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“Imagination will often carry us to worlds that never 

were. But without it we go nowhere.” 

Carl Sagan 
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Summary 

 

               Gallid herpesvirus 2 (GaHV-2) is an avian alphaherpesvirus that causes highly malignant 

T-cell lymphoma considered to be the most prevalent cancer in the animal kingdom. In susceptible 

chickens, the ultimate consequence of the host-virus interactions is the transformation of the CD4+ 

T-cells, which eventually proliferate to form visceral lymphomas, resulting in high mortality. 

 The GaHV-2 genome belongs to a class E genome with a size of 175 to 180 kilobase 

pairs. GaHV-2 genome consists of a unique long (UL), and a unique short (US) segments bracketed 

by inverted repeats known as terminal and internal repeats long (TRL and IRL) and terminal and 

internal repeats short (TRS and IRS). GaHV-2 genes, similar to those of other herpesviruses, also 

belong to three kinetic classes of immediate-early, early and late genes based on the requirements 

for viral protein synthesis and DNA replication. 

               During GaHV-2 infection, several viral factors, proteins and diverse RNAs, including the 

major oncoprotein Meq, the viral interleukin-8 and GaHV-2-encoded miRNAs, contribute to 

lymphomagenesis. In addition, GaHV-2 encodes two copies of viral telomerase RNA subunit 

(vTR), which is expressed both during productive infection and in virus-transformed T-cell lines. 

vTR, a non-coding RNA, shares 88% sequence homology with chicken TR (chTR) and it was likely 

acquired from the chicken genome during virus-host co-evolution. vTR interacts with the chicken 

telomerase reverse transcriptase subunit (TERT) enhancing telomerase activity and contributing to 

the efficient and rapid onset of lymphoma. Furthermore, vTR re-localises ribosomal protein L22 

that plays an essential role in T-cell development and transformation. Moreover, vTR functions 

independent of the telomerase complex are responsible for tumour progression and dissemination. 

It is the most abundant viral transcript detected in GaHV-2-induced tumour cells with higher 

expression than chTR in infected cells, consequence likely due to differences in their promoters. 

The vTR promoter has additional AP-1 sites, c-Myc transcription response elements (namely E-

box 1, E-box 2 and E-box 3) and EBS transcription factor binding sites. However, it was 

demonstrated that E-box 1 was not functional. It was shown that the c-Myc oncoprotein is 

involved in the regulation of vTR during GaHV-2-induced lymphomagenesis and that increased 

expression of vTR is essential for the oncogenic function of the virus.  

               During the viral life cycle, transcriptional modifications and epigenetic changes, together 

with post-transcriptional and post-translational modifications, regulate expression of cellular and 

viral genes. Altogether, they allow GaHV-2 to switch between the productive and latent phases, 

and to induce infected cell transformation.  
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               The focus of this study was on the epigenetic mechanisms involved in the switch between 

the productive and latent phase of GaHV-2 life cycle and on the importance of functional c-Myc 

response elements during virus-induced lymphomagenesis.  

 We established DNA methylation/hydroxymethylation patterns of vTR promoter in vitro 

and in vivo and measured the impact of methylation on the telomerase activity and c-Myc response 

elements (c-Myc REs) of the vTR promoter. Furthermore, to study the importance of the c-Myc 

binding sites in virus-induced tumorigenesis, a recombinant virus bearing mutations in functional 

c-Myc REs, as well as revertant, were produced using the bacterial artificial chromosome of a highly 

oncogenic strain (pRB-1BΔIRL) by two-step Red-mediated mutagenesis. Susceptible (B13B13) 

chickens were infected with the recombinant viruses to assess the impact of c-Myc REs mutations. 

To investigate GaHV-2 replication and telomerase activity during infection, blood and feather 

follicle epithelium were collected at specific time points from infected chicken. Animals were daily 

monitored for the clinical symptoms of the disease and euthanised 55 days-post infections to assess 

the number of tumours developed in visceral organs. 

 We demonstrated that telomerase activity was considerably increased following viral 

reactivation. Furthermore, CpG sites within functional c-Myc REs showed specific changes in 

methylation after in vitro reactivation and in infected animals over time. Promoter reporter assays 

indicated that c-Myc RE, located two nucleotides downstream of the transcription start site, is 

involved in regulating vTR transcription and that methylation strongly influenced vTR promoter 

activity. 

 To study the importance of the CpG sites found in c-Myc REs in virus-induced 

tumorigenesis, we generated a recombinant virus containing mutations in both CpG sites of c-Myc 

REs as well as revertant. Introduced mutation in vTR promoter did not affect the replication 

properties of the recombinant viruses in vitro. In contrast, replication of the mutant virus in infected 

animals was severely impaired and tumour formation completely abrogated. Our data provide a 

more in-depth characterisation of c-Myc oncoprotein REs and DNA methylation involvement in 

transcriptional regulation of vTR. 
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1.1. Epigenetics and epigenetic modifications 

 

1.1.1. General overview 

 

For nearly eight decades since Conrad Waddington introduced the term epigenetics and 

defined it as "the branch of biology which studies the causal interactions between genes and their 

products which bring the phenotype into being" [1], researchers were trying to untangle the clues 

that suggested gene function could be altered by more than just changes in the DNA sequence. 

With the rapid expansion of genetics over the following years, the original meaning of this 

definition, that referred to all molecular pathways modulating the expression of a genotype into a 

particular phenotype, has gradually evolved [2]. Today is generally accepted that epigenetics is "the 

study of changes in gene function that are mitotically and meiotically heritable and which do not 

entail a change in the DNA sequence" [3].  

Epigenetic programming and regulation have crucial roles in animal and plant development 

as well as adult life, and stable inheritance of epigenetic settings is essential for the maintenance of 

tissue- and cell-specific functions through stable expression or repression of genes [4]. To date, 

many examples of epigenetic gene repression or activation were described [5]. These include the 

inactivation of one of the two X chromosomes in mammalian female somatic cells [6], the allelic 

silencing at imprinted genes, the control of lineage-specific maintenance of gene expression at 

different loci and the heritable repression of repeat elements of viral or retroviral origin [7]. In 

addition, epigenetic imprints have a crucial role in maintaining genomic stability. Indeed, the 

silencing of centromeres and telomeres ensures the correct attachment of microtubules to 

centromeres and reduces excessive recombination between repetitive elements, respectively [8,9]. 

Furthermore, epigenetic regulation of transposable elements prevents their transposition and 

possible insertional mutagenesis [10].  

Epigenetic processes that generate the epigenome involve non-coding RNA-associated 

silencing, post-translational histone modification and DNA methylation [11]. These processes, 

which alter gene expression and can affect cell fate and phenotype plasticity as well as behaviour 

[12], will be presented further below.  

Phenotypic plasticity is an essential mechanism for organisms to buffer their population 

from environmental changes [13]. It was long ago established that natural populations possess 

genetic variation in the extent of plasticity; however, such difference in phenotypic variance cannot 
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be attributed only to single-gene effects. A recent rise in the evidence suggests that other sources 

that include multigene effects, environmental influences and importantly epigenetic effects, could 

also play a significant role in the shaping of phenotypic responses [13].  

Furthermore, the long-lasting influences of the environment on phenotypic characteristics 

without apparent underlying genetic change were repeatedly demonstrated [14]. For example, in 

honeybees (Apis mellifera), fertile queens and sterile workers are alternative forms of the adult bee 

that develop from genetically identical larvae following differential feeding with royal jelly (Figure 

1.0.a). This feeding results in differential DNA methylation that is a vital component of an 

epigenetic network controlling a most crucial aspect of eusociality, the reproductive division of 

labour and the differential expression of many genes between queen and worker larvae [15].  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.0. EFFECT OF THE ENVIRONMENTAL FACTORS ON PHENOTYPIC CHARACTERISTICS OF 

DIFFERENT SPECIES. 

a) Honeybee biology depends on a polyphenism that produces different female castes. During larval development, 

female larvae that were fed royal jelly develop faster, producing queen bees. Female larvae that were fed with worker 

jelly have slower development and result in worker bees [16]. b) In mealybugs, temperature change during early life 

cycle results in highly stable heterochromatin that induces development of males, with distinct phenotypic differences 

compared to females [17]. 

 

 

 

a) b) Female Male Male Female 
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Moreover, in some groups of insects, like mealybugs (Pseudococcidae), sex determination is 

triggered by temperature changes during gametogenesis. Male and female mealybugs are 

morphologically highly divergent, although genetically identical. In the mealybugs, the formation 

of stable heterochromatin and the silencing of the entire paternally inherited genome induce male 

sex during early development (Figure 1.0.b) [17]. 

Furthermore, complex animal models have shown that mothering style, nutrition and 

different environmental exposures during development can lead to locus-specific changes in the 

epigenome [18,19]. For mice, in utero or neonatal exposure to bisphenol A (BPA), a chemical used 

in the manufacture of polycarbonate plastic, is associated with higher body weight, increased breast 

and prostate cancer occurrence and altered reproductive function. This endocrine-active 

compound shifts the coat colour distribution of viable yellow agouti (Avy) mouse offspring toward 

yellow by decreasing DNA methylation in a retrotransposon upstream of the Agouti gene (Figure 

1.1.a and 1.1.b). Moreover, maternal dietary supplementation with methyl donors reversed DNA 

hypomethylating effect of BPA. This indicated that early developmental exposure to BPA could 

change offspring phenotype by stably altering the epigenome and are counteracted by maternal 

dietary supplements [18].  

In addition, rat models showed that in times of increased environmental stress, there is less 

time for maternal care in the form of postnatal maternal licking/grooming and arched-back nursing 

(LG-ABN). Low levels of LG-ABN in the first week after birth cause offspring to be more fearful, 

contrasting the offspring of high LG-ABN mothers. These behavioural characteristics will persist 

into adulthood, where a female usually displays the same behaviour as her mother [20]. 

Interestingly, epigenetic modifications of the regulatory elements of relevant stress response genes 

were detected. The stress response in mammals is mediated through the hypothalamic-pituitary-

adrenal (HPA) axis and involves glucocorticoid hormones. The reduced fearfulness of high LG-

ABN rats is the result of an increase in the number of glucocorticoid receptors in the hippocampus. 

High LG-ABN mothering results in a high serotonergic tone in the hippocampus of the pups, 

leading to activation of cAMP and increased expression of the nerve growth factor inducible 

protein A (NGFI-A). Increased binding of NGFI-A to the promoter of the glucocorticoid receptor 

(GR) gene is associated with DNA hypomethylation, histone acetylation, and increased expression 

of GR. This increase in expression, in turn, results in more glucocorticoid receptors in the 

hippocampus. The epigenetic marks appear to maintain the GR expression state for the rest of the 

rat's life (Figure 1.1.c) and act as the molecular memory that confers persistence of the phenotype 

into adulthood [21,22]. 
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FIGURE 1.1. EXAMPLES OF RELATIONSHIPS BETWEEN EPIGENETIC MODIFICATIONS AND 

ENVIRONMENTAL FACTORS. 

a) Maternal bisphenol A (BPA) exposure shifts offspring coat colour distribution toward yellow. Genetically identical 

Avy/a offspring representing the five coat colour phenotypes. b) Average methylation measured in ectodermal (brain 

(B) and tail (T)), mesodermal (kidney (K)), and endodermal (liver (L)) tissues from BPA-exposed Avy/a offspring is 

positively correlated to the five coat colour phenotypes (adapted from [18]). c) Mothering style in the rat, characterised 

by licking/grooming (LG) and arched-back nursing (ABN), is preserved across generations by molecular events 

marking the first week of pup's life. High LG-ABN mothering results in a high serotonergic tone in the hippocampus 

of the pups, leading to increased expression of the nerve growth factor inducible protein A (NGFI-A). NGFI-A binds 

to the promoter of the glucocorticoid receptor (GR) gene and stimulates DNA hypomethylation, histone acetylation 

and increases GR expression. Higher glucocorticoid receptor numbers in the hippocampus are associated with reduced 

stress levels. The epigenetic signatures maintain the GR expression into adulthood and determine the level of LG-

ABN mothering (adapted from [21,22]). 

a) b) 

c) 
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Importantly, the relationship between epigenetics and specific phenotype appears more 

evident in the states of the disease. For instance, divergent epigenetic signatures were identified in 

atherosclerosis [23], osteoarthritis [24], lupus erythematosus [25], imprinting disorders [26], 

neuropsychiatric disorders [27] and improper gene inactivation in cancer [28]. Furthermore, 

epigenome abnormalities related to developmental disorders and late-onset adult diseases such as 

metabolic and mental disorders were reported [29]. 

 

 

 

1.1.2. Non-coding RNA-associated gene silencing 

 

 

The idea of RNA-mediated gene regulation originated at the inception days of molecular 

biology with the proposition that sequence-specific non-coding RNA (ncRNA) might interact with 

promoters to regulate gene expression [30]. In recent years, accumulating knowledge has revealed 

that ncRNAs dominate the transcriptional output of mammals and other complex organisms [31], 

with only 2–3% of the human genome constituting for protein-coding genes [32] and that ncRNAs 

regulate many levels of gene expression during development [33].  

This RNA machinery expresses vast repertoires of regulatory ncRNAs [25,34] that act 

through RNA interference (RNAi) pathways. ncRNAs are central figures in the genetic and 

epigenetic processes that coordinate precise patterns of gene expression during the maturation of 

multicellular organisms [35]. This regulation can occur at the essential levels of genome function, 

including RNA processing, chromatin structure, RNA stability, chromosome segregation, 

transcription and translation [36,37].  

Regulatory ncRNAs are mainly divided into two categories based on their size, short-chain 

ncRNAs (<200 nt) that include microRNA (miRNA), short interfering RNA (siRNA) and 

piwiRNA (piRNA), and long ncRNA (lncRNAs) and circular RNA (circRNA) (Table 1.1) [8,38,39].  
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TABLE 1.1. MAIN NON-CODING RNAS INVOLVED IN THE EPIGENETIC REGULATION. 

Name Size (nt) Source precursor Examples of the main functions 

siRNA 19-24 double-stranded RNA gene transcription silencing 

miRNA 19-24 pri-miRNA gene transcription silencing 

piRNA 26-31 long single-chain precursor 
transposon repression  

DNA methylation 

lncRNA > 200 multiple precursors 
genomic imprinting 

X-chromosome inactivation 

circRNA 100-4000 pre-mRNA 

miRNA sponge 

RNA binding protein sponge/decoy 

gene transcription/translation 

(adapted from [8,37,38]) 

 

 

 

1.1.2.1. The field of RNA epigenetics  

 

Recent technological advances and novel mechanistic approaches have discovered diverse 

chemical modifications of cellular RNAs, including N6-methyladenosine (m6A) [40], N1- 

methyladenosine (m1A) [41], 5-methylcytidine (m5C) [42], 7-methylguanosine (m7G) [43] and 

pseudouridylation (Ψ) on lncRNA [44]. Similar to conventional epigenetic modification of DNA 

and histone modification, which will be discussed later, these RNA epigenetics have emerged as 

pivotal regulators of gene expression [45]. The discovery of these novel epigenetic marks expanded 

the knowledge of the chemical and topological properties of four basic nucleotides that, in the end, 

affect the structure and the function of RNA [46]. m6A, as the most frequent internal modification 

of RNA in eukaryotic cells, heads the research in the field of molecular biology regarding the 

functional importance in biological processes of the mechanical components, which install, remove 

and recognise the m6A residues [47,48]. These insights form new levels of the post-transcriptional 

regulatory landscape. Moreover, it is becoming evident that the alterations of the RNA 

modification machinery can have damaging effects during human diseases, especially in cancer [49]. 
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1.1.3. Histone post-translational modifications 

 

 

DNA in eukaryotic cells is compacted and packaged into a macromolecular complex 

termed chromatin. The fundamental unit of chromatin is the nucleosome, composed of an octamer 

of the four core histones (H3, H4, H2A, H2B), around which 147 base pairs or approximately 1.75 

turns of DNA are wrapped [12,50]. In addition, linker DNA connecting nucleosomes associates 

with the linker histone H1 [2]. The carboxyl (C)-domain of core histones are predominantly 

globular except for their amino (N)-terminal tail endings, which are unstructured. Moreover, 

chromatin is further organised into two different levels of general structure, silent heterochromatin 

and active euchromatin. Heterochromatic domains are in general inaccessible to DNA binding 

factors and are transcriptionally silent. Euchromatin domains, in contrast, define more accessible 

and transcriptionally active portions of the genome [51]. 

In the early 1960s, it was first indicated that histones could be post-translationally modified 

[52]. However, the more profound understanding of how these modifications could affect 

chromatin structure came in 1997 from solving the high-resolution X-ray structure of the 

nucleosome. It was demonstrated that histone N-terminal tails could protrude from their 

nucleosome and make contact with adjacent nucleosomes, indicating that modification of these 

tails would affect inter-nucleosomal interactions and thus affect the overall chromatin structure 

[53]. Up to date, a large number of different histone post-translational modifications (PTMs) are 

described, and these modifications have the potential to encode epigenetic information. 

Histone modifications include methylation of arginine (R), methylation, acetylation, 

ubiquitination and sumoylation of lysines (K), phosphorylation of serine (S) and threonine (T) 

(Table 1.2), and are deposited or removed from histones by specific enzymes [50]. The extra 

complexity of histone modifications comes from the fact that methylation may be in one of three 

different forms: mono-, di-, or trimethyl for lysines and mono- or di- (asymmetric or symmetric) 

for arginines. Furthermore, not all of these modifications will happen on the same histone at the 

same time, and the timing will depend on the signalling conditions within the cell [50]. 

These modifications form a histone code that regulates chromatin function by changing 

the nucleosome structural dynamics and dictates gene expression patterns by exposing genes to the 

transcription machinery.  In addition, histone tail modifications prevent accessibility of the genome 

to other types of cell machinery, such as DNA repair, replication and chromosomal segregation 

[54]. 
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TABLE 1.2. DIFFERENT CLASSES OF HISTONE MODIFICATION AND THEIR FUNCTIONS. 

Chromatin modifications Modified residues Regulated function 

Acetylation K-ac transcription, repair, replication 

Methylation of lysines K-me, K-me2, K-me3 transcription, repair 

Methylation of arginines R-me1, R-me2a, R-me2s transcription 

Phosphorylation S-ph, T-ph transcription, repair, condensation 

Ubiquitination K-ub transcription, repair 

Sumoylation K-su transcription 

(adapted from [50]) 

 

To date, the best-characterised histone modifications include acetylation and methylation 

of lysine residues on histones H3 and H4. It was demonstrated that the acetylation of all lysine 

residues on H3 and H4 is associated with transcriptional activation [55,56]. However, the 

methylation of lysine residues may be either associated with transcriptional repression or activation 

depending on which amino acid and to what extent (mono-methylation, di-methylation, or tri-

methylation) the residue is modified [57].  

 

 

 

1.1.3.1. Switch between repressive and permissive chromatin by histone 

acetylation 

 

Since the discovery of histone acetylation in 1964 [52], it was established that this 

modification of lysines is highly dynamic and is regulated by the opposing action of two families 

of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs) [58]. This 

modification is an N-acetylation, which corresponds to the replacement of a hydrogen atom in a 

reactive amino group by an acetyl moiety (CO–CH3) (Figure 1.2.a). N-acetylation occurs either on 

the N-terminal α-amine of proteins (α-N-acetylation) or the ε-amino group of the lateral chain of 

lysines (ε-N-acetylation). Lysine ε-N-acetylation is a major histone PTM involved in transcription, 

chromatin structure and DNA repair. 
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FIGURE 1.2. HISTONE MODIFICATION BY LYSINE ACETYLATION.  

a) Acetylation of histone lysine amino acids is performed by histone acetyltransferases (HATs) and reversed by histone 

deacetylases (HDACs). b) Histones are highly basic proteins due to their enrichment of positively charged residues 

(lysines and arginines) that increase their affinity for DNA, which is negatively charged. Acetylation (Ac) neutralises 

the positive lysine charge, resulting in the weakening of the interaction of histones with DNA and formation of 

euchromatin (adapted from [59]). 

 

 

 

The HAT enzymes utilise acetyl CoA as a co-factor and catalyse the transfer of an acetyl 

group to the ε-amino group of lysine side chains [58]. However, acetylation is highly reversible by 

HDACs (Figure 1.2.b) [60].  

Furthermore, it was revealed that there are additional sites of acetylation present within the 

globular histone core, H3K56 for example, that is acetylated in humans. The H3K56 side chain 

points towards the DNA major groove, suggesting that acetylation would affect histone/DNA 

interaction, similar to the effects of acetylating the histone N-terminal tail lysines [61]. 

 

 

a) 

b) 
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1.1.3.2. The regulation and function of histone methylation 

 

 

Histone methylation is one of the most critical and complicated covalent modifications of 

the histone N-terminal region. Methylation usually occurs on arginine (R) and lysine (K) residues 

of H3 and H4 [62]. Unlike acetylation and phosphorylation, histone methylation does not alter the 

charge of the histone protein. Furthermore, methylated lysines can be found in either mono-, di or 

tri-methylated state (Figure 1.3.a), whereas arginines can be either mono- or di-methylated (which 

can be asymmetric or symmetric) (Figure 1.3.b) [63]. 

 

 

 

FIGURE 1.3. HISTONE METHYLATION OCCURS ON ARGININE AND LYSINE RESIDUES OF H3 AND H4 BY 

THE ACTION OF HISTONE METHYLTRANSFERASES (HMTS) AND DEMETHYLASES (HDMS).  

a) Chemical structures of lysine and its methylated derivatives. Lysines may be mono-, di- or tri-methylated. b) 

Chemical structures of arginine and its methylated derivatives. The two forms in which di-methyl-arginine can be 

found are symmetric or asymmetric (adapted from [59]). 

 

 

Histone methylation is regulated by two families of proteins: histone methyltransferases 

(HMTs) and histone demethylases (HDMs) [64]. Methylation occurs at both lysine and arginine 

side chains, which are catalysed by protein lysine methyltransferases (PKMTs) and protein arginine 

methyltransferases (PRMTs). The methyl group is provided by the S-Adenosyl methionine (SAM). 

a) 

b) 
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Methylation modifications usually occur on lysines 4 (H3K4), 9 (H3K9), 27 (H3K27), 36 (H3K36), 

79 (H3K79) of H3 and lysines 20 (H4K20) of H4, with monomethylation, dimethylation and 

trimethylation for each site. The methylation of H3K4, H3K36 and H3K79 is often associated with 

euchromatin in the regions of transcriptionally active genes, while the methylation of H3K9, 

H3K27 and H4K20 is associated with heterochromatic regions of the genome [65].  

For example, studies in yeast and animals demonstrated that H3K4me3 mainly occurs in 

the promoter and transcription start site (TSS) regions and had a high degree of overlap with the 

binding sites of Pol II in the genome [66]. On the other hand, in nematodes, it was verified that 

H3K9me3 interacts with nuclear membrane protein LEM-2, combined with heterochromatin and 

nuclear membrane to maintain the structure of heterochromatin and suppress transcription [67]. 

Furthermore, the main characterised sites of arginine methylation are H3R2, H3R8, H3R17, 

H3R26, and H4R3. The methylation of H3R17 and H3R26 is associated with specific active genes, 

while methylation of H3R8 and H4R3 was proven to occur concurrently with gene repression [68]. 

Unfortunately, relatively little is known concerning the distribution and precise functions of 

arginine-methylated histones, and further studies will be needed to deepen the knowledge on the 

histone modification. Even more so, because of the complex crosstalk between different histone 

modifications, which presumably helps to fine-tune the overall control. This crosstalk can occur 

via multiple mechanisms [50]. For example, trans-regulation in Saccharomyces cerevisiae showed that 

methylation of H3K4 by scCOMPASS and H3K79 by scDot1 is dependent upon the 

ubiquitination of H2BK123 by scRad6/Bre1 [69]. Additionally, this mechanism is conserved in 

mammals, including humans [70]. It was indicated that the binding of a protein to a particular 

modification could be disrupted by an adjacent modification. A great example is phospho-switch, 

where heterochromatin protein 1 (HP1) binds to H3K9me2/3, except during mitosis, where the 

binding is disrupted due to phosphorylation of H3S10 [71]. 

Finally, direct functional interplay between histone methylation and another epigenetic 

modification, DNA methylation, was demonstrated. In Neurospora and Arabidopsis, genetic evidence 

indicated that H3K9 methylation is necessary for DNA methylation to occur [72]. In addition, loss 

of specific histone methyltransferases, such as Suv39H1/2 in knockout mouse cells altered the 

DNA methylation patterns of heterochromatin [73], suggesting that DNA and histone methylation 

have a cyclical and mutually reinforcing relationship and both are required for stable and long-term 

epigenetic silencing. Even though not studied in the context of this project, the histones post-

translational modifications and their connections with DNA methylation is of significant 

importance for further developing the perspectives of the study presented below. 
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1.1.4. DNA methylation 

 

 

Despite the fact that covalent modifications of DNA bases were described since the late 

1940s, it was only suggested in 1969 that these modifications might modulate gene expression 

[74,75]. The significant DNA modification is methylation of cytosine (C), followed by adenine (A) 

and guanine (G) methylation [74]. The functions of the cytosine modification remained 

uncharacterised until 1975, when two studies revealed essential roles of 5-methylcytosine (5mC) as 

an epigenetic modification that influences gene expression [76], bringing up the significance of this 

fifth nucleotide in eukaryotic biology [77]. Today, DNA methylation is widely recognised as a typical 

epigenetic mark because it satisfies the stringent criterion of an epigenetic system that is mitotically 

and meiotically heritable [78]. 

In prokaryotes, methylation at both A and C residues contributes to host restriction systems 

and protects the cell from foreign genetic materials such as bacterial and viral genomes [79]. 

However, DNA methylation in multicellular eukaryotes occurs predominantly but not exclusively 

at cytosine residues within CpG dinucleotides [7], where the CpG denotation refers to the 

occurrence of a cytosine linked to guanine by a phosphate bond. In general, vertebrate genomic 

CpGs are highly methylated, with 60-90% of genomic CpGs in a methylated state [80]. However, 

both CpG frequency and methylation patterns vary across a single genome.  

Furthermore, specific genomic regions named CpG islands (CGIs), are CpG-enriched yet 

practically devoid of methylation. These sequences, which are on average 1000 bp long, show an 

elevated G+C base composition and little CpG depletion. They comprise around 1% of total 

genomic DNA [81] and are associated with 5' promoter regions of housekeeping genes, as well as 

a proportion of tissue-specific genes and developmental regulator genes [82–84]. Approximately 

60%-70% of annotated vertebrate gene promoters are associated with CGIs, making this the most 

common promoter type [85]. Furthermore, an extensive genome-wide mapping of histone 

modifications by chromatin immunoprecipitation has established that H3K4me3 is a signature 

characteristic of most promoter CGIs, even when the associated gene is not expressed [66]. 

Recently, a large class of CGIs located remotely from the annotated transcription start sites was 

described [86]. These sites, named “orphan CGIs”, show evidence for promoter function and 

strong correlation between CGIs and transcription initiation. It was demonstrated that they co-

localise with peaks of H3K4me3 and evidence suggests that a large proportion recruit RNA 

polymerase II and give rise to novel transcripts, highlighting even more the CGIs importance in 

gene transcription [87]. 
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DNA methylation is a significant form of epigenetic modification and is regulated during 

embryonic development to control tissue and cell differentiation [88]. Moreover, DNA methylation 

patterns are altered in cancers and embryos produced by somatic cell nuclear transfer [89]. These 

changes contribute significantly to the molecular pathology of numerous disease states [87]. 

 

 

 

1.1.4.1. The mediators of cytosine DNA methylation 
 

 

The establishment and maintenance of DNA methylation is regulated by the family of 

methyltransferase enzymes (DNMTs) which convert cytosine to 5-methylcytosine (5mC),  

including those that establish methylation (DNMT3a and DNMT3b) and maintain methylation 

(DNMT1) (Table 1.3) [90]. Their catalytic domains appear highly conserved across species, and S-

adenosyl methionine (SAM) appears to function as the only methyl donor (Figure 1.4.a) [91]. 

 

 

TABLE 1.3. OVERVIEW OF DNA METHYLTRANSFERASES AND THEIR FUNCTIONS. 

DNA methyltransferases (DNMTs) Functional role 

De novo DNMTs DNMT3a embryonic development, methylation of CpG sites 

 DNMT3b embryonic development 

 DNMT3L maternal genomic imprinting, silencing of retrotransposons in 

spermatogonial stem cells 

Maintenance DNMTs DNMT1 cellular maintenance methylation, maintenance of imprinting, 

silencing of mobile elements during genomic demethylation, 

contribution to histone deacetylases 

 DNMT2 still unclear 

(adapted from [90]) 

 

 

DNMT3a and DNMT3b are de novo methyltransferases that target cytosines of previously 

unmethylated CpG dinucleotides (Figure 1.4.b) and have equal preference for hemimethylated and 

unmethylated DNA, which are essential for de novo methylation of the genome during development 

and newly integrated retroviral sequences [92]. Functional analysis indicated that DNMT3a and 

DNMT3b have regional specificity due to their respective N-terminal domains; and non-

overlapping functions during development with different phenotypes and lethality stages [93]. It 
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was demonstrated that DNMT3a is necessary for maternal imprinting at differentially methylated 

regions, and DNMT3b is required for methylation of pericentromeric repeats and CGIs on inactive 

X-chromosomes [94]. 

 

 

 

 

 

 

FIGURE 1.4. OVERVIEW OF MECHANISMS INVOLVED IN DNA METHYLATION AND DEMETHYLATION.  

a) DNA methyltransferases (DNMTs) catalyse the transfer of a methyl group (in red) from S-adenyl methionine (SAM) 

to the fifth carbon of cytosine residue to form 5-methylcytosine (5mC). b) DNMT3a and DNMT3b are the de novo 

methyltransferases and transfer methyl groups (in red) onto non-methylated DNA. On the other hand, DNMT1 is 

involved in the maintenance of DNA methylation patterns during replication. When DNA undergoes semi-conservative 

replication, the parental DNA stand retains the original DNA methylation pattern. However, DNMT1 precisely 

replicates the original DNA methylation pattern by adding methyl groups onto the newly synthesised daughter strand 

(adapted from [95]). 

 

 

 

a) 

b) 
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However, it is unclear how DNMT3a and DNMT3b target specific DNA sequences. One 

of the proposed mechanisms is that transcription factors regulate de novo DNA methylation by 

binding to specific DNA sequence to either recruit enzymes for methylation or prevent DNA 

methylation [96]. To a large extent, CpG islands appear to be protected from methylation by 

transcription factor binding [97]. It was confirmed that when transcription factor binding sites are 

mutated, CpG islands are unable to retain their unmethylated state [98], resulting in now-exposed 

CpG sites to be targeted for DNA methylation [99]. Thus, DNMT3a and DNMT3b can either be 

recruited to promoters by specific transcription factors or may methylate all CpG sites unprotected 

by a bound transcription factor across the genome. 

Additionally, methylation patterns are generally stable and are inherited by both daughter 

DNA molecules during mitosis. These patterns are sustained by DNMT1, which is known as a 

maintenance enzyme that guards existing methylated sites through its preference for hemimethylated 

DNA [100]. 

Furthermore, two other DNMTs were described. DNMT2 showed weak methyltransferase 

activity in vitro, and its depletion did not have any impact on global CpG methylation levels [100]. 

Moreover, while the DNMT3-like (DNMT3L) was shown to be catalytically inactive, it was highly 

expressed in germ cell lines and is an obligatory co-factor for de novo methyltransferases in 

embryonic stem cells (ESCs) [101]. It was indicated that DNMT3L stimulates the activity of 

DNMT3a or DNMT3b through physical interaction [102] and is a positive regulator of DNA 

methylation at gene bodies of housekeeping genes and a negative regulator of DNA methylation 

at promoters of bivalent genes in mouse ESCs [103]. 

 

 

 

1.1.4.2. DNA methylation and gene expression 
 

 

For gene transcription to occur, the gene promoter should be readily accessible to 

transcription factors and other regulatory units. DNA methylation at CpG sites mostly suppresses 

transcription in several ways, either by directly preventing transcription factor binding or by leading 

to changes in chromatin structure that restrict access of transcription factors to the gene promoter 

[104].  

Transcription factors (TFs) are key players in the activation of transcription, and their 

functions rely on binding to the DNA by recognising particular nucleotide motif through steric 
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interactions between the TF protein domains and the DNA molecule. Occurring chemical 

modifications to the DNA bases, such as methylation, can either increase or restrain these 

interactions [105]. Notably, the relationship between DNA methylation and TF binding is a 

complex process, often dependent on cell signalling and post-translational modifications. 

Interestingly, close to 70% of all mammalian gene promoters are associated with CpG islands that 

are mostly unmethylated [106]. The majority of mammalian transcription factors bind to GC-rich 

DNA motifs that contain CpGs; however, if their recognition sites are methylated or surrounded 

by methylated CpGs, the binding is hindered [107]. Hypermethylation of CGIs within promoter 

regions of genes leads to transcriptional repression of those genes (Figure 1.5) [108]. 

 

 

 

 

 

FIGURE 1.5. DNA METHYLATION AT CPG SITES SUPPRESSES TRANSCRIPTION BY DIRECTLY 

PREVENTING TRANSCRIPTION FACTOR BINDING. 

a) When the CpG island located in the gene promoter is unmethylated (white circles) the binding of transcription 

factor (TF) is unhindered, resulting in the initiation of the transcription (green arrow). b) The methylated CpG island 

(red circles) located in the promoter region prevents TF binding and results in gene silencing (red arrow) (adapted 

from [108]). 

 

 

 

b) 

a) 
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Furthermore, it was revealed that DNA methylation in the close vicinity of TF binding sites 

not containing CpGs might also alter the strength of TF/DNA interaction. For example,  TF AP-

1 complex composed of cFOS and cJUN loses its ability to bind DNA when a CpG site adjacent 

to the core-binding motif is methylated [109].  

Another well-described mechanism of gene regulation by DNA methylation is chromatin 

remodelling, which results in restricting the accessibility for protein complexes interacting with 

gene promoters or transcription start sites (TSS) (Figure 1.6) [110]. In this case, methylated CpGs 

are recognised by a class of proteins that induce a restrictive heterochromatin state [111]. Methyl-

CpG-binding domain proteins (MBDs) bind methylated DNA and recruit chromatin remodelling 

corepressor complexes, such as the Nucleosome Remodelling and histone Deacetylation (NuRD) 

complex resulting in transcriptional repression [112]. 

 

 

 

 

FIGURE 1.6. REVERSIBLE CHANGES IN CHROMATIN ORGANISATION THAT INFLUENCE GENE 

EXPRESSION. 

a) Unmethylated cytosines (in white) and euchromatin allow the binding of transcription related complexes, such as 

RNA polymerase II (RNA pol II), guiding the transcription forward. b) Methylated cytosines (in red) influence the 

chromatin remodelling towards the heterochromatin that represses transcriptional activity by restricting the 

accessibility to gene promoters or transcription start sites (adapted from [113]). 

a) 

b) 
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1.1.4.3. Crosstalk between DNA methylation and other epigenetic 

mechanisms 
 

 

DNA methylation machinery together with histone post-translational modifications and 

microRNAs establishes complex interplay that regulates gene transcription. Previously described 

chemical modifications on the N-terminal histone tails, which include methylation, acetylation, 

ubiquitination and phosphorylation, influence not only how DNA strands are packaged but also 

their transcriptional activity.  

DNMTs directly interact with enzymes that regulate histone modifications typically 

involved in gene repression (Figure 1.7). It was established, that both DNMT1 and DNMT3a bind 

to the SUV39H1 histone methyltransferase that restricts gene expression by H3K9 methylation 

[114] and that DNMT1 and DNMT3b can both bind to histone deacetylases resulting in more 

tightly packed chromatin and restricted access for transcription [115]. In addition, histone 

modifications influence DNA methylation patterns. DNMT3L binds to unmethylated H3 histone 

tails and recruits DNMT3a and DNMT3b, however, the presence of the active histone 

modification H3K4me3 impairs the binding of DNMT3a, DNMT3b, and DNMT3L preventing 

de novo methylation [116].  

As mentioned before, methyl-binding proteins (MBD) serve as the most definite link 

between DNA methylation and histone modification. The best-known member of the MBD 

family, methyl CpG binding protein 2 (MeCP2), recruits histone deacetylases to remove active 

histone modifications and repress gene transcription. Additionally, MeCP2 enhances the state of 

heterochromatin by recruiting histone methyltransferases that add repressive H3K9 methylation 

mark [114].  

Furthermore, DNA methylation can regulate the expression of miRNA. The loss of 

DNMT1 and DNMT3b in colon cancer cells demonstrated that 10% of miRNAs were regulated 

by DNA methylation [117].  In this study, the relationship between DNA methylation and miRNA 

expression was studied using DNA methyltransferase knockout HCT116 cell line as a model. For 

13/135 miRNAs screened, methylation status tightly controlled their expression, since a high level 

of CpG site demethylation was required for their re-expression. Treatment with DNA 

methyltransferase inhibitor resulting in partial demethylation, as seen in DNMT1 knockout cell 

line, was not sufficient to induce the re-expression of miRNAs.  

Vice versa, miRNAs regulate histone modifications and DNMT expression resulting in the 

regulation of DNA methylation. For example, the depletion of miRNA-290 in mice, which 
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indirectly regulates DNMT3a and DNMT3b expression, lead to a loss of DNA methylation and 

an increase in repressive histone methylation at H3K9 [118].  

 

 

 

 

FIGURE 1.7. EPIGENETIC CROSSTALK BETWEEN DNA METHYLATION AND HISTONE POST-

TRANSLATIONAL MODIFICATIONS.  

Transcription is regulated by the complex interactions of multiple epigenetic mechanisms that cooperate to activate or 

silence gene expression. To suppress gene expression, DNA methyltransferases (DNMTs) target CpG sites and actively 

methylate DNA. For some DNMTs, association with histone tails and with DNMT3L enhances their catalytic activity. 

DNA methylation is recognised by methyl-binding proteins (MBDs) that together with DNMTs recruit enzymes that 

modify the histone tails. These enzymes include histone deacetylases (HDACs), which remove acetylation (Ac) and 

histone methyltransferases (HMTs), which methylate histones, and together with DNA methylation serve to repress 

gene expression (red arrow) further. In regions of DNA with active transcription, histone tails often contain H3K4me3 

that inhibits DNMT binding to unmethylated CpG sites and maintains a permissive environment for transcription 

(adapted from [119]). 
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1.1.4.4. DNA demethylation pathways 
 

 

DNA demethylation occurs by either passive or active mechanisms. Passive demethylation 

is a phenomenon characteristic for dividing cells. As DNMT1 actively maintains DNA methylation 

during cell replication, its inhibition or dysfunction allows newly incorporated cytosine to remain 

unmethylated and consequently reduces the overall methylation level following each cell division 

[100].  

At the same time, active DNA demethylation is established in both dividing and non-

dividing cells, however, this process requires enzymatic reactions that further modify 5mC, by 

deamination and oxidation reactions, to a product that is recognised by the base excision repair 

(BER) pathway to replace the modified base with unmodified cytosine (Cyt) [120]. Several 

mechanisms of active DNA demethylation were proposed (Figure 1.8). 5mC can be chemically 

modified at two sites, the amine (NH2) group and the methyl (CH3) group. Deamination of the 

amine to a carbonyl group by activation-induced cytidine deaminase (AID) and apolipoprotein B 

mRNA-editing enzyme complex (APOBEC) effectively converts 5mC into thymine, thus creating 

a G/T mismatch and inducing the BER pathway to correct the base [121]. 

