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Chapter 1

Introduction

1.1 What is (modern) coexistence theory?

1.1.1 What does (modern) coexistence theory investigate?

Coexistence theory, including modern coexistence theory (MCT), aims to un-
derstand, explain, and predict the persistence of species observed in nature.
Coexistence theory assumes that the species diversity observed in nature is
not a mere co-occurrence, but rather that at least some species coexist. That
is, it assumes that the species densities do not follow a long term trend, but
rather that they have a stable distribution, i.e. species do not go extinct. It
also implicitly assumes that the environmental conditions, similar to species
densities, may follow short-term fluctuations, either periodically or chaotically,
but do not follow long term trends either.

Coexistence theory does not explain the global species pool via speciation,
or how regional species pools arise via environmental filtering or dispersal,
but takes species pool diversity as a given. Generally, it used to ask the ques-
tion: out of the species currently present locally, which species combination
will persist indefinitely? Few papers, however, investigate how evolutionary
adaptations in species traits can affect species persistence (Hart et al., 2019).

Coexistence theory is typically applied to species from the same guild. The
term guild is not defined precisely, rather it is a term that is understood in-
tuitively. Roughly, the term describes species that are limited by the same
limiting factors and occupy similar niches. Examples of guilds are species
from the same trophic level; phytoplankton competing for nutrients and light;
terrestrial plants; consumers; or top predators. Species can be from the same
guild, yet have completely different phylogeny, e.g. cyanobacteria and algae
typically belong to the same guild. Coexistence theory is usually applied at the
species level, but could just as well be applied to the family or subspecies level.

1



2 CHAPTER 1. INTRODUCTION

As species belonging to the same guild they compete for common resources
and therefore interspecific interactions are predominantly negative. However,
species from the same guild can also interact positively, e.g. by facilitating each
other directly or via common mutualists (Johnson & Bronstein, 2019). Coexis-
tence theory rarely focuses on entire foodwebs, rather it focuses on one specific
trophic level within a foodweb and explains how diversity within this trophic
level is maintained, assuming that species from other trophic levels cannot go
extinct (Chesson & Kuang, 2008). However, recent advancements are changing
this restriction of coexistence theory to include facilitative interactions (Bimler
et al., 2018; Spaak & De Laender, 2020) and focus on entire foodwebs (Godoy
et al., 2018; Serván et al., 2018).

1.1.2 What is modern coexistence theory?

Given this focus of coexistence theory, there are many different community
models to be analysed (Lawton, 1999). Sub-branches have emerged that have
investigated in detail the possible outcomes of species interactions, most no-
tably resource competition theory (Tilman, 1982) and Lotka-Volterra models
(Lotka, 1920; Gause, 1934; Volterra, 1926). While these sub-branches lead to a
detail understanding of the given community models, they usually lack gen-
eral community-independent insights. In contrast, MCT does not focus on
any specific community model, but proposes a framework with which a large
class of communities model can be analysed in a unified way. To do so, MCT
breaks down all mechanisms at play into two groups of mechanisms, stabi-
lizing/equalizing mechanisms, and niche/fitness differences (Chesson, 2000),
which are discussed below in more detail.

This generality is achieved with invasion analysis. To assess whether all
species of a community coexist, one sets the density of the focal species to zero
and tests whether this focal species can recover. If all species can invade, the
species are assumed to coexist. Decomposing the invasion growth rates into
various parts gives insight into why species coexist.

Invasion analysis is both the key advantage of MCT as well as its major
drawback. For any community in which invasion analysis correctly predicts
coexistence, MCT can decompose the invasion growth rates to understand why
species coexist. This leads to a very general theory, but one that is of no use for
any community for which the inavsion growth rates do not correctly predict
coexistence (Barabás et al., 2018; Grilli et al., 2017; Schreiber et al., 2019)

The defining papers of MCT are: Chesson (2000), which is arguably the
founding paper of MCT and introduces the concepts of stabilizing and equal-
izing mechanisms and how they can be used to understand coexistence. Adler
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et al. (2007) explains how niche and fitness differences can be used to unify
neutral theory (Hubbell, 2001) with modern coexistence theory, as neutral the-
ory is the special case where both niche and fitness differences are absent.
HilleRisLambers et al. (2012) integrates niche and fitness differences into com-
munity assembly and review which experiments have manipulated niche or fit-
ness differences. Barabás et al. (2018) reviews, and to some extent reinterprets,
Chesson’s coexistence theory based on temporal and spatial fluctuations.

1.1.3 How modern coexistence theory relates
to other fields of community ecology

MCT investigates indefinite persistence of species, i.e. whether the community
return to the same community after a given perturbation?

MCT typically considers perturbations that affect species densities and not
the environmental conditions or species traits, it therefore differs from struc-
tural stability analysis (Saavedra et al., 2017). The invasion criterion formalizes
the perturbation of the species densities (Turelli, 1978). The perturbation may
be arbitrarily large, it therefore differs from local dynamical stability analysis
(May, 1972; Allesina & Tang, 2012, 2015). MCT does not focus on transient
states, it therefore differs from ecological stability research that focusses on
resilience and recovery times (Radchuk et al., 2019).

Naturally, however, there are many links to other fields in ecology. For
example, niche differences describe how much species differ in their resource
requirements. Therefore, species with large niche differences should harvest
more of the available resources and consequently have higher ecosystem func-
tion (Turnbull et al., 2013; Carroll et al., 2011; Loreau, 2004). This is one possible
explanation why species or trait rich communities are associated with higher
ecosystem functioning (Striebel et al., 2009; Grace et al., 2016; Tilman et al.,
2014). Similarly, species with large niche differences will be buffered against
extinction, therefore they should be more stable against perturbations (Adler
et al., 2007). MCT predominantly investigates the stability of a community
model, i.e. does the community return to its equilibrium after a perturba-
tion of species densities. Alternatively, structural stability research investigates
whether the system remains stable after a perturbation of species parameters
(Meszéna et al., 2006; Saavedra et al., 2017; Song et al., 2020b). Finally, while
MCT focuses on the coexistence of species within one guild, other fields focus
on the coexistence of antagonistic networks (May, 1972; Allesina & Tang, 2012).
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1.2 Historical overview of
(modern) coexistence theory

Inf resources Finite resources

R* Theory

Limiting factors

Environmental 
variations

Continuous coexistence

Robust coexistence

Niche and fitness differences

Mac Arthur model

ND via Predators

Invasion analysis

Permanence theory
Predators P*

Mutualists  M* ND based on invasionLV based ND and FD Structural approach

Lim Similarity

2010

2000

1990

1980

1970

1960

Storage effect

Comp. exclusion principle

Lotka-Volterra and Gause

Relative
non-linearity

Competitive exclusion principle

Mechanistic resource models

Invasion growth rates

Niche and fitness differences

Environmental variations

Modern coexistence theory

Figure 1.1: Historical overview of (modern) coexistence theory. The boxes
represent key contributions of coexistence theory, sometimes they denote the
founding ideas (e.g. Invasion analysis), sometimes they denote important re-
views (e.g. R∗). The colours group the contributions and correspond to the
subsections 1.2.1-1.2.5. The key concepts of MCT are shaded grey. The edges
denote loosely how the contributions are based on each other. Simplicity was
prioritized over completeness, for example R∗ theory was mentioned in most
later contributions, similarly, robust coexistence cites most previous contribu-
tions.

In this section I want to discuss how coexistence theory has evolved over
time. However, the advancements of coexistence theory will be grouped the-
matically and not strictly historically for better overview. Within one branch
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of coexistence theory I will try to follow the historical course more closely.
The representation chosen here does not necessarily represent how important
the sub-branches or advancements are for science in general, rather I highlight
which papers paved the way for MCT and more specifically for my research fo-
cus during my PhD. Figure 1.1 gives a graphic overview of coexistence theory
as well as of this section.

1.2.1 The competitive exclusion principle

Coexistence theory is a sub-branch of theoretical population ecology, which
starts with the Lotka-Volterra model (Lotka, 1920; Volterra, 1926; Kingsland,
2015). Lotka originally used the model to describe the densities of two species,
a predator and a prey, which lead to periodic oscillations of species densi-
ties. Volterra derived the same equations independently from Lotka explaining
the number of fish caught during World War One (Kingsland, 1995; Volterra,
1926). The model has henceforth been used to describe many different commu-
nity types, including plant communities (Keddy & Shipley, 1989), multispecies
communities (Serván et al., 2018), environmental changes (Spaak et al., 2017)
and many others. There are multiple equivalent ways to formulate the Lotka-
Volterra model (LV). The most often used in coexistence theory are:

1
Ni

dNi

dt
= µi −AN (1.1)

= ri(1−A′N), (1.2)

where Ni is the density and µi is the intrinsic growth rate of species i. Through-
out this thesis we assume that i is the index of the focal species and j is the
index of the non-focal species. In a multispecies community j will be used as a
running variable, not however in a two species case. A is the species interaction
matrix. Normalizing for species densities in monoculture leads to equation 1.2,
where A′ij = Aij/µi is the normalized species interaction matrix. The parame-
ter ri = µi describes how fast species reach equilibrium. However, MCT usually
does not focus on transient states, therefore ri is usually not included into the
analysis (Chesson, 1990).

The competitive exclusion principle states that, ”Complete competitors can-
not coexist“ (Gause, 1934; Hardin, 1960). That is for species to coexist they must
differ at least in some aspect regarding their niches. The competitive exclusion
principle has arisen to a sort of tautology or circular argument. That is, given
two species can coexist we deduce, using the competitive exclusion principle,
that they must differ in some sort (Hardin, 1960; Levin, 1970).
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The competitive exclusion principle could be understood as a minimal nec-
essary condition for coexistence and is by no means sufficient. It focuses solely
on the niche requirement, but it ignores potential differences in the competitive
ability of species. More generally, two coexisting species must limit themselves
more than they limit their competitor, i.e. αij < αjj and αji < αii. This insight
is much more general than the LV model and is the fundament of MCT (see
below).

1.2.2 Mechanistic resource models

LV models are phenomenological, meaning that they assume that species inter-
act via A, however, no specific description for this interaction is given. There
are many potential underlying mechanisms, most prominently including com-
petition for nutrients (Tilman, 1982) or prey (MacArthur, 1970), competition
for other resources, limitation via common predators (Chesson & Kuang, 2008;
Holt et al., 1994) or limitation via common mutualists (Johnson & Bronstein,
2019). Theoretical ecology assumes that differential equations are useful to
understand community dynamics, i.e. assuming 1

Ni

dNi
dt = f (N) will help our

understanding of ecology. The LV model should be seen as a Taylor approx-
imation of the ”real” underlying community model f (N) ≈ µi − AN around
the equilibrium or any alternative linear approximation of the underlying com-
munity model.

The LV model implicitly assumes that the interaction matrix A is time and
density independent, which is a simplification of nature (Abrams, 1983; Letten
& Stouffer, 2019).

In contrast to this are the mechanistic models, which explicitly model how
species interact via other entities. The focal species do not usually interact
directly with other focal species in mechanistic models, rather all species inter-
actions are indirect via other entities. However, ”mechanistic” should be seen
as a relative term. For example, the Tilman resource models are clearly more
mechanistic than LV models, yet they do not mechanistically explain how the
species traits, such as half-saturation constants, arise mechanistically from the
species morphology or genes. The entities in these mechanistic models are
usually called limiting factors. I will assume that it is intuitively clear what
a limiting factor is and refer to Levin (1970) for their precise mathematical
definition.

Two conceptually different mechanistic models are possible, models with
a finite number of resources (or more generally limiting factors) and models
with an infinite number, usually a continuum, of resources.
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Finite number of limiting factors

The competitive exclusion principle applied to a mechanistic model with only
one resource or limiting factor implies that only one species can survive, as
there is only one possible niche and species must be complete competitors (but
see 1.2.4). This notion has been generalised, the number of coexisting species
is limited by the number of resources (MacArthur & Levins, 1964) and even
more generally the number of limiting factors (Levin, 1970).

Most attention has been given to the case of species competing for re-
sources, most notably to two species competing for two resources, as it is the
simplest non-trivial example. Tilman (1982) reviews the available literature
and coined the so-called R∗ theory. R∗ is the resource concentration at which
a species has zero net growth rate. Resource concentration above R∗ leads to
a positive growth, while resource concentration below R∗ leads to a decline
of species densities. If multiple species compete for one resource, the species
with the lowest R∗ will competitively exclude all others, as it will draw down
resource concentrations to its R∗, at which point all other species have negative
growth.

Conversely, two species competing for two resources may coexist if there is
a trade-off between their R∗. That is the species with a lower R∗ for the first
resource must have a higher R∗ for the second resource. Similar results have
been found for species limited by predators and mutualists, leading to a P∗ and
M∗ theory respectively (Johnson & Bronstein, 2019; Holt et al., 1994). However,
a trade-off in the R∗ is again only a necessary condition for coexistence, not
sufficient. The species will coexist when they consume more of their most
limiting resource, otherwise priority effects or competitive exclusion emerge
(Ke & Letten, 2018).

In general, the number of limiting factors must be larger than the number
of coexisting species. However, this holds true only when the species coexist
at fixed densities (see 1.2.4).

That the number of limiting factors must exceed the number of coexisting
species has led to the ”paradox of the plankton“ (Hutchinson, 1959). Phyto-
plankton species are thought to be limited by only few resources, most notably
phosphorus, nitrogen, and light. Yet even small samples of lake or seawater
typically contain more than 50 different phytoplankton species, vastly exceed-
ing the number of limiting factors. This paradox has inspired a generation of
scientists to search for potential solutions, including partitioning of the light
wavelengths (Stomp et al., 2004), internal fluctuations of resource concentra-
tions (Huisman & Weissing, 1999), and environmental fluctuations (see 1.2.4).
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Infinite number of limiting factors

A qualitatively different case is when the number of limiting factors is infi-
nite, most often assumed to be a continuum. This is biologically meaningful
if we assume, for example, birds competing for a tree’s seeds. The seeds pro-
duced by the tree will not all be identical, but vary in a certain trait, e.g. size
Roughgarden (1979). Similarly, one could imagine a continuum of predators
as limiting factors that slightly differ in their consumption preferences. How-
ever, predators and resource function in a very similar way as limiting factors
in the case of finite limiting resources (Chesson & Kuang, 2008), this suggests
that investigating a case with a continuum of predators will not reveal funda-
mentally new insights. The infinite resources are usually assumed to be one
dimensional. However, one could also use resource continuum in higher di-
mensions. As the number of limiting resources is infinite, the insights gained
from the finite limiting factors is of little use.

First investigations on the infinite resource models suggested that species
are limited by their similarity, which became known as ”limiting similarity“
(MacArthur, 1970). For this, species are defined by a niche location, the re-
source they consume most, and a niche width, the standard deviation of the
resource consumption vector. They found that the distance between the niche
location (defined as the maximum of the consumption vector) of coexisting
species is proportional to the niche width (defined as the variance of the con-
sumption vector). More generally, limiting similarity has been interpreted to
mean that even a continuum of resources will not lead to a continuum of co-
existing species, as there is a limit to how similar two species can be.

Later works included the possibility that species evolve (Case, 1981; Rough-
garden, 1976), that species differ in their niche width (?) or that species differ
in their total resource consumption (Taper & Case, 1985). All these confirmed
the expectation of a limit to similarity.

A famous counterexample was given by Roughgarden (1979), where indeed
a continuum of species coexist on a continuum of resources. Other examples of
community models that are not limited by similarity have been found as well,
implying that the stable coexistence of a continuum of species may indeed
be possible and there’s no lower limit to similarity (Abrams, 1983). Yet, the
idea of a continuum of coexisting species was rejected for two reasons. First,
we never observe this in nature. Second, it was assumed that the existence of
this continuum of coexisting species was only possible, because the underlying
resource model was very simplistic and not close to nature (Barabás et al., 2012).
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Robust coexistence

Meszéna et al. (2006) unified community models using both finite or infinite
numbers of limiting factors. To do so, they introduce the impact and sensi-
tivity niche, which describe how much a species affects limiting factors and
how much a species growth rates are sensitive to changes in limiting factors,
respectively. The impact and sensitivity niches are vectors or functions for the
finite limiting factors and infinite limiting factors case, respectively.

Furthermore, they introduce the concept of structural stability, in addition
to dynamical stability. Structural stability measures how much the community
parameters can be changed before coexistence is lost. The structural stability of
a community is a product of the impact and the sensitivity niche. Species from
a structurally stable community must therefore differ in both their impact and
sensitivity niche.

Limiting similarity implies that the structural stability tends to zero as
species become more and more similar. Consequently, the Roughgarden ex-
ample is dynamically stable, but not structurally stable, any tiny perturbation
of the species intrinsic growth rates destroys the continuous coexistence. This
result applies more generally to a large range of possible community models
as reviewed by Barabás et al. (2012).

Linked to structural stability is the evolutionary stability. An equilibrium
is evolutionary stable, if no species can increase their growth rate by evolving
their traits (Edwards et al., 2018). In general, evolutionary stable equilibria are
more stringent and less species rich (Edwards et al., 2018). But evolutionary
stable equilibria show similar features as their stable counterparts, such as a
limiting similarity (Kremer & Klausmeier, 2017).

1.2.3 Invasion growth rates

Communities with environmental fluctuations will never stay at a stable equi-
librium, which makes it much more difficult to assess coexistence. Therefore,
a species is said to persist if its densities are bounded away from zero to below
infinity (Schreiber, 2000). This notion, however, is only used conceptually, as
it is hard to assess this empirically. Therefore the more pragmatic approach of
invasion growth rates is used.

The invasion growth rate of an invading species i (called invader) is its
growth rate at low density (effectively zero) when the resident community
(called residents) is at an equilibrium density distribution (Turelli, 1978). The
existence of such stable equilibria is, however, disputed as many systems show
chaotic behaviour (Benincá et al., 2008; ?). If all species have positive inva-
sion growth rates, then all species are assumed to coexist. This condition is
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equivalent to the positive boundedness criterium for some communities.
However, we know of examples where the invasion growth rate does not

correctly predict the outcome of species interactions or where invasion analysis
is not applicable (Barabás et al., 2018). A crucial assumption is that the resident
community will be able to coexist at a stable equilibrium, and there exist fa-
mous counterexamples such as the rock-paper-scissor community (Grilli et al.,
2017) or food webs, where the higher trophic levels are not viable without their
prey. Additionally, Pande et al. (2019) have shown that the invasion growth rate
only captures qualitative information about coexistence, not quantitative infor-
mation, as species with higher invasion growth rates do not necessarily have a
higher probability of invasion success.

Schreiber (2000) and Patel & Schreiber (2018) have proposed generalised in-
vasion growth rates, along with conditions under which they correctly predict
coexistence. However, these are rarely applied empirically, because they, again,
depend on analytical mathematics.

Despite their theoretical limitations, invasion growth rates remain used
very widely (Letten et al., 2018; Carroll et al., 2011; Narwani et al., 2013; Zepeda
& Martorell, 2019). Grainger et al. (2019b) proposed the invasion growth rates
as a common unit to compare different communities (despite Pande et al.
(2019)). This would broaden the applications of invasion growth rates beyond
MCT to many other applications of ecology.

1.2.4 Environmental fluctuations

Most of the results found on the competitive exclusion principle assumed that
the species must coexist at fixed densities. Without this assumption, any num-
ber of species can coexist on as few as four fluctuating resources (Armstrong
& Mcgehee, 1976). The community model chosen lacks biological realism and
is rather a conceptual counterexample.

More realistic examples, however, showed that two species can coexist on
a single fluctuating resource based on a gleaner-opportunist trade-off (Litch-
man & Klausmeier, 2001). The gleaner will have higher growth rates at low
resource concentrations and would outcompete its competitor without envi-
ronmental fluctuations. The opportunist, however, can profit from periods
with high resource concentrations and accumulate enough biomass to survive
lower resource concentrations. Originally, it was assumed that environmental
fluctuations will always be beneficial for coexistence, as both species will have
time in which they have larger growth rates than their competitor.

Chesson (1994) provided a unified framework to analyse the effect of tem-
poral variations on species coexistence. He showed that temporal variation
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of the environment can be both beneficial and detrimental to species coexis-
tence, depending on the specific model parameters. This influential work has
been reinterpreted multiple times (Chesson, 2003; Barabás et al., 2018; Ellner
et al., 2019). While the original ideas all trace back to Chesson (1994), I will
explain the temporal variation as it is currently understood (as proposed by
Barabás et al. (2018)). The (invasion) growth rate of a species can be decom-
posed into frequency independent effects (denoted r′i), fluctuation independent
but frequency dependent effects (denoted ∆ρi), and fluctuation dependent ef-
fects. The latter can be decomposed further into relative non-linearity (∆Ni)
and storage effect (∆Ii). All these effects can be beneficial or detrimental for co-
existence, however, most attention has been given to cases where they promote
coexistence. I will therefore explain these effects assuming they are beneficial
for coexistence.

r′i describes any differences in intrinsic growth rates that arise independent
from any frequency dependence, such as higher mortality rates or higher total
resource consumption rates. This factor is independent of the species den-
sity and frequency, it cannot, therefore, contribute to coexistence on its own.
∆ρi describes fluctuation-independent mechanisms that can arise through, for
example, resource partitioning. This term does not occur in Chesson (1994),
as that work specifically assumes all species are limited by only one limiting
factor. Conceptually, the case with only one limiting factor is the most inter-
esting, as fluctuation independent theory predicts that only one species can
persist. ∆Ni describes how species react differently to environmental variation
and captures, for example, the gleaner-opportunist trade of. It is based on
Jensen’s inequality, that is the average of the growth rates may not be equal to
the growth rate of the average environmental condition.

∆Ii, the storage effect, became the most investigated phenomena for coexis-
tence under fluctuations (Ellner et al., 2016; Angert et al., 2009). It captures the
idea that species can profit more from good environmental years when they are
rare, than when they are common. We assume that species compete stronger
within species rather than between species, and that a good environmental
year for one species is bad for the other species. When a rare species faces a
good year, then the competitor will not be very abundant and therefore, over-
all competition is low, therefore good years are very good. Conversely, when
a rare species faces a bad year, competition may be strong, but the effect of
competition is not that strong, e.g. if there are no resources to capture then
strong competition doesn’t matter. That is, bad years are not that bad, there-
fore the growth benefit from one good year may be sufficient to compensate
for multiple bad years. As mentioned before, the storage effect has received
the most attention, as it is assumed to be the most beneficial for coexistence
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(but see Letten et al. (2018) and Zepeda & Martorell (2019)).
Spatial variation may also affect species coexistence. Similar to temporal

variation, spatial variation may be decomposed into the same effects. Addi-
tionally, spatial variation features a growth-density covariance, which can be
beneficial to species coexistence if species are most dominant in patches that
are beneficial to their growth. This spatial coexistence mechanism does not
have any temporal analogue (Barabás et al., 2018).

This decomposition of the invasion growth rate helps to understand how
species coexist. r′i is density and fluctuation independent, coexistence is there-
fore impossible, if all other variables are 0. Any affect that alters r′i cannot,
therefore, lead to coexistence, but only delay time until competitive exclusion.
Any mechanisms that decrease differences in r′i are called equalizing mech-
anisms (Chesson, 2000, 2003). Mechanisms that affect any of the other vari-
ables are called stabilizing, as they can lead to stable coexistence. Equalizing
mechanisms can, however, affect coexistence in combination with stabilizing
mechanisms. Equalizing mechanisms reduce differences in r′i, which reduces
the necessary strength of stabilizing mechanisms to ensure coexistence.

While the theory was conceptually sound and intuitive, empirical applica-
tions remained scarce. Computation of all these parameters were based on
analytical computations. For example, Angert et al. (2009) used a 17 page
appendix to compute these for a new model. However, Ellner et al. (2019)
proposed a numerical method to investigate the effect of environmental fluc-
tuations on species coexistence. Their method is conceptually equivalent, but
it may lead to different numerical decomposition of the invasion growth rate.

1.2.5 Niche and fitness differences

Much of coexistence theory discussed so far, such as competitive exclusion
principle, limiting resources and limiting similarity, has focused mainly on the
niche, but see (?). These could be condensed into the statement that species
must differ in their niches. This argument only gives a maximum on the num-
ber of species that can coexist. It thus reflects necessary conditions, not suffi-
cient conditions.

These arguments considered niche as a concept or a multidimensional space,
and, importantly, something that cannot be empirically measured. Instead of
measuring the niche itself, niche overlap (ρ) measures how much the niches
of two-species overlap. Niche overlap is therefore a number, originally be-
tween 0 and 1 (as opposed to the niche itself, which is a multidimensional
volume). Niche overlap originates from species that compete for resources and
how much they differ in their resource consumptions (Hurlbert, 1978). Lately,
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literature talks about niche differences (1− ρ) instead of niche overlap, how-
ever, this distinction is primarily a matter of taste.

The link between the mechanistic resource model and the phenomenologi-
cal LV model by MacArthur (1970) helped to make the concept of niche overlap
more tangible (Chesson, 1990). However, species do not only differ in which
resources they consume, but also in how much of the resources they consume,
which has been coined fitness differences. Stated in the language of niche and
fitness differences, the competitive exclusion principle could be stated as niche
differences must be positive, which is only a necessary condition for coexis-
tence. The sufficient condition for coexistence is that niche differences must
overcome fitness differences (Chesson, 2000).

This branch of MCT has sparked many other definitions for niche and fit-
ness differences with a total of at least eleven different definitions. The eleven
definitions can be grouped into three subgroups of niche and fitness differ-
ences (see below). More importantly, these different definitions have not only
been used by theoreticians, but they have also been applied extensively by
empiricists to measure niche and fitness differences.

So far, none of the eleven definitions have emerged as the golden standard
(Godwin et al., 2020; Spaak & De Laender, 2020). More importantly, there is
little comparison between the different definitions that would allow one to
select a standard in the coming future (Godwin et al. (2020) and chapter 3).

Stabilizing and equalizing mechanisms have also been coined for niche
and fitness differences. In the absence of niche differences, species cannot
coexist, similar to how species cannot coexist without relative non-linearity
or storage effects. Therefore, any mechanism that reduces fitness differences
is also termed equalizing, while mechanisms that increase niche differences
are termed stabilizing. Recently, Song et al. (2019) have pointed out that the
term stabilizing and equalizing mechanisms does not hold the same meaning
when applied to niche and fitness differences than when applied to relative
non-linearities or storage effect.

Lotka-Volterra like niche and fitness differences

The original definition of niche and fitness differences is based on the link
between a mechanistic community model (MacArthur, 1970) and the phe-
nomenological LV model (Chesson, 1990). We know what niche differences
are in the mechanistic model and therefore can deduce what niche differences
are in the LV model. This gives Ni = 1−

√
αijαji
αiiαjj

and Fi =
√

αijαii
αjiαjj

. However,
strictly speaking, the proof Chesson provides is only sufficient to define niche
differences for community models that arise from an underlying MacArthur
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model. Chesson & Kuang (2008) extend this to species interacting via resource
competition as well as via apparent competition and deduce similar formulae
for niche and fitness differences.

Multiple other authors have defined niche and fitness differences for other
models by reducing a community model to a LV like form (e.g. Godoy &
Levine (2014); Bimler et al. (2018); Carroll et al. (2011)). These approaches are
the most used in both theoretical and empirical work (Barabás et al., 2018),
potentially because of their simplicity but also because they were the first to
be developed. Additionally, it is relatively easy to assess coexistence. I discuss
the issues of this approach in more detail below in chapter 3.

All these approaches are based on the definition of Chesson (1990), they
therefore inherit its limitations. The main limitation is that it is specific for two-
species communities and that the definition is based on square roots of species
interactions, and therefore not defined for facilitative interactions. Bimler et al.
(2018) avoid this by first exponentiating the species interactions, thereby con-
verting them to positive numbers. However, this comes at several costs, e.g.
niche and fitness differences cannot be used to assess coexistence any longer
(Bimler et al., 2018).

Niche and fitness differences based on invasion growth rates

LV like approaches for niche and fitness differences assume that we know the
underlying community model. Niche and fitness differences using invasion
growth rates do not rely on such strong assumptions. Rather they rely on the
assumption that invasion growth rates correctly predict coexistence (see 1.2.3).
They all assume that invasion growth rates depend monotonically on niche
differences and that variation in invasion growth rates depend monotonically
on fitness differences. By reverse engineering, they can compute niche and
fitness differences on invasion growth rates (Carroll et al., 2011; Chesson, 2003;
Zhao et al., 2016; Carmel et al., 2017; Spaak & De Laender, 2020; Adler et al.,
2007).

Special cases are the definitions of Carroll et al. (2011) and my own defini-
tion (Chapter 2), as they both are equivalent to the definition of Chesson (1990)
on the LV community model. The definition of Carroll et al. (2011) has been
specifically designed as such. My definition is based on independent assump-
tions, but it happens to lead to identical niche and fitness differences. These
two independent deductions of niche and fitness differences for the LV model
should be seen as evidence that both approaches are correct and that niche and
fitness differences could be seen as a real phenomena.
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Structural approach

The structural approach defined by Saavedra et al. (2017) is a completely in-
dependent approach to define niche and fitness differences. They define niche
differences as the volume of all intrinsic growth rates for which the community
would coexist, and they define fitness differences as the distance between the
current intrinsic growth rates to the center of this set. While originally pro-
posed as an alternative definition for niche and fitness differences (Saavedra
et al., 2017), it has been shown that niche and fitness differences in the tra-
ditional sense do align with these interpretations, but are not identical (Song
& Saavedra, 2020). The structural approach actually investigates the structural
stability of a community model, as opposed to the dynamical stability, which is
the usual focus of coexistence theory. The underlying idea of the structural ap-
proach is very similar to the structural stability (1.2.2), with the advantage that
the region of structural stability can be computed explicitly given the simple
community model.

1.3 Current challenges of
modern coexistence theory

As mentioned above, MCT tries to understand a community model in terms of
their stabilizing and equalizing mechanisms. These have been introduced by
Chesson (2000), which is considered as the founding paper of MCT. However,
there are two sub-branches of MCT, one where stabilizing mechanisms are
based on environmental fluctuations (the defining papers are Chesson (1994,
2003); Barabás et al. (2018); Ellner et al. (2019)) and one where stabilizing mecha-
nisms are based on resource or other limiting factors partitioning (the defining
papers are Chesson (1990); Adler et al. (2007); Carroll et al. (2011)). In both
cases, equalizing mechanisms cannot ensure coexistence, in the absence of sta-
bilizing mechanisms. They can only increase time to competitive exclusion.

Recently, Song et al. (2019) have shown that these two sub-branches of MCT
are distinct through identifying different stabilizing and equalizing mecha-
nisms. Additionally, they question the usefulness of stabilizing and equalizing
mechanisms, as no mechanism was found to be purely stabilizing or equal-
izing (see also chapter 3). To clearly distinguish the two branches, I will use
storage effect and relative non-linearity to talk about the first branch and niche
and fitness differences to talk about the second branch. Note, however, that the
literature also uses niche and fitness differences to talk about the first branch
(e.g. Chesson (2000); Barabás et al. (2018)). Also, the different branches can be
applied to the same underlying data, as done in Song et al. (2019) and Figure
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2.1.

1.3.1 Analytical mathematics

The key concepts of MCT, storage effect and relative non-linearity on the one
side and niche and fitness differences on the other, are based on analytical
mathematics. As such, they can only be applied in communities that can be
solved with analytical mathematics.

The storage effect and relative non-linearities are based on a second order
Taylor approximation of the community model (Chesson, 2003). Quantifying
storage effect and relative non-linearities in a new community model therefore
requires extensive mathematics. For example Angert et al. (2009) contains a 17-
page appendix and Zepeda & Martorell (2019) a 9-page appendix to compute
the necessary variables. Similarly, the definition of niche and fitness differences
were based on analytical mathematics and are therefore limited to simple com-
munities (Chesson, 1990). This is most likely the largest burden of MCT, which
limited its application to simple communities.

Recent theoretical advancements in MCT generalised both the notion of
storage effect and relative non-linearity (Ellner et al., 2016, 2019) and niche
and fitness differences (Chapter 2), these generalisations do not depend on
analytical mathematics. Letten et al. (2018) have already applied this method
empirically. For comparison, the first empirical application of the analytical
method came only 15 years after its definition (Chesson, 1994; Angert et al.,
2009).

1.3.2 Challenges for storage effect and relative non-linearity

Storage effect and relative non-linearity decompose the invasion growth rates
of a species. As such, they are defined and useful for any community in which
invasion growth rates correctly predict coexistence and inherit all challenges
from invasion growth rates (see 1.2.3). They are therefore, in theory, applicable
to a wide range of communities. Yet, empirical applications are scarce (Ellner
et al., 2019), due to its analytical complexity.

To decompose the invasion growth rates into relative non-linearity and stor-
age effect, the growth rate of the invading species is compared to the scaled
growth rates of the resident species. However, these scaling factors di are not
uniquely defined if the species compete for more than one limiting resource
(Barabás et al., 2018; Ellner et al., 2019). Altering the scaling factors will affect
which mechanism we interpret as essential for coexistence. For example, Ellner
et al. (2019) asserted that, by employing one set of scaling factors, facilitation
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is essential for coexistence, and then while employing a different set of scaling
factors, facilitation had a negligible effect. Importantly, both interpretations are
correct with respect to the proper scaling factors.

1.3.3 Challenges for niche and fitness differences

In short, most challenges of niche and fitness differences are related to com-
munities with some less analytical tractability. Communities can be complex in
many different ways, most notably species interactions can be complex, species
interactions can be diverse, species types (e.g. producers, consumers, preda-
tors) can be diverse and coexistence conditions can be complicated. Unfortu-
nately, most of MCT deals with communities that are none of the above (Adler
et al., 2007; Letten et al., 2017; Narwani et al., 2013; Levine & HilleRisLambers,
2009), let alone all of the above combined (but see Chu & Adler (2015)).

There are eleven different definitions of niche and fitness differences, which
all have their different limitations and advantages. I will focus my list of chal-
lenges to the most applied definitions, i.e. Chesson (2013); Godoy & Levine
(2014); Carroll et al. (2011). These are all based on the original definition of
Chesson (1990).

Non-linear interactions

Communities with non-linear species interactions have been analysed with
niche and fitness differences (Godoy & Levine, 2014; Letten et al., 2017). How-
ever, to compute niche and fitness differences the community models were
approximated by LV models, essentially ignoring non-linear or higher-order
interactions. The definition of Carroll et al. (2011) may be applied to commu-
nities with non-linear interactions, however, as I show in chapter 3, this does
not correctly interpret key assumptions of niche and fitness differences. That
is, niche and fitness differences are essentially undefined for non-linear inter-
actions.

Non-competitive species interactions

The original definition is only defined if
αijαji
αiiαjj

> 0, otherwise the square root of
negative numbers would lead to imaginary niche differences. αii and αjj must
be positive values, otherwise growth rates in monoculture are unbounded.
Consequently, αijαji must be positive too, which is the case if both are negative
(mutualism) or both are positive (competition). Mutualism, while theoretically
possible, has never been investigated with this definition of niche and fitness
differences.
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One-sided facilitation or predation are not defined by this definition and
are consequently excluded from niche and fitness differences research (Chu
& Adler, 2015; Narwani et al., 2013). Bimler et al. (2018) redefined niche and
fitness differences for communities with facilitation, however, their definition
does not contain information about coexistence. Because niche and fitness dif-
ferences are essentially only defined for competitive two-species communities,
other trophic levels were excluded from the analysis.

Multi-species communities

The original definitions for niche and fitness differences are defined for two-
species communities by comparing relative sensitivity αij/αjj of the two-species

(Ni = 1−
√

αijαji
αiiαjj

). This comparison, however, is bound to two-species commu-
nities and does not naturally extend to multispecies communities.

Carroll et al. (2011) and Carmel et al. (2017) have both attempted to extend
the two-species comparisons to multispecies communities, essentially by tak-
ing community averages of the relative sensitivities αij/αjj. While this gives
expressions for multispecies niche and fitness differences, these cannot be in-
terpreted in the light of coexistence. Two communities with identical values of
niche and fitness differences may lead to coexistence once but not in the other
community.

Limited collaborations

In short, niche and fitness differences are only defined for competitive two-
species communities with linear species interactions. As a consequence, col-
laborations with other ecological fields are limited, as these often investigate
more complex communities. For example, biodiversity-ecosystem function re-
search often assumes that niche differences are responsible for the positive
effect of species or trait richness on ecosystem function (Striebel et al., 2009;
Tilman et al., 2014). However, this assumption has only rarely been verified
with a proper definition of niche differences (Carroll et al., 2011; Godoy et al.,
2020).

Multi-trophic communities

Niche and fitness differences were originally mediated via resource competi-
tion, but it has been recognised early that these could also be mediated via
predators or mutualists (Chesson & Kuang, 2008; Petry et al., 2018; Johnson
& Bronstein, 2019). As MCT focuses on competing two-species communities
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these higher trophic levels have been excluded from the coexistence consider-
ations. The higher trophic levels in both Chesson & Kuang (2008) and Johnson
& Bronstein (2019) contain a self-regulating factor to avoid the extinction of
these species.

However, as Godoy et al. (2018) point out, MCT should start to focus on the
entire community, instead of just a competing sub-community. Again, this is
not possible with the current definition of niche and fitness differences, as it
would include both multi-species and non-competitive interactions.

1.4 Thesis outline

In this last section of the introduction I will lay out how the rest of my PhD the-
sis is structured. As a reminder, I chose thematic structure over a chronological
order.

The key achievement of my PhD thesis is the reinterpretation of niche and
fitness differences (Chapter 2). My reinterpretation is an independent ap-
proach to define niche and fitness differences, but interestingly, it reproduces
earlier results on this topic (Chesson, 1990). This reinterpretation does not alter
how we assess coexistence, rather it relies on invasion growth rates. My def-
inition of niche and fitness differences does not improve our ability to assess
the outcome of species interactions, but it improves our ability to interpret the
outcome of species interactions.

