
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Computer sketching: how software tools can support creative practices?

Miche, Frédéric

Award date:
1999

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/01adf532-9dc8-4ca0-b2ca-428a68207d3a

Facultés Universitaires Notre-Dame de la Paix, Namur
Institut d'Informatique

Année académique 1998-1999

Computer Sketching : How
Software Tools Can Support

Creative Practices ?

Frédéric Miche

Mémoire présenté en vue de l'obtention du grade de 'Maître en Informatique'

ABSTRACT .. 1

RÉSUMÉ ... 1

KEYWORDS .. 2

FOREWORD .. 2

INTRODUCTION .. 4

CHAPTERONE

INTRODUCTION ... 7

MARGARET A. BODEN'S ACCOUNT OF CREATIVITY ... 8

AN UNCONSCIOUS PROCESS 8
SENSES OFCREATJVITY 9
CONCEPTUALSPACES 10
CAN WE MEASURE CREA TJVITY ? 12

CONCLUSION .. 12

CHAPTERTWO

INTRODUCTION ... 14

THE RELATIONSHIP OF 'ARTISTS' TO COMPUTER SYSTEMS ... 14

AUTONOMY AND INSTITUTIONS 15
CONCEPT FORMAT ION AND SIŒTCHING 15
ÜVERCOMING SPACE AND TIME LIMITS 16
MET APHOR : AN OBSTACLE TO OBSERVE THE MARGINAL BEHAVIOUR 19
A B UNCH OF COMPLEMENT AR Y TECHNIQUES 19
THEY APPRECIATE 20

TYPOLOGY .. 21

CONCLUSION .. 22

CHAPTER THREE

INTRODUCTION ... 24

AN ENLIGHTENMENT ON WHAT 'SOFTWARE DESIGN' IS .. 25

WHAT IS SOFTWARE ? 25
SOFTWARE ENGINEERING 26
WHAT IS DESIGN ? 27
WHAT IS SOFTWARE DESIGN ? 30
SOFTWARE DESIGNERS AND ' PRODUCT' DESIGNERS 34

WAYS TO IMPROVE THE DEVELOPMENT OF SOFTW ARE .. 35

TRADITION AL SOFTWARE ENGINEERING CYCLES 35
A SHIFT IN VIEW 38
CORE ACTIVITIES OF ANY DESIGN PROCESS40
APPROACH TO SOFTWARE DESIGN 41

Task analysis 41
Building the user 's conceptual mode/ / ontology of the dom a in 43
Prototyping cycle 46

ADAPTED COMPUTER SCIENCE CURRICULA 47

1

CONCLUSION .. 49

CHAPTER FOUR

INTRODUCTION ... 50

OBJECTIVES OF THE VISUAL ASSISTANTPROJECT .. 51

A TOOL FOR STUDENTS IN THEATRE PRODUCTION .. 59

OVERVIEW OF THE FUNCTIONALITIES .. 60

STAGES 61
ÜBJECTS 62

VJSUAL ASSISTANT: THE PC PROTOTYPE 64

USER GUIDE .. 67

COMMANDS 67
GUIDED TOUR 70

STUDENT WORKS ... 71

CONCLUSION .. 74

CONCLUSION ... 75

BIBLIOGRAPHY .. 78

APPENDIX: LISTING OF THE VISUAL ASSISTANT CODE .. 81

2

Abstract

Creative thought is something occurring with little if any conscious awareness. But this does not mean

that we cannot figure out how creativity works. We believe that to show creativity is to explore and

transform the conceptual spaces of the relevant domains. Artists raised needs and reproaches about software

technology we listed in a typology. Generally speaking, we can say that current software applications do not

meet their demands - which reinforce creators' negative attitude towards technology. However, some of

them have understood the potential for producing arresting and highly creative graphie products through

computer-based tools. We see in this document the importance of the stage at which the designers are

admitted in the process, the importance to listen to the practitioners of a domain and effectively take into

consideration the context of action in which the software application will take place. We review traditional

software engineering techniques and propose a better way of developing applications - named by some

computer and designer professionals 'software design'. It should lead to effectively used pieces of software,

contributing to enhance the user's experience and to reduce the hindrances. The Visual Assistant is a

computer-based sketching tool using software design principles. It is aimed at supporting the creative

practices of theatre professionals, educators and students. We believe in its adequacy to their practices and

describe which of the above needs and claims expressed by creative practitioners are addressed by the Visual

Assistant and which are not.

Résumé

La créativité est une chose se produisant presqu 'inconsciemment. Ceci n'empêchant pas de comprendre

comment elle fonctionne. Nous pensons que faire preuve de créativité consiste à explorer et transformer les

espaces conceptuels des domaines concernés. Des artistes ont exprimé leurs besoins et des reproches

concernant les logiciels - ces premiers sont repris dans une typologie. De manière générale, nous pouvons

dire que les logiciels actuels ne rencontrent pas leurs demandes, et partant, renforcent leur attitude négative

vis-à-vis de la technologie. Cependant, certains ont bien compris le potentiel des ordinateurs à produire des

créations graphiques étonnantes et hautement créatives. Nous examinons dans ce mémoire l'importance du

stade à partir duquel les designers sont admis dans le processus, l'importance d'écouter les praticiens d'un

domaine particulier et d'effectivement prendre en considération le contexte d 'action dans lequel le logiciel

prendra place. Nous critiquons les techniques traditionnelles dites de software engineering et proposons une

meilleure approche du développement d'applications informatiques - approche nommée 'software design '

par certains professionnels de l'informatique et du design. Cette approche devrait conduire à des logiciels

effectivement utilisés, contribuant à améliorer l'expérience vécue par l'utilisateur et à réduire les entraves.

Le Visual Assistant est un outil informatique particulier permettant d'esquisser des idées ; cet outil a été

développé en respectant les principes de software design. Il est destiné à venir en soutien des pratiques

créatives des professionnels du théâtre, aux enseignants et étudiants. Nous sommes persuadés de son

adéquation avec leurs pratiques et décrivons lesquels des besoins et reproches, exprimés ci-avant par les

personnes utilisant la créativité dans leurs activités, sont abordés par le Visual Assistant et lesquels ne le sont

pas.

1

--------------------------------- ----

Ke}"'Yords

Computer sketching, context, creative practices, design, designer, domain of action,

human experience, human-centred design, prototyping, sketching, software design,

software engineering, stage, theatre, user experience, Visual Assistant, world of action.

Foreword

In the first place, I would like to thank Jacques Berleur and Colin Beardon for having

proposed such an interesting subject of my training period and the master's degree

dissertation. I would also like to thank Nic Earl and Ben Salem, members of the

NVRCAD (the Networked Virtual Reality Centres for Art & Design) at the ESAD (Exeter

School of Art & Design, University of Plymouth), for their everyday help and support as

well as Dean, staff member of the ESAD and 'poor' housemate of Ben.

My thanks also to Sylvia Maddock (my landlady), David, 'Poppy' and my housemates

for welcoming me so warmly in their house. My stay in Exeter (England) will always

remain the best memory of my first twenty-four years thanks to the students (and friends)

of the MATTA department, their tutor Jeremy Diggle, his assistant Mike Lawson-Smith

and the rest of the staff at the ESAD, my friends at the ESAD and at the University of

Exeter, the people I met during the French lessons at the famous 'The imperial' pub.

Back to Belgium, Colin Beardon and Jacques Berleur kept giving me their advises and

helped me to write the present master's degree dissertation. Thanks again to them and to

the people who proof read this master's degree dissertation (Jacques Berleur and my

Australian cousin Karen Davey). Thanks to my family and my sister in particular for the

lending of her laptop. I would also like to thank my fellow students and my hall of

residence mates (ail my friends) for their moral support and for the many times we played

sports, went to the cinema or ate together. This really contributed to keep each of us going

on with the writing of our master's degree dissertations. At last, my thanks go to my

girlfriend Mariam who helped me to finish this work when it started to become 'lengthy' .

She motivated me in the last moments of the writing.

2

MICHE Frédéric

Master's Degree of Computer Science,

5 th Year

___ Maste 's de_gree dissertation __ ~-

Introduction

• • • • • • • • •

Main advisor : Jacques BERLEUR, s.j. (FUNDP) Training advisor : Colin BEARDON (ESAD)

Introduction

In the domain of theatre, there is a long creative process of putting on a play even

before the performance in public. This performance is the visible part of the iceberg, as

some might say. This process starts with the writing of the play and the design of the

visual aspects, that is the design of the settings.

Computer-based tools are increasingly used m numerous domains of our everyday

modern. However, their utilisation in the creative domains is not so common use. They

are sometimes used in fashion design, industrial product design, image or animation

production, 3D modelling for artistic purposes, and a few others.

What is the use of computers in the domain of theatre practices ? The situation is quite

similar to the one prevailing in the domain of creative practices. Computer consoles help

in controlling the stage lighting system and other technical effects (sounds, for instance).

People also work on computers to write the plays through the use of word processors. We

think that is about all.

We believe that the use of computer-based tools can help to produce arresting and

highly creative works of art, even in the domain of theatre in which the plays are not

immediate outputs from a computer - unlike some advertising images or multimedia CD­

ROMs. The first stage of any creative process makes absolutely necessary to work with

ill-defined ideas and does not require the details right from the start. As a consequence, we

believe in the necessity to develop sketching computer-based tools to support the work of

theatre producers rather than in the use of complex 3D software packages that can lead to

pernicious practices and hinder creativity.

In response to that, the Visual Assistant has been developed to help the theatre

practitioners during the concept formation phase. It is a computer-based sketching tool

that allows rapid prototyping of stage sets, offering users to feel free to explore new ideas,

new designs in a short time. Unlike 3D software packages, it renders images with a rough

quality rather than with full details.

The degree training served to develop a PC version of the Visual Assistant package

currently running on the Macintosh platform. The need of a PC version is resulting from

4

the prevalence, from the supremacy of this platform nowadays, from the ever increasing

use of PCs in any situation of work and leisure.

We do not merely translated the code of the Macintosh version into a programming

Ianguage running on PC platforms. We used the Macintosh version as a specification

document, as an application with functionalities, with particular behaviours to reproduce

on PC. Besides, the idea was that I should corne to understand the objectives of the Visual

Assistant in terms of support to the creative practitioners.

One of the objectives of this master's degree dissertation is to see how we could

develop effectively 'usable' software packages for creative practitioners, including people

working in the domain of theatre. For this purpose, we first tried to clarify the notion of

creativity as far as possible. We then looked at the relationship between artists, designers

and computer technology, and we determined their needs and reproaches in terms of

software technology. As part of that objective, we consider as relevant to measure the

ability for tools to draw near the theatre practitioners and will therefore question software

engineering methods with regard to software design principles. Software design is a

discipline offering human-centred and action-centred distinctive features that could reveal

themselves as useful for developing applications aimed at supporting design practices for

theatre. At last, through this mas ter' s degree dissertation, we would like to show the

importance of computer-based sketching tools and to bring the Visual Assistant face to

face with the demands and reproaches of the creative practitioners and see if the Visual

Assistant has attained its objectives.

5

•

MICHE Frédéric
Master's Degree of Computer Science,

5th Year

e~ee dissertation. ___ ___

ChapterOne

• • • • • • • •

What is creativity ?

Main advisor : Jacques BERLEUR, s.j . (FUNDP) Training advisor : Colin BEARDON (ESAD)

Chapterüne

What is creativity ?

Introduction __________________________ __,

Before addressing the way software tools can help in supporting the creative practices -

especially in the field of theatre - we found relevant to first try to define what creativity is

- or better understand what it is about. Our search to understand how it could work - if it

is ever possible to do so - will mostly be based on the work of Margaret A. Boden 1•

As a cognitive scientist, she presents an aim common to many researchers in the field of

Artificial Intelligence (AI for short). She mainly focuses on trying to reproduce human­

Iike creative practices inside computer machinery. For this purpose, she investigated the

mind to figure out how it works in terms of creative practices and gave a first definition, an

explanation of what creativity is. Her vision of creativity is one theory among several

others : in no way it is 'the' theory about the mechanisms of creativity - it is just the

insight into creativity's maze we needed.

Margaret A. Boden's account of creativi~ ------------

An unconscious process

What is the so-called creativity ? We could ask it of some creative practitioners,

inventors or scientists - creativity is at the heart of their works. Orto some psychologists

whose concerns is to unveil the mystery wrapping the mechanisms of creativity. But they

could not tell us much about creativity. All we could learn about it is that for some of

them, it is a mystery that no scientific theory will ever explain. When others mention

intuition, they _mean that the intuition process is responsible for choosing and combining

the right ideas which results in one that can be called 'creative' . To say it differently,

7

creativity is something very unpredictable, happening unexpectedly making it very

difficult to give an explanation of the way it works. We have no conscious awareness of

how it arises. But as [Boden, 1994, p.75] reminds us, creativity is not the only human

unconscious process : "vision, language, common-sense reasoning" are also concemed. So

why do the mechanisms of creativity seem more difficult, more 'taboo', to study than our

vision for instance ? Maybe we should have a look in the dictionary to help us understand

the phenomenon ...

Creativity : "the power of creation, invention" [Grand Robert, 1993].

Creation : "the act of bringing into being or forming out of nothing"

[Grand Robert, 1993; Boden, 1992, p.l].

According to this definition, "creativity seems not only beyond any scientific

understanding - as said above - but even impossible" [Boden, 1994, p.75]. 'Out of

nothing' - it is as if God was behind every 'creation' made by a human being. If we take a

look at the definition of the adjective 'creative', we can find more helpful dues.

Creative : "producing or using new and effective ideas, results, etc."

or "someone who is creative is ve,y imaginative and good at

making things, painting, etc." [Longman, 1995].

The second meaning is more pragmatic but does not help a lot in understanding how

creativity works. We learn from it that artists, inventors, etc. are commonly showing,

making use of creativity. More interesting is the first meaning of the adjective. Creativity

is, according to it, the generation of (new) ideas or the "nove/ combination of old ideas"

[Boden, 1994, p.75]. And the more improbable the combination of ideas, the more

surprising it is. This combination of ideas, as [Muller, 1993] points out, is also the result

of a number of influences, either our persona! past experience, our conversations with

other people, our observations of events ("e.g., on TV"), our persona! background, context

("e.g., in relation to other problems"), and culture.

1 [Boden, 1994)

8

Senses of creativity

As part of the process of calling an idea 'creative', this idea is g1ven some value

according to its degree of 'interest' 2
. Among these valuable ideas, [Boden, 1992, p.32]

distinguish between two "senses of creativity : P-creativity and H-creativity" - 'P' stands

for 'psychological' and 'H' for 'historical'. She says that "a valuable idea is P-creative if
the persan in whose mind it arises could not have had it before; it does not malter how

many times other people have already had the same idea. By contras!, a valuable idea is

H-creative if it is P-creative and no one else, in al! human history, has ever had it before".

The act of attributing first-time novelties to individuals is the concern of art and science

historians. And this attribution is definitely not a particularly precise, or rigorous process

si nce there are many unrelated factors involved in the fact that these evidences were

brought to the historians' attention.

Creativity is a matter of novel ideas. [Boden, 1994, p.76] says that some ideas are

creative but that others can be "surprising in a deeper way [if] they concern nove! ideas

that not only 'did not ' happen before but 'could not ' have happened before". Making this

di stinction should help us to distinguish between "mere first-time newness and radical

novelties". The former can easily be explained based on what Chomsky said about

linguistics : we use a finite set of rules - called 'grammar' - to generate sentences

endlessly. These ones can have the following feature : they can be generated for the first

time. However, the generative system (the grammar) is the same for all the sentences

(within the same language); thus we can say that they 'could' have happened before even

tough they 'did not' - someone could have potentially generated such a sentence before.

Producing them is not to do something P-creative.

So, what is a radically novel, creative idea ? Consider a merely nove! idea. You can

produce it using a specific generative system and recognise/describe it with a specific

system. Both systems are based on the same set of rules that are used to generate/describe

other, familiar ideas. "A radically creative idea cannof' use such a familiar, pre-existing

set of rules [Boden, 1994, p.78]. The reason is that one cannot link up any familiar idea

with the generative/descriptive system since it is radically new - no one could have used

that system to produce a novel idea.

2 See below Can we measure creativity ? for an explanation of this scoring process.

9

Conceptual spaces

What is a 'conceptual space' ? And what do we need that concept for ? [Boden, 1994,

p.79] uses the notion of conceptual spaces to refine her insight into creativity. She defines

a conceptual space as "the generative system underlying a domain of thinking and defining

a certain range of possibilities", that is, the things, concepts we can produce using that

generative system. It is "the organising principles that unify and give structure to a given

do main of thinking". The latter can be an artistic genre and to depict it, an artist needs an

interna] model of it. This interna} model is the conceptual space of that artistic genre.

According to her, we build "mental representations" of these spaces with respect to the

domain of thinking concerned (poetry, sculpture, architecture, chemistry, etc.), as we map

geographical territories. And we use these maps to explore and possibly change those

conceptual spaces. Such conceptual explorations often lead to novelties and she perceives

it as the way creativity works - although you have to bear in mind that some novelties can

be worthless as well. However, changing those conceptual spaces appear to her as a

deeper form of creativity.

She distinguishes between two sorts of conceptual explorations and two sorts of

changes. Sorne explorations lead us to discover parts of the relevant conceptual space that

we had not noticed before - that is the first kind of exploration that can be done - while

other explorations, "by contrasf', take us to the limits of the conceptual space. Changes of

the conceptual spaces could occur while exploring those limits. When we say 'could

occur', it is actually us who change the contours of those spaces.

Before getting back to the kind of changes that can be made, let us consider an example

of each type of exploration possible. In her book, [Boden, 1992, p.49) used an example

taken from a classic of the English literature. "When Dickens described Scrooge as 'a

squeezing, wrenching, grasping, scraping, clutching, covetous old sinner ', he was

exploring the space of English grammar. He was reminding the reader (and himselj) that

the rules of grammar allow us to use any number of adjectives before a noun. Usually, we

use only two or three; but we may, if we wish, use seven (or more). That possibility

already existed, although ifs existence may not have been realised by the reader". That

example merely shows us something unpreviously noticed about a specific conceptual

space.

10

When one manages to identify a specific limitation of a conceptual space, the path to

wonder how this limüation could be overcome is not long. And "to overcome a limitation

in a conceptual space, one must change it in some way" [Boden, 1994, p.80]. There are

two kinds of changes possible. If you are not exploring the limits of a conceptual space (if

you are in a superficial dimension of that space), any change you make is a relatively small

change - which is called a 'tweak'. A tweak is like "opening a door to an unvisited room

in an existing house" [Boden, 1994, p.80]. The first-time novelty resulting from that tweak

can either be a worthless idea or a valuable one, that is to say, a creative idea.

On the other hand, you have larger changes that Margaret A. Boden named

' transformations' as they happen in more fondamental dimensions of our conceptual

spaces. Such a change deeply modifies the structure of the generative/descriptive system

so that no one can link up any familiar idea with it : this resulting system is the one

mentioned above which leads to the production of a radically creative idea. A large change

(transformation) is "more like the instantaneous construction of a new house, of a kind

fundamentally dif.ferentfrom (albeit related to) thefirsf' [Boden, 1994, p.80] .

The moment seems appropriate to introduce another description of creativity as parallels

can be drawn between this definition and the account of Margaret A. Boden. This

definition, from F.D. Peat, is given in [Muller, 1993]. "Human creativity involves a free­

flowing play of the mind in which new ideas constant/y surface and interact with each

other. Ideas are like patterns in a kaleidoscope which move and transform until some new

pattern swings into perception". The point of interest lies in the use of the same concepts

as Margaret A. Boden : when she says 'the generation of ideas' , he says ' ideas surfacing ';

when she says 'combination of ideas', he says 'ideas interact with each other'. The ideas

which move and transform in a kaleidoscope until something new swings into perception,

this reminds us of Margaret A. Boden's exploration and transformation of the conceptual

spaces, which can lead to novelties.

Can we measure creativity?

No, not by applying a numeral scale. Creativity is not something you can measure the

way we do for evaluating distances or chemicals concentration, for instance. However,

you cannot escape the scoring phenomenon when it cornes to estimating the value of an

idea and to say whether it is creative or worthless.

11

Like we said above : as part of the process of calling an idea 'creative', this idea is

given some value according to its degree of 'interest'. What we did not say is that this

scoring process is different according to the culture : in different places and / or at different

times , people will not value ideas in the same ways as others. What was creative for our

ancestors is not creative anymore for us as the recognition/descriptive/generative systems

have been used to produce many ideas which are now familiar tous. Using those systems

does not lead to produce interesting, valuable novelties now.

Conclusion

We endeavoured to explain what creativity is not to dispel the paradox, mystery and

sense of wonder surrounding creative practices but to better appreciate the richness of

creative thought thanks to a scientific approach. Creative thought is something occurring

unexpectedly, with little if any conscious awareness. But this does not mean that we

cannot figure out how creativity works. This knowledge of the mechanisms of creativity

does not necessarily help us to control and orientate our creativity. More important than

distinguishing between P- and H-creativity, we know that to show creativity is to explore

and transform the spaces of expressive skills, the conceptual spaces of the relevant

demains. Such enlightenment should help us to determine the effectiveness of the Visual

A sistant as a computer-based tool to support creative practices.

12

MICHE Frédéric
Master's Degree of Computer Science,

5°' Year

_______ Master' s_degree_dissertation ___ _

•

ChapterTwo

• • • • • •

What is the relation.ship between creative
practitioners and computers ?

•

Main advisor : Jacques BERLEUR, s.j. (FUNDP) Training advisor : Colin BEARDON (ESAD)

• •

ChapterTwo

What is the relationship between artists and computers ?

Introduction --~-----------
The subject of this master's degree dissertation is, in a few words, 'computer sketching'

and 'creative practices'. In order to study how some software design methods should be

devised or modified to produce software tools aimed at supporting the creative practices of

artists and designers 1, we need to investigate the relationship between artists/designers and

computer systems. This should help us to identify the needs and working practices of

artists and designers and determine if the current software applications meet their demands.

To say it another way, purpose-built new software applications designed for specific users

and areas of use should reflect a critical analysis of the relationship of digital technologies

to creativity and the design of contemporary software interfaces. In Chapter Four, we shall

point out the needs - determined hereafter - to which the Visual Assistant answers.

The relationshi~ of 'artists'2 to corn uter systems

An initial investigation was conducted to better understand how creative practitioners

such as artists or designers use computer systems. The results of the interviews carried out

as a preparation for this study as well as the preliminary analysis can be found in [Beardon,

1997) - which has influenced the writing of this section. These first conclusions yielded

an interesting insight into their relationship with computer systems.

Autonomy and institutions

One of the significant contexts that influence the work of artists and designers is the

extent to which they are tied to an institutional framework. A work of an autonomous

1 Also referred to as 'creative practitioners'.
2 We should say 'creative practitioners' as this notion include designers as well.

14

nature features the control over the choice of the resources and the tools and put the artist

or the designer in relation with various institutions - which gives them a feeling of greater

independence. Working with a single institution is usually perceived as being more

coercive since they are in closer relation with market orientations - though not in the

majority of cases. For some artists and designers, working at an educational institution is

seen "as providing [them] with a level of resourcing that permits a degree of autonomy in

[their] professional worlè' [Beardon, 1997].

Very few studies which explore the links between institutions and individual

artists/designers and the way their work is influenced by those institutions have been

conducted so far. As a consequence, we could hardly "came closer to understanding the

institutional contexts within which [the group of workers interviewed] operates" [Beardon,

1997]. So what follows is more focused on the links between creative practitioners and

computer systems.

Concept formation and sketching

Severa} interviewees have stressed the fact that the computer still has no good software

tools to start using it during the early stage of design , that is in the 'concept formation', or

the ' initial idea generation ' . One can argue that one of the reasons could lie in the very

few suitable input devices, but we would rather like to put forward an issue that seems

deeper tous. As an architect says, "the order is inverted: you no longer follow the age-old

method which used to consist of working up a rough idea, going on to the sketches -

introducing precision step by step - and arriving at the details at the end of the process.

The detail is required right .from the start, during the preliminary phase : the 'natural '

order is inverted' [Beardon, 1997]. Because the 'initial idea generation' takes place out of

the computer, a new stage in the process of creation appeared : that is the act of

transferring the early work onto a computer system. Then, the artist or designer can

continue the work on that digital medium, able to cope with the details once the first stage

1s over.

So far, there have been no tools which could relegate the need of details to the end of

the creation/design process and this was "a major obstacle to good design" [Beardon,

1997]. Such 'sketching' tools would permit to quickly develop several ideas in parallel

before selecting one - or a few - of them, ail this without having to bear heavy costs. And

15

this is a feature ("the ability to explore ideas", "new forms of exploration" [Beardon,

1997]) of computer systems that creative practitioners would really desire. Theatre

producers / writers would use such sketching software to make quick designs of each stage

of their plays. Thus enabling them to better view how the play fits together.

The new forms of exploration mentioned above relate to the exploration of the

conceptual spaces, as we saw in Chapter One. The adjective 'new' refers to the attempts to

discover parts we had not noticed before as well as to reach and explore the limits of these

spaces of creative practices and, subsequently, to overcome the same limits by changing

the conceptual spaces themselves. Sketching tools represented as software seem to support

the exploration but also the tweaks and transformations (the two sorts of changes

di stinguished by Margaret A. Boden and described in Chapter One) that can lead to

creative or radically creative novelties.

Overcoming space and time limits

An artist interviewed mentioned that she had a sort of 'ease-of-contact' with computers.

She stated that it could originate from her systematic way of working that she has always

had - even before coming to use a computer for doing fine art print making. In her words,

"she found the transition to working with a computer 'quite natural' " [Beardon, 1997].

We could draw from this that using a computer requires that you develop - unless it was

already embodied - a sense of 'rigour' to help you to cope with the one of computer

machineries. As set out in Chapter One, a conceptual space defines the range of

possibilities in a given domain of thinking. Developing such a sense of rigour is actually

reorganising the internai model that an artist/designer has of a certain artistic genre to

include the use of computers in the production of works of art. Many artists find computer

systems frustrating since they cannot feel the same sense of freedom, the same lack of

coercion as in the traditional working practices, i.e. when they work without a computer.

New and other skills should be developed if one wants to take advantage of using a

computer in order to take control of physical space. Before mentioning those skills, let us

explain what 'the control of physical space' is. Many artists or designers face problems of

space with a studio which is too small especially when they have to store - and retrieve -

numerous and/or large documents of all kinds : painting canvas, blueprints, sculptures,

notes, drawings, models, etc. Thus the use of a computer system is seen as a possibility to

16

store intelligently all those documents : instead of classifying according to physical

features such the size, it is now possible to mak:e that classification according to the

content.

Such a way of proceeding is of a higher benefit for the creative practitioner : it helps

saving physical space and it allows to store documents in specific contexts that would not

have been possible without the use of a computer file system. In other words, using

adequately the computer filing system should allow to create contextual meanings, thus

making the design concept an organisational reality : all the varied documents stored in

their specific context contribute to allow discerning the design in progress as a whole.

Thanks to the context within which documents are stored, connections are suggested

between several of them and it allows to rapidly gather material in order to publish a

catalogue for an exhibition, among other examples.

"The ability to reduce ail working abjects to a small rectangular window through

which, with good organisation, everything is accessible is seen as a particular benefit"

[Beardon, 1997]. The point is that you should proceed 'with good organisation' , sorting

out files and folders. Another skill is the ability to use finite, small windows on all kinds

of large documents without being hindered while working. This is one of the reasons why

many architects or designers refuse to handle blueprints and models on a computer screen .

However, using a computer is not of a benefit to every artist or designer. As one of

them stated, some creative practitioners can become progressively less sensitive to space

and light because of little to no mobility. By staring at a computer screen, just moving the

fingers to type on the keyboard or move the mouse, they become 'indifferent to place and

light' . According to her, this reflects in the work as the use of light become almost neutral.

It is as if some parts of the concerned conceptual spaces were not explored anymore.

Sorne artists and designers see the Internet as a medium to "overcome the limits of space

and time" [Beardon, 1997]. They do not need to be in physical contact anymore, to be at

the same place, at the same time to exchange ideas and views, to collaborate on works of

art or mount (actual or virtual) exhibitions. In the same way "the Japanese tradition of

'Renga ' makes poems pass round to enlarge them", some artists "make images pass round

on the net, this being a sign of the advent of a televirtual art" [Quéau, 1993, pp.114-115].

17

Fig. 2.1 : televirtua/ art [Quéau, 1993, pp.114-115)

They like the 'UNDO' command since it effectively offers users a rneans to reverse the

effect of tirne by "turning it back one unit or more", thus "returning the designed abject to

its previous state" [Beardon, 1997]. This has the enorrnous advantage of allowing artists

and designers to try several ideas, actions and later corne back if they prove unsatisfactory.

We would like to add that the use of sketching tools corne and strengthen the tendency to

explore several new ideas without adding regrets when the best thing to do is to discard

sorne sketches, as we shall see in Chapter Four about Visual Assistant.

18

Metaphor : an obstacle to observe the marginal behaviour

In the previous section, we saw that computers can help to overcome some limits of the

traditional creative practices. However, computers can sometimes be more of a hindrance

than a help. Metaphors are one of those obstacles.

What is a metaphor ? lt is the attempt to emulate historical expertise and/or existing

professional skills in interfaces. As a matter of fact, such attempt hinders the creative

practitioner from discovering, exploring the (unexpected) potential of a package. The

reason, in the terms of Chapter One, is that the metaphor links any idea - developed by the

artist/designer with the piece of software - to a familiar generative system, thus hindering

the generation of a nove] idea that cannot be linked to any familiar set of mies. Trying to

design an interface reflecting a present - maybe even past and outdated - practice may be

counter-productive as it could lead to trap artist/designer users whose creative practices are

attempts to go beyond current understanding, to search for the unexpected, to unveil the

potentialities.

To illustrate the above-mentioned point, let us quote a furniture designer that uses 3-D

packages : "having formed a conceptual mode! of the main functionality of the package,

one then begins ta observe software behaviour that is unexpected' [Beardon, 1997].

Traditional software design methods do not take such practices into consideration, leading

some users (the creative practitioners) not to use those traditionally designed applications.

What happens when the metaphor "embodied in the package becomes an obstacle ta

understanding this marginal behaviour" ? According to that same furniture designer, "the

response is ta set limits on one's use of the package and ta begin ta look for a new product,

which starts the process over again (see the previous paragraph for that process)"

[Beardon, 1997].

A bunch of complementary techniques

"The computer is one of several techniques for experiencing and there is a developed

sense [among the interviewees at least] of when it is appropriate ta use it and when not ta"

[Beardon, 1997]. What matters most is to stay as close as possible to the actual experience

of real techniques (i.e. collage, model making, drawing and sketching, experimenting with

colours, exploring spaces, etc.). Therefore, there are limited chances that these will be

19

replaced by only one tool - the computer, as it is. However, the computer can serve as a

complement - and not as an exact replica - to those traditional artistic techniques.

They appreciate ...

During the interviews carried out, these artists and designers mentioned many other

interesting facts, most of them being the reasons for which they like using computer

systems.

More than once, individuals have stated that computers could offer them the accuracy

they needed in their work, the ability to edit and print multiple versions of their works.

They also appreciate the fact that computers allow hybrid ways of working : with or

without the computer according to the kind of experience, the results they are looking for.

As a fumiture designer said it, "he does not consider the computer as an alternative for the

whole of design work, but rather suggests that designers should be able to use the most

appropriate process for the task at hanrf' [Beardon, 1997].

Simplicity. An important feature in respect to the time it takes to get to know a package

well. This learning phase can last up to "2 years" for some applications - the blame

probably resides in the reversed order within which details are required from the very

beginning of the design process. Hence their preference for "packages that present

themselves initially as quite simple, but reveal depths of complexity as you get to used

them" [Beardon, 1997]; interfaces that are not "cluttererf', with no floweries.

They find the power of interactivity very attractive. Such feature of the computer "can

be used to change the locus of meaning away from the artist and towards the viewer. With

interactivity, the viewer becomes indispensable " (she or he takes part in the act of giving a

meaning to the work of art) "and the art work is the performance/experience" [Beardon,

1997] and not the product itself anymore.

Ty~ology

In the following typology, we have listed concems taken from the results of the

interviews exposed above. In Chapter Four, we shall see which of the concems the Visual

Assistant answers.

20

In the relation between artists/designers and computers, there should be .. .

• A feeling of greater independence in the choice of tools;

• Suitable software tools to use during the concept formation. These

tools should offer the possibility to sketch, and consequently to

explore, ideas rather then requiring details right from the start. A

computer-based sketching tool should allow to assess ideas and,

therefore, enhance the chances of success of a creation;

• Simplicity is often lacking in many software applications. There is

a preference for ''packages that present themselves initial/y as quite

simple, but reveal depths of complexity as you get ta used them";

To use computers, artists and designers need .. .

• A sense of good organisation and rigour;

• The ability to use finite windows on all sorts of large documents;

• To consider computers as a complement to - and not to exactly

reproduce or substitute for - traditional artistic techniques offering

hybrid ways of working;

Drawbacks ...

• A loss of sensitivity to space and light;

• (repeated) A sense of good organisation and rigour;

• (repeated) The ability to use finite windows on all sorts of large

documents;

• Metaphors can be perceived as obstacles to the observation of the

software applications' marginal behaviour.

Advantages ...

• Use of Internet to overcome space and time limits and collaborate

on works of art or exhibitions;

21

• Great use of the UNDO command as it offers a means to reverse

the eff ect of time;

• Computers offer artists and designers possibilities to edit and print

multiple versions of their works;

• Interactivity is a very attractive feature of computers;

• Use of the computer to reduce storing space and intelligently store

documents in a digital form;

Conclusion

In this chapter, we analysed the needs and reproaches of artists and designers and drawn

up a typology of them to later see which are addressed by the Visual Assistant. Generally

speaking, we can say that current software applications do not meet their demands. Hence

the funding for developing the Visual Assistant in order to fill the gap in terms of

(sketching) tools available for use during the concept formation 3
• The lacks of features

supporting creativity in many software applications, the qualities required for artists to use

computers and the drawbacks of such use contribute to the reinforcement of artists'

negative attitude towards the technology. However, some have understood the potential

for producing arresting and highly creative graphie products through computer-based tools.

3 See Chapter Four.

22

8MICHE Frédéric
Master' s Degree of Computer Science,

5th Year

___ Maste 's de_gi:ee dissertation ___ _

Chapter Three

• • • • • • • • •

Design, of software for creative practices

Main advisor : Jacques BERLEUR, s.j. (FUNDP) Training advisor : Colin BEARDON (ESAD)

Chapter Three

Design, of software for creative practices

Introduction

"Our aim as not ta make the computer the subject of the creative act1, but ta develop

computer tools that support the human exercise of design skills. Such tools could have a

number of benefits : allowing ideas ta be expressed in a new form; enabling a better

understanding of an emerging concept,· encouraging the exchange of ideas, leading ta

greater peer review during the early design phase; enabling collaboration over a distance

and at times when it would otherwise be impossible" [Beardon, 1999c].

In a sense, this quotation is our guideline for this chapter and has been of central

importance during the development of the Visual Assistant package2
• To better support the

exercise of design skills, it is necessary to better design software tools in general. This can

be done through a relatively new discipline called 'software design'. But what is 'software

design ' ? What do we know about 'software' ? And 'design ' ? We will try below to answer

these questions before focusing on the creative practitioner and the user in general, and

turning our attention to some design topics and concems about software development that

should help software 'practitioners' (engineers and designers) to allow an enhanced

(without hindrances, centred on the user's experience) exercise of design skills with their

applications.

We saw in the previous two chapters what is creativity and what is the relationship

between creative practitioners and computers. In this chapter, we would also like to see

how such studies of the context of practices - that will be supported by a future piece of

software - can systematically be an integral part of the software development process that

is concemed in producing usable quality software.

1 See [Boden, 1992 ; Boden, 1994] for the study of such subject.
2 See Chapter Four for an overview of the objectives and commands of the Visual Assistant.

24

An enlightenment on what 'software design' is

'Software design'. What is it ? Is it a new discipline or just another term for other

disciplines also known as 'software engineering', 'interface design', 'human-computer

interaction' ? How does it differ from activities such as programming or building software

architectures? Do we even know what 'software' and 'design' mean? We should therefore

take a closer look at each of these activities and ask ourselves how we could improve

software by applying a broader understanding of design to our practices in software

development - which are doser to engineering than designing techniques at the present

time.

What is software ?

What is software ? Is it just the set of programs that you put into a computer when you

want it to do particular jobs or something else ? Software is more than a set of

implemented functionalities. [Winograd et al., 1996, p.xvi] put forward that software is "a

medium for the creation of virtualities - the world in which a user of the software

perceives, acts, and responds to experiences". In other words, software is like a (virtual)

world, a space of existence in which the user lives, makes choices and acts. The way the

user understands what the tool is and how that tool can be used, the way the interaction

occurs, all that is adding to what the user is experiencing while interacting with the

software. lt is not only a set of images, devices and functionalities that are designed and,

as a whole, make up what is called 'software'. Rather, it is something the user is

experiencing, a space in which her/his actions can take place, within a context of values

and needs that makes it possible for the user to understand and use the application.

Software is not something "we approach in isolation" [Winograd et al., 1996, p.xxiii]. We

bring with us our experiences - similar interaction experiences with other (piece of)

software-, what we understand of the artefact (software is one among man y of them), our

expectations , the social/physical/historical context.

Software engineering

There is a misuse of the term 'software design' : generally, it is used to point out the

discipline called 'software engineering'. But the centres of interest of the latter are not

focused on the user's experience. Rather, it is "the discipline concerned with the

25

construction of software that is efficient, reliable, robust, and easy to maintain" [Winograd

et al., 1996, p.xvii] .

Computer scientists, programmers, software engineers, all are trained to the same

principles for developing software. The former are bound to become scientists in a

theoretical discipline while the latter are trained to focus almost exclusively on the

construction of the internais of computer applications and, ''from the design point of view,

give short shrift to consideration of use and users" [Kapor, 1996, p.6] . The stance of the

programmers is to implement the functional specifications without further questioning. In

short, the main concern is the technical aspects, the mindset is 'problem-solving'.

Ali the practitioners mentioned above mostly follow the traditional method that consists

of deciding what the system would do, then writing the specifications based on it, before

implementing these specifications which includes figuring out how to produce interfaces -

to which the user has to adjust. Usually, "when software engineers or programmers say

that a piece of software works, they typically mean that it is robust, is reliable, and meets

its functional specification" [Winograd et al., 1996, p.xvi]. About the latter, there is the

misleading idea that "the functionality of a piece of software is separable from, and takes

precedence over, its appearance" [Crampton Smith-Tabor, 1996, p.40] .

Software engineers do not really centre their design on the people and their practices,

the actions that the user will make in the real context of his work; however, they bring to

the centre the technologies of computing. To put it in other words, "software engineering

has created an illusion that a rigorous process of transforming requirements (stated in the

specifications) into systems is the key to reliable design" [Denning-Dargan, 1996, p.107].

This goes hand in hand with a practice that doesn 't consider, at the early stages of the

development cycle, the "appreciation of the overall conditions of use and user needs

through a process of intelligent and conscious design" [Kapor, 1996, p.4]. With software

engineering methods, the designers are called (almost) at the end of the development

process not to design the whole interaction, the user's experience. Instead, their action is

confined to imagine approaches suggested by the way the system is engineered - more or

less like patching with a Graphical User Interface (GUI) what the engineers have just

implemented - but not by what users will do with the system (and the related information)

and in which context of use.

26

What is design ?

Let us now consider what design is before looking how we could draw lessons,

practices from this broad discipline and transpose them to the development of software.

Such enlightenment - if put in practice - would help us to shift from the software

engineering practices to the so-called software design discipline and would lead

application builders to produce software that is more effective, more appropriate, and more

satisfying for users - in brief, software that is better !

As [Denning-Dargan, 1996] points out, there are several meanings of the word 'design'

that can be found in the dictionary. Let us mention a few of them. These definitions need

to be complemented by the statements of professional practitioners to encompass ail the

dimensions, ail the characteristics of design. However, and despite they are taken from

common dictionaries, they tell us something about design.

Design : "Industrial aesthetics applied to the search for new forms fitting their

function (for utilitarian abjects, furniture, housing in general)" [Grand Robert,

1993].

Design : 1) "The way that something has been planned and made, including its

appearance, how it works, etc." 2) "The art or process of making a drawing of

something to show how you will make it or what it will look like" [Longman,

1995].

From the first definition, we can figure out that the industrial world has originally used

design to 'wrap' its products, that is, to give some clues about its use, some meaning to the

artefacts they mass-produce as well as to give them an appearance that makes them more

attractive for the general public. The second definition reminds us of the primary meaning

(the most frequent in dictionaries) of design which is 'to make or conceive a plan'. Both

definitions mention notions such as 'how it works', 'what it will look like' but say nothing

about the 'action/user-centred approach' - that is, keeping the user and her/his actions at

the centre of design preoccupations -, the necessity for an artefact to fit the human body

nor about the context of use, and man y others.

First of ail, one has to know that design is not only one discipline but a bunch of

disciplines. Far from being exhaustive, we can list "industrial design, graphie design,

information design, urban design, and evenfashion design" [Winograd et al., 1996, p.xv] .

27

In their activity of designing, these fields have in common many concerns as we shall see

in the remainder of this chapter - the main one being the human experience.

Design is conscious. Design is not something that happens without we are aware of it.

But that consciousness has some limits : you cannot say that, when designing, you are

applying some theory of design. Design cannot be reduced to a set of rigorous, formai ,

consistent, or comprehensive rules unlike mathematics and engineering are. "Systematic

principles and methods at times may be applicable to the process of design, but there is no

effective equivalent to the rationalised generative theories applied in mathematics and

traditional engineering' [Winograd et al., 1996, p.xx]. Thus, design is something you are

aware of but which can be explained only in terms of feeling, intuition, tacit knowledge.

Moreover, the designing activity is inherently unpredictable : you do not know where an

idea will take you and how long it will take to get there - which is not the case for

di sciplines grounded in certainty such as mathematics.

Design keeps human concerns at the centre. To make it clear, we just need to interpret

what a designer means when she/he says that something works. Any artefact that is well

designed and, as a consequence, really works is an object that is well suited for its

environment. Such a "good design produces an abject that works for people in a context

of values and needs, to produce quality results and a satisfying experience" [Winograd et

al., 1996, p.xvi]. As it is emphasised by the words of the excerpt in bold, designers focus

the design process on the quality, the richness of the user's experience.

Design is creative. And as a creative activity it tends to be mess y and not reducible to a

set of standard steps of a would-be method. Therefore, you can list any criterion for good

design as possible, it will never turn someone into a good designer if that person has no

skill of an artist-designer, cannot make use of creativity and cannot as well keep the

richness of human experience at the foreground - pushing the computer and technical

concerns in the background reducing them to supporting elements. This creativity appears

in solving problems but goes beyond that activity typical of traditional engineering. But it

also 1 ies in ''finding the problems - envisioning the needs that people have but do not

recognise" [Winograd et al., 1996, p.xxii]. The marks of creativity that one can find in the

activity of designing induces us to say that design - and many other practices based on it -

is more an art than a science. And that artistic feature makes design difficult to learn

through the kind of structured curriculum that is taught in faculties of science and

28

engmeermg. However, design is not a gift and education in the numerous design fields

"draws on the interaction between learner and teacher, design,er and critic" [Winograd et

al., 1996, p.xxii]. As David Kelley (in [Kelley-Hartfield, 1996]) emphasises, besides

keeping the human concerns in the centre, the designer must hold an important place for

creativity and openness in her/his design practices. The degree of success for an artefact

depends on the extent to which the designer is open to new possibilities and ready to take

risks in a creative leap into those new possibilities that are radical novelties and whose

consequences are not yet visible. To refer to Chapter Two, those new possibilities are like

the parts of the conceptual spaces we had not noticed before or the limits of the same

spaces. To take a leap into those new possibilities is like opening a door to an unvisited

room in an existing bouse (exploring the unpreviously noticed parts of the conceptual

spaces) or building a new bouse fundamenta1ly different from the first (changing the limits

of the conceptual spaces).

Design, is communication. This communication 1s manifold. We know the user

communicates, interacts with her/his environment and that the artist-designer also interacts

with his/her materials (the medium of construction of every design activities). But the

communication takes place as well between those two interactions. lt bas to be

established between both of them to give all its meaning to the designed object, to

guarantee that the object will be used by the user and well suited to its environment. At a

surface level, the communication is twofold : an artefact conveys meaning about its content

and about its use. This is done through tradition, learning and convention. "A door

communicates to its us ers through convention : a door with a fiat plate near shoulder level

says 'Push Me!' One with a round knob says 'Twist Here!' " [Winograd et al., 1996,

p.xxiii]. Communication is also peripheral - and at once less superficial. About designed

objects communicating their meaning, you could make the analogy with the fo1lowing

proverb by saying that what one could see is only the visible part of the iceberg. In other

words, as users we do not approach objects in isolation and therefore, someone cannot

interpret the intended meaning without knowing the situational context. "Every abject

appears in a context of expectations that is generated by the history of previous abjects

and experiences, and by the surroundings in the periphery - the physical, social, historical

and working context in which the abject is encountered' [Winograd et al., 1996, p.xxiii] .

As a result, something that bas been newly designed inevitably takes meaning from what

came before.

29

We mentioned about the 'problem-solving' mindset of software engineers. The mindset

of artist-designers, at the opposite, is "creating beyond what the problem calfs for. (. . .)

The designer (. . .) has a passion for doing something that fits somebody 's needs, but that is

not Just a simple fix. The designer has a dream that goes beyond what exists, rather than

.fixing what exists. (. . .) The designer wants to create a solution that fits in a deeper

situational or social sense" and thereby goes beyond mere problem-solving [Kelley­

Hartfield, 1996, p.153]. So, the designer's approach to a situation, to a problem is

fundamentally different from that of an engineer : it is less problem-oriented but more

open-ended. And this openness to explore (nove)) possibilities also exists in the

training/educational environment which mak:es it easier to try things and fosters the

exploration and transformation of the space of expressive skills . Again , and more down­

to-earth, "design defines what [object] ought to be. By contrast, engineering does it.

Engineering is implementation" [Kelley-Hartfield, 1996, p.156].

What is software design ?

As we said above, software is more than a set of implemented functionalities - software

is a world in which the user's experience takes place. Therefore, the development of

applications shall move from software engineering techniques to a discipline called

'software design' which is mainly concerned with the quality of the above-mentioned

experience for the people who use that software.

Has software design to do with interface design or human-computer interaction (HCI) ?

Both are actually encompassed within software design which object of interest is not only

software but also its surroundings. The overall design of a program is to be distinguished

from the design of its user interface. Interface design is concerned about the interaction of

users with computers through physical interfaces. Ali we experience while interacting

with software applications is driven through the physical interfaces that mak:es the

connection between the user and the machinery. Classical interfaces (keyboard, pointing

device, visual display unit) and novel devices (virtual reality goggles and gloves, tactile

input and output devices, more ergonomie keyboards, voice recognition devices, etc.) are

creating and constraining at once the possibilities for user's experience offered by

software. Therefore, the importance of interface design in the software development

process is not insignificant. Human-computer interaction deals with "the experience that

people will have in encountering and using software" [Winograd et al., 1996, p.xviii] .

30

Human-computer interaction goes beyond the design of on-screen interfaces using visual

standards, metaphors, icons with the same 'look & feel' - as it is usually taught in

computer science curricula. "Researchers in human-computer interaction have studied the

mental worlds of computer users, developing approaches and methods for predicting

properties of the interactions and for supporting the design of interfaces" [Winograd et al.,

1996, p.xviii]. However, as it is currently applied, human-computer interaction has not

lead application builders to produce software that is more effective, more appropriate, and

more satisfying for users. Human-computer interaction unfortunately takes place at the

end of the software engineering process to wrap the application with a graphical user

interface over the implemented functionalities.

Human-computer interaction or interface design do not make up software design but

working in those fields of application development is already being engaged in that

discipline at the opposite of software engineering rnindset. That is what the Association

for Software Design (ASD) daims. You even might be unaware of your participation as

your payroll may refer to you as a programmer or a software engineer if not a human­

factors consultant. But this does not give software design the status of an acknowledged

profession - not yet; at best it is considered as a side task of a manager or a programmer.

Still according to the Association for Software Design, we can give the following

definition of software design :

"Software design sits at the crossroads of ail the computer disciplines : hardware

and software engineering, programming, human factors research, ergonomies.

It is the study of the intersection of the human, machine and the various

interfaces - physical, sensory, psychological - that connect them" [Winograd et

al., 1996, p.xv].

As the definition points out, software design does not disrniss these other disciplines

that have often concentrated, in the education of computer professionals, on the

understanding of computational mechanisms and on engineering methods that seek to

ensure that the mechanisms behave as the programmer intends. lt rather reconsiders the

place of these disciplines in the software development process : all should be part of an

overall, encompassing discipline (software design) that puts the richness of human

experience forward whatever above-mentioned discipline is concerned. Software design is

eventually a complex discipline as it draws on many disciplines : software engineering,

31

software architecture, programming but also human factors, graphie information design, art

and aesthetics , sound production, psychology, and more. "Software design, by the nature

of what it aims to accomplish, sweeps into its scope al! these interests, concerns, and

disciplines" [Winograd et al., 1996, p.297].

To make the preoccupations of software design clear, we believe that this definition

needs to be completed by the accounts of professional practitioners engaged in software

design from close or afar. In the words of [Kapor, 1996, p.4] - who was one of the first

people in the microcomputer industry to identify his work as "designing software"; he was

the designer of Lotus 1 - 2 - 3 spreadsheet - to be engaged in software design is to "stand

with a foot in two worlds : the world of technology and the world of people and human

purposes". Again, we are reminded of the central importance of human experience with

software applications. This idea of mixing two different worlds is also perceptible in the

view [Crampton Smith-Tabor, 1996, p.38] have of the software design enterprise :

"balancing a technological and an artistic perspective, with a focus on how people and

designs communicate". The artistic perspective is the one from the (artist-)designer that is

in charge of shaping a piece of software in order to make it usable, effective.

"Software design is concerned with the form and function of a software system

and with the structure of the process that produces that system". Software

design, which is focusing on the action, is a discipline "uniting system-oriented

engineers and customer-oriented designers" [Denning-Dargan, 1996, pp.107-

108].

In this other attempt to give a definition of software design, we can spot again the

balancing between two different worlds : the engineering discipline and the design

discipline. Software engineering, which dates to the mid-sixties, is based in the

engineering tradition, where design is seen as a formai process of defining specifications

and deriving a system from them. Human-centred design is more recent, dating to the late

eighties according to [Denning-Dargan, 1996]. In this approach of software development,

designers immerse themselves in the everyday routines and concerns of their customers.

Separately, these approaches do not lead to effective and usable software applications and

their failing is in too much weaknesses. But put together, they build on their

complementary strengths and form a broader approach of software development that we

have called all along this chapter 'software design' .

32

"Information technology is becoming an environment within which people operate

rather than a device that they pick up and use. lt is part of our everyday culture"

[Crampton Smith-Tabor, 1996, p.40]. To fully achieve the shaping of this new

environment, the development of software applications needs to shift from engineering

techniques to design techniques - that is where software design cornes into play as it is

focused on the human aspects rather than on the technical ones. Software design is like

architecture for constructing buildings : you do not talk to an engineer first when you want

your house to be designed and built, you go for an architect. lt is not the job of the

engineer - and she/he usually does not have the skills for that - to determine the design of

your house according to the way a house is usually used and according to the particular use

you wi ll do of your house.

We already put forward the idea that software design cannot ignore scientific method

and engineering knowledge. Indeed, familiarity with computing technology and

psychology is as essential to a software designer as familiarity with building technology is

to an architect. However, the fact that the rigorous, formai engineering, scientific

techniques cannot be dismissed do not make the designing activity as formai and

systematic as they are. "Software design deals with values, preferences, and meanings -

with, if you like, aesthetics and semantics - it can have neither a universal predictive

theory nor always-reliable methods ta generate solutions" [Crampton Smith-Tabor, 1996,

p.56] . Design is said to be more an art than a science. Though software design is one of

the numerous fields of design and, subsequently, a little unpredictable, it is neither a

science, nor an art : it combines both aspects.

Software designers and 'product' designers

Before going further with the development of this chapter, we need to make clearer the

distinction between two design traditions and their practitioners. According to [Beardon,

1999b], 'software' designers and 'product' designers are different words depicting

different concepts. The former is designing software technology for individuals to use.