Second DNA demethylation mechanism is mediated by the ten-eleven translocation (TET) 

family of enzymes that include TET1, TET2 and TET3. TET enzymes add a hydroxyl group onto 

the methyl group of 5mC to form 5-hydroxymethylcytosine (5hmC) [122]. Once 5mC is oxidised 

into 5hmC, two separate pathways convert 5hmC back into the cytosine. The first pathway includes 

sequential oxidation by TET enzymes that continues to oxidise 5hmC, first to 5-formylcytosine 

(5fC) and then to 5-carboxylcytosine (5caC) [123]. The second pathway is established when 5hmC 

is deaminated by AID/APOBEC to form 5-hydroxymethyl-uracil (5hmU) (Figure 1.8) [124].  

Following the modifications of 5mC, the BER pathway utilises thymine DNA glycosylase 

(TDG) to cleave the modified residue (thymine, 5-hydroxymethyl-uracil, 5-formyl-cytosine, and 5- 

carboxylcytosine) and replaces it with a non-modified cytosine (Figure 1.8). TDG is essential for 

DNA demethylation and is required for normal development [125].   
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FIGURE 1.8. PATHWAYS OF ACTIVE DNA DEMETHYLATION.  

5-methylcytosine (5mC) can be enzymatically modified at the amine group (NH2) and the methyl group (CH3). The 

amine group of 5mC can be deaminated (in green) by AID/APOBEC, converting 5mC into thymine (Thy). The methyl 

group of 5mC can be modified by the oxidation and addition of a hydroxyl group mediated by ten-eleven translocation 

(TET) enzymes to generate 5-hydroxymethylcytosine (5hmC). Newly synthesised 5hmC can be further enzymatically 

modified at the amine group and the hydroxymethyl group. AID/APOBEC deaminates (in green) 5hmC to produce 

5-hydroxymethyluracil (5hmU) and TET enzymes further oxidize (in red) 5hmC to form 5-formylcytosine (5fC) and 

5-carboxylcytosine (5caC). Eventually, the products of each pathway (Thy, 5hmU, 5fC, and 5caC) are recognised and 

cleaved to replace with a cytosine (Cyt) by thymine DNA glycosylase (TDG) and single-strand-selective 

monofunctional uracil-DNA glycosylase 1 (SMUG1), both components of the base excision repair (BER) pathway (in 

blue) (adapted from [119]). 
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In addition, the second enzyme of BER pathway, single-strand-selective monofunctional 

uracil-DNA glycosylase 1 (SMUG1), from the same uracil DNA glycosylase family as TDG, is 

found to be involved in DNA demethylation pathway  (Figure 1.8) [125].  

The evidence for the role of 5hmC as a critical intermediate in the process of active 

demethylation is ever-expanding [126], and in addition, a growing number of studies are 

demonstrating, that like methylation, 5hmC may regulate gene expression. For example, the 

oxidation of 5mC to 5hmC impairs the binding of the repressive methyl-binding protein MeCP2 

and resulting in chromatin changes [127], marking 5hmC as an essential player in regulating DNA 

demethylation and gene expression. 

 

 

 

1.1.5. DNA hydroxymethylation and the elusive roles of 5-

hydroxymethylcytosine 

 

 

1.1.5.1. Proteins of TET family 

 

TET proteins belong to TET/J-binding protein (JBP) family of α-ketoglutarate- and iron 

(II)-dependent dioxygenases, closely related to the JBP1 and JBP2 proteins found in kinetoplastids 

such as trypanosomas and leishmanias [122]. In mammals, the TET/JBP family is composed of 

the TET1, TET2 and TET3 that can, as previously described, oxidize 5mC into 5fC and 5caC. 

Interestingly, 5fC and 5caC seem to be of physiological importance due to their detection in ESCs 

and early embryos DNA [128]. 

The TET proteins share a conserved catalytic domain composed of a double-stranded β-

helix (DSBH) region downstream of a cysteine-rich domain. Furthermore, TET1 and TET3 

contain a CXXC DNA-binding domain in their N-terminus (Figure 1.9). Interestingly, even if it 

seems that TET2 lost CXCC domain during evolution, it exists as a separate IDAX gene (CXXC4), 

which encodes an inhibitor of Wnt signalling, suggesting a connection between the Wnt pathway 

and the TET proteins [122]. Due to its abundance in ESC, TET1 was the most studied member of 

TET family for which it was observed that it binds preferentially to methylated and unmethylated 

CpG-rich regions in promoters and within genes by the CXXC domain [129]. 
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FIGURE 1.9. STRUCTURE AND FUNCTION OF THE MEMBERS OF THE TET PROTEIN FAMILY.  

a) All members of the TET protein family have a highly conserved cysteine-rich region (in orange) and the double-

stranded β-helix (DSBH) domain that exhibits 2-oxoglutarate (2-OG)- and iron (II)-dependent dioxygenase activity (in 

green). In addition, the N-termini of TET1 and TET3 contain a CXXC domain (in blue), which mediates their direct 

DNA-binding ability. b) All three enzymes of the TET family oxidise 5-methylcytosine (5mC) into 5-

hydroxymethylcytosine (5hmC) in the presence of 2-OG and iron. 5mC and 5hmC can be further oxidised to 5-

carboxylcytosine (5caC) by TET enzymes if the reaction system is supplemented with ATP (adapted from [130]). 

 

 

 

Thus, by establishing CXXC-DNA bond, TET1 could contribute to maintaining CpG 

islands in a hypomethylated state by counteracting de novo CpG methylation [131]. The TET 

proteins have distinct expression patterns, suggesting possible non-overlapping functions. TET1 

and TET2 are highly expressed in ESCs, and TET2 has a crucial involvement in haematopoiesis, 

with the discovery that TET2 mutations are frequent in human myeloid malignancies [132], as well 

as in B- and T-cell lymphomas [133]. Moreover, TET3 is highly expressed in oocytes and was 

implicated in epigenetic reprogramming in the zygote. It was shown that embryos derived from 

TET3-deficient oocytes have an increased incidence of developmental failures due to impossibility 

to properly erase 5mC from the paternal genome in the preimplantation embryos [134].  

In recent years, the increase in evidence demonstrated that beside dynamic transcriptional 

control, the activity and recruitment of TET proteins are regulated at multiple levels that result in 

a) 

b) 
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the final effect on DNA methylation patterns. It was shown that the activity of TET enzymes could 

be stimulated or inhibited in the presence of distinct metabolites, co-factors, and post-translational 

modifications [135]. For example, aberrant accumulation of metabolites such as 2-hydroxyglutarate, 

succinate and fumarate, as a result in the mutations in the genes coding for the metabolic enzymes 

isocitrate dehydrogenases 1 and 2, succinate dehydrogenase and fumarate hydratase, inhibit TET 

protein enzymatic activity [136].  

In addition, the increase in ascorbic acid (vitamin C) levels demonstrated a stimulating 

effect on TET protein enzymatic activity, that resulted in the higher levels of the cytosine oxidation 

products and in a reduction of global DNA methylation in cultured cells as well as in mouse tissue 

[137,138]. Vitamin C exists as ascorbate anion under physiological pH conditions, and in rodents, 

de novo synthesis of ascorbate occurs in the liver via glucose biosynthetic pathway. However, in 

humans, ascorbate cannot be synthesized due to a mutated and non-functional L-gulonolactone 

oxidase that catalyses the last step of ascorbate biosynthesis, and thus it needs to be supplemented 

through dietary sources [139]. The notion that vitamin C is another mediator in the interface 

between the epigenome and metabolic environment was further supported by the fact that vitamin 

C can globally modify the status of DNA methylation in mammals. For instance, human embryonic 

stem cells exhibit a widespread DNA demethylation of a large number of genes in response to 

ascorbate [140]. Ascorbate-dependent DNA demethylation was also shown to enhance the 

generation of induced pluripotent stem cells during somatic cell reprogramming, known to be 

accompanied by genome-wide DNA demethylation and the enrichment of 5hmC [141]. Although 

the precise molecular mechanisms underlying metabolic ascorbate-dependent TET activity remain 

to be entirely determined, it is likely that ascorbic acid interacts directly with the catalytic domain 

of TET proteins and provides a local, reducing environment that increases recycling efficiency of 

the Fe(II) co-factor [138].  
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1.1.5.2. Emerging roles of 5-hydroxymethylcytosine 
 

 

As early as 1972, a novel cytosine modification, 5-hydroxymethylcytosine (5hmC), was 

observed, that accounted for approximately 15% of the total cytosine residues in rat and mouse 

brain DNA [142]. However, it was only in 2009 that the biological synthesis, role and importance 

of 5hmC was described [122,143]. Noticeably, contrasting 5mC levels that are relatively equal 

between cell types, 5hmC is variable between cell types and generally below the one observed in 

ESCs and the nervous system [144]. As depicted in the previous paragraph, genomic 5hmC acts as 

an intermediate in active DNA demethylation by replication-dependent or replication-independent 

pathways, and additionally, since 5hmC is a predominantly stable oxidation product of 5mC and 

relatively stable component of DNA, it is implicated in regulating gene expression [145]. This is 

exemplified in diverse tissues and cell types that display a positive association of gene expression 

with enrichment for 5hmC in the gene body that is actively or moderately transcribed, in 

comparison to those that are weakly transcribed [146]. Furthermore, 5hmC is recognised by 

proteins involved in cell metabolism regulation, including MeCP2, for example [147].  

Profile analysis of 5hmC placements showed that it is localised at specific genomic regions, 

especially in enhancers, sites flanking promoters or CpG-islands and throughout gene bodies 

(Figure 1.10). Furthermore, an abundance of 5hmC at enhancers was signified to be positively 

correlated with enhancer activity [148]. At CGIs, suggested primary function of 5hmC is to 

maintain promoters in the unmethylated state, whereas in intragenic sequences, 5hmC could have 

an inhibitory action on antisense transcription initiation [131]. Interestingly, a more in-depth 

analysis of hydroxymethylomes from various mammalian samples indicated that 5hmC is enriched 

at 0.5–2 kilobases upstream and downstream of the transcription start site (TSS), and depleted 

closer to the TSS at moderately or highly transcribed genes [146]. Furthermore, for poorly 

transcribed or untranscribed genes, the peak of 5hmC was recorded at the TSS, indicating that in 

this region, 5hmC enrichment may have negative regulatory potential [149].   
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FIGURE 1.10. PROPOSED DISTRIBUTION OF CPGS, 5-METHYLCYTOSINE AND 5-HYDROXY-                           

-METHYLCYTOSINE LEVELS THROUGHOUT THE GENOME OF THE HEALTHY TISSUE. 

CpGs are locally enriched at CpG islands that are found in numerous gene promoters. Most CpGs in the genome are 

hypermethylated except those in CpG islands that are generally unmethylated (red line). In contrast, the elevated levels 

of 5-hydroxymethylcytosine (5hmC) (green line) correspond to the areas of the promoter surrounding transcription 

start sites (green arrow), gene body as well as distal regulatory regions of enhancers (adapted from [150]). 

 

 

 

 

Previously described association of 5hmC with the borders of promoters of actively 

transcribed genes, that are mostly unmethylated, could be explained by the need of these CpGs to 

be protected against DNA methylation spreading from adjacent regions that have much higher 

5mC contents [151,152].  

Altogether, this evidence provides a new emerging template of 5hmC as a significant player 

in the shaping of the epigenetic landscape of the cell through the regulation of dynamic DNA 

methylation patterns. 
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1.1.6. The interplay between epigenetic DNA modifications and 

cancer 

 

 

Malignant transformation and tumour progression are complex processes intertwined with 

numerous disruptions of the regulatory mechanisms. During tumorigenesis, the cells undergo a 

disruptive change involving uncontrolled proliferation, a loss of checkpoint controls tolerating the 

accumulation of chromosomal aberrations and misregulated differentiation. This process is 

commonly thought to be triggered by point mutations, deletions or translocations, disrupting either 

oncogenes or tumour suppressor genes. In transformed cells, oncogenes are activated through 

dominant mutations or overexpression of a gene, while tumour suppressor genes become silenced 

or inactivated [153]. The deregulation of typical DNA modifications and gene expression helps 

transformed cells to evolve rapidly, generating intratumoral heterogeneity, thus contributing to 

increased metastatic potential and potentially drug resistance [154]. Thanks to decades of research, 

today's definition of cancer corresponds to both a genetic and epigenetic disease, as specific tumour 

types are frequently found to harbour standard sets of genetic mutations as well as recurrent 

changes to the epigenetic landscape [155].  

 

 

1.1.6.1. DNA methylation abnormalities in cancer  
 

 

Loss of DNA methylation at CpG dinucleotides was the first epigenetic abnormality to be 

identified in cancer cells, when it was demonstrated that a substantial proportion of CpGs that 

were methylated in healthy tissues were unmethylated in cancer cells [156,157]. Later on, the site-

specific hypermethylation in the promoters of tumour suppressor genes was established as another 

hallmark of cancerogenesis [158].  

In transformed cells, hypomethylation usually occurs at repeated DNA sequences, such as 

long interspersed nuclear elements, whereas hypermethylation predominantly involves CGIs 

(Figure 1.11) [159]. CGI regions are preferentially located at the 5' end of genes that occupy close 

to 60% of human gene promoters. While most of the CpG sites located in large repetitive CpG 

sequences of the genome are methylated, the majority of CGIs are usually unmethylated in healthy 

tissues. Due to this pattern, if the corresponding transcription factors are available, histone 
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modifications are in a permissive state, and the CGIs remain unmethylated, the gene in question 

will be transcribed [160].  

 When hypomethylation of CGIs located in the promoter regions occurs in malignant cells, 

nearby genes become activated. This phenomenon contributes to genomic instability and, less 

frequently, to activation of silenced oncogenes, exemplified by the Ras oncogene, which is 

expressed generally in the testis and aberrantly in tumours [161]. Important to mention, DNA 

hypomethylation of individual genes in cancer cells is relatively uncommon. The majority of the 

promoters affected by the loss of DNA methylation belong to tissue-specific genes.  

Furthermore, in cancer, despite global hypomethylation, specific genes undergo 

inactivation because of hypermethylation of CGIs in regulatory regions (Figure 1.11), which are 

unmethylated in non-malignant tissues (Figure 1.10). DNA hypermethylation was shown to result 

in abnormal silencing of several tumour suppressor genes in most types of cancer [162]. DNA 

hypermethylation-induced gene silencing was first indicated in the studies on the of the 

retinoblastoma tumour-suppressor gene (RB1) of retinoblastoma patients [163]. 

 

 

 

 

FIGURE 1.11. PROPOSED DISTRIBUTION OF CPGS, 5-METHYLCYTOSINE AND 5-HYDROXY-                              

-METHYLCYTOSINE LEVELS THROUGHOUT THE GENOME OF THE TUMOUR TISSUE. 

DNA methylation (red line) and hydroxymethylation (green line) landscapes change drastically in cancer cells. Global 

hypomethylation is one of the hallmarks of carcinogenesis and occurs on the repetitive CpG sequences of the genome. 

On the other hand, hypermethylation of the CpG island located in the gene promoter regions is a typical pattern in 

tumour tissue. Analysis of 5-hydroxymethylcytosine patterns (in green) across genes revealed overall lower levels 

compared to healthy tissue (adapted from [150]). 
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In addition, methylated cytosines present highly unstable bases with the predisposition to 

gene mutation as the methylated cytosines are often deaminated and converted to thymine. 

Replacement of cytosine by thymine can as well lead to inactivation of tumour suppressor genes. 

For example, if the triplet CGA, which encodes an arginine residue, is changed to TGA, which 

specifies a stop codon, it may lead to a prematurely truncated protein [164]. 

 

 

1.1.6.2. Aberrant 5-hydroxymethylcytosine patterns in cancer 
 

 

Due to the robust interplay between 5mC and 5hmC previously described, the changes in 

each modification in cancer are expected to be dynamically linked [150]. Initially, perturbation of 

the global level of 5hmC was observed conjointly with impaired TET activity in a wide range of 

malignancies, including breast cancer, colon cancer, prostate cancer and melanoma [165]. 

Moreover, it was shown that the loss of 5hmC affects various genomic regions, including 

promoters, exons, introns and intergenic regions, indicating that 5hmC depletion might occur 

across the whole genome [166]. Further studies of 5hmC gene patterns signified an apparent 

reduction around TSS and increased levels in gene bodies in both healthy and cancer cells. 

However, overall lower levels of 5hmC were observed in the cancer tissue (Figure 1.11) [167]. In 

addition, it was indicated that in cancer cells, similarly to 5mC, gene promoters can be affected by 

both aberrant gain and aberrant loss of 5hmC, which positively correlates with changes in gene 

expression [168]. Furthermore, as confirmed in leukaemia, intergenic regions and enhancers, in 

particular, are also widely affected by changes in 5hmC levels [169].  

The reason behind the global 5hmC reduction could be the fact that the TET enzymes 

responsible for generating 5hmC, as well as their co-factors, are often mutated, transcriptionally 

downregulated or reduced at the protein level [150]. For example, the first mechanisms discovered 

to underlay altered 5hmC pattern included microdeletions and somatic mutations within the TET2 

gene described in hematopoietic malignancies, where missense mutations affected the catalytic 

domain and thus TET2 activity [170]. 

Furthermore, another proposed mechanism for the general depletion of 5hmC in cancer is 

due to the inhibition of TET co-factors. As previously described, TET enzymes are 2-oxoglutarate 

(2-OG) dependant, which is produced through catalytic oxidative carboxylation of isocitrate by 

isocitrate dehydrogenases (IDHs) in the Krebs cycle [171]. It was shown that the mutations of 



CHAPTER 1. INTRODUCTION 

 

36 

IDH1 and IDH2 identified in cancer cells produce both enantiomers of the oncometabolite 2-

hydroxyglutarate (2-HG) [172], that are structurally similar to 2OG and can antagonise the 2OG-

dependant reaction, thus inhibiting TET-mediated 5mC to 5hmC conversion [171].  

 

 

1.1.7. Viral oncogenesis 

 

 

Research done in the past three decades showed that several viruses play a significant role 

in the development of animal and human cancers, with 12% of human cancers associated with viral 

infections [173]. Contribution of the oncogenic viruses to different steps of the carcinogenesis and 

the association of a virus with a given cancer can vary from 15-100% [174]. Oncogenic viruses are 

also widespread among animals and can cause economic losses in animal husbandry and serve as 

valuable models to study viruses affecting humans (Annex A) [175].  

ANNEX A: Viral oncogenesis: Lessons from homologous animal models 
 

Srđan Pejaković, Benoît Muylkens 

Namur Research Institute for Life Sciences, Integrated Veterinary Research Unit, Department of Veterinary Medicine, Faculty 

of Sciences, University of Namur, Namur, 5000, Belgium 

 

Abstract 

The interactions between viruses and the hosts entail complex machinery and numerous events that, in the end, 

drive viral infection, which sometimes leads to oncogenesis. The great number of information concerning viral 

pathogenesis and oncogenesis, as well as the host responses, have been obtained using animal models. These 

models are helpful for understanding virus-host interactions and better deciphering different steps of cancer 

development. Well-defined small animal models with the reliable kinetics of disease induction and progression, 

together with the fact that oncogenesis can be studied in a natural virus-host system, allows unique studies that are 

impossible to perform in other non-natural models of viral disease and oncogenesis. In particular, they are 

important for understanding viral replicative/pathogenic/oncogenic properties in humans. To this date, animal 

research models are necessary to describe in vivo situation and are essential for developing a detailed knowledge of 

virus-caused infectious diseases. This review aims to present the studies on well-established homologous animal 

models used for translational oncogenic research for three viral families: Retroviridae, Herpesviridae and 

Papillomaviridae, and the examples of lessons obtained that helped in deciphering the mechanisms of major steps 

of oncogenesis. 

Keywords: Animal models; Viral oncogenesis; Herpesviridae; Papillomaviridae; Retroviridae 
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Seven different viruses were linked to oncogenesis of human cancers: DNA viruses such 

as Epstein-Barr virus (EBV), Kaposi Sarcoma–Associated Herpesvirus (KSHV), human 

papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV) and RNA viruses hepatitis B virus 

(HBV), hepatitis C virus (HCV) and human T-cell lymphotropic virus (HTLV)[176].  

In recent years, it became evident that viruses infecting animal and humans play central 

roles in shaping the epigenetic landscape of infected cells, and thus, deciphering the mechanisms 

of viral infections on the epigenetic control of their target cells will undoubtedly help to understand 

better the interplay between viruses and the hosts. Up to date, comprehensive knowledge of the 

methylation status of viruses, such as polyomaviruses, and especially herpesviruses, was obtained. 

DNA viruses use host transcription factors as well as epigenetic in order to affect epigenetic control 

of viral and hosts' gene expression [177].  

One of the best-studied members of the herpesvirus family is EBV, and examples of viral 

epigenetic modifications induced in host's cells will be presented in the paragraph below. 

 

 

 

1.1.7.1. Epigenetic modifications by oncogenic herpesviruses 
 

 

EBV is a human gamma-herpesvirus that predominantly establishes latent infection in B-

lymphocytes and epithelial cells. EBV is one of the most common viruses in humans, with 90% of 

the total population infected and is associated with mononucleosis and with several human cancers 

such as Burkitt's lymphoma, nasopharyngeal carcinoma, T- and NK-cell lymphoma and gastric 

carcinoma [178].  

EBV, like other herpesviruses, establishes latent infections and reactivates to re-establish 

active replication. During latency, the circularised viral genome remains idle in an episomal state 

and can be replicated by the host cell replication machinery. Active viral replication is highlighted 

with the production of viral progeny and inevitably results in cell lysis [90]. The EBV latency is 

regulated by six EBV nuclear antigens EBNAs (1, 2, 3A, 3B, 3C, and LP),  three latent membrane 

proteins LMPs (1, 2A, and 2B), BARF-1 protein, two small RNA molecules (EBER 1 and EBER2) 

and RNA transcripts [178]. Furthermore, the maintenance of viral latency and switching from the 

latent phase to the lytic phase, together with viral replication, are controlled by the viral immediate-

early genes BZLF1 and BRLF [179]. 
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In EBV-induced transformation as well as in EBV life cycle, epigenetic mechanisms such 

as DNA methylation/hydroxymethylation and histone modifications, which control the expression 

of latent viral oncogenes together with miRNAs, play an essential role (Table 1.4) [180]. 

 

 

TABLE 1.4. EPIGENETIC INTERACTIONS OF EBV VIRAL PROTEINS 

Viral protein Target Mode of action Reference 

EBNA2 histone acetyltransferases induce expression of LMP1 

[179] EBNA3C histone deacetylase 1  transcriptional repression of mRNA 

LMP1 DNMT1, DNMT 3a, DNMT 3b activation 

LMP2A 
DNMT1, DNMT3B upregulation [179] 

TET2 downregulation 
[181] 

BARF TET2 downregulation 

 

 

The EBV genome appears to be hypomethylated or unmethylated during lytic infection, 

highly methylated during latency and demethylated during reactivation [90]. Interestingly, the 

analysis of CpG methylation pattern in the EBV genome showed that only five promoters do not 

possess the DNA methylation marks during latency, EBER1, EBER2, BZLF1, LMP1 and LMP2B 

[182]. 

It was showed that LMP1 induces the expression and activity of DNA methyltransferase, 

and, in addition, LMP2A upregulates DNMT3B and DNMT1 by inducing the expression of 

phosphorylated signal transducer and activator of transcription 3 (pSTAT3), resulting in aberrant 

CpG hypermethylation [179]. Resulting hypermethylation of the EBV genome aids virus to escape 

from the host immune system, inhibiting expression of viral proteins that are recognised by 

cytotoxic T-cells [178]. Moreover, the hypermethylation of promoter regions in tumour suppressor 

genes and consequent gene silencing results in manipulation of gene expression that leads to a 

variety of oncogenic events [203]. 

EBV oncoproteins might also interact with components of histone modification 

machinery. The viral proteins EBNA2 and EBNA3C act through histone modifications and 

chromatin remodelling [183]. EBNA2 plays an essential role in inducing the expression of LMP1 

by interaction with histone acetyltransferases, such as p300 and PCAF78 [184]. EBNA3C interacts 

with HDAC1 promoting deacetylation activity and causes the repression of transcription from the 

main promoter initiating the transcription of EBNA mRNA [185]. 
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Furthermore, it was demonstrated that the 5-hydroxymethylation of EBV genome could 

affect lytic reactivation. Increased TET activity decreases methylation of lytic EBV promoters in 

EBV-infected cell lines affecting the ability of EBV immediate-early proteins, BZLF1 and BRLF1, 

to induce the lytic form of viral infection and initiate cancerogenesis [186]. It was attested that the 

EBV reactivation is methylation dependant and is initiated by the expression of the immediate-

early BZLF1 gene, which encodes for Zta transcription activator. Interestingly, Zta recognises and 

binds to methylated CpGs on the viral promoters and activates the expression of the remaining 

lytic genes, thereby inducing a lytic infection [178]. This interaction suggests that the loss of TET 

function in EBV-infected epithelial cells, or the presence of other mutations that inhibit 5hmC 

conversion, may result in the promotion of EBV-induced cancerogenesis, by either enhancing 

methylation of cellular tumour suppressor genes or altering 5mC/5hmC equilibrium of lytic EBV 

promoters [186]. This was exemplified by the discovery that TET family enzymes, especially TET2, 

were repressed by EBV infection at both mRNA and protein levels. TET2 was found to be 

downregulated by BARF and LMP2A transcripts and also by EBV-upregulated miRNAs targeting 

TET2 [181]. 

Furthermore, one of the most detailed studied oncogenic animal herpesviruses is Gallid 

herpesvirus type 2 (GaHV-2).  Early research has shown that GaHV-2 genome is methylated during 

latency and indicated that epigenetic modifications might be involved in regulating the switch from 

latency to the productive replication and play a role in the regulation of viral gene expression during 

GaHV-2 infection [187].  

A more in-depth analysis of the region of the GaHV-2 genome (Figure 1.12) encoding for 

the productive phase protein pp38 showed significantly higher methylated patterns than a 

neighbouring region encoding for latency-associated transcripts (LATs) and major viral oncogene 

(Meq) (discussed in the paragraph 1.3.2.4). In addition, during latency, analysis of the pp38 

promoter and the origin of replication (ori) have revealed restrictive epigenetic modification marks, 

including H3K27me3 and H3K9me3. In contrast, the promoters in the region involved 

establishing and maintaining latency (mRNA-M9-M4 cluster, meq and LATs) possessed permissive 

H3K4me3 and H3K9Ac marks [188]. 

Our team, together with the Transcription and Virus-Induced Lymphoma team (TLVI, 

Université François Rabelais de Tours, France), demonstrated the existence of differential DNA 

methylation patterns at promoters of GaHV-2. DNA methylation patterns for immediate early 

genes ICP4, ICP27 and late gene ICP22 showed that they are widely methylated during the viral 

latency, and returning to an unmethylated state during productive viral replication (Figure 1.12) 

[189–191].  
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FIGURE 1.12. REPRESENTATION OF GALLID HERPESVIRUS 2 GENOME WITH THE POSITIONS AND 

ORIENTATIONS OF MAJOR VIRAL GENES INCLUDED IN THE DIFFERENTIAL DNA METHYLATION 

PATTERN STUDIES OCCURRING BETWEEN TWO STEPS OF THE VIRAL LIFE CYCLE. 

The promoters of immediate early genes including ICP4, ICP27 and late gene ICP22, as well as promoters of 

productive phase protein pp38, major viral oncogene (Meq) and the region encoding for latency-associated transcripts 

(LAT), showed a distinctive difference in methylation patterns between latency and productive viral replication. 
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1.2. Telomeres and telomerase 

 

1.2.1. General overview and roles in cancerogenesis 

 

 

Evolution of mammalian cells resulted in complex mechanisms involved in the regulation 

of cellular life. The cells of healthy tissue demonstrate a strictly limited growth potential and 

senescence after a defined number of cell divisions, marking it one of the pillars of cellular ageing 

[192]. Furthermore, genomic stability and integrity must be maintained for an organism to function 

and propagate successfully.  

Progressive shortening of the ends of the eukaryotic chromosomes, the telomeres, is an 

essential component of senescence and is involved in the control of the cell cycle, making telomeres 

one of several critical elements required for genomic stability. The telomeres protect enzymatic 

end-degradation and maintain chromosome stability as well as the solution for the DNA end-

replication problem [193]. Early on, it was indicated that chromosomes with truncated telomeric 

ends fuse with other chromosome ends or become lost during cell division [194]. Further on, 

telomeres also play a role in the organization of the cellular nucleus by serving as attachment points 

to the nuclear matrix [195]. The telomeric DNA consists of non-coding tandemly repeated 

sequences, with the exact repeat sequence varying from one species to the other. In the vertebrates, 

the repeat unit is the hexanucleotide TTAGGG (5’ - 3’ direction) [192]. 

As mentioned above, all chromosomes lose a small portion of telomeric DNA during each 

cell division, due to a natural consequence of the cellular DNA replication machinery, known as 

DNA end-replication problem. However, the loss of genomic sequences at each replication cycle 

can be compensated by the addition of telomeric terminal sequences by telomerase [193].  

Telomerase is a holoenzyme, composed of an RNA subunit (TR) and a reverse transcriptase 

enzymatic subunit (TERT), that together with accessory proteins such as dyskerin, NHP2, NOP10 

and GAR, add telomeric repeat sequences to the 3’ end of telomeres (Figure 1.13) [196]. 

Interestingly, human TR is expressed in most healthy cells, contrary to TERT, suggesting that TR 

may have functions other than the template for telomere extension [197]. 
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FIGURE 1.13. THE ACTION OF THE TELOMERASE COMPLEX AND ITS COMPONENTS. 

The telomerase reverse transcriptase (TERT) and RNA subunit (TR), together with the protein dyskerin and other 

associated proteins (NHP2, NOP10, GAR), initiate the telomeric elongation. Telomerase catalytically adds TTAGGG 

hexameric nucleotide repeats to the 3′ hydroxyl end of the leading telomeric strand, using a specific sequence presented 

by TR (blue ribbon) as the template (adapted from [198]). 

 

 

 

Importantly, progressive telomere shortening occurs in all healthy dividing cells, eventually 

resulting in cellular growth arrest that is could be an initial proliferative barrier to tumour formation 

[196]. In contrast to healthy cell, tumour cells often exhibit an unlimited proliferation potential that 

leads to their immortalisation. 

Telomerase is absent in most human somatic cells, with very low amounts of telomerase 

activity in healthy human tissues found in hematopoietic progenitor cells upon their proliferation 

and differentiation and T- and B-lymphocytes [199], germ cells, ovaries and testicles [200], and in 

physiologically regenerating epithelial cells [201]. However, during tumour development, 

telomerase activity is often essential in order to maintain the telomeres and is mainly dependant on 

TERT over-expression, suggesting that TERT is the limiting component of the telomerase activity 

[197]. Numerous mechanisms involved in either engaging telomerase activity or activating a 

telomere maintenance mechanism have been proposed, including mutations/deletions in the 

TERT promoter [202], engagement of TERT alternative splicing [203], epigenetic changes [204] 

and alternative lengthening of telomeres (ALT) [205], respectively. 

Furthermore, research done in past years suggested a strong requirement for oncogenic 

viruses to regulate telomerase activity and telomere length. Several human oncogenic viruses such 

as HTLV, HPV, HCV as well as EBV and KSHV and animal oncogenic alphaherpesvirus GaHV-
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2 have an effect on the telomerase activity during the infection. The increase of telomerase activity 

by viruses may be part of a complex transformation mechanism. Many oncogenic virus proteins 

act as transcription factors or act by other means to increase telomerase expression [206]. 

 

 

 

1.2.2. Telomerase activity during oncogenic herpesvirus infection 

 

 

In patients with EBV-induced nasopharyngeal carcinoma, 94.9% showed an increase in 

telomerase activity [207], which was also observed in EBV-immortalized B-lymphoblastoid cell 

lines [208], demonstrating an important role for telomerase reactivation in EBV-infected tissues. It 

was shown that LMP1 is partially responsible for the increase in telomerase activity in 

nasopharyngeal epithelial cells infected with EBV [209]. Additionally, targeting LMP-1 with small-

interfering RNAs (siRNAs) substantially reduced hTERT protein levels and telomerase activity in 

B-cell lymphomas and overexpression of LMP1 in an EBV-negative nasopharyngeal carcinoma cell 

line increased hTERT protein expression [210]. Furthermore, studies revealed that LMP2A 

prevents infected cells from entering the lytic replication cycle, is involved in the transformation of 

epithelial cells [183] and act as a negative regulator of the hTERT promoter [211]. In addition, 

analysis of telomere lengths in EBV-positive Burkitt lymphoma cell lines showed increases in 

telomere length compared with those in EBV-negative cells [212], making EBV, to date, the only 

human oncogenic virus for which infection was linked to an actual increase in telomere length.  

For the other well-studied human oncogenic herpesvirus, KSHV, is was indicated that 

virus-transformed endothelial cells had elevated telomerase activity compared with uninfected cells 

[213]. Here, the latency-associated nuclear antigen (LANA) protein plays a vital role in latent 

episomal persistence of the viral genome in infected cells and B-cell lymphoma development 

[214,215]. It was indicated that LANA increases expression at the hTERT promoter through 

interaction with Sp1 transcription factor in fibroblasts and the B-cell lines [216]. Furthermore, avian 

GaHV-2 encodes for a viral telomerase RNA subunit that interacts with the chicken TERT 

enhancing telomerase activity and contributing to the efficient and rapid onset of lymphoma [217–

219], and will be discussed in detail in following sections. 

In a normal cell, TERT expression is regulated primarily at the transcription level [220]. 

The hTERT promoter contains several E-boxes and GC-rich elements, which can bind c-Myc and 

Sp1, respectively [221]. It was demonstrated that hTERT gene expression is increased following c-
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Myc binding to E-box elements within TERT promoter [222]. However, in most cells, c-Myc and 

Sp1 act together for regulating hTERT expression [221]. During viral infection, the mechanisms 

of viral activation of telomerase could be divided in the trans-activation of the hTERT promoter 

by viral oncoproteins, epigenetic control of hTERT in virus-infected cells, post-transcriptional 

regulation of telomerase activity and cis-activation of the hTERT promoter through viral 

integration. 

The knowledge on viral trans-activation of hTERT gene expression has been obtained 

studying the papillomavirus system, in which the HPV E6 oncoprotein has been shown to directly 

trans-activate the hTERT promoter [223]. Mutations in the GCs or the E-box elements of the 

hTERT promoter partially inhibited telomerase expression, demonstrating that independent 

binding of c-Myc or Sp1 to the hTERT promoter is not sufficient for E6-induced telomerase 

activation. However, telomerase expression is strongly induced by E6 when c-Myc and Sp1 are 

cooperatively bound to the hTERT promoter [223]. However, less is known about the mechanisms 

used by other viral oncoproteins to trans-activate hTERT gene expression. For the Tax protein of 

HTLV-1 was shown to stimulate hTERT promoter through activation of the NF-kB pathway 

[224]. The LMP1 protein of EBV has been found to induce c-Myc-mediated trans-activation of the 

hTERT promoter, where C-terminal end of LMP1 was found to stimulate hTERT gene expression 

through NF-kB activation [209]. Lastly, the LANA protein of KSHV has been shown to trans-

activate the hTERT promoter in various cell lines [225], by activating hTERT gene expression 

through interactions with Sp1 [216].  

Furthermore, since activation of hTERT transcription may involve histone acetylation, its 

repression may involve histone deacetylation. For example, HPV E6 expression promotes 

acetylation of histone H3, providing epigenetic control of the hTERT gene [226]. Acetylation of 

histone H3 at the hTERT promoter was increased in late passage E6- and E7-immortalized 

keratinocytes, whereas p300 expression was decreased. E6 has been shown to target the p300 

acetyltransferase, and cells that expressed E6 and p300 antisense RNA showed increased 

acetylation of histone H3 and activation of the hTERT gene. Therefore, p300 may act as a repressor 

of telomerase activation in the context of E6 expression [226].  

Telomerase activity can also be regulated at the post-transcriptional level. For example, 

protein kinase C (PKC)-mediated phosphorylation of telomerase results in the interaction of 

telomerase and Hsp90 protein necessary to maintain the integrity of the telomerase holoenzyme. 

Inhibitors of PKC significantly reduced telomerase activity present in human nasopharyngeal and 

head and neck cancer cells [227]. Moreover, PKC has been shown to modulate telomerase activity 

in human cervical cancer cells [228]. Thus, EBV and HPV may activate PKC to increase telomerase 
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enzymatic activity. Furthermore, the RelA/p65 subunit of NF-kB has been shown to bind directly 

to hTERT and to facilitate its translocation to the nucleus [229]. In nasopharyngeal carcinoma cells, 

EBV LMP1 can increase telomerase activity post-transcriptionally by promoting NF-kB RelA/p65-

mediated binding to hTERT [230].  

Furthermore, in addition to encoding telomerase regulators that act in trans on the hTERT 

promoter, the HPV and HBV genomes have been found to integrate within proximity to the 

hTERT gene [221,231]. In a subset of cervical and hepatocellular carcinoma tumours, the 

integration resulted in the placement of viral enhancers near the hTERT promoter without 

perturbing the hTERT coding region, resulting in the increased telomerase expression. The analysis 

showed that HBV integration acted as an enhancer for cis-activation of the hTERT gene [232]. A 

recent study demonstrated that the expression of the gene encoding for RNA component of 

telomerase (TR) was progressively amplified with the development of HPV-associated cervical 

intraepithelial neoplasias to advanced invasive carcinomas The overexpression of the hTR gene 

was predominantly associated with the integration of oncogenic HPV. Therefore, it appears that 

the expression of the genes for hTERT and/or hTR may be specifically activated by virus 

integration in a population of infected cells [233].  
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1.3. Gallid herpesvirus type 2: A well-established model for 

studying virus-induced oncogenesis in a natural virus-host 

system 

 

 

As discussed throughout previous sections, oncogenic herpesviruses use a broad array of 

mechanisms to establish and maintain infection, including epigenetic modulation and regulation of 

telomerase activity, which at the end for some lead to tumour development. Thus, in order to 

understand all the processes involved in virus-induced oncogenesis well-defined, small-animal 

models with the reliable kinetics of disease induction and progression, are essential. The fact that 

oncogenesis can be studied in a natural virus-host system makes these models unique and allows 

studies that are impossible to perform in other non-natural models of viral disease and oncogenesis.  

Similar to EBV, GaHV-2 is one of the few oncogenic herpesviruses that induces tumours in 

its natural host [234] and serves as a versatile small-animal model for studying different aspects of 

herpesvirus pathogenesis and induced oncogenesis in a natural virus-host system with remarkable 

reliability [235]. 

 

 

 

1.3.1. The Herpesviridae family 

 

 

1.3.1.1. General overview 

 

 

The virions of Herpesvirales order have complex and characteristic structures that 

morphologically distinct them from all other viruses. The spherical virion is composed of the core, 

capsid, tegument and envelope. The core consists of linear, double-stranded DNA genome of 125 

to 290 kbp (kilobase pairs) that is contained within a T = 16 icosahedral capsid, which is surrounded 

by a tegument protein matrix. Finally, the viral particle is covered by an envelope that is pirated 

from the host nuclear membrane and comprised of the viral glycoproteins (Figure 1.14) [231].  
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FIGURE 1.14. SCHEMATIC REPRESENTATION OF A HERPESVIRALES VIRION. 

Herpesviruses are large, enveloped viruses with a linear double-stranded DNA ranging from 125 to 290 kilobase pairs 

(kbp). DNA is associated with an icosahedral capsid composed of 162 capsomers surrounded by tegument proteins. 

The virion is enveloped by pirated host nuclear membrane that is comprised of the viral glycoproteins (adapted from 

[236]). 