In chapter 3, I compare this new approach with the traditional approach
to measure niche and fitness differences. Specifically, I investigate the effect
of higher order and non-linear interactions on niche and fitness differences,
their effect on the outcome of species interactions and how we interpret their
coexistence. Most importantly, I show that the omission of higher order inter-
actions, when computing niche and fitness differences, leads to qualitatively
wrong predictions concerning whether and why species coexist.

The reinterpretation of niche and fitness differences opens the door to anal-
yse more complex communities. Multispecies communities were so far outside
of the reach of MCT. In chapter 4, I show that species richness increases fitness
differences, but not niche differences. This is an important step from simple
two-species communities towards the higher complexity of natural communi-
ties.

MCT and biodiversity ecosystem function are closely related, as they both
use niche differences to explain their results. Nonetheless, there are very few
collaborations between the two fields. In chapter 5, I investigate the effects
of trait richness on coexistence, niche and fitness differences, and ecosystem
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Non-linearities

Multi-species

Multi-trophic

Non-competitive
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Chapters

II Definition of niche and 
fitness differences

VI NF mapping

IV Species richness

III non-linear interactions 
on NFD

V traits on coexistence and 
ecosystem function

How to assess coexistence

Figure 1.2: The various chapters of my PhD tackle different challenges of MCT.
Many chapters tackle multiple challenges at the same time, but focus on one
single challenge (black line). The only challenge that I did not address during
my PhD was ”How to assess coexistence”.

function to close the gap between coexistence theory and biodiversity ecosys-
tem functioning.

In chapter 6, I extend the focus of MCT towards the entire community. Most
importantly, to communities with facilitative species interactions or species
that depend on the presence of other species . I show how three higher-level
processes can explain species coexistence in many different communities, re-
gardless of the underlying community structure. I also show that MCT has so
far only focused on a very limited range of these higher-level processes.
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Finally, in my last chapter, I compare the results from different chapters to
synthesize my work and discuss how recent advancements in MCT relate to
its current challenges.
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Chapter 2

Intuitive and broadly applicable
definitions of niche and fitness
differences

2.1 Abstract

Explaining nature’s biodiversity is a key challenge for science. To persist, pop-
ulations must be able to grow faster when rare, a feature called negative fre-
quency dependence and quantified as ‘niche differences’ (N ) in modern co-
existence theory. Here, we first show that available definitions of N differ in
how N link to species interactions, are difficult to interpret, and often apply
to specific community types only. We then present a new definition of N that
is intuitive and applicable to a broader set of (modelled and empirical) com-
munities than is currently the case, filling a main gap in the literature. Given
N , we also re-define fitness differences (F ) and illustrate how N and F de-
termine coexistence. Finally, we demonstrate how to apply our definitions to
theoretical models and experimental data, and provide ideas on how they can
facilitate comparison and synthesis in community ecology.

2.2 Introduction

In order to persist through time, species must exhibit frequency dependent
population growth. Natural communities host a multitude of mechanisms that
can lead to frequency dependence. Well-known examples include resource
partitioning (Adler et al., 2007; Levine & HilleRisLambers, 2009), differential
vulnerability to predators (Chesson & Kuang, 2008; Allan et al., 2010; Carson &

23



24 CHAPTER 2. DEFINITION OF NICHE AND FITNESS DIFFERENCES

Root, 2000), differential associations with mutualists (Siefert et al., 2018; John-
son & Bronstein, 2019), phenological separation (Usinowicz et al., 2017), or oc-
cupation of distinct microhabitats (Silvertown, 2004). These mechanisms have
been collectively coined as stabilizing mechanisms that increase ’niche differ-
ences’ (Chesson, 2000; Letten et al., 2017; HilleRisLambers et al., 2012).

In modern coexistence theory, one way of quantifying the strength of niche
differences is to compare observed population growth with the population
growth that is expected when niche differences would be absent (Chesson,
2000, 2003; Adler et al., 2007, 2010). Without niche differences, one of the
species will eventually exclude all others, where the rate of exclusion depends
on the competitive advantage of the winner. This competitive advantage is
often called ’fitness difference’ (Chesson, 2000, 2003; Barabás et al., 2018; Hart
et al., 2018). A key question is if niche differences in natural systems are suffi-
ciently strong to overcome fitness differences and save species from extinction
(Adler et al., 2018b; Angert et al., 2009; Usinowicz et al., 2017; Hubbell, 2001;
Connolly et al., 2017; Harris et al., 2017; Narwani et al., 2013).

Niche and fitness differences formalise species persistence in a way that
is phenomenological. That is, one does not need to specify the details of the
community or its environment, but rather focuses on higher-level processes, i.e.
how species grow under different circumstances. This feature would in princi-
ple allow synthetic studies across different community types and environmen-
tal conditions, with niche and fitness differences acting as common currency
that represent the net outcome of detailed ecological mechanisms. Such studies
are important because they foster a unified understanding of community com-
position (Adler et al., 2018b) and facilitate studying how environmental context
and community characteristics jointly influence species persistence, which can
help understanding global change effects (Grainger et al., 2019a).

At present, however, the application of niche and fitness differences is ham-
pered by a lack of consensus on their mathematical definition. Indeed, the op-
erationalisation of these concepts has been discussed for almost a century and
new methods are being constantly proposed (Renkonen, 1938; Morisita, 1959;
Hurlbert, 1978; Chesson, 1990, 2000, 2003; Carroll et al., 2011; Bimler et al., 2018),
leading to a proliferation of mathematical definitions of niche and fitness dif-
ferences. We identified 10 definitions available in the literature (Appendix A.1)
and found that every single existing definition displays a number of features
that limit its applicability. For instance, most of the definitions only apply to
communities whose dynamics obey a specific mathematical model (Chesson,
1990; Adler et al., 2007; Chesson & Kuang, 2008; Godoy & Levine, 2014; Bimler
et al., 2018; Saavedra et al., 2017). This means that the applicability of these def-
initions is limited to specific community types. In addition, several definitions
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cannot be computed for communities with positive species interactions and/or
more than two species. Also, not all definitions allow inference of coexistence
or exclusion, i.e. niche and fitness differences do not predict whether species
will persist or not (Apendix A). Finally, different definitions imply different
ranges for niche and fitness differences. Hence, we cannot readily compare
results from different authors (Grainger et al., 2019a; Godoy & Levine, 2014;
Chu & Adler, 2015; Song et al., 2019) (Appendix A.1).

Here, we first show that available definitions of niche differences do not
align with biological intuition and present a new definition that does. We also
derive the corresponding definition of fitness differences and coexistence con-
ditions. An important feature of these new definitions is that they apply to any
mathematical model or empirical system driven by any mechanism, with the
sole critical requirement that invasion analysis correctly predicts coexistence.
The flexibility of the new definitions allows comparing different community
types, containing an arbitrary number of species and a variety of species inter-
actions, addressing a key limitation in theoretical ecology. Finally, we illustrate
theoretical and experimental applications of the new definitions. To this end,
we apply the definitions to various models representing a suite of interaction
types. We also show how simple growth experiments suffice to quantify niche
and fitness differences, using an empirical dataset of two picocyanobacteria
competing for light.

2.3 Theory

2.3.1 A diversity of definitions

To facilitate interpretation and broad application, the definitions for niche and
fitness differences should align with biological intuition. Intuition dictates that
niche differentiation facilitates persistence (N increases as species persist more
easily). In addition, a definition of N that is consistent with intuition must
satisfy five constraints. First, when intra- and interspecific interactions are of
equal size (α = −1 in Fig. 2.1), individuals of both species are interchange-
able: the effect an individual has on another individual does not depend on
species identity. Thus, N should equal 0 (black triangle in Fig. 2.1) (Chesson,
1990). Second, when interspecific interactions are absent (α = 0 in Fig. 2.1),
each species grows as if other species are absent. Thus, N should be some
predefined non-zero real number that indicates complete niche differentia-
tion, e.g. 1 (black dot in Fig. 2.1) (Godoy & Levine, 2014). The third point
is the logical consequence of these first two points: intermediate interspecific
interaction strengths should result in N between 0 and 1 (solid rectangle in
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Figure 2.1: The modelled response of niche differences (N ) to the interspe-
cific interaction strength α between two annual plants differs among available
definitions. The black triangle indicates where inter- and intraspecific inter-
actions are equal (α = −1), and so species occupy the same niche, meaning
that N should be 0. Communities with stronger interspecific interactions must
have N < 0 (dashed rectangle). The black dot indicates where species do not
interact (α = 0), and so species have completely different niches, meaning N
should be 1. Consequently, communities in which interspecific interactions are
positive (α > 0) should have N larger than 1 (dotted rectangle). Finally, for all
communities where −1≤ α≤ 0, N must have intermediate values (0≤N ≤ 1,
solid rectangle). The new definition proposed here (red), which is applicable
to a wide variety of models and experimental data (i.e. not only the annual
plant model), complies with this biological intuition. Parameter values, a plot
for the corresponding fitness differences (F ), and mathematical expressions of
the N and F definitions are in appendix A.1.
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Fig. 2.1). Fourth, when interspecific interactions are more negative than in-
traspecific interactions, persistence is ‘harder’ (N should be smaller) than if
species occupied exactly the same niche (N = 0). Consequently, N should be
negative (dashed rectangle in Fig. 2.1), as has been stated before (Ke & Letten,
2018; Mordecai, 2011). Fifth, when interspecific interactions are positive, e.g.
because of facilitation, the presence of other species makes persistence ‘easier’
(N should be greater) than if these other species would have no effect on the
focal species (i.e. interspecific interactions are absent, in which case N = 1).
Thus, N should inevitably be greater than 1 (dotted rectangle in Fig. 2.1) when
species interactions are positive.

We found that available definitions of N are unlikely to fulfil the five re-
quirements outlined here. To show this, we computed N for the annual plant
model, a workhorse of theoretical ecology (Adler et al., 2007; Angert et al.,
2009; Levine & HilleRisLambers, 2009; Adler et al., 2010, 2012; Godoy et al.,
2014; Germain et al., 2016) (Fig. 2.1), using eight of the ten definitions for niche
and fitness differences. The two other definitions cannot be applied to the an-
nual plant model. All definitions return greater N as species interactions shift
from strongly negative, over weakly negative, to positive. However, different
definitions for niche difference imply a variety of niche difference responses
to the strength and sign of species interactions (Fig. 2.1). In addition, these
definitions do not map these species interactions to the intuitive niche differ-
ence values, as stated above (but see Chesson (1990); Godoy & Levine (2014);
Chesson & Kuang (2008)). We therefore introduce, in the next section, a new
definition that does align with biological intuition.

2.3.2 Defining niche differences based on biological intuition

Here, we first construct a general definition for N that fulfils the five require-
ments outlined in the previous section, and is therefore based on biological
intuition. To construct a definition of N , we start by considering the per capita
growth of a species i

1
Ni

dNi

dt
= fi(Ni, Nj) (2.1)

where Ni, Nj are densities of species i and species j (i 6= j) with which i inter-
acts. fi can be essentially any function that describes the per-capita growth rate
of species i. A discrete system Ni(t + 1) = Ni(t) fi(Ni(t), Nj(t)) can be analysed
as well, by taking the natural logarithm i.e. f ′i (Ni, Nj) = log( fi(Ni(t), Nj(t))
(Chesson, 1994, 2003). As done mostly in modern coexistence theory (but
see Schreiber et al. (2019)), we do not consider Allee effects (positive density
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dependence), such that we can assume fi(0,0) > fi(Ni,0) : a species grows
faster when its density is lower. While accounting for Allee effects is tech-
nically possible with the definitions proposed here, interpretation of N will
be challenging (see below). Furthermore, we assume that each species has a
stable monoculture equilibrium denoted N∗i and that the invasion growth rate
fi(0, N∗j )correctly predicts coexistence. That is, the two species i and j coexist
if and only if both species have a positive ‘invasion growth rate’ ( fi(0, N∗j )> 0).
The invasion growth rate is the growth rate of a species when it is reduced
to low density (≈ 0) and the other species is at its monoculture equilibrium
density. Examples where invasion analysis does not predict coexistence are
found in Barabás et al. (2018) and Schreiber et al. (2019). We only assume a
fixed point equilibrium for notational simplicity, but the definitions also apply
to a stationary distribution equilibrium.

Resource Rl

(Limiting factor)

C
on

su
m

pt
io

n 
u
il

(D
ep

en
de

nc
e 

on
 li

m
iti

ng
 fa

ct
or

)

A

Resource Rl

(Limiting factor)

B

Resource Rl

(Limiting factor)

C

Figure 2.2: Species-specific influences on limiting factors (here, resources) for
a two (A, B) and a three (C) species community. In the two-species community
(A) the two species do not have the same total influence on the limiting factors,
therefore the amount of shared resources is different (1−Ni =

light grey area
white area 6=

light grey area
grey area = 1 − Nj). The conversion factors ci =

white area
grey area are chosen such

that the two species have the same total effect on limiting factors (B). Then, the
two species also share an equal proportion of their resources. This is, however,
not the case in a multispecies community (C) (Adler et al., 2007), where the
amount of shared resources is smaller for the black species than for the white
species, even though all species consume the same total amount of resources.
We therefore expect Nblack 6=Nwhite.
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Box 2.1: N and F for the MacArthur and Lotka-Volterra model
Consider a community of two species whose dynamics follow (MacArthur,
1970)

1
Ni

dNi

dt
=

m

∑
l=1

uilRl −mi (2.2)

1
Rl

dRl
dt

= Kl − Rl −
2

∑
i=1

uil Ni (2.3)

Where uil is the rate at which species i consumes resource l, Rl is the
density of resource l, mi is the loss rate and Kl is the resource’s carrying
capacity. We assume that the resource dynamics are faster than the dynam-
ics of the consumers, such that Rl is always at equilibrium. In that case,
the model simplifies to (MacArthur, 1970):

1
Ni

dNi

dt
=

m

∑
l=1

uilKl −mi −
m

∑
l=1

uilujl Nj −
m

∑
l=1

u2
il Ni (2.4)

Solving equations 2.21 and 2.22 yields (appendix A.3)

cj =

√√√√∑m
l=1 u2

jl

∑m
l=1 u2

il
(2.5)

Thus, c indeed captures the species’ total influence on limiting factors.
Replacing the c’s into the growth rates, one obtains (appendix A.4):

N∗j =
∑m

l=1 ujlKl −mj

∑m
l=1 u2

jl
(2.6)

fi(0,0) =
m

∑
l=1

uilKl −mi (2.7)

fi(0, N∗j ) =
m

∑
l=1

uilKl −mi −
m

∑
l=1

uilujl
∑m

l=1 ujlKl −mj

∑m
l=1 u2

jl
(2.8)

fi(cjN∗j ,0) =
m

∑
l=1

uilKl −mi −

√√√√∑m
l=1 u2

il

∑m
l=1 u2

jl

(
m

∑
l=1

ujlKl −mj

)
(2.9)



30 CHAPTER 2. DEFINITION OF NICHE AND FITNESS DIFFERENCES

Finally, replacing these into eqs. 2.16 and 2.17, one obtains (appendix A.4):

Ni = 1−
∑m

l=1 uilujl√
∑m

l=1 u2
il ∑m

l=1 u2
jl

(2.10)

Fi = 1−
∑m

l=1 ujlKl −mj

∑m
l=1 uilKl −mi

√√√√∑m
l=1 u2

il

∑m
l=1 u2

jl
(2.11)

We now note that eq. 2.4 is equivalent to the Lotka-Volterra model
( 1

Ni

dNi
dt = µi − αiiNi − αijNj), where µi = ∑m

l=1 uilKl − mi, αii = ∑m
l=1 u2

il, and
αij = ∑m

l=1 uilujl are the intrinsic growth rate, the intraspecific interaction
strength, and interspecific interaction strength, respectively. Plugging these
expressions in eqs. 2.16 and 2.17 recovers equations for N and F that
are equivalent to earlier versions of N and F in the Lotka-Volterra model
(Chesson, 1990, 2000, 2013):

Ni = 1−
√

αijαji

αiiαjj
(2.12)

Fi = 1−
µj

µi

√
ajiaii

ajjaij
(2.13)

When N = 0, inter- and intraspecific interactions are equal. Thus, the iden-
tity of the individual does not matter, such that, in eq. 2.1, fi(Ni, Nj) is equiv-
alent to writing fi(Ni + Nj,0). However, one cannot simply sum species den-
sities. For example, a large tree and a small forb may draw down the same
resource. However, they will most likely do so to a different extent. Resource
consumption of each individual tree may be much greater than the resource
consumption of each individual forb. Therefore, we introduce a conversion
factor, cj, that translates the density of a species into a density of the other
species, that would consume the same amount of resources. No mechanistic
understanding of the species interactions is necessary to compute cj, and as
we show below, it can be estimated empirically. While the ecological interpre-
tation of c is discussed below (Applications), we already stress that these are
not the scaling factors known from modern coexistence theory (Chesson, 1994;
Barabás et al., 2018; Ellner et al., 2019).

Hence, the growth of species i can be written as:

N = 0⇒ fi(Ni, Nj) = fi(Ni + cjNj,0) (2.14)

When N = 1, interspecific species interactions are absent. Thus, species j
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has no effect on species i, and so species i grows as if species j were absent, i.e.
we can put the density of j to zero:

N = 1⇒ fi(Ni, Nj) = fi(Ni,0) (2.15)

Equations 2.1-2.15 hold for all densities Ni, Nj. However, we will now apply
it to obtain species i’s invasion growth rate, which allows interference about
coexistence. This corresponds to choosing Ni ≈ 0 and Nj = N∗j , which is j’s
monoculture equilibrium. In this scenario, eqs. 2.14 and 2.15 become N =
0⇒ fi(0, N∗j ) = fi(cjN∗j ,0) and N = 1⇒ fi(0, N∗j ) = fi(0,0). Here, fi(0,0) is the
intrinsic growth rate and fi(0, N∗j )is the invasion growth rate. For fi(cjN∗j ,0)
, we introduce the term no-niche growth rate of species i. This is the growth
rate of species i if there was no niche differentiation, i.e. if N would be 0.
Technically, the no-niche growth rate of species i is the growth rate at the
converted monoculture density of its competitor (species j).

The main idea behind the new definitions is to let N fulfil the requirements
from the previous section. The simplest way to do so is by writing N as a
linear function that equates to 2.14 and 2.15 at the desired growth rates:

Ni =
fi(0, N∗j )− fi(cjN∗j ,0)

fi(0,0)− fi(cjN∗j ,0)
(2.16)

This new definition by design fulfils the requirements, which can be seen when
applying it to the annual plant model(Fig. 2.1). When species interact neg-
atively and do so more within than between species, Ni is bounded in [0,1]
(solid rectangle). When interspecific interactions are more negative than in-
traspecific interactions, species grow slower when rare ( fi(0, N∗j ) < fi(cjN∗j ,0))
and Ni will be negative (dashed rectangle). When interspecific effects are pos-
itive ( fi(0,0) < fi(0, N∗j )) Ni is larger than 1 (dotted rectangle).

This new definition should be interpreted as follows. The numerator of
Ni compares the growth of species i when only interspecific interactions are
present ( fi(0, N∗j )) with its growth when only intraspecific interactions mat-
ter ( fi(cjN∗j ,0) ). Note that in this last growth rate, cjN∗j denotes a density
of species i. Both growth rates are evaluated at the same total converted den-
sity, but at different frequencies of species i, being 0% in fi(0, N∗j )and 100%
in fi(cjN∗j ,0) . The numerator of Ni therefore effectively measures frequency
dependence of species i (Adler et al., 2007; Levine & HilleRisLambers, 2009).
The denominator of Ni, which is always positive and thus does not influence
the sign of Ni, compares the growth of species i when its density is ≈ 0 with
its growth when its density is at the converted equilibrium density of j (cjN∗j ).
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Thus, the denominator of Ni measures the strength of species i’s density de-
pendence. Ni therefore measures the strength of frequency dependence, rel-
ative to that of density dependence. According to this new definition, and
unlike almost all other definitions (but see Adler et al. (2007)), Ni is species-
specific and is therefore not a community characteristic. However, Ni does
depend on species j as well, as species j will influence species i’s invasion and
no-niche growth rates (eq. 2.16). In what follows, we use the subscript i (Ni)
only to distinguish between the niche differences of the species, and use N to
refer to niche differences in general.

2.3.3 Fitness differences and coexistence

The novel definition of N implies a new definition of the fitness difference
F . Verbally, F should represent the per-capita growth rate when both species
occupy the same niche, i.e. when N = 0 (Adler et al., 2010; Barabás et al., 2018).
Therefore

Fi =
fi(cjN∗j ,0)

fi(0,0)
(2.17)

Fi ranges from−∞ to 1 (because we assume no Allee effects, i.e. fi(cjN∗j ,0)<
fi(0,0)) and measures how well species i grows in the absence of frequency
dependence (no-niche growth rate, numerator) (Adler et al., 2007, 2010), com-
pared to its intrinsic growth rate (denominator). When Fi is 0, species i is
equally competitive as species j. Otherwise exactly one species, the competi-
tive dominant, has Fi > 0.
N and F both depend on the intrinsic and the no-niche growth rate. The

no-niche growth rate itself depends implicitly on the invasion growth rate as
well (see below eq. 2.21). In general, changing any underlying parameter will
affect both N and F , i.e. they are interdependent (Song et al., 2019).

Now that we have defined both N and F , we can evaluate when species i
can coexist with species j. Interestingly, normalising the invasion growth rate

by the intrinsic growth rate yields
fi(0,N∗j )
fi(0,0) = Ni + Fi − Ni · Fi (appendix A.2

Thus, i can persist within the community when1:

−Fi <
Ni

1−Ni
(2.18)

1Assuming that Ni < 1
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This inequality formalizes the idea that species persist, whenN ”overcome”
F . However, the inequality is only meaningful if invasion growth rate correctly
predicts coexistence. This inequality yields a number of important insights.
First, as for N , also F is species-specific. Taken together, this shows that the
above inequality should therefore be considered as the condition for species
i to persist. Only if all species from a community fulfil this inequality, all
species will coexist. Second, the minus sign on the left hand side of eq. 2.18
shows that a high Fi implies a competitive advantage for species i, which
is consistent with previous insights (Chesson, 2000, 2003; Adler et al., 2007).
Third, completely different niches are sufficient to overcome arbitrarily large
Fi (i.e. N = 1⇒−F < 1

1−1 = ∞). Conversely, if species occupy the same niche
(i.e. N = 0⇒ −F < 0

1−0 = 0 ), coexistence is only possible under neutrality
(i.e. Fi = Fj = 0 ). Fourth, species with negative N cannot coexist, as species’
growth is positively frequency dependent: species grow faster when abundant
(Mordecai, 2011; Ke & Letten, 2018; Schreiber et al., 2019).

2.3.4 Extension beyond species pairs

The definitions for N and F naturally extend to communities composed of
more than two species, hereafter ‘multispecies communities’. To show this, we
generalised the invasion growth rate and the no-niche growth rate to the case
of multispecies communities (for technical details see appendix A.2):

Ni =
fi(0, N−i,∗)− fi(∑j 6=i cijN

−i,∗
j ,0)

fi(0,0)− fi(∑j 6=i cijN
−i,∗
j ,0)

(2.19)

Fi =
fi(∑j 6=i cijN

−i,∗
j ,0)

fi(0,0)
(2.20)

Here N−i,∗ is the vector of equilibrium densities in the absence of species i,
0 denotes the absence of all species other than i, and similar to the definition
for species pairs (eq. 2.16), cij converts densities of species j into i. These defini-
tions measure the net effect of species interactions on N and F , i.e. including
direct, indirect (Godoy et al., 2017) and higher order effects (Grilli et al., 2017).
More specifically, the interpretations given for the two-species community still
apply, i.e. a species can persist if −Fi <

Ni
1−Ni

and the multispecies case fulfils
the five constraints outlined above (appendix A.2). These interpretations are
valid when (i) invasion analysis is possible and (ii) correctly predicts coexis-
tence (Turelli, 1978; Chesson, 1994, 2000). In multispecies communities, but in
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some two-species communities as well, (i) and (ii) will sometimes not be met
(Saavedra et al., 2017; Barabás et al., 2018).

2.4 Applications

2.4.1 Application to community models

The new definitions of N and F are applicable across various community
types, driven by a variety of species interactions. To demonstrate this, we
apply the definitions to five classic community types, and examine how the
various growth rates and resulting ci, cj, N and F change between these types.
Application to an empirical community, where species interactions may or may
not be known a priori, is illustrated in the next section.

A first step in applying eqs. 2.16 and 2.17 to a model is the quantification
of the factors ci and cj. The c convert species i to j and vice-versa, and so
logically cj · ci = 1. For example, if one tree influences resource levels ten times
more than a forb (ctree = 10), the forb influences resource levels ten times less
than the tree (c f orb = 1/10). After conversion, both species thus have the same
total influence on the environment. In Fig. 2.2A, we provide an example of
two species consuming common resources. We converted their consumption
rates such that total consumption is the same for both species (Fig. 2.2B):
the white and the grey area are equal. This example highlights two results.
First, the c, by equating the total influence on limiting factors, are needed to
correctly compute niche differences. That is, they remove any effect fitness
differences may have on niche overlap. Second, after conversion (Fig. 2.2B),
both species now also happen to have the same proportion of shared limiting
factors (1−Ni = light grey region = 1−Nj). We can therefore find c by solving
the equations

1−Ni = 1−Nj (2.21)

ci · cj = 1 (2.22)

In Box 1, we illustrate this first step, and the calculation of N and F , for
a MacArthur consumer-resource model. We then convert this model into the
well-known Lotka-Volterra model to express N and F using interaction coef-
ficients. This exercise highlight the following results. First, while N and F
are species-specific, they can be identical between species in species pairs com-
peting for shared resources. Indeed, changing i for j in eq. 2.10 shows that
Ni = Nj. However, they cease to be identical when including more than two
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Figure 2.3: N and F applied to common two-species communities. Panels A
and B show the distribution of N and F for species i and species j respectively,
where color codes refer to different communities (see legend). A-E are com-
munities simulated with Lotka-Volterra models, while ‘experiment’ refers to
the performed experiment (Fig. 2.4). Only species in the grey area have a pos-
itive invasion growth rate, i.e. only those persist (Barabás et al., 2018; Chesson,
2000). Panels C and D compares the invasion and the no-niche growth rate to
the intrinsic growth rate (=1; vertical full line).
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species, as can be seen from Fig. 2.2C. Indeed, niche overlap, and therefore N ,
is species-specific in that case. Second, the new definitions of N and F , when
applied to the Lotka-Volterra model, collapse to equivalent definitions for N
and F previously found for the same model (Chesson, 1990). This shows that
these new definitions, which apply to any model (for which invasion analysis
is possible and useful) still agree with the definitions found for this particular
model. Third, ci carries a biological interpretation: in the MacArthur model, ci
indeed increases with the total influence on limiting factors (see eq. 2.5). This
shows why the conversion factors ci differs completely from the scaling factors
used in modern coexistence theory: the latter are weights used to partition
invasion growth rates (Chesson, 1994; Barabás et al., 2018; Ellner et al., 2019) (
appendix A.3).

This last feature is independent of the specific model formulation, i.e. it
extends beyond the McArthur resource model to any model in which two
species interact through resource consumption, resource consumption stim-
ulates growth, and species consume more of a resource when its availability is
higher. In appendix A.4, we show a mathematical proof that in such a model,
increasing the resource consumption of species i will increase ci, i.e. c is linked
to the total resource consumption of a species. Finding the c when species
have positive effects on each other (for example by generating resources or by
limiting the efficacy of a predator) requires additional considerations, which
are discussed in appendix A.2 and A.4.

Finally, we apply equations 2.16 and 2.17 to examine how the various
growth rates underlying N and F , as well as N and F itself, change across
community types (Fig. 2.3) modelled using Lotka-Volterra equations (Ap-
pendix A.4). Priority effects occur when interspecific interactions are stronger
than intraspecific interactions, i.e. ( fi(0, N∗j ) < fi(cjN∗j ), Fig. 2.3 C,D). Neu-
trality occurs when N = F = 0 (Adler et al., 2007). Competitive exclusion
represents the well-known case where N are not large enough to compensate
for F : only the competitive dominant (species i) persists (Ke & Letten, 2018;
Chesson, 2013).

For the case of ”mix of competition and facilitation” (Zarnetske et al., 2013;
Adler et al., 2018b)) and mutualism, one or both species have an invasion
growth rate that is higher than their intrinsic growth rate: these species profit
from other species and thus grow better together than alone. Therefore, these
species have N > 1. In these cases, F matter less for persistence (they only
indicate the winner when N = 0).
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Figure 2.4: N and F applied to experimental data for two marine cyanobac-
teria species from the genus Synechococcus, sampled in the Baltic sea (Stomp
et al., 2004). A and B: Population growth in the different experiments with
different starting conditions. Fitted lines are obtained by interpolating growth
rates. Importantly, to compute N and F one does not have to fit a commu-
nity model through the measured densities. The arrows indicate the growth
rates we measured to quantify N and F . Error bars (grey) show one stan-
dard deviation (3 replicates). C: The two species have different absorption
spectra and therefore partition light usage. A spectrum of the incoming light
intensity can be found in Appendix A.5. D: The experiment confirms that
the species compete and coexist, as the invasion growth rate is positive, but
smaller than the intrinsic growth rate. The conversion factor c is very similar
to the relative total absorption of the two species, confirming its interpretation
as a measure of total influence on the limiting factors (see eq. 2.5). An auto-
mated code to compute N and F from such experimental data can be found
on https://github.com/juergspaak/NFD definitions.
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2.4.2 Application to experiments

The applicability of the new N and F definitions extends beyond models and
can be used to analyse coexistence empirically. In these experiments, one needs
to measure the various growth rates from equations 2.16 and 2.17 to quantify
N and F (Fig. 2.4). These experiments also allow estimating the factors ci
and cj, giving insight in the species’ total influence on limiting factors. Im-
portantly, the definitions can be computed directly from the measured growth
rates, without any assumption on the species’ ecology or the need to fit a
model, contrary to many other definitions. This is particularly useful since
natural communities are typically governed by a multitude of species inter-
actions, many of which will be unknown (Montoya et al., 2006; Carrara et al.,
2015).

To illustrate the application to experimental data, we performed an exper-
iment in which we measured growth of two picocyanobacteria species com-
peting for light (Fig. 2.4). Detailed experimental methods can be found in the
appendix A.5. The two picocyanobacteria species contain different pigments
(phycocyanobilin and phycoerithrobilin), which allow them to absorb different
wavelengths of light (Fig. 2.4 C) Six et al. (2007). Because light colour us-
ages of these two species partly overlap, exactly as did resource usage in the
MacArthur model (Fig. 2.2), we expected that 0 < N < 1 (i.e. species com-
pete). Experiments and field data have shown that pigmentation differences
among picocyanobacteria lead to a resource (light) partitioning that is suffi-
ciently strong to allow coexistence (Stomp et al., 2004, 2007a,b). We therefore
also expected that −F < N

1−N (i.e. coexistence).
Three growth curves per species suffice to quantify N and F for a two-

species community (Fig. 2.4). First (Fig. 2.4A and B, triangles), we grew
both species in a monoculture, starting from low density to obtain the intrin-
sic growth rate. Second (Fig. 2.4A and B, circles), we grew both species in a
monoculture starting from a density higher than their equilibrium density to
obtain the no-niche growth rate. The growth rate at which the density of the
focal species reaches that of the converted equilibrium density of its competi-
tor (cjN∗j ), is the no-niche growth rate. In this particular case, the no-niche
growth rates proved very small because N∗i ≈ cjN∗j and N∗j ≈ ciN∗i . An ex-
ample where this is not the case can be found in figure 2.5. Third (Fig. 2.4A
and B, squares), we introduced each of both species into a monoculture at
equilibrium of its competitor to obtain the invasion growth rates. More pre-
cisely, we introduced 5% of the invading species’ equilibrium density (Gal-
lego et al., 2019; Narwani et al., 2013). We estimated all these growth rates as
fi(Ni(t),0) ≈ log

(
Ni(t+∆t)

Ni(t)

)
/∆t with ∆t = 84 hours. We then fitted a univari-
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ate spline to estimate these growth rates at the various densities. Finally, we
were able to use the measured growth rates to solve the equation 2.21 and thus
obtain ci and cj, as well as N and F . Importantly, the converted equilibrium
density at which the no-niche growth rate is measured is part of the solution
to these equations.

The results of the experiment confirmed our expectations: species compete
for light (0 < N < 1 for both species) and coexist (see triangle in Fig. 2.3).
The estimated growth rates show that both species can grow independently of
each other (positive intrinsic growth rate), and can invade each other’s mono-
culture (positive invasion growth rate). Their no-niche growth rate is much
smaller than their corresponding intrinsic growth rates, and slightly negative
for species 1 but positive for species 2. This shows that removing all niche
differentiation would lead to the exclusion of species 1, as is also seen from
these species’ fitness differences F (Fig. 2.3). Finally, we found the conversion
factors ci and cj to match the relative total resource consumption (absorption)
of the two species (figure 2.4 D). This finding aligns with the theoretical re-
sult that the conversion factors link to the total influence on limiting factors
(available resources) and confirms that these species compete for light. While
this experimental procedure is applied to fast growing communities, this de-
sign can be applied to communities with slow growing species as well. Any
method that allows estimating per-capita growth is sufficient, but obviously
these methods will vary with the considered community. For annual plants,
for example, one may sow different quantities of seeds, ranging from low to
above equilibrium density, in plots, and measure their growth.

2.5 Discussion

In this chapter, we propose new definitions for N and F that are biologically
intuitive by design. The approach is similar to Carroll et al. (2011) in that it al-
lows computing N and F from simulations or experimental data, without the
knowledge of the underlying mechanisms. When applied to the Lotka-Volterra
model for competing species, the definitions collapse to equivalent mathemat-
ical expressions of N and F found before (Chesson, 1990, 2013), while still
being applicable to a large body of community models. This indicates that
there is potential for these new definitions to unify existing definitions (Ches-
son, 2000; Godoy & Levine, 2014; Barabás et al., 2018; Carroll et al., 2011), while
enforcing the connection between theory and biological intuition (HilleRisLam-
bers et al., 2012; Adler et al., 2007, 2010).
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Figure 2.5: N and F applied to simulated experimental data using case C
from figure 2.3, where c1N∗1 (c2N∗2 ) and N∗2 (N∗1 ) differ substantially, unlike
in Figure 2.4. For the competitive inferior (species 2), we have c1N∗1 > N∗2 ,
while for the other species (species 1) we have, c2N∗2 < N∗1 . For species 1 the
second experiment (dotted black line) proved not necessary to compute N and
F , as the no-niche growth rate can be estimated from experiment one (dashed
arrow, dashed black line). However, in general one will not know in advance
for which species experiment two is unnecessary.
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2.5.1 Specificities and limitations

N and F , as defined in this chapter, differ from other definitions of niche
and fitness differences. Most notably, the proposed definitions are not based
on specific mathematical models, apply to communities with positive species
interactions and/or more than two species, and allow inference of coexistence
or exclusion. Thus, the new definitions notably extend modern coexistence
theory based on invasion analyses. The structural approach of Saavedra et al.
(2017) is the only definition for niche and fitness differences which can analyse
communities that are outside of the scope of this new definition, as it does
not depend on invasion analysis. They define N and F for a community in
which the equilibrium point of the community can be described as r = αN∗,
where α is a n by n matrix containing the species interactions and r is a vector
containing the intrinsic growth rates (or equivalent), which may be subject to
additional constraints (Song et al., 2018). Finally, there are still communities
that are beyond the reach of all definitions for N and F , including the newly
proposed definitions: multispecies communities with non-linear interspecific
species interactions (therefore excluding the approach of Saavedra et al. (2017),
but see (Cenci & Saavedra, 2018)), and not allowing invasion analysis (therefore
excluding the approaches of Chesson (2003); Carmel et al. (2017); Carroll et al.
(2011) and the definitions proposed here).

The reliance on invasion analysis is a first limitation of the proposed def-
initions, as it is for many other definitions (Carmel et al., 2017; Carroll et al.,
2011; Zhao et al., 2016; Chesson, 2003). This reliance means that one should be
able to compute the invasion growth rate for each species and that the invasion
growth rates correctly predict coexistence. This can limit the applicability of
the definitions in two ways. First, there will be communities in which inva-
sion analysis does not correctly predict coexistence (Barabás et al., 2018). An
example is the annual plant model combined with positive frequency depen-
dency proposed by Schreiber et al. (2019). Second, invasion analysis requires
that all species within each S-1 subcommunity (the community without the
invading species) stably co-exist. A well-known counter example is the rock-
paper-scissors community, in which the whole community can coexist, while
each two-species subcommunity is not stable (Grilli et al., 2017). While these
two assumptions will be met for most two-species communities, we expect they
will be increasingly violated as communities contain more species (Saavedra
et al., 2017).

A second limitation of the new definitions is the difficulty of interpreta-
tion that arises in communities with Allee effects. The proof that the ci have
a unique solution demands Allee effects to be absent (Appendix A.2). Con-
sequently, Allee effects imply that species may have multiple N and F . This
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highlights the meaning of Allee effects: species change their dependence on
limiting factors with their density. While the new definitions do allow com-
puting these multiple N and F , it is at present not clear how to interpret
them.

2.5.2 The need for new definitions

With already ten definitions at hand, one may ask why we need new definitions
for niche and fitness differences. We identify at least two reasons. A first reason
deals with the complexity of many community models. Many approaches to
compute niche and fitness differences first fit a community model to empirical
data and then perform maths to link the model to N and F (Chesson, 1990;
Godoy & Levine, 2014; Bimler et al., 2018; Saavedra et al., 2017). One challenge
is that these maths are often non-trivial (e.g. Saavedra et al. (2017); Godoy &
Levine (2014); Carmel et al. (2017)) and one needs to resort into simplifying the
community model (Godoy & Levine, 2014; Letten et al., 2017). This may lead
to the omission of mechanisms contributing to N (Chu & Adler, 2015). For
example, niche partitioning could arise at different life stages of a species (Moll
& Brown, 2008), or through its interactions with resources (Chesson, 1990),
predators (Chesson & Kuang, 2008) or mutualists (Johnson & Bronstein, 2019)
and will be affected by environmental change (Rey et al., 2017; Wainwright
et al., 2019). An important advantage of the new definitions is that they do
not require analytical solutions of a community model or even a community
model at all: one can simply simulate or perform the experiments described
in the section ”Application to experiments” and measure the resulting growth
rates to computeN and F . Thus, the model or experimental community can be
used in its full complexity, capturing all mechanisms potentially contributing
to N and F .