Sorne of these individuals are for instance standard office applications users or ICT

professionals while the others are product designers. Product designers therefore use the

software technology developed by the software designers to devise (actual or virtual)

products. Their role in this context is the one of the user - they use the applications

developed by software designers. They are the creative practitioners mentioned ail through

33

the previous and following chapters. And their creative practices require suitable software

design methods otherwise they will feel hindered in their search for the unexpected

behaviour of the packages they use.

Software engineers prefer to consider application design from their "isolated world in

which they are locked' [Beardon, 1999b] : they involve the user in the development

process mainly because 'they have to' and they seem - so far -to be very Jess sensitive to

the needs of creative practitioners than software designers are or could be. They confine

themselves to traditional software engineering methods as they find easier to implement

metaphors including what they think to be current user practice.

As far as the creative practitioners are concerned, on the one hand they refuse to

"engage in constructive criticism" [Beardon, 1999b] of the tools they use. lt is as if the

tool fits their usage - so they keep using it - or not - in this case, they get rid of it. On the

other hand, many artists and designers proceed by exploring the unexpected behaviours of

applications in order to get interesting results and base their design works on these results.

Doing so - refusing to engage in critical use of software that they consider just as tools;

forcing the software to misbehave, subverting the intentions of software designers - they

contribute to enlarge the rift between software and product designers .

Ways to imP-rove the develoP-ment of software

In the previous sections, we saw the flaws of software engineering methods. We should

therefore run away from the conventional wisdom on software engineering. But before, let

us have a brief look on the development process in software engineering and some of its

models to better understand and review the development of software. Then, we will

consider how we could improve the usability, reliability, dependability, appropriateness

and rely better on the quality of the user's experience.

Traditional software engineering cycles

Software engineering is a discipline originating from the mid-sixties . Software

engineers believe that most of their work lies in the process that generates a system having

the form and fonction specified by the customer. They refer to this as the 'software­

lifecycle model'. This model declines itself in many varieties of which the most common

34

are the 'waterfall model' and the 'spiral model' - also called the 'prototyping approach' or

the 'iterative model'. Many authors have given detailed accounts of how these process are

organised. Here, we just give a brief explanation of the most common models and

principles. For more information, we can refer to the work of [Somerville, 19??], Andriole

and Freeman, [Boehm, 1988], DeGrace and Hulet-Stahl, and Dijkstra or at any text book

used for software engineering lectures.

~- -- --~-.,...
\ l'n dut!- de~.,---

~ Verifü·nt1c)n

Fig. 3.1 : The traditional water/ail mode[of the software engineering process.

The traditional waterfall model of software development (fig.3.1) emphasises the

structured relationships between adjacent stages in an idealised process that moves from

abstraction to implementation. lt is idealised as the detailed design, and sometimes the

35

product design, are either actually addressed only after the code has been developed or

constrained by the requirements put into specifications by the software engineers.

Moreover, it does not take into account the realities of iterative design3, such as the

prototyping cycle.

Detèrmint>

Cumu1auve
cost

Pr:ogress
through
steps,

Evolua te nlternatives,
identify, resùlve risk.5

û1rnrnîtmcnt]
Revie\.V----+-++---------+-=..,t,..---+---'--...,_ ___ !...-__ -4-

Partîtio,1 · Requir;:mcnts plan
lifc-cycle plim

Plan next phases·

Sîn'11.1latioM. m (>dcls, ~ncti mnrks

--Concept of
ope-ration

, Software
Detai1ed
design

T--
1Code

1 1
JU:nill .
lk.;_t 1 •.
1 1

1 ':'ll');ril· 1
~ tton I

Actepi- J 1111d tl':-1

ancc "l
tèst l

Develop, verify
next-lcvel product

Fig 3. 2 : the traditiona/ spiral mode/ of the software engineering process.

The spiral mode! (fig.3.2) improves on the waterfall mode! described above by

emphasising the iterative nature of design process. lt introduces a cycle of iterative

3 See the following sections.

36

prototyping, but it is still functionality and product centred, rather than user and action

centred. Although the design process and its iterative nature are more discernible in this

model, the people in charge of the design are not often design practitioners. This designing

job is most of the time left to the programmers or engineers as a side task - task to which

they give short shrift according to its nature. Again, the design, detailed or not, is

addressed too late in the process - confining designers to imagine approaches suggested by

the way the system is engineered.

A shift in view

There is an analogy that makes the problem with software engineering more striking.

Suppose you have decided not to buy a house but to ask a company to build it. In this case,

you go to see first an architect, then the building engineers. In software engineering, the

process is inverted : the software engineers establish the software requirements in

collaboration with the managers of the client company without observing users' behaviour

and context of work or world of action; and then, only later in the process, the designers

are called to laya Graphical User Interface (GUI) over the implemented functionalities. In

the following sections, we will try to reverse that course of things and give a few

guidelines to improve the conventional methods. These reviews are based on the practices

that are prevailing in design activities such as keeping human concerns in the centre,

observing user's behaviour in their real context of work and action, etc.

The inverted process in software engineering operates from three assumptions,

according to the observations made by [Denning-Dargan, 1996].

1. The result of the design is a product (artefact, machine or

system);

2. The product is derived from specifications g1ven by the

customer. In principle, with enough knowledge and

computing power, this derivation could be mechanised;

3. Once the customer and the software engineer have agreed on

the specifications, there is little need for contact between

them until delivery.

37

This methodology, because of its standpoint, has lead to software applications that are

not so usable and dependable. That explains why the software crisis is usually seen as a

breakdown in the application of this methodology. But when one says that it is "especially

due to faulty input in the form of incomplete or incorrect specifications", as reported in

[Denning-Dargan, 1996, p.108], we do not agree. The problem is more fondamental than

that : it is the software engineers doing (badly and carelessly) the job of designers, the lack

of observation of the users, and engineering practices at the opposite of design practices.

Facing these shortcomings, some emphasise the role of human judgement, experience in

work, interaction and coordination among people and organisations and argue that the

software crisis is fundamentally a failure of customer satisfaction.

"The standard engineering design process a.fiers little to connect the actions of

designers with the concerns of users; the interaction between these two groups is limited to

the requirements and specifications documents and to the final signojj'' [Denning-Dargan,

1996, p.111]. The product-centred design process focuses primarily on the machine and its

efficiency, expecting humans to adapt. In contrast, as Donald Norman says - quoted by

[Denning-Dargan, 1996, p.111], "the human-centred design process leaves to humans the

actions that humans do well, such as empathising, perceiving, understanding, solving

problems, listening for concerns, fulfilling commitments, satisfying other people and

serving interests. lt leaves to machines what humans do not do well, such as performing

repetitive actions without error, searching large data sets, and carrying out accurate

calculations".

Human-centred design, better known as software design, is based on understanding the

domain of work or play - the artistic demain of action for theatre scene designers - in

which people are engaged and in which they internet with computers. In addition to this,

software design is also based on programming computers to facilitate human action. As

we did for software engineering above, here is the three assumptions on which the software

design methodology is grounded- based on the work of [Denning-Dargan, 1996].

1. The result of a good design is a satisfied customer;

2. The process of design is a collaboration between designers

and customers. The design evolves and adapts to their

changing concems, and the process produces a specification

as an important "by-producf';

38

3. The customer and designer are in constant communication

during the entire process.

The comparison of both standpoints has lead us to think that software engineers must

shift software development from a process of deriving a software system from

specifications documents to a process of supporting the standard practices in a domain

through software that enables more effective action.

Core activities of any design process

In their study of the interactions between people and products of any kind - including

software - [Crampton Smith-Tabor, 1996] have determined five core activities of any

design process. These activities, given hereafter, can also be found in the software design

process, balancing techno]ogical and artistic (aesthetic and human-centred) perspectives.

In the following sections, references to these five core activities of design will be made to

emphasise on the beneficial influence of design on software design.

l . Understanding. 'What is going on here ? What is the

underlying problem to be so]ved ?', could you ask.

Photographs, videos, sketches, and notes can be used to aid

designers in observing and analysing the information or the

problem. David Lidd]e and his software design team

working on the development of the Xerox's Star (the first

system having a Graphical User Interface) used 600 to 700

hours of such video recordings filming people interacting

with computers and with prototypes of the Star [Liddle,

1996]. Besides, designers talk with people, especially clients

and users, and look at the information to be communicated.

2. Abstracting. What are the main elements ? What kind of

information is being conveyed ? What do people want to do

with it ? What is important ? What is irrelevant ? Lists,

sketches and diagrams are the usual tools here.

3. Structuring. What are the relationships among the elements?

What different ways can the elements be ordered to be useful

39

for users ? What are the users interested in ? How much can

the y take in ? The designers' assumptions will be checked

with the users and the clients.

4. Representing. How can this structure be represented in visual

and auditory form ? What representations does the material

suggest ? What representations might the designer glean from

thinking about the users' world ? Should the representation

be concrete or abstract ? Is metaphor appropriate ? Here, the

designer typically uses sketches on paper and interactive

sketches in a software medium, which may be evaluated with

colleagues or users.

5. Detailing. Exactly what colour should this element be ?

What style of depiction should be used ? How is the picture

plane handled ? How do the elements move ? Should an

illustrator be hired ? Sorne designers work directly in a paint

program. Other start on paper, and move to the computer

later.

These five processes are not executed sequentially. Designers' skills lie in circling

among them as activity in one throws light on another. And, one more time, the stage at

which the designers are admitted to the design process determines the extent to which the

full range of their skills can contribute to a (software) product's success.

Approach to software design4

T ask analysis

Software systems have customers. Quality means customer satisfaction. This statement

is well known by people working on the development of quality standards. But what does

software quality consist of? Customers are more likely to be satisfied by software that is

'transparent' in their domain of work. 'Transparent' means that the computer slides to the

background, allowing the users to perform familiar actions without distraction, and to

perform new actions that previously they could only imagine. From this, we conclude - as

4 This approach is based on the work of [Denning-Dargan, 1996] and [Liddle, 1996].

40

[Denning-Dargan, 1996] and many others did before us - to the necessity to observe the

behaviour of the user in its context (See l. Understanding). [Liddle, 1996], who headed

the development of the Xerox's Star System (the forerunner of today's graphical user

interfaces (GUl's), emphasises this necessity by saying that the development team for the

Star System "developed {its} designprinciplesfrom what {they] saw users doing''.

Do not think of the software design's task analysis in conventional terms. Our

perspective, inspired by the account of [Denning-Dargan, 1996], is a distinct departure

from the traditional functional analysis of a domain, which describes the domain only as a

process network - a network of interconnected input-output fonctions that operate on

physical or information objects. We understand task analysis here in the sense of studying

the nature of the actions that people take in their domain, especially of repetitive actions -

they are the kind of actions that computers do well, to connect those action-processes to

supportive software technology. And all these actions are related to speech acts indicating

when the tasks are declared, initiated, or completed and to which degree of satisfaction.

What do they complain about most ? What new actions would they like to perform next ?

Which actions are endlessly repeated by them ? What is the context in which their actions

take place ? All these questions find answers in the observation of user's behaviour in

context - and not by deciding in the isolation of the project leader's office what will be the

tasks to be performed in interaction with the computer software.

Software design practitioners must be - or must become through adequate training -

skilled observers of the domain of action in which a particular community of people

engage, they must know that to observe the repetitive processes, they have to watch what

people say to one another (verbally, in writing, via body language or e-mails) so that the

designers can produce software that assists people in performing those actions more

effectively. The phrase 'domain of action' is meant to be broad; it includes specialised

domains, such as "medicine, law, banking, and sports", as well as general domains, such as

"work, career, entertainment, education, family, health, world, dignity and spirituality"

[Denning-Dargan, 1996, p.112]. Again, [Liddle, 1996, p.28] reminds us the importance for

software designers to immerse themselves in the user's domain of action when he says that

"designers make their greatest user-interface errors when they don 't think about users in

terms of what those users are doing in their jobs".

41

As [Denning-Dargan, 1996] point out, the assessment of whether software is useful,

reliable and dependable is made by the people who act in a domain. By focusing on a

system and its specifications, the conventional software engineering process loses sight of

those people, of their common concems and of their actions as they do not take time to

observe them performing some tasks in the context of their work or any other context. One

has to know that, in this particular case, the process cannot offer a grounded assessment of

quality, because many of the factors influencing quality are not observable in the software

itself. Once the user concerns have been determined, the next stage consists of making

connections between these and the structure of software. But this cannot be done

systematically and requires first to build a user's conceptual mode] / ontology of the

domain and then to iterate through a prototyping cycle.

Building the user's conceptual model / ontology of the domain

The user's conceptual model represents, in [Liddle, 1996, p.21]'s words, "what the user

is likely to think, and how the user is likely to respond'. The use of computer metaphors

(e.g. the desktop or spreadsheet metaphor) is not intended to imitate office furniture or

other physical objects. Their purpose is to let people use recognition rather than recall.

People are good at recognition, but tend to be poor at recall. People can see objects and

operations on the screen, and can manage them quite well. But when you ask people to

remember what string to type or what actions to do to perf orm some task, you are counting

on one of their weakest abilities. So, the use of computer metaphors can help to guide (and

predict) what the user is likely to think. In the end, the effectiveness of a piece of software,

and of its interface, depends on what they think about it, on how they are interpreted by the

users . Furthermore, these computer metaphors have the critically important role to be

abstractions that users can then relate to their jobs to help them taking (repetitive) actions.

This second role, through the development of scenarios for uses of the imagined product

based on the task, helps to determine what the user is likely to respond.

The mental mode] described by [McCullough, 1998] is similar to the user' s conceptual

mode] above. Malcolm McCullough places his talk upstream by naming the weakness of

people ' rote knowledge' rather than 'recall', in the terms of David Liddle. A rote

knowledge of procedures does not necessarily include an understanding of underlying

system states of a computer. He says that effective mental models of computer system

states - in other words, what the user thinks about the computer and what be done with it -

42

are able to predict outcomes of untried procedures and are essential for learning how to

combine elements of the digital repertoire.

What David Liddle called the 'user's conceptual model' has been named the 'ontology

of the domain' by Peter Denning and Pamela Dargan in [Denning-Dargan, 1996, p.117] .

An ontology, according to them, is "a conceptual framework for interpreting the world in

terms of recurrent actions" (See 2. Abstracting). lt is a sort of study of the context of use

and its purpose is to use it to coordinate the work of the software developers during the

next stages of the development process. The software designer building this ontology of

the domain and using it to guide the software engineers is analogous to the architect

creating sketches and blueprints and using them to coordinate builders as well as to help

customers assess the results.

This brings us to the question of the features we would expect from such an ontology of

the domain. According to [Denning-Dargan, 1996], an ontology should provide three

elements:

• lt should convey the patterns of action of the domain in which the

software will be used, in terms of its basic distinctions, repetitive

processes, standards of assessment, strategies, tools, breakdowns,

and driving concerns;

• lt should connect the linguistic structure of the domain to the

software structures that will support the patterns (See 3.

Structuring), and to guide software engineers in implementing

those structures;

• lt should provide a basis for measuring the effectiveness of the

implemented system in practice.

This ontology represents the domain of action rather than just the system being built (its

standard elements of program specifications or computer code - which are produced later

in the software design development process). We listed below the patterns of action of the

domain:

• A set of linguistic distinctions (verbs, nouns, jargon, etc.), around

which people in the domain organise their actions

43

➔ in the domain of theatre, these distinctions include play, stages,

stage sets, props, blocking5
, actors, stage set design, rehearsals,

producer, the Iines of actors, act drop, the audience, etc.;

• A set of speech acts by which domain participants declare and

report states of affairs, initiate actions, signify completions, and

coordinate with other people

➔ in the domain of theatre, these speech acts include 'acting!',

design the stages, place a prop, change the settings, start the

rehearsals, play opposite an actor, repeat your Iines, drop the

curtains, etc.;

• A set of standard practices (recurrent actions, organisational

processes, roles, standards of assessment) performed by members

of the domain

➔ in the domain of theatre, these standard practices include making

rehearsals before the performances, working out the place of

actors, choosing the props, designing the overall look of the play,

sketching the stage settings, casting the parts, etc.);

• A set of ready-to-hand tools and equipment that people use to

perform actions; a tool is ready to hand if the person using it does

so with skill and without conscious thought

➔ in the domain of theatre, these ready-to-hand tools include props,

performance dresses, scripts, actor's Iines, lighting system,

backstage, etc.);

• A set of breakdowns, which are interruptions of standard practices

and progress caused by tools breaking, people failing to complete

agreements, extemal circumstances and so on

➔ in the domain of theatre, these breakdowns include broken

lighting system, ripped dresses, actors not knowing their Iines,

5 The process of working out where the actors will be standing during particular parts of the play.

44

wobbly chairs and rickety tables, stuck curtains, missing colour

filters, etc.);

• A set of ongoing concerns of the people in the demain : common

missions, interests and fears

-+ in the demain of theatre, these concerns include rapid stage

sketching of a play being designed, availability of props for

rehearsals and performances, actors not falling sick, to do the

advertising for the play, new dresses sewed intime, etc.).

This ontology will serve during the following stages to keep the context of use in the

centre of the development concerns. It will give the people in charge of prototyping (the

next phase of the development process) a better knowledge of the demain of action and

will help to keep the focus on the practices in use in the demain. It is like a pre-version of

the specifications on which the prototypers will base their work (the development of the

interfaces and interaction patterns constituting the prototypes). The test users of the

prototypes will use this ontology as a landmark to assess the prototypes derived from it.

Prototyping cycle

Customer satisfaction is not static as they can change expectations during the

development process as well as after completion of that process. Consequently, software

must evolve to track their shifting expectations respectively by going through a prototyping

cycle (See 4. Representing) and by releasing new versions of the software packages. The

study of the user's reactions does not stop after the task analysis but goes on through the

prototyping process.

The deployment of prototypes early in the software development process - preceding

any writing of code ! (See 5. Detailing) - can help to observe how people react and what

kinds of breakdowns they experience. Because the customers frequently shift concerns,

the software designers must have means of observing shifting concerns and of taking these

shifts into account in the next version of the design. Prototypes are the perfect means for

that observation but they need to be backed by techniques like "test sites, individual

follow-up sessions, hot fines, highly attentive technical and customer support staff,

45

suggestion boxes, bug advisories, and the like" [Denning-Dargan, 1996, p.114-115] as it is

of central importance to stay in communication with customers.

During this time laps, there is the great temptation for software developers - having the

state of mind of an engineer - to build prototypes designed around what would run fast and

be small and easy to implement. To focus on taking advantage of the specific power of the

platform is a standard practice in the conventional software engineering development

process. To eventually produce a software product that is usable and enhances the user's

experience logically requires to keep concentrating on the user during the prototyping

cycle - and all along the development process as well. A quotation of [Liddle, 1996, p.25]

illustrates our words : "Our attitude was always 'Wait a minute, let's make this workfor

the user. If we find we can 't implement something, then we 'Il go back to the drawing

board. But we 're not going to pick things that we think will be small or fast to build, and

then bully the user into accepting them' ".

The implementation must not corne in the first place : if the user's says that it is okay

with the design of the prototype, only then the development process can evolve a bit

further. David Liddle and his team at Xerox wrote a 400-page functional specification

before they ever wrote one line of code. But they did not just sit down and write it. They

prototyped a little bit, did some testing with users to decide what made sense, and then

wrote a specification for that aspect. Then they prototyped a bit more, tested it, and then

specified it again, over and over until the process was done [Liddle, 1996].

Adapted computer science curricula

Everyone would agree that the education of computer professionals has often

concentrated on the understanding of computational mechanisms, and on engineering

methods that, in accordance with a formai and rigorous process, transform specifications

describing the software functionalities into their implementation (the derived system).

Over and above, the focus is on the objects being designed : the hardware and software.

The primary concern is to implement a specified functionality efficiently. Reliability,

robustness, conformity with the functional specifications are important in software

engineering. Indeed, any developer who ignores them could see her/his application crash

or misbehave which can be highly dangerous in particular contexts of work.

46

But this perspective, with its focus on function and construction, is like wearing blinkers

not to see that the applications developed are most of the time not meeting the needs of

people, are not working in the context of work or user's world of action, do not produce

quality results nor a satisfying human, user's experience. To strive against the lack of

usability of software and the poor design of programs, computer professionals themselves

should take responsibility for creating a positive user's experience. "Perhaps the most

important conceptual move to be taken is to recognise the critical role of design, as a

counterpart to programming, in the creation of computer artefacts" [Kapor, 1996, p.3]. A

development process in which design is a central piece is what we described and called

'software design' all along this chapter.

Since the early nineties Mitchell Kapor made the case that we need to think software

design as a profession, rather than as a side task of a manager or a programmer. And the

best way to achieve this is in introducing design activities in the curriculum of computer

science. Such an adapted computer science curriculum should substitute software design

for software engineering lectures - dealing with traditional software engineering

development methods. This should be a challenge for the next years for the universities

and high schools proposing computer related curricula - at the moment, very few

universities - such as the Stanford University - have developed programs in software

design.

Putting up a strong case for moving from an engineer' s-eye view to a designer' s-eye

view and for taking the system, the users, and the context all together as a starting point for

a curriculum in software design is easy to say. But what expertise do software designers

need, then? According to [Winograd et al., 1996, p.297], "they need ta be able ta envision,

ta create, and to develop a representation of their vision that they can communicate. They

need ta be able ta speak the language of ail the people involved in the enterprise addressed

by software design : the user, the programmer, the graphie designer, the database

architect, the marketing specialists, and ail the rest. They need ta be able ta understand

each discipline well enough ta know when ta involve relevant collaborators and how ta

incorporate the contributions of experts from other disciplines into the software design

visions that they create".

"Naturally, programmers quickly !ose respect for people who fail ta understand

fundamental technical issues" [Winograd et al., 1996]. The answer to this is not exclude

47

designers from the process, but to make sure that they have a sound mastery of technical

fundamentals , a firm grounding in technology. This would give them the assurance that

they are an effective participant in the overall process and speak the language of computer

practitioners. A curriculum in computer science and software design should propose to the

designer student courses that deal with the principles and methods of computer program

construction. Topics, in Terry wynograd's view, would include computer systems

architecture, microprocessor architectures, operating systems, network communications,

data structures and algorithms, databases, distributed computing, programming

environments, and object-oriented development methodologies. Software designers must

have a solid knowledge of at least one modern programming language in addition to

exposure to a wide variety of languages and tools.

After having answered to the initial questions of 'What is design?', 'What is software

design?' among others, we saw in this chapter the importance of the stage at which the

designers are admitted in the process, the importance to listen to the practitioners of a

domain and effectively take into consideration the context of action in which the software

application will take place to support their practices. The reader shall have noticed that the

previous chapters were dedicated to understand what creativity is and the domain of action

of artists and designers. Such work, in an even more detailed form, should be conducted as

part of the software development process. Applying the software design principles to the

development of applications aimed at supporting the creative practices should lead to

effectively used pieces of software, contributing to enhance the user' s experience and to

redu ce the hindrances as well as it should open the software developers' eyes to the

existing needs and, in particular, the need for sketching tools, not only in the domain of

theatre - which is the subject of the Visual Assistant and of my degree training - but in

many other artistic domains as well.

48

MICHE Frédéric
Master's Degree of Computer Science,

5th Year

---~-- asteè.s_degr:ee dissertation ___ __

•

Chapter Four

• • • • • •

V-,sual Assistant: A support for creative
practices for theatre

•

Main advisor : Jacques BERLEUR, s.j. (FUNDP) Training advisor : Colin BEARDON (ESAD)

• •

Chapter Four

Visual Assistant : support for creative practices in the
theatre

Introduction -----------
To illustrate our study let us have a look at the Visual Assistant. This software exists in

two versions : one developed for the Apple Macintosh (version 1.3 at the time of writing)

and one developed for the PC. As the former is relatively mature, we have to mention that

the latter is not fully implemented - thus, we called it VA prototype. The author of the

Macintosh version is Colin Beardon, the 'Training Advisor' for this master' s degree

dissertation. The PC prototype has been developed by myself with his ad vice as part of my

master's degree dissertation. Other students in computer science or professionals

(designers or computer scientists) may have to further develop the PC version of the Visual

Assistant.

In this chapter the objectives and an overview of the commands - as implemented in the

Macintosh version - of the Visual Assistant (also called 'VA ' for short) are first described,

then followed by what the prototype running on PC' s actually implements and what is still

to be done to fulfil the objectives. To close the chapter, a user guide for the PC prototype

is given.

Objectives of the Visual Assistant proj~ec_t __ ~---~

The Visual Assistant project, [Beardon, 1999a], develops software to enable people

working in the theatre - and concerned with performance - to express and communicate

their visual and spatial ideas through the use of digital technology. lt is especially

concerned with the interplay of such software with the creative and working practices

related to performance.

50

[Beardon, 1999c] says that: "/t can be argued that software already exists for such a

purpose in the form of text processing, 2-D image processing, 3-D mode! building and

multimedia applications. As the outputs from such applications are increasingly

exchangeable across hardware platforms, why is there a need for another software

package ? We suggest three potential answers to this question :

• during the early, 'sketching' stage of a design it is necessary to

work with ill-defined ideas and existing packages require too much

detail;

• 2-D graphies does not enable the proper exploration of three

dimensional space, whereas 3-D modelling requires technical skills

that are not easily achieved;

• and none of the interfaces look and feel like a theatre - they look

and feel like a computer interface".

Initially, ideas corne in a rough, non-detailed form like "impressions and intuitions"

[Beardon, 1998]. An artist or a designer, during the initial stages of creation when

concepts are in formation, will try to capture these on paper. Because intuitions do not last

very long, there is a critical need to rapidly sketch different representations of these until

they manage to get as close as possible to what they had in mind. As a consequence, many

sketches will then be discarded.

This should help us - as software designers - to better catch the crucial need for

sketching tools when there are so many packages concerned about detailed representations.

[Beardon, 1998] points out that th ose packages could be ''positive/y harmful (. . .) : a 3D

computer modelling system that requires two or three days to build a mode! of a set can be

very impressive, but is not appropriate for this early stage of design. We simply cannot

a.fiord to spend days on a design, on/y to find that it does not capture our original idea.

The tendency, having invested so much time, is to stick with the design and try to make it

better, whereas what should be done is to discard it and try again". We do believe that

"when not hindered by a need for accomplished draughtsmanship or photo-realistic quality

51

the visual process becomes more accessible1
" [Beardon, 1999c], thus can be used m

teaching context.

"The software was designed according to what is stated above and for users who are

primarily interested in the theatre and are probably not at al! interested in computers.

Many years' experience of working with such students led Colin Beardon (the software

designer and developer for the original version of the Visual Assistant on the Macintosh

platforrn) to some initial design objectives for the software [Beardon, 1999b] :

• It must be very simple to learn : you should be able to see someone

else using it and then confident/y use it yourself No manual, no

tutorial !

• It must be simple to use : there is little point in providing 96

options when most users will only use 12.

• It should give meaningful results quickly there is a tightly

iterative process of producing and evaluating.

• What happens should be like sketching : it should not matter if

work is irretrievably transformed or destroyed - you can always

try again. The Visual Assistant should rather be seen as a theatre

image-making sketch book rather than as a theatre design tool. As

explained in Chapter 2, the Visual Assistant has been developed as

a sketching tool to offer artists and designers tools that can be used

during the initial stages of the creation process - which does not

need details before its final stages; Chapter 2, Concept formation

and sketching.

• It should support 'process' rather than 'product' : particularly

processes that leads to clearer understanding and better actions in

the real world, e.g. a better perception of a play to put on.

• lt should present a believable 'language-game2
' : when acting on

the computer screen you should be thinking as a theatre persan -

1 This quality is part of the ones required by the creative practitioners and listed in the typology. See Chapter Two,
Typology for that typology.

52

that is, the software-tool should moved aside, hide behind the

theatre practitioner. lt should become 'transparent' for its user

rather than constrain him or her to submit toits 'policies3
'.

• It should support person-to-person dialogue: it shouldfunction as

a common sketchpad to support critical discussions.

• It should be able to lead to more detailed implementation".

These design objectives should make it easier for the theatre practitioners using this

sketching tool (the Visual Assistant) to explore unpreviously noticed parts or the limits of

the conceptual spaces4 related to creative practices and to possibly tweak and transform

(the two sorts of changes distinguished by Margaret A. Boden and described in Chapter

One) them, which can lead to creative or radically creative nove] ideas for the design of

plays.

The Visual Assistant software enables the rapid prototyping of visualisations without the

need to cope with full 3D computing. These may be visualisations of the physical stage,

but they may just as profitably be visualisations of other aspects of performance - a.o. "to

give a multimedia presentation of the HaMLET project, analyse the blocking5 or as a

means of analysing a play texf' [Beardon, 1998]. Experience has shown that rnany users

adopt a looser approach to what is being represented. Sorne of benefits clairned by users

include : an ability "to create 'atrnosphere' rather than detail"; an ability "to describe an

environrnent within which action can take place"; and "a medium for visual

irnprovisation6
" .

The package (the Macintosh version, as it is - fig. 4.1) is easy to learn and use, and

produces output that can be viewed locally or transferred over internet as VRML files.

These can then be viewed on any platform using a standard 3D-browser plug-in (fig. 4.2).

2 Such languages are used to design objects that express what the objects are, what they do, how they are to be used,' and
how they contribute to experience. They are the visual and functional language of communication with the people who
use an artefact [Rheinfrank-Evenson, 1996].
3 Understand it as its way of proceeding.
4 For an explanation of the 'conceptual spaces', see Chapter 1. Conceptual spaces.
5 The process of working out where the actors will be standing during particular parts of the play.
6 Understand it as 'do not have pre-conceived ideas, do not let technology or material issues guide your actions. Feel free
to explore new ways, new visual ideas, new designs and go beyond coping with technology'.

53

Fig. 4.1 : Designing a stage set with the Visual Assistant on the Macintosh platform.

Fig. 4.2 : Viewing a stage saved on the Macintosh platform with the VRMLfileformat.

54

Most of the work of Margaret A. Boden was concerned with trying to embody creativity

in a computer programme. As one objective in Artificial Intelligence is to reproduce

human behaviour inside computer machinery, her objective lies in trying to give a

computer creative drives, to make them produce some works of art. This is not the way of

looking at things underlying the concepts that the Visual Assistant package implements. In

this project, we are rather interested in supporting human creative practices by using

software applications mainly for the early stages of the creative process.

In Chapter Two, we listed many concems regarding the needs and reproaches of artists

and designers in terms of software applications supporting their creative practices. In what

follows, we look at the concerns that are addressed by the Visual Assistant. The concerns,

as given in Chapter Two, are formatted in bold; the answer given by the Visual Assistant is

placed just below, following an arrow.

In the relation between artists/designers and computers, there should be ...

• A feeling of greater independence in the choice of tools;

~ the Visual Assistant is made for people working freelance -

wishing to visualise the play they are writing - as well as for

people working for a company producing plays already written -

wishing to determine the best visual aspects for the play by quickly

comparing different designs, different ideas.

• Suitable software tools to use during the concept formation.

These tools should offer the possibility to sketch, and

consequently to explore, ideas rather then requiring details

right from the start;

~ the Visual Assistant is a sketching tool to develop and compare

ideas regarding the design of the different stages of a play. It is

especially designed for use during the concept formation. The

Visual Assistant does not render the overall look of a stage with a

particularly photo-realistic quality as this feature is not desired in

the early stage of design.

55

• Simplicity is often lacking in many software applications.

There is a preference for "packages that present themselves

initially as quite simple, but reveal depths of complexity as you

get to used them";

-+ the Visual Assistant offers simplicity in moving objects back and

forth rather than erasing pencil lines and redrawing objects

backwards or forwards on a sheet of paper.

To use computers, artists and designers need .. .

• A sense of good organisation and rigour;

-+ the Visual Assistant cannot help for this.

• The ability to use finite windows on ail sorts of large

documents;

-+ the Visual Assistant does not display a large document

representing the stage through a small window but display the

whole stage on the screen - no need to scroll the document.

• To consider computers as a complement to - and not to exactly

reproduce or substitute for - traditional artistic techniques

offering hybrid ways of working;

-+ the most artistic element of theatre lies not especially in the early

stage - the concept formation - but in the most visual aspects of

theatre as well as in the overall process of putting on a play. The

Visual Assistant is just a sketching tool that takes place among a

set of various tools and theatre practices.

Drawbacks ...

• A loss of sensitivity to space and light;

-+ the lighting system in the Visual Assistant is very basic : one can

make the whole scene lighter or darker whole scene or only make it

only for the objects individually.

56

• (repeated) A sense of good organisation and rigour;

-+ the Visual Assistant cannot help for this as some creative

practitioners feel hindered in their creative activities by too much

organisation and rigour.

• (repeated) The ability to use finite windows on ail sorts of large

documents;

-+ the Visual Assistant does not display a large document

representing the stage through a small window but display the

whole stage on the screen - no need to scroll the document. The

user does not feel confused by the only seeing a portion of a large

document (a blueprint, for instance).

• Metaphors can be perceived as obstacles to the observation of

the software applications' marginal behaviour;

-+ So far, we do not know what kind of marginal behaviours the

artists/designers could discover and observe with the Visual

Assistant. The main obstacle to fully appreciate the use of the

Visual Assistant is in trying to get a photo-realistic quality in the

visualisation/design of the plays.

Advantages ...

• Use of Internet to overcome space and time limits and

collaborate on works of art or exhibitions;

-+ the Visual Assistant at the moment has no functionalities for

collaboration over open or private networks. This will most

probably be considered for a future version of the Visual Assistant

- it could possibly be the subject of another degree training and

master's degree dissertation.

• Great use of the UNDO command as it offers a means to

reverse the eff ect of time;

57

-+ at present, the Macintosh version has an UNDO fonction that can

cancel the effects of the last action only. This fonction is

unfortunately not available for all the functionalities.

• Computers offer artists and designers possibilities to edit and

print multiple versions of tbeir works;

-+ this is possible with any piece of software.

• Interactivity is a very attractive feature of computers;

-+ the objective of the Visual Assistant is not to produce a

interactive work of art.

• Use of the computer to reduce storing space and intelligently

store documents in a digital form;

-+ the Visual Assistant, in its Macintosh version, stores all the stages

as a sequence that can be played like a slideshow. This solution

can appear to the theatre practitioners as being more convenient

than using a sheet of paper for each stage sets.

A tool for studen1s in theatre roduction

The Visual Assistant has been used in several teaching workshops. This software is

intended to be increasingly used for education purposes as it offers many advantages :

ease-of-design, rapid prototyping and, last but not least, cheaper than setting theatre

properties on an actual stage !

Students in theatre production have to learn how to design stage sets for a play. This is

a rather costly activity, both in money and time. Indeed, to do it for real, each student

should have at one's disposa! a real theatre stage. To renta theatre for a whole classroom,

one student at a time, one stage set by one, is neither feasible nor affordable. lt also means

that the college should have real objects like forniture but also people or dummies for the

students to figure out where to place everything and which space they need on the stage. lt

is time consurning to place all the objects, to change their place to improve the

58

arrangement of the properties - especially when this has to be done for a multi-stage play

and for each student.

Therefore, an objective of the Visual Assistant is to save time and money by allowing

the students to use a computer to virtually decorate a stage. By this action of 'sketching

with the computer', they can get a preliminary idea of what they want. This is far less

expensive than to do it for real ! They can design their stages and eventually do it life­

sized if it is necessary.

Another goal the Visual Assistant is seeking after is to re-educate theatre students. In

our present times, the ease of access to television and films is so great - even from early

childhood - that man y students conceive man y aspects of the theatre in terms of television

or films techniques. The 'close-up' desire is probably the best example of this observation.

They also think about theatre mainly in terms of 'words' : scripts, reviews, .. . Hence the

need to develop their visual and spatial skills - which are actually the rudimentary skills of

stage designers - and to make them realise "that full scale theatre designs is often

impractical and expensive". The Visual Assistant offers such potentialities since it

represents the stage as a whole, using 2D-images (rather like flat 'cardboard eut-outs') as

theatre properties or actors and the possibility to explore spatiality by setting out objects in

a 3D, virtual space. Moreover, that 'virtuality' appears as a cheap solution.

Overview of the functionalities 7

The Visual Assistant (version 1.3 for the Macintosh) is an application that enables the

user to collect textual and graphical material and to organise it visually. It builds upon the

visual and spatial qualities of objects on the screen, rather than their formal (any semantic

information such as object type, name, etc.), physical (location, size, image) or textual

properties (any written comments). lt enables the user to construct abstract or quasi­

realistic representations - the latter ones could actually become real stage sets for real

theatre plays.

Whilst there is 3D-modelling software to produce accurate 3D models of theatre layout

and stage and set design (including such features as simulated lighting), such an approach

7 [Beardon, 1999a]

59

assumes a knowledge of detail and a commitment of time that may not be available or even

desirable when ideas are in formation. The Visual Assistant provides a quick way of

creating the general impression generated by a stage, or other 3D space, so that the

important concepts are clarified and can be discussed. "The environment has a certain

logic, but it is not based upon photo-realistic geometry. The uncompromising lack of

photo-realism has been found by educators not to be a weakness but a strength of the

software. Jt forces student users to express ideas approximately, yet in a way that creates

what one practitioner has described as 'atmosphere'" [Beardon, 1999b].

The fondamental architecture of the Visual Assistant is that it contains a sequence of

'stages', each of which contains a number of 'abjects'.

Stages

Each stage is bounded by a three dimensional 'box' into which abjects can be placed.

Within the Visual Assistant this space may be viewed from the front or the top (as a saved

VRML file it may be fully explored in 3D using a browser and the appropriate plug-in).

Ali abjects in the stage have a visual 2-dimensional representation, rather like a fiat

'cardboard eut-out'. These abjects can be arranged in the 3-dimensional space. One abject

can be put onto the floor of the space.

When viewed from above the various images appear as lines with width but minimal

depth. They can be moved around in this top view and the moves are permanent, i.e. they

take effect if the user changes back to front view. By moving the ends of abjects in top

view, abjects can be rotated around their centre point (i.e. they need not face the front of

the stage). Back to the front view, the moved abjects appear greater or smaller if they have

been moved forward or backward respectively. Objects rotated in the top view appear like

a trapezoid in the front view - this to simulate a perspective effect due to a leaned abject.

In the front view, one can see an outlined rectangle - representing the back of the stage

- with four lines linking its corners with the corners of the display area (as opposed to the

contrai area in which the 'Tool Box' is displayed). Together, they represent a 'box '

bounding the stage. This 'box ' , called the 'Wireframe' can be switched on/off if a

designed stage requires no spatial limits (e.g. when only the characters or some properties

are lit by the spotlights and the rest lies in the dark).

60

30 stages exist as a sequence. An object created on any stage will exist on all

subsequent stages unless it is changed or deleted. There is an option to 'play' the sequence

of stages and this displays a simplified animation, rather like a slide show.

The commands available for stages are :

• go to a given stage,

• paste a colour to the floor,

• paste an object to the floor,

• change the image on the floor to a pattern,

• flip (horizontal or vertical) the image on the floor,

• re-colour the image on the floor,

• change the transparency of the object on the floor,

• remove the object from the floor,

• change the shape of the floor,

• make a scene lighter or darker,

• change the colour of a whole scene,

• change the background colour,

• play the stages,

• go to a top or front view.

Objects

Predefined images (from CD-ROMs, the Web, captured by digital cameras or through

scanning, or through other applications) are entered as standard format files. They may

also be entered by copying from other applications and pasting into the Visual Assistant. If

the image is larger than the screen it will be reduced to fit the screen.

61

In addition, the user may create simple objects directly in the Visual Assistant - objects

such as rectangles, circles, lines and pencil drawings.

Once entered the object can be manipulated by the following commands :

• import a new object,

• create a rectangle,

• create a circle,

• create a line,

• draw with a pencil,

• set pencil width,

• eraser (for use on any object),

• move an object (horizontal & vertical),

• move an object (horizontal & deep),

• resize an object,

• delete an object,

• duplicate an object,

• group two or more objects (i.e. mak:e into a single object),

• change transparency of an object,

• flip an object (horizontal or vertical) ,

• rotate an object around its centre point (only in top view),

• make the image of an object into a pattern,

• resize the pattern,

• fix the pattern,

62

• re-colour an object,

• make an object lighter or darker,

• clean stray pixels,

• add or amend text associated with an object,

• paste object to floor.

The Visual Assistant has been developed as part of the Leonardo da Vinci HaMLET8

project. It has also received support from the NVRCAD9 project funded under

JISC/JTAP10
• The PC prototype has been developed by myself as part of this master's

degree dissertation.

For the specifications of the PC version of the Visual Assistant were in the form of the

Macintosh version, I had not the opportunity to actually apply myself the principles of

software design as exposed in the previous chapter. The observation of the user' s

behaviour in its context, the building of the ontology of the domain, going through a

prototyping/testing cycle to write and review the specifications, all this work has been done

by the author of the Macintosh version of the Visual Assistant, Colin Beardon. As a

teacher, Colin had the chance to observe the students interacting with the technology,

adopting a negative attitude towards the technology or, at the opposite, amazing

themselves at the potential of computers. For instance, the early prototype versions of the

Visual Assistant (in its Macintosh version) were used by educators, Theatre and

Performance students from different Universities (Helsinki, Paris, Plymouth, Malmë, .. .)

and these trials revealed, among others, that students were experiencing frustrations

whenever they had to design real stage sets and were expecting photo-realistic quality.

However, during all my degree training, my way of thinking (mostly influenced by the

software engineering methods) was faced with the software design stake of Colin Beardon

- my training advisor.

8 ' Multimedia Leaming Environment for Theatre and film' . Web site at http://vconf.hut.fi/hamlet/
9 ' the Networked Virtual Reality Centres for Art & Design'. Web si te at http://www.esad.plym.ac.uk/nvrcad/

63

This PC version does not meet all the specifications as given by the Macintosh version

of the Visual Assistant. Only a few commands have been implemented so far. As an

example of software supporting creative and working practices and a software for

sketching ideas, this PC version, in my opinion, does not need to be fulfilled to illustrate

our point in this master's degree dissertation. Further implementation of the Visual

Assistant PC version could be undertaken as part of, possibly, another degree training in

the Exeter School of Art and Design (ESAD).

Here is a list of the commands implemented in the PC prototype of the Visual Assistant

I developed :

• look stage from a top view,

• look stage from a front view,

• import a new object,

• create a rectangle,

• create a circle,

• create a line,

• draw with a pencil,

• set pencil width,

• move an object (horizontal & vertical : toward the left/right or

top/bottom sides of the 'box' delimiting the stage - only in front

view),

• move an object (horizontal & deep : toward the left/right or

back/front sides of the 'box' delimiting the stage - only in top

view),

• delete an object,

• change transparency of an object.

10 ' JISC (Joint Information Systems Committee) Technology Applications Programme'. Web site at
http://www.jtap.ac.uk/

64

To make up for the commands not implemented in this version, one could use graphie

packages - some of them are free of charge and can be downloaded from Internet or found

on freeware CD-ROM - to change objects to greyscale or to colour them while retaining

the light/dark shading of the original image; to make objects lighter or darker; to flip

objects around a vertical or horizontal axis; to erase some parts of the objects or clean stray

pixels, for instance. However, this does not go without two drawbacks :

• importing images in a graphie package and saving them before

inserting them again in the Visual Assistant will appear as a tedious

solution;

• although graphie packages offer more possibilities to retouch

images, this with more details, they need a commitment of time to

get a feel of such image-retouching tools.

A command such 'move deep' that should be available in the front view is not

implemented though. A way to place an object at the back of the 'box' delimiting the stage

is to go to the top view and move the object backwards from this standpoint.

It is unfortunately not possible to save the work done with the PC prototype. But this is

not much a real problem in the sense that our purpose is not the one a student in theatre

production could have. Presenting the Visual Assistant as an example for this master's

degree dissertation, we do not really need to put our work aside and show it later to a

teacher for getting marks. No VA or VRML file format has been implemented in the Visual

Assistant prototype, hence it is not possible to open a previously saved Visual Assistant

'world' - i.e. a sequence of at least one stage set.

At the bottom of the screen, the Visual Assistant displays a control panel called 'Tool

Box'. The ergonomy and the graphical aspects of that 'Tool Box' are not much to look at.

Yet I used this as a temporary solution for developing the prototype and it certainly should

be corrected towards the end of the development cycle. Because of this temporary

situation, some buttons only display abbreviations or part of command words. A designer

should be hired to drastically improve those aspects of the control panel. But that time has

not corne yet as the Visual Assistant still needs functional improvements, modifications in

65

the way a stage is being represented 11
, and more testing from the students that are or will

use it as part of their cursus.

Commands

In this section, the commands available in the prototype for the PC version of Visual

Assistant are presented with a brief description. For each, the path through the menus and

the name of the menu item are given with the following syntax :

[Menu\(Sub-Menu)\Menu Item]

Below this path you can find a brief description of the commands.

[Edit\Draw Shapes\Circle]

Creates a new circle. Click once with the left mouse button and hold it. Drag

the shape until it reaches the desired size and release the button.

[Edit\Delete Object]

If you click on an object it will be permanently removed.

[Edit\Draw Shapes\Freehand Pencil]

Enables you to draw with a pencil. The thickness of the line can be changed by

clicking on the Pen Size tool. The colour of the pencil is the current colour.

Each time you release the Pencil tool you will create a new object. This new

object can be moved as any imported object.

[Stage\Front View]

Changes the viewpoint to a position directly facing the centre of the back wall

and at approximately two stage depths from the front of the stage.

11 A theatre stage is actual ly deeper than larger - which is not the case in the current representation of a stage in both the
Macintosh and PC versions of the Visual Assistant. Such a stage allows to place many backgrounds and theatre
properties behind the one that is currently used for the performance. The foremost background just need to be raised for
the public to see the one behind.

66

[Edit\Insert Object]

Y ou will be asked to select a BMP file. A picture will appear centred on the

screen (located at the front of the stage). The image of the object will be

shown as "transparent" (i.e. all white pixels will be transparent).

[Edit\Draw Shapes\Line]

Creates a straight line in the current colour. The width of the line is determined

by pen size.

[Edi t\Move]

Enables you to move an object on a vertical plane from the front view. As the

distance from the front of the stage is fixed, the object will not get larger or

smaller.

If in Top View, then objects (represented by thin rectangles) can be moved

around the stage by picking them up from inside the rectangle. When you

retum to Front View, the object will appear greater or smaller if it bas been

moved towards the front or the back of the stage respectively.

[File\New World]

Will create a new, empty environment. If the current environment has been

altered since the last New, Load or Save comrnand then users will be asked if

they wish to save the present environment. lt will then be deleted. Please note

that saving the current world just creates an empty file (with the extension

'.VA') since no V A or VRML file format has been implemented in the PC

prototype.

[Edit\Pen Size]

Opens a dialogue window to reset the size of the pen (for Pencil and Line

tools)

[Edit\Colour\Pick a Colour]

67

Shows the current colour and, if selected, opens the colour picker to select a

new colour.

[Edit\Colour\Pick Black]

Sets current colour to black.

[Edit\Colour\Pick White]

Sets the current colour to white.

[File\Quit Visual Assistant]

Will quit the Visual Assistant and return to the desktop. If the current

environment has been altered since the last New, Load or Save command then

users will be asked if they wish to save the present environment before

quitting. Please note that saving the current world just creates an empty file

(with the extension '.VA') since no VA or VRML file format has been

implemented in the PC prototype.

[Edit\Draw Shapes\Rectangle]

Creates a new rectangle. Click once with the left mouse button and hold it.

Drag the shape until it reaches the desired size and release the button.

[Stage\Show Wireframe]

This item behaves like a toggle option : when the check mark is visible, a

wireframe is displayed. Selecting the check-marked item turns off the mark

and make the wireframe disappear.

[Stage\Top View]

This command permits viewing from a point directly on top of the stage.

Objects will appear as thin grey rectangles outlined by a strip green line. When

selected with the cursor, this rectangle representing the object in Top View

may be dragged and dropped anywhere within the stage lirnits. The effect of

changes made in 'Top View' will be permanent and will be reflected when you

retum to 'Front View'.

68

In this view, the command 'Move' is selected by default so that the user can

save mouse displacements if she or he intended to move objects backwards or

forwards on the stage.

[Edit\(Un)Make Transparent]

If you click on an object, the transparency of the image will change, i.e. if it is

currently 'transparent' (all white pixels are invisible) it will become 'opaque'

(i.e. all white pixels within a white rectangle will be shown) and conversely.

Guided tour

Now that the commands have been described, we will guide you through a quick design

of a single stage set using the Visual Assistant prototype. For this, we need a few theatre

properties, i.e. a few images that can be found free of charge - or at affordable prices -

anywhere on the Web, on CD-ROM's or scanned by your own means. A few of them

corne with the Visual Assistant prototype. Select for instance a wall texture, curtains, a sky

and an armchair, a table, and lastly a character or two.

Launch the Visual Assistant application and select the item 'Insert Object' in the 'Edit'

menu. You can also click on the corresponding button (the one displaying 'Inser') in the

'Tool Box'. A dialog box will appear and you will be prompted to choose a directory and

a file (only the standard BMP file format is recognised at the moment). For now, choose

the wall texture. Click on the OK button or double-click on the chosen file to validate your

choice. The image will appear centred on the screen, located at the front of the stage.

To place the wall image at the back of the stage, you need to go to 'Top View' . For

this, select that item in the 'Stage' menu. Our image is now represented by a thin grey

rectangle outlined by a strip green line and is placed at the front of the stage - which is

actually the bottom of the display area. Click once on it and, while holding the left mouse­

button, drag it to the back of the stage (the top of the screen). That change made in 'Top

View' will be permanent and will be reflected when you retum to 'Front View' by selecting

this item in the same 'Stage' menu. Your wall is smaller as it is now located against the

back of the stage, inside the outlined rectangle of the 'box'.

Now import the image of the sky and through the top view place it just before the wall.

Load the window (command 'Insert Object' in the 'Edit' menu) and place it right in front

69

of the sky image. Load twice the image of the curtains, go to top view and place each of

them besides the window. Back to the front view, adjust the position of the curtains :

select the 'Move' item in the 'Edit' menu or on the 'Tool Box' and move the curtains

vertically or horizontally.

The design of your stage is almost finished. Y ou just need to insert the table, the chair

and the armchair. In top view, place them wherever you want in the lowest third of the

display area. And at long last, import the character(s) and place he/she/them among your

properties.

Note that if you need to resize an object, flip it vertically or horizontally or lean it to

place it along the left/right sides of the stage, use a graphie package such as Paint Shop Pro

(a shareware that can be found on Internet) or PhotoShop (commercial product) since those

commands are not available in this version of Visual Assistant at the moment. We would

like to apologise for imposing you such a tedious way of designing your stages. With an

ounce of imagination, you can realise how easy it is to design a stage with a fully

implemented version of the Visual Assistant compared with 3D packages (such as

AutoDesk 3D Studio Max) or 2D software (like Adobe PhotoShop).

Student works

The stage set designs shown below were made by students with the version of the

Visual Assistant running on the Macintosh platform.

70

71

Conclusion

A sketching tool should pursue some design objectives (simple to leam and use,

sketching rather than detailing, adequate for teaching and training, a good complement to

traditional non computer-based techniques, etc.) to address the concerns evoked by artists

and designers about software packages aimed at supporting their creative activities.

Severa! of these design objectives are addressed by the Visual Assistant, which can be used

by professionals as well as educators and students. The latter use is very important to

demystify computers and prevent future creative professionals to develop a negative

attitude towards the technology as the complementary use of computers can help in

producing arresting and highly creative products, including plays - which is the concern of

the Visual Assistant. We are convinced that the Visual Assistant is a weJJ designed

sketching tool for theatre practices and we hope that professionals and educators will make

use of it - which would be the best proof of its adequacy to the practitioners and their

domain of action.

73

MICHE Frédéric
Master' s Degree of Computer Science,
Su, Year

___ Masle 's d_egree dissertation ___ _

Conclusion

• • • • • • • • • •

Main advisor : Jacques BERLEUR, s.j. (FUNDP) Training advisor : Colin BEARDON (ESAD)

------------------- - - ------------------

Conclusion

Through this master' s degree dissertation we first explained the unconscious thought

(partly) understandable process of creativity. We took up a scientific approach to explain

this phenomenon but do not think that this perspective dispelled the mystery of creativity.

We then observed the relationship between artists, designers and computer technology.

We determined some of their needs and reproaches in a typology before reviewing the

Visual Assistant in order to point out which demands have been fulfilled and which bas not

been.