 

 

 

The new taxonomy resulting from a considerable genetic distance among the members of 

Herpesvirales order has provided three families, Herpesviridae that infect mammals, birds and reptiles, 

the family Alloherpesviridae incorporates the fish and frog viruses, and the family Malacoherpesviridae 

that contains the viruses infecting bivalves (Figure 1.15) [237].  

Furthermore, the Herpesviridae family is best described with a wide variety of hosts including 

animals and humans, and based on the biologic and genetic properties can be further divided into 

three subfamilies Alphaherpesvirinae, Betaherpesvirinae and Gammaherpesvirinae. Up to date, Herpesviridae 

family contains more than 130 species sharing common features (Figure 1.15) [238]. 

Viruses belonging to the Alphaherpesvirinae are characterized by a wide range of hosts, a 

short replication cycle and a rapid proliferation in cell culture. Members of this subfamily mostly 

infect epithelial or neuronal cells before establishing latency, mainly in non-dividing sensory 

neurons [239]. Four genera of Alphaherpesvirinae subfamily include Mardivirus, Iltovirus, Simplexvirus 

and Varicellovirus. Mardivirus and Iltovirus infect avian hosts while Simplexvirus and Varicellovirus infect 

mammals (Figure 1.15) [240]. Typical members of Simplexvirus genus are human Herpes simplex 

virus 1 (HHV-1) and Herpes simplex virus 2 (HHV-2), while for Varicellovirus genus is Human 

herpesvirus 3 (HHV-3) also known as Varicella-Zoster virus (VZV) [238]. Mardivirus member 

Gallus herpes virus type 2 (GaHV-2) is an oncogenic herpesvirus causing Marek’s disease (MD). 
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FIGURE 1.15. TAXONOMICAL CLASSIFICATION OF HERPESVIRALES ORDER. 

Examples of viral species for each genus are given. GaHV-2 - Gallid herpes virus type 2; PsHV-1 - Psittacid herpesvirus 

1; HHV - human herpesvirus; MuHV-1 - Murid herpesvirus 1; SuHV-1 - Suid herpesvirus 2; MusHV-1 - Mustelid 

herpesvirus 1; BoHV-4 - Bovine herpesvirus 4 (adapted from [240]). Gallid herpesvirus type 2 is followed throughout 

the taxonomy tree and represented in bold. 

 

 

 

Unlike most of the members of this subfamily, GaHV-2 latently infects T-CD4+ 

lymphocytes and can trigger tumorigenesis in avian species, making it closely related to the 

members of the Gammaherpesvirinae. One of the main attributes of Alphaherpesvirinae is that the 

replicative infection does not lead to cell lysis and that viral intra-organism infection is exclusively 

mediated through cell-to-cell spreading [235].  

Contrary to Alphaherpesvirinae, Betaherpesvirinae is characterized by a narrow host range with 

a long replication cycle within the host. Betaherpesvirinae subfamily is divided into four genera 

designated Cytomegalovirus, Muromegalovirus, Roseolovirus and Proboscivirus (Figure 1.15). They can 

establish latency in lymphocytes, secretory glands and kidney cells in mammalian hosts [241].  

Gammaherpesvirinae subfamily includes four genera, Lymphocryptovirus, Rhadinovirus, Percavirus 

(Perissodactyla and carnivore) and Macavirus (Malignant catarrhal fever). Their cellular targets in 

mammalian hosts for latent infection are monocytes, dendritic cells and usually B- or T-

lymphocytes (Figure 1.15). Under specific circumstances, they are also able to transform latently 

infected cells and induce lymphoproliferative diseases and other non-lymphoid cancers in infected 

hosts [237].  

Additionally, Herpesviruses are classified according to their genomic arrangement into six 

groups from A to F (Figure 1.16) [242]. 
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FIGURE 1.16. SIX CLASSES OF HERPESVIRAL GENOMIC ORGANISATION. 

The large genomes of Herpesviridae family are divided into six different classes of organisation. Class A consists of a 

unique region sequence (U) that is flanked by relatively long terminal repeats (TRL) and is represented in Betaherpesvirinae 

(HHV-6) [243]. For class B, represented in Gammaherpesvirinae, the terminal repeats consist of multiple tandem repeated 

sequences (TRs), with up to 30% of the genome belonging to the repeated regions [244]. Class C presents a modified 

class B arrangement, bearing internal sets of the direct repeats (IRs) unrelated to the terminal repeats and is common 

to Epstein-Barr virus genome [245]. Class D genomes include unique long (UL) and unique short region (US) that are 

flanked by inverted internal (IR), and terminal (TR) repeats, characteristic for Alphaherpesvirinae [246]. The E group, 

represented by Gallid herpesvirus type 2, is structured of two unique regions unique long (UL) and unique short (US) 

surrounded by inverted repeats. UL and US regions are surrounded by the long terminal (TRL) and the long internal 

(IRL) repeat and short internal (IRs) and short terminal (TRs) short repeat, respectively [247]. Finally, for class F, no 

repeats were described and is the most common genomic organisation for Betaherpesvirinae [248] (adapted from [242]). 

 

 

 

 

As mention throughout the previous section, a major characteristic of herpesviruses 

following the productive infection is the establishment of the latency, a phase where the virus 

remains dormant within the host cells, and the viral replication is suppressed. All along latency, 

herpesviruses are able to undergo reactivation that ultimately results in a new production of viral 

particles [249]. 
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1.3.1.2. Herpesviral replication cycle 

 

 

Despite limited nucleotide or amino acid homology and deduced proteins between the 

three Herpesvirales families, their characteristic virion morphology suggests that the underlying 

mechanisms of virion formation are comparable [250]. 

One of the best-studied human herpesviruses is the Herpes simplex virus type 1 (HHV-1) 

and represents the reference model for studying the herpesvirus life cycle. Herpesvirus infection 

of a host cell starts with the interaction of viral envelope glycoproteins (gC and gB) with the 

receptors present at the cellular plasma membrane (Figure 1.17) [251]. The entry then occurs by 

fusion of the virion envelope with the plasma membrane. The fusion is enhanced with the 

interaction of glycoprotein gD, which interacts with cellular receptors (CRs), such as tumour 

necrosis factor superfamily and cell adhesion molecules of the immunoglobulin superfamily [252]. 

gD-CRs interaction induces gD conformational changes, resulting in interplay with other 

glycoproteins that facilitate virus entry by mediating fusion of the envelope to the cellular 

membrane and the delivery of the viral capsid into the cytoplasm (Figure 1.17.a)  [253].  

Once inside, the nucleocapsid travels along microtubules to the nuclear pore where viral 

DNA is transported into the nucleus and circularised [254,255]. DNA-to-nucleus transport is 

facilitated with viral genes, such as in case of HHV-1 the inner tegument protein VP1-2, that 

displays nuclear localization signal and is responsible for the delivery of the viral capsid to the 

nucleus [256]. In addition, at the entry, a part of the tegument dissociates from the nucleocapsid, 

with the indication that tegument proteins may modulate host cell to create a beneficial 

environment for viral replication (Figure 1.17.b) [257]. For example, the UL41 tegument protein 

of Alphaherpesviruses was implicated in virally induced host cell shut-off by the degradation of host 

mRNAs [258]. 

Circularised DNA triggers the initiation of viral genes transcription that occurs in three-

phasic cascade-like fashion, where the viral mRNA is synthesized by the host cell using the cellular 

RNA polymerase II (Figure 1.17.c) [259]. The first, immediate-early (IE) phase of transcription is 

mediated by the regulatory VP16 tegument protein and allows the transcription of IE-genes, such 

as ICP4 and ICP27, which are essential for inhibition the cellular defence against the virus 

[259,260]. It was demonstrated that VP16 is able to regulate methylation and demethylation of 

histone H3 that binds with viral DNA promoters during infection (Figure 1.17.d).  
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FIGURE 1.17. SCHEMATIC REPRESENTATION OF THE HERPESVIRAL REPLICATION CYCLE. 

a) The viral replication cycle starts with the viral attachment to the specific receptors on the cell surface. After the 

fusion, the viral capsid is released into the cytoplasm of the host cell. b) The capsids are transported to the nucleus via 

interaction with microtubules, where the viral genome is delivered into the nucleus through the nuclear pore, where it 

becomes circularized. c) In the nucleus, transcription of viral genes and genome replication occurs. The transcription 

of viral genes occurs in three sequential phases driven by the cellular RNA polymerase II. d) Initiated with the aid of 

tegument VP16 protein, the first phase marks the transcription of immediate-early (IE) genes. IE proteins act as 

transactivators of transcription by stimulating the transcription of the early (E) genes that are essential for DNA 

replication, and late (L) genes necessary for the synthesis of structural proteins, such as the envelope glycoproteins and 

the capsid proteins. e) Concatemeric replicated viral genomes are cleaved during encapsidation into assembled capsids, 

which leave the nucleus by budding at the internal nuclear membrane (f). g) Following the tegumentation of newly 

formed capsid and synthesis of the secondary envelope containing viral glycoproteins by trans-Golgi network, final 

maturation results in an enveloped virion within a cellular vesicle (h). i) Finally, following transport to the cell surface, 

vesicle and plasma membranes fuse, releasing a mature, enveloped virion from the cell (adapted from [254]). 
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VP16 triggers a cascade of viral gene expression by directly or indirectly activating the viral 

IE-gene promoters and removing bound histone H3, that is most likely the result of the cellular 

response to foreign DNA in order to inactivate it [261]. 

The primary function of the IE-gene-encoded proteins is the activation of early (E) gene 

expression. Proteins and enzymes encoded by the E-genes are involved in viral genome replication, 

regulation of nucleotide metabolism via thymidine kinase, suppression of IE-genes and activation 

of late (L) genes [259]. L-genes encode mainly structural components of the virion, including capsid 

proteins, which are translated in the cytoplasm and then imported into the nucleus where capsid 

assembly occurs. After replication, concatemeric viral DNA is cleaved to unit length during 

encapsidation with the preformed capsids (Figure 1.17.e) [262]. The maturation of herpesvirions 

occurs in the cytosol after nucleocapsid was translocated through the nuclear membrane. Both 

nuclear egress and final maturation involve budding processes, which occur in different subcellular 

compartments and involve different viral proteins (Figure 1.17.f) [263].  

First, the mature capsid buds into the inner nuclear membrane, producing the primary 

envelope. Non-enveloped virions, localized between the inner and the outer nuclear membrane, 

acquire primary envelope during budding through the inner nuclear membrane. The primary 

membrane is lost by its fusion with the outer nuclear membrane, resulting in the release of the 

naked capsid into the cytoplasm (Figure 1.17.g) [254]. Furthermore, in the cytoplasm, the naked 

capsid undergoes the tegumentation process that follows an intricate network of protein-protein 

interaction [263].  The final virion maturation includes re-enveloping with the secondary envelope 

that buds from Trans-Golgi-network (Figure 1.17.h). The mature enveloped virion is eventually 

secreted by exocytosis from the infected cell (Figure 1.17.i) [254]. 
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1.3.1.3. Cellular responses to viral infection 

 

 

An active viral replication will result in various host reply mechanisms, involving the 

immune system or internal signalling in the cell, leading to the death of the infected cells [264].  

Viral infection induces a wide variety of defence mechanisms in the host, including innate and 

adaptive immune responses. The innate immune defences are initiated via pathogen recognition 

receptors of the Toll-like receptor (TLR) family or a family of DExD/H box RNA helicase [265]. 

These cellular responses promote the expression of type I interferons (IFN-α/β) and a variety of 

IFN-stimulated genes and inflammatory cytokines [266]. Different TLR molecules recognize 

specific viral products, including single- (TLR3) and double-stranded RNA (TLR7/8) or double-

stranded DNA (TLR9) [267]. IFNs-α/β act by binding to the IFN receptor that results in the 

transcription of numerous IFN-stimulated genes. Additionally, INFs activate natural killer (NK) 

cells and induce other cytokines, such as interleukin 2 (IL-12), that promote NK responses. Several 

cytokines and chemokines induced by virus infection also play a role in defence, including cytokines 

TNF-α, IFN-γ, IL-6 and chemokines such as MIP-1α. Inflammatory chemokines may also play an 

important role in innate antiviral defence by orchestrating macrophage, neutrophil and NK 

responses at the site of infection [268]. Innate immunity generally serves to slow down, rather than 

stop the viral infection, allowing the adaptive immune response to begin. The two major pathways 

of adaptive immunity, B-lymphocytes and T-lymphocytes mediated responses are directed at 

different targets. Adaptive immunity activation is closely dependent upon early innate mechanisms 

that activate antigen-presenting cells (APC). APC and lymphocytes are accumulated in the 

lymphoid tissues by chemokine and cytokine signals [269]. B-cell activation occurs following 

antigen encounter in the B-cell follicles in the spleen or lymph nodes [270]. Antibody binding to 

epitopes expressed by native proteins at the surface of free virions usually blocks viral attachment 

or penetration of target cells. The antibody involved response to viral infection in humans is 

predominantly secretory immunoglobulin A (IgA). Like B-cell responses, T-cell responses to viral 

infections also begin within the lymphoid tissues. T-cell immunity against a particular virus 

commonly involves both CD4+ and CD8+ T-cell subsets, which recognize peptides derived from 

viral antigens bound to surface major histocompatibility complex (MHC). CD4+ T-cells participate 

in antiviral immunity in several ways. First, the CD4+ subset acts as helper cells for the induction 

of both antiviral antibodies and CD8+ T-cell responses to most virus antigens [271]. CD4+ T-cells 

also function as antiviral effector cells and generate stable memory cell populations similar to those 

of CD8+ T-cells [272]. However, effector CD4+ T-cells act by synthesizing and releasing numerous 

cytokines following their reaction with the antigen. The T-cell type most often involved in antiviral 
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defence are designated T-helper 1 (Th1) cells. Th1 cells primarily produce IFN-γ, LTα, TNF-α, 

and IL-2 to help the inflammatory responses and antiviral defence [273]. Thus, in order to avoid 

host cell immune responses herpesviruses enter latent phase. 

In addition, for promyelocytic leukaemia (PML) nuclear bodies (NBs) it was shown to 

possess antiviral activity. It was based on the observation that PML protein is known to contribute 

to an IFN-induced antiviral state in HSV-1 and influenza infections [274]. However, the precise 

molecular mechanisms by which PML protein stimulates IFN pathways are still not well 

understood. PML protein is thought to associate with transcription factors, such as STAT1, which 

are involved in regulating IFN and IFN-stimulated gene expression [275]. Furthermore, PML NB-

associated transcriptional repressors, such as Sp100 and DAXX, have been shown to restrict viral 

gene expression in HSV-1, HPV and EBV infections [276–278]. To overcome the antiviral 

environment induced by PML NBs, viruses have evolved effector proteins to serve as a defence 

against PML NBs [279]. These viral proteins are products of immediate early genes, due to their 

critical role in the establishment of infection. The best-studied interaction of a viral protein with 

PML NBs is HSV-1 immediate-early protein ICP0. ICP0 localizes to PML NBs at early time points 

of viral infection and was shown to disrupt and reorganize PML NBs, mainly by mediating the 

degradation of specific PML isoforms [280]. ICP0 is also thought to be involved in the degradation 

of Sp100, as knockdown of Sp100 results in increased expression of ICP0-null mutant HSV-1 

[281]. 

 

 

 

 

1.3.1.4. Herpesviral latency 
 

The hallmark of latency is the maintenance of the virus in the host cells, highlighted with 

the absence of progeny virus production and expression of only a small subset of viral genes. 

During latency, viral DNA is copied by cellular DNA polymerases, together with the chromosomes 

during mitosis. In contrasts, lytic replication relies on the viral DNA polymerase, reflecting a viral 

takeover of the cell. During latency, the virus depends on the host’s epigenetic mechanisms for the 

silencing of viral genes, such as histone modifications and DNA methylation [282]. In most cases, 

viral latency is established in specialized host cell types and microenvironments that provide 

essential conditions. For example, the predominant latent forms of EBV are found in CD19+ 

memory B-cells and HPV in basal epithelial cells [283]. 
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Latency is the principal characteristic of the herpesvirus life cycle, and they evolved 

numerous mechanisms to regulate latent switch and keep the integrity of their genome. For 

example, in order to establish latency, the viral genome is circularized in the form of an episomal 

DNA that is fully chromatinized like the cellular DNA. Consequently, the transcriptional activity 

of the viral latent genome form can be regulated by histone modifications using cellular 

mechanisms [284].  

For example, viruses like EBV and KSHV recruit the host cell replication machinery to the 

episome and maintain a stable episome copy number by segregating newly replicated genomes 

equally to daughter cells after each cell division [283]. Moreover, the EBV latent proteins allow the 

successful persistence in the infected cells. EBNA-LP and EBNA-2 are responsible for the 

transcriptional regulation of other latency proteins. EBNA-1 plays an important role in binding the 

viral genome to cellular chromosomes and participating in viral genome segregation and latent 

replication, as well as acting like a transcriptional activator [285]. Additionally, LMP-1 belongs to 

the tumour necrosis factor superfamily of proteins and mimics the CD4+ T-cell signals and 

promotes B-cell survival by constitutively upregulating NF-κB signalling [286]. In the case of 

KSHV, LANA origin binding protein is responsible for latent replication of the viral genome as 

well as tethering the genome to cellular chromosomes [284]. Additionally, LANA also inhibits the 

action of p53 tumour suppressor, promoting the survival of infected cells and inhibits the function 

of Rb [287,288].  

Furthermore, several herpesviruses, including GaHV-2 and HHV-6, establish latent 

infections in CD4+ T-cells with viral genomes integrated into host chromosomes [289]. The 

integration repeatedly occurs in telomeric repeats by homologous recombination [290]. In addition, 

some herpesviruses belonging to Alphaherpesvirinae (GaHV-2) and Gammaherpesvirinae (EBV and 

KSHV) subfamilies are associated with tumorigenesis during latency in their natural hosts [291]. 

Finally, herpesviruses from all the three subfamilies can periodically reactivate, causing 

symptomatic recurrent infection or are asymptomatically shed to new hosts. Viral reactivation and 

second productive infection can be triggered by a broad range of physiological and environmental 

factors [284]. Several external factors and stimuli that trigger viral reactivation in humans are 

known. For example, in Alphaherpesviruses, latent HSV-1 in neurons of various ganglia can be 

reactivated by local injury to tissues innervated with latently infected neurons, systemic 

physical/emotional stress, fever and microbial co-infection and hormonal imbalance [292]. 

Reactivation occurring in Betaherpesviruses, for example, CMV, is observed commonly in the setting 

of immunosuppression, mainly where pro-inflammatory cytokines are present and stimulate 

cellular differentiation to macrophages or dendritic cells [283,293,294]. Factors that induce 
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reactivation of Gammaherpesviruses, for example, EBV, are the differentiation of B-cells into plasma 

cells through antigen stimulation of the B-cell receptor. Additionally, host cell stress, induced for 

example, by chemotherapy or body irradiation, can reactivate latent EBV. In cell culture, EBV 

reactivation can also be triggered by sodium butyrate [295].  

However, in GaHV-2 context, despite the ability to mimic some aspects of reactivation 

using different chemical stimuli, the in vivo mechanisms mediating changes in virus gene expression 

and reactivation during GaHV-2 infection are still unknown [296]. 
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1.3.2. Gallid herpesvirus type 2 (GaHV-2) 

 

 

 

1.3.2.1. GaHV-2 genome structure   

 

 

Due to the biological properties, Gallid herpesvirus 2 (GaHV-2) also known as Marek’s 

disease virus (MDV), was long thought to be closely related to EBV, mainly because of its ability 

to induce T-cell lymphoma and slow growth in cell cultures [235]. However, based on genomic 

organization analysis, GaHV-2 was reclassified as an Alphaherpesvirus, genetically more closely 

related to HSV-1 and VZV (Figure 1.18). GaHV-2 belongs to the genus Mardivirus, into which 

two other closely related but distinct species were grouped, represented by Gallid herpesvirus type 

3 (GaHV-3) and Meleagrid herpesvirus type 1 (MeHV-1). Only GaHV-2 causes clinical disease in 

chickens with the other two species non-pathogenic [270].  

The GaHV-2 genome belongs to a class E genome with a size of 175 to 180 kbp. GaHV-

2 genome consists of a unique long (UL) and a unique short (US) segments, bracketed by inverted 

repeats known as terminal and internal repeats long (TRL and IRL) and terminal and internal repeats 

short (TRS and IRS) (Figure 1.18.a) [235]. GaHV-2 genes, similar to those of other herpesviruses, 

also belong to three kinetic classes of immediate-early, early and late genes based on the 

requirements for viral protein synthesis and DNA replication [297]. 

In addition, GaHV-2 harbours telomeric repeats (TMR) that are located within both ends 

of the linear genome as well as in IRL-IRS junction. Each junction contains two telomeric repeat 

sequences, multiple telomeric repeats (mTMR), with a variable number of repeats, and short 

telomeric repeats (sTMR), with a fixed number of six repeats (Figure 1.18.b). Both mTMR and 

sTMR regions are located adjacent to the conserved packaging signals (Pac-1 and Pac-2) and the 

genome cleavage site (direct repeat 1, DR-1), both of which are essential for virus replication. It 

was demonstrated that both mTMR and sTMR play an important role in GaHV-2 integration and 

that this process is crucial for pathogenesis and tumour formation [298]. 
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FIGURE 1.18. SCHEMATIC REPRESENTATION OF GAHV-2 GENOME ORGANISATION.  

a) The circular form represented during viral replication and linear form of GaHV-2 genome consists of unique long 

UL and unique short US regions flanked by the long terminal (TRL) and internal (IRL) repeats, and terminal (TRS) and 

internal short repeats (IRS), respectively. b) Telomeric repeat sequences (TMRs) which are located at the genome 

termini and the junction between IRL and IRs are essential for viral integration in the host’s telomeres (modified from 

[235,298]). 
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1.3.2.2. Marek’s disease induced by GaHV-2 

 

 

Gallid herpesvirus 2 (GaHV-2), the etiologic agent for Marek’s disease (MD) that targets 

avian species (Gallus gallus domesticus) where it establishes chronic infection. MD is a multifaceted 

disease, characterized with immunosuppression, neurological disorders and neoplastic 

transformation of CD4+ T-lymphocytes, localised around peripheral nerves and visceral organs of 

the host [299]. GaHV-2 is extremely infectious and routinely causes more than 90% morbidity and 

mortality in susceptible, unvaccinated animal populations.  

MD is a highly contagious lymphoproliferative disease of domestic chickens, first described 

in 1907 by József Marek as fowl paralysis and generalized polyneuritis [300]. However, it was until 

the 1960s when it was discovered that the virus is a causative agent of the MD [301]. Today, MD 

has the highest economic impact in modern poultry production worldwide, partially due to lower 

feed conversion, weight loss and decreases in egg production [302,303]. Furthermore, a secondary 

indirect economic impact is a result of increasing the need for farming hygiene, vaccinations and 

inducing immunosuppression, making chicken more susceptible to secondary infections [304]. The 

introduction of vaccines to control MD in the early 1970s significantly reduced mortality and was 

essential for the sustainability of the modern poultry industry. Although MD vaccines were very 

successful at protecting poultry against tumours and mortality, they do not provide sterilizing 

immunity and vaccinate chickens still support viral replication and shedding.  

Since the first implementation of the vaccines, their wide use has contributed to the 

evolution of GaHV-2 field viruses towards greater virulence (Figure 1.19) [305]. Up to date, GaHV-

2 group contains all the oncogenic viruses and includes four pathotypes: moderate (m), virulent 

(v), very virulent (vv), very virulent + (vv+) (Table 1.5) [235].  

 

TABLE 1.5. ONCOGENICITY OF DIFFERENT PATHOTYPES IN MARDIVIRUS GENUS. 

Genotype Pathotype Oncogenicity Strains 

GaHV-2 very virulent + (vv+) +++ RK-1, 584A, 648A 

 very virulent (vv) ++ RB-1B, Md-5, Md-11 

 virulent (v) + GA, HPRS-16, JM 

 moderate (m) - Rispens, CU-2, HPRS-17 

GaHV-3 moderate (m) - SB-1, HPRS-24, HN-1 

MeHV-1 moderate (m) - FC-126, WTHV, HPRS-26 
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In the late 1960s, introduction of the MeHV-1 (strain FC-126) vaccine led to a sharp 

decrease in condemnation of chicken carcasses, with noticeable reduction and delayed tumour 

development [306]. For a few years, MD was controlled in the field, but since it did not induce 

sterile immunity, by the late 1970s, new GaHV-2 very virulent (vv) strains began to break through 

the vaccine protection (Figure 1.19).  

The emergence of vv strains in the 1980s was followed by the introduction of bivalent 

vaccines that consisted of the GaHV-3 (strain SB-1) and MeHV-1 (strain FC-126) that was able to 

protect against vv viruses [307]. However, by the early 1990s, hypervirulent (vv+) GaHV-2 strains 

began to emerge and overcome protection provided by bivalent vaccines. In response to a new 

increase in virulence, trivalent vaccines featuring an attenuated GaHV-2 strain (CVI988 Rispens), 

used in Europe since the early 1970s for layer chickens, together with GaHV-3 (strain SB-1) and 

MeHV-1 (strain FC-126) were implemented in animal-dense areas and high-risk farms [308].  

In the last decade, MD was controlled by vaccination of approximately 4.2 billion layers, 

0.5 million breeders and 17 billion broilers worldwide annually [309]. For example, the high efficacy 

of MD vaccines was demonstrated by a decrease of losses from the condemnation of young broiler 

chickens in the United States from 1.5% in 1970 to 0.003% in 2006. Control of MD by vaccination 

was a crucial step for the viability of the modern poultry industry. However, it has a dark side, with 

the evolution of more virulent strains that will break the current vaccination protocols and with no 

improved or more efficacious vaccine available [305]. Moreover, increasing virulence of GaHV-2 

appears not to be due to an increase in the ability of the virus to cause tumours but is the result of 

the virus evolving to replicate faster and more efficiently in the chicken [310].  

Since there are no vaccines superior in protection than today’s gold standard CVI988, the 

urgent priority is to develop other strategies to improve the control of MD [305]. For example, the 

development and the use of DNA vaccines, in the form of infectious BAC clones, would allow the 

injection of a well-characterized genome, which would result in the in vivo reconstitution of the 

modified virus with the desired protection factor. BAC clones derived from cell cultures of 

attenuated strains of a GaHV-2 vv+ (584A) and CVI988 were tested as potential MD vaccines, 

with a partial level of protection compared to CVI988 [311,312]. These studies have demonstrated 

a potential role of DNA vaccines in future MD control strategies and a more manageable model 

of production, storage and administration of vaccines. 
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FIGURE 1.19. THE FAST-PACED EVOLUTION OF GALLID HERPESVIRUS TYPE 2 UNDER VACCINATION 

PRESSURE. 

The clinical picture of Marek’s disease (MD) has changed dramatically since its first recognition in the early 20th century, 

showing increasing virulence of Gallid herpes virus type 2 (GaHV-2) over time. The chronic polyneuritis was prevalent 

until 1925, followed by visceral lymphoma from 1925 to 1950. More aggressive and faster-developing tumours were 

observed from 1950 onwards. During the past three decades, GaHV-2 virulence has continued to increase, and the 

clinical picture of the disease has changed, now including severe brain oedema and acute deaths, even in fully vaccinated 

animals. GaHV-2 strains range from moderately virulent (m) to virulent (v), very virulent (vv) and very virulent plus 

(vv+). Most v and vv strains induce transient paralysis in most chicken lines, and vv+ strains, usually isolated from 

vaccine breaks, cause massive brain lesions. It was suggested that there is a close relationship between the evolution 

of strains towards increased virulence and their potential to overcome vaccine protection. After each introduction of 

a new vaccine (in blue), an increase in virulence was observed (black dotted line). Introduction of Meleagrid herpesvirus 

type 1 (MeHV-1) vaccine in the 1970s, resulted in the emergence of v strains, the use of bivalent vaccines containing 

MeHV-1 and the non-oncogenic GaHV-3 SB-1 strain in the 1980s and 1990s, resulted in vv+ breakout. Today, the 

use of trivalent MeHV-1, SB-1 and attenuated GaHV-2 Rispens vaccine will ultimately lead to the evolution of new 

very virulent ++ (vv++) strains (red dotted line) with new clinical pictures (red question mark) (adapted from 

[235,308]). 
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1.3.2.3. GaHV-2 pathogenesis 
 

 

The proposed model of GaHV-2 life cycle (Figure 1.20) describes infection starting with 

the inhalation of dust particles containing the virus. Initial virus replication occurs in macrophages 

and B-cells in the lung of infected animals between 2 to 7 days post-infection (dpi) [313]. 

Macrophages act as the transporters of the virus to lymphatic tissues, the bursa of Fabricius and 

the spleen, spreading the infection to other immune cells [314]. Additionally, GaHV-2 secretes a 

viral chemokine vIL-8 (vCXCL13) that recruits B-lymphocytes and a subset of CD4+ T-

lymphocytes, for which was shown to be crucial for the establishment of infection [315]. It was 

shown that B-lymphocytes represent the majority of infected cells and appear to be the most 

susceptible cells for productive replication. However, recently was demonstrated that B-

lymphocytes are entirely dispensable for GaHV-2 pathogenesis and tumour formation [316].  

Starting between 7 and 10 dpi, GaHV-2 establishes latency in target cells, mainly CD4+ T-

lymphocytes that result in systemic viral dissemination [317]. In latently infected cells, GaHV-2 

genome is integrated into the telomeres of the host chromosomes, ensuring the maintenance of 

the virus genome. Telomeric repeat sequences at the ends of the viral genome facilitate telomere 

integration, which likely occurs by a homologous recombination pathway. Viral integration appears 

to enhance cellular transformation and tumour formation [290]. However, why and how CD4+ T-

lymphocytes are targeted and chosen for latency establishment and what are specific cell tropisms 

involved is still not known, and furthers studies are needed in order to answer these questions. 

In the late productive phase, GaHV-2 reactivates from the subpopulation of latently 

infected T-cells, with viral replication occurring within epithelial cells in feather follicles epithelium 

(FFE). The mechanisms by which GaHV-2 infects skin and FFE are poorly understood. Since B- 

and T-lymphocytes are the major targets of GaHV-2, infected early on [313], these cells are 

probably primarily involved in FFE infection. However, this hypothesis has not been yet 

demonstrated; therefore, the involvement of macrophages and/or dendritic cells cannot be 

excluded. In addition, for most pathogenic strains, replication in FFE starts at 7 dpi, well before 

tumour development [318], indicating that it is probably not transformed cells that migrated into 

the skin, since there are no or very few transformed cells [319]. Numerous questions have to be 

answered in order to obtain the full picture of mechanisms involved in FFE infection, such as: 

Why is the virus mainly present in the FFE and not in the epidermis of the skin? How does the 

virus infect the upper epidermis layers: directly, or indirectly by infecting the basal layer first and 
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then replicating when basal layer differentiate? How does the virus cross the basal membrane? Up 

to this date, only speculative hypotheses were proposed. For example, infected cells lymphocytes 

infiltrate the skin epithelium to transmit the virus to the upper epithelial cells of the epidermis, 

resulting in the viral propagation infecting neighbouring cells. Furthermore, lymphocytes could 

infiltrate the dermis or the dermal papilla, infecting neighbouring cells such as fibroblasts or 

melanocyte precursors, which in turn transmit the virus to the basal epithelial cells. Alternatively, 

lymphocytes could directly infect the follicle stem cells located in the bulge of the feather follicle, 

spreading the infection to transient amplifying cells that are involved in the repair of the follicle 

wall and the feather during feather regeneration [319]. 

Shedding occurs from FFE that release infectious particles encased in keratin or released 

by exocytosis. Released particles remain infectious for 16 to 28 weeks, ensuring the horizontal 

spread of the virus [320]. Finally, the transformation phase, occurring around 28 dpi within latently 

infected cells, leads to viral spread in peripheral nerves and visceral organs, causing T-cell 

lymphoma and paralysis. The rapid formation of T-cell lymphomas is the dominant characteristic 

of GaHV-2 infections, where GaHV-2-induced tumours consist mostly of transformed and 

clonally expanded CD4+ T-lymphocytes [321]. 

During all the steps of the viral replication cycle, transcriptional modification and epigenetic 

changes, together with post-transcriptional and posttranslational modifications, regulate expression 

of cellular and viral genes, which allow GaHV-2 to switch between the productive and latent phases 

and to induce transformation of infected cells, resulting in visceral lymphomas. 
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FIGURE 1.20. PROPOSED MODEL OF GALLID HERPESVIRUS TYPE 2 INFECTIOUS LIFE CYCLE. 

a) Primary infection (in blue) starts with virus particle breaking mucosal tolerance in the epithelial lung cells, resulting 

in inflammatory responses by macrophages. Local viral replication establishes infection in B-lymphocytes supported 

by viral interleukin-8 (vIL-8). b) In B-lymphocytes, semi-productive viral infection (in red) and disease progression are 

initiated. Infected B-lymphocytes secret vIL-8 that acts as a chemotactic factor and infect T-lymphocytes, resulting in 

disseminated viraemia and immunosuppression. It was demonstrated that B-lymphocytes are dispensable for 

pathogenesis and tumour formation, and the virus can readily replicate in T-lymphocytes (red dotted line). GaHV-2 

genome integration in CD4+ T-lymphocytes enables escape from host immune response and initiates latent viral 

infection. Early latently infected and activated CD4+ T-lymphocytes migrate (yellow arrow) to cutaneous sites of 

replication, feather follicle epitheliums (FFE). c) Infection of FFEs enables fully productive viral replication (in green). 

Infection of FFEs results in the secretion of mature virions in skin dander and dust that act as the primary source of 

infectious materials. d) Latently-transformed CD4+ T-lymphocytes proliferate and undergo neoplastic transformation 

due to transcriptional and trans-repression activity of viral oncogenic protein Meq. Latent neoplastically transformed 
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CD4+ T-lymphocytes infiltrate and establish a viral reservoir in peripheral nerve system (PNS) (1), leading to 

neuropathy presented as transient or acute paralysis of legs, wings and weight loss. Reactivation from latency enables 

the second phase of replication where viral oncogenic protein Meq acts on T-lymphocytes signalling pathways causing 

uncontrolled cellular proliferation leading to disseminated lymphoma formation in visceral organs, peripheral and 

central nervous system, musculoskeletal systems, skin and eyes (2), eventually causing death (adapted from [299]). 
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1.3.2.4. GaHV-2 induced lymphomagenesis  

 

The most critical and obvious outcome of GaHV-2 infection is the transformation of 

latently infected CD4+ lymphocytes, followed by multifocal lymphoma formation [235]. Rapid 

onset of lymphomas in most of the susceptible animals strongly indicates a direct effect of GaHV-

2-encoded genes. Despite the differences in the number of latent viral genes expressed among 

transformed cell lines, it is apparent that GaHV-2 gene expression in latent-transformed cells is 

restricted to the IRL-TRL regions of the viral genome [322]. The crucial genes highly expressed in 

these cells are the Meq (Marek’s EcoRI-Q-encoded protein), GaHV-2-encoded CXC chemokine 

viral interleukin 8 (vIL-8), the latency-associated transcript (LAT), the viral telomerase RNA (vTR) 

subunit and the GaHV-2-encoded miRNAs [323]. 

Of the genes, only Meq was shown to have direct transformational abilities and fulfils 

several of the criteria consistent with being an oncogene, making it putative GaHV-2 oncoprotein. 

It was shown that Meq is consistently expressed in tumours and cell lines derived from tumours, 

and inhibition of its expression decreases the proliferation of these cell lines [324,325]. Moreover, 

Meq expression in cell lines induces proliferation and apoptosis resistance [325]. Finally, Meq 

deletion and mutations of particular binding motifs were shown to be sufficient to block 

tumorigenesis [326]. Meq is a 339-amino-acid protein that is expressed during both the productive 

and the latent/tumour phase of infection, and is a basic leucine zipper (bZIP) protein with 

characteristics similar to oncoproteins such as v-Jun [324]. bZIP structure located at the N-terminal 

domain, similar to that of the cellular transcription factors c-Jun/c-Fos [327], allows Meq to form 

homodimers or to dimerise with other proteins possessing a bZIP domain, such as c-Jun, for which 

it has a strong affinity (Figure 1.21.a) [328]. In addition to homo- and heterodimerization with 

proto-oncoproteins, Meq can bind to several factors that are involved in cell cycle control, 

including retinoblastoma protein (pRb), p53 and cyclin-dependent kinase 2 (CDK2), which can 

also explain the role of Meq in oncogenic transformation of T-lymphocytes [329]. The heterodimer 

Meq/Jun and the homodimer Meq/Meq bind to specific nucleotide sequences termed the Meq 

responsive elements I (MERE I) and II (MERE II), respectively (Figure 1.21.b).  

MERE I sites are located within the viral promoters, such as ICP4, a transactivator of the 

replicative phase and glycoprotein B (gB) implicated in cell-to-cell spread of GaHV-2 in cultured 

cells. In addition, MERE I sites are found and the cellular promoters as well, including interleukin-

2 and B-cell lymphoma 2 (Bcl-2) which is anti-apoptotic and facilitates cell survival (Figure 1.21.b) 

[328,330,331].  
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FIGURE 1.21. DOMAINS AND DIMERIZATION PARTNERS OF MEQ ONCOPROTEIN DURING GALLID 

HERPESVIRUS TYPE 2 INFECTION.  

a) Meq basic leucine zipper domain (bZIP) has homology with the bZIP of the cellular transcription factors c-Jun and 

c-Fos. The transactivation (TA) proline-rich domain triggers either activation or repression of the promoter’s activity. 

In addition, PLDLS and Rb binding domains allow Meq interaction with cellular genes such as C-terminal binding 

protein (CtBP) and retinoblastoma protein) (pRb), which can also contribute to oncogenic transformation of T-

lymphocytes. b) Meq can form heterodimers (Meq/c-Jun) which bind to Meq response elements I (MERE I) located 

within viral (ICP4-infected cell protein 4, gB-glycoprotein B) and cellular (Bcl-2-B-cell lymphoma 2) promoters, 

inducing gene transcription. c) Meq can homodimerise (Meq/Meq) and bind to MERE II sites located within viral 

promoters, which results in repression of gene expression. (pp-phosphoprotein) (adapted from [289,327]). 

 

 

 

 

Contrasting the effect of the Meq/c-Jun heterodimer binding to the MERE I site, the 

binding of the Meq/Meq homodimer to MERE II represses gene expression (Figure 1.21.c). A 

MERE II site was localized within bidirectional viral promoter controlling pp38/pp24 genes and 

1,8 kb mRNA expression. It was demonstrated that pp38 is involved in a productive infection of 

B-lymphocytes in the spleen and maintained the viability of infected T-lymphocytes by limiting 

apoptosis [271] and 14 kDa protein, encoded by the 1.8 kb mRNA promotes the transition from 

a) 

b) 

c) 
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G1 to S phases of the cell cycle and enhances viral DNA replication [272]. By targeting their 

promoters, Meq prevents viral DNA replication due to their involvement in productive infection 

[328,330].  

Furthermore, Meq-non-bZIP interactions are regulated via Pro-Leu-Asp-Leu-Ser (PLDLS) 

motif that is known to bind a cellular transcriptional co-repressor, the C-terminal binding protein 

(CtBP) that has an important role in the regulation of development and oncogenesis [326]. 

Interestingly, Meq shares CtBP-binding motif with EBV nuclear antigens EBNA-3A and EBNA-

3C [332], both crucial for efficient EBV-transformation of human B-lymphocytes [333]. 