A second reason is that the analysis of communities with non-competitive
interactions (e.g. mutualistic and facilitative, Fig. 2.1) and multiple species
(eq. 2.19) is urgently needed. Indeed, such communities have often been anal-
ysed in a suboptimal way. For example Narwani et al. (2017) tested whether
closely related fresh water green algae are more likely to coexist due to higher
niche differentiation. However, N could not be computed when species inter-
actions were positive. Similarly, in a meta-analysis on terrestrial plants, Adler
et al. (2018b) were not able to compute N for one third of the data, as they
contained positive interactions. Chu & Adler (2015) measured N and F in
an age structured model for perennial plants fitted to long-term demographic
data, Petry et al. (2018) measured the effects of ant consumption on N and F
and Veresoglou et al. (2018) reanalysed data from the ”BIODEPTH” grassland
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biodiversity experiment. While these studies do report computed N and F for
multispecies communities, the interpretation of these variables is difficult, as
they do not predict coexistence in multispecies communities.

2.5.3 New insights and outstanding questions

Historically,N measured the proportion of resources not shared by two species
(Hurlbert, 1978). Being a proportion, N was bound between 0 and 1 (Godoy
& Levine, 2014). Linking a mechanistic (resource uptake) model to the Lotka-
Volterra model (MacArthur, 1970; Chesson, 1990) was a key step in exploring
N beyond the traditional range [0,1]. Recent research interpreted negative N
as a sign that interspecific interactions are stronger than intraspecific interac-
tions, leading to priority effects (Ke & Letten, 2018). The interpretation that
N greater than 1 imply positive interspecific interactions is a logical next step.
Our results show that this interpretation is correct when both species have
symmetric positive effects on each other, but also that species benefiting from
other species (e.g. ”mix of competition and facilitation” in Fig. 2.3) would have
N > 1.

The results suggest that N and F are species-specific properties. While
this idea has already been introduced by Adler et al. (2007), virtually all other
definitions consider N a community property. This likely stems from the fact
that most definitions focus on two species communities with competitive inter-
actions, in which case niche differences are the proportion of shared resources,
which is the same for both species (Fig. 2.2 B, light grey area). Therefore, in
this particular case, the two species have the sameN , leading to the impression
that N is a community property.

The results spur three outstanding questions on species coexistence. A first
question deals with the variable c, that we found increases with the total in-
fluence on limiting factors, both for a class of resource competition models
and empirically. However, our mechanistic understanding of these factors is
absent for models beyond the ones considered here, notably in systems not
driven by resource competition. Most notably, we do not know how c relates
to the presence of limiting factors with negative effects on per-capita growth.
A second outstanding question deals with the location of species from complex
communities on the N and F plane from Fig. 2.3. While these positions may
be trivial in some two-species communities, they will not be in large complex
networks with a high number of indirect effects, possibly leading to surprising
conclusions regarding the contribution of stabilizing and equalizing forces to
persistence. A third question deals with the extended applicability the new
definitions offer to modern coexistence theory. This applicability would allow
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asking how N or F compare across community types, mechanisms, and envi-
ronments. Thus, the new definitions enable cross-community comparisons in
a way that at present is not possible. One could, for example, examine how
species from different community types position in Fig.2.3, to ask if community
types that are thought to harbour a more diverse set of mechanisms fostering
coexistence (e.g. annual plants) distinguish from community types that ap-
pear to have little possibilities for niche differentiation (e.g. phytoplankton
(Hutchinson, 1959)).

Within a community type (e.g. phytoplankton), one could compare the sta-
bilizing effect of various mechanisms. For example, we found N and F to
indicate coexistence in a classic example of a community driven by partition-
ing of the light spectrum through phenotypic differences (i.e. pigmentation,
see Fig. 2.3) (Stomp et al., 2004). How does the stabilizing strength of these
phenotypic differences (driving N ) compare to the strength of other relevant
mechanisms (e.g. competition for mineral nutrients, allelopathy)? One could
also examine how environmental changes alter the sign of species interactions
(Olsen et al., 2016; Baert et al., 2016; Song et al., 2020b) impact the persistence,
since the proposed definitions accommodate various interaction types.

In conclusion, our results offer a new perspective on two concepts that un-
derpin biodiversity science, and foster their intuitive biological interpretation
(Fig. 2.1). The developed theory is applicable to a variety of ecological com-
munities, regardless of community complexity, and without the need of math-
ematical skills (Ellner et al., 2019), for any system in which invasion analysis
is possible and correctly determines coexistence. The fact that various com-
munities can be analysed with one approach is a major step forward. Taken
together, the novel definitions of N and F promote conceptual unification and
facilitate empirical research in community ecology and biodiversity science.

2.5.4 Supplementary Information

An automated code that will compute N and F for any given ecological model
or experimental data is available. The code is available in Python and in R on
https://github.com/juergspaak/NFD definitions.
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Chapter 3

The effect of non-linear competitive
interactions on quantifying niche
and fitness differences

3.1 Abstract

Niche and fitness differences of modern coexistence theory separate mecha-
nism into stabilizing and equalizing. This decomposition can help us predict
and understand coexistence, however, it may depend on the method to assess
niche and fitness differences. We apply two different methods to assess niche
and fitness differences to four well known community models. We show that
the most often used method, which is based on linear approximations of the
community model and does not capture the full community dynamics, can
lead to wrong predictions of coexistence and leads to wrong interpretations of
stabilizing and equalizing mechanisms. Conversely, a novel method to assess
niche and fitness differences based on the full community model and intuition
correctly identifies all stabilizing and equalizing mechanisms. Importantly,
it reveals that essentially all mechanisms are both stabilizing and equalizing,
even those thought to be purely stabilizing. We therefore propose to com-
pare the predictions and explanations of multiple niche and fitness differences
methods o broaden our understanding of coexistence.

3.2 Introduction

Explaining biodiversity is a prime objective of ecology (Hutchinson, 1959).
There are many different approaches to address this objective. Neutral the-
ory focuses on regional processes (Hubbell, 2001), stability analysis focuses

45
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on properties of the community matrix (Allesina & Tang, 2012), contemporary
niche theory focuses on investigating species’ limiting factors (Tilman, 1982),
and modern coexistence theory focuses on separating niche and fitness differ-
ences that help and hamper coexistence (Chesson, 2000).

Niche and fitness differences are two central concepts in coexistence theory
which help us to predict and understand species coexistence. Whether or not
species coexist depends on how much species limit each other’s growth com-
pared to their own growth. From a mechanistic standpoint, various factors
such as resources or predators, can limit population growth. Population sizes
will on their turn influence these factors (Meszéna et al., 2006) (e.g. by deplet-
ing resources or by boosting the population size of their predators), as such
creating the regulating feedback underpinning growth limitation. Thus, mech-
anistically, niche differences measure how independent the feedback loop of
two species are. If the feedback loops are completely independent, then niche
differences are 1, conversely, if the feedback loops are equivalent niche differ-
ences are 0. Fitness differences measure the relative strength of the feedback
loops. Species will coexist when niche differences (N ) overcome fitness differ-
ences (F ) (Adler et al., 2007; Chesson, 2000).

Unfortunately, computing niche and fitness differences taking into account
the full complexity of limiting factors is not a straightforward task. Most avail-
able methods therefore apply to simple models only (Spaak & De Laender,
2020), where the details of population regulation are omitted. These mod-
els write per capita population growth as linear functions of the competitor’s
densities, which then act as limiting factors, in lieu of the actual factors that un-
derpin species interactions. Doing so is done by approximating the equations
of the more complex models with linear functions around some predefined
equilibrium point (Letten et al., 2017; Ke & Letten, 2018; Godoy & Levine, 2014;
Carroll et al., 2011) , often making various assumptions on the time-scales at
which the limiting factors vary, as well as on the persistence of these factors.
While these simplifying assumptions will by design be violated in certain con-
ditions, we do not know the implications of such violations for our capacity to
predict and understand coexistence. Such knowledge is important for correct
application of coexistence theory, as is choosing the appropriate definition of
niche and fitness difference (Godwin et al., 2020).

Here, we examine to what extent linear approximations of community mod-
els affect our ability to predict and understand coexistence. To this end, we
assemble four community models, three of which explicitly model limiting fac-
tors, and one which considers direct non-linear effects of population density
on per-capita growth. We approximate all four models with linear functions
and compare how the resulting niche and fitness differences differ from those
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of the full models including limiting factors and direct non-linear interactions.
Based on this comparison, we first develop criteria to test whether the approx-
imated models affect our ability to predict and understand coexistence. Then,
we graphically represent the assumptions made by the approximation method
and show that these simplifications can have a large effect on the commu-
nity dynamics. Importantly, we show, contrary to our expectation, that these
simplifications reduce our ability to predict coexistence, it classified coexist-
ing species as non-coexisting and vice-versa. Finally, we also show that linear
approximation misses new features that expand our understanding of coexis-
tence. For example, changes in mortality rate can affect niche differences, niche
and fitness differences can depend non-monotonically on resource supply rates
and changes in resource supply rates may alter competition from negative to
positive frequency dependent.

3.3 Methods

Four community models have so far been approximated by linear, i.e. Lotka-
Volterra, model to compute niche and fitness differences: Species competing
for substitutional resources with a Holling type 1 response (Chesson, 1990) and
a Holling type 2 response (Letten et al., 2017), species competing for essential
resources with a Holling type 2 response (Letten et al., 2017) and the annual
plant model (Godoy & Levine, 2014). We used the linear approximation of each
of these models from the literature and computed niche and fitness differences
(N A and FA) with the corresponding definition (Chesson, 1990). The super-
script A denotes the fact that these are based on the approximated models. To
compute niche and fitness differences of the full model (N C and FC) we use
the method outlined in (Spaak & De Laender, 2020). The superscript C denotes
the fact that these are based on the full (complex) models.

3.3.1 Niche and fitness differences based on approximated mod-
els

Linear approximation of a model consists of writing these models (given by
1
Ni

dNi
dt = fi(Ni, Nj)) in Lotka-Volterra model form:

1
Ni

dNi

dt
= ri

(
1− αiiNi − αijNj

)
(3.1)

Where Ni is the density of species i, ri is the intrinsic growth rate, αii and αij are
the intra- and interspecific competition coefficients. This involves writing the
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αij of equation 3.1 as a function of the model parameters. Generally speaking,
the linear approximations are defined to match the zero net growth isoclines
(ZNGI) , i.e. fi(Ni, Nj) = 0⇔ 1− αiiNi − αijNj = 0. In principal this means:

αii = 1/NC,∗
i and αij =

(
NC,∗

i − N∗i
)

/
(

NC,∗
i N∗j

)
, where NC,∗

i is the equilibrium
density of species i in monoculture; N∗i and N∗j are the equilibrium densities
of species i and j in the two-species community. Nonetheless, we show below,
that the approximations do sometimes not correctly approximate the equilib-
rium densities, because they are not defined on the real NC,∗

i , but rather an
approximation thereof. The ri are equivalent to the intrinsic growth rates, i.e.
ri = fi(0,0). For all other values of Ni and Nj the linearisation is an increas-
ingly crude approximation. Table 3.1 summarizes the linear approximation for
all these models. Given the interaction coefficients αij we can compute N A and
FA as (Chesson, 1990):

N A
i = 1−

√
αjiαij

αiiαjj
(3.2)

FA
i = 1−

√
αiiαij

αjiαjj
(3.3)

Note that we slightly change the definition of FA
i by defining FA

i = 1−√
αiiαij
αjiαjj

instead of the more usual FA
i =

√
αiiαij
αjiαjj

. This change is purely aesthetic

to ensure consistency between FA
i and FC

i , it does not affect the properties of
FA.

3.3.2 Niche and fitness differences based on the full model

We computed N C and FC for the full model based on a recently developed
method (Spaak & De Laender, 2020). Briefly, this method ensures that species
with independent feedback loops have N C = 1, while species with equivalent
feedback loops have N C = 0. Thus, the method critically depends on invasion
analysis correctly predicting coexistence for the model it is applied to (Spaak
& De Laender, 2020; Barabás et al., 2018; Chesson, 1994; Pande et al., 2019). The
invasion growth rate of a species i is its growth rate when the resident species j
is at its monoculture equilibrium density. More precisely, for a model given by
the per-capita growth rate 1

Ni

dNi
dt = fi(Ni, Nj) Spaak & De Laender (2020) define
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N C and FC as

N C
i =

fi(0, N∗j )− fi(cjN
C,∗
j ,0)

fi(0,0)− fi(cjN
C,∗
j ,0)

(3.4)

FC
i =

fi(cjN
C,∗
j ,0)

fi(0,0)
(3.5)

where NC,∗
j is, as above, the monoculture equilibrium density of species j and cj

is a conversion factor that converts densities of species j to densities of species
i, it ensures that both species have the same dependence on limiting factors. cj

is the solution of the equation |1−N C
i | = |1−N C

j | (Appendix B.6)

Equation 3.4 compares the actual invasion growth rate of species i ( fi(0, NC,∗
j ))

to the hypothetical invasion growth rate when the two species had indepen-
dent feedback loops ( fi(0,0)) and to another hypothetical invasion growth rate
when the two species had identical feedback loops ( fi(cjN

C,∗
j ,0)).

3.3.3 Predicting and understanding coexistence

For N A and FA or to correctly predict coexistence they need to correctly pre-
dict the outcome of species interactions. For a two species community there
are three such outcomes (Tilman, 1982).

First, priority effects where the outcome of competition depends on the
starting conditions, this is only possible with positive frequency dependence,
i.e. negative niche differences (Ke & Letten, 2018). Second, coexistence where
both species persist indefinitely, this is only possible with negative frequency
dependence, i.e. positive niche differences. Third, competitive exclusion,
where the competitive dominant species excludes the other species. This can
happen with both negative and positive niche differences, and depends on the
fitness differences (1−N C

N C FC <−1). When N C and FC or N A and FA correctly
predict these three outcomes for a given model, we consider these to correctly
predict coexistence.

For N A and FA or N C and FC to correctly understand coexistence, they
need to correctly reflect the mechanisms driving the outcome of species interac-
tions. N measures the difference between the niches of two species. When the
two species do not interact with each other, because they occupy completely
different niches, then N should reflect total niche differences , i.e. N = 1
(Spaak & De Laender, 2020). Conversely, if two species occupy the same niche,
then N should be 0. Testing whether two species occupy the same niche is
very difficult in general, as one may not know whether the species do differ
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Name Model ri αij
Substit-resources

Holling type 1
1
Ni
· dNi

dt = ∑l wilRl −mi
1
Rl

dRl
dt = Sl − Rl −∑j ul jNj

∑l wilSl −mi
∑l wilul j

∑l wilSl−mi

Substit-resources
Holling type 2

1
Ni
· dNi

dt = ∑l wil Rl
ki+∑l wil Rl

−mi
dRl
dt = Sl − Rl −∑j ul jNj

∑l wilSl
ki+∑l wilSl

−mi
∑l wilul j

∑l wilSl−
kimi

1−mi

Essential-resources
Holling type 2

1
Ni
· dNi

dt = minl

(
wil Rl

Rl+kil

)
−mi

dRl
dt = Sl − Rl −∑j ul jNj

minl

(
wilSl

Sl+kil

)
−mi

uLi j
SLi−R∗iLi

Annual plant Ni(t+1)
Ni(t)

= (1− gi)(1−mi) +
giλi

1+∑j αijgj Nj(t)
giλi

1−(1−gi)(1−mi)
− 1

gjαij
ri

Table 3.1: We consider four community models of which the full equations
are given (’Model’), as well as their linear approximation as reported before
(Chesson, 1990; Godoy et al., 2014; Letten et al., 2017). The linearized versions
of these models are reconstructed by replacing ri and αij in equation 3.1 by
the expressions in the corresponding columns. The first three models are re-
source explicit models. For these models wil is the conversion of resource to
biomass, uli is the utilisation of resource l by species i, mi is the mortality rate,
Sl is the resource supply and ki respectively kil are half-saturation constants.
Consistently, subscripts i and l stand for species and resources, respectively.
Subscript Li is the index of the more limiting resource of species i in monocul-
ture. In the annual plant model gi is the germination rate, mi is the mortality
rate (traditionally the model uses the survival rate si = 1− mi), λi is the net-
production rate and αij is the intra- or interspecific interaction.



3.3. METHODS 51

Criteria Substit-resources
Holling type 1

Substit-resources
Holling type 2

Essential-resources
Holling type 2 Annual plant

N C,FC N A,FA N C,FC N A,FA N C,FC N A,FA N C,FC N A,FA

Comp.
exclustion X X X X X X X X

Coex. X X X X X X X X
Priority
effects X X X X X X X X

Same
niche X X X X X X = =

No
interaction X X X X X X X X

Stabilizing
mechanism X X X X X X 6= 6=

Table 3.2: How N A and FA or N C and FC predict (first three rows) and
understand (last three rows) coexistence across the four investigated models
(columns). Xindicates correct prediction respectively explanation, X indicates
wrong prediction or explanation A Xin the column ”Coex.” indicates that the
method correctly predicts coexistence for each community in which the species
coexist. The same holds for the columns ”Comp. exclusion” and ”Priority ef-
fects”. The annual plant model does not explicitly consider limiting factors, so
there is no clear criteria for asserting that both species occupy the same niche,
the two methods however agree perfectly, i.e. N C = 0⇔ N A = 0, which we
indicate with a ”=” (see Appendix B.5). Similarly, there is no clear criteria for
asserting that a mechanism is stabilizing, and we found that the two definitions
do not agree on this (indicated with ” 6=”).

in any not-investigate niche axis. However, in the special cases where there is
only one limiting factor, e.g. because species compete only for one resource,
species must occupy the same niche.

In addition, to understand species coexistence,N A and FA or N C and FC

need to correctly categorize changes in a model’s parameter as stabilizing
and/or equalizing mechanisms. That is, changes that affect niche differences
are called stabilizing, while they are equalizing when they affect fitness dif-
ferences. Importantly, mechanism can be both stabilizing and equalizing. We
will call any mechanism that only affects niche or fitness differences purely
stabilizing or equalizing, respectively.
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3.4 Results

N A and FA can be considered linear approximations of the per-capita growth
rates, i.e. fi(Ni, Nj) ≈ ri · (1 − ∑j αijNj). Through this approximation we of-
ten loose information about community dynamics, most notably higher order
interactions (Grilli et al., 2017; Levine et al., 2017) or explicit interactions with
limiting resources (Letten & Stouffer, 2019). Importantly, the linearisation does
not account for substitutable resources to go extinct (Chesson, 1990; Letten
et al., 2017), or for the fact that the identity of the essential resource that is lim-
iting to a species can change during competition, independent of changes in
the resource supply point (Letten et al., 2017). Extinction of a resource becomes
more likely with an increasing number of resources and should therefore not
be seen as a special case, but rather as the norm (Holt, 1977; Abrams, 1983,
1980; Letten & Stouffer, 2019). As expected, the linearisation gives a poor ap-
proximation of the growth rates in general, and of the invasion growth rate
especially, for all four models (Fig. 3.1).

3.4.1 When approximations do not correctly predict coexistence

Table 3.2 summarizes how N A and FA or N C and FC predict coexistence. N C

and FC correctly predict the outcome of competition, as long as invasion anal-
ysis correctly predicts the outcome of competition (Spaak & De Laender, 2020).
This is the case for the investigated models if no resources go extinct (Letten
et al., 2017; Tilman, 1982; Adler et al., 2007; Godoy et al., 2014; MacArthur, 1970;
Chesson, 1990). However, communities with more than two resources (only
for the substitutable resource models) may have multiple possible outcomes of
competition, depending on the starting densities (Appendix B.1). N C and FC

correctly predicts one of these equilibria, the equilibrium that is attained when
either of the two species starts as an invader.
N A and FA correctly predicted the outcome of interaction for the annual

plant model and for the substitutable resource models, when no resources go
extinct. However, in some other cases, N A and FA do not correctly predict the
outcome of competition (Appendix B.1 and B.2).

3.4.2 Approximations limit understanding of coexistence

The approximations N A and FA do mostly not correctly explain coexistence,
even when they correctly predict coexistence.

For all investigated models N C and FC correctly identify when two species
occupy the same niche (N = 0). Conversely, N A and FA do correctly identify
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Figure 3.1: Scaled per capita growth rates of the focal species (y-axis) as a
function of the resident species density (x-axis) for the four full models (solid
line = fi(0, Nj)/ fi(0,0)) and their linear approximations (dashed = 1− aijNj).
The linear approximations do not capture the full complexity of the models
and deviate substantially from the full model. Two main differences between
the approximation and the full model stand out: First (A and B), the approx-
imated equilibrium density of the resident NA,∗

j is smaller than the exact res-

ident’s equilibrium density NC,∗
j (indicated by different labels for NA,∗

j and

NC,∗
j ). Second (A,B and C), the density for zero-net growth is not equal for

the approximation and the full model (intersection with grey line). These two
differences occur because the linearisation does not account for resources that
go extinct (black triangles, A,B,C) or changes in which essential resource is
limiting (black square, C). The full model eventually transforms into a hori-
zontal like (A,B,C) when all resources are extinct and growth rates reduce to
the density-independent mortality rates. These differences can lead to wrong
predictions about the outcome of competition (see Table 3.2). Chosen parame-
ters (A,B,C) are equivalent to Fig. 3.2.
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this case in the annual plant model, but not in any of the resource-explicit com-
munity models. When one of the two resources goes extinct (for both species
in monoculture, outside the dotted lines in figure 3.2, A,B,D,E), then the two
species compete for only one resource and must have identical feedback loops.
Consequently, the two species must have no niche differences. None the less,
N A 6= 0 for these resource supply points. Similarly, for the competition for
essential resources, the linearisation method predicts N A = 0 for a community
with priority effects (Appendix B.2), which contradicts prior findings (Ke &
Letten, 2018; Mordecai, 2011; Spaak & De Laender, 2020). Both the approxima-
tion and the full N and F give exactly the same predictions for the absence
of niche difference in the annual plant model, i.e. N C = 0⇔N A = 0, which
we interpret as both methods correctly predict if the two species occupy the
same niche. Both the approximation and the full niche and fitness differences
correctly predict when the two species don’t interact and must have N = 1.

Any mechanism that is purely equalizing cannot alter the outcome of com-
petition from coexistence to priority effects or vice versa (Ke & Letten, 2018).
Therefore, any mechanism that alters the outcome of competition in that way
must be stabilizing.

The approximations N A and FA do not correctly classify equalizing and
stabilizing mechanisms. The approximation classifies any mechanism in the
resource competition models that does not affect resource utilisation uli or the
conversion efficiency wil as purely equalizing; Mechanisms that affect uli or
wil are both equalizing and stabilizing. Importantly, it classifies changes in
resource supply rate and changes in mortality to be purely equalizing. Yet
we found that changes in mortality can alter the outcome of competition from
priority effects to coexistence in certain conditions, and therefore must be sta-
bilizing (Appendix B.1). N C and FC correctly predict that changes in mortality
are stabilizing, as they affect N C

i (Fig 3.3).
Changes in resource supply rates can be stabilizing mechanism as well.

Given two species, the resource supply rates determine whether both species
are limited by the same resources (and consequently must have N = 0) or
whether the species coexist (and consequently must have N > 0). Therefore,
changes in resource supply rates can be stabilizing mechanisms. In general,
N C and FC predict that essentially all mechanisms are both stabilizing and
equalizing (Song et al., 2019).
N C and FC also highlight the existence of maxima and minima for N C as

a new insight. Importantly, the location of these local maxima and minima
can be found geometrically, similar to the coexistence region (Appendix B.3).
The existence of these maxima and minima is unexpected, but not counter-
intuitive. We keep all community parameters fixed except S1. For small values
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Figure 3.2: N (color) as a function of the resource supply point for the three
different resource explicit community models. N A and N C are not defined
when one species cannot survive in monoculture (white regions). A,B: N A is
independent of resource supply point for substitutable resources. Moreover,
the functional response to resource concentrations does not affect N A (given
uli and wil). In the region where both species are limited by only one resource
(above blue dotted and below green dotted line) N A is non-zero, contrary to
the assumption that species competing for one resource must have N = 0. C:
N A is only affected by changes in the resource supply point if the limiting re-
source changes for a species (crossing a dotted line). This change from N A 6= 0
to N A = 0, however, is discontinuous. D,E,F: N C continuously depends on
changes in resource supply point and features local maxima (D-F) and minima
(D,E). N C correctly predicts N C = 0 in the region where both species are lim-
ited by the same resource. Green and blue solid lines are the ZNGI, dashed
lines delimit the coexistence region and dotted lines delimit the region where
both species are limited by the same resource. Black dot represents the resource
supply point taken for Fig. 3.1 and 3.3.
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of S1 both species are limited by R1 only, hence we must have N = 0, for
intermediate values of S1 the species coexist, hence N > 0, for large values of
S1 the species are limited by R2, hence N = 0. Consequently, N depends in a
non-monotonic way on S1 and will therefore exhibit a maximum. We should
therefore expect that N depends in a non-monotonic way on simultaneous
changes of both Sl, as it indeed does.

Importantly, the new findings, changes or mortality or resources supply
point are stabilizing, are not based on the specificities of N C and FC. Rather
the argumentation is based on intuitive knowledge of niche differences only. It
must therefore apply to any niche and fitness differences definition.

Another new insight from N C and FC is that competition for substitutable
resources can lead to negative N C

i , i.e. positive frequency dependence, for cer-
tain resource supply point. However, even for these resource supply point, the
community will not be driven by priority effects. This highlights that nega-
tive niche differences (and thus positive frequency dependence) are necessary
but not sufficient conditions for priority effects. If fitness differences are to
strong, one species will exclude the other, regardless of the initial condition,
which is the case in this scenario (Ke & Letten, 2018). N C and FC do there-
fore not predict another outcome of competition than the resource competition
theory by Tilman (1982). Positive frequency dependence arises when species
consume more of the resource that limits their competitor most (Ke & Letten,
2018). For the resource supply point chosen in figure 3.2D the blue species
drives resource 2 to extinction in monoculture. The red species, as an invader,
will therefore only consume resource 1 and have a horizontal utilisation vector.
The red species therefore consumes only the favoured resource of its competi-
tor (blue species), which leads to positive frequency dependence (Ke & Letten,
2018). A condition for N C < 0 is therefore that resources go extinct, which is
why N C < 0 does not occur for essential resources, as species in monoculture
can’t drive essential resources to extinction.

3.5 Discussion

The prevailing approach to compute niche and fitness differences is to simplify
community models through linearisation (Godwin et al., 2020; Godoy & Levine,
2014; Letten et al., 2017; Chesson, 1990). We show that this approach results in
niche and fitness differences that differ quantitatively and qualitatively from
approaches taking into account non-linear species interactions. Including the
non-linear species interactions improves our ability to predict and understand
coexistence.
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3.5.1 We should not continue to use linear approximations to
compute niche and fitness differences

We identified those cases for whichN A and FA do and do not correctly predict
coexistence. One might argue, that these are unprobable special cases or that a
better linear approximation might correctly predict coexistence. For example,
the method defined by Carroll et al. (2011) could be seen as another type of
linear approximation, chosen such that the invasion and intrinsic growth rates
are identical to those of the full community model. Other possible choices
would be a Taylor expansion (Allesina & Tang, 2012) or a linear regression
approach (Godwin et al., 2020). Applying these alternative approximations
can lead to different predictions of species coexistence than those presented
here (Godwin et al., 2020). However, none of them are likely to advance our
understanding of coexistence, as they ignore important non-linear features of
the community model (Appendix B.4).

Niche and fitness differences should facilitate understanding of species co-
existence by disentangling stabilizing from equalizing mechanisms. We have
shown that essentially all mechanisms are both stabilizing and equalizing, as
they can alter the outcome of competition from priority effects to coexistence.
Yet the linear approximation N A and FA predict that only very few mecha-
nisms are stabilizing. Importantly, this is not only the case for some limited
supply rates or other parameter ranges, but applies to essentially all mecha-
nisms.

Finally, niche and fitness differences based on the linearisation approach are
so far only defined for a two species community without facilitation (Bimler
et al., 2018; Carroll et al., 2011). It is therefore not well suited to solve future
problems in coexistence theory (Godoy et al., 2018; Levine et al., 2017; Serván
et al., 2018).

3.5.2 New insights

We analysed niche and fitness differences for four well-known community
models, taking into account their full complexity without doing any approxi-
mations. This led to three new insights.

First, changes in mortality can affect both niche and fitness differences, con-
trary to earlier results (Chesson, 2000; Godoy et al., 2014; Barabás et al., 2018;
Petry et al., 2018; Letten et al., 2017). This confirms the earlier findings from
Song et al. (2019) who found that niche and fitness differences are interdepen-
dent. Except in some special cases, changing any parameter always affected
both niche and fitness differences. We found no mechanism that acts solely
equalizing or stabilizing.
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Second, niche differences depend non-monotonically on the resource sup-
ply point and environmental conditions. Again, this result is independent of
the specific properties of N C and FC but is based on intuitive properties of
niche and fitness differences (see Appendix B.1). We also found maxima and
minima of niche differences as a function of resource supply. While we were
able to show the existence and specific location of such extremes, we know
little about their consequences. For example, niche differences are assumed to
increase ecosystem function (Carroll et al., 2011; Striebel et al., 2009) or stability
with respect to perturbation (Adler et al., 2007). Does this imply that these
specific resource supply points produce most function or are most stable?

Third, the non-linear niche differences highlight resource supply points
with negative N C (Fig. 3.2). At these resource supply points, species have
positive frequency dependence, which was unknown for this well-known com-
munity model.

3.5.3 Future directions of niche and fitness differences

Recent research has shown that non-linear or higher order species interactions
can affect community composition, community stability and coexistence (Grilli
et al., 2017; Bairey et al., 2016; Mayfield & Stouffer, 2017). Coexistence theory
must therefore move from simple linear models to models including higher or-
der and non-linear interactions (Godoy et al., 2018; Letten & Stouffer, 2019).
This can be done by using N C and FC. For example, Spaak et al. (2019)
analysed the effect of species richness on N C and FC, including models with
higher order interactions and showed that higher order interactions affected,
on average, FC, but not N C. The inclusion of higher order interactions into
niche and fitness differences, however, comes at a cost. While the niche and
fitness differences computed on a linearisation lead to a simple representation,
explicit formulas of niche and fitness differences for the full models are often
not possible, making interpretation considerably more complex.

Modern coexistence theory and niche and fitness differences in particular,
should predict and understand species coexistence. However, there are eleven
different methods to assess niche and fitness differences, with little consensus
about which to use (Spaak & De Laender, 2020). As our results imply, all these
different methods can potentially lead to different predictions and explanations
of coexistence (Appendix B.4). For example, Song et al. (2020a) have shown that
a mechanism increasing structural niche differences (Saavedra et al., 2017) may
decrease traditional niche differences (Chesson, 1990). Similarly, Song et al.
(2019) have shown that different methods to asses stabilizing and equalizing
mechanisms do not lead to the same understanding of coexistence.
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This discrepancy between methods potentially limits out capacity to predict
and understand coexistence, as it hampers cross community comparison. We
propose to compute niche and fitness differences with multiple methods for
the same underlying data. Many methods can be computed with little to no
additional effort. Such as Carroll et al. (2011), which can be computed based
solely on invasion and intrinsic growth rates. Spaak & De Laender (2020) can
be computed numerically on most community models and with open soft-
ware available on https://github.com/juergspaak/NFD_definitions. How-
ever, we discourage from using methods to assess niche and fitness differences,
which do neither correctly predict nor explain species coexistence. We need to
compare different methods of niche and fitness differences, both theoretically
and empirically, to understand how it affects our capacity to predict and ex-
plain coexistence.



Chapter 4

Species richness increases fitness
differences, but does not affect
niche differences

4.1 Abstract

A key question in ecology is what limits species richness. Modern coexis-
tence theory presents the persistence of species as a balance between niche
differences and fitness differences that favour and hamper coexistence, respec-
tively. With most applications focusing on species pairs, however, we know
little about if and how this balance changes with species richness. Here, we
present the first mathematical proof that, the average fitness difference among
species increases with richness, while the average niche difference stays con-
stant. Extensive simulations with more complex models and analyses of em-
pirical data confirmed these mathematical results. Taken together, our work
suggests that, as species accumulate in ecosystems, ever-increasing fitness dif-
ferences will at some point exceed constant niche differences, limiting species
richness. Our results contribute to the expansion of modern coexistence theory
towards multi-species communities.

4.2 Introduction

Explaining nature’s biodiversity is a key challenge for science (Hutchinson,
1957). One type of approach consists of focusing on the capacity of individ-
ual species to persist through time despite species interactions and occasional
pruning to low density (Turelli, 1978). Modern coexistence theory is such an
approach, and predicts species persistence when niche differences overcome

61
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fitness differences. Niche differences measure the strength of negative fre-
quency dependence, i.e. whether a focal species i can recover when reduced to
low abundance (Chesson, 2000; Adler et al., 2007; Spaak & De Laender, 2020).
Fitness differences measure the competitive ability of that species (Hart et al.,
2018; Adler et al., 2007; Spaak & De Laender, 2020).

However, few applications of coexistence theory have explicitly focused on
explaining biodiversity, i.e. the persistence of species in species-rich commu-
nities. Instead, most applications have considered two-species communities
(Chesson, 2000; Letten et al., 2017), using a variety of approaches and case stud-
ies. For example, niche and fitness differences have been measured in various
two-species systems, including annual and perennial plants (Godoy & Levine,
2014; Adler et al., 2018b), phytoplankton (Gallego et al., 2019; Narwani et al.,
2013) and bacteria (Zhao et al., 2016), and under different environmental con-
ditions (Bimler et al., 2018; Napier et al., 2016; Matı́as et al., 2018; Lanuza et al.,
2018; Cardinaux et al., 2018; Wainwright et al., 2019; Grainger et al., 2019a). But
we found only three empirical studies that report niche and fitness differences
in communities composed of more than two species (hereafter multi-species
communities) (Veresoglou et al., 2018; Chu & Adler, 2015; Petry et al., 2018).
However, none of these three studies explain how niche and fitness differences
jointly constrain species richness. In order to understand how niche and fitness
differences co-determine species persistence in multi-species communities, we
need to understand how both variables change when adding species to a com-
munity.

Multi-species communities possess at least four complexities that are absent
from two-species communities, which may affect niche and fitness differences,
and therefore how both constrain species richness. (i) First, multi-species com-
munity can host a multitude of interaction types. Species richness increases
the number of possible interactions and the number of combinations of these
interaction types. Several metrics exist to summarize this diversity of inter-
action types and study their implications for community dynamics (Fontaine
et al., 2011). (ii) Second, two-species communities are always fully connected
and correlations between interspecific interactions (Barabás et al., 2016) be-
come irrelevant since there is only a single pair of interspecific interactions.
In contrast, in an n-species community there may be anywhere from n − 1
to n

2 (n − 1) connections, and the interspecific effects of species j on species i
can be positively or negatively correlated with the interspecific effects i has on
j (Barabás et al., 2016). May (1972); Allesina & Tang (2012, 2015) have shown
that connectance and correlation can have large effects on the stability of multi-
species communities. We therefore expect these factors to influence coexistence
as well. (iii) Third, higher-order interactions, through which a third species
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changes the interaction between a species pair, are by definition absent from
two-species communities (but see Letten & Stouffer (2019); Levine et al. (2017)).
Such higher-order interactions have been found empirically, for example, in
communities composed of phytoplankton, bacteria, and ciliates (Mickalide &
Kuehn, 2019); in that study, bacteria coexisted with phytoplankton and ciliates,
but all three functional groups did not coexist. In the three-species community,
phytoplankton inhibited bacterial aggregation, leaving the latter more vulnera-
ble to predation by ciliates. (iv) Fourth, indirect effects, whereby a third species
changes the dynamics of a species pair by directly interacting with both part-
ners at the same time, are by definition absent from two-species communities
Walsh (2013). We will refer to these four complexities throughout the text with
(i) interaction types, (ii) interaction matrix structure, (iii) higher-order interac-
tions and (iv) indirect interactions.

Studying multi-species coexistence is challenging both theoretically and ex-
perimentally. Theoretically speaking, the methods to analyse coexistence via
niche and fitness differences in a multi-species community were not available
until recently (Carroll et al., 2011; Saavedra et al., 2017; Carmel et al., 2017; Spaak
& De Laender, 2020). Experimentally speaking, studying coexistence of mul-
tiple species is resource-demanding. For instance, in the simple case of linear
direct interactions among species (i.e. as in Lotka-Volterra models) the number
of experiments needed to parametrize the community is quadratic in species
richness (but see Maynard et al. (2019)). Considering higher-order interactions
will consequently result in an even higher experimental load. For example,
measuring higher-order interactions (sensu. Letten & Stouffer (2019)) would
require 39 experiments in a three species community.

In this paper we investigate the balance between niche and fitness differ-
ences along a gradient of species richness. More specifically, we ask how niche
and fitness differences change as the number of species in a community in-
creases, and how the additional complexities (i)-(iv) influence these changes.
We do so using four independent methods that rely on a novel definition for
niche and fitness differences that is able to analyse multi-species coexistence
(Spaak & De Laender, 2020), and a new compilation of species interaction data.
First, we derive equations that quantify how niche and fitness differences re-
spond to species richness in a community with linear interactions and simple
cases of higher-order interactions. Second, we give an intuitive explanation of
these responses based on the Mac-Arthur consumer-resource model. Third, we
perform simulations with more complex models. We run these simulations as
a full-factorial virtual experiment, varying direct interactions (type, correlation,
connectance), indirect interactions, and higher-order interactions. Fourth, we
compile data from the literature on empirically measured species interaction
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matrices and compute niche and fitness differences as a response to species
richness. All methods support the same general conclusion: species richness
does not affect niche differences, but increases fitness differences. Importantly,
these conclusions are independent of the four complexities (i)-(iv).

