 species over C2H and H (see Table III). As can be seen in Figure 7, the 

accumulation of radicals was too slow to stabilize in several microseconds, even in this small 

chamber, and will require longer simulation times in the range of milliseconds to achieve 

stability. Some simulations were run for up to several hundred microseconds, but we found 

that the surface model has a decisive influence on the densities at equilibrium. Since the prime 

interest of this study was the plasma chemistry and not the deposition model, the simulation 

time were kept at several tenth microseconds which consequently allowed us to study a wider 

range of parameters in a realistic timeframe. This had an impact on the predictions given on 

neutrals’ density in front the substrate (see Figure 3). However, even the radical seemed to be 

already at equilibrium in the plasma bulk region (see Figure 7 and Figure 10), which means 

that the “plasma source” would remain as presented, even for longer simulations.  

One of the main limitations of the model presented here, common with most PIC-MC 

simulations, was the low power at which the simulations were run, with a maximum power of 

1.2 W attained in this study, far from current applications with typical powers of several 

hundreds of watts. However, the main effect of a power raise was an increase of the electron 

density, followed by a proportional increase of all the plasma products (see Figure 10). This is 

probably due to the fact that in magnetron reactors, electron density can directly be linked to 

the discharge power, whereas the electron temperature remains almost constant for a wide 

range of power [59]. According to [30] reaction rates can be calculated from the following 

equation: 
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𝑅9g = 𝑛9𝑛gh[	𝑣:QjKKKKKKK⃗ 𝜎9g(𝑣:Qj)𝑓9(	𝑣9KKKK⃗ )𝑓g(	𝑣gKKKK⃗ )]𝑑𝑣9KKKK⃗ 	𝑑𝑣gKKKK⃗ , (5)	 

with 𝑛9, 𝑣9KKKK⃗ 	, and 𝑓9  the densities, velocities and density function of reactant A, 𝑣:QjKKKKKKK⃗  the 

relative velocity, and 𝜎9g the cross section of the reaction. For all collisions between electrons 

and acetylene the only parameter from Equation 5 that varies with power is the electron 

density. Hence, the first order reactions’ rate, and consequently their products, will remain 

proportional to the electronic density and increase linearly with power. Therefore, the power 

scaling of the results should be possible as long as the produced species concentrations remain 

small with respect to the background gas. This is only true for low ionization degree. 

4.  Conclusions 

The magnetron DC discharge with a graphite target in a mixture of acetylene and argon was 

simulated with a PIC-MC model and compared with mass spectrometric measurements, in 

order to gain insight on the otherwise difficult to observe reactive plasma chemistry of 

magnetron PECVD. The set of species and reactions was carefully chosen to include enough 

complexity to render most physicochemical mechanisms of actual discharges, but reduced to a 

minimal set to lower the computational cost. The influence of the acetylene and argon ratio 

and the power on the discharge was investigated. It was demonstrated that the injection of 

acetylene changes the electron density and consequently the concentration of plasma-

generated products and sputtered particles even at very low concentrations. This model 

includes the hyperthermal sputtering of carbon from the target and all principal first order 

reactions. It also includes their products, and a set of fast secondary reactions that these 

species undergo on their way to the substrate. Simulations were run at low power due to 

inherent limitations of PIC-MC models, but it was shown that all densities in the plasma bulk 

evolved linearly with the discharge power. Good correspondence between simulations and 
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experiments of mass spectrometry was obtained with respect to ions, as the densities of 

hydrocarbon ions arriving at the substrate grew with the discharge power with the same slopes 

and relative concentrations in both cases. Good qualitative agreement between simulations 

and experiments was obtained for density variations with the acetylene ratio. It was possible 

to identify groups of reactive species from the rate at which their density increased with the 

acetylene ratio; with primary reactions involving electrons and secondary reactions involving 

the products of first ones and the background acetylene,  

One important results of this study is to show that the spatial distribution of different species 