Although Meq has a clear role in oncogenesis, its transforming properties are significantly 

weaker comparing to retroviral oncoproteins such as v-Src [235]. Moreover, Meq is not sufficient 

for GaHV-2 transformation since it is also encoded and expressed by attenuated non-oncogenic 

viral strains [334]. Thus, other GaHV-2 gene products, that contribute to lymphoma development 

and progression or play a supportive role to Meq, must be involved in oncogenesis.  

For example, lncRNAs localized in the IRS and TRS of the GaHV-2 genome, termed 

latency-associated transcripts (LATs) are mainly expressed during viral latency and 

lymphomagenesis, suggesting that they have a role in the maintenance of latency and/or cell 

transformation [335]. A cluster of microRNAs (cluster miR-M8-M10), identified in the first intron 

of the LATs gene [336] is overexpressed in GaHV-2 transformed and latently infected cells. The 

miR cluster overexpression is induced by binding of a tumour suppressor p53 to the LATs 

promoter, which consists of a series of 60 bp repeats, each containing a conserved functional p53 

binding site [337].  Interestingly, it was shown that the number of 60 bp repeats may vary according 

to viral strain and its virulence [338]. 

Furthermore, GaHV-2 encodes for a viral homologue of telomerase RNA (TR), named 

vTR, which has extensive secondary structures that are similar to those of the EBV EBERs that 

are produced during latent EBV infection [217]. 
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1.3.2.5. Virus-encoded telomerase RNA subunit 

 

 

As previously discussed in section 1.2., oncogenesis does require not only a transformation 

event but also avoidance of cellular senescence and apoptosis. The enzyme involved in controlling 

cellular survival is telomerase that consists of two core components, a protein subunit TERT and 

its template RNA structure TR [308]. Furthermore, several oncogenic viruses, including the human 

papillomavirus HPV-16, hepatitis C virus, HHV-8 and EBV, are known to affect cellular 

telomerase activity [217]. In the context of virus-induced lymphomagenesis, as demonstrated in 

GaHV-2 homologous model, viral infection has two significant impacts on the telomerase 

complex. Firstly, it modifies TERT splicing, that partially regulates telomerase activation, thus 

playing a pivotal role in the upregulation of telomerase activity in vivo [339], and secondly, by an 

over-expressing viral homologue of chTR efficiently establishes tumour formation [340]. The 

detailed mechanism of how GaHV-2 modifies TERT splicing is not well known; however, a recent 

study indicated the possible involvement of nonsense-mediated mRNA decay (NMD) pathway. 

Amor et al., [339] demonstrated that the low basal telomerase activity in normal T-cell is controlled 

by in-frame non-functional isoforms (>99% isoforms detected) and was associated with low levels 

of constitutively spliced active chTERT transcripts (0.5%). This observation was consistent with a 

previous study demonstrating that telomerase-positive cell lines contain only a few molecules of 

functional hTERT mRNA [341]. Additionally, it was observed that telomerase activation during 

GaHV-2 infection was associated with an increase in constitutively spliced transcript levels 

accompanied by a switch in the profile of alternative transcripts from in-frame transcripts encoding 

non-functional isoforms to NMD-sensitive transcripts [339]. Furthermore, in the human context, 

it was demonstrated that the overexpression of the c-Myc oncogene inhibits NMD pathway and 

that this inhibition both stabilises and up-regulates multiple c-Myc targets, suggesting that the 

inhibition of NMD may play an important role in the dynamic regulation of genes by c-Myc [342]. 

However, further studies are needed in order to investigate this phenomenon in the context of 

GaHV-2 infection. 

Vertebrate TR subunits consist of four main structural domains. First is the CR1 

pseudoknot domain, which consists of the template sequence and the CR2 and the CR3 conserved 

regions. Second and third are the CR4/CR5 domain, essential for functional telomerase activity 

and the H/ACA box, respectively. Final domain is the CR7 domain, required for the 3-end 

processing, stability and nucleolar localization within cells [343–345]. 
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Fascinatingly, two copies of viral non-coding RNA having structure and function 

homologous to a cellular TR were found to be encoded in TRL and IRL of GaHV-2 genome (Figure 

1.22.a). Moreover, it was shown that the viral TR (vTR) is encoded by the genome of all GaHV-2 

strains, regardless of their pathotype [346]. Further analysis demonstrated that the CR4/CR5 

domains, conserved between vTR and chicken (chTR), are essential for telomerase activity. 

Furthermore, their secondary structures, consisting of the P6.1 stem and the L6.1 loop, are required 

for interaction with the TERT and essential for efficient telomerase activity.  Additionally, the CR7 

domain responsible for the 3-end processing, the maintenance and the TR stability within cells 

were conserved between vTR and other vertebrates (Figure 1.22.b) [217]. 

It was established that vTR shares 88% sequence homology with chTR, and it was likely 

acquired from the chicken genome during virus-host co-evolution. A recent study demonstrated 

that tumorigenesis of a virus lacking vTR could be restored by the insertion of chTR into the virus 

genome, highlighting that overexpression of a chTR can drive tumorigenesis and that the virus 

acquired the gene from its host [347].  

Exact mechanisms of how GaHV-2 acquired host gene homologues, such as chTR or IL-

8, is not known. One proposed hypothesis suggests involvement and co-infection of the host cells 

with retroviruses. Cell co-infection with GaHV-2 and avian retroviruses, such as 

reticuloendotheliosis virus (REV) or avian leukosis viruses (ALVs), could establish a base for 

retrotransposition events that result in the “shuffling” of the genetic material between the genomes 

of GaHV-2 and its host [348]. Retroviruses can easily integrate into GaHV-2 or any double-

stranded DNA (dsDNA), cellular or viral. It was shown that inserts of avian retroviral sequences 

were mainly the long terminal repeats (LTRs), and were located at the junctions between the unique 

(long or short) GaHV-2 sequences and the terminal or internal repeated regions (TRL and TRS and 

IRL and IRS) [349]. Co-cultivation of GaHV-2 and REV in the same tissue culture resulted in the 

recombinant virus with altered in vitro replication and in vivo biological properties [350,351]. 

Moreover, two other studies reported that integration of retroviral LTR into GaHV-2 genome 

occurs not just because of co-cultivation of both viruses, but also as a result of culture maintenance 

and the presence of endogenous avian viruses in the host cells [352,353]. Further studies are needed 

in order to understand how GaHV-2 acquired homologues of host genes. 
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FIGURE 1.22. GENOMIC LOCATION AND PROPOSED SECONDARY STRUCTURE OF THE GALLID 

HERPESVIRUS TYPE 2 TELOMERASE SUBUNIT. 

a) Two copies of vTR are located within in the TRL and IRL regions of the Gallid herpesvirus type 2 (GaHV-2) genome 

between the telomeric repeat sequences (TMRs) and the viral interleukin 8 (vIL-8) gene. b) Proposed secondary 

structure of GaHV-2 with four universal structural domains conserved (grey rectangles) in all vertebrate TRs. Paired 

regions (P) are numbered, and junction regions (J) between them are shown in orange. The H/ACA motifs are boxed, 

and conserved nucleotides are shown in green. Mutations in the vTR sequence and additional base pairing are shown 

in red. Additional nucleotides in the vTR sequence are shown in blue and deleted regions are indicated by blue arrows 

together with the nucleotide length of the deletion (adapted from [217]). 

a) 

b) 
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Furthermore, analyses have shown that vTR can reconstitute telomerase activity by 

interacting with chicken TERT (chTERT) more efficiently than chTR [354]. Previous studies done 

on healthy chicken examined the mRNA expression of both chTR and chTERT, as well a 

telomerase activity during growth and development of the chicken in order to better understand 

mechanisms which regulate telomerase activity [355,356]. Organ-specific profiles were established 

for brain, heart, liver, intestine, spleen and gonads from the embryos and adults, that showed 

transcript levels either similar or down-regulated relative to the early differentiation embryo stages 

(Table 1.6). Organs which were known to lose telomerase activity between the embryo and adult 

stages (brain, heart, liver) revealed down-regulation of chTR and either no change or an increase 

in chTERT transcripts. Whereas, organs which maintain high telomerase activity even in adults 

(intestine, spleen, gonad), generally exhibited up-regulation of transcripts for both components 

[356]. (Table 1.6). These results indicated that chTERT and chTR transcript levels correlate with 

telomerase activity profiles and suggest that chTR is the rate-limiting component in telomerase-

negative tissues, however, to establish same profiles for other organs, tissues or cells (such as FFE 

or CD4+) further studies are needed. 

 

TABLE 1.6. TRANSCRIPT PROFILES OF TELOMERASE COMPONENTS AND TELOMERASE ACTIVITY 

DURING CHICKEN ONTOGENY 

 Telomerase activity [355] Transcript profile [356] 

Organ Embryo Adult chTERT chTR 

Brain + - ↔ ↓ 

Heart + - ↔ ↓ 

Liver  + - ↑ ↓ 

Intestine + + ↑ ↑ 

Gonad + + ↑ ↓ 

Spleen + + ↑ ↑ 

+ = increase in telomerase activity; - = reduction in telomerase activity 

↔ = no change; ↑ = increase; ↓= decrease in transcript level between embryo and adult  

 

 

Since all functional domains are conserved between chTR and vTR, the differences in 

telomerase activity could be explained by variances in their pseudoknot domains (PKD), such as 

four unpaired-nucleotide deletion and a mutation in the J2a-2b and J2b-2a junction regions of vTR 

PKD, which could stabilize the P2 stem-loop, enhancing telomerase activity (Figure 1.22.b) [217].  
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In addition, apparent differences in vTR and chTR promoters could explain the increase in 

telomerase activity due to higher levels of vTR expression [357]. Functional comparative analysis 

of vTR and chTR promoters indicated several cis-elements specifically involved in vTR 

transcriptional regulation, resulting in higher transcriptional efficiency of the viral promoter (Figure 

1.23) [357]. It was established that the vTR promoter has additional AP-1 site, c-Myc transcription 

factor binding sites, namely E-box 1, E-box 2 and E-box 3, and EBS transcription factor binding 

site, which are absent in the chTR promoter, indicating that the vTR promoter is the homolog of 

the avian cellular TR promoter with certain responsive elements related to oncogenesis. 

The vTR expression is explicitly regulated by an E-box 3, located two nucleotides 

downstream from the TSS (Figure 1.23.a) [357]. E-boxes (5’-CACGTG-3’) serve as binding sites 

for proteins of the basic helix-loop-helix-Zip (bHLH-Zip) transcription factor superfamily, 

including the Myc/Mad/Max [358], that act as positive regulators of cell proliferation and death 

[359]. Additionally, for the E6 oncoprotein encoded by HPV-16 was shown to interact directly 

with c-Myc, increasing telomerase activity in infected tumour cells [360], demonstrating that the c-

Myc oncoprotein is a common element of the pathways leading to higher levels of telomerase 

activity in GaHV-2- and HPV-16-transformed tumour cells.  

Furthermore, it was shown that E-box 2 and the Ets binding site (EBS) are exceptionally 

functional in GaHV-2-transformed lymphoblastoid cell line (MSB-1), providing evidence that vTR 

is specifically regulated in transformed T-lymphocytes. However, it was demonstrated that E-box 

1 was not active [357]. In addition, it was shown that vTR promoter contains AP-1 (MERE) 

binding sites that can be recognised by Meq oncoprotein, which heterodimerize with c-Jun and 

binds on AP-1 sites [328], however, it was revealed that Meq had no direct regulatory effect on the 

transcriptional activity of the vTR promoter in vitro [357]. These results demonstrate that 

cooperative action of factors that bind on EBS together with c-Myc oncoprotein are main elements 

inducing high levels of vTR expression and are required for the full expression of the oncogenic 

properties of vTR, especially its specific overexpression in lymphoblastoid cells during the latent 

period and the transcriptional regulation [357]. 
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FIGURE 1.23. COMPARISON OF THE PROMOTER REGIONS OF THE VIRAL AND THE CHICKEN TR GENES.  

Predicted transcription factor binding sites together with the transcriptional start sites (+1, arrow) are indicated for 

viral (vTR) and chicken (chTR) telomerase RNA subunit promoter sequences. a) Sites present in vTR promoter 

sequences and absent from chTR promoter (b) include AP-1, E-boxes and the EBS (adapted from [357]). 

 

 

 

1.3.2.6. The role of vTR in tumorigenesis 

 

 

As indicated in previous sections, vTR has a vital role in GaHV-2-induced T-cell 

lymphomagenesis by out-competing the chTR for chTERT [217,354]. This was further 

characterised, by generating and analysing mutant viruses that lacked either one or both copies of 

the vTR gene. vTR deletions from the genome the highly oncogenic GaHV-2 strain RB-1B did not 

abolish oncogenicity GaHV-2-susceptible birds. GaHV-2 mutants lacking both vTR copies were 

significantly impaired in T-cell lymphomas induction, with unaffected productive replication in vivo. 

Additionally, tumorigenesis was reduced by >60% in chickens infected with vTR− viruses 

compared with animals inoculated with virus bearing one intact vTR copy. Moreover, gross 

tumours in animals infected with the vTR− virus were also significantly smaller and less 

disseminated [218].  

This “auxiliary” vTR function during oncogenesis was further studied by comparative in 

vitro analysis of the viral and chicken TR promoters [340]. The study showed that the vTR promoter 

was up to 3-fold more efficient than the chTR promoter in avian cells and that the more robust 

transcriptional activity of vTR resulted mainly from c-Myc response element (E-box 3) located two 

a) 

b) 
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nucleotides downstream of the TSS of the vTR gene.  Furthermore, the vTR promoter importance 

in vTR expression and efficient tumour formation was tested by a recombinant virus harbouring 

chTR promoter as a replacement for vTR promoter. Viral replication rates in vivo showed no 

difference compared to parental GaHV-2 virus. However, tumour induction was reduced by >50% 

with smaller and less disseminated lymphomas. This highlighted that vTR promoter is essential for 

efficient vTR transcription and thus subsequently critical for efficient GaHV-2 lymphoma 

development [340]. Furthermore, the over-expression of vTR induced cellular proliferation 

increased expression of cell-surface adhesion molecules such as integrin alpha V, suggesting that 

vTR possesses functions beyond its telomerase activity [218]. 

To investigate if the tumour-promoting properties of vTR are dependent on the formation 

of a functional telomerase complex, mutations and disruption of the P6.1 stem-loop of vTR were 

introduced [219]. The P6.1 stem-loop of TR is known to mediate TR-TERT complex formation, 

and base pairing of the P6.1 stem-loop is conserved in all vertebrates [343].  The disruption of the 

base paring was shown to interfere with proper TR-TERT interaction and resulted in the absence 

of telomerase activity in vitro and in vivo [361]. In the GaHV-2 context, the introduced mutations in 

the P6.1 stem-loop interfered with proper vTR-TERT interaction and abrogated telomerase 

activity. Contrasting the recombinant viruses lacking vTR, all animals infected with the P6.1 mutant 

viruses developed lymphomas, with significantly delayed tumour formation and similar viral 

replication as a parental virus. Furthermore, P6.1 mutant viruses enhanced metastasis, highlighting 

the functionality of non-complexed vTR in tumour dissemination [219]. 

Furthermore, it was shown that vTR, similarly to EBV EBER-1 [362] and human TR [363], 

interacts with the cellular ribosomal protein L22 (RpL22) [219], which plays an important role in 

T-cell development and lymphoma formation [364,365], the main targets of GaHV-2 

transformation. The interaction of EBER-1 with RpL22 results in re-localization of RpL22 from 

the nucleolus to the nucleoplasm and is associated with enhanced potential for cellular proliferation 

The mechanisms of RpL22 binding and re-localisation during EBV infection, they influence on 

viral replication and viral latency and moreover, the cellular role of RpL22 remain to be elucidated 

[366]. It is speculated that the binding and re-localisation of RpL22 may serve in direct functional 

role during EBV latency, or its sequestration may modulate cellular function, which may have 

negative consequences on viral replication or maintenance within the cell. To support this 

speculation, results demonstrating that RpL22 is re-localised to viral replication compartments 

during HSV type 1 infection suggest that RpL22 plays an active role during viral infection [367].  

Furthermore, RpL22 may serve in a regulatory capacity and its re-localisation during viral 

infection. This is supported by results suggesting that RpL22 does serve a regulatory and 
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nonessential role within cells. It was demonstrated that RpL22 is not required for basal levels of 

translation and the RpL22 knockout is not lethal in mice [368,369]. Described vTR/RpL22 

interaction indicates to an alternative GaHV-2 transformation mechanism that may be similar to 

that demonstrated for EBER-1 [219], that needs to be further studied. 

In conclusion, vTR possesses two distinct functions during virus-induced tumorigenesis. 

Firstly, during the stages of early infection, vTR is part of the telomerase complex and contributes 

to the survival of rapidly dividing transformed cells. Secondly, the vTR functions independently of 

the telomerase complex and presents an essential part in the establishment of lymphomagenesis 

and metastasis. vTR involvement in lymphomagenesis and metastasis is likely a consequence of 

vTR-mediated gene regulation, partially controlled by interaction with RpL22 that is involved in T-

cell development and virus-induced transformation [219].  

Importantly, in order to unravel transformational mechanisms of vTR independent of its 

function within an active telomerase complex and regulatory processes controlling the vTR 

expression, further studies involving in vitro approach, as well as GaHV-2 natural small model for 

virus-induced tumorigenesis, are essential.
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1.4. Project outline and objectives 
 

 

Gallid herpesvirus type 2 (GaHV-2) is an avian alphaherpesvirus that causes the most 

frequent clinically diagnosed cancer in the animal kingdom, resulting in highly malignant T-cell 

lymphomas [235,321,370]. In susceptible chicken, the transformed CD4+ T-lymphocytes, the 

ultimate consequence of interactions of GaHV-2 with the host cell [327], proliferate to form 

visceral tumours approximately four weeks after infection, leading to the death of the animal [371].  

GaHV-2 is one of the few oncogenic herpesviruses that induces tumours in its natural host 

[234] and thus serves as a versatile small-animal model for studying different aspects of herpesvirus 

pathogenesis and induced oncogenesis in a natural homologous virus-host system [235].  

During the viral life cycle, epigenetic changes, together with post-transcriptional and post-

translational modifications, regulate expression of cellular and viral genes. Altogether, they allow 

GaHV-2 to switch between the productive and latent phases, and to induce infected cell 

transformation [191]. During latency, GaHV-2, like other herpesviruses, expresses a minimal 

subset of transcripts, including miRNAs, protein-encoding genes and other ncRNAs, all of which 

have a direct or indirect role in the maintenance of the latent state. For latency to be achieved, there 

must be a controlled shutdown of the lytic genes in concert with the expression of transcripts 

needed to establish and maintain the latent state [315]. The opposite situation (shutdown of the 

latent genes and expression of the transcripts needed to complete the lytic infection) is expected to 

induce the reactivation.  

In this context, epigenetic modifications of the viral genome both at the DNA level and at 

the chromatin level are likely involved in the gene expression switch observed in the alternative 

stages of infection.    

Furthermore, GaHV-2 encodes two copies of viral telomerase RNA subunit (vTR), which 

is expressed both in productive infection and in virus-transformed T-cell lines. vTR is driven by a 

robust viral promoter and is highly overexpressed compared to cellular TR in virus-infected cells. 

Its expression is regulated by promoter E-boxes (E-box 2 and E-box 3) that bind the oncoprotein 

c-Myc. vTR interacts with the chicken telomerase reverse transcriptase subunit (TERT) enhancing 

telomerase activity and contributing to the efficient and rapid onset of lymphoma [217–219]. 

Telomerase activity, absent in most somatic cells, is commonly up-regulated in transformed cells 

and is significantly elevated in over 85% of human cancers and over 70% of immortalized human 
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cell lines [206,221,372]. Moreover, vTR functions independent of the telomerase complex are 

responsible for tumour progression and dissemination. 

An understanding of the mechanisms and regulatory processes controlling the genome-

wide repression and transcription of productive genes is essential in studies of oncogenic 

herpesviruses. 

 Thus, the focus of this project was on the mechanisms involved in this switch between the 

productive and latent phase of GaHV-2 life cycle. The primary goal was to determine whether and 

how epigenetic modifications are involved in this transition and to establish patterns of DNA 

methylation in the promoter of the vTR gene involved in the regulation of GaHV-2 life cycle. 

 

In order to do so, the first part of the project was designed to:  

• Measure the impact of methylation on the telomerase activity, 

• Establish a detailed DNA methylation and hydroxymethylation patterns of vTR promoter 

at different stages of the infection in vitro and in vivo, 

• Investigate the impact of DNA methylation on the vTR expression levels. 

 

Following the conclusions and outcomes from the first part that indicated the involvement of 

c-Myc binding sits in regulating vTR promoter activity, a second study was designed in order to 

investigate the importance of these binding sites in virus-induced tumorigenesis. To assess 

functional aspects of c-Myc binding sites, a recombinant virus bearing mutations in E-box 2 and 

E-box 3, as well as revertant, were produced by en passant mutagenesis using bacterial artificial 

chromosome of a highly oncogenic RB-1B strain. To assess if the mutation of E-boxes influenced 

virus replication, replication properties of recombinant viruses were investigated in vitro and in vivo 

by infecting a susceptible chicken line.  

The objectives of the second study were to decipher the functionality of specific response 

elements in a viral promoter that shows discriminative DNA methylation signatures at crucial steps 

of GaHV-2 infection and will allow further assessment of the impact and importance of E-boxes 

on GaHV-2 pathogenesis and tumour formation. 

The results of these studies, presented below, were accepted for publication in the Journal 

of Virology.
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2.1. Epigenetic modulation of viral telomerase RNA subunit promoter 

over-expressed during Gallid herpesvirus type 2 induced 

lymphomagenesis 

 

 

2.1.1. Introduction 

 

As previously discussed, Gallid herpesvirus type 2 (GaHV-2) is an avian alphaherpesvirus 

that causes the most frequent clinically diagnosed cancer in the animal kingdom, resulting in highly 

malignant T-cell lymphoma [235,370]. In susceptible chicken, the transformed CD4+ T-cells, the 

ultimate consequence of interactions of GaHV-2 with the host cell [327], proliferate to form 

visceral lymphomas approximately four weeks after infection, leading to the death of the animal 

[371]. During GaHV-2 infection, numerous viral factors, proteins and transcripts contribute to 

lymphomagenesis and include the major oncoprotein Meq [324], the viral interleukin-8 [373] and 

GaHV-2-encoded miRNAs [374–376].  

In addition, GaHV-2 encodes two copies of viral telomerase RNA subunit (vTR), which is 

expressed both in productive infection and in virus-transformed T-cell lines. vTR interacts with 

the chicken telomerase reverse transcriptase subunit (TERT) enhancing telomerase activity and 

contributing to the efficient and rapid onset of lymphoma [217–219]. Telomerase activity, absent 

in most somatic cells, is commonly up-regulated in transformed cells and is significantly elevated 

in over 85% of human cancers and over 70% of immortalized human cell lines [206,221,372]. In 

the absence of telomerase activity, progressive telomere shortening results in cellular senescence 

and cell cycle arrest [377]. Previous studies have demonstrated that telomere length and the 

mtDNA copy number are associated with numerous specific types of cancer [378–381], and 

positive correlation between two was observed [382], suggesting an early and essential effect on 

carcinogenesis. Moreover, vTR functions independent of the telomerase complex are responsible 

for tumour progression and dissemination. Furthermore, vTR re-localizes ribosomal protein L22 

that plays an essential role in T-cell development and transformation [290].  

It is the most abundant viral transcript detected in GaHV-2-induced tumour cells with 

higher expression than chTR in infected cells, consequence likely due to differences in their 

promoters. The vTR promoter has additional AP-1 sites, c-Myc transcription factor binding sites 

(namely E-box 1, E-box 2 and E-box 3) and EBS transcription factor binding sites, which are 
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absent in the chTR promoter. However, it was indicated that E-box 1 was not functional [24]. It 

was shown that the c-Myc oncoprotein is involved in the regulation of vTR during GaHV-2-

induced lymphomagenesis [357] and that increased expression of vTR is essential for the oncogenic 

function of the virus [340].  

During the viral life cycle, transcriptional modifications and epigenetic changes, together 

with post-transcriptional and post-translational modifications, regulate expression of cellular and 

viral genes. Altogether, they allow GaHV-2 to switch between the productive and latent phases, 

and to induce infected cell transformation [191].  

An understanding of the mechanisms and regulatory processes controlling the genome-

wide repression and transcription of productive genes is essential in studies of oncogenic 

herpesviruses. The focus of this study was on the epigenetic mechanisms involved in the switch 

between the productive and latent phase of GaHV-2 life cycle. We established methylation (5mC) 

and hydroxymethylation (5hmC) patterns and measured the impact of methylation on the 

telomerase activity and c-Myc response elements (c-Myc REs) of the vTR promoter. In addition, 

mtDNA copy number during latency and after viral reactivation was determined. 

 

 

 

2.1.2. Materials and Methods 

 

 

2.1.2.1. Cell lines 

 

The chicken embryo fibroblasts (CEFs) infected with highly virulent GaHV-2 RB-1B strain 

were used for the productive phase of the viral life cycle. The CEFs were obtained from eleven 

days old chicken embryos treated by trypsinization (Lonza). The primary CEFs were cultured in 

Dulbecco’s modified eagle medium (DMEM) (Lonza) supplemented with 2.5% foetal bovine 

serum (FBS), 1.25% chicken serum (CS), 1% penicillin (50 units/mL) and streptomycin (50 

μg/mL), 1% fungizone (GIBCO), 1.475 g/L tryptose phosphate (Sigma). Four days after primary 

CEFs culture, cells were passaged to produce secondary CEFs. Secondary CEFs were transfected 

with an infectious clone of the RB-1B bacmid using Lipofectamine 2000 (Invitrogen) according to 

the manufacturer’s protocols.  
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The latently infected and transformed MSB-1 cell line, derived from GaHV-2 induced 

lymphoma [383], was cultured in RPMI 1640 medium (Gibco). Reactivation of the virus in the 

MSB-1 cells was induced with three mM sodium butyrate (Sigma), an inhibitor of class I histone 

deacetylase (HDAC) resulting in histone hyper-acetylation, as previously described [291] or by 

treatment with five µM 5-azacytidine (Merck), an inhibitor of the DNA methyltransferase, both 

described as reactivation stimuli for GaHV-2 [296]. The viral reactivation was monitored and 

confirmed by RT-qPCR measuring relative expression of major viral capsid protein VP5, 48h after 

the treatment with specified inhibitor. Relative expression levels were normalized against chicken 

small nuclear RNA U6 gene, using primers presented in Table 1b. 

The avian fibroblast cell line DF-1 derived from primary chicken embryonic fibroblasts 

was cultured in DMEM medium (Lonza).  

The LMH cell line established from chicken liver carcinoma epithelial cells [384] was 

cultured with 0.2% gelatine to maximize cell adhesion in DMEM medium (Lonza).  

The human epithelial HeLa cell line, derived from a cervical carcinoma and transformed by 

human papillomavirus type 18 [385] was maintained in EMEM medium (Lonza).  

All media were supplemented with 10% FBS, 5% CS (except EMEM), 1% of non-essential 

amino acids, 1% penicillin (50 units/mL) and streptomycin (50 μg/mL). The MSB-1, DF-1 and 

LMH cell cultures were maintained at 41°C, and HeLa cells at 37°C, under 5% CO2. 

 

 

2.1.2.2. Plasmids 

 

The pGEM®-T Easy (Promega) was used as a vector for the direct cloning of the various 

polymerase chain reaction (PCR) products. This plasmid is linearized by the EcoRV endonuclease 

leaving a 5’ thymine overhang. Thus, the pGEM®-T Easy vector is adapted for ligation of PCR 

products obtained with Taq polymerase that provides a 3’ adenine overhang at the end of PCR 

amplicons. This 3015 bp plasmid carries the beta-galactosidase alpha-subunit gene (LacZ cassette), 

located in the multiple cloning site, allowing the white-blue colony screen test. Moreover, this 

plasmid codes for a beta-lactamase, the ampicillin resistance gene, which was used to select 

transformed bacteria by selective medium containing ampicillin (Figure 2.1).  
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FIGURE 2.1. PGEM®-T EASY CLONING VECTOR MAP.  

The plasmid contains a resistance gene to ampicillin, allowing the isolation of the transformed bacteria using a 

selective medium. In addition, the blue-white colony screen is possible due to the LacZ gene, which expression is 

abolished by the integration of an inserted amplicon into the vector. 

 

 

 

 

FIGURE 2.2. PCPGL-CPG-FREE REPORTER VECTOR MAP.  

The vector, including its multiple cloning site (MCS), is entirely free of CpG dinucleotides. It contains a Zeocin 

resistance gene and a reporter gene coding for firefly luciferase 
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The pCpGL-Basic reporter vector, devoid of the CpG dinucleotides and thus not sensitive 

to methylation was used to study the activity of the constructed vTR promoters. vTR promoters 

were cloned at the multiple cloning site located upstream of the reporter gene coding for firefly 

luciferase. In this plasmid, a short CpG-free linker containing several restriction sites replaced the 

enhancer/promoter region of the CpG-free plasmid pCpG-mcs (Invivogen). In addition, the CpG-

free luciferase coding region was released from pMOD-LucShS (Invivogen) by enzymatic 

restriction with MfeI and NcoI, and sub-cloned into linker ligated CpG-free backbone [386] (Figure 

2.2). 

 

The pCpGL-EF1/CMV plasmid, insensitive to methylation was used as a control. This 

plasmid contains the gene encoding firefly luciferase under the control of the hybrid promoter 

EF1/CMV. For constructing a completely CpG-free control reporter vector, the EF1A-

promoter/CMV-enhancer cassette was released from pCpG-mcs (Invivogen) using PstI/HindIII 

restriction enzymes and inserted into corresponding sites of the pCpGL-basic vector [386]. 

The pCpGL-basic and pCpGL-EF1/CMV plasmids were generously provided by Dr. 

Michael Rehli (Department of Haematology and Oncology, University of Regensburg, Germany). 

 

The pRL-TK vector (Promega) containing the gene encoding for Renilla luciferase was 

used to standardize the activity of Firefly luciferase (Figure 2.3). This vector contains the cDNA 

encoding Renilla luciferase (Rluc) cloned from the anthozoan coelenterate Renilla reniformis (sea 

pansy). The gene coding for the Rluc is expressed under the control of the thymidine kinase (TK) 

promoter of the Human Herpes Virus type I (HHV-1). The expression of this reporter gene in 

eukaryotic cells helps standardize the activity of firefly luciferase. Like the vector pGEM®-T Easy, 

the pRL-TK encodes the gene for resistance to ampicillin, which allows the selection of 

transformed bacteria using a selective medium. 
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FIGURE 2.3. PRL-TK CONTROL REPORTER VECTOR MAP.  

The pRL-TK vector provides a constitutive expression of Renilla luciferase, which can be used in combination with a 

firefly luciferase vector for cell co-transfection. Expression of Renilla luciferase provides an internal control value to 

which expression of the experimental firefly luciferase reporter gene may be normalized. 

 

 

 

2.1.2.3. Telomeric repeat amplification protocol assay 

 

 

Telomerase activity of 1 µg of protein extracted from the MSB-1 cell line was quantified 

using the semiquantitative fluorescence-based telomeric repeat amplification protocol (TRAP) 

assay, as previously described [217]. Full protein extracts were collected every 12h. Briefly, 106 cells 

were centrifuged at 1,400 × g for 20 seconds. Cell pellets were lysed on ice for 30 minutes with 200 

µl ice-cold 1X CHAPS lysis buffer (Millipore), a protease inhibitor (0,1 mM AEBS Sigma) and 

RNAsin (0,5 unit/µl Promega). Cell lysis was followed by centrifugation for 30 minutes at 10,000 

× g and 4 °C. Protein concentrations were determined with Pierce BCA Protein Assay Kit (Thermo 

Fisher Scientific) and adjusted to 500 ng/µl.  

The polymerase chain reaction (PCR) was carried out using tetramethylrhodamine 

(TAMRA)-labelled forward TS primer and CX-ext as a reverse primer as initially described (Figure 

2.4) (Table 2.1.a) [387]. An internal amplification standard (ITAS) was included to verify PCR 

amplification efficiency. 
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FIGURE 2.4. SCHEMATIC REPRESENTATION OF PCR STEPS DURING THE TELOMERIC REPEAT 

AMPLIFICATION PROTOCOL FOR MEASURING TELOMERASE ACTIVITY.  

a) Telomerase complex (blue octagon), from total cell protein extract, first extends TS substrate primer (green 

rectangle) of non-telomeric sequence with telomeric repeats (grey rectangles). TS substrate primer is labelled with 

TAMRA fluorophore (yellow star). b) After telomerase inactivation, in the first PCR step, reverse primer (CX-ext) 

anneals to the primary telomerase products. Bold underlined nucleotides indicate designed mismatches in CX-ext 

primer that reduce the formation of primer–dimers. (c) PCR with CX-ex and TS as a forward primer finalize targeted 

amplification, and the product is further analyzed using capillary electrophoresis in order to measure relative telomerase 

activity (adapted from [388]). 

 

 

a) 

b) 

c) 
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 ITAS was prepared by PCR as described before [389] using primers presented in Table 

2.1.a. Shortly, a 150 bp internal standard, sufficiently long so it would not interfere with the 

visualization of the telomerase ladder was used. ITAS was prepared by synthesizing TS and CX-

ext oligonucleotides that contained an additional 15 bases at their 3' ends that overlapped with 

sequences encoding 97-132 aa of rat myogenin. Amplification of the myogenin cDNA with these 

primers generated a 150 bp product, which could be reamplified using the same TS, and CX-ext 

primers used to amplify the telomerase ladder in the standard TRAP assay. 

The telomerase amplification PCR was performed as described before [217]. 25 µL of PCR 

reaction were prepared, including GoTaq® G2 Colorless Master Mix (Promega), 20 pmol TS 

primer, 10 pmol CX-ext, 1 µg of protein extract and ITAS concentration of 0,0001 atmol. The 

reaction mix were incubated for telomerase extension at 30 °C for 30 minutes, followed by 38 

cycles at 94 °C for 30 seconds, 50 °C for 30 seconds, and 72 °C for 1 minute. Following 

amplification, 2 µL of PCR product were denatured for 5 minutes at 94 °C in a mix composed of 

22,5 µL of formamide and 0,5 µL of Genescan-500 ROX size marker, resulting in simple strand 

DNA fragments from 35 to 500 bp, labelled with ROX. 

Finally, treated PCR products were analyzed by capillary electrophoresis (Applied 

Biosystems 3130xl Genetic Analyzers). The relative telomerase activity level of each protein extract 

was calculated by adding values of fluorescence intensity of all telomerase products containing 5 

and up to 15 telomeric repeats and normalized to the fluorescence intensity value of the ITAS, as 

previously described [390]. 

 

 

2.1.2.4. Mitochondrial DNA copy number evaluation 

 

Cellular DNA, from MSB-1 cells mock-treated or treated with sodium butyrate or 5-

azacytidine, was extracted using the Wizard Genomic DNA Purification Kit (Promega) according 

to the manufacturer’s recommendations. Quantitative PCR (qPCR) for measuring mitochondrial 

DNA (mtDNA) amplification was performed on the gene encoding for NADH Dehydrogenase 2 

(ND2) using the primers specified in Table 2.1.b. The normalization with nuclear DNA was done 

using the gene encoding for Beclin amplified by primers described in Table 2.1.b. Real-time qPCR 

was performed with SYBR Select Master Mix (ThermoFisher) following the manufacturer’s 
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recommendations. mtDNA copy number was calculated as previously described according to the 

following formula [391]:  

2 × 2-ΔCt (ΔCt = Ct mean ND2 - Ct mean Beclin)  

 

 

2.1.2.5. Animal experiment, cell isolation, magnetic cell sorting and DNA 

extraction 

 

White Leghorn specific pathogen-free B13B13 chickens highly susceptible to GaHV-2 were 

used for animal experiment. The animals were housed in isolated biosecurity level 3 facilities at 

Veterinary and Agrochemical Research Centre CODA-CERVA (Brussels, Belgium). Animals were 

injected intramuscularly at the age of 3.5 weeks with 1,000 PFU of the highly oncogenic GaHV-2 

RB-1B strain, using infected peripheral blood leukocytes (PBL) suspension. Blood samples and 

feather follicle epithelium (FFE) were collected once a week, and tumours were collected from 

euthanized chickens at 28 days post-infection (dpi). PBLs from anticoagulated blood and tumour 

tissue were isolated using Histopaque-1077 density gradient (Sigma-Aldrich) according to the 

manufacturer’s recommendations at 14 dpi (representing the start of the latency) and 28 dpi 

(representing viral reactivation). Magnetic cell sorting with Dynabeads anti-mouse IgG kit 

(Invitrogen) was used to isolate CD4+ and CD30+ lymphocytes from tumour tissue according to 

the manufacturer protocol. Mouse anti-chicken CD4 monoclonal antibody (AbD Serotec, Bio-

Rad) was used as the secondary antibody for CD4+ magnetic isolation, and monoclonal antibody 

AV37 (generously provided from Prof. Venugopal Nair, The Pirbright Institute, UK) was used to 

isolate CD30+ lymphocytes. Genomic DNA from each sample was isolated using the 

DNeasy®blood and tissue kit (Qiagen) as described by the manufacturer. 

 

 

2.1.2.6. Ethics statement 

 

The animal study was conducted following Belgian law for animal protection and the 

European Directive, 2010/63/EU. The Ethics committee of CODA-CERVA (file n° LA1230174) 

approved all animal experiments. 
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2.1.2.7. Bisulfite genomic sequencing assay, 5-hydroxymethylation mapping, 

polymerase chain reactions and vector cloning 

 

 

Bisulfite genomic sequencing assay (BGSA) was used for 5-methylcytosine mapping, as 

described before [392]. Bisulfite treatment was performed with the EZ DNA Methylation-Gold 

Kit (Zymo Research) according to the manufacturer’s recommendations. This technique involves 

treating methylated DNA with bisulfite, which converts unmethylated cytosines into uracils (Figure 

2.5). Methylated cytosines remain unchanged during the treatment. Briefly, 500 ng of genomic 

DNA of interest, were submitted to bisulfite treatment. In the first step, CT Conversion Reagent 

was added to the DNA sample followed by incubation first at 98 °C for 10 minutes and then 64 

°C for 2.5 hours.  

Following the sulphonation step, M-Binding Buffer was added to a Zymo-Spin™ IC 

Column, and the treated sample was loaded. Following the centrifugation, M-Wash Buffer was 

used for washing the column, and M-Desulphonation Buffer was added to the sample to the 

column and incubated at room temperature for 20 minutes. Afterwards, the second washing step 

was performed, and the bisulfite converted DNA sample was eluted with dH2O and stored at -20 

°C. 

 

 

FIGURE 2.5. OUTLINE OF THE CHEMICAL REACTIONS THAT DRIVE THE BISULFITE-CATALYSED 

CONVERSION OF CYTOSINE TO URACIL.  

a) A fragmented genomic DNA sample is treated with sodium bisulfite. b) Sodium bisulfite deaminates cytosine 

residues to 5,6-dihydrocytosine-6-sulphonate, which are converted to (c) 5,6-dihydrouracil-6-sulphonate. d) 

Incubation at high pH removes sulphite group resulting in uracil. In contrast, 5-methylcytosine (5mC) and 5-

hydroxymethylcytosine (5hmC) are not susceptible to bisulfite treatment and remain intact, which allows downstream 

differentiation of methylated and non-methylated cytosines in the DNA sequence. 