4.3 Methods

4.3.1 Model and calculation of niche and fitness differences

We use a generalized Lotka-Voltera model with n species containing second-
order interactions to model the per-capita growth rates fi(Ni, N−i):

1
Ni

dNi

dt
= ri

(
1 + ∑

j
αijNj

(
1 + ∑

k
βijkNk

))
︸ ︷︷ ︸

fi(Ni,N−i)

(4.1)

, where Ni is the density of the focal species i, N−i is the density of the res-
ident community (vector of length n − 1), ri is its intrinsic growth rate, and
αij and βijk are first (or linear) and second-order species interactions, respec-
tively. A positive αij indicates a positive interaction between species i and
j (facilitation). Negative αij on the other hand indicate negative interactions
(competition). When βijk is positive or negative species k will intensify or
weaken the relationship between species i and j, respectively (second-order in-
teraction). The inclusion of third order interactions did not affect any of our
results. Throughout the manuscript we assume αii = −1, which can always be
achieved by rescaling.

There exist five different definitions to compute niche and fitness differ-
ences in multi-species communities (Chesson, 2003; Carmel et al., 2017; Saave-
dra et al., 2017; Spaak & De Laender, 2020; Carroll et al., 2011). The definitions
of Carmel et al. (2017) do not apply to the selected model. Chesson (2003)
was developed for environmental or spatial fluctuations, which we do not con-
sider here. Saavedra et al. (2017) and Carroll et al. (2011) do apply to the se-
lected model. However, niche and fitness differences as computed by these two
methods allow inference of coexistence only in two-species communities, not
in multi-species communities. That is, two different multi-species communities
may have identical niche and fitness differences but different outcomes of co-
existence (e.g. all species persist in one community, but not in the other). Since
we here ask how niche and fitness differences jointly determine coexistence
in multi-species communities, these two methods are therefore not applicable
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here. Consequently, we computed niche and fitness differences as defined by
Spaak & De Laender (2020).

Spaak & De Laender (2020) base their definition of niche and fitness differ-
ences (N and F ) on the comparison of species growth rates in various condi-
tions. When two species (i and j) have completely separated niches (Ni = 1), the
species i will grow in presence of j as it would have in its absence, which im-
plies fi(0, N∗j ) = fi(0,0) where fi(0, N∗j ) is the per capita growth rate of species
i when it invades a community with j at equilibrium density N∗j , known as
the invasion growth rate and fi(0,0) is the intrinsic growth rate of species i.
Conversely, if the two species have exactly the same niche (Ni = 0) they have
equivalent effects on each other. It then holds that fi(0, N∗j ) = fi(cjN∗j ,0) where
cj is the conversion factor allowing to express individuals of species j as indi-
viduals of species i. However, this does not imply, that both species have zero
invasion growth rates. Interpolation between these two extreme cases allow
defining the niche difference in a two-species community:

Ni =
fi(0, N∗j )− fi(cjN∗j ,0)

fi(0,0)− fi(cjN∗j ,0)
(4.2)

This definition maps positive frequency dependence, negative frequency de-
pendence and facilitation to Ni < 0,0 <Ni < 1, and 1 <Ni respectively.

Similarly, they define fitness differences as the (scaled) growth rate in the
absence of niche differences

Fi =
fi(cjN∗j ,0)

fi(0,0)
(4.3)

Zero fitness differences imply that the species have equal competitive strength,
as N∗i = cjN∗j , competitive subordinate species have negative fitness differences,
as N∗i < cjN∗j , conversely competitive dominant species have positive fitness
differences. This definition can be generalised to a multi-species community
(Appendix S1). Ni and Fi are species-specific properties, i.e. in general we
have Ni 6= Nj and Fi 6= Fj in multi-species communities. However, N and F
compare the effect of the focal species on itself to the effect of the rest of the
community on the focal species, they therefore do depend on the traits of the
other species in the community.

4.3.2 Analyses and Simulations

We first examined analytically how N and F change with species richness. We
found a generic solution for first-order interactions and for a simplified case of
higher-order interactions.
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Factor Parameter Levels Interpretation Complexity
investigated

Interaction type
first-order αij

< 0
> 0

no restriction

competition
facilitation

mixed
(i)

Strength of interaction
first-order αij

strong
weak (i)

Connectance P( 6= 0) 1,4
5 , 2

3 (ii)

Interaction
correlation

cor(αij,αji)
corij(βijkβ jik)

1
0
-1

equal
unrelated
opposite

(ii)

Presence of
indirect effects

Yes
No

absent
present (iv)

Interaction type
second-order βijk

> 0
< 0

no restriction
= 0

intensify
weaken
mixed

no second-order

(i) and (iii)

Table 4.1: Design of full factorial virtual experimental.

Second, we designed a full-factorial virtual experiment in which we nu-
merically computed N and F for a wider range of different simulated com-
munities (see table 4.1). For these we solve numerically for equilibrium den-
sities and invasion growth rates using the ’fsolve’ function from the scipy
package in Python. The factors were (i) first-order interaction type (com-
petitive, facilitative or both, i.e. αij < 0,> 0 or unrestricted); (ii) first-order
interaction strength (strong or weak); (iii) connectance of the interspecific in-
teraction (c ∈

{
1, 4

5 , 2
3

}
); (iv) correlation between the interspecific interaction

(ρ(αij,αji) = ρij(βijk, β jik) ∈ {−1,0,1}); (v) inclusion of indirect effects (present
or absent); (vi) second-order interaction type (βijk < 0,> 0, unrestricted, or
absent); To exclude indirect effects we set equilibrium densities of resident
species to their monoculture equilibrium density. In this way, we cancel out
interactions among residents that will change the residents’ densities. The in-
trinsic growth rate ri does not affect N and F , therefore we set it to 1 in all
simulations.

This design leads to a total of 3 · 2 · 3 · 3 · 2 · 4 = 432 parameter settings.
We ran 1000 repetitions for each of the five species richness levels (2 ≤ n ≤ 6),
leading to a total of 432 · 5 · 1000 = 2′160′000 simulations. We parametrized the
first-order interactions using distributions of empirically obtained first-order
interactions (see supplementary informations S2). We sampled “strong” first-
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order interactions between the Q1 − 1.5(Q3 − Q1) and Q3 + 1.5(Q3 − Q1) of
those distributions, where Q1 and Q3 are the first and third quartile, respec-
tively. to remove outliers (defined as species interactions outside this range).
Similarly, we sampled “weak” first-order interactions between the Q1 and Q3 of
the empirical distributions of interaction strength. We fitted linear regressions
to measure the effect of species richness on Ni and Fi. With this approach we
were able to investigate the effects of all complexities (i)-(iv).

4.3.3 Literature data

We found three review papers that inventoried multi-species Lotka-Volterra
interaction matrices (Adler et al., 2018b; Fort, 2018; Keddy & Shipley, 1989),
representing a total of 33 interaction matrices, ranging from 3 to 9 species, and
containing 29 plant, 2 phytoplankton, 1 zooplankton and 1 ciliate communities.
We normalized all these data such that αii =−1. The interaction matrices were
obtained through pairwise experiments, measuring the interspecific effect of
one species on the other. For each multi-species community we constructed
all possible sub-communities with at least two species, leading to a total of
2544 communities that varied in species richness from 2 to 9. We excluded all
communities in which not all interaction strengths were available, e.g. because
of a “NA” entry in the sampled sub-community, leading to 2296 communi-
ties. For 1376 communities we could not compute N and F . That is because,
like any method seeking to quantify frequency dependence, our approach is
based on invasion analysis: the capacity of an invader to grow with the other
species at their non-zero equilibrium. Thus, one must be able to compute
the invasion growth rate of each species, which is the per capita growth rate
fi(0, N−i,∗

j ) when the focal species i is nearly absent (mathematically equal to 0)
and the other species are at their equilibrium density N−i∗. N and F are thus
only computable for communities where each subcommunity (the community
without the invading species) coexists stably. We therefore computed N and
F for the remaining 920 communities.

For each interaction matrix obtained from the literature we computed N
and F using equation 4.2 and 4.3. For each of the 33 interaction matrices,
we regressed Ni against species richness of the sub-communities. These data
contained many outliers, which skewed the results of our linear regressions.
We therefore used a Theil-Sen estimator for the slope, which is more robust
to outliers than linear regression based on least squares (Sen, 1968). We fitted
(using least squares) a saturating function Fi =

n−2
(n−2)+H for the fitness dif-

ferences. This saturating response was chosen for Fi, because our analytical
results suggested such a response.
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4.4 Results

4.4.1 Analytical solutions

For the linear Lotka-Volterra model without higher-order interactions (i.e. βijk =
0), we can compute explicitly (see Appendix C.1):

1−Fm
i = ∑j,αij 6=0(1−Fij)

N−i,∗
j
N∗j

(4.4)

Nm
i =

∑j,αij 6=0

(
cij N

−i,∗
j

)
Nij

∑j,αij 6=0 cij N
−i,∗
j

(4.5)

,where Fm
i andNm

i are the fitness and niche differences of i in the multi-species
community (superscript m), Fij and Nij are the fitness and niche difference of
i in a two-species community consisting of species i and j. cij is the conversion
factor from species j to species i, N−i,∗

j is the equilibrium density of species
j in the absence of species i and N∗j is the equilibrium density of species j in
monoculture (see methods). The sum is taken across species j with which i
interacts directly, i.e. αij 6= 0.

Eq. 4.4 and 4.5 illustrate our two main results. First, 1−Fm
i is the weighted

sum, across all species pairs with which i interacts, of the two-species fitness
differences 1−Fij.

The weights
N−i,∗

j
N∗j

are the relative yields, as known from biodiversity ecosys-

tem functioning research (Hector & Loreau, 2001; Fox, 2005). The effect of
species richness on fitness differences will therefore be similar to the effect of
species richness on the sum of the weights, known as the relative yield total

(∑j 6=i
Ni−,∗

j
N∗j

), which is known to increase in many communities (Loreau, 2004;

Carroll et al., 2011; Grace et al., 2016). Hence,1− F (and therefore of Fi) will
on average increase with species richness. Second, Nm

i is the weighted average
of the two-species niche overlaps Nij. Hence, species richness will, on average,
not affect Ni. Since we did not make assumptions about the αij, these results
are independent of the details of interspecific interactions, i.e. the results apply
regardless of complexities (i) and (ii).

We can approximate N and F in a multi-species community by using the
average interspecific interaction strength α (see supplementary informations
1). This yields Nm

i ≈ 1− α and Fm
i ≈ 1− n−1

1−(n−2)ᾱ , from which it is clear that
Ni is independent of species richness n and Fi is an increasing but saturating
function of species richness. The saturation occurs because the sum of the
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weights
N−i,∗

j
N∗j

, the relative yield total, will saturate as well in the Lotka-Volterra

model (Loreau, 2004; Spaak et al., 2017). Including other complexities does not
affect these two main results (Appendix C.1).

4.5 Link to resource competition

The fact that 1−Fm
i is a weighted sum, while Nm

i is a weighted average makes
intuitive sense when realising that the interaction coefficients αij can under
certain conditions be related to resource utilisation (Chesson, 1990; MacArthur,
1970). We consider a focal species (yellow, Fig. 4.1) of a community with one
to five resident species (Fig 4.1 A-E), the resource utilisation of each species is
given by Ai. We use ‖Ai‖ to denote the total utilisation rate by the species i, i.e.
the area under the curve Ai (Fig. 4.1 F). More generally, for any curve X, ‖X‖
will denote the area under the curve, that is ‖X‖ is a number, while X denotes
the curve itself. We assume that the species only differ in resource utilisation
rates, not in other parameters such as mortality. We want to compute the N1
and F1 of the yellow focal species in presence of one up to five competitors.

The species with the higher total utilisation rate will have a competitive
advantage and consequently the higher fitness difference. In the two-species
community, one could therefore intuit that the fitness differences is linked to
the ratio of total resource utilisation rates, i.e. F1≈ 1− ‖A2‖

‖A1‖
. Fitness differences

therefore increase with species richness, as each competitor increases the total
resource utilisation rates of all competitors combined (Fig. 4.1 F), i.e. Fm

1 ≈
1− ∑‖Aj‖

‖A1‖
. It turns out that this intuition is almost correct; we only have to

add weights to the sum according to the densities of the species at equilibrium
(compare this equation to eq. 4.4). Fm

1 thus increases (becomes more negative),
as species richness increases (note that Fi = 0 means no fitness differences and
more negative Fi mean stronger fitness differences).

Intuitively, 1−Ni is the proportion of shared resources between the focal
species and its competitors, that is the amount of shared resources scaled by
the total consumption of the species. In a two species community we therefore
intuit N1 ≈ 1− ‖A1∩A2‖

‖A1‖·‖A2‖
. Increasing the species richness will increase both,

the sum of shared resources, as the focal species will share resources with each
competitor (Fig. 4.1 G) and the sum of the total consumption of the species

(Fig. 4.1 F). We therefore expect N1 ≈ 1 − ‖A1∩∑j Aj‖
‖A1‖·∑j ‖Aj‖

to be independent of

species richness (Fig 4.1 H). Again, this intuition is correct up to the inclusion
of the weights according to the species equilibrium densities.
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Figure 4.1: A-E: Resource utilisation of the yellow focal species and its com-
petitors. F: Increasing the species richness will increase the total utilisation of

the resident species ∑j ‖Aj‖. Similarly, we expect Fi ≈ 1− ∑j ‖Aj‖
‖A1‖

to increase
with species richness, as it scales with the ratio of total resource consump-
tion. G: The amount of shared resources (hatched region from panels A-E)
increases with species richness. H: As both the amount of shared resources
increase (panel G) and the total utilisation (panel H) we expect the ratio to be

independent of species richness. Similarly, we expect Ni ≈ 1− ‖Ai∩∑j Aj‖
‖Ai‖·∑j ‖Aj‖

to

be, on average, independent of species richness. F-H: The colours of the bar
correspond to the contribution of each of the resident species to the total of the
bar.
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4.5.1 Full-factorial simulations

The simulations with strong first-order interactions only partially seem to con-
firm the predictions made by theory (Fig. 4.2). That is, Ni is not invariant
but approaches 1 as species richness increases (Fig. 4.2 A), which seems to
contradict the theoretical results. Yet, species richness does not directly affect
Ni , but rather affects the average interaction strength αij, which in turn affects
Ni. That is because, by design, any method based on invasion growth rates
(such as those to compute N and F ) can only be applied to communities in
which invasion analysis is possible. Hence, too strong negative interactions
prevent the invasion into highly-diverse communities, and will often impede
feasible n − 1 subcommunities to begin with (Kokkoris et al., 2002). Hence,
species richness selects against communities with overly strong negative inter-
actions, which leads to on average less strong interactions at higher species
richness (see supplementary Fig. S3). Similarly, species densities in communi-
ties with strong positive interactions will tend to grow to infinity, and more so
in species-rich communities, because interspecific facilitation is stronger than
intraspecific limitation (self-regulation). Again, species richness selects against
strong positive interactions, weakening the average interaction strength (see
supplementary Fig. S3). This selection of weak (negative and positive) inter-
specific interactions causesNi to approach 1. Fi increases with species richness
for all parameter settings, as predicted by the theory (see Fig 4.2 B).

The simulation results based on weak interaction strengths allow assess-
ing the direct effect of species richness on N and F without the confounding
effect of species richness on interspecific interaction strength αij. In these sim-
ulations, the effect of species richness on interspecific interactions was much
weaker (see supplementary Fig. S3). These simulations confirmed our theoret-
ical results; Ni was on average unaffected by species richness (see Fig. 4.3 A)
and Fi increased with species richness (Fig. 4.3B). We illustrate how N and F
values jointly varied with species richness, using weak interaction strength: no
higher-order interactions (βijk = 0), no correlation between the αij, and maxi-
mum connectance (Fig. 4.3 C). Again, these results hold independently of the
complexities (Appendix S2).

4.5.2 Literature data

The results for the empirical communities reflect those obtained for the simu-
lated communities. The absolute values of the slope of the linear regression of
Ni were small (< 0.05) for all but 6 datasets. The slope for the overall regres-
sion of Ni against species richness (Fig. 4.4A, black line) was small (-0.028). Fi
increased with richness in all but one dataset. Overall, we conclude that the re-
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Figure 4.2: N and F as a function of species richness in simulated communi-
ties with strong first-order interspecific interactions. A: Contrary to predictions
from theory, niche differences change with species richness when first-order in-
terspecific interactions are either positive (green) or negative (red; results for
unconstrained interspecific interactions are shown in blue). However, this is
because interaction strength decreases with increasing species richness in these
cases (see Fig. S2). Each line represents a linear regression of niche differences
as a function of species richness for one factorial setting of the full-factorial ex-
periment (see table 4.1). B: Species richness, however, makes fitness differences
more negative (i.e. larger). Note the differences in y-scale between panel A
and B. C: Distribution of N and F for simulated theoretical communities that
are fully connected, and exhibit first-order interactions without correlations,
i.e. similar to the experimental communities (see Fig. 4.4). Each dot represents
N and F of one species in a community composed of 2-6 species (see colour
legend). The black line indicates the persistence line, species below this line
are assumed to persist in the community. Note the inverted y-axis.
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Figure 4.3: As Fig. 4.2, but with weak first-order interspecific interactions. A:
As predicted by the mathematical results, species richness does not affect niche
differences, because communities with different species richness had compa-
rable interaction strengths. B: Species richness, however, makes fitness differ-
ences more negative (i.e. larger). C: Distribution of N and F for simulated
theoretical communities that are fully connected, and exhibit first-order inter-
actions without correlations, i.e. similar to the experimental communities (see
Fig. 4.4).
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Figure 4.4: Similar to Fig 4.2 for empirically observed communities. Each grey
line corresponds to a fit of a linear (Ni, A) and saturating (Fi, B) regression
model to one dataset. The black line represents a fit through all Ni (A) and
Fi (B) values. Grey dots in panel A and B represent the raw N and F values.
Facilitation, i.e. species having a positive net effect on another, and therefore
Ni > 1 is common in the datasets we found. We highlight one specific three-
species community (grey line) where all species coexist, even though species a
has Ni < 0, a property associated with priority effects and therefore exclusion.
Axis from C are truncated to show ∼95% of all data points.
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sponse of N and F to richness for empirical communities did not qualitatively
differ from that of randomly generated communities.

The empirical data also revealed cases in which coexistence is possible even
though some of the species have negative Ni. This is possible as long as Fi

is sufficiently positive such that Fi ≥ −Ni
1−Ni

. A total of 95 (4.1%) communities
were found with species persisting despite having negative Ni.

4.6 Discussion

It is well-established that the likelihood for stable coexistence in theoretical
communities drops with species richness (May, 1972; Godoy et al., 2017; Goh
& Jennings, 1977; Serván et al., 2018). Here, we explain this well known re-
sult in the context of modern coexistence theory by examining how niche and
fitness differences (N and F ) change with species richness. We found that
species richness, per se, does not affect Ni but does increase Fi. This con-
clusion is based on four independent approaches: mathematical computation,
intuitive reasoning, numerical simulations, and metanalysis of experimental
data. Overall, the influence of species richness on N and F is robust to inclu-
sion or omission of the complexities (i)-(iv), and all their combinations. The
fitness differences of a species increases with species richness, as fitness differ-
ences measure the fitness of a species compared to the combined fitness of all
other species. In multi-species communities, most species will therefore have
negative fitness differences, as rarely one species will have higher fitness than
all other species combined.

The niche differences of a species measure the proportion of limiting fac-
tors, e.g. resources, that are limiting to other species as well. Increasing
species richness increases the amount of limiting factors shared with other
species, but also the amount of limiting factors that are not shared with other
species. The proportion of shared limiting factors is therefore unaffected, on
average. Species-rich communities are therefore less likely to coexist (all else
being equal), as fitness differences become to strong to be overcome by niche
differences.

These results appear to contradict what has been suggested by Chu & Adler
(2015). Indeed, in their discussion, Chu & Adler (2015) found that species
richness will decrease niche differences and will not affect fitness differences.
However, the use of different definitions for N and F explains this differ-
ence (Carroll et al., 2011). Applying the same definition to our data indeed
reproduces the results found by Chu & Adler (2015) (see supplementary in-
formations S4). Yet, we argue that our results provide a more complete and
accurate account of how N and F limit multi-species coexistence because of
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the following reasons. First, the definition of Spaak & De Laender (2020) does
not only consider negative frequency dependence, but also positive frequency
dependence and facilitation. The definition of Carroll et al. (2011) can only be
computed for communities with negative frequency dependence, which pre-
cludes the analysis of 75% of the empirical data analysed in the present chapter
and 67% of the simulated data presented here. Second, the N and F as de-
fined by Spaak & De Laender (2020) link to the persistence of species via the
equation −Fi ≤ Ni

1−Ni
. Again, this is not the case for the definition by Carroll

et al. (2011) in multi-species communities. Since we are not only interested
in how N and F change with species richness, but also in the implications
of such changes for coexistence, the definition of Carroll et al. (2011) is not
sufficient. Third, Spaak & De Laender (2020) show that Ni is biologically intu-
itive as it measures the amount of shared resources in a large class of resource
competition models. Fig.4.1 extends this intuitive explanation to multi-species
communities.

4.6.1 Limitations

The available experimental data only represented fully connected communi-
ties, with no correlation among interactions (complexity (ii)) and, most no-
tably, did not contain cases of higher-order interactions (complexity (iii)). We
do therefore not know whether the parameter values used to describe these
higher-order interactions in our simulations (and therefore the simulation re-
sults) are realistic. The available experimental data were biased towards com-
petitive communities of terrestrial plants with relatively low species richness.
Our simulations suggest that our conclusions hold for other networks as well,
but we were not able to support this claim with empirical data. Computing
N and F on a larger collection of natural communities would help to refine
our understanding of this process. However, obtaining the full interaction ma-
trix for species-rich communities is challenging. To obtain interaction matrices,
various approaches exist. For example, one uses the frequency of interaction
between species (e.g. number of visits of a pollinator on a plant) as a proxy
for interaction strength. The robustness of this approach, however, still needs
to be tested (Garcı́a-Callejas et al., 2018). Other methods consist of estimating
interaction strength based on, for example, biomass (Moore et al., 1996; Zhao
et al., 2019), mass ratio (Emmerson & Raffaelli, 2004) or production and con-
sumption rates of species (Christensen V. & D., 1992; Jacquet et al., 2016). These
different methods rely on different assumptions and may therefore influence
the resulting matrix estimate (Carrara et al., 2015).

Given these limitations, one can ask to what extent addressing them would
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change our conclusions. In communities where species richness increases
total abundance, which is the case for various communities (Loreau, 2004;
Turnbull et al., 2013; Grace et al., 2016), we expect the no-niche growth rate
fi(∑j cijN

−i,∗
j ,0) to become more negative, as ∑j cijN

−i,∗
j increases (eq. 4.2, 4.3).

Consequently we expect species richness to increase fitness differences, i.e.
make it more negative. Conversely, in communities where species richness
decreases total abundance we expect the opposite, that is: fitness differences
might decrease with species richness. It is less clear how species richness will
affect niche differences in models not explored in the current chapter, e.g. with
different per-capita growth rates, or with a community with age structure (Chu
& Adler, 2015). Niche differences depend on the invasion growth rate and the
no-niche growth rates, which both depend on the species richness and total
abundance. When species richness has a stronger negative effect on the no-
niche growth rate than on the invasion growth rate, then niche differences will
increase with species richness. If the invasion growth rate is affected more,
niche differences will decrease.

4.6.2 New insights

Our results yield two new insights, other than the main result on how N and
F varies with species richness.

A first insight is that negative niche differences do not necessarily preclude
coexistence. Negative niche differences have been attributed to priority effects
and therefore viewed as precluding coexistence (Ke & Letten, 2018; Fukami
et al., 2016). Our framework confirms this finding for the case of competitive
two-species communities (Spaak & De Laender, 2020). However, in contrast to
species in two-species communities, species in multi-species communities will
not all have the same niche differences (example community in Fig 4.4). This
implies that species a, with negative niche differences and low fitness differ-
ences, can coexist with species b and c that have positive niche differences and
negative fitness differences. Consequently, multiple species can have negative
niche differences in a multi-species communities and still persist. In our em-
pirical data set, we found six three-species communities in which all but one
species had negative niche differences. In general, we argue that a community
in which all species have negative niche differences and coexist is theoretically
possible. However, the kind of model and how it should be parametrized re-
mains to be examined.

A second and main insight is that one can infer N and F in multi-species
communities from N and F measured in pairwise interaction experiments. If
one measures N and F for each two-species sub-community of an n species
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community, which is typically done (Narwani et al., 2013; Godoy & Levine,

2014; Petry et al., 2018; Gallego et al., 2019), one can estimate Ni ≈
∑jNij
(n−1) . With

one additional multi-species experiment to estimate the relative yield RYi we
obtain an estimation of Fi ≈ 1− ∑j(1− Fij) · RYj as well. This indicates that
two-species experiments are sufficient to predict N and F in multi-species
communities.

Finally, one of the key questions in community ecology is whether niche
differences are strong enough to overcome fitness differences and allow coex-
istence. Often, niche differences are found to be not only sufficiently strong,
but much stronger than strictly needed Levine & HilleRisLambers (2009); Chu
& Adler (2015). The present results offer a potential explanation for this ob-
servation. That is, niche differences not only need to be sufficiently strong to
overcome fitness differences of one or few competitors, as typically considered
in empirical studies, but sufficiently strong to overcome fitness differences of
the entire resident community, as niche differences is independent of species
richness. Our results therefore allow asking the more general question of how
many species one can pack in a community, given its niche difference.



Chapter 5

Unimodal effects of pigment
richness on niche and fitness
differences explain species richness
and ecosystem function in
light-limited phytoplankton
communities

5.1 Abstract

Trait diversity is traditionally seen as promoting species richness and ecosys-
tem function. Species with dissimilar traits would partition available resources,
increasing niche differences, facilitating coexistence and increasing ecosystem
function. Here we first show, using theory and simulations for light-limited
phytoplankton, that combing photosynthetic pigments is indeed a necessary
condition for coexistence and stimulates ecosystem function. However, pig-
ment richness does mostly not permit the coexistence of more than two species,
and increases productivity at most 60% compared to single-pigment communi-
ties. Surprisingly, combining all nine pigments known to date leads to a 2.5%
probability that four species would coexist, illustrating that the coexistence of
a high number of species along a continuous niche axis is constrained by lim-
iting similarity. We explain these constraints by unimodal effects of pigment
richness on niche and fitness differences, which jointly limit the positive ef-
fect of pigment on species richness. Empirical data and additional simulations
suggest that pigment richness effects can be stronger during transient dynam-
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ics but inevitably weaken with time, i.e. pigment richness effects on species
richness and function are likely short-lived. Our results highlight the need to
apply coexistence theory to understand the long-term effects of trait diversity
on biodiversity and ecosystem function.

5.2 Introduction

Species richness is a main predictor of ecosystem function and stability (Hector
& Loreau (2001); Hooper et al. (2005) but see Spaak et al. (2017); Srivastava
& Vellend (2005)). Communities with more species typically produce more
biomass and more stably do so than communities with few species (Striebel
et al., 2009; Tilman, 1996; Hector & Loreau, 2001; Balvanera et al., 2006). Thus,
identifying the factors that sustain and limit the capacity of species to coexist
is an essential task, and probably one of the most fundamental objectives in
ecology (Chase & Leibold, 2003; Hubbell, 2001; Chesson et al., 2001; Tilman,
1982).

In the past three decades of community ecology, traits have been considered
a key ingredient to explain species coexistence (Mcgill et al., 2006; HilleRisLam-
bers et al., 2012). Traits determine both how species respond to environmental
variation and to the presence of other species (Chase & Leibold, 2003) and it is
generally accepted that trait diversity drives niche differences, which act to sta-
bilize coexistence (McKane et al., 2002; Mayfield & Levine, 2010). Indeed, when
all species have identical traits, trait diversity is zero and stable coexistence is
not possible (Chesson, 2000; Bell, 2000; Hubbell, 2001). In addition, trait diver-
sity allows coexisting species to exploit a more diverse set of resources and do
so more completely, optimising function.

Recent progress in coexistence theory has shown that trait diversity can
have both positive and negative effects on biodiversity, including species rich-
ness. That is because, apart from increasing stabilizing niche differences, trait
diversity can also increase fitness differences (HilleRisLambers et al., 2012; Gal-
lego et al., 2019; Narwani et al., 2013), which can act to disrupt coexistence
when they overrule the stabilizing effects. Whether trait diversity supports or
limits the number of species that can stably coexist, and thus biodiversity, is
therefore unsure (Violle et al., 2011; Best et al., 2013; Levine & HilleRisLambers,
2009). Do species coexist because they are sufficiently different or because they
are sufficiently similar?

Here, we theoretically investigate the effects of trait diversity (the num-
ber of different traits, i.e. trait richness) on the number of stably coexisting
species, niche and fitness differences and ecosystem function (total biovolume).
Our working hypothesis was that a greater trait richness would lead to higher
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species richness and function because it would increase niche differences more
than fitness differences, corresponding to prevailing ideas on the effects of trait
richness. We considered light limited phytoplankton communities as a glob-
ally relevant study system that drives most aquatic food-webs. (Field et al.,
2009; Irigoien et al., 2004; Striebel et al., 2012; Baggio et al., 2018; Kulkarni & De
Laender, 2017). Competition for light in phytoplankton communities is a ma-
jor process explaining community composition throughout the world’s aquatic
habitats (Goldman et al., 1979; Langdon, 1988; Stomp et al., 2007a). Phyto-
plankton communities in meso- and eutrophic lakes and oceans, where light
is the main limiting factor, produce approximately 30%-40% of the world’s an-
nual primary production (Field et al., 2009; Berger et al., 2006; Boyd, 2002). In
addition, competition for light is particularly suitable to test our expectations
because the light spectrum represents a continuous resource axis, which a high
number of species could in principle be able to partition.

The traits involved in competition for light are pigments and photosynthetic
efficiency, i.e. the amount of biovolume gained per absorbed photon (Huisman
& Weissing, 1994; Stomp et al., 2004). Differences of pigmentation phenotypes
have been shown to facilitate coexistence among, for example, cyanobacteria
species (Stomp et al., 2004, 2007a). Pigment diversity is also expected to allow
a more complete utilisation of the light spectrum (Striebel et al., 2009), thus
promoting both species richness and optimizing function. Photosynthetic ef-
ficiency alone cannot facilitate coexistence, the reason for which we do not
consider this trait further.

We start this paper by theoretically examining how pigment richness deter-
mines the number of stably coexisting phytoplankton species and ecosystem
function (total biovolume). We do so by analysing a phytoplankton growth
model that incorporates the partitioning of the light spectrum among species
with different pigments (Stomp et al., 2004). We show that, when all species
share one pigment, communities evolve to mono-dominance. When a com-
munity contains multiple of the main nine photosynthetically active pigments
found in nature, up to four species coexist based on light spectrum partition-
ing, but with low probability. We explain this result through unimodal effects
of pigment richness on niche and fitness differences. Higher pigment richness
also increases total biovolume by approximately 60%.

Next, we compile data from the literature and find a much stronger posi-
tive effects of pigment trait richness on species richness and ecosystem func-
tion. We reconcile these data with additional model simulations, finding that
the reported effects are likely short-lived (transient) phenomena. Our findings
highlight that applying coexistence theory is needed to understand the mech-
anisms linking species richness to ecosystem functions on time scales relevant
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for natural systems.

5.3 Methods

5.3.1 Model description

We used a model proposed earlier by Stomp et al. (2004), which is equivalent
to (Appendix D.1):

dNs

dt
= φs

∫ 700

400

Nsks(λ)

abs(λ)
· Iin(λ)

(
1− e−abs(λ)

)
dλ− lNs (5.1)

Where Ns is the density of species s (in f l/ml), φs is the photosynthetic ef-
ficiency, ks(λ) is the absorption spectrum of species s, abs(λ) = zm · (kBG(λ) +
∑n

i=1 ki(λ)Ni) is the sum of all absorbers (background and phytoplankton
species), where kBG is the background absorption, zm is the mixing depth and
n is the species richness, Iin(λ) is the incoming light intensity and l is the loss
rate. Note that we considered the loss rate not as a species-specific parameter
but rather the dilution rate of the system. The integral is taken over the whole
range of photosynthetic active radiation (400nm - 700nm).

Iin(λ)
(

1− e−abs(λ)
)

can be thought of as the total amount of photons ab-

sorbed by the system and Nsks(λ)
abs(λ) is the fraction of these photons that species s

uses for its growth.

5.3.2 Analyses and simulations

We used equation 5.1 to examine how trait (pigment) richness affects species
richness and ecosystem function. We first theoretically analysed the maximum
number of species that can stably coexist based on a predefined number of
pigments.

Next, we ran simulations to determine the actual number of species and
level of ecosystem function corresponding to a given pigment richness. To
do so first, we collected 15 algal pigmentation types from the literature repre-
senting the major pigmentations of marine and freshwater phytoplankton (Six
et al., 2007; Van Den Hoek et al., 1995) (Appendix D.2). Then, we randomly
assembled 400‘000 communities composed of a random number of species (1
to 15). In every community, every species was randomly assigned a pigmen-
tation type. The absorption spectrum of a species is defined as the sum of it’s
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pigments:
ks(λ) = ∑

p
αs,pkp(λ) (5.2)

Where ks is the absorption spectrum of the species, kp is the absorption spec-
trum of the pigment and αs,p is the concentration of pigment p in species s.
The identity of the pigments present in a species is given by its pigmenta-
tion type. The absorption spectra of the pigments (kp(λ)) were taken from
the literature (Bricaud et al., 2004; Six et al., 2007). Fig. 5.1 B,C shows an
example for two pigmentation types. The total absorption of each species
was kept constant (

∫ 700
400 ks(λ)dλ = 2 · 10−7cm−1 f l−1), to avoid species with

more pigments absorbing more light. Furthermore, we varied the photo-
synthetic efficiency (1.0 · 106 f l

µmol photons ≤ φs ≤ 3.0 · 106 f l
µmol photons ) (Langdon,

1988), the dilution rate (0.003h−1 ≤ l ≤ 0.015h−1) (Stomp et al., 2004; Striebel
et al., 2009) and the incoming light intensity (20µmol photons m−2s−1 ≤ Itot ≤
200µmol photons m−2s−1) (Stomp et al., 2004; Striebel et al., 2009). We assumed
that the background absorption is negligible (kBG ≈ 0, Appendix D.3 for simu-
lation with non-zero background absorption).

For every community we measured species richness, pigment richness and
ecosystem function over time. To measure species richness and pigment rich-
ness we assumed that species with relative densities below 0.01% are extinct.
Changing this threshold to 1% or 0.0001% did not change our results. The
ecosystem function we considered was total biovolume (EF = ∑n

i=1 Ni). The
ecosystem function was measured in communities with intensity of incoming
light fixed at 40µmol photons m−2s−1. Again, changing this value to 20µmol
photons m−2s−1 or 80µmol photons m−2s−1 did not qualitatively alter the re-
sults.

For each community at equilibrium we computed the niche and fitness dif-
ferences (N and F ) of the persisting species, using the definition Spaak & De
Laender (2020). Technically, Spaak & De Laender (2020) define Ni based a
species i’s growth rate under various conditions, including its invasion growth
rate (i.e. its growth rate when seeded in a community of other species) and its
intrinsic niche growth rate (i.e. at low density in absence of competitors). As
the difference between the invasion and intrinsic growth rate gets larger, Ni
will approach zero, which indicates strong species interactions. In the current
context, we expect this to correspond to the case where species have identi-
cal pigmentation, and thus compete maximally for light. Conversely, as the
difference between the invasion and intrinsic growth rate gets smaller, Ni will
approach one, which indicates weak species interactions. We expect this to
correspond to the case where species differ markedly in pigmentation. Spaak
& De Laender (2020) define Fi as the growth rate of species i in absence of
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niche differences, scaled by the intrinsic growth rate of species i. In that case,
the species with the highest scaled growth rate has the largest fitness differ-
ence. Because these definitions do not lead to closed forms of N and F , we
computed N and F numerically.

5.3.3 Literature data

We searched the literature for experimental data describing the effects of pig-
ment richness on species richness and ecosystem function. We used the search
term (phytoplankton OR algae) AND (”pigment richness” OR ”pigment diver-
sity”) AND (”ecosystem function” OR biodiversity) using the search engines
scopus and google scholar. Additionally, we screened all papers cited by or
citing as such identified papers. We identified four datasets (two representing
field samples from freshwater lakes and two representing experiments with
freshwater and marine phytoplankton respectively). The two field data sets
represent different sampling locations in one lake (Fietz & Nicklisch, 2004) and
from multiple lakes (Striebel, personal communications), respectively. The ex-
perimental dataset of Estrada et al. (2004) represents phytoplankton diversity
in solar salterns with salinity ranging from 4% to 22.4%. We excluded salinities
above 22.4%, as they do not resemble marine ecosystems (Estrada et al., 2004).
Striebel et al. (2009) assembled 1 to 10 species of freshwater phytoplankton and
measured pigment richness and ecosystem function after 14 days. Pigment
richness was measured using high-performance liquid chromatography in all
datasets. The datasets contain more pigments, as they include the pigments
used for photo protection. For every dataset, we linearly regressed the log
transformed species richness and log transformed biovolume against pigment
richness, and compared it with the theoretical results.

