
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Complex Event Processing for Internet of Things

Open-Source Frameworks Analysis

Warszawski, Kenny

Award date:
2020

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/b8822c87-6a04-4dba-b7ec-7fd810a64d20

Complex Event Processing for Internet of

Things: Open-Source Frameworks Analysis

Kenny Warszawski

RUE GRANDGAGNAGE, 21 l B-5000 NAMUR(BELGIUM)

Université de Namur
Faculté d’informatique

Année académique 2019–2020

Complex Event Processing for Internet of

Things: Open-Source Frameworks Analysis

Kenny Warszawski

Promoteur : (Signature pour approbation du dépôt - REE art. 40)

Pierre-Yves Schobbens

Co-promoteur : Moussa Amrani

Mémoire présenté en vue de l’obtention du grade de
Master en Sciences Informatiques.

Acknowledgements

I would like to thank in particular my promoters Mr. Amrani and Mr. Schobbens for their
support in writing this master’s thesis. Theywere able to answermy questions and get me back
on track when I was lost. The meetings I had with Mr. Amrani and Mr.Schobbens allowed me
to better understand the subject and find out how to approach it. Mr. Schobbens’ theoretical
course last year allowed me to understand the issues and the process to be followed during
scientific research. I would also like to thank all those who were able to help in any way with
the development of this thesis.

3

Résumé

Les systèmes informatiques sous-jacents à l’Internet des Objets impliquent de prévoir des mécan-
ismes permettant de gérer une quantité massive d’informations provenant de différentes sources.
Afin de gérer cela de manière efficace, le Complex Event Processing (CEP) vient s’intégrer dans
ce genre de système afin d’optimiser la détection de situations complexes et d’en ressortir un
évènement de plus haut niveau. Ainsi, une autre couche applicative pourra gérer cet évènement
et appliquer le traitement adéquat.

Malheureusement, il est difficile de savoir quel framework utiliser pour une situation donnée.
Dans ce travail, l’objectif est de déterminer quel framework permet de répondre à des besoins
selon 3 axes: la prise en main, la maintenabilité et l’utilisation des ressources. Au travers d’une
grille d’analyse permettant de couvrir ces 3 axes, des métriques vont être capturées depuis les
frameworks Open-Source les plus populaires et toujours maintenu à ce jour. (Esper, Siddhi,
Drools, Perseo)

A partir des données récoltées, une synthèse permettant de visualiser les forces et faiblesses
de chacun des frameworks selon ces 3 axes sera fournie en sortie de ce travail.

Mots-clés: Complex Event Processing, CEP, Internet des Objets, IoT, Open-Source, Esper, Sid-
dhi, Drools, Perseo

Abstract

The computer systems underlying the Internet of Things require mechanisms to manage a mas-
sive amount of information from different sources. In order to manage this effectively, Complex
Event Processing is integrated into such systems to optimize the detection of complex situations
and to bring out a higher level event. Thus, another application layer will be able to manage this
event and apply the appropriate treatment.

Unfortunately, it is difficult to know which framework to use for a given situation. In this work,
the objective is to determine which framework allows to meet needs in 3 axes: getting started,
maintainability and resource usage. Through an analysis grid covering these 3 axes, metrics will
be captured from the most popular Open-Source frameworks and still maintained to this day.
(Esper, Siddhi, Drools, Perseo)

Based on the data collected, a synthesis allowing to visualize the strengths and weaknesses of
each of the frameworks according to these 3 axes will be provided at the output of this work.

Keywords: Complex Event Processing, CEP, Internet of Things, IoT, Open-Source, Esper, Sid-
dhi, Drools, Perseo

4

Contents

1 Introduction 7

2 Background 7
2.1 Internet of Things . 7

2.1.1 Architecture . 8
2.1.2 Data Flow . 9

2.2 Complex Event Processing . 9
2.2.1 Events . 9
2.2.2 CEP Engine . 10
2.2.3 Event Pattern Languages . 10

2.3 Computing Levels . 11
2.3.1 Cloud Computing . 11
2.3.2 Fog Computing . 12
2.3.3 Edge Computing . 13

2.4 Semantic Publish-Subscribe Architecture . 13
2.4.1 Overview . 13

2.5 Domain of applications . 15
2.5.1 Smart Building . 15
2.5.2 Healthcare . 16

2.6 Research Methodology . 17

3 Research 17
3.1 Problematisation . 17

3.1.1 Aspects . 18
3.2 Question . 18
3.3 Scope . 18

4 Methodology and Tools 19

5 Evaluation 20
5.1 Open-Source Frameworks . 20

5.1.1 Esper . 20
5.1.2 Siddhi . 20
5.1.3 WSO2 CEP . 20
5.1.4 Drools . 21
5.1.5 Apache Flink . 21
5.1.6 Perseo . 21
5.1.7 Hurence: Logisland . 21
5.1.8 Clover-Group: TSP . 22

5.2 Criteria and Metrics . 22
5.2.1 General Metrics . 22
5.2.2 Code Metrics . 23
5.2.3 Technical Metrics . 23

5.3 CEP Patterns . 24
5.3.1 Water Level Overflow (Selection) . 24
5.3.2 Smart Lightning (Selection, Window, Negation) 24
5.3.3 Fire Detection I (Selection, Window, Aggregation) 25
5.3.4 Fire Detection II (Selection, Window, Aggregation, Conjunction) 25
5.3.5 Fire Detection III (Selection, Window, Conjunction, Negation) 26

5

5.3.6 Dangerous Location (Selection, Repetition) 26
5.3.7 Accident Detection (Selection, Window, Sequence) 27

6 Results and Implementations 27
6.1 System Characteristics . 27
6.2 Esper . 28

6.2.1 Results . 28
6.2.2 Implementation . 31

6.3 Siddhi . 31
6.3.1 Results . 31
6.3.2 Implementation . 34

6.4 Drools . 34
6.4.1 Results . 34
6.4.2 Implementation . 37

6.5 Perseo . 38
6.5.1 Results . 38
6.5.2 Implementation . 38

7 Interpretation and Discussion of Results 39
7.1 General Metrics . 39
7.2 Code Metrics . 40
7.3 Technical Metrics . 40

8 Conclusion 43

List of Figures 44

References 46

6

1 Introduction

Internet of Things is omnipresent and the amount of connected devices is increasing day by day.
Internet of Things is different from a classic information system by its capability for integrating
with the physical world. Those devices are used in many sectors (health, industry, transport,
home automation, . . .) and their users can be both professionals and individuals. Nowadays, we
see the apparition of connected devices for home to facilitate our daily life. (e.g. Google Home,
Nest, Philips Hue) Internet of Things is also an interesting technology for Smart Cities use case.
For example, we can imagine a city where traffic lights are optimised with the city mobility to
avoid traffic jams. However, an important problem arises in this type of information system. How
is it possible to handle such an important data traffic efficiently ? Indeed, if an entire city has a
huge amount of connected objects, the data flow to be processed is massive. Therefore, efficient
data processing mechanisms need to be put in place to handle such flows.

The Complex Event Processing is part of the solution to handle such massive data flow. This
technique makes it possible to determine complex patterns from several different data sources in
record time. In the IoT, data is often extracted from many different sources, so events are not
distributed in a single continuous stream. Therefore, Complex Event Processing is very efficient
for this type of situation. In addition to being able to act on several sources, it can correlate events
from several streams and when a pattern is detected, it is possible to send a more complex event
that summarizes the current situation. To this day, there are a lot of libraries available to perform
CEP operations, but it is difficult to determine which framework is best suited for a given context.
The goal of this thesis is to help the reader to find the framework that best fits his need. Through
analysis grids and implementation in selected libraries, this paper will try to answer this problem.

This thesis is organised as mentioned hereafter. The section 2 is dedicated at putting in place the
background of the topic discussed in this article, namely Complex Event Processing for Internet
of Things. All the fundamental concepts for a good understanding of this thesis will be reviewed.
Then, in the 3 section, we will talk about the issues raised during the research. First, by posing
the problem in the section 3.1, we’ll get a general idea of the problem. Afterwards, we are going
to address the research question that will try to answer the problem posed above. In this section,
we will also discuss all the important aspects to consider when developing an IoT project and
the scope of this thesis. Regarding the section 4, the methodology but also the tools to retrieve
the information that will help to answer the problem question will be explained. Finally, the last
parts will be dedicated to the explanation of the tests that will be carried out as well as their
results and interpretation. Finally, this paper will end with a concluding note.

2 Background

2.1 Internet of Things

The Internet of Things(IoT) [13] is a novel paradigm that is rapidly gaining ground in the scenario
of modern wireless telecommunications. The basic idea of this concept is the pervasive presence
around us of a variety of things or objects – such as Radio-Frequency IDentification (RFID) tags,
sensors, actuators, mobile phones, etc. – which, through unique addressing schemes, are able to
interact with each other and cooperate with their neighbors to reach common goals.

The phrase "Internet of Things" was mentioned the first time by Kevin Ashton, the co-founder
of the Auto-ID Center at MIT, as the title of one of his presentation. For him, today computers
and the internet more generally are dependent from human intervention. Information technology

7

architectures are all designed around hardware, software interactions, etc. - but an important
thing is generally set aside: people. People have a limited time, attention and accuracy. Hence,
they are making mistakes about the real world. Thus, the data generated by humans is not the
exact representation of the reality in an Information System.

A "Thing" can be any connected device from our daily life that is able to capture information
from the physical world by sensors and send it through a network. Things are also able to receive
tasks to execute thought different transport protocols. Information sent by sensors can be kept
by another layer able to process data and execute other complex tasks.

2.1.1 Architecture

The architecture of an Internet of Things solution can be implemented with various technologies
and in very different infrastructures. However, a generic high level architecture is common to all
IoT projects as illustrated on figure 1.

Figure 1: Generic Architecture. (Source: [16])

Perception Layer: The perception layer or device layer is the layer where physical objects
will be able to capture data via sensors. These sensors are able to collect real world data. These
data can be or not be processed upstream to add meta-data by the connected object itself and
will be forwarded to the Network Layer.

Network Layer: The Network Layer or Transmission Layer. This layer transfers the infor-
mation from to Perception Layer to the Middleware Layer. This transfer can be accomplished by
different communication technologies like Wi-Fi, 3g, Bluetooth, etc.

