
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Adapting Queries to Database Schema Changes in Hybrid Polystores

Fink, Jerome; Gobert, Maxime; Cleve, Anthony

Published in:
Proceedings of the 20th IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM 2020)

DOI:
10.1109/scam51674.2020.00019

Publication date:
2020

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Fink, J, Gobert, M & Cleve, A 2020, Adapting Queries to Database Schema Changes in Hybrid Polystores. in
Proceedings of the 20th IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM 2020)., 9252014, Proceedings - 20th IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2020, IEEE Computer Society Press, pp. 127-131.
https://doi.org/10.1109/scam51674.2020.00019

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Jul. 2025

https://doi.org/10.1109/scam51674.2020.00019
https://researchportal.unamur.be/en/publications/628170ec-aeb5-49b1-bbf6-87291870ce1a
https://doi.org/10.1109/scam51674.2020.00019

Adapting Queries to Database Schema Changes
in Hybrid Polystores

Jérôme Fink
PReCISE, Namur Digital Institute

University of Namur, Belgium
jerome.fink@unamur.be

Maxime Gobert
PReCISE, Namur Digital Institute

University of Namur, Belgium
maxime.gobert@unamur.be

Anthony Cleve
PReCISE, Namur Digital Institute

University of Namur, Belgium
anthony.cleve@unamur.be

Abstract—Database schema change has long been recognized
as a complex, time-consuming and risky process. It requires not
only the modification of database structures and contents, but
also the joint evolution of related application programs. This co-
evolution process mainly consists in converting database queries
expressed on the source database schema, into equivalent queries
expressed on the target database schema. Several approaches,
techniques and tools have been proposed to address this problem,
by considering software systems relying on a single database. In
this paper, we propose an automated approach to query adapta-
tion for schema changes in hybrid polystores, i.e., data-intensive
systems relying on several, possibly heterogeneous, databases.
The proposed approach takes advantage of a conceptual modeling
language for representing the polystore schema, and considers
a generic query language for expressing queries on top of
this schema. Given a source polystore schema, a set of input
queries and a list of schema change operators, our approach
(1) identifies those input queries that cannot be transformed
into equivalent queries expressed on the target schema, (2)
automatically transforms those input queries that can be adapted
to the target schema, and (3) generates warnings for those output
queries requiring further manual inspection.

Index Terms—database schema evolution, query adaptation,
hybrid polystores

I. INTRODUCTION

In the last years, an increasing number of organizations
have been considering NoSQL database engines as a migration
target for existing information systems or as a platform for
planned future systems. This trend is motivated by the sake
of high performance and availability. However, while small-
scale data loss or temporary inconsistency can be tolerable
for some subsets of the data managed by an organization,
for certain types of business-critical data such limitations are
unacceptable. The consensus that seems to be emerging from
the relational/NoSQL debate indicates that the two types of
systems address substantially different classes of problems
and that they should be selected accordingly. As a result,
organizations increasingly need to use both types of databases
in parallel, with an unavoidable data overlap between them.

As a consequence, today’s data-intensive systems often
exhibit software evolution requirements that cross-cut the
problem domains of relational and NoSQL systems. Unfortu-
nately, there is a lack of methodological guidance, dedicated

This work was supported by the European Union H2020 research and inno-
vation programme under the TYPHON project (#780251), and by the F.R.S-
FNRS and the FWO under the EOS SECO-ASSIST project (#30446992).

techniques, and tool support for evolving such heterogeneous
datastores, also called hybrid polystores, that would bridge dif-
ferent types of data stores in the context of schema evolution.

This paper contributes to filling this gap, by presenting a
tool-supported approach to the adaptation of database queries
under hybrid polystore schema evolution. This approach takes
advantage of a conceptual modeling language for representing
the polystore schema and considers a generic query language
for expressing queries on top of this schema. Given a source
polystore schema, a set of input queries and a list of schema
change operators, our approach (1) identifies those input
queries that cannot be transformed into equivalent queries
expressed on the target schema, (2) automatically transforms
those input queries that can be adapted to the target schema,
and (3) generates warnings for those output queries requiring
further manual inspection.

The remainder of the paper is structured as follows. In
Section II, we position the novelty of our approach with
respect to related literature. Section III summarizes the tech-
nical background of our approach, which builds on existing
polystore modeling and query languages. We present our query
transformation approach and its implementation in Section IV
and an example usage scenario in Section V. Section VI
concludes the paper and anticipates future work.

II. RELATED WORK

The adaptation of client application programs under
database schema evolution is a complex process addressed by
several existing approaches, techniques and tools.

