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Abstract

The study of international relations is becoming more and more relevant
in society today. Effective communication between countries is essential for
making beneficial relationships and ensuring a safer world as a result.
For different reasons but all framed in the study of the complexity of interna-
tional relations, we have created a multilayer network where the nodes rep-
resent the countries and the links are the different types of relations that the
countries can establish among themselves.
The main goal of this work is not the study and understanding of historical,
economic or political reasons why the relations between the countries are in a
certain way but the relations themselves and use them as an input for predictive
models.

In the development of this thesis, we have addressed 2 fundamental prob-
lems regarding relations between countries. In both cases, we have made use
of the tools that the study of complex networks offer us, in order to study, in
each case, a specific problem or situation.

In the first case, we consider the global trade system as a dynamic ecosys-
tem in which exporters struggle for resources in the same than an organism in
its attempt to monopolize a given subset of resources in an ecosystem, in this
case: the markets in which they export.
In this work, we adopt a multilayer network approach to describe this struggle.
We connect two countries with a directed link if the source country’s appear-
ance in a market correlates with the target country’s disappearing. A market
is defined as a country- product combination in a given decade. Each market
is a layer in the network. We show that, by analyzing the countries’ network
roles in each layer, we are able to classify them as out-competing, transitioning
or displaced. This classification is a meaningful one: when testing the future
export patterns of these countries, we show that out-competing countries have
distinctly stronger growth rates than the other two classes.

In the second case, we have created a model for forecasting global con-
flicts. One of the oldest and most important forecasting tasks focuses on in-
ternational conflicts. Can we predict when and where a new war will start?
Can we estimate how big the conflict will be? These questions are particularly
relevant today, since developments in network analysis allow us to use a com-



plex perspective of the international relations system. In this case, we have not
focused on estimating the size or global impact of conflicts, but we are more
interested in finding out whether international conflicts follow social balance.
In order to do that, we have modeled international relations as a multilayer net-
work in which each layer is a different type of relationship that two countries
can establish with each other: trade, migration, sanctions, etc. Conflicts (wars)
is one of these layers and our prediction goal, making this a multi-layer link
prediction problem. We have also considered the sign of relationships, in this
way in this multilayer system, some networks represent positive relationships
while others are negative.
In addition to demonstrating that conflicts between countries follow the laws
of social balance, our model is able to predict with high precision not only how
conflictive a year will be but also the countries that will be involved.

Thèse de doctorat en Sciences Mathématiques (Ph.D. thesis in Mathematics)
Date: 18/12/2020
Département de Mathématique
Promoteurs (Advisors): Renaud LAMBIOTTE, Michele COSCIA
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Chapter 1
Introduction

1.1 Why study International relations?

The entire world can be considered as constructed by one large network in
which the nodes are the countries and the edges can represent any kind of rela-
tionship that the countries can establish between them. But, the first question
that one can ask is: Why is it important to study International relations? (Pe-
termann 2006). In a world where terrorist attacks come without warning and
where poverty kills thousands of people each day only because of international
system’s mistakes, the study of the international relations is not just important
but essential study field.
We are all part of international relations because of our identities, religion,
cultural backgrounds and the places where we live (Sharp 2018). Modern in-
ternational relations give us deep cultural understanding that is a foundation
for interaction with cultures with different values and beliefs.

The study of international relations is becoming more and more relevant
in society today. Effective communication between countries is essential for
making beneficial relationships and ensuring a safer world as a result. In short,
international relations are all about power and weakness, war and peace, con-
flicts and cooperation.
It is important to make clear that the main goal of this work is not the study
and understanding of historical, economic or political reasons why the rela-
tions between the countries are in a certain way but the relations themselves
and use them as an input for predictive models.
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INTRODUCTION

1.2 Networks and International relations

International relations research has regarded networks as a particular mode of
organization, distinguished from markets or state hierarchies. In contrast, net-
work analysis permits the investigation and measurement of network structures
like emergent properties of persistent patterns of relations among agents that
can define, enable, and constrain those agents. Network analysis offers a set
of theories, typically drawn from contexts outside international relations, that
relate structures to outcomes.

The value of network analysis in international relations has been demon-
strated in the precise description of international networks, investigation of
network effects on key international outcomes, testing of existing network the-
ory in the context of international relations, and development of new sources
of data.

Network analysis complements existing structural approaches to interna-
tional relations that focus on actor attributes and static equilibria. Instead, it
emphasizes how material and social relationships create structures among ac-
tors through dynamic processes. It also provides methods for measuring these
structures, allows for the operationalization of processes such as socialization
and diffusion, and opens new avenues for reconsidering core concepts in inter-
national relations.

In recent years, there has been more and more interest in studying economy-
related questions by means of network science (Barabási et al. 2016, Borgatti
et al. 2009, Emmert-Streib et al. 2018, Jackson 2010, Schweitzer et al. 2009).
A reason for this interest builds on the realization that the behaviour of the
economy cannot be investigated by individually studying the constituting com-
ponents of it but only by considering the interplay between all relevant parts.
This is in strong contrast to the standard economic theory (Allen & Babus n.d.,
Kirman 1997, Meng et al. 2017, Nagurney & Siokos 1997).

The discipline of international relations has not, until recently, treated net-
works as structures that can constrain and enable individual agents and in-
fluence international outcomes (Keohane & Nye 1974, 1977). Networks are
significant actors in international politics and represent a specific mode of in-
ternational interaction and governance.

2



1.2 Networks and International relations

From a practical point of view, the digitalization of our society, e.g., of the
stock market or the availability of business records, enabled the empirical esti-
mation and creation of different types of economic networks. This is similar to
other fields like biology, chemistry or sociology (Bonchev 1991, Dehmer et al.
2011, Emmert-Streib & Dehmer 2011, Freeman 2004, Newman 2018a). That
means, without the need of making theoretical assumptions about the struc-
ture of economic networks, data can be used for their construction. This is
in contrast to, e.g., simulation-based approaches allowing to generate network
topologies with certain characteristics, e.g., scale-free or small-world networks
(Barabási & Albert 1999a, Watts & Strogatz 1998b, Dehmer & Emmert-Streib
2009).

Network analysis concerns relationships defined by links among nodes
(or agents). Nodes can be individuals or corporate actors, such as organiza-
tions and states. Network analysis addresses the associations among nodes
rather than the attributes of particular nodes. It is grounded in three principles:
nodes and their behaviours are mutually dependent, not autonomous; ties be-
tween nodes can be channels for transmission of both material (for example,
weapons, money, or disease) and non-material products (for example, informa-
tion, beliefs, and norms); and persistent patterns of association among nodes
create structures that can define, enable, or restrict the behaviour of nodes
(Wasserman et al. 1994). In network analysis, networks are defined as any
set or sets of ties between any set or sets of nodes; unlike the study of net-
work forms of organization, no assumptions are made about the homogeneity
or other characteristics of the nodes or ties. Consequently, network analysis
can be used to analyse any kind of ties, including market and hierarchical re-
lations. Beyond these basic principles, network analysis enables calculation
and mapping of structural properties of nodes, groups, or the entire network;
predictions regarding the creation, growth, and dissolution of these networks;
and investigation of the effects of networks on actors’ behaviour.

Network analysis has a long history in the behavioural sciences, although
its incorporation into international relations has been slow and uneven. More-
over, studies that have used the tools of network analysis have not always pro-
duced significant insights; a few have emphasized method over substance, and
most have mapped but not explained some aspect of international politics, as-
suming rather than demonstrating the causal mechanisms through which net-
works actually constrain and enable their members.

3



INTRODUCTION

The value of network analysis has already been demonstrated in more pre-
cise description of international networks, investigation of network effects on
key international outcomes, tests of existing network theory in the context of
international relations, and development of new sources of data.

1.3 Economic networks and Ecology

According to Robert May and collaborators in (May et al. 2008), there is com-
mon ground in analyzing financial systems and ecosystems, especially in the
need to identify conditions that dispose of a system to be knocked from seem-
ing stability into another, less happy state.
But, to what extent can the study of ecosystems inform the design of financial
networks in, for instance, their robustness against perturbation? Ecosystems
are robust by their continued existence. They have survived eons of change —
continental drift, climate fluctuations, movement and evolution of constituent
species — and show some remarkable constancies in a structure that have per-
sisted for hundreds of millions of years: witness, for example, the constancy
in predator-prey ratios in different situations (Bambach et al. 2002).

Identifying structural attributes shared by these diverse systems that have
survived rare systemic events, or have indeed been shaped by them, could pro-
vide clues about which characteristics of complex systems correlate with a
high degree of robustness.

Following this argument, in Chapter 4 we propose an analogy between
predators competing for prey in an ecosystem and exporting countries compet-
ing for market dominance.

1.4 Networks and International Conflicts (Wars)

The enormous costs of war make it imperative to understand the conditions un-
der which wars can be prevented. Forecasting large geopolitical changes is a
key task to improve the resilience of human society. One of the oldest and most
important forecast tasks (not without criticism (Cederman Weidmann 2017))
focuses on international conflicts (Richardson 1960, Holsti Holsti 1991, Pet-
tersson Wallensteen 2015).

4



1.5 Contributions

Between 1823 and 2003, 40% of wars with more than 1,000 casualties
involved more than two countries, and many of the most destructive (e.g.,
the World Wars, Korean War, Vietnam, First and Second Congo Wars, etc.)
involved multilateral conflicts. Most importantly, this is a network problem
(Jackson & Nei 2015).

In Chapter 5, we frame conflict forecasting as a link prediction problem
(Liben-Nowell Kleinberg 2007, Lü Zhou 2011). Specifically, we model in-
ternational relations as a multilayer network (Kivelä et al. 2014b, Berlingerio
et al. 2013).

1.5 Contributions

The theoretical background and connecting thread of the works presented in
this thesis is the study and analysis of the effects on the structure and dy-
namics of networks after the appearance and disappearance of links. We have
considered both cases, positive and negative links. Depending on the symbol
(positive or negative) of these links, we have brought their appearance or dis-
appearance to a political-economic context.

In the elaboration of this thesis, we have addressed two relevant problems,
both of them framed in the study of international relations. In both cases,
we consider the world as a large network composed of countries and different
types of relationships between them.

The first of these is the creation of a model that allows us to predict which
countries will lead the export market in the coming years in terms of how much
they are capable of displacing (disappearance of trade links) others from the
international market. The second is the creation of a model to predict conflicts
(appearance of negative links) between countries using a multilayer network
system and machine learning.

Below you will find a description of how this thesis is organized.

5



INTRODUCTION

1.6 Structure of the Thesis

Chapters 2 and 3:

Theoretical Background and Introduction to Machine Learning.
In the first two chapters, we provide an introduction of the most relevant con-
cepts that we used in the development of this Thesis. In Chapter 2 we provide
a brief description of the basic concepts of the Complex Systems Theory, then
we introduce the Multilayer systems and some of their properties. Chapter 3 is
a short introduction to Machine Learning.

Chapter 4:

The Struggle for Existence in the World Market Ecosystem.
In this chapter we propose a model based on an analogy between the compe-
tition between predators in a ecosystem and the competition between exporter
countries for leading a market.
In the global trade market, there is constant competition between exporting
countries. We consider exporter countries like predators with the pair importer-
product as preys. We are particularly interested in cases when this competition
affects dramatically the export of one of the countries.
We focus on longitudinal, multiplex data on commercial relations, to test the
presence of predator countries in the course of time. We consider their relation
to the complexity of products and national economies, predict which countries
are leading the global trade network and which countries are at risk in different
dimensions.

Chapter 5:

Forecasting International Conflicts via Machine Learning and Multilayer
Social Balance.
In this chapter we propose a model using machine learning and social balance
theory in order to predict wars between countries and to proof that that inter-
national conflicts follow social balance. In this chapter, by conflicts, we mean
specifically wars.

The motivation of this work is that understanding the determinants of war
can lead us to create a more resilient global society. Here, we model interna-
tional relationships as a multilayer signed network: each type of relationship
between countries – trade, conflicts, sanctions – is a layer, and layers can be

6
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Chapter 2
Theoretical Background

2.1 Fundamentals of Network Theory

2.1.1 Networks

In the most basic sense, a Network is any collection of objects in which some
pairs of these objects are connected by links. This definition is very flexible:
depending on the setting, many different forms of relationships or connections
can be used to define links (Easley & Kleinberg 2010). Because of this flexi-
bility, it is easy to find networks in many domains.
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Figure 2.1 – The social network of friendships within a 34-person karate club (Zachary 1977)
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CHAPTER 2. THEORETICAL BACKGROUND

As a good example of what a network looks like, Fig 2.1 depicts the social
network among 34 people in a university karate club studied by the anthropolo-
gist Wayne Zachary in the 1970s. The people are represented by small circles,
with lines joining the pairs of people who are friends outside the context of the
club.