We also hope to have proved the importance of computer-based sketching tools and of

their contribution to the enhancement of the creative process in the domain of theatre but in

any other creative field as well. This is important as computers will increasingly pervade

more numerous everyday activities. Adopting a negative attitude towards the technology

is a mistake and would amount to eut off oneself a bit more everyday or, less dramatic,

would amount to unfairly criticise something not well understood. The use of the Visual

Assistant and similar tools in education, according to us, should help to demystify

computers and take apart this negative attitude. Through the prototype of the Visual

Assistant I developed during my degree training, I hope to have contributed to extend that

demystification and progressive disappearance of some negative attitude to the PC

platform.

Computer-based sketching tools - such as the Visual Assistant - have proved their

usefulness in the support of creative practices. But to improve the overall user experience

with software technology is not sufficient. Therefore, we reviewed the software

engineering methods and proposed an alternative to them which many computer

professionals have named 'software design'. This discipline gives great consideration to

the admittance of designers at an early stage of the process and to the necessity of listening

to the practitioners of a domain as well as it means to effectively take into consideration

the context of action in which the software application will take place to support creative

practices. The application of such software development methods should lead to greater

usability, reliability, dependability, appropriateness and better quality of the user's

experience.

75

Software engineers must shift software development from a process of deriving a

software system from specifications documents to a process of supporting the standard

practices in a domain through software that enables more effective action. However, this

shift in view will not occur ovemight as many departments in universities are still teaching

traditional software engineering techniques. Besides, students and professionals find far

easier these latter as it requires some efforts to apply software design principles when you

are not an expert in the field.

The originality of this master's degree dissertation lies not in revealing brand new

software development methods - software design dates from the late eighties - but rather

finds grounding in bringing together software design, creative practices in general, and

theatre practices in particular. We hope that the Visual Assistant will serve as an incentive

for software developers to develop sirnilar applications in fields other than the one of

theatre as well as to develop applications more human-centred in creative and any other

domains.

We left the care to analyse the effects and consequences of collaborative design of stage

sets over networks to further development of the Visual Assistant for PC platforms and of

this master's degree dissertation. The Visual Assistant could be developed using a browser

and Web page style as the interface. We also left the study of the impact of participatory

design to further work. Participatory design techniques focus on enlisting practitioners of

the relevant domain directly in the software design process - the domain of theatre with

regard to this master's degree dissertation.

76

8MICHE Frédéric
Master's Degree of Computer Science,
5"' Year

_____ .__aster' SJie~ee~ssertation ___ ____.

Bibliography

• • • • • • • • • •

Main advisor : Jacques BERI.EUR, s.j. (FUNDP) Training advisor : Colin BEARDON (ESAD)

[Beardon, 1999a]

Beardon Colin, The Visual Assistant Web site, last update on the 7th of May
1999. http://www.esad.plym.ac.uk/V A/index.html.

[Beardon, 1999b]

Beardon Colin, "The design of software to support creative practice" , 1999.
Paper to be presented at the International Conference on Design and
Technology Educational Research and Curriculum Development (/DATER 99),
University of Loughborough, 23-25 August 1999.
http://www.esad.plym.ac.uk/personal/C-Beardon/papers/paper9902.htm1.

[Beardon, 1999c]

Beardon Colin, Enright Terry, "The Visual Assistant: designing software to
support creativity", 1999. Paper presented at CADE'99 Conference, University
of Teesside, 5-7 April 1999 and to appear in the Proceedings.
http://www.esad.plym.ac.uk/personal/C-Beardon/papers/paper9901.html.

[Beardon, 1998]

Beardon Colin, "Multimedia Leaming Tools for the Theatre", 1998. Paper
presented at the MESH Conference, London 1-2 October 1997.
http: //www.esad.plym.ac.uk/personal/C-Beardon/papers/9701.html.

[Beardon, 1997]

Beardon Colin, Gollifer Sue, Rose Christopher, Worden Suzette, "Computer
Use by Artists & Designers", in M. Kyng and L. Mathiassen (Eds.) Computers
and Design in Context, MIT Press, Cambridge (Mass.), 1997, pp. 27 - 50. This
paper can be found at http://www.esad.plym.ac.uk/personal/C­
Beardon/papers/9510.htm1 under the title 'Designers as users'.

[Boden, 1994]

Boden, Margaret A., "What is creativity ?", in Boden, Margaret A. et al.,
Dimensions of creativity, MIT Press, Cambridge (Mass.), 1994.

[Boden, 1992]

Boden, Margaret A., The creative mind: myths and mechanisms, Abacus,
London, 1992 for the paperback (First published in 1990).

[Boehm, 1988]

Boehm Barry, "A spiral model of software development and enhancement", in
IEEE Computer 21:2, May 1988.

78

[Crampton Smith-Tabor, 1996)

Crampton Smith Gillian, Tabor Philip, "The role of the artist-designer", in
[Winograd et al., 1996].

[Denning-Dargan, 1996)

Denning Peter, Dargan Pamela, "Action-centred design", in [Winograd et al.,
1996].

[Grand Robert, 1993)

Legrain Michel, Rey-Debove Josette, Rey Alain et al., Le Grand Robert,
Dictionnaires Le Robert, Paris, 1993 (First published in 1967).

[Kapor, 1996)

Kapor Mitchell, "A software design manifesta", in [Winograd et al., 1996].

[Kelley-Hartfield, 1996)

Kelley David, Hartfield Bradley, "The designer's stance", in [Winograd et al.,
1996].

[Liddle, 1996)

Liddle David, "Design of the conceptual model", in [Winograd et al., 1996].

[Longman, 1995)

Summers Della, Gadsby Adam, Rundell Michael et al., Longman : dictionary
of contemporary English, Longman Group Ltd, Essex, 1995 (First published in
1978 then 1987).

[McCullough, 1998)

McCullough Malcolm, Abstracting craft : The practiced digital hand, MIT
Press, Cambridge (Mass.), 1998 for the paperback (First published in 1996).

[Muller, 1993)

Muller Robert C., "Enhancing creativity, innovation and cooperation", in AI &
Society (the journal of human-centred systems and machine intelligence),
Volume 7 Number 1, Springer-Verlag, London, 1993.

[Quéau, 1993)

Quéau Philippe, Le virtuel: vertus et vertiges, collection milieux, éditions
Champ Vallon/I.N.A., Seyssel, 1993

[Rheinfrank-Evenson, 1996)

Rheinfrank John, Evenson Shelley, "Design languages", in [Winograd et al.,
1996].

79

[Somerville, 19??]

Somerville Ian, Software engineering, Addison Wesley, ? , 19??.

[Winograd et al., 1996]

Winograd Terry, Bennett John, De Young Laura, Hartfield Bradley et al.,
Bringing design to software, ACM Press, Baltimore (Md.), 1996.

80

MICHE Frédéric
Master's Degree of Computer Science,
5"' Year

___ Maste 's d_egree dissertation. ___ _

Appendix

• • • • • • • • • •

Code of the V,sual Assistant.

Main advisor : Jacques BERI.EUR, s.j. (FUNDP) Training advisor : Colin BEARDON (ESAD)

Appendix

Code of the Visual Assistant

Listing.._ _________________ _

We only listed after relevant parts of the code rather than every portion automatically

generated by the 'C++Builder' Rapid Application Development (RAD) tool.

1

Facultés Universitaires Notre-Dame de la Paix, Namur
Institut d'Informatique

Année académique 1998-1999

Computer Sketching: How
Software Tools Can Support

Creative Practices ?

Annexes

Frédéric Miche

Mémoire présenté en vue de l'obtention du grade de« Maître en Informatique»

•

•

•

•

•

•

•

•

•

•

•

•

Computer Sketching: How Software Tools Can Support Creative Practices?

Annexes

Frédéric Miche

Code of the PC Prototype of Visual Assistant (Full version)

Code of the PC Prototype of Visual Assistant (Shortened version)

2

75

•

•

•

•

•

•

•

•

•

•

•
2

•

•

•

•

•

Code of the PC Prototype of Visual Assistant

Vaprot.cpp (root file - execute code in Main.cpp)

//--------- - ------------------- - ---- --------------- - -------------------------

#include <vcl . h>

#pragma hdrstop

USERES("VAprot.res");

USEFORM("Main.cpp " , MainForm);

USEFORM ("Tools . cpp" , ToolBox) ;

USEFORM (" About. cpp", AboutBox) ;
USEFORM (" Infos . cpp ", InfosBox) ;
USEFORM(" PenSizing.cpp", PenSizeForm);

• 1/---

•

•

WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{

try
{

Applicati on->Initialize ();
Application - >Title = "Vi s ual Assistant Prototype ";
Application->CreateForm (c lassid (TMainForm) , &MainForm);
Application- >Crea teForm(c lass id(TToolBox), &ToolBox);
Application->CreateForm (classid (TAboutBox), &Abou t Box);
Application->CreateForm (classid (TinfosBox), &InfosBox);
Application->CreateForm (_classid (TPenSizeForm) , &PenSizeForm) ;
Application- >Run ();

catch (E xcepti on &excepti on)
{

Appl i cati on- >Sh owException (&exception);

return 0 ; . }

•

•

•

•

//------- - ------------------- - ---

Main.h (Header file for Main.cpp)

/1---------------------- - ------ - ---
#ifndef MainH
#define Ma inH
1/ - - ------ --------------------------------------- - -- - ------------------------
#include <vcl\sysutils . hpp>
#include <vc l\windows.hpp>
#include <vc l\messages . hpp>
#include <vcl\sysutils . hpp>
#include <vcl\c l asses .hpp>
#include <vcl\graphi cs . hpp>
#include <vc l \contro l s . hpp>
#include <vc l \forms .hpp>
#include <vc l \di alogs . hpp>
#include <vcl\stdctrls.hpp>

3

#include <vcl\buttons . hpp>
#include <vcl\extctrls.hpp>
#include <vcl\menus.hpp>
#include <Classes.hpp>
#include <Dialogs.hpp>
#include <Menus.hpp>
#include <Controls . hpp>
#include <ExtCtrls.hpp>
#include <ExtDlgs.hpp>
1/----------------------------- --------------- - --- - ------------ --------- -----
enum TVATools {tsNoTool ,

tsNewWorld , tsOpenWorld , tsSave , tsSaveAs ,
tsTopView ,
tsinsert , tsRectangle , tsCircle , t sLine , tsFreeh and , tsEraser ,

tsPensize,
tsMove , t sTransp ,
tsDelObj} ;

enum TWireframeMode {wfShow , wfHide};
enum TDisplayMode {dmWhole, dmObjectClipRect FrontView ,
dmObjectClipRect_TopView , dmMergedClipRect } ;

class TMainForm public TForm

_published:

TMainMenu *MainMen u ;
TMenuitem *FileNewWorld;
TMenuitem *FileOpenWorld ;
TMenuitem *FileSaveWorldAs ;
TMenuitem *FileQuit ;
TMenuitem *EditUndo ;
TMenuitem *EditCutObject ;
TMenuitem *EditCopyObject;
TMenuitem *EditPasteObject ;
TMenuitem *HelpAbout ;
TMenuitem *Sep2;
TMenuitem *FilePlay ;
TMenuitem *EditRedo ;
TMenuitem *Sepll ;
TMenuitem *EditMove ;
TMenuitem *EditMoveDeep ;
TMenuitem *Sepl0 ;
TMenuitem *EditDeleteObject ;
TMenuitem *StageMenu ;
TMenuitem *StageFr ontView;
TMenuitem *StageTopView ;
TMenuitem *StageGoToStore;
TMenuitem *StageGoToWorkRoom ;
TMenuitem *Sep4;
TMenuitem *StageCopyAll ;
TMenuitem *StageDelete;
TMenuitem *SepS ;
TMenuitem *StagePrior ;
TMenuitem *Sep3 ;
TMenuitem *StageShowWireframe ;
TMenuitem *HelpVA;
TMenuitem *StagePasteAll;
TMenuitem *StageClear;
TMenuitem *StageNew ;
TOpenDialog *OpenDialog ;
TSaveDialog *SaveDialog;
TOpenPictureDialog *OpenPictu reDialog ;
TMenuitem *StageLast ;

•

•

•

•

•

•

•

•

•

•

•
4

•

•

•

•

•

•

•

•

•

•

•

TMenuitem *StageFirst;
TMenuitem *FileSaveWorld;
TMenuitem *StageObjectToWorkRoom;
TMenuitem *Stageinfo;
TMenuitem *Sep9;
TMenuitem *EditEraser;
TMenuitem *EditResizeObject ;
TMenuitem *EditFlipHorizontal;
TMenuitem *EditFlipVertical;
TMenuitem *EditPattern;
TMenuitem *EditResizePattern;
TMenuitem *EditTransparentObject;
TMenuitem *EditColour;
TMenuitem *EditColourPickColour;
TMenuitem *EditColourPasteColour;
TMenuitem *EditColourColourOb j ect ;
TMenuitem *EditColourPickWhite;
TMenuitem *Edi tColourPickBlack ;
TMenuitem *EditObjectToFloor;
TMenuitem *WorkMenu;
TMenuitem *EditinsertObject;
TMenuitem *EditDrawShapes;
TMenuitem *EditShapeRectangle;
TMenuitem *EditShapeCircle;
TMenuitem *EditShapeLine ;
TMenuitem *EditShapeFreeHandPencil ;
TMenuitem *EditPenSize;
TMenuitem *WorkGoToStageFront ;
TMenuitem *WorkGoToStageTop ;
TMenuitem *Sep6 ;
TMenuitem *WorkBringToFront ;
TMenuitem *WorkBringForward;
TMenuitem *WorkSendBackward;
TMenuitem *WorkSendToBack ;
TMenuitem *Sep7;
TMenuitem *WorkCl earWorkRoom ;
TMenuitem *WorkTakeWorkToStage ;
TMenuitem *StageNext;
TMenuitem *Sepl ;
TMenuitem *Sep8 ;
TMenuitem *Sep12;
TColorDialog *Co l orDialog ;
Timage *ImageStage;
TBevel *Bevell ;
TMenuitem *EditCleanPixels;

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fas t call
fas t call
fastcall
fastcall
fastcall
fastcall
fastca ll
fastcall

FileQuitClick (TObject *Sender);
HelpAboutClick(TObject *Sender);
StageShowWiref rameClick (TObject *Sender);
FileNewWorldClick(TObject *Sender);
FileOpenWorldClick(TObject *Sender);
FileSaveWorldAsClick(TObject *Sender) ;
EditUndoClick (TObject *Sender);
EditinsertObjectClick(TObject *Sender);
StageNewClic k(TObject *Sender);
EditTransparentObjectClick(TObject *Sender);
EditColourPickWhiteClick(TObject *Sender);
EditColourPickBlackClick(TObject *Sender);
EditColourPickColourClick(TObject *Sender);
FileSaveWorldClick(TObject *Sender) ;
FilePlayClick(TObject *Sender);
StageFrontViewClick (TObject *Sender);
StageTopViewClick (TObject *Sender);
StageGoToStoreClick(TObject *Sender);

5

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall

StageGoToWor kRoomClic k(TObject *Sender) ;
StageObject ToWorkRoomC l ick(TObject *Sender);
St ageClearCl i ck (TObject *Sender);
St ageCopyAllClick (TObjec t *Sender) ;
StagePasteAl lClick (TObject *Sender);
StageDele t eC l ick (TObject *Sender);
StageinfoC l ick (TObject *Sender);
StagePriorClick (TObject *Sender);
St ageNextClick (TObjec t *Sender);
St ageFirstClick (TObject *Sender);
StageLastClick(TObject *Sender);
WorkGoToStageFrontClick (TObject *Sender) ;
WorkGoToStageTopClick (TObject *Sender);
WorkBringToFrontClick (TObject *Sender);
WorkBringForwardClic k(TObject *Sender) ;
WorkSendBackwardClick (TObjec t *Sender) ;
Wor kSendToBac kClick (TObject *Sender);
Wor kClearWorkRoomClick (TObject *Sender);
Wor kTakeWor kToStageClick(TObject *Sender) ;
EditRedoClic k(TObject *Sender);
EditShapeRectangleClick(TObject *Sender);
EditShapeCircleClick (TObject *Sender);
EditShapeLineClick(TObject *Sender);
EditShapeFreeHandPencilClick (TObject *Sender);
EditPenSizeC l ick(TOb j ec t *Sender) ;
EditEraserCl i c k (TObject *Sender);
EditCleanPixelsClick(TOb ject *Sender) ;
Edi t MoveClic k(TObject *Sender);
EditMoveDeepClick (TObject *Sender) ;
Edi tResizeObjectClic k(TObject *Sender) ;
EditFlipHorizontalClick(TObject *Sender);
EditFlipVerticalClick (TObject *Sender);
EditPatternClick (TObject *Sender);
EditResizePatternClick (TObject *Sender) ;
EditColourPasteColourClick(TObject *Sender) ;
EditColourColourObjec t Click(TObject *Sender};
Edi tCutObjec t Click(TObject *Sender) ;
EditCopyObjectClick (TObject *Sender);
EditPasteObjectClick (TObject *Sender);
Edi t DeleteObjectClick (TObject *Sender);
EditObjectToFloorClick(TObject *Sender) ;
HelpVAClick (TObjec t *Sender) ;

/***** EVENT Functions **/
void fastcall ImageStageMou seDown (TObject *Sender ,

TMouseButton Button , TShiftState Shift , i nt X, int Y);
void fastcall ImageStageMouseMove (TObject *Sender , TShiftState Shift ,

int X, int Y);
void fastcall ImageStageMouseUp (TObject *Sender , TMouseButton Button,

TShiftState Shift , int X, int Y);
void fastcall FormCreate (TObject *Sender) ;

private: // private user declaration s

/***** Functions for INITIALIZING ***/
void fastcall CreateWorld (); //A " World " is a list of Stages
void fastcall CreateStage (); //A " Stage " is a list of Objects
void fastcall DeleteWorld () ;
void fastcall DeleteStage ();

/***** MISC . : Functions for SAVING , UPDATING , etc . ***********************/
TModalResult fastcall CheckSave() ;
void fastcall UpdateFunctionsAvailable() ;

•

•

•

•

•

•

•

•

•

•

6

•

•

•

•

•

•

•

•

•

•

•

•

void
void

fastcall WrappingUp();
fastcall SortStageObjects();

/***** Functions for SELECTING **/
void fastcall SelectObject_FRONT(int X, int Y) ;
void fastcall SelectObject_TOP(int X, int Y) ;

/***** Functions for REFRESHING the FRONT VIEW ****************************/
void fastcall Rebuild_FRONT(TDisplayMode DisplayMode);
void fastcall CreateBlankStage_OffScr();
void fastcall S_H_Wireframe_OffScr();
void fastcall PaintObjects_OffScr(TDisplayMode DisplayMode);
void fastcall Display_OnScr(TDisplayMode DisplayMode);

/***** Functions for REFRESHING the TOP VIEW ******************************/
void fastcall Rebuild_TOP(TDisplayMode DisplayMode);
void fastcall CreateBlankFloor_OffScr() ;
void fastcall DrawTopRects_OffScr (TDisplayMode DisplayMode);
//void fastcall Display_OnScr (TDisplayMode DisplayMode); --> The same

method is used to display what ' s off - screen
/***** Functions for DRAWING SHAPES ***************************************/

void fastcall DrawTempShape(POINT Mous e LocOnClick , POINT MouseLocOnRelease);
void fastcall StoreShape (POINT MouseLocOnClic k , POINT MouseLocOnRelease);

/***** Functions for MOVING ***/
void fastcall MergeRects_FRONT();
void fastcall MergeRects_TOP ();
bool

TRect
fastcall
fastcall

IntersectRects (TRect ComparedRect , TRect ModelOfComparison);
GetObjectNewCoord_FRONT(int X, int Y, int XOffset, int

YOffset);
TRect fastcall GetObjectNewCoord_TOP (int X, int Y, int XOffset, int YOffset) ;

/***** Functions for VA ' s 30-SPACE **/
TRect fastcall DepthRendering();

int fastca ll ConvertLocation 3Dto2D(int MiddleLine , int HorizCoord, int
VertCoord);

int fastcall ConvertLocation 2Dto3D (int MiddleLine , int HorizCoord , int
VertCoord) ;

void fastcall CheckBounds(TRect ValidLocation 30) ;

public:
virtual

// public user declarations
fastcall TMainForm (TComponent* Owner);

/***** GENERAL information for WORLD , STAGES & OBJECTS
*****************************/

bool WorldModified ;
modified since the last saving?

TModalResult OpCancelled ;
the last [QUIT/ NEW/ OPEN] operation?

TList* ListOfObject s ;
abjects stored in a list.

//Has the world been

//Has the user cancelled

//A stage is made up of

int LastObjectID; //Global variable to
generate ID numbers for StageObjects

int ObjectToSelect ; //Used to extract form
ListOfObjects the abject on which the current tool will be applied

TVATools PrevTool, CurTool ; //Data members to hold
current and previous tool s

int UserToScreenDist; //Measures the distance
between the user a nd the screen ' s surface
/***** FRONT VIEW information for OFF - SCREEN & STAGE- SET
***************************/

Workbench ; Graphics :: TBitmap*
TColor StageColor , FloorColor ;

currently used for the Stage and the floor
TWireframeMode WireframeMode ;

has to be shown or hidden
/***** FRONT VIEW informati on for DRAWING
**/

//Off-screen bitmap
//Keeps trace of the color

//Tells if the Wireframe

7

bool CanDraw , CanDrawFreehand ;
freehanded?

POINT Origin , MovePt ;
fields to draw by dragging the mouse

TRect FreeHClipRect;
to draw with pencil (freehand)

int CurrentPenSize ;
when setting the Pen ' s width
/***** FRONT VIEW information for MOVING
***/

bool
I ' ve selected?

TRect
rects defined here

int
MouseLoc. [X/Y] and

CanMove;

MergedRectangle ;
above

XOffset , YOffset ;
the left/top side of the clip . rect .,

//Can I draw? Can I doit

//Structure with X and Y

//Clipping rectangle used

//Gives the size to use

//Can I move the abject

//Reet that includes the 2

//Distance between the

// but in TOP VIEW,
YOffset is the distance between the MouseLoc . [Y] and the object ' s [Center_3D.z] -
and not the top side anymore
} ;

//---

class TStageObject
{

public: // User declarations
fastcall TStageObject() ; //Constructor

/***** USER TYPES***/
typedef struct {

int x , y, z;
}Point_ 3D;
/***** GENERAL information********************************/

int ID;
(of course)

Graphics::TBitmap* StorageBmp;
of the stage

//To get the object's transparency ,
property

//Identification number

//Bitmap storing an abject

read the [TBitmap->Transparent]

//To get the object ' s ORIGINAL dimensions, read the [TBitmap- >Width] and [-
>Height] properties
/***** VA'S 3D SPACE information**************************/

Point 3D Center 3D ; //Coordinates of the
center in 3D space
/***** FRONT VIEW information*****************************/

TRect PrevPos FRONT , NewPos_FRONT ; //Position ON THE SCREEN
area representing the stage (and not in VA ' s 3D- space) of the clipping rectangles
needed to move (deep) the abject

int CurWidth , CurHeight ; //Object's CURRENT
dimensions, that is the (shrinked) dimensions of the object ' s projection on the
screen's surface
/***** TOP VIEW information*******************************/

TRect PrevPos_TOP, NewPos TOP ; //Position ON THE SCREEN
area representing the stage (and not in VA ' s 3D-space) of the clipping rectangles
needed to move (deep) the abject

} ;

/1---
extern PACKAGE TMainForm *MainForm ;
1/---
#endif

•

•

•

•

•

•

•

•

•

•

•

8

•

•

•

•

•

•

•

•

•

•

•

•

•

Main.cpp (master file calling all the other modules)

11-------------- --------------- - ----- - ------------- - ---------- ------------- - -

#include <vcl\vcl . h>

#include <s t dlib.h>

#pragma hdrstop

#include " Main . h "

#include "Tools . h "

#include "About.h "
#include " Infos . h "
#include " PenSizing . h "
11---------- --- - ----------------------- --------- - ----------------------------
#pragma resource " *. d fm "

TMainForm *MainForm;
/***
***************************/
I* Instantiates the class used t o s t o r e one of the abjects on s t age .
*I
I* New memory will be allocated whenever it ' s necessary.
*I
I* Can ' t ma ke it wor k if it ' s defined elsewhere li ke this [TStageObjec t *
St ageObject = n ew TSt ageObject ; J *I
I* in the code , where its ' needed . So it ' s def i ned here - as sort of a
global variable . *I
/***
***************************/
TStageObject* S t ageOb j ect;

I***** LEGEND
**
*************/
I* Symbol Mean i ng
*I
l* ----------------------------------- --------- ------------------- - - - ------------- ­
---------------- - ---------*I
I* Il I Line comment , permanent : do not remove.
*I
I* Il***** Comment fo r guidance , to remove later on .
*I
I* [l or ''
methods ' names , or values

It ' s used to ma ke it easier to spot data members ' or
*I

/***
***************************/

I***** USAGE OF [Cente r 3D . z)
***/

I*
*I
I* The point of o r igin
When an object ' s
I* [Cen ter_3D . z)
space). But in

for the axes in the 3D- SPACE i s t h e Top-Left - Front corner .
*I

0 , the ab j ec t is a t the f r ont of the stage (which is a 3D­
*I

9

/* TOP VIEW , the Z-coordinate is starting at 0 /the top of the screen area
representing the stage */
/* which is the back of the stage in the 3D-space.
*/
/* That's why the value stored in [Center_3D.z) is ' 0 ' when the abject is at the
front of the stage , */
/* that is the bottom of the screen area delimiting the stage (coord.
' ImageStage- >Height -1'). */
/* The value stored in [Center_3D .z) is 'ImageStage->Height -1' when the
abject is at the back */
/* of the stage , that is the top of the screen area delimiting the stage
(coord. ' 0 '). */
/* To use [Center_3D.z) for setting coord on screen , we have to take [ImageStage-
>Height - 1) from */
/* which we substract [Center_3D.z) to get the displacement from the top of
the screen . * /
/*
*/
/* N.B : Whatever the view is, no matter if there ' s a (perspective) depth effect ,
the center we are */
/* considering is always the center in VA ' s 3D-space - and not the center of
the projection */
/* of the abject in one of the views !
*/
/***
***************************/

/1---
fastcall TMainForm::TMainForm (TComponent* Owner)

: TForm(Owner)
{

}

//---

void _ fastcall TMainForm :: FormCreate(TObject *Sender)
{

//PARTI : Creates the World
//Calls the method that creates a new list of Stages - that is, a new World
CreateWorld();

//PART II : Displays the World

}

//WireframeMode is initialized here to show the wireframe when VA starts
WireframeMode = wfShow;
//Calls the method / member function that draws a blank stage+ a wireframe
Rebuild_FRONT(dmWhole) ;

//---

void fastcall TMainForm: : CreateWorld ()
/**/
/* A "World" is a list of Stages * /
/* In this method , everything concerning one world is initialized here. */
/* That world is made up of only one stage and will be expanded later */
/**/

//Sets the size of
ImageStage->Width
ImageStage->Height

Width

ImageStage
MainForm->ClientWidth;

= (MainForm->ClientWidth * 0 . 51) ; //Height is 51 % of the

//Declares the bitmap representing the stage off-screen
Workbench = new Graphics: : TBitmap;

//Gives Workbench (offscreen b itmap) the size of a stage

•

•

•

•

•

•

•

•

•

•

•
10

•

•

•

•

•

•

•

•

•

•

•

•

•

Workbench - >Width
Workbench->Height

ImageStage->Width ;
ImageStage- >Height ;

//Sets a few other data members - e . g . CanMove , Cu rTool ,
WorldModified = fa l se ; //Sets Modified to false to

check later if work needs to be saved when user chooses NEW or OPEN
LastObjectID = O; //No ob j ects at all on the

stage at this time
ObjectToSelect = -1 ; //No object in ListOfObjects

has to undergo any operation at this time
PrevTool = CurTool = tsNoTool ; //No tool is selected at the

time of creation
UserToScreenDist = 600 ;

and the screen ' s surface is 600 units
ColorDialog->Color = clTeal ;

drawing shapes
StageColor = FloorColor = clNavy ;

used for the Stage and the Floor
CurrentPenSize = 3 ;
CanDraw = CanDrawFreehand = CanMove

safety measure
Origin = MovePt = Point(0 , 0) ;
XOffset = YOffset = 0;

creation

false ;

//The distance between the user

//We need a default color for

//clNavy is the defau l t color

//Default Pen Size for drawing
//Sets all boolean to false -

//Starting coordinates
//No offset at the time of

//Calls the method that creates a new list of StageObjects - that is , a new
Stage

CreateStage ();

//Updates the list of stages in Stage menu.

}

//---------- ----------------- - - - - - ----------------- ----------------------- - --

void fastcall TMainForm : : CreateStage()
/**/
/* A "Stage " is a list of Objects . */
/* In this method , everything concern ing one and only o ne stage that is , */
/* a list of objects, is initialized here. */
/**/

//A stage is made up of objects stored in a list . At the time of creation ,
only one empty list of objects is needed for the new world .

ListOfObjects = new TList ;
}

!!----------- ------------------- -- - --------------------------- - ------- - - -----

void fastcall TMainForm : :DeleteWorld ()

//The off- screen b i tmap has (?) t o be deleted ' cos mem . has been dynamically
allocated t oit - it doesn ' t exist at the design time .

delete Workbench;

//***** Should loop through all the stages and delete them one by one by calling
//***** [DeleteStage) with a argument indicating which Stage has to be deleted

DeleteStage ();
}

// ------------------- - ----------------------------------- - - ------- - ----------

void fastcall TMainForm: : DeleteStage ()

//Frees the memory used by the objects listed in t he TList of one stage .
for (inti= 0 ; i < ListOfObjects - >Count ; i++)
{

11

}

}

StageObject = (TS t ageOb j ec t *) Lis t OfObjec t s - >I t ems[i];
delete StageOb j ect;

//Then deletes the li s t i tse lf.
delete ListOfObjec t s ;

// --- - ---- - ----------- - ----------

void fastcall TMai nForm :: FileQu i t Click(TOb ject *Sender)

//Saves the curren t world i f it' s necessary .
OpCancelled = Chec kSave ();

if (OpCancelled != mrCance l)
{

//Calls the me t hod tha t destroys all the St ages - that is, the World
DeleteWorld ();

Application - >Te r minate ();

}//ELSE : do not qui t VA because the user has cancelled the operation
}

// - - - ---- - - -- - - - -------------

void fastcall TMainForm :: FileNewWorldClick (TObjec t *Sender)

//***** Modify the Las t StageObject ID

//Modifies ToolBox appearance to reflec t click o n function and disact ivate
tool previously selected

ToolBox->ToolBoxS t a tu sBar- >Panels->Items[2] - >Text = " " + FileNewWorld- >Hint ;
PrevTool CurTool ;
CurTool = tsNewWo r ld ;

//Saves the curren t world if it ' s necessary.
OpCancelled = Chec kSave() ;

if(OpCancelled != mrCancel)
{

//Disposes of t he exist ing world.
DeleteWorld ();

//Inits a new world made up of a b l ank stage only
CreateWorld ();
//We need a default color for drawing shapes
ToolBox- >ToolBtnPickColour- >Color = clTeal ; //It can ' t be done in

[createWorld] ' cos the ToolBox is not crea t ed firs t a t the time of creation -
which results in an "ACCESS VIOLATION "

//We don't need t o save a blank world --> wait for fur t her changes
WorldModified = false ;

//Clears the screen and shows the Fron t View
Rebuild_FRONT (dmWhole);
ToolBox- >ToolBoxS t atusBar - >Panels - >Items[0] - >Text = '' St age - Front View " ;

//Tells the u ser that a new world h as been created a nd displayed
ToolBox- >ToolBoxS t a t usBar - >Panels - >Items[2]->Text = " New World created

and displayed";

//A few functionalities have to be (dis)ac tiva t ed in Front View
UpdateFunctionsAvailable ();

//Empties the lis t of s t ages in St age menu.

•

•

•

•

•

•

•

•

•

•

•
12

•

•

•
//It ' s a new world, so we don ' t know its name yet
SaveDialog- >FileName = "" . '

}//ELSE : do not clear the c urrent World because the u ser has cancelled the
operation

else
//Tells the user that ' Crea t e New World ' has been cancelled
ToolBox- >ToolBoxStatusBar- >Panels->Items[2)->Tex t = " ' Create New World '

e has been cancelled";

•

•

•

•

•

•

•

•

•

}

// ---

void fastcall TMainForm::FileOpenWorldClick(TObject *Sender)

//***** Modify the LastStageObjectID

//Modifies ToolBox appearance to reflect click on f un ction and disactivate
tool previously selected

ToolBox- >ToolBoxStatusBar- >Panels->Items[2) - >Text = " " + FileOpenWorld- >Hint ;
PrevTool
CurTool

CurTool ;
= tsOpenWorld ;

//Saves the current world if it ' s necessary.
OpCancelled = CheckSave() ;

if(OpCancel l ed != mrCancel)
{

//Disposes of the existing world .
DeleteWorld ();

//Ini ts a new world made up of a blank stage only
CreateWorld ();
//We need a default color for drawing shapes
ToolBox->ToolBtnPickColour- >Color = clTeal ; //It can ' t be done in

[createWorld) ' cos the ToolBox is not created first at the time of creation -
which results in an "ACCESS VIOLAT I ON "

//Expands the blank world created here above with information loaded from
a VA file

OpenDialog- >FileName = " ";
if (OpenDialog->Execute())
{

SaveDialog- >FileName = OpenDialog- >FileName ;
if (MessageDlg("Under construction - No loading at the moment

a blank World is created .", mtWarning ,
TMsgDlgButtons () << mbOK , 0) == mrOk)
//does nothing

\nOnly

//We don ' t need to save a world thas has been loaded and , a fortiori ,
previously saved --> wait for fur t her changes

WorldModified = false ;

//C lears the screen and displays in FRONT VIEW the World that has just
been loaded

Rebuild FRONT (dmWhole);
ToolBox->ToolBoxStatusBar->Panels->I tems[0)->Text = " Stage - Front View ";

//Tells the user that a world has been loaded and displayed
ToolBox- >Too lBoxStatusBar->Panels->Items[2)->Text = " A World has been

loaded and displayed";

13

//A few functionalities have to be (dis)activated in Front View
UpdateFunctionsAvailable();

//Renews the list of stages in Stage menu.

}//ELSE : do not clear the current World nor load a new World because the user
has cancelled the operation

else
//Tells the user that ' Open World ' has been cancelled
ToolBox- >ToolBoxStatusBar->Panels->Items[2]->Text " ' Open World ' has

been cancelled";
}

//---

void fastcall TMainForm :: FileSaveWorldClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox->ToolBoxStatusBar->Panels->Items[2] - >Text = " "+ FileSaveWorld- >Hint;
PrevTool CurTool;
CurTool = tsSave ;

if (SaveDial og - >F ileName == "")
FileSaveWorldAsClick(Sender);

else

//SaveToFile ();

//Sets Modifed to false since we 've just saved
WorldModified = false ;

if (MessageDlg (11 Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrO k)
//does nothing

111 . , mtWarning,

//Tells the user that the world has been saved
ToolBox->ToolBoxStatusBar->Panels - >Items[2)->Text 11 The World has been

saved 11
;

}

// ---

void fastcall TMainForm: : FileSaveWorldAsCl i ck(TObject *Sender)

//Modifies ToolBox appearan ce to reflect click on
tool previously selected

ToolBox->ToolBoxStatusBar->Panels->Items[2) - >Text
>Hint;

PrevTool
CurTool

CurTool;
tsSaveAs;

if (SaveDialog->Execute())
{

//SaveToFile ();

//Sets Modifed to false since we ' ve just saved
WorldModified = false ;

function and disactivate

= 11 11 + FileSaveWorldAs-

if (Mes sageDlg (11 Under construction . \nJust believe that your world has
been saved ! 11

, mtWarning ,
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

•

•

•

•

•

•

•

•

•

•

•
14

•

•

•

•

//Tells the user that the world has been saved wi th a new name
ToolBox- >ToolBoxStatusBar- >Panels - >Items[2]->Text " The World has been

saved as

else

'" + SaveDialog->FileName + "' " . ,

//Tells the u ser that the saving has been cancelled
ToolBox->ToolBoxStatusBar->Panels->Items[2]->Text " Saving has been

cancelled";
}

/!---

TModalResult
{

fas t call TMainForm: : Chec kSave()

if (WorldModified)
{

switch (MessageDlg ("The c urrent world has been changed . \nSave changes
mtConfirmation , TMsgDlgButtons() <<mbYes <<mbNo

<<mbCancel , 0))
{

case mrYes

? " . ,

e //If YES was clicked , then save the world;
FileSaveWorldAsClick(this);

•

•

•

•

•

•

return mrYes ;
case mrNo

//If NO was clicked, the n don't save - just do nothing ;
return mrNo ;

case mrCan cel
//Tells the user that the saving has been cancelled
ToolBox->ToolBoxStatusBar->Panels->Items[2]->Text " Saving has

been cancelled";

//If CANCEL was clicked , then return - the return value is used in
[QUIT] to be able to cancel it .

}

return mrCancel ;

//By default (a nd to avoid 'Compiler Warning'), the function returns [mrNone]
return mrNone ;

// ---

void fastcall TMainForm::EditUndoClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click o n function and disactivate
tool previou sly selected

}

ToolBox->ToolBoxStatusBar- >Pane l s - >Items[2]->Text = " " + EditUndo->Hint;

if (Message Dlg ("Under constructi on - Not implemented yet !", mtWarning ,
TMsgDlgButtons() << mbOK, 0) == mrOk)

//does n othing

!/---

void fastcall TMainForm: : EditinsertObjectClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
t ool previously selec t ed

ToolBox- >ToolBoxStatusBar- >Panels - >Items[2] - >Tex t = " "+ EditinsertObject­
>Hint ;

PrevTool
CurTool

Cu rTool ;
t sinsert ;

15

if (OpenPictureDialog- >Execute())

//Loads the image on a temporary container (Type of it Timage, in order
to use Autosize)

Timage* Tempimage = new Timage(this);
Tempimage->AutoSize = true ;
Tempimage->Picture - >LoadFromFile (OpenPictureDialog->FileName);

//Allocates a new memory space for that abject on stage and returns a
pointer toit

StageObject new TStageObject;
//Gives an ID number to the abject
StageObject->ID = ++LastObjectID ;

//The bitmap ' s height and width properties hold the original size of the
abject

StageObject->StorageBmp->Width
StageObject->StorageBmp->Height

Tempimage- >Picture->Width;
Tempimage- >Picture - >Height;

//When an abject is crea t ed , its c u rrent dimensions are identical
original dimensions

StageObject->Cu rWidth
StageObject->Cu rHeight

StageObject - >StorageBmp- >Width;
StageObject- >StorageBmp->Height;

toits

//Places and stores the position
StageObject->NewPos FRONT.Left

>Picture - >Width / 2) ;
StageObject->NewPos FRONT . Top

>Picture->Height / 2);
StageObject- >NewPos_FRONT.Right

>Picture->Width / 2) ;
StageObject->NewPos FRONT.Bottom

>Picture->Height / 2) ;

of the image on the stage
(ImageStage->Width / 2) - (Tempimage-

(ImageStage- >Height / 2) - (Tempimage­

(ImageStage->Width / 2) + (Tempimage­

(ImageStage->Height / 2) + (Tempimage-

//Records the center in VA ' s 3D- space
Stage0bject->Center_3D . x IrnageStage - >Width / 2 ;
Stage0bject->Center_3D.y ImageStage - >Height / 2;
StageObject->Center 3D . z O;

//Copies Image from temp container to StorageBmp
StageObject->S t orageBmp- >Assign (Tempimage->Picture->Bitmap) ;
delete Tempimage ;

//Adds StageObject to the list of abjects present on stage
ListOfObjects->Add(StageObject);

//Sets [ObjectToSelect) to make it reference to the image that has just
been inserted

ObjectToSelect = (ListOfObjects->Count) - l;
because the list hasn ' t been sorted since

//It ' s the last index

} ;

}

//Display the image that has just been loaded off- and on screen
Rebuild_FRONT (dmObjectC l ipRect_Fron t View);

//As a safety measure . ..
WrappingUp();

//-------------- - - - --------- - ----------------------------- - - --- - -- - - ---------

void fastcall TMainForm: : StageShowWireframeClick (TObject *Sender)

•

•

•

•

•

•

•

•

•

•

•
16

•

•

•

•

•

•

•

•

•

•

•

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox- >Too lBoxStatusBar- >Panels->Items[2] - >Text = " " + StageShowWireframe­
>Hint ;

PrevTool
CurTool

CurTool ;
tsNoTool;

//Shows/ Hides the wireframe
if (StageShowWireframe- >Checked)
{

//Unchecks t he Wireframe item in the menu

else

StageShowWireframe- >Checked

Wi re frameMode = wfHide;

false ;

//Chec ks the Wireframe item in the menu
StageShowWireframe- >Chec ked = true;

WireframeMode = wfShow ;
} ;

Rebuild_FRONT (dmWhole) ;
}

//------ --- --

void fastcall TMainForm : : StageNewClic k(TObject *Sender)

//Modifies ToolBox appearance t o reflect click on function and disactivate
tool previously select ed

ToolBox- >ToolBoxStatusBar- >Panels - >Items [2]->Text = '' " + StageNew->Hint ;
PrevTool CurTool ;

}

CurTool = tsNoTool;

//Adds a new stage to the world .

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons() << mbOK, 0) == mrOk)

//does nothing

1 Il

. ' mtWarning ,

!/ ---

void _fastcall TMainForm::EditTransparentObjectClick(TObject *Sender)
{

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox- >ToolBtnTransparentObject->Down = true ;
ToolBox->ToolBoxStatusBar- >Panels - >Items(2]->Tex t " "+

EditTransparentObject->Hint;
PrevTool CurTool ;
CurTool tsTransp;

//Wait for user to click on something ('MouseDown' event)
}

// -- - --

void fastcall TMainForm::EditColourPickWhiteClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox- >Too lBoxStatusBar- >Panels - >I tems(2]->Text = '' " + EditColourPickWhite­
>Hint;

ToolBox- >ToolBtnPickColour- >Color = clWhite ;

17

ColorDialog- >Color = clWhite;
}

//- --------------------------------------- - ----------------------------------

void fastcall TMainForm :: Edi t ColourPickBlackClic k(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox->ToolBoxSta tu sBar->Panels - >Items[2)->Text = " " + EditColourPickBlack­
>Hint;

}

ToolBox->ToolBtnPickColour->Color = c lBlack ;
ColorDialog->Color = clBlac k;

// ---

void fastcall TMai nForm :: EditColourPic kCo l ourClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox- >ToolBoxSta tu sBar- >Panels - >Items[2)->Text = " '' +
EditColourPickColour->Hint;

if (ColorDialog- >Execute())

ToolBox->ToolBtnPickColour- >Color ColorDia l og->Color;

}

//-- - --------------------------

void fastcall TMainForm :: FilePlayClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

}

ToolBox- >ToolBoxStatusBar- >Panels - >Items[2) - >Text = " " + FilePlay- >Hint ;
PrevTool CurTool ;
CurTool = tsNoToo l ;

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons () << mbOK, 0) == mrük)

//does nothing

J Il . , mtWarn ing ,

//-------------------- ---

void fastcall TMainForm :: StageFrontViewCl i ck(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox->ToolBoxStatusBar- >Panels - >Items[2) - >Text " "+ StageFrontView­
>Hint;

ToolBox->ToolBoxStatu sBar- >Panels - >Items [0)->Text
PrevTool
CurTool

CurTool ;
= tsNoTool ;

//Shows the Front Vi ew
Rebuild_FRONT(dmWhole) ;

" Stage - Front View";

//A few functionalities have t o be (dis)activat ed in Front View
UpdateFunctionsAvailable ();

//No function select ed by default even though is the other way round in TOP
VIEW.

ToolBox- >ToolBtnMove- >Down f alse ;

•

•

•

•

•

•

•

•

•

•

18

•

•

•

•

•

•

•

•

•

ToolBox- >Too lBoxStatusBar- >P ane l s - >I t ems[2)->Tex t
function ";

" Pl ease , choose a

PrevTool = CurTool ;
Cu rTool = t sNoTool ;

}

// ------------------- - ---

void fas t cal l TMa inForm:: St age TopV i ewCl i ck (TObject *Se nde r)

//Modifies ToolBox appearance t o r e f lect click on f u nction and disac t iva t e
tool previou sly selec t ed

}

ToolBox- >ToolBoxS t atusBar - >Panels - >Items[2) - >Tex t " '' + StageTopView- >Hint;
ToolBox- >ToolBoxS t atusBar - >Panels - >I t ems[0) - >Text
PrevTool CurTool ;
CurTool = t sTopView ;

//Shows the Top View
Rebuild_TOP (dmWhole);

" St age - Top View ";

//A few f un c t ionalities have t o b e (dis) activa t ed in Top View
UpdateFunc t ion sAva i lable ();

//The fu n c t ion selected by defau l t i s [Move] .
ToolBox- >ToolB t nMove - >Down = true ;
ToolBox- >Too lBoxS t atusBar - >Pa ne l s - >I t ems[2) - >Tex t
PrevToo l = Cu rTool ;
CurTool = t sMove ;

" " + EditMove - >Hint;

!!---------------- - - - ---------- - ---------------------------------- - ----------

void fastcall TMainForm : : StageGoToS t oreClick (TObjec t *Sender)

//Modifies ToolBox appeara nce to reflect click o n f unction and disactiva t e
t ool previously selec t ed

ToolBox- >Too l BoxS t atusBar - >Pane l s - >Items[2)->Text = " " + StageGoToStore­
>Hint;

}

PrevToo l
CurTool

CurTool ;
t s NoTool ;

if (Message Dlg ("Under cons t r u c ti o n - Not implemen t ed ye t
TMsg DlgButtons() << mbOK , 0) == mrük)

//does no t hing

1"
. ' mtWarning ,

// ------ - --------------------------------- - --- - ---------------------------- - -

void fastcall TMai n Form: : StageGoToWor kRoomClick (TOb j ec t *Sender)

//Modifies ToolBox appearance t o reflect click on f un c ti o n and disactivate
t ool previous l y selected

ToolBox- >ToolBoxS t a t usBar - >Panels - >I t ems[2)->Text = " " + StageGoToWorkRoom­
>Hint;

}

PrevTool
CurToo l

Cu rTool ;
t s NoTool ;

if (Message Dlg ("Under construct ion - Not implemen t e d yet
TMsgDlgBut tons() << mbOK , 0) == mrü k)

//does no t h ing

1 Il

. ' mtWarning ,

// -- - ---------------------------- - -

void fastcall TMa i nForm :: StageOb jectToWorkRoomClick(TOb j ec t *Sender)

19

//Modifies ToolBox appearance t o r e fle c t click on function and disactivate
tool previou sly selec t e d

ToolBox- >ToolBoxStatusBar->Pa ne l s - >Items [2)->Text = " "+
St ageObjec tToWorkRoom- >Hint ;

}

PrevToo l CurTool ;
CurTool = tsNoTool;

if (MessageDlg("Under con s truct ion - Not imple mented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

1 Il
• I mtWarning,

// ---

void fastcall TMai n Form:: StageClear Click(TObj ec t *Sender)

//Modifies ToolBox appearance t o reflect cl ick on function and disactivate
t ool previou sly selected

}

ToolBox->ToolBoxStatusBar- >Panels - >I t e ms[2)->Tex t = '' "+ St ageClear - >Hint ;
PrevTool CurTool;
CurTool = tsNoTool;

if (MessageDlg("Under cons truction - Not imple me nted ye t
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

1 Il
• I mtWarning,

// ---

vo i d fastcall TMainForm:: StageCopyAl l Clic k(TObjec t *Sender)

//Modifies ToolBox appeara nce t o reflec t click on functio n and disactivate
t oo l previously selec t e d

}

ToolBox->ToolBoxS tatusBar - >Panels - >I t e ms [2) - >Te xt = " '' + St ageCopyAll - >Hint;
PrevTool
CurTool

CurTool;
= tsNoTool;

if (MessageDlg ("Under cons truction - No t implemented yet
TMsgDlgButtons () << mbOK, 0) == mrOk)

//does nothing

1 Il
• I mtWarning,

// ---

void _fastcall TMai nForm :: StagePa s t eAl lCli c k(TObject *Sender)
{

//Modifies ToolBox appearance t o r ef l ect click on f unct i on and disac t ivate
t ool previou sly selected

}

ToolBox- >ToolBoxS tatusBar- >Panels - >Ite ms[2)->Text = " '' + StagePasteAll->Hint ;
PrevTool CurTool ;
CurTool = tsNoTool ;

if (MessageDlg("Under cons truc tion - Not i mp l emented yet
TMsgDl gButtons() << mbOK, 0) == mrO k)

//does nothing

1 Il
• I mtWarning,

// ---

void fastcall TMa inFo rm:: StageDe l eteClick (TObject *Sender)

//Modifies ToolBox appearance t o reflect click o n function and disactivate
tool previou sly selected

•

•

•

•

•

•

•

•

•

20

•

•

•

•

•

•

•

•

ToolBox- >ToolBoxSta tusBar- >Panels->Items[2]->Text
PrevTool CurTool ;

" " + StageDelete - >Hint ;

CurTool = tsNoTool;

}

if (MessageDlg("Under const ruc t ion - Not implemented yet
TMsgDlgButtons() << mbOK, 0) == mrO k)

//does n othing

1"
. ' mtWarning ,

// --------------------------------------- ------------------------------------

void fastcall TMainForm :: StageinfoClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

}

ToolBox- >ToolBoxS tatusBar->Panels->Items[2]->Text = " '' + Stageinfo->Hint ;
PrevTool
CurTool

CurTool ;
= tsNoTool;

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

1"
. ' mtWarning ,

//---

void fastcall TMainForm::StagePriorCli c k(TObject *Sender)

//Modifies ToolBox appearance to reflect click on f unction and disactivate
tool previously selected

}

ToolBox- >ToolBoxSta tusBar->Panels- >Items[2] - >Tex t = " " + StagePrior->Hint ;
PrevTool
CurTool

CurTool ;
= tsNoTool ;

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothi ng

1"
. ' mtWarning ,

!!---

void fastcall TMainForm::StageNextClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

}

ToolBox- >ToolBoxSta tusBar->Panels->Items[2] - >Text = " " + StageNext->Hint ;
PrevTool CurTool ;
CurTool = t sNoTool ;

if (MessageDlg("Under construc ti on - Not implemented yet 1 ", mtWarning ,
TMsgDlgButton s () << mbOK, 0) == mrOk)

//does nothing

// ---

void fastcall TMainForm :: StageFirstClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox- >ToolBoxStatusBar->Panels->Items [2]->Text = " " + StageFirst->Hint ;
PrevToo l CurTool ;
CurTool = tsNoTool ;

2 1

}

if (MessageDlg("Under cons truction - Not implemented yet !", mtWarning,
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does no thing

// ---

void fastcall TMainForm :: StageLastClick(TObj ec t *Sender)

//Modifies ToolBox appearance to r eflect click o n function and disactivate
tool previously select ed

}

ToolBox- >ToolBoxStatusBa r - >Pane ls->Items[2)->Tex t = " " + StageLast->Hint;
PrevTool CurTool;
CurTool = tsNoTool;

if (MessageDlg("Under cons tructio n - No t i mplemented yet
TMsgDlgButtons() << mbOK , 0) == mrO k)

//does nothing

1" . , mtWarning,

//---

void fastcall TMai nForm :: Wor kGoToS tageFrontClick(TObject *Sender)

//Modifies ToolBox appearance t o r ef lec t click on function and di sactivate
tool previously select e d

ToolBox- >ToolBoxStatusBar->Panels - >I tems[2)- >Text = " " + StageFrontView­
>Hint ;

}

PrevTool
CurTool

CurTool;
tsNoTool ;

//Carry out a few things if necessary then ca l l StageFrontView

if (MessageDlg (''Unde r construct ion - Not implemented yet !", mtWarning,
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

!/---

void fastcall TMai nForm::Wor kGoToStageTopCli ck(TObj ect *Sender)

//Modifies ToolBox appearance t o reflect cl i c k o n function and disactivate
tool previou sly selected

}

ToolBox- >ToolBoxSta tu sBar- >Panels - >I tems[2) - >Text = " " + StageTopView- >Hint ;
PrevTool
CurTool

CurTool;
= tsNoTool ;

//Carry out a few things if necessary then call StageTopView

if (MessageDlg("Under cons truction - No t implemented yet !'', mtWarning,
TMsgDlgBut t ons () << mbOK , 0) == mrO k)