can differ a lot: ions are concentrated in a beam due to the unbalanced magnetic field, radicals 

have surprisingly high concentrations and spread profiles due to their slow diffusion, and 

sputtered particles form a wide beam, the concentration of which weakens faster with distance 

than for other species. This implies that the growing film precursor fluxes could be very 

different depending on the location of the substrate within the chamber. A dynamic surface 

chemistry model, which relies on defining different sets of reactions on hydrogen-terminated 

sites and dangling bonds sites, was introduced to get more realistic absorption reactions at the 

substrate. However, the equilibrium of radical species was not yet attained despite simulating 

up to several hundred microseconds. The primary focus of this study was to properly define 

the plasma source and the chemistry inside the chamber. In order to give prediction on 

deposition speed and film quality, further refinements of the surface model as well as longer 

simulations would be required.  

Despite the difficulty to get reliable mass spectrometric measurements in a PECVD reactor 

and to run simulations with comparable power and time scales as in experiments, it was 

possible to correlate simulated and measured species concentrations with varying power and 
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ratio. To our knowledge, these PIC-MC simulations are the first to include this many species 

and reactions in a fully 3D and self-consistent kinetic plasma model. 
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7. Tables 

Table I Physical and numerical parameters of the simulations 

Domain size 100 × 72	 × 72 [𝑚𝑚] 
Input power 0.2 − 	1.2 [𝑊] 
Input power density 9.8 × 10Od − 	5.9 × 10Od [𝑊. 𝑐𝑚O"] 
Temperature 300 [K] 
Species 𝐴𝑟, 𝐴𝑟$, 𝐶"𝐻", 𝐶"𝐻"$,𝐻, 𝐶"𝐻, 𝐶"𝐻$, 𝐶𝐻, 𝐶",	

	𝐻", 𝐶, 𝐶\𝐻", 𝐶"𝐻P, 𝐶\𝐻"$, 𝐶\𝐻P$, 𝐶"𝐻P$ 
 

Pressure 0.6 [𝑃𝑎] 
Magnetron radius 25.4 [𝑚𝑚] 
Magnets remanence  1.4 [𝑇] 
Cell size  0.5	 − 	1.8 [𝑚𝑚] 
Arrangement of simulation 
volume segments 

5	 × 2 × 2  

Time step width 5 × 	10OZZ [𝑠] 
Maximum physical simulation 
time, and related computation 
time 

100 × 10Ot, 4× 10d [𝑠] 

CPU cores used 21  
Weight factors 𝐴𝑟, 𝐶"𝐻" 1 × 	10Z3 	× 	𝑟𝑎𝑡𝑖𝑜  
Weight factors 𝑒, 𝐴𝑟$, 𝐶"𝐻"$ 1.4 × 10d  
Weight factors for all other 
species  

6 × 10" 		− 	1.7 × 10\  

Sampling for the power 
dissipation 

1 × 10Ou [𝑠] 

Carbon Yield 0.03  
Secondary electron emission 
Yield 

0.11  
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Table II Collisions involving electrons included in the model and their averaged rates 
between 30 and 40𝜇𝑠	in the overall chamber for the S1 simulation. 

Reaction Name Rate 
[𝑚OP. 𝑠OZ] 