 

a) b) c) d) 
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For 5-hydroxymethylation mapping, the 5hmC-TAB-Seq Kit (WiseGene) was used 

according to the manufacturer’s recommendations. Briefly, in order to differentiate 5-

hydroxymethylcytosine (5hmC) from 5-methylcytosine (5mC) and non-modified cytosine (C), two 

enzymatic steps were introduced before bisulfite conversion. Firstly, β-glucosyltransferase (βGT) 

is utilized to convert 5hmC present in genomic DNA to β-glucosyl-5-hydroxymethylcytosine 

(5gmC) thereby protecting it from further oxidation to 5-formylcytosine (5fC) or 5-

carboxylcytosine (5caC) by the TET enzymes. Next, the glucosylated genomic DNA is treated with 

an excess of highly active TET1 and TET2 enzymes to oxidize most 5mC to 5caC, which can then 

together with cytosine be deaminated using standard bisulfite treatment (Figure 2.6) [393]. After 

bisulfite treatment and PCR amplification, 5hmC is sequenced as cytosine, whereas both non-

modified cytosine and 5mC are sequenced as thymine, therefore distinguishing 5hmC sites from C 

and 5mC sites. Rates of 5mC conversion and 5hmC protection were monitored with the specific 

spike-in controls (primers presented in Table 2.1.c).  

Finally, nested PCR, comprised of two successive PCRs, was performed on the genomic 

locus of interest. The vTR promoter was amplified using the specific primers modified for bisulfite 

converted DNA and are presented in Table 2.1.c. Shortly, PCR mix was prepared using the 

Epimark HotStart Taq DNA polymerase (New England BioLabs, NEB), 0.2 mM of 

deoxyribonucleotide mix and 10 mM of primer pairs specific for first or second PCR. PCR was 

performed as follows: 94 °C for 5 minutes, followed by 35 cycles of denaturation (94 °C, 1 minute), 

annealing (target dependant) and extension (72 °C, 1 minute). Following the PCR, gel 

electrophoresis, amplicon excision and agarose gel purification were performed. For agarose gel 

purification, NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel) was used according to the 

manufacturer’s protocol.  

Produced amplicons were cloned into the pGEM-T Easy vector system (Promega) as 

suggested by the manufacturer. Briefly, previously prepared PCR amplicons of interest, bearing 

site-directed mutations, were ligated into pGEM-T Easy vector using the T4® DNA ligase 

(Promega). The ligation mix contained Ligase 10x Buffer, 1 μl of the vector, 3 μl of the PCR 

amplicon and 1000 units of T4® DNA ligase. Negative control was performed by replacing the 

insert with 3 μl of water. The ligation reaction was incubated overnight (O/N) at 12 °C.  

The ligation was followed by transformation of the competent bacteria E. coli TG1 strain 

and plated on Luria-Bertani (LB) agar plates containing X-gal, IPTG and ampicillin as a resistance 

selection marker (100 μg/ml).   
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FIGURE 2.6. OVERVIEW OF TET-ASSISTED BISULFITE SEQUENCING (TAB-SEQ).  

a) Bisulfite sequencing alone is not able to determine whether a cytosine base is modified as 5-methylcytosine (5mC) 

or 5-hydroxymethylcytosine (5hmC). b) With TAB-Seq 5hmCs are protected from oxidation by glucosylation (1), while 

5mCs are oxidized using  TET enzymes, which converts 5mC to 5-carboxylcytosine (5caC) (2). Bisulfite treatment 

then converts the 5caCs and unmodified cytosines that read as thymines following PCR (3). The 5hmCs continue to 

read as cytosines, therefore distinguishing them from C and 5mC sites that are read as thymines (4) (adapted from 

[393]). 

 

Positive bacterial colonies were screened using the blue-white colony screen PCR. Screen 

PCR was performed using the GoTaq® DNA Polymerase (Promega) with 10 mM of universal 

primer pairs (Table 2.1.e) and performed as follows: 94 °C for 5 minutes, followed by 35 cycles of 

denaturation (94 °C, 1 minute), annealing (30 °C, 1 minute) and extension (72 °C, 1 minute).  

Clones positive for amplicon of interest were sent for Sanger sequencing, and 5mC or 

5hmC positions on the vTR promoter were analysed by Geneious software. 

a) b) 

(1) 

(2) 

(3) 

(4) 
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2.1.2.8. Genome-wide mapping of methylation patterns during latency and 

after viral reactivation 
 

 

Cell line 

 

The latently infected and transformed MSB-1 cell line, derived from GaHV-2 induced 

lymphoma [383], was cultured in RPMI 1640 medium (Gibco), supplemented with 10% foetal 

bovine serum, 5% chicken serum, 1% of non-essential amino acids, 1% penicillin (50 units/mL) 

and streptomycin (50 μg/mL) The cell cultures were maintained at 41°C under 5% CO2.  

 

Viral reactivation 

 

Reactivation of the quiescent virus genome in MSB-1 cells was induced after 48h treatment 

with 5 µM 5-azacytidine (Merck), an inhibitor of the DNA methyltransferase, described as 

reactivation stimuli for GaHV-2 [296]. The viral reactivation was monitored and confirmed by q-

PCR measuring relative expression of major viral capsid protein VP5 after the treatment with 

specified inhibitor. 

 

DNA extraction  

 

Genomic DNA was extracted from mock-treated MSB-1 cells as well as cells treated with 

5-azacytidine in order to induce virus reactivation. DNA from each sample was isolated using the 

DNeasy®blood and tissue kit (Qiagen) as described by the manufacturer. DNA purity was assessed 

via a Thermo Scientific™ NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific). DNA 

concentrations were measured using a Qubit DNA Assay Kit with a Qubit 2.0 Fluorometer (Life 

Technologies). 
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DNA quantification and qualification 

 

Genomic DNA degradation and contamination were monitored on agarose gels. DNA 

concentration was measured using the Qubit® DNA Assay Kit in Qubit® 2.0 Fluorometer (Life 

Technologies). 

 

Library preparation and quantification 

 

A total amount of 5.2 µg genomic DNA spiked with 26 ng lambda DNA was fragmented 

by sonication to 200-400 bp fragments with Covaris S220, followed by end repair and adenylation. 

Cytosine-methylated barcodes were ligated to sonicated DNA as per manufacturer’s instructions. 

Then these DNA fragments were treated twice with bisulfite using EZ DNA Methylation-Gold 

TM Kit (Zymo Research). In addition, the resulting single-strand DNA fragments were PCR 

amplified using KAPA HiFi HotStart Uracil + Ready-Mix (2X). Library concentration was 

quantified by Qubit® 2.0 Fluorometer (Life Technologies, CA, USA) and quantitative PCR, and 

the insert size was checked on Agilent 2100 system. 

 

Clustering and sequencing 

 

The clustering of the index-coded samples was performed on a cBot Cluster Generation 

System using PE Cluster Kit cBot-HS (Illumina) according to the manufacturer’s instructions. 

After cluster generation, the library preparations were sequenced on an Illumina platform, and 

paired-end reads were generated. Image analysis and base calling were performed with the standard 

Illumina pipeline, and finally, paired-end reads were generated. 

 

Data Analysis 

Reads mapping to the reference genome 

 

Bismark software [394] was used to perform alignments of bisulfite-treated reads to a 

reference genome with the default parameters. The reference genome was firstly transformed into 
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bisulfite-converted version (C-to-T and G-to-A conversion) and then indexed using bowtie2 [395]. 

Sequence reads were also transformed into fully bisulfite-converted versions (C-to-T and G-to-A 

conversion) before they are directionally aligned to similarly converted versions of the genome. 

Sequence reads that produce a unique best alignment from the two alignment processes (original 

top and bottom strand) were then compared to the genomic reference sequence, and the 

methylation state of all cytosine positions in the read was inferred. The same reads that aligned to 

the same regions of genome were regarded as duplicated ones. The sequencing depth and coverage 

were summarised using reduplicated reads. The results of methylation extractor were transformed 

into big Wig format for visualisation using IGV browser. The sodium bisulfite non-conversion rate 

was calculated as the percentage of cytosines sequenced at cytosine reference positions in the 

lambda genome. 

 

Estimating methylation level 

 

A binomial distribution tests the methylated and unmethylated counts at each site. 

Assuming the number of methylated cytosines is x in a specific site, where the read coverage is n, 

and BS conversion rate is p, so the reliability of x methylated cytosine needs to be tested in above 

conditions. In order to find accurate methylated sites, a set of thresholds are set in analysis process: 

(1) the sequencing depth is equal to or greater than 5; (2) q-value less than or equal 0.05. We 

employed a sliding-window approach, which is conceptually similar to approaches that have been 

used for bulk BS-Seq. With window size w = 3,000 bp and step size 600 bp [396], the sum of 

methylated and unmethylated read counts in each window were calculated. Methylation level for 

each cytosine (C) site shows the fraction of methylated Cs. 

 

 

2.1.2.9. PCR site-directed mutagenesis  

 

 

Site-directed mutagenesis was used to accurately induce specific mutations in the sequence 

of the vTR promoter. Mutations of the vTR promoter at the c-Myc transcription factor binding 

sites were performed by overlapping PCR using primer pairs described in Table 2.1.d. The 

backbone DNA used to generate the E2 and E3 mutations was the recombinant pGEM-T Easy 
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vector (Promega) containing the wild-type vTR promoter. E-box 2 (E2) and E-box 3 (E3) 

mutations were introduced in two stages using primer pairs with overlapping fragments containing 

the mutation (Figure 2.7). Two overlapping fragments containing the mutation were initially 

constructed by PCR using two pairs of specific primers (Table 2.1.d). Firstly, for the starting stage 

of site-directed mutagenesis, we used a primer pair composed of a sense oligonucleotide bordering 

the targeted insert and containing PstI restriction site extension and reverse oligonucleotide bearing 

the internal mutation (Figure 2.7.a). Secondly, we used a sense oligonucleotide bearing the internal 

mutation and a reverse oligonucleotide bordering the targeted insert and containing the HindIII 

restriction site extension (Figure 2.7.b). Finally, after hybridization of two fragments containing the 

mutation, the complete mutant sequence was amplified using the bordering oligonucleotides 

presented in Table 2.1.d (Figure 2.7.c).  

 

 

 

FIGURE 2.7. PRINCIPLES OF TWO-STAGE PCR SITE-DIRECTED MUTAGENESIS.  

Two overlapping fragments containing the mutation were initially constructed by PCR using two pairs of specific 

primers. a) A targeted DNA sequence is first amplified using a forward primer (grey arrow) containing restriction site 

extension (gold rectangle) and reverse primer (red arrow) bearing the desired internal mutation (black star). b) The 

second overlapping fragment was constructed using forward primer (red arrow) with the internal mutation (black star) 

and a reverse primer bordering the targeted insert and containing restriction site extension (gold rectangle). c) The 

final mutated construct was obtained after hybridization of two overlapping fragments containing the mutation (black 

star) by PCR amplification using the bordering primers (grey arrows) with specific restriction site extensions (gold 

rectangles). 

a) b) 

c) 
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Using the same principle, the double E-box 2 and E-box 3 mutation (E2E3) was generated 

by introducing the E3 mutation on the vector bearing E2 mutation that served as a PCR backbone, 

followed by confirmation by Sanger sequencing. 

 

2.1.2.10. Construction of the reporter vectors 

 

The pCpGL-basic reporter vector, free from the CpG dinucleotides and thus not sensitive 

to methylation, was used to study the activity of the vTR promoter. Wild-type and mutated vTR 

promoter constructs were cloned at the multiple cloning site upstream of the reporter gene coding 

for firefly luciferase. Plasmid pCpGL-EF1/CMV was used as the control vector. The plasmid pRL-

TK (Promega) containing the gene encoding for Renilla luciferase was used to standardize the 

activity of Firefly luciferase. Construction of the reporter vectors was done as follows: 

 

DNA digestion catalysed by restriction enzymes 

 

Plasmid enzymatic digestion was carried out using HindIII (NEB) and PstI (NEB) 

restriction endonucleases following manufacturer’s instructions. Briefly, 10 μg of plasmid DNA 

were added to 50 µl reaction mixture containing 10 units of a specific enzyme, 5 μl of NEBuffer 

3.1 (10×) and incubated at 37 °C for one hour.  

 

Dephosphorylation of linearized plasmids 

 

Next, the linearized vector was dephosphorylated to avoid recircularization by removal of 

5’ terminal groups. The linearized plasmids were incubated in a dephosphorylation mix composed 

of NEB cutsmart buffer 1x, NEB Calf Intestinal Phosphatase (CIP, 50U) in a final volume of 100 

μl. The reaction mix was incubated for 20 minutes at 37 °C. Immediately after, the reaction mixture 

was cooled down on ice for 5 minutes. A second cycle was carried out after further addition of 4 

μl of CIP followed by incubation for an additional 20 minutes at 37 °C. Finally, the reaction was 

stopped by incubation at 65 °C for 20 minutes. The dephosphorylated vectors were purified using 

phenol-chloroform extraction. 
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Plasmid purification by phenol/chloroform 

 

A phenol/chloroform purification was performed on dephosphorylated vectors. Firstly, an 

equal volume of phenol/chloroform was added to the treated plasmids samples. The 

phenol/chloroform triggers a lipophilic and hydrophilic phase separation, after which the samples 

were centrifuged at 16,000 × g for 15 minutes. Following the centrifugation, the upper aqueous 

phase containing the dephosphorylated plasmid was collected. Next, an equal volume of 

chloroform and isoamyl alcohol (3-methylbutane-1-ol) (49:1) was added to the aqueous phase, in 

order to remove the proteins from the aqueous phase. The separation of the phases induced by the 

addition of isoamyl alcohol was followed by the centrifugation at 16,000 × g for 15 minutes. The 

aqueous phase was collected, and the two volumes of 100% ethanol and 1/10 volume of sodium 

acetate were added and mixed to precipitate DNA. Next, the mix was incubated for 20 minutes at 

-80 °C. Following thawing, the mix was centrifuged at 15,000 × g for 10 minutes, and the 

supernatant was then discarded. Next, the pellet was washed with 1 ml of 70% ethanol and 

centrifuged at 7,500 × g for 10 minutes at room temperature. Finally, after drying, the pellet was 

resuspended in 100 μl of dH2O. 

 

Ligation of PCR products into the plasmid vectors 

 

Ligation of the previously prepared vTR promoter PCR products bearing site-directed 

mutations into a linearized and dephosphorylated vector was performed using the T4® DNA ligase 

(Promega). The ligation mix contained Ligase 10× Buffer, 1 μl of the digested and 

dephosphorylated vectors, 3 μl of the insert and 1000 units of T4® DNA ligase. Negative control 

was performed by replacing the insert with 3 μl of dH2O. The ligation mix was incubated O/N at 

12 °C.  

 

Electroporation of ligated products in the electro-competent 100D strain of E.coli 

 

The strain 100D of E.coli was used for the transformation of the pCpGL-basic vectors with 

the ligated products. This strain allows the replication of plasmids containing an R6K origin of 

replication, dependent on the PIR protein.  
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Briefly, one microliter of the ligation product was added to 50 μl of competent bacteria. 

The electroporation was induced with 2,500 V for five milliseconds in 2 mm electroporation 

cuvette. Immediately after electroporation, 150 μl of LB culture medium were added to the 

electroporated bacteria. After 30 minutes incubation at 37 °C, bacteria were spread on LB agar 

plates containing zeocin selective medium (25 μg/L) and incubated O/N at 37 °C. 

Finally, in order to confirm proper integration, a screen PCR on bacterial colonies was 

performed using the GoTaq® DNA Polymerase (Promega) with 10 mM of specific primer pairs 

(Table 2.1.e). The PCR was performed as follows: 94 °C for 5 minutes, followed by 35 cycles of 

denaturation (94 °C, 1 minute), annealing (30 °C, 1 minute) and extension (72 °C, 1 minute).  

 

Plasmid DNA midi-preparation 

 

To amplify and isolate plasmid DNA, NucleoBond® Xtra Midi plasmid DNA purification 

kit (Macherey-Nagel™) was used following the manufacturer’s protocol. Briefly, bacteria were 

grown in 200 ml of LB medium with zeocin antibiotic selection (25 µg/ml) and incubated O/N at 

37 °C under shaking at 200 rpm. O/N cultures were centrifuged at 4,200 × g for 15 minutes and 

4 °C. After centrifugation, the supernatant was discarded, and 8 ml of Resuspension Buffer were 

added to resuspend the bacterial pellet. Following resuspension, the equivalent volume of Lysis 

Buffer was added to the bacterial cells and incubated for 5 minutes at room temperatures. After 

that, the equivalent volume of Neutralization Buffer was added to stop the cell lysis and to 

precipitate the proteins and the DNA. The precipitate was pelleted by centrifugation for 20 minutes 

at 4,200 × g, and the supernatant was loaded on the equilibrated NucleoBond® Xtra Column. 

Next, the column was washed twice, first with Equilibration Buffer and then with the Wash Buffer 

respectively. Following washing steps, the plasmid DNA was eluted using the Elution Buffer. Next, 

the isopropanol was used to precipitate the eluted plasmid DNA, followed by the final wash with 

1 ml of 70% of ethanol. Finally, plasmid DNA was resuspended in dH2O and stored at -20 °C. 

Confirmation of the correct insertion and plasmid construction was done using Sanger 

sequencing. 
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2.1.2.11. Hypermethylation of plasmid DNA 

 

The hypermethylation of the CpG dinucleotides of the newly constructed plasmids 

containing wild-type or mutated vTR promoters was carried out using an M.SssI methyltransferase 

(NEB) and S-adenosyl-L-methionine (SAM) (NEB) as described by the manufacturer. Briefly, the 

CpG methyltransferase methylates all cytosine residues (C5) within the double-stranded 

dinucleotide recognition sequence 5'...CG...3'. One μg of plasmid DNA was added to a mixture 

containing 2 μl of NEBuffer 2 (10×), 2 μl of SAM (1,600 μM), 1 unit of the M.SssI 

methyltransferase in a reaction volume of 20 μl. The reaction mix was incubated for one hour at 

37 °C, followed by the incubation for 20 minutes at 65 °C to inhibit the enzyme activity. In order 

to objectively compare the effect of methylation, the unmethylated vectors were mock-treated 

under the same conditions in the absence M.SssI methyltransferase. After the reaction, the plasmids 

(methylated and unmethylated) were purified by phenol-chloroform-isoamyl alcohol (50-49-1). 

 

 

2.1.2.12. Cell transfection and dual-luciferase reporter assay 

 

 

Twenty-four hours before transfection, 1.5 × 104 DF-1 and 3 × 104 LMH and HeLa cells 

were seeded per well in 96-well plates. These cell lines were co-transfected with 150 ng of luciferase 

reporter constructs containing vTR wild-type or mutant E-box target sites and 30 ng of luciferase 

control vector using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocols.  

A suspension of 1 × 106 MSB-1 cells in Nucleofector solution T (Amaxa Biosystems) was 

co-transfected with 1 µg of luciferase reporter constructs containing vTR wild-type or mutant E-

box target sites and 40 ng of luciferase control vector. Co-transfection with electroporation was 

done using Nucleofector program X-001 (Nucleofector II, Amaxa) following the manufacturer’s 

instructions.  

Luciferase activity was quantified in the Dual-Luciferase Reporter Assay System (Promega), 

according to the manufacturer’s protocol. Firefly and Renilla luciferase activities were measured 24 

hours after transfection. The firefly luciferase activity obtained for each sample was normalized by 

the corresponding Renilla luciferase activity. For the standardization of luciferase activity, the 
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control vector pCpGL-EF1/CMV from which the firefly luciferase gene is expressed under the 

control of the CMV promoter was used.  

Three independent experiments were carried out in triplicates. The significant difference 

between the analysed promoter constructs was determined using the student t-test and 

comparisons for which p ≤ 0.05 was considered to be statistically significant. 
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2.1.2.13. TABLE 2.1. PRIMERS USED IN THE STUDY OF TELOMERASE ACTIVITY AND 

DNA METHYLATION PATTERNS. 

a) Primers used for TRAP assay 

Target/construct Orientation Sequence (5’-3’) (the fluorescent label is in bold) Reference 

ITAS 
For AATCCGTCGAGCAGAGTTGTGAATGAGGCCTTC 

[389] 
Rev CCCTTACCCTTACCCTTACCCTAATAGGCGCTCAATGTA 

Telomeric 

amplification 

For (TS) (TAMRA)-AATCCGTCGAGCAGAGTT  
[387] 

Rev (CX-ext) GTGCCCTTACCCTTACCCTTACCCTAA 

b) Primers used for RT-qPCR confirming viral reactivation 

Target/construct Orientation Sequence (5’-3’) 

 
GaHV-2-VP5 

For CAAGGGGATCCCGCATATCCATTTCG 

Rev CAGGGGTCCTCGGTCAATTCGGTGG 

U6 
For CTCGCTTCGGCAGCACATATAC 

Rev TTTGCGTGTCATCCTTGCGC 

c) Primers used for mtDNA copy number assay 

Target/construct Orientation Sequence (5’-3’) Reference 

ND2 
For TGTTGGTTATACCCTTCCCGTACTA 

[391] 
Rev CTGCAAAGATGGTAGAGTAGATGA 

Beclin 
For CCCTCATCACAGGGCTCTCTCCA 

Rev GGGACTGTAGGCTGGGAACTATGC 

d) Primers used for nested PCR for BGSA and 5hmC TAB-Seq Kit 

Target/construct Orientation Bisulfite modified sequence (5’-3’) Original sequence (5’-3’) 

vTR promoter 

For-1 TTAATATTTTYGATTAGGGTTAG  TCAATACCTCCGATTAGGGTTA 

Rev-1 AACAAACAATTATACACCTACCT  GACAGACAGTTGTACACCTGCCT 

For-2 GATTAGGGTTAGATATAGYGGAG  GATTAGGGTTAGACACAGCGGAG 

Rev-2 CACCTACCTACACTACTACATCC  CACCTGCCTGCACTACTACATCC 

5mC-spike-in 

control 

For TTTGGGTTATGTAAGTTGATTTTATG 

Rev CACCCTACTTACTAAAATTTACACC 

5hmC-spike-in 

control 

For GTAGATTGTATTGAGAGTGT 

Rev TACCCAACTTAATCGCCTTG 

e) Primers used for E-box mutagenesis  

Target/construct Orientation Sequence (5’-3’) (restriction sites are in bold, mutations are underlined) 

E-box 2 mutation 

For-1 (5’PstI) GTGCAGCCCTAACCCTAACCCCCCAAATTTCACC  

Rev-1 ACGCCCCATGTTTTTGCCCCGCCCCTTCCTG  

For-2 GGGCGGCAAAAACATGGGGCGTGGCGGGA  

Rev-2 (5’HindIII) AAGCTTGCCTTCCACCCGCCACGTGTG  

E-box 3 mutation 
For (5’PstI) GTGCAGCCCTAACCCTAACCCCCCAAATTTCACC 

Rev (5’HindIII) AAGCTTGCTTCCACCCGCCAAAAATGCCGGGGGAACC  

f) Primers used for sequencing  

Target/construct Orientation Sequence (5’-3’) 

pGEMT-Easy 

vector insert 

For-M13 TGTAAAACGACGGCCATG  

Rev-M13 CAGGAAACAGCTATGAC 

pCpGL-basic vector 

insert 

For GTTTATGTGAGCAAACAGCAG 

Rev GCATAGGTGATGTCCACCTC 
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2.1.3. Results 

 

 

2.1.3.1. Impact of DNA methylation on the telomerase activity and 

mitochondrial DNA copy number in the MSB-1 cell line 

 

 

To study the impact of DNA methylation on telomerase activity in the lymphoblastoid cell 

line (MSB-1) latently infected and transformed by GaHV-2, telomeric repeat amplification protocol 

(TRAP) assay was performed. Relative telomerase activity was measured and compared between 

mock-treated, and 5-azacytidine treated cells at specific time points, as shown in Figure 2.8. The 

results showed a slight increase in telomerase activity during the first 24h after the treatment with 

demethylation agent, and notably more potent activity after 48h of exposure to the demethylating 

agent (Figure 2.8.a). In addition, significantly higher relative expression of the gene encoding the 

major viral capsid protein VP5, involved in a productive phase of the viral life cycle, confirmed 

that demethylation using 5-azacytidine induces viral reactivation from latency (Figure 2.8.b). 

Due to the increasing evidence suggesting that telomere length and mitochondrial DNA 

(mtDNA) copy number are positively correlated in cancer, and moreover the indication that 

mtDNA copy number change during GaHV-2 infection in vivo in a specific tissue, we measured 

mtDNA copy number in two steps of GaHV-2 life cycle in vitro. Our results showed that mtDNA 

copy numbers did not significantly change after the viral reactivation from latency (Figure 2.8.c). 

 

 

 

2.1.3.2. Methylation and hydroxymethylation patterns in vTR promoter after 

virus reactivation in vitro and during GaHV-2 infection 

 

With the aim to explore the potential role of DNA methylation in the control of vTR 

expression, DNA methylation landscape of the vTR promoter was characterized at the critical steps 

of the viral infection. CpG methylation levels on the vTR promoter, stretching from 5 nucleotides 

(nt) downstream to 361 nt upstream of TSS (+1) were mapped using Bisulfite Genomic Sequencing 
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Assay (BGSA) in cell lines representing the productive or latent phase of the viral life cycle (Figure 

2.9.a). During the productive phase, represented by CEFs infected with very virulent GaHV-2 RB-

1B strain, overall methylation on vTR promoter was close to 15%.  

 

 

FIGURE 2.8. EFFECT OF DEMETHYLATION AGENT ON RELATIVE TELOMERASE ACTIVITY, 
REACTIVATION RATE AND MITOCHONDRIAL DNA COPY NUMBER.  

a) Induction of viral reactivation in the lymphoblastoid MSB-1 cell line with 5 µM DNA methyltransferase inhibitor 

(5-azacytidine) during the period of 48 h. Significant increase in telomerase activity during the 48h after the treatment 

with demethylation agent was observed. b) Relative expression of VP5 gene was obtained using the Livak method and 

is shown relative to the cellular U6 control gene in MSB-1 cells (mock)treated with 5-azacytidine. Similar results were 

obtained for sodium butyrate treatment c) qPCR for mitochondrial DNA (mtDNA) amplification was performed on 

the gene encoding for ND2 and normalized with the nuclear gene encoding for Beclin. After viral reactivation, there 

was no significant change in mitochondrial DNA copy number. The determination of the significant difference was 

performed on triplicates using the student t-test. Comparisons for which p ≤ 0.05 were considered statistically 

significant, and were marked with one asterisk, or two if p ≤ 0.005. If there was no statistical difference, Ns was 

indicated. 

a) b) 

c) 



CHAPTER 2. RESULTS 

104 

 

FIGURE 2.9. GLOBAL METHYLATION LEVELS OF THE VTR PROMOTER.  

a) Gallid herpesvirus type 2 (GaHV-2) genome consists of unique long UL and unique short US regions flanked by 

the long terminal (TRL) and internal (IRL) repeats, and terminal (TRS) and internal short repeats (IRS), with the two 

copies of vTR located within in the TRL and IRL regions. Schematic representation of the studied region of the vTR 

promoter with 38 CpG positions and specific response elements obtained with Genomatix analysis software is shown. 

The black arrow represents the transcription start site (TSS).  b) High 5mC levels were found in vitro during latency, 

up to 90%. Following induction of the reactivation, methylation levels significantly dropped to 70%. c) For in vivo 

samples, global methylation was significantly lower, depending on the cell type (feather follicle epithelium (FFE), 

peripheral blood leukocytes (PBL), peripheral tumour leukocytes (PTL) and sorted CD4+ and CD30+ lymphocytes) 

and the day post-infection, with no significant change between early and late infection. However, the tendency for 

reduction of methylation levels could be observed for feather follicle epithelium (FFE) in early and late phases of the 

viral life cycle. The determination of the significant difference was performed using the student t-test. The 

determination of the significant difference was performed on 50 randomly selected bacterial colonies using the student 

t-test. Comparisons for which p ≤ 0.05 were considered statistically significant, were marked with one asterisk or two 

if p ≤ 0.005. If there was no statistical difference, Ns was indicated. 

a) 

b) c) 
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Interestingly, the levels of CpG methylation throughout the vTR promoter in the quiescent 

virus genome in MSB-1 cells was high, up to 90%, which, upon viral reactivation, dropped down 

to 70% (Figure 2.9.b), with specific pattern change (Figure 2.10.a). 

Methylation levels observed for in vivo samples were considerably lower (up to 2%) than in 

vitro and depended on the cell type and dpi. Interestingly methylation levels were higher in CD30+ 

cells sorted from tumour tissue compared to CD4+ cells. The CpG methylation levels of vTR 

promoter observed in vivo were not significant, however, the tendencies in the change of 

methylation status of CpG dinucleotides present in the functional c-Myc REs, during GaHV-2 life 

cycle, were similar to the results obtained in vitro (Figure 2.9.c). 

To provide a more detailed view of DNA methylation, 38 CpG sites were mapped, together 

with the response elements within vTR promoter, in vitro and in vivo (Figure 2.10). Looking into 

specific methylation positions on the vTR promoter in vitro, CpG dinucleotides positioned in 

transcription start site (TSS) and neighbouring c-Myc RE (E-box 3), demonstrated a significant 

decrease of methylation, as well as in the area at the upstream end of the vTR promoter. 

Furthermore, CpG sites surrounding the second c-Myc RE (E-box 2), showed an increase in 

methylation, compared to the latent state. For the rest of the vTR promoter, CpG methylation 

levels after reactivation were lower than during latency, however, without significant change (Figure 

2.10.a). For the in vivo samples obtained from GaHV-2-infected chicken, overall global methylation 

levels were significantly lower compared to in vitro analysis (Figure 2.10.c). DNA methylation 

patterns on vTR promoter in samples obtained from peripheral blood leukocytes (PBLs) at 14 days 

post-infection (dpi) showed an increase of methylation in CpG site present in c-Myc RE positioned 

two nt downstream of TSS when analysed at 28 dpi. 

Moreover, for peripheral leukocytes isolated from tumour tissue (PTLs) at 28 dpi 

methylation in CpG sites in both TSS and upstream c-Myc RE (E-box 2) was recorded (Figure 

2.10.c). The change of CpG methylation levels on vTR promoter observed at specified time points 

in vivo were not significant, however, the tendencies in the change of methylation status of CpG 

dinucleotides present in the functional c-Myc REs, during GaHV-2 life cycle, were similar to the 

results obtained in vitro. These findings indicated the possible role of DNA methylation in the 

activity of the vTR promoter at the key steps of GaHV-2 infection and were further investigated. 
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FIGURE 2.10. METHYLATION PROFILES OF VTR PROMOTER OBTAINED BY BGSA. 

a) Detailed methylation mapping showed different CpG methylation patterns in latency and after viral reactivation in vitro, in areas upstream of transcription start site (TSS) and 

functional c-Myc response elements (c-Myc REs) in vTR promoter. Grey shaded areas represent sections of the vTR promoter, where significant changes of methylation patterns 

were observed. b) Schematic representation of vTR promoter with CpG positions and specific response elements obtained with Genomatix analysis software. The black arrow 

represents the transcription start site (TSS). Each CpG position was represented with a white bar numbered referring to the TSS. (Figure caption continuing on the next page). 

a) 

b) 

c) 

d) 
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FIGURE 2.10. METHYLATION PROFILES OF VTR PROMOTER OBTAINED BY BGSA (FIGURE ON THE 

PREVIOUS PAGE). 

c) For the in vivo samples, DNA from peripheral blood leukocytes (PBLs) was isolated at day 14 and 28 post-infection, 

and total peripheral tumour leukocytes (PTLs) were isolated at day 28 post-infection. Significantly lower global 

methylation levels compared to in vitro samples were detected, with specific changes in methylation patterns 

surrounding the areas (in boxes) of c-Myc REs in the vTR promoter, however, the change was not significant. d) 

Legend for methylation percentage for the in vitro and in vivo samples. Grey colour in bars represents the percentage of 

methylation for a single CpG position calculated as the rate of isolated cytosines effectively converted into thymine 

after bisulfite treatment. The determination of the significant difference was performed on 50 randomly selected 

bacterial colonies using student t-test, comparisons for which p ≤ 0.05 were considered statistically significant. Fifty 

randomly picked clones were used for each analysis. 

 

 

 

 

Hydroxymethylation mapping on the vTR promoter measured between the latent and 

productive phase of GaHV-2 life cycle showed a significantly lower occurrence of 5-

hydroxymethylcytosine (5hmC) on CpG dinucleotides compared to 5-methylcytosine. The levels 

of hydroxymethylation were at 2%, which did not change after the viral reactivation. However, the 

change in 5hmC positions was observed between latency and after reactivation. Absence of 5hmC 

was noticed around E-box 2 after reactivation (Figure 2.11.a). 
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FIGURE 2.11. HYDROXYMETHYLATION PROFILES OF VTR PROMOTER OBTAINED BY 5HMC TAB-SEQ KIT. 

a) Hydroxymethylation mapping showed different CpG methylation patterns in latency and after viral reactivation in the MSB-1 cell line. b) Schematic representation of vTR promoter 

with cytosine/guanine (CpG) positions and specific response elements obtained with Genomatix analysis software. The black arrow represents TSS (+1). Each CpG position was 

represented with a white bar numbered referring to the TSS. c) Legend for hydroxymethylation percentage for in vitro samples. Grey colour in bars represents the percentage of 

methylation for a single CpG position calculated as the rate of isolated cytosines effectively converted into thymine after bisulfite treatment. Grey shaded areas represent sections of 

the promoter, where significant changes of hydroxymethylation patterns were observed. The determination of the significant difference was performed on 35 randomly selected 

bacterial colonies using student t-test, comparisons for which p ≤ 0.05 were considered statistically significant. 

a) 

b) 

c) 
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2.1.3.3. Genome-wide methylation patterns 

 

To compare the genome-wide methylation landscape between key steps of GaHV-2 life 

cycle, the latently infected and transformed MSB-1 cell line was used. After 48h treatment with 

DNA methyltransferase inhibitor, reactivation of the quiescent virus genome in MSB-1 cells was 

monitored by measuring relative expression of the VP5 gene encoding the major viral capsid 

protein that is involved in a productive phase of the viral life cycle. The RT-qPCR results confirmed 

that demethylation using 5-azacytidine (5-aza) induces viral reactivation from latency, as presented 

before.  

After extraction of genomic DNA from mock and 5-azacytidine treated MSB-1 cells, 

bisulfite-treated libraries were submitted to sequencing. The average global DNA methylation 

levels for quiescent viral genome in mock-treated MSB-1 cell were up to 65%. Interestingly, higher 

levels of CpG methylation during latency were observed in the region of the GaHV-2 genome 

encoding for the lytic phase protein pp38, and viral telomerase RNA subunit (vTR) compared to 

the region encoding for latency-associated transcripts (LATs) and major viral oncogene (Meq) 

(Figure 2.12.a).  

After induction of viral reactivation, total average genome-wide DNA methylation dropped 

down to 29%. Moreover, specific methylation landscapes were observed between the latent and 

productive phase of the viral life cycle. The significant CpG hypomethylation was recorded on the 

promoters thought the viral genome after reactivation (Figure 2.12.b). Interestingly, only single 

locus showed hypermethylation after reactivation compared to latency. For the promoter of the 

gene coding for viral interleukin-8 (vIL-8), an average increase of DNA methylation of 58% was 

observed.  

In addition, the promoters of the viral structural genes located in the unique long (UL) and 

short (US) segments of the genome were hypomethylated after viral reactivation compared to 

latency (Figure 2.12). 
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FIGURE 2.12. COMPARISON OF DNA METHYLATION LANDSCAPES BETWEEN TWO KEY STEPS OF GALLID HERPESVIRUS 2 LIFE CYCLE (FIGURE CAPTIONS ON THE 

NEXT PAGE).  

a) 

b) 
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FIGURE 2.12. COMPARISON OF DNA METHYLATION LANDSCAPES BETWEEN TWO KEY STEPS OF GALLID 

HERPESVIRUS 2 LIFE CYCLE (FIGURE ON THE PREVIOUS PAGE).  

a) Genome-wide methylation percentages were recorded on the quiescent viral genome in mock-treated MSB-1 cells. 

b) Treatment with the inhibitor of the DNA methyltransferase 5-azacytidine (5-aza) induced viral reactivation and a 

significant decrease in overall DNA methylation landscape, highlighting the hypermethylation in a single locus of the 

viral interleukin-8 (vIL-8) promoter. Representation of the Gallid herpesvirus 2 genome organisation in base pairs 

(obtained with Geneious software) is indicated below each DNA methylation profile. 

 

 

 

 

 

 

2.1.3.4. Impact of methylation on the activity of the vTR promoter 

 

 

To address the effect of methylation on the activity of vTR promoter, luciferase promoter-

reporter assay was performed. A plasmid backbone was used that lacks CpG sites except for the 

ones present in the target promoters. After M.SssI CpG methyltransferase hypermethylation, the 

relative activity of vTR promoter was measured in three chicken cell lines, MSB-1, DF-1 and LMH, 

as well as human HeLa cells (Figure 2.13). Hypermethylation of vTR promoter showed a significant 

decrease in relative activity in all cell lines, compared to non-methylated ones. In the case of the 

control promoter, EF1/CMV devoided of CpG dinucleotides and thus insensitive to methylation, 

no significant change in the activity between methylated and non-methylated promoters were 

observed (Figure 2.13.a). The efficiency of M.SssI treatment for vTR promoter was confirmed by 

digestion using methylation-sensitive restriction enzyme HpaII. Non-methylated promoters were 

digested with the HpaII, while no enzymatic digestion was observed in the presence of methylated 

promoters (Figure 2.13.b).  
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FIGURE 2.13. EFFECT OF METHYLATION ON THE VTR PROMOTER ACTIVITY.  

a) After hypermethylation with DNA methyltransferase (M.SssI), the relative activity of vTR promoter was measured 

in different cell lines: MSB-1, DF-1, LMH, HeLa. Luciferase activity was quantified with the Dual-Luciferase Reporter 

Assay System, and the results are presented as Firefly/Renilla percentage (F/R%). The hybrid promoter EF1/CMV 

known to be insensitive to the methylation was used as a control. b) Methylation sensitive restriction enzyme (HpaII) 

was used to confirm the success of hypermethylation on vTR plasmid constructs. Effect of restriction digestion with 

the HpaII was shown for mock methylated plasmids and M.SssI methylated plasmids. The significantly different values 

obtained with student t-test (n = 3) for the vTR promoter are indicated by one asterisk if the value of p ≤ 0.05. If there 

was no significant difference, Ns was indicated 

 

 

 

 

 

a) b) 
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2.1.3.5. Methylation process masks the effect of site-directed mutagenesis of 

the c-Myc binding sites 

 

 

Previously presented CpG methylation mapping revealed specific methylation changes in 

functional c-Myc REs of the vTR promoter. To further characterize the effect of methylation on 

c-Myc transcription factor binding sites, functional c-Myc REs of vTR promoter were mutated 

using site-directed mutagenesis, obtaining E-box 2 (E2), E-box 3 (E3) and double E2E3 mutants 

(Figure 2.14). The luciferase reporter promoter assay was used to study the activity of mutated 

versus wild-type vTR promoters (Figure 2.14.a). In chicken cell lines MSB-1, DF-1 and LMH in 

unmethylated conditions, luciferase activity showed that the E2 mutation alone did not affect vTR 

expression. On the other hand, E3 and E2E3 mutations showed repression of vTR promoter 

activity, compared to the wild-type promoter (Figure 2.14.b). There was no significant difference 

between the relative luciferase activities measured for the E3 mutated vTR promoter and double 

mutant E2E3. The significant difference between the relative luciferase activity of the mutated E2 

promoter and that of the double mutant E2E3 suggests that the E3 box is more functional in 

LMH, MSB-1 and DF-1. For the HeLa cell line, used as a non-homologous GaHV-2 control, only 

E2 mutation in the vTR promoted did not follow the same activity pattern, highlighting the 

difference between human and chicken cell lines and response elements (Figure 2.14.b).   