The PRISM workbench [1] provides an integrated support to
relational schema evolution. It includes (1) a language for the
specification of Schema Modification Operators (SMOs) for
relational schemas, (2) impact analysis tools that evaluate the
effects of such operators, (3) automatic data migration support,
and (4) translation of old queries to work on the new schema.
Query adaptation derives from the SMOs through SQL view
generation and query rewriting techniques.

The 2LT project [2] aims to formalize and to provide
generic support for two-level transformations, which involve
a transformation on the level of types with transformations on
the level of values and operations. The solutions offered by the
2LT project combine existing techniques of data refinement,
typed strategic rewriting, point-free program transformation

and advanced functional programming. This generic approach
revealed to be applicable to the coupled transformation of
database schemas, data instances, queries and constraints.

Bidirectional transformations [3] can also be used to decou-
ple the evolution of the database schema from the evolution
of the queries, by allowing changes to the schema to be
implemented while some queries can remain unchanged. In
particular, the concept of Channel [4] was introduced to for-
malize transformations that translate application code queries
to a “virtual” database schema to equivalent queries into the
actual schema.

Stonebraker et al. [5] discuss two possible ways of co-
evolving database schemas and related programs. A first way
is the data-first way. It consists in first evolving the database
schema, keeping it in the third normal form (3NF) and then
adapting the application program regarding those changes. In
real-world companies, this is almost never applied [6], due to
potential higher cost and difficulties of program maintenance.
Therefore the application-first strategy is favored. It consists of
mitigating or even avoiding application code changes. Those
two approaches do not constitute fully-satisfying solutions.
The first one leads to program decay as applications may not
correctly be adapted to the schema changes. The second leads
to a database decay as data may be duplicated and thus the
schema may become less and less conform to the 3NF.

To avoid such problems, Stonebraker et al. recommend
to add an intermediate layer accessing the database(s) and
to make application programs manipulate data through this
layer. In the case of schema evolutions, the database access
API would not change from the programs’ point of view, but
only the implementation of the API functions would change,
under the responsibility of the database administrators. An
implementation of this approach has been proposed in [7],
where the authors propose an automated derivation of a rela-
tional database from a conceptual schema and the automated
generation of a data manipulation API providing programs
with a conceptual view of the relational database.

All approaches discussed above consider schema-program
co-evolution for software systems relying on a single database.
In this paper we address the same problem, but for the more
complex case of hybrid polystores. In this context, the presence
of heterogeneous data models and query languages increases
the difficulty of the task. Our approach is, however, inspired
by previous approaches and combines their best ingredients,
namely (1) the use of an intermediate layer between the
programs and the polystore databases, (2) the use of a generic
modeling language for representing the polystore schema at a
conceptual level, (3) the use of an intermediate query language
for expressing polystore database queries, and (4) the specifi-
cation of schema modification operators, each associated with
source-to-source query transformation rules. In addition, our
approach also supports the generation of status messages for
each database query returned as output, indicating whether
the query has been modified, has remained unchanged, has
become invalid, or requires further manual inspection.

III. BACKGROUND

Our query adaptation approach relies on previous contri-
butions introduced by Kolovos et al. [8], in particular the
TyphonML polystore modeling language and the TyphonQL
polystore query language. Those languages allow one, respec-
tively, to specify a unified conceptual schema for the various
databases belonging to a hybrid polystore, and to rely on
an intermediate query language enabling to query the whole
polystore data with a single unified language. This section
briefly presents those languages and highlights their benefits
in the context of schema evolution in general, and query
adaptation in particular.

A. TyphonML and TyphonQL

TyphonML [8] allows one to describe the structure and the
placement of the data in a hybrid polystore. Listing 1 shows
an example of TyphonML polystore schema.

// Conceptual section
entity Description{

id : int
description : string[500]
product :-> Product[1]

}
entity Product{

id : string[256]
name : string[50]
price: float

}
entity Order{

id: int
total_price : float
products :-> Product[0..*]
owner :-> User[1]

}
entity User{

id : int
name: string[50]
cardNumber : string[16]
orders :-> Order."Order.owner"[0..*]

}

// Physical mapping section
relationaldb RelationalDatabase{

tables{
table{

ProductDB: Product
index productIndex{

attributes(’Product.name’)
}
idSpec(’Product.name’)

}
}

}
documentdb DocumentDatabase{

collections{
ReviewsDB: Review

}
}

//Schema Modification Operators
ChangeOperators[

merge entities Product Description as Product,
split entity User to CreditCard attributes:[cardNumber]

]

Listing 1. TyphonML example

It is divided into three parts :

• The conceptual part describes the semantics of the poly-
store data, in terms of conceptual entities, their attributes
and the relations between them;

• The physical part : describes the mapping between the
conceptual entities and the physical components (tables,
documents, graphs) of the polystore databases;

• The change operators : A list of schema modification
operators (SMOs) to apply to the polystore schema. This
is the entry point of the evolution process and they are
provided by the user.