The empirical data we found differs in two aspects from our simulated
data. First, our simulated data represent long-term effects of pigment richness
on species richness and function under steady environmental conditions and
it is not sure if the empirical data likewise represent such long-term effects.
The field communities will have been exposed to environmental fluctuations
and the experimental communities were observed during relatively short-term
experiments (8-14 days). Second, the empirical data contain photosynthetic
pigments as well as non-photosynthetic pigments, typically used for photo-
protection. We therefore repeated our simulations, breaking them off after 10
days, hence simulating the time window typically adopted by experiments.
We also included six non-photosynthetic active pigments, that absorb light,
but do not contribute to growth (Bricaud et al., 2004). Specifically we changed
abs(λ) = zm ·

(
kBG(λ) + ∑i(ki(λ) + kp

i (λ))Ni
)

from equation 5.1, where kp
i (λ)
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Figure 5.1: In vivo absorption spectra of all considered pigments (A) and two
examples (B: Cyanobacteria type 1, C: Cyanobacteria type 3) showing how ab-
sorption spectra (black) can be decomposed into different pigments (Eq. 5.2).
The two species in B and C can coexist under white light, as the Cyanobacteria
type 1 is a superior absorber in the red light (620-700 nm), while the Cyanobac-
teria type 3 species is a better absorber in the blue-green light (450-550 nm).
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Figure 5.2: Final species richness depends only weakly on the initial num-
ber of pigments. Colours denote the probability associated with these species
richness levels. Blue dots show the average of the final species richness.

is the combined absorption spectra of the photo protective pigments. kp
i (λ)

was generated similar to ki(λ).

5.4 Results

5.4.1 Effects of pigment richness on coexistence

We found that one can decompose the growth rate of a species as:

1
Ns

dNs

dt
= φs ∑

p
αs,pΨp(N)− l (5.3)

Ψp(N) =
∫ 700

400

kp(λ)

abs(λ)
· Iin(λ)

(
1− e−abs(λ)

)
dλ (5.4)

Where Ψp(N) is the amount of light absorbed by pigment p. Stable and feasible
coexistence, i.e. all species have non-zero equilibrium densities, would impose
dNs
dt = 0 for all the species s. This yields a linear equation in the variables Ψp(N).

This equation can only have a solution if the number of species is at most equal
to the number of pigments in the community. This finding proves the fact that
species richness is limited by pigment richness for constant incoming light
intensity (Meszéna et al., 2006).
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These new analytical results show that the number of pigments puts an
upper bound on the number of coexisting species, but how many coexisting
species can we on average expect at a given number of pigments? While equa-
tion 5.3 will always have a solution, this solution might not be ecologically
possible. For example, all pigments should have a positive contribution to
growth (Ψp(N) > 0). In addition, pigments in nature often share peaks: Many
pigments have maxima in the blue part of the spectrum (400nm− 450nm) such
that the different Ψp(N) are not independent functions (Fig. 5.1 and Stomp
et al. (2007a)).

Our simulations of species richness at various combinations of pigment
richness and photosynthetic efficiencies show that the number of coexisting
species is often lower than the number of pigments. Initial pigment richness
increased average species richness from 1 to 2.2 (Fig. 5.2). When all pigments
are present (initial pigment richness = 9), at most 4 species can coexist, but
with low probability (≈ 2.5%). We repeated the analysis with several alterna-
tive assumptions on initial species richness (ranging from 1-25), the included
pigments (including carotenoids with photo-protective purposes), the absorp-
tion spectrum of the pigments, the presence of pigments in species, the absorp-
tion spectrum of the background and the incoming light spectrum (appendix
D.3). We also ran simulations in which absorption spectra of pigments where
randomly generated and pigments were randomly distributed to species. All
of these simulations lead to the same main conclusion: pigment richness is es-
sential to allow coexistence but does mostly not allow the coexistence of more
than two species in light limited phytoplankton communities.

We identified three reasons for this result, all related to how pigment rich-
ness affect niche (Ni) and fitness differences (FDi). First, pigment richness
had a unimodal effect on Ni (Fig. 5.3 A). At low pigment richness, pigment
richness increases Ni, as it increases the probability species will be coloured
differently, which stimulates light partitioning. As pigment richness increases,
however, species tend to contain an increasing number of pigments, blurring
differences in pigmentation, which reduces Ni. Second, pigment richness does
not only affect Ni, which benefits coexistence, but also increases differences
among species’ Fi, which hampers coexistence. Intermediate pigment rich-
ness lead to clear competitive dominant (high Fi) and subordinate (low Fi)
species (Fig 5.3 B). Communities with intermediate pigment richness will con-
tain species with many pigments, that absorb most wavelengths and have high
fitness, and species with few pigments, that absorb only part of the wave-
length and have low fitness. The difference in these fitnesses leads to large
Fi, both positive and negative. As pigment richness increases all species be-
come generalists and have high fitness, therefore Fi are closer to zero. Third,
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Figure 5.3: A: Pigment richness has a unimodal effect on Ni. Initially multiple
pigments allow niche differentiation by the use of different wavelength. How-
ever, this positive effect of pigment richness on species richness is limited to
few pigments (up to about 4 pigments) and generates only small Ni compared
to empirical measurements in phytoplankton (Narwani et al., 2013; Gallego
et al., 2019). At higher pigment richness the species tend to be more generalists
and absorb multiple wavelengths, which reduces pigment richness. Shown are
the 5, 25, 50, 75 and 95 percentiles of Ni of all persisting species from all sim-
ulated communities. B: Similarly, pigment richness affects Fi. Communities
with intermediate pigment richness are composed of species with many pig-
ments, that have high fitness, and species with few pigments, that have low fit-
ness, leading to both, strong negative and positive Fi. The species with strong
negative Fi are most vulnerable to exclusion. Communities with low or high
pigment richness are composed of species with few or many pigments, respec-
tively. The species from these communities tend to have similar fitness, which
leads to weak Fi. C: Two-dimensional histogram of N and F for all species
in all communities, independent of their pigment richness. Most species have
both Ni and Fi close to 0. Shown are the 25,50,75, 95 and 99 percentiles of
the distribution, e.g. 25% of the species have N and F within the yellow area.
Species below the red-line have a positive invasion growth rate, i.e. they are
assumed to persist.
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N and F were located close to the origin of the N and F plane (Fig. 5.3 C),
showing that different pigmentation types only offered limited opportunity for
differentiation among species. This is explained by all pigmentation types con-
taining chlorophyll a, which makes pigmentation more similar (Appendix D.2,
Van Den Hoek et al. (1995)), and different pigments having similar absorption
spectra (Stomp et al., 2007a). Again, repetition of the simulations with altered
parameters led to the same results, niche and fitness differences are located
close to the origin in the N and F plane (Appendix D.3).

Contrary to our theoretical results, the compiled empirical data did sug-
gest a strong positive effect of pigment richness on species richness (Fietz &
Nicklisch, 2004; Estrada et al., 2004; Striebel et al., 2009). However, our model
analyses and simulations represent the long-term outcome of species inter-
actions in stable environmental conditions, while the empirical data describe
experiments performed on much shorter time scales (approximately 10 days)
and natural communities with unknown environmental conditions. Thus, the
empirical data potentially describe communities that are in a transient state,
heading towards lower levels of species richness. Our additional model sim-
ulations of short-term effects of pigment richness on species richness indeed
suggest time scale to be an important explanation for the difference between
our model results and the empirical data. These simulations showed that ef-
fects of initial pigment richness on species richness are indeed initially strong,
but become weaker over time: pigment richness promoted short-term species
richness (Fig. 5.4A).

5.4.2 Implications for ecosystem function

Our simulations show that ecosystem function in communities with high pig-
ment richness is up to 60% higher than in communities with low pigment rich-
ness (total biomass, Fig. 5.4B). This increase of ecosystem function is mainly
due to selection effect and not complementarity (Appendix D.4). Complemen-
tarity is low, because light partitioning allows only limited niche differenti-
ation. As found for species richness, the compiled empirical data did sug-
gest a stronger positive effect (larger slope) of pigment richness on ecosystem
function (Striebel et al., 2009; Estrada et al., 2004; Fietz & Nicklisch, 2004) (Fig.
5.4). Again, we additionally simulated short-term effects of pigment richness
on ecosystem function (Fig. 5.4B, light green) and found a stronger effect of
pigment richness on ecosystem function than for communities at equilibrium
(dark green). The effects of initial pigment richness on function are initially
strong but dampen with time.
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Figure 5.4: Empirical effect of initial pigment richness on species richness
(A) and ecosystem function (biovolume B). A: Effects of pigment richness on
species richness is initially strong (light green line), but weakens as the com-
munities approach equilibrium densities (dark green line). Similarly, empirical
data report a positive effect of pigment richness on species richness. This posi-
tive effect is stronger in experimental datasets (dark blue and red) than in nat-
ural communities (light blue and orange), presumably because natural com-
munities are closer to equilibrium densities than short term experiments. B:
The same observations hold true for the effects of pigment richness on ecosys-
tem function, these are initially strong (slope of light green: 0.101± 0.012), but
weaken over time (slope of dark green: 0.063± 0.007). Dashed lines indicate,
that slope did not significantly differ from 0 (i.e. p > 0.05).
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5.5 Discussion

In the past decade, ecology has evolved towards trait based approaches, as
species interactions are governed through species traits and not through species
identities (Litchman & Klausmeier, 2008; Mcgill et al., 2006; Degen et al., 2018).
Trait based approaches have been used to explain species richness (Violle et al.,
2011; Best et al., 2013), coexistence mechanisms such as niche and fitness differ-
ences (Kraft et al., 2015; Narwani et al., 2013; Gallego et al., 2019), and ecosystem
function (Gross et al., 2017; Degen et al., 2018). Here we investigated the effect
of pigment richness on all these key properties of ecological communities using
a mechanistic community model describing light limited phytoplankton. We
found that pigment richness increases species richness from one to two species
on average (Fig. 5.2), has a unimodal effect on niche and fitness differences,
and increases ecosystem function by about 60%.

5.5.1 Effects of pigment richness on species richness

Light has traditionally been considered as one resource until Stomp et al. (2004)
showed that different wavelengths allow niche partitioning along the light
spectrum, supporting coexistence. Our results confirm that this additional trait
axis, representing pigmentation phenotypes, indeed allows introducing niche
differences that allow coexistence of multiple species that would not have been
possible if a single pigment would have been present (Stomp et al., 2004, 2007a;
Passarge et al., 2006; Huisman & Weissing, 1994). However, our results also
show that this mechanism alone cannot explain robust coexistence of many
more species than two.

One important reason is the fact that pigments not only stimulate niche dif-
ferences, but they also create competitive dominant and subordinate species,
leading to large fitness differences, as they determine the total amount of ab-
sorbed photons (

∫ 700
400 kp(λ)Iin(λ)dλ). This result illustrates the effect of limit-

ing similarity and the widespread occurrence of competitive exclusion despite
trait differences (Meszéna et al., 2006; Barabás et al., 2012). While the light
spectrum represents a continuous resource axis, along which an infinite num-
ber of species could specialise and persist, species that harvest too similar light
colours will lead to the exclusion of the least fit. The fact that traits influence
both niche and fitness differences has been pointed out for other traits in other
systems as well (Mayfield & Levine, 2010). For example, Kraft et al. (2015)
found that phenology of annual plants did not only promote niche differences
but also inflated fitness differences. Gallego et al. (2019) found that a single
trait, phytoplankton size, increases both niche and fitness differences. How-
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ever, larger size differences between species does not promote coexistence.

Despite the extensive parameter range considered and the use of realistic
pigmentation phenotypes, our analysis is a simplification of reality. In more
complicated models, including additional factors, the effect of trait richness on
species richness may be stronger. A first factor is individual-specific pigmen-
tation. That is, the absorption spectrum of the same pigment may be different
in different individuals from the same species, representing subtle but po-
tentially important sources of inter- and intraspecific variation (Bricaud et al.,
2004; Six et al., 2007; Bricaud et al., 1995). Intraspecific variation of resource
uptake traits can promote coexistence. For example, Hausch et al. (2018) re-
cently showed that moderate intraspecific variation of bean weevils feeding on
lentils and adzuki increased the resistance against invasion and invasion abil-
ity, thus promoting stable coexistence. However, theoretical results on annual
plants obtained by Hart et al. (2016) suggest that initial intraspecific trait varia-
tion may also hamper coexistence. A second factor embodies trade-offs among
traits. For example, species with less competitive pigmentation could have
higher photosynthetic efficiencies, similar to larger phytoplankton species of-
ten having higher maximum growth rates (Langdon, 1988; Edwards et al., 2015;
Lavallée & Pick, 2002). Our assumption that all trait combinations were equally
probable is therefore clearly a simplification of reality. A third factor is photoin-
hibition, which could facilitate coexistence, as it could turn our linear response
of growth to light intensity into a non-linear response (Huisman & Weissing,
1994; Gerla et al., 2011; Stomp et al., 2007a). This would introduce the poten-
tial for relative non-linearities, which can contribute to temporal niche differ-
entiation in case of external light intensity fluctuations (Litchman & Klaus-
meier, 2001). Litchman and Klausmeier showed that relative non-linearities
can sustain coexistence of light-limited phytoplankton communities (Litchman
& Klausmeier, 2001). Another way in which light intensity fluctuations could
affect coexistence is through storage effects (Chesson, 2003). However, only
one of the three conditions required for the storage effects are met. Indeed,
in our system, environmental conditions do covary with competition, how-
ever, the response of all species is similar to these covariances and population
growth is additive in environment and competition. By including a dormant
stage, which is not sensitive to environmental fluctuations, Tredennick et al.
(2017) showed that the storage effect leads to coexistence in a simple resource
competition model. Including different phytoplankton life stages could serve
as dormant stages in this model as well, and possibly promote a positive effect
of pigment richness on species richness through storage effects.
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5.5.2 Implications for ecosystem function

Our model showed that pigment richness positively affected ecosystem func-
tion (Fig. 5.4). However, coexistence requirements often caused the exclusion
of many species in communities with high initial trait richness. This led to
levels of ecosystem function that are comparable to that of communities with
lower initial trait richness in which all species persist. This mechanism re-
duces the positive effect of trait richness on ecosystem function. Therefore,
our results show how the effects of trait richness on ecosystem function can
be limited on time scales that are sufficiently long for community dynamics
to emerge. We simulated our communities to equilibrium, yet research has
shown that phytoplankton communities are not at equilibrium, it is therefore
not clear how applicable our results are (KEYMER, 1983). The limited long-
term positive effect of trait richness on ecosystem function we find is due to
the selection effect. Our results show that higher initial trait richness increases
the probability of having a highly productive species present in the community
(Appendix D.4). At the same time, complementarity is small in light limited
phytoplankton communities (Appendix D.4). Cadotte (2017) have found that
complementarity was most prominent in species and trait-rich plant commu-
nities.

Positive effects of trait richness on species richness and ecosystem function
have been found in many different study systems. For example, diversity of
feeding traits in herbivorous marine amphipods increased coexistence (Best
et al., 2013), mouth size differences facilitated coexistence of two bacterivorous
ciliates (Violle et al., 2011), and phylogenetic diversity, species richness and av-
erage productivity were all found to correlate positively in savanna grasslands
(Cadotte et al., 2009).

However, many of these studies share two features that may lead to higher
trait diversity effects on function than we report on here. First, these experi-
ments often are too short to observe competitive exclusion, and so species can
contribute to function before they go extinct. Our results also show that it can
take many generations to observe competitive exclusion, over 200 generations
in our system, which is longer than most-long term experiments. Similarly
long times to competitive exclusion have been found for phytoplankton species
competing for two limiting resources (Sakavara et al., 2017). Second, available
experimental studies often consider communities with relatively few species.
Our results show that the trait richness effect on species richness and func-
tion is most pronounced when trait richness, and therefore species richness, is
relatively low (between 2 and 7 pigments).

Effects of trait diversity on ecosystem function of grasslands have been
found to intensify with time (Reich et al., 2012). This temporal intensifica-
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tion has been explained by reciprocal feedbacks between community composi-
tion and environmental conditions such as on soil nitrogen availability (Reich
et al., 2012). Our results show that, in absence of such feedbacks and when
given enough time, effects of biodiversity on ecosystem function can actually
weaken with time. That is, packing a more diverse set of species into our model
system, light-limited phytoplankton, caused benefits for ecosystem function
that were short-lived. These findings highlight the need to account for coexis-
tence requirements when estimating the long-term benefits of biodiversity for
ecosystem function (De Laender et al., 2016; Bannar-Martin et al., 2018).
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Chapter 6

Mapping the diversity of species
interactions

6.1 Abstract

Modern coexistence theory (MCT) holds the potential to study species persis-
tence across community types but is rarely applied beyond pairs of competing
species belonging to a single trophic level. Here, we show three benefits of
applying MCT in multispecies communities, using recently developed meth-
ods that map species according to their niche ( N ) and fitness differences (
F ). First, N − F mapping introduces a novel categorization of species and
communities according to the high-level processes at play: frequency dependence
(negative or positive), the occurrence of positive species interactions, and whether
persistence is conditional on niche differences or on the presence of other species.
Therefore, these categories describe whether species persistence is conditional
( F ) and dependent ( N ) on species interactions. Second, N −F mapping fa-
cilitates studying species persistence along environmental gradients that shift
intrinsic growth rates (environmental filtering) and the strength and sign of
their interactions (network rewiring). Third, N −F mapping has the potential
to foster synthesis across community types because it can accommodate co-
occurrence of positive (mutualism), negative (antagonism, competition) and
neutral interactions between species. We therefore argue that N −F mapping
can promote collaboration across sub-fields, as it highlights how disparate eco-
logical communities are different instances of a common concept.

95
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6.2 From listing to mapping species interactions

Ecological communities contain a variety of interaction types, including posi-
tive (mutualism), negative (antagonism, competition) and neutral (commensal-
ism, amensalism) interactions. In terrestrial communities, for example, plants
share mycorrhizae while competing for light and nutrients, herbivores eat
leaves, pollinators visit flowers, and many insects parasitize other insects. Un-
derstanding how species can persist amongst this amalgam of trophic and
non-trophic interactions is generally considered intractable so different com-
munity types are typically treated independently (but see Kéfi et al. (2016);
Thébault & Fontaine (2010)). While specialization improves understanding of
the details of specific ecosystem types, it does not necessarily lead to a broader,
system-independent, understanding.

Modern coexistence theory (MCT) holds the potential to identify similari-
ties and differences in how species persist among community types, regard-
less of their interaction type. The main objective of MCT is to study coexis-
tence and, more generally, persistence. MCT has been applied to study eco-
evolutionary dynamics (Hart et al., 2019), global change effects, and macroeco-
logical problems (Grainger et al., 2019b). Two key concepts in MCT are niche
differences ( N ) and fitness differences ( F ) (see a brief historical overview of
these two concepts in Box 1). Niche differences measure how much stronger
intraspecific interactions are than interspecific interactions. High niche dif-
ferences promote coexistence. Fitness differences measure differences in the
intrinsic competitive strength. High values of fitness differences hamper coex-
istence. Traditionally, however, N and F are studied for only a small subset
of community types with few species (Adler et al., 2018b): species pairs com-
peting for common resources (‘competing species pairs’, Figure 6.2 and Figure
6.3 C). Alternative interaction types, including positive interactions (e.g. facili-
tation or mutualism), are typically not considered (but see Bimler et al. (2018))
either because available methods do not allow doing so (Chu & Adler, 2015)
or result in interpretational problems when applied beyond the classic case of
competing species pairs (Spaak & De Laender, 2020).

We use recently developed methods (Box 2) to show that quantifying N
and F beyond competing species pairs allows studying the determinants of
species persistence in ways that transcend the specifics of the community type.
These methods permit mapping species according to their N and F , much
like a regular map provides information on spatial location. One of the main
advantages of this framework is that the N − F map provides information
about why species persist, regardless of their particular guild, trophic posi-
tion, or the sign and size of its interactions with other community members.
Importantly, the map shows how previous work including stabilizing mecha-
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nisms and priority effects (Chesson, 2000; Ke & Letten, 2018) can be cast into
a more general framework of species persistence (Figure 6.2). In what follows,
we identify three reasons why this N −F map is a useful research avenue.

6.3 Mapping N and F to categorize species and
community types

Mapping N and F reveals which high-level processes explain species persis-
tence in a given community. We identify three such processes, including the
well-studied process of frequency dependence (negative ( 0 < N ), zero ( N = 0
), or positive ( N < 0 )). We also describe two new high-level processes. These
are the occurrence of positive species interactions (N > 1), and whether persistence
is ( F > 0 ) or is not ( F < 0 ) conditional on niche differences or on the presence of
other species ( F > 1 ) (Box 2 and Figure 6.1). Thus, broadly speaking, the N −F
map reflects whether species persistence is conditional ( F ) and dependent (
N ) on species interactions Figure 6.1.

The N − F map can help formalising terminology that has proven chal-
lenging to pinpoint, such as environmental filtering (Cadotte, 2017) or priority
effects (Fukami et al., 2016; Ke & Letten, 2018). For example, environmental
filtering can be defined as cases where F > 1 : species cannot realise positive
growth in a given environment, and their persistence hinges on sufficiently
large positive effects of other species (N > 1). While communities driven by
priority effects have been linked to communities driven by stochastic forces,
the N − F map shows that species from both types of communities will oc-
cupy different regions in the N −F map. While N = F = 0 in communities
purely driven by stochastic forces (i.e. neutrality), N < 0 and F < 1 in case of
priority effects.

Mapping species from the same community on the N −F map highlights
the diversity of high-level processes that occur simultaneously and sustain
species persistence in the given community. Three simple examples illustrate
this categorization in different community types (Figure 6.3A). Priority effects
(Figure 6.3A ”priority effects” ) occur when species can grow when alone (
F < 1 ) but cannot persist in a community because they experience positive
frequency dependence ( N < 0 ) (Mordecai, 2011; Fukami et al., 2016; Ke &
Letten, 2018). For non-obligatory mutualism (Figure 6.3A ”mutualism” ), the
map formalizes the idea that species persist because of positive interactions
(N > 1) , but also that this persistence is not conditional on the presence of
other species (i.e. F < 1 ), i.e. species realise positive growth when grown alone
and do not need the presence of other community members. In case of asym-
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Figure 6.1: Niche and fitness differences allow positioning each species in the
niche and fitness differences map ( N −F map). The map extends in all four
directions to infinity and is divided into different regions by five lines (black
text). The diagonal line is the persistence line ( N = F ), below which species
are assumed to persist ( N > F ), and above which species may go extinct (
N < F ). The other four lines divide both niche and fitness differences into
three qualitative different sections each (blue text), leading to a total of nine
different regions in the N −F map (See Box 2 for specific details).
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Figure 6.2: The - map (A) differs from the traditional coexistence plane (TCP,
B, adapted from Ke & Letten (2018)). First, the TCP describes communities
(black dot), while the - map locates species (black squares). The two squares
(A) correspond to the two species from the black-dot-community (B). Thus, the
- map can map all processes driving the persistence of each individual species.
Second, regions in TCP consequently label community properties such as pri-
ority effects (green), competitive exclusion (blue) and coexistence (purple). In-
stead, regions in the - map label species properties (e.g. positive frequency
dependence). Importantly, community properties do not automatically im-
ply certain species properties and vice-versa. For example, a species from a
community with priority effects could be located anywhere in the green-blue
hatched region. Likewise, a species from a community in which competitive
exclusion occurs can be located in both the blue and blue hatched regions.
Note, however, that these colours illustrate competitive two species communi-
ties. For other community types, other colour codes will apply. Third, TCP
cannot analyse communities with facilitation (N > 1) or species with negative
intrinsic growth rates (F > ∞), as indicated by the black-white hatched region.
Instead, - mapping will locate species with such properties in the white region.
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metric species interactions such as ”competition-facilitation” or prey-predator
communities (Figure 6.3A ”competition-facilitation” ), negative frequency de-
pendence and positive interactions co-occur. When applied to more complex
communities, categorization can lead to increasingly new insights about which
processes underpin persistence. For example, in the simple six species food-
web example (Figure 6.3B), the categorization reveals that (1) one basal species
(e.g. a primary producer) can persist without any niche differentiation, while
the other two cannot, and (2) that primary consumers and predators need pos-
itive species interactions to persist. In contrast to the examples from Figure
6.3A, these results (i.e. the prevalence of specific high-level processes) cannot
be gauged directly from the community interaction matrix and need a formal
treatment via N and F computations in order to be informative (Box 1).

The N −F map can help connecting coexistence theory to ecological net-
work theory across different community types (Godoy et al., 2018). So far, MCT
focused primarily on simple two species communities, i.e. without indirect and
higher order interactions (Chesson, 2000; Godoy & Levine, 2014; Grainger et al.,
2019a; Levine & HilleRisLambers, 2009; Narwani et al., 2013) but see (Godoy
et al., 2018, 2017; Petry et al., 2018). The N −F map is based on multispecies-
equilibria and therefore accounts for the non-trivial effects of indirect and high
order interactions on persistence, arising in highly diverse communities (Grilli
et al., 2017; Saavedra et al., 2017; Spaak & De Laender, 2020). Thus, N − F
mapping can connect these two fields.

Although the N −F map addresses the complexity of ecological networks,
it also provides information on which processes determine the persistence or
exclusion of specific species and trophic guilds. Previous approaches on eco-
logical networks are based on the stability of the Jacobian matrix at equilibrium
(Allesina & Tang, 2015; Levine et al., 2017). They can very efficiently analyse
complex communities but give little to no insight into which species will go
extinct in an unstable community. Conversely, N and F are defined at the
species level with respect to the rest of the community members and therefore
integrate both species and community levels responses to ecological interac-
tions.
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Box 1: Defining niche and fitness differences Niche differences have been
originally described for pairs of species competing for shared resources.
As such, niche differences ( 1 − ρ ), the opposite of niche overlap ( ρ ),
have been conceptualised as the dissimilarity of the consumption vectors of
two species (Chesson, 1990; Hurlbert, 1978). Niche differences of 0 meant
the consumption vectors are identical, while niche differences of 1 meant
the species do not consume common resources. In between cases meant
species limit themselves more than they limit others, i.e. interspecific inter-
actions are less negative than intraspecific interactions (Adler et al., 2007).
Consequently, negative niche differences were interpreted as weaker in-
traspecific interactions than interspecific interactions, which corresponds
to positive frequency dependence (Fukami et al., 2016; Ke & Letten, 2018;
Mordecai, 2011). Apart from niche differences, also fitness differences are
needed to assess the outcome of species interactions (Chesson, 2000). Fit-
ness differences measure the difference in inherent competitive strength
between both species if niche differences would be absent (Adler et al.,
2007). For two competitors to coexist, niche differences must overcome
fitness differences. If both species perform equally well, the fitness differ-
ences of both species are 0 (other definitions chose 1 for equal performance
(Adler et al., 2007; Carroll et al., 2011; Chesson, 2013; Godoy & Levine,
2014). Recent developments in MCT have led to three main insights. First,
while niche and fitness differences have been traditionally considered com-
munity properties (above text and Figure 6.2B), this is only true for the
specific case of competing species pairs. In virtually all other community
types, niche and fitness differences must be species properties (Adler et al.,
2007; Spaak & De Laender, 2020). Second, niche differences can exceed 1,
where they indicate positive interspecific interactions, e.g. facilitation or
predation (Figure 6.3A and B) (Spaak & De Laender, 2020). Third, species
with negative intrinsic growth rates have higher fitness differences (lower
fitness) than species with zero intrinsic growth rate, e.g. obligatory mu-
tualists or predators (Figure 6.4A and B). Fitness differences exceeding 1
indicate negative intrinsic growth rate.



102 CHAPTER 6. MAPPING THE DIVERSITY OF SPECIES INTERACTIONS

Box 2: How niche and fitness differences reveal high level processes
We first define Ni and Fi mathematically for a community in which the
per-capita growth rate of species i, fi , depends on species i’s density
Xi and that of the other species (contained in the vector X(−i) ): 1

Xi

dXi
dt =

fi

(
Xi, X(−i)

)
. For such a community we define the species-specific Ni and

Fi as:

Ni =
fi

(
0, X(−i,∗)

)
− fi

(
∑j cijX

(−i,∗)
j ,0

)
fi (0,0)− fi

(
∑j cijX

(−i,∗)
j ,0

) (6.1)

Fi =
− fi

(
∑j cijX

(−i,∗)
j ,0

)
fi (0,0)− fi

(
∑j cijX

(−i,∗)
j ,0

) (6.2)

Where fi

(
0, X(−i,∗)

)
is the invasion growth rate, fi

(
∑j cijX

(−i,∗)
j ,0

)
is

the no-niche growth rate, fi (0,0) is the intrinsic growth rate, X(−i,∗)
j is the

equilibrium density of species j in the resident community, and cij is a
conversion factor that ensures equal total dependence on limiting factors.
Note that these definitions differ slightly from the original ones (Spaak
& De Laender, 2020) to facilitate visualisation on the N − F map. These
equations may be daunting to look at and not straight forward to solve an-
alytically. For this we have created computer code than can automatically
compute Ni and Fi as well as the conversion factors cij. This computer
code runs on both R and python:
https://github.com/juergspaak/NFD definitions. These definitions show
that (1) N measures frequency dependence, while F measures competitive
strength, (2) the three growth rates carry the following biological interpre-
tation: The invasion growth rate quantifies if species can persist (positive
invasion growth rates, Ni > Fi ), or not (negative invasion growth rates,
Ni < Fi ). The persistence line (Figure 6.2) separates these two cases. The
intrinsic growth rate measures growth in absence of other species and thus
tells which species survive in monoculture ( Fi < 1 ), e.g. basal species
relying on abiotic resources. Species with negative intrinsic growth rates (
Fi > 1 ) depend on other species to persist; e.g. herbivores and predators.
The no-niche growth rate measures growth in the absence of niche differ-
ences. Species with positive no-niche growth rates ( Fi < 0 ) persist in the
absence of niche differences. Species with negative no-niche growth rates



6.4. ENVIRONMENTAL CHANGE EFFECTS 103

( Fi > 0 ) persist only when niche differences are sufficiently large. Com-
paring these growth rates to each other gives further insight. For example,
species with invasion growth rates smaller than no-niche growth rates ex-
hibit positive frequency dependence ( Ni < 0 ), e.g. because of priority
effects (Ke & Letten, 2018). Conversely, species with negative frequency
dependence ( Ni > 0 ), grow faster when rare. Finally, species with an in-
vasion growth rate that exceeds their intrinsic growth rate ( Ni > 1 ) grow
faster in a community than when alone. Examples include predators and
mutualists.

6.4 Mapping N and F to understand environmen-
tal change effects on persistence

One important aim in ecology is to understand how changes in environmental
conditions affect the ability of species to persist. We know that environmental
change can affect species persistence, but to mitigate its effects we must move
from a qualitative understanding to a quantitative measure of persistence.

MCT posits that persistence of a species depends on how well adapted a
species is to its environment compared to other species ( F ) and how species
differences buffer or aggravate the (dis-)advantage a species has because of
its adaptedness ( N ). The N − F map allows to disentangle the effects of
environmental change into the same categories. For example, pH increases
niche differences, but not fitness differences in yeast cultures (Grainger et al.,
2019a). Additionally, the N − F map gives not only qualitative information
about persistence (yes or no), but also quantitative (how close is a species
to the persistence line?). Species that are on the brim of extinction due to
environmental change will be located closer to the persistence line than other
species.

Similarly, prior work has systematically shown that the sign, strength, and
presence (Valiente-Banuet et al., 2015) of species interactions change along
broad environmental gradients (e.g. nutrient enrichment (Harpole & Tilman,
2007), warming (Traill et al., 2010), drought (Bimler et al., 2018), or environmen-
tal pollution (Baert et al., 2016). However, connecting shifts of species interac-
tions with persistence has only recently started (Cenci & Saavedra, 2018), for
example using species pairs of yeast (Grainger et al., 2019a) and annual plants
(Bimler et al., 2018; Lanuza et al., 2018). The proposed framework can facilitate
such studies as it maps how changes in multispecies interactions relate to the
aforementioned high-level processes. The framework is therefore well-suited
to understand how environmental change will affect the persistence of which
species and why. To illustrate this point, we provide two examples with simple
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Figure 6.3: N − F mapping allows the analysis of species persistence across a va-
riety of community types using a single framework. The black lines and yellow
area are those of Figure 6.1. A: Three examples of simple communities with dif-
ferent kinds of species interactions. Dots represent species, connections represent
direct interactions. All three communities follow Lotka-Volterra dynamics ( 1

N
dN
dt =

µ− AN) with µ = 1 but different interaction matrices to represent different interaction

types: priority effects
(

1 1.2
2.0 1

)
, competition-facilitation

(
1 0.7
−0.3 1

)
, and mutual-

ism

 1 −0.2 0
−0.2 1 −0.4

0 −1.6 1

. B: An example of a food web containing three producers

(dots), two consumers (squares) and one predator (triangle); Connections are direct
interactions. Importantly, the position of each species depends on all its direct and
indirect interactions with other species. The interaction matrix is shown in the inset.
The intrinsic growth rates are µ = (−2,−10,−1,38,50,32) (species are ordered as in
the interaction matrix). C: N −F mapping of 169 empirical plant communities, taken
from a recent review (Adler et al., 2018b), with dots and connections as in the other
panels. We converted the original N and F from (Adler et al., 2018b) to the defini-
tion by (Spaak & De Laender, 2020) (see Box 2). This panel shows that most studies
have experimentally investigated communities with N < 1 and F < 1 ; there has been
some exploration of communities under positive frequency dependence ( N < 0 ) but
there is virtually no exploration of ecological communities with F > 1 in MCT, but see
(Petry et al., 2018), suggesting that persistence in many community types that present
positive interactions has remained unexplored.
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(Figure 6.4A) and more complex communities (Figure 6.4B). For illustration,
we assume that environmental change causes an absolute increase in species
interactions, and a decrease in intrinsic growth rate. This reflects environmen-
tal change depressing growth and making negative interactions less negative
(i.e. weaker), and potentially even positive when the change is large enough,
i.e. corresponding to a prevailing argument in community ecology (Maestre
et al., 2012; De Laender et al., 2016). This illustration shows that weakening,
and potentially even sign-switching, of species interactions can qualitatively
change the location of species within the N −F map (Figure 6.4A& B). For ex-
ample, environmental change transforms priority effects (Figure 6.3A ”priority
effects” ) into the classic case of resource competition (Figure 6.4A ”resource
competition” ), where species persist when negative frequency dependence (
0 < N < 1 ) is strong enough to overcome differences in competitive ability (
F < 1 ). Likewise, environmental change transforms ”facilitation-competition”
(Figure 6.3A) into ”mutualism” (Figure 6.4A) because environmental change
makes species interactions both positive and therefore symmetric in sign. Fi-
nally, in a mutualistic community (Figure 6.3A, ”mutualism” ), environmental
change makes the persistence of one species conditional on the presence of
the other community members (Figure 6.4A, ”obligatory mutualism” ). En-
vironmental change has depressed the intrinsic growth rate of this species so
much as to make it negative, such that it cannot realise positive growth when
present alone (and thus has F > 1 ). Finally, an environmental change driver
affecting consumers (Figure 6.3B) will lead to indirect effects on the mapping
of the other trophic levels (Figure 6.4B). Prior to environmental change, the
persistence of the species with minimal F does not depend on niche differ-
ences. Environmental change increases F of this species above zero, making
the persistence of all species dependent on niche differences.

Taken together, these illustrations highlight that the N − F map allows
understanding species persistence along environmental gradients. While N
and F are species-specific (Adler et al., 2007; Spaak & De Laender, 2020), the
map also provides community-level information because all N and F depend
on the N and F of the other community members and the environmental
effects thereon. The consideration of both scales unlocks opportunities to ask
which community members will be the first to have their persistence altered
once an environmental change sets in, and how environmental change affects
the general distribution of species.
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6.5 Mapping N and F to foster synthesis in com-
munity ecology

Synthesis is a key task in community ecology, a discipline where a variety
of models, hypotheses, and theories aim at understanding a variety of in-
teraction types, haunted by the idea that specificities outnumber generalities
(Lawton, 1999). However, the way to pursue this synthesis is not straight-
forward. Much progress has been made conceptually, by summarizing the
main processes driving community assembly and composition (Vellend, 2016).
However, quantitative approaches that allow pinpointing similarities and dif-
ferences among disparate community types, arguably one of the first steps
towards across-system synthesis, are less common. Quantitative syntheses
should rely on common computational frameworks applied to disparate data
(Carpenter et al., 2009; Poisot et al., 2019). Yet, most available approaches rely
on indirect comparisons, i.e. they examine to what extent models match data
collected in different communities (Etienne et al., 2019; Rip & Mccann, 2011).
The N −F map can contribute to synthesis because it represents a direct ap-
proach to community comparison (however, see ‘limitations’) which allows
syntheses that were not available before. Specifically, the N −F map provides
common currency across ecological disciplines (Grainger et al., 2019b), which
makes it possible to ask a suite of novel questions. One example is whether
species persistence in communities that harbour distinct interaction types (e.g.
plant-pollinator networks versus food webs) is driven by the same high-level
processes or not. Another question deals with the evolution of species in-
teractions, asking if phylogeny or evolutionary-constrained traits (e.g. size,
feeding role) predict N − F mapping across contrasting taxonomic groups
(e.g. plants, plankton, and vertebrates) (Gallego et al., 2019; Pérez-Ramos et al.,
2019). Addressing such questions will facilitate across-community compar-
isons, which allows examining how the complexity of interaction types and
ecological network architecture affect the dynamics of ecological communities
and their maintenance.

6.6 Limitations

Assessing persistence directly is challenging (Clark et al., 2019b; Huisman &
Weissing, 1999; Schreiber, 2017, 2000). MCT has traditionally assessed persis-
tence through ”invasion analysis” , which tests whether all species in a commu-
nity are able to increase in abundance when rare (Chesson, 2000, 1994; Ellner
et al., 2019). N − F mapping does not alter how we asses persistence, and
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Figure 6.4: N − F mapping can help understanding the effects of environ-
mental change on persistence. A: The communities from Figure 6.3A were
exposed to an environmental change driver that decreases the interspecific in-
teractions strength and reduces the intrinsic growth rates. These effects shift
priority effects to resource competition, competition-facilitation to mutualism,
and creates one obligate mutualist. The new interaction matrices are: resource

competition:
(

1 0.6
1.2 1

)
, mutualism

(
1 −0.4
−0.2 1

)
, obligatory mutualism 1 −0.2 0

−0.5 1 −0.6
0 −1.6 1

 . The new intrinsic growth rates are µ = 0.8 , expect

for the obligatory mutualism community, in which it is µ = (0.8,−0.2,0.6) B:
The communities from Figure 6.3B were exposed to an environmental change
driver that reduces interactions among consumer species (interaction matrix
in the top-left; interaction strengths among consumers are in green) as well as
the intrinsic growth rate of consumers µ = (−2,−10,−5,38,50,25). Note that
these direct effects change the N −F mapping of the other species as well via
indirect (top-down) effects.
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it therefore inherits all the limitations of invasion analysis. These limitations
include the fact that the requirement of a positive invasion growth rate is a too
stringent criterion for persistence, and that in some community types invasion
analysis is technically impossible(Barabás et al., 2018; Grilli et al., 2017; Pande
et al., 2019; Saavedra et al., 2017).