More intriguingly, the luciferase activity measured for methylated and mutated E2, E3 and 

E2E3 promoters in MSB-1 and DF-1 as well as in LMH cells was significantly higher compared to 

methylated wild-type promoter (Figure 2.14.c). In the HeLa cell line, there was no significant 

change in the activity of the methylated promoters, except in double E-box mutant (Figure 2.14.c). 

The efficiency of M.SssI treatment for mutated vTR promoters was confirmed by digestion using 

methylation-sensitive restriction enzyme HpaII. Non-methylated promoters were digested with the 

HpaII. However, in the presence of methylated promoters, lack of the enzymatic digestion was 

observed (Figure 2.14.d). These results showed that the E3 box is involved in regulating 

transcription of the vTR and indicated that the methylation process masked the effect of site-

directed mutagenesis of the c-Myc binding site. 
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FIGURE 2.14. EFFECT OF METHYLATION ON MUTATED VTR PROMOTER CONSTRUCTS (FIGURE CAPTIONS ON THE NEXT PAGE).  

 

d) 

a) 

b) 

c) 
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FIGURE 2.14. EFFECT OF METHYLATION ON MUTATED VTR PROMOTER CONSTRUCTS (FIGURE ON THE 

PREVIOUS PAGE).  

a) Specific response elements of the vTR promoter were studied through the mutagenesis of the E-boxes binding sites 

for the c-Myc transcription factor. E-box mutations were generated by PCR site-directed mutagenesis obtaining E2, 

E3 and E2E3 mutants. Luciferase activity was quantified with the Dual-Luciferase Reporter Assay System, and the 

results are presented as Firefly/Renilla percentage (F/R%). The relative activity mutated vTR promoters was measured 

in MSB-1 and DF-1 cell lines in (b) non-methylated conditions and (c) after hypermethylation with DNA 

methyltransferase (M.SssI). d) The hybrid promoter EF1/CMV known to be insensitive to the methylation was used 

as a control. Methylation sensitive restriction enzyme (HpaII) was used to confirm the success of hypermethylation on 

vTR plasmid constructs. Effect of restriction digestion with the HpaII was shown for mock methylated constructs and 

M.SssI methylated constructs. The significantly different values obtained with student t-test (n = 3) for the vTR 

promoter are indicated by two asterisks (p ≤ 0.005). If there was no significant difference, Ns was indicated.  
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2.2. Functional evaluation of c-Myc response elements in the 

promoter of the viral telomerase RNA subunit in a model of 

herpesvirus induced lymphomagenesis 

 

 

2.2.1. Introduction 

 

Previously obtained results presented in section 2.1., showed discriminative DNA 

methylation signatures of the vTR promoter at crucial steps of GaHV-2 infection and substantial 

impact of demethylation on telomerase activity. Two specific areas surrounding two functional c-

Myc response elements (E-box 2 and E-box 3) showed a significant change in DNA methylation 

after viral reactivation. Thus, to study the importance of the c-Myc binding sites in virus-induced 

tumorigenesis, a recombinant virus bearing mutations in c-Myc response elements (c-Myc REs), as 

well as revertant, were generated using the bacterial artificial chromosome of a highly oncogenic 

strain (pRB-1BΔIRL) using two-step Red-mediated mutagenesis. In this study, the impact of c-

Myc REs mutations was tested in vivo by infecting a susceptible B13B13 chicken line with prepared 

viral inoculums. To assess GaHV-2 replication and telomerase activity over time, blood and feather 

follicle epithelium (FFE) were collected at specific time points in infected chickens. Animals were 

daily monitored for the clinical symptoms of the disease, and euthanized 55 days-post infections, 

to assess the number of tumours developed in visceral organs. 

Introduced mutation in vTR promoter did not affect the replication properties of the 

recombinant viruses in vitro. In contrast, replication and of the mutant virus in infected chickens 

was severely impaired and tumour formation completely abrogated. Our data provided a more in-

depth characterisation of c-Myc oncoprotein REs and DNA methylation involvement in 

transcriptional regulation of vTR. 
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2.2.2. Materials and Methods 

 

 

2.2.2.1. Cell lines 

 

Embryonic stem cell-derived line-1 (ESCDL-1), a mesenchymal cell line used as a GaHV-

2 productive infection model [397] was cultured in a supplemented Dulbecco's Modified Eagle 

Medium (DMEM F12 1:1) supplemented with 10% foetal bovine serum (FBS), 1% penicillin (50 

units/mL) and streptomycin (50 μg/mL), 1% non-essential amino acids and 1% sodium pyruvate. 

Cells were maintained at 37 °C under 5% CO2. This cell line was generously provided by Dr. 

Caroline Denesvre (INRA-Tours).  

The chicken embryo fibroblasts (CEFs) were obtained from eleven days old chicken 

embryos treated by trypsinization (Lonza). The primary CEFs were cultured in Dulbecco’s 

modified eagle medium (DMEM) (Lonza) supplemented with 2.5% FBS, 1.25% chicken serum 

(CS), 1% penicillin (50 units/mL) and streptomycin (50 μg/mL), 1% fungizone (GIBCO), 1.475 

g/L tryptose phosphate (Sigma). Four days after primary CEFs culture, cells were passaged to 

produce secondary CEFs. The CEF cell cultures were maintained at 41 °C under 5% CO2.  

 

 

 

2.2.2.2. Bacterial artificial chromosomes and plasmids 

 

The backbone for recombinant GaHV-2 virus construction, carrying E-box 2 and E-box 3 

mutations in the vTR promoter (vTR-E2E3mut), was the bacterial artificial chromosome (BAC) 

of highly oncogenic RB-1B strain. BAC used was lacking part of the internal repeat long region 

that is restored upon virus reconstitution (pRB-1B∆IRL) [315]. Initially, approximately 10 kbp of 

the long internal repeat (IRL) of pRB-1B was deleted, leaving 0.5 kbp at the left end and 1.5 kbp at 

the right end of the IRL intact to allow restoration of the sequence via homologous recombination 

during GaHV-2 replication.  

Thus, the BAC containing one copy of vTR region was subjected to two-step Red-mediated 

mutagenesis, resulting in reconstituted recombinant virus containing the desired mutation in both 

vTR loci as previously described [398]. 
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The pEP-Kan-S2 plasmid was developed [398] by addition of AphaI gene conferring 

kanamycin resistance surrounded by two restriction sites of I-SceI enzyme into pcDNA3 plasmid 

(Figure 2.15). In order to introduce the desired modifications into the BACs, a resistant marker 

AphaI was used as a starting point for the PCR amplification. 

 

 

 

 

FIGURE 2.15. PEP-KAN-S2 PLASMID MAP.  

6441 bp long pEPkan-S2 plasmid contains the AphaI gene giving a resistance to kanamycin surrounded by I-SceI 

restriction sites. In addition, the plasmid contains a neomycin resistance gene (neo) and a beta-lactamase gene (bla), 

giving resistance to ampicillin (Tischer et al., 2006). 
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2.2.2.3. Preparation of electro-competent E. coli strain GS1783 

 

The E.coli strain GS1783, derived from DH10B strain, is genetically modified and harbours 

in its genome two inducible promoters. First, this strain expresses the Red-recombination system 

under a temperature-inducible promoter that is activated at 42 °C [398]. In addition, GS1783 strain 

expresses I-SceI, which expression is regulated under an arabinose inducible promoter. I-SceI is an 

endonuclease originated from Saccharomyces cerevisiae and contains 18 bp restriction site, which is 

rarely present in genomic sequences.  

The electro-competent bacteria were grown O/N at 32 °C in 1 ml LB medium with 

chloramphenicol (Chl, 34 mg/ml). The following day, 200 ml of warm fresh LB medium 

(supplemented with Chl) were inoculated with the primary O/N culture and incubated at 32 °C 

under shaking (220 rpm), until the logarithmic growth phase (OD600) reached between 0.5 - 0.7. 

Next, the heat shock was performed to activate the Red-recombination system. First, bacteria were 

heated for 15 minutes at 42 °C under shaking (220 rpm) followed by rapid cooling for 20 minutes 

in the water-ice bath while shaking (220 rpm). Following the activation step, the bacterial culture 

was centrifuged (5,000 rpm, 15 minutes at 4 °C), and the pellet was washed three times, with 10 ml 

of ice-cold 10% glycerol. Finally, the bacteria were re-suspended in 1 ml of 10% glycerol, aliquoted 

in 1.5 ml Eppendorf tubes (50 µl/tube) and snap-frozen for storage at -80 °C. 

In this study, Red-recombination system was used to generate recombinant GaHV-2 virus 

that carries mutations of c-Myc binding sites in vTR promoter. 

 

 

 

2.2.2.4. Construction of GaHV-2 recombinant viruses using two-step Red-

mediated mutagenesis 

 

The recombinant viruses were generated using a two-step Red-mediated mutagenesis 

system expressed by electro-competent GS1783 strain of E.coli as previously described [398]. The 

Red system from λ phage allows the insertion of linear double-stranded DNA molecules using a 

homologous recombination system (Figure 2.16).  
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FIGURE 2.16. SCHEMATIC PREVIEW OF Λ RED RECOMBINATION SYSTEM.  

Double-stranded DNA serves as the backbone for the Red recombination system. a) Gam protein inhibits bacterial 

RecBCD helicase-nuclease complex and linear DNA degradation. b) Exo protein in the form of homotrimer possesses 

5’ - 3’ exonuclease activity and produces 3’ single-strand extensions. c) The Beta protein binds to the newly synthesized 

single-stranded DNA and anneals it to (d) complementary sequences of the target DNA, finalising the integration (e). 

 

 

 

There are three main actors of the Red system named Exo, Beta, and Gam. Firstly, the 

Gam protein blocks the RecBCD helicase–nuclease complex of the E. coli that degrades linear 

DNA from both free ends (Figure 2.16.a). Secondly, the 5’–3’ exonuclease homotrimer Exo, 

produces a 3’ single-strand extension (Figure 2.16.b), which is protected by the single-strand 

binding activity of the Beta protein. In addition, Beta anneals the single strand end obtained from 

the linear DNA with complementary sequences of the target DNA (Figure 2.16.c). This results in 

the integration into replicating DNA (Figure 2.16.d and e). However, in order to successfully 

introduce non-selectable sequences, such as promoters or reporter genes, and to produce “scarless” 

mutations or deletions, a positive selection marker should be used. These groups of markers 

a) b) 

c) d) 

e) 
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guarantee high efficiency of the Red recombination. One of the most commonly used selection 

markers is I-SceI. 

In this study, the Red-recombination system was used to construct recombinant GaHV-2 

mutant that carries a mutation in the CpG dinucleotides of the c-Myc oncoprotein binding sites, 

namely E-box 2 and E-box 3 (Figure 2.17).  

 

 

 

 

 

FIGURE 2.17. INTRODUCTION OF THE MUTATIONS IN THE E-BOX 2 AND E-BOX 3 IN THE VTR 

PROMOTER. 

a) Mutations in the E-boxes of the vTR promoter were introduced by two-step Red-mediated mutagenesis using a 

bacterial artificial chromosome (BAC) of highly oncogenic RB-1B strain lacking part of the internal repeat long region 

(pRB-1B∆IRL). b) Using the produced mutated BAC as a backbone, revertant bacmid was produced containing the 

wild-type sequence. 

 

 

In detail, the sequence of interest was flanked by homologous extensions and PCR-

amplified using a kanamycin-resistance (AphaI) cassette from a pEP-Kan-S2 plasmid (Figure 2.18.a 

and b) with primers presented in Table 2.2.a. The point-mutagenesis of the E-box 2 was finalised 

first, followed by the E-box 3 mutation. To ensure fidelity of the PCR products, amplification with 

the Q5®Hot start High-Fidelity DNA polymerase (NEB) was used. High-fidelity PCR was 

performed as follows: 98 °C for 3 minutes, followed by 35 cycles of denaturation (98 °C, 1 minute), 

annealing (55 °C, 1 minute), and extension (72 °C, 1 minute) (Figure 2.18.b). PCR products were 

analyzed by agarose gel electrophoresis. 

a) 

b) 
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In the next step, electro-competent GS1783 strain of E.coli, prepared as previously 

described, were electroporated with 100 ng of purified PCR product (2500 V, 5 milliseconds), 

seeded on kanamycin/chloramphenicol rich LB agar plates in different dilutions and incubated at 

32 °C for 48 hours. Here, a first Red mediated recombination step resulted in the integration of 

the whole resistance cassette into the target site, and correct intermediates were identified as viable 

bacterial colonies on kanamycin/chloramphenicol LB agar plates (Figure 2.18.c). The kanamycin-

resistant colonies were isolated and confirmed by screen PCR targeting kanamycin cassette. Screen 

PCR was performed using the GoTaq® DNA Polymerase (Promega) and primer pairs targeting 

inserted construct (Table 2.2.b) and was performed as follows: 94 °C for 5 minutes, followed by 

35 cycles of denaturation (94 °C, 1 minute), annealing (30 °C, 1 minute) and extension (55 °C, 1 

minute). Clones positive for amplicon of interest were re-confirmed using Sanger sequencing on 

targeted vTR locus and restriction fragment length polymorphism (RFLP) method. 

After that, in the second recombination step, the expression of I-SceI was induced in the 

presence of 1% L-(+)-arabinose that resulted in the cleavage of the I-SceI site and complete 

removal of the kanamycin-resistant cassette (Figure 2.18.d). Briefly, an O/N culture of positive 

clones obtained after the first Red mediated recombination were grown at 37 °C under shaking 

(220 rpm). Next, 2 ml of warm fresh LB medium with chloramphenicol (but without selection for 

the kanamycin) were inoculated with 100 µl of a fresh overnight culture and grown for four hours 

at 32 °C and shaking (220 rpm) until early logarithmic growth phase. Following first incubation, 2 

ml of warm LB medium with chloramphenicol and 1% arabinose were added to the culture and 

incubated for 60 minutes at 32 °C under shaking (220 rpm) to induce I-SceI expression. The 

produced double-stranded DNA end with the adjoining duplex sequence now serves as a substrate 

for second Red recombination, which removes the complete marker cassette (Figure 2.18.e). In 

order to induce the expression of the Red recombination system, the bacterial culture was 

transferred into 42 °C water bath under shaking (220 rpm) for 30 minutes. After the heat shock, 

bacterial culture was returned to 32 °C under shaking (220 rpm) for another 4 hours followed by 

the bacterial seeding on chloramphenicol and 1% arabinose LB agar plates in different dilutions 

and incubated at 32 °C for 48 hours. 

 

 

 

 

 

 



CHAPTER 2. RESULTS 

123 

 

FIGURE 2.18.  EXAMPLE OF STEP-BY-STEP POINT-MUTANT GENERATION BY THE RED RECOMBINATION 

PROTOCOL USED TO INSERT MUTATION IN THE E-BOX 2 OF VTR PROMOTER (FIGURE CAPTIONS ON 

THE NEXT PAGE). 

c) 

PCR 

1
st
Red recombination 

b) 

a) 

d) 

e) 

f) 

I-SceI expression 

2
nd

Red recombination 

Resistant marker 
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FIGURE 2.18. EXAMPLE OF STEP-BY-STEP POINT-MUTANT GENERATION BY THE RED RECOMBINATION 

PROTOCOL USED TO INSERT MUTATION IN THE E-BOX 2 OF VTR PROMOTER (FIGURE ON THE 

PREVIOUS PAGE). 

a) The vTR promoter E-box 2 (pattern rectangle) was a target for the introduction of the desired mutation in the CpG 

dinucleotide presented in the E-box 2 sequence. The I-SceI-AphaI cassette from the pEP-Kan-S2 plasmid was used 

to introduce the kanamycin resistance marker into the backbone bacmid. b) Primer pair bearing E-box 2 mutation 

(yellow star) was constructed containing the overlapping sequences for both I-SceI-AphaI cassette (black and grey 

arrow) and vTR promoter (grey rectangles). The primers were used for the I-SceI-AphaI cassette PCR amplification. 

c) During the first recombination step, the complete resistance cassette construct was integrated into the target site, 

and the intermediates were identified using kanamycin antibiotic resistance. d) The expression of the inducible I-SceI 

lead to the cleavage of the I-SceI site and resulted in the double-stranded DNA end with the adjoining duplex 

sequences. e) Finally, the second Red recombination removes the entire resistance marker cassette finalising the 

mutagenesis (f). 

 

 

 

 

Finally, the random clones were tested for the kanamycin resistance cassette excision on 

LB double replica plates with chloramphenicol and kanamycin/chloramphenicol (Figure 2.18.f) 

followed by screen PCR, Sanger sequencing of the targeted vTR locus and RFLP screening analysis 

using multiple restriction enzymes. The same principle was used to revert the mutated bacmid into 

the original wild-type sequence. In addition, to ensure the genome integrity after several 

mutagenesis steps, the mutant and revertant BAC constructs were analyzed using pair-end high 

throughput sequencing on Illumina® sequencing platform (Novogene). 

 

 

 

2.2.2.5. High-throughput bacmid DNA sequencing  
 

 

DNA samples were qualified by agarose gel electrophoresis analysis for DNA purity and 

integrity, and Qubit® 3.0 fluorometer quantitation for accurate measurement of DNA 

concentration. 

Sample DNA with a total amount of more than 500 ng was qualified for library preparation. 

The genomic DNA of each sample was randomly sheared into short fragments around 350 bp, 

and the obtained fragments were subjected to library construction using the NEBNext® DNA 

Library Prep Kit. Briefly, as followed by end repairing, dA-tailing, and further ligation with 
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NEBNext adapter, the required fragments (in 300-500 bp size) were PCR enriched by P5 and 

indexed P7 oligonucleotides, followed by purification and subsequent quality check. 

To check the prepared DNA libraries, Qubit® 2.0 fluorometer was firstly used to determine 

the concentration of the library. After dilution to 1 ng/µl, the Agilent® 2100 bioanalyzer was used 

to assess the insert size.  

Finally, the qPCR was performed to detect the effective concentration of each library. The 

qualified DNA libraries were submitted to the pair-end sequencing were performed on Illumina® 

sequencing platform, with the read length of PE150 bp at each end (Novogene). 

 

 

 

2.2.2.6. ESCDL-1 cell transfection with constructed bacmids 

 

ESCDL-1 cells were transfected by using the Amaxa™ Nucleofector™ technology (Lonza) 

with the Basic Fibroblast kit (ref VPI-1002) and program F024 as described before [397]. Briefly, 

800,000 ESCDL-1 cells were transfected with 2 µg of constructed bacmids and seeded in 6-well 

plates coated with 2% gelatine using. Six hours after transfection, the medium was changed to 

DMEM F12 (1:1) supplemented with 1.5% CS and 1% FBS and the cells were incubated overnight 

(O/N) at 37 °C under 5% CO2. The next day, the medium was changed to full DMEM F12 (1:1) 

supplemented with 10% FBS, 1% penicillin (50 units/mL) and streptomycin (50 μg/mL), 1% non-

essential amino acids and 1% sodium pyruvate. The transfected cells were passed three times 

together with the fresh ESCDL-1 cells followed by stock preparation in DMEM F12 (1:1) with 

10% dimethyl sulfoxide (DMSO) that was stored first at -80 °C and finally in liquid nitrogen.  

 

 

 

2.2.2.7. Bacmid titration on ESCDL-1 cells 

 

The bacmid constructs generated expressed Green Fluorescent Protein (GFP) signal, and 

because of that, the recombinant BAC constructs were used to assess viral replication properties 

in vitro and were fully reconstituted afterwards for animal experiment.  

In order to assess the replication properties of the constructs, a titration was performed in 

order to obtain plaque-forming units (PFUs). PFUs represent the number of units capable of 
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initiating the formation of a plaque in cell culture. These units are a fraction of the previously 

infected cells in which GaHV-2 was replicating. This fraction of cells is the one in which the ratio 

between cell viability and virus content is adapted to transfer the viral infection via cell-to-cell 

spreading, thereby initiating the formation of a plaque. Briefly, 24 well plates were seeded with 100, 

000 non-infected ESCDL-1 cells per well. 24h. After seeding, the cells were inoculated with serial 

dilutions (1/10, 1/50, 1/250, 1/1250 and 1/6250) of previously stocked bacmid-transfected 

ESCDL-l. Co-infected cells were then incubated for 48h to allow plaques (foci) to form by cell-to-

cell spread. To reveal the plaque formation, cells were fixed with 4% paraformaldehyde. The 

number of plaques was determined by using an epifluorescence microscope and counted at 

dilutions where individual foci were observed. The titers were expressed as the mean PFU/ml 

according to the formula: 

PFU/ml = [(average n° of plaques × dilution) / volume per well] × 1000 

 

 

2.2.2.8. Plaque size assay 

 

To assess the viral spread in cell culture, plaque size assay was used as described previously 

[399]. 1 × 106 ESCDL-1 cells were infected with 100 PFU of the corresponding mutated and 

revertant BAC constructs. After 6 days post-infection (dpi), viral growth was detected, and images 

of minimum 50 random plaques from each recombinant virus were taken. The plaque areas were 

measured using Image J software (NIH) and normalized to the wild-type virus. Three independent 

experiments were performed, and the difference in plaque areas was evaluated using ANOVA One-

way analysis of variance. 

 

 

 

2.2.2.9. Multi-step growth kinetics assay 

 

To assess further the replication properties of the recombinant viruses, multi-step growth 

kinetics assay was performed as described previously [399]. 1 × 106 ESCDL-1 cells were infected 

with 100 PFU of the corresponding BAC constructs. Cells were trypsinized and titrated on 

uninfected ESCDL-1 every 24 hours for six days. The plaques were counted under an 
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epifluorescence microscope. Three independent experiments were performed, and the difference 

in plaque areas was evaluated using ANOVA One-way analysis of variance. 

 

 

 

2.2.2.10. Reconstitution and propagation of GaHV-2 recombinant viruses 

 

In order to fully restore the US2 gene and excise GFP, reconstitution of the viruses was 

performed using ESCDL-1 cell line. Cells were transfected with the recombinant BAC constructs 

and co-transfected with a plasmid that encodes for Cre-recombinase using calcium phosphate 

transfection protocol as described before [400]. Briefly, 24h before transfection 500,000 secondary 

CEFs were seeded in a six-well plate, and three different concentrations of constructed BACs (0.5, 

1 and 2 µg) and plasmid Cre/Lox (1, 2 and 5 µg) were diluted in 50 µl of sterile 10mM Tris-HCl 

(pH. 7.5). Next, 388 µl of sterile autoclaved Millipore water were added to the DNA mix and 

incubate for 4 hours at room temperature. Following the incubation, 62 µl of 2M ice-cold CaCl2 

were added drop by drop to the DNA mix while gentle vortexing and incubated O/N at 4 °C in 

Eppendorf tubes sealed with parafilm. The next day, 500 µl of cold 2× HEPES buffered saline 

(HBS) (Sigma-Aldrich) were added drop by drop to the transfection mix while gentle vortexing and 

incubated for 15 minutes in the dark at room temperature. During the incubation, CEFs were 

washed with phosphate-buffered saline (PBS) (Lonza) and supplemented with fresh DMEM 

medium (10% FBS). Next 500 µl of transfection mixture were added to the cells drop by drop 

while gently vortexing and incubated at 37 °C for 4 hours. Following the incubation, the cells were 

gently washed with PBS, and 1.5 ml of 1× HBS supplemented with 15% glycerol were added. The 

mixture was incubated for a maximum of 2.5 minutes, and 1x HBS + 15% glycerol was immediately 

removed followed by PBS washing Finally, fresh DMEM (10% FBS) was added and cells were 

incubated O/N at 37 °C, 5% CO2. In following two days, the medium was changed first to DMEM 

(5% FBS) and then DMEM (0.5% FBS), respectively, followed by 48h incubation at 37 °C at 5% 

CO2. 

Following reconstitution, viruses were propagated in secondary CEF cells. CEFs were co-

infected with ESCDL-1 cells containing reconstituted recombinant GaHV-2 virus and propagated 

for three passages before preparing the vial stocks. Viral stocks were made from highly infected 

cells in 10% FBS DMEM supplemented with 10% DMSO. The aliquots were firstly kept at -80 °C 

before the storage in liquid nitrogen. 
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2.2.2.11. Viral titration on CEF cells 

 

In order to prepare viral inoculums for in vivo experiment, viral titration was performed as 

described below. Briefly, 24 well plates were seeded with 100,000 non-infected CEFs per well. 24 

hours after seeding, these CEFs were inoculated with serial dilutions (1/10, 1/50, 1/250, 1/1250 

and 1/6250) of infected ESCDL-1 cultures containing previously reconstituted recombinant 

viruses. Co-infected cells were then incubated for 48 hours to allow plaques (foci) to form by cell-

to-cell spread. To reveal the plaque formation, cells were fixed with 4% paraformaldehyde.  

Following the fixation, the immunostaining was realized as follows. Cells were washed four 

times with 500 μl of buffer I (Tris-HCl 20mM, ph8, NaCl 250 mM). Next, cells were permeabilized 

by incubation for 30 minutes at 4 °C with 500 μl of buffer II (buffer I + 0.5% de Triton-X100). 

Following incubation, cells were washed four times with 500 μl of buffer I. Saturation of the cell 

was realised by incubation for 1 hour with 500 μl of buffer III at room temperature (buffer II + 

1% BSA, Bovine Serum Albumin), followed by four washes with 500 μl of buffer I. Following 

washing, the cells were first incubated with the primary antibody VP5 diluted 200 fold (generously 

provided by Dr. Caroline Denesvre, INRA-Tours) for one hour at room temperature. VP5 primary 

antibody is a monoclonal antibody produced by mouse hybridomas that target the major GaHV-2 

capsid protein. The initial staining was followed by four washes with buffer II. Next, the cells were 

incubated with the secondary antibodies Goat anti-mouse-Alexa Fluor-488 diluted 1,000-fold for 

one hour at room temperature. Four washes with 500 μl of buffer II were performed, and nucleus 

staining was done by 4-6-diamidino-2-phenylindole (DAPI) incubation for one minute. Finally, 

cells were washed with 500 μl of PBS, and the number of plaques was determined by using an 

epifluorescence microscope. The titers were expressed as the mean PFU/ml according to the 

formula described in section 2.2.2.7. 

 

 

2.2.2.12. Animal experiment, cell isolation, DNA and RNA extraction 

 

White Leghorn specific pathogen-free B13B13 chickens, highly susceptible to GaHV-2, were 

obtained from INRA-Tours, France, and were used for the animal experiment. The animals were 

housed in isolated biosecurity level 3 facilities at Avian Virology and Immunology Service of 

Sciensano (Brussels, Belgium). Chickens were injected intramuscularly at the age of 2 days with 
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2,000 PFU of either mutant vTR-E2E3mut (n = 26) or revertant vTR-E2E3rev (n = 26) 

recombinant virus. To assess viral loads and telomerase activity in infected animals, blood samples 

and feather follicle epithelium (FFE) were collected at 6, 13, 20, 28, 35, 41, 48 and 55 days post-

infection (dpi) and weight progression was recorded. Animals were assessed daily for the onset of 

common Marek’s disease symptoms. At 55 dpi, chickens were euthanized and examined for tumour 

growth.  

Genomic DNA from blood samples and FFE were isolated using the DNeasy®blood and 

tissue kit (Qiagen) as described by the manufacturer.  

Peripheral blood leukocytes (PBLs) from anticoagulated blood were isolated using 

Histopaque-1077 density gradient (Sigma-Aldrich) according to the manufacturer’s 

recommendations.  

RNA from isolated PBLs was extracted using by Guanidium thiocyanate-phenol-

chloroform extraction (Tri-Reagent®, Ambion). Briefly, cells were resuspended in 100 μl of PBS 

and lysed using 1 ml of Tri-Reagent. Following the centrifugation, the supernatant was recovered, 

and 200 μl of chloroform/ml of Tri-Reagent were added. Second centrifugation allowed to obtain 

an aqueous phase containing the RNA. In order to precipitate total RNA, 500 μl of isopropanol 

were added to the collected aqueous phase and centrifuged. After centrifugation, the pellet was 

washed with 1 ml of 70% ethanol, dried and resuspended in 18 μl of DNase/RNase free water 

(GIBCO). After that, a DNaseI (NEB) treatment was included. The mix contained DNase buffer 

1x, RNase inhibitor, DNaseI (20U), the total RNA extracted and water in a total volume of 25 μl. 

The reaction was performed at 37 °C for 1 hour. The solution was extracted with phenol-

chloroform and isoamyl alcohol, followed by chloroform and isoamyl alcohol extraction. The RNA 

was precipitated from the aqueous phase with three volumes of ethanol and 1/10 volume of 

sodium acetate (3M) and washed with 70% ethanol. The RNA was quantified, and purity was 

confirmed by measurement of the A260/A280 ratio with a Nanodrop™1000 (Thermo Scientific). 

 

 

 

2.2.2.13. Ethics statement 

 

The animal study was conducted following Belgian law for animal protection and the 

European Directive, 2010/63/EU. The Ethics committee of Sciensano (file n°. 20191016-03) 

approved all animal experiments. 
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2.2.2.14. GaHV-2 viral loads during the course of infection  

 

GaHV-2 genome copies during viral infection were quantified using qPCR to determine 

the replication properties of the recombinant viruses. One µg of the DNA extracted from blood 

collected from eight random animals in each group were used for qPCR analysis. Virus genome 

copies were assessed by qPCR No Rox Probe MasterMix dTTP (Takyon) using primers and probe 

specific for major capsid protein VP5 of GaHV-2, according to manufacturer’s recommendations. 

Primers used in qPCR assays are shown in Table 2.2.c. Virus genome copies were normalized 

against the chicken inducible nitric oxide synthase (iNOS) gene, as previously described [290]. 

Briefly, for the generation of standard curves in qPCR assays, PCR products of the ICP4 or iNOS 

gene were used. Serial 10-fold dilutions of each target were used for generating standard curves, 

starting with 100 ng of DNA. Total copy numbers were determined using the formula: 

 

[(6.02 x 1023) × (g/µl of input)] / (amplicon length in bp × 660) 

 

 The standard curves were generated by plotting the cycle threshold (CT) value at each 

dilution with the total copy numbers. 

 

 

 

2.2.2.15. vTR expression in recombinant virus-infected cells 

 

vTR expression levels were determined in vivo by RT-qPCR from total RNA extracted from 

infected PBLs. DNaseI (NEB) treatment was performed on all the samples, and cDNA was 

generated using the SuperScript™ IV (SSIV) Reverse Transcriptase (Invitrogen) according to the 

manufacturer's recommendations. Briefly, a premix was prepared containing the total RNA, dNTP 

10mM and reverse gene-specific primers (2 μM) followed by the incubation at 65 °C for 5 minutes 

to remove the RNA secondary structure. Next, a mix containing buffer 5x, DTT 0,1 M, RNase 

inhibitor (40U) and the reverse transcriptase SSIV (200U) was added to the premix to perform the 

reverse transcription (RT). The mix was incubated at 55 °C for 15 minutes. After incubation, the 

samples were incubated at 80 °C for 10 minutes to inactivate the enzyme. Finally, in order to 

remove RNA complementary to cDNA 1 µl of RNase H (2U) were added to the samples and 

incubated at 37 °C for 20 minutes. In the end, newly synthesized cDNA was stored at -20 °C. 
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Following the RT, qPCR was performed to measure expressions of chicken TR (chTR) and vTR. 

The expression levels were normalized against the cellular GAPDH gene. In addition, relative vTR 

expression was normalised to the expression of the viral gene coding for immediate-early protein 

ICP4. Primers and probes used for RT-qPCR are shown in Table 2.2.d. 

 

 

 

2.2.2.16. Telomeric repeat amplification protocol assay 

 

Telomerase activity of 1 µg of protein extracted from the 1 x 106 PBLs was quantified using 

the semiquantitative fluorescence-based telomeric repeat amplification protocol (TRAP) assay, as 

previously described in section 2.1.2.3. Briefly, full protein extracts were isolated at specific time 

points from PBLs of infected and control chicken. Protein concentrations were determined with 

Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) and adjusted to 500 ng/µl. The 

telomerase amplification PCR was performed with primers shown in Table 2.1.a, as described 

before [217]. PCR products were analyzed by capillary electrophoresis (Applied Biosystems 3130xl 

Genetic Analyzer). The relative telomerase activity level of each protein extract was calculated by 

adding values of fluorescence intensity for all telomerase products containing 5 and up to 15 

telomeric repeats and normalized to the fluorescence intensity value of the ITAS as previously 

described [390]. Additionally, the relative telomerase amplification measured in vivo was normalised 

using the relative expression of a major viral oncoprotein Meq in order to have a more precise way 

of interpreting the data in the infected cell population.
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2.2.2.17. TABLE 2.2. PRIMERS USED FOR THE RED-MEDIATED E-BOX MUTAGENESIS AND C-MYC FUNCTIONAL EVALUATION. 

 

a) primers used for the construction of recombinant viruses  

Target/construct Sequence (5’-3’) ( mutations are shown in bold and are underlined) 

vTR-E-box_2-mutant 
Fwd GATCCGATCCCGCAGACCCCGGCCCACAGGAAGGGGCGGGGTTTTTGCATGGGGCGTGGTAGGGATAACAGGGTAATCGATTT 

Rev GGAACTCCGCGGTCATTCATCTCCCGCCACGCCCCATGCAAAAACCCCGCCCCTTCCGCCAGTGTTACAACCAATTAACC 

vTR-E-box_3-mutant 
Fwd GGAGGAAGCTACAAGAGCCCCACGCGGGGTTCCCCCGGCATTTTTGGCGGGTGGAAGTAGGGATAACAGGGTAATCGATTT 

Rev CCTCCGATTAGGGTTAGACACAGCGGAGCCTTCCACCCGCCAAAAATGCCGGGGGAACCGCCAGTGTTACAACCAATTAACC 

vTR-E-box_2-revertant 
Fwd CCGGATCCGATCCCGCAGACCCCGGCCCACAGGAAGGGGCGGGGCACGTGCATGGGGCGTGGTAGGGATAACAGGGTAATCGATTT 

Rev GAGTTTGGAACTCCGCGGTCATTCATCTCCCGCCACGCCCCATGCACGTGCCCCGCCCCTTCCGCCAGTGTTACAACCAATTAACC 

vTR-E-box_3-revertant 
Fwd GGAGGAAGCTACAAGAGCCCCACGCGGGGTTCCCCCGGCACACGTGGCGGGTGGAAGTAGGGATAACAGGGTAATCGATTT 

Rev CCTCCGATTAGGGTTAGACACAGCGGAGCCTTCCACCCGCCACGTGTGCCGGGGGAACCGCCAGTGTTACAACCAATTAACC 

b) primers used for screen PCR and Sanger sequencing 

Target/construct Sequence (5’-3’) 

vTR promoter 
Fwd GTACACCTGCCTGCACTACT 

Rev GCGAGGACCCCAGGG 

c) primers used for qPCR 

Target/construct Sequence (5’-3’) Modification Reference 

GaHV-2-VP5 

Fwd CGTGTTTTCCGGCATGTG  

 Rev TCCCATACCAATCCTCATCCA  

Probe CCCCCACCAGGTGCAGGCA 5’-FAM, 3’-TAMRA 

iNOS 

Fwd GAGTGGTTTAAGGAGTTGGATCTGA  

[401] Rev TTCCAGACCTCCCACCTCAA  

Probe CTCTGCCTGCTGTTGCCAACATGC 5’-FAM, 3’-TAMRA 

d) primers used for RT-qPCR 

Target/construct Sequence (5’-3’) (vTR/chTR mismatches are underlined) Modification Reference 

GaHV-2-vTR 

Fwd CCTAATCGGAGGTATTGATGGTACTG  

[401] 

Rev CCCTAGCCCGCTGAAAGTC  

Probe CCCTCCGCCCGCTGTTTACTCG 5’-FAM, 3’-TAMRA 

GAPDH 

Fwd GAAGCTTACTGGAATGGCTTTCC  

Rev GGCAGGTCAGGTGAACAACA  

Probe TGTGCCAACCCCCAAT 5’-FAM, 3’-TAMRA 

 Fwd CGTGTTTTCCGGCATGTG  

GaHV-2-ICP4 Rev TCCCATACCAATCCTCATCCA  

 Probe CCCCCACCAGGTGCAGGCA 5’-FAM, 3’-TAMRA 
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2.2.3. Results 

 

 

2.2.3.1. Generation and replication properties of the recombinant viruses 

 

 

Specific epigenetic patterns, previously observed on the vTR promoter during the switch 

between latent and reactivation phase of GaHV-2 life cycle showed a significant change of 

methylation in the CpG dinucleotides present around functional c-Myc REs. To further investigate 

the importance of E-boxes in vTR expression, and tumour formation during the progression of 

GaHV-2 infection in vivo, recombinant virus containing a mutation in the E-boxes was constructed. 

Targeted mutation of vTR promoter E-box 2 and E-box 3 (vTR-E2E3mut) was accomplished by 

two-step Red-mediated mutagenesis using highly oncogenic RB-1B strain lacking part of the 

internal repeat long region (pRB-1B∆IRL) as a backbone. In addition, the original vTR promoter 

sequence was restored by obtaining a revertant virus (vTR-E2E3rev). Constructed recombinant 

viruses were verified by RFLP using BamHI and KpnI restriction enzymes, PCR and sequencing of 

the vTR promoter locus (Figure 2.19).  

Furthermore, to confirm the integrity of the recombinant viral genome after several 

mutagenesis steps, final mutant and revertant bacmid clones were analysed with high-throughput 

sequencing. The analysis revealed that mutagenesis of functional c-Myc response elements (E-box 

2 and E-box 3) was successful, and confirmed that revertant construct had the same sequence as 

the wild-type reference.  