The interacting components of a network, are usually depicted as a graph
of vertices (Nodes) connected by edges.

(a)

A B

(b)

A B

(c)

Figure 2.2 – (a) A node. (b) A directed edge, there is only a path from A, the origin, to B, the destination.
(c) An undirected edge, the path between A and B is bidirectional, meaning that origin and destination are
not fixed.

The use of a graph to represent Networks, is a very practical and easy way
to represent any kind of interactions between any kind of elements and has
applications in many disciplines including statistical physics, particle physics,
computer science, electrical engineering, biology, economics, finance, opera-
tions research, climatology, ecology and sociology. In our particular case, we
are going to use networks in order to represent and study International rela-
tions. In this case, the nodes will represent countries and the edges any kind of
relations between countries.

2.1.2 Weighted networks

Since all the connections in a network are not necessarily equally important or
equally strong, there are networks with and extra parameter that indicates the
weight of each connection. These networks are known as weighted networks.

Weighted networks are often used to model real objects and processes,
these can be also directed. For example, the network in Fig 2.3 can be consid-
ered as a map, where the nodes are cities and the edges are roads. The weight
of each edge is the distance between two cities.

10



2.2 Degree distribution

7Km 6Km

8Km

5K
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4Km

City 
3

City 
1

City 
2

City 
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City 
5

8K
m

7Km

Figure 2.3 – Simple weighted network in which the nodes represent cities and the edges the different dis-
tances between each other

2.2 Degree distribution

2.2.1 Degree

The number of connections of each node is known as the degree. If a network
is directed, meaning that edges point in one direction from one node to another
node, then nodes have two different degrees, the In-degree, which is the num-
ber of incoming edges, and the Out-degree, which is the number of outgoing
edges.

2 , 1

1 , 2

2 , 2

1 , 1

Figure 2.4 – A directed network with links labeled (indegree, outdegree)

2.2.2 Degree distribution

The degree of a node only provides information about that specific node. The
average degree of a network gives information about the whole structure. By
counting how many nodes have each degree, we form the Degree distribution
P(k).

11



CHAPTER 2. THEORETICAL BACKGROUND

K1 2 3 4 5

P(K)

Figure 2.5 – Degree distribution plot (right) of the network on the left.

The degree distribution of a network is then defined to be the fraction of
nodes in the network with degree k, which also means, the probability for a
node to have a degree equal to k. Thus, if there are n nodes in total in a network
and nk of them have degree k, we have P(k) = nk/n. This clearly captures only
a small amount of information about a network, but that information still gives
important clues into the structure of a network. For example, in the simplest
types of networks, one would find that most nodes in the network had simi-
lar degrees (see the first pair of plots, below). However, real-world networks
usually have very different degree distributions. In a real-world network, most
nodes have a relatively small degree, but a few nodes will have a very large
degree, being connected to many other nodes. These large-degree nodes are
often referred to as hubs, in analogy to the transportation networks such as one
connecting airports, where some very large hub airports have connections to
many others.

Some networks, notably the Internet, the world wide web, and some so-
cial networks are found to have degree distributions that approximately follow
a power law: P(k) ∼ k(−γ) where γ is a constant. Such networks are called
scale-free networks and have attracted particular attention for their structural
and dynamical properties, (Barabási & Albert 1999b, Albert & Barabási 2000,
Dorogovtsev et al. 2001).

12
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- CCDF

K

P(K) 
(CCDF)

1 2 3 4 5

Figure 2.6 – CCDF plot (right) of the network on the left. Note that this is the same network of Fig 2.5

We mentioned a few lines above that the degree distribution was the prob-
ability for a node to have a degree equal to k. This concept is not often used in
the research but the Cumulative Degree Distribution CDF, and even more, the
Complementary Cumulative Degree Distribution CCDF (Figure 2.6).

The CCDF describes the probability that a random node n will have a de-
gree equal to or higher than k.

2.3 Adjacency matrices

An Adjacency Matrix is a square matrix used to represent a network. In an
adjacency matrix, a grid is set up that lists all the nodes on both the X-axis
(horizontal) and the Y -axis (vertical). Then, values are filled in to the matrix
to indicate if there is or is not an edge between every pair of nodes. Typically,
0 indicates no edge and 1 indicates an edge.

Notice a couple of things about the matrix in Fig 2.7. First, the diagonal is
all zeroes because there are no edges between a node and itself in our example.
Some networks do allow for self-loops. For example, in an email network, if a
person emails himself, there could be a link from one node to itself, and thus
there would be a 1 on the diagonal. Second, the matrix is symmetric. The
numbers in the first row are the same as the numbers in the first column. The

13
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0 1

2 3

4

Figure 2.7 – Graph and matrixial representation of a undirected network. The adjacency matrix is a (0,1)-
matrix with zeros on its diagonal. The adjacency matrix is symmetric.

numbers in the second row are the same as the numbers in the second column.
This is because the graph is undirected.

If we have a directed network, the matrix will not necessarily be symmet-
ric. For example, consider the small network in Fig 2.8. In this case, we have
some edges without a reciprocal one.

0 1

2 3

4

Figure 2.8 – Graph and matricial representation of a directed network. The adjacency matrix is a (0,1)-
matrix with zeros on its diagonal. The adjacency matrix isn’t symmetric.

In the adjacency matrix, the rows and columns are each defined to be the
vertices in the graph. According to that, the adjacency matrix is defined as

Ai j ={
1 if there exists an edge connecting the nodes ui and u j,

0 Otherwise

14
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2.4 Clustering coefficient

In graph theory, the Clustering coefficient is a measure of the degree to which
the nodes in a graph tend to cluster together. Evidence suggests that in most
real-world networks, and in particular social networks, nodes tend to create
tightly knit groups characterised by a relatively high density of ties; this likeli-
hood tends to be greater than the average probability of a tie randomly estab-
lished between two nodes (Paul & Leinhardt 1971, Watts & Strogatz 1998a).

Triplet Triangle

Figure 2.9 – Graphical representation of a Triplet (left) and a Triangle (right)

This measure can be global and local. The global measure gives an over-
all indication of the clustering in the network, whereas the local indicates the
embeddedness of the single nodes.

C = 0 C = 1/3 C = 1

Figure 2.10 – Clustering coefficient.

The global clustering coefficient is based on triplets of nodes. A triplet
is three nodes that are connected by either two (open triplet) or three (closed
triplet) undirected ties. A triangle graph therefore includes three closed triplets,
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one centered on each of the nodes, this means the three triplets in a triangle
come from overlapping selections of nodes.

The global clustering coefficient is the number of closed triplets (or 3 x tri-
angles) over the total number of triplets (both open and closed) (Luce & Perry
1949). This measure gives an indication of the clustering in the whole network
(global), and can be applied to both undirected and directed networks.
The global clustering coefficient is defined as: CC = 3#Triangles/#Triplets.
You may be wondering why do we multiply the number of triangles by three?
The reason is that in a triangle there are, obviously, three nodes, so we have to
count the triangles from the three different perspectives.

A

B
D

F

E

C

Figure 2.11 – For this network the binary global clustering coefficient would be 3 over 9, or 0.33. The closed
triplets are B→ A←C; A→ B←C; A→C← B; whereas the open triplets are A→ B← D; A→ B← E;
C→ B← D; C→ B← E; D→ B← E; B→ E← F .

- Network average clustering coefficient

On the other hand, the local clustering coefficient is a measure of the clus-
tering coefficient of a node given by following formula:

Ci =
2Li

ki(ki−1)

where ki is the degree of node i and Li is the number of edges between the
ki neighbors of node i.

The overall level of clustering in a network is measured by Watts and Stro-
gatz (Watts & Strogatz 1998a) as the average of the clustering coefficients of
all the vertices n :

C̄ =
1
n

n

∑
i=1

Ci
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A

B
D

F

E

C

Figure 2.12 – Green Line is the edge of neighbours for Node A. Note that is the same network of Fig 2.11

Consider for example the graph presented in Fig 2.12. Let’s calculate clus-
tering coefficient for each node,

• For node A: kA = 2, LA = 1, CA =
2∗1

2∗ (2−1)
=

2
2
⇒CA = 1

• For node B: kB = 4, LB = 1, CB =
2∗1

4∗ (4−1)
=

1
6
⇒CB = 0.17

• For node C: kC = 2, LC = 1, CC =
2∗1

2∗ (2−1)
=

2
2
⇒CC = 1

• For node D: kD = 1, LD = 0⇒CD = 0

• For node E: kE = 2, LE = 0⇒CE = 0

• For node F: kF = 1, LF = 0⇒CF = 0

For average clustering coefficient

C̄ =
1
n

n

∑
i=1

Ci⇒
1
6
(1+0.17+1+0+0+0)⇒ 0.36

As we can see, the values of the global clustering coefficient (0.33) and the
average clustering coefficient (0.36) are, by definition, different.
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2.5 Node Roles

Role is a concept that is used to describe the behaviour of a node in relation-
ship to its neighbours and to the network at large. A node role is a subjective
characterization of the part it plays in a network structure. Knowing the role of
a node is important for many link meaning applications. For example, in Web
search, nodes that are deemed to be authorities on a given topic are often found
to be most relevant to the user’s queries. There are a number of metrics that
can be used to assign roles to individual nodes in a network, including degree,
that can be used to assess a node’s popularity, closeness, and betweenness, that
can be used to assess its centrality (Scripps et al. 2007).

There are different roles that we can find in a network, and the names for
the roles vary according to the study’s context. In social network analysis, for
example, people are characterized according to their network positions. In this
context we can find Connectors, which are the nodes with many direct con-
nections, Isolates, nodes with no or just a single connection, Influencers which
are closely connected to the remaining network and Brokers which tie together
otherwise disconnected nodes.

If we want to divide the nodes according the connectivity between them,
we have Broadcasters, which convey information from the group to the out-
side, Connectors, that connect nodes that are in two different groups, Coordi-
nators that connects nodes within the same group, and Gatekeepers that buffer
between their group and other groups.

In Chapter 4 we use a different methodology proposed by Cooper and
Barahona in (Cooper & Barahona 2010). They introduce an alternative mea-
sure for the grouping of nodes in directed networks. Given that the defining
characteristic of directed graphs is the implicit existence of flows, they propose
to group nodes according to their role in the network, defined in terms of the
overall pattern of incoming and outgoing flows. Essentially, the profile of paths
for each node is a vector that is computed from the powers of the adjacency
matrix weighted with a scale parameter to yield a similarity matrix, defined by
the distances between such node vectors. This matrix is then clustered to find
groupings of nodes with similar profiles of reachability flows at all lengths.
In this analysis, nodes are grouped according to a quantitative measure that
reflects the mixture of ’hub’ vs. ’authority’ characteristics of each node with
respect to all paths in the graph. This definition is inspired by a vast array of
literature from the social sciences, dealing with structural and regular equiva-
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lence (De Nooy et al. 2018, Borgatti & Everett 1993, Freeman n.d., Reichardt
& White 2007), and from computer science, where alternative algorith- mic
measures of similarity have been considered (Ninove et al. 2007, Jeh & Widom
2002, Kleinberg 1999b, Leicht et al. 2006).
For instance, in a food-web, two predators are not likely to be linked directly
although both perform the same function and would be canonically grouped
within the same trophic level. Hence, role similarity can uncover a coarse-
grained functional representation for networks where the dominating feature
is the transfer of an underlying quantity (e.g., information, energy, matter, etc).
This role-based representation is relevant in fields such as ecology, economics,
social sciences and cellular metabolism, where it can aid in the assignment of
a putative function to uncharacterised nodes and in establishing functional re-
lations between seemingly distant network elements, that’s the reason why we
consider this approach the appropriate one for the dynamics that we consider
in the problem addressed in Chapter 4.
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Figure 2.13 – Role clustering for the directed path graph in (A). The construction of the flow matrix X
(shown in (B) for β = 1)

The measure is defined by Cooper and Barahona as follows. Consider
a directed graph with N nodes and adjacency matrix A, which is in general
asymmetric. The number of outgoing paths of length k for node i is given by
the i-th coordinate of the vector [Ak1] , where 1 is the N1 vector of ones. Simi-
larly, the number of incoming paths of length k for node i is: [AT k 1]i. Note that
the case k = 1 corresponds to the out-degree and in-degree which, from this
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perspective, represent the number of paths of length one originating or termi-
nating at the node.

They now construct a matrix that compiles the incoming and outgoing
paths of all lengths up to kmax by appending the column vectors indexed by
path length and scaled by the factors β k:

X =


x1
.
.
.

xN

≡ [. . .(βAT )k1 . . .︸ ︷︷ ︸
kmax

| . . .(βA)k1 . . .︸ ︷︷ ︸
kmax

],

where β = α/λ1, with λ1 the largest eigenvalue of the adjacency matrix
and

0 ≤ α ≤ 1. The parameter α is a scale factor that allows us to tune the
weight of the local environment (short paths) relative to the global network
structure (long paths).