Middleware Layer: The Middleware Layer is the common layer for all physical objects of an
IoT architecture. The middleware is responsible to take automatic decisions based on information
coming for the devices and store the results in a database.

Application and Business Layer: The Application Layer is where smart applications are
running to produce complex processes. These applications will consume data from connected
objects previously processed by the middleware to act effectively on a specific situation. These
application can transmit actions to execute on a particular type of service. The Business Layer is
important for the global management of the system. This one is rather a layer of global monitoring
which produces graphs and statistics at the business level.

8

2.1.2 Data Flow

In order to see more clearly in this generic architecture, it is possible to zoom in on the data flow
from a device to a system. The figure 2 illustrates data capture via sensors. These data will be
transited to a Computation and Processing System through a communication layer.

Figure 2: Simple IoT Architecture. (Source: [16])

This thesis is focusing on the "Computation and Processing System" layer because at that
stage, the data processing is the most critical and the data flow is the highest. Obviously, the
Communication Layer must be robust enough to transmit the data efficiently but this topic will
not be tackled in this thesis. The data flow through an IoT system can be very high because, as
mentioned above, the number of connected objects is increasing. It is therefore necessary to have
an efficient method to handle a massive amount of events on several streams. It is in this pro-
cessing layer that Complex Event Processing will play an important role in the IoT architecture.

2.2 Complex Event Processing

Complex Event Processing (CEP) [29] is a set of methods and techniques for tracking and analysing
real-time streams of information and detecting patterns or correlations of unrelated data (com-
plex events) that are of interest to a particular business. The complex event processing is the
engine of real-time applications that needs to have real-time information from an environment
to respond as fast as possible. A standard Request/Reply with synchronous processes cannot
correlate different type of events and respond in a timely manner. Complex Event Processing
mechanisms are often used in Event Driven architectures. This architecture fits with the Internet
of Things needs. This kind of architecture is driven by events sent by connected objects. Then,
the services at the application layer are consuming those events.

2.2.1 Events

The events coming directly from the sensors are call raw events. The raw events are the events
coming from the real world. It may represent a simple real-world event or a complex real-world
event. Those raw events often need to be pre-processed before integrating a more sophisticated
system. Without the pre-processing it would be difficult for a system to understand the infor-
mation correctly and correlate it with other events. A strict semantic between different type of
events have to be put in place for the whole IoT system. That is why a complete ontology should

9

structure all the domain application. Generally, two types of events can occur in the system: In-
ternal and External. The internal events are the events sent by the application layer. The external
event are these sent by the "physical" sensors.

2.2.2 CEP Engine

Events are the trigger of one or multiple process in an IoT solution. The CEP engine is consuming
those events sent by the physical objects on the Communication Layer. This engine defines a set
of rules where each received event will be evaluated by the appropriate rules for that event. A
rule represents a complex condition that can be based on multiple events and on a time window.
Basically, a complex event processing engine correlates several types of events over time. Then,
if the pattern defined in the rule is matching with the ingested events, a complex event is sent. A
complex event [22] is an event that summarizes, represents, or denotes a set of other events. The
complex events generated can themselves triggers another CEP rule or an application process.
For example, if a temperature sensor captures that the average temperature of the last 60 seconds
is higher than 45 degrees, an event saying that fire is detected will be produced. Then an alarm
can be triggered to warn people in the house and a notification can be sent to the fire department.

Figure 3: CEP Pattern Decision Reaction. (Source: [33])

Technologies implementing CEP concepts are often querying Time Series Databases where
each event received is stored. Those databases are optimised for queries based on a time window.

2.2.3 Event Pattern Languages

An Event Pattern Language (EPL) is a language used by CEP engines in order to describe the
relations between events matching a specific pattern. The syntax of EPL’s are quite similar to
SQL queries. Example 1 shows a composite event called Thermometer, which carries two pieces
of information: the value of the sensed temperature as a real and the date it was sampled. The
query below selects all dates of events where the temperature was sensed above 30°C.

Example 1:

Thermometer (temperature: real; date: Date)

SELECT Thermometer.date

FROM DataSource

WHERE temperature > 30

10

A plenty of primitive operators exists in Event Pattern Languages to describe the rule’s behaviour.
The following operators are coming from ThingML framework but are available in most of CEP
frameworks:

Selection: [18] Filters relevant events based on the values of their attributes. For example,
we can select all Air Pressure events between 101300 Pa and 101400 Pa.
Projection: [18] Extracts or transforms a subset of attributes of the events.
Window: [18] Defines which portions of the input events to be considered for detecting pattern.
For example, a rule can concern the last 30 seconds events.
Conjunction: [18] Consider the occurrences of two or more events. This operator is basically a
logical ’AND’ operator.
Disjunction: [18] Consider the occurrences of either one ore more events in a predefined set.
This operator is basically a logical ’OR’ operator.
Sequence: [18] Introduces ordering relations among events of a pattern which is satisfied when
all the events have been detected in the specified order.
Repetition: [18] Considers a number of occurrences of a particular event.
Aggregation: [18] Introduces constraints involving some aggregated attribute values. For exam-
ple, the average temperature of all Weather events is an aggregation.
Negation: [18] Prescribes the absence of certain events. This operator is basically a logical ’NOT’
operator.

2.3 Computing Levels

To cope with low latency challenges required by IoT systems, CEP engines may be strategically
deployed at various levels of the IoT architecture stack, depending on the constraints and band-
width available: at the level of the cloud, the fog, or on the edge of the system.

2.3.1 Cloud Computing

Cloud Computing places the computing complexity at the cloud level. All the data coming from
the sensors have to transit by the connected object, sometimes by a middleware and then it can
be consumed by a CEP Engine in the cloud. This work-flow is illustrated clearly by the figure 4.
The Cloud Computing is common for near real-time applications where a little bit of latency is
not critical.

Figure 4: Cloud Computing. (Source: [3])

11

This solution is optimal for the near real-time cloud monitoring because all events coming
from the devices are sent to the cloud. Then a precise metrics history can be retrieved. Obviously
all data persisted have a cost. This type of solution is extremely demanding in storage space if
all the history is persisted.

Naturally, Cloud Computing can be coupled with other levels of computing and it is often the
case. The Cloud Computing can be placed on the top of a multi site IoT solutions where millions
of data are coming from thousands of connected objects in the world. Then, this solution can
reflect a High Level overview of a global IoT system and available all over the world.

2.3.2 Fog Computing

Fog Computing places the computing intelligence at the local network level. Typically, the com-
plexity is put between Cloud and IoT sensors. The devices are sending their data to a Middleware
and the CEP engine is processing the data locally and send the processed events to a service run-
ning in the Cloud or on a local server. This method offers the CEP performances on a closer level
where the data are created. Then, for applications where latency is crucial, Fog Computing can
fit with their business needs. For example, auto mobile or aerospace sectors are more and more
connected and the reactivity of their system needs to be as fast as possible. Compared to a device-
to-cloud architecture, placing processing closer to the devices can reduce the latency since the
physical distance is shorter and potential response time in a data center can be removed. Com-
pared to a device-only architecture, latency can be reduced since computation intensive tasks
that take a long time on resource-constrained sensor devices can be moved to more capable fog
computing nodes. The figure 5 illustrates this architecture. [9] The motivation can also be to
keep the latency predictable.

Figure 5: Fog Computing. (Source: [14])

It can happen that the edge devices are sending too much data at very high rate. Therefore
the processing engine at fog level is not treating the data fast enough because the processing of
a huge amount of data is taking too much time. Complex Event Processing can be put at the
Edge devices level. The terms Fog and Edge computing have different meanings depending on
the article. In some articles, edge computing refers to the technologies allowing computation
to be performed at the edge of the network, on downstream data on behalf of cloud services
and upstream data on behalf of IoT services.[30] The limit between Fog and Edge computing is
not clear. In this state-of-the-art we consider the Fog to be a higher layer on the top of physical
devices like a server on a private network.

12

2.3.3 Edge Computing

Edge Computing places the computing complexity at the Physical Layer. It can be an IoT gateway
where data is pre-processed before being pushed to the Cloud or whatever. For example, in e-
health some sensors can be put in a human body and the information coming from the sensors are
sent to a smartphone. The smartphone is processing those information before sending them. This
method reduces the network traffic to the Fog Nodes and/or the Cloud because less information
will be transferred. Therefore it reduces the risk of data congestion and the CEP engines are not
flooded. Edge Computing is generally used by industries in Cyber Physical Systems1.

2.4 Semantic Publish-Subscribe Architecture

The article "A Semantic Publish-Subscribe Architecture" [28] suggests an interesting asynchronous
architecture based on the Publish-Subscribe design pattern. The publish-subscribe pattern in
software architecture is a messaging pattern where the sender of the message does not know
the receiver. On the other side, the receiver does not know the sender as well. The publisher is
sending a message on a message queue where subscriber(s) are listening to. In Internet of Things
solutions, the producers and consumers can be the connected objects themselves but can also be
an application layer in the Cloud for example. The connected objects are publishing events on
event topics and the application layer processes those events.

2.4.1 Overview

The SPS architecture prone the modularity, extensibility and cost-effective vision. It splits the
physical world from its digital representation. The primary characteristic consists of splitting
clients into 3 categories: consumers, producers and aggregators. The business logic is driven by
the aggregators. The producers and the consumers are the bridge between the physical world and
the virtual representation of the systems. This principle keeps the business logic at the aggregator
level in order to keep the clients and producers as simple as possible. It gives to the producers
the unique responsibility to send data to an upper layer without executing any business logic.
Hence, this system is easier to extend because only the aggregator layer is impacted if a business
feature is added. Then, the consumers and producers can be shared by different applications. All
these notions are represented on figure 6.

1Cyber-Physical Systems (CPS) are integrations of computation and physical processes. Embedded computers and
networks monitor and control the physical processes, usually with feedback loops where physical processes affect
computations and vice versa [19]

13

Figure 6: Semantic Publish Subscribe Architecture. (Source: [28])

The role of the producers is to collect data from sensors. The producer can optionally make
a local processing where it encapsulate the data to a semantic format. After that, the producer
send the information to the SUB Engine that will store the data in a Triplestore. Contrarily, the
consumers are listening to the concrete events coming in the SUB Engine that can be a result of a
processing done by an aggregator. After receiving an notification, the consumers extract the raw
data and send it to a devices through a legacy interface.