//does nothing

//---

void fas t call TMai nForm::WorkBringToFrontCl i ck (TObj ec t *Sender)

//Modifies ToolBox appearance t o reflect click o n function
ToolBox- >ToolBtnBringToFront->Down = true ;
ToolBox->ToolBoxStatusBar- >Panels- >I tems[2)- >Text = '' "+ WorkBringToFront-

>Hint ;

•

•

•

•

•

•

•

•

•

22

•

•

•

•

•

•

•

•

}

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

1"
. ' mtWarning ,

//---

void fastcall TMainForm::WorkBringForwardClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function
ToolBox- >ToolBtnBringForward- >Down = true;
ToolBox->ToolBoxStatusBar->Panels->Items[2)->Text = '' " + WorkBringForward-

>Hint ;

}

if (MessageDlg(" Under cons truction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

1"
. ' mtWarning ,

//---

void fastcall TMainForm::WorkSendBackwardClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function
ToolBox->ToolBtnSendBackward- >Down = true ;
ToolBox->ToolBoxStatusBar->Panels->Items[2)->Text = " " + WorkSendBackward-

>Hint ;

}

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

1"
. ' mtWarning ,

//---

void fastcall TMainForm: :WorkSendToBackClick(TObject *Sender)

//Modifies ToolBox appearance t o reflect click on function
ToolBox- >ToolBtnSendT oBac k- >Down = true;
ToolBox->ToolBoxStatusBar->Panels->Items[2)->Text = " " + WorkSendToBack-

>Hint ;

}

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

1 "
. ' mtWarning ,

// ---

void fastcall TMainForm : : WorkClearWorkRoomClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox->ToolBoxStatusBar- >Panels - >Items[2) - >Text = " '' + WorkClearWorkRoom­
>Hint ;

}

PrevTool
CurTool

CurTool;
tsNoTool ;

if (MessageDlg(" Under constructi o n - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

1"
. ' mtWarning,

// ---

23

void fas t call TMai n Form :: WorkTa keWo rkToS t ageClic k(TOb ject *Sender)

//Modifies ToolBox a ppearance to r e f lect click o n functio n and disact i vate
tool previously selec t e d

ToolBox- >ToolBoxS t a tusBar->Panels - >I t ems [2)->Text = " 11 + WorkTakeWor kToS t age ­
>Hint;

}

PrevTool
CurTool

CurTool ;
tsNoTool ;

if (MessageDlg ("Un d e r cons t r u c t ion - No t i mpleme nted yet
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

1"
. ' mtWarning ,

// ------------------------ ------------ - ----------------- - - ------- - ------ - ----

void fastcall TMai nFo r m: : Edi t RedoClic k(TOb ject *Sender)

//Modifies ToolBox appearance t o ref l ect click o n functio n and disactivate
tool previously selec t e d

}

ToolBox- >ToolBoxSta tusBar->Panels->Items(2] - >Tex t = " " + Ed i tRedo - >Hint ;

if (MessageDlg ("Unde r const ruction - No t i mpleme nted yet !", mtWa rn i ng ,
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

//---

void fastcall TMainFo r m:: EditShapeRectangleClic k(TOb ject *Sender)

//Modifies ToolBox appearance t o reflec t click o n functio n
ToolBox- >ToolBtnRec t angle - >Down = true ;
ToolBox->ToolBoxS t atusBar - >Panels - >Items(2] - >Tex t = 11 " + EditShapeRectangle -

>Hint;
PrevTool = CurToo l;
CurTool = tsRectangle ;

//Wait for user t o click on something (' Mo u se Down' event)
}

// - - ------ - - - ----- - ---------- - ---------------------------------- - --- - ------- -

void fastcall TMai n Form :: EditShapeCirc l eClick(TObject *Sender)

//Modifies ToolBox a p pearance t o reflect click on function
ToolBox- >ToolBtnCircle- >Down = true ;
ToolBox- >ToolBoxS t atusBar - >Pa nels - >Items[2) - >Text = " 11 + EditShapeCircle -

>Hint;
PrevTool = CurToo l;
CurTool = tsCircle ;

//Wait for user t o click on someth i ng (' MouseDown 1 event)
}

// ---------------------- - ----- - - --- - ---- - ------------- ------------------ - ----

void fastcall TMainForm : :Edi t ShapeLineClick (TOb j ect *Sender)

//Modifies ToolBox a ppearance t o reflect click o n functio n
ToolBox->ToolBtnLi n e - >Down = true ;
ToolBox->ToolBoxS ta tusBar - >Panels - >Items[2)->Text = " 11 + EditShapeLine->Hint ;
PrevTool = CurTool ;
CurTool = tsLine ;

•

•

•

•

•

•

•

•

•

24

•

•

•

•

•

•

•

•

//Wait for user t o click o n something (1 MouseDown 1 event)
)

// --- - -----------

void fastcall TMainForm : : EditShapeFreeHandPe ncilClick(TObject *Sender)

//Modifies ToolBox appearance t o reflect click on function
ToolBox- >ToolBtnFreehandPen c il->Down = true;
ToolBox->ToolBoxStatusBar- >Panels - >Items[2] - >Text = " 11 +

EditShapeFreeHandPencil->Hint ;
PrevTool = CurTool ;
CurTool = tsFreehand;

//Wai t for user to click o n something (1 MouseDown 1 even t)
)

// ---

void fas tcall TMainForm ::Ed itPenSiz eClick (TObjec t *Sender)

//Modi fies ToolBox appearance to reflect click on function and disactivate
tool previously selected

)

ToolBox- >ToolBoxStatusBar- >Panels - >Items[2] - >Text = " " + EditPenSize - >Hint ;
PrevTool = CurTool ;
CurTool = tsPensize ;

if (Pen SizeForm- >S howModal() == mrü k)
{

else

CurrentPenS iz e = StrToint(Pe n SizeForm- >EditSize->Text) ;

// keep the same Pen Size
PenSizeForm->EditSize - >Tex t CurrentPenSi ze ;

// ---

void

)

fastcall TMainForm ::EditEra serC l ick (TObject *Sender)

//Modifies ToolBox appearance t o r eflect click o n fun c tion
ToolBox- >Too l BtnE raser - >Down = true ;
ToolBox- >ToolBoxStatusBar- >Panels- >Items[2] - >Text = " " + EditEraser- >Hint ;
PrevTool = CurTool ;
CurTool = tsEraser ;

if (MessageDlg(" Under const ruction - Not implemented yet
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

'" . , mtWarning ,

// -------------------- ---

void fastcall TMainForm : : EditClean PixelsClick(TObject *Sender)

//Modifies ToolBox appearance t o reflect click on function
ToolBox- >ToolBtnCleanPixels - >Down = true;
ToolBox- >ToolBoxStatusBar- >Panels - >I tems[2]->Text = " 11 + EditCleanP i xels -

>Hint ;

if (MessageDlg("Under construction - Not implemen t e d ye t
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

//Wai t for user to cl ick on someth ing (1 MouseDown 1 event)

'" . , mtWarni ng ,

25

}

//----------------------- - --- --

void fastcall TMainForm: : EditMoveClick (TObject *Sender)

//Modi fies ToolBox appearance to reflect click on function
ToolBox- >Too lBtnMove->Down = true ;
ToolBox->ToolBoxStatusBar- >Panels->Items[2] - >Text =" "+ EditMove->Hint;
PrevToo l = CurToo l ;
CurToo l = tsMove ;

//Wai t for user to click on something (' MouseDown ' event)
}

//----------------- - -- - ---- - ------ ----------------- - ---------- - - -------------

void fastcall TMainForm: : EditMoveDeepCl i c k(TObject *Sender)

//Modifies ToolBox appearance to reflec t click on function
ToolBox->ToolBtnMoveDeep- >Down = true ;
ToolBox->ToolBoxStatusBar - >Panels - >Items[2]->Text = '' "+ EditMoveDeep- >Hin t ;

if (MessageDlg("Under const r uction - Not implemented yet !", mtWarning,
TMsgDlg,Buttons() << mbOK , 0) == mrOk)

//does nothing

//Wait for user to click on something (' MouseDown ' event)
}

// -------------------------- - -- - --------------------------------- ------------

void fastcall TMainForm: : EditResizeObjectClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on functi on
ToolBox->ToolBtnResizeObject->Down = true ;
ToolBox->ToolBoxStatusBar->Panels - >Items[2] - >Tex t = " "+ EditResizeObj ect-

•

•

•

•

•

•

>Hin t; •

if (MessageDlg(" Under construction - Not implemented yet ! ", mtWarning,
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

//Wai t for user to click on something (' MouseDown ' event)
}

// ------------------------------------ - ------------ - ------------------ - - - ----

void fastcall TMainForm: : EditFlipHorizontalClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function
ToolBox->ToolBtnFlipHorizontal->Down = true ;
ToolBox->ToolBoxStatusBar- >Panels->Items[2]->Text = " '' + EditFlipHoriz ontal-

>Hint;

if (MessageDlg (" Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

//Wai t for user to click on something (' MouseDown' event)
}

1"
. ' mtWarning ,

// --------------------------- ----------------- - --------- ---------------------

void fastcall TMainForm: : EditFlipVerticalClick (TObject *Sender)

•

26

•

•

•

•

•

•

•

•

•

•

•

•

//Modifies ToolBox appearance ta reflect click on func t ion
ToolBox- >ToolBtnFlipVertical - >Down = true ;
ToolBox- >ToolBoxStatusBar- >Pane l s - >Items[2] - >Text = " " + EditFlipVer t ical -

>Hint ;

if (Mess a ge Dlg ("Under const ru c tion - Not implemente d ye t !", mtWarn ing ,
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does noth ing

//Wait for user ta click on something (' MouseDown ' event)
}

!!-- - ---------------------- -- - ------ - --

void fastcall TMainForm :: EditPa t ternClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click o n funct i on
ToolBox->Too l Btn Pattern - >Down = true ;
ToolBox- >Too l BoxStatusBar->Panels->Items[2]->Text = " " + EditPattern- >Hint ;

if (MessageDlg (" Under construction - Not implemented yet ! ", mtWarning ,
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

//Wait fo r u ser ta click on something (' MouseDown' event)
}

//-------------- - - --- - - ---- - ---------

void fastca l l TMainForm : : EditRes i zePatternClick(TObject *Sender)

//Modifies ToolBox appearance t a reflect click on function
ToolBox- >ToolBtnResizePattern- >Down = true;
ToolBox- >ToolBoxStatusBar->Panels - >Items[2]->Text = '' " + EditResizePattern-

>Hint ;

if (MessageDlg (" Under construc t ion - Not implemented yet 1 '', mtWarning ,
TMsg DlgButtons() << mbOK , 0) == mrO k)

//does nothin g

//Wait for user ta click on something (' MouseDown ' event)
}

!/- - - - -------------- - --------------------- - ------------- - ------- - - - - - --------

void fastcall TMainForm : :EditColourPasteColourClick (TObject *Sender)

//Modifies ToolBox appearance ta reflect click on function
ToolBox- >ToolBtnPasteColou r - >Down = true ;
ToolBox- >ToolBoxStatu sBar - >Pane l s->I t ems[2]->Tex t = " " +

EditColourPasteColour- >Hint ;

if (MessageDlg (" Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

//Wait for u ser ta click on some t hing (' MouseDown' event)
}

1 Il . , mtWarning ,

// ---- - --------- - - - - ------ - ----------- - ---- - --------------------------- ------

void fastca l l TMainForm: : EditColourCo l o u rObjectCl i c k(TOb j ect *Sender)

//Modifies ToolBox appearance ta reflect click on func t ion

27

ToolBox- >ToolBtnCo lourObj ect->Down = true;
Too lBox- >ToolBoxS tatu s Bar - >Pane l s - >I t e ms[2]->Tex t

EditColourColou rObject->Hint;
" " +

i f (Message Dlg ("Unde r con s truc t ion - No t i mp lemented ye t
TMsgDlgButtons () << mbOK, 0) == mr Ok)

//does no t hing

//Wait f or use r t o c l ic k on some t hing ('Mo useDown' event)
}

1" . , mt Wa rning ,

!!-- ------------- --

void fas t cal l TMai nFo rm:: EditCutObj ec t Click(TObj ec t *Sender)

//Modifies ToolBox app e a rance t o r e fl ec t click o n f u nc ti o n
ToolBox- >ToolBt nCutObj ect->Down = true ;
ToolBox->ToolBoxStatusBar- >Panels - >I tems [2]->Tex t = '' " + Edi t CutObj ect- >Hint;

if (MessageDlg ("Unde r con s truc t ion - No t i mple me nte d ye t !", mt Wa r n ing ,
TMsg DlgButto n s () << mb OK , 0) == mrOk)

//does noth i ng

//Wai t for u ser t o clic k on some th i ng (' Mo use Down' event)
}

//- - - --- -- - - - ---- --

void fas t call TMai nFo rm:: Edi t Cop yObj ec t Cli c k(TObj ect *Sender)

//Modifies ToolBox appearance t o ref l e ct c li c k o n functio n
ToolBox- >ToolBtnCopyOb j ect - >Down = true ;
ToolBox- >ToolBoxS tatusBar- >Pane l s - >I t e ms[2]->Tex t = " " + Edi t CopyOb ject-

>Hint;

if (MessageDlg ("Unde r cons truction - No t i mplemented yet
TMsg DlgButtons () << mb OK , 0) == mr Ok)

//does nothing

//Wait for user t o c lic k on some t hing (' Mouse Down' even t)
}

1"
. ' mtWa r n i ng ,

// --- ------------------

void fastcal l TMainFo rm::Edi t Pa s t eObj ec t Clic k(TOb ject *Sende r)

//Modifies ToolBox appearance t o r eflec t click on fu n c ti on
ToolBox- >ToolBoxS t a tusBar- >Panels - >I t e ms [2]->Text = '' "+ Edi t Pas t eOb ject­

>Hint ;

}

ToolBox->ToolBtnPa s t eOb ject- >Down = true;

if (MessageDlg ("Under cons truc ti on - No t i mp l emented ye t
TMsgD l gButtons () << mbOK , 0) = = mr Ok)

//does no t hing

1" . ' mtWarning ,

// ---

void fas t ca l l TMa inFo rm::Ed itDe l e t eObj ec tCli c k(TObj ec t *Sende r)

//Modi f i es Too lBo x a ppearance t o r ef l ec t c li c k on fun c ti on a nd disac t ivate
t ool previou sly select e d

ToolBox- >ToolBtnDe l e t eOb j ect->Down = true ;

•

•

•

•

•

•

•

•

•

•

28

•

•

•

•

•

•

•

•

•

•

•

•

•

ToolBox->ToolBoxStatusBar- >Panels->Items[2]->Text
>Hint ;

PrevTool
CurTool

CurTool ;
tsDelObj ;

"" + EditDeleteObject-

//Wait for user to click on something ('MouseDown' event)
}

//---------------------------- ---------------- --- - ---------------------------

void fastcall TMainForm : : EditObjectToFloorClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function
ToolBox- >ToolBtnObjectToFloor->Down = true ;
ToolBox- >ToolBoxStatusBar->Panels- >Items[2]->Text = " '' + EditObjectToFloor-

>Hint ;

if (MessageDlg("Under constru c t ion - Not implemented yet
TMsgDlgButtons() << mbOK, 0) == mrOk)

//does nothing

//Wait for user to click on something ('MouseDown ' event)
}

1" . , mtWarni ng ,

// --- --------------------------

void

}

fastcall TMainForm :: HelpVAClick (TObject *Sender)

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

1" . , mtWarning ,

!!---

void fastcall TMainForm::HelpAboutClick(TObject *Sender)

AboutBox - >ShowModal ();
//***** remove when not necessary anymore

InfosBox - >ClWLab - >Caption IntToStr (MainForm- >ClientWidth);
InfosBox->ClHLab->Caption IntToStr (MainForm- >Cl ientHeight);

}

InfosBox - >WLab- >Caption IntToStr (MainForm- >Width);
InfosBox - >HLab- >Caption IntToStr(MainForm->Height);
InfosBox - >WS tage - >Caption IntToStr(MainForm->ImageStage->Width);
InfosBox->HStage->Caption IntToStr(MainForm- >ImageStage - >Height);

InfosBox- >ShowModal ();

// ---

void fastcall TMainForm::SelectObject_FRONT(int X, int Y)

//We assume that the abject on stage is not selected by default
ObjectToSelect = - 1;

for (inti = O; i < ListOfObjects->Count ; i++)

//Extracts the abjec t at the i-th position in the list of abjects present
on stage

Stageübject = (TStageObject*) ListOfOb jects->I tems[i);

//Is the mouse location inside the clipping rectangle?

29

if ((X> StageObject->NewPos_FRONT.Left) && (Y> StageObject-
>NewPos FRONT.Top) && (X< StageObject->NewPos FRONT.Right) && (Y< StageObject­
>NewPos FRONT.Bottom))

{

//Are the object's white pixels transparent?
if (!StageObject->StorageBmp->Transparent)
{

//No transparency
ObjectToSelect = i;

else //Transparency
{

//The object has been selected

//Is the pixel under mouse l oc white (white= TransparentColor) or
not?

if (StageObject->StorageBmp- >Canvas->Pixels[X-StageObject­
>NewPos FRONT.Left] [Y - StageObject- >NewPos_FRONT.Top] != clWhite)

//In TrueColor - 32bits, [StageObject - >StorageBmp->TransparentColor]
ever holds 50331647 when clWhite = 16777215 ! So it ' s not possible to compare with
[TransparentColor]

{

//Pixel under mouse loc is not white/transparent
ObjectToSelect = i; //The object has been selected

}

!!------------------------------- -------- - - -- - -------------------------------

void fastcall TMainForm: : SelectObject_TOP (int X, int Y)

//We assume that the object on stage is not selected by default
ObjectToSelect = -1 ;

for (inti= O; i < ListOfObjects - >Count; i++)

//Extracts the object at the i - th position in the list of abjects present
on stage

StageObject = (TStageObject*) ListOfObjects - >Items[i] ;

//Is the mouse location inside the clipping rectangle?
if ((X> StageObject->NewPos_TOP .Left) && (Y> StageObject-

>NewPos TOP.Top) && (X< StageObject->NewPos TOP.Right) && (Y< StageObject­
>NewPos_TOP.Bottom))

{

//Are the object's white pixels transparent?
if (!StageObject->StorageBmp- >Transparent)
{

//No transparency
ObjectToSelect = i ;

else //Transparency

//The object has been selected

//Is the pixel under mouse l oc white (white= TransparentColor) or
not?

if (StageObject->StorageBmp- >Canvas - >Pixels[X-StageObject­
>NewPos FRONT . Left] [Y - StageObject - >NewPos_FRONT . Top] != clWhite)

//In TrueColor-32bits, [StageObject - >StorageBmp->TransparentColor]
ever holds 50331647 when clWhite = 16777215 ! So it ' s not possible to compare with
[TransparentColor]

{

//Pixel under mouse loc is not white/transparent
ObjectToSelect = i ; //The object has been selected

•

•

•

•

•

•

•

•

•

•

•
30

•

•

•

•

•

•

•

•

•

•

•

•

•

}

//------ - - - - - - - - --------------- - - --- ---

void fastcal l TMai n Form :: ImageS t ageMou seDown(TObject *Sender ,
TMouseButton Button , TShiftS t ate Shift , int X, int Y)

switch (CurTool)
{

case tsRectangle
case tsCircle
case tsLine

CanDraw
Origin
MovePt
brea k;

true;
Point(X , Y);
Point(X , Y);

case tsFreehand:
CanDrawFreehand = true ;

//Sets pen and brush properties to paint Workbench ' s surface in white
first

>Height) ;

off - screen

Workbench

Workbench - >Canvas->Pen->Style
Workbench - >Canvas->Pen- >Mode
Workbench->Canvas->Pen- >Color
Workbench->Canvas->Brush->Style
Wor kbench->Canvas - >Brush - >Color

psSolid ;
pmCopy ;
clWhite ;
bsSolid ;
clWhite ;

//Wipes the temporary bmp in white
Workbench->Canvas->Rectangle (0 , 0 , Workbench- >Width, Workbench-

//Sets pen with the color anf the pen size choosed by the user to draw

Workbench->Canvas->Pen- >Color
Workbench->Canvas->Pen->Width

ColorDialog->Color;
CurrentPenSize ;

//Sets pen to draw wi t h on screen
ImageStage- >Canvas - >Pen - >Style psSolid ;
ImageStage- >Canvas - >Pen->Mode pmCopy ;
ImageStage->Canvas - >Pen - >Color ColorDialog->Color; ·

//Places the pen to be ready to draw on both off- and
Workbench - >Canvas->MoveTo (X, Y); //Places the pen

ImageStage - >Canvas->MoveTo (X, Y) ; //Places the pen

onscreen
off-screen on

on screen to be
ready to give feedback to the user

pencil
//S i zes a clip . rect . including the pixels colored (freehanded) by the

FreeHClipRect = Rect (X, Y, X, Y);
break ;

case tsMove
//We assume that the object on stage is not selected by default and so

can ' t be moved
CanMove false;

//Calls the appropria t e functio n that determines if an object has been
selected either i n FRONT VIEW or in TOP VIEW

if (ToolBox->ToolBoxStatusBar- >Panels - >Items [0] ->Text == " Stage -
Front View ")

{//The current view is Front View

31

SelectObject FRONT(X, Y);

if (ObjectToSelect > -1)

//Extracts the abject on which the current tool will be
applied

StageObject = (TStageObject*) ListOfObj ects­
>Items[ObjectToSelect);

CanMove = true;

//Calculates the offse t between (X, Y) MouseLoc and the left
and top side of the ClipRect

XOffset X StageObject->NewPos_FRONT . Left;
YOffset = Y - StageObject->NewPos_FRONT.Top;

}//else : select nothing - the user has not cl i cked on an abject

else // - >Panels->I t ems[0 J->Text
{

"Stage - Top View "

SelectObj ect_TOP (X, Y) ;

if (Objec t ToSelect > -1)

//Extracts the abjec t on which the current t ool wi ll be
applied

StageObject = (TStageOb ject*) ListOfObjects­
>Items[ObjectToSelect);

CanMove = true ;

//Calculates the offse t needed not to place ClipRect ' s TopLeft
corner in (X, Y) MouseLoc

XOffset = X - StageObj ect- >NewPos_TOP . Left ;
YOffset = Y - ((ImageStage - >Height - 1) - StageObject-

>Center_3D .z); // [YOffset) is the distance between MouseLoc's Y and Center 3D.z

}//els e select nothing - the user has not clicked on an abject

break;

case tsTransp
//Calls the func tio n that determines if an abject has been selected
SelectObject FRONT(X, Y);

if (ObjectToSelect > - 1)
{

//Extracts the abject on which the c urrent tool will be applied
StageObj ect = (TStageObject*) ListOfObjects­

>Items[ObjectToSelect) ;

//De t ermines if the selected abjec t must be drawn with
transparency or not

StageObject- >StorageBmp- >TransparentColor = clWhite ; //Sets
the color used to apply the t ransparency effect

StageObject - >StorageBmp- >T ran sparen t = !StageObject->StorageBmp­
>Transparent ;

//Calls the method / member function that rebuilds the
StageObjects overlapping the cl ip.rect . o f the modified abjec t

Rebuild_FRONT (dmObjectC lipRect FrontView) ;

//As a safety measure ...
Wrappingüp ();

•

•

•

•

•

•

•

•

•

•

•
32

•

•

•

•

•

•

•

•

•

•

•

•

}//else
break;

case tsDelObj

select nothing - the user has not clicked on an object

//Calls the appropriate function that determines if an object has been
selected

Front View ")
if(ToolBox->ToolBoxStatusBar->Panels->Items[0)->Text == " Stage -

{//The current view is Front View
SelectObject_FRONT(X, Y) ;

else //->Panels - >Items(0 J->Text
{

SelectObject_TOP (X, Y);

if (ObjectToSelect > -1)
{

" Stage - Top View "

//Extracts the object that will be deleted
StageObject = (TStageObject*) ListOfObjects­

>Items[ObjectToSelect) ;

//Frees the memory associated with the object stored at position
[ObjectToSelect)

delete StageObject ;
StageObject = NULL;
//Remove the entry in the TList
Li stOfObjects - >Delete(ObjectToSelect);

//The object currently selected has been deleted, so it 's no use
to reference it anymore

}

ObjectToSelect = -1;

//As a safety measure ...
//Refreshes also the whole stage
WrappingUp();

}//else : select nothing - the user has not clicked on an object
break;

//default stand for CASE tsNoTool, that is, when no Tool is selected
default : //Do nothing

break ;

// ---

void fastcall TMainForm : : ImageStageMouseMove(TObject *Sender,
TShiftState Shift , int X, int Y)

//Displays mouse pointer locati on on stage - not on screen
ToolBox- >ToolBoxStatusBar- >Panels - >Items[3)->Text " X: " +IntToStr (X) +"

Y: " +IntToStr (Y);

if (CanDraw)
{

} ;

DrawTempShape(Origin, MovePt);
MovePt = Point (X, Y) ;
DrawTempShape(Origin, MovePt) ;

if (CanDrawFreehand)
{

//Erases previous shape

//Draws current shape

33

//Draws freeha nded on bo th off - and onscreen b y followi ng the pointer
location

Workbench - >Canvas - >LineTo (X, Y);
ImageStage- >Canvas - >Li neTo (X, Y) ;

to the user

//Draws off - screen on Workbench
// Draws on screen to give feedback

drawing

drawing

drawing

drawing

} ;

if (X< FreeHCl ipRect .Le ft)
//Enlarges t he lef t side of the c lip.rect . surrounding the f r eehand

FreeHClipRect . Left = X;
if (Y< FreeHClipRect . Top)

//Enlarges the left side of the clip .rect. surrounding the freehand

FreeHClipRect . Top = Y;
if (X> FreeHClipRect . Right)

//Enlarges the l eft s ide o f the clip . rect. surrounding the freehand

FreeHClipRect. Righ t = X;
if (Y> FreeHClipRect.Bottom)

//Enlarges the left side of the clip.rect. surrounding the freehand

FreeHClipRect.Bottom = Y;

if (CanMove)
{

//Bool for the [Move] fun c tion

View ")
if (ToolBox- >ToolBoxS tatusBar- >Panel s - >I tems[0] - >Tex t " Stage - Front

{//[Move in FRONT VIEW]
//Sets previ ous coordinates to indica t e where was the abject
StageObject- >PrevPos_FRONT = StageObject->NewPos FRONT ;

//Calcula t es new coo rdinates t o indicate where to draw the abject
StageObject - >NewPos FRONT GetObjectNewCoord_FRONT(X, Y, XOffset,

YOffset) ;

//Merges NewPos_FRONT and PrevPos FRONT to get a bigger TRect
including both

MergeRec t s FRONT ();

//Erases everything including the abjec t o n its prev. pos . and rebuild
everything including the obj . on its . ne w pos.

Rebuild_FRONT(dmMergedClipRect);

else //[Move in TOP VIEW]
{

YOffset) ;

//Sets previous coordinates t o indicate where was the TopRect
StageObject->PrevPos_TOP StageOb j ect->NewPos_TOP ;

//Sets new coordinates to indicate where t o draw the TopRect
StageObject- >NewPos_TOP GetObjectNewCoord_TOP(X, Y, XOffset ,

//Merges NewPos FRONT and PrevPos FRONT t o get a bigger TRect
including both

MergeRec t s_TOP ();

//Erases everything including the ab j ect on its prev. pos. a nd rebuild
everything i ncluding the obj . on its. new pos .

Rebuild_TOP (dmMergedClipRect);

}

//---

•

•

•

•

•

•

•

•

•

•
34

•

1

I•

•

•

•

void fastcall TMainForm: : ImageStageMouseUp(TObject *Sender ,
TMouseButton Button , TShiftState Shift , int X, int Y)

if (CanDraw)
{

//Stores the final shape
StoreShape (Origin , Point (X, Y));

//Calls the method / member function that rebuilds the StageObjects
overlapping the clip.rect. of the modified object

Rebuild FRONT(dmObjectClipRect FrontView);

//As a safety measure .. .
WrappingUp ();

CanDraw = false ;
} ;

if (CanDrawFreehand)
{

//Allocates a new memory space for that object on stage and returns a
e pointer toit

•

•

•

•

•

object

StageObject new TStageObject ;
//Gives an ID number to the object
StageObject->ID = ++LastObjectID;

//Positions StorageBmp
StageObject - >NewPos FRONT= FreeHClipRect;

//The bitmap ' s height and width properties hold the original size of the

StageObject->StorageBmp->Width
FreeHClipRect . Left ;

StageObject - >S torageBmp- >Height
FreeHClipRect . Top;

FreeHClipRect.Right

FreeHClipRect . Bottom -

//When an abject is created , its current dimensions are identical toits
original dimensions

StageObject - >CurWidth
StageObject->CurHeight

StageObject- >Sto rageBmp->Width ;
StageObject- >StorageBmp- >Height;

//Records the center in VA ' s 3D- space
StageObject->Center 3D .x StageObject->NewPos FRONT . Left + (StageObject­

>StorageBmp- >Width / 2) ;
StageObject->Center 3D.y StageObject->NewPos FRONT . Top + (StageObject­

>StorageBmp- >Height / 2);
StageObject->Center 3D . z 0 ;

//Stores the final freehand drawing by copying pixels inside FreeHClipRect
onto StorageBmp at position [0 , 0]

StageObject->StorageBmp- >Canvas->CopyMode = cmSrcCopy;
StageObject - >S torageBmp- >Canvas - >CopyRect(Rect (0 , 0 , StageObject­

>S torageBmp- >Width , StageObject- >StorageBmp- >Height) , Workbench->Canvas ,
FreeHClipRect) ;

//Adds StageObject to the list of abjects present on stage
ListOfObjects - >Add (StageObject) ;

//Sets [ObjectToSelect] to make it reference to the object that has just
e been added to the list

•

ObjectToSelect = (ListOfObjects->Count) - l ;
because the list hasn ' t been sorted since

//It's the last item

35

//Calls the me t hod / membe r fu n c tion that rebuilds the StageObjects
overlapping the clip . rect . of the modified object

Rebuild FRONT (dmObjectClipRect Fron tView) ;

//As a safety measure . . .
WrappingUp();

CanDrawFreehan d false ;
} ;

if (CanMove)
{

View ")

CanMove = false ;

if (ToolBox- >ToolBoxStatusBar- >Panels - >Items [0] ->Text

{//The curren t v i ew is TOP VIEW

" Stage - Top

coordinate
//Sorts t he StageObjec t s stored in the TList according to t heir Z

SortStageObjects ();

//Stretches or shrinks the ob j ect ' s ClipRect on the screen ' s surface
for the FRONT VIEW if we move the ob j ect respective l y forward or backward along
the z coord

StageObject - >PrevPos_FRONT
DepthRendering() ;

}

StageObject- >NewPos FRONT

else //Do nothing special - jus t commen t on the reason for which
nothing is done

//In FRONT VIEW , the
[MoveDeep] loop and not here

//In FRONT VIEW , the
[MoveDeep] loop and not here

} ;

//As a safety measure . . .
WrappingUp();

}

[Sorting] is done after each step of

[DepthRe ndering] is done after each step of

//-------------------- - ------- - ---- - ---------- - - -------------------------- - - -

void fastcall TMainForm: : SortStageObjec t s ()

the

the

/***
***************************/
/* This function sorts t he StageObjects in the TList according to their z
coordinate in VA's 30 space . */
/* A decreasing order is used to have at the beginning of t he list the
objects which are at */
/* the back of the stage , and at the e nd of the l ist the objects which are at
the front of */
/* the stage. Simply going through the lis t and displaying the objects one
by one will allow to */
/* keep at the front of the s t age the objects with the smallest z
coordinates. Over a n d above, */
/* when an object is created , it is placed a t the front of the stage with its
z coord. equal to */
/* zero. So, p l acing each object newly created at the e nd of the l ist avoid
sorting the list to */
/* keep it ordered - [TList : : Add(void * Item)] places the item at the end of
the TList . */

•

•

•

•

•

•

•

•

•

•

•
36

•

•

•

•

•

•

•

•

•

•

/* Sorting is fairly easy : when [Moving], only one abject at a time is not
ordered - that abject is */
/* the one that has been selected and is referenced by [int Objec tToSelect l.
So first delete that */
/* entry from the list . Then loop through the list till you reach the place
where to place that */
/* abject. To doit, use [TList::Insert()l or [TList::Add() l according to
the context - but not */
/* [TList :: Move()] which sometimes puts the ab ject down one place before or
after the one expected . */
/* Sorting has to be processed at the end of [Move] in TOP VIEW (i . e . OnMouseUp
event) and after every */
/* step of the [Move Deep l loop in FRONT VIEW (i . e . OnMouseMove , boolean
CanMoveDeep) */
/*
*/
/* The cu rre nt implementation permit s t o avoid to be out of bounds .
*/
/******************************* ************ ******* ************** *****************
***************************/

//[ptrSelectedStageObjectl points to the abject that has been selected to be
moved

TStageObject* ptrSelectedStageObject = (TStageObject*) ListOfObjects -
>Items[ObjectToSelect];

//Removes the StageObject whose z coordinate has been modified
ListOfObjects->Delete(ObjectToSelect);

//The index used to loop through the list . The last value of index [i l when
leaving the loop will give us the position in the list where to place ou r item

inti;

//Determines where (in the list) t o replace the StageObject whose z coordinate
has been modified

for (i=0 ; i < Li stOfObjects - >Count ; i++)

//[ptrStageObjectAtCurindexl p o int s to the abjec t referenced by index [il
in TList :: Items[l

TStageObject* ptrStageObjectAtCurindex = (TStageObject*) ListOfObjects­
>Items[i];

if ptrSelectedStageObject->Center 3D .z
>Center 3D . z)

ptrStageObjectAtCurindex-

{

else

if (ptrSelectedStageObject->ID < ptrStageOb j ectAtCurindex- >ID
{//We have the new position for [SelectedStageObjectl

break ;

if (ptrSelectedStageObj ect->Center 3D . z > ptrStageObjectAtCurindex­
>Center 3D . z)

e {//We have the new position for [SelectedStageObject]

•

•

break ;

if (i == ListOfObjects->Count)
{//The StageObject whose z coordinate has been modified is placed at the end

of the list
ListOfObjects->Add(ptrSelectedStageObject) ;

37

//Sets [ObjectToSelect) to make it reference to the object that has just
been added to the list

ObjectToSelect = (ListOfObjects->Count) - 1 ; //It ' s the last item
because TList::Add() places its object (the param.) at the end of the list

}

else
{//The StageObject whose z coordinate has been modified is inserted in the

list between two other items
ListOfObjects - >I nsert(i, ptrSelectedStageObject);

//Sets [ObjectToSelect) to make it reference to the object that has just
been added to t he list

ObjectToSelect = i;
the i-th position

}

}

//It ' s [il because the object has been inserted at

//---

void fastcall TMainForm: : WrappingUp()

/********************* ** ******
***************************/
/* This function makes sure that , if the last operation has resulted in a bug, we
can see */
/* it immediately and not after three or four other operations that didn't
resulted */
/* in any bug at all ! For this , the whole World is rebuild.
*/
/* Also, the position of the ClipRects in the other view (the one not displayed at
the moment) is */
/* updated here. It indicates as well that the world has been modified and
needs to be saved */
/* as well as it activates/desactivates the functionalities that need it.
*/
/*
*/
/* N.B:
position

[Workbench->Height -1) is used because the 522-nd line is at the 521-st
*/

/***
***************************/

if (ToolBox->ToolBoxStatusBar->Panels->Items[0)->Text
View")

{//The current view is Front View

" Stage - Front

//As a safety measure, we r ebui l d the whole world (FRONT VIEW) after
every operation modifying the World

Rebuild FRONT(dmWhole) ;

if (StageObject != NULL)

//Updates the position of the ClipRects placed on Stage above the
polygon in TOP VIEW

//Mainta ins [PrevPos_TOP) and [NewPos TOP) according to [Center_3D) -
without using [NewPos FRONT) because this one could be modified for perspective
effect

int HalfWidth = StageObject->StorageBmp- >Width / 2 ;
StageObject->PrevPos_TOP = StageObject->NewPos TOP= Reet(

StageObject->Center_3D . x - HalfWidth , ((Workbench->Height-1) - StageObject­
>Center_3D.z) - 6, StageObject->Center 3O.x + HalfWidth, ((Workbench- >Height-1) -
StageObject - >Center_3D.z) + 6);

•

•

•

•

•

•

•

•

•

•

•
38

•

•

•

•

•

•

•

•

•

•

1•

}//ELSE do not de - reference StageObject to avoid an ' Access Violation
Error '

else // - >Pa nels->Items[0J->Text == '' Stage - Top View "

//As a safe t y measure , we r e bu ild the whole world (TOP VIEW) after every
operation modifying the World

Rebui l d_TOP (dmWhole);

//The ClipRects in FRONT VIEW are updated in [DepthRendering() J for
getting a perspective effect

}

//The world has been modified - a new abject has been added or something has
been moved / modified

}

WorldModif i ed = t rue ;

//Makes avai l able t he appropria t e fu nctionalities
UpdateFunctionsAvailable() ;

// ------- - ---------- - --- - ---- - - ------- ------------------------- - -------------

void fastcall TMainForm : : UpdateFunctionsAvailable ()

/***
*******/
/* This function tes t s which changes needs to be perfor med in terms of fu nctions
*/
/* and views available , buttons lowered , etc . according to the status of
*/
/* the world and the views .
*/
/ ***
*******/

//----- CHANGE IN VIEW?
if (ToolBox- >ToolBoxStatusBar- >Panels - >Items[0 J->Text

View ")
{//The cu r rent view is Front Vi ew

" Stage - Front

//So disactiva t e what is related toit and ac t ivate what ' s related to Top
View

StageTopView- >Enabled
ToolBox- >ToolBtnTopView- >Enabled
StageFrontView- >Enabled
ToolBox- >ToolBtnFrontView- >Enabled

true ;
true ;
false ;
false ;

//Activate drawing func t ions like Circle or Line that needs to be drawn by
dragging the mouse

Il - which can only be done in Front View
EditinsertObject - >Enabled
ToolBox- >ToolBtninsertObject - >Enabled

EditShapeRectangle- >Enabled
ToolBox- >ToolBtnRectangle- >Enabled

EditShapeCircle->Enabled
ToolBox->ToolBtnCircle- >E nabled

EditShape Li ne - >Enabled
ToolBox- >ToolBtnLine - >Enabled

EditShapeFreeHandPencil - >Enabled
ToolBox- >ToolBtnFreehandPencil - >Enabled

true ;
true ;

true ;
true ;

t r u e ;
t r ue ;

true ;
true ;

t rue ;
t rue ;

39

}

FileSaveWorld- >Enabled
ToolBox->ToolBtnSaveWorld- >Enabled

false ;
false ;

FileSaveWorldAs->Enabled
ToolBox- >Too lBtnSaveWorldAs->Enabled

//STAGE menu

false ;
false ;

StageObje c tToWorkRoom->Enabled
ToolBox->ToolBtnObjectToWorkRoom- >Enabled

fals e ;
fals e ;

StageClear->Enabled
ToolBox- >ToolBtnStageClear - >Enabled

false ;
false ;

StageCopyAl l->Enabled
Too lBox- >Too lBtnStageCopyAll->Enabled

//WORK menu

//EDI T menu
EditCleanPixels - >Enabled
ToolBox->ToolBtnCleanPixels->Enabled

EditMove - >Enabled
ToolBox->ToolBtnMove->Enabled

false;
false;

false;
false;

false ;
false ;

EditMoveDeep- >Enabled
ToolBox->ToolBtnMoveDeep- >Enabled

false ;
false;

EditResizeObject->Enabled
ToolBox->ToolBtnResizeObject- >Enabled

EditFlipHorizontal - >Enable d
ToolBox->ToolBtnFlipHorizontal->Enabled

EditFlipVertical - >Enabled
ToolBox->ToolBtnFlipVertical - >Enabled

false;
false;

fals e ;
fals e ;

false;
false ;

EditPattern->Enabled
Too lBox- >Too lBtnPattern - >Enabled

false ;
false ;

EditResizePattern->Enabled
ToolBox->ToolBtnResizePattern- >Enabled

false;
false;

EditTra nsparentObj ect - >Enabled
ToolBox->ToolBtnTransparentObject - >Enabled

false;
fal se ;

EditColourColourObject->Enabled
ToolBox->ToolBtnColourObject - >Enabled

EditCutObject - >Enabled
ToolBox->ToolBtnCutObject->Enabled

EditCopyObject - >Enabled
ToolBox->ToolBtnCopyObject->Enabled

EditDeleteObject- >Enabled
Too lBox- >Too lBtnDeleteObject->Enabled

EditObjectToFloor- >Enabled
Too lBox- >Too lBtnObjectToFloor- >Enabled

false ;
false ;

false ;
false ;

false ;
false ;

false ;
false;

false;
false;

// ---

•

•

•

•

•

•

•

•

•

•

•
42

•

)//ELSE do not de-reference StageObject to avoid an ' Access Violation
Error '

else // - >Pane ls->I t erns[0)->Text == " Stage - Top View "

//As a safety rneasure, we rebuild the whole world (TOP VIEW) after every
operation rnodifying the World

Rebuild_TOP (drnWhole);

//The ClipRects in FRONT VIEW are updated in [DepthRendering()) for
getting a perspective effect

)

//The world has been rnodified - a new object has been added or sornething has
been rnoved / rnodified

)

WorldModified = true;

//Makes available the appropriate fun c tionalities
UpdateFunctionsAvailable();

//---

void fastcall TMainForrn ::UpdateFunctionsAvailable()

/***
*******/
/* This function tests which changes needs to be perforrned in t errns of functions
*/
/* and views available , buttons lowered , etc . according t o the status of
*/
/* the world and the views .
*/
/***
*******/

// ----- CHANGE IN VIEW?
if (ToolBox->ToolBoxStatusBar->Panels->Iterns[0)->Text

View ")
{//The current view is Front View

" Stage - Front

//So disactivate what is related toit and activate what's related to Top
View

StageTopView- >Enabled
ToolBox->ToolBtnTopView->Enabled
StageFrontView- >Enabled
ToolBox- >ToolBtnFrontView->Enabled

true;
true;
false;
false ;

//Activate drawing functions like Circle or Line that needs to be drawn by
dragging the rnouse

Il - which can only be done in Front View
EditinsertObject - >Enabled true;
ToolBox- >ToolBtninsertObject->Enabled true;

EditShapeRectangle->Enabled
ToolBox->ToolBtnRectangle - >Enabled

EditShapeCircle- >Enabled
ToolBox->ToolBtnCircle->Enabled

EditShapeLine->Enabled
ToolBox- >ToolBtnLine - >Enabled

EditShapeFreeHandPencil->Enabled
ToolBox- >ToolBtnFreehandP.enci 1->Enabled

true;
true;

true;
true;

true;
true;

true ;
true;

39

EditPenSize->Enabled
ToolBox->ToolBtnPenSize - >Enabled

true;
true;

//Restores the hint property of [Move] and [Move Deep] since they have a
different behavior from the o ne they ' ve got in TOP VIEW

ToolBox->ToolBtnMove - >Hint '' Move an abject on the vertical plane ";
ToolBox->ToolBtnMoveDeep- >Hint = "Move an abject on the horizontal plane " ;

// [TransparentObject] is enabled if we are in TOP VIEW with at least 1
abject on the stage

}

else
{//The current view is Top View

//So disactivate what is related toit and activate what's related to
Front View

by

StageTopView- >Enabled
ToolBox->ToolBtnTopView- >Enabled
StageFrontView- >Enabled
ToolBox- >ToolBtnFrontView- >Enabled

//Disactivate drawing f u nctions like
dragging the mouse

Il - which can only be done in
EditinsertObject - >Enabled
ToolBox->ToolBtninsertObject->Enabled

EditShapeRectangle- >Enabled
ToolBox->ToolBtnRectangle- >Enabled

EditShapeCircle- >Enabled
ToolBox- >ToolBtnCircle->Enabled

EditShapeLine- >Enabled
ToolBox->ToolBtnLine->Enabled

false ;
false;
true ;
true ;

Circle or Line that needs to be drawn

Front View
false ;
false ;

false ;
false;

false;
false ;

false;
false ;

EditShapeFreeHandPencil - >Enabled
ToolBox->ToolBtnFreehand Pencil->Enabled

false ;
false ;

EditPenSize- >Enabled
ToolBox->ToolBtnPenSize - >Enabled

false;
false ;

//Changes the hint property of
differently and are the same functions

ToolBox->ToolBtnMove->Hint
ToolBox->ToolBtnMoveDeep- >Hint

[Move] and [Move Deep] since they behave
in TOP VIEW

"Move an abject backwards and forwards ";
= "Move an object backwards and forwards ";

//[TransparentObject] is not enabled in TOP VIEW .

//----- AT LEAST ONE OBJECT ON THE STAGE?
if (ListOfObjects - >Count != 0)
{// >= 1 abjects on the stage
//FILE menu

FileSaveWorld- >Enabled true ;
ToolBox->ToolBtnSaveWorld- >Enabled true ;

FileSaveWorldAs - >Enabled true ;
ToolBox->ToolBtnSaveWorldAs - >Enabled true ;

//STAGE menu
StageObjectToWorkRoom- >Enabled
ToolBox->ToolBtnObjectToWorkRoom- >Enabled

true ;
true;

40

StageClear->Enabled true ;
ToolBox- >ToolBtnStageClear->Enabled true ;

StageCopyAll - >Enabled true;
ToolBox->ToolBtnStageCopyAll - >Enabled true ;

//WORK menu

//EDIT menu
EditCleanPixels->Enabled
ToolBox- >ToolBtnCleanPixels- >Enabled

true;
true;

EditMove->Enabled true;
ToolBox->ToolBtnMove->Enabled true;

EditMoveDeep->Enabled true ;
ToolBox- >Too lBtnMoveDeep->Enabled true;

EditResizeObject->Enabled true ;
ToolBox->ToolBtnResizeObject - >Enabled true ;

EditFlipHorizontal->Enabled true ;
ToolBox- >Too lBtnFlipHorizontal->Enabled true ;

EditFlipVertical->Enabled true;
ToolBox->ToolBtnFlipVertical->Enabled true;

EditPattern- >Enabled
ToolBox->ToolBtnPattern->Enabled

true;
true ;

EditResizePattern->Enabled
ToolBox->ToolBtnResizePattern - >Enabled

true ;
true ;

if(ToolBox->ToolBoxStatusBar->Panels->Items[0]->Text
View ")

{//The current view is Front View
EditTransparentObject - >Enabled
ToolBox->ToolBtnTransparentObject- >Enabled

true;
true ;

else // - >Panels->Items[0] - >Text == " Stage - Top View "
{

EditTransparentObject->Enabled
ToolBox->ToolBtnTransparentObject- >Enabled

EditColourColourObject->Enabled
ToolBox- >ToolBtnColourObject->Enabled

EditCutObject - >Enabled
ToolBox- >ToolBtnCutObject - >Enabled

EditCopyObject->Enabled
ToolBox->ToolBtnCopyObject - >Enabled

EditDeleteObject->Enabled
ToolBox->ToolBtnDeleteObject->Enabled

EditObjectToFloor- >Enabled
ToolBox->ToolBtnObjectToFloor- >Enabled

true ;
true;

true ;
true ;

true;
true ;

true;
true ;

true ;
true ;

false ;
false;

else //There are no abjects on the Stage
{

//FILE menu

" Stage - Front

41

}

FileSaveWorld->Enabled false ;
ToolBox- >ToolBtnSaveWorld- >Enabled false;

FileSaveWorldAs - >Enabled false;
ToolBox->ToolBtnSaveWorldAs->Enabled fal se ;

//STAGE menu
StageObjectToWorkRoom- >Enabled
ToolBox->ToolBtnObjectToWorkRoom->Enabl ed

false;
false;

StageClear->Enabled false;
ToolBox- >Too lBtnStageClear- >Enabled fals e ;

StageCopyAl l->Enabled fal se ;
ToolBox->ToolBtnStageCopyAll->Enabled fal se ;

//WORK menu

//EDIT menu
EditCleanPixels->Enabled
ToolBox->ToolBtnCleanPixels->Enabled

EditMove->Enabled false ;
ToolBox->ToolBtnMove->Enabled false ;

false ;
fal se ;

EditMoveDeep->Enabled false ;
ToolBox->ToolBtnMoveDeep->Enabl ed false ;

EditResizeObject->Enabled
ToolBox->ToolBtnResizeObject- >Enabled

false;
false;

EditFlipHorizontal->Enabled
ToolBox- >ToolBtnFl ipHor iz ontal- >Enable d

false ;
false ;

EditFlipVertical->Enabled
ToolBox- >Too l BtnFlipVertical - >Enabled

false ;
false;

EditPattern - >Enabled
ToolBox->ToolBtnPattern- >Enabled

false ;
false;

EditResizePattern->Enabled
ToolBox->ToolBtnResizePattern- >Enabled

false ;
false ;

EditTransparentObject->Enabled
ToolBox->ToolBtnTransparentObject - >Enabled

false ;
false;

EditColourColourObject- >Enabl ed false;
ToolBox->ToolBtnColourObject - >Enabled false;

EditCutObject->Enabled false;
ToolBox->ToolBtnCutObject->Enabled false ;

EditCopyObject - >Enabled false;
ToolBox->ToolBtnCopyObject->Enabled false;

EditDeleteObject->Enabled f alse ;
ToolBox->ToolBtnDeleteObject - >Enabled fal se ;

EditObjectToFloor - >Enab l ed false ;
ToolBox->ToolBtnObjectToFloor- >Enabled false ;

// --- - -

•

•

•

•

•

•

•

•

•

•

•

void fastcall TMain Form : : Rebuild_FRONT(TDisplayMode DisplayMode)

/****** ***
*******************************/
/* Rebuild FRONT draws first a blank stage , t hen a wireframe . Eventually , it
draws all the objec t s */
/* listed as being present on a stage . Whe n VA is launched, if the u ser
didn't 2x- click on a VA file, */
/* the list conta ins 0 objec t s and o nl y a blan k stage+ a wireframe are drawn
- this is used */
/* to prepare a new stage set. Everything is drawn off- screen and fina l ly
displayed on sc r een */
/***
*******************************/
//***** Should have a parameter to tell which stage is concerned

CreateBlankStage_OffScr();
S_H_Wireframe_OffScr() ;
//***** Paint the floor if necess.
Paintübjects_OffScr(DisplayMode);

//Copies Wor kbench or a part of it o n the screen - d e tects if the object is
being moved

Display_OnScr(Di sp l ayMode) ;
}

//---

void fastcall TMainForm::CreateBlankStage_OffScr()

/******************************** ******************************** /
/* Just wipes the stage with the color used for the St age */
/**/

//Sets pe n and brush parameters
Workbench - >Canvas - >Pen- >Style
Workbench - >Ca nvas - >Pen->Mode
Workbench->Canvas - >Pen - >Color
Workbench->Ca nvas->Brush- >Style
Workbench - >Canvas - >Brush- >Color

to draw the blank stage
psSolid ;
pmCopy ;
S t ageColor ;
bsSolid ;
StageColor;

//Draws a rectangle symbolizing the blank stage
Workbench->Canvas - >Rec tangle(0, 0 , ImageStage - >Width, ImageStage- >Height);

}

//---

void fastcall TMainForm::S_H_Wi reframe_OffScr()

/***************************** **
**********************/
/* Shows or hides the wires on the stage according t o the WireframeMode, with the
illusion of depth */
/********* ** ******************
**********************/

switch (WireframeMode)

case (wfShow)
//Sets drawing properties
Wor kbe n ch- >Canvas - >Pen - >S t y l e
Wor kb e n ch- >Canvas - >Pen - >Mode
Wor kb e n ch->Canvas - >Pen - >Co l or
Wor kbe n ch->Canvas - >Pen->Width
Workbench->Canvas->Brush- >S t yle
break;

psSolid ;
pmCopy ;
clLime ;
l ;
bsClear ;

43

} ;

case (wfHide)
//Sets drawing properties
Workbench - >Canvas - >Pen - >Style
Workbench->Canvas->Pen- >Mode
Workbench - >Canvas->Pen- >Co l or
Workbench- >Canvas - >Pen - >Width
Workbench- >Canvas - >Brush- >Style
break;

psSolid ;
pmCopy;
MainForm->StageColor ;
l ;
bsClear ;

//PARTI : Determines the location of t he wireframe when projected on the screen ' s
surface (for perspective)

//Sides of the projection on the screen ' s surface of the wireframe ' s rectangle
placed at the back

int WF_LeftSide , WF_RightSide , WF_Bot t omSide , WF_TopSide;

//Left side of the Wireframe with perspective first, right side then (read
cornrnents there -->)

WF LeftSide = ConvertLocation_3Dto2D (ImageStage - >Width /2 , 0
ImageStage->Height -1); //In TOP VIEW, the Left-Top corner is at (0

, 0), that is (0 , ImageStage - >Height -1) in VA ' s 3D-space
WF_RightSide ConvertLocation_3Dto2D (ImageStage - >Width /2 , ImageStage-

>Width -1 , ImageStage - >Height - 1); //In TOP VIEW , the Right-Top corner is a t
(ImageStage - >Width -1, 0), that is (ImageStage- >Width -1, ImageStage - >Height -1)
in VA 's 3D-space

//Bottom side of the Wireframe with perspective first, top side then
//You 've got to look at VA ' s 3D- space from the right side and erec t it so that

the top is on the left of the screen and the bottom on the right .
WF_TopSide = ConvertLocation 3Dto2 D(ImageStage- >Height /2 0

, ImageStage->Height -1);
WF_BottomSide = ConvertLocat ion 3Dto2 D(ImageStage- >Height /2, ImageStage ­

>Height -1, ImageStage - >Heigh t - 1) ;

//PART II : Draws 1 rectangle and 4 lines
Workbench - >Canvas - >Rectangle (WF_LeftSide , WF_TopSide , WF_RightSide,

WF_BottomSide);

}

Workbench->Canvas - >MoveTo (0, 0);
Workbench->Canvas->LineTo(WF_LeftSide , WF_TopS ide);
Workbench->Canvas->MoveTo(Workbe nch- >Width, 0);
Workbench->Canvas->LineTo (WF_RightSide , WF_TopSide);
Workbench->Canvas - >MoveTo (0 , Workbench->Height);
Workbench->Canvas - >LineTo (WF_LeftSide , WF_BottomS i de) ;
Workbench->Canvas->MoveTo(Workbench- >Width , Workbench->Height);
Workbench->Canvas - >LineTo(WF_RightSide , WF_BottomSide);

// --- - -------------------------- -

void fastcall TMainForm : : PaintObjects_OffScr (TDisplayMode DisplayMode)

/***
***************/
/* This method loops
their bitmap */
/* (embedded in
screen bitmap) */
/* only if they
DisplayMode .

through the list of objects present on the stage and draws

StageObject under the name StorageBmp) on Workbench (off-

are inside a certain ClipRect that is determined by
*/

/***
***************/

//Points t o the StageObject c ur rentl y considered - we need t o know which
ClipRect to consider in t he [case dmObjectClipRect_FrontView].