In communities where invasion analysis is both possible and useful, a sec-
ond limitation may emerge. That is, measuring N and F can be labour-
intensive, especially in species-rich communities. One option is to empiri-
cally measure different kinds of growth rates (see Box 2 for the three growth
rates that define N and F as quantified here, (Spaak & De Laender, 2020)).
Alternatively, one can parameterize a community model (Baert et al., 2016;
Carrara et al., 2015; Maynard et al., 2019) and derive N and F either analyti-
cally or through simulations. Both approaches (empirically measuring growth
rates and parameterizing models) are potentially labour-demanding and var-
ious trade-offs emerge regarding the model complexity that is appropriate to
represent the system considered (Clark et al., 2019a).

6.7 Conclusions

We propose a framework that extends modern coexistence theory (MCT) to-
wards a variety of species interactions. This framework is based on redefin-
ing niche and fitness differences as species-specific characteristics that yield
information about which high-level processes underpin persistence (Box 2).
In this way, the approach summarizes the effect that many species interac-
tions can have on persistence, regardless of species- or community-specifics.
This common framework represents an unprecedented opportunity to exam-
ine how multiple interaction types in various ecological networks contribute to
the maintenance of biodiversity. Because it accommodates multiple interaction
types, the framework can inspect how environmental factors, both via direct
and indirect effects, affect persistence of which species, both positively and
negatively.

The N − F map connects to both the history and the future of MCT. It
includes previously described regions of the theory (competing species pairs,
Figure 6.2B), but uncovers new regions that represent other interaction types,
yielding insights previously unknown (Figure 6.2A). Which kind of communi-
ties fit under these previously unexplored regions is a new research field await-
ing exploration. We believe this uncovering can trigger collaboration between
different sub-disciplines in ecology, most notably among different groups of
empiricists. Different interaction types may lead to similar N − F mapping,
showing that - despite these differences - the same high-level processes drive
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persistence. Finally, we believe that formalising species interactions with the
N −F map will also foster collaboration between theoreticians and empiricists
because mapping can be based on models and empirically measured growth
rates. Overall, our framework illustrates how simple definitions of species in-
teractions create a reference system that rules all species interaction types and
communities.
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Chapter 7

Discussion

7.1 A synthesis of my thesis

7.1.1 How community types affect
niche and fitness differences

Chapters 2 to 6 all use very different community types and models. Compar-
ing their results therefore yields insight in how they affect niche and fitness
differences (see below). However, I want to stress that the chapters do not only
differ in the aspect specifically mentioned in figure 7.1, nor have the chapters
been designed in advance to test these aspects. Rather, in retrospect, we see
these differences and can investigate whether it is probable that a certain aspect
is responsible for the differences between their niche and fitness differences.

Such a comparison is legitimate, because I applied the same definition of
niche and fitness differences in all the different chapters. I will use the formula
for fitness differences used in chapter 6 throughout the discussion. This con-
sistency of niche and fitness differences is an important step forward, because
so far, the niche and fitness differences definition and community models were
clustered. For example, annual plant models were almost exclusively analysed
with the definition of Godoy & Levine (2014), whereas phytoplankton com-
munities were almost exclusively analysed with the definition of Carroll et al.
(2011). As a result, we could not easily compare the results of, say, Narwani
et al. (2013), who found relatively small niche differences in phytoplankton
to, say, Germain et al. (2016), who found relatively large niche differences in
terrestrial plants. We do not know whether the different averages of niche dif-
ferences are based on differences in the biological systems or merely due to the
definition they used.

111
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Figure 7.1: I used different community types or models in different chapters.
Comparing two chapters with different community types may give insight how
community types affect niche and fitness differences (blue lines, section 7.1.1).
Additionally, some chapters use the same or similar community types, but dif-
ferent community models. Comparing these may give insight how community
models affect niche and fitness differences (red lines, section 7.1.2). Impor-
tantly, we expect community types to affect niche and fitness differences, as
the underlying biology is different. However, the community model should
not affect niche and fitness differences (assuming the model matches the em-
pirical data), as the underlying biology is the same. Yet, as I show in section
7.1.2, the choice of a community model can have large effects on niche and
fitness differences.
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Phytoplankton communities have lower niche differences
than terrestrial plants

Chapter 2 and 5 both investigate niche and fitness differences in phytoplankton
communities, while the literature data from chapter 3 and 6 are mainly from
terrestrial plants. Terrestrial plants tend to have, on average, higher niche and
fitness differences than phytoplankton species (Figures 4.4 and 6.3C versus
Figure 5.3). The variation of niche and fitness differences is also much higher
in terrestrial plants, however, this may be primarily because of larger sample
sizes for terrestrial plants, so I will not investigate this further. Both Venail et al.
(2014) and Narwani et al. (2013) found comparatively small niche and fitness
differences for phytoplankton. On the other hand, Germain et al. (2016) and
Godoy & Levine (2014) found strong niche and fitness differences for annual
plants.

The differences found in my PhD thesis as well as in these literature data
may report a real phenomenon. We know that phytoplankton communities are
relatively simple and offer little possibilities for niche differentiation (Hutchin-
son, 1959). On the other hand, Kraft et al. (2015) showed that niche differences
in annual plants depend on many functional traits, implying that competition
in annual plants offers many possibilities for niche differentiation.

But just as well, the differences may be due to some other non-investigated
fact. For example, both studies on phytoplankton were communities in micro-
cosm short term experiments using the definition of Carroll et al. (2011). Both
studies on terrestrial plants were mid-long term field studies using the defini-
tion of Godoy & Levine (2014). I showed in chapter 2 that different definitions
applied to the same community yields different niche and fitness differences.
Additionally, Adler et al. (2018b) showed that LV models fitted to experiments
tend to have lower niche differences than LV models fitted to field data.

The empirical and theoretical data confirm the a priori expectations that ter-
restrial plants should have higher niche differences than phytoplankton com-
munities, however, I do not think that they provide sufficient evidence to con-
clude this. A similar hypothesis could be tested to investigate whether other
communities tend to have even higher niche and fitness differences.

Competition for light wavelength contributes comparatively little to
niche differences in phytoplankton communities

Chapter 2 and 5 both investigate niche and fitness differences in phytoplank-
ton, once for light-limited and once for nutrient-limited phytoplankton. To
compare the results, I generated phytoplankton species with resource uptake
and consumption traits according to the literature (Edwards & Stachowicz,
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2012), see E.2.

In all simulations, competition for light leads to relatively small niche and
fitness differences (Fig. 7.2, blue dots). Some of the communities coexisted
(35%) and in some communities one species excluded the other (65%). How-
ever, these specific percentages may very likely depend on the specific model
parameters, such as incoming light intensity or dilution rate. None of the com-
munities were governed by priority effects.

Competition for essential resources leads to a high variation of niche and
fitness differences coupled with more diverse outcomes of species interactions
(Fig. 7.2, red dots). All outcomes of species interactions were present, where
the clear majority was competitive exclusion (89%). Coexistence (6%) and pri-
ority effects (5%) were approximately equally likely, but again, the specific
numbers may depend on the specific parameter settings. Additionally, in most
communities (60%), niche differences were completely absent as both species
were limited by the same resources.

An obvious question is which of these processes contributes more to natural
phytoplankton diversity. However, the available data is not sufficient to answer
this question. Competition for different light wavelength only leads to small
niche and fitness differences, that is, coexistence may be relatively unstable,
but can allow up to four species coexist (Chapter 5). Conversely, competition
for limited resources can allow for strong niche and fitness differences, i.e.
very stable coexistence, but allow only as many species to coexist as there are
limiting resources, in this case two (Tilman, 1982). To answer this question, one
would have to include competition for resources and light into one model and
investigate how species richness depends on both mechanisms.

Niche and fitness differences in multispecies communities

Chapter 4 and 5 both investigate niche and fitness differences in multispecies
communities, once species richness is an independent variable and once it is a
dependent variable. The results from chapter 4 can, to some extent, explain the
results from chapter 5. Niche differences in light-limited phytoplankton com-
munities with two species are very limited. Species can coexist because their
fitness differences are also very small. However, increasing species richness
will increase fitness differences. These will be too strong for the small niche
differences and, as a result, species will not coexist.
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Figure 7.2: Competition for light wavelength leads to relatively small niche
and fitness differences (blue). Conversely, competition for essential resources
can lead to both strong negative and strong positive niche differences (red).
Competition for limiting resources leads to all three possible outcomes of com-
petition (coexistence, competitive exclusion and priority effects). In many com-
munities both species were limited by the same resources, which led to the
absence of niche differences.
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7.1.2 How community models affect
niche and fitness differences

During my PhD, I investigated several different community models including
phenomenological (LV models with higher-order interactions) and mechanistic
(Tilman’s resource competition models and the Stomp model for light compe-
tition). Chapter 3 specifically dealt with how the model choice and model
approximation may affect niche and fitness differences. However, chapter 3
was predominantly qualitative, but here, I want to explore this issue more
quantitatively.

Community models lead to smaller niche and fitness differences
than experiments

Chapter 2 and 5 both investigate niche and fitness differences in light-limited
phytoplankton communities, once in an experimental setting and once in sim-
ulations. Niche and fitness differences observed in the experimental setting
were much larger than the niche and fitness differences from the numerical
simulations (Fig. 7.3).

The experimental measurements of niche and fitness differences from chap-
ter 2 were performed with two cyanobacteria species with relatively low dilu-
tion rates compared to the dilution rates from chapter 5. To compare the results
to the simulated niche and fitness differences from chapter 5, I computed niche
and fitness differences for the Stomp model with three varying assumptions.
First, I measured the absorption spectra of the cyanobacteria (E.3) and fitted the
Stomp model to obtain the photosynthetic efficiency φ (green dots). However,
the Stomp model did not fit the data perfectly (R2 ≈ 0.82, E.3). Importantly
the fitted Stomp model did not correctly predict coexistence of the two species.
Second, I used the empirically measured absorption spectra and used simi-
lar photosynthetic efficiencies as in chapter 5 (blue dots). Third, I generated
the absorption spectra of cyanobacteria species belonging to the pigmentation
types used in the experiment (red dots). This approach is most comparable
to the phytoplankton communities in chapter 5. However, both niche and fit-
ness differences are considerably larger than in chapter 5 (Figure 5.3), because
we only focus on two pigmentation types that have very dissimilar absorption
spectra.

The experimentally measured niche differences (purple dots) are much
larger than the ones obtained with the Stomp model, regardless of the specifici-
ties chosen for the Stomp model. This implies that the Stomp model does not
capture all mechanisms for niche differentiation. Similarly, Chu & Adler (2015)
fitted a community model to the long-term field data of perennial plants in or-
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der to compute niche and fitness differences. Later Adler et al. (2018a) showed
that this model gives poor predictions of how the community will respond
to artificially removing species from the community, that is, the community
model underestimated competitive release.

I was not able to accurately fit the Stomp model to the empirical data from
chapter 2. During my PhD, I performed a total of 5 experiments with a total of
180 experimental units with varying experimental procedures, and in none of
them did the Stomp model explains more than 85% of the variance of the com-
munity densities. However, my experimental setup differed in several ways
from the original setup used in Stomp et al. (2004). First, Stomp et al. (2004)
used chemostats, while I used semi-continuous batch cultures with volumes
ranging from 5 to 500 ml. Importantly, debris may accumulate in these semi-
continuous batch cultures. Second, Stomp et al. (2004) was run at much higher
dilution rates of 0.014h−1, where my dilution rates ranged from 0.0006h−1 to
0.0026h−1.

Do higher order interactions affect niche and fitness differences?

Chapter 3 and 4 both investigate how higher order interactions affect niche and
fitness differences. Initially, their findings seem to contradict each other, as in
chapter 4 I found that higher order interactions do not affect niche differences,
while in chapter 3 they do.

However, chapter 4 focuses on how species richness affects niche and fit-
ness differences on average. Higher order interactions do not affect this trend,
nor do communities with higher order interactions have higher or lower niche
differences on average. Finally, in chapter 3, I assumed that all higher order
interactions coefficients are equally strong on average.

Higher order interactions affect niche and fitness differences just as we
would expect them given their effect on first-order interactions. βiii and β jjj
increase the first-order intraspecific interactions (αii and αjj), which therefore
increases Ni (Fig. 7.4 A, yellow and purple lines). βijj and β jii increase the first-
order interspecific interactions (αij and αji) and therefore decreases Ni (Fig. 7.4
A, cyan and orange lines). The other higher order interactions do not affect
the monoculture growth rates nor the invasion growth rates, therefore they do
not affect niche and fitness differences in two-species communities (red dashed
line). However, they will affect niche and fitness differences in communities
with more species, albeit in a potentially complex way. While each higher
order interaction affects niche and fitness differences on its own, their effects
cancel out (blue line). Similarly, the effects of βiii, βijj, β jii and β jjj on fitness
differences can be explained by their effect on the first-order interactions (Fig.
7.4).
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Figure 7.3: Niche differences measured without fitting the Stomp model (pur-
ple dots) were much higher than any simulation of the Stomp model. The
green dots represent the Stomp model fitted to the experimental data. Blue
dots represent the Stomp model with measured absorption spectra but photo-
synthetic efficiencies as in chapter 5. Red dots represent the Stomp model with
all community parameters as in chapter 5. Species above the black line have
negative invasion growth rates and will not persist.
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Figure 7.4: Higher order interactions do affect niche (A) and fitness differences
(B). Their effect can be understood by their effect on the first-order interac-
tions. A: Higher order interactions that affect intraspecific interactions (βiii
and β jjj) increase niche differences similar to αii and αjj. Higher order inter-
actions that affect interspecific interactions (βijj and β jii) decrease niche differ-
ences. If all higher order interactions have similar strength their effects cancel
out (blue line, β∗). The other higher order interactions do not affect niche or
fitness differences in two-species communities, as they are only relevant when
both species are present. Niche and fitness differences, however, are computed
based on monoculture growth rates and invasion growth rates, where only one
species is present. B: Higher order interactions that increase species i’s sensi-
tivity to competition (βiii and βijj) decrease the Fi, similar to αii and αij. Higher
order interactions that increase species j’s sensitivity to competition (β jjj and
β jii) increase Fi. Again, other higher order interactions do not affect Fi (red
dashed line) and the effects of the various higher order interactions can cancel
(blue line).
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Computing niche and fitness differences with different community models

Chapter 3 showed that approximations of a community model can affect niche
and fitness differences. Implicitly, any fitted community model to empirical
data can be seen as an approximation of the real underlying community model.
I fitted various community models to the empirical data from chapter 2 to in-
vestigate how the model choice can affect our understanding of the community.

To compute niche and fitness differences, I fit two LV models (once in-
cluding all empirical data red dots, fig. 7.5) and once excluding the densities
from experiments with high starting densities, as these are usually not per-
formed (blue dots)), a LV model with higher order interactions (orange dots),
the Stomp model (green dots) and computed them without fitting a community
model to the densities of the species (purple dots). To incorporate measure-
ment uncertainty, I computed niche and fitness differences by each method
100 times. As expected, the different community models lead to quantitatively
different values for niche and fitness differences. However, not only were the
differences significant, but the regions were almost completely distinct with no
overlap.

In addition to the quantitative differences the different models lead to dif-
ferent qualitative predictions. Both species have positive invasion growth rates,
which strongly suggests that they can coexist (Barabás et al., 2018; Turelli, 1978).
Niche and fitness differences based on the species densities correctly predict
this, as both species are below the persistence line (purple dots). Additionally,
it predicts that the two species do not differ significantly in their competitive
strength. Conversely, all of the other community models predict that BS5 is the
clear competitive dominant species, and one fitted LV model and the Stomp
models predict competitive exclusion. Similarly, Godwin et al. (2020) found
that fitted LV models do not always correctly predict coexistence in both empir-
ical and simulated data. The other LV models as well as the model with higher
order interactions show no clear outcome of competition. The LV model based
on all empirical data does predict positive frequency dependence in about 30%
of the cases. Finally, we see a clear difference between the two fitted LV mod-
els, which indicates that not only increasing species to equilibrium but also
decreasing species to equilibrium can contain important information about the
community processes.

Niche and fitness differences critically depend on the intrinsic and the inva-
sion growth rates. To get precise estimates of niche and fitness differences we
need precise estimates of these two growth rates. Fitting a community model
to densities, however, implies that growth rates when the species is not rare
can affect these two growth rates. The current example shows that this can
lead to qualitatively different predictions of coexistence.
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Figure 7.5: Fitting different community models to the same underlying exper-
imental data from chapter 2 yields vast differences in their niche and fitness
differences. Niche and fitness differences based on the raw data (purple dots)
predicts coexistence and does not show any clear difference in their competi-
tive strength. In contrast, all fitted community models clearly identify the red
species as the competitive dominant. Additionally, the fitted LV models and
the Stomp model predicts competitive exclusion.
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Figure 7.6: The different methods lead to different estimations of the mono-
culture equilibrium densities. The empirical equilibrium densities are best ap-
proximated by the method that does not fit a community model through the
empirical data (data only partially visible due to overlap).

Different niche and fitness values show that differences exist, but it is not
clear which method best captures the actual niche and fitness differences. It
may very well be, that we get a more precise measure of the intrinsic growth
rates by including growth rates at higher densities for its computation. Simi-
larly, we get a better estimate of the intercept of a linear regression by increas-
ing the sample size, even if these samples are taken away from the intercept.
So far we do not have any golden standard of niche and fitness differences that
would allow us to pick the best candidate in this case, we just know that dif-
ferent models can have a huge effect on niche and fitness differences, despite
all of them fitting the experimental data very well (R2 > 0.9 for all model fits
except the Stomp model).

However, we can test their predictions on other parameters for which we
do know how to assess quality. The method based on the raw data best fits the
monoculture equilibrium densities of both species (Fig 7.6). The Stomp model
underestimates the equilibrium density vastly, and the higher order model as
well as the LV model with all data overestimate the equilibrium densities. In
conclusion, not fitting a community model to the species densities lead to niche
and fitness differences that best meet the coexistence conditions and other pa-
rameters.
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Obtaining LV models with different methods affects niche and fitness dif-
ferences

Chapter 4 and 6 both show distributions of niche and fitness differences from
different communities. While facilitation is relatively common in the data from
chapter 4, facilitation is almost absent in the data from chapter 6. Both chap-
ters use LV models that are fitted to terrestrial plant communities. Therefore,
their differences do not arise from points already discussed above. They differ,
however, in how the LV models were fitted.

The community models from chapter 6 were fitted exclusively with a re-
gression of species densities over time in two-species sub communities (Hart
et al., 2018). That is, in order to obtain µi and αii, the species are all grown in
monoculture and the densities are measured over time. A LV model is fit to the
densities over time using least squares regressions. To obtain αij two species
are grown together and then the previously obtained community parameters
are used to fit αij. I will refer to this as the regression method from now on.

The community models from chapter 4 were predominantly fit using the
relative yield of species in two-species communities. First, all species are grown
in monoculture to obtain the monoculture equilibrium density N∗i , and αii is
set to 1/N∗i . The species are then grown in two-species communities to obtain
αij and αji from the relative yield of each species. Importantly, this method
does not include transient dynamics, therefore densities are only measured at
the end of the experiment, and µi is set to 1.

To obtain the community matrix of a n-species community by any method,
one needs to perform on the order of n2 experiments. The relative yield method
has the advantage that densities need not be measured over time. The regres-
sion method, on the other hand, allows simulating community densities over
time. Additionally, the regression model would allow one to detect that the LV
model is not a good approximation of the species interactions. Maynard et al.
(2019) proposed an integration of these two approaches by first obtaining an
estimate of A, potentially by the regression model. This initial approximate of
A is then adjusted such that A correctly predicts the equilibrium density of the
species.

LV models fit by either method lead to approximately the same median for
Ni in two-species communities (regression: 0.84, relative yield: 0.85, Fig 7.7).
However, the interquartile range ofNi is significantly smaller for the regression
model (regression: 0.41, relative yield: 0.83, p ≈ 10−12). As a consequence,
facilitation is more probable in community models that were obtained by the
relative yield model (regression: 17%, relative yield: 35%).

The differences in Ni likely stem from differences in the interactions coef-
ficients. Again, the median interspecific interactions strength is comparable
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Figure 7.7: A: LV models fitted to relative yield (red) lead to larger spread
of Ni than LV models fitted with regression (blue). The two methods lead,
however, to very similar median of Ni. B: As a consequence, the relative yield
method leads to higher probability of both mutualism and positive frequency
dependence.

between the two methods, but interquartile range is larger for the interaction
strengths measured with the relative yield method. This could be interpreted
as a larger measurement uncertainty. To obtain the interaction coefficients with
the regression model, one fits a community model to the densities over time,
i.e. many data-points. Conversely, the interaction coefficients with the relative
yield model are based only on the final density, i.e. few data-points, which
leads to a higher variance in the estimates.
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7.2 Future directions of MCT

7.2.1 Extending our understanding of
niche and fitness differences

MCT seeks general patterns that allow species to coexist. Yet most applications
of niche and fitness differences focus on linear species interactions, such as
LV models or annual plant models with Beverton-Holt competition (Levine &
HilleRisLambers, 2009; Adler et al., 2007; Godoy & Levine, 2014; Germain et al.,
2016; Saavedra et al., 2017; Godoy et al., 2020; Adler et al., 2018b). This choice
a priori rules out the possibility of finding new patterns of coexistence or of
finding models in which the current theory fails (Pande et al., 2019). To find
new general patterns or confirm the patterns we already know, we must apply
modern coexistence theory to a larger set of community models.

Additionally, MCT predominantly focuses on basal species, most notably
plants (Godoy et al., 2014; Adler et al., 2018b; Chu & Adler, 2015) or phyto-
plankton (Narwani et al., 2013; Gallego et al., 2019). We know very little about
how guilds from other trophic levels coexist.

Various authors have already called for the inclusion of a broader range
of community models into MCT, such as predators (Chesson & Kuang, 2008;
Petry et al., 2018), mutualists (Bimler et al., 2018; Johnson & Bronstein, 2019)
and multi-trophic networks in general (Godoy et al., 2018). However, all these
propose their own framework to understand these new community models.
Their frameworks, which are sometimes very specific, lead to an in-detail anal-
ysis of the specific community model, however they lack generality. The newly
proposed definitions from chapter 2 and 6 provide an alternative solution, in
which we exchange detail knowledge of the specific systems for a general un-
derstanding that includes many communities.

MCT has primarily focused on basal species and how competition for re-
sources can mediate negative (or positive) frequency dependence (Letten et al.,
2017; Chesson, 1990). Chesson & Kuang (2008) demonstrated theoretically that
the negative frequency dependence mediated via common predators can be
captured into the framework of niche and fitness differences as well. Similarly,
Petry et al. (2018) investigated empirically the effect of ants on the coexistence
of annual plants. However, both assume a priori that the predators persist and
do not include them as focal species. Additionally, negative frequency depen-
dence can also be mediated via common mutualists, as shown by Johnson &
Bronstein (2019). They model how plant species interact mutualistically with
a fungus to exchange resources or how plant species interact with pollinators.
However, again, they assume a priori that mutualists persist independently
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and do not introduce them as focal species.
Both these contributions are essential extensions of MCT, however, com-

paring them directly is difficult, as they use different frameworks. By using
different frameworks and focusing on basal species, they do not extend our
understanding of which general patterns allow coexistence in more broad com-
munities.

To compare these two extensions I computed niche and fitness differences
(Appendix E.1) and mapped them with one graphical representation for dif-
ferent choices of focal communities (Fig. 7.8). While the new method can in
principle analyse all these models, we must first ensure that invasion growth
rates correctly predict coexistence. I compute niche and fitness differences for
structurally equivalent communities, but once with predator and once with
mutualist species (triangles, blue respectively red markers in fig. 7.8). Using
three different types of focal community, I investigated 1. how the predators
and mutualists coexist, with the basal species seen as resources (Fig. 7.8 A),
2. how the basal species coexist via resource competition and apparent com-
petition (Fig. 7.8 B), and 3. how does the entire community coexist (Fig. 7.8
C). The second focus is the current focus of MCT, albeit MCT usually does not
include the predators or mutualists into analysis. I believe that the last focus
should be the future direction of MCT. This leads to a total of six different focal
communities.

This leads to three insights: First, in all six choices of focal community
species coexist because niche differences overcome fitness differences, confirm-
ing the main finding of MCT. Second, while structurally very different, preda-
tors and mutualists coexist via the same high-level processes. That is, despite
them being treated very differently, this short analysis suggests that they could
be studied together. Third, when focusing on predators respectively mutualists
(cyan ellipse), these compete with each other for the basal species (Fig. 7.8A,
N < 1). Yet with slightly different parameter values predators respectively
mutualists can facilitate each other (N > 1). This may not be too surprising
for mutualists, as they both facilitate the same species. Predators, on the other
hand, facilitate each other because the basal species compete with each other
for resources. Predator A reduces the density of basal species a, which in-
creases density of basal species b, which facilitates predator B. Note, from the
predator’s point of view, the apparent competition is just plain resource com-
petition. As a consequence, resource competition can give rise to facilitation.

In this short example, I found that the general conclusions of MCT seem to
hold in more general communities. Of course this is only a very limited range
of possible community models and structures; further research is needed. But,
we also gained new insight into resource competition and how predators and
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mutualists seem to behave very similarly.

7.2.2 Recent developments of MCT

Recently, three independent advances of MCT have been proposed by Saavedra
et al. (2017), Ellner et al. (2019) and my reinterpretation of niche and fitness dif-
ferences. These proposed solutions overcome some of these limitations. Here,
I want to briefly discuss which limitations they might solve and how they are
linked to each other.

As mentioned in the introduction, there are seven main limitations in MCT,
all dealing with limiting complexity: (i) MCT depends on analytical mathe-
matics and as a consequence focused on simple community models; (ii) MCT
primarily focuses on linear species interactions; (iii) MCT primarily focuses on
competitive species interactions; (iv) MCT investigates the coexistence of few
species, predominantly two-species communities; (v) There are few collabora-
tions between MCT and related fields; (vi) MCT investigates the coexistence
of one trophic level and assumes that species from other trophic levels do not
go extinct. As such it does not focus on entire communities, but rather, on
sub-communities; (vii) How do we assess coexistence in a community model
where invasion growth rates do not correctly predict coexistence? In this sec-
tion I will focus on how recent advances in MCT solve conceptual problems of
MCT, and therefore, I will not comment on challenge (v) further.

The structural approach on coexistence

The structural approach proposed by Saavedra et al. (2017) investigates the
structural stability of a community model and was originally defined for a
LV like community model. Given the interaction matrix A, it defines niche
differences as the volume of DF(A), the set of intrinsic growth rates with a
feasible equilibrium point. Fitness differences are defined as the distance of
the current intrinsic growth rates to the centre of DF(A).

The structural approach, as suggested by the name, investigates structural
and not dynamical stability. That is, given a species interaction matrix A, it
asks how probable it is, that the intrinsic growth rates µ will yield a feasible
equilibrium. That is, at it’s core, the structural approach focuses on a differ-
ent question than most of modern coexistence theory. Song et al. (2020a) have
shown that structural stability and dynamical stability are related, but that
increasing one may decrease the other. While originally proposed as an exten-
sion of niche and fitness differences, these should therefore not be compared
to traditional (dynamical) niche and fitness differences.
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Figure 7.8: In a tri-trophic community MCT typically focuses on the producer
level. How can these producers coexist? How is negative frequency depen-
dence governed via resource competition or apparent competition (orange el-
lipse, left panel). Similarly, we could focus on the top-level only (cyan ellipse),
this would advance our understanding of coexistence to some extent yet re-
main agnostic to the entire picture. Rather, MCT should start to focus on the
entire community (green ellipse) and understand how competition but also
other trophic interactions shape species coexistence (Godoy et al., 2018). The
green ellipse does not include the resources, as these are assumed to be abi-
otic. A: An alternative focus of MCT, two-species from the top level compete
(Ni < 1) and do not depend on other species (Fi < 1). They do not depend
on other species, as the underlying species are considered as resources, not
species, and thus part of the environment. B: The current focus of MCT ,
species interact with resource competition. C: The potential future focus of
MCT, the investigation of entire communities and how all species can persist.
Here the top-level species (red and blue triangles) do depend on other species
(Fi > 1) and profit from them (Ni > 1). Comparing C with B or A we see that
changing the focus of our study can affect how we interpret the persistence
mechanisms for both trophic levels.
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The structural approach can efficiently analyse a community containing
many interacting species. For any given community, however, the structural
approach gives the probability that all species coexist. It does not give any
information about which species is most likely to go extinct or whether all
species can coexist for the current intrinsic growth rates.

The structural approach has been partially extended to per-capita growth
function of the form 1

Ni
dNidt = fi(∑j αijNj) where fi is a monotone function

(Cenci & Saavedra, 2018). The structural equivalents of niche and fitness dif-
ferences are computed by inverting the functions fi. However, species interac-
tions are still governed by linear interactions (∑j αijNj) and as such, non-linear
species interactions can only be integrated to limited amounts. As such, the
structural approach offers only a partial solution to challenge (ii).

The structural approach provides a solution to the challenges (iii), (iv) and
(vi), as the interaction matrix can contain positive and negative entries. Im-
portantly, the structural approach analyses the coexistence region of the entire
population at once and can therefore easily be used to include higher trophic
levels into the analysis (Song et al., 2018). It can easily analyse communities
with many species, albeit the graphical representation of niche and fitness
differences is challenging for four species communities and not possible for
communities with more species.

The structural approach benefits from the fact that assessing coexistence
is both conceptually and computationally easy in a community with linear
species interactions. As such it does not solve challenge (vii), but by focusing
on communities where we can assess coexistence, it circumvents the problem.

Expansion of MCT with simulations

The expansion of MCT proposed by Ellner et al. (2019) is based on a comparison
of different scenarios of the community model in which certain mechanisms
are turned on or off. Comparing the community model when the environment
fluctuates to a community model when the environment is constant gives in-
sight into how much the environmental variation is essential to coexistence of
the species. Ellner et al. (2019) focuses on temporal environmental variations
and, as such, revolutionised how we understand the storage effect or relative
non-linearities. However, it is worth noting that this approach can also be used
to understand how certain traits affect coexistence.

This expansion of MCT allows the simulation of a community’s key prop-
erties, rather than analytical mathematics. In fact, this approach has already
been used to analyse storage effect and relative non-linearity in yeast species
that are governed by non-linear species interactions (Letten et al., 2018). It
therefore solves challenge (i).
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The expansion can be used to address multispecies and non-competitive
communities as well (challenges (iii) and (iv)). For example, Ellner et al. (2019)
analysed a community matrix including facilitative species interactions and
found that, in this specific case, facilitation was not essential for coexistence.
Also, Ellner et al. (2019) have used their method to analyse non-linear species
interactions (challenge (ii)).

Mathematically, the expansion can be used to analyse multi-trophic com-
munities (challenge (vi)) to some extent. It can analyse communities in which
all species are governed by identical functional responses, such as in a LV
model. It could not, for example, analyse a community with resource explicit
dynamics, where not all species consume exactly the same resources or species.
Biologically, the expansion is based on giving all species the average trait of the
community. To analyse a community with plants and herbivores, the expan-
sion would create plant-herbivore hybrids. That is, it would assign to plants
a trait of how fast they can consume other plants and herbivores would be
allowed to do photosynthesis.

The expansion is based on invasion analysis and thus does not advance our
assessment of coexistence (challenge (vii)). Importantly, it inherits all the lim-
itations of the invasion analysis. Therefore, it may therefore not be applicable
to communities with many species or it may lead to wrong predictions.

Intuitive niche and fitness differences

My own definition of niche and fitness differences has been introduced in
much detail in chapter 2 as well as its limitations and benefits. Though, I
will repeat them briefly for comparison.

The niche and fitness differences were designed not to depend on analytical
mathematics (challenge (i)) and to include non-competitive species interactions
(challenge (iii)). Chapters 3 through 6 each address one of the challenges (ii)
to (vi). It, however, does not advance our assessment of coexistence, but com-
pletely depends on invasion analysis (challenge (vii)).

7.2.3 Future perspectives on MCT

Taken together, the three conceptual advancements of MCT can be used to
analyse multi-trophic, multi-species communities with non-linear species in-
teractions. Few empirical applications of these new concepts are already avail-
able (Letten et al., 2018; Petry et al., 2018), however, they mainly focused on
known community structures (few species, one trophic level).

The remaining challenge is how we can assess coexistence in complex com-
munities. Currently, the most used approach currently, invasion analysis, suf-
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challenge Structural
approach expansion of MCT

Intuitive
niche and

fitness differences
(i) not analytical X X X

(ii) Non-linearities linear inter-specific
interactions X X

(iii) Non-competitive X X X
(iv) Multi-species X X X
(vi) multi-trophic

communities X creates consumer-
producer hybrids

X

(vii) assessing
coexistence focuses on simple

communities
invasion analysis invasion analysis

Table 7.1: Combined, the three new advancements of MCT solve five of the
six main challenges of MCT. MCT can now investigate coexistence in multi-
species, multitrophic communities with non-linear species interactions. How-
ever, assessing coexistence is still an open challenge in complex communities
(challenge (vii)).

fers from three problems (see 1.2.3). First, invasion analysis may not be possi-
ble. Invasion analysis perturbs the density of the focal species to zero and sets
the remaining species to equilibrium density. However, such an equilibrium
density may not exist, most notably in food-chains, where species critically de-
pend on lower trophic levels. Yet, these issues can occur in purely competitive
communities as well, a well-known counterexample is the rock-paper-scissor
community, where all three species combined can coexist, but not each sub-
two-species community. The problem increases in species rich communities; in
chapter 4 this occurred in about 25% of all six-species communities. Schreiber
(2000) proposed methods that allow using invasion analysis, even when one
or more species are extinct in the sub-communities. Essentially, it states that at
least one species with zero density must have a positive growth rate when one
or more species are at zero density. This solves the first problem.

Second, invasion analysis may not correctly predict coexistence. There are
communities in which invasion analysis does not correctly predict coexistence.
The most prominent communities contain species with Allee effects, in which
the growth rates at invasion are governed by different mechanics than the
growth near equilibrium density (Barabás et al., 2018). Again, Schreiber (2000)
gives necessary and sufficient conditions for when invasion analysis correctly
predicts coexistence, which essentially resolves this second problem.
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Third, when it is possible and correctly predicts coexistence, it may not
be practical. For example, in a community with 20 species, performing and
invasion analysis implies finding the stable equilibrium density of 20 different
communities, each containing 19 species. Again, the problem worsens with
increasing species richness.
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Appendix for chapter 2

A.1 Review

As mentioned in the main text the available definitions all suffer from one or
several drawbacks which we want to highlight here in the appendix. Table A.1
summarises many features of the different definitions.

The mathematical equations for each definition are given in the column
Definition. A subscript i indicates that the parameter is species specific. Note
that we log-transformed the definition of Adler et al. (2007) to be able to com-
pare the different definitions more consistently. Furthermore we only give the
definition for two species for Saavedra et al. (2017) , for the multispecies case
we refer to their original paper.

The Range column explains the range of the definitions for the communi-
ties without facilitation and with intraspecific competition being stronger than
interspecific (solid rectangle in fig. 1 from the main text). In the Lotka-Voltera
and annual-plant setting this means αijαji ≤ αiiαjj. As argued in the main text,
this range should be [0,1].

The Pos. Eff. contains the range of N when species do exhibit positive
interactions. Undef indicates that N and or F are not defined for this case, e.g.
because one would have to take the square root of a negative number. Numbers
in red indicate that the range overlaps with the usual range. The definition of
Saavedra et al. (2017) is defined for small positive interspecific interactions (for
which the range is given), not however for large. The Comp. contains the range
ofN when interspecific interactions are stronger than intraspecific interactions.

Given the N and F values the Coex. column indicates what relation must
be fulfilled in order to have coexistence. For some definitions the knowledge
of N and F however is not sufficient to infer coexistence.

The column Add. indicates some additional information about the defi-
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Source Definition Range Pos. Eff. Comp. Coex. Add.

Chesson
2003

N =
(

∆I−∆N
d

)
Fi =

ri
di
−N

[−∞,∞]
[−∞,∞]

[−∞,∞] [−∞,∞] −Fi ≤N
1 lim.
factor

Carroll et al.
2011

N =1-Mean(sens.)
F =Std(sens.)