Figure 7: Sequence diagram of Smart Lightning. (Source: [28])

The aggregators are listening to the events sent by the producer through the SUB Engine.
Each aggregator subscribes to each event type they need for their business process. The fig.7
exposes a simple use case of Smart Lightning where each type of clients described previously is
used. The presence sensor acts as a producer and store the presence state in the RDF Store. The
Lamp actuator acts as a consumer and subscribe to the Lamp events. The Smart Lightning acts
as an aggregator to handle incoming events and triggers a business process based on those events.

Scenario:

14

1. The Lamp Actuator is subscribing to the Lamp events and the Smart Lightning aggregator
is subscribing to the Presence events.

2. The Presence sensor is Sending an Event to the SUB Engine that a presence is detected.

3. The presence event is captured by the Smart Lighting aggregator that will send an event to
switch on the lamp.

4. The "Switch ON the lamp" event is captured by the Lamp actuator that communicate the
information to the connected lamp.

5. The presence sensors is sending that no presence is detected.

6. The Smart Lightning schedules to send an event to switch off the light after x seconds if no
presence is detected during that time laps.

7. A presence is detected, then the Smart Lightning cancels his event scheduling.

8. The presence sensors is sending that no presence is detected.

9. The Smart Lightning schedules to send an event to switch off the light after x seconds if no
presence is detected during that time laps.

10. The Smart Lightning Aggregator sends the "Switch off lamp" event.

11. The Lamp actuator is switching off the light.

2.5 Domain of applications

2.5.1 Smart Building

The article [1] proposes an Internet of Things architecture to reduce building’s energy consump-
tion. Studies demonstrated that using ICT technologies could reduce the energy consumption of
a building by 70 percent. Different automatic processes have been put in place to control the
ventilation, heating and air conditioning control based on data coming from the sensors. Differ-
ent algorithms were tested to provide a better way to maintain the heating and air quality of the
building with the lowest energy consumption.

The article [5] is focusing on a distributed Complex Event Processing Architecture. The work
is based on a smart Building use-case. The paper highlights the fact that it is not appropriate to
use a centralized architecture for an IoT environment. Having a centralised server means having
devices sending an enormous quantity of raw data to one unique server. Hence, the server must
have enough powerful hardware resources. The ability to scale such systems efficiently is not
possible. The paper proposes to distribute the processing load between multiple servers. Some
event processing is performed upstream in order to filter only the payload data to other servers
that have another processing responsibility. The proposed solution allows users to define the
rules and actions to be executed from a graphical user interface.

15

Figure 8: Distributed Complex Event Processing. (Source: [5])

2.5.2 Healthcare

Healthcare is a sector where the investment for the Internet of Things is significant. More and
more hospitals are offering connected devices to monitor the health status of their patients. Be-
sides, the article [17] presents the promises of Fog and Edge Computing in the field of health.
Fog Computing brings the possibility to handle dynamic contexts. Medical devices main respon-
sibility is to collect data from patients. Therefore, all data processing inside devices should be
minimal to provide the minimum usage of the battery. Fog computing provides flexibility in data
processing. If an update needs to be made to the data processing level, the only impact is located
on the Fog Level.

Figure 9: Healthcare Fog-Computing. (Source: [17])

Information from sensors inside the patient must be available in different places. The patient
must be able to be notified directly at home if a potential problem is detected. Therefore, con-
nected medical objects must be able to connect to different devices: smart phone, home, hospital,
etc. (see: figure 9)

16

2.6 Research Methodology

Main resources :

• IEEE Xplore

• Springer

Step 1 - Selection
The methodology used for this research was inspired by the Systematic Mapping Study. [26]
Initially, the first query done on the IEEE Xplore Digital Library was : Complex Event Processing
AND Internet of Things. This result gave too much results, around 200. To reduce this number,
only the papers published between 2014 and 2019 were chosen. The Internet of Things is a sub-
ject that is continuously evolving, then it is more interesting to focus on the newest technologies.
This filter excluded around 40 articles. After that the 100 most cited were chosen for the second
step.

Step 2 - Pre-Reading
The second step consisted of reading all the 100 abstracts of the articles. Then, the most relevant
for the subject were selected. Only fourteen articles were selected out of the hundred.

Step 3 - Careful reading
After that, a first reading of all articles revealed unnecessary articles and only few of them (6)
were deeply analysed and summarized. After summarizing and a better understanding of the
problematics for the subject, it was necessary to find a glossary [22] with all technical defini-
tions. A lot of authors are employing various words for the same concept and it was sometimes
fastidious to correlate all the information together to have a good understanding of all informa-
tion.

The second search on IEEE Xplore consisted of searching other Data processing techniques in
the domain of Internet of Things. The query was : ((((Internet of Things) AND Data Processing)
NOT Complex Event Processing)). With the filters : 2014 to 2019 and the 100 most cited papers.
For this search, the same methodology was applied.

After all this research, the writing of this state-of-the-art started. Sometimes, some informa-
tion were missing to correlate some parts with others or some concepts weren’t explained clearly.
Then, some small additional researches were done during the writing. Those research were either
a search in a scientific library or from a reference in an analysed article.

3 Research

3.1 Problematisation

Through the state-of-the-art, a problematic aspect in the Complex Event Processing for Internet
of Things domain has emerged. Due to the diversity of CEP frameworks on the market, it can be
quite difficult to know which one is used for a given problem. Since this choice depends on many
aspects, it is not easy to know if the chosen framework will be adapted for a given situation.

17

3.1.1 Aspects

Getting Started
When searching for a framework, it is crucial to know whether or not it is capable of perform-
ing certain CEP operations. It is also important to know if these operations can easily be used
with each other in order to detect more complex patterns. Those information can be found out
through the documentation and in examples that can be found on the framework website. Other
information such as compatible languages or access to support must be easily retrieved. It is
therefore important that all this information is available.

Code Maintainability
When developing a project, it is important to determine whether the framework used can fa-
cilitate the maintainability of the code. Of course, this factor also depends on the skills of the
developer, but a prior logical breakdown can facilitate this work. The presence of examples, tem-
plates and guidelines is a plus to facilitate the maintainability of the code. The framework must
also have a sufficiently clear and precise documentation so as not to mislead the developer in his
design choices.

Resource Usage
Resource usage is also an important aspect when choosing a framework. When a solution must
run on a given machine, the framework must match the specifications of the target machine. It
is inconceivable to invest in a framework that consumes too much CPU or RAM for example. It is
also necessary to check its use in the disk space and the GPU usage.

3.2 Question

The purpose of this master’s thesis is to answer the research question:
Which Complex Event Processing framework should be used for an IoT project ?

To answer this question, it is possible to sub-divide this question into 3 sub-questions corre-
sponding to the aspects of the problematisation (3.1) :

Which framework allows to develop an IoT solution in the easiest way ?
Which framework allows to develop the most maintainable IoT solution ?
Which framework allows to develop an IoT solution that uses the least amount of resources
?

Through these questions, different trends can be identified between the CEP frameworks. Thus,
depending on the criteria expected for the IoT project, the decision to choose a framework can
be motivated by these 3 axes.

3.3 Scope

The scope of this research will still be limited and will not compare all CEP frameworks on the
market. This research will be limited to the most popular Open-Source frameworks. Of course,
only those frameworks that are still maintained today will be analyzed. Proprietary frameworks
as well as non-maintained frameworks will be excluded from this research.

The chosen frameworks will be mostly "detection-oriented" and not "computation-oriented" ones.
In fact, these two characteristics are inherent to the difference between a CEP framework and an

18

ESP framework. By definition, an Event Stream Processing framework [21] will focus on the com-
putation of events coming from an event stream. An event stream is a sequence of events ordered
by time, such as a stockmarket feed. A CEP framework by definition will focus on computing in an
event cloud. An event cloud is the result of many event generating activities going on at different
places in an IT system. A cloud might contain many streams. A stream is a special case of a cloud.

Unfortunately, today the difference between the two worlds becomes difficult to distinguish. In
a complex system, the two types of technologies have to cohabit together. In addition, ESP plat-
forms [21] are increasingly tending to include specific operations from Complex Event Processing
in order to provide a complete solution. In the literature, these terms are not clearly defined. For
the purposes of this submission, it is therefore considered that ESP describes the first layer of
event processing. We are talking about high-volume, high-velocity event streams. ESP solutions
allow to apply continuous querying on event flows as close as possible to their appearance to per-
form simple operations (normalization, filtering ...) and in real time (without latency) to trigger
responses, microprocesses and immediate actions when the desired pattern is detected. Complex
Event Processing [6] generally intervenes downstream of the ESP, in the 2nd layer and constitutes
the core processing of event processing, where the complexity is concentrated. Where the ESP
is "confined" to mass processing of events of the same nature and without complex correlation,
the CEP is able to correlate complex events of a very varied nature. The CEP thus enables the
detection of business situations based on complex patterns, requiring asynchronous correlations
of multi-source event flows.

4 Methodology and Tools

In order to be able to answer the various questions raised by the research, it is necessary to ap-
ply a rigorous testing methodology. Firstly, a research and selection phase of the Open-Source
frameworks of Complex Event Processing was carried out. Then, in order to compare these se-
lected frameworks in an equivalent way, CEP patterns will be implemented in these different
technologies. These patterns will be examples to show the complexity of the implementation of
the operators mentioned in the state of the art phase (section 2.2.3). In the section 5.3, these
scenarios will be explained in a more precise way. From these implementations and the metrics
that will be explained in the section 5.2, it will be possible to factualize the differences as well
as the strengths and weaknesses of each implementation. In the same section, we will see that
technical metrics will also be captured to determine the physical resource consumption of each
framework. To do this, different test scenarios will be performed to simulate a more or less heavy
workload.

In order to find the Open-Source CEP frameworks, the GitHub website was used. In this se-
lection, the keyword "Complex Event Processing" was used. In order to sort in this list, only the
frameworks still maintained today are kept in this sort. To do so, repositories still having com-
mits in 2020 are considered to be maintained. At this stage, a list of 34 repositories are listed by
GitHub.(https://github.com/search?l=&p=1&q=Complex+Event+Processing++pushed%3A>
2020-01-01&ref=advsearch&type=Repositories) In this list, repositories that are not Com-
plex Event Processing libraries must be removed. In these repositories, it is also necessary to sort
among the frameworks with documentation. Libraries that do not have documentation are con-
sidered as not having the necessary maturity to be analyzed. In the next section, the frameworks
corresponding to these search criteria will be analyzed.