𝑒	 + 	𝐴𝑟	 → 2	𝑒	 + 	𝐴𝑟$ Ionization 2.09E+19 

𝑒	 + 	𝐴𝑟	 → 𝑒	 + 	𝐴𝑟∗ Total excitation 2.01E+19 

𝑒	 +	𝐶"𝐻" 	→ 2	𝑒	 +	𝐶"𝐻"$ Ionization 9.18E+18 

𝑒	 +	𝐶"𝐻" 	→ 𝐶"𝐻	 + 	𝐻	 + 	𝑒 Dissociative excitation 3.72E+18 

𝑒	 +	𝐶"𝐻" 	→ 2	𝑒	 +	𝐶"𝐻$ + 	𝐻 Dissociative ionization 1.36E+18 

𝑒	 +	𝐶"𝐻" 	→ 𝐶" 	+	𝐻" 	+ 	𝑒 Dissociative excitation 9.59E+17 

𝑒	 +	𝐶"𝐻" 	→ 𝐶	 + 	𝐶𝐻" 	+ 	𝑒 Dissociative excitation 4.49E+17 

𝑒	 +	𝐶"𝐻" 	→ 𝐶" 	+ 	2	𝐻	 + 	𝑒 Dissociative excitation 3.17E+17 

𝑒	 +	𝐶"𝐻" 	→ 2	𝐶𝐻	 + 	𝑒 Dissociative excitation 3.08E+17 

𝑒	 +	𝐶\𝐻"$ → 𝐶\𝐻	 + 	𝐻 Dissociative recombination 3.06E+17 

𝑒	 +	𝐶"𝐻" 	→ 2	𝑒	 + 	𝐶𝐻$ + 	𝐶𝐻 Dissociative ionization 2.56E+17 

𝑒	 +	𝐶"𝐻" 	→ 2	𝑒	 +	𝐶"$ +	𝐻" Dissociative ionization 2.43E+17 

𝑒	 +	𝐶"𝐻" 	→ 2	𝑒	 +	𝐻$ +	𝐶"𝐻 Dissociative ionization 2.34E+17 

𝑒	 +	𝐶\𝐻P$ → 𝐶\𝐻	 +	𝐻" Dissociative recombination 1.88E+17 

𝑒	 +	𝐶\𝐻P$ → 𝐶\𝐻" 	+ 	𝐻 Dissociative recombination 1.88E+17 

𝑒	 +	𝐶"𝐻" 	→ 2	𝑒	 +	+𝐶$ + 	𝐶𝐻"  Dissociative ionization 1.07E+17 

𝑒	 +	𝐶\𝐻"$ → 2	𝐶"𝐻 Dissociative recombination 1.03E+17 

𝑒	 +	𝐶"𝐻" 	→ 𝑒	 +	𝐶"𝐻"∗ Electronic excitations (sum) 1.07E+17 

𝑒	 +	𝐶"𝐻	 → 2	𝑒	 +	𝐶"𝐻$ Ionization 4.44E+15 

𝑒	 +	𝐶"𝐻	 → 𝐶" 	+ 	𝐻	 + 	𝑒 Dissociative excitation 1.42E+15 

𝑒	 +	𝐶"𝐻" 	→ 𝐶"𝐻O 	+ 	𝐻 Electron attachment 1.13E+15 

𝑒	 +	𝐶"𝐻"$ → 𝐶"𝐻	 + 	𝐻 Dissociative recombination 9.53E+14 

𝑒	 +	𝐶"𝐻" 	→ 𝐻O +	𝐶"𝐻 Electron attachment 6.17E+14 

𝑒	 +	𝐻" 	→ 𝑒	 +	𝐻"∗ Excitations (sum) 1.63E+15 
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𝑒	 +	𝐶"𝐻"$ → 𝐶" 	+ 	2	𝐻 Dissociative recombination 5.65E+14 