[−∞,1]
[1,∞]

Undef. [−∞,1] F ≤ 1
1−N

Multi-
species

Zhao et al.
2016

N = 1 + ri + rj

Fi = log10

(
Ki
Kj

) [−∞,∞]
[−∞,∞]

[−∞,∞] [−∞,∞] None Scaling

Carmel et al.
2017

2−N
2
√

1−N = Mean
(

ri
µi
+ 1
)

F =
(

Std
(

ri
µi
+ 1
))2

[0,1]
[1,∞]

[0,1] Undef. F ≤
(

2−N
2
√

1−N

)2 Multi-
species

Saavedra et al.
2017

N = 2
π arcsin

(
αiiαjj−αijαji√

α2
ii+α2

ji

√
α2

jj+α2
ij

)
F = 180

π arccos
(

r·rc
‖r‖·‖rc‖

) [0,1]
[0,90]

Undef
[0,1] N < 0 F ≤ 45 · N

Scaling
Multi-
species

Godoy &
Levine 2014

N = 1−
√ aijaji

aiiajj

Fi =
λi−1
λj−1

√ ajiajj
aijaii

[0,1]
[0,∞]

Undef. N < 0 Fi ≤ 1
1−N

Model-
specific

Adler et al.
2007

Ni = log

(
λj

1+
aij
ajj

(λj−1)

)
Fi = log

(
λi
λj

) [0,∞]
[−∞,∞]

[0,∞] N < 0 −Fi ≤Ni
Model-
specific

Bimler et al.
2018

N = 1− eaij+aji

eaii+ajj

Fi =
eaji+ajj

eaii+aij

[0,1]
[0,∞]

[0,1] N < 0 None
Model-
specific,
Scaling

Chesson
1990

N = 1−
√ aijaji

aiiajj

Fi =
√ ajiajj

aijaii

[0,1]
[0,∞]

Undef. N < 0 Fi ≤ 1
1−N

Model-
specific

Chesson &
Kuang 2008

N = 1−
√

αR
ij α

R
ji+
√

αP
ijα

P
ji

sisj

Fi =
sj
si

µR
i −µP

i −mi
µR

j −µP
j −mj

[0,1]
[0,∞]

Undef. N < 0 Fi ≤ 1
1−N

Model-
specific

Spaak &
DeLaender

Ni =
fi(0,N∗j )− fi(N∗j ,0)
fi(0,0)− fi(cj N∗j ,0)

Fi =
fi(N∗j ,0)
fi(0,0)

[0,1]
[−∞,1] N > 1 N < 0 Fi ≤ Ni

1−Ni
-

Table A.1: Summary of the different definitions of F and N in the literature.
Red entries denote undesirable behaviour. For further explanation see text.
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nition. Model-specific indicates that this definition is only applicable to one
specific model. The definition of Chesson (2003) is only applicable to models
with only one limiting factor (Barabás et al., 2018), as for other models N and
F depend on the chosen limiting factor. Scaling indicates, that this definition
depends on the parametrisation of the model. The easiest way to see this is
Zhao et al. (2016). If the same experiments were performed twice, once mea-
sured in mg and once in µl, the F would differ, as the two bacteria strains
will not have the same physical density ( mg

µl ). Similarly in Bimler et al. (2018)
the values of N and F change if we re-parametrise the system to have αii = 1.
The structural equivalent of fitness differences in Saavedra et al. (2017) is also
affected if we re-parametrise to have ri = 1. Finally the definitions of Carroll
et al. (2011); Carmel et al. (2017) and Saavedra et al. (2017) can be applied to
multispecies communities, however in this case the coexistence condition does
not suffice to assess coexistence of the species in a community. That is there
might be two communities, that have the sameN and F values, but the species
of one community will coexist, while the species in the other will not.
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Figure A.1: F values for the annual plant model according to different defini-
tions for varying interspecific competition α =− α12α21

α11α22
. Comparing the different

definitions of F is more difficult than comparing the different N , as some def-
initions interpret F = 0 to be equal fitness while other have F = 1 for equal
fitness. For the definition of Chesson (2003) we chose species 1 to be the limit-
ing factor. Parameter values are: λ1 = 1.5,λ2 = 3,α11 = 1,α22 = 1,α21 = 0.7 and
α12 varies in [−0.5,2.5].
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Figure A.2: N and F values for the annual plant model according to different
definitions for varying interspecific competition α =− α12α21

α11α22
per definition. Full

lines represent N , dashed lines represent F .
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A.2 Mathematical proofs

Before we go into the proofs and special cases we first introduce some appendix
specific notation. As in the main text we use the following notation to describe
population dynamics:

1
Ni

dNi

dt
= fi(Ni, Nj) (A.1)

Note that this notation is slightly different from the usual form, which is

1
Ni

dNi

dt
= fi(N1, N2) (A.2)

In our notation the density of the focal species is the first argument of the
growth function of said species. Opposed to the more conventional natural
order of the species, this allows us to more easily write fi(0, Nj) for the inva-
sion growth rate and similar expressions. The growth rates are assumed to be
biological, explicitly we assume

1. fi are continuous functions in all their arguments (A.3)
2.∃ lim

Ni→0
fi(Ni,0) = fi(0,0) (A.4)

3. limsup
Ni→∞

fi(Ni, Nj) < 0 (A.5)

The first assumption is obviously fulfilled for any biological system. The
second assumption states that it is reasonable to talk about the monoculture
growth rate fi(0,0). The third assumption ensures that species cannot reach
unlimited densities. Those not familiar with the limit supremum can just re-
place the limit supremum with the normal limit. The limit is taken with fixed
but arbitrary Nj. Especially we do not assume that the limit is equal for differ-
ent Nj or that the limit has to be −∞, nor is anything said about the uniformity
of the convergence.

We add the following assumption

4. fi(0,0) > fi(Ni,0) (A.6)

That is the per capita growth rate in monoculture is maximal at minimal den-
sity. While most biological systems fulfill this assumption it is not a biological
necessity. It is solely included for mathematical purposes.
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Finally we introduce the following notation

N1(c) =
f1(0, N∗2 )− f1(cN∗2 ,0)
f1(0,0)− f1(cN∗2 ,0)

(A.7)

N2(c) =
f2(0, N∗1 )− f2(

1
c N∗1 ,0)

f2(0,0)− f2(
1
c N∗1 ,0)

(A.8)

Where the niche difference depends on the conversion factor c = c2. We
omitted the dependence of c on the species, as we have seen that ci =

1
cj

.
This definition is asymmetric in the species, however the arbitrary choice that
species 1 depends linearly on c only affects c itself, not the N .

A.2.1 Existence of N and c

We want to solve |1− Ni(c)| = |1− Nj(c)| for c, we therefore have to prove
that such a solution always exists. The solution will be denoted c′. In this part
we only prove the existence of c′, the uniqueness of such a c′ will be discussed
below. We first present a ”proof” based on biological meaning and logic, that
requires a minimum of mathematical knowledge. In this ”proof” we omit
the absolute values. This biological reasoning is then turned into a rigorous
mathematical proof.

The definition of N compares the interspecific competition ( f1(0, N∗2 )) with
intraspecific competition ( f1(cN∗2 ,0)). The intraspecific competition however
depends on the conversion factor c, which can take any positive value. The
larger this c is, the larger the intraspecific competition will be. By choosing the
c being 0 (respectively ∞) intraspecific competition will be very small (large)
compared to interspecific competition and hence N will be −∞ (> 0). The
species however react differently to this value c, such that we have a value c′′

where N1 < N2 and a value c′′′ with N2 < N1, therefore there must also be a
value, where they are equal.

Theorem 1. fi(0,0) 6= fi(0, N∗j )⇒ ∃c′ : |1−N1(c′)| = |1−N2(c′)|

Proof. We define Ai = limN→∞ fi(N,0). For simplicity we assume the existence
of the limit, if this is not given a similar proof can be done with limsup. With
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this definition we can compute:

lim
x→∞
|1−N1(x)| =

∣∣∣∣ lim
x→∞

f1(0,0)− f1(0, N∗2 )
f1(0,0)− f1(xN∗2 ,0)

∣∣∣∣ (A.9)

=

∣∣∣∣ f1(0,0)− f1(0, N∗2 )
f1(0,0)− limx→∞ f1(xN∗2 ,0)

∣∣∣∣ (A.10)

=

∣∣∣∣ f1(0,0)− f1(0, N∗2 )
f1(0,0)− A1

∣∣∣∣ (A.11)

< ∞ (A.12)

lim
x→0
|1−N1(x)| =

∣∣∣∣limx→0

f1(0,0)− f1(0, N∗2 )
f1(0,0)− f1(xN∗2 ,0)

∣∣∣∣ (A.13)

= | f1(0,0)− f1(0, N∗2 )| lim
y→ f1(0,0)

1
| f1(0,0)− y| (A.14)

= ∞ (A.15)

With similar arguments we get limc→0 1 − N2(c) < ∞, limc→∞N2(c) = ∞.
By the intermediate value theorem we therefore have the existence of a c′ with
equality.

Now to the special case fi(0,0) = fi(0, N∗j ). This impliesNi = 1 independent
of our choice of c. If it happens to be that we also have f j(0,0) = f j(0, N∗i ) we
also have Nj = 1 for all c, which solves the problem. However in this case we
can’t compute the c and hence not compute the F . We therefore define F = 1
for both species in this case.

In general, however, we will have f j(0,0) 6= f j(0, N∗j ). The equation to be

solved then becomes
∣∣∣ f j(0,0)− f j(0,N∗i )

f j(0,0)− f j(cN∗i ,0)

∣∣∣= 0, which has the ”solution” f j(cN∗i ,0) =
−∞, c = ∞. All we therefore have to allow is setting c = ∞. With this we can

compute Fi =
fi(

1
∞ N∗j ,0)

fi(0,0) = 1 and Fj =
f j(∞,0)
f j(0,0) = −∞. We implicitly assume that

limN→∞ fi(N,0) = −∞, which seems to be a biologically reasonable assump-
tion. This is equivalent to previous definitions (Carroll et al., 2011; Chesson,
2000; Godoy & Levine, 2014). Note that the coexistence condition −Fj ≤

Nj
1−Nj

becomes useless, as both sides are ∞.

A.2.2 Uniqueness of N and c

In general the equation |1−Ni(c)|= |1−Nj(c)| might not have a unique solu-
tion c′ but rather multiple solutions c′k. The equation |1−Ni(c)| = |1−Nj(c)|
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can be arbitrarily complicated, such that in general we can’t tell in advance
whether there is a unique solution. However we can give a sufficient condition
under which the solution is unique, this condition also happens to be biolog-
ically meaningful: If both species have strictly negative density dependencies
in monoculture (a usual assumption in modern coexistence theory), then the
c′ and also the N will be unique. Essentially the monotonicity of the mono-
culture per capita growth rates ∂ fi(Ni,0)

∂Ni
< 0 translates into a monotonicity of

1−Ni, by this monotonicity there can be only one c′ with equality.

Theorem 2. If we assume that ∂ fi(Ni,0)
∂Ni

< 0 and
∂ f j(Nj,0)

∂Nj
< 0 then the definition of Ni

and of c′ is unique.
Proof. We simply have to compute the derivative:

d|1−N1(x)|
dx

=
d

dx

( | f1(0,0)− f1(0, N∗2 )|
| f1(0,0)− f1(xN∗2 ,0)|

)
(A.16)

= | f1(0,0)− f1(0, N∗2 )| · (−1) (A.17)

· ( f1(0,0)− f1(xN∗2 ,0))−2 · (−1)
∂ f1

∂N1
· N∗2 (A.18)

= N∗2
| f1(0,0)− f1(0, N∗2 )|

( f1(0,0)− f1(xN∗2 ,0))2
∂ f1

∂N1
< 0 (A.19)

We removed the absolute values from fi(0,0)− fi(xN2,0), as this is always
positive according to assumption 4. With similar computation we see that
d|1−N2(x)|

dx > 0 and therefore there exists only one c′

A.2.3 Multispecies case

The ideas used in the multispecies case are essentially equivalent to the two
species case. The growth model is now assumed to have the following shape:

1
Ni

dNi

dt
= fi(Ni,N−i) (A.20)

Where N−i is the vector of all species densities with the density of species i
removed. The second argument of fi will in this part be a vector of dimension
n− 1 and be bold. We then define

Ni =
fi(0,N−i,∗)− fi(∑j 6=i cijN

−i,∗
j ,0)

fi(0,0)− fi(∑j 6=i cijN
−i,∗
j ,0)

(A.21)

Fi =
fi(∑j 6=i cijN

−i,∗
j ,0)

fi(0,0)
(A.22)
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with 0 is the n− 1 dimensional 0 vector and N−i,∗
j is the equilibrium density of

species j (in the presences of the n− 1 resident species) and cij is the conversion
factor from species j to species i.

The cij can be found by focusing on the two species sub-communities. That
is, for each pair of species we compute the N of those two species in the
presence of all the other species denoted Nij. The presence of the other species
is important to include the indirect and higher order effects. However, the
densities of the other species are fixed, we only vary the densities of species i
and j (essentially the other species are seen as part of the environment). We
introduce N−i,∗

k 6=j , the equilibrium density of the species k 6= i, j, in the absence of

species i. That is N−i,∗
k 6=j is a n− 2 dimensional vector, that contains the densities

of all the species k other than i and j, at the same densities as N−i,∗. Note
that N−i,∗

k 6=j 6= N−j,∗
k 6=i in general. With this notation we introduce f ′i (Ni, Nj) =

fi(Ni, Nj,N
−i,∗
k 6=j ), i.e. the growth rate of species i, as a function of the densities

of species i and j, in the presence of the species k 6= i, j. Similarly we define
f ′j . The system f ′ = ( f ′i , f ′j ) is a two species community, describing the growth
rates of species i and j in the presence of the other species k 6= i, j. The densities
of the species k 6= i, j remain fixed, for any values of Ni and Nj, however, they
are not the same for f ′i and f ′j . By definition we have f ′i (0, N−i,∗

j ) = fi(0,N−i,∗).
Given that f ′ is a two species community system we can apply the standard
definitions to the system, i.e.

Nij =
f ′i (0, N−i,∗

j )− fi(cijN
−i,∗
j ,0)

fi(0,0)− fi(cijN
−i,∗
j ,0)

(A.23)

Then we solve the equation |1 − Nij| = |1 − Nji| to obtain cij. The same
proofs for existence and uniqueness apply for the multispecies case.

Given cij we can compute N and F with the equations A.21 and A.22.
N and F still correctly predict coexistence (see below) and the key intuitions
mentioned in the main article still hold. Clearly Ni is an increasing function in
fi(0,N−i,∗), it therefore remains to show, that Ni correctly interprets the special
cases. Ni = 1⇔ fi(0,0) = fi(0,N−i,∗), that is a species has complete niche differ-
entiation, only if the combined interspecific interactions are absent. Note how-
ever, that this does not imply, that each interspecific interaction is absent. This
is only the case if Nij = 1 for all j. Ni = 0⇔ fi(0,N−i,∗) = fi(∑j 6=i cijN

−i,∗
j ,0),

that is a species has complete niche overlap, if individuals of the focal species
can be exchanged with species from the non-focal species. Again, this does not
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mean, that the focal species is interchangable with each other species individ-
ually, but rather that as a hole, the community N−i,∗ has the same effect as the
focal species at density ∑j 6=i cijN

−i,∗
j .

A.2.4 Decomposition of invasion growthrate

Ni +Fi −Ni · Fi =
fi(0, N∗j )− fi(cjN∗j ,0)

fi(0,0)− fi(cjN∗j ,0)
+

fi(cjN∗j ,0)

fi(0,0)
(A.24)

−
fi(0, N∗j )− fi(cjN∗j ,0)

fi(0,0)− fi(cjN∗j ,0)
·

fi(cjN∗j ,0)

fi(0,0)
(A.25)

=
fi(0, N∗j ) fi(0,0)− fi(cjN∗j ,0) fi(0,0)

( fi(0,0)− fi(cjN∗j ,0)) fi(0,0)
(A.26)

+
fi(cjN∗j ,0) fi(0,0)− fi(cjN∗j ,0)2

( fi(0,0)− fi(cjN∗j ,0)) fi(0,0)
(A.27)

−
fi(0, N∗j ) fi(cjN∗j ,0)− fi(cjN∗j ,0)2

( fi(0,0)− fi(cjN∗j ,0)) fi(0,0)
(A.28)

=
fi(0, N∗j ) fi(0,0)− fi(0, N∗j ) fi(cjN∗j ,0)

( fi(0,0)− fi(cjN∗j ,0)) fi(0,0)
(A.29)

=
fi(0, N∗j )

fi(0,0)
(A.30)

This derivation also holds for the multispecies case via fi(∑j 6=i cijN
−i,∗
j ,0)

7→ fi(cjN∗j ,0), fi(0,0) 7→ fi(0,0) and fi(0,N−i,∗) 7→ fi(0, N∗j ).

A.3 Conversion factors ci

The conversion factors ci presented in this work must not be confused with
the scaling factors di known from previous work (Chesson, 1994, 2003; Barabás
et al., 2018; Ellner et al., 2019). In this comparison we limit ourselves to the
work of Barabás et al. (2018). ci and di differ quite substantially: Interpretation:
The conversion factors ci are linked to the total dependence on limiting factors.
They are chosen such that one species j has the same total effect on limiting fac-
tors as cj species i. The scaling factors di on the other hand are chosen such that
the term ∆ρi, i.e. the niche partitioning, disappears from the partitioning of the
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invasion growth rate. They are not directly linked to any mechanistic under-
standing of the community dynamics. Existence and uniqueness: ci are always
well defined (see Existence of N and c). They are unique, when species have
negative density dependence in monoculture, however, when species exhibit
intraspecific facilitation multiple values of ci may exist. di work best, when
the community is governed by one limiting factor, in this case the di are well
defined and unique. In all other cases di are not unique, may not exist and may
not be chosen such that ∆ρi = 0. Applicability: Both theories can in principal
be applied to any community model in which invasion growth rates correctly
predict coexistence. However, ci are most useful in communities without fluc-
tuations with multiple limiting factors. di on the other hand are most useful
in communities with only one limiting factor and fluctuating environments.
Structure and symmetry:c is a n× n matrix with positive entries (in special cases
entries 0 and ∞ are possible too). The diagonal entries of c are all one (i.e.
cii = 1). Furthermore, the matrix c has a symmetry of the sort cij = c−1

ji . d is a
n× n matrix too, but with any entry (i.e. positive and negative). The diagonal
entries must be positive. d has no additional structure.

A.4 Examples

A.4.1 Mac-Arthur resource model

First we deduce the Lotka-Volterra model from the resource model of MacArthur
(1970).

As stated in the main text, the growth rates for the consumer species and
the resources respectively are:

1
Ni

dNi

dt
=

m

∑
l=1

uilRl −mi (A.31)

1
Rl

dRl
dt

= Kl − Rl −
n

∑
i=1

uil Ni (A.32)

Where Ni is the consumer density, uil is the rate at which species i consumes
resource l, Rl is the density of resource l, and mi is the loss rate and Kl is the
carrying capacity.

We assume that the dynamics of Rl are much faster than the dynamics of
Ni, that is we explicitly assume that Rl is always at equilibrium, i.e. Rl =
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Kl −∑n
j=1 ujl Nj. Inserting this into the species growth rates we get:

1
Ni

dNi

dt
=

m

∑
l=1

uil

(
Kl −

n

∑
j=1

ujl Nj

)
−mi (A.33)

=
m

∑
l=1

uilKl −mi −
m

∑
l=1

n

∑
j=1

ujluil Nj (A.34)

=
m

∑
l=1

uilKl −mi︸ ︷︷ ︸
µi

−
n

∑
j=1

Nj

m

∑
l=1

uilujl︸ ︷︷ ︸
〈ui,uj〉

(A.35)

= µi −
n

∑
j=1
〈ui,uj〉Nj (A.36)

Usually the species specific interaction 〈ui,uj〉 is denoted αij in the Lotka-
Volterra model, however, we choose the scalar product notation because it
gives a clear biological interpretation of N , F and c. We continue to com-
pute the N and F for the two species case (for multispecies case see Appendix
D, Multispecies): The monoculture equilibria are N∗i = µi

αii
and the N (c) (using

fi(Ni, Nj) = µi −∑n
j=1〈ui,uj〉Nj):

N1(c) =
(µ1 − 〈u1,u2〉

〈u2,u2〉
µ2)− (µ1 − c 〈u1,u1〉

〈u2,u2〉
µ2)

µ1 − (µ1 − c 〈u1,u1〉
〈u2,u2〉

µ2)
(A.37)

=
− 〈u1,u2〉
〈u2,u2〉

µ2 + c 〈u1,u1〉
〈u2,u2〉

µ2

c 〈u1,u1〉
〈u2,u2〉

µ2
= 1− 1

c
〈u1,u2〉
〈u1,u1〉

(A.38)

N2(c) = 1− c
〈u2,u1〉
〈u2,u2〉

(A.39)

Solving for c yields c = ‖u2‖
‖u1‖

, remember that c = c2, i.e. we have ci =
‖ui‖
‖uj‖

.

Which in turn gives N1 =N2 = 1− 〈u1,u2〉
‖u1‖·‖u2‖

, where ‖ui‖=
√
〈ui,ui〉. Note that

this definition is equivalent to Chesson (1990) but a completely independent
proof with a different interpretation. The fitness differences are Fi = 1− µj

µi

‖ui‖
‖uj‖

,
which is equivalent, but not identical. The fitness differences by Chesson (1990)
are

µj
µi

‖ui‖
‖uj‖

.
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A.4.2 General resource uptake model

In the previous section we showed that ci =
‖ui‖
‖uj‖

scales the total resource con-
sumption of the two species in the MacArthur resource model. In this section
we assume a more general version of a resource specific model and show that
ci scales the resource uptake of both species. We assume the following growth
rates for the species and the resources:

1
Ni

dNi

dt
= gi(ui(R))−mi (A.40)

dRl
dt

= Gl(R)−∑
i

ul
i(R)Ni (A.41)

Where ul
i(R) is the per capita consumption of resource l by the species i.

ui(R) = (ul
i(R))l is the vector containing the consumption of all resources. gi

is the conversion of resources eaten by the species into biomass, mi is the mor-
tality rate of the species and Gl is the regeneration function of the resource Rl,
which may depend on the densities of the other resources. We assume that the
only interaction between species and resources is consumption and species in-
teract only indirectly with each other via depletion of resources. Furthermore
we assume that the dynamics of the resources are much faster and the density
of the resources are always in equilibrium, denoted R∗(N). Finally we assume
that the functions ui, gi and R∗ are monotone, more specifically, the more re-
sources there are, the more the species consumes, the more it consumes the

faster it growth (i.e. ∂gi
∂Rl
≥ 0 and ∂ul

i
∂Rl′
≥ 0). On the other hand the higher the

species densities the lower the resource levels (i.e. ∂R∗l
∂Ni,j
≤ 0).

As we do not take any more specific assumptions on the functions gi,ui
and Gl we can’t compute ci explicitly to proof that ci scales the total amount
of resources consumed. Instead we ask whether ci increases when species i
consumes more. Implicitly the resource uptake functions ui depends on traits
ti

j. We focus on one specific trait t1 and assume that higher values of this

trait imply higher consumption (i.e. ∂ul
i

∂t1
> 0). We show that a species i′ which

consumes more (i.e. t′1 > t1) will have a lower ci (i.e. ∂ci
∂t1

< 0) using the implicit
function theorem. The parameter ci therefore becomes a function of t1.

c0
i and t0

1, the original values for ci and the trait t1, are a solution to the
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following equation

1−
fi(0,0)− fi(0, N∗j )

fi(0,0)− fi

(
N∗j
ci

,0
) = 1−

f j(0,0)− f j(0, N∗i )
fi(0,0)− fi(ciN∗i ,0)

(A.42)

gi(ui(t1,K))− gi(ui(t1, R∗t1
(0, N∗j )))

gi(ui(t1,K))− gi(ui(t1, R∗t1
(c−1

i N∗j ,0)))︸ ︷︷ ︸
hi(ci,t1)

=
gj(uj(K))− gj(uj(R∗t1

(0, N∗i (t1))))

gj(uj(K))− gj(uj(R∗t1
(ciN∗i (t1),0)))︸ ︷︷ ︸

hj(ci,t1)

(A.43)

Hence we define h(ci, t1) = hi(ci, t1) − hj(ci, t1). We know that h
(
c0

i , t0
1
)
=

0 and we can therefore use the implicit function theorem to compute ∂ci
∂t1

=

−
(

∂h
∂ci

)−1 ∂ f
∂t1

.

∂hi

∂ci
= −

gi(ui(t1,K))− gi(ui(t1, R∗t1
(0, N∗j )))(

gi(ui(t1,K))− gi(ui(t1, R∗t1
(c−1

i N∗j )))
)2 (A.44)

· ∂

∂ci

(
gi(ui(t1, R∗t1

(c−1
i N∗j ,0)))

)
(A.45)

The first factor is always positive as K > R∗t1
(0, N∗j ). The second factor is pos-

itive, as increasing ci decreases species abundances (c−1
i N∗j ), which increases

resource abundance (R∗t1
), which increases resource consumption (ui), which

increases biomass accumulation(gi), hence ∂hi
∂ci

< 0. Similar arguments show

that
∂hj
∂ci

> 0 and hence ∂h
∂ci

= ∂hi
∂ci
− ∂hj

∂ci
< 0.

To compute ∂hi
∂t1

we take the following assumption

∂

∂t1

(
gi(ui(t1, R∗t1

(0, N∗j )))
)
>

∂

∂t1

(
gi(ui(t1, R∗t1

(c−1
i N∗j ,0)))

)
(A.46)

In the left hand side increasing t1 will increase the consumption and therefore
the conversion to biomass. However on the right hand side increasing t1 will
decrease the resource levels, as species i will consume more. This leads to
∂hi
∂t1

< 1. Similarly we can show that
∂hj
∂t1

> 1 which leads to ∂h
∂t1

< 0. As a

consequence we have ∂c
∂t1

=−
(

∂h
∂c

)−1
· ∂h

∂t1
< 0, i.e. under the assumptions taken,
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higher consumption of resources leads to lower ci and therefore ci can be seen
as a scaling factor between the total amount of resources consumed of the two
species.

A.4.3 Positive interspecific interactions

Generating a resource implies that a species has a negative utilisation of that
resource (similar for limiting predator efficacy), which would correspond to a
negative bar in figure 2. If the total effect of species j on species i is positive
(facilitation), then species j positively affects the limiting factors. cj is a measure
of how much species j affects the environment, independent of whether such an
effect is positive or negative. We can therefore obtain cj by making the absolute
values of the effects on the limiting factors equal, i.e. |1−Ni| = |1−Nj|.

To investigate the case where one species facilitates the other we tweak the
resource model slightly by allowing species 1 to generate a resource P that can
be used by species 2 for its growth. The differential equations become

1
N1

dN1

dt
=

(
m

∑
l=1

u1lRl −m1 − p1

)
(A.47)

1
N2

dN2

dt
=

(
m

∑
l=1

u2lRl −m2 + u2pP

)
(A.48)

1
Rl

dRl
dt

= Kl − Rl −
n

∑
i=1

uil Ni (A.49)

dP
dt

= p1N1 − u2pN2P− kP (A.50)

The parts in red are different from the usual Mac Arthur model. Species 1
creates resource P with efficiency p1, we from now on however will assume
that p1 is incorporated into m1 and omit it. u2p is the utilisation of P by species
2 and k is the decay rate of P. We again assume, that the usual resources and
the resource P are at equilibrium, which leads to the following equations (for
better readability we set αij = 〈ui,uj〉):

1
N1

dN1

dt
= (µ1 − α11N1 − α12N2) (A.51)

1
N2

dN2

dt
=

(
µ2 − α21N1 − α22N2 + u2p

p1N1

k + u2pN2

)
(A.52)
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Solving 1−N1 = 1−N2:

1−
µ1 −

(
µ1 − α12

µ2
α22

)
µ1 −

(
µ1 − cα11

µ2
α22

) = 1−
µ2 −

(
µ2 − (α21 −

u2p p1
k ) µ1

α11

)
µ2 −

(
µ2 − 1

c α22
µ1
α11

) (A.53)

α12
µ2
α22

cα11
µ2
α22

=

(
α21 −

u2p p1
k

)
µ1
α11

1
c α22

µ1
α11

(A.54)

α12

cα11
= c

α21 −
u2p p1

k
1
c α22

(A.55)

c =

√√√√ α22α12

α11

(
α21 −

u2p p1
k

) (A.56)

So far this result is only applicable when we assume that α21 −
u2p p1

k ≥ 0,
that is we have f2(0,0) ≥ f2(0, N∗1 ) and we are still in the realm of the usual
definition. Translating this equation back to the mechanistic model we get
c = ‖u2‖

‖u1‖
√

1−
u2p p1

k〈u1,u2〉

, i.e. resource P should indeed be seen as a negative resource

and the total amount of resources consumed by species 1 is ‖u1‖2 · (1− u2p p1
k〈u1,u2〉

).

As we have seen in the previous example, the conversion factor are cho-
sen such that both species consume the same total amount of resources. They
can however only scale the amount of resources used by a species and not
change the sign of the total resources used. In the case 1− u2p p1

k〈u1,u2〉
< 0 species

1 consumes a negative amount of resources. The conversion factor c can there-
fore not equate the total amount of resources used by the two species. We
therefore equate the absolute value of the total amount of resources used by
the two species and therefore also equate |1 − N1| = |1 − N2|, which leads
to c =

√
α22α12

α11

∣∣∣α21−
u2p p1

k

∣∣∣ . Note however that we only take the absolute value of

1 − N to compute the c, we do not change the definition of N itself. This
leads to the fact, that not both species have the same N . Rather we have

N1 = 1−

√
α12

∣∣∣α21−
u2p p1

k

∣∣∣
α22α11

= 1− |1−N2|.
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A.4.4 Multispecies

As an example we will solve the multispecies Lotka Voltera model, described
by equation A.36.

Nij =

(
µi −∑k 6=i αikN−i,∗

k

)
−
(

µi −∑k 6=i,j αikN−i,∗
k − αiicijN

−i,∗
j

)
(

µi −∑k 6=i,j αikN−i,∗
k

)
−
(

µi −∑k 6=i,j αikN−i,∗
k − αiicijN

−i,∗
j

) (A.57)

=
(αii − αijN

−i,∗
j

cijαiiN
−i,∗
j

(A.58)

= 1−
αij

ci
jαii

(A.59)

Setting the density of species j to zero was done by summing only over the
indexes k 6= i, j in the respective function evaluations. Similar to the two species

case we have ci
k =

1
ck

i
and hence ci

k =

√∣∣∣ αkkαik
αiiαki

∣∣∣,Nik = 1− sign(aik)

√∣∣∣ αikαki
αiiαkk

∣∣∣.

Ni = 1−
µi −

(
µi −∑k 6=i αikN−i,∗

k

)
µi −

(
µi −∑k 6=i ci

kαiiN
−i,∗
k

) (A.60)

= 1−
∑k 6=i

αik
aii

N−i,∗
k

∑k 6=i ci
kN−i,∗

k

(A.61)

= 1− ∑k 6=i(1−Nik)ci
kN−i,∗

k

∑k 6=i ci
kN−i,∗

k

(A.62)

That is the 1 − Ni in multispecies community is a weighted sum of the
1−Nik in two species case.
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Fi =
µi −∑k 6=i ci

kαiiN−i∗
k

µi
(A.63)

= 1− 1
µi

∑
k 6=i

√∣∣∣∣αik
αki

∣∣∣∣√αiiαkkN−i,∗
k (A.64)

= 1−∑
k 6=i

µk
µi

√∣∣∣∣ αikαii

αkiαkk

∣∣∣∣αkk
µk

N−i,∗
k (A.65)

= 1−∑
k 6=i

(1−F k
i )

N−i,∗
k
N∗k

(A.66)

The two species case can be recovered from the multispeices case by noticing
that N−i,∗

k = µk
αkk

.
After this simple example we want to mention some possible pitfalls. We

saw that Nik of two species is unaffected of the presence of other species in the
Lotka-Volterra model. This is because the species do not change their foraging
strategies because of the presence of the other species, i.e. there are no higher
order effects (Grilli et al., 2017). This will however in general not be the case.
Same holds true for the conversion factors ci

k.

A.5 Material and Methods

Experiments were performed in semi-continuous flow through systems in 6-
well plates. Light intensity was set at 1500 lux at the top of the 6 well plates
and the walls of the wells were painted black to have a unidirectional light
gradient (Huisman & Weissing, 1994). The 6 well plates were mounted on
a shaker shaking with 150 rpm to have homogenous culture. The experi-
ment was performed at 20◦C. Each well was filled with 5ml brackish mineral
medium: NaCl(8.25gl−1), MgCl2 · 6H2O(0.66gl−1), KCl(0.17gl−1), MgSO4 ·
7H2O (1.16gl−1), CaCl2 · 2H2O(0.17gl−1), Na3-citrate (4.98mgl−1), Na2-EDTA
(0.83mgl−1), NaNO3(1.25gl−1), Na2CO3 (46.0mgl−1), trace metal mix (1.0mgl−1),
K2HPO4 · 3H2O(33.2mgl−1), Fe-NH4-citrate (4.8mgl−1) (Stomp et al., 2004).
Twice a week (all 84 hours) we added 200µl distilled water to counteract evap-
oration and replaced 1ml (20%) of brackish medium. Densities were measured
with a flow-cytometer, to distinguish the cells we used an EM-clustering algo-
rithm on the yellow and red fluorescence channels. To inoculate with above
equilibrium densities we centrifuged 50ml of culture at 2000g for 20 minutes.
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Density measures, code to produce the figure and compute the N and F val-
ues can be found on https://github.com/juergspaak/NFD definitions.

Before conducting an experiment, one does not know the equilibrium den-
sities, nor the conversion factors. However, the definitions require measuring
the no-niche growth rate, i.e. at cjN∗j fi(cjN∗j ,0). Now, cjN∗j can be greater
than or smaller than N∗i . If cjN∗j < N∗i , the high-abundance starting condition
is indeed not needed, as species i will cross cjN∗j while growing towards its
equilibrium during its monoculture growth curve experiment. If cjN∗j > N∗i ,
one needs to grow the species sufficiently well above its equilibrium density
to make sure it will at some point have cjN∗j , at which its growth will then be
measured. We repeat that a priori it is not known which one will be largest,
cjN∗j or N∗i .
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Figure A.3: Absorption spectrum of species 1 (black) and species 2 (grey) and
the incoming light intensity used in the experiment. The incoming light comes
from a natural-sunlight fluorescent light source.
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Appendix for chapter 3

B.1 Resource extinction for substitutional resources

Chesson (1990) and Letten et al. (2017) have shown, that the linearisation of
the community model and the actual community model have the same con-
ditions for coexistence. However, both proofs implicitly assume, that none of
the resources can go extinct. The resources have a logistic growth term in their
community dynamics, it is therefore reasonable to assume, that they are biotic
and not abiotic resources and may go extinct, which is probable if we assume
multiple resource species (Holt, 1977).

We show, that when we relax this assumption, the linearisation potentially
does not correctly predict the outcome of coexistence. The core idea is the same
for all counter examples, we will explain the idea in more detail for the case
where the linear approximation incorrectly predicts priority effects for a com-
munity that coexists. We take two sets of resources (a total of four resources,
i.e. R1, R2, R3 and R4), for which the two species compete. If the species would
only compete for the first set of resources (R1 and R2), they would coexist.
Competition only for the second set of resources (R3 and R4) leads to prior-
ity effects. The supply rates of the resources of the first set are chosen much
higher. At equilibrium, the species will therefore only compete for the first set,
and coexist. Conversely, the linearisation approach assumes that the species
will compete for all resources, independent of species densities and will there-
fore incorrectly predict priority effects, assuming parameters were chosen cor-
rectly. Figure B.1 shows examples where the linear approximation does not
correctly predict the outcome of competition.

To see how mortality can affect coexistence, we again take the same set of
resources. When mortality is high, then species densities are low and they will
not exclude the resources of the second set. As the species compete for all
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Figure B.1: For each model (colums) and each outcome of competition (rows)
we can find parameter settings in which the linear approximation (red) leads
to different predictions about coexistence than the full model (blue). The only
exception is species competing for essential resources, in which case coexis-
tence is always predicted correctly. However, the linearisation method of this
model may predict coexistence for a community with competitive exclusion
or priority effects. The linearisation does not correctly predict the outcome of
competition, because resources may go extinct. Shown are densities of species
one (full line) and species two (dashed) for the full model (green) and the lin-
ear approximation (cyan). The two subplots correspond to different starting
densities, to distinguish competitive exclusion from priority effects.
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Figure B.2: A: The zero net growth isoclines (ZNGI) for the two species are
shown for different mortality rates. Please note, the x and y-axis show densities
of the species one and two, not as in the main text the resource densities. The
species compete for a total of 4 resources, a visualisation of the ZNGI as a
funciton of the resources is therefore not possible (4 dimensional plot). At
low mortality (full lines) species reach higher equilibrium densities and two
resources go extinct, as the stable equilibrium is above the resource-extinction
line. The two species can stably coexist with the remaining two resources. At
high mortality (dashed lines) no resources go extinct and the species comete for
all resources, leading to priority effects and an unstable equilibrium. B,C: The
species densities over time. Species can coexist under low mortality (B), but
not under high mortality (C). The two scenarios differ only in their mortality,
but as the outcome of coexistence changes from priority effects to coexistence,
mortality must affect niche differences.
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resources the winner of competition depends on initial densities (priority ef-
fects). Priority effects only occur with negative niche differences (Ke & Letten,
2018; Mordecai, 2011). If we reduce mortality, species densities increase and
they exclude the resources of the second set and can coexist. Coexistence, how-
ever, is only possible with negative niche differences, consequently mortality
can affect niche differences.

With a similar idea we create a model with multiple stable equilibria, using
six resources, that go extinct under different conditions (Fig. B.3). The species
coexist, when they compete for resource 3 and 4. Species one can exclude
species two, when they compete for resources 1-4 and species two can exclude
species one, when they compete for resources 3-6. Additionally, species one
has high consumption rate of the resources 5 and 6, conversely, species two
has high consumption rates for resources 1 and 2. When both species are at
high density, resources 1,2,5 and 6 are extinct and consequently, the species
coexist. When only species one is at high density resources 5 and 6 go extinct
and species one excludes species two. When only species two is at high density
resources 1 and 2 go extinct and species two excludes species one.
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Figure B.3: A: Species competing for 6 resources feature 5 equilibria. Two
unstable (empty circle) and three stable. One equilibrium where species coex-
ist (intersection of ZNGI) and each species in monoculture. B: The multiple
equilibria can be explained by the different resources. At each equilibria a dif-
ferent set of resources is extinct, such that the species interactions differ. C:
Depending on the starting conditions the community will end up in different
equilibrium state, where the species either coexist of exclude each other. The
invasion growth rates correctly predict the equilibria at the boundaries, not
however that the species can coexist.
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B.2 Essential resources
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Figure B.4: N A and predictions for competitive outcomes for the three quali-
tatively different cases of competition for essential resources. The upper row
reports N A, the lower row reports the outcome of competition as predicted by
the linearisation approach. A,D: In the first case species coexist when the re-
source supply ratio is within the dashed lines, which is correctly predicted by
the linearisation. B,E: In the second case species either competitively exclude
each other (resource supply outside of the dashed lines) or have priority effects.
However, the linearisation approach does not correctly predict most of the pri-
ority effects and even predicts coexistence and positive niche differences. C,F:
In the third case the blue species always excludes the red species, independent
of the resource supply ratios. However, the linearisation approach predicts
coexistence for some of the resource supply ratios.