•

•

•

•

•

•

•

•

•

•

•
44

•

•

•

•

TStageObject* Cu rConsObject ;

for (int i = O; i < ListOfOb j ec t s - >Cou n t ; i ++)
{

//Ex t ract s t he abject at t he i -th position in t he list of abjec t s p resen t
on stage

StageObj ect = (TStageObj ec t *) ListOfObject s - >Items[i];

switch (DisplayMode)
{

case dmWhole :
//Displays all ab j ects present on the stage
Workbench - >Canvas - >S t re t chDraw (StageOb j ect->NewPos FRONT ,

StageObject- >S t orageBmp);
break ;

e case dmObjectClipRect_FrontView :
// Displays only a bj ec t s ins i de t he St ageObject ' s clipping

rectangle curren tly considered t o app ly a n effect on the abject

//Extracts the St ageOb j ect currently considered
CurConsObject = (TStageObject*) ListOfObjects -

• >Items[ObjectToSelect] ;

•

•

•

•

•

•

•

if
>NewPos FRONT))

IntersectRect s (St ageObject - >NewPos FRONT , CurConsObject-

{

//The abject i s i nside t he StageObject' s clipping rec t a ng l e
currently considered , so paint i t o n to Wor kbench

Workbench - >Canvas - >StretchDraw (StageObject->NewPos FRONT ,
StageObject->StorageBmp);

}//ELSE do not display the abject at the i - th position in the
list because the abject is not inside the StageObject ' s clipping rectangle
currently considered

break ;

case dmMergedClipRec t
//Displays on ly a b jec t s i nside the MergedRectangle used to move an

abject
if (IntersectRects (St ageObject->NewPos FRONT , MergedRec t angle)

//The abject is inside MergedRec t angle , so paint it onto
Workbench

Workbench - >Canvas->StretchDraw (StageObject->NewPos FRONT ,
StageObject - >StorageBmp);

}//ELSE do not d i sp l ay the abject a t the i-th position i n the
list because t he abjec t is no t in s ide MergedRectang l e

break ;

if (ObjectToSelect > - 1)
{

//Restore the abject which has been selected and is used for the moment
StageObject = (TStageOb j ect*) ListOfObjects - >Items[ObjectToSelect] ;

}//else : select nothing - t he user has not clicke d on an abject
}

// -------- ------- - -- - - - - - ------------- - --------------------------------------

void fastca ll TMainForm :: Disp l ay_OnScr(TDisplayMode Di splayMode)

45

/********************* ******** ********************* **** ***************************
**********************/
/* This f unction determines
displayed

which part of the o ff- screen bitmap has to be
*/

dmWhole --> the whole off-screen /* that is to say :
is displayed */
/* dmOb j ect ClipRec t _FrontView --> the object only, in
its Front View
/*
its Top View
/*
including the object
/*

*/

*/

and new positions */

dmObjectClipRect_TopView

dmMergedClipRect
*/

--> the object only, in

--> the clip . rect

both on its previous

/***
**********************/

//Sets mode used with CopyRect
ImageStage->Canvas - >CopyMode = cmSrcCop y ;

//Displays Workbench on screen according to the DisplayMode
TRect AreaToDisplay ;
switch (DisplayMode)
{

case dmWhole :
AreaToDisp l ay = Rect (0, 0 , ImageStage->Width, ImageStage->Height) ;
break;

case dmObjectClipRect_FrontView:
AreaToDisplay = StageObject- >NewPos FRONT;
break;

case dmObjec t ClipRect_TopView :
//In TOP VIEW , there ' s a ClipRect surrounding the object ' s polygon

when it is angled

) ;

AreaToDisplay = StageObject - >NewPos TOP ;
break ;

case dmMergedClipRect :
AreaToDisplay = MergedRectangle ;
break;

ImageStage->Canvas->CopyRect(AreaToDisplay, Workbench->Canvas,
AreaToDisplay);
}

//---
void fastcall TMainForm: : Rebuild_TOP (TDisplayMode Di splayMode)

/***
*******************************/
/* Rebuild TOP draws first a blank floor of a stage , then it draws a polygon to be
able to select an object */
/* listed as being present on
finally displayed on screen */

a stage . Everything is drawn off - screen and

/***
*******************************/
//***** Should have a parameter t o tell which stage is concerned

CreateBlankFloor_OffScr() ;
DrawTopRects_OffScr (DisplayMode);
//Copies Workbench or a part of it on the screen - detects if the object is

being moved
Display_OnScr(DisplayMode);

}

/!---
void fastcall TMainForm::CreateBlankFloor_OffScr()

•

•

•

•

•

•

•

•

•

•

•
46

•

•

•

•

•

•

•

•

•

•

•

•

/***/
/* Just wipes the stage ' s floor with its own color */
/***/

//Sets pen and brush paramet e r s
Workbench - >Ca nvas - >Pen - >S t yle
Workbench- >Ca nvas - >Pen - >Mode
Workbench - >Ca nvas->Pen- >Color
Workbench - >Ca nvas->Brush- >Style
Workbench->Canvas->Brush- >Color

t o draw the floor
psSolid ;
pmCopy ;
FloorColor ;
bsSolid ;
FloorColor ;

//Draws a rectangle symbolizing the blank stage
Workbench- >Canvas - >Rectangle (0 , 0 , ImageStage - >W i d t h , ImageStage->Height) ;

}

//-------------- - --------------- ------------------------ - - - ------ - - - ------- - -
void fas t call TMa i nForm : : DrawTopRec t s_OffScr (TDisplayMode DisplayMode)

/*** * *******************************
***************/
/* This method loops through the list of abjects present on the stage and draws a
polygon thus */
/* giving a virtual depth to the abject in order to grab and move it .
Everything is */
/* drawn on Workbench (off - screen bitmap) only if they are inside a certain
ClipRect */
/* tha t is determined by DisplayMode . Note that it is especially useful when
the abject */
/* is b eing angled .
*/
/***
***************/

//Sets pen and brush properties
Workbench - >Canvas->Pen- >Style
Workbench - >Canvas - >Pen - >Mode
Workbench->Canvas - >Pen - >Color
Workbench - >Canvas->Pen->Widt h
Workbench - >Ca nvas - >Brush - >Style
Workbench - >Ca nvas - >Brush- >Co l or

to paint with
psSolid ;
pmCopy ;
clAqua ;
l ;
bsSolid ;
clGray ;

//Points to the StageObject c u rrently considered - we need to know which
ClipRect to consider in the [case dmObjectClipRect FrontView)

TStageObject* CurConsObject ;

for(int i = 0 ; i < ListOfObjects - >Count ; i++)
{

//Extracts the object a t t he i - th position in the list of abjects present
on stage

StageObject = (TStageObjec t *) ListOfObjects - >I tems[i) ;

switch (DisplayMode)
{

case dmWhole :
//Displays all objects present on the stage by drawing a polygon

to be able to see the abjects from TOP VIEW
//***** Later on , use the method [POLYGON)
Workbench->Canvas - >Rectangle(StageObject - >NewPos TOP. Left ,

StageObject - >NewPos_TOP.Top , StageObject- >NewPos_TOP . Right , StageObject ­
>NewPos_TOP.Bottom);

break ;

case dmObjectClipRec t TopView :
//Displays only object ' s polygons inside the ClipRect of the

StageObject being angled (remember we are in TOP VIEW)

47

//Extracts the StageObject currently considered (being angled)
CurConsObject = (TStageObject*) ListOfObjects­

>I tems [Objec tToSelect] ;

if IntersectRects(StageObject->NewPos_TOP, CurConsObject-
>NewPos TOP)

//The object is inside the StageObject's clipping rectangle
currently angled, so draw its polygon onto Workbench

//***** Later on, use the method [POLYGON]
Workbench- >Canvas->Rectangle(StageObject- >NewPos TOP.Left,

StageObject->NewPos_TOP.Top, StageObject- >NewPos_TOP . Right, StageObject­
>NewPos_TOP.Bottom);

}//ELSE : do not display the object at the i-th position in the
list because the ob ject is not inside the StageObject ' s clipping rectangle
currently considered

break;

case dmMergedClipRect
//Displays only objects inside the MergedRectangle used to move an

object ' s polygon
if (IntersectRec ts(StageObject- >NewPos_TOP , MergedRectangle)
{

//The object is inside MergedRectangle, so draw its polygon
onto Workbench

//***** Later on, use the method [POLYGON]
Workbench- >Canvas->Rectangle(StageObj ect- >NewPos TOP . Left,

StageObject->NewPos_TOP . Top, StageObject->NewPos_TOP . Right, StageObject­
>NewPos TOP.Bottom);

}//ELSE : do not display the object at the i-th position in the
list because the object is not inside MergedRectangle

break;

if (ObjectToSelect > -1)
{

//Res t ore the object which has been selected and is used for the moment
StageObject = (TStageObject*) ListOfObjects->I tems[ObjectToSelect];

}//else : select nothing - the user has not clicked on an object
}

!!---

void fastcall TMainForm::DrawTempShape(POINT MouseLocOnClick, POINT
MouseLocOnRelease)
{

/**/
/* This method gives the user the ability to draw a shape to the size wanted */
/**/

//Sets pen and brush parameters to
ImageStage->Canvas->Pen->Style
ImageStage->Canvas ->Pen->Mode
ImageStage->Canvas->Pen->Color

member used
ImageStage->Canvas->Pen- >Width
ImageStage->Canvas->Brush->Style
ImageStage->Canvas->Brush->Color

member used

draw with
psSolid;
pmNotXor;
ColorDialog->Color;

1 ;
bsSolid;
ColorDialog->Color;

//MainForm's data

//MainForm's data

•

•

•

•

•

•

•

•

•

•

•
48

•

•

•

•

•

•

•

•

•

•

•

•

•

//Draws according to the type of the tool selected
switch (CurTool)
{

case tsLine
ImageStage - >Canvas - >Pen - >Width = CurrentPenSize ;
ImageStage->Canvas->MoveTo (MouseLocOnClic k. x , MouseLocOnClick . y);
ImageStage->Canvas - >LineTo (MouseLocünRelease.x , MouseLocOnRelease.y) ;
break;

case tsRectangle :
ImageStage->Canvas->Rectangle (MouseLocOnClick . x , MouseLocOnClick.y ,

MouseLocOnRelease . x , MouseLocOnRelease.y) ;
break ;

case tsCircle : //Makes square boundaries to get a circle
//Local variables to get a circle
int TempWidth, TempHeight ;
TempWidth = max(Mouse LocOnClick.x, MouseLocOnRelease.x) -

min(MouseLocOnClick.x , MouseLocOnRelease.x) ;
TempHeight = max(MouseLocOnClick . y, MouseLocünRelease . y) -

min(MouseLocOnClick.y , MouseLocOnRelease . y);
//Does it start on the left or right?
if (MouseLocünRelease . x > MouseLocOnClick . x)
{//Starts on the left

//Does it start on the top or bottom?
if (MouseLocOnRelease.y > MouseLocOnClick . y)
{//Starts on the top

//Normal case : start rendering from the top left corner
ImageStage - >Canvas->Ellipse(MouseLocOnClick . x,

MouseLocOnClick.y, MouseLocOnClick . x + min(TempWidth , TempHeight),
MouseLocünClick . y + min(TempWidth, TempHeight));

}

else
{//starts on the bottom

//Start rendering from the bottom left corner
ImageStage- >Canvas - >Ellipse(MouseLocOnClick . x,

MouseLocOnClick . y , MouseLocünClick . x + min (TempWidth , TempHeight) ,
MouseLocOnClick . y - min(TempWidth , TempHeight)) ;

}

else
{//Starts on the right

//Does it start on the top or bottom?
if (MouseLocOnRelease.y > MouseLocOnClick . y)
{//Starts on the top

//S tart rendering from the top right corner
ImageStage - >Canvas->Ellipse(MouseLocOnClick.x,

MouseLocOnClick . y , MouseLocOnClick . x - min(TempWidth , TempHeight),
MouseLocOnClick . y + min(TempWidth , TempHeight));

}

else
{//starts on the bottom

//S tart rendering from the bottom right corner
ImageStage - >Canvas - >Ellipse(MouseLocOnClick . x,

MouseLocOnClick . y , MouseLocOnClick.x - min(TempWidth , TempHeight),
MouseLocOnClick.y - min(TempWidth , TempHeight)) ;

}

break ;
case tsEraser

49

mtWarning,

)

if (MessageDlg("Under constru ction - Not implemented yet

TMsgDlgButtons() << mbOK , 0) == mrOk)
//does nothing

break;

1" . ,

//-------------------- - ----- ------ - -- - ---------------------------------------

void fastcall TMainForm :: StoreShape(POINT Mouse LocOnClick , POINT
MouseLocOnRelease)
{

/***
***********/
/* StoreShape creates temporarily a bitmap of the same size as the stage , wipes it
*/
/* in white and then draws the shape on it at the same position as on the
screen. */
/* Finally, the smallest clip. rect . including the shape is copied onto
StorageBmp . */
/* To get a circle , it uses Temp - variables to draw an ellipse in square
boundaries */
/***
***********/

//PARTI : Paints the temporary bitmap in white

//Creates a temporary bmp
Graphies : : TBitmap* TempBmp = new Graphies : : TBitmap;

//Allocates a new memory space for that object on stage and returns a pointer
toit

Stageübject new TStageObject ;
//Gives an ID number to the object
StageObject->ID = ++LastObjectID;

//Gives StorageBmp the size of ImageStage
TempBmp- >Width ImageStage->Width ;
TempBmp- >Height = ImageStage->Height ;

//Sets pen and brush properties
TempBmp->Canvas->Pen->Style
TempBmp->Canvas->Pen->Mode
TempBmp->Canvas - >Pen - >Color
TempBmp->Canvas->Brush- >Style

to paint
psSolid;
pmCopy ;
clWhite ;
bsSolid ;

TempBmp->Canvas->Brush- >Color clWhite ;
//Wipes in white

the bitmap ' s surface in white first

TempBmp- >Canvas - >Rectangle (0 , 0 , TempBmp->Width , TempBmp- >Height);

// PART II : Stores (draws) the shape in t he temporary bitmap

//Sets pen and brush color to
TempBmp->Canvas - >Pen - >Color
TempBmp->Canvas->Brush->Color
TempBmp->Canvas->Pen->Width

draw wi t h on TempBmp
ColorDialog- >Color;
ColorDialog->Color ;
l;

//Local variables recording the actual size/posi t ion of the shape
int TempShapeWidth , TempShapeHeight , TempShape Left , TempShapeTop,

TempShapeRight, TempShapeBottom ;

//At this moment , the size is the one of the rect. ending on last mouse loc.
With a circle , it'll be reduced to the ac tual size of it .

TempShapeWidth = abs (MouseLocOnRelease . x - MouseLocOnClick.x);

•

•

•

•

•

•

•

•

•

•

•
50

•

•

•

•

•

•

•

•

TempShapeHeight = abs(MouseLocünRelease . y - MouseLocünClick . y);

//At this moment , the position is the one of the rect . ending on last mouse
loc . With a circle , it ' ll be set to the actual pos . of it .

TempShapeLeft min(MouseLocünClick . x , MouseLocünRelease . x);
TempShapeTop min(MouseLocünClick . y , MouseLocünRelease.y);
TempShapeRight max(MouseLocünClick . x , MouseLocünRelease.x) ;
TempShapeBottom max(MouseLocünClick . y , MouseLocünRelease.y);

//Draws according to the type of the tool selected
switch (CurTool)
{

case tsLine
TempBmp->Canvas - >Pen - >Width = CurrentPenSize ;
TempBmp->Canvas->MoveTo (MouseLocünClick.x , MouseLocünClick.y);
TempBmp->Canvas->LineTo (MouseLocünRelease.x , MouseLocünRelease . y) ;
break ;

case tsRec t angle :
TempBmp->Canvas - >Rectangle (MouseLocünClick.x , MouseLocünClick . y ,

MouseLocünRelease . x , MouseLocünRelease . y);
break ;

case tsCircle :
//Does it start on the left or right?
if (MouseLocünRelease.x > MouseLocünClick . x)
{//Starts on the left

//Does it start on the top or bottom?
if (MouseLocünRelease.y > MouseLocünClick . y)
{//Starts on the top

//Normal case : starts rendering from the top left corner
TempBmp- >Canvas - >Ellipse(MouseLocünClick . x , MouseLocünClick.y ,

MouseLocünClick . x + min(TempShapeWidth , TempShapeHeight) , MouseLocünClick.y +
min(TempShapeWidth , TempShapeHeight));

//Records the actual position of the circle , not the one of
the clip . rect. determined by MouseLocünClick and MouseLocünRelease

TempShapeLeft MouseLocünClick.x ;
TempShapeTop MouseLocünClick . y ;
TempShapeRigh t MouseLocünClick.x + min(TempShapeWidth ,

TempShapeHeight);
TempShapeBottom MouseLocünClick . y + min (TempShapeWidth ,

e TempShapeHeight) ;

•

•

•

•

else
{//starts on the bottom

//Starts rendering from the bottom left corner
TempBmp->Canvas - >Ellipse(MouseLocünClick . x , MouseLocünClick.y ,

MouseLocünClick . x + min(TempShapeWidth , TempShapeHeight) , MouseLocünClick . y -
min(TempShapeWidth , TempShapeHeight));

//Records the actual position of the circle , not the one of
the clip . rect . determined by MouseLocünClick to Mouse LocünRelease

TempShapeHeight);

TempShapeHeight);

else

TempShapeLeft MouseLocünClick . x;
TempShapeTop MouseLocünClick . y - min(TempShapeWidth ,

TempShapeRight

TempShapeBottom

MouseLocünClick . x + min(TempShapeWidth ,

MouseLocünClick.y ;

{//Starts on the right

51

//Does it start on the top or bottom?
if (MouseLocOnRelease . y > MouseLocOnClick.y)
{//Starts on the t op

//Start s rendering from the top right corner and records the
actual size of the circle

TempBmp - >Canvas - >Ell ipse(MouseLocOnClick.x , MouseLocOnClick . y ,
MouseLocOnClick.x - min (TempShapeWidth , TempShapeHe ight), MouseLocOnClick.y +
min(TempShapeWidth, TempShapeHeight));

//Records the actua l position of the circ l e , not the one of
the clip . rect . determined by MouseLocOnCli c k to MouseLocOnRelease

TempShapeLeft Mouse LocOnClick.x - min (TempShapeWidth,
TempShapeHeight);

TempShapeHeight);
}

else

TempShapeTop
TempShapeRight
TempShapeBottom

Mou seLocOnClick.y;
Mo useLocOnClick . x ;
Mo useLocOnCl i c k. y + min (TempShapeWidth ,

{//starts on the b o tt om

//Starts rendering from the b o ttom right corner and r ecords
the actual size of the ci r cle

TempBmp->Canvas - >Ell ipse (MouseLocOnClick.x , MouseLocOnClick .y,
MouseLocOnClick.x - min (TempShapeWidth , TempShapeHe ight), MouseLocOnClick . y -
min(TempShapeWidth , TempShapeHeight)) ;

//Records the actual position of the circle , not the one of
the clip .rect . dete rmined by MouseLocOnCl ick t o MouseLocOnRelease

Te mpShapeLeft Mouse LocOnClick. x - min (TempShapeWidth ,
TempShapeHeight);

TempShapeHeight);
TempShapeTop

TempShapeRight
TempShapeBottom

Mous e LocOnClick. y - min(TempShapeWidth,

MouseLocOnClick. x;
MouseLocOnClick . y ;

//Records the actual s ize of the circ le rather than measuring the
distance to the last mouse loc . given by MouseLocOnRelease

TempShapeWidth = TempShapeHeight = min (TempShapeWidth,
TempShapeHeight);

break;

// PART III
Il

Copies t he smallest clip . r ect . including the shape and records
the posi ti on of the abject o n screen in t he object' s data structure .

//The bitmap ' s height and width properties hold the original size of t he
object

StageObject- >StorageBmp- >Width
StageObject->StorageBmp- >Heigh t

TempShapeWidt h ;
TempShapeHeight ;

//When an abject is created, its curre nt dimensions are identical toits
original dimensions

StageObject->CurWidth
StageObject - >CurHeigh t

StageObject- >S t o rageBmp- >Width ;
StageObject- >S t o r ageBmp- >Height ;

//Recordsd its posi tion on screen
StageObject- >NewPos_FRONT .Left
StageObj ect- >NewPos_FRONT . Top
StageObject- >NewPos_FRONT.Right
StageObject->NewPos FRONT . Bottom

Te mpShape Lef t;
TempShapeTop;
Te mpShapeRight;
TempShapeBottom ;

//Records the center in VA ' s 3D- space

•

•

•

•

•

•

•

•

•

•

•
52

•

•

•

•

•

•

•

•

•

•

•

•

•

StageObject->Center_3D . x
>StorageBmp- >Width / 2);

StageObject->Center_3D . y
>StorageBmp- >Height / 2);

StageObject- >Center_3D .z

StageObject->NewPos FRONT.Left + (StageObject­

StageObject->NewPos FRONT . Top + (StageObject-

O;

//Copies pixels at NewPos_FRONT in Te mpBmp onto StorageBmp at posi tion (0 ,0]
StageOb j ect- >S t orageBmp- >Canvas- >Cop yMode = cmSrcCopy ;
StageObject->S t orageBmp- >Canvas- >CopyRect (Rect(0 , 0 , StageObject->StorageBmp-

>Width , StageObject - >S t orageBmp- >He i ght), TempBmp->Canvas , StageObject­
>NewPos FRONT);

delete TempBmp ;

//Adds StageObject to the list of objects present on stage
ListOfObjects->Add(StageObject);

//Sets [ObjectToSelect] to make it reference to the objec t that has just been
added to the l i s t

ObjectToSelec t = (Li stOfOb j ects->Count) - 1 ;
because the list hasn ' t been sorted sin ce
}

//It ' s the last item

// ---

fastcall TStageObject::TStageObject()

StorageBmp = new Graphics ::TBitmap;
StorageBmp- >TransparentColor = clWhite;

transparency effect

//Const ructor

//Se t s the color used to apply the

StorageBmp->Transparent = true; //Any ob j ect ' s white pixels are
not visible when the object is c r eated
}

//---

void fastcall TMainForm :: MergeRects FRONT ()

/******************************** *** ***/
/* This member f unction (method) takes two rects a nd r ecords a Merged rect */
/* that includes both preceding - us ed for FRONT VIEW */

For the moment, we don ' t pass any r ec t s as pa r ame t ers , we use data members */
even though t his function cou ld b e more general - which is not useful */
as far as VA is not concerne d. */

/*
/*
/*
/*** ** *************************/

if(ToolBox- >ToolBoxStatusBar- >Panels - >Items[0] - >Text == '' Stage - Front View ")
{

MergedRectangle .Left min(StageObject->PrevPos FRONT .Left ,
StageObject - >NewPos_FRONT . Left) ;

MergedRectangle . Top min(StageObject->PrevPos FRONT.Top ,
StageObject - >NewPos_FRONT . Top);

MergedRectangle.Right max(StageObject->PrevPos FRONT . Right ,
StageObject->NewPos FRONT . Right);

MergedRectangle . Bottom max(StageObject - >PrevPos FRONT.Bottom,
StageObject - >NewPos FRONT .Bottom) ;

}
}

// ---

void fastcall TMainForm :: MergeRects_TOP ()

/****************************** ********* ************ ******* ************** ******/
/* This member function (method) take s two rects and r ecord s a Merged rect
/* that includes both preceding - used for TOP VIEW

*/
*/

/* For the moment , we don 't pass any r ec t s as parameters , we u se data members */
/* even though this funct i o n could be more general - which is not useful */

53

/* as far as VA is not concerned. */
/**/

if (ToolBox->Too l BoxStatusBar- >Panels - >I t ems[0]->Text == " Stage - Top View ")
{

MergedRectangle .Left
StageObject- >NewPos_TOP .Left) ;

MergedRectangle . Top
StageObject - >NewPos_TOP . Top);

MergedRectangle . Right
StageObject- >NewPos TOP . Right);

MergedRectangle . Bottom
St ageObject->NewPos_TOP . Bottom);

}

}

min (St ageObject - >PrevPos TOP . Left ,

min (StageObject->PrevPos_TOP.Top ,

max (S t ageObject - >PrevPos_TOP.Right ,

max (S t ageObject->Pr evPos_TOP.Bottom,

// -------------------- - --------------------------------------- - - -------------

bool fastcall TMainForm : : IntersectRects (TRect ComparedRect , TRect
ModelOfComparison)
{
/***
*******************/
/* This member function (method) t akes two rects given as parameters a nd tells if
they intersect */
/* one another . When this method is ca l led from inside a loop, a d ifferent
[ComparedRect] */
/* is taken and the method checks if it is inside the TRect that serves as
the model of */
/* the comparison (sort of a reference , in other words) as it is the same
throughout the */
/* calling loop .
*/
/***
*******************/

if (< ModelOfComparison . Left ComparedRect . Right
ComparedRect . Left
ComparedRect . Top
ComparedRect . Bottom <

> ModelOfComparison . Right
> ModelOfComparison.Bottom

ModelOfComp arison . Top

11

11

11

)

//The two rectangles DO NOT share some pixels - ComparedRect is OUTSIDE
ModelOfComparison

return false ;

else

//The two rectangles share some p i xels - ComparedRect is INSIDE
ModelOfComparison

return true;
} ;

}

//------------------------- - ---- - --------------------------- - ------- ---------

TRect fastcall TMainForm :: GetObjectNewCoord_FRONT (int X, int Y, int XOffset, int
YOffset)
{

/***
*********************/
/* This function first calculates a possible position of the ClipRect on the
screen, although it */
/* may be not valid. Then , t hat 2D- location is converted into a VA ' s 3D-
space location before */
/* [CheckBounds ()] makes sure the StageObject is within VA ' s 3D-space bounds .
Finally, */

•

•

•

•

•

•

•

•

•

•

•
54

•

•

•

•

•

•

•

•

•

•

•

•

/* the 30- location is converted back to a 20- location .
*/
/* The result returned is the new (valid) location of the StageObject being moved
in FRONT view. */
/***
*********************/

//STEP 1 : Calcu late a possible location on screen (not necessarily valid) of the
object ' s projection

TRect DestClipRect;

//Reco rds the possible location using the mouse pointer location and the
distance from it to the left and top sides

DestClipRect . Left (X - XOffset);
DestClipRect.Top (Y - YOffset);
DestCl i pRect.Right (X - XOffse t) + StageObject- >CurWidth;
DestClipRect . Bottom (Y - YOffset) + StageObject->CurHeight;

//STEP 2 : Convert the 20- location (on screen) into a 30- location (in VA ' s 30-
space)

int MiddleLine ;
TRect Location 30 ;

space

//Vertical middle of the view
//TRect holding the location of each sides in VA ' s 3D-

//Converts the left side of the ClipRect first , t he right side then
MiddleLi ne = ImageStage->Wi d t h / 2 ;
Location 30 . Left = ConvertLocation_2Dto3D(MiddleLine , DestClipRect .Left ,

Stage0bject- >Center_3D . z);
Location_3D . Right = ConvertLocation 2Dto3D(MiddleLine , DestClipRect.Right ,

Stage0bject->Center_3D . z);

//Bottom side of the ClipRect with perspective first , top side then
//You ' ve got to look at VA ' s 30-space from the right side and make it rotate

so that the top is on the left of the screen and the bottom on the right.
MiddleLine = ImageStage->Height / 2 ;
Location_3D . Top = Conver tLocat i on_2Dto3D(MiddleLine , DestClipRect . Top

Stage0bject - >Center_3D . z);
Location 3 D. Bottom = ConvertLoca t ion_2Dto3D(MiddleLine , DestClipRect.Bottom,

Stageübject - >Center_3D . z) ;

//STEP 3 : Make location in VA ' s 30- space valid and work out [Center 3D]
CheckBounds (Location_3D) ;

//STEP 4 : Convert the 30-location (in VA ' s 30-space) into a 20- location (on
screen) and return result

//To make the conversion , we jus t need a valid Center 3D in VA ' s 3D- space -
that task has been done during STEP 3 .

DestClipRect = DepthRendering ();

return DestClipRect ; //The location on scren is now valid
}

/! -- - ----------------------

TRect fastcall TMainForm :: GetObjectNewCoord_TOP (int X, int Y , int XOffset , int
YOffset)
{

/***
***************************/
/* This function first calcula t es a possible position of the ClipRect on the
screen , although it */

55

/* may be not valid. Then , it makes sure that the 'polygon ' is within the
bounds in TOP view . */
/* The result returned is the new (valid) location of the polygon being moved
in TOP view . */
/* " Within the bounds '' in TOP VIEW means that we can have 6 pixels drawn outside
of the bounds */
/* at the top and the bottom of the screen area r epresen t i ng the stage to allow
placing */
/* the [Center_3D.z] exactly at the back of the stage (i.e. t he top of the
screen area representing */
/* the stage , on 0) or at the front of the stage (i. e . the bottom of the screen
area representing */
/* the stage, on [ImageStage->Height-1]) .
*/
/* The X and Z coordinat es of [Center 3 D] are updated but not the Y because its
irrelevant in TOP VIEW */
/* For the X coord ., we use the original size of the abject because in TOP
VIEW , the polygons */
/* representing the abject are not subjected t o a n y perspective effect that
could shrink their */
/* ClipRect, their width.
*/
/*
*/
/* N. B . : @ " offset towards the top' ' means ' t owards the top of the screen area
representing the stage '. */
/* It ' s an offse t towards the ' back of the stage' , actually.
*/
/* @ [ImageStage- >Height - 1] is used because the 522 -nd line is at the
521-st position */
/* @ See comment at the t op of this file to remember how [Center_3D . z] is
handled. */
/* @ [Y - YOffset] is actually object' s [Center_3D.z] , that's why we use [Y
- YOffset] to set center */
/***
***************************/

//STEP l : Calculate a possible location in TOP view (not necessarily valid) of
the abject

TRect DestClipRect;

//Records the possible location using the mouse pointer location and the
distance from it to the left and top sides

DestClipRect.Left (X XOffset);
DestClipRect.Top (Y - YOffset) - 6 ;
DestClipRect.Right (X - XOffset) + StageObject->StorageBmp->Width;
DestClipRect . Bottom (Y YOffset) + 6;

//STEP 2 Make location valid and work out [Center_3D]

//PARTI : left and right sides first cons idered

//Makes valid the left and right sides
if (DestClipRect.Left < 0)
{

//Shifts left and right sides to a valid position - offset towards the
right

else

DestClipRect. Left
DestClipRect .Right

O;
0 + StageObject- >StorageBmp- >Width ;

if (DestClipRect.Right > (ImageStage- >Width - 1))

•

•

•

•

•

•

•

•

•

•

•
56

•

•

•

•

•

•

•

•

•

•

//Shifts left and right sides to a valid position - offset towards the
left

DestClipRect . Left
>StorageBmp- >Width;

DestClipRect.Right

(ImageStage->Width - 1) - StageObject­

ImageStage->Width - 1;

//ELSE : Left and right sides are within bounds and don't need to be
shifted

}

//Checks again the left side in the case the ab ject could be larger than the
stage itself.

// If so , only the left side is modified - it ' s like shrinking the ClipRect.
if (DestClipRect . Left < 0)
{

//Shrin ks the ClipRect by displacing left side to a valid position -
offset towards the right

DestClipRect .Lef t = 0;

//Works out [Center_3D) : only Xis concerned . Z is modified later on and Y
is left unchanged by [tsMove] in TOP

// If the size of the StageObject is larger than the stage, we can ' t use
[StageObject - >StorageBmp- >Widt h /2)

int HalfWidth = (DestClipRect . Right - DestClipRect.Left) /2 ;
StageObject->Center 3D . x = DestClipRect . Left + HalfWidth;

//PART II : then , [Center_3D .z) is considered - and not top and bottom anymore -
to allow placing it on the top/bottom e dge of the stage .

// On l y Z is concerned . Xis modified here above and Y is left unchanged by
[tsMove] in TOP view

//Makes valid the [Center_3D.z)
if ((Y - YOffset) < 0)
{

//Shifts [Center 3D .z) to a valid position - offset
StageObject- >Center_3D .z = ImageStage->Height - 1;

the back of the Stage
}

else

if ((Y - YOffset) > (ImageStage->Height - 1))
{

towards the bottom
//[Center_3D .z) is at

//Shifts top and bottom sides to a valid position - offset towards the
top

StageObject->Center_3D.z = O;
the fron t of the Stage

}

//[Center 3D . z) is at

else //[Center 3D .z) is within bounds and don ' t need to be shif ted

StageOb j ect->Center 3D . z (ImageStage->Height - 1) - (Y - YOffset);

//Don ' t need to check again something because in TOP, the polygon ' s height
e can ' t be taller than the stage itself .

•

•

}

//Works out the top
DestClipRect.Top
DestClipRect . Bottom

return DestClipRect ;

and bottom sides of [DestClipRect]
(ImageStage- >Height - 1) - StageObject->Center 3D .z - 6 ;
(ImageStage- >Heigh t - 1) - StageObject->Center_3D . z + 6 ;

// The location o n scren is now valid

/!---

57

TRect
{

fastcall TMai nForm ::DepthRendering ()

/***
***************************/
/* This function cal l s 4 times [ConvertLocation 3Dto2D]. The fi rst time, we
consider a t op view and */
/* we pass the coo rd. for the left and righ t sides of the object like if it
was seen from top. */
/* Then we pass the coord . of t he b o ttom and t op sides like if we were in a
side view - which */
/* does n' t actuall y exis t. We also passa [Middle Li ne] that runs from the
back of the stage to */
/* the front in both views - although they are n ot placed on t he same spot .
*/
/* Called 4 times , that triangle function gives u s the TRect of the object ' s
projection on the screen' s */
/* surface needed to get a perspective effect. We jus t have to record the
current size of the */
/* object because it can be different from its original s iz e if there's a
perspective effect. */
/*
*/
/* N. B: The 3rd parameter of [Co nvertLocati on_3Dt o2 D()] is [StageObjec t-
>Center 3D .z] and not */
/* [(ImageStage->Heigh t -1) - StageObj ect->Center_3D . z] because we consider a
distance (Dl) */
/* that runs from the user's eye t o the screen (600 units) and from the
screen to the object * /
/* (given by [->Cen ter_3D . z]) - so we don ' t need to take [ImageStage->Height
- l] from which */
/* we substract [Center_3 D.z] to ge t t he displacement from the top of the
screen. */
/** ***** ************************************
***************************/

•

•

•

•

•

•

int MiddleLine , HalfWidth ; •

//It is the ClipRec t of an obj ect projected o n the screen's surface (for
perspective effect) when this object is move d to the back of the screen

TRect ClipRectProjectedOnScr ;

//Works out t he location on the screen ' s surface (fo r perspective effect) of the
ClipRect of an object which is moved to the b ack of the screen

//Left side of the ClipRec t with perspective first, right side then
Middle Line = ImageS t age - >Width / 2 ;
HalfWidth = StageObj ect - >S t orageBmp- >Width / 2 ;
ClipRectProjectedOnScr .Left = Conve rtLocation_3 Dt o2D (MiddleLine ,

StageObject- >Center_3 D.x - HalfWidth, StageOb j ect - >Cen t er_3D .z);
ClipRec t ProjectedOnScr.Righ t = Conve rtLocation 3Dto2D(MiddleLine,

StageObject->Center 3D.x + HalfWidt h , StageObject->Center 3D . z);

//Bottom side of t he ClipRect with perspective first, top side then
//You ' ve got to look a t VA ' s 3D- space from the right side and make it rotate

so that the top is o n t he left of the screen and the bottom o n t he right.
MiddleLine = ImageStage - >Height / 2 ;
HalfWidth = StageObject- >StorageBmp- >Height / 2 ;
ClipRect ProjectedOnScr . Top = Conve rtLocation 3Dto2D(MiddleLine ,

StageObject->Center_3D . y - HalfWidth , StageObj ect->Center_3D.z);
ClipRectProjec t edOnScr.Bottom = ConvertLocati o n_3 Dto2D (MiddleLine,

StageObject- >Center_3 D. y + HalfWidth , StageObject->Cen t er_3D .z);

//The object might c urrently have a s ize different from its original one
StageObject - >CurWidth = (ClipRectPro jec t edOnScr .Right

ClipRectProjectedOnScr .Left);

•

•

•

•
58

•

•

•

•

•

•

•

•

•

•

•

•

•

StageObject->CurHeight = (ClipRectProjectedOnScr.Bottom -
ClipRectProjectedOnScr .Top) ;

//The results given here above are re-used to shrink or stretch the ClipRect -
NOT the bitmap itself which keeps its original size.

return ClipRectProjectedOnScr ;
}

//---

int fastcall TMainForm: : ConvertLocation 3Dto2D(int MiddleLine, int HorizCoord ,
int VertCoord)

/***
***************************/
/* When an object is moved backward or forward in VA ' s 3D space , because the
screen is in 2D we need to */
/* shrink or stretch it to give t he illusion of depth . Considering an object
not at the front */
/* of the stage, we have to determine its projection on the screen ' s surface
with an effect of */
/* perspective. For that , we take one side of the object at a time and give
its location */
/* horizontally and vertically (A). To work out the location on the screen,
we use two triangles */
/* with a rectangular corner . The base of the biggest starts on user ' s
location and e nds on the */
/* object - named [Dl] . I ts height is the distance between a middle line
(running from back-stage */
/* to front-stage) and the considered side of the object (either left or
right) - named [Hl] . */
/* The base of the smallest starts from the user again and ends on the screen
- named [D2] . */
/* Its height runs from the middle again toits vertex on the screen 's
surface after projection */
/* on it - named [H2] ; it ' s the ' unknown ' .
*/
/* Knowing that (Hl/Dl) = (H2/D2) , we can calculate H2 and return the distance
from the left */
/* of the stage - that is the value for the middle line plus H2.
*/
/*
*/
/* N. B: (A) [VertCoord] starts at the bottom. Dl runs from the user's eye to the
screen (600 units) */
/* and from the screen to the object (given by [VertCoord]) - so we don ' t
need to take */
/* [ImageStage- >Height - 1) from which we substract [Center_3D . z] to get the
displacement */
/* from the top of the screen .
*/
/***
***************************/

int Dl= UserToScreenDist + VertCoord ;
int D2 = UserToScreenDist;
//If [HorizCoord] is smaller , we know that the point in VA ' s TOP VIEW is on

the left of the
// [MiddleLine) and so the result is negative - will be useful later on.
float Hl= HorizCoord - MiddleLine ;
//Calculates the 'unknown ', the horizontal location on the screen to give the

impression of depth
float H2 = (Hl/ Dl) * D2;

59

//If [H2) is negative , the location on the screen ' s surface is on t he left of
the middle line.

// If not , it ' s on the right . So we just need to add [H2) to the value
representing t he middle line

// and we ge t the dis tance from the left o f the s tage - just what we need
to display .

return (MiddleLine + H2);
}

// ---

int fastcall TMai n Form :: ConvertLocation 2Dto3D (int MiddleLine, int HorizCoord,
int VertCoord)

/***
***************************/
/* It is the inverse of [Convert Location_3Dto2D) . We have the ClipRec t for the
projection of the */
/* StageObject on screen and we need to know where it is p laced in VA ' s 3D-
space . * /
/* With this aim in view , we take one side of the ClipRect (on scr.) at a time and
give its location */
/* horizontally and vertically (A) To work out the location in 3D-space , we
use two triangles */
/* with a rectangu lar corner . The base of the biggest s t arts on user ' s
location and ends o n t he */
/* object - named [D2) . I t s height is the distance between a middle line
(running from back- stage */
/* to front - stage) and the considered s ide of t he object (either left or
right) - named [H2) . */
/* The base of the smallest s t arts fr om t he user again and ends on t he screen
- named [Dl J . * /
/* Its height runs from t he middle again t oi t s vertex on the screen ' s
surface after projection */
/* on it - named [Hl). [H2) i s the 'un kn own '.
*/
/* Knowing that (Hl/D l) = (H2/D2), we can calculate H2 and return the distance
from the left * /
/* of the stage - that is the value for t he middle line plus H2 .
*/
/*
*/
/* N.B: (A) [VertCoord) starts at t he bottom . Dl runs from the user ' s eye to the
screen (600 units) */
/* and from the screen
need to take

to the objec t (given by [VertCoo rd))
*/

- so we don't

/* [ImageStage - >Height - 1) from whi ch we substract [Center_3D . z) to get the
displacement */
/* from the top of the screen.
*/
/***
***************************/

int Dl= UserToScreenDist ;
int D2 = UserToScreenDist + VertCoord ;
//If [HorizCoord) is smalle r, we know tha t the point in VA ' s TOP VIEW is on

t he left of the
// [MiddleLine) and so the res u lt is negative - wil l be useful later on.
float Hl= HorizCoo r d - MiddleLine ;
//Calculates the ' unknown ', the horizontal location on the screen to give the

impression of depth
float H2 = (Hl/ Dl) * D2 ;

//If [H2) is negat i ve , the l ocation on t he screen' s surface is on t h e left of
the middle line.

•

•

•

•

•

•

•

•

•

•

•
60

•

•

•

•

•

•

•

•

•

•

•

•

•

// If not , it ' s on the right. So we just need to add [H2] to the value
representing the middle line

// and we get the distance from the left of the stage - just what we need
to display.

return (MiddleLine + H2) ;
}

// -- - --------

void fastcall TMainForm : : CheckBounds (TRect ValidLocation_3D)

/***
***************************/
/* This function makes sure the StageObject is within VA ' s 3D- space bounds. With
this aim in view , */
/* it first considers the left and right sides in a top view and offset them
if they are not */
/* within the bounds . I t also t a kes i nto consideration the fact that an
abject can be bigger */
/* than the stage itself . Then , t he same wor k i s done for the top and bottom
sides but from */
/* a side view this time .
*/
/* For each view taken into consideration , only one coordinate of [Center_3D]
calculated at */
/* a time. Z is not modified by a normal move in X and Y directions.
*/
/*
*/
/* N. B . : @ " offset towards the t op '' means ' towards the top of the screen area
representing the stage ' . */

is

/* In this case , it ' s an offset towards the ' actual top of the stage '.
*/
/* @ [ImageStage- >He ight - 1] is used because the 522 - nd line is at the
521-st position */
/* @ [ImageStage->Width - 1] is used because the 1024-nd line is at the
1023-st position */
/***
***************************/

int HalfWidth ;

//PARTI : left and right sides first considered

//Considers a view from the ' TOP ' to make valid the left and right sides
if (ValidLocation_3D .Left < 0)
{

//Shifts left and right s ides to a valid position - offset towards the
right

else

left

ValidLocation 3D.Left
ValidLocation_3D . Right

0 ;
0 + StageObject- >S t o r ageBmp->Width ;

if (ValidLocation_3D . Right > (ImageStage- >Width - 1))
{

//Shifts left and right sides to a valid position - offset towards the

ValidLocation 3D .Left
>S torageBmp- >Width;

ValidLocation_3D . Righ t

(ImageStage - >Width

ImageStage- >Width

1) - StageObject-

l ;

shifted
}

//ELSE : Left and righ t si d es are within bounds and don ' t need to be

61

//Checks again the left side in the case the abject could be larger than the
stage itself.

// If so, only the left side is modified - it ' s like shrinking the ClipRect.
if (Va l idLocation_3D . Left < 0)

//Shrinks the ClipRect by displacing left side to a va l id position -
offset towards the right

ValidLocation 3D . Left = 0 ;

//Works out [Center 3D) on l y Xis concerned . Y is modified later on and Z
is left unchanged by [tsMove]

// If the size of the StageObject is l arger than the stage , we can ' t use
[StageObject - >StorageBmp- >Width /2)

HalfWidth = (ValidLocation_3D . Right - Va l idLocation 3D.Left) /2 ;
StageObject->Center_3D.x = ValidLocation_3D .Left + HalfWidth ;

//PART II : then, top and bottom considered

//Considers a view from the ' SIDE ' t o ma ke val i d the top and bottom sides
if (ValidLocation_3D . Top < 0)
{

//Shifts top and bottom sides to a valid posi t ion - offset towards the
bottom

else

top

ValidLocation_3D . Top
ValidLocation 3D . Bottom

0 ;
0 + StageObject- >StorageBmp- >Height;

if (ValidLocation 3D.Bottom > (ImageStage - >Height - 1))
{

//Shifts top and bottom sides t o a valid position - offset towards the

ValidLocation 3D . Top
>StorageBmp- >Height ;

(ImageStage- >Height - 1) - StageObject­

I mageStage - >Height - l ; ValidLocation 3D . Bottom

//ELSE : Top and bottom sides are within bounds and don ' t need to be
shifted

}

//Checks again the top side in the case the ab j ect could be taller than the
stage itself.