In addition to these frameworks, popular open source framework for Event Stream Processing
exposing Complex Event Processing operations will be added for analysis.

19

https://github.com/search?l=&p=1&q=Complex+Event+Processing++pushed%3A>2020-01-01&ref=advsearch&type=Repositories
https://github.com/search?l=&p=1&q=Complex+Event+Processing++pushed%3A>2020-01-01&ref=advsearch&type=Repositories

5 Evaluation

5.1 Open-Source Frameworks

The objective of this section is to analyze the open-source frameworks found during the research
and to analyze their relevance for the context of this master’s thesis.

5.1.1 Esper

Esper [11] is a language, compiler and runtime for complex event processing (CEP) and stream-
ing analytics, available for Java as well as for .NET. The design priorities for Esper are:

• Low latency and high throughput.

• Expressiveness, conciseness, extensibility of the EPL language.

• Compliance to standards and best practices.

• Light-weight in terms of memory, CPU and IO usage.

As part of this research, the implementation in Java will be carried out. The EPL language
used by Esper being similar in Java and .NET, this choice was made by simple affinity with Java.

GitHub link: https://github.com/espertechinc/esper

5.1.2 Siddhi

Siddhi [31] is a cloud native Streaming and Complex Event Processing engine that understands
Streaming SQL queries in order to capture events from diverse data sources, process them, de-
tect complex conditions, and publish output to various endpoints in real time. Siddhi can run
as an embedded Java and Python library, as a micro service on bare metal, VM, and Docker and
natively in Kubernetes. Siddhi provides web-based graphical and textual tooling for development.

For the purpose of this research, the implementation as a Java library will be performed. In
addition, the realized definitions will also be tested via micro-service export in a containerized
environment.

GitHub link: https://github.com/siddhi-io/siddhi

5.1.3 WSO2 CEP

WSO2 CEP [35] is a lightweight, easy-to-use, open source Complex Event Processing server. It
identifies the most meaningful events within the event cloud, analyzes their impact, and acts on
them in real-time. It’s built to be extremely high performing with WSO2 Siddhi and massively
scalable using Apache Storm.

During the analysis, it was decided not to analyze this solution because the engine of Complex
Event Processing is Siddhi. Moreover, WSO2 is the main maintainer of Siddhi. It is therefore not
interesting to perform additional tests for this framework. These would be redundant with what
is done in the Siddhi tests.

GitHub link: https://github.com/wso2-attic/product-cep

20

https://github.com/espertechinc/esper
https://github.com/siddhi-io/siddhi
https://github.com/wso2-attic/product-cep

5.1.4 Drools

Drools [10] is a business rulemanagement systemwith a forward-chaining and backward-chaining
inference based rules engine, allowing fast and reliable evaluation of business rules and complex
event processing. A rule engine is also a fundamental building block to create an expert system
which, in artificial intelligence, is a computer system that emulates the decision-making ability
of a human expert.

Drools exposes its functionalities via Java libraries. For the implementation of this framework, a
maven project will be defined to apply the different CEP patterns.

GitHub link: https://github.com/kiegroup/drools

5.1.5 Apache Flink

Apache Flink [34] is a framework for stateful computations over unbounded and bounded data
streams. Flink provides multiple APIs at different levels of abstraction and offers dedicated li-
braries for common use cases. This framework is very popular and is originally an event stream
processing framework. By the way, it is offering a complex event processing library for pattern
detection called FlinkCep. FlinkCEP is the Complex Event Processing (CEP) library implemented
on top of Flink. It allows you to detect event patterns in an endless stream of events, giving you
the opportunity to get hold of what’s important in your data. [12]

Apache Flink is a well-known Event Stream Processing framework on the market. It includes
Complex Event Processing libraries for processing a stream. Unfortunately, a POC concluded the
fact that Flink is not suitable by itself for determining a complex rule based on multiple streams.
In fact, Flink cannot act as an engine for Complex Event Processing. It remains at the Event
Stream Processing layer. Some Architectures based on Kafka and Flink enable the ability for
Flink doing Complex Event Processing but it still remains doing operation on one single stream
and not from multiple sources at a time.

GitHub link: https://github.com/apache/flink

5.1.6 Perseo

Perseo [25] is an Esper-based Complex Event Processing (CEP) software designed to be fully
NGSIv2-compliant. It uses NGSIv2 as the communication protocol for events, and thus, Perseo is
able to seamless and jointly work with context brokers such as Orion Context Broker.

Perseo is based on Esper as engine for Complex Event Processing and exposes an HTTP REST
Api to add patterns at runtime. It is defined as a CEP platform for Internet of Things. It is there-
fore interesting to test this framework. There is no implementation in a specific programming
language. The implementation will consist of configuration via json payloads for the definition
of events and CEP patterns.

GitHub link: https://github.com/telefonicaid/perseo-fe

5.1.7 Hurence: Logisland

Logisland [20] is a scalable stream processing platform for advanced realtime analytics on top
of Kafka and Spark. LogIsland also supports MQTT and Kafka Streams (Flink being in the

21

https://github.com/kiegroup/drools
https://github.com/apache/flink
https://github.com/telefonicaid/perseo-fe

roadmap). The platform does complex event processing and is suitable for time series analy-
sis. A large set of valuable ready to use processors, data sources and sinks are available.

According to the documentation and the various information found about this framework, Log-
island is not a framework for Complex Event Processing. This solution is mainly oriented Event
Stream Processing but does not allow the detection of complex patterns and to return a higher
level event based on several sources. This framework will not be analyzed.

GitHub link: https://github.com/Hurence/logisland

5.1.8 Clover-Group: TSP

TSP [32] is a Time Series Patterns search engine. This engine uses Complex Event Processing
techniques for searching pattern matches from time series database.

This framework could be interesting to analyze in the context of Complex Event Processing for
Internet of Things but it does not offer a complete documentation. This one is still in progress.
TSP is still in beta version (v0.x.x). It means the project has not enough maturity for analysis
purpose. This framework will not be analyzed in this thesis.

GitHub link: https://github.com/Clover-Group/tsp

5.2 Criteria and Metrics

In order to be able to quantify in a factual way the complexity of the implementation of the
frameworks, it was decided to subdivide them into several categories. A general category will
highlight some more general metrics about the framework and its ecosystem. Then, code metrics
will be used to judge the quality of the code produced. Finally, technical metrics about the
resources used will be described.

5.2.1 General Metrics

In order to be able to determine if a framework is easily usable by a lambda developer, in this
section, some general information about frameworks will be captured. To remain as agnostic as
possible of the developer’s profile, it has been chosen to divide these criteria into 3 main axes
that will be measured by objective metrics.

Documentation

Regarding documentation, wewill try to set a scale to be able to compare frameworks between
them. For this point, we will therefore set different criteria:

• Architecture: Is the architecture and/or the functioning of the framework explained ?

• Quick start: Is there a quick start guide available ?

• CEP Operations: Is there an explanation of the different CEP operators available in the
framework? If so, are there code examples ?

• Concrete use-cases: Does the documentation provide concrete use-cases? If so, are there
code examples ?

Support

22

https://github.com/Hurence/logisland
https://github.com/Clover-Group/tsp

In the context of a development, it may happen that a problem is encountered. This is why it
is important that a framework is provided with some kind of support that allows to unlock the
developer from this kind of situation.

• Personal support: Is there a customized support solution ? If so, by which channels ?

• Community and Forums: Are there channels to communicate with the community? If so,
through which channels ?

Portability

As mentioned earlier in the report, it is important to determine if the chosen framework allows
to be easily deployed on a target machine. In this case, we will determine the portability of the
framework using the following criteria:

• Programming Languages: In which programming languages is it possible to integrate this
framework ?

• Operating system: Under which operating system is it possible to run the code ?

5.2.2 Code Metrics

Regarding code metrics for characterizing code maintainability, it is very difficult to quantify
precise measurements. Many CEP frameworks offer their service in the form of a DSL that is
similar to an SQL query for streams. These DSLs oftenmake it possible to offer some abstraction on
the real complexity of the operations carried out in the background. In this domain, it is therefore
difficult to capture cyclomatic complexity, maintainability index, inheritance depth or coupling
between classes. In addition, some frameworks offer a platform to execute these queries and
extract an executable from them. These metrics will therefore not be taken into account because
these criteria cannot be compared between all the frameworks. However, another metric can be
taken into account:

• Lines of code: How many lines of code are needed to write a pattern ?

5.2.3 Technical Metrics

The last axis concerns purely technical metrics. Measurements of physical resource usage are
very important in order to be able to determine the minimum machine to support a more or
less important load. For this purpose, different test scenarios will be set up to highlight these
consumptions:

• 10 events per second during 2 minutes

• 100 events per second during 2 minutes

• 1000 events per second during 2 minutes

• 10000 events per second during 2 minutes

• 100000 events per second during 2 minutes

For each scenario, the average resource consumption for each followingmetrics will be measured:

• RAM Usage: What is the use of Random Access Memory ?

23

• Disk Usage: What is the use of Disk ?

• CPU Usage: What is the use of Central Processing Unit ?

• GPU Usage: What is the use of Graphics Processing Unit ?

From these statistics, graphs for each CEP pattern can be produced.

5.3 CEP Patterns

To remain agnostic of particular syntaxes of EPLs, we specify the patterns we use to evaluate
CEP/ESP frameworks using UML’s Interaction Diagrams, where the actors are played by the
sensors communicatingwith the CEP/ESP engine, and the interactions represent events transiting
in the IoT system. Each pattern is designed to capture one particular EPL operator, or interesting
combinations.

5.3.1 Water Level Overflow (Selection)

Figure 10 depicts a selection pattern for detecting a river overflow, using a water level sensor.
The sensor periodically sends an event with the current value; when this value exceeds 20, the
system issues an overflow notification event including the river’s name. This pattern is inspired
by the article [7].

Actors: System, Water level sensor
Operations: Selection

WaterLevelSensor

WaterLevelSensor

System

System

Out

Out

WaterLevelEvent e

opt [e.water_level > 20]

Overflow event

Figure 10: Water Level Overflow sequence diagram.