The presence of the factors βk ensures the convergence of the sequence of
the columns due to the asymptotic limit limk→+∞

‖Ak+1‖
‖Ak‖ → λ1. (Leicht et al.

2006)

Each row vector of X contains the flow profile of a node in terms of the
scaled number of incoming and outgoing paths of all lengths starting and end-
ing at that node (see Fig 2.13). Their criterion to group nodes together is that
they have similar flow profiles. This can be quantified via a distance between
the vectors xi.

2.6 Node similarity

Similarity in network analysis occurs when two nodes (or other more elaborate
structures) fall in the same equivalence class.

There are three fundamental approaches to constructing measures of net-
work similarity: structural equivalence, automorphic equivalence, and regular
equivalence (Newman 2018b). There is a hierarchy of the three equivalence
concepts: any set of structural equivalences are also automorphic and regular
equivalences. Any set of automorphic equivalences are also regular equiva-
lences. Not all regular equivalences are necessarily automorphic or structural;
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2.6 Node similarity

and not all automorphic equivalences are necessarily structural.(Hanneman &
Riddle 2005)

• Structural equivalence Two vertices of a network are structurally equiv-
alent if they share many of the same neighbors.

A

B C D

E F G H I

Figure 2.14 – Structural equivalence. There is no actor who has exactly the same set of ties as actor A, so
actor A is in a class by itself. The same is true for actors B, C, D and G.

Each of these nodes in Fig 2.14 has a unique set of edges to other nodes.
E and F , however, fall in the same structural equivalence class. Each has
only one edge; and that tie is to B. Since E and F have exactly the same
pattern of edges with all the vertices, they are structurally equivalent.
The same is true in the case of H and I.

• Automorphic equivalence Formally "Two vertices are automorphically
equivalent if all the vertices can be relabeled to form an isomorphic
graph with the labels of u and v interchanged. Two automorphically
equivalent vertices share exactly the same label-independent properties"
(Hanneman & Riddle 2005).

In Fig 2.15 actor A is the central headquarter, actors B, C, and D are man-
agers. Actors E, F and H, I are workers at smaller stores; G is the lone
worker at another store. There are five automorphic equivalence classes:
{A}, {B,D}, {C}, {E,F,H, I}, and {G}. Note that the less strict defini-
tion of "equivalence" has reduced the number of classes.
More intuitively, actors are automorphically equivalent if we can per-
mute the graph in such a way that exchanging the two actors has no
effect on the distances among all actors in the graph.
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A

B

C

D

E F

G

H I

Figure 2.15 – Automorphic equivalence. Organizational structure of a company.

• Regular equivalence "Two actors are regularly equivalent if they are
equally related to equivalent others" (Hanneman & Riddle 2005). In
other words, regularly equivalent vertices are vertices that, while they do
not necessarily share neighbours, have neighbours who are themselves
similar.

A

B C D

E F G H I

Figure 2.16 – Regular equivalence. There are three regular equivalence classes. The first is actor A; the
second is composed of the three actors B, C, and D; the third consists of the remaining five actors E, F , G,
H, and I.

Two mothers, for example, are equivalent, because each has a similar
pattern of connections with a husband, children, etc. The two mothers
do not have ties to the same husband or the same children, so they are
not structurally equivalent. Because different mothers may have differ-
ent numbers of husbands and children, they will not be automorphically
equivalent. But they are similar because they have the same relation-
ships with some member or members of another set of actors (who are
themselves regarded as equivalent because of the similarity of their ties
to a member of the set "mother").
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2.7 Link Prediction

2.7 Link Prediction

Given a snapshot of a network, can we infer which new interactions among its
members are likely to occur in the near future?

Among the most fundamental network analysis tools, are those designed
for link prediction. Intuitively, such tools analyse the topology of a given net-
work in order to predict the connections that are most likely to form in the
future.
These tools can also be used to analyse the observed network topology to iden-
tify connections that

are hidden from the observer, either due to data scarcity, or due to the
deliberate concealment of information.

Tr
ai
n

Te
st

Gt-6 Gt-1 Gt Gt+1

Gt-6 Gt-1 Gt Gt+1

Figure 2.17 – Link prediction and evaluation. The red color indicates snapshots of the network from which
link prediction features are calculated (feature network)The gray color indicates snapshots of the network
from which the link prediction instances are labeled (label network). We can observe all links at or before
time t, and we aim to predict future links that will occur at time t +1.

According to (Yang et al. 2015), link prediction entails all the complexities
of evaluating ordinary binary classification for imbalanced class distributions,
but it also includes several new parameters and intricacies that make it fun-
damentally different. Real-world networks are often very large and sparse,
involving many millions or billions of nodes and roughly the same number of
edges.
Due to the resulting computational burden, test set sampling is common in
link prediction evaluation (Liben-Nowell & Kleinberg 2007, Al Hasan et al.

23



CHAPTER 2. THEORETICAL BACKGROUND

2006, Murata & Moriyasu 2007). Such sampling, when not properly reflec-
tive of the original distribution, can greatly increase the likelihood of biased
evaluations that do not meaningfully indicate the true performance of link pre-
dictors. The selected evaluation metric can have a tremendous bearing on the
apparent quality and ranking of predictors even with proper testing distribu-
tions (Raeder et al. 2010). The directionality of links also introduces issues
that do not exist in typical classification tasks. Finally, for tasks involving net-
work evolution, such as predicting the appearance of links in the future, the
classification process involves temporal aspects. Training and testing set con-
structs must appropriately address these nuances.

There are a variety of methods for predicting connections, such as , Graph
Distance, Common Neighbours, Preferential Attachment and so on. Here we
are not going to explain these methods, instead, we will focus in the methods
used in this thesis, which are related to supervised machine learning, this im-
portant concept and the methods will be explained in detail in the next chapter.

To better describe the intricacies of evaluation in the link prediction prob-
lem, the first step is to depict the framework for evaluation (O’Madadhain et al.
2005, O’Madadhain et al. 2005, Lichtenwalter et al. 2010) (Fig.2.17). Compu-
tations occur within network snapshots based on particular segments of data.
Comparisons among predictors require that evaluation encompasses precisely
the same set of instances whether the predictor is unsupervised or supervised
(We explain these two concepts in Chapter 3). We construct four network
snapshots:

• Training features: data from some period in the past, Gt−x up to Gt−1,
from which we derive feature vectors for training data.

• Training labels: data from Gt , the last training-observable period, from
which we derive class labels, whether the link forms or not, for the train-
ing feature vectors.

• Testing features: data from some period in the past up to Gt , from which
we derive feature vectors for testing data. Sometimes it may be ideal
to maintain the window size that we use for the training feature vec-
tor, so we commence the snapshot at Gt−x+1. In other cases, we might
want to be sure not to ignore effects of previously existing links, so we
commence the snapshot at Gt−x.

• Testing labels: data from Gt+1, from which we derive class labels for
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the testing feature vector. This data is strictly excluded from inclusion
in any training data.

A classifier is constructed from the training data and evaluated on the test-
ing data. There are always strictly divided training and testing sets, because
Gt+1 is never observable in training.

In chapters 3 and 5 we are going to explain more in detail the methodology
used in this work for link prediction.

2.8 Signed networks

As we mentioned a few lines above, the edges in a graph may be directed or
weighted; either the nodes or edges may have types, categories, or labels of
some kind; nodes may have positions in space; edges may have lengths or ca-
pacities, and so forth. According to that it is not difficult to intuit that the edges
can be either positive or negative depending the kind of relationship that they
are representing (Newman 2018b, Harary 1953, Wasserman & Faust 1994).

The most common example is a social network that represents patterns of
both amity and enmity among a group of individuals: positive edges represent
friendship, negative ones animosity.

P

O X

+/-+/-

+/-

Figure 2.18 – Signed Networks

Studies of signed networks go back at least to the classic work of Harary
in the 1950s, who argued, largely informal rather than empirical grounds, that
certain patterns of signs should be more common than others—the enemy of
my enemy should be my friend, for example (Harary 1953).
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Networks that display such regularities are said to be structurally balanced,
or just balanced for short. A natural question to ask is whether real signed net-
works are in fact balanced. Despite a considerable amount of research on this
issue, however, the jury is still out. Some researchers have claimed that real
networks are balanced, at least partially, while others have claimed that they
are not. Social balance theory—in its strong form (Cartwright & Harary 1956)
—claims that positive triads are balanced whereas negative triads are unbal-
anced.

P – O P – X O – X Relation characteristic
+ + + Balanced
+ + - Imbalanced
+ - + Imbalanced
+ - - Balanced
- + + Imbalanced
- + - Balanced
- - + Balanced
- - - Imbalanced

Table 21 – Possible combination of relation sign in a triad and the relation’s characteristic.

The balanced and unbalanced can be understood easily using again the
analogy of friends and enemies (Szell et al. 2010).

In the relation of three people or triad Fig 2.18, balance state occurs when
all sign multiplication of its sentiment relation charges positive. In this way,
balance state will occur when there are sentiment relations with signs all pos-
itive (+×+×+ = +), or two negatives and one positive (−×−×+ = +).
This model is popular as pox model where p is focal individual, o is object,
issue or a person, and x is object or other individual. Sentiment relation p and
x is determined by an attitude of p and x toward o. If the multiplication of
signs of these relations is positive, then the balance state is achieved (Heider,
1946). There are 8 possible configurations of the current sentiment relations
described in the Table 21. In the table we can see that there are 4 patterns of
balance state and 4 others imbalance one in the relation of three agents (triad).
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2.9 Multilayer networks

Since, as we have discussed, there different kinds of edges, with different
meanings, weights and directions and they can be either positive of negative, to
represent systems consisting of networks with multiple types of links, or other
similar features, we consider structures that have layers in addition to nodes
and links. Networks in real life integrate all these kind of edges, for example,
if we consider ourselves as elements of a big network including all the different
relationship that we can establish with other people, we will have friendship
edges, family edges, colleagues edges and so on. So we can conclude that our
relationships shape a multilayer network Fig 2.19.

Family

Friends

Colleagues

Figure 2.19 – Multilayer social network

In its more general form, in a multilayer framework a node u in layer α

can be connected to any node v in any layer β . Layers will represent aspects or
features that characterize the nodes or the links that belong to that layer. (Aleta
& Moreno 2019)

Multilayer networks encode two major classes of systems (Bianconi 2015):
multiplex networks and network of networks. Multiplex networks are net-
works where the same set of nodes is represented in every layer, although the
interaction between nodes might be different in each one. As an example, two
nodes might be connected in one layer an might not in other. This is the case of
online social systems, where a given user might have a Twitter account (layer
1) and a Facebook profile (layer 2). The set of followers/friends does not in
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general coincide for both layers, thus leading to two different intra-layer ad-
jacency matrices. On the contrary, a network of networks is instead formed
by networks that are interlaced to each other but formed by different types of
nodes. Although these two are the most common kinds of multilayer networks,
Kivela et al. (Kivelä et al. 2014a) present several other types and denomina-
tions of multilayer networks. From now on we will always refer to Multiplex
networks.

We provide now a precise definition of a multilayer network based on our
above description Fig 2.19. A multilayer network has a set of nodes V just like
a normal network (i.e., a graph). In addition, we need to have layers. However,
because we want to be able to include multiple aspects in a multilayer network,
we cannot restrict ourselves to having a single set of layers. For example, in a
network in which the first aspect is interaction type and the second one is time,
we need one set of layers for interaction types and a second set of layers for
time. A multilayer network can have any number d of aspects, and we need to
define a sequence L = La

d
a=1 of sets of elementary layers such that there is one

set of elementary layers La for each aspect a.
Using the sequence of sets of elementary layers, we can construct a set of lay-
ers in a multilayer network by assembling a set of all of the combinations of
elementary layers using a Cartesian product L1×· · ·×Ld . We want to allow
nodes to be absent in some of the layers. That is, for each choice of a node
and layer, we need to indicate whether the node is present in that layer. To do
so, we first construct a set V ×L1×· · ·×Ld of all of these combinations and
then define a subset VM ⊆ V ×L1×· · ·×Ld that contains only the node-layer
combinations in which a node is present in the corresponding layer. We will
often use the term nodelayer tuple (or simply node-layer ) to indicate a node
that exists on a specific layer. Thus, the node-layer (u,α1, · · ·,αd) represents
node u on layer (α1, · · ·,αd).