// If so , only the top side is modified - it ' s l i ke shrinki ng the ClipRect .
if (ValidLocation 3D.Top < 0)

//Shrinks the ClipRect by displacing top side to a valid position - offset
towards the bottom

ValidLocation 3D . Top = 0 ;

//Works out [Center 3D) on l y Y is concerned . Xis modified here above and Z
is left unchanged by [tsMove)

// If the size of the Stageübject is ta l ler than the stage , we can ' t use
[StageObject->StorageBmp- >Height /2)

HalfWidth = (ValidLocation_3D . Bottom - ValidLocation 3D . Top) /2;
StageObject - >Center_3D . y = Va l idLocation 3D.Top + HalfWidth ;

}

//-- - -------- - -------------- - --------

Tools.h (header file)

//----------------------- - ----- -- - -- - - - --------------------------------------

#ifndef ToolsH

•

•

•

•

•

•

•

•

•

•

•
62

•

•

•

•

•

•

•

•

•
1

•

#define ToolsH

!/---

#include <Classes.hpp>
#include <Controls . hpp>
#include <StdCtrl s . hpp>
#include <Forms .hpp>
#include <Buttons . hpp>
#include <ComCtrls . hpp>
#include <ExtCtrls . hpp>
#include <Dialogs . hpp>
// ---
class TToolBox
{

public TForm

_published : // IDE-managed Components
TStatusBar *ToolBoxStatusBar ;
TPanel *ToolBtnPickColour ;
TPanel *ToolBtnPickBlack;
TPanel *ToolBtnPickWhite;
TSpeedButton *ToolBtnNewWorld;
TSpeedButton *ToolBtnOpenWorld ;
TSpeedButton *ToolBtnFrontView ;
TSpeedButton *ToolBtninsertObject;
TSpeedButton *ToolBtnStageClear;
TSpeedButton *ToolBtnStageNew ;
TSpeedButton *ToolBtnTopView;
TSpeedButton *ToolBtnBringToFront ;
TSpeedButton *ToolBtnBringForward ;
TSpeedButton *ToolBtnSaveWorld;
TSpeedButton *ToolBtnSaveWorldAs ;
TSpeedButton *ToolBtnGoToStore;
TSpeedButton *ToolBtnGoToWorkRoom;
TSpeedButton *ToolBtnStageCopyAll;
TSpeedButton *ToolBtnStagePasteAll;
TSpeedButton *ToolBtnFirst;
TSpeedButton *ToolBtnLast ;
TSpeedButton *ToolBtnSendBackward;
TSpeedButton *ToolBtnSendToBack ;
TSpeedButton *ToolBtnRectangle ;
TSpeedButton *ToolBtnQuit;
TSpeedButton *ToolBtnPlay ;
TSpeedButton *ToolBtnObjectToWorkRoom ;
TSpeedButton *ToolBtnShowWireframe;
TSpeedButton *ToolBtnPrior ;
TSpeedButton *ToolBtnNext;
TSpeedButton *ToolBtnStageDelete ;
TSpeedButton *ToolBtnStageinfo ;
TSpeedButton *ToolBtnClearWorkRoom;
TSpeedButton *ToolBtnTakeWorkToStage;
TSpeedButton *ToolBtnLine ;
TSpeedButton *ToolBtnUndo ;
TBevel *Bevell ;
TBevel *Beve12 ;
TBevel *Bevel3 ;
TSpeedButton *ToolBtnRedo;
TSpeedButton *ToolBtnCircle ;
TSpeedButton *ToolBtnFreehandPencil ;
TSpeedButton *ToolBtnPenSize;
TSpeedButton *ToolBtnEraser ;
TSpeedButto n *ToolBtnCleanPixels ;
TSpeedButton *ToolBtnMove ;
TSpeedButton *ToolBtnMoveDeep;
TSpeedButton *ToolBtnResizeObject ;

63

TSpeedButton *ToolBtnFlipHorizontal;
TSpeedButton *ToolBtnFlipVertical ;
TSpeedButton *ToolBtnResizePattern ;
TSpeedButton *ToolBtnPattern;
TSpeedButton *ToolBtnTransparentObject;
TSpeedButton *ToolBtnPasteColour;
TSpeedButton *ToolBtnCutObject ;
TSpeedButton *ToolBtnColourObject ;
TSpeedButton *ToolBtnCopyObject ;
TSpeedButton *ToolBtnDeleteObject ;
TSpeedButton *ToolBtnPasteObject;
TSpeedButton *ToolBtnObjectToFloor;
TSpeedButton *Too1Btn3 8;
TSpeedButton *Too1Btn 3 7;
void fastcall ForrnCreate (TObject *Sender) ;
void fastcall ToolBtnPic kColourClick (TObject *Sender) ;
void fastcall ToolBtnPickWhiteClick (TObject *Sender) ;
void fastcall ToolBtnPickBlackClic k(TObject *Sender);
void fastcall ToolBtnNewWorldClick (TObject *Sender) ;
void fastcall ToolBtnQuitClick(TObject *Sender);
void fastcall ToolBtnOpenWorldClick(TObject *Sender);
void fastcall ToolBtnSaveWorldAsClick(TObject *Sender);
void fastcall ToolBtnPlayClick(TObject *Sender);
void fastcall ToolBtnPriorClick(TObject *Sender);
void fastcall ToolBtnNextClick(TObject *Sender);
void fastcall ToolBtnStageClearClick(TObject *Sender);
void fastcall ToolBtninsertObjectClick(TObject *Sender);
void fastcall ToolBtnStageNewClic k(TObject *Sender);
void fastcall ToolBtnSaveWorldClick (TObject *Sender);
void fastcall ToolBtnFrontViewClick (TObject *Sender);
void fastcall ToolBtnGoToWorkRoornClick (TObject *Sender);
void fastcall ToolBtnObjectToWorkRoornClick(TObject *Sender);
void fastcall ToolBtnTopViewClick(TObject *Sender) ;
void fastcall ToolBtnGoToStoreClick(TObject *Sender);
void fastcall ToolBtnShowWirefrarneClick (TObject *Sender) ;
void fastcall ToolBtnStageCopyAllCl i c k(TObject *Sender);
void fastcall ToolBtnStageDeleteClick(TObject *Sender);
void fastcall ToolBtnStagePasteAllClick (TObject *Sender);
void fastcall ToolBtnStageinfoClick(TObject *Sender) ;
void fastcall ToolBtnFirstClick (TObject *Sender);
void fastcall ToolBtnLastClick(TObject *Sender) ;
void fastcall ToolBtnBringToFrontClick (TObject *Sender);
void fastcall ToolBtnSendToBackClic k(TObject *Sender) ;
void fastcall ToolBtnClearWorkRoornCl i ck (TObject *Sender);
void fastcall ToolBtnBringForwardClic k(TObject *Sender);
void fastcall ToolBtnSendBackwardCli c k(TObject *Sender);
void fastcall ToolBtnTakeWorkToStageClick (TObject *Sender) ;
void fastcall ToolBtnUndoClick(TObject *Sender);
void fastcall ToolBtnRectangleClick(TObject *Sender);
void fastcall ToolBtnLineClick(TObject *Sender);
void fastcall ToolBtnRedoC l ick(TObject *Sender);
void fastcall ToolBtnCircleClick(TObject *Sender) ;
void fastcall ToolBtnFreehandPencilC l ick(TOb j ect *Sender);
void fastcall ToolBtnPenSizeClick(TObject *Sender) ;
void fastcall ToolBtnEraserClick(TOb j ect *Sender);
void fastcall ToolBtnClean Pi xelsClick (TObject *Sender);
void fastcall ToolBtnMoveClick(TObject *Sender);
void fastcall ToolBtnMoveDeepClick(TObject *Sender) ;
void fastcall ToolBtnFlipHorizontalClick(TObject *Sender) ;
void fastcall ToolBtnFlipVerticalClick(TObject *Sender);
void fastcall ToolBtnResizeObjectClick (TObject *Sender);
void fastcall ToolBtnPatternClick (TObj ect *Sender) ;
void fastcall ToolBtnRes izePatternClick(TObject *Sender);
void fastcall ToolBtnTransparentObjectClick(TObject *Sender);

•

•

•

•

•

•

•

•
64

•

•

•
void
void
void
void
void
void
void

fastcall ToolBtnPasteColourClick(TObject *Sender) ;
fastcall ToolBtnColourObjectClick(TObject *Sender) ;
fastcall ToolBtnCutübjectClick(TObject *Sender);
fastcall ToolBtnCopyObjectClick(TObject *Sender);
fastcall ToolBtnPasteObjectClick(TObject *Sender);
fastcall Too lBtnDele teObjectClick (TObject *Sender);
fastcall ToolBtnObj ec tToFloo r Cl i c k(TObject *Sender);

private: // User declarations
public: // User declarations

e fastcall TToolBox(TComponent* Owner) ;

•

•

•

) ;

/1 ---
extern PACKAGE TToolBox *ToolBox ;
1/---
#endif

Tools.cpp (file for handling the tool box)

// ---

#include <vcl . h>

#pragma hdrstop

#include <s tdlib . h>

#include "Tools .h"

#include " Main. h "

• /1---

•

#pragma package (smart_init)
#pragma resource " * . dfm "
TToolBox *ToolBox ;
1/--- ------------------

fastcall TToo l Box : : TToolBox(TComponent * Owner)

{

)

: TForm(Owner)

// ---

void fastca ll TToolBox :: FormC r ea t e (TObject *Sender)

• ToolBox->Left = ((MainForm- >ClientWidth - ToolBox- >Width) / 2) ;

•

•

ToolBox->Top = (MainForm->ClientHeight - ToolBox- >Height) + 40 ; //pr oblems
with ClientHeight : menu ' s heigh t no t included
)

// ---

void fastcall TToolBox: : ToolBt nPic kColourClick (TObject *Sender)

MainForm- >EditColou r PickColour Cl ick(Sender);
)

!!-- - --------------------------

void fastca ll TToolBox::ToolBtnPickWhiteClick(TObject *Sender)

MainForm->EditColourPickWhiteClick (Sender);

65

/!---

void fastcall TToolBox ::ToolBtnPickBlackClick (TOb j ect *Sender)

MainForm->EditColou rPickBlac kClick (Se nder);
)

//---

void fastcall TToolBox: : ToolB tnNewWor ldClick(TObject *Sender)

ToolBtnNewWorld- >Down = false ;
MainForm->FileNewWorldClic k(Sender);

)

//---

void fastcall TToolBox : : ToolBtnQuitClick (TObject *Sender)

MainForm->FileQuitClick(Sender);
)

// ---

void fastcall TToo l Box :: ToolBtnOpenWorldClick (TObject *Sender)

ToolBtnOpenWorld- >Down = false ;
MainForm- >FileOpenWorldClick(Sender);

)

// ---

void fastcall TToolBox : : ToolBtnSaveWorlc!AsClick (TObject *Sender)

ToolBtnSaveWorlc!As - >Down = false ;
MainForm->FileSaveWorldAsClic k(Sender);

)

//--------------- --

void fastcall TToolBox: : ToolBtnPlayClick (TObject *Sender)

ToolBtnPlay->Down = false ;
MainForm- >FilePlayClick (Sender);

)

//---

void fastcall TToolBox :: ToolBtnPriorClick (TObjec t *Sender)

ToolBtnPrior->Down = false ;
MainForm->StagePriorClick (Sender) ;

)

//---

void fastcall TToolBox :: ToolBtnNextClic k(TObject *Sender)

ToolBtnNext->Down = false ;
MainForm->StageNextClick(Sender) ;

)

//---

void fastcall TToolBox: : ToolBtnStageClearClick(TObject *Sender)

ToolBtnStageClear- >Down = false ;
MainForm- >StageClearClick(Sender);

)

//---

void fastcall TToolBox: : ToolBtninsertOb j ectClick(TObject *Sender)

•

•

•

•

•

•

•

•

•

•

66

•

•

•

ToolBtninsertObject- >Down = false ;
MainForm- >EditinsertObjectClick(Sender) ;

}

// ---

void fastcall TToolBox: : ToolBtnStageNewClick (TObjec t *Sender)

ToolBtnStageNew- >Down = false ;
MainForm->StageNewClick (Sender);

}

//---

void fastcall TToolBox::Too lBtnSaveWorldClick(TObject *Sender)

• ToolBtnSaveWorld->Down = false ;
MainForm- >FileSaveWorldClick (Sender);

}

•

•

//---

void fastcall TToolBox::ToolBtnFrontViewClick(TObject *Sender)

ToolBtnFrontView->Down = false ;
MainForm- >S tageFrontViewCl ick(Sender);

}

// -- ---------------------

void fastcall TToolBox : :ToolBtnGoToWorkRoomC l ick(TObject *Sender)

ToolBtnGoToWorkRoom- >Down = false ;
MainForm->StageGoToWorkRoomClick (Sender) ;

}

// ---

• void _fastcall TToolBox :: ToolBtnOb j ectToWorkRoomClick (TObject *Sender)
{

•

•

•

•

ToolBtnObjec t ToWorkRoom- >Down = false ;
MainForm- >S tageObjectToWo rkRoomClick(Sender);

}

// ---

void fastcall TToolBox :: ToolBtnTopViewClick(TObject *Sender)

ToolBtnTopView- >Down = false ;
MainForm- >StageTopViewClick (Se nder);

}

// ---

void fastcall TToolBox ::ToolBtnGoToStoreClick(TObject *Sender)

ToolB tnGoToStore - >Down = false ;
MainForm- >StageGoToStoreClick (Sender);

}
// ---

void fastcall TToolBox :: ToolBtnShowWireframeClick (TObject *Sender)

ToolBtnShowWireframe- >Down = false;
MainForm- >S tageShowWireframeClick (Sender);

}

//--- ----------------

void fastcall TToolBox : : ToolBtnStageCopyAllClick (TObject *Sender)

67

ToolBtnStageCopyAll - >Down = false;
MainForm- >StageCopyAllClic k(Sender);

)

// ---

void fastcall TToo lBox ::ToolBtnStageDele t eClick(TObj ect *Sender)

ToolBtnStageDelete - >Down = false;
MainForm->StageDeleteClic k(Sender) ;

}

//- --

void fastcall TToolBox ::ToolBtnStagePas t eAllClic k(TObject *Sender)

ToolBtnStagePasteAll->Down = false;
MainForm- >StagePas t eAllClick(Sender);

}

//---

void fastcall TToolBox : : ToolBtnStageinfoClick(TObject *Sender)

ToolBtnStageinfo- >Down = false;
MainForm- >StageinfoClick (Sender) ;

}

// ----------------------------------- - ---------------------------------------

void _fastcall TToolBox ::Too lBtnFirstClick(TObject *Se nder)
{

ToolBtnFirst->Down = false ;
MainForm->StageFirstClick (Sender);

)

//---

void fastcall TToolBox :: ToolBtnLastClick (TObject *Sender)

ToolBtnLast->Down = false;
MainForm- >StageLastClick(Sender) ;

}

// ---

void _fastcall TToolBox :: ToolBtnBringToFrontClick (TObject *Sender)
{

MainForm- >WorkBringToFrontClick(Sender);
}

//- -- --

void fastcall TToolBox :: ToolBtnSendToBac kClick (TObject *Sender)

MainForm- >WorkSendToBackCl i c k(Sender) ;
}

// ---

void fastcall TToolBox : : ToolBtnClearWorkRoomClick (TObject *Sender)

ToolBtnClearWorkRoom- >Down = false;
MainForm- >WorkClearWorkRoomCl i ck (Sender);

}

//---

void fastcall TToolBox :: ToolBtnBringForwardClick(TObject *Sender)

MainForm->WorkBri ngForwardClick(Sender);

•

•

•

•

•

•

•

•

•

68

•

•

•

•

•

•

•

•

•

•

•

•

•

!/---

void fastcall TToolBox ::ToolBtnSendBackwardClick (TObject *Sender)

MainForrn- >WorkSendBackwardClick(Sender);
}

// ---

void fastcall TToolBox::ToolBtnTakeWorkToStageClick(TObject *Sender)

ToolBtnTa keWorkToStage- >Down = false;
MainForrn->WorkTakeWorkToStageClick(Sender);

}

// -- -------------------------------

void fastcall TToolBox : :ToolBtnUndoClick (TObjec t *Sender)

ToolBtnUndo - >Down = false ;
MainForrn->EditUndoClick (Sender) ;

}

// ---

void fastcall TToolBox::ToolBtnRectangleClick(TObject *Sender)

MainForrn- >EditShapeRectangleClick (Sender) ;
}

// ---

void fastcall TToolBox::ToolBtnLineClick(TObject *Sender)

MainForrn- >EditShapeLineClick (Sender);
}

//---

void fastcall TToolBox :: ToolBtnRedoClick(TObject *Sender)

ToolBtnRedo->Down = false ;
MainForrn->EditRedoClick(Sender);

}

//---

void fastcall TToolBox :: ToolBtnCircleClick(TObject *Sender)

MainForrn- >EditShapeCircleClick(Sender) ;
}
// ---

void fastcall TToolBox :: ToolBtnFreehandPencilClic k(TObject *Sender)

MainForrn->EditShapeFreeHandPencilClick(Sender);
}

//--------------------------------------- - ---------------------------------- -

void fastcall TToolBox :: ToolBtnPe nSizeClick(TObject *Sender)

ToolBtnPenSize->Down = false ;
MainForrn- >EditPenSizeClick (Sender);

}

// ---

void fastcall TToolBox::ToolBtnEraserClick(TObject *Sender)

MainForrn- >EditEraserClick(Sender);

69

//---

void fas t call TToolBox : : ToolBtnCleanPixelsClick(TObject *Sender)

MainForm- >EditC l eanPixe lsClick(Se nder);
}

//---

void fastcall TToolBox::ToolBtnMoveClick(TObject *Sender)

MainForm- >EditMoveClick (Sender);
}

// ---

void fastcall TToolBox ::ToolBt nMoveDeep Click(TObject *Sender)

MainForm->EditMoveDeepClick(Sender) ;
}

// ---

void fastcall TToolBox : :ToolBtnFlipHorizontalCl i c k(TObject *Sender)

MainForm->EditFlipHorizontalClick(Sender);
}

//---

void fastcall TToolBox ::ToolBtnFlipVerti ca lC lick (TObject *Sender)

MainForm- >Edi t FlipVerti calClick(Sende r);
}

//---

void fastcall TToolBox :: ToolBtnResizeObjectClick(TObject *Sender)

MainForm- >EditResizeObjectClick (Sender);
}

// ---

void fastcall TToolBox: : Too lBtnPatternCl ick(TObject *Sender)

MainForm->EditPatternClick(Sender);
}

//---

void _fastcall TToolBox :: ToolBtnResizePatternClick (TObject *Sender)
{

MainForm- >EditResizePatternClick(Sender);
}

// ---

void fastcall TToolBox :: ToolBtnTransparentObjectClick(TObject *Sender)

MainForm- >EditTransparen t Objec t Clic k(Sender);
}

// ---

void fastcall TToolBox :: ToolBtnPasteCo l ourClick (TOb j ect *Sender)

MainFo rm->EditColourPas t eCo l ourClick(Sender) ;
}

//-- - --------------

void fastcall TToo lBox ::ToolBtnCo l ourObj ectClick(TObj ect *Sender)

•

•

•

•

•

•

•

•

•

•
70

•

•

•

•

•

•

•

•

•

•

1.
1

•

•

MainForm- >EditColourCo l ourObjec t Click(Sender);
}

// ---

void fastcall TToolBox :: ToolBtnCutObjectClick(TObject *Sender)

MainForm- >EditCutObjectCl ick(Sender);
}

// ------------------------- --

void fastcall TToolBox::Too lBtnCopyObjectCli ck (TObject *Sender)

MainForm- >EditCopyObjectCl ick(Sender);
}

// -- -

void fastcall TToolBox :: ToolBtnPasteObjectCli c k(TObje c t *Sender)

ToolBtnPasteObject->Down = fals e ;
MainForm- >EditPasteObjectCl i c k(Sender);

}

// ---

void fastcall TToo l Box :: ToolBtnDeleteObjectClick(TObject *Sender)

MainForm- >Edi tDel e t eObjectCli c k(Sender);
}

//------ ---

void fastcall TToolBox :: ToolBtnObjectToFloorClick (TObject *Sender)

MainForm- >EditOb j ectToF l oorCl i c k(S e nder);
}

// ---

About.h (header file)

// -------------- ------------------------------ -------------------------------

#ifndef Abou tH

#define AboutH

/1---
#include <Classes . hpp>
#include <Controls.hpp>
#include <StdCtrl s . hpp>
#include <Forms . hpp>
#include <Buttons.hpp>
#include <Ex t Ctr ls . hpp>
// ------------------------ - --
class TAboutBox p ublic TForm

published : // IDE-managed Componen t s
Timage *Imagel ;
TBitBtn *AboutOk ;
TBevel *Bevell ;
TLabel *Label3 ;
TLabel *Label2 ;
TLabel *Labell ;

71

private : // User declarations
public: // User declara t ions

fastcall TAboutBox (TComponent * Owner);
} ;

/1 ---
extern PACKAGE TAboutBox *AboutBox ;
/1- ----------------------------- - --
#endif

About.cpp (About box)

// ---

#include <vcl.h>

#pragma hdrstop

#include "About.h "

// ---

#pragma package(smart_init)
#pragma resource " * .dfm "
TAboutBox *AboutBox ;
1/----------------------------------- --

fastcall TAboutBox ::TAboutBox (TComponent* Owner)
: TForm (Owner)

{

}

//---

lnfos.h (header file)

1/---
#ifndef InfosH
#define InfosH
1/---
#include <Classes . hpp>
#include <Controls . hpp>
#include <StdCtrls . hpp>
#include <Forms.hpp>
/!-------------------------------- - --
class TinfosBox public TForm

_published: // IDE-managed Componen t s
TLabel *Labell;
TLabel *Label2 ;
TLabel *ClWLab ;
TLabel *ClHLab ;
TLabel *Label3 ;
TLabel *Label4 ;
TLabel *WLab;
TLabel *HLab;
TLabel *Label5;
TLabel *Label6;
TLabel *WStage ;

•

•

•

•

•

•

•

•

•

•

•
72

•

•
TLabel *HStage ;

private: // Us er declarat i ons
public: // User declarations

e fastcall TinfosBox(TComponent* Owner);
} ;

1/---
extern PACKAGE TinfosBox *InfosBox ;
1/----------------------------------- -- - -------------------------------------
#endif

•
lnfos.cpp_ (metrics about some objects)

// ---------------------------------- ---
• #include <vc l.h>

#pragma hdrstop

•
#include "Infos .h"
/1---
#pragma package(smart_init)
#pragma resource " *.dfm"
TinfosBox *InfosBox;
1/-- - ------------------------

{

}

fastcall TinfosBox::TinfosBox(TComponent* Owner)
: TForm (Owner) . //---

• PenSizing.h (header file)

1/----------------------------- - ---
#ifndef PenSizingH
#define PenSizingH
// -- - ------------------------

e #include <Classes . hpp>
#include <Controls . hpp>
#include <StdCtrl s . hpp>
#i nclude <Forms.hpp>
#include " cspin . h "

•

•

•

•

#include <Buttons . hpp>
#include <ComCtrl s . hpp>
// ---
class TPenSizeForm : public TForm

_published : // IDE-managed Component s
TBitBtn *OkBtn;
TBitBtn *CancelBtn;
TGroupBox *GroupBox;
TUpDown *UpDown;
TEdit *EditSize;

private: // User declarations
public: // User declarations

fas t c a ll TPenSizeForm(TComponent* Owner);
} ;

1/-------- - -- - - - -----------------------
extern PACKAGE TPenSizeForm *PenSizeForm;

73

/1-- - ------------------------
#endif

PenSizing.cp,:,_ (tool for changing the pen size)

/1---- ---
#include <vcl.h>
#pragma hdrstop

#include " PenSizing . h "
1/---
#pragma package(smart init)
#pragma link " cspin "
#pragma resource " * . dfm "
TPenSizeForm *PenSizeForm ;
1/---

fastcall TPenSizeForm::TPenSizeForm (TComponent* Owner)
: TForm (Owner)

{

}

//--------------------------------- - --- - -------------------------------------

•

•

•

•

•

•

•

•

•

•
74

•

•

•

•

Code of the PC Prototype of Visual Assistant
(Shortened version)

Vaprot.cpp (root file - execute code in Main.cpp)

// ---

#include <vcl . h>

• #pragma hdr stop

USERES (" VAprot . res ");

USEFORM (" Main . cpp", MainFo rm);

• USEFORM (" Too l s . c pp", ToolBox);

•

•

•

•

•

•

USEFORM (" Abou t. cpp ", Ab outBox);
USEFORM (" I n fos . cpp ", I n f osBox) ;
USEFORM (" Pen Si z ing . c pp", PenSizeForm);
/1 ---
WINAPI WinMa i n(H I NSTANCE , HI NSTANCE, LPSTR, in t)
{

}

t ry
{

Applicati on- >I nit ialize ();
Appli cat i on - >Title = "Visual Ass i s t a nt Pr o t o t yp e ";
Application->CreateForm (c l assid (TMainForm) , &Mai n Form);
Applica t ion- >C r eateFo rm(classid (TToolBox), &ToolBox);
Applica t ion- >C r eateForm (classid (TAboutBox), &Abou tBox);
Appli ca t ion- >C r eateForm (c l ass i d (Tin fosBox), &In f osBox);
Applicati on- >C r ea t e Form(c lassid (T Pe nS i ze Fo r m), &Pe nSizeForm);
App l ication- >Run ();

catch (Excepti on &exception)
{

Applicati on- >Sh owExcept i on(&except ion);

return O;

// --------------- - --- - ---- - - - ------- -

Main.h (Header file for Main.cpp)

1/-- -------
#i f ndef MainH
#de f ine MainH
/1 --- ----------- - - -- -------
#include <vcl\sysuti l s. hpp>
#inc lude <vcl\windows .hpp>
#include <vcl\mess a ges.hpp >
#include <vcl\sysuti l s. hpp >
#include <vcl\classes . hpp>
#i nclude <vcl\gr aph i cs . hpp>

75

#include <vcl\controls . hpp>
#include <vcl\forms . hpp>
#include <vcl\dialogs . hpp>
#include <vcl\stdctrls . hpp>
#include <vcl\buttons . hpp>
i nclude <vcl\extctr l s .hpp>
#include <vcl\menus . hpp >
#include <Classes.hpp>
#include <Dialogs . hpp>
#include <Menus.hpp>
#include <Controls.hpp>
#include <ExtCtrls . hpp>
#include <ExtDlgs . hpp>
/1 - -- - --------- - - - -------
enum TVATools {tsNoTool ,

tsNewWorld , tsOpenWorld , tsSave , tsSa veAs ,
tsTopView ,
tsinsert , tsRectangle , tsCircle , t s Li ne , tsFreehand , tsEraser,

tsPensize ,
tsMove , tsTransp ,
tsDelObj} ;

enum TWireframeMode {wfShow , wfHide} ;
enum TDisplayMode {dmWhole , dmObjectClipRect_FrontVi ew ,
dmObjectClipRect_TopView , dmMergedClipRect} ;

class TMainForm public TForm

_published :

TMainMenu *MainMenu ;
TMenuitem *FileNewWorld ;
TMenuitem *FileOpenWorld ;
TMenuitem *FileSaveWorld.As ;
TMenuitem *FileQuit ;
TMenuitem *Editündo ;
TMenuitem *EditCutObject ;
TMenuitem *EditCopyObject ;
TMenuitem *EditPas t eObject ;
TMenuitem *HelpAbout ;
TMenuitem *Sep2 ;
TMenuitem *FilePlay ;
TMenuitem *EditRedo ;
TMenuitem *Sepll ;
TMenuitem *EditMove ;
TMenuitem *EditMoveDeep ;
TMenuitem *Sepl0;
TMenuitem *EditDele t eObject ;
TMenuitem *StageMenu;
TMenuitem *StageFron tView ;
TMenuitem *StageTopView;
TMenuitem *StageGoToStore ;
TMenuitem *StageGoToWorkRoom;
TMenuitem *Sep4 ;
TMenuitem *StageCopyAll ;
TMenuitem *StageDelete ;
TMenuitem *SepS ;
TMenuitem *StagePrior;
TMenuitem *Sep3 ;
TMenui t em *StageShowWireframe ;
TMenui t em *HelpVA ;
TMenuitem *StagePasteAll;
TMenuitem *StageClear ;
TMenuitem *StageNew ;

•

•

•

•

•

•

•

•

•

•

•
76

•

•

•

•

•
1

1.

•

•

•

•

•

•

•

TOpenDialog *OpenDialog ;
TSaveDialog *SaveDialog ;
TOpenPictu reDialog *OpenPictureDialog ;
TMenuitem *StageLast ;
TMenuitem *StageFirst ;
TMenuitem *FileSaveWorld ;
TMenuitem *StageübjectToWorkRoom ;
TMenuitem *Stageinfo ;
TMenuitem *Sep9;
TMenuitem *EditEraser;
TMenuitem *EditResizeübject;
TMenuitem *EditFlipHorizontal ;
TMenuitem *EditFlipVertical ;
TMenuitem *EditPattern;
TMenuitem *EditResizePattern ;
TMenuitem *EditTransparentübject ;
TMenuitem *EditColour ;
TMenuitem *EditColourPickColour ;
TMenuitem *EditColourPasteColour ;
TMenuitem *EditColourColourübject ;
TMenuitem *EditColourPickWhite ;
TMenuitem *EditColourPickBlack;
TMenuitem *EditübjectToFloor ;
TMenuitem *WorkMenu ;
TMenuitem *Editinsertübject ;
TMenuitem *EditDrawShapes ;
TMenuitem *EditShapeRectangle ;
TMenuitem *EditShapeCircle;
TMenuitem *EditShapeLine;
TMenuitem *EditShapeFreeHandPencil;
TMenuitem *EditPenSize;
TMenuitem *WorkGoToStageFront;
TMenuitem *WorkGoToStageTop ;
TMenuitem *Sep6 ;
TMenuitem *WorkBringToFront ;
TMenuitem *WorkBringForward ;
TMenuitem *WorkSendBackward ;
TMenuitem *WorkSendToBack;
TMenuitem *Sep7 ;
TMenuitem *WorkClearWorkRoom;
TMenuitem *WorkTakeWorkToStage ;
TMenuitem *StageNext;
TMenuitem *Sepl;
TMenuitem *Sep8;
TMenuitem *Sepl2 ;
TColorDialog *ColorDialog ;
Timage *ImageStage ;
TBevel *Bevell ;
TMenuitem *EditCleanPixels ;

void
void
void
void
void
void
void
void
void
void
void
void
void
void

fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fas t ca l l
fas t call

FileQuitClick (Tübject *Sender);
HelpAboutClick (Tübjec t *Sender) ;
StageShowWireframeClick(TObject *Sender) ;
FileNewWorldClick (Tübject *Sender);
FileüpenWorldClick (TObject *Sender);
FileSaveWorldAsClick (TObject *Sender) ;
EditUndoClick (TObject *Sender) ;
Editinsertübject Click (TObject *Sender);
StageNewClick (Tübject *Sender) ;
EditTransparentübjectClick(TObject *Sender) ;
EditColourPickWhiteClick(TObject *Sender) ;
EditColourPic kBlackClick(TObject *Sender);
EditColourPic kColourC l ick(TObject *Sender);
FileSaveWorldClick (TObject *Sender) ;

77

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fast ca ll
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall
fastcall

FilePlayClic k(TObject *Sender);
StageFrontViewClick (TObject *Sender);
StageTopViewCl i ck(TObjec t *Sender);
StageGoToStoreClick (TObject *Sender) ;
StageGoToWorkRoomClick (TObject *Sender);
StageObjectToWorkRoomClick(TObject *Sender) ;
StageClearClick (TObject *Sender);
StageCopyAllClick (TObject *Sender);
StagePasteAllClick(TObject *Sender);
StageDeleteClick(TObject *Sender);
StageinfoClick(TObjec t *Sender);
StagePriorCl i c k(TObject *Sender);
StageNextC l ic k(TObject *Sender);
StageFirstClick(TObject *Sender);
StageLastClick(TObject *Sender);
WorkGoToStageFrontClick(TObject *Sender);
WorkGoToStageTopClick(TObject *Sender);
WorkBringToFrontClick(TObject *Sender);
WorkBringForwardClick(TObject *Sender) ;
WorkSendBackwardClick(TObject *Sender) ;
WorkSendToBackClick(TObject *Sender);
WorkClearWorkRoomClick(TObject *Sender);
WorkTakeWorkToStageClick(TObject *Sender);
EditRedoClick(TObject *Sender);
EditShapeRectangleClick(TObject *Sender);
EditShapeCircleClick(TObject *Sender);
EditShapeLineClick(TObject *Sender);
EditShapeFreeHandPencilClick(TObject *Sender);
EditPenSizeClick(TObject *Sender);
EditEraserClick(TObject *Sender);
EditCleanPixelsClick (TObject *Sender) ;
EditMoveClick (TObject *Sender);
EditMoveDeepClick(TObject *Sender);
EditResizeObjectClick (TObject *Sender);
EditFlipHorizontalClick(TObject *Sender);
EditFlipVerticalClick(TObject *Sender);
EditPatternClick(TObject *Sender) ;
EditResizePatternClick(TObject *Sender);
EditColourPasteColourClick(TObject *Sender) ;
EditColourColourObjectClick(TObject *Sender);
EditCutObjectClick(TObject *Sender);
EditCopyObjectClick (TObject *Sender);
EditPasteObjectClick(TObject *Sender);
EditDeleteObjectClick (TObject *Sender) ;
EditObjectToFloorClick(TObject *Sender);
HelpVAClick(TObject *Sender);

/***** EVENT Functions **/
void fastcall ImageStageMouseDown(TObject *Sender,

TMouseButton Button, TShiftState Shift , int X, int Y);
void fastcall ImageStageMouseMove(TObject *Sender , TShiftState Shift,

int X, int Y) ;
void fastcall ImageStageMouseUp(TObject *Sender , TMouseButton Button,

TShiftState Shift, int X, int Y);
void fastcall FormCreate (TObject *Sender);

private: // private user declarations

/***** Functions for INITIALIZING ***/
void fastcall CreateWorld (); / /A "World" is a list of Stages
void fastcall CreateStage (); //A " Stage " is a list of Objects
void fastcall DeleteWorld();

•

•

•

•

•

•

•

•

•

•

•
78

•

•

•

•

•

•

•

•

•
1

•

•

•

•

void fastcall DeleteStage ();
/***** MISC . : Functions for SAVING , UPDATING , etc . ***********************/

TModalResult fastcall CheckSave ();
void fastcall UpdateFu nctionsAvailable() ;
void fas t call WrappingUp ();
void fas t call SortStageOb ject s ();

/***** Functions fo r SE LECTING *** *************************************** **/
void fastcall SelectObject_FRONT (in t X, int Y);
void fastcall SelectObject_TOP (int X, int Y);

/***** Functions for REFRESHING the FRONT VIEW ****************************/
void fastcall Rebuild_FRONT (TDisplayMode DisplayMode);
void fastcall CreateBlankStage_OffScr ();
void fastcall S_H_Wireframe_OffScr ();
void fastcall PaintObjects_OffScr (TDisplayMod e DisplayMode) ;
void fastcall Display_OnScr (TDisplayMode DisplayMode);

/***** Functions for REFRESHING t he TOP VIEW ******************************/
void fastcall Rebuild_TOP (TDisplayMode DisplayMode);
void fastcall CreateBlankFloor_OffScr ();
void fastcall DrawTopRect s_OffScr (TDisplayMode DisplayMode);
//void fastcall Display_OnScr(TDisplayMode DisplayMode) ; -- > The same

method is used to display what ' s off - screen
/***** Functions for DRAWING SHAPES ***************************************/

void fastcall DrawTempShape (POINT MouseLocOnCl i c k, POINT MouseLocOnRelease) ;
void fastcall StoreShape (POINT MouseLocOnClick , POINT MouseLocOnRelease) ;

/***** Functions for MOVING ***/
void fastcall MergeRects_FRONT ();
void fastcall MergeRects_TOP ();
bool

TRect
fas t call
fas t call

IntersectRect s (TRect ComparedRect, TRect ModelOfComparison);
GetObjectNewCoord_FRONT (int X, int Y, i n t XOffset , int

YOffset) ;
TRect fastcall GetObjectNewCoord_TOP (int X, in t Y, int XOffset, int YOffset);

/***** Functions for VA ' s 3D- SPACE **/
TRect fastcall DepthRendering ();

int fastcall ConvertLocation_3Dto2D (int MiddleLine , int HorizCoord , int
VertCoord) ;

int fastcall ConvertLocation 2Dto3D(int MiddleLine , int HorizCoord , int
VertCoord) ;

void fastcall CheckBounds (TRect ValidLocation_3D);

// public user declarations public :
virtu.al fastcall TMainForm (TComponent* Owner);

/***** GENERAL information for WORLD , STAGES
*****************************/

bool WorldModified ;
modified since the last saving?

TModalResult OpCance l led ;
the last [QUIT/ NEW/ OPEN] operation?

TList* ListOfObjec t s ;
objects stored in a list .

int LastObjectID ;
generate ID numbers for StageObjects

int ObjectToSelect ;
ListOfObjects the object on which the current

TVATools PrevTool , CurTool ;
current and previous tools

int UserToScreenDis t;
between the user a nd the screen ' s surface
/***** FRONT VIEW i n formation for OFF - SCREEN
***************************/

Graphics :: TBitmap* Workbench ;

& OBJECTS

tool will

& STAGE- SET

TColor StageColor , FloorColor ;
currently used for the Stage and the floor

//Has the world been

//Has the user cancelled

//A stage is made up of

//Global variable to

//Used to extract form
be applied
//Data members to hold

//Measures the distance

//Off-screen bitmap
//Keeps trace of the color

79

TWireframeMode WireframeMode ;
has to be shown or hidden
/***** FRONT VIEW information for DRAWING
**/

bool CanDraw , CanDrawFreehand ;
freehanded?

POINT Origin, MovePt;
fields to draw by dragging t he mouse

TRect FreeHClipRect ;
to draw with pencil (freehand)

int CurrentPenSize ;
when setting the Pen ' s width
/***** FRONT VIEW information for MOVING
***/

bool
I ' ve selected?

TRect
rects defined here

int
MouseLoc . [X/Y] and

CanMove ;

MergedRectangle;
above

XOffset , YOffset;
the left/top side of the clip . rect. ,

//Tells if the Wireframe

//Can I draw? Can I doit

//Structure with X and Y

//Clipping rectangle used

//Gives the size to use

//Can I move the abject

//Ree t that includes the 2

//Distance between the

// but in TOP VIEW ,
YOffset is the distance between the MouseLoc . [Y] and the object ' s [Center_3D.z] -
and not the top side anymore
) ;

//---

class TStageObject
{

public: // User declarations
fastcall TStageObject() ; //Constructor

/***** USER TYPES***/
typedef struct {

int x, y , z ;
} Point_3D;
/***** GENERAL information********************************/

int ID;
(of course)

Graphics :: TBitmap* StorageBmp;
of the stage

//To get the object ' s transparency ,
property

//Identification number

//Bitmap storing an abject

read the [TBitmap->Transparent]

//To get the object ' s
>Height] properties
/***** VA ' S 3D SPACE

Point 3D

ORIGINAL dimensions , read the [TBitmap->Width] and [-

information**************************/
Center 3D ; //Coordinates of the

center in 3D space
/***** FRONT VIEW information*****************************/

TRect PrevPos FRONT, NewPos_FRONT ; //Position ON THE SCREEN
area representing the stage (and not in VA ' s 3D-space) of the clipping rectangles
needed to move (deep) the abject

int CurWidth , CurHeight ; //Object ' s CURRENT
dimensions , that is the (shrinked) dimensions of the object ' s projection on the
screen's surface
/***** TOP VIEW information*******************************/

TRect PrevPos_TOP , NewPos_TOP; //Position ON THE SCREEN
area representing the stage (and not in VA ' s 3D- space) of the clipping rectangles
needed to move (deep) the abjec t

} ;

/1---
extern PACKAGE TMainForm *MainForm ;
1/---
#endif

•

•

•

•

•

•

•

•

•

•

•
80

•

•

•

•

•

•

•

•

•

•

•

•

Main.cpp (master file calling all the other modules)

!!---

#include <vcl\vcl . h>

#include <stdlib.h>

#pragma hdr stop

#include "Main.h "

#include "Tools.h "

#include " About . h "
#include "Infos . h "
#include " PenSizing.h "
/1 --- --------------------------
#pragma resource " * .dfm"

TMainForm *MainForm ;
/***
***************************/
I* Instantiates the c l ass used to store o n e of the abjec t s on stage .
*I
I* New memory will be allocated whenever it ' s necessary .
*I
I* Can ' t make it work if it ' s defined elsewhere like this [TStageObject*
StageObject = new TStageObj ec t ;] */
I* in the code , where its ' needed . So it's defined here - as sort of a
global variable . */
/***
***************************/
TStageObject* StageObject ;

/***** LEGEND
**
*************/
/* Symbol Meaning
*I
l* --- ------------------------ ------­
--------------------------*I
I* Il I Line comment , permanent : do not remove .
*/
I* Il***** Comment for guidance , to remove later on .
*I
/* [l or ''
methods ' names , or values

It ' s used to make it eas ier to spot data members ' or
*I

/******************************* **** **
***************************I

I***** USAGE OF [Center_3D.z)
***/
I*
*/
I* The point of or i gin
When an object ' s
I* [Center_3D . z]
space). But in

for the axes in the 3D-SPACE is the Top-Left- Front corner .
*/

0 , the abjec t is at the front of the stage (which i s a 3D­
*I

81

/* TOP VIEW, the Z-coordinate is starting at 0/the top of the screen area
representing the stage */
/* which is the back of the stage in the 3D-space.
*/
/* That's why the value stored in [Center 3D.z) is ' 0 ' when the abject is at the
front of the stage , */
/* that is the bottom of the screen area delimiting the stage (coord.
' ImageStage- >Height -1'). */
/* The value stored in [Center_3D .z) i s ' ImageStage->Height -1' when the
abject is at the back */
/* of the stage , that is the top of the screen area delimiting the stage
(coord . ' 0 '). * /
/* To use [Center_3D . z) for setting coord o n screen , we have to take [ImageStage-
>Height - 1) from */
/* which we subs tract [Center_3D.z) t o get the displ acement from the top of
the screen. */
/*
*/
/* N.B: Whatever the v i ew is, no matter if there ' s a (perspect i ve) depth effect ,
the center we are */
/* considering is always t he center in VA ' s 3D- space - and not the center of
the projection */
/* of the abject in one of the views !
*/
/***
***************************/

1/---
fastcall TMainForm : :TMainForm (TComponent* Owner)

: TForm(Owner)
{

}

//---

void fastcall TMainForm : : FormCreate(TObject *Sender)

//PARTI : Creates the World
//Calls the method that creates a new list of Stages - that is, a new World
CreateWorld();

//PART II : Displays the World

}

//WireframeMode is initialized here to show the wireframe when VA starts
WireframeMode = wfShow;
//Calls the method / member function that draws a blank stage+ a wireframe
Rebuild_FRONT(dmWhole);

//---

void fastcall TMainForm :: Crea teWorld ()
/******************************* ***** **/
/* A "World" is a list of Stages * /
/* In this method, everything concerning one world is initialized here . */
/* That world is made up of o n ly one stage and will be expanded later */
/**/

//Sets the size of ImageStage
ImageStage->Width MainForm- >ClientWidth ;
ImageStage->Height = (MainForm- >ClientWidth * 0 . 51); //Height is 51% of the

Width

//Declares the bitmap representing the s tage of f- screen
Workbench = new Graphies : :TBitmap ;

//Gives Workbench (offscreen bitmap) the size of a stage

•

•

•

•

•

•

•

•

•

•

•
82

•

•

•

•

•

•

•

•

•

•

•

•

Workbench->Width
Workbench->Height

ImageStage->Width ;
ImageStage->Height ;

//Sets a few other data members - e . g. CanMove , CurTool ,
WorldModified = false ; //Sets Modified to false to

check later if work needs to be saved when user chooses NEW or OPEN
LastObjectID = 0; //No abjects at all on the

stage at this time
ObjectToSelect = -1 ; //No abject in ListOfObjects

has to undergo any operation at this time
PrevTool = CurToo l = tsNoTool ; //No t ool is selected at the

time of creation
UserToScreenDist = 600 ;

and the screen ' s surface is 600 units
ColorDialog- >Color = clTeal ;

drawing shapes
StageColor = FloorColor = clNavy ;

used for the Stage and the Floor
CurrentPenSize = 3 ;
CanDraw = CanDrawFreehand = CanMove

safety measure
Origin = MovePt = Point(0 , 0);
XOffset = YOffset = O;

creation

false;

//The distance between the user

//We need a default color for

//c l Navy is the default color

//Default Pen Size for drawing
//Sets all boolean to false -

//Start ing coordinates
//No offset at the time of

//Calls the method that creates a new list of St ageObjects - that is, a new
Stage

CreateStage ();

//Updates the list of stages in Stage menu.

}

//---

void fastcall TMainForm : : CreateStage ()
/**/
/* A "Stage " is a list of Objects. */
/* In this method , everything concerning one and only one stage that is , */
/* a list of abjects , is initialized here. */
/**/

//A stage is made up of abjects stored in a list. At the time of creation ,
only one empty list of abjects is needed for the new world .

ListOfObjects = new TList;
}

// -- - ------------------------

void fastcall TMainForm : : DeleteWorld ()

//The off - sc ree n bitmap has(?) to be deleted ' cos mem. has been dynamically
allocated toit - it doesn ' t exist at the design time .

delete Workbench ;

//***** Should loop through all the stages and delete them one by one by calling
//***** [DeleteStage] with a argument indicating which Stage has to be deleted

DeleteStage() ;
}

// ---

void fastcall TMainForm::DeleteStage ()

//Frees the memory used by the abjects listed in the TList of one stage .
for (inti = O; i < ListOfObjects - >Count; i++)

83

}

}

StageObject = (TStageOb j ect*) ListOfObjects->Items[i);
delete StageObject ;

//Then deletes the list itself.
delete ListOfObjects;

//---

void fastcall TMainForm :: FileQuitClick(TObject *Sender)

//Saves the current world if it's necessary.
OpCancelled = Chec kSave ();

if (OpCancelled != mrCancel)
{

//Calls the method that destroys all the Stages - that is, the World
DeleteWorld();

Application->Terminate ();

)//ELSE : do not quit VA because the user has cancelled the operation
}

//---

void fastcall TMainForm : : FileNewWorldClick(TObject *Sender)

//***** Modify the LastStageObjectID

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox->ToolBoxStatusBar- >Panels->Items[2)->Text = '' " + FileNewWorld->Hint;
PrevTool CurTool ;
CurTool = tsNewWorld ;

//Saves the current world if it's necessary.
OpCancelled = CheckSave() ;

if(OpCancelled != mrCancel)
{

//Disposes of the exist ing world .
DeleteWorld() ;

//Inits a new world made up of a blank stage only
CreateWorld();
//We need a default color for drawing shapes
ToolBox- >ToolBtnPickColour->Color = clTeal ; //It can ' t be done in

[createWorld) ' cos the ToolBox is not created first at the time of creation -
which results in an "ACCESS VIOLATION "

//We don't need to save a blank world --> wait for further changes
WorldModified = false;

//Clears the screen and shows the Front View
Rebuild_FRONT (dmWhole) ;
ToolBox- >ToolBoxStatusBar- >Panels - >Items[0 J- >Text = '' Stage - Front View ";

//Tells the user that a new world has been created and displayed
ToolBox->ToolBoxStatusBar- >Panels - >Items[2) - >Text = "New World created

and displayed";

//A few functionalit ies have to be (dis)activated in Front View
UpdateFunctionsAvailable();

//Empties the list of stages in Stage menu .

•

•

•

•

•

•

•

•

•

•
84

•

•

•

•

•

•

•

•

•

•

•

•

•

//It ' s a new world, sa we d on 't know its name yet
SaveDialog- >FileName = "";

}//ELSE: do not clear the cur r e nt World because the user has cancelled the
operation

else
//Tells the user that ' Crea t e New World ' has been cancelled
ToolBox- >ToolBoxStatusBar- >Panels - >Items[2)- >Tex t = " ' Create New World '

has been cancel l ed";
}

// ---

void fastcall TMainForm : : FileOpenWorldClick(TObject *Sender)

//***** Modify the LastStageObjec t ID

//Modifies ToolBox appearance t a reflect click on function and disactivate
tool previous l y selected

ToolBox->ToolBoxStatusBar- >Panels->Items[2)- >Text = '' "+ FileOpenWorld->Hint ;
PrevTool Cu rTool;
CurTool = t sOpenWorld ;

//Saves t he curren t world if it ' s necessary .
OpCancelled = Chec kSave() ;

if(OpCancelled != mrCancel)
{

//Disposes of the existi ng world .
DeleteWorld ();

//Inits a new world made up of a blank stage only
CreateWorld();
//We need a default color for drawing shapes
ToolBox- >ToolBtnPi c kColour->Color = clTeal; //It can't be done in

[createWor ld) ' cos the ToolBox is no t created first at the time of creation -
which results in an "ACCESS VIOLATION "

//Expands t he blank world created here above with information loaded from
a VA file

OpenDialog- >FileName = "";
if (OpenDialog- >Execute ())
{

SaveDialog- >FileName = OpenDialog- >F ileName ;
if (MessageDlg("Under cons truction - No loading at the moment

a blank World is created. ", mtWarn i ng ,
TMsgDlgButtons() << mbOK , 0) == mrOk)
//does nothing

\nOnly

//We don ' t need to save a world thas has been l oaded and , a fortiori ,
previously saved --> wait for further changes

WorldModified = false;

//Clears the screen and disp l ays in FRONT VIEW the World that has just
been loaded

Rebui ld FRONT (dmWhole) ;
ToolBox- >ToolBoxStatusBar->Panels->Items[0) - >Text = " Stage - Front View ";

//Tel l s the user that a wor ld has been loaded and disp l ayed
ToolBox->ToolBoxStatusBar- >Panels- >I tems[2)- >Tex t = " A World has been

loaded and displayed";

85

//A few functionalities have to be (dis)activated in Front View
UpdateFunctionsAvailable();

//Renews the list of stages in Stage menu .

}//ELSE : do not clear the current World nor load a new World because the user
has cancelled the operation

else
//Tells the user that ' Open World ' has been cancelled
ToolBox->ToolBoxStatusBar- >Panels->Items[2]->Text " ' Open World' has

been cancelled";
}

//------------------------ - - ------- -- - -------- - - -------- - --------------------

void fastcall TMainForm : : FileSaveWorldClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox->ToolBoxStatusBar->Panels->Items[2]->Text = " "+ FileSaveWorld->Hint;
PrevTool CurTool ;
CurToo l = tsSave ;

if (SaveDialog->FileName == "")
FileSaveWorldAsClick(Sender) ;

else

//SaveToFile ();

//Sets Modifed to false since we ' ve just saved
WorldModified = false ;

if (Message Dlg (" Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)
//does nothing

1 Il . , mtWarning,

//Tells the user that the world has been saved
ToolBox->ToolBoxStatusBar->Panels->Items[2] - >Text "The World has been

saved";

)

//--- - -- - --------------------------

void fastcall TMainForm::FileSaveWorldAsClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox->ToolBoxStatusBar->Panels->Items[2]->Text =" " + FileSaveWorldAs­
>Hint ;

PrevTool
CurTool

CurTool ;
tsSaveAs ;

if (SaveDialog->Execute())
{

//SaveToFile () ;

//Se t s Modifed to false since we ' ve just saved
WorldModified = false ;

if (MessageDlg(" Under construction . \nJust believe that your world has
been saved !", mtWarning,

TMsgDlgBu ttons() << mbOK, 0) == mrOk)
//does nothing

•

•

•

•

•

•

•

•

•

•

•
86

•

•

•

•

•

•

•

•

•

•

//Tells the user that the world has been saved with a new name
ToolBox->ToolBoxStatusBar- >Panels->Items[2] - >Text " The World has been

saved as '" + SaveDialog->FileName + "' ". '

else
//Tells the user that the saving has been cancelled
ToolBox->ToolBoxStatusBar- >Panels - >Items(2] - >Text " Saving has been

cancelled";
}

//-- ---------------------

TModalResult
{

fastcall TMainForm :: CheckSave()

if (WorldModified)
{

switch (MessageDlg ("The current world has been changed . \nSave changes
mtConfirmation , TMsgDlgButtons() <<mbYes <<mbNo

<<mbCancel , 0))
{

case mrYes
//If YES was clicked , then save the world;
FileSaveWorldAsClick (this) ;
return mrYes ;

case mrNo
//If NO was clicked, then don ' t save - just do nothing ;
return mrNo;

case mrCancel

? "
. '

//Tells the user that the saving has been cancelled
ToolBox- >ToolBoxStatusBar->Panels - >I tems[2]->Text "Saving has

been cancelled";

//If CANCEL was clicked , then return - the return value is used in
[QUIT] to be able to cancel it .

}

return mrCancel ;

}

//By default (and t o avoid ' Compi ler Warning '), the function returns [mrNone)
return mrNone;

// ---

void fastcall TMainForm : : EditUndoClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

}

ToolBox- >ToolBoxStatusBar->Panels - >Items[2]->Text = " '' + EditUndo - >Hint ;

if (MessageD l g ("Under construction - Not implemen t ed yet !", mtWarning ,
TMsgDlgBut tons() << rnbOK , 0) == mrOk)

//does nothing

!!----------------------------------- ---------------------------- ------------

void
{

fastcall TMainForm :: EditinsertObjectClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on functi o n and disactivate
tool previous l y selected

ToolBox->ToolBoxStatusBar->Panels- >Items[2]->Text = " '' + EditinsertObject­
>Hint;

PrevTool
CurTool

CurTool ;
tsinsert;

87

if (OpenPicture Dialog->Execute ())
{

// Loads the image on a tempo rary container (Type of it Timage , in order
to us e Autosize)

Timage* Tempimage = ne w Timage(this);
Tempimage->AutoSize = true ;
Tempimage->Picture - >LoadFromFile(OpenPic tureDialog- >Fi leName);

//Allocates a new memory space for that ob ject on s tage and returns a
pointer toit

StageObj ec t new TStageObject;
//Gives an ID number to the objec t
StageObject- >I D = ++LastObj ectI D;

//The bitmap ' s height and width properties hold the origina l size of the
object

StageObj ec t - >S torage Bmp->Width
StageObject - >S torageBmp- >Height

Tempimage->Pi c ture- >Width;
Tempimage - >Picture - >Height ;

//When an ob j ec t is c r ea t ed , its c urrent dimensions are identical
original dimensions

StageObject->Cu rWidth
StageObject- >CurHeight

StageObj ect->Sto rageBmp - >Width ;
StageOb ject->S t orageBmp->Height;

toits

//Places and s t ores the position
StageObject - >NewPos FRONT.Left

>Picture->Width / 2);
StageObject - >NewPos FRONT . Top

>Picture - >Height / 2);
StageObject - >NewPos FRONT . Right

>Picture - >Width / 2);
StageObject->NewPos FRONT .Bottom

>Picture - >He ight / 2);

of the image on the stage
(ImageStage- >Width / 2) - (Tempimage-

(ImageStage- >Height / 2) - (Tempimage­

(I mageS tage->Width / 2) + (Tempimage­

(ImageStage- >Height / 2) + (Tempimage -

//Records the center in VA ' s 3D- space
Stage0bject- >Center_3D . x ImageS tage->Width / 2 ;
Stage0bject->Center_3 D. y ImageStage - >Heigh t / 2 ;
Stage0bject- >Ce nter_3D .z 0 ;

//Copies Image fr om temp container t o StorageBmp
StageObject->StorageBmp- >Assign (Tempimage - >Picture - >Bitmap) ;
delete Tempimage ;

//Adds StageObject t o the li s t of objects present on stage
Li stOfObjects ->Add(StageObj ect) ;

//Sets [ObjectToSelect] t o make it r eferen ce t o the image that has just
been inserted

ObjectToSe l ec t = (ListOfObj ects - >Count) - l ;
because the list hasn 't been sorted since

//I t ' s the las t index

} ;

}

//Display t he image that has just bee n loaded off- and on screen
Rebuild_FRONT (dmObj ectClipRect_FrontVi e w);

//As a safety measure ...
WrappingUp ();

// ---

void fastcall TMai nForm :: StageShowWireframeClick(TObject *Sender)

•

•

•

•

•

•

•

•

•

•

•
88

•

•

•

•

•

•

•

•

•

•

•

•

•

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox- >ToolBoxStatusBar- >Panels - >Items[2]->Text = " " + StageShowWireframe­
>Hint;

PrevTool
CurToo l

CurTool ;
t sNoTool ;

//Shows/ Hides the wireframe
if (StageShowWireframe->Checked)
{

//Unchecks the Wireframe item in the menu

else

StageShowWireframe- >Chec ked

WireframeMode = wfHide ;

false;

//Chec ks the Wireframe item in the menu
StageShowWireframe->Chec ked = true;

WireframeMode = wfShow ;
} ;

Rebuild_FRONT (dmWhole);
}

// ---

void fastcall TMainForm :: StageNewClick (TObject *Sender)

//Modifies ToolBox appearance t o reflect click on function and disactivate
tool previously selected

ToolBox->ToolBoxStatusBar->Panels->Items[2]->Text = " " + StageNew->Hint;
PrevTool CurTool ;

}

CurTool = tsNoTool ;

//Adds a new stage to the world .

if (MessageDlg(" Under construction - Not implemented yet
TMsgDlgButtons() << mbOK, 0) == mrük)

//does nothing

1 Il . , mtWarning,

!!---

void fastcall TMainForm : :EditTransparentübjectCl ick(TObject *Sender)

//Modi fies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox->ToolBtnTransparentObject->Down = true ;
ToolBox- >ToolBoxStatusBar->Panels->Items[2]->Tex t " " +

EditTransparentübject->Hi nt;
PrevTool CurTool ;
CurTool tsTransp;

//Wait for user to click on something ('MouseDown' event)
}

//------ ------------------- --

void fastcall TMainForm: : EditCo l ourPickWhiteClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on f unction and disactivate
tool previously selected

ToolBox- >ToolBoxStatusBar- >Panels - >Items[2]->Text = " '' + EditColourPickWhite­
>Hi nt;

ToolBox->ToolBtnPickColour->Color = clWhite;

89

ColorDialog->Color = clWhite ;
}

//---

void fastcall TMainForrn::EditColourPickBlackClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox->ToolBoxStatusBar->Panels - >I terns[2)->Text =" "+ EditColourPickBlack­
>Hint;

}

ToolBox->ToolBtnPickColour->Color = clBlack ;
ColorDialog->Color = clBlack ;

//---

void fastcall TMainForrn :: EditColourPickColourClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox->ToolBoxStatusBar- >Panels->I terns[2)- >Text = " "+
EditColourPickColour->Hint;

}

if (ColorDialog->Execute())
{

ToolBox->ToolBtnPickColour->Color ColorDialog->Color ;

// ---

void fastcall TMainForrn::FilePlayClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

}

ToolBox->ToolBoxStatusBar->Panels->Iterns[2)->Text = '' "+ FilePlay->Hint;
PrevTool CurTool ;
CurTool = tsNoTool;

if (MessageDlg("Under construction - Not irnplernented yet !", rntWarning ,
TMsgDlgButtons() << rnbOK , 0) == rnrük)

//does nothing

// ---

void fastcall TMainForrn : : StageFrontViewClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox->ToolBoxStatusBar->Panels - >I terns[2)->Tex t "" + StageFrontView­
>Hint;

ToolBox->ToolBoxStatusBar- >Panels - >I terns[0)->Tex t
PrevTool CurTool ;
CurTool = tsNoTool ;

//Shows the Front View
Rebuild FRONT(drnWhole);

"Stage - Front View";

//A few functionalities have to be (dis)activated in Front View
UpdateFunctionsAvailable();

//No function selected by default even though is the other way round in TOP
VIEW.