5.3.2 Smart Lightning (Selection, Window, Negation)

Figure 11 depicts the following scenario: When a motion sensor detects a presence, it signals
it to the system. Thus, the system turns on the light. Subsequently, if in a time window (30
seconds) the motion detector no longer detects a presence, the system will switch the light off. If
a presence is detected again during this window, the lamp remains on. This scenario is inspired
by the article [28].

Actors: System, Motion sensor, Lamp
Operations: Selection, Window, Negation

24

MotionSensor

MotionSensor

System

System

Lamp

Lamp

PresenceEvent e1

TurnOnLightEvent e2

PresenceEvent e3

PresenceEvent e4

PresenceEvent e5

PresenceEvent e6

No presence detected for 30 seconds

SwitchOfLightEvent e7

Figure 11: Smart Lightning sequence diagram.

5.3.3 Fire Detection I (Selection, Window, Aggregation)

Figure 12 illustrates a fire detection pattern. Temperature data is collected by a sensor. This data
is sent to the system where an average of this data is calculated for the last 10 minutes. If this
average value is higher than a threshold value (40), an event is sent to the alarm. This pattern is
inspired by the article [23].

TemperatureSensor

TemperatureSensor

System

System

Alarm

Alarm

TemperatureEvent e1

avg(e1.temperature)

opt [temperature_average(T - 10 min.) > 40]

FireDetected e2

Figure 12: Smart Fire Detection I sequence diagram.

5.3.4 Fire Detection II (Selection, Window, Aggregation, Conjunction)

Figure 13 depicts a fire detection pattern with 2 event sources: Smoke and Temperature. Tem-
perature data is collected by a sensor. The smoke sensor will send an event in case of smoke
detection. This data is sent to the system where, within a window of 5 minutes, as soon as the
system detects smoke and the temperature exceeds 45, a notification is sent to the alarm. Each
new event will therefore trigger a notification. This pattern is inspired by the article [23].

25

Within 5 min.

SmokeSensor TemperatureSensor
System Alarm

SmokeSensor TemperatureSensor

System Alarm

SmokeDetectedEvent e1

TemperatureEvent e2

opt [e2.temperature > 45]

FireDetected e3

TemperatureEvent e4

opt [e4.temperature > 45]

FireDetected e5

Within 5 min.

Figure 13: Smart Fire Detection II sequence diagram.

5.3.5 Fire Detection III (Selection, Window, Conjunction, Negation)

Figure 14 illustrates a pattern with 3 event sources: Temperature, Smoke and Rain. Temperature
data is collected by a sensor. The smoke sensor will send an event in case of smoke detection.
The rain sensor will send events when it rains. This data is sent to the system where, within a 5
minute window, as soon as the system detects smoke, the temperature exceeds 45 and there is
no rain, a notification will be sent to the alarm. In addition, each event must be correlated with
the room in the house. Each event therefore returns an additional location data. This pattern is
inspired by the article [23].

Within 5 min.

SmokeSensor TemperatureSensor RainSensor
System Alarm

SmokeSensor TemperatureSensor RainSensor

System Alarm

SmokeDetectedEvent e1

TemperatureEvent e2

RainEvent e3

opt [e2.temperature > 45 && e3.is_raining = false]

FireDetected e4

Within 5 min.

Figure 14: Smart Fire Detection III sequence diagram.

5.3.6 Dangerous Location (Selection, Repetition)

Figure 15 depicts as simple scenario from only one event source: Crash. When the system receives
100 Crash event associated to a location, an event called Dangerous Location is sent. This pattern
is inspired by the article [4].

26

CrashDetector

CrashDetector

System

System

CrashEvent e1

CrashEvent e2

CrashEvent e3

opt [count(e.location) == 100]

DangerousLocationEvent(e.location)

Figure 15: Dangerous Location sequence diagram.

5.3.7 Accident Detection (Selection, Window, Sequence)

Figure 16 illustrates a scenario from 3 event sources: Tire, Crash and Seat. Within 3 seconds,
if the system receives an exploded tire event followed by a crash event and there is no longer a
presence in the seat, an accident event will occur. This pattern is inspired by article [4].

Within 3 sec.

TireSensor CrashDetector SeatSensor
System

TireSensor CrashDetector SeatSensor

System

BlowOutTireEvent e1

CrashEvent e2

DriverLeftSeatEvent e3

AccidentOccuredEvent e4

Within 3 sec.

Figure 16: Accident Detection sequence diagram.

6 Results and Implementations

This section has two objectives. The first objective is to fill in the different metrics raised in the
section 5.2 for each of the analyzed frameworks. The second objective is to give a rather global
feedback on the framework. This feedback will focus primarily on the complexity and/or ease of
implementing the CEP patterns of each framework. The details of code implementation will not
be analyzed in this paper because this is not the goal of this thesis. On the other hand, they can
be found on the GitHub repository https://github.com/warken2903/-IHDCM050-Complex-Ev

ent-Processing-for-IoT in the directory Project for readers who would be interested.

6.1 System Characteristics

All the results to be presented were obtained by running the tests on the following machine:

27

https://github.com/warken2903/-IHDCM050-Complex-Event-Processing-for-IoT
https://github.com/warken2903/-IHDCM050-Complex-Event-Processing-for-IoT

• Operating System: Windows 10 Family 64 bits

• CPU: Intel Core i7-6700HQ @ 2.60GHz

• GPU: NVidia GeForce 970M 3072Mo GDDR5

• RAM: 16.0 Go DDR3

6.2 Esper

6.2.1 Results

General Metrics

This part will highlight some general aspects to take into account when setting up a project with
the Esper framework.
Documentation

• Architecture: The documentation presents in a clear way the functioning of the Esper frame-
work. It also presents the context in which this framework is integrated.

• Quick Start: In the official documentation, the first section is "getting started" which allows
to setup a first project using Esper.

• CEP Operations: In the documentation provided by Esper, each operator is explained and
is illustrated with an example.

• Concrete use-cases: The documentation has two sections dedicated to a set of short or long
use-cases. These examples are accompanied by CEP patterns and explanations. There is
also a FAQ and solution pattern section that allows you to find questions you might have
when writing a CEP pattern.

Support

• Personal support: Esper provides support for two cases: development and production. For
development, support answers how-to questions and does not fix software bugs. They help
for EPL or application developer get the job done but its purpose is not to provide training
and its purpose is not to deliver a fully-developed and tested final solution. It can help only
on the current version of Esper. It is contactable via internet and e-mail. As far as production
support is concerned, 3 formulas are proposed which cover the last year of versions. They
are contactable via web and e-mail. The Silver and Gold package allows you to contact
them by phone.

• Community and Forums: There is a way to signal bugs by opening an issue on GitHub. In
order to communicate with community, it’s possible to ask a question on Stack Overflow.

Portability

• Programming Languages: JVM and .NET compatible languages

• Operating System: For the Java library, Java Virtual Machine compatible operating systems
such as Windows, Linux and MacOS are supported. For .NET libraries, Windows is sup-
ported. It is also possible to integrate Esper with .NET Core and can therefore run on Linux
and MacOS.

28

Code Metrics

Lines of code
As shown in the table 1, a CEP scenario is less than 5 lines long for medium complexity CEP
scenarios. For the Smart Lightning pattern, it has been decomposed into 2 patterns. Lightning
detection is done in 2 lines. The detection of lights off is done in 3 lines.

Accident Detection 4 Lines
Dangerous Location 3 Lines
Fire Detection I 4 Lines
Fire Detection II 4 Lines
Fire Detection III 4 Lines
Smart Lightning 3 + 2 Lines

Water Level Overflow 3 Lines

Table 1: Line of codes for Esper CEP Pattern

Technical Metrics

This section aims to measure the technical metrics of the Esper framework. CPU, RAM and disk
metrics have been measured. Regarding the GPU, this framework does not use the graphics card
to process events.

CPU Usage:

Regarding the use of the processor, it remains stable despite the intensity of the received event.
The average usage is below 22%. We can notice on the figure 17 that there is an increase in
processor usage for the Fire Detection III pattern. The other patterns tend towards the same
consumption.

10 100 100
0

100
00

100
000

1

2

3

Event/s

CP
U
Us

ag
e(
%
)

Accident Detection
Dangerous Location
Fire Detection I
Fire Detection II
Fire Detection III
Smart Lightning
Water Level Overflow

Figure 17: Esper CPU Usage

29

RAM Usage:

Regarding the use of RAM, Esper does not show any significant increase in the intensity of events
received. The figure 18 illustrates this well and shows that the RAM memory used is stagnating
at 1.5GB.

10 100 100
0

100
00

100
000

500

1,000

1,500

2,000

Event/s

RA
M

Us
ag
e(
M
B)

Accident Detection
Dangerous Location
Fire Detection I
Fire Detection II
Fire Detection III
Smart Lightning
Water Level Overflow

Figure 18: Esper RAM Usage

Disk Usage:

Regarding disk usage, figure 19 illustrates that disk usage increases with the rate at which events
are sent. For most patterns, this usage tends to be 10MB. However, for the Smart Lightning
pattern, this usage tends to 25MB.

10 100 100
0

100
00

100
000

10

20

30

Event/s

D
isk

Us
ag
e(
M
B)

Accident Detection
Dangerous Location
Fire Detection I
Fire Detection II
Fire Detection III
Smart Lightning
Water Level Overflow

Figure 19: Esper Disk Usage

30

6.2.2 Implementation

Esper has a very complete documentation. There are really a lot of very concrete examples with
implementation details. It’s quite easy for a developer to understand and use it to adapt it to
his business rules. There’s a FAQ section that answers a lot of questions you may have dur-
ing implementation. However, the repository also has examples but these are not very clear.
The maven package structure is very particular and it is difficult to make them work. (link:
https://github.com/espertechinc/esper/tree/master/examples)

Another problem is that there are 8 major versions of Esper. This implies that problems raised by
the community, on Stack Overflow for example, are not necessarily latest. It is therefore difficult
to find an answer to a question in the latest version. Regarding development time, 15 hours had
to be invested in setting up the project and implementing the different CEP patterns. For devel-
opers who have a knowledge of the EPLs, there will be no difficulty to implement them in Esper.