Once deployed, the polystore can be queried using the Ty-
phonQL language [8]. The language proposes a unified con-
crete syntax for CRUD operations performed on the polystore.
The TyphonQL query engine compiles those queries into na-
tive queries manipulating the actual databases of the polystore.
This means that migrating a polystore entity from one database
platform to another within the polystore, does not impact the
related TyphonQL queries, which may remain unchanged. The
TyphonQL engine maps dynamically the query towards the
right DBMS based on the physical part of the TyphonML
schema. Some examples of TyphonQL queries are given in
Listing 2

// select the review entity of a specific product
from Product p select p.price where p.name == ’laptop’

// insert a product
insert Product {id: ’298’, name:

’kettle’, price: 5.23}

// update
update Product p where p.id == 563 set{name: ’laptop’}

Listing 2. Query examples

IV. QUERY ADAPTATION

A. Evolution approach

Our approach considers a hybrid polystore that has been
modeled using TyphonML and that is queried by means of Ty-
phonQL. Without the TyphonML and TyphonQL abstractions,
this process would require query transformation rules for each
specific native query language of the polystore. This would
result in a complex and hard to maintain implementation.
The adoption of the TyphonQL unified query language allows
us to mainly focus on the semantic changes applied to the
polystore schema. Hence, our problem becomes: How to
adapt TyphonQL polystore queries to an evolving TyphonML
polystore schema?

The evolution process of an hybrid polystore consists into
producing a target version of the polystore starting from a
source model and applying a set of Schema Modification
Operators. Figure. 1 depicts the evolution process involved in
the query adaptation tool. It takes as input a source TyphonML
schema (as described in Listing 1), a set of TyphonQL queries
(as in Listing 2) running on the source schema and a set
of Schema Modification Operators (SMOs section in Listing
1) to apply on the source schema. The output of the query
adaptation process is the transformed set of queries running
on the target TyphonML schema with their categories and
annotations.

Fig. 1. Overview of the hybrid polystore evolution process

B. Schema Modification Operators and query adaptation rules

The schema modification operators (or SMOs) are evo-
lution operations that manipulate objects of the TyphonML
model, those objects include the Entity, the Relation or the
Attribute. They are provided by the user and are the main
entry point for the evolution process of the polystore. Our
query adaptation approach is able to handle all changes that
could happen on one of those three types of objects.

The evolution operators can be classified in three categories,
depending on their semantic impact, i.e., the extent to which
they preserve, augment or decrease the informational content
of the polystore. A semantics-preserving schema modification
(∈ S=), also called schema refactoring, does not impact the in-
formational content of the polystore, but only the way the data
is structured. This is the case, for instance, when renaming an
attribute or when migrating an entity. Semantics-augmenting
schema modifications (S+) add informational contents to the
polystore, for instance by adding an entity or an attribute.
Conversely, semantics-decreasing schema modifications (S−)
remove some informational contents, e.g., when removing an
entity or when restricting the cardinalities of a relationship.
S= operations can generally be propagated automatically to

related queries and in some cases the queries may even be left
unchanged. In the case of S− or S+ operations, automated
adaptation of queries is not always possible or needed.

To express those different situations, our query adapta-
tion process distinguishes four possible categories of output
queries:

• UNCHANGED: the input query has not been changed
since it remains valid with respect to the target schema;

• MODIFIED: the input query has been transformed into
an equivalent output query, expressed on top of the target
schema;

• WARNING : the output query (be it unchanged or
transformed) is valid with respect to the target schema,
but it may return a different result set;

• BROKEN: the input query has become invalid, but it

Object Operation Semantic
class.

Create Read Update Delete

Entity

Add S+ U U U U
Remove S− B B B B
Rename S= M M M M
Merge S= B W M W
Split S= B W B B
Migrate S= U U U U

Attributes

Add S+ B W U W
Remove S− B B B B
Rename S= M M M M
Change
type

S−/+ W W W W

Relations

Add S+ U U U U
Remove S− B B B B
Cardinality
change

S−/+ W W W W

Rename S= M M M M
TABLE I

SCHEMA MODIFICATION OPERATIONS SUPPORTED BY OUR APPROACH
AND THE WORST RESULT CATEGORY FOR EACH INPUT QUERY TYPEU:

UNCHANGED, M: MODIFIED, W: WARNING, B: BROKEN

cannot be transformed into an equivalent query expressed
on top of the target schema.