ToolBox->ToolBtnMove- >Down false ;

•

•

•

•

•

•

•

•

•

•

•
90

•

•

•

•

•

•

•

•
1

•

•

•

•

•

ToolBox->Too l BoxStatusBar->Panels->Items[2]->Text
function ";

" Please , choose a

}

PrevTool = CurTool ;
CurTool = tsNoTool ;

// -- -

void fastcall TMainForm :: StageTopViewClick (TObjec t *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
t ool previously selected

}

ToolBox->ToolBoxStatusBar- >Pane ls->I t ems[2]->Text '' " + StageTopView- >Hint;
ToolBox->ToolBoxStatusBar->Panels - >I t ems[0]->Text " Stage - Top View";
PrevTool CurTool ;
CurTool = tsTopView ;

//Shows the Top Vi ew
Rebuild TOP (dmWhole);

//A few functionalities have to be (dis)activated in Top View
UpdateFunctionsAvailable() ;

//The function selected by default is [Move] .
ToolBox- >Too lBtnMove- >Down = true;
ToolBox- >ToolBoxS tatusBar- >Pane ls->Items[2] - >Text
PrevTool = CurTool ;
CurTool = t sMove ;

" " + EditMove- >Hint ;

!!---

void fastcall TMainForm: : StageGoToStoreClick(TObjec t *Sender)

//Modifies ToolBox appearance t o reflect click on function and disact i vate
t ool previously se l ected

ToolBox- >ToolBoxS t a tusBar- >Panels - >Items [2] - >Tex t = '' " + StageGoToStore­
>Hint ;

}

PrevTool
CurTool

CurTool ;
t sNoTool ;

if (Message Dl g ("Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

1 Il
. ' mtWarni ng ,

!/---

void _fastcall TMainForm :: StageGoToWorkRoomClick (TObject *Sender)
{

//Modifies ToolBox appearance t o r e f lect clic k on function and disactivate
t ool previous ly selected

ToolBox- >ToolBoxStatusBar- >Pane l s - >Items[2] - >Tex t = " " + StageGoToWorkRoom­
>Hint ;

}

PrevTool
CurToo l

CurTool ;
t sNoTool ;

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

1 Il
. ' mtWarning ,

// ---

void fastcall TMainForm :: StageObj ec tToWorkRoomClic k(TObject *Sender)

91

//Modifies ToolBox appearance to reflec t click o n functio n and disactivate
tool previously selected

ToolBox- >ToolBoxStatusBar- >Panels->I t ems[2] - >Text = " " +
StageObjectToWorkRoom- >Hint ;

}

PrevTool CurTool ;
CurTool = tsNoTool ;

if (MessageDlg(" Under construction - No t implemented yet
TMsgDlgBu t tons () << mbOK , 0) == mrOk)

//does nothing

1 "
. ' mtWarning ,

//-- - --- - - -------------------- - - - ---- - --------------------------- - -----------

void fastcall TMainForm :: StageClearClick(TObject *Sender)

//Modifies ToolBox appearance to reflec t click on function and disactivate
tool previously selected

}

ToolBox- >ToolBoxStatusBar- >Panels->Items[2]->Text = " '' + StageClear->Hint;
PrevTool
CurTool

CurTool ;
= tsNoTool ;

if (MessageDlg (" Un der const r uction - Not implemented yet !" , mtWarning,
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

!/--------------------- - - ----- - ----------------------- - - ------ - - -- - - -- - - -----

void fastcall TMainForm: : StageCopyAllClick(TObject *Sender)

//Modifies ToolBox appearance t o reflect click on function and disactivate
tool previously select ed

}

ToolBox->ToolBoxStatusBar->Panels - >Items[2] - >Text = " " + StageCopyAll - >Hint;
PrevTool CurTool ;
CurTool = tsNoTool ;

if (MessageDlg ("Under cons t ruction - No t implemen t ed yet
TMsgDlgButtons () << mbOK , 0) == mrO k)

//does nothing

1" . ' mtWarning ,

//-------------- - --

void fastcall TMainForm :: StagePasteAllClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

}

ToolBox- >ToolBoxS t a t usBar - >Panels - >Items[2] - >Text = " '' + StagePas t eAll->Hint ;
PrevTool CurTool ;
CurTool = tsNoTool ;

if (MessageDlg(" Under construction - Not implemented yet
TMsgDlgButtons () << mbOK, 0) == mrOk)

//does nothing

1"
. ' mtWarning ,

//--------------------------------- ------------- - - - ------------------------- -

void fastcall TMai nForm : :StageDeleteCl ic k(TObject *Sender)

//Modifies ToolBox appearance to reflec t click on function and disactivate
tool previously selected

•

•

•

•

•

•

•

•

•

•

•
92

•

•

•

•

•

•

•

•

•

•

•

•

•

)

ToolBox- >ToolBoxStatusBar- >Panels - >Items[2]->Text " " + StageDelete- >Hint ;
PrevTool
CurTool

CurTool ;
= tsNoTool ;

if (Mess a geDlg (" Under const r uc t ion - Not implemen t ed ye t
TMsgDlgButtons () << mbOK , 0) == mrO k)

//does nothing

1"
. ' mtWarni ng ,

//-------------------- - - ---- - ----------------- - ----------------------------- -

void fas t call TMainForm :: Stagein f oClick (TObject *Sender)

//Modifies ToolBox appea r a nce t o reflect click on
t ool previou sly selected

ToolBox- >ToolBoxS t atusBar- >Pa nels - >I tems[2]->Text

f unction and disac t ivate

= " " + Stageinfo- >Hi nt ;

)

PrevTool
CurTool

CurTool;
= t s No Tool ;

if (MessageDlg (" Under cons truct i o n - Not implemen t e d yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

1" . ' mtWarning ,

// ----------------------------- ---------- ------------------------------------

void fastcall TMainForm :: StagePriorClick (TObject *Sender)

//Modifies ToolBox appearance t o reflect click on f un c ti o n and disactivate
tool previously selected

}

ToolBox- >ToolBoxStatusBar->Panels - >I t ems[2] - >Text = '' " + StagePrior- >Hint ;
PrevTool CurTool ;
CurTool = tsNoTool ;

if (MessageDlg (" Under construction - Not implemented yet
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

1"
. ' mtWarning ,

//---------------- - - - - - -------------------------------- - --- - - ---- - -----------

void fastcall TMainForm : :StageNextClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disact i vate
tool previously selected

}

ToolBox- >ToolBoxStatusBar- >Panels - >Items[2] - >Text = " " + StageNext- >Hint ;
PrevTool CurTool ;
CurTool = tsNoTool ;

if (Message Dlg ("Under const r uc t ion - Not implemen t ed yet
TMsgDlgBu ttons () << mbOK , 0) == mrOk)

//does nothing

1"
. ' mtWarning ,

// ------ - ---------- - -------------------------------------- - - -----------------

void fastcall TMai n Form : : StageFir stClick(TObject *Sender)

//Modifies ToolBox appearance to r eflect click o n f un c t ion and disactivate
tool p r eviou s l y selec t ed

ToolBox- >ToolBoxS t a tusBar- >Pa ne l s - >Items [2]->Text = '' " + StageFirst->Hint;
PrevTool CurTool ;
CurTool = tsNoTool ;

93

}

if (MessageDlg("Under cons truc tion - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

'" . , mtWarning ,

//- --

void fastcall TMainForm :: StageLastClick(TOb j ec t *Sender)

//Modifies ToolBox appearance t o reflect click on function and disactivate
tool previously selected

}

ToolBox- >ToolBoxStatusBar- >Panels - >I t ems[2]->Tex t = '' " + StageLast - >Hint;
PrevTool CurTool ;
CurTool = tsNoTool ;

if (MessageDlg(" Under cons tructi on - No t implemented yet
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

1 Il . , mtWarning ,

// ---

void fastcall TMainForm ::WorkGoToStageFrontClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox->ToolBoxStatusBar->Panels->Items[2]->Text = " '' + StageFrontView­
>Hint ;

}

PrevTool
CurTool

CurTool;
tsNoTool ;

//Carry out a few t hings if necessary then call StageFrontView

if (MessageDlg ("Under construction - Not implemented yet !", mtWarning ,
TMsgDlgButtons () << mbOK, 0) == mrOk)

//does nothing

!/---

void fastcall TMai nForm :: WorkGoToStageTopClick(TObject *Sender)

//Modifies ToolBox appearance to reflect cl i c k on function and disactivate
tool previously selected

}

ToolBox- >ToolBoxStatusBar - >Panels - >I t ems[2]->Text = " '' + StageTopView- >Hint ;
PrevTool CurTool ;
CurTool = tsNoTool ;

//Carry out a few things if ne cessary then call StageTopView

if (MessageDlg (" Under construct ion - No t implemented yet !", mtWarning ,
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

!!--------------- --

void _fastcall TMainForm :: WorkBringToFrontClick(TObject *Sender)
{

//Modifies ToolBox appearance t o ref l ect click o n function
ToolBox- >ToolBtnBringToFront->Down = true;
ToolBox- >ToolBoxStatusBa r->Panels - >I t ems[2] - >Tex t = " '' + WorkBringToFront-

>Hint;

•

•

•

•

•

•

•

•

•

•

•
94

•

•

•

•

•

•

•

•

•

••

•

•

}

if (MessageDlg(" Under construction - Not implemented yet
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

'" . , mtWarning ,

!!-- - ----------------

void fastcall TMainForm : : WorkBringForwardClick (TObjec t *Sender)

//Modifies ToolBox appearance to reflect click on function
ToolBox->ToolBtnBringForward- >Down = true;
ToolBox->ToolBoxStatusBar - >Pane ls->I t ems[2)->Tex t = " " + WorkBringForward-

>Hint ;

}

if (MessageDlg(" Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrO k)

//does nothing

'" . , mtWarning ,

// ---

void fas t call TMainForm::WorkSendBackwardClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function
ToolBox- >ToolBtnSendBackward- >Down = true;
ToolBox- >ToolBoxStatusBar- >Panels - >Items[2) - >Text = '' " + WorkSendBackward-

>Hint ;

}

if (MessageDlg("Under construction - Not implement ed yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

'" . , mtWarning ,

// -- -------------------------------

void fastcall TMainForm :: WorkSendToBackClick(TObject *Sender)

//Modifies ToolBox appearance to re f lect click o n fu n ction
ToolBox- >ToolBtnSe ndToBack- >Down = true;
ToolBox- >ToolBoxStatusBar- >Panels - >I t ems[2) - >Text = '' " + WorkSendToBack-

>Hint;

}

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

1" . , mtWarning ,

// ---

void fastca l l TMainForm::WorkClearWorkRoomClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously selected

ToolBox- >ToolBoxS t atusBar - >Panels->Items[2) - >Tex t = '' " + WorkClearWorkRoom­
>Hint ;

}

PrevTool
CurTool

CurTool;
tsNoTool ;

if (MessageDlg ("Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrO k)

//does n o th i n g

'" . , mtWarning ,

// --------------------------------------- ------------------------------------

95

void fastcall TMainForm ::WorkTakeWorkToStageClic k(TObject *Sender)

//Modifies ToolBox appearance t o reflect click o n function and disactivate
tool previou sly selected

ToolBox->ToolBoxStatusBar->Panels->Items[2]->Text = " " + WorkTakeWorkToStage­
>Hi n t;

}

PrevToo l
CurTool

CurTool ;
tsNoToo l;

if (MessageDlg("Under const ruction - Not implemented yet
TMsgDlgButtons () << mbOK, 0) == mrOk)

//does nothing

1" . , mtWarning ,

//---------------------------- - --

void fastcall TMai n Form::EditRedoClic k(TObj ec t *Sender)

//Modifies ToolBox appearance to ref l ect click o n function and disactivate
tool previously selected

}

ToolBox- >ToolBoxStatusBar- >Panels - >I t ems[2] - >Text = " " + EditRedo->Hint;

if (MessageDlg("Under constru c t ion - Not implemented yet !", mtWarning ,
TMsgDlgButtons () << mbOK, 0) == mrO k)

//does nothing

//---

void fastcall TMai n Form ::EditShapeRectangleClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function
ToolBox->ToolBtnRectangle - >Down = true ;
ToolBox->ToolBoxStatusBar- >Panels - >Items[2] - >Tex t = " " + EditShapeRectangle-

•

•

•

•

•

•

>Hint; •
PrevTool = CurTool ;
CurTool = tsRec t angle ;

//Wait for user to click on something (1 MouseDown 1 event)
}

//---

void fastcall TMainForm : : Edi t ShapeCircleClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function
ToolBox- >ToolBtnCircle->Down = true;
ToolBox- >ToolBoxStatusBar- >Panels - >I t ems[2] - >Text = " 11 + EditShapeCircle-

>Hint;
PrevTool = CurTool ;
CurTool = tsCircle;

//Wait for user to click on something (1 MouseDown 1 event)
}

//- --

void fastcall TMainForm ::EditShapeLineClick (TObject *Sender)

//Modif i es ToolBox appearance t o reflec t click o n f unction
ToolBox- >ToolBtnLine - >Down = true ;
ToolBox- >ToolBoxSta tu sBar- >Panels - >I t e ms [2]->Text =" " + EditShapeLine->Hint;
PrevTool = CurTool ;
CurTool = tsLine ;

•

•

•

•
96

•

•

•

•

•

•

•

•

•

•

//Wait for user to c lick o n somethin g (' MouseDown ' event)
}

// -- -

void fas t call TMainForm : : EditShapeFreeHandPencilClick(TObject *Sender)

//Modifies ToolBox appearance t o reflect click on function
ToolBox- >ToolBtnFreehandPencil- >Down = true ;
ToolBox- >ToolBoxStatusBar- >Panels - >I t ems[2)->Tex t = " " +

EditShapeFreeHandPencil->Hint;
PrevTool = CurTool ;
CurTool = tsFreehand ;

//Wait for user to click on something (' MouseDown ' event)
}

//---

void fastcall TMainForm :: EditPenSizeClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function and disactivate
tool previously select ed

}

ToolBox- >ToolBoxS tatusBar- >Panels->Items[2) - >Text = '' " + EditPenSize- >Hint ;
PrevTool = CurTool ;
CurTool = tsPensize;

if (PenSizeForm->ShowModal() == mrOk)
(

else

Curren t PenSize = StrToint(PenSizeForm- >EditSize- >Text);

// keep the same Pen Size
PenSizeForm- >EditSize - >Tex t CurrentPenSize ;

// ---

void

}

fastcall TMainForm : : EditEraserClick (TObject *Sender)

//Modifies ToolBox appearance to reflect click on function
ToolBox- >ToolBtnEraser- >Down = true ;
ToolBox- >ToolBoxStatusBar->Panels->I tems[2)->Tex t = '' " + EditEraser- >Hint ;
PrevTool = CurTool ;
CurTool = tsEraser ;

if (MessageDl g (" Under const ru c tio n - No t implemented ye t
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

1" . , mtWarni ng,

// ---

void fastcall TMainForm : :EditCleanPixelsClick (TObject *Sender)

//Modi fies ToolBox appearance t o reflect click on function
e ToolBox- >ToolBt nCleanPixels- >Down = true ;

•

•

ToolBox- >ToolBoxStatusBar - >Panels - >I tems[2]->Text = " " + EditCleanPixels ­
>Hint ;

if (MessageDlg ("Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does n o thing

//Wait for user to click o n something (' MouseDown ' event)

1" . , mtWarning ,

97

)

//-- - -------- - ----- - ----- - - -------- ----

void fastcall TMainForm :: EditMoveClick (TObject *Sender)

//Modifies ToolBox appearance to reflec t click on function
ToolBox- >ToolBtnMove- >Down = true ;
ToolBox->ToolBoxStatusBar- >Pane l s - >Items [2]->Tex t = " " + EditMove - >Hint ;
PrevTool = CurTool ;
CurTool = tsMove ;

//Wait for user to click on something (1 MouseDown 1 event)
)

//----- ---------- - -------------------------- - --------------------------------

void fastca l l TMainForm :: EditMove DeepClic k(TObjec t *Sender)

//Modifies ToolBox appearance t o re f lec t click on functio n
ToolBox->ToolBtnMoveDeep->Down = true ;
ToolBox- >ToolBoxStatusBar- >Panels - >Items[2]->Text = " " + EditMoveDeep- >Hint ;

if (MessageDlg(" Under construction - Not implemented yet !", mtWarning,
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

//Wait for user to cl i ck o n something (1 MouseDown 1 event)
)

//------------------------------- - -- -

void fastcall TMainForm :: EditResizeObjec t Click (TOb j ect *Sender)

//Modifies ToolBox appearance to reflect click on function
ToolBox->ToolBtnResizeObject- >Down = true ;
ToolBox- >ToolBoxStatusBar- >Panels - >Items[2] - >Text = " 11 + EditResizeObject-

>Hint;

if (MessageDlg(" Under construction - Not implemen ted yet
TMsgDlgBut tons () << mbOK , 0) == mrOk)

//does nothing

//Wait for user to click on something (1 MouseDown 1 event)
)

1" . ' mtWarning ,

//------- - ---- - -- --- -

void fastcall TMainForm : :Edi t FlipHorizontalClick (TObject *Sender)

//Modifies ToolBox appearan ce t o reflect click o n function
ToolBox- >ToolBt n Fl ipHorizontal - >Down = true ;
ToolBox- >ToolBoxStatusBar- >Panels - >Items[2]->Text = " " + EditFlipHorizontal -

>Hint ;

if (MessageDlg(" Under construction - Not implemented yet
TMsgDlgButtons() << mbOK , 0) == mrOk)

//does nothing

//Wait for user to click on something (1 MouseDown 1 event)
)

1"
. ' mtWarning ,

//- -------------- --- - - ------------------- - - - -- - ----------------------- -- - - ---

void fastcall TMainForm :: Edi t FlipVerticalClick (TOb ject *Sender)

•

•

•

•

•

•

•

•

•

•

•
98

•

•

•

•

//Modifies ToolBox appearance to reflect click on function
ToolBox- >ToolBtnFlipVertical - >Down = true;
ToolBox- >ToolBoxStatusBar - >Panels - >Iterns[2]->Text = '' " + EditFlipVertical-

>Hint;

if (MessageDlg("Under cons truction - Not irnplernen ted yet !'', rntWarning ,
TMsgDlgButtons() << rnbOK, 0) == rnrOk)

//does nothing

//Wait for user to click on sornething ('MouseDown' event)
}

//--- --

void fastcall TMainForrn::EditPatternClick(TObject *Sender)

e //Modifies ToolBox appearance to reflect click on function
ToolBox->ToolBtnPattern->Down = true;
ToolBox->ToolBoxStatusBar->Panels->Iterns[2]->Text = " " + EditPattern->Hint;

•

•

•

•

if (MessageDlg('' Under construction - Not irnplernented yet !", rntWarning,
TMsgDlgButtons() << rnbOK , 0) == rnrOk)

//does nothing

//Wait for user ta click on sornething ('MouseDown' event)
}

//---

void fastcall TMainForrn :: EditResizePatternClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function
ToolBox- >ToolBtnResizePattern- >Down = true;
ToolBox- >ToolBoxStatusBar- >Panels - >Iterns[2] - >Text = " " + EditResizePattern-

>Hint ;

if (MessageDlg("Under construction - Not irnplernented yet
TMsgDlgButtons() << rnbOK, 0) == rnrOk)

//does nothing

//Wait for user ta click on sornething (' MouseDown ' event)
}

1" . , rntWarning ,

// ---

void fastcall TMainForrn::EditColourPasteColourClick(TObject *Sender)

//Modi fies ToolBox appearance to reflect click on fun c tion
e ToolBox->ToolBtnPasteColour - >Down = true;

•

•

•

ToolBox->ToolBoxStatusBar->Panels->Iterns[2]->Text = " '' +
EditColourPasteColour->Hint ;

if (MessageDlg("Under construction - Not irnplernented yet
TMsgDlgButtons() << rnbOK , 0) == rnrOk)

//does nothing

//Wai t for user ta click on sornething ('MouseDown' event)
}

1" . , rntWarning ,

//---

void fastcall TMainForrn::EditColourColourObjectClick(TObject *Sender)

//Modifies ToolBox appearance ta reflect click on function

99

ToolBox->ToolBtnCo l ourObjec t->Down = true ;
ToolBox- >ToolBoxS tatusBar- >Panels - >I t ems[2) - >Text

EditColourColourObject->Hint;
" " +

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons () << mbOK, 0) == mrOk)

//does nothing

//Wait for user to click on something (' MouseDown ' event)
}

1"
. ' mtWarning,

//---

void fastcall TMainForm ::EditCutObjec t Click(TObject *Sender)

//Modifies ToolBox appearance to reflect click o n function
ToolBox- >ToolBtnCutObject - >Down = true;
ToolBox- >ToolBoxStatusBar- >Panels - >Items[2) - >Text =" " + EditCutObject->Hint;

if (MessageDlg("Under construction - Not implemented yet !", mtWarning ,
TMsgDlgButtons () << mbOK, 0) == mrOk)

//does nothing

//Wait for user to click on something ('MouseDown' event)
}

//---

void fastcall TMainForm ::EditCopyObject Click(TObject *Sender)

//Modifies ToolBox appearance to reflect click o n function
ToolBox->ToolBtnCopyObject - >Down = true;
ToolBox->ToolBoxStatusBar- >Panels->Items [2)->Text =" "+ EditCopyObject-

>Hint;

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons() << mbOK, 0) == mrOk)

//does nothing

//Wait for user to click on something (' MouseDown ' event)
}

1"
. ' mtWarning ,

/!-------------------- ---

void fastcall TMainForm :: EditPasteObjectClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click on function
ToolBox->ToolBoxStatusBar->Panels->Items[2)->Text =" '' + EditPasteObject­

>Hint;

}

ToolBox->ToolBtnPasteObject->Down = true;

if (MessageDlg("Under construction - Not implemented yet
TMsgDlgButtons () << mbOK , 0) == mrOk)

//does nothing

1 "
. ' mtWarning,

//---

void fastcall TMainForm ::EditDeleteObjectClick(TObject *Sender)

//Modifies ToolBox appearance to reflect click o n function and disactivate
tool previously selected

ToolBox->ToolBtnDeleteObject->Down = true ;

100

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ToolBox- >Tool BoxStatusBar->Panels- >I tems[2]- >Tex t
>Hint ;

"" + EditDeleteObject-

PrevTool
CurTool

CurTool ;
tsDelObj ;

//Wait for user to click on something (1 Mou seDown 1 event)
}

// ---

void fastcall TMainForm::EditObjectToFloorClick(TObject *Sender)

//Modifies ToolBox appearance t o reflect click on function
ToolBox->ToolBtnObjectToFloor->Down = true;
ToolBox->ToolBoxStatusBar->Panels->Items[2]->Text = 11 "+ EditObjectToFloor-

>Hint ;

if (MessageDlg(" Under construction - Not implemented yet
TMsgDlgButtons() << mbOK, 0) == mrO k)

//does nothing

//Wait for user to clic k on something (1 MouseDown 1 event)
}

1" . , mtWarning,

//---

void

}

fas t cal l TMainForm::HelpVAClick(TObject *Sender)

if (MessageDlg("Under cons tructi o n - Not implemented yet
TMsgDlgButtons () << mbOK, 0) == mrOk)

//does nothing

1" . , mtWarning,

// --- - -----------------------

void fastcall TMainForm :: HelpAbou t Cli c k(TObject *Sender)

AboutBox->ShowModal ();
//***** remove when not necessary anymore

InfosBox->ClWLab->Caption IntToStr(MainForm->ClientWidth);
InfosBox- >ClHLab->Caption IntToStr(MainForm->ClientHeight);
InfosBox- >WLab- >Caption IntToStr(MainForm->Width);
InfosBox->HLab->Caption IntToStr(MainForm->Height);
InfosBox- >WStage - >Caption IntToStr(MainForm->ImageStage->Width);
InfosBox- >HStage- >Caption IntToStr(MainForm->ImageStage->Height);

InfosBox->ShowModal();
}

// ---

void fastcall TMainForm : : SelectObject FRONT (int X, i nt Y)

//We assume that the abject on stage is not selected by default
ObjectToSe l ect = -1;

for (inti= O; i < ListOfObjects->Count; i++)

//Extracts the abject at the i-th position in the l ist of abjects present
on stage

StageObj ect = (TStageOb ject*) ListOfObjects->I t ems [i];

//Is the mo u se location inside the clipping r ectangle?

101

if ((X> StageObject->NewPos_FRONT. Left) && (Y > StageObject-
>NewPos FRONT.Top) && (X< StageObject - >NewPos FRONT . Right) && (Y< StageObject­
>NewPos FRONT.Bottom))

{

//Are the object's white pixels transparent?
if (!StageObject->StorageBmp->Transparent)
{

//No transparency
ObjectToSelect = i;

else //Transparency
{

//The object has been selected

//Is the pixel under mouse loc white (white= TransparentColor) or
not?

if (StageObject->StorageBmp->Canvas->Pixels[X-StageObject­
>NewPos FRONT.Left] [Y-StageObject - >NewPos FRONT.Top] != clWhite)

//In TrueColor - 32bits , [StageObject->StorageBmp->TransparentColor]
ever holds 50331647 when clWhite = 16777215 ! So it ' s not possible to compare with
[TransparentColor]

{

//Pixel under mouse loc is not white/transparent
ObjectToSelect = i; //The object has been selected

}

//---

void fastcall TMainForm :: SelectObject_TOP (int X, int Y)

//We assume that t he object on stage is not selec t ed by default
ObjectToSelect = -1;

for (inti= 0; i < ListOfObjects->Count; i++)
{

//Extracts the object at the i-th position in the list of abjects present
on stage

StageObject = (TStageObject*) ListOfObjects->Items[i] ;

//Is the mouse location i n side the clipping rectangle?
if ((X> StageObject->NewPos_TOP .Left) && (Y> StageObject-

>NewPos TOP.Top) && (X< StageObject - >NewPos_TOP . Right) && (Y< StageObject­
>NewPos TOP.Bottom))

{

//Are the object ' s white pixels transparent?
if (!StageObject->StorageBmp->Transparent)
{

//No transparency
ObjectToSelect = i ;

else //Transparency

//The object has been selected

//Is the pixel under mouse loc white (white= TransparentColor) or

•

•

•

•

•

•

•

•

•

not ? e
if (StageObject->StorageBmp->Canvas - >Pixels[X-StageObject-

>NewPos FRONT.Left] [Y - StageObject- >NewPos_FRONT .Top] ! = clWhite)
//In TrueColor-32bits , [StageObject->StorageBmp->TransparentColor]

ever holds 50331647 when clWhite = 16777215 ! So it ' s not possible to compare with
[TransparentColor]

{

//Pixel under mouse loc is not white/transparent
ObjectToSelec t = i; //The object has been selected

102

•

•

•

•

•

•

•

•

•

•

•

•

•

•

}

//--- --- - ----------------------

void fastcall TMainForm : : ImageStageMouseDown(TObject *Sender,
TMouseButton Button, TShiftState Shift , int X, int Y)

switch (CurTool)
{

case tsRectangle
case tsCircle
case tsLine

CanDraw
Origin
MovePt
break ;

true;
Point(X , Y) ;
Point(X,Y);

case tsFreehand:
CanDrawFreehand = true ;

//Sets pen and brush properties to paint Workbench ' s surface in white
first

>Height) ;

Workbench->Canvas - >Pen - >Style
Workbench- >Canvas- >Pe n->Mode
Workbench->Canvas - >Pen->Colo r
Workbench - >Canvas - >Brush- >S tyle
Workbench- >Canvas- >Brush- >Colo r

psSolid;
pmCopy ;
clWhite ;
bsSolid ;
clWhite ;

//Wipes the temporary bmp in white
Workbench->Canvas->Rectangle(0 , 0, Workbench->Width, Workbench-

//Se ts pen with the color anf the pen size choosed by the user to draw
off- screen

Workbench

Workbench->Canvas->Pen->Color
Workbench- >Canvas - >Pe n - >Width

ColorDia log- >Color ;
Cur rentPenSiz e ;

//Sets pen to draw with on screen
ImageStage->Canvas - >Pen - >Style psSolid ;
ImageStage->Canvas->Pen->Mode pmCopy ;
ImageStage- >Canvas ->Pen->Co l or ColorDialog->Color ;

//Places the pen to be ready t o draw on both off - and onscreen
Workbench->Canvas->MoveTo(X , Y); // Places the pen off-screen on

ImageStage->Canvas->MoveTo(X , Y);
ready to give feedback t o the user

//Places the penon screen to be

pencil
//Sizes a clip.rect . including the pixels colored (freehanded) by the

FreeHClipRect = Rect(X , Y, X, Y);
break ;

case tsMove
//We assume that the abject on stage is not selected by default and so

can't be moved
CanMove false ;

//Calls the appropriate function that determines if an abjec t has been
selected either in FRONT VIEW or in TOP VIEW

if(ToolBox->ToolBoxS tatusBar- >Panels->Items[0] ->Text == " Stage -
Front View ")

{//The current view is Front Vi ew

103

SelectObject_FRONT(X, Y) ;

if (ObjectToSelect > -1)
{

//Extracts the object on which the current tool will be
applied

StageObject = (TStageObject*) ListOfObjects­
>Iterns[ObjectToSelect];

CanMove = true;

//Calculates the offset between (X, Y) MouseLoc and the left
and top side of the ClipRect

XOffset X - StageObject- >NewPos_FRONT.Left;
YOffset = Y - StageObject->NewPos FRONT.Top;

)//else : se l ect nothing - the user has not clicked on an object

else // - >Panels->Iterns[0]->Text
{

SelectObject_TOP (X, Y) ;

if (ObjectToSelect > -1)
{

" Stage - Top View"

//Extracts the object on which the current tool will be
applied

StageObject = (TStageObject*) ListOfObjects­
>Iterns[Ob jectToSelect];

CanMove = true;

//Calculates the offset needed not to place ClipRect's TopLeft
corner in (X,Y) MouseLoc

XOffset = X - StageObject->NewPos_TOP . Left ;
YOffset = Y - ((IrnageStage->Height - 1) - StageObject-

>Center_3D .z); //[YOffset] is the distance between MouseLoc ' s Y and Center 3D.z

)//else select nothing - the user has not clicked on an object

break ;

case tsTransp
//Calls the function that deterrnines if an object has been selected
Selectübject FRONT(X , Y) ;

if (ObjectToSelect > - 1)
{

//Extracts the object on which the current tool will be applied
Stageübject = (TStageObject*) ListOfObjects­

>Iterns[ObjectToSelect];

//Deterrnines if the selected object must be drawn with
transparency or not

StageObject->S torageBrnp->TransparentColor = clWhite; //Sets
the color used to apply the transparency effect

StageObject->S torageBrnp- >Transparent = !StageObject->StorageBrnp­
>Transparent ;

//Cal ls the rnethod / rnernber function that rebuilds the
StageObjects overlapping the clip.rect . of the rnodified object

Rebuild_FRONT (drnObjectClipRect_FrontView) ;

//As a safety rneasure ...
WrappingUp() ;

104

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

}//else
break ;

case tsDelObj

select no thing - the user has not clicked on an objec t

//Calls the appropriate function that determines if an objec t has been
selected

Front View ")
if (ToolBox- >ToolBoxS tatu sBar- >Panels - >Items[0]->Tex t == " Stage -

{//The current view is Front View
Select Object_FRONT (X, Y);

else // - >Panels - >I tems[0]- >Text
{

SelectObject_TOP (X, Y);

if (Obje c tToSelect > -1)
{

" Stage - Top View "

//Extracts the object that will be deleted
StageObject = (TStageObject*) ListOfObjects ­

>Items[Objec t ToSelect] ;

//Frees t he memo ry associated with the object stored at position
[ObjectToSelect]

delete StageObject;
StageObject = NULL;
//Remove the entry in the TList
Lis t OfObjects - >Dele t e (ObjectToSelect);

//The object currently selected has been deleted, so it ' s no use
to reference it anymore

}

ObjectToSelect = -1;

//As a safety measure .. .
//Refreshes also t he whole stage
WrappingUp() ;

}//else : select nothing - the user has not clicked on an objec t
break ;

//default stand for CASE tsNoTool , that is , when no Tool is selected
default : //Do nothing

break;

//---

void fastcall TMainForm : : ImageStageMouseMove(TObject *Sender ,
TShiftState Shift , int X, int Y)

//Displays mouse pointer locatio n on s t age - no t on screen
ToolBox- >ToolBoxStatusBar- >Panels - >Items[3]->Text " X: " +IntToStr (X) +"

Y: " +IntToS t r (Y);

if (CanDraw)

} ;

DrawTempShape (Origin , MovePt);
MovePt = Point (X, Y);
DrawTempShape (Origin , MovePt) ;

if (CanDrawFreehand)
{

//Erases previous shape

//Draws current shape

105

//Draws freehanded on both off- and onscreen by following the pointer
location

Workbench->Canvas->LineTo(X , Y) ;
ImageStage->Canvas->LineTo(X, Y);

to the user

//Draws off-screen on Workbench
//Draws on screen to give feedback

drawing

drawing

drawing

drawing

) ;

if (X < FreeHClipRect .Left)
//Enlarges the left side of the clip . rect . surrounding the freehand

FreeHClipRect.Left = X;
if (Y < FreeHClipRect.Top)

//Enlarges the left side of the clip.rect. surrounding the freehand

FreeHClipRect . Top = Y;
if (X > FreeHClipRect . Right)

//Enlarges the left side of the clip . rect. surrounding the freehand

FreeHClipRect . Right = X;
if (Y > FreeHClipRect . Bottom)

//Enlarges the left side of the clip . rect . surrounding the freehand

FreeHClipRect . Bottom = Y;

if (CanMove)
{

//Bool for the [Move) function

View")
if (ToolBox->ToolBoxStatusBar->Panels->Items[0)->Text "Stage - Front

{//[Move in FRONT VIEW)
//Sets previous coordinates to indicate where was the abject
StageObject->PrevPos FRONT = StageObject->NewPos_FRONT;

//Calculates new coordinates to indicate where to draw the abject
StageObject->NewPos FRONT GetObjectNewCoord_FRONT(X, Y, XOffset,

YOffset) ;

//Merges NewPos FRONT and PrevPos FRONT to get a bigger TRect
including both

MergeRects FRONT() ;

//Erases everything including the abject on its prev. pos. and rebuild
everything including the obj . on its . new pos.

Rebuild_FRONT(dmMergedClipRect) ;

else //[Move in TOP VIEW)
{

YOffset);

//Sets previous coordinates to indicate where was the TopRect
StageObject->PrevPos_TOP StageObject->NewPos_TOP;

//Sets ne w coordinates to indicate where to draw the TopRect
StageObject->NewPos_TOP GetObjectNewCoord_TOP(X, Y, XOffset,

//Merges NewPos FRONT and PrevPos FRONT to get a bigger TRect
including both

MergeRects_TOP();

//Erases everything including the abject on its prev . pos . and rebuild
everything including the obj . on its. new pos.

Rebuild_TOP(dmMergedClipRect);

)

//- --

106

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

r

void fastcall TMainForm: :ImageStageMouseUp (TObject *Sender ,
TMouseBut t on Button, TShiftState Shift, int X, int Y)

if (CanDraw)
{

//Stores the final shape
StoreShape (Origin , Point(X,Y));

//Calls the method / member function that rebuilds the StageObjects
overlapping the clip .rect . of the modified object

Rebuild_FRONT (dmObjectClipRect_ FrontView) ;

//As a safety measure ...
WrappingUp();

CanDraw = false ;
} ;

if (CanDrawFreehand)

//Allocates a new memory space for that object o n s t age and returns a
pointer toit

StageObject new TStageObject ;
//Gives an ID number to the obj ect
StageOb j ect->ID = ++LastObjec tID;

//Positions StorageBmp
StageObject->NewPos FRONT= FreeHClipRect;

//The bitmap's height and width properties hold the original size of the
object

StageObject - >StorageBmp->Width
FreeHClipRect. Left ;

StageObject - >StorageBmp- >Height
FreeHClipRect.Top ;

FreeHClipRect . Right

FreeHClipRect . Bottom

//When an object is created , its current dimensions are identical toits
original dimensions

StageObject->CurWidth
StageObject - >CurHeight

StageObject - >StorageBmp->Width;
StageObject->StorageBmp->Height;

//Records the center in VA ' s 3O-space
StageObject - >Center 3O.x StageObject->NewPos FRONT .Left + (StageObject­

>StorageBmp->Width / 2);
StageObject->Center 3O . y StageObject - >NewPos FRONT.Top + (StageObject­

>StorageBmp->Height / 2);
StageObject->Center 3O.z 0 ;

//Stores the final freehand drawing by copying pixels inside FreeHClipRect
onto StorageBmp a t position [0 , 0]

StageObject->StorageBmp->Canvas - >CopyMode = cmSrcCopy;
StageObject- >StorageBmp- >Canvas - >CopyRect(Rect(0, 0 , StageObject­

>StorageBmp->Width , StageObject- >StorageBmp->Height) , Workbench->Canvas,
FreeHClipRect);

//Adds StageObject to the list of objects present on stage
ListOfObjects->Add(StageObject);

//Sets [Objec tToSelect] to make it reference t o the object that has just
been added to the list

ObjectToSelect = (ListOfObjects->Count) - l ; //It ' s the last item
because the list hasn't been sorted since

107

//Calls the method / member function that rebuilds the StageObjects
overlapping t he clip .rec t. of the modified abject

Rebui ld FRONT (dmObjectClipRect FrontView);

//As a safety measure ...
WrappingUp();

CanDrawFreehand false;
) ;

if (CanMove)
{

View ")

CanMove = false;

if(ToolBox->ToolBoxStatusBar->Panels->Items [0J->Text

{//The current view is TOP VIEW

" Stage - Top

coordinate
//Sorts the StageObjec t s stored in the TLi st according to their Z

SortStageObjects ();

//Stretches or shrinks the object's ClipRect on the screen ' s surface
for the FRONT VIEW if we move the abjec t respectively forward or backward along
the z coord

StageObject- >PrevPos FRONT
DepthRendering();

)

StageObject->NewPos FRONT

else //Do nothing special - just commen t o n the reason for which
nothing is done

//In FRONT VIEW, the [Sorting) is done after each step of the
[MoveDeep) loop and not here

//In FRONT VIEW , the [DepthRendering) is done after each step of the
[MoveDeep) loop and not here

)

) ;

//As a safe ty measure ...
WrappingUp ();

// ---

void fastcall TMainForm :: SortStageObjec t s ()

/******************************* *** ***
***************************/
/* This function sorts the StageObj ects in the TList according to their z
coordinate in VA's 30 space . */
/* A decreasing order is used to have at the beginning of the list the
abjects which are at */
/* the back of the stage , and at the end of t he list the abjects wh i ch are at
the front of */
/* the stage . Simply going through the list and displaying the abjects one
by one will allow to */
/* keep at the front of the stage the objects with the smallest z
coordinates. Over and above, */
/* when an abject is creat e d, it is placed at the front of the stage with its
z coord . equal to */
/* zero. So, placing each abject newly created at the end of the list avoid
sorting the list to */
/* keep it ordered - [TList::Add(void *Item)) places the item at the end of
the TList. */

108

L ____ ----

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

,.
1

•

•

/* Sorting is fairly easy : when [Moving l , only one object at a time is not
ordered - that object is */
/* the one that has been selected and is referenced by [int ObjectToSelectl .
So first delete that */
/* entry from the list. Then loop through the list till you reach the place
where to place that */
/* ob j ect. To doit, use [TList::Insert()l or [TList : : Add() l according t o
the context - but not */
/* [TList: : Move() l which sometimes puts the object down one place before or
after the one expected. */
/* Sorting has to be processed at t he end of [Move l in TOP VIEW (i. e . OnMou seUp
event) and after every */
/* step of the [Move Deep l loop in FRONT VIEW (i . e. OnMouseMove , boolean
CanMoveDeep). */
/*
*/
/* The curren t implementation permits to avoid to be out of bounds.
*/
/***
***************************/

//[ptrSelectedStageObject l points to t he ob ject that has been selected to be
moved

TStageObject* ptrSelectedStageObject = (TStageObject*) ListOfObjects -
>Items[ObjectToSelect l;

//Removes the StageObject whose z coordinate has been modified
ListOfObjects - >Delete(ObjectToSelect);

//The index used to loop through the list. The last value of index [i l when
leaving the loop will give us the position in the list where to place our item

inti ;

//De termines where (in the lis t) to replace the StageObject whose z coordinate
has been modified

for (i=0 ; i < ListOfObjects - >Count; i++)

//[ptrS tageObjectAtCur indexl points to the object referenced by index [i l
in TList :: Items[l

TStageObject* ptrStageObjectAtCurindex = (TStageObjec t*) ListOfObjects­
>Items[i l;

if ptrSelectedStageObject - >Center 3D.z
>Center 3D . z)

ptrStageObjectAtCurindex-

{

else

if (ptrSelectedStageObject - >ID < ptrStageObjectAtCurindex->ID
{//We have the new position for [SelectedStageObjectl

break;

if (ptrSelectedStageObject->Center_3D . z > ptrStageObjectAtCurindex­
>Center 3D.z)

{//We have the new position for [SelectedStageOb jectl
break ;

if (i == ListOfObjects- >Count)
{//The StageObject whose z coordinate has been modified is placed at the end

of the lis t
ListOfObjects- >Add(ptrSelectedStageObject) ;

109

//Sets [ObjectToSelect) to make it reference to the object that has just
been added to the list

ObjectToSelect = (ListOfObjects->Count) - l; //It ' s the last item
because TList: :Add() places its object (the param.) at the end of the list

)

else
{//The StageObject whose z coordinate has been modified is inserted in the

list between two other items
ListOfObjects->Insert(i , ptrSelectedStageObject);

//Sets [ObjectToSelect) to make it reference to the object that has just
been added to the list

ObjectToSelect = i;
the i-th position

//It ' s [il because the object has been inserted at

)

)

// ---

void fastcall TMainForm::WrappingUp()

/***
***************************/
/* This function makes sure that, if the last operat ion has resulted in a bug, we
can see */
/* it immediately and not after three or four other operations that didn't
resulted */
/* in any bug at all ! For this, the whole Wor ld is rebuild.
*/
/* Also, the position of the ClipRects in the o ther view (the one not di splayed at
the moment) is */
/* updated here . It indicates as well that the world has been modified and
needs to be saved */
/* as well as it activates/desactivates the functionalities that need it.
*/
/*
*/
/* N.B: [Workbench->Height -1] is used because the 522-nd line is at the 521-st
position */
/***
***************************/

if (ToolBox->ToolBoxStatusBar->Panels->Items[0)->Text
View ")

{//The current view is Front View

"Stage - Front

//As a safety measure , we rebuild the whole world (FRONT VIEW) after
every operation modifying the World

Rebuild FRONT (dmWhole);

if (StageObject != NULL)
{

//Updates the position of the ClipRects placed o n Stage above the
polygon in TOP VIEW

//Maintains [PrevPos_TOP) and [NewPos TOP) according to [Center_3D) -
without using [NewPos FRONT} because this one could be modified for perspective
effect

int HalfWidth = StageObject->StorageBmp- >Width / 2 ;
StageObject->PrevPos_TOP = StageObject- >NewPos TOP= Reet (

StageObject->Center_3D . x - HalfWidth, ((Workbe nch- >He igh t-1) - StageObj ect ­
>Center_3D .z) - 6 , StageObject- >Cent er_3D . x + HalfWidth, ((Workb ench- >Height-1) -
StageObject - >Center 3D .z) + 6);

110

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

}//ELSE do not de-reference StageObject to avoid an ' Access Violation
Error'

else //->Panels->I t ems[0]->Text == " Stage - Top View "

//As a safety measure, we rebuild the whole world (TOP VIEW) after every
operation modifying the World

Rebuild_TOP (dmWhole);

//The ClipRects in FRONT VIEW are updated in [DepthRendering()] for
getting a perspective effect

}

//The world has been modified - a new object has been added or something has
been moved / modi fied

}

WorldModified = true;

//Makes available the appropriate functionalities
UpdateFunctionsAvailable() ;

// ---

void fastcall TMainForm :: UpdateFunctionsAvailable()

/***
*******/
/* This function tests which changes needs to be performed in terms of functions
*/
/* and views available, buttons lowered, etc . according to the status of
*/
/* the world and the views .
*/
/***
*******/

// ----- CHANGE IN VIEW?
if (ToolBox->ToolBoxStatusBar - >Panels->Items[0] ->Text

View ")
{//The current view is Front View

" Stage - Front

//So disactivate what is related toit and activate what's related to Top
View

StageTopView- >Enabled
ToolBox->ToolBtnTopView- >Enabled
StageFrontView- >Enabled
ToolBox- >ToolBtnFrontView->Enabled

true ;
true;
false ;
false ;

//Activate drawing functions like Circle or Line that needs to be drawn by
dragging the mouse

Il - which can only be done in Front View
EditinsertObject- >Enabled true ;
ToolBox->ToolBtninsertObject->Enabled true;

EditShapeRectangle - >Enab l ed
ToolBox->ToolBtnRectangle- >Enabled

EditShapeCircle- >Enabled
ToolBox- >ToolBtnCircle->Enabled

EditShapeLine- >Enabled
ToolBox- >ToolBtnLine- >Enabled

EditShapeFreeHandPencil->Enabled
ToolBox- >ToolBtnFreehandPencil->Enabled

true ;
true ;

true;
true;

true ;
true ;

true;
tru e ;

111

EditPenSize->Enabled
Too lBox->ToolBtnPenSize- >Enabl e d

t rue ;
true;

//Restores the hint property of [Move] and [Move Deep] since they have a
different behavior from t he one they ' ve got in TOP VI EW

ToolBox->ToolBtnMove->Hint '' Move an abject on the vertica l plane";
ToolBox->ToolBtnMoveDeep->Hint = "Move an abject on the horizontal plane" ;

//[Transparen t Obj ect] is enabled if we are in TOP VI EW with a t least l
abj ect on t he stage

}

else
{//The current view is Top View

Front
//So disactiva t e what is r ela t ed toit and activate what' s related to

View
StageTopView- >Enabled
ToolBox- >ToolBtnTopView- >Enabled
StageFrontView- >Enabled
ToolBox->ToolBtnFro ntView- >Enabled

false ;
false ;
true;
true;

//Di sactivate drawing functions like Circle or Line that needs t o be drawn
by dragging the mouse

Il - which can only b e done in Front View
EditinsertObject->Enabled fa lse ;
ToolBox- >ToolBtninser tObject- >Enabled false;

EditShapeRectangle->Enabled
ToolBox- >ToolB tnRectangle- >Enable d

EditShapeCircle->Enabled
ToolBox- >ToolBt nCircle - >Enabl ed

EditShapeLine - >Enabled
ToolBox- >ToolBtnLine - >Ena b led

EditShapeFreeHand Pencil - >Enabled
ToolBox->ToolBtnFreehand Pencil - >E nabled

EditPenSize->Enabled
ToolBox- >Too lBtnPenSize - >Enabled

false;
false;

false;
false;

false;
false;

false;
false;

false;
false;

//Changes the hint property of [Move] and [Move Deep] since they behave
differently and are t he same functions in TOP VIEW

ToolBox- >TaolBt nMave - >Hint '' Move an abject backwards and farwards ";
ToalBox- >Taa lBtnMoveDeep- >Hint = ''Mave an abject bac kwards and farwards ";

//[Transparen t Object] is not enabled in TOP VI EW.