In a multilayer network, we also need to define connections between pairs
of node-layer tuples. As with monoplex networks, we will use the term adja-
cency to describe a direct connection via an edge between a pair of node-layers
and the term incidence to describe the connection between a node-layer and an
edge. Two edges that are incident to the same node-layer are also “incident” to
each other. We want to allow all of the possible types of edges that can occur
between any pair of node-layers — including ones in which a node is adjacent
to a copy of itself in some other layer as well as ones in which a node is adja-
cent to some other node from another layer. In normal networks (i.e., graphs),
the adjacencies are defined by an edge set E ⊆ V ×V , in which the first el-

28



2.9 Multilayer networks

ement in each edge is the starting node and the second element is the ending
node. In multilayer networks, we also need to specify the starting and ending
layers for each edge. We thus define an edge set EM of a multilayer network as
a set of pairs of possible combinations of nodes and elementary layers. That
is, EM ⊆VM×VM.
Using the components that we set up above, we define a multilayer network
as a quadruplet M = (VM,EM,V,L). If the number of aspects is zero (i.e., if
d = 0), then the multilayer network M reduces to a monoplex (i.e., single-layer)
network. In that case, VM =V , so the set VM becomes redundant. (By conven-
tion, the product term in the set V ×L1×· · ·×Ld does not exist if d = 0.) and
convenient to use different semantics for edges that cross layers than for edges.

According to (Buldyrev et al. 2010), when a system of two interdepen-
dent networks is considered, where nodes in one network have a bidirectional
coupling with nodes in the other, the percolation properties are significantly
affected (Percolation describes a phase transition process of network failure,
whose critical point distinguishes the network from connected to disconnected.
Percolation theory makes use of statistical physics principles and graph the-
ory to analyse such change in the structure of a complex network.). Due to
coupling, not only the transition threshold is increased but also the order of the
transition changes. The presence of interdependency between nodes in differ-
ent networks, such that if one of the nodes is inactive the other can’t function
as well, leads to catastrophic effects when some nodes are removed from the
system. A cascade of events is then ignited leading to an abrupt decomposi-
tion of the mutually connected giant component. These interesting results raise
new questions in the field of complex networks. As a natural follow up, it is
interesting to understand what happens when different types of networks are
coupled, with special focus on real networks. The effect of different types of
inter-networks connections is also relevant.

2.9.1 Incidence matrices for Multilayer networks

For single networks, we introduced the concept of adjacency matrix (Fig 2.7),
which it is a square matrix (number of nodes× number of nodes) and in which
we have non-zero elements if there is a connection between the corresponding
nodes. In an adjacency matrix all the edges are considered to indicate the same
the type of relationship between the nodes. Since in a multilayer network the
edges indicate different relationships depending the layer that they belong to,
the way to have the information of all the layers in the same two-dimensional
matrix is through what is known as the Incidence matrix.
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ITA

ITA

ITA ITA 0 0 0 0

ITA FRA 0 0 0 1

ITA BEL 0 1 0 0

ITA ARG 1 0 0 0

ITA COL 0 0 0 0

ITA CHN 0 0 1 0

ITA USA 0 0 0 0

ITA BRA 0 0 0 0

FRA ITA 0 0 0 1

FRA FRA 0 0 0 0

. . . . . .

. . . . . .

. . . . . .

BRA CHN 0 0 1 0

BRA USA 1 0 0 0

BRA BRA 0 0 0 0

Figure 2.20 – Graph and matricial representation of a multilayer network in which the nodes represent
countries and each layer (each column) a different relation between them.

The incidence matrix of an undirected graph is a n×m matrix B, where n
and m are the numbers of vertices and edges respectively, such that Bi, j = 1 if
the vertex vi and edge e j are incident and 0 otherwise.

In our case, in Chapter 5, the nodes of our multilayer network will rep-
resent countries and each layer represent a different kind of relation that the
countries can establish between them. In the incidence matrix is, each row
correspond to a pair of countries and each column give information about if
there is or not a link between the pair of countries (See Fig 2.20).

2.10 Dynamic Graphs

Real networks are, in principle, dynamic, that’s mean that they vary over time.
Of course the number of nodes can also change but let’s focus in the temporal
change of the connections between the nodes. Each link carries information
on when it is active, along with other possible characteristics such as a weight.
Time-varying networks are of particular relevance to spreading processes, like
the spread of information and disease, since each link is a contact opportunity
and the time ordering of contacts is included.
Examples of time-varying networks include communication networks, where
each link is relatively short or instantaneous, such as phone calls or e-mails.
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(Karsai et al. 2014), (Eckmann et al. 2004) Information spreads over both
networks, and some computer viruses spread over the second. Networks of
physical proximity, encoding who encounters whom and when, can be rep-
resented as time-varying networks.(Eagle & Pentland 2006) Some diseases,
such as airborne pathogens, spread through physical proximity. Real-world
data on time resolved physical proximity networks has been used to improve
epidemic modelling.(Stehlé et al. 2011) Neural networks and brain networks
can be represented as time-varying networks since the activation of neurons
are time-correlated.(Holme & Saramäki 2012)
Time-varying networks are characterized by intermittent activation at the scale
of individual links like the three graph of the same network presented in Fig
2.21. This is in contrast to various models of network evolution, which may
include an overall time dependence at the scale of the network as a whole.

t = 1 t = 2 t = n

Figure 2.21 – Example of a dynamic (temporal) network. Each graph represent the network in a different
time

2.10.1 Representations

There are three common representations for time-varying network data:

• Contact sequences, if the duration of interactions are negligible, the net-
work can be represented as a set C of contacts (i, j, t) where i and j are
the nodes and t the time of the interaction. Alternatively, it can be rep-
resented as an edge list E where each edge e is a pair of nodes and has a
set of active times Te = {t1, · · · tn}.
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• Interval graphs, if the duration of interactions are non-negligible, Te be-
comes a set of intervals over which the edge e is active.

Te = {(t1, t
′
1), · · ·(tn, t

′
n)}

• Snapshots – time-varying networks can also be represented as a series
of static networks, one for each time step.
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Chapter 3
Introduction to Machine Learning

Machine learning can be broadly defined as computational methods using ex-
perience to improve performance or to make accurate predictions.
Here, experience refers to the past information available to the learner, which
typically takes the form of electronic data collected and made available for
analysis. This data could be in the form of digitized human-labelled training
sets, or other types of information obtained via interaction with the environ-
ment. In all cases, its quality and size are crucial to the success of the predic-
tions made by the learner (Mohri et al. 2018).

Data

Learning

Supervised

Unsupervised

Predict

Find structure

Figure 3.1 – Generic operation of Machine Learning algorithms
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In 1959, Arthur Samuel, a pioneer in the field of machine learning defined
it as the field of study that gives computers the ability to learn without being
explicitly programmed (Samuel 1959).
A more formal definition was given by Tom Mitchell (Nigam et al. 1998) as a
computer program is said to learn from experience (E) with respect to some
task (T ) and some performance measure (P), if its performance on T , as mea-
sured by P, improves with experience E then the program is called a machine
learning program.

3.1 Types of Learning

There are two major settings in which we wish to learn a function, Fig 3.1.
In one, called supervised learning, we know (sometimes only approximately)
the values of the input (x) and output (y) variables connected by a mapping
function ( f ) for the m samples in the training set, Ξ. We assume that if we can
find a hypothesis, h, that closely agrees with f for the members of Ξ, then this
hypothesis will be a good guess for f —especially if Ξ is large.(Nilsson 1996)

As the name implies, this type of machine learning requires a certain level
of supervision of machine learning models, or bots. This is done by teach-
ing the model, or loading it with knowledge, so that it can learn the desirable
behaviours it should perform. Supervised learning problems can be further
grouped into regression (the prediction of trends in labelled data to determine
future outcomes) and classification (the organisation of labelled data) prob-
lems. Both rely on knowing what kind of data they are dealing with in a con-
trolled environment, with regular testing guiding the learning process.

The generation process is based on classifying the elements of the training
set and comparing the result with the label associated with each element. This
process is carried out iteratively to adjust the predictive model. Fig 3.2 is a
sketch of the supervised learning process.
In this work we will focus in two of the best-known supervised learning algo-
rithms, Decision Trees and Random Forest (See Section 3.2).

In the other setting, termed unsupervised learning, we simply have a train-
ing set of vectors without function values for them. The problem in this case,
typically, is to partition the training set into subsets, Ξ1, · · · ,ΞR, in some ap-
propriate way. (We can still regard the problem as one of learning a function;
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Training Data

Train the ML 
Algorithm

Model Input 
Data 

Successful 
Model

Prediction

New Input Data ML Algorithm

Figure 3.2 – General outline of supervised learning processes

the value of the function is the name of the subset to which an input vector
belongs.) Unsupervised learning methods have application in taxonomic prob-
lems in which it is desired to invent ways to classify data into meaningful
categories.

Unlike supervised learning, this type of learning is different in that it isn’t
observed by anyone and happens on its own terms. We let the model, discover
information that may not be visible to the human eye or brain. Unsupervised
learning relies on machine learning algorithms to make conclusions and pre-
dictions on sets of unlabelled data. As such, its biggest strength lies in the
ability to find patterns and groupings from unknown types of data.

Unsupervised learning is the training of machine using information that is
neither classified nor labelled and allowing the algorithm to act on that infor-
mation without guidance. Here the task of machine is to group unsorted in-
formation according to similarities, patterns and differences without any prior
training of data.
Unlike supervised learning, no teacher is provided that means no training will
be given to the machine. Therefore machine is restricted to find the hidden
structure in unlabelled data by itself.
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Interpretation

Input Raw Data

• Unknown Output
• No Training Data Set

Algorithm

Processing

Output

Figure 3.3 – General outline of Unsupervised learning processes

Consider for example the Fig 3.3, in this case the machine has no idea
about the features of triangles, circles and squares, so we can’t categorize it in
triangles, circles or squares. Clustering is an important concept when it comes
to this kind of problems. (We explain this concept in detail in the section 3.3.1)
It mainly deals with finding a structure or pattern in a collection of uncatego-
rized data. Clustering algorithms will process your data and find natural clus-
ters(groups) if they exist in the data. You can also modify how many clusters
your algorithms should identify. It allows you to adjust the granularity of these
groups.

3.2 Supervised Learning algorithms

As we mentioned before, in this work we will focus in two of the best-known
supervised learning algorithms, Decision Trees and Random Forest.

• Decision Tree. A decision tree (generally defined) is a tree whose in-
ternal nodes are tests (on input patterns) and whose leaf nodes are cat-
egories (of patterns). We show an example in Fig. 3.4. A decision tree
assigns a class number (or output) to an input pattern by filtering the pat-
tern down through the tests in the tree. Each test has mutually exclusive
and exhaustive outcomes. For example, test T 2 in the tree of Fig. 3.4
has three outcomes; the left-most one assigns the input pattern to class
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3.2 Supervised Learning algorithms

3, the middle one sends the input pattern down to test T 4, and the right-
most one assigns the pattern to class 1. We follow the usual convention
of depicting the leaf nodes by the class number (Quinlan 1986, 1993).
Note that in discussing decision trees we are not limited to implement-
ing Boolean functions—they are useful for general, categorically valued
functions.

T1

T2 T4 T3

T4

T4
3 1

3 2

1 2
3

2 1

Figure 3.4 – A Decision Tree

There are several dimensions along which decision trees might differ:

– The tests might be multivariate (testing on several features of the
input at once) or univariate (testing on only one of the features).

– The tests might have two outcomes or more than two. (If all of the
tests have two outcomes, we have a binary decision tree.)

– The features or attributes might be categorical or numeric. (Binary-
valued ones can be regarded as either.)

– We might have two classes or more than two. If we have two
classes and binary inputs, the tree implements a Boolean function,
and is called a Boolean decision tree.

It is straightforward to represent the function implemented by a univari-
ate Boolean decision tree in Disjunctive Normal Form DNF.
A logical formula is considered to be in DNF if it is a disjunction of one
or more conjunctions of one or more literals (Davey & Priestley 1990).
A DNF formula is in full disjunctive normal form if each of its variables
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X3

X2 X4

X1

0 1

0 0

0

1
1

1
X3X2

0

1
X3X2

0
X3X4

1 0
X3X4X1 X3X4X1

Figure 3.5 – A Decision Tree Implementing a DNF Function

appears exactly once in every conjunction.

The basic elements in such formula are called terms. A term is simply a
conjunctions of literals. That is,

T = `1∧ `2∧·· ·∧ `t

where all `i’s are literals and ∧ denotes the boolean AND operation. A
term is satisfied (that is, gets the value TRUE) if and only if each of the
literals in the term gets the value TRUE. Therefore, each term is just
a function from {0,1}n to {0,1}. We denote by TERMSn the class of
all possible terms over the literals x1, . . . ,xn, x̄1, . . . , x̄n. When n is clear
from the context we may use TERMS for short. Also, for simplicity of
notations we omit the ∧ symbols from the term. That is, we use x̄3x2 to
denote x̄3∧ x2 (left branch of tree in Figure 3.5).