Letten et al. (2017) have shown, that the linearisation of the community model
and the actual community model have the same conditions for coexistence.
However, both this proof implicitly assumes, that a species is always limited
by the same resource independent of species densities. The relaxation of this
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assumption leads to incorrect predictions about the outcome of competition.
There are three qualitatively different ways in which the species can compete
for essential resources (Fig. B.4). First, the species may coexist or competitively
exclude each other, depending on the resource supply ratios (A). In this case
the limiting resource is the same at invasion as when no species are present
(intrinsic growth rate), then coexistence is predicted correctly (D, proof see B.5).
Second, the species may have priority effects or exclude each other, depending
on the resource supply rations (B). In this case the limiting resource can switch,
which leads to wrong predictions about coexistence (E). Third, species one
excludes the other species, independent of resource supply ratios (C). Again,
in this case the limiting resource can switch and coexistence is not predicted
correctly (F).
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Figure B.5: The linear approximation leads to a linear ZNGI (dark red and
cyan), which approximate the real ZNGI (red and blue). The approximated
ZNGI assume that the non-limiting resource is never limiting. Which of the
two branches from the correct ZNGI are chosen depends on the resource sup-
ply rate, more specifically whether the resource supply rate (black dot) is left
or right from the dotted blue and red lines. If the species coexist in the real
community (resource supply between dashed lines), then the ZNGI are approx-
imated as shown. These ZNGI lead to coexistence, if and only if the resource
supply is between the dashed lines, i.e. the linearisation correctly predicts
coexistence.
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B.3 Maxima and minima of niche differences
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Figure B.6: The maxima and minima of N C can be found geometrically by in-
tersecting resource consumption vectors. A,B,C: In the top right region (delim-
ited by the dash dotted lines intersection at the black dot) the invasion growth
rates of both species are maximal and constant. Of all the resource supply
points within this region the intrinsic growth rates are minimal for both species
at the black dot. As niche differences increase with invasion growth rates and
decrease with the intrinsic growth rates this is the location where niche dif-
ferences are maximal. A,B: Competition for substitutional resources features
two local minima (one of which is global) and one global maximum. The
dash-dotted lines are parallel to the resource consumption vectors of the corre-
sponding colour and intersect the resource axis at the ZNGI. The intersection
of two such lines lead to a local maxima (black dot) or minima (black triangle).
The minimal of niche differences are located where one species has maximal
and the other species has a minimal invasion growth rate. C: Again, the global
maxima of N C is located at the intersection of two resource consumption vec-
tors (dash-dotted lines). These resource consumption vectors are anchored
where the dotted consumption vectors intersect the ZNGI of the other species
(black square).
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B.4 Comparing methods to compute niche and fit-
ness differences
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Figure B.7: Niche differences for five different methods (rows) and 3 different
models (colums). Spaak & De Laender (2020) is the only method that correctly
predicts zero niche differences when species compete only for one resource
(outside the dotted lines). The definition of Carmel et al. (2017) is not defined
for some cases where the species can survive in monoculture (white region).
Please note that the color scales differ per method.
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There are other methods to compute niche and fitness differences. The most
often used definition not investigated in the main text is by Carroll et al. (2011).
Their method can be understood as a linear approximation of the commu-

nity model, with
αij
αjj

=
fi(0,N∗j )
fi(0,0) , where fi(0, N∗j ) is the invasion growth rate and

fi(0,0) is the intrinsic growth rate. Two other methods use the invasion growth
rates to define niche and fitness differences. All these methods are based on
invasion growth rates, therefore they correctly predict the outcome of compe-
tition in the cases analysed, similarly to the method based on the full model.
However, all of these methods have non-zero niche differences, when the two
species compete for only one resource.

Again other definitions are based specific community models, notably lin-
ear community models (see Spaak & De Laender (2020) for a review). We do
not review these, as they all require to first fit a linear model which comes with
the disadvantages discussed in the main text.
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Figure B.8: Fitness differences for five different methods (rows) and 3 different
models (colums). The definitions also differ for the interpretation of competi-
tive equivalence. For the definitions Letten et al. (2017); Spaak & De Laender
(2020); Zhao et al. (2016) and Carmel et al. (2017) species with equal competitive
strength with have zero fitness differences, while for Carroll et al. (2011) fitness
differences of one imply competitive equality. Please note that the colorscales
differ per method.



B.5. THE ANNUAL PLANT MODEL 163

B.5 The annual plant model

Godoy & Levine (2014) show that niche and fitness differences as defined by
them correctly predict coexistence. We show here, that the two methods to
compute niche differences agree on when the two species occupy the same
niche. Assume N A = 0⇔

√
αijαji
αiiαjj

= 1. We can then choose cj =
gi
gj

√
αjjαij
αjiαii

which
results in:

exp( fi(0, N∗j )) = (1− gi)si +
λigi

1 + αijgjN∗j
(B.1)

= (1− gi)si +
λigi

1 +
√

αjjαii
αjiαij

αijgjN∗j
(B.2)

= (1− gi)si +
λigi

1 + αii

√
αjjαij
αjiαii

gjN∗j
(B.3)

= (1− gi)si +
λigi

1 + αiigicjN∗j
(B.4)

= exp( fi(cjN∗j ,0))⇒N C = 0 (B.5)

Conversely, assume that N C = 0, then we have fi(0, N∗j ) = fi(cjN∗j ,0) ⇔
αijgjN∗j = αiigicjN∗j and similarly αjigiN∗i = αjjgjciN∗i , which leads together with

the equation cj = c−1
i to

√
αijαji
αiiαjj

= 1.
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B.6 How to computeN C and FC in resource explicit
models

Spaak & De Laender (2020) define niche and fitness differences for a commu-
nity in which the species growth rates depend directly on the species densities,
i.e. 1

Ni

dNi
dt = fi(Ni, Nj). In the resource explicit models the species growth rates

do not depend directly on the species densities, but rather on the resources
densities and therefore indirectly on the species densities. To compute N C

and FC we have to compute the intrinsic growth rate ( fi(0,0)), the invasion
growth rate ( fi(Nj,0)) and the no-niche growth rate ( fi(cjNj,0)). The invasion
growth rate of the species is computed, when the resident species j is at equi-
librium, this implies that the resources are also at equilibrium. Similarly, the
intrinsic growth rate is the growth rate when no species has yet consumed any
resources, consequently all resources are at carrying capacity (and also at equi-
librium). Finally, the no-niche growth rate is the growth rate, when species i
is at the converted equilibrium density of species j, therefore the resources are
again at equilibrium. That is, to compute N C and FC we can assume that the
resources are at equilibrium. However, we do not assume that the dynamics
of the resources are faster than the dynamics of species (time-scale separation),
rather all growth rates are evaluated at equilibrium.

We illustrate how to compute N C and FC for two species competing for
substitutable resources with Holling type 2 response functions. First we set
the resource densities to equilibrium, i.e. dRl

dt = 0 = Sl − Rl − ∑j ul jNj, which
leads to Rl = Sl −∑j ul jNj. Note this equation holds only for all resources that
are not extinct, all other resources have Rl = 0, for notational convenience we
assume that no resources go extinct. We now compute the equilibrium density
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of species j:

1
Nj

dNjdt = 0 =
∑l wjlRl

k j + ∑l wjlRl
−mj (B.6)

=
∑l wjl

(
Sl − ul jNj

)
k j + ∑l wjl

(
Sl − ul jNj

) −mj (B.7)

mj

(
k j + ∑

l
wjl
(
Sl − ul jNj

))
= ∑

l
wjl
(
Sl − ul jNj

)
(B.8)

mjk j + mj ∑
l

wjlSl −mj ∑
l

wjlul jNj = ∑
l

wjlSl −∑
l

wjlul jNj (B.9)

(1−mj)∑
l

wjlul jNj = (1−mj)∑
l

wjlSl −mjk j (B.10)

Nj =
∑l wjlSl −

mjkj
1−mj

∑l wjlul j
(B.11)

This is of course exactly 1
αjj

from table 1, as we assumed that no resources go
extinct. We can now compute the invasion growth rate of species i with

fi(0, N∗j ) =
∑l wilRl

kl + ∑l wilRl
−mi (B.12)

=
∑l wil

(
Sl − ul jN∗j

)
kl + ∑l wil

(
Sl − ul jN∗j

) −mi (B.13)

=

∑l wil

Sl − ul j
∑l wjlSl−

mjkj
1−mj

∑l wjlul j


kl + ∑l wil

Sl − ul j
∑l wjlSl−

mjkj
1−mj

∑l wjlul j

 −mi (B.14)

The intrinsic growth rate is given by

fi(0,0) = ∑l wilSl
ki + ∑l wilSl

−mi (B.15)

Again, this is identical to ri from table 1.



166 APPENDIX B. APPENDIX FOR CHAPTER 3

Finally, to compute the no-niche growth rate we have to solve the following
equation for cj:

∑l wil

(
Sl−ul j N∗j

)
kl+∑l wil

(
Sl−ul j N∗j

) −mi −
(

∑l wil

(
Sl−ul jcj N∗j

)
kl+∑l wil

(
Sl−ul jcj N∗j

) −mi

)
∑l wil(Sl)

kl+∑l wil(Sl)
−mi −

(
∑l wil

(
Sl−ul jcj N∗j

)
kl+∑l wil

(
Sl−ul jcj N∗j

) −mi

) = (B.16)

∑l wjl(Sl−uli N∗i )
kl+∑l wjl(Sl−uli N∗i )

−mj −
(

∑l wjl(Sl−ulici N∗i )
kl+∑l wjl(Sl−ulici N∗i )

−mj

)
∑l wjl(Sl)

kl+∑l wjl(Sl)
−mj −

(
∑l wjl(Sl−ulici N∗i )

kl+∑l wjl(Sl−ulici N∗i )
−mj

) (B.17)

While this equation may look very daunting, it’s actually reasonably simple.
cj =

1
ci

is the only variable, everything else are parameters. The equation cannot
be solved analytically, but very easily with numerical methods.
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Appendix for chapter 4

C.1 Derivation of N and F in multispecies commu-
nities

For a multispecies community we define

Ni =
fi(0, N−i,∗)− fi(∑j 6=i cijN

−i,∗
j ,0)

fi(0,0)− fi(∑j 6=i cijN
−i,∗
j ,0)

(C.1)

Fi =
fi(∑j 6=i cijN

−i,∗
j ,0)

fi(0,0)
(C.2)

, where fi is the per capita growth rate of species i (i.e. fi(Ni, N−i) = 1
Ni

dNi
dt .

The first argument of fi, Ni, is the density of the focal species i; the second
argument (N−i) is a vector of length n− 1 containing the densities of the n− 1
non-focal species. N−i,∗ is the equilibrium density of all non-focal species in
the absence of species i. fi(0, N−i,∗) is the invasion growth rate, fi(0,0) is the
intrinsic growth rate and fi(∑i 6=j cijN

−i,∗
j ,0) is the no-niche growth rate (Spaak

& De Laender, 2020). The no-niche growth rate can be computed with the cij,
the conversion factor of species j to species i. These factors convert species
densities such that species i and j have the same total influence on limiting
factor (see fig. 4.1; for details see Spaak & De Laender (2020)). Mathematically,
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these are defined as the solution of the equations

cij =
1
cji

(C.3)

fi(0, N−i,∗)− fi(cijN
−i,∗
j , N−i,∗

−j )

fi(0, N−i,∗
−j )− fi(cijN

−i,∗
j , N−i,∗

−j )
=

f j(0, N−j,∗)− f j(cjiN
−j,∗
i , N−j,∗

−i )

f j(0, N−j,∗
−i )− f j(cjiN

−j,∗
i , N−j,∗

−i )
(C.4)

where N−i,∗
−j is the vector N−i,∗ with entry j set to 0. The first equation en-

sures that converting species i to j is the inverse action to converting species j
to species i. The second equation expresses that the two species have the same
total converted consumption (Fig. 4.1C): The numerator of the left hand side
compares two growth rates of species i with identical converted densities but
different frequencies of species i. It therefore assesses the effect of interspecific
interactions on species i’s growth. The denominator of the left hand side com-
pares two growth rates of species i with identical frequencies of species i, but
different densities of species i. It therefore assesses the effect of intraspecific
interactions. Numerator and denominator of the right hand side have identi-
cal interpretations but for species j. Equation C.4 thus expresses the condition
under which the two species have the same response to competition, which
can be interpreted as the two species having the same total consumption rates.
Spaak & De Laender (2020) show that these equations have a unique solution
for the generalised Lotka-Voltera model.

C.1.1 First-order interactions

In this section we assume that higher order interactions are absent, i.e. βijk =
γijkl = 0. This case is equivalent to the Lotka-Volterra equations. This case has
already been solved in the appendix of Spaak & De Laender (2020), we merely
repeat their findings here. The niche difference between species i and j in the
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multispecies community is

fi(0, N−i,∗)− fi(cijN
−i,∗
j , N−i,∗

−j )

fi(0,0)− fi(cijN
−i,∗
j , N−i,∗

−j )
= (C.5)

=

(
1−∑k 6=i αikN−i,∗

k

)
−
(

1−∑k 6=i,j αikN−i,∗
k − αiicijN

−i,∗
j

)
(

1−∑k 6=i,j αikN−i,∗
k

)
−
(

1−∑k 6=i,j αikN−i,∗
k − αiicijN

−i,∗
j

) (C.6)

=

(
cijαii − αij

)
N−i,∗

j

cijαiiN
−i,∗
j

(C.7)

= 1−
αij

cijαii
(C.8)

The absence of species j in N−i,∗
−j is handled by omitting this index in the

summation. By solving |1− αij
cijαii
| = |1− αji

c−1
ij αjj
| we get cij =

√∣∣∣ αjjαij
αiiαji

∣∣∣. cij is set

to 0 if this value is not defined (i.e. αji = 0) (Spaak & De Laender, 2020). For a
two species community we therefore get

1−Nij = sign(aij)

√√√√∣∣∣∣∣αijαji

αiiαjj

∣∣∣∣∣ (C.9)

1−Fij =

√√√√∣∣∣∣∣ αiiαij

αjjαji

∣∣∣∣∣ (C.10)

With this we can show that 1 − Ni is a weighted average and 1 − Fi is a
weighted sum:

1−Ni =
1−

(
1−∑j 6=i αijN

−i,∗
j

)
1−

(
1−∑j 6=i cijαiiN

−i,∗
j

) (C.11)

=
∑j 6=i

αij
aii

N−i,∗
j

∑j 6=i cijN
−i,∗
j

(C.12)

=
∑j 6=i 1−NijcijN

−i,∗
j

∑j 6=i cijN
−i,∗
j

(C.13)
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1−Fi = 1−
(

1−∑
j 6=i

cijαiiN−i∗
j

)
(C.14)

= ∑
j 6=i

√√√√∣∣∣∣∣αijαii

αjiαjj

∣∣∣∣∣αjjN
−i,∗
j (C.15)

= ∑
j 6=i

1−Fij
N−i,∗

j

N∗j
(C.16)

Which proves the equations 6 and 7 in the main-text.
To obtain the case where αij = ᾱ we remark that cij = 1, Nij = ᾱ, Fij = 0,

N−i,∗
j = 1

1+(n−2)ᾱ and N∗j . This leads to

Ni = 1−
∑j 6=i(1−Nij)cijN

−i,∗
j

∑j 6=i cijN
−i,∗
j

(C.17)

= 1−
∑j 6=i(1− ᾱ) 1

1+(n−2)ᾱ

∑j 6=i
1

1+(n−2)ᾱ

(C.18)

= 1− ᾱ (C.19)

Fi = 1−∑
j 6=i

(1−Fij)
N−i,∗

j

N∗j
(C.20)

= 1−∑
j 6=i

(1− 0)
1

1+(n−2)ᾱ

1
(C.21)

= 1− n− 1
1 + (n− 2)ᾱ

(C.22)

C.1.2 Higher-order interactions

We assume αij = ᾱ and βijk = β̄ and omit the overbars in this subsection for
notational simplicity. By symmetry we have N−i,∗

j = N−i,∗
k = N−i,∗ and cij =

cji = 1.
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Nm
i =

ri

(
1−∑j αN−i,∗ (1 + ∑k βN−i,∗))− ri

(
1−∑j N−i,∗ (1 + β ∑k N−i,∗))

ri − ri

(
1−∑j N−i,∗ (1 + β ∑k N−i,∗)

)
(C.23)

=
(1− α)(n− 1)N−i,∗(1 + β(n− 1)N−i,∗)

(n− 1)N−i,∗(1 + β(n− 1)N−i,∗)
(C.24)

= 1− α (C.25)

To compute Fm
i we first make some observations about the equilibrium density

N−i,∗:

0 = 1−
(

N−i,∗ + α(n− 2)N−i,∗
)(

1 + β(n− 1)N−i,∗
)

(C.26)

1 =
(

N−i,∗ + α(n− 2)N−i,∗
)(

1 + β(n− 1)N−i,∗
)

(C.27)

1
N−i,∗ + α(n− 2)N−i,∗ = 1 + β(n− 1)N−i,∗ (C.28)

Fm
i = 1− (n− 1)N−i,∗(1 + β(n− 1)N−i,∗) (C.29)

= 1− (n− 1)N−i,∗

N−i,∗ + α(n− 2)N−i,∗ (C.30)

= 1− n− 1
1− (n− 2)α

(C.31)

Higher order interactions therefore do not affect N and F on average.

C.1.3 Indirect effects

To investigate complexity (iv) we removed indirect effects. Indirect effects are
defined as a third species k affecting densities of the non-focal species j, which
affects the effect of species j on the focal species i. To remove these indirect
effects we set N−i,∗

j = N∗j , i.e. a species k does not affect the density of species
j. Note however, that species k can still affect species i directly via αik or via
higher-order effects (e.g. βijk).
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Fm
i = 1− ∑

αij 6=0
(1−Fij)

N−i,∗
j

N∗j
(C.32)

= 1− ∑
αij 6=0

(1−Fij)
N∗j
N∗j

(C.33)

= 1− ∑
αij 6=0

(1−Fij) (C.34)

Nm
i =

∑αij 6=0(1−Nij)N−i,∗
j

∑αij 6=0 cijN
−i,∗
j

(C.35)

=
∑αij 6=0(1−Nij)cijN∗j

∑αij 6=0 cijN∗j
(C.36)

Fi changes from a saturating to a linear response in species richness, i.e.
Fi ≈ 1 − (n − 1) on average. Conversely, removing indirect effects will not
change Ni on average. Thus, indirect effects will mostly not change the re-
sponse of Ni to species richness. This yields an important result: Indirect
effects are purely equalizing as they do not change niche differences, and thus
promote coexistence.
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C.2 Simulations
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Figure C.1: Interaction strength distributions for weak (A) and strong (B) first-
order interactions. Histogram shows the distribution of the interaction strength
of empirical communities that coexist. We fit a guassian kernel density distri-
bution (black line) to the distribution of the interaction strength of empicial
communities that coexist (histogram). We removed outliers, defined as interac-
tion strength that were below Q1 − 1.5(Q3 − Q1) or above Q3 + 1.5(Q3 − Q1),
where Q1 and Q3 are the first and third quartile. For weak interaction strength
we only retained interaction strength within the first and third quartile.
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Figure C.2: Effects of species richness on N and F (top row) and on variation
of N and F (bottom row) per factor combination of the full-factorial design.
For each factor combination we fit a linear regression of the response vari-
able as a function of species richness. X-axis correspond to the slope, y-axis
correspond to the intercept of the linear regression. Color codes the strength
of first-order interaction: red: weak, blue: strong. Shape codes the type of
first-order interactions: minus: facilitation, plus: competition, dot: both. The
first-order interaction affects the intercept of N and variation of N most. Vari-
ation of N decreased for almost all factor combinations. F decreased in almost
all factor combination.
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Figure C.3: Effects of species richness on absolute interaction strength. The
y-axis shows the mean of the absolute interspecific-interaction strength. Each
line is a linear fit of species richness versus interaction strength in one of the
full-factorial settings. Species richness affects interaction strength in communi-
ties with strong first-order interactions (blue lines) mostly negatively. Species
richness has a minor effect on interaction strength in communities with weak
first-order interactions (red lines).
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ND slope ND var slope FD slope FD var slope
ord1: negative [-0.014; 0.003] [-0.027; -0.005] [-3.003; -0.915] [0.001; 1.446]
ord1: unrestricted [-0.004; 0.003] [-0.031; -0.016] [-1.808; -0.607] [-0.43; 0.772]
ord1: positive [-0.002; 0.009] [-0.016; -0.002] [-1.978; -0.577] [-0.125; 0.72]
ord2: negative [-0.014; 0.008] [-0.029; -0.004] [-2.11; -0.817] [-0.05; 0.889]
ord2: absent [-0.01; 0.008] [-0.029; -0.004] [-2.379; -0.707] [-0.091; 1.438]
ord2: positive [-0.014; 0.007] [-0.029; -0.007] [-2.837; -0.746] [-0.942; 1.276]
ord2: unrestricted [-0.005; 0.003] [-0.025; -0.002] [-2.192; -0.564] [0.02; 0.921]
ord3: absent [-0.01; 0.008] [-0.026; -0.005] [-2.688; -0.588] [-0.199; 1.133]
ord3: present [-0.013; 0.007] [-0.029; -0.003] [-2.532; -0.692] [0.097; 1.253]
con: high [-0.014; 0.009] [-0.029; -0.005] [-2.521; -0.563] [-0.113; 1.251]
con: middle [-0.006; 0.003] [-0.027; -0.002] [-2.929; -0.709] [0.06; 1.32]
con: low [-0.008; 0.005] [-0.027; -0.005] [-2.421; -0.751] [-0.257; 0.965]
cor: negative [-0.009; 0.006] [-0.029; -0.001] [-2.791; -0.737] [0.077; 1.25]
cor: positive [-0.011; 0.008] [-0.025; -0.005] [-2.659; -0.73] [-0.316; 1.38]
cor: none [-0.014; 0.009] [-0.029; -0.009] [-2.218; -0.588] [-0.164; 1.001]
indirect: absent [-0.01; 0.008] [-0.028; -0.004] [-2.742; -0.633] [-0.036; 1.323]
indirect: present [-0.01; 0.007] [-0.028; -0.004] [-2.325; -0.627] [-0.108; 1.009]

Table C.1: For each factor level (row names) we show the 5% and the 95%
percentiles for the slopes of Ni, Fi and their interquartile range.
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C.3 Literature Data

2 3 4 5 6 7 8 9 Total
Original matrices 0 8 13 1 5 3 0 3 33
Subcommunities 358 527 576 472 278 111 27 3 2544
int. matrix” 356 517 557 455 271 110 27 3 2296
NFD computed 356 371 140 45 8 0 0 0 920
coexistence 290 270 142 55 11 0 0 0 768
comp. exclusion 66 247 415 400 260 110 27 3 1528
no invasion analysis 0 8 23 12 3 0 0 0 46
invasion wrong 0 3 0 0 0 0 0 0 3
NFD coexistence 290 262 119 43 8 0 0 0 722
NFD comp. excl 66 109 21 2 0 0 0 0 198

Table C.2: Number of communities per species richness (top row). Original
matrices: Number of different communities found in the literature. Subcommu-
nities: Number of subcommunities generated out of all matrices. int. matrix:
Number of communities in which all interaction strength are present. NFD
computed: Number of communities for which we were able to compute N and
F . coexistence: Number of communities with a stable point equilibrium. comp.
exclustion: Number of communities with no stable point equilibrium. no in-
vasion analysis: Number of communities in which at least one subcommunity
did not have a stable equilibrium, preventing invasion analysis. invasion wrong:
Number of communities in which invasion as predicted by invasion analysis
did not agree with coexistence as defined by stable point equilibrium. All
three communities stem from the same original matrix. The species facilitate
each other, such that invasion is positive, however densities explode to infinity.
NFD coexistence: Number of communities in which N and F predict coexis-
tence. NFD comp. excl: Number of communities in which N and F predict
competitive exclusion.

C.4 Definition by Carroll et al.

Carroll et al. (2011) define N and F as:

Si =
fi(0,0)− fi(0, N−i,∗)

fi(0,0)
(C.37)

N c = 1− exp (mean (log(Si))) (C.38)
F c = exp (var (log(Si))) (C.39)
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Si is the sensitivity of a species to competition. N c and F c (superscript c
for definition of Carroll et al. (2011)) are the geometric mean and the geometric
variance of the sensitivities Si.

For simplicity, we assume αij = ᾱ and no higher order interactions. With
this assumptions, we get N−i,∗

j = N−i,∗
k = 1

1+(n−2)ᾱ .

Si =
1− (1−∑j 6=i ᾱ 1

1+(n−2)ᾱ )

1
(C.40)

=
ᾱ(n− 1)

1 + ᾱ(n− 2)
(C.41)

N c = 1− ᾱ(n− 1)
1 + ᾱ(n− 2)

(C.42)

=
1 + ᾱ(n− 2)− ᾱ(n− 1)

1 + ᾱ(n− 2)
(C.43)

=
1− α

1 + ᾱ(n− 2)
(C.44)

F c = 1 (C.45)

Hence, indeed F c is independent of species richness, and N c is approaches
0 with increasing species richness.
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Appendix for chapter 5

D.1 Spectrum model

The equation given by Stomp et al. (2004) is equivalent to:

dNs

dt
=

φs

zm

∫ zm

0

∫ 700

400
ks(λ)Iλ(z)dλ dz− ls (D.1)

=
φs

zm

∫ 700

400

∫ zm

0
ks(λ)Iλ(z)dz dλ− ls (D.2)

=
φs

zm

∫ 700

400
ks(λ)

∫ zm

0
Iλ(z)dz dλ− ls (D.3)

=
φs

zm

∫ 700

400
ks(λ)

∫ zm

0
Iin(λ)e

−z
(

∑i
Ni
zm ki(λ)+kBG

)
dz dλ− ls (D.4)

=
φs

zm

∫ 700

400
ks(λ)Iin(λ)

 e−z
(

∑i
Ni
zm ki(λ)+kBG

)
−
(

∑i
Ni
zm

ki(λ) + kBG

)
zm

0

dλ− ls (D.5)

= φs

∫ 700

400

ks(λ)Iin(λ)
(

1− e−(∑i Niki(λ)+zmkBG)
)

∑i Niki(λ) + zmkBG
dλ− ls (D.6)

= φs

∫ 700

400

ks(λ)

abs(λ)
· Iin(λ)

(
1− e−abs(λ)

)
dλ− ls (D.7)

Where we introduced the species independent variable abs(λ) = ∑i Niki(λ) +
zmkBG for convenience.
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D.2 Pigment table

Pigment Chl a Chl b Chl c Beta Carotene Peridinin Fucoxanthin PCB PEB PUB
Heterokontaphyta 1 1
Heterokontaphyta 2 1 0.2 0.3
Heterokontaphyta 3 1 0.2 0.3 0.5
Haptophyta 1 0.2 0.3 0.5
Prochlorophyta 1 0.2 0.3
Euglenophyta 1 0.2 0.3
Chlorarachniophyta 1 0.2
Chlorophyta 1 0.2 0.3
Dinophyta I 1 0.2 0.3 0.5
Glaucophyta 1 0.3 1
Rhodophyta 1 0.3 0.25 1
Cryptophyta 1 0.2 0.25 1
Cyanophyta 1 1 1
Cyanophyta 2 1 0.25 1
Cyanophyta 3 1 0.25 0.25 1

Table D.1: Abberations for pigments: Chl: Chlorophyll, PCB: Phycocyanobilin,
PEB: Pyhcoerithrobilin, PUB: Phycourobilin. Shown are only the main pig-
ments according to Van Den Hoek et al. (1995) and Six et al. (2007). The con-
centrations of the pigments are taken from Bricaud et al. (2004).

D.3 Additional simulations

For the simulation chosen in the main text we took quite strong assumptions,
which will potentially not hold in nature. We made a large number of different
simulations, none of which changed the general result obtained that trait rich-
ness hardly increases species richness. Additionally in all cases the positive
effects of trait richness on ecosystem function were more pronounced for short
term experiments, in which hardly any species went extinct, than for long term
experiments.

These simulations included slight variation of pigment absorption spectra
per species, back ground absorption and different fluctuations of incoming
light. As an additional example we show the case where the pigment absorp-
tion spectra varied up to 5% between species and the background absorption
resembles that of a coastal region Stomp et al. (2007b) with and without fluctu-
ation of incoming light.
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Figure D.1: Final species richness depends only weakly on the initial number
of pigments at constant (A) and fluctuating (B) incoming light. Colours denote
the probability associated with these species richness levels. Blue dots show
the average of the final speices richness. In this simulation we included a back-
ground absorption of a coastal region Stomp et al. (2007b). Furthermore the
interspecific variation of the absorption spectra of the pigment was assumed
to be 5%.

D.4 Selection and complementarity

Most species have few different pigments (≤ 3) (See table D.1), hence a commu-
nity with high initial pigment richness is likely to also have high initial species
richness. High initial species richness, however, implies higher probability of
having a highly productive species present in the ecosystem. We compute
selection, complementarity and relative yield total as described in Hector &
Loreau (2001).
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Figure D.2: The positive effect of pigment richness on ecosystem function (A)
can be decomposed into complementarity, which is associated with resource
partitioning, (B) and selection effect, which is associated with dominance of
productive species (C). Initial pigment richness increases both, complementar-
ity and selection effect, however, the selection effect is an order or magnitude
stronger than the complementarity effect. D: Initial pigment richness increases
relative total yield by 1-2%, which should be considered as minor. That is
communities with high pigment richness do not yield much more, than the
most productive monoculture species. Shown are 5%, 25%, 50%, 75% and 95%
percentiles.
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Appendix for chapter 7

E.1 Predator and mutualist communities

I adjusted the community models from Chesson & Kuang (2008) and Johnson
& Bronstein (2019) such that they are more similar. The community model for
mutualists is:

1
Ni

dNi

dt
= ∑

l
wilRl + ∑

j

bijMj

1 + ∑k vjkNk
− di (E.1)

1
Mj

dMj

dt
= ∑

k

ajkNk

1 + ∑k vjkNk
− δj −Mj (E.2)

dRl
dt

= Sl − Rl ∑
k

clkNkRl (E.3)

where Ni is the density of the species i, wil is the conversion efficiency, Rl is
the density of resource l, bij is the service efficiency at which species i profits
from interactions with mutualist j, Mj is the density of mutualist j, vjk is the
time mutualist j needs to serve species k and di is the mortality rate of species
i. ajk is the service reward of mutualist j for interacting with species k and δj
is the mortality rate of mutualist j. Finally, Sl is the resource supply rate of
resource l and clk is the consumption rate of species k. The community model
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for predators is

1
Ni

dNi

dt
= ∑

l
wilRl −∑

j
bijPj − di (E.4)

1
Pj

dPj

dt
= ∑

k
ajkNk − δj − Pj (E.5)

dRl
dt

= Sl − Rl −∑
k

clkNkRl (E.6)

where bij is the consumption rate of predator j and ajk is the conversion effi-
ciency of predator j. For the simulations all parameters where chosen identical
for both communities, that is differences between the communities arise from
the differences in species interactions and not from differences in community
parameters.

To compute niche and fitness differences for only the top level or only the
middle trophic level the densities of the other species were set to equilibrium,
where the equilibrium depended on the densities of the focal trophic level.
This is mathematically equivalent to assuming a time separation between the
different trophic levels. However, it does not assume an actual time separation,
rather niche and fitness differences are only computed at equilibrium densities,
such that all non-focal species are at equilibrium.

E.2 Resource competition trait distribution

Similar to the methods used in chapter 5 I created a community model in
which phytoplankton species compete for the essential resources phosphor
and nitrogen. The species per capita growth rates are given by

1
Ni

dNi

dt
= min

l

(
wilRl

kil + Rl

)
− l (E.7)

dRl
dt

= l(Sl − Rl)−∑
k

clkNkRl (E.8)

, where Ni is the density of species i, Rl is the density of phosphorus or ni-
trogen, wil is the maximal growth rate, kil is the half saturation constant, l is
the dilution rate, Sl is the resource supply rate and clk is the resource uptake
rate. The species parameter were drawn from a Gaussian kernel distribution
fitted to the empirical data from Edwards et al. (2015) (see Figure E.1). The
other parameters were uniformly distributed (l ∈ [0.003,0.015]h−1 see chapter
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5, SN ∈ [1.5,3]µmol L−1 (Primeau et al., 2013), SP ∈ [15,30]µmol L−1(Pillai et al.,
2011)).
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Figure E.1: Distribution of the species traits used in the simulation for species
limited by phosphorus and nitrogen.
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E.3 Community model fits
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Figure E.2: A,B: Example fits of the different methods to the species density
data. C-E: Histograms of the R2 for all fitted methods to the resampled species
density data. All methods fit the data very well. However, we caution that
the R2 between the different methods may not be directly comparable, as they
fit different species densities. LV and ”Higher order” fit all species densities,
”LV no high” fits only monoculture densities from low starting densities and
invasion growth rates, and finally Stomp and no-model fit only monoculture
densities. Importantly, all community models fit the experimental data quite
well (except maybe Stomp), such that R2 gives only limited possibilities to
exclude one community model from the analysis.
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Kéfi, S., Miele, V., Wieters, E.A., Navarrete, S.A. & Berlow, E.L. (2016). How
Structured Is the Entangled Bank? The Surprisingly Simple Organization
of Multiplex Ecological Networks Leads to Increased Persistence and Re-
silience. PLoS Biology, 14, 1–21.

KEYMER, I.F. (1983). Diseases of squirrels in Britain. Mammal Review, 13, 155–
158.

Kingsland, S. (2015). Alfred J. Lotka and the origins of theoretical population
ecology. Proceedings of the National Academy of Sciences of the United States of
America, 112, 9493–9495.

Kingsland, S.E. (1995). Modeling Nature: Episodes in the History of Population
Ecology. University of CHicago Press.

Kokkoris, G.D., Jansen, V.A.A., Loreau, M. & Troumbis, A.Y. (2002). Variability
in interaction strength and implications for biodiversity. Journal of Animal
Ecology, 71, 362–371.

Kraft, N.J.B., Godoy, O. & Levine, J.M. (2015). Plant functional traits and the
multidimensional nature of species coexistence. Proceedings of the National
Academy of Sciences, 112, 797–802.

Kremer, C.T. & Klausmeier, C.A. (2017). Species packing in eco-evolutionary
models of seasonally fluctuating environments. Ecology Letters, 20, 1158–
1168.

Kulkarni, D. & De Laender, F. (2017). The combined effects of biotic and abiotic
stress on species richness and connectance. PLoS ONE, 12, 1–15.



BIBLIOGRAPHY 199

Langdon, C. (1988). On the causes of interspecific differences in the growth-
irradiance relationship for phytoplankton. II. A general review. Journal of
Plankton Research, 10, 1291–1312.

Lanuza, J.B., Bartomeus, I. & Godoy, O. (2018). Opposing effects of floral
visitors and soil conditions on the determinants of competitive outcomes
maintain species diversity in heterogeneous landscapes. Ecology Letters, 21,
865–874.

Lavallée, B.F. & Pick, F.R. (2002). Picocyanobacteria abundance in relation to
growth and loss rates in oligotrophic to mesotrophic lakes. Aquatic Microbial
Ecology, 27, 37–46.

Lawton, J.A. (1999). Are there general laws in ecology? Oikos, 84, 177–192.

Letten, A.D., Dhami, M.K., Ke, P.J. & Fukami, T. (2018). Species coexistence
through simultaneous fluctuation-dependent mechanisms. Proceedings of the
National Academy of Sciences of the United States of America, 115, 6745–6750.

Letten, A.D., Ke, P.J. & Fukami, T. (2017). Linking modern coexistence theory
and contemporary niche theory. Ecological Monographs, 87, 161–177.

Letten, A.D. & Stouffer, D.B. (2019). The mechanistic basis for higher-order
interactions and non-additivity in competitive communities. Ecology Letters,
22, 423–436.

Levin, S. (1970). Community equilibria and stability, and an extension of the
competitive exclusion principle. The american naturalist, 104, 185–193.

Levine, J.M., Bascompte, J., Adler, P.B. & Allesina, S. (2017). Beyond pairwise
mechanisms of species coexistence in complex communities. Nature, 546,
56–64.

Levine, J.M. & HilleRisLambers, J. (2009). The importance of niches for the
maintenance of species diversity. Nature, 461, 254–257.

Litchman, E. & Klausmeier, C.A. (2001). Competition of Phytoplankton under
Fluctuating Light. The American Naturalist, 157, 170–187.

Litchman, E. & Klausmeier, C.A. (2008). Trait-Based Community Ecology of
Phytoplankton. Annual Review of Ecology, Evolution, and Systematics, 39, 615–
639.

Loreau, M. (2004). Does functional redundancy exist? Oikos, 104, 606–611.



200 BIBLIOGRAPHY

Lotka, A.J. (1920). ANALYTICAL NOTE ON CERTAIN RHYTHMIC RELA-
TIONS [N ORGANIC SYSTEMS. PNAS, pp. 410–415.

MacArthur, R. (1970). Species packing and competitive equilibrium for many
species. Theoretical Population Biology, 1, 1–11.

MacArthur, R. & Levins, R. (1964). Competition, Habitat Selection, and Char-
acter Displacement in a Patchy Environment. Proceedings of the National
Academy of Sciences of the United States of America, 51, 1207–1210.

Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-
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