//----- AT LEAST ONE OBJECT ON THE STAGE?
if (ListOfObjects->Count != 0)

•

•

•

•

•

•

•

•

•
{// >= l abjects on the s tage
//FILE menu •

FileSaveWorld- >Enab l e d true ;
ToolBox- >ToalBtnSaveWorld->E nabled true ;

FileSaveWorldAs - >Enabled true ;
ToolBox- >ToolBtnSaveWorldAs->Enab l e d true;

//STAGE menu
StageObjectTaWor kRoam- >Enabled
TaalBox- >Taa lBtnObj ec tTa WarkRoam- >Enabled

true ;
true ;

112

•

•

•

•

•

•

•

•

•

•

r
r

StageClear->Enabled
ToolBox->ToolBtnStageClear->Enabled

StageCopyAll->Enabled
ToolBox- >ToolBtnStageCopyAll ->Enabled

//WORK menu

//EDIT menu
EditCleanPixels - >Enabled
ToolBox- >ToolBtnCleanPixels - >Enabled

EditMove->Enabled
ToolBox- >ToolBtnMove - >Enabled

true;
true;

true ;
true;

true ;
true ;

true ;
true ;

EditMoveDeep->Enabled
ToolBox->ToolBtnMoveDeep- >Enabled

true;
true ;

EditResizeObject->Enabled
ToolBox->ToolBtnResizeObject - >Enabled

EditFlipHorizontal - >Enabled
ToolBox->ToolBtnFlipHorizontal->Enabled

EditFlipVertical - >Enabled
ToolBox- >ToolBtnFlipVertical - >Enabled

EditPattern - >Enabled
ToolBox->ToolBtnPattern- >Enabled

true ;
true ;

EditResizePattern->Enabled
ToolBox->ToolBtnResizePattern->Enabled

true ;
true ;

true;
true ;

true ;
true ;

true ;
true ;

if(ToolBox->ToolBoxStatusBar - >Panels->Items(0] ->Text
View ")

{//The current view is Front View
EditTransparentObject->Enabled
ToolBox- >ToolBtnTransparen tObject- >Enabled

true;
true ;

else //->Panels->Items[0] - >Text == " Stage - Top View "
{

EditTransparentObject - >Enabled
ToolBox->ToolBtnTransparentObject->Enabled

EditColourColourObject - >Enabled
ToolBox->ToolBtnColourObject->Enabled

EditCutObject - >Enabled
ToolBox- >ToolBtnCutObject->Enabled

EditCopyObject - >Enabled
ToolBox->ToolBtnCopyObject - >Enabled

true ;
true ;

true ;
true ;

true ;
true ;

EditDeleteObject->Enabled true ;
ToolBox->ToolBtnDeleteObject->Enabled true ;

Edi t ObjectToFloor- >Enabled true;
ToolBox- >ToolBtnObjectToFloor->Enabled true;

false ;
false ;

else //There are no abjects on the Stage
{

//FILE menu

"Stage - Front

11 3

}

FileSaveWorld- >Enabled
ToolBox->ToolBtnSaveWorld- >Enabled

false ;
false ;

FileSaveWorldAs - >Enabled
ToolBox->Too l BtnSaveWorldAs->Enabled

//STAGE menu

false;
false;

StageObjectToWo rkRoom- >Enabled
ToolBox->ToolBtnObjectToWorkRoom- >Enabled

false;
false;

StageClear->Enabled
ToolBox->ToolBtnStageClear->Enabled

false ;
false ;

StageCopyAll->Enabl ed
ToolBox->ToolBtnStageCopyAll->Enabled

//WORK menu

//EDIT menu
EditCleanPixels - >Enabled
ToolBox->ToolBtnCleanPixels - >Enabled

EditMove->Enabled fals e ;
ToolBox->ToolBtnMove - >Enab l ed false;

false ;
false ;

false ;
false;

EditMoveDeep->Enabled false;
ToolBox->ToolBtnMoveDeep->Enabled false ;

EditResizeObject - >Enabled
ToolBox->Too lBtnResizeObj ect->Enabled

EditFlipHorizontal->Enabled
ToolBox->ToolBtnFlipHorizontal - >Enabled

EditFlipVertical->Enabled
ToolBox- >ToolBtnFl ipVertical - >Enabled

false ;
false;

fal se;
fal se ;

false ;
false;

EditPattern->Enabled
ToolBox->ToolBtnPattern- >Enabled

false;
false;

EditResizePattern->Enabled
ToolBox- >ToolBtnResizePat t ern - >Enabled

false;
false;

Edi tT ransparen t Object - >Enabled
ToolBox->Too lBtnTransparen t Object->Enabled

false;
false;

EditColourColourObject - >Enabled
ToolBox->ToolBtnColourObject- >Enabled

EditCutObject->Enabled
ToolBox->ToolBtnCutObject - >Enabled

Edi t CopyObject->Enabled
Too lBox->ToolBtnCopyObject - >Enabled

EditDeleteObj ect- >Enabled
ToolBox->ToolBtnDeleteObject - >Enabled

EditObjectToFloor- >Enabled
ToolBox- >ToolBtnObj ectToFl oor - >Enabled

false ;
false;

false ;
false;

false ;
false ;

false;
fa l se ;

false;
false;

/!--------------- --

•

•

•

•

•

•

•

•

•

114

•

•

•

•

•

•

•

•

•

•

•

•

void fastcall TMainForrn : : Rebuild_FRONT(TDisplayMode DisplayMode)

/********* ************************************ ************************************
*******************************/
/* Rebuild FRONT draws first a blank stage , then a wirefrarne. Eventually , it
draws all the abjects */
/* listed as being present o n a stage. When VA is l aunched, if the user
didn't 2x-clic k on a VA file , */
/* the list contai n s 0 ab jects and only a blank stage+ a wirefrarne are drawn
- this is used */
/* to prepare a new stage set . Everything is drawn off-screen and finally
displayed on screen */
/***
*******************************/
//***** Should have a pararneter to tell which stage is concerned

CreateBlan kStage_OffScr() ;
S_H_Wirefrarne_OffScr() ;
//***** Paint the floor if necess .
PaintObjects OffScr(DisplayMode) ;

//Copies Workbench or a part of it on the screen - detects if the abject is
being rnoved

Display_OnScr(DisplayMode) ;
}

//---

void fastcall TMainForrn: : CreateBlankStage_OffScr ()

/**/
/* Just wipes the stage with the color used for the Stage */
/**/

//Sets pen and brush pararneters
Workbench - >Canvas - >Pen - >Style
Workbench - >Canvas - >Pen - >Mode
Workbench->Canvas->Pen->Color
Workbench->Canvas->Brush->Style
Workbench->Canvas->Brush- >Colo r

to draw the blank stage
psSolid ;
prnCopy;
StageColor;
bsSolid;
StageColor;

//Draws a rectangle syrnbol izing the blank stage
Workbench->Canvas->Rectangle(0 , 0 , IrnageStage->Width , IrnageStage->Height);

}

//---

void fastcall TMainForrn::S_H_Wirefrarne_OffScr()

/***
**********************/
/* Shows or hides the wires on the stage according to the WirefrarneMode , with the
illusion of depth */
/***
**********************/

switch (WirefrarneMode)

case (wfShow)
//Se ts drawing properties
Workbench - >Canvas - >Pen->Style
Wor kbench->Canvas - >Pen- >Mode
Workbe n ch- >Canvas - >Pen- >Color
Workbench->Canvas - >Pen - >Width
Workbench->Canvas - >Brush- >Style
break ;

psSolid ;
prnCopy ;
clLirne;
l;
bsClear ;

115

} ;

case (wfHide)
//Sets drawing properties
Workbench - >Canvas - >Pen->Style
Workbench - >Canvas ->Pen->Mode
Workbench - >Canvas - >Pen->Color
Workbench->Canvas->Pen->Widt h
Workbench->Canvas - >Brush- >S tyle
break;

psSolid;
pmCopy;
MainForm->StageColor;
l ;
bsClear ;

//PARTI : Determines the location of the wireframe when projected on the screen ' s
surface (for perspective)

//Sides of the projection on the screen ' s surface of the wireframe's rectangle
placed at the back

int WF_LeftSide , WF_RightSide , WF_BottomSide , WF_TopSide;

//Left side of the Wireframe with perspective first, right side then (read
comments there -->)

WF LeftSide = ConvertLocation_3Dto2D (ImageStage- >Width /2 , 0
ImageStage->Height -1); //In TOP VIEW, the Left-Top corner is at (0

, 0), that is (0 , ImageStage- >Heigh t -1) in VA's 3O-space
WF_RightSide ConvertLocation_3Dto2D (ImageStage->Width /2 , ImageStage-

>Width -1, ImageStage- >Height - 1); //In TOP VIEW, the Right-Top corner is at
(ImageStage->Width -1, 0) , tha t is (ImageStage->Width -1, ImageStage->Height -1)
in VA ' s 3O-space

//Bottom side of the Wireframe with perspective first, top side then
//You ' ve got to look at VA ' s 3O- space from the right side and erect it so that

t he top is on the left of the screen and the bottom on the right.
WF_TopSide = ConvertLocation 3Dto2D (ImageStage->Height /2 0

, ImageStage->Height -1);
WF_BottomSide = ConvertLoca t ion 3Dto2D (ImageStage->Height /2 , ImageStage­

>Height -1, ImageStage - >Height -1);

//PART II : Draws 1 rectangle and 4 lines
Workbench->Canvas->Rectangle(WF_LeftSide , WF_TopSide, WF_RightSide,

WF_BottomSide) ;

}

Workbench->Canvas->MoveTo (0 , 0);
Workbench->Canvas->LineTo(WF_LeftSide , WF_TopSide);
Workbench->Canvas - >MoveTo (Workbench- >Width, 0) ;
Workbench->Canvas->LineTo (WF_RightSide , WF_TopSide);
Workbench->Canvas->MoveTo(0 , Workbench->Height);
Workbench->Canvas - >LineTo (WF_LeftSide , WF_BottomSide);
Workbench->Canvas - >MoveTo (Workbench- >Width, Workbench->Height);
Workbench->Canvas->LineTo(WF_RightSide , WF_BottomSide);

//---

void fastcall TMainForm::PaintObjects OffScr(TDisplayMode DisplayMode)

/** **************** *************************
***************/
/* This method loops
their bitmap */
/* (embedded in
screen bitmap) */
/* only if they
DisplayMode.

through the l ist of objects present on the stage and draws

StageObject under the name StorageBmp) on Workbench (off­

are inside a certain ClipRect that is determined by
*/

/****************************** ** *******
***************/

//Points to the StageObject currently considered - we need t o know which
ClipRect to consider in the [case dmObjectClipRect FrontView).

11 6

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TStageObject* CurConsObject ;

for(int i = O; i < ListOfObjects->Count; i++)
{

//Extracts the object at the i-th position in the list of abjects present
on stage

StageObject = (TStageObject*) Li stOfObjects - >I tems[i];

switch (Disp layMode)
{

case dmWhole :
//Displays all objects present on the stage
Workbench->Canvas->StretchDraw(StageObject->NewPos_FRONT,

StageObject->StorageBmp) ;
break ;

case dmObjectClipRect_FrontView :
//D i splays only ob jects inside the StageObject ' s clipping

rectangle currently considered to apply an effect on the object

//Extracts the StageObject currently considered
CurConsObject = (TStageObject*) ListOfObjects­

>Items[ObjectToSelect] ;

if
>NewPos FRONT))

{

IntersectRects (StageObject->NewPos FRONT, CurConsObject-

//The objec t is inside the StageObject ' s clipping rectangle
currently considered, so paint it onto Workbench

Workbench->Canvas->StretchDraw(StageObject- >NewPos FRONT,
StageObject - >StorageBmp) ;

}//ELSE do not display the abject at the i-th position in the
list because the object is not inside the StageObject ' s clipping rectangle
currently considered

break;

case dmMergedClipRect
//Displays only obj ec t s inside the MergedRectangle used to move an

object
if (IntersectRects(StageObjec t->NewPos FRONT , MergedRectangle)
{

//The abject is inside MergedRectangle , so paint it onto
Workbench

Workbench - >Canvas - >StretchDraw(StageObject - >NewPos_FRONT ,
StageObject- >StorageBmp) ;

}//ELSE do no t display the object at the i-th position in the
list because the abject is not inside MergedRectangle

break;

if (ObjectToSelect > -1)
{

/ / Restore the object which has been selected and is used for the moment
StageObject = (TStageObject*) ListOfObjects->Items[ObjectToSelect];

}//else : select nothing - the user has not clicked on an abject
}

// ---

void fastcall TMainForm::Display_OnScr(TDisplayMode DisplayMode)

117

/***
**********************/
/* This fu nction determines
displayed
/* that is to say :
is displayed */
/*
its Front View
/*
its Top View
/*
including the abject
/*

*/

*/

and new positions */

which part of the off - screen bitmap has to be
*/

dmWhole --> the whole off-screen

dmObjectClipRect FrontView --> the abject only, in

dmObjectClipRect TopView

dmMergedClipRect
*/

--> the abjec t only , in

--> the clip . rect

both on its previous

/***
**********************/

//Sets mode used with CopyRect
ImageStage->Canvas - >CopyMode = cmSrcCopy ;

//Displays Workbench on screen according to the DisplayMode
TRect AreaToDisplay;
switch (D isplayMode)
{

case dmWhole :
AreaToDisplay = Rect (0, 0 , ImageStage->Width, ImageStage->Height);
brea k;

case dmObjectClipRect_FrontView :
AreaToDisplay = StageObject->NewPos FRONT;
break;

case dmObjectClipRect_TopView :
//In TOP VIEW , there ' s a ClipRect surrounding the object's polygon

when it is angled

} ;

AreaToDisplay = StageObject - >NewPos_TOP ;
break;

case dmMergedClipRect :
AreaToDisplay = MergedRectangle ;
break;

ImageStage->Canvas - >CopyRect(AreaToDi splay , Workbench->Canvas,
AreaToDisplay);
}

//--------------------- - --------------------- - -------------------------------
void fastcall TMainForm: : Rebuild_TOP(TDisplayMode DisplayMode)

/***
*******************************/
/* Rebuild TOP draws first a blank
able to select an abject */
/* listed as being present on
finally displayed on screen */

floor of a stage , then it draws a polygon to be

a stage . Everything is drawn off-screen and

/***
*******************************/
//***** Should have a parameter to tell which stage is concerned

CreateBlankFloor OffScr() ;
DrawTopRects_OffScr(DisplayMode) ;
//Copies Workbench or a part of it on the screen - detects if the abject is

being moved
Display_OnScr(DisplayMode);

}

//-- -------------------------------
void fastcall TMainForm::CreateBlankFloor_OffScr ()

118

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

/****************** * ** **********************************/
/* Just wipes the stage ' s floor wi t h its own color */
/***/

//Sets pen and bru sh parameters
Workbench- >Canvas - >Pen - >S t yle
Workbench - >Canvas - >Pen->Mode
Workbench - >Canvas - >Pen->Color
Workbench - >Canvas - >Brush->Style
Workbench - >Canvas - >Brush - >Colo r

t o draw the floor
psSo l id ;
pmCopy ;
FloorColor ;
bsSolid ;
FloorColor ;

//Draws a rec t ang l e symbol i zing the b l ank stage
Workbench - >Canvas - >Rectangle (0 , 0 , I mageStage- >Width , ImageStage - >Height) ;

)

// - - -------------------- --- - -- -----
void fastca l l TMainForm :: DrawTopRects_OffScr(TDisplayMode DisplayMode)

/***
***************/
/* This method loops through the list of objects present on the stage and draws a
polygon thu s */
/* giving a vir tual depth to the object in order to grab and move it .
Everything is */
/* drawn on Workbench (off - screen bitmap) only if they are inside a certain
ClipRect */
/* that is determined by DisplayMode . Note tha t it is especially useful when
the object */
/* is being angled .
*/
/***
***************/

//Sets pen a n d brush properties
Workbench - >Canvas - >Pen - >Style
Workbench - >Canvas - >Pen->Mode
Workbench - >Canvas - >Pen->Color
Workbench - >Canvas - >Pen->Width
Workbench - >Canvas->Brush->Style
Workbench->Ca nvas - >Brush - >Color

to paint with
psSolid ;
pmCopy ;
clAqua;
1 ;
bsSolid;
clGray ;

//Points to the StageObject currently considered - we need to know which
ClipRect to consider in the [case dmObjectClipRect FrontView] .

TStageObject* CurConsObject ;

for(int i = 0 ; i < ListOfObjects - >Cou n t ; i++)
{

//Extracts the object at the i - th position in the list of objects present
on stage

StageObject = (TStageObject*) ListOfObjects - >Items [i);

switch (DisplayMode)
{

case dmWhole :
//Displays all objects present on the stage by drawing a polygon

to be able t o see the objects f r om TOP VI EW
//***** Later on , use t he method [POLYGON)
Workbench->Canvas - >Rec t angle (StageObject - >NewPos TOP.Left ,

StageObject- >NewPos_TOP . Top , StageObject- >NewPos_TOP.Right , StageObject ­
>NewPos TOP . Bottom);

brea k;

case dmOb j ectClipRect TopView :
//Displays only object ' s polygons inside the ClipRect of the

StageObject being angled (remember we are in TOP VI EW)

11 9

//Extracts the StageObject currently considered (being angled)
CurConsObject = (TStageObject*) ListOfObjects­

>Items[ObjectToSelect];

if I n tersec tRects(StageObj ect- >NewPos_TOP , CurConsObject-
>NewPos_TOP)

//The abject is inside the StageObject ' s clipping rectangle
currently a ngled , so draw its polygon on t o Workbench

//***** Later on , use the method [POLYGON]
Workbench->Canvas->Rectangle(StageObject->NewPos TOP .Left ,

StageObject - >NewPos_TOP . Top , StageObject - >NewPos_TOP .Right , StageObject ­
>NewPos_TOP . Bottom);

}//ELSE : do not di splay the abject at the i-th position in the
list because t he abject is not in s ide the StageObject' s clippi ng rectangle
currently considered

break ;

case drnMergedClipRec t
//Displays only a bj ects inside the MergedRectangle used to move an

object ' s polygon
if (IntersectRects (StageObject- >NewPos_TOP , MergedRectangle))
{

//The abjec t is inside MergedRectangle, so draw its polygon
onto Workbench

//***** Later on , use the me thod [POLYGON]
Workbench->Canvas->Rectangle(StageObject- >NewPos TOP.Left,

StageObject- >NewPos_TOP .Top , StageObject->NewPos_TOP . Right , StageObject­
>NewPos_TOP.Bottom);

}//ELSE : do not display the abject at the i-th position in the
list because the abject is not inside MergedRectangle

}

break ;

if (ObjectToSelect > -1)

//Restore the abject which has been selected and is u sed for the moment
StageObject = (TStageObject*) ListOfObjects->Items[ObjectToSelect];

}//else : select nothing - the user has not clicked on an abject

// ---

void fastcall TMainForm :: DrawTempShape (POINT MouseLocOnClick , POINT
MouseLocOnRelease)
{

/**/
/* This method gives the user the ability to draw a shape to the size wanted */
/**/

//Sets pen and brush parameters to draw with
ImageStage->Canvas - >Pen - >S tyle psSolid ;
ImageStage->Canvas - >Pen - >Mode
ImageStage- >Canvas - >Pen->Color

member used
ImageStage - >Canvas->Pen - >Width
ImageS t age - >Canvas->Brush->Style
ImageStage->Canvas - >Brush- >Color

member used

pmNotXor;
ColorDialog- >Color ;

1;
bsSolid;
Color Dialog- >Color ;

//MainForm ' s data

//Mai n Form ' s data

120

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

//Draws according to the type of the t ool selected
switch (CurTool)
{

case tsLine
IrnageStage - >Canvas - >Pen- >Width = CurrentPenSize ;
IrnageStage->Canvas->MoveTo (Mo u seLocOnClic k. x , MouseLocOnClick. y);
IrnageStage->Canvas - >LineTo (Mo u seLocOnRelease.x, MouseLocOnRelease . y);
break ;

case tsRectangle :
IrnageStage->Canvas->Rectangle (MouseLocOnClick.x , MouseLocOnClick . y ,

MouseLocOnRelease .x, MouseLocOnRelease . y) ;
break;

case tsCircle : //Ma kes square boundaries to get a circle
//Local variables to get a circle
int TernpWidth, TernpHeight ;
TernpWidth = rnax(Mouse LocOnClick.x, MouseLocOnRelease . x) -

rnin(MouseLocOnClick.x , MouseLocOnRelease.x) ;
TernpHeight = rnax(MouseLocOnC l ick . y, MouseLocOnRelease.y) -

rnin (MouseLocOnClick . y , MouseLocOnRelease.y);
// Does it start on the left or right?
if (MouseLocOnRelease . x > MouseLocOnClick . x)
{//Starts on the left

//Does it start on the top or bottorn?
if (MouseLocOnRelease . y > MouseLocOnClick . y)
{//Starts on the top

//Normal case : start rendering frorn the top left corner
IrnageStage- >Canvas- >E llipse(MouseLocOnClick.x ,

MouseLocOnClick.y , MouseLocOnClick . x + rnin (TernpWidth , TernpHeight),
MouseLocOnClick.y + rnin(TernpWidth , TernpHeight));

}

else
{//starts on the bottorn

//Start rendering frorn the bottorn left corner
IrnageStage->Canvas->Ellipse(MouseLocOnClick.x,

MouseLocOnClick . y , MouseLocOnClick.x + rnin(TernpWidth , TernpHeight),
MouseLocOnClick.y - rnin(TernpWidth , TernpHeight)) ;

}

else
{//Starts on the right

//Does it start on the top or bottorn?
if (MouseLocOnRelease . y > MouseLocOnClick . y)
{//Starts on the top

//Start rendering fr orn the top right corner
IrnageStage- >Canvas->El l ipse(MouseLocOnCl i ck . x ,

MouseLocOnClick.y , MouseLocOnClic k. x - rnin(TernpWidth , TernpHeight),
MouseLocOnClick . y + rnin (TernpWidth , TernpHeight));

}

else
{//starts on the bottorn

//Start rendering frorn the bottorn right corner
IrnageStage->Canvas - >Ellipse(MouseLocOnClick.x ,

MouseLocOnClick . y , MouseLocOnClick . x - rnin(TernpWidth , TernpHeight),
MouseLocOnClick.y - rnin(TernpWidth , TernpHeight));

}

break ;
case tsEraser

121

mtWarning,

}

if (MessageDlg(" Under constru c tio n - Not i mplemented yet

TMsgDl gButtons () << mbOK , 0) == mrOk)
//does nothing

break;

1" . ,

!!---

void fastcall TMai nForm: : Sto r eShape (POINT MouseLocOnClick, POINT
MouseLocOnRelease)
{

/*** ****** **************************
***********/
/* StoreShape creates t emporarily a bitmap of the same size as t he s t age , wipes it
*/
/* in white and the n draws the shape o n it at the same position as on the
screen . */
/* Finally , the s malles t c lip . rect. including t he shape i s copied onto
St orageBmp . */
/* To get a c irc l e , it uses Temp- variables to draw an ellipse in square
boundaries */
/***************************** ***** ******* ******* *********************************
***********/

//PARTI : Paints the t emporary bitmap in white

//Creates a tempora r y bmp
Graphies : : TBitmap* TempBmp = new Gr a phies : : TBitmap;

//Allocates a new memory space for that abject on stage and returns a pointer
toit

StageObject new TStageObject ;
//Gives an ID number to the abject
StageObject->ID = ++LastObjectID ;

//Gives StorageBmp t he size of ImageStage
TempBmp- >Width ImageStage - >Width ;
TempBmp- >Height = ImageStage - >Height ;

//Sets pen and brush properti es
TempBmp->Canvas->Pen- >Style
TempBmp->Canvas->Pen- >Mode
TempBmp- >Canvas - >Pen- >Color
TempBmp - >Canvas - >Brush- >Style

t o paint t he bitmap's surface
psSolid;
pmCopy ;
clWh i te ;
bsSolid ;

TempBmp->Canvas->Brush- >Color clWhite ;
//Wipes in white

in white first

TempBmp->Canvas - >Rec t angle (0 , 0 , TempBmp- >Widt h , TempBmp->Height);

// PART II : Stores (draws) the shape in the t emporary bitmap

//Sets pen and bru sh color to
TempBmp->Canvas - >Pen - >Color
TempBmp- >Canvas - >Brush- >Co l or
TempBmp - >Canvas - >Pen- >Widt h

draw with on TempBmp
Co l o rDialog- >Color ;
Co lorDialog- >Color;
1;

//Local variables r ecording t he actual size/position of the shape
int TempShapeWidth , TempShapeHeight, TempShapeLeft , TempShapeTop,

TempShapeRight, TempShapeBottom ;

//At this moment , the size i s the o ne of the rect. ending o n last mouse loc.
With a circle , it ' ll be reduced to t he actual s iz e of it .

TempShapeWidth = abs(Mouse LocOnRelease . x - Mou seLocOnC l ic k. x);

122

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TempShapeHeight = abs (Mouse LocOnRelease . y - MouseLocOnClick . y);

//At this moment , the posi t ion is the one of the r ect. ending on las t mouse
loc . With a ci r c l e , it ' ll be se t to t he actual pos . of it .

TempShape Lef t min (MouseLocOnClick . x , MouseLocOnRelease . x) ;
TempShapeTop min (MouseLocOnClick . y , MouseLocOnRelease . y) ;
TempShapeRigh t max (Mouse LocOnClick . x , MouseLocOnRelease . x) ;
TempShapeBottom max (MouseLocOnClick . y , MouseLocOnRelease.y) ;

//Draws according to the type of t he tool selec t ed
switch (CurTool)
{

case tsLine
TempBmp->Canvas->Pen->Width = CurrentPenSize ;
TempBmp - >Canvas - >MoveTo (Mouse LocOnClick . x , MouseLocOnClick . y);
TempBmp - >Canvas - >LineTo (Mouse LocOnRelease.x , Mou seLocOnRelease.y);
brea k;

case tsRectangle :
TempBmp - >Canvas - >Rectang l e (MouseLocOnClick . x , MouseLocOnClick . y ,

MouseLocOnRelease . x , MouseLocOnRelease . y);
break ;

case tsCircle :
//Does it start on the left or right?
if (MouseLocOnRelease . x > MouseLocOnClick . x)
{//Starts on the left

//Does i t s t a r t o n the top or bot t om?
if (Mo u seLocOnRe l ease . y > MouseLocOnClic k. y)
{//S t ar t s on the t op

//Normal case : s t arts rendering f rom the top left corner
TempBmp - >Canvas - >Ellipse (MouseLocOnClick . x , MouseLocOnClick . y ,

MouseLocOnClick . x + min (TempShapeWidth , TempShapeHeight), MouseLocOnClick.y +
min(TempShapeWidth , TempShapeHeight));

//Records the actual position of the circle , not the one of
the clip.rect. determined by MouseLocOnClick and Mo u seLocOnRelease

TempShape Left MouseLocOnClic k .x ;
TempShapeTop MouseLocOnC l ic k. y ;
TempShapeRigh t Mou seLocOnClick. x + min (TempShapeWidth,

TempShapeHeight);
TempShapeBo t tom MouseLocOnClick.y + min (TempShapeWidth ,

TempShapeHeight);

else
{//starts on the bottom

//Starts rendering from the bottom left corner
e TempBmp - >Canvas->Ellipse (MouseLocOnClick.x , MouseLocOnClick . y ,

MouseLocOnClick . x + mi n(TempShap eWidth , TempShapeHeight), Mou seLocOnClic k. y -
min (TempShapeWidth , TempShapeHeight));

//Records the actual position of the circle , not the one of
the clip . rect . determi ned by MouseLocOnClick to MouseLocOnRelease

TempShapeLeft MouseLocOnClic k. x ;
• TempShapeTop MouseLocOnClick . y - min (TempShapeWidth ,

•

•

TempShapeHeight);

TempShapeHeight);

else

TempShapeRight

TempShapeBo t tom

{//S t ar t s on the right

MouseLocOnClick . x + min (TempShapeWidth ,

MouseLocOnClic k. y ;

123

//Does it start on the top or bottom?
if (MouseLocOnRelease . y > MouseLocOnClick. y)
{//Starts on the top

//Start s rendering fr om t he top right corner and records the
actual size of the circle

TempBmp->Canvas->Ellipse(MouseLocOnClick.x, MouseLocOnClick.y ,
MouseLocOnClick.x - min(TempShapeWidth, TempShapeHeight), MouseLocOnClick . y +
min(TempShapeWidth, TempShapeHeight));

//Records the actual position o f the circ l e , not the one of
the clip .rect. determined by MouseLocOnClick to Mou seLocOnRelease

TempShapeHeight);

TempShapeHeight);
}

else

TempShapeLeft MouseLocOnClick.x - min(TempShapeWidth,

TempShapeTop
TempShapeRight
TempShapeBottom

MouseLocOnClick . y;
MouseLocOnClick.x;
MouseLocOnClick.y + min(TempShapeWidth,

{//starts on the bottom

//Starts rendering from the bottom right corner a nd records
t he actual size of the circle

TempBmp - >Canvas->Ellipse(MouseLocOnClick.x, Mouse LocOnClick . y ,
MouseLocOnClick.x - min (TempShapeWidth, TempShapeHeight), MouseLocOnClick.y -
min (TempShapeWidth , TempShapeHeight));

//Records the actual position of the c ircle, not the one of
the clip.rect. dete r mined by MouseLocOnClick to MouseLocOnRelease

TempShapeHeight);

TempShapeHeight);

TempShapeLeft MouseLocOnClick.x - min (TempShapeWidth ,

TempShapeTop

TempShapeRigh t
TempShapeBot t om

Mo useLocOnClic k. y - min (TempShapeWidth ,

MouseLocOnClick.x;
MouseLocOnClick . y ;

//Records the actual size of the circle rather than measuring the
distance to the las t mouse loc . g i ven by Mouse LocOnRelease

TempShapeWidth = TempShapeHeight = min (TempShapeWidth,
TempShapeHeight);

break ;

Copies the smalles t clip . rect. including the shape and r ecords / / PART III
Il the posit i on of the object on screen in the object's data structure .

//The bitmap ' s height and width properties hold the original size of the
obj ect

StageObject- >StorageBmp- >Width
StageOb j ect->StorageBmp- >Heigh t

TempShapeWidt h;
TempShapeHeight;

//When an objec t is created , its cur r e nt dimension s are identical toits
original dimensions

StageObject - >CurWidth
StageObjec t->CurHeight

StageObject->StorageBmp->Width;
StageObject- >StorageBmp- >Height;

//Recordsd its position on screen
StageObject->NewPos_FRONT . Left
StageObject->NewPos_FRONT .Top
StageObject->NewPos_FRONT.Right
StageObject->NewPos FRONT.Bottom

TempShapeLeft;
TempShapeTop;
TempSh apeRight ;
TempShapeBottom;

//Records the center in VA ' s 30- space

124

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

StageObject- >Center_3D.x
>StorageBmp- >Width / 2) ;

StageObject - >Center_3D.y
>StorageBmp- >Height / 2) ;

StageObject- >Center 3D . z

StageObject->NewPos_FRONT .Left + (StageObject­

StageObject - >NewPos_FRONT . Top + (StageObject-

O;

//Copies pixels at NewPos_FRONT in TempBmp onto StorageBmp at position [0 , 0)
StageObject->StorageBmp- >Canvas->CopyMode = cmSrcCopy ;
StageObject->StorageBmp- >Canvas - >CopyRect(Rect (0 , 0 , StageObject- >StorageBmp-

>Width , StageObject->StorageBmp- >Height), TempBmp->Canvas , StageObject ­
>NewPos FRONT);

delete TempBmp ;

//Adds StageObject to the list of objects present on stage
ListOfObjects->Add(StageObject);

//Sets [ObjectToSelect) to make it r eference to the abject that has just been
added to the list

ObjectToSelect = (ListOfObjects - >Count) - l;
because the list hasn ' t been sorted since
)

//It ' s the last item

// ------- - - - ---------------------- - ---------------- - ---------- - --------------

fastcall TStageObject :: TStageObject () //Constructor

StorageBmp = new Graphics :: TBitmap ;
StorageBmp- >TransparentColor = clWhite ; //Sets the color used to apply the

t ransparency effect
StorageBmp- >Transparent = true; //Any object ' s white pixels are

not visible when the abject is created
)

// - ---------------- - - - ----------------- ------- - -------------- ------------ - ---

void fastcall TMainForm: : MergeRects FRONT()

/**/
/* This member function (method) takes two rects and records a Merged rect */

*/
/* For the moment , we don ' t pass any rec t s as parameters , we use data members */
/* that includes both preceding - used for FRONT VIEW

/* even though this function could be more general - which is not useful */
/* as far as VA is not concerned . */
/**/

if(ToolBox- >ToolBoxStatusBar- >Panels - >Items[0) ->Text == " Stage - Fron t View '')
{

MergedRectangle . Left min (StageObject- >PrevPos FRONT . Left ,
StageObject- >NewPos_FRONT.Left) ;

MergedRectangle.Top min(StageObject->PrevPos FRONT.Top,
StageObject->NewPos_FRONT.Top) ;

MergedRectangle.Right max (St ageObject->PrevPos FRONT.Right ,
StageObject - >NewPos FRONT.Right) ;

MergedRectangle.Bottom max(StageObject - >PrevPos FRONT.Bottom,
StageObject - >NewPos FRONT . Bottom) ;

}

}

// - ---- - - ---------------------- - -- - -- - ---------------------------------- - ----

void fastcall TMainForm::MergeRects_TOP()

/**/
/* This member function (method) takes two rects and records a Merged rect */
/* that includes both preceding - used for TOP VIEW */
/* For the moment , we don ' t pass any rects as parameters , we use data members */
/* even though this function could be more general - which is not useful */

125

/* as far as VA is not concerned . */
/**/

if (ToolBox->ToolBoxStatusBar- >Panels - >Items[0 J->Text == '' Stage - Top View ")
{

MergedRecta ngle .Lef t
StageObject->NewPos_TOP.Left);

MergedRectangle . Top
StageObject->NewPos_TOP . Top);

MergedRectangle . Right
StageObject- >NewPos_TOP . Right);

MergedRectangle . Bottom
StageObject- >NewPos_TOP . Bottom);

) .

)

min (St ageObject - >Pr evPos_TOP . Left ,

min (StageObject- >Pr evPos_TOP . Top ,

max(StageObject - >PrevPos TOP . Right ,

max (StageObject- >PrevPos_TOP.Bottom ,

// - --------------- - --------- - - - - ------------------- ---------- -- - - ----- - - - ----

bool fastcall TMai n Form: : IntersectRects (TRect Compa r edRect , TRect
ModelOfComparison)
{

/***
*******************/
/* This member function (method) takes two rects given as parameters and tells if
they intersect */
/* one another . When this method is called from inside a loop , a different
[ComparedRect) */
/* is taken and the method checks if it is inside the TRect that serves as
the model of */
/* the comparison (sort of a referen ce , in othe r words) as it is the same
throughout the */
/* calling loop.
*/
/***
*******************/

if (ComparedRect . Right
ComparedRect . Left
ComparedRect . Top
ComparedRect . Bottom

< ModelOfComparison . Left
> ModelOfComparison . Right
> ModelOfComparison . Bottom
< ModelOfCompar i son . Top

11

1 1

11
)

//The two rectangles DO NOT share some pixels - ComparedRect is OUTSIDE
ModelOfComparison

return false ;

else

//The two rectangles sha r e some pixels - ComparedRect is INSIDE
ModelOfComparison

return true ;
) ;

)

//------------------ - - ------------------------------------ - - ----- - -----------

TRect fastcall TMainForm : : GetObjectNewCoord_FRONT (int X, int Y, int XOffset, int
YOffset)
{

/***
*********************/
/* This function first calculates a possible posi tio n of the ClipRect on the
screen, although it */
/* may be not valid . Then, that 2D- location i s converted into a VA ' s 3O-
space location before */
/* [CheckBounds ()) makes sure the StageObject is within VA ' s 3O- space bounds .
Finally, */

126

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

/* the 30-location is conver t ed back to a 20-location.
*/
/* The result returned is the new (valid) location of the StageObject being moved
in FRONT view. */
/***
*********************/

//STEP 1 : Calculate a possible location on screen (not necessarily valid) of the
object's projection

TRect OestClipRect ;

//Records the possible location using the mouse pointer location and the
distance from it to the left and top sides

OestClipRect.Left (X - XOffset) ;
OestClipRect.Top (Y - YOffset) ;
OestClipRect . Right (X - XOffset) + StageObject - >Cu rWidth;
OestClipRect . Bottom (Y - YOffset) + StageObject - >CurHeight ;

//STEP 2 : Convert the 20-locati on (on screen) into a 30-location (in VA ' s 30-
space)

int MiddleLine;
TRect Location 30 ;

space

//Vertical middle of the view
//TRec t holding the location of each sides in VA ' s 30-

//Converts the left side of the ClipRect first , the right side then
MiddleLine = ImageStage - >Width / 2 ;
Location 30 .Left = Conver tLocation 20to30(MiddleLine , OestClipRect.Left ,

Stage0bject- >Center_30.z);
Location_30 . Right = ConvertLocation 20to30(MiddleLine , OestClipRect . Right ,

StageObject->Center 30 . z);

//Bottom side of the ClipRec t with perspective first , top side then
//You ' ve got to look at VA ' s 30-space from the right side and make it rotate

so that the top is on the left of the screen and the bottom on the right.
MiddleLine = ImageStage - >Height / 2 ;
Location_30.Top = ConvertLocation_20to30(MiddleLine , OestClipRect.Top

Stage0bject->Center_30.z);
Location 30 .Bottom = ConvertLocati on 20to30(MiddleLine , OestClipRect .Bottom ,

Stage0bject->Center_30 . z) ;

//STEP 3 : Make location in VA ' s 30- space valid and work out [Center_30]
CheckBounds (Location 30) ;

//STEP 4 : Convert the 30-location (in VA ' s 30-space) into a 20- location (on
screen) and return result

//To make the conversion , we just need a valid Center 30 in VA ' s 30-space -
that task has been done during STEP 3 .

OestClipRect = OepthRendering() ;

return OestClipRect ; //The location on scren is now valid
}

// -------------------------------------- -------------------------------------

TRect fastcall TMainForm::GetObjectNewCoord_TOP(int X, int Y, int XOffset , int
YOffset)
{

/***
***************************/
/* This function first calculates a possible position of the ClipRect on the
screen , although it */

127

/* may be not valid . Then, it makes sure that the ' polygon ' is within the
bounds in TOP view . */
/* The result returned is the new (va lid) location of the polygon being moved
in TOP view . */
/* "Within the bounds '' in TOP VI EW means that we can have 6 pixels drawn outside
of t he bounds */
/* at the top and the bottom of the screen area representing the stage to allow
placing */
/* the [Center_3D.z) exactly at the back of the stage (i.e. the top of the
screen area representing */
/* the stage, on 0) or at the front of the stage (i.e. the bottom of the screen
area representing */
/* the stage, on [ImageStage - >Height - 1)) .
*/
/* The X and Z coordinates of [Center 3D) are updated but not the Y because its
irrelevant in TOP VIEW */
/* For the X coord . , we use the original size of the abject because in TOP
VIEW , the polygons */
/* representing the abject are not subjected to any perspective effect that
could shrink their */
/* ClipRect, their width.
*/
/*
*/
/* N. B . : @ '' offset towards the top " means ' towards the top of the screen area
representing the stage '. */
/* It's an offset towards the ' back of the stage', actually.
*/

@ [ImageStage->Height-1 /*
521-st position */
/*
handled.

@ See comment at the top
*/

) i s u sed because the 522-nd line is at the

of this file to remember how [Center 3D .z) is

/* @ [Y - YOffset] is actually object ' s [Center 3D.z) , that's why we use [Y
- YOffset] to set center */
/***
***************************/

//STEP 1 : Calculate a possible location in TOP view (not necessarily valid) of
the abject

TRect DestClipRect;

//Records the possible location using the mouse pointer location and the
distance from it to the left and top sides

DestClipRect . Left (X XOffset) ;
DestClipRect.Top (Y - YOffset) - 6 ;
DestClipRect . Right (X XOffset) + StageObject - >StorageBmp->Width ;
DestClipRect . Bottom (Y - YOffset) + 6 ;

//STEP 2 Make location valid and work out [Center 3D]

//PARTI : left and right sides first considered

//Makes valid the left and right sides
if (DestClipRect.Left < 0)
{

//Shifts left and right sides to a valid position - offset towards the
right

else

DestClipRect .Left
DestClipRect . Right

O;
0 + StageObject - >Sto rageBmp- >Width ;

if (DestClipRect . Right > (ImageStage->Width - 1))

128

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

//Shifts left and right sides to a valid position - offset towards the
left

DestClipRect . Left
>StorageBrnp->Width;

DestClipRect . Right

(IrnageStage->Width

IrnageStage->Widt h

1) - StageObject-

1 ;

//ELSE : Left and right sides are within bounds and don't need to be
shifted

}

//Checks again the left side in the case the abject could be larger than the
stage itself .

// If so , only the left side is rnodified - it ' s like shrinking the ClipRect .
if (DestClipRect .Left < 0)

//Shrinks the ClipRect by displacing left side to a valid position -
offset towards the right

DestClipRect.Left = O;

//Works out [Center_3D) : only Xis concerned . Z is rnodified later on and Y
is left unchanged by [tsMove] in TOP

// If the size of the StageObject is larger t h an the stage , we can 't use
[StageObject - >StorageBrnp- >Width /2)

int HalfWidth = (DestClipRect.Right - DestClipRect.Left) /2;
StageObject->Center_3D . x = DestClipRect . Left + HalfWidth;

//PART II : then , [Center_3D.z) is considered - and not top and bottorn anyrnore -
to allow placing it on the top/bottorn edge of the stage .

// Only Z is concerned. Xis rnodified here above and Y is left unchanged by
[tsMove] in TOP view

//Makes valid the [Center 3D . z]
if ((Y - YOffset) < 0)
{

//Shifts [Center_3D . z) to a valid position - offset
StageObject - >Center_3D . z = IrnageStage->Height - 1 ;

the back of the Stage
}

else

if ((Y - YOffset) > (IrnageStage - >Height - 1))
{

towards the bottorn
//[Center 3D . z) is at

//Shifts top and bottorn sides to a valid position - offset towards the
top

StageObject- >Center 3D . z = O;
the front of the Stage

//[Center_3D . z] is at

else //[Cen ter 3D.z) is within bounds and don ' t need to be shifted

StageObject->Center_3D . z (IrnageStage->Height - 1) - (Y - YOffset);

//Don ' t need to check again sorne thing because in TOP, the polygon ' s height
can ' t be taller than the stage itself .

//Works out the top and bottorn sides of [DestClipRect)
DestClipRect . Top (IrnageStage->Heigh t - 1) - StageObject->Center 3D . z 6 ;
DestClipRect . Bottorn (IrnageStage- >Height - 1) - StageObject->Center_3D.z + 6;

return DestClipRect; //The loca t ion on scren is now valid
}

// ---

129

TRect _fastcall TMainForrn: : DepthRendering ()
{

/***
***************************/
/* This function calls 4 tirnes [ConvertLocation 3Dto2D) . The first tirne , we
consider a top view an d */
/* we pass the coord . for the left a nd right sides of the abject l i ke if it
was seen frorn top. */
/* Then we pass the coord . of the bottorn and top sides like if we were in a
side view - which */
/* doesn ' t actually exist . We also passa [Middl e Line) that runs frorn the
back of the stage to */
/* the front in both views - although they are not placed on the sarne spot.
*/
/* Called 4 tirnes , that triangle function gives us t he TRect of the object ' s
projection on the screen ' s */
/* surface needed to get a perspect i ve effect. We just have to record the
current size of the */
/* abject because it can be different frorn its original size if there ' s a
perspective effect . */
/*
*/
/* N.B: The 3rd pararneter of [ConvertLocation_3Dto2 D()) is [StageObject-
>Center_3D.z) and not */
/* [(IrnageStage- >Height - 1) - StageObject->Cente r _3D . z) because we consider a
distance (Dl) */
/* that runs frorn the user ' s eye to the screen (600 units) and frorn the
screen to the abject */
/* (given by [->Center_3D . z)) - so we don ' t need to take [IrnageStage->Height
- 1) frorn which */
/* we substract [Center_3D . z) to get the displacernent frorn the top of the
screen. */
/***
***************************/

•

•

•

•

•

•

int MiddleLine , HalfWidth ; •

//It is the ClipRect of an abject pro j ected on the screen ' s surface (for
perspective effect) whe n this ab j ect is rnoved to the back of the screen

TRect ClipRectProjectedOnScr ;

//Works out the location on the screen ' s surface (for perspective effect) of the
ClipRect of an abject which is rnoved to the back of t he screen

//Left side of the ClipRect with perspective firs t, right side then
MiddleLine = IrnageS t age - >Width / 2 ;
HalfWidth = StageObject->StorageBrnp- >Width / 2 ;
ClipRectProjectedOnScr . Left = ConvertLocation 3Dto2D(MiddleLine ,

StageObject- >Center_3D . x - HalfWidth , StageObject->Center_3D . z) ;
ClipRectProjectedOnScr . Right = ConvertLocation 3Dto2D(MiddleLine ,

StageObject->Center_3D . x + HalfWidt h , StageObject->Center_3D . z);

//Bottorn side of the ClipRect with perspective first , top side then
//You ' ve got to look at VA ' s 3D- space frorn the right side and rnake it rotate

so that the top is on the left of the screen and the bottorn on the right .
MiddleLine = IrnageStage->Height / 2 ;
HalfWidth = StageObject->StorageBrnp- >Height / 2 ;
ClipRectProjectedOnScr . Top = Conver tLocation 3Dto2D(MiddleLine ,

StageObject- >Center_3D . y - HalfWidth , StageObject->Center_3D . z);
ClipRectProjectedOnScr . Bottorn = ConvertLocation_3Dto2D(MiddleLine ,

StageObject - >Center_3D . y + HalfWidth , StageObject->Cen ter_3D . z) ;

//The abject rnight currently have a size different frorn its original one
StageObject->CurWidth (ClipRectProjectedOnScr . Right

ClipRectProjectedOnScr . Left) ;

•

•

•

•
130

•

•

•

•

•

•

•

•

•

•

•

•

•

StageObject - >CurHeight = (ClipRectProjectedOnSc r.Bottom -
ClipRectProjectedOnScr.Top) ;

//The results given here above are re-used to shrink or stretch the ClipRect -
NOT the bitmap itself which keeps its original size .

return ClipRec t ProjectedOnScr ;
}

//---

int fastcall TMainForm : : ConvertLocation 3Dto2D (int MiddleLine , int HorizCoord ,
int VertCoord)

/******************************* ************** ************************************
***************************/
/* When an object is moved backward or forward in VA ' s 3D space , because the
screen is in 2D we need to */
/* shrink or stretch it to give the illusion of depth . Considering an object
not at the front */
/* of the stage , we have to determine its pro j ection on the screen ' s surface
with an effect of */
/* perspective . For that , we take one side of the object at a time and give
its location */
/* horizontally and vertically (A) . To work out the location on the screen ,
we use two triangles */
/* with a rectangular corner . The base of the biggest starts on user ' s
location and ends on the */
/* object - named [Dl]. Its height is the distance between a middle li ne
(running from bac k- stage */
/* to front - stage) and the considered side of the object (either left or
right) - named [Hl]. */
/* The base of the smallest starts from the user again and ends on the screen
- named [D2] . */
/* Its height runs from the middle again toits vertex on the screen ' s
surface after projection */
/* on it - named [H2] ; it ' s the ' unknown '.
*/
/* Knowing that (Hl/Dl) = (H2/D2), we can calculate H2 and return the distance
from the left */
/* of the stage - that is the value for the middle line plus H2.
*/
/*
*/
/* N. B: (A) [VertCoord] starts at the bottom . Dl runs from the user 's eye to the
screen (600 units) */
/* and from the screen to the object (given by [VertCoord]) - so we don ' t
need to take */
/* [ImageStage - >Height - l] from which we substract [Center 3D . z] to get the
displacement */
/* from the t op of the screen.
*/
/***
***************************/

int Dl= UserToScreenDist + VertCoord ;
int D2 = UserToScreenDist ;
//If [HorizCoord] is smaller , we know that the point in VA ' s TOP VIEW is on

the left of the
// [MiddleLine] and so t he result is negative - will be useful later on.
float Hl= HorizCoord - Middl eLine ;
//Calculates t he 'un known', t h e horizontal loca t ion on the screen to give the

impression of depth
float H2 = (Hl / Dl) * D2 ;

131

//If [H2] is negative, the location on the screen's surface is on the left of
the rniddle line.

// If not, it ' s on the right . So we just need to add [H2] to the value
representing the rniddle line

// and we get the distance frorn the left of the stage - just what we need
to display .

return (MiddleLine + H2);
}

//---

int fastcall TMainForrn :: ConvertLocation 2Dto3D(int MiddleLine, int HorizCoord ,
int VertCoord)

/***
***************************/
/* It is the inverse of [ConvertLocation_3Dto2D] . We have the ClipRect for the
projection of the */
/* StageObject on screen and we need t o know where it is placed in VA ' s 3D-
space. */
/* With this airn in view , we take one side of the ClipRect (on scr.) at a tirne and
give its location */
/* horizontally and vertically(A) . To work out the location in 3D-space , we
use two triangles */
/* with a rectangular corner . The base of the biggest starts on user ' s
location and ends on the */
/* object - narned [D2]. Its height is the distance between a rniddle line
(running frorn back-stage */
/* to front-stage) and the considered side of the object (either left or
right) - narned [H2]. */
/* The base of the srnallest starts frorn the user again and ends on the screen
- narned [Dl]. */
/* Its height runs frorn the rniddle again toits vertex on the screen ' s
surface after projection */
/* on it - narned [Hl] . [H2] is the 'unknown' .
*/
/* Knowing that (Hl/Dl) = (H2/D2), we can calculate H2 and return the distance
frorn the left */
/* of the stage - that is the value for the rniddle line plus H2 .
*/
/*
*/
/* N.B: (A) [VertCoord] starts at the bottorn . Dl runs frorn the user ' s eye to the
screen (600 units) */
/* and frorn the screen to the object (given by [VertCoordJ) - so we don't
need to take */
/* [IrnageStage->Height - 1] frorn which we substract [Center 3D . z] to get the
displacernent */
/* frorn the t op of the screen.
*/
/***
***************************/

int Dl= UserToScreenDist ;
int D2 = UserToScreenDist + VertCoord ;
//If [HorizCoord] is srnaller , we know that the point in VA ' s TOP VIEW is on

the left of the
// [MiddleLine] and so the result is negative - will be useful later on.
float Hl= HorizCoord - MiddleLine ;
//Calculates the 'unknown ', the horizontal location on the screen to give the

impression of depth
float H2 = (Hl/ Dl) * D2 ;

//If [H2] is negative , the location on the screen ' s surface is on the left of
the rniddle line .

132

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1·

// If not , it ' s on the r ight . So we just n eed to add [H2] to t he value
representing the middle line

// and we get the distance from the left of t he stage - just what we need
to display .

return (Mi d d leLi n e + H2);
}

// ---

void fastcall TMai n Form :: CheckBoun ds (TRect ValidLoca t ion 3D)

/***
***************************/
/* This function makes sure the StageObject is wi t hi n VA ' s 3D-space bounds. With
this aim in view , */
/* it first considers the lef t and r i ght sides in a top view and of f set them
if they are no t */
/* within t he bou nds . It also t a kes into cons i de r ation the fact t hat a n
ab j ect can be b igger */
/* than the stage i tself . The n, the same work i s done for the top and bot t om
sides but from */
/* a side view t his time .
*/
/* For each view
calculated at

taken into conside r ation , only one coordinate of [Center_3D] is
*/

/* a time .
*/
/*
*/

Z is not modified by a normal move in X and Y directions.

/* N . B. : @ " offset towards the top " means ' towards t he t op of the screen area
representing the stage '. */
/* In this case , it ' s an offset towards the ' actual top of the stage ' .
*/
/* @ [ImageStage- >Height - 1] is used because the 522-nd line is at the
521-st position */
/* @ [ImageStage - >Width - 1] is used because t he 1024 - nd line is at the
1023- st position */
/***
***************************/

int HalfWidt h ;

//PARTI : left and right sides first considered

//Considers a view from the ' TOP ' to make valid the left and right sides
if (ValidLocation 3D . Left < 0)
{

//Shifts left and right sides to a valid posi t ion - offset towards the
right

else

ValidLocation 3O . Left
ValidLoca t ion 3D . Right

0 ;
0 + StageObject->S t orageBmp->Width ;

if (ValidLocation 3O . Right > (ImageStage - >Widt h - 1))
{

//Shifts left and righ t sides to a vali d position - offset t owards the
left

ValidLocation 3O . Left
>StorageBmp- >Width ;

ValidLocation_3D . Right

(ImageStage - >Widt h - 1) - StageObject­

ImageStage- >Width - 1 ;

//E LSE : Left and right s i des a r e withi n bounds a nd don' t need to be
shifted

}

133

//Checks again the left side in the case the object could be larger than the
stage itsel f.

// If so, only the left side i s modified - it's like shrinking the ClipRect.
if (ValidLocation_3D . Left < 0)

//Shrinks the ClipRect by displacing left side to a valid position -
offset towards the right

ValidLocation 3D.Left = 0;

//Works out [Center_3D] only Xis concerned. Y is modified later on and Z
is left unchanged by [tsMove]

// If the size of the StageObj ec t i s larger than the stage, we can 't use
[StageObject->StorageBmp->Width /2]

HalfWidth = (ValidLocation_3D.Right - ValidLocation 3D .Left) /2;
StageObj ect - >Cente r 3D.x = ValidLocation 3D .Left + HalfWidth;

//PART II : t hen , top and bottom considered

//Considers a view from the ' SIDE ' to make valid the t op and bottom s ides
if (ValidLocation 3 D.Top < 0)
{

//Shifts top and bottom sides t o a valid position - offset towards the
bottom

else

ValidLocation_3 D.Top
ValidLocat i o n 3 D.Bottom

O;
0 + StageObject->StorageBmp->Height;

if (ValidLocation_3D .Bo ttom > (ImageStage->Height - 1))
{

//Shifts t op and bottom sides t o a valid position - offset towards the
top

ValidLocati on_3D .Top
>S t orageBmp->Height ;

ValidLocation 3D . Bottom

(ImageStage - >Heigh t - 1) - StageObject ­

ImageStage->Height - l ;

//ELSE : Top and bottom sides are within bounds and don't need t o be
shifted

}

//Chec k s again the top side in the case t he obj ec t could be taller than the
stage itself .

// If so , only the top side is modified - i t ' s li ke shrin king the ClipRect.
if (ValidLocation_3D.Top < 0)

//Shrinks the ClipRect b y displacing t op side t o a valid posit i o n - offset
towards the bottom

ValidLocation 3 D.Top = 0;

//Works out [Center_3Dl only Y is co ncerned . Xis modified here above and Z
is left unchanged by [tsMove]

// If the size of the StageOb j ec t is ta ller than the stage , we can't use
[StageObject - >StorageBmp- >Height /2]

}

HalfWidth = (ValidLocation_3D.Bottom - ValidLocation_3D.Top) /2 ;
StageOb j ect->Cent er_3 D. y = ValidLocat i on_3D .Top + HalfWidth;

//-------------------- - ------------------ - - - - ----------------- - --------------

134

•

•

•

•

•

•

•

•

•

•

•

•