𝑒	 +	𝐶"𝐻"$ → 2	𝐶𝐻 Dissociative recombination 3.2E+14 

𝑒	 +	𝐶"𝐻	 → 𝐶	 + 	𝐶𝐻	 + 	𝑒 Dissociative excitation 3.09E+14 

𝑒	 +	𝐶"𝐻	 → 2	𝑒	 +	𝐶" +	+	𝐻 Dissociative ionization 3.08E+14 

𝑒	 +	𝐻" 	→ 2	𝑒 +	𝐻"$ Ionization 1.64E+14 

𝑒	 +	𝐶"𝐻" 	→ 𝐶"O +	𝐻" Electron attachment 1.23E+14 

𝑒	 +	𝐶"𝐻$ → 𝐶" 	+ 	𝐻 Dissociative recombination 9.23E+13 

𝑒	 +	𝐶"𝐻$ → 𝐶𝐻	 + 	𝐶 Dissociative recombination 7.45E+13 

𝑒	 +	𝐶"𝐻	 → 2	𝑒	 +	𝐶" 	+ 	𝐻 + Dissociative ionization 7.01E+13 

𝑒	 +	𝐶"𝐻	 → 2	𝑒	 + 	𝐶𝐻$ 	+ 	𝐶 Dissociative ionization 6.66E+13 

𝑒	 +	𝐶"𝐻	 → 2	𝑒	 +	𝐶$ 	+ 	𝐶𝐻 Dissociative ionization 5.61E+13 

𝑒	 +	𝐶"𝐻$ → 2	𝐶	 + 	𝐻 Dissociative recombination 3.6E+13 

𝑒	 +	𝐻" 	→ 𝑒	 + 	2	𝐻 Dissociative excitation 2.84E+13 
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Table III Collisions that does not involve electrons included in the model and their averaged 
rates between 30 and 40𝜇𝑠	in the overall chamber for the simulation S1. 

Reaction Rate [𝑚OP. 𝑠OZ] 

Ar++	Ar	→slow	Ar++	Ar 5,42E+18 

𝐻	 +	𝐶"𝐻" 	→ 𝐶"𝐻P 1,91E+18 

𝐶"𝐻" 	+ 	𝐴𝑟$+	→ 𝐴𝑟	 +	𝐶"𝐻"$ 8,3E+17 

𝐶"𝐻" 	+	𝐶"𝐻	 → 𝐶\𝐻" 	+ 	𝐻 6,06E+17 

𝐶"𝐻"$ +	𝐶"𝐻" 	→ 𝐶\𝐻P$ + 	𝐻 4,85E+17 

𝐶"𝐻"$ +	𝐶"𝐻" 	→ 𝐶"𝐻P$ +	𝐶"𝐻 4,25E+17 

𝐶"𝐻"$ +	𝐶"𝐻" 	→ 𝐶\𝐻"$ +	𝐻" 2,61E+17 

𝐶"𝐻" 	+	𝐶" 	→ 𝐶\𝐻	 + 	𝐻 2,15E+17 

𝐶"𝐻P$ +	𝐶"𝐻" 	→ 𝐶\𝐻P$ +	𝐻" 1,52E+16 

𝐻	 +	𝐶"𝐻	 → 𝐶"𝐻" 5,43E+14 

𝐶"𝐻"$ +	𝐶"𝐻	 → 𝐶\𝐻"$ + 	𝐻 9,47E+13 

𝐻" 	+ 	𝐻	 → 𝐻	 +	𝐻" 6,1E+13 

𝐶\𝐻P$ +	𝐶"𝐻	 → 𝐶t𝐻P$ + 	𝐻 2,14E+13 

𝐻	 + 	𝐶𝐻	 → 𝐶	 +	𝐻"  1,47E+13 

𝐶\𝐻"$ +	𝐶"𝐻	 → 𝐶t𝐻"$ + 	𝐻 1,42E+13 

𝐻	 +	𝐶"𝐻P 	→ 𝐶"𝐻" 	+	𝐻" 1,42E+13 

𝐶\𝐻" 	+	𝐶"𝐻"$ → 𝐶\𝐻"$ +	𝐶"𝐻" 1,23E+13 

𝐶\𝐻" 	+	𝐶" 	→ 𝐶t𝐻	 + 	𝐻 1,23E+13 

𝐶\𝐻" 	+	𝐶"𝐻	 → 𝐶t𝐻P 1,1E+13 

𝐶"𝐻P 	+	𝐶"𝐻	 → 2	𝐶"𝐻" 7,89E+12 

𝐻" 	+	𝐶"𝐻$ → 𝐶"𝐻"$ + 	𝐻 4,21E+12 



 