Two mutations were detected in both mutant, and revertant viruses compared the reference 

strain BB2573\RB-1B\pvT. One mutation was localised within eGFP located in the mini-F 

sequence that was removed in downstream viral reconstitution in ESCDL-1 cells prior to the in 

vivo experiment. The second mutation detected was a silent point mutation in UL32 ORF 

(MDV046), which is a DNA packaging protein (Table 2.3). 
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FIGURE 2.19. INTRODUCTION OF THE DESIRED MUTATION IN THE BACMID BACKBONE USING TWO-STEP 

RED MEDIATED MUTAGENESIS.  

a) PCR targeting resistance cassette (AphaI) with specific overlapping primers containing the desired mutation was 

performed. b) First Red recombination resulted in the insertion of resistance cassette amplicon with the desired 

mutation in the bacmid backbone. c) Positive bacterial clones were selected for second Red recombination resulting 

in I-SceI expression under arabinose and excision of the AphaI cassette. d) Positive clones were selected on 

chloramphenicol and kanamycin/chloramphenicol replica plates and confirmed with restriction fragment length 

polymorphism and sequencing of the vTR promoter locus. 

b) PCR screen: first Red mediated 
recombination 

a) PCR: AphaI cassette + overlapping primer 
containing the mutation 

c) PCR screen: second Red mediated recombination 

d) Confirmation of Red mediated recombination 
by restriction fragment length polymorphism and 
sequencing. 
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TABLE 2.3. HIGH-THROUGHPUT SEQUENCING ANALYSIS OF THE MUTANT AND REVERTANT BACMID 

CONSTRUCTS. 

a) Mutated construct 

Position Reference Altered Type Site 

546 C T introduced point mutation 

vTR-E-box 2 
547 A T introduced point mutation 

548 C T introduced point mutation 

549 G T introduced point mutation 

730 C T introduced point mutation 

vTR-E-box 3 
731 A T introduced point mutation 

732 C T introduced point mutation 

733 G T introduced point mutation 

74714 A G silent point mutation UL32 

134507 A G transitional point mutation eGFP 

b) Reverted construct 

Position Reference Altered Type Site 

74714 A G silent point mutation UL32 

134507 A G transitional point mutation eGFP 

 

 

 

 

2.2.3.2. The mutation of CpG sites within c-Myc response elements does not 

affect GaHV-2 replication in vitro 
 

 

To assess if the mutation of E-box 2 and E-box 3 influenced virus replication, BACs 

replication properties were investigated by plaque size assay (Figure 2.20.b) and confirmed with 

multi-step growth kinetics (Figure 2.20.c). Both assays indicated that replication of mutant 

construct was as efficient as for revertant and wild-type and was not altered by the E-box mutations 

in vitro. Thus, only mutant (vTR-E2E3mut) and revertant (vTR-E2E3rev) recombinant viruses 

were used for animal experiment. 
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FIGURE 2.20. REPLICATION PROPERTIES OF RECOMBINANT BACS SHOWED NO DIFFERENCE BETWEEN 

MUTATED AND REVERTANT RECOMBINANT VIRUSES. 

a) Mutations in the E-boxes of the vTR promoter were introduced by two-step Red-mediated mutagenesis using a 

bacterial artificial chromosome (BAC) of highly oncogenic RB-1B strain lacking part of the internal repeat long region 

(pRB-1B∆IRL). Using the produced mutated BAC as a backbone, revertant bacmid was produced containing the wild-

type sequence. Next to each recombinant virus, a representative image of viral plaques are shown (scale bar -100 µm, 

yellow line). b) Relative plaque areas were calculated using Image J software and are shown as box plots with minimums 

and maximums. Results are shown as means of three independent experiments revealing no significant difference in 

viral replication properties between wild-type (vTR-E2E3wt), mutant (vTR-E2E3mut) or revertant (vTR-E2E3rev) 

viruses (one-way ANOVA). c) Multi-step growth analysis assay confirmed that introduced E-box mutations did not 

affect replication of the constructs. Average titers of an independent experiment performed in triplicates are shown 

with standard deviations (p > 0.05, Kruskal–Wallis test). 

 

 

 

 

b) c) 

a) 
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2.2.3.3. The mutation of CpG sites within c-Myc response elements results in 

specific phenotype with severely impaired tumour formation 
 

 

To investigate the involvement of c-Myc oncoprotein and the importance of its binding on 

the E-box sites for the tumour development, 2-day-old B13B13 chicken were injected intramuscularly 

with 2000 PFU of mutant (vTR-E2E3mut) or revertant (vTR-E2E3rev) recombinant viruses.  

Throughout the in vivo experiment, the weight progression of animals was recorded at the specific 

time points (Figure 2.21), and the onsets of typical clinical symptoms were monitored. Interestingly, 

the c-Myc binding sites mutations presented a specific weight phenotype starting from 13-day post-

infection (dpi) (Figure 2.21). The disease incidence in the vTR-E2E3rev was first recorded at 35 

dpi while it was completely reduced upon mutation of E-box 2 and E-box 3. 

 

 

 

 

 

 

FIGURE 2.21. WEIGHT PROGRESSION OF CHICKEN INFECTED WITH RECOMBINANT VIRUSES .  

Weight measurements were taken for eight random animals of each group at specific time points during the GaHV-2 

infection. Weight comparison in chicken challenged with mutant (vTR-E2E3mut) or revertant (vTR-E2E3rev) 

recombinant virus showed significant difference starting from 13 days post-infection (p < 0.005, student t-test). In 

addition, the weight evolution of non-infected B13B13 chicken line is shown for the reference (data provided by INRA-

Tours, France). 



CHAPTER 2. RESULTS 

138 

Furthermore, to assess the effect of introduced mutations on tumour propagation, the 

number of visceral organs with visible tumour lesions and number of tumours were recorded at 55 

dpi. Strikingly, for the vTR-E2E3mut virus, no animals developed visible tumours, while 50% of 

animals challenged with the revertant virus did (Figure 2.22.a). 

 

 

FIGURE 2.22. TUMOUR INCIDENCE AND THE AVERAGE NUMBER OF GROSS TUMOURS IN CHICKEN 

INFECTED WITH RECOMBINANT VIRUSES.  

55 days post-infection, all animals were euthanized, and the autopsy was performed to determine tumour formation in 

internal organs. a) While 50% of animals in the revertant group (vTR-E2Erev) developed visible tumours, in the 

animals challenged with the mutated recombinant virus (vTR-E2E3mut), no tumours were recorded. b) The average 

number of gross tumours per animal infected with recombinant viruses was calculated. Average of 2.77 tumours were 

recorded for the chicken challenged with the revertant virus (vTR-E2E3rev). c) A total number of gross tumours 

developed in each observed internal organ of the chickens challenged with the revertant virus (vTR-E2E3rev). 

a) b) 

c) 
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The average of 2.77 tumours per animal were recorded for the group infected with the 

revertant virus (Figure 2.22.b). In addition, the total number of tumours per screened internal 

organs indicated that the majority of tumours were developed in the kidneys and the livers of the 

vTR-E2E3rev infected animals (Figure 2.22.c). In addition, the accumulation of adipose tissue was 

visible around the hearth and the liver of the animals that had developed visible gross tumours. 

 

 

2.2.3.4. The mutation of CpG sites within c-Myc response elements results in 

lower viral loads in infected animals 

 

To determine if the recombinant viruses efficiently replicated in infected chickens, viral 

genome copies were quantified from the whole blood and feather follicle epithelium (FFE) at 

specific time points. Monitoring the viral load evolution throughout GaHV-2 infection 

demonstrated that the introduced mutation in functional c-Myc REs affect total viral loads levels, 

which were significantly lower compared to the revertant virus. Furthermore, the quantification of 

viral copy numbers in FFE, starting at 20 dpi, showed decreased viral loads compared to the 

revertant virus, as well, indicating a reduction in mature virion release in the FFE (Figure 2.23.a). 

 

 

2.2.3.5. The mutations of c-Myc binding sites affect relative vTR expression  
 

 

To investigate the effect of the inserted mutation on vTR expression, we performed RT-

qPCR assays on total RNA extracted from infected PBLs at 55 dpi, from the animals infected with 

the corresponding recombinant viruses. Interestingly, relative vTR expression was reduced by 2.5 

fold in the animals infected with the vTR-E2E3mut compared to vTR-E2E3rev (Figure 2.23.b). 

GAPDH was used to normalize the data, and the expression of GAPDH was comparable between 

the two groups (Figure 2.23.b). In addition, relative vTR expression was normalised relative to the 

viral ICP4 control gene, resulting in the loss of the significant reduction in vTR expression between 

the conditions. However, the tendency of vTR expression reduction was preserved, as shown for 

results obtained with GAPDH as a control (Figure 2.23.c). 
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FIGURE 2.23. THE MUTATION OF THE CPG SITES WITHIN C-MYC RESPONSE ELEMENTS IN THE VTR 

PROMOTER RESULTS IN THE SPECIFIC DISEASE PHENOTYPE.  

a) qPCR detecting GaHV-2 genome copies in the blood and feather follicle epithelium (FFE) of chicken infected with 

mutant (vTR-E2E3mut, n=26) or revertant (vTR-E2E3wt, n=26) viruses. The means of GaHV-2 genome copies per 

million cells are shown for the indicated time point. b) Total RNA was isolated from peripheral blood leukocytes 

(PBLs) at 55 dpi, and RT-qPCR was performed. Relative vTR expression was obtained using the Livak method and is 

shown relative to the cellular GAPDH control gene (p ≤ 0.05, student t-test). Relative expression of control gene 

GAPDH in PBLs infected with the different viruses was not statistically different (p > 0.05, student t-test). c) In 

addition, relative vTR expression was shown as well as relative to the viral ICP4 control gene (p ≥ 0.05, student t-test) 

with the similar tendency in vTR expression reduction as shown for results obtained with GAPDH as a control. 

Relative expression of control ICP4 gene in PBLs infected with the different viruses was statistically different (p < 

0.05, student t-test). The means of three independent experiments with standard deviations are shown. 

a) 

b) c) 
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2.2.3.6. The mutations of c-Myc binding sites affect telomerase activity 
 

 

In order to assess the effect of the c-Myc binding sited mutation on the vTR involvement 

in the regulation of telomerase activity, peripheral blood leukocytes (PBLs) were extracted from 

B13B13 chicken infected with either the revertant or mutant recombinant virus, at 35, 42 and 48 dpi. 

Full protein extract of 1 x 106 PBLs was analysed using semiquantitative fluorescence-based 

telomeric repeat amplification protocol (TRAP) assay (Figure 2.24). Introduced c-Myc REs 

mutations in the vTR promoter resulted in 1.9, 3.2 and 1.8 fold decrease in telomerase activity, 

respectively, compared to internal amplification standard (Figure 2.24.a). The relative telomerase 

activity was additionally normalised to the gene coding for major viral oncoprotein Meq that 

allowed more precise readout due to the differences in the number of viral genomes observed 

between the animals infected with mutant or revertant viruses. The normalisation with viral gene 

resulted in 1.5, 2.4 and 1.4 fold decrease in relative telomerase activity measured at 32, 42 and 48 

dpi, respectively (Figure 2.24.b). The relative telomerase activity in non-infected control animals, 

measured from 9 to 30 days post-hatching was assessed for a basal activity reference. The highest 

basal telomerase activity was recorded at day 9 compared to the activity measured at 16, 23 and 30 

days post-hatching. Starting from day 16, the telomerase activity measured in non-infected chicken 

stabilised and did not significantly change, and moreover, was significantly reduced compared to 

the telomerase activity measured in infected chicken (Figure 2.24.c). 
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FIGURE 2.24. THE MUTATION OF THE CPG SITES WITHIN C-MYC RESPONSE ELEMENTS IN THE VTR 

PROMOTER RESULTS IN THE DECREASE OF RELATIVE TELOMERASE ACTIVITY. 

a) The PBLs were extracted from the blood of eight random animals infected either with mutated or revertant 

recombinant viruses. Extracted PBLs from each group were pulled together, and total protein extract was submitted 

to semiquantitative fluorescence-based telomeric repeat amplification protocol assay. b) The relative telomerase 

activity was additionally normalised to the gene coding for major viral oncoprotein Meq. The relative telomerase 

activity was significantly decreased at day 42 post-infection in the animals infected with the virus bearing mutations in 

the functional c-Myc response elements of the vTR promoter (p ≤ 0.05, student t-test), and demonstrated similar 

tendency at days 35 and 48 post-infection. c) The relative telomerase activity of non-infected chicken, highest at day 9 

post-hatching, stabilised after and did not significantly change (p > 0.05, student t-test). The means of three 

independent experiments with standard deviations are shown.

a) b) 

c) 
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3.1. Discussion 

 

Gallid herpesvirus type 2 (GaHV-2) is a highly oncogenic alphaherpesvirus that infects 

chickens causing paralysis, immunosuppression and fatal lymphoma in susceptible animals [299]. 

GaHV-2 establishes latent infection in CD4+ T-lymphocytes, in which it integrates the viral 

genomes into the telomeres of host chromosomes [289,402,403]. The integrated virus genome is 

maintained in the telomeres and mobilized during reactivation. Aside from latency, telomere 

integration also plays an essential role in tumour formation [291].  

One of the main characteristic features of herpesviruses is their ability to establish a latent 

infection during which most of the viral genes are silenced, resulting in no viral progeny production 

and viable host cells. However, it can re-enter the productive cycle and produce new virions if 

conditions in the cell change [404]. The crucial factors in the regulation of gene expression 

associated with different phases of the viral cycle in herpesviruses are epigenetic modifications 

[289,404]. In this context, we have studied the effect of the epigenetic changes on the promoter of 

the vTR gene encoding for the telomerase RNA subunit. We performed methylation mapping on 

the vTR promoter and demonstrated a reduction of methylation signatures after viral reactivation 

in vitro. These results follow previous data published on GaHV-2 methylation changes [405]. 

Epigenetic modifications regulate DNA replication and virus reactivation in other herpesviruses. 

DNA methylation and histone post-translational modifications (HPTMs) were observed during 

EBV and Kaposi Sarcoma-associated herpesvirus (KSHV) infection [404,406] while only HPTMs 

were found during infection with the Alphaherpesviruses HSV and HHV-3 [407].  

In our studies, we observed an increase of the telomerase activity after viral reactivation in 

vitro. This resulted in DNA demethylation of the GaHV-2 genome and indicated that DNA 

methylation status is associated with telomeric transcription in GaHV-2 transformed cell line. This 

result is in agreement with previous studies observing high telomerase activity in tumour cell lines 

in comparison to the normal lymphocyte cells [390]. Telomere maintenance is necessary for 

unlimited cancer cell proliferation, however, recent studies suggested that telomerase could 

promote tumorigenesis independently of telomere elongation [408,409]. Increased telomerase 

activity was detected in cells infected with a variety of herpesviruses [218,409–411]; however, none 

of these viruses harbours any of the telomerase components except GaHV-2. Cancer-associated 

human herpesviruses have also been found to upregulate telomerase activity upon cells infection. 

In EBV-immortalized B-lymphocytes, telomerase activity was variable [412]. Similar results were 

observed in a nasopharyngeal carcinoma cell line expressing LMP1. Its expression was correlated 
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with increased hTERT promoter activity and protein levels, suggesting enhanced hTERT 

transcription as a mechanism for telomerase upregulation [413] and a similar effect was identified 

in cells expressing LANA gene (latency-associated nuclear antigen) of Kaposi’s Sarcoma 

Herpesvirus (KSHV/HHV-8) [216,225]. These data implicate telomerase activation as a common 

mechanism for herpesvirus tumorigenesis and increases in telomerase activity during herpesvirus 

infections [414].  

A previously demonstrated, telomere length and the mtDNA copy number are associated 

with numerous specific types of cancer [378–381] and positively correlated, that could have an early 

and essential effect on carcinogenesis [382]. Even no previous studies were referring to telomere 

length during GaHV-2 infection, a recent in vivo study revealed that in bursa Fabricius and in the 

thymus, the mtDNA copy number remained relatively constant in resistant and susceptible animals 

infected with GaHV-2.  However, a significant difference in mtDNA copy numbers was observed 

in the spleen at 21 dpi, due to a continuous decrease of mtDNA contents in the susceptible birds 

and an increased recovery in the resistant birds, which implied that 21 dpi presents an important 

stage for the mitochondria changes after GaHV-2 infection [415]. To connect to the previous 

study, we measured mtDNA copy number in two stages of the viral cycle, latency and reactivation. 

Our analysis of mitochondrial a DNA (mtDNA) copy number in the MSB-1 cell line showed that 

there was no significant change during latency and after viral reactivation.  

In vitro replication properties of recombinant viruses supported previous studies showing 

that vTR is dispensable for lytic GaHV-2 replication [218,347]. Furthermore, we assessed the 

impact of c-Myc response elements (c-Myc REs) mutations on virus-induced tumour development. 

In addition, numerous studies indicated that wild-type and revertant viruses replicated in similar 

ways in vivo, and resulted in similar output in tumorigenesis [218,347,402], strengthening our 

approach to use only revertant virus as a control. Strikingly, animals infected with the mutant virus 

showed abrogation of tumorigenesis, while half of the animals infected with revertant virus 

developed gross tumours in visceral organs. Our study presents the first report on the intriguing 

weight phenotype observed in the animals infected with the vTR-E2E3mut virus, which indicates 

further c-Myc roles in sustaining the changes that occur with transformation resulting in activation 

of different signalling pathways [416]. Numerous studies demonstrated c-Myc important 

involvement in the regulation of glycolysis and cancer metabolism [417–419], as well as 

mitochondrial biogenesis stimulation [420–422], however, to fully understand these processes 

during GaHV-2-induces tumorigenesis further studies are needed. However, this result needs to 

be taken with caution, since proper controls were not set in place, for example, measuring the 

precise amount of feed intake.  
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It was previously demonstrated that the vTR contributes to GaHV-2-induced 

lymphomagenesis, where complete deletion of vTR resulted in significantly reduced tumour 

incidences without affecting virus replication in vivo [218]. However, no previous studies reported 

the differences in the distribution of the tumours in tissues. Surprisingly, viral loads in susceptible 

B13B13 chicken infected with recombinant virus bearing c-Myc REs mutation was significantly lower 

compared to the revertant virus, starting from 20 dpi. This observation could be explained due to 

the fact that viral loads were detected in the total number of GaHV-2 transformed T-lymphocytes 

rather than the complete viral replication, what is supported by the lack of visible tumours in the 

same group. The similar tendency, however, not significant, was previously observed by Trapp et 

al. [218]. In addition, the significantly lower levels of viral loads observed in the feather follicle 

epithelium (FFE), back up previous statement, underlining a lower number of transformed T-

lymphocytes circulating in the blood and thus establishing weaker secondary productive infection 

and viral shedding from FFE. 

Moreover, even the complete deletion of vTR severely impaired tumour formation, no total 

abrogation was previously demonstrated [218,347]. However, the total lack of visible tumours we 

observed could be explained due to the differences in the major histocompatibility complex-B 

(MHC-B) of susceptible chicken lines previously used and the duration of the animal experiment. 

As demonstrated by Kheimar et al. [347], the first tumour incidence in the animals infected with a 

virus lacking both vTR copies was recorded around 56 dpi. Only 30% of infected animals 

developed tumours until 91 dpi, while wild type RB-1B caused tumours in around 90% of the 

animals. Moreover, a study using the same B13B13 chicken line demonstrated that 83% of animals 

infected with wild-type RB-1B strain develop tumours after 90 days of infection [423]. Thus, there 

is a high probability that our animals infected with the recombinant virus bearing c-Myc REs 

mutations in the vTR promoter would eventually develop visible tumours over time.  

Furthermore, our findings indicated that mutations of c-Myc binding sites in the vTR 

promoter have a significant repression effect on vTR expression during GaHV-2 infection 

compared to the revertant virus normalised with the chicken control gene, and the tendency of 

vTR expression inhibition when normalised to viral gene, indicating that functional c-Myc REs are 

involved in the regulation of the vTR expression. These results support our previous observation 

of 50% of animals developing gross tumours in the revertant group. In addition, this observation 

is consistent with previous reports that demonstrated that vTR expression is not only crucial for 

GaHV-2 lymphomagenesis, but expression levels are necessary for GaHV-2 tumorigenic function. 

It was shown that vTR expression through its promoter is essential for GaHV-2 lymphomagenesis, 

revealing that tumour formation induced by recombinant viruses expressing vTR at lower levels 
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was significantly inhibited [340]. Furthermore, it was indicated that overexpression of chicken 

cellular TR (chTR) promoted tumour formation as efficient as vTR indicating that expression levels 

of chTR/vTR are of most importance for tumour development [347].  

Additionally, we demonstrated that the relative telomerase activity is significantly lower in 

the animals infected with the virus containing mutations in the c-Myc REs of the vTR promoter 

compared to the revertant virus, consistent with the significantly lower vTR expression. Moreover, 

animals infected with both GaHV-2 recombinant viruses demonstrated significantly higher relative 

telomerase activity that in the non-infected chicken. Our findings correlate with previously 

published data that showed vTR enhance telomerase activity compared to the cellular TR [217]. 

(9). In addition, it was previously demonstrated that vTR-mediated telomerase activity contributes 

to the rapid onset of disease, but not tumour formation [219]. Therefore, the observed lack of 

Marek’s disease incidence in the animals infected with the vTR-E2E3mut virus is likely due to the 

observed lower relative telomerase activity. However, the relative telomerase activity measured in 

infected cell population resulted in the loss of significant change at days 35 and 48 post-infection, 

keeping the similar tendencies observed in the total cell population. These results indicate that the 

observed reduction in telomerase activity could be due to the different viral loads and thus viral 

activity during the infection induced with the mutant or revertant virus, or the consequence of 

reduced vTR expression and thus lower interaction with TERT. Furthermore, the extreme 

phenotype observed in our study could indicate other possible regulatory events involved. Since 

this implication was not studied before in the same context, further studies are needed in order to 

obtain a full mechanistic picture of the vTR promoter regulation.  

Furthermore, we showed that DNA methylation could play a role in the restriction of 

specific genes, such as vTR, during the GaHV-2 replication/latent cycle. Specific changes in the 

methylation patterns were observed throughout the vTR promoter region in vitro, especially in the 

areas surrounding functional c-Myc REs (E-box 2 and E-box 3), that serve as binding sites for 

proteins of the Myc/Mad/Max transcription factors family and act as crucial positive regulators of 

cell proliferation and death [359,424]. Previous studies have shown that c-Myc can induce 

telomerase activity through the transcriptional activation of hTERT [222,425]. In 2007, Shkreli et 

al. [357], showed that c-Myc activates transcription of the vTR gene, and binds to the vTR 

promoter sequence in GaHV-2-transformed cell line. The interaction of c-Myc with the vTR 

promoter E-boxes is involved in the higher levels of vTR expression observed during GaHV-2-

induced lymphomagenesis, and EBS and E-box 2 act together with E-box 3 to regulate vTR 

expression in MSB-1 cell line. Moreover, the results for DNA methylation patterns in vivo were 

obtained from a total population of isolated peripheral blood leukocytes and showed random 



CHAPTER 3. DISCUSSION, CONCLUSIONS AND PERSPECTIVES 

 

149 

changes in methylation patterns. Even we observed tendencies in methylation pattern change in 

and surrounding functional c-Myc response elements. This result indicated that cell sorting could 

overcome these misleading observations, highlighting the limits of our approach. 

Secondly, we have explored whether another, recently described cytosine modification, 5-

hydroxymethylcytosine (5hmC), has different signatures between the latent and productive phase 

on the vTR promoter. The 5hmC modification occurs as an intermediate during active 

demethylation of cytosines in vivo [426]. Higher levels of 5hmC on the cellular genome are usually 

associated with gene activation and protection from de novo methylation [144]. For vTR promoter, 

measured 5hmC was significantly lower than 5mC, both, before and after reactivation. However, 

the absence of hydroxymethylation around E-box 2 was observed. This reduction could explain 

the increase in E-box 2 methylation after viral reactivation. A study concerning EBV showed that 

TET-mediated 5hmC modification of lytic EBV promoters inhibits their activation. The results 

revealed that TET-mediated 5hmC modification of lytic EBV promoters regulates viral reactivation 

and suggest that decreased 5hmC modification of both cellular and viral genes may contribute to 

tumour development. In addition, it was confirmed that global 5hmC-modified DNA is very low 

or undetectable in EBV infected cells [186].  

Furthermore, we demonstrated that DNA hypermethylation actively represses the 

transcriptional activity of the vTR promoter in the recombinant plasmids. DNA methylation is one 

of the epigenetic marks that are associated with repression of gene expression. It was suggested 

that during herpesvirus infection, the viral genome is subjected to a biphasic methylation cycle. 

Widely methylated during the viral latency, it returns to an unmethylated state during lytic viral 

replication [188,189,191]. The data obtained here corroborate with previous studies showing that 

DNA methylation represses the specific transcription of promoter during the latent phase [427]. 

The same effect has also been observed for the EBV [428]. However, in some cases, it was shown 

that the DNA methylation could have an opposite effect and thus be associated with transcriptional 

activation. For example, the reactivation of the EBV virus via the overexpression of the Zta viral 

protein, which binds preferentially to methylated sites [429]. 

As mentioned before, the c-Myc transcription factor plays a role in the expression of the 

vTR gene during the latency phase of GaHV-2. The vTR promoter has three c-Myc binding sites, 

namely E-box 1, E-box 2, and E-box 3, where it was confirmed that E-box 1 was not functional 

[24]. For this reason, the study of the effect of methylation on c-Myc transcription factor binding 

sites was conducted on E-boxes 2 and 3. The results obtained show that the mutation of the E-

box 2 does not affect the transcriptional activity of the unmethylated vTR promoter, contrasting 

the E-box 3 and double E2E3 mutation that is associated with a decrease in the expression of the 
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vTR promoter. Similar results were obtained for LMH cells [357]. These results confirm that the 

E-box 3 is a cis-regulatory element involved in the vTR transcription. However, the double E2E3 

mutation did not induce complete inhibition of the transcription, which suggests the involvement 

of other transcription factors regulating the activity of the vTR promoter. Indeed, the bioinformatic 

analysis of the vTR promoter showed a multitude of binding sites of different transcription factors, 

among which the binding site for the Ets transcription factor is also involved in the regulation of 

vTR transcription in the GaHV-2 transformed MSB-1 cell line [357]. 

Finally, for the methylated promoters, the mutation of E-boxes had an opposite effect. The 

activity of the mutated and methylated vTR promoter was significantly higher than that of the 

methylated wild-type promoter. These surprising results suggest that, contrary to observations 

made in an unmethylated situation, methylation would have masked the effect of the mutation. 

The high activity of the methylated mutated promoters could be explained by the fact that in the 

absence of E-box mutation, the c-Myc would be the main transcription factor for the activation of 

the vTR transcription. However, the mutation of the c-Myc binding sites could induce the 

recruitment of other transcription factors that are insensitive to the methylation. Indeed, a series 

of factors were described as being insensitive to methylation, Sp1, FCT, YY1 and C/EBP alpha-

factor [429–431]. According to the results obtained in our study, it was expected to observe that 

the activity of the vTR promoter is negatively influenced by the methylation. The opposite effect 

obtained could be explained by the fact that during GaHV-2 infection, the regulation of the vTR 

promoter is not only dictated by the c-Myc but the result of the association of several factors, 

among which the Meq viral protein could have an important role. Indeed, the Meq protein has a 

central role in the regulation of the expression of many genes during the different phases of the 

GaHV-2 life cycle and could positively regulate the expression of the vTR. The Meq protein, via 

the Pro-Leu-Asp-Leu-Ser motif, could bind the C-terminal-binding protein (CtBP), which is a 

known co-repressor involved in the regulation of cell proliferation cell growth and apoptosis. The 

binding of Meq to CtBP will raise the inhibition of CtBP on the E2F protein that will bind to its 

consensus sequence present on the vTR gene and induce its transcription [235,326]. The viral 

oncoprotein Meq also has the leucine zipper binding site (B-ZIP) for the c-Jun protein. The 

Meq/Jun heterodimer could induce transcription of vTR by binding to the AP-1 site present at the 

vTR gene promoter [432]. 

Furthermore, the noticeable differences of this approach compared to in vivo observations 

regarding the effects of mutations in c-Myc response elements must be addressed. The effect of 

mutations introduced in the vTR promoter was established in an isolated context that was highly 

controlled in the cell lines. On the other hand, the in vivo conditions, due to their complex 
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interaction with viral and cellular machinery present unique environment that is less comparable to 

the in vitro situation, making it difficult to predict what would be the results of highly controlled in 

vitro assay when introduced in the animal model. 

Moreover, an interesting increase in the promoter CpG-methylation was observed 

following reporter vector electroporation (prof. Thierry Arnould, personal communication, 2020). 

Therefore, this report indicates possible limits of the vector reporter approach in studying 

promoter activity. Additionally, it highlights the need for proper future strategies in assessing the 

negative consequences of electroporation on the DNA methylation and finding new ways how to 

avoid these effects.  
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3.2. Conclusions 

 

In conclusion, we presented the first report that demethylation significantly increased 

telomerase activity in vitro. Moreover, we showed a significant change in methylation and 

hydroxymethylation levels on the vTR promoter between the latent and productive phase of 

GaHV-2 life cycle. In addition, the shift in methylation patterns was observed surrounding c-Myc 

transcription factor response elements located in the studied area of the vTR promoter. A more 

in-depth analysis of the methylation effect showed a significant decrease in the activity of 

methylated promoter compared to non-methylated ones. Additionally, the results obtained from 

the reporter study of methylation impact on the c-Myc transcription factor binding sites proved 

that the E-box 3 is a cis-regulatory element involved in the vTR transcription and revealed the 

involvement of other transcription factors regulating the activity of the vTR promoter. Contrary 

to observations made in an unmethylated situation, methylation seems to have masked the effect 

of the E-boxes mutations (Figure 2.25).  

Furthermore, the importance of the functional c-Myc response elements in virus-induced 

tumorigenesis was studied using recombinant virus bearing mutations in E-box 2 and E-box 3, as 

well as revertant. Using the small homologous animal model for GaHV-2-induced 

lymphomagenesis, we demonstrated, for the first time, the regulatory function of the c-Myc 

oncoprotein during lymphomagenesis, emphasised with its binding to the E-box 2 and E-box 3 

present in the vTR promoter. Mutated c-Myc response elements resulted in complete abrogation 

of tumour formation at 55 days post-infection and reduced viral loads detected in blood and feather 

follicle epithelium, implicating higher vTR expression levels in the transformation of the T-

lymphocytes. Moreover, this observation was further supported by significantly reduced levels of 

vTR expression in mutated virus compared to the revertant control, what confirmed previous 

studies demonstrating c-Myc involvement in regulating vTR expression in vitro. Additionally, 

measuring relative telomerase activity, signified that lower vTR expression levels correlate with 

feeble telomerase activity in E-box 2 and E-box 3 mutated virus, the observation that supports the 

absence of visible Marek’s disease symptoms in the infected birds. Our study provides further 

characterisation of the c-Myc response elements within the vTR promoter and their importance in 

the regulation of vTR expression, and moreover, vTR involvement in GaHV-2-induced 

tumorigenesis (Figure 2.25). To our knowledge, this is the first study to report on the attenuation 

of a herpesvirus following the mutation of functional response element driving the expression of 

a key virulence factor. 
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FIGURE 2.25. OVERVIEW OF THE STUDY REALISED ON THE VTR PROMOTER AND THE RESULTS OBTAINED FOR IN VITRO AND IN VIVO APPROACHES. (FIGURE 

CAPTIONS ON THE NEXT PAGE). 
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FIGURE 2.25. OVERVIEW OF THE STUDY REALISED ON THE VTR PROMOTER AND THE RESULTS 

OBTAINED FOR IN VITRO AND IN VIVO APPROACHES. (FIGURE ON THE PREVIOUS PAGE). 

a) The primary goals of the study were to investigate in vitro changes in epigenetic modification on the vTR promoter 

between two stages of the viral life cycle, latency and reactivation. Our results showed that DNA methylation levels 

and patterns differ between (b) latency and (c) after viral reactivation, with the specific areas showing a significant 

drop in DNA methylation. d) Additionally, we demonstrated that viral reactivation increases telomerase activity 

compared to latent phase in vitro. e) Moreover, specific DNA methylation profiles and changes observed in the E-box 

2 and E-box 3 during latency and after reactivation indicated their potential importance in the vTR promoter 

regulation. In order to investigate the importance of functional c-Myc response elements (E-box 2 and E-box 3), these 

sites were mutated. We showed that the mutation of the c-Myc response elements (c-Myc REs) in non-methylated 

conditions results in the significant reduction of vTR promoter activity compared to the wild-type. Surprisingly, the 

hypermethylation of the mutated vTR promoters increased promoter activity, suggesting that methylation masked the 

effects of c-Myc REs mutation. Furthermore, we investigated the impact of c-Myc mutagenesis in vivo, by infecting 

susceptible chicken line with either (f) mutant or (g) revertant virus. The results obtained demonstrated that c-Myc 

REs mutation resulted in lower viral loads in animals, compared to the animals infected with the revertant virus. In 

addition, the consequence of the c-Myc REs mutation was evident in the reduction of vTR expression as well as 

telomerase activity. Finally, the c-Myc REs mutation resulted in the abrogation of tumour development in the infected 

chicken. All the results obtained from in vitro and in vivo studies demonstrated the importance of functional c-Myc REs 

in the vTR promoter activity, and thus in regulation of vTR expression. However, more questions were raised that 

would need to be addressed in order to fully understand the mechanisms involved in vTR regulation and further on in 

the establishment of tumorigenesis in GaHV-2 context (indicated by dotted lines and question marks). 
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3.3. Perspectives 

 

As discussed in the introduction, histones are subjected to the enormous number of post-

translational modifications, including acetylation and methylation of lysines and arginines, 

phosphorylation of serines and threonines. The majority of these post-translational marks occur 

on the amino-terminal and carboxy-terminal histone tail domain, although some modifications 

occur in the central domains. Each lysine can accept one or more methyl groups and arginine 

residue can be mono- or di-methylated. All of these modifications are likely to control the structure 

and the function of the chromatin fibre, with different modifications yielding distinct functional 

consequences. For example, trimethylation of histone 3 at lysine 27 (H3K27me3) and lysine 9 

(H3K9me3) is often associated with transcriptional repression. Also, trimethylation of histone 3 at 

lysine 4 (H3K4me3) and acetylation of histone 3 at lysine 9 (H3K9ac) correlates with transcription. 

However, there are clear exceptions, a particular mark or set of marks can have different or even 

opposite biological consequences. For instance, generally inhibitory H3K9 methylation in some 

cases can be associated with actively transcribed genes depending on the gene being studied and 

the cellular content.  

Concerning GaHV-2, Brown et al. [188] showed that repressive marks H3K9me3 and 

H3K27me3 were both associated with the part of the repeat region around OryLyt from which 

gene expression is absent during latency. In contrast, the active marks H3K4me3 and H3K9ac are 

restricted to the core region that contains the MiR clusters, meq, vTR region and LAT. It is 

suspected that Meq is involved in histone modifications since it is one of the few proteins expressed 

during latency, has a nuclear distribution, binds DNA and regulates transcription. GaHV-2 ability 

to maintain active transcription during latency probably relates to the ability of Meq/c-Jun 

heterodimers to recruit histone acetyltransferases such as p300/CBP. In contrast, the ability to 

repress transcription as a homodimer probably relates to interaction with the cellular corepressor 

CtBP, which provides a potential link to the polycomb complexes responsible for H3K27me3. It 

is also possible that DNA methylation is involved in the recruitment of enzymes involved in 

histone modifications. The methylated CpG are indeed recognised by proteins such as methyl CpG 

binding domain proteins (MBD) which recruit chromatin repressors like histone deacetylase 

(NuRD) and histone methyltransferase. As well as for DNA methylation, there is no data available 

regarding histone modifications localised outside the repeated inverted regions of the GaHV-2 

genome.   
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Thus, the deeper investigation whether the patterns of transcriptional repression and 

activation are related to the histones modifications located at the promoters of targeted vTR gene 

should be established.  To accomplish this task, the chromatin immunoprecipitation (ChIP) assay 

followed by qPCR will be established. Antibodies against trimethylation modification of 

H3K27me3 and lysine 9 H3K9me will be used to identify silent regions, while antibodies against 

trimethylation of histone H3K4me3 and H3K9ac will be used to identify active regions. ChIP assay 

will also be performed before and after treatment of latently infected cells with histone methylase 

and/or histone acetylase inhibitor. This study aims to determine if histone modifications are 

associated with the reactivation of the virus in vitro. In addition, it would be interesting to investigate 

the patterns of histone methylation and acetylation after treating latently infected cells with DNA 

methyltransferase inhibitor such as 5-azacytidine. This approach will allow determining if DNA 

methylation is involved in the recruitment of enzymes involved in histone modifications. 

Furthermore, the gene expression regulation is a complex mechanism intertwining multiple 

levels of control, including epigenetic, post-transcriptional and post-translational modifications. 

This control depends on interactions with numerous proteins and regulatory non-coding RNAs. 

Thus, the understanding and the identification of the regulatory proteins that control DNA 

transcription as well as RNA translation represent a crucial step in the comprehension in 

deciphering the fundamental processes in cellular biology [433]. The recently developed method of 

an open DNA mass spectrometry-based identification of proteins interacting with DNA [434] 

could be implemented in order to identify transcription factors and co-regulators interaction with 

the vTR promoter according to its methylation status. This type of DNA affinity capture method 

was shown to be useful in experiments performed on short [435] and long DNA sequence [434]. 

Moreover, the rate of DNA/protein complex recovery after the downstream reactions was 

estimated to around 100%, stipulating that all the capture proteins are likely to be involved in the 

next steps of analysis resulting in protein identification [434]. In the case of vTR, the core promoter 

will be amplified by high fidelity PCR. To allow a reversible immobilization of the capture probe 

to streptavidin-coated magnetic beads, the promoter will be amplified with one modified primer. 

Hypermethylation of vTR promoter will be performed using CpG methyltransferase M.SssI. 

Proteins identified by mass spectrometry in methylated versus unmethylated conditions will be 

compared to identify differential recruitment of transcriptional regulators in tested conditions.  

However, this approach could be deemed as highly artificial that does not investigate 

chromatinized DNA. In order to avoid the limitations of this approach, reverse chromatin 

immunoprecipitation (rev-ChIP) assay could be implemented [436]. In vitro samples treated with 

inhibitors of DNA methyltransferases and histone deacetylases, as well as in vivo samples obtained 
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during different stages of the viral life cycle could be submitted to this approach named proteomics 

of isolated chromatin segments This strategy allows purification of an endogenous segment of 

chromatin in sufficient quantity and purity to identify the associated proteins. It relies on nucleic 

acid hybridization as the basis for purification, that allows isolation of specific formaldehyde cross-

linked chromatin regions and identification of the proteins bound to those loci using mass 

spectrometric analysis [436]. 

Additionally, the discoveries revealed in this study open different possibilities in the 

exploration of potential new approaches in the future development of Marek’s disease (MD) 

vaccines.  MD vaccines are widely used in the poultry industry to protect chickens from GaHV-2-

induced tumorigenesis. The current “gold standard” in vaccination is the live-attenuated GaHV-2 

strain CVI988/Rispens, which efficiently protects chickens against very virulent field strains; 

however, it is unable to inhibit the horizontal viral spread, resulting in the need for total animal 

vaccination.  

To further test the applicability of our recombinant virus bearing mutations in the 

functional c-Myc response elements, as a possible vaccine, a novel in vivo study is necessary. In the 

future study, in vivo characterisation of the recombinant virus should be analysed for 13+ weeks in 

order to have the detailed picture of lymphomagenesis establishment in the animals infected with 

the mutated recombinant virus, as well as to be in concordance with timelines used in other in vivo 

studies tracking GaHV-2 infection. Secondly, contact animals should be included in the experiment 

to refer to the question of horizontal transmission efficiency. The future results obtained should 

be compared with the results for the control groups consisting of the animals infected with the 

GaHV-2 very virulent field strain RB-1B, as well as infected with CVI988/Rispens and their 

respective contact animals. This novel in vivo study could potentially answer the question is the virus 

baring mutation in functional c-Myc response elements promising and usable future vaccine. 
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5.2.1. Oral communications 
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“Epigenetic regulation of the viral RNA telomerase subunit promoter over-

expressed in lymphoma induced by Marek’s Disease Virus”  
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Disease and Avian Herpesviruses, Yangzhou, China 

“Epigenetic regulation of the viral telomerase RNA subunit promoter over-

expressed during Marek’s Disease Virus induced oncogenesis”  

 

• 14th June to 17th June 2020: The 13th International Symposium on Marek's 

Disease and Avian Herpesviruses, Guelph, Canada (talk accepted, postponed 

due to Covid-19 outbreak): 

“Functional evaluation of c-Myc response elements in the promoter of the viral 

telomerase RNA subunit during Marek’s Disease virus infection” 

 

• 8th September 2020: Non-coding RNA in health and disease, Namur, Belgium 

(talk accepted, postponed due to Covid-19 outbreak): 

“Functional evaluation of c-Myc response elements in the promoter of the viral 

telomerase RNA subunit during Marek’s Disease virus infection” 
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of Marek’s Disease Virus induced oncogenesis” 
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Avian Herpesviruses, Tours, France 

“Epigenetic regulation of the viral RNA telomerase subunit over-expressed in 
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• 24th and 25th March 2017: NARILIS Cancer Research Pole, Namur, Belgium 

“DNA methylation and hydroxymethylation on the viral telomerase RNA 

subunit promoter in a model of herpesvirus induced oncogenesis 

 

• 11th May 2017: Interuniversity PhD Student Day, Liege, Belgium 

“DNA methylation and hydroxymethylation on the viral telomerase RNA 

subunit promoter in a model of herpesvirus induced oncogenesis” 

 

• 24th November 2017: 1st NARILIS Infectiology research Pole Annual Meeting, 

Namur, Belgium, 

“Epigenetic regulation of the viral telomerase RNA subunit promoter over-

expressed during Marek’s Disease Virus induced oncogenesis” 
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Namur, Belgium, 
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6.1. ANNEX A: Viral oncogenesis: Lessons from homologous 
animal models (Review) 
 

 

Srđan Pejaković, Benoît Muylkens 

 

Namur Research Institute for Life Sciences, Integrated Veterinary Research Unit, Department of 

Veterinary Medicine, Faculty of Sciences, University of Namur, Namur, 5000, Belgium 

 

 

6.1.1. Abstract 
 

The interactions between viruses and the hosts entail complex machinery and numerous 

events that, in the end, drive viral infection, which sometimes leads to oncogenesis. The vast 

number of information concerning viral pathogenesis and oncogenesis, as well as the host 

responses, have been obtained using animal models. These models are helpful for understanding 

virus-host interactions and better deciphering different steps of cancer development. Well-defined 

small animal models with the reliable kinetics of disease induction and progression, together with 

the fact that oncogenesis can be studied in a natural virus-host system, allows unique studies that 

are impossible to perform in other non-natural models of viral disease and oncogenesis. In 

particular, they are essential for understanding viral replicative/pathogenic/oncogenic properties 

in humans. To this date, animal research models are necessary to describe in vivo situation and are 

essential for developing a detailed knowledge of virus-caused infectious diseases. This review aims 

to present the studies on well-established homologous animal models used for translational 

oncogenic research for three viral families: Retroviridae, Herpesviridae and Papillomaviridae, and 

the examples of lessons obtained that helped in deciphering the mechanisms of major steps of 

oncogenesis.  