Overall, Esper facilitates software development that requires Complex Event Processing tech-
niques. Despite the 8 major versions of this framework, this one has a rather fast handling thanks
to the numerous examples. The documentation is also updated each time compared to the current
version. The documentation is also versioned and it is therefore possible to find the documenta-
tion corresponding to the version used.

6.3 Siddhi

6.3.1 Results

General Metrics

This part will highlight some general aspects to take into account when setting up a project with
the Siddhi framework.
Documentation

• Architecture: On Siddhi’s official website, the high level architecture is explained. There-
fore, it is easy to see where Siddhi can fit into an existing environment.

• Quick Start: Siddhi’s official website has a section dedicated to a quick start guide that
explains how to use Siddhi for the first time. In other sections, the different ways to use
Siddhi are also explained in detail. (such as a library, Docker, etc.)

• CEP Operations: The documentation provides an exhaustive list of all operators available
with Siddhi with examples. All the concepts needed to use this framework are also ex-
plained.

• Concrete use-cases: Siddhi’s official website exposes some specific use-cases. Each of these
use-cases is explained with a step-by-step methodology to meet the need initially stated.

Support

• Personal support: There is no personal support provided by Siddhi directly. On the other
hand, the company WSO2, which is Siddhi’s main contributor, offers personal support.

• Community and Forums: All communication with Siddhi is done through different public
tools. There are two Google groups, one for developers/contributors and the other is ded-
icated to questions from Siddhi users. The community is also available via Slack. For any
question, it is possible to call upon the community via GitHub issues as well as via Stack
Overflow.

31

https://github.com/espertechinc/esper/tree/master/examples

Portability

• Programming Languages: Java and Python as library

• Operating System: Windows, Linux and MacOS. Siddhi applications are easily containeriz-
able and can therefore run on OSes that support containerization.

Code Metrics

Lines of code
As shown in the table 2, a CEP scenario is a maximum of 5 lines for CEP scenarios of medium
complexity. For the Smart Lightning pattern, it has been decomposed into 2 patterns. Lightning
detection is done in 2 lines. The detection of lights off is done in 3 lines.

Accident Detection 3 Lines
Dangerous Location 4 Lines
Fire Detection I 4 Lines
Fire Detection II 5 Lines
Fire Detection III 5 Lines
Smart Lightning 3 + 2 Lines

Water Level Overflow 3 Lines

Table 2: Line of codes for Siddhi CEP Pattern

Technical Metrics

This section aims to measure the technical metrics of the Siddhi framework. CPU, RAM and disk
metrics have been measured. Regarding the GPU, this framework does not use the graphics card
to process events.

CPU Usage:

Concerning the Siddhi framework, the figure 20 indicates that CPU consumption remains mostly
stable (below 1%). However, we can notice that for the Fire Detection III pattern, the CPU con-
sumption increases up to 2.5% from 1000 events per second.

32

10 100 100
0

100
00

100
000

1

2

3

Event/s

CP
U
Us

ag
e(
%
)

Accident Detection
Dangerous Location
Fire Detection I
Fire Detection II
Fire Detection III
Smart Lightning
Water Level Overflow

Figure 20: Siddhi CPU Usage

RAM Usage:

RAM usage varies between 500MB and 1.1GB. (see figure 21) There is no constant growth as a
function of event sending intensity. RAM usage remains stable.

10 100 100
0

100
00

100
000

500

1,000

1,500

2,000

Event/s

RA
M

Us
ag
e(
M
B)

Accident Detection
Dangerous Location
Fire Detection I
Fire Detection II
Fire Detection III
Smart Lightning
Water Level Overflow

Figure 21: Siddhi RAM Usage

Disk Usage:

In terms of disk usage, there is a slight increase depending on the patterns used. As shown in
figure 22, this consumption remains below 10 MB.

33

10 100 100
0

100
00

100
000

10

20

30

Event/s

D
isk

Us
ag
e(
M
B)

Accident Detection
Dangerous Location
Fire Detection I
Fire Detection II
Fire Detection III
Smart Lightning
Water Level Overflow

Figure 22: Siddhi Disk Usage

6.3.2 Implementation

Siddhi’s Documentation is complete and explains in detail the available operators with an as-
sociated example. Siddhi offers a lot of tools including a graphical tool to facilitate the writing
of EPLs. The DSL proposed by Siddhi is really powerful because only from a .siddhi definition,
which actually consists in the definition of patterns with also the definition of output stream, an
application can be created. There is a tool that allows to launch this file as a "microservice", you
can link it to a database, define the protocol and format of the output streams. The different
deployment modes are explained very clearly in the documentation and videos for this purpose
are available.

Overall, Siddhi is very intuitive to use and offers easy integration with third party services by
being agnostic in the implementation of the .siddhi file. This makes it easier to change the under-
lying infrastructure without changing the code. However, there is no template for the embedded
library. This framework is mainly focused on running the .siddhi file as a "microservice". Their
eco-system provides what is needed in the development of a CEP project. Regarding development
time, 8 hours had to be invested in setting up the project and implementing the different CEP
patterns.

6.4 Drools

6.4.1 Results

General Metrics

This part will highlight some general aspects to take into account when setting up a project with
the Drools framework.
Documentation

• Architecture: The Drools documentation presents the objectives of the framework. How-
ever, it is very complicated to find your way around in the documentation. There are many
sub-projects and it is sometimes complicated to know where to look.

34

• Quick Start: There is no official Quick Start Guide for Drools Fusion.

• CEP Operations: Drools Fusion CEP operations are described in the documentation with
corresponding examples. All important concepts for Complex Event Processing in Drools
are also explained.

• Concrete use-cases: There is no concrete use-cases. On the GitHub repository, there’s only
some code examples but they are complex to make them work on local machine. The way
to compile them is not standard and the scripts given weren’t working during tests.

Support

• Personal support: There is paid personal support available. For this service, it is possible
to contact them via the web or via phone. They offer 2 different formulas, one of which
proposes contact by phone. (https://www.drools.org/product/services.html)

• Community and Forums: To ask a question to the community, it is possible to go through
the Stack Overflow platform. If you want to report a bug, you can create an issue in Jira.
For contribution to the project, 2 Google Groups are available. To follow the development
discussions, a Zulip chat is also available.

Portability

• Programming Languages: Java

• Operating System: Windows, Linux, MacOS

Code Metrics

Lines of code
As shown in the table 3, a CEP scenario is less than 5 lines for medium complexity CEP
scenarios. For the Smart Lightning pattern, it has been decomposed into 2 patterns. Lightning
detection is done in 1 line. The detection of lights off is done in 2 lines.

Accident Detection 3 Lines
Dangerous Location 4 Lines
Fire Detection I 4 Lines
Fire Detection II 3 Lines
Fire Detection III 4 Lines
Smart Lightning 2 + 1 Lines

Water Level Overflow 1 Line

Table 3: Line of codes for Drools CEP Pattern

Technical Metrics

This section aims to measure the technical metrics of the Drools framework. CPU, RAM and disk
metrics have been measured. Regarding the GPU, this framework does not use the graphics card
to process events.

CPU Usage:

35

Concerning the Drools framework, its CPU usage increases significantly depending on the number
of events received. The figure 23 shows that there is also a difference in CPU usage depending on
the pattern. For 100,000 events per second, the average CPU consumption rises to 13%. However,
the application saturates at 1000 events per second for Fire Detection II and III patterns.

10 100 100
0

100
00

100
000

5

10

15

Event/s

CP
U
Us

ag
e(
%
)

Accident Detection
Dangerous Location
Fire Detection I
Fire Detection II
Fire Detection III
Smart Lightning
Water Level Overflow

Figure 23: Drools CPU Usage

RAM Usage:

Concerning the Drools framework, its use in RAM remains mostly stable at 1GB. However, as
shown on the figure 24, Fire Detection II and III patterns show a very large increase from 1000
events per second. (> 3.0GB) This makes the application unusable.

10 100 100
0

100
00

100
000

1,000

2,000

3,000

4,000

Event/s

RA
M

Us
ag
e(
M
B)

Accident Detection
Dangerous Location
Fire Detection I
Fire Detection II
Fire Detection III
Smart Lightning
Water Level Overflow

Figure 24: Drools RAM Usage

Disk Usage:

36

Regarding disk usage, it remains stable below 10MB for most patterns. For Fire Detection II
and III patterns, there is a very large increase to 100 events per second (cf. 25) After that, the
application is unusable for these patterns. This is why the disk usage decreases.

10 100 100
0

100
00

100
000

10

20

30

40

Event/s

D
isk

Us
ag
e(
M
B)

Accident Detection
Dangerous Location
Fire Detection I
Fire Detection II
Fire Detection III
Smart Lightning
Water Level Overflow

Figure 25: Drools Disk Usage

6.4.2 Implementation

Drools offers an approach quite different from other Complex Event Processing frameworks.
Moreover, it is a rule engine that offers Complex Event Processing functionalities. The detec-
tion system is not designed like the one of Esper or Siddhi. The EPL language used by Drools is a
mixture of Java and semantics added by Drools. It does not look like a SQL-like language as seen
for Esper or Siddhi. This gives more flexibility to Drools because it is possible to use Java classes
if you need to do particular operations that would be complicated to do in SQL.

The documentation of Drools is very extensive because Drools offers a lot of external tools and
libraries. It is sometimes difficult to find the information you are looking for in the documenta-
tion. During a first implementation, it is also quite complicated to find out how to run the library
because there is no quick start guide. However, there are many public repositories where the
community has published examples. It took 18 hours to set up the project and implement the
CEP patterns.

In addition, this framework poses certain problems. One problem with this framework is that
it will keep in memory the events and then it will reapply the rules on this stream. It will there-
fore for each execution, re-interpret the rules and thus potentially return events already passed.
This problem occurs when we use a sliding time window. There is no intermediate state that
Drools will keep in order not to re-apply rules that have already been sent. The Drools frame-
work does not seem really adapted to apply the rules to each new event received. If we want to
be able to do this, we must think about setting up a system of idempotence at the level of the
action to send and / or at the application level. (e.g. with a unique identifier)

37

6.5 Perseo

6.5.1 Results

General Metrics

This part will highlight some general aspects to take into account when setting up a project with
the Drools framework.
Documentation

• Architecture: The documentation explains clearly the big picture of Perseo. It shows the
interactions between the different components.