A DNF formula is a disjunction of terms. That is,

F = T1∨T2∨·· ·∨Tk

where each Ti is a term and ∨ denotes the boolean OR operation. The
formula is satisfied (that is, gets the value TRUE) if and only if at least
one of its terms is satisfied. Again, each such formula defines a function
from {0,1}n to {0,1}.
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3.2 Supervised Learning algorithms

For example, for the decision tree in Figure 3.5 we get the following
2-term DNF (corresponding to the 2 nodes in the tree which are labelled
by 1):

x̄3x2∨ x3x4x̄1

• Random Forest. As the name suggests, consists of a large number of
individual decision trees that operate as an ensemble. Each individual
tree in the random forest spits out a class prediction and the class with
the most votes becomes our model’s prediction (see Fig. 3.6).

Decision Tree-1 Decision Tree-2 Decision Tree-N

Result-1 Result-2 Result-N

Majority Voting / 
Averaging

Final Result

Dataset

Figure 3.6 – Random Forest

The fundamental concept behind random forest is a simple but powerful
one — the wisdom of crowds. In data science speak, the reason that the
random forest model works so well is: A large number of relatively un-
correlated models (trees) operating as a committee will outperform any
of the individual constituent models.

The training algorithm for random forests applies the general technique
of bootstrap aggregating, or bagging, to tree learners.
Bootstrap aggregating, also called bagging (from bootstrap aggregat-
ing), is a machine learning ensemble meta-algorithm designed to im-
prove the stability and accuracy of machine learning algorithms used
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in statistical classification and regression. It also reduces variance and
helps to avoid overfitting (See Section 3.6). Although it is usually ap-
plied to decision tree methods, it can be used with any type of method.
Bagging is a special case of the model averaging approach (GRU n.d.).

Given a training set X = x1, . . . ,xn with responses Y = y1, . . . ,yn, bagging
repeatedly (B times) selects a random sample with replacement of the
training set and fits trees to these samples:
For b = 1, . . . ,B:

1. Sample, with replacement, n training examples from X ,Y ; call
these Xb,Yb.

2. Train a classification or regression tree fb on Xb,Yb.

After training, predictions for unseen samples x′ can be made by aver-
aging the predictions from all the individual regression trees on x′:

f̂ =
1
B

B

∑
b=1

fb(x′)

or by taking the majority vote in the case of classification trees.
The above procedure describes the original bagging algorithm for trees.
Random forests differ in only one way from this general scheme: they
use a modified tree learning algorithm that selects, at each candidate
split in the learning process, a random subset of the features. This pro-
cess is sometimes called "feature bagging". The reason for doing this is
the correlation of the trees in an ordinary bootstrap sample: if one or a
few features are very strong predictors for the response variable (target
output), these features will be selected in many of the B trees, causing
them to become correlated. An analysis of how bagging and random
subspace projection contribute to accuracy gains under different condi-
tions is given by Ho in (Ho 2002).

3.3 Unsupervised Learning Algorithms

Unsupervised learning problems can be further grouped into clustering and
association problems.

• Clustering: is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar (in some
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sense) to each other than to those in other groups (clusters). In this work
we will focus in this kind of algorithms.

• Association: is a method for discovering interesting relations between
variables in large databases. It is intended to identify strong rules dis-
covered in databases using some measures of interestingness

3.3.1 Clustering Algorithms

Up to know, we have explored supervised Machine Learning algorithms and
techniques to develop models where the data had labels previously known. In
other words, our data had some target variables with specific values that we
used to train our models (Cacciari et al. 2008).
However, when dealing with real-world problems, most of the time, data will
not come with predefined labels, so we will want to develop machine learning
models that can classify correctly this data, by finding by themselves some
commonality in the features, that will be used to predict the classes on new
data.

In basic terms, the objective of clustering is to find different groups within
the elements in the data. To do so, clustering algorithms find the structure in
the data so that elements of the same cluster (or group) are more similar to
each other than to those from different clusters.

These unsupervised learning algorithms have an incredible wide range of
applications and are quite useful to solve real world problems such as anomaly
detection, recommending systems, documents grouping, or finding customers
with common interests based on their purchases. In this work we will focus in
two very similar clustering algorithms: K-means and Spherical K-means.

3.3.1.1 Clustering Algortithms

• K-Means Clustering: K-means (MacQueen et al. 1967) is one of the
simplest unsupervised learning algorithms to solve the clustering prob-
lem. The procedure follows a simple and easy way to classify a given
data set through a certain number of clusters (assume k clusters) fixed
a priori. The main idea is to define k centroids, one for each cluster.
These centroids should be placed in a cunning way because of different
location causes different result. So, the better choice is to place them as
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much as possible far away from each other. The next step is to take each
point belonging to a given data set and associate it to the nearest cen-
troid. When no point is pending, the first step is completed and an early
groupage is done. At this point we need to re-calculate k new centroids
as barycenters of the clusters resulting from the previous step. After
we have these k new centroids, a new binding has to be done between
the same data set points and the nearest new centroid. A loop has been
generated. As a result of this loop we may notice that the k centroids
change their location step by step until no more changes are done. In
other words centroids do not move anymore.
Finally, this algorithm aims at minimizing an objective function, in this
case a squared error function. The objective function

J =
k
∑
j=1

n
∑

i=1
‖ x( j)

i −C j ‖2

where ‖ x( j)
i −C j ‖2 is a normally the Euclidean distance between a data

point x( j)
i and the cluster centre C j, is an indicator of the distance of the

n data points from their respective cluster centres.

• Spherical K-means Clustering: For high-dimensional data such as text
documents (represented as TF-IDF vectors, which is a numerical statistic
that is intended to reflect how important a word is to a document in a
collection or corpus (Rajaraman & Ullman 2011)) and market baskets,
Cosine Similarity has been shown to be a superior measure to Euclidean
distance (Strehl et al. 2000). The implication is that the direction of a
document vector is more important than the magnitude.
The spherical k-means algorithm aims to maximize the average cosine
similarity objective.

In Chapter 4 , we use Cosine similarity (or cosine distance) to clusters
country with similar performance in the Trade Market. Let’s remember
it’s definition.

The Cosine similarity is a measure of similarity that can be used to com-
pare documents or, say, give a ranking of documents with respect to a
given vector of query words. Let A and B (vectors in Fig 3.7) be two
vectors for comparison. Using the cosine measure as a similarity func-
tion, we have

sim(A,B) =
A ·B

‖ A ‖‖ B ‖
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B

Euclidean Distance

Cosine 
Similarity

A

Figure 3.7 – Euclidean Distance and Cosine Similarity between vectors A and B. Euclidean Distance mea-
sures how far apart two points in a n-dimensional space are, i.e. it measures the length of a straight line
from point A to point B. Cosine Similarity measures their similarity in orientation, i.e. the angle between
two vectors A and B with vertex at zero

where ‖A ‖ is the Euclidean norm of vector A = (a1,a2, . . .ap), defined

as
√

x2
1 + x2

2 + . . .x2
p. Conceptually it is the length of the vector. Simi-

larly, ‖ B ‖ is the Euclidean norm of vector B. The measure computes
the cosine of the angle between vectors A and B. The cosine of 0◦ is
1, and it is less than 1 for any angle in the interval (0,π] radians. It is
thus a judgment of orientation and not magnitude: two vectors with the
same orientation have a cosine similarity of 1, two vectors oriented at
90◦ relative to each other have a similarity of 0, and two vectors diamet-
rically opposed have a similarity of−1, independent of their magnitude.
The cosine similarity is particularly used in positive space, where the
outcome is neatly bounded in [0,1].

3.4 Precision and Recall

Machine learning models ought to be able to give accurate predictions in order
to create real value for a given organization.
While training a model is a key step, how the model generalizes on unseen
data is an equally important aspect that should be considered in every machine
learning pipeline. We need to know whether it actually works and, conse-
quently, if we can trust its predictions. Could the model be merely memorizing
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the data it is fed with, and therefore unable to make good predictions on future
samples, or samples that it hasn’t seen before? Model evaluation aims to esti-
mate the generalization accuracy of a model on future (unseen/out-of-sample)
data.
After the creation and training and testing of the model we have the prediction
– the results of the model – and reality – the test set. We want to know how
much these two sets overlap. There are four possible cases:

• A True Positive is an outcome where the model correctly predicts the
positive class.

• Similarly, a True Negative is an outcome where the model correctly
predicts the negative class.

• A False Positive is an outcome where the model incorrectly predicts the
positive class.

• And a False Negative is an outcome where the model incorrectly pre-
dicts the negative class.

In the evaluation of a model the concepts of Precision and recall are ex-
tremely important. While precision refers to the percentage of the results
which are relevant, recall refers to the percentage of total relevant results cor-
rectly classified by the algorithm (See Figure 3.8).

Recall or Sensitivity (as it is called in Psychology) is the proportion of
Real Positive cases that are correctly Predicted Positive. It tends not to be very
highly valued in Information Retrieval (on the assumptions that there are many
relevant documents, that it doesn’t really matter which subset we find, that we
can’t know anything about the relevance of documents that aren’t returned)
(Powers 2011).
However, Recall has been shown to have a major weight in predicting success
in several context, for example, in a Medical context Recall is primary (Fraser
& Marcu 2007).

In some contexts it is referred to as True Positive Rate (TPR). Recall is
defined, with its various common appellations, by the equation:

Recall = T PR =
T P

T P+FN

Conversely, Precision or Confidence (as it is called in Data Mining) de-
notes the proportion of Predicted Positive cases that are correctly Real Posi-
tives. This is what Machine Learning, Data Mining and Information Retrieval
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Classified (or found) as positive

Precision = !"
!"#$" =

Recall = !"
!"#$& =

How many selected items are relevant?

How many relevant items are selected?

Figure 3.8 – In machine learning evaluation, Precision (also called positive predictive value) is the fraction
of relevant instances among the retrieved instances, while Recall (also known as sensitivity) is the fraction
of the total amount of relevant instances that were actually retrieved. Both precision and recall are therefore
based on an understanding and measure of relevance.

focus on. It can however analogously be called True Positive Accuracy (TPA),
being a measure of accuracy of Predicted Positives in contrast with the rate of
discovery of Real Positives (TPR). Precision is defined as:

Precision = T PA =
T P

T P+FP

These two concepts (Recall and Precision) play a relevant role in the eval-
uation of the predictive model created in Chapter 5 in which we have created
a model using Machine Learning in order to predict International conflicts.

3.5 Confusion Matrix

The Confusion Matrix is a metric used to quantify the performance of a ma-
chine learning classifier. It is used when there are two or more classes as the
output of the classifier.
Confusion matrices are used to visualize important predictive analytics like re-
call, specificity, accuracy, and precision. These are useful because they give
direct comparisons of values like True Positives, False Positives, True Nega-
tives and False Negatives. In contrast, other machine learning classification
metrics like “Accuracy” give less useful information, as Accuracy is simply
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the difference between correct predictions divided by the total number of pre-
dictions.
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Figure 3.9 – Confusion matrix. From the top-left corner, clockwise: (TP) True Positives, (FP) False Posi-
tives, (TN) True Negatives, (FN) False Negatives.

The number of correct and incorrect predictions are summarized with count
values and broken down by each class. This is the key to the confusion ma-
trix. It shows the ways in which your classification model is confused when it
makes predictions. It gives us insight not only into the errors being made by a
classifier but more importantly the types of errors that are being made.

3.6 Capacity, Overfitting and Underfitting

The central challenge in machine learning is that we must perform well on new,
previously unseen inputs—not just those on which our model was trained. The
ability to perform well on previously unobserved inputs is called generalization.
Typically, when training a machine learning model, we have access to a train-
ing set, we can compute some error measure on the training set called the
training error, and we reduce this training error. So far, what we have de-
scribed is simply an optimization problem. What separates machine learning
from optimization is that we want the generalization error, also called the test
error, to be low as well.
The generalization error is defined as the expected value of the error on a new
input. Here the expectation is taken across different possible inputs, drawn
from the distribution of inputs we expect the system to encounter in practice.
We typically estimate the generalization error of a machine learning model by
measuring its performance on a test set of examples that were collected sepa-
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rately from the training set.

When we use a machine learning algorithm, we do not fix the parameters
ahead of time, then sample both datasets. We sample the training set, then use
it to choose the parameters to reduce training set error, then sample the test
set. Under this process, the expected test error is greater than or equal to the
expected value of training error.

Suppose that we have a training set consisting of a set of points x1, . . . ,xn

and real values yi associated with each point xi. We assume that there is a func-
tion with noise y = f (x)+ ε , where the noise, ε , has zero mean and variance
σ2.