45 
 
 

𝐶"𝐻"$ + 	𝐶	 → 𝐶P𝐻$ + 	𝐻 2,1E+12 

𝐶"𝐻P 	+	𝐶"𝐻"$ → 𝐶\𝐻P$ +	𝐻" 2,1E+12 

𝐶"𝐻	 + 	𝐶	 → 𝐶P 	+ 	𝐻 1,58E+12 

𝐻	 +	𝐶\𝐻"$ → 𝐶\𝐻P$ + 	𝐻 9,82E+11 

𝐶\𝐻"$ +	𝐶\𝐻" 	→ 𝐶t𝐻"$ +	𝐶"𝐻" 8,77E+11 

𝐶\𝐻" 	+	𝐶"𝐻"$ → 𝐶\𝐻"$ +	𝐶"𝐻" 8,77E+11 

𝐶\𝐻" 	+ 	𝐶	 → 𝐶d𝐻	 + 	𝐻 5,26E+11 

𝐶"𝐻P$ +	𝐶"𝐻	 → 𝐶\𝐻P$ + 	𝐻 4,21E+11 

𝐶"𝐻$ + 	𝐶	 → 𝐶P$ + 	𝐻 3,79E+11 

𝐶"𝐻P$ +	𝐶"𝐻	 → 𝐶"𝐻"$ +	𝐶"𝐻" 3,79E+11 

𝐶"𝐻P$ +	𝐶"𝐻	 → 𝐶\𝐻"$ +	𝐻"  1,75E+10 

𝐻	 +	𝐶"𝐻P$ → 𝐶"𝐻"$ +	𝐻" 0 

𝐶\𝐻P$ + 	𝐶	 → 𝐶d𝐻"$ + 	𝐻 0 

𝐶\𝐻"$ + 	𝐶	 → 𝐶d𝐻$ + 	𝐻 0 

𝐻	 +	𝐶\𝐻P$ → 𝐶\𝐻\$ + 	𝐻 0 

𝐶\𝐻P$ +	𝐶\𝐻" 	→ 𝐶{𝐻d$ + 	𝐻 0 

𝐶\𝐻"$ + 	𝐶	 → 𝐶d$ +	𝐻" 0 

𝐶\𝐻P$ +	𝐶\𝐻" 	→ 𝐶t𝐻P$ +	𝐶"𝐻" 0 

𝐶\𝐻P$ + 	𝐶	 → 𝐶d𝐻$ +	𝐻" 0 

𝐻" 	+	𝐶"𝐻	 → 𝐶"𝐻" 	+ 	𝐻 0 

𝐻	 +	𝐶\𝐻" 	→ 𝐶\𝐻P 0 

𝐶"𝐻P 	+	𝐶"𝐻"$ → 𝐶"𝐻P$ +	𝐶"𝐻" 0 

𝐻" 	+	𝐶"𝐻"$ → 𝐶"𝐻P$ + 	𝐻 0 
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𝐶\𝐻"$ +	𝐶\𝐻" 	→ 𝐶{𝐻\$ + 	𝐻 0 

𝐶\𝐻"$ +	𝐶\𝐻" 	→ 𝐶{𝐻P$ + 	𝐻 0 

𝐻" 	+ 	𝐻	 → 𝐻	 +	𝐻" 0 

𝐶\𝐻" 	+	𝐶"𝐻	 → 𝐶t𝐻" 	+ 	𝐻 0 

𝐻" 	+ 	𝐻	 → 𝐻	 +	𝐻" 0 

𝐶𝐻	 + 	𝐶	 → 𝐶" 	+ 	𝐻 0 
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Table IV Surface reactions included in the model. 