• Quick Start: In the Perseo documentation, there is a section dedicated to deployment. The
guide is well explained but is unfortunately not functional. For deployment via Docker,
some parameters are no longer updated and therefore the given configuration is not taken
into account. There is also no clear guide that explains how to configure the context broker
with rules, events, etc.

• CEP Operations: The Complex Event Processing engine used is Esper. The official Esper
documentation explains very clearly the different operators. However, Perseo has some
peculiarities that should be better highlighted. It is not always clear what is possible or not
to do with this framework.

• Concrete use-cases: There are no concrete use cases.

Support

• Personal support: There is no personal support.

• Community and Forums: It’s possible to raise a question on Stack Overflow or open an issue
on GitHub if a bug is detected.

Portability

• Programming Languages: There is no embedded library. Perseo rules are based on Esper.

• Operating System: Linux, Windows, MacOs and any OS supporting containerization

Code Metrics and Technical Metrics

It is not possible to measure these 2 categories of metrics for this framework. The rules based
on Esper are not interpreted correctly. (cf. section 6.5.2)

6.5.2 Implementation

The environment is very tedious to set up. Some places in the documentation are not up to date.
This leads to confusion when setting up the containerised environment because some parameters
have been renamed and the old ones are not taken into account. This leads to a lot of questions
and searching in forums for only the bootstrapping of services. There are a lot of services and
therefore dependencies, the architecture should be better explained in the documentation.

The rules are based on Esper. So the formalism is very similar, the only downside is that you
have to cast the types to be able to compare the data and the rule can be valid. The semantics are
really complicated to understand, the initial project has no good documentation. It is confusing,

38

the initial project is maintained but documentation is provided by a third party who forked the
project.

Despite this, all the services in the stack provided in the documentation could be deployed cor-
rectly after manymanipulations and parameter modifications. However, when first implementing
theWater Level Overflow pattern, which is a very simple pattern. The realized pattern is validated
by the application but it is never triggered when sending an event. The ">" operator does not
seem to work. When an event with a water level greater than the guard is sent, the rule is not
executed. By removing this condition, the rule is triggered. This prevented the implementation
of the other CEP patterns. In order to get to this stage, it took 20 hours to reach a result that is
not conclusive. Different versions have been tested but none of them were conclusive.

7 Interpretation and Discussion of Results

The objective of this section is to compare the different frameworks analysed on the basis of
the 3 axes defined in the criteria. With the results obtained, it will be possible to answer the
problematic posed in the context of this thesis.

7.1 General Metrics

Concerning the documentation, on the table 4 appears that the Esper and Siddhi framework offer
a very high quality of documentation. As for Drools, it has a good documentation on the general
architecture and on the CEP operators. On the other hand, the handling is more complex because
it does not provide a Quick Start guide and concrete use cases. Perseo has a good explanation
of the architecture and has a Quick Start guide. Unfortunately, this is not updated and therefore
leads to errors on the part of the developer. The documentation on the Perseo EPL language is
also not very comprehensive. Although this framework uses Esper as EPL language, they add a
part of generic that is not well documented. Perseo also does not provide a concrete use case.

Concerning the support, the table 4 shows that Esper, Siddhi and Drools offer practically the
same quality of support. The difference is in the communication with the community. Esper has
only 2 channels of communication with the community while Siddhi and Drools offer more than
3. On the other hand, Perseo does not offer personal support and like Esper, Perseo offers only 2
means of communication with the community.

Concerning portability, the table 4 indicates that all frameworks are supported by many oper-
ating systems. Regarding programming languages, Esper and Siddhi are compatible with 2 pro-
gramming languages while Drools offers only one. For Perseo, it’s quite different because there
is no embedded library.

In summary, Esper and Siddhi are the 2 frameworks that offer a very good documentation and
thus a rather simple and fast handling. Both frameworks offer good support. Siddhi offers slightly
more communication with the community than Esper. Finally, both Esper and Siddhi offer the
same level of quality regarding portability.

39

Esper Siddhi Drools Perseo
Documentation
Architecture

Quick Start Not fully
functional

CEP Operations Not exhaustive
Concrete Use-Cases

Support

Personal Support WSO2
support

Community
and Forums 2 >3 >3 2

Portability
Programming
Languages 2 2 1 No embedded

Library
Operating System >=3 >=3 >=3 >=3

Table 4: General Metrics Summary

7.2 Code Metrics

Concerning the lines of code, the table 5 shows very clearly that there are no drastic differences
between frameworks. For the most part, Drools takes one or two lines of code less than its com-
petitors. However, this difference is very small and is not very useful in the choice between these
3 frameworks.

In summary, Esper, Siddhi and Drools offer the same line load whatever the pattern.

Esper Siddhi Drools
Accident Detection 4 3 3
Dangerous Location 3 4 4
Fire Detection I 4 4 4
Fire Detection II 4 5 3
Fire Detection III 4 5 4
Smart Lightning 5 5 3

Water Level Overflow 3 3 1

Table 5: Code Metrics Summary

7.3 Technical Metrics

In order to have a better vision on the technical metrics, it is interesting to make several summary
tables per resource with a summary of the results obtained by framework.

40

Regarding CPU consumption, we notice on the table 6 that Drools has a higher consumption than
the other two frameworks. It should also be taken into account that when a high load is reached,
Drools is no longer usable. For Fire Detection II and III patterns, Drools doesn’t respond anymore
and consumes a lot of resources. Esper and Siddhi have a relatively equivalent consumption.
Siddhi tends to consume slightly less CPU except for the Fire Detection III pattern.

In summary, Esper and Siddhi have a CPU consumption that is low and remains stable even
under load. Drools does not prevent itself from a big load increase.

Esper Siddhi Drools
Accident Detection 1.0 % 0.7 % 4.2 %
Dangerous Location 0.9 % 0.3 % 7.1 %
Fire Detection I 1.2 % 0.7 % 3.0 %
Fire Detection II 1.2 % 0.8 % 9.6 %
Fire Detection III 1.7 % 2.6 % 12.2 %
Smart Lightning 1.7 % 0.7 % 4.5 %

Water Level Overflow 1.0 % 0.5 % 0.8 %

Table 6: Maximum CPU Usage Summary

Concerning the RAM consumption, we notice on the table 7 that Drools has the highest peak
RAM usage. However, apart from Fire Detection II and III patterns, Drools has a lower RAM
consumption than Esper. Regarding the Siddhi framework, the maximum RAM used is 1005 MB,
which is 500 MB less than Esper.

In summary, the framework consuming the least amount of RAM is Siddhi. Esper and Drools
consume a bit more RAM but their consumption is still acceptable.

Esper Siddhi Drools
Accident Detection 1520 MB 1005 MB 1040 MB
Dangerous Location 1430 MB 744.8 MB 1220 MB
Fire Detection I 1490 MB 619.4 MB 1130 MB
Fire Detection II 1510 MB 591.5 MB 3030 MB
Fire Detection III 1520 MB 523.3 MB 3570 MB
Smart Lightning 1520 MB 482.1 MB 667.6 MB

Water Level Overflow 1470 MB 426 MB 607.1 MB

Table 7: Maximum RAM Usage Summary

Concerning disk consumption, we notice on the table 8 that most of the consumption is below
10 MB. However, for the Drools framework, the Fire Detection II pattern had a consumption of
2820 MB. As already mentioned, Fire Detection II and III patterns are unstable with the Drools
framework when the received events load is high.

Globally, Siddhi uses the least amount of disk resources in general. Esper has a peak of 24.2MB
but the load is well supported with heavy workloads.

41

Esper Siddhi Drools
Accident Detection 9.3 MB 5.9 MB 7.2 MB
Dangerous Location 0.0 MB 5.1 MB 0.0 MB
Fire Detection I 8.2 MB 9.9 MB 3.0 MB
Fire Detection II 9.2 MB 3.2 MB 2820 MB
Fire Detection III 8.6 MB 7.6 MB 31.0 MB
Smart Lightning 24.2 MB 7.4 MB 1.5 MB

Water Level Overflow 2.3 MB 2.6 MB 0.3 MB

Table 8: Maximum Disk Usage Summary

42

8 Conclusion

The purpose of this thesis was to compare different frameworks of Complex Event Processing
Open-Source still maintained today, based on a grid of metrics that has 3 axes: getting started,
maintainability and resource usage.

First, we had to find a generic way to compare frameworks between them. It turns out that
the solution that was chosen was to define scenarios that each framework should be able to re-
spond to. Then, it was necessary to define metrics for each of the 3 axes mentioned above. In
order to be able to capture metrics regarding resource consumption, it was decided to define test
scenarios with load scaling. Once this part of the definition was completed, it was possible to
realize the implementations of the scenarios in the selected frameworks as well as to realize the
load tests. Once the tests were completed, the general metrics as well as the code metrics were
captured.

With all these results, it was possible to highlight the strengths and weaknesses of each frame-
work according to these 3 axes. The information that emerged from the analysis of the results
will help to answer the various problem questions stated at the beginning of this paper:

Which framework allows to develop an IoT solution in the easiest way ? The Esper and Siddhi
frameworks both address this problematic.

Which framework allows to develop the most maintainable IoT solution ? On this aspect, Esper,
Siddhi and Drools cannot be distinguished. Each of these frameworks offers the same quality of
maintainability.

Which framework allows to develop an IoT solution that uses the least amount of resources ? The
Siddhi framework unanimously uses the least amount of CPU, RAM and Disk resources. Note that
the Esper framework uses slightly more CPU and RAM than Siddhi but still remains powerful and
stable.

Among the improvements that could be made in this research is the addition of a 4th axis con-
cerning the performance of frameworks that could be very interesting. Indeed, it is an important
criterion in the scope of a project. This 4th dimension could refine the results of the research. In
addition, an improvement in the metrics regarding the maintainability aspect of the code could
have been achieved. The number of lines of code is not necessarily the only factor in code main-
tainability complexity.

In future research, the analysis of proprietary Complex Event Processing frameworks with the
same analysis grid as the one used in this research could be interesting to conduct. Indeed, these
two works could be complementary and guide users who want to start a project involving Com-
plex Event Processing. In addition, further work on Event Stream Processing platforms could be
carried out. It would be interesting to see how ESP frameworks with Complex Event Processing
mechanisms can respond to the patterns proposed in this thesis.