 

Keywords: Animal models; Viral oncogenesis; Herpesviridae; Papillomaviridae; Retroviridae



CHAPTER 6. ANNEXES 

 

187 

6.1.2. Introduction 
 

Since the early work of Greek philosopher Aristotle and others like him, animal models 

have been used as a comparative research tool to study human anatomy and physiology. Animal 

models slowly reached the level where they are used in almost all the fields of biomedical research 

including biology, immunology, infectious diseases and oncology (Ericsson et al., 2013). In today 

society, cancers cause over ten million new cases resulting in over six million human deaths per 

year (Parkin et al., 2005). Most cancers will inevitably lead to the death of the affected organism if 

the tumour acquires several biological capabilities during the multistep development process 

(Hanahan and Weinberg, 2017). These general capabilities of cancers in humans and other 

vertebrates are similar. Therefore, animal models of oncogenesis can be used as relevant tools in 

studying the molecular biology of cancer.  

Research done in the past three decades showed that several viruses play a significant role 

in the development of animal and human cancers, with 10% of cancers associated with viral 

infections (Schiller and Lowy, 2014). Contribution of the oncogenic viruses to different steps of 

the carcinogenesis and the association of a virus with a given cancer can vary from 15-100% 

(Parkin, 2006). These viruses are widespread among animals and can cause economic losses in 

animal husbandry and serve as valuable models to study viruses affecting humans (Truyen and 

Lochelt, 2006). Seven different viruses have been linked to oncogenesis for 12% of human cancers: 

Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), and human 

papillomavirus (HPV), human T-cell lymphotropic virus (HTLV), Kaposi’s sarcoma herpesvirus 

(HHV-8), and Merkel cell polyomavirus (MCPyV) (White et al., 2014).  

Aim of this review is to present examples of important studies on three oncogenic viral 

families: Retroviridae (Table A.1), Herpesviridae and Papillomaviridae (Table A.2), as well as major 

lessons obtained from corresponding homologous animal models that helped to decipher 

biological processes involved in the hallmark steps of carcinogenesis. Two main modes of action, 

genome instability resulting in mutations of regulatory genes, and the infiltration of immune-

inflammatory cells, play an essential part in the induction of tumorigenesis steps. Each step 

possesses a specific role in supporting the development, progression, and persistence of tumours 

in the organism (Hanahan and Weinberg, 2017).  

By using animal models of virus-induced oncogenesis, a comprehensive view was obtained 

on these steps of cancer development. These models also opened avenues to test new therapies 

targeting one or several properties of the tumour cells.   
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TABLE A.1. EXAMPLES OF ANIMAL AND HUMAN ONCOGENIC RNA VIRUSES AND ASSOCIATED TUMOURS. 

 Animal oncogenic RNA viruses Human oncogenic RNA viruses 

Virus Tumour Virus Tumour 

Retroviridae RSV 

AEV 

ALV 

BLV 

FLV 

FSV 

GALV 

JSRV 

KoRV 

MuLV 

MSV 

MMTV 

sarcoma 

sarcoma, carcinoma 

B-cell lymphoma 

lymphoma 

lymphoma 

fibrosarcoma 

myeloid leukaemia 

adenocarcinoma 

leukaemia, osteochondroma 

leukaemia 

osteosarcoma 

mammary tumours 

HTLV adult T-cell leukaemia 

AEV, Avian erythroblastosis virus; ALV, Avian leukosis virus; BLV, Bovine leukaemia virus; FLV, Feline leukaemia 

virus; FSV, Feline sarcoma virus; GALV, Gibbon Ape Leukemia Virus; HTLV, Human T-cell leukaemia virus; JSRV, 

Jaagsiekte sheep retrovirus; KoRV, Koala retrovirus; MMTV, Mouse mammary tumour virus; MSV, Murine sarcoma 

virus; MuLV, Murine leukaemia virus; RSV, Rous sarcoma virus.  

 

Many animal tumours have been associated with Retroviruses and studies on these RNA viruses 

have been important for the discovery of oncogenes, tumour suppressors and different regulations 

of cellular signal transduction pathways. On the other hand, discoveries obtained from studies on 

the DNA viruses ranged from mechanisms controlling cell growth and the discovery of cellular 

tumour suppressor genes to molecular mechanisms of virus-induced cell transformation (Damania, 

2007).  

The in vitro studies of oncogenic viruses and their interactions with the natural hosts are 

invaluable for understanding the key pathways that are involved in the main steps of carcinogenesis. 

However, to study in detail virus-host interactions and to better decipher the steps of cancer 

development, it is necessary to observe these viruses and their actions in the whole organism using 

animal models.  
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TABLE A.2. EXAMPLES OF ANIMAL AND HUMAN ONCOGENIC DNA VIRUSES AND ASSOCIATED 

TUMOURS. 

a types 1, 2, 4 

b types 6, 8, 11, 16, 18, 31, 45 

BPV, Bovine papillomavirus; CRPV, Cottontail rabbit papillomavirus; EBV, Epstein-Barr virus; GaHV-2, Gallid 

herpes virus type 2; HPV, Human papillomavirus; HVS, Herpesvirus saimiri; KSHV, Kaposi’s sarcoma-associated 

herpesvirus; MmuPV1, Mouse papillomavirus. 

 

 

6.1.3. Retroviridae 
 

Retroviruses are characterized by their ability to integrate their genome into host-cell DNA. 

After infection of the cell, the viral RNA genome is reversely transcribed by the viral reverse 

transcriptase into a double-stranded DNA. Newly synthesised DNA integrates into the host’s 

chromosome and is expressed under the control of viral transcriptional regulatory sequences. The 

main consequence of viral DNA integration is the retrovirus ability to activate or inactivate cellular 

genes using proviral insertion (Temin & Baltimore, 1972, Coffin, 1979). Animal retroviruses, which 

belong to the Alpharetrovirus and Gammaretrovirus genera, induce tumours using these two ways. 

The studies on Retroviruses led to the finding of RSV transforming gene, v-src, and its 

hybridization to cellular sequences, the discovery of proto-oncogenes and the mechanisms of 

insertional mutagenesis (Stehelin et al., 1976, Kurth, 1983, Bradshaw, 1987), what will be discussed 

below.  

 

 Animal oncogenic DNA viruses Human oncogenic DNA viruses 

Virus Tumour Virus Tumour 

Herpesviridae GaHV-2 

HVS 

 

lymphoma, carcinoma EBV 

 

 

 

KSHV 

Burkitt’s lymphoma, 

Hodgkin’s lymphoma, 

B-cell lymphoma, 

nasopharyngeal 

carcinoma 

Kaposi’s sarcoma, 

lymphoma 

Papillomaviridae BPV a 

CRPV 

MmuPV1 

papilloma, carcinoma  

sarcoma, lymphoma 

carcinoma 

HPVb  
oral, cervical and anal 

cancer 
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6.1.3.1. Sarcoma viruses and functions of oncogenes and proto-oncogenes 
 

The idea that viruses could have a role in the development of tumours in animals originated 

when Peyton Rous described a filterable Rous sarcoma virus (RSV) in cell extracts of a chicken 

tumour that could transmit the tumour to the healthy chickens (Rous, 1911). Modern tumour 

virology was born with the development of in vitro transformation assay for RSV (Temin et al., 

1958), which enabled genetic analysis of the retroviral life cycle and virus-cell interactions that lead 

transformation resulting in malignant cells (Varmus, 1984; Weinberg et al., 1989). This established 

RSV as a highly favourable model system for studying oncogenic viruses. Most importantly, studies 

on RSV enabled the identification of v-src as the only RSV gene that was required for triggering 

cell transformation (Martin et al., 1971; Lai et al., 1973). Shortly after followed the discovery that 

the v-Src was a phosphoprotein (Brugge and Erikson, 1977; Purchio et al., 1978) with protein 

kinase activity (Collett and Erikson, 1978; Levinson et al., 1978), which phosphorylates tyrosine 

residues (Hunter and Sefton, 1980; Collett et al., 1980). v-Src oncogene together with its animal 

model, played a ground-breaking role in deciphering subtle cellular mechanisms involved in 

oncogenesis and provided the first evidence of the association between proto-oncogene and 

oncogene. This research was essential in the discovery of v-src cellular homologue, the c-src 

(Stehelin et al., 1976), baring the difference at its carboxyl (C)-termini (Takeya and Hanafusa, 1983). 

This boosted the research and discovery of different cellular oncogenes, which contribute to the 

development of neoplasms and are the major driving force of oncogenesis (Table A.3). 

Furthermore, the discovery that v-Src is a constitutively activated form of c-Src led to obtaining 

the most important lessons of the molecular mechanisms behind Src activation.  

The lessons obtained from v-Src/c-Src research provided an important connection 

between oncogene and proto-oncogene. More importantly, it highlighted a crucial concept in 

cancer biology, that the loss of a negative regulatory domain transforms the proto-oncogene into 

an oncogene. It has been revealed that many different processes that can alter c-Src activity, and in 

many cases, these or similar mechanisms of regulation are found in different members of the Src 

family of tyrosine kinases. These mechanisms of regulation, among many, include alterations in the 

phosphorylation status of Src, mediated by kinases and phosphatases (Figure A.1) and/or Src 

interaction with Src-binding proteins (Bjorge et al., 2000). In addition, mutations in cellular 

oncogenes found in human tumours originated from mutagenic errors are often similar or identical 

to those discovered in trans-acting oncogenic retroviruses (Parada et al., 1982).  
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TABLE A.3. DIFFERENT ANIMAL RETROVIRUSES WITH ASSOCIATED ONCOGENES. 

 

All the lessons obtained on Src activation and its role in cancer development will help to 

understand the processes involved in the human oncogenesis and will mark Src as an important 

target for the future development of new therapies (Irby and Yeatman, 2000).  

 

 

 

 

Virus Species Oncogene Tumour Reference 

Rous sarcoma chicken src sarcoma Stehelin et al., 1976 

Avian myeloblastosis chicken myb myeloblastic leukaemia Roussel et al., 1979 

Avian myelocytomatosis chicken myc carcinoma, sarcoma 
Sheiness and Bishop, 

1979 

Fujinami sarcoma chicken fps sarcoma Hanafusa et al., 1980 

Reticuloendotheliosis turkey rel lymphatic leukaemia Chen et al., 1981 

Simian sarcoma monkey sis sarcoma Dalla-Favera et al., 1981 

Feline sarcoma (ST) cat fes fibrosarcoma Franchini et al., 1981 

Moloney murine sarcoma 

mouse mos sarcoma Blair et al., 1981 

rat 
Tpl-1 

Tpl-2 
T cell lymphoma 

Bear et al., 1989 

Makris et al., 1993 

FBJ murine osteosarcoma mouse fos chondrosarcoma Curran et al., 1982 

Kirsten murine sarcoma rat K-ras sarcoma Der et al., 1982 

Feline sarcoma (McD) cat fms fibrosarcoma Donner et al., 1982 

Harvey murine sarcoma rat H-ras sarcoma Parada et al., 1982 

Abelson murine leukaemia mouse abl B cell lymphoma Srinivasan et al., 1982 

Mouse mammary tumour mouse 
int-1 

int-2 
carcinoma 

Nusse et al., 1984 

Peters et al., 1984 

Murine leukaemia mouse 
pim-1 lymphoma Theo Cuypers et al., 1984 

bmi-1 lymphoma van Lohuizen et al., 1991 

Avian sarcoma chicken jun fibrosarcoma Maki et al., 1987 
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FIGURE A.1. ONE OF THE PROPOSED MECHANISMS OF CELLULAR SRC ACTIVATION INVOLVED IN 

PROMOTING ONCOGENESIS.   

a) Src is a member of the family of structurally related protein tyrosine kinases. Src-family members at the N-terminus 

bear a domain that undergoes fatty acid modification (Myristoylation - Myr), a unique region, an SH3 domain, an SH2 

domain, the SH2-kinase linker, a kinase domain, and a C-terminus regulatory domain. Cellular (c-Src) and viral Src (v-

Src) possess a positive regulatory autophosphorylation site (Tyr 416). In addition, c-Src has a negative regulatory 

phosphorylation site at its C-terminus (Tyr 527). b) Src inactive conformation (on the right), with the SH2 domain 

coupled with Tyr 527, the SH3 domain coupled with the SH2-kinase linker and dephosphorylated Tyr 416. 

Phosphorylation of Tyr 527 (P-Tyr 527) by Csk leads to interaction between the SH2 domain and Tyr 527, resulting 

in c-Src inactivation (on the right). Dephosphorylation of Tyr 527 by protein tyrosine phosphatase disrupts the 

interaction between the SH2 domain and Tyr 527, Tyr 419 is auto-phosphorylated, resulting in c-Src activation (on the 

left). 
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6.1.3.2. Activation mechanisms of transactivator protein Tax deciphered using 
bovine leukaemia virus and human T-cell lymphotropic virus  
 

The causative agent of enzootic bovine leukosis is bovine leukaemia virus (BLV) that 

belongs to the Retroviridae family and Deltaretrovirus genus (Miller et al., 1969). In addition to 

BLV, delta-type retroviruses also include human T-cell lymphotropic virus type 1 and 2 (HTLV-1 

and HTLV-2) and simian T-cell lymphotropic virus type1 and 2 (STLV-1 and STLV-2) (El Hajj et 

al., 2012). Although retroviruses have been associated with many animal tumours, only HTLV-1 

has been associated with human cancers (Table A.1) (McLaughlin-Drubin and Munger, 2008). The 

comparative virology approach is useful to characterize related pathogens and to speculate on 

possible shared mechanisms. Therefore, studies on BLV, which is evolutionary related to HTLV-

1, may facilitate a better understanding of the mechanism of leukemogenesis induced by HTLV-1. 

In addition to the classical retroviral genes that are required to complete the viral cycle, BLV also 

encodes a series of additional accessory genes as well as microRNAs that modulate viral and cellular 

gene expression (Derse, 1987; Derse, 1988; Kincaid et al., 2012). These genes include Tax and G4 

oncogenes that can promote the transformation of cells (Willems et al., 1992; Kerkhofs et al., 1998). 

Although the mechanisms of cell transformation remain to be further characterized, BLV and 

HTLV-1 Tax share cellular targets (Twizere et al., 2003). Furthermore, the negative strand chain 

of HTLV-1 genome codes for unique HBZ gene (Gaudray et al., 2002). Since the BLV genome 

does not code for HBZ, it has been assumed that the Tax protein plays a crucial role in the BLV 

and HTLV-1 oncogenesis and thus has been extensively studied (Table A.4, adapted from Aida et 

al., 2013). One of the best-characterized functions of Tax is the activation of viral transcription. 

The Tax protein acts on Tax-responsive element (TxRE) in the U3 region of the 5’LTR and 

stimulates transactivation of the viral genome (Figure A.2) (Derse, 1987; Willems et al., 1987; Katoh 

et al., 1989). It also stimulates transcription of many cellular genes by stimulating activity of nuclear 

factor κB (NF-κB), serum responsive factor (SRF) and cyclic AMP responsive element-binding 

protein (CREB) binding motifs (Kashanchi and Brady, 2005), which results in neoplastic 

transformation of the cells (Smith and Greene 1990; Yamaoka et al., 1996; Akagi et al., 1997). Tax 

activates and modulates the expression of several cellular genes (Ruben et al., 1988; Wano et al., 

1988; Doi et al., 1989; Dittmer et al., 1997) that are involved in the regulation of cell growth (Figure 

A.2) (Tajima and Aida, 2002; Marriott and Semmes, 2005). Additionally, Tax binds and inactivates 

mitotic arrest-defective 1 (MAD1) protein (Jin et al., 1998), disturbing the mitotic spindle 

checkpoint, and suppressing DNA repair (Figure A.2). (Kashanchi and Brady, 2005). Altogether, 

these alternations boost the progression of the cell cycle.  
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TABLE A.4. LESSONS OBTAINED FROM STUDIES ON BLV AND HTLV-1 TAX PROTEIN. 

 

 

 

 

Thus, the involvement of Tax in transcriptional regulation, cell cycle progression, 

chromosome instability and DNA damage repair in infected cells mark Tax as a primary initiator 

of tumorigenesis. In addition, Tax, similarly to the Myc oncogene, cooperates with the Ha-ras 

oncogene to induce full transformation of cells that form tumours, emphasizing the immortalizing 

potential of Tax (Gillet et al., 2007). Furthermore, Tax protein uses numerous strategies to escape 

apoptotic pathways of the host cell. Three main strategies of apoptotic evasion have been 

described: NF-kB over-expression, caspase blocking, and disruption of apoptosis regulators, such 

as p53 (Karimi et al., 2017). 

 

 

 

 

 

TAX PROTEIN FUNCTION 

BLV HTLV-1 

Transcriptional activator of viral expression 

Derse, 1987; Willems et al., 1987; Katoh et al., 1989 

Transcriptional activator of viral expression 

Kashanchi and Brady, 2005 

Oncogenic potential 

Willems et al., 1990 

Oncogenic potential   

Matsuoka and Jeang, 2011 

Activator of NF-κB pathway 

Szynal et al., 2003; Klener et al., 2006 

Functional regulator of cellular proteins via direct binding 

Boxus et al., 2008 

Involvement in host cell transcription, signaling, stress 

response and immune response 

Arainga et al., 2012 

Involvement in of DNA damage induction, cellular 

senescence and apoptosis 

Chlichlia and Khazaie, 2010 
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FIGURE A.2. THE MULTIFUNCTIONAL CO-REGULATION OF VIRAL AND CELLULAR PATHWAYS BY TAX 

TRANSACTIVATOR PROTEIN.  

Tax does not directly bind to the DNA, however, it increases transcription of viral genes from the 5’ long terminal 

repeat (5’LTR) and stimulates transcription of cellular genes by stimulating activity of nuclear factor κB (NF-κB), serum 

responsive factor (SRF) and cyclic AMP responsive element-binding protein (CREB) in cellular genes, promoting cell 

transformation. In addition, Tax activates several cellular genes, including IL-2 involved in T-cell growth. Further 

effects on the cell cycle are transcriptional activation of cdk2 and cdk4 and transcription repression of cyclin-dependent 

kinase (Cdk) inhibitors. The tax also directly binds to cyclin D3 stabilising cyclin D/Cdk4 complexes. Additionally, 

Tax binds and inactivates mitotic arrest-defective 1 (MAD1) protein, disturbing the mitotic spindle checkpoint and 

suppressing nucleotide excision repair (adapted from Maeda et al., 2008). 

 

 

6.1.3.3. The mechanisms of retroviral insertional mutagenesis discovered using 
three retroviral homologous animal models 
 

Retroviral replication necessitates the integration of a viral genome into the host DNA, 

resulting in a potential mutagenic process. This insertion may result in proto-oncogene activation, 

and the first evidence of this process has been demonstrated using the avian leukosis virus (ALV) 

(Hayward et al., 1981). Furthermore, cancer-causing insertional mutations change the 

transcriptional activity rather than the coding sequences of the genes (Robinson, 1983). The 

observation of how common the event of the activation is in virus-induced lymphoid leukosis led 

to the discovery of numerous common insertion sites (CIS) and the important host genes closely 
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involved in oncogenesis. (Neil and Cameron, 2002). Three homologous animal models, avian 

leukosis virus (ALV), mouse mammary tumour virus (MMTV) and murine leukaemia virus 

(MuLV), have been widely used for studies of insertional mutagenesis.  

Main lessons obtained using these retroviral animal models revealed that provirus-mediated 

activation and expression of proto-oncogenes, leading to tumorigenesis, have been divided into 

two main mechanisms: activation of proto-oncogenes and inactivation of tumour suppressor genes 

(Figure A.3) (Mikkers and Berns, 2003). The most commonly observed outcome of insertional 

mutagenesis of CIS target genes is transcriptional activation due to the insertion of viral promoters 

of enhancer elements (Figure A.3.a). It occurs when the retrovirus integrates near a promoter of 

the target gene, which results in enhancing the activity of viral long terminal repeats (LTRs) 

sequences or by stabilisation of the messenger RNA when the virus integrates within the 3′ 

untranslated region. Secondly, if the provirus integrates into the 5′ region of a target gene promoter 

it activates gene expression through promoter sequences in LTR (Figure A.3.b). Finally, in some 

cases, viral integration within the cellular genomic region can disrupt the translation unit, resulting 

in inactivation of a gene due to interruption of the gene structure (Figure A.3.c) (Jonkers and Berns, 

1996).  

Retroviral CSIs and the pathways they target are frequently deregulated in human cancers, 

making them important actors in understanding oncogenic signalling pathways and potential 

targets for tumour intervention (Mikkers and Berns, 2003; Hilkens, 2006; Kim et al., 2011; Callahan 

et al., 2012; Klijn et al., 2013).  This emphasizes the relevance of understanding and mapping 

distinct oncogenic pathways for a variety of different tumour types. Moreover, another 

contribution of these models in deciphering cancer development refers to the fate of the cells that 

underwent viral insertional mutagenesis. Following the activation of a single proto-oncogene or 

the inactivation of a single tumour suppressor gene, the cell infected with retrovirus is far from 

acquiring cancerous phenotype. Using these animal models of retroviral induced cancer, it has been 

indicated that following the initial step of viral insertion, additional events are required to initiate 

cancer development (Green et al., 1987). This explains why some of the retroviral infections never 

lead to tumorigenesis (Weinberg, 1989). Finally, this cumulative process of additional mutations 

required for the rise of cancer dictates the time needed between the initial retroviral infection and 

the initiation of tumour development (Duesberg, 1987). 
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FIGURE A.3. MECHANISMS OF RETROVIRAL INSERTIONAL MUTAGENESIS.  

Examples of viral integration sites and commonly targeted genes involved in oncogenesis are shown for three 

oncogenic retroviruses studied in corresponding homologous animal models (Avian leukosis virus - AVL; Mouse 

mammary tumour virus - MMTV and Murine leukaemia virus - MuLV). a) The provirus can integrate near the 

promoter of the cellular target gene, enhancing the gene expression controlled by the cellular promoter. b) Insertion 

of the retrovirus within the 5’ region of the target gene promoter activates the gene expression under the control of 

viral promoter sequences in the long terminal repeats (LTR). c) The proviral integration within the cellular intragenic 

region may result in the truncated transcript via the internal polyA signal (-AAA) or disrupted gene structure. 
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6.1.4. Papillomaviridae 
 

 

6.1.4.1. Animal papillomaviruses as models for HPV infection and carcinogenesis 
 

Papillomavirus (PV) infection manifests itself in the form of hyperplasia or warts on the 

skin. Furthermore, some of these viruses, like the cottontail rabbit papillomavirus (CRPV), the 

bovine papillomavirus type 4 (BPV4) and the high-risk human papillomaviruses (HR-HPV) are 

strongly implicated in the occurrence of malignant lesions (zur Hausen and Schneider, 1987). 

Papillomaviruses show species- and tissue-specific tropisms, which, therefore, makes their study 

difficult in a relevant laboratory model (Spurgeon et al., 2019). Many animal models have been used 

over the last decades to study PV infection, such as the CRPV, the canine oral papillomavirus 

(COPV) and BPV. The CRPV and BPV have been used as homologous animal model systems to 

study the viral interaction with the natural host and with environmental co-factors (Campo, 1997). 

Fascinatingly, in the cattle which have been feeding on bracken fern (Pteridium aquilinum), known 

for its carcinogenic activity (Evans and Mason, 1965), a correlation between persistent 

papillomatosis and cancer was observed (Jarrett et al., 1978).  

Early on, the CRPV was the first papillomavirus to be experimentally studied (Shope and 

Hurst, 1933) and was the first to be associated with malignant progression (Rous and Beard, 1935). 

Since then, CRPV animal model has been used extensively to study restricted tissue and species 

association of PVs (Parsons and Kidd, 1942; Harvey et al., 1998). This model has been essential 

for studies of viral function and structure, deciphering the importance of viral genes involved in 

the viral life cycle (Figure A.4) (Brandsma et al., 1992; Belnap et al., 1996; Jeckel et al., 2003; 

Nonnenmacher et al., 2006). Besides, latent infection and development of the vaccines were 

thoroughly studied using CRPV animal model (Christensen et al., 2017).  In recent years, the CRPV 

animal model has become a significant preclinical model for testing antiviral and 

immunotherapeutic strategies for papillomavirus infections (Figure A.4) (Christensen, 2005).   

The significant advantages and lessons obtained using animal models of PV-infection have 

been a deep understanding of the viral life cycle and tight regulation of viral proteins during the 

progression of the infection (Figure A.4) (Campo, 1998; Doorbar, 2005). The importance of PV 

genes, and proteins they encode, was noticed from early studies done on bovine papillomavirus 

type 1 (BPV1). BPV, unlike HPV, replicates in and transforms fibroblasts and epithelial cells 

(Campo, 1997; Munday, 2014).  
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FIGURE A.4. A SCHEMATIC REPRESENTATION OF THE PAPILLOMAVIRUS LIFE CYCLE HIGHLIGHTING 

THE INVOLVEMENT OF VIRAL PROTEINS WITH THEIR TARGETS DURING VIRAL INFECTION AND 

LESSONS OBTAINED FROM THREE ANIMAL MODELS.  

The action of the papillomavirus (PV) proteins in viral replication is a highly regulated process and spatially associated 

with the epithelial differentiation. After viral particles (black hexagons) infect dermis through the laceration, the viral 

genome is maintained in low copy numbers. In this stage, the viral E1 and E2 proteins are expressed in order to 

maintain the viral DNA as an episome. During epithelial differentiation, expression of the E6 and E7 oncogenes 

stimulate cell cycle progression and are associated with regulators of the cell cycle. The E7 up-regulation increases the 

expression of proteins involved in viral DNA replication (E1, E2, E4 and E5). Finally, the major capsid protein L1 is 

expressed after L2 allowing the assembly of infectious viral particles in the upper layers of the epithelium (Doorbar, 

2005). Examples of identified targets of PV proteins (solid line rectangles) and research subjects (dash line rectangles) 

are indicated for three animal models. CRPV - Cottontail papillomavirus, BPV - Bovine papillomavirus, HPV - Human 

papillomavirus, MmuPV - Mouse papillomavirus. 

 

 

The BPV animal model has been useful in assigning key functions to many of the 

papillomavirus early proteins (Doorbar, 2016). Lessons obtained from the E1 protein showed its 

functions in viral DNA replication (Lambert, 1991) and the viral E2 protein is an important viral 

transcription factor and is an accessory protein for replication (Figure A.4) (Araldi et al., 2017). 

Furthermore, BPV viral oncoproteins E6 and E7 have been shown to be involved in the regulation 

of cell-cycle entry and cell proliferation, similar to high-risk HPV types (Campo, 1997).  In addition, 

BPV E6 protein binds paxillin, resulting in its transforming function (Tong and Howley, 1997; Pol 

et al., 1998), and the transcriptional co-activator CBP/p300, leading to the down-regulation of 

CBP/p300-mediated transactivation (Figure A.4) (Zimmermann et al., 2000).  



ANNEX A 

200 

TABLE A.5. EXAMPLES OF CURRENT RESEARCH AREAS AND TRANSLATIONAL LESSONS THAT MAY BE 

ACQUIRED FROM HOMOLOGOUS ANIMAL MODELS. 

Oncogenic 

virus 

Homologous 

animal model 

Research area Translational lessons Reference 

KoRV koala piRNA host anti-viral response Haase et al., 2019 

BLV bovine decreasing the 

seroprevalence of BLV 

management of HTLV 

infection 

Rodríguez et al., 

2011 

BLV vaccine development translational knowledge  for 

HTLV-1 vaccine 

Abdala et al., 2019 

JRSV sheep host pneumocytes 

transformation 

role of alveolar cells in human 

lung cancer 

Murgia et al., 2011 

multiple techniques 

integration 

pre-clinical diagnosis and 

tumour pathogenesis 

Humann-Ziehank 

et al., 2013 

Gray et al., 2019 

chemotherapeutic agents application in human 

adenocarcinoma 

Varela et al., 2008 

miniaturized implantable 

sensors 

targeted therapies against 

radiation and chemo-resistant 

regions 

Marland et al., 2018 

MmuPV1 mouse 

 

 

tissue and species-

tropisms 

host-restricting factors for viral 

infections 

Hu et al., 2017 

innate immune response HPV vaccine development 

hormonal studies 

 

long-term contraceptive during 

HPV infections 

Hu et al., 2017 

viral transmission infertility and associated 

childhood diseases 

Mammas et al., 

2014 

cutaneous and mucosal 

infections and cancer 

development 

therapeutic vaccines Assi et al., 2014 

Petrelli et al., 2014 

BLV, Bovine leukaemia virus; HPV, Human papillomavirus; HTLV, Human T-cell lymphotropic virus; JSRV, 

Jaagsiekte sheep retrovirus; KoRV, Koala retrovirus; MmuPV1, Mouse papillomavirus. 

 

 

 

E7 oncoprotein can bind to two conserved motifs of pRb tumour suppressor protein which 

negatively regulates the cell cycle (Sherr, 1994) resulting in loss of pRb functions (Figure A.4) 

(White et al., 1994). Also, the BPV E5 was characterised as a transmembrane oncoprotein involved 

in binding to the v-ATPase affecting the Golgi complex (Figure A.4) (Campo, 1997) and in 

inhibition of foreign peptide display on MHC-1 (Marchetti et al., 2009).  
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Even though CRPV and BPV models of HPV infection are extensively used (Campo, 

2002), due to species and tissue tropisms understanding and research of several aspects of HPVs 

infection and carcinogenesis using these models have been limited (Doorbar et al., 2016; Cladel et 

al., 2017). However, in 2011 a mouse papillomavirus (MmuPV1) has been isolated and sequenced 

among a colony of nude mice. It provided the opportunity to extend our understanding of 

papillomavirus infection and disease progression in the small-animal model (Ingle et al., 2011; Hu 

et al., 2017). MmuPV1 has both cutaneous and mucosal tropism (Cladel et al., 2017) and in addition, 

primary infections at cutaneous sites could lead to secondary infections at mucosal sites (Cladel et 

al., 2013). Early studies of the MmuPV1 malicious potential highlight the implication of major viral 

oncogenes E6 and E7 (Joh et al., 2011). MmuPV1 E6 shares some biochemical and functional 

characteristics with HPV8 E6 inhibiting NOTCH and TGF-β signalling delaying infected cell 

differentiation and apoptosis of differentiated keratinocytes (Figure A.4) (Meyers et al., 2017).  

MmuPV1 E7 seems to share oncogenic properties with the HR-HPV E7 and binds the 

same non-transmembrane protein tyrosine phosphate (PTPN14) (Figure A.4) (White et al., 2016). 

Thus, MmuPV1 offers an opportunity to study papillomaviruses in an efficient laboratory model. 

The animal model of MmuPV1 will most certainly advance by a significant step existing knowledge 

of HPV infection and carcinogenesis (Hu et al., 2017). The field of application of MmuPV1 as a 

model for HPV infection is summarized in Table A.5.  

 

 

6.1.5. Herpesviridae 
 

6.1.5.1. Non-coding RNAs and the lessons on the regulation of viral pathogenesis 
obtained using herpesvirus homologous animal model 
 

Herpesviruses establish life-long, persistent infections in their hosts that is hallmarked by 

two unique phases of the viral life cycle, productive replication and latency. The switch between 

these two phases is a tightly regulated process, facilitated in part by viral non-coding RNAs 

(ncRNAs). ncRNAs include ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), and regulatory 

RNAs such as microRNAs (miRNAs), piwiRNAs (piRNAs), small nucleolar RNAs (snoRNAs) 

and long ncRNAs (lncRNA) (Hancock and Skalsky, 2017). Of the known virally encoded miRNAs, 

97% have been discovered in herpesviruses, suggesting that miRNA-mediated gene regulation 

plays an important step in herpesvirus infection (Hicks and Liu, 2013). The majority of viral 
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miRNAs encoded by herpesviruses, such as Epstein-Barr virus (EBV) and the avian Gallid 

herpesvirus 2 (GaHV-2) highlight important roles of miRNAs in viral pathogenesis in different 

hosts (Skalsky and Cullen, 2010). Similar to EBV, GaHV-2 is one of the few oncogenic 

herpesviruses that induces tumours in its natural host (Luo et al., 2010). GaHV-2 serves as a 

versatile small-animal model for studying different aspects of herpesvirus pathogenesis and induced 

oncogenesis in a natural virus-host system with remarkable reliability (Osterrieder et al., 2006). 

During GaHV-2 infection, numerous viral factors, proteins and transcripts contribute to 

lymphomagenesis and include the major oncoprotein Meq (Jones et al., 1992), the viral interleukin-

8 (Parcells et al., 2001; Engel et al., 2012) and GaHV-2-encoded miRNAs (Muylkens et al., 2010; 

Yao et al., 2009; Zhao et al., 2011; Coupeau et al., 2012). Twenty-six mature viral miRNAs have 

been identified in GaHV-2 genome (Yao and Nair, 2014). GaHV-2 miRNAs function as, either, 

regulators of cell cycle or viral replication. Some herpesviruses, including KSHV and GaHV-2, 

express orthologues of oncogenic cellular miR-155 associated with several human cancers. They 

target the same host’s mRNAs as cellular miR-155, promoting virus-induced cell transformation 

(Guo and Steitz, 2014). Numerous transcription factors are potentially shared targets for miR-155 

and GaHV-2-miR-M4-5p (Figure A.5) (Muylkens et al., 2010; Parnas et al., 2014; Yao and Nair, 

2014; Figueroa et al., 2016). It was shown that inhibition of these common cellular targets results 

in enhancement of tumorigenesis (Parnas et al., 2014) and suppress apoptosis in cell culture (Figure 

A.5) (Xu et al., 2011). In addition, GaHV-2-miRs allow the virus to escape the host immune 

response (Figure A.5) (Parnas et al., 2014). Recently it has been shown that GaHV-2-miRs can act 

as a putative tumour suppressor targeting and downregulating expression of Meq (Figure A.5) 

(Teng et al., 2017), target and restrict RLORF8 expression and may have a role in the regulation of 

lymphocyte growth (Figure A.5) (Parnas et al., 2014). Furthermore, this avian herpesvirus encodes 

a viral telomerase RNA subunit (vTR) of the telomerase complex. vTR, a non-coding RNA, is 

crucial for efficient lymphoma formation (Fragnet et al., 2003; Trapp et al., 2006; Kaufer et al., 

2010). vTR interacts with the chicken telomerase reverse transcriptase subunit (TERT) and 

enhances telomerase activity (Fragnet et al., 2003) and also, re-localize ribosomal protein L22 

(Kaufer et al., 2011) that plays an important role in T-cell development and transformation (Figure 

A.5) (Anderson et al., 2007). It has been shown that the c-Myc oncoprotein is involved in the 

regulation of vTR during GaHV-2-induced lymphomagenesis (Shkreli et al., 2007) and that 

increased expression of vTR is essential for the oncogenic function of GaHV-2 (Chbab et al., 

2010). 
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FIGURE A.5. THE REGULATION OF VIRAL AND CELLULAR GENES DURING GAHV-2 INFECTION UTILISES 

NON-CODING RNAS (NCRNAS).  

Representation of viral (orange trapezoid) and cellular (blue trapezoid) ncRNAs with their specific targets (white 

trapezoid) and the effect they have that contribute to the establishment of lymphomagenesis (green rectangle). 

 

 

In addition to GaHV-2-expressed miRNA, expressional regulation of cellular (gga) 

miRNAs (Yao et al., 2009; Tian et al., 2012; Stik et al., 2013) and lncRNA (Han et al., 2017; He et 

al., 2019; You et al., 2019) may contribute to the establishment of tumorigenesis (Figure A.5) 

(Gennart et al., 2015). Two cellular miRs are highly expressed during GaHV-2 latency and 

tumorigenesis, promoting cell proliferation (Lambeth et al., 2009), tumour cell growth and 

apoptosis escape (Figure A.5) (Stik et al., 2013). In recent years, the important role of lncRNAs has 

been established in numerous biological processes, cellular development and different disease state, 

including cancer (Gupta et al., 2010; Hou et al., 2014; Elling et al., 2016).  During GaHV-2-induced 

disease, long intergenic non-coding RNA (lincRNA) GALMD3 has a role in cis-regulation of gga-

miR-223 expression, which has been shown to be involved in the development of the immune 

organs (Hicks et al., 2009), cell proliferation (Sun et al., 2010), macrophage differentiation (Ismail 

et al., 2013) and trans-regulates gene expression on the chicken genome (Han et al., 2017). Linc-

GALMD1 coordinates the expression of GaHV-2- and tumour-related genes and regulates 

immune responses to GaHV-2 infection, indicating its role as a viral gene regulator contributing to 
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tumour suppression (He at al., 2019). Furthermore, lncRNAs have been found to be involved in 

B-cell activation and the Wnt signalling pathway and have been strongly correlated with GaHV-2-

resistant candidate genes suggesting that lncRNAs may affect GaHV-2 resistance and 

tumorigenesis through their target genes (You et al., 2019). 

  

6.1.6. Conclusions 
 

In the long history of biological and medicinal science, the use of animals for research 

purposes is a common practice. The astonishing similarities between animals and humans, both 

anatomical and physiological, allowed ever-expanding research of different biological mechanisms 

in animal models. Animal models have been and will be used to understand the basics of biology 

and to develop and novel vaccines and therapies for numerous diseases (Table A.5). Since the 

discovery of the Rous sarcoma virus at the beginning of the previous century, the homologous 

animal models of virus-induced diseases, including cancer, have been at the frontier of the 

oncogenesis research.  For several reasons, in particular, the relative simplicity of viral genome, the 

impact on viral replication and especially on cell division, where the viral role is more easily 

controllable or identifiable, make these models unique and inevitable in understanding virus-host 

interactions and better deciphering different steps of cancer development. 
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