We want to find a function f̂ (x;D), that approximates the true function f (x)
as well as possible, by means of some learning algorithm based on a training
dataset (sample) D = {(x1,y1) . . . ,(xn,yn)}. We make "as well as possible"
precise by measuring the mean squared error between y and f̂ (x;D): we want
(y− f̂ (x;D))2 to be minimal, both for x1, . . . ,xn and for points outside of our
sample. Of course, we cannot hope to do so perfectly, since the yi contain
noise ε; this means we must be prepared to accept an irreducible error in any
function we come up with.

Er
ro

r

Model Capacity

Generalization error 
Training error 

Underfitting Zone Overfitting Zone
High Bias High Variance

Optimal Capacity

Figure 3.10 – Machine learning model capacity and error on a bias-variance spectrum. Bias refers to
the error that is introduced by constructing an excessively simple model with poor prediction accuracy.
Variance, on the other hand, refers to the error incurred by building an excessively complex model, attuned
to noise in the training data.
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Finding an f̂ that generalizes to points outside of the training set can be
done with any of the countless algorithms used for supervised learning. It
turns out that whichever function f̂ we select, we can decompose its expected
error on an unseen sample x as follows:

ED

[(
y− f̂ (x;D)

)2
]
=
(

BiasD
[

f̂ (x;D)
])2

+VarianceD
[

f̂ (x;D)
]
+σ

2

where Bias is the error due to the expected value from the estimated model
being different from the expected value of the true model.

BiasD
[

f̂ (x;D)
]
= ED

[
f̂ (x;D)

]
− f (x)

And Variance is the error due to the model being sensitive to small fluctuations
in the data set.

VarianceD
[

f̂ (x;D)
]
= ED[

(
ED[ f̂ (x;D)]− f̂ (x;D)

)2
].

The factors determining how well a machine learning algorithm will per-
form are its ability to:

• Make the training error small (low Bias).

• Make the gap between training and test error small (low Variance).

These two factors correspond to the two central challenges in machine learn-
ing: underfitting and overfitting. Underfitting occurs when the model is not
able to obtain a sufficiently low error value on the training set, it means a high
Bias. Overfitting occurs when the gap between the training error and test error
is too large even is the training error is low. In other words, overfitting occurs
when the bias is low, but Variance is high.

In Figure 3.10 we plot the training error vs. model capacity to show the
bias-variance spectrum. Two distinct zones exist, namely, overfitting and un-
derfitting zones. During model training, there may exist a hinge point that
represents the achievable optimal capacity of the model. Prior to this point,
the model has high bias and is underfitted. Subsequent to the hinge point, if
trained, the model will eventually become overfitted and have high variance.

We can control whether a model is more likely to overfit or underfit by
altering its capacity. Informally, a model’s capacity is its ability to fit a wide
variety of functions. Models with low capacity may struggle to fit the training
set. Models with high capacity can overfit by memorizing properties of the
training set that do not serve them well on the test set.
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Underfitting Appropriate capacity Overfitting

x0 x0 x0

y y y
Figure 3.11 – We fit three models to this example training set. The training data was generated synthetically,
by randomly sampling x values and choosing y deterministically by evaluating a quadratic function. (Left)
A linear function fit to the data suffers from underfitting—it cannot capture the curvature that is present in
the data. (Center) A quadratic function fit to the data generalizes well to unseen points. It does not suffer
from a significant amount of overfitting or underfitting. (Right) A polynomial of degree 9 fit to the data
suffers from overfitting.

One way to control the capacity of a learning algorithm is by choosing its hy-
pothesis space, the set of functions that the learning algorithm is allowed to
select as being the solution. For example, the linear regression algorithm has
the set of all linear functions of its input as its hypothesis space (See Figure
3.11). We can generalize linear regression to include polynomials, rather than
just linear functions, in its hypothesis space. Doing so increases the model’s
capacity as long as we don’t cross the border between a good capacity model
and overfitted model.

Our modern ideas about improving the generalization of machine learning
models invoke a principle of parsimony that is now most widely known as
Occam’s razor (c. 1287-1347). This principle states that among competing
hypotheses that explain known observations equally well, one should choose
the “simplest” one. This principle is implicitly used also for dealing with noise,
in order to avoid overfitting a noisy training set by rule truncation or by pruning
of decision trees. This idea was formalized and made more precise in the 20th
century by the founders of statistical learning theory (Vapnik & Chervonenkis
2015, 1982, Blumer et al. 1989, Cortes & Vapnik 1995). In Figure 3.11 for
example, both plots in the center and right fit the data, following Occam’s
razor principle, we must choose the model of the center, which is the simplest
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one that fit the data.

3.7 Feature Importance

Feature importance refers to a class of techniques for assigning scores to input
features to a predictive model that indicates the relative importance of each
feature when making a prediction. It can be calculated for problems that in-
volve predicting a numerical value, called regression, and those problems that
involve predicting a class label, called classification.
Feature importance scores are useful and can be used in a range of situations
in a predictive modelling problem, such as:

• Better understanding the data: The relative scores can highlight which
features may be most relevant to the target, and the converse, which
features are the least relevant.

• Better understanding a model: Inspecting the importance score pro-
vides insight into a specific model and which features are the most im-
portant and least important to the model when making a prediction.

• Improving predictive model: This can be achieved by using the impor-
tance scores to select those features to delete (lowest scores) or those
features to keep (highest scores).

There are many ways to calculate feature importance scores and many
models that can be used for this purpose. The three main types of more ad-
vanced feature importance are: feature importance from model coefficients,
from decision trees and from permutation testing. In this work we will focus
in Feature importance from decision trees.

3.7.1 Feature Importance from Decision Trees

Decision trees recursively split features with regard to their target variable’s
purity. The algorithm is designed to find the optimal point of the most pre-
dictive feature in order to split 1 dataset into 2. These 2 new dataset’s target
variable will be more pure than the original dataset’s.
“Pure” is the key word here, however. What does that word mean, exactly?
In a general sense “purity” can be thought of as how homogenized a group is.
But homogeneity can mean different things depending on which mathematical
backbone your decision tree runs on. The 2 most popular backbones for deci-
sion tree’s decisions are Gini Impurity and Information Entropy.
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Gini Impurity is a measurement of the likelihood of an incorrect classifica-
tion of a new instance of a random variable, if that new instance were randomly
classified according to the distribution of class labels from the data set. Gini
impurity is lower bounded by 0, with 0 occurring if the data set contains only
one class.
The Gini Impurity of a given node m with k ∈ K being the classes is defined as
follows:

GIm = 1−∑
k∈K

(pk(m))2 (3.7.1)

where pk(m) is the class frequency of class k in node m.

On the other hand, Entropy is more computationally heavy due to the log in
the equation. Like Gini, The basic idea is to gauge the disorder of a grouping
by the target variable. Instead of utilizing simple probabilities, this method
takes the log base2 of the probabilities (you can use any log base, however, as
long as you’re consistent). The entropy equation uses logarithms because of
many advantageous properties.

Entropym =−∑
k∈K

pk(m) log2 pk(m) (3.7.2)

In this work, we have used Gini impurity as a criterion for selecting split
points.
Before to define the Feature importance, let’s introduce this formula for the
Impurity reduction (or Gini Gain) Gainm for a given node m, based in Gini
Impurity (GI):

Gainm = GIm− (weightl ·GIl−weightr ·GIr) (3.7.3)

For this node you can compute the Gini Impurity GIm (see equation 3.7.1).
Now this node has two children: a left node l and a right node r. For these the
Gini Impurities are GIl and GIr respectively. The weights are defined as the
share of the parents examples in a child node (e.g. weightl = Nl/Nm where N
is the number of examples in a node or leaf).
If you substract the Gini impurities of the child nodes from the Gini Impurity
of node m, then you know by how much the split performed by this node has
decreased the overall Gini Impurity.

Now, to derive the total impurity reduction of a given feature f in tree t
you need to sum across all nodes m ∈Mt

f which perform a split on that feature
t and divide it by the total impurity reduction number of all nodes of that tree:
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Importance(t)f =
∑m∈Mt

f
Gainm

∑ f ∑m∈Mt
f
Gainm

(3.7.4)

(Note that due to this normalization step your feature importance’s sum up
to 1).
Eventually, the total importance of a feature f is calculated across all trees t in
your random forest with a total number of trees T :

Importance f =
1
T

T

∑
t=1

Importance(t)f (3.7.5)
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Chapter 4
The Struggle for Existence in the
World Market Ecosystem

Global trade can be considered as a complex system, whose sophisticated be-
havior emerges from its many interacting parts – countries exporting prod-
ucts in different importing markets. This systemic view has been adopted in
the past and it proved to be an effective one. Diversity and product related-
ness in the export basket of countries and regions has been used as proxy of
their economic solidity (Hidalgo et al. 2007, Neffke et al. 2011, Saviotti &
Frenken 2008, Ženka et al. 2014). Different economic complexity indexes
have proven to be incredibly successful in predicting future economic growth,
better than traditional indicators such as years of schooling or the quality of
public institutions (e.g. in terms of resistance to corruption) (Hausmann et al.
2014, Tacchella et al. 2012, Cristelli et al. 2013, Poncet & de Waldemar 2013).
The complexity approach illustrated how knowledge flows across neighbour-
ing countries (Bahar et al. 2014, Martin 2015), and how these dynamics allow
us to predict structural change (Bustos et al. 2012, Klimek et al. 2012), sug-
gesting new avenues for development (Stein et al. 2014).

Here, we enrich the literature on complexity and economic development
by further investigating its relationship with ecology. Traditionally, export pat-
terns are considered as static and only locally related to the other countries
in the world. We draw relations among countries by inferring potential com-
petition among them across time. We see a pair of importer-product, for in-
stance the car market in the US, as an evolving trade “niche”, with exporters
appearing and disappearing like fit and unfit organisms in an ecosystem. In
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our analysis, the fitness of an economy in a niche correlates with its ability to
displace (out-compete) unfit economies. If this happens consistently in many
other car importing countries, then the fit economy should be able to grow its
car exporting business in the future.

C

B
P

ATrade data

Competition
Network

Figure 4.1 – An example of a displacement relation. From left to right we observe a pattern in the yearly
car import data from the US. In the first year, only Italy is present. In the second year, Japan appears in the
market. In the third year, Italy disappears from the market. This pattern from the trade data is represented
in the competition network as a directed edge from the displacer (Japan) to the displaced (Italy). The edge
is labelled with its layer: the car market in the United States.

We test this theory by creating a competition network, connecting coun-
try a to country b if a’s appearance in a market preceded b’s disappearance,
as illustrated in Fig 4.1. Since we have different products and different years
in which these relationships can be established, we use a multilayer network
model (Berlingerio et al. 2013, Kivelä et al. 2014b). Our competition net-
work is a peculiar structure, because traditionally networks are used to express
positive relations, while in our case the relation is negative (competition). Neg-
ative relationships are relatively less explored than positive ones, and previous
works showed they obey to different dynamics (Leskovec et al. 2010b, Szell
et al. 2010), whether they are studied using social balance or status theory
frameworks (Fişek et al. 1991, Willer 1999). For instance, negative edges are
much less prone to generate triangles and high clustering (Easley & Kleinberg
2010, Davis 1967). They also allow for the emergence of more complex net-
work motifs (Bachi et al. 2012).

World’s markets are highly dynamic, with exporters frequently appearing
and disappearing in a niche. This means that basic statistical properties of
our competition network are not enough to unveil the potential displacement
patterns. In the competition network there is a very strong correlation be-
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tween out- and in-degree, which record the number of displacements a coun-
try caused and to which it was subject, respectively. As a consequence, it is
not possible to detect if a country tends to out-compete more than it is out-
competed. Moreover, in the competition network we observe a number of un-
expected properties, such as reciprocity – countries repeatedly displacing each
other – and triangles – cycles of countries where the displacers are displaced
by their displaced’s displaced. To tackle these issues, we need to employ non-
local analysis techniques, and take into account indirect patterns in the directed
graph. This is an approach frequently used in network science, from ranking
a node’s structural importance (Kleinberg 1999a), to the measurement of node
similarity (Blondel et al. 2004).

In this work, we choose to borrow the tools of a third non-local node-
centric network analysis: role detection. In the role detection literature, differ-
ent connectivity patterns are used to classify nodes in particular network roles
(Henderson et al. 2012). One specific and very popular case is the one of com-
munity detection, which aims at finding densely connected modules (Coscia
et al. 2011). Node roles have been used to describe a wide range of phenom-
ena, from metabolic networks (Guimera & Amaral 2005) to the connectivity
in the brain (Meunier et al. 2010, Sporns & Betzel 2016). Specifically, we bor-
row the approach described in (Cooper & Barahona 2010). In this method, we
compute a feature vector for each node describing the size of the out/in neigh-
bourhoods at a given network distance. Through this vector, we redefine a fit
economy from “able to out-compete many countries” to “able to out-compete
many countries who are able to out-compete many countries” – up to six de-
grees of separation. We perform the same operation for in-degree roles (an
unfit exporter is an exporter who is “displaced by countries who are prone to
be displaced themselves”).