Surface Before Surface After Impinging 
Species 

Released 
Species 

Probability 

a-C a-C:H 𝐻 − 0.9 

a-C:H a-C 𝐻 𝐻" 0.1 

any a-C 𝐶" − 1 

any a-C 𝐶 − 1 

any a-C:H 𝐶𝐻 − 1 

a-C a-C:H 𝐶"𝐻 − 1 

a-C a-C:H 𝐶\𝐻" − 1 

a-C a-C:H 𝐶\𝐻P − 1 

a-C a-C:H 𝐶"𝐻P − 1 

a-C:H a-C 𝐶"𝐻 𝐶"𝐻" 0.1 

a-C:H a-C 𝑖𝑜𝑛𝑠 𝐻 0.1 

a-C:H a-C:H 𝑖𝑜𝑛𝑠 − 0.9 

any any 𝐴𝑟$ 𝐴𝑟, 𝑒 1 

any any 𝑒 − 1 
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8. List of figure captions 

• Figure 1: (Top (a)) Mass spectrum generated from cracking pattern taken from the 

NIST database [53]. Each pattern was scaled relatively to the backgound level of its 

main peak in the spectrum below. (Bottom (b)) Mass spectrum in RGA mode with 

the plasma on (signal) and off (background) at 0.02 A, 0.66 Pa and 10 cm from the 

cathode with a ratio of 20 % C2H2 in logarithmic scale. Some possible species 

attributions are shown above prominent peaks.  

• Figure 2: Main ion intensities from mass spectrometry (empty marker), compared 

with simulated ion densities in front of the substrate (filled marker) for different 

currents. Both point sets correspond to a fixed ratio of 20 % acetylene. The grey 

lines show linear fit applied to experimental and simulated values together 

(determination factors r² are shown in the legend). The spectrometer intensities in 

count s-1 where converted to densities by multiplying by an arbitrary conversion 

factor (1.28e8 [m-3 s count-1]) chosen to give the best overall fits. 

• Figure 3: (Left) Intensity difference (𝐼}j~��~	�� − 𝐼}j~��~	���) of main RGA mass 

spectrometric peaks at 0.02 A, 0.66 Pa, and 10 cm from the cathode with varying 

acetylene ratio. (Right) Simulation S1 main radicals’ densities after 16 µs for 

different acetylene ratios. The arrows represent the expected relative evolution of 

concentrations as the reactive H and C2H get consumed in reactions producing C4H2 

and H2. 

• Figure 4: Main ions intensities from mass spectrometry plotted against the acetylene 

ratio for a fixed current set at 0.016A with a distance of 18 cm between the mass 

spectrometer and the magnetron. 
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• Figure 5: Intensity of main ions peaks measured with the mass spectrometer vs the 

total chamber pressure in a discharge with 4 % acetylene and a current set at 100 

mA. 

• Figure 6: Vertically clipped view of the electron density after 40 µs in a simulation 

with 20 % acetylene in the 3D meshed chamber used in the simulation. Distances 

are in mm and density is color coded in m-3. Each colored point corresponds to a 

simulation cell. Cells with electron density bellow 1 ´ 1013 m-3 were hidden. The 

bounding box axis is graduated in millimeters. 

• Figure 7: Mean densities of several species’ vs the distance from the cathode surface 

in millimeters in simulation S1 (20 % acetylene, and 0.8 W). Each curve 

corresponds to one time-step of 1µs from 0 (blue) to 40 µs (yellow) 

• Figure 8: Carbon and acetylene ion density in the chamber cut with a vertical plane 

and absorption profiles on the chamber walls in the S1 simulation after 40 µs. 

• Figure 9: Mean densities of principal species and species groups as a function of the 

distance from the cathode [mm] in simulation S1 (20 % acetylene, and 0.8 W) after 

40 µs of simulation. 

• Figure 10: Mean densities of all charged (Top) and neutral species (Bottom) in the 

plasma bulk of several simulations after 20 µs, with varying acetylene ratio (Left) 

and power (Right). The different line types are underlying the similar evolutions of 

several groups of species: the first order (plain), second order (dot-dashed), and 

other species (dashed). 
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Figure 10 