The queries labelled as BROKEN or WARNING are also
annotated with a message explaining to the user which oper-
ator caused trouble. This helps the user to identify the issue
and to manually adapt the query (or its context) to the new
schema semantics, when needed/possible. Table I lists all the
schema modification operators that we currently support and
shows the worst result expected by this change on each type
of queries (create, read, update and delete). For instance, when
two entities are merged, the delete queries are annotated with a
warning message as they would delete more information than
before. When an attribute is removed, all queries that explicitly
use the removed attribute are broken.

C. Implementation

Figure 2 goes into details of the query adaptation process.
Firstly the tool parses the TyphonML schema provided as
input to extract, on one hand, the current model structures
and, on the other hand, the set of SMOs to apply. Secondly
each operator is applied sequentially to each input query. The
operator, the query and the schema are passed through routing
rules that send them to the correct handler function according
to the change operator processed. This routing is done by
using extensively the pattern matching scheme of the Rascal
Meta Programming Language [9]. Finally, the handler function
produces the required transformations and query adaptation
category. This complete structure makes it easy to support
further additional SMO. The developer just has to add a new
routing rule and a new handler function for the new change
operator.

The resulting tool consists of an Eclipse plugin. Its code is
open sourced1 and an installation guide is also available along
with demo scripts.2

1github.com/typhon-project/typhon-evolution
2Query adaptation examples

Fig. 2. Detailed view of the Query Adpatation Process

V. EXAMPLE

In this section we illustrate the query adaptation process
using a concrete example. Previously described Listing 1
represents a TyphonML schema containing evolution oper-
ators, in the Schema Modification Operator section, which
describe the modification required by the user. The change
operators are applied sequentially to the source schema. In
this example, firstly the user wants to merge the Description
entity into the Product entity and secondly wants to extract
the attribute cardNumber of the entity User to a new entity
called CreditCard.

Applying the merge and split operators consists of sev-
eral atomic operations, respectively removing the Descrip-
tion entity, adding an attribute description to entity Product
for the merge operation, the creation of a new relationship
to CreditCard in User and the creation of entity CreditCard
for the split operation. The application of those operators
results in a target TyphonML schema as shown in Listing 3.

entity Product{
id : string[256]
name : string[50]
price: Real
description : string[500]

}
entity Order{

id: int
total_price : float
products :-> Product[1..*]
owner :-> User[1]

}
entity User{

id : int,
name: string[50],
orders :-> Order."Order.owner"[0..*]
to_CreditCard :-> CreditCard[1]

}
entity CreditCard{

cardNumber : string[16]
}
...

Listing 3. Target TyphonML Schema

https://github.com/typhon-project/typhon-evolution/tree/master/plugin-evolution
https://figshare.com/articles/online_resource/Query-adaptation-examples/12821567

Let us consider the set of TyphonQL queries expressed in
Listing 4. They consist of CRUD queries involving entities or
attributes impacted by the provided SMOs.

/*1*/ from Product p, Description d select d.description
where d.product == p, p.id == "AZKIU",
/*2*/ from User u select u.cardNumber where u.name == "Doe",

/*3*/ insert User {id: 1, name: "Doe", cardNumber:"536864726"},

/*4*/ delete Product p where p.id = "EYIR",
/*5*/ delete User u where u.id == 5,

/*6*/ update Product p where p.id == "EYIR"
set{name: "Blender"},
/*7*/ update User u where u.id == 5
set {cardNumber:"5362637"}

Listing 4. Input queries expressed on the source TyphonML schema

The result of the query adaptation process is shown in
Listing 5. For example Query 1 in Listing 4 selecting the De-
scription attribute does not require the join condition anymore
as this attribute in the target schema is now in the Product
entity. Query 2 now needs a new join condition. Query 3 & 7
are now broken as cardNumber is not in User anymore. Query
5 is also marked as broken as cardNumber will not be deleted
with the user anymore, in order to keep the same semantics
two queries are required, one deleting the correct CreditCard
entity and one deleting the User. This multi query adaptation
constitutes a current limitation of this tool. Query 6 is not
changed as it does not involve impacted attributes.