We define three roles for exporters: “Out-competing” countries are coun-
tries which consistently score high in out-degree roles and low in in-degree
roles; “Displaced” countries are countries scoring the opposite (low in out-
degree roles and high in in-degree roles); and “Transitioning” countries, whose
scores in both roles are comparable.

This classification is a meaningful one. We test it by predicting the fu-
ture export patterns of countries. Countries classified as out-competing in a
particular product in a particular decade show significant export growth pat-
terns in that product in the following decade. This means, for instance, that if
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Japan is classified as out-competing in worldwide car exports in the 1960-1970
decade, then its car exports are going to grow significantly in the 1970-1980
decade. This result is consistent across decades – with the exception of the last
decade for the lack of a long enough time span to test the data – and across dif-
ferent product types – with the exception of the ones dominated by profitable
natural resources such as crude oil.

Even if we are not observing direct competition relationships, due to the
correlative nature of our edge creation process, the resulting roles are infor-
mative of future patterns in global trade. Our method can be used to detect
emerging countries in the global market for a particular product.

The common point of all the works developed during these years and pre-
sented in this thesis, is the study of the appearance and disappearance of links
in the networks and their effects on both their dynamics and their reorganiza-
tion. In this particular chapter, we have the disappearance of positive (com-
mercial) links between countries that are replaced by other ones, and based
on this, we study the effects of these disappearance and appearance of links
through a competition network.

The aim of this section is to describe the process starting from raw trade
data to the creation and analysis of multilayer competition network. We start
by describing the data sources and the cleaning phase. We then provide an
informal example, before detailing out the full procedure.

4.1 Methods

4.1.1 Data & Cleaning

The data contains the entire set of worldwide trade relationships from 1962
until 2013. The data has been collected by the UN Comtrade organization
(https://comtrade.un.org/), and cleaned by CEPII (Mayer et al. 2008).
A product is defined as a 4 digit SITC category. A product can be, for in-
stance, poultry meat for eating (code 0123), or ferro-manganese (code 6714).

UN Comtrade gathers data about all sovereign countries and territories in
the world. Many of these sovereign entities are very small and cause wide fluc-
tuations in the observations. For this reason, we focus only on larger and more
stable countries. We drop countries with less than 300k inhabitants and/or with
a total GDP lower than 300 million US dollars. Given our large time span, we
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also have data about countries who do not exist anymore (for instance, Yu-
goslavia). We drop the observations involving them too.

Even if the data is gathered at a 4-digit level of detail, we find that this is
too granular for our analytic aims. We exploit the fact that SITC is a hierarchi-
cal classification: all products whose code starts with the same digit are related
to each other. Thus we aggregate the trade data at the 1-digit level, summing
up the trade flows of all products classified under the first digit.
The meaning of each digit are: SITC 1: Beverages and tobacco, SITC 2: Crude
materials except fuels, SITC 3: Mineral fuels, lubricants and related materi-
als, SITC 4: Animal and vegetable oils, fat and waxes, SITC 5: Chemical
and related products, SITC 6: Manufactured goods clasified chiefly by mate-
rial, SITC 7: Machinery and transport equipment and SITC 8: Miscellaneous
manufactured articles.

Finally, we represent the data as a four dimensional tensor Tp,i,e,y. The
dimensions of the tensor are: product (p), importer (i), exporter (e) and year
(y). Basically, Tp,i,e,y can be seen as a set of matrices T p,i

e,y , one for each pair of
product p and importer i. The matrix contains, for each exporter e a timeline
vector recording, for each year y, the amount of trade in p flowing from e to i.
So, each T p,i

e,y is a e× y matrix.
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Figure 4.2 – Timeline of Japan’s and Italy’s exports in the US car market in the 60s.
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4.1.2 Inferring Competition Relationships

To better understand how the procedure works, let us start with an example de-
tailing how a single edge in our multilayer directed network is established. We
consider the car market in the United States. We focus on the export patterns
of two countries in a potential relationship of competition: Japan and Italy.
Fig 4.2 depicts the share of US car market of Japan and Italy, from 1962 to
1967.

Each step corresponds to a parameter in our methodology, which is re-
ported between parenthesis, and which we formally define in the rest of this
section:

1. Detect whether there is an anti-correlation between the export patterns
of the two countries (δ );

2. Detect whether one of the two countries appeared from the market, while
the other disappeared (κ);

3. Detect whether the disappearing country did not reappear in the market
immediately after the event (λ ).

In the first step we calculate the correlation coefficients of Japan’s and
Italy’s export timelines. The two timelines have a 1.67 correlation distance. If
we assume that this is higher than our δ parameter, we can say that there is a
potential competition edge between Japan and Italy.

In the second step, we check if either country appeared in the market while
the other disappeared. This is regulated by the parameter κ , which defines
the relative market share below which an exporter is considered to have “dis-
appeared”. We do not set κ = 0, because a complete disappearance is a rare
event. If we set κ = 1%, we can say that Italy disappeared while Japan ap-
peared, suggesting that the competition edge runs from Japan to Italy.

Finally, we check if Italy was absent from the US car market for at least λ

years. Assuming λ = 2, also this final test is positive. We then draw a directed
edge in our competition network from Japan to Italy.
We now describe more formally each step in the following subsections. We
remind that the same operation is performed for each product 1-digit class and
for each decade separately (1960-70, 1970-80, 1980-90, 1990-2000).
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Step #1: Detecting the Potential Edges

To detect the candidate relationships (i.e. the edges), we slice Tp,i,e,y such that
we consider each pair of product and importer country independently from all
other pairs, i.e. we analyze one T p,i

e,y matrix at a time. We column normalize
each T p,i

e,y , such that each entry will report the share e exported of p to i in
y. We then calculate the row-wise correlation distance between each pair of
exporting countries:

de1,e2 = 1− corr(−→e1 ,
−→e2 ),

where e1 and e2 are two exporting countries, −→e1 and −→e2 are the vectors of
T p,i

e,y corresponding to them, and corr is a function calculating the Pearson cor-
relation of two vectors. de1,e2 establishes the distance in the trends of e1 and e2,
regardless of their relative volume. Remember that here we are interested in
linking countries that are dissimilar to each other, so we perform an operation
that is opposite to what is usually done in network science: two countries with
very different market shares are not connected with an edge if their trends are
similar.

de1,e2 takes values between 0 (−→e1 and−→e2 are perfectly correlated) and 2 (−→e1
and −→e2 are perfectly anti-correlated). de1,e2 equals to 1 for linearly uncorre-
lated vectors. The δ threshold establishes the value below which we discard
the potential edge. Given the value domain of de1,e2 , δ must be higher than 1
(otherwise we would consider positively correlated vectors).

Step #2: Detecting the Potential Edge Direction

To establish if the anti-correlation of exports can lead to a potential competition
edge – and its direction – we have several requirements to satisfy:

1. i must have not stopped importing p;

2. Either e1 or e2 has to have ceased to export p to i – this is the potential
displaced exporter;

3. Whenever e1 ceased to export p to i, e2 still has to be exporting the
product, and vice versa – this is the potential out-competitor exporter;

4. The potential displaced exporter must have been exporting p previously.
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To satisfy requirements #1, #2 and #3, we use our second threshold, κ ,
which represents the minimum export share to be considered still exporting p
to i. If an exporter e has less than κ market share of p in i, then e in this context
is considered to have ceased exporting. Being κ a relative threshold, we can
make sure that the size of the importing market is not affecting our definition
of relationship, which would make too easy to have competition relationships
in small countries and small products.

Requirement #1 is now satisfied automatically: it is impossible to have a
share of export larger than κ if the denominator is 0 (i.e. i did not import p),
because the fraction would be undefined.

Each candidate edge is a quadruple (p, i,e1,e2). For each p and i, we bina-
rize −→e1 and −→e2 as follows:

e∗y =

{
1 if ey > κ

0 otherwise.

where ey is −→e ’s value at time y. Then we calculate −→e1
∗⊕−→e2

∗, which is the
XOR product of the two vectors: the result is true for a year y if in y e1 ex-
ported more than κ share of p to i and e2 did not, and vice versa. This satisfies
requirements #2 and #3.

We satisfy requirement #4 by removing the first streak of true values in
−→e1
∗⊕−→e2

∗. The first streak of true values represents a period in which either
e1 or e2 did not start exporting p to i yet. Thus, we cannot talk about either of
them being displaced, because they did not have a chance to interact with each
other yet.

We can now easily detect the edge direction. The country which disap-
peared from the importing market – say e2 – is the displaced one and it is thus
on the receiving end of the edge, which originates from the other country – in
our case e1.

Step #3: Establishing the Edge

Before adding the edge to the multilayer competition network we have to en-
sure that the displaced exporter has actually been displaced. We test this by
checking if the cessation of its exports has been longer than a certain number
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of years.

We satisfy this requirement by using our third parameter, λ , which rep-
resents the minimum number of years needed to declare a potential displaced
exporter out of the market. This means that the displaced country has to cease
exporting at least κ share of p to i for λ consecutive years, while its out-
competitor consistently stays above the κ threshold in the same period. This
means that we have to find at least λ consecutive true values in −→e1

∗⊕−→e2
∗.

The result of these three steps is another tensor, Dp,d,e1,e2 . Dp,d,e1,e2 is a
directed multilayer network, where each layer represents a pair of product p
and decade d. For simplicity, D is collapsed over the importer dimension i
using a logical OR operator. In other words, each layer contains an directed
graph connecting two countries (e1→ e2) if their trends in exporting p during
d satisfy all posited requirements for at least one importer i:

• −→e1 and −→e2 are strongly anti-correlated (correlation distance > δ );

• −→e2 contains at least λ consecutive values < κ not at its beginning;

• The corresponding −→e1 values are ≥ κ .

We then say that e1 is an out-competitor of e2 in product p. The edges are
weighted according to in how many importers i this competition relationship
has been established.

4.1.3 Detecting Roles

We now turn to the detection of node roles in the multilayer competition net-
work. We follow closely the methodology delineated in (Cooper & Barahona
2010). In that paper, Cooper and Barahona propose to group nodes according
to their role in the network, defined in terms of the overall pattern of incom-
ing and outgoing flows. According to this, we expect to find three categories
of countries: out-performing, displaced and transitioning. The roles emerge
by looking at the path profile of each node. A path profile is a vector com-
puted from the powers of the adjacency matrix weighted with a scale parame-
ter. Then, we define path profile templates and we cluster nodes according to
the similarity their path profiles have when compared to the templates.
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Figure 4.3 – Sequence of displacement events for Japan, located at the degree of separation 0 (the one
between d1 (displacement at 1 degree of separation) and o1 (out-performing at 1 degree of separation),
represented with arrows in the direction of displacement. We consider up to 6 degrees of separation in each
direction.

Consider a directed network with N nodes and an asymmetric adjacency
matrix M. Consider its [Mk1] vector, where 1 is the N×1 vector of ones. The
i-th entry of this vector is the number of displacement events happening in
all chains of length k originating from node i. For k = 1, [Mk1] is equivalent
to the out-degree vector of M. In the same way, the number of displacement
events happening in all chains of length k ending in node i is [M′k1]i, where M′

is the transpose of M. For k = 1, this is equivalent to the in-degree vector of M.

We construct a matrix that compiles the incoming and outgoing paths of
all lengths up to kmax by appending the column vectors indexed by path length
and scaled by the factors βk:

X =


x1
.
.
.

xN

≡ [. . .(βM′)k1 . . .︸ ︷︷ ︸
kmax

| . . .(βM)k1 . . .︸ ︷︷ ︸
kmax

],
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where β = α/λ1, with λ1 being the largest eigenvalue of the adjacency
matrix and α > 0. α governs how much weight we put on local or global
flow structure. Setting α ∼ 0 means that in- and out-degrees dominate over
the other values when calculating roles. Given the issues caused by using in-
and out-degree that we will describe in the next section, we aim at doing the
exact opposite, and thus we set α = 1. Note that one could set an α > 1, how-
ever that would mean that the farther relationships (mediated by more than one
edge) have more weight than the more proximate ones, which we believe not
to be reasonable. We also consider up to 6 degrees of separation in each direc-
tion, i.e. kmax = 6.

By following this methodology, each row vector of X contains the flow pro-
file of a node in terms of the scaled number of displacement paths of all lengths
starting and ending at that node. Following (Cooper & Barahona 2010), we
group nodes if they have similar flow profiles. Nodes in the same cluster have
similar flow profiles, thus they play a similar role in terms of the flow in the di-
rected graph. To detect such nodes, we calculate the distance of each country
from a synthetic template of a perfect out-competing, transitioning, and dis-
placed exporter. We assign the country to the closest template according to the
cosine distance described in Fig 3.7. The objective is to minimize the average
cosine distance between a country and its template.