43

List of Figures

1 Generic Architecture . 8
2 Simple IoT Architecture . 9
3 CEP Pattern Decision Reaction . 10
4 Cloud Computing . 11
5 Fog Computing . 12
6 Semantic Publish Subscribe Architecture . 14
7 Sequence diagram of Smart Lightning . 14
8 Distributed Complex Event Processing . 16
9 Healthcare Fog-Computing . 16
10 Water Level Overflow sequence diagram . 24
11 Smart Lightning sequence diagram . 25
12 Smart Fire Detection I sequence diagram . 25
13 Smart Fire Detection II sequence diagram . 26
14 Smart Fire Detection III sequence diagram . 26
15 Dangerous Location sequence diagram . 27
16 Accident Detection sequence diagram . 27
17 Esper CPU Usage . 29
18 Esper RAM Usage . 30
19 Esper Disk Usage . 30
20 Siddhi CPU Usage . 33
21 Siddhi RAM Usage . 33
22 Siddhi Disk Usage . 34
23 Drools CPU Usage . 36
24 Drools RAM Usage . 36
25 Drools Disk Usage . 37

References

[1] M. Bakhouya et al. “Towards a context-driven platform using IoT and big data technologies
for energy efficient buildings”. In: 2017 3rd International Conference of Cloud Computing
Technologies and Applications (CloudTech). Oct. 2017, pp. 1–5. doi: 10.1109/CloudTech.
2017.8284744.

[2] S. R. Bhandari and N. W. Bergmann. “An internet-of-things system architecture based
on services and events”. In: 2013 IEEE Eighth International Conference on Intelligent Sen-
sors, Sensor Networks and Information Processing. Apr. 2013, pp. 339–344. doi: 10.1109/
ISSNIP.2013.6529813.

[3] Roman Bukarev. IoT Mashup of Sensors, Cloud Software, and Machine Learning on the MapR
Data Platform. 2018. url: https://mapr.com/blog/cool-fitness-tracker-using-
iot-sensors-cloud-ml-on-mapr (visited on 08/02/2019).

[4] L. Burgueño, J. Boubeta-Puig, and A. Vallecillo. “Formalizing Complex Event Processing
Systems in Maude”. In: IEEE Access 6 (2018), pp. 23222–23241.

[5] C. Y. Chen et al. “Complex event processing for the Internet of Things and its applications”.
In: 2014 IEEE International Conference on Automation Science and Engineering (CASE). Aug.
2014, pp. 1144–1149. doi: 10.1109/CoASE.2014.6899470.

[6] Complex Event Processing : La résurrection ? url: https://www.sentelis.com/articles/
complex-event-la-r%C3%A9surrection-11-4 (visited on 07/12/2020).

44

https://doi.org/10.1109/CloudTech.2017.8284744
https://doi.org/10.1109/CloudTech.2017.8284744
https://doi.org/10.1109/ISSNIP.2013.6529813
https://doi.org/10.1109/ISSNIP.2013.6529813
https://mapr.com/blog/cool-fitness-tracker-using-iot-sensors-cloud-ml-on-mapr
https://mapr.com/blog/cool-fitness-tracker-using-iot-sensors-cloud-ml-on-mapr
https://doi.org/10.1109/CoASE.2014.6899470
https://www.sentelis.com/articles/complex-event-la-r%C3%A9surrection-11-4
https://www.sentelis.com/articles/complex-event-la-r%C3%A9surrection-11-4

[7] Gianpaolo Cugola and AlessandroMargara. “TESLA: A formally defined event specification
language”. In: Jan. 2010, pp. 50–61. doi: 10.1145/1827418.1827427.

[8] Decision. url: https://github.com/Stratio/Decision/blob/master/README.md
(visited on 07/02/2020).

[9] R. Deng et al. “Towards power consumption-delay tradeoff byworkload allocation in cloud-
fog computing”. In: 2015 IEEE International Conference on Communications (ICC). June
2015, pp. 3909–3914. doi: 10.1109/ICC.2015.7248934.

[10] Drools. url: https://github.com/kiegroup/drools/blob/master/README.md (visited
on 07/02/2020).

[11] Esper. url: http://www.espertech.com/esper/ (visited on 07/02/2020).
[12] FlinkCEP - Complex event processing for Flink. url: https://ci.apache.org/projects/

flink/flink-docs-stable/dev/libs/cep.html (visited on 07/02/2020).
[13] D. Giusto et al. The Internet of Things. Springer, 2010.
[14] Manufacturers Automation Inc. Should You Consider Fog Computing for Your IIoT? Moxa.

2017. url: https://www.manuauto.com/category/moxa/page/4 (visited on 08/02/2019).
[15] A. A. Ismail, H. S. Hamza, and A. M. Kotb. “Performance Evaluation of Open Source IoT

Platforms”. In: 2018 IEEE Global Conference on Internet of Things (GCIoT). Dec. 2018, pp. 1–
5. doi: 10.1109/GCIoT.2018.8620130.

[16] Rafiullah Khan et al. “Future Internet: The Internet of Things Architecture, Possible Appli-
cations and Key Challenges”. In: Dec. 2012, pp. 257–260. isbn: 978-1-4673-4946-8. doi:
10.1109/FIT.2012.53.

[17] F. A. Kraemer et al. “Fog Computing in Healthcare–A Review and Discussion”. In: IEEE
Access 5 (2017), pp. 9206–9222. issn: 2169-3536. doi: 10.1109/ACCESS.2017.2704100.

[18] An Lam and Øystein Haugen. “Complex Event Processing in ThingML”. In: vol. 9959. Oct.
2016, pp. 20–35. isbn: 978-3-319-46612-5. doi: 10.1007/978-3-319-46613-2_2.

[19] Edward A. Lee. “Cyber Physical Systems: Design Challenges”. In: (Jan. 2008).
[20] Logisland. url: https://github.com/Hurence/logisland (visited on 07/12/2020).
[21] David Luckham.What’s the Difference Between ESP and CEP? 2019. url: https://complexevents.

com/2019/07/15/whats- the- difference- between- esp- and- cep- 2/ (visited on
07/02/2020).

[22] David Luckham and Roy W Schulte. “Event Processing Glossary - Version 2.0”. In: (2011).
[23] Kaya Mahir and Çetin-Kaya Yasemin. “Complex Event Processing Using IoT Devices Based

On Arduino”. In: Dec. 2017, pp. 13–24. doi: 10.5121/ijccsa.2017.7602..
[24] D. Mijić and E. Varga. “Unified IoT Platform Architecture Platforms as Major IoT Building

Blocks”. In: 2018 International Conference on Computing and Network Communications
(CoCoNet). Aug. 2018, pp. 6–13. doi: 10.1109/CoCoNet.2018.8476881.

[25] Perseo context aware cep. url: https://perseo.readthedocs.io/en/latest/#perseo-
context-aware-cep (visited on 07/02/2020).

[26] Kai Petersen et al. “Systematic Mapping Studies in Software Engineering”. In: Proceedings
of the 12th International Conference on Evaluation and Assessment in Software Engineering
17 (June 2008).

[27] D. Robins. “Second International Workshop on Education Technology and Computer Sci-
ence”. In: 2010.

45

https://doi.org/10.1145/1827418.1827427
https://github.com/Stratio/Decision/blob/master/README.md
https://doi.org/10.1109/ICC.2015.7248934
https://github.com/kiegroup/drools/blob/master/README.md
http://www.espertech.com/esper/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://www.manuauto.com/category/moxa/page/4
https://doi.org/10.1109/GCIoT.2018.8620130
https://doi.org/10.1109/FIT.2012.53
https://doi.org/10.1109/ACCESS.2017.2704100
https://doi.org/10.1007/978-3-319-46613-2_2
https://github.com/Hurence/logisland
https://complexevents.com/2019/07/15/whats-the-difference-between-esp-and-cep-2/
https://complexevents.com/2019/07/15/whats-the-difference-between-esp-and-cep-2/
https://doi.org/10.5121/ijccsa.2017.7602.
https://doi.org/10.1109/CoCoNet.2018.8476881
https://perseo.readthedocs.io/en/latest/#perseo-context-aware-cep
https://perseo.readthedocs.io/en/latest/#perseo-context-aware-cep

[28] L. Roffia et al. “A Semantic Publish-Subscribe Architecture for the Internet of Things”. In:
IEEE Internet of Things Journal 3.6 (Dec. 2016), pp. 1274–1296. issn: 2327-4662. doi:
10.1109/JIOT.2016.2587380.

[29] I. Schmerken. Deciphering the myths around complex event processing. Wall Street & Tech-
nology, May 2008.

[30] W. Shi et al. “Edge Computing: Vision and Challenges”. In: IEEE Internet of Things Journal
3.5 (Oct. 2016), pp. 637–646. issn: 2327-4662. doi: 10.1109/JIOT.2016.2579198.

[31] Siddhi Core Libraries. url: https://github.com/siddhi-io/siddhi/blob/master/
README.md (visited on 07/02/2020).

[32] TSP. url: https://github.com/Clover-Group/tsp (visited on 07/12/2020).
[33] Paul Vincent. CEP: more than event patterns. 2009. url: https://www.tibco.com/blog/

2009/12/18/cep-more-than-event-patterns (visited on 07/28/2019).
[34] What is Apache Flink?—Applications. url: https://flink.apache.org/flink-applications.

html (visited on 07/02/2020).
[35] wso2 Complex Event Processor. url: https://github.com/wso2-attic/product-cep/

blob/master/README.md (visited on 07/02/2020).
[36] Wu Y et al. “RFID enabled traceability networks: A survey”. In: (2011).

46

https://doi.org/10.1109/JIOT.2016.2587380
https://doi.org/10.1109/JIOT.2016.2579198
https://github.com/siddhi-io/siddhi/blob/master/README.md
https://github.com/siddhi-io/siddhi/blob/master/README.md
https://github.com/Clover-Group/tsp
https://www.tibco.com/blog/2009/12/18/cep-more-than-event-patterns
https://www.tibco.com/blog/2009/12/18/cep-more-than-event-patterns
https://flink.apache.org/flink-applications.html
https://flink.apache.org/flink-applications.html
https://github.com/wso2-attic/product-cep/blob/master/README.md
https://github.com/wso2-attic/product-cep/blob/master/README.md