/*1*/ MODIFIED
#@ Product and Description merged @#
from Product p select p.description
where p.id == "AZKIU",

/*2*/ WARNING
#@ Entity User split into User, CreditCard @#
from User u, CreditCard c select c.cardNumber
where u.name == "Doe", u.to_CreditCard == c,

/*3*/ BROKEN
#@ Entity User split into User, CreditCard @#
insert User {id: 1, name: "Doe", cardNumber:"536864726"},

/*4*/ WARNING
#@ Product and Descriptions merged.
Delete will erase more information than before @#
delete Product p where p.id == "EYIR",

/*5*/ BROKEN
#@ Entity User split into User, CreditCard @#
delete User u where u.id == 5,

/*6*/ MODIFIED
#@ Product and Description merged @#
update Product p where p.id == "EYIR"
set{name: "Blender"}

/*7*/ BROKEN
#@ Entity User split into User, CreditCard @#
update User u where u.id == 5
set {cardNumber:"5362637"}

Listing 5. Output queries expressed on the target TyphonML schema

Using the adaptation classification (broken, warning, un-
changed, modified) and its motivation messages above each
query the user can make an informed decision of whether to
use or not the output queries in his programs.

VI. CONCLUSION

In this paper, we propose a tool-supported approach, avail-
able through an Eclipse Plugin, which, given a conceptual
polystore schema and a list of changes applied to this schema,
is able to transform polystore queries into equivalent queries
expressed on the evolved schema, when it is possible. If this is
not possible, the user is provided with insight about what went
wrong or what should be checked manually. The proposed
approach is designed to work on a hybrid polystore, and relies
on (1) a conceptual modeling language for representing the
polystore schema, (2) a finite set of atomic schema modifica-
tion operators to apply to this schema, (3) an intermediate
polystore query language enabling the manipulation of the
polystore data independently from the physical platforms
(relational, NoSQL) where the data are actually stored. The
current implementation has two main limitations. First, it is
currently restricted to the transformation of each input query
into another single query. The tool is not yet able to handle
cases when an input query should be transformed into a script
of multiple successive queries, e.g., when splitting an entity.
Furthermore, the tool requires as input a set of polystore
queries. It is not yet able to statically extract such queries
from application programs or to infer and exploit related
context information. This would require more sophisticated
string analysis techniques (e.g., [10]), allowing the tool to deal
with queries that are dynamically generated.

Our future work includes the further integration of our query
transformation tool with a Java source code IDE, as well as
the systematic evaluation of our approach based on industrial
polystore evolution scenarios.

REFERENCES

[1] C. A. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Update rewriting
and integrity constraint maintenance in a schema evolution support
system: Prism++,” Proc. VLDB Endow., vol. 4, pp. 117–128, Nov. 2010.

[2] J. Visser, “Coupled transformation of schemas, documents, queries, and
constraints,” ENTCS, vol. 200, no. 3, pp. 3–23, 2008.

[3] J. F. Terwilliger, A. Cleve, and C. Curino, “How clean is your sandbox?
towards a unified theoretical framework for incremental bidirectional
transformations,” in ICMT 2012, vol. 7307 of LNCS, pp. 1–23, Springer,
2012.

[4] J. F. Terwilliger, L. M. L. Delcambre, D. Maier, J. Steinhauer, and
S. Britell, “Updatable and evolvable transforms for virtual databases,”
PVLDB, vol. 3, no. 1, pp. 309–319, 2010.

[5] M. Stonebraker, D. Deng, and M. L. Brodie, “Application-database co-
evolution: A new design and development paradigm,” New England
Database Day, pp. 1–3, 2017.

[6] M. Stonebraker, D. Deng, and M. L. Brodie, “Database decay and how
to avoid it,” in 2016 IEEE Int. Conf. on Big Data, pp. 7–16, IEEE, 2016.

[7] A. Cleve, A.-F. Brogneaux, and J.-L. Hainaut, “A conceptual approach
to database applications evolution,” in Proc. of ER 2010, vol. 6412 of
LNCS, pp. 132–145, Springer, 2010.

[8] D. Kolovos, F. Medhat, R. Paige, D. Di Ruscio, T. Van Der Storm,
S. Scholze, and A. Zolotas, “Domain-specific languages for the design,
deployment and manipulation of heterogeneous databases,” in 11th
IEEE/ACM Int. Workshop on Modelling in Software Engineering (MiSE),
pp. 89–92, 2019.

[9] P. Klint, T. van der Storm, and J. J. Vinju, “Rascal: A domain specific
language for source code analysis and manipulation,” 9th IEEE Int.
Working Conf. on Source Code Analysis and Manipulation (SCAM),
pp. 168–177, 2009.

[10] L. Meurice, C. Nagy, and A. Cleve, “Detecting and preventing program
inconsistencies under database schema evolution,” in IEEE Int. Conf. on
Software Quality, Reliability and Security (QRS), IEEE, Aug. 2016.