To create our templates we need to ensure that each element in each row
vector in X takes value between 0 and 1:

X∗ =
X−min(X)

max(X)−min(X)
.

Note that this operation is done row by row, i.e. min(X) and max(X) are
calculated only considering the values of each row separately. In this way, each
country is a vector of values between 0 and 1 included. If we would took the
global min(X) and max(X), only one country could span the full domain value,
narrowing down the values of all other countries, and thus making the result
dominated by outliers. As a result of this operation, a hypothetical country i
could be described by the following vector:

X∗i = [0.97,0.94,1,0.99,0.92,0.77︸ ︷︷ ︸
d

,0.42,0.11,0.14,0.13,0,0.09︸ ︷︷ ︸
o

].
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Here, the first kmax values are the displaced (d) role scores, while the latter
kmax values are the out-competing (o) role scores. As a convention, we always
list first the d scores in decreasing order and then the o scores in increasing
order, so that the two middle values of the vector are always d1 and o1, i.e. the
normalized in-degree and the out-degree. Generally speaking, the dn entry in
the ith row of matrix X∗ is the (normalized) number of paths of length n ending
at node i. A high score in displaced roles means that the country tends to be
displaced by countries that are displaced themselves. The opposite is true for
the out-competing role scores. Since we know that all scores must take value
between 0 and 1, creating a cluster template is now trivial:

O = [0,0,0,0,0,0︸ ︷︷ ︸
d

,1,1,1,1,1,1︸ ︷︷ ︸
o

]

is an hypothetically perfect out-competing exporter, with zero in-degree
and maximum out-degree. With the same logic, we can define the perfect
displaced country D , and the middle point, the transitioning country T :

D = [1,1,1,1,1,1︸ ︷︷ ︸
d

,0,0,0,0,0,0︸ ︷︷ ︸
o

],

T = [0.5,0.5,0.5,0.5,0.5,0.5︸ ︷︷ ︸
d

,0.5,0.5,0.5,0.5,0.5,0.5︸ ︷︷ ︸
o

].

For each country, we calculate the cosine distance from these hypothetical
perfect scenarios. We chose the cosine distance, because the intensity of the
vector is not important: what matters is its direction. We assign the country to
the closest template, i.e. the one scoring the lowest cosine distance among the
three. The average leftover cosine distance (we also refer to this like ’Energy’)
is a measure of how good the clustering was, i.e. how similar each country is
to its assigned template.

If an exporter has a high values for the out-degree roles and low ones for
in-degree roles, then it is assigned to the “Out-competing” cluster. Vice versa,
low values for the out-degree roles and high ones for in-degree roles will place
the country in the “Displaced” cluster. In all other cases, when the out- and
in-degree roles have comparable values, the exporter is classified as “Transi-
tioning”.
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4.2 Results

4.2.1 Competition Network Statistical Analysis

The fundamental assumption of this paper is that the competition network that
we build using the methodology discussed in the previous section contains
information that will allow us to predict an exporter’s future performance in
the global market. If a country can out-compete many other countries in a
product, then it is expected to export more of that product. The first question
one might ask is: why do we need to calculate node roles? The number of
times an exporter out-competes its rivals is simply its out-degree. Could this
simpler statistical property inform us about export dynamics?
There are two reasons why this is not the case. The first reason is that out- and
in-degree in the competition network are highly correlated. The second reason
is that the competition network’s structure is more complex than one would
assume.

Fig 4.4 shows the out- and in-degree correlation. On the left we show the
out-degree distribution per country, and in the middle the in-degree distribu-
tion. We can see that both distributions are very similar. In fact, the top and
the bottom countries in these distributions are almost the same, sometimes in
a slightly different order. On the right, we show the correlation directly. It is
not possible, from this picture, to characterize any country as predominantly
out-competing its rivals, because the same country will have an almost equal
amount of cases in which it is displaced. So, In the case that we want to clas-
sify the countries according to their in and out-degrees, we would find that
some countries are part of both classes, which makes it impossible to classify
them in terms of how many times they have displaced or have been displaced.
It is for this reason that in our study we have clustered the countries using the
technique proposed by Cooper and Barahona in (Cooper & Barahona 2010) .

Regarding the second reason, we observe a number of topological proper-
ties that we would not expect to find in a competition network. The first one is
reciprocity. When country a displaces country b in a niche, we would expect
it to do so because fitter for that particular market. Yet, we observe a large
number of reciprocal edges. This means that, after some time, country b reap-
pears in the niche and displaces country a. Across our problem space (for all
decades, products and parameter choice) the median reciprocity was 11.38%.
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Figure 4.4 – Out- and in-degree distributions. (Top) Countries are sorted and ranked in the x-axis according
to their out-degree, i.e. the number of times they out-compete another country – reported in the y-axis.
(Middle) The same plot, replacing the out-degree measure with the in-degree one, i.e. the number of times
the country was displaced from a niche. (Bottom) The relationship between out-degree (x-axis) and in-
degree (y-axis). Each observation is a country.
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Figure 4.5 – (Left) All possible triangles in a directed graph. (Right) Frequency of different types of directed
triangles in the multilayer network.
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Figure 4.6 – Distribution of number of displacements per one digit SITC product.

The second surprising topological feature is the presence of a high number
of triangles. Triangles are surprising because we would not expect a displaced
country to displace a displacer. Yet, this happens frequently. Fig 4.5 shows
on the left the seven possible types of triangles that can appear in a directed
network. On the right, it depicts the counts of each type of triangle in ∼100
randomly chosen networks across all decades, products and parameter choices.
Triangle types 5 and 7 are the most common, 7 being the case in which all three
exporters are displacer of each other.

Fig 4.6 shows the distribution of number of displacements per one digit
SITC product. We can see that there are products that are more dynamic than
others.
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Figure 4.7 – The average cosine distance landscape of the parameter space (projected over the omitted
dimension). From top to bottom: δ -κ (λ omitted); δ -λ (κ omitted); κ-λ (δ omitted).

4.2.2 Role Clusters

Before performing the clustering and the prediction task, we need to determine
the optimal parameter choice, and evaluate the robustness of our results to this
choice. Many topological properties of the multilayer networks are dependent
on our choice of parameters. We investigate the direct effect on clustering
quality of the three parameters δ , κ , λ . For each combination of parameter we
calculate the average cosine distance between a country and the cluster tem-
plate to which it is the most similar.
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Since we have three parameters, the space of this search is three dimen-
sional. To explore it, we project it into three two dimensional slices. We fix
two parameters and then we calculate the average cosine distance (Energy)
across the omitted dimensions. Fig 4.7 reports the result.

From the figure, we can see that the most important parameter that creates a
rugged landscape is λ – the length of a displaced exporter disappearance neces-
sary to determine whether it is really out of the market. This is intuitive: since
we are considering a decade-long period, if we require long disappearances
(e.g. 8 years) the interval in which the displacement could happen becomes
very narrow (e.g. only the first two years of the period). As a consequence,
there are going to be very few edges in our competition network, and displace-
ments happening after (10− λ ) years from the beginning of the decade are
going to be ignored.
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Figure 4.8 – The average role-feature scores per cluster in our example. O = Out-competing, D = Displaced,
T = Transitioning.

On the other hand, the δ -κ space is very smooth, showing that results are
going to be consistent no matter the level of correlation distance we require
(δ ) or the disappearance threshold (κ). Between the two, δ seems to be more
important (there is a weak left to right gradient). Again, this is unsurprising
for the same reason as before: the higher the δ the more demanding we are in
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our edge creation process. For δ > 1.5 we start having degenerate networks
which are sparser and sparser, and where triangles are impossible.

Once we fix δ , κ , λ such as to minimize the clustering average cosine dis-
tance, we obtain our final clusters, dividing countries in out-competing, tran-
sitioning and displaced for each decade and product category. As discussed
in the methods section, we have three templates and countries are matched to
the template most similar to them. Here, we visualize one instance of such
clustering. We average the role scores for all countries in each cluster. Fig 4.8
depicts the result.

From the figure, we can see that the clustering procedure is able to capture
the essence of the network roles. Countries in the out-competing cluster have
small displaced role scores on average, and high out-competing scores. The
converse is true for countries in the displaced cluster. As for the transitioning
countries, they tend to have high scores in both role classes. The only excep-
tion is their low score in the first displaced role. This means that transitioning
countries tend to have low in-degree, although that in-degree is generated from
countries with a very high in-degree – otherwise also the other displaced scores
would be low.

4.2.3 Prediction

Once we fix δ , κ , λ such that we obtain the lowest residual average cosine
distance, we can perform a simple predictive task. We calculate the clusters
using exclusively data from a given decade, say 1971 to 1980. Then, we look
at the exports of each country in that product in the next decade – from 1981
to 1990. We calculate the slope of the decade trend, normalized with the maxi-
mum export value of the top exporter in that product in that period. In this way,
we have for each country its competition network cluster for a decade and its
corresponding export growth in the following decade. We then calculate the
mean export growth rate for each country cluster. We also calculate the stan-
dard error of the mean. This is an out-of-sample prediction, since there is no
information that is used both for calculating the clusters and the growth rate:
the sets of years considered are disjoint.

We perform this operation for all decades for all product classes. Table 41
reports the results – in the previous section we provided the legend for each
product code. For each decade and product class (first two columns) we test if
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Decade SITC Out-competing Transitioning Displaced R2

1960-1970 1 0.048*** 0.005** 0.004** 0.151
1960-1970 2 0.039*** 0.005** 0.004*** 0.169
1960-1970 3 0.043*** 0.005* 0.004* 0.167
1960-1970 4 0.043*** 0.001* 0.003 0.129
1960-1970 5 0.144*** 0.017*** 0.006*** 0.266
1960-1970 6 0.074*** -0.001* 0.006* 0.298
1960-1970 7 0.094*** 0.007*** 0.002*** 0.381
1960-1970 8 0.068*** 0.012** 0.008** 0.186
1970-1980 1 0.025*** 0.005* 0.001** 0.165
1970-1980 2 0.024*** 0.008** 0.001*** 0.310
1970-1980 3 -0.019*** -0.000 -0.000 0.068
1970-1980 4 0.027*** -0.000* 0.001* 0.170
1970-1980 5 0.131*** 0.002*** 0.007*** 0.347
1970-1980 6 0.052*** 0.004*** 0.003*** 0.325
1970-1980 7 0.063*** 0.007*** 0.002*** 0.401
1970-1980 8 0.107*** 0.012*** 0.004*** 0.515
1980-1990 1 0.021*** 0.002*** 0.002*** 0.260
1980-1990 2 0.009*** 0.002* 0.001** 0.163
1980-1990 3 0.008*** -0.000 0.002 0.075
1980-1990 4 0.046*** n/a 0.002*** 0.325
1980-1990 5 0.076*** 0.014*** 0.005*** 0.305
1980-1990 6 0.027*** 0.011 0.002** 0.301
1980-1990 7 0.061*** 0.004*** 0.002*** 0.464
1980-1990 8 0.029*** 0.002** 0.002** 0.148
1990-2000 1 0.042*** 0.008* 0.005* 0.161
1990-2000 2 0.024*** 0.004*** 0.001*** 0.279
1990-2000 3 0.026*** 0.005* 0.003* 0.180
1990-2000 4 0.055*** 0.002*** 0.002*** 0.183
1990-2000 5 0.103*** 0.003*** 0.005*** 0.330
1990-2000 6 0.077*** 0.007*** 0.005*** 0.282
1990-2000 7 0.055*** 0.013* 0.001** 0.227
1990-2000 8 0.024*** 0.003 0.001* 0.141
2000-2010 1 0.026*** 0.006 0.005 0.063
2000-2010 2 -0.013*** -0.000* -0.000* 0.270
2000-2010 3 0.003 -0.000 -0.002 0.005
2000-2010 4 -0.027*** 0.001 0.000 0.050
2000-2010 5 0.013 0.004 -0.001 0.025
2000-2010 6 -0.015* -0.002 -0.003 0.017
2000-2010 7 0.014 0.003 0.000 0.018
2000-2010 8 0.015** 0.001 0.001 0.037

Table 41 – The mean export growths per country. For each decade and product class (first two columns) we
test if the corresponding clusters have an export value growth in the following decade in the same product
significantly higher than zero. From left to right the means of: out-competing, transitioning, and displaced
clusters. Last column is the R2 of a regression using the clusters as fixed effects. (*** 3σ , ** 2.5σ , * 2σ )
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Decade SITC Hi-Slope Med-Slope Lo-Slope R2

1960-1970 1 0.037*** 0.003*** 0.001*** 0.136
1960-1970 2 0.027*** 0.003*** 0.001*** 0.125
1960-1970 3 0.037*** 0.002*** 0.001*** 0.175
1960-1970 4 0.041*** 0.001*** 0.001*** 0.142
1960-1970 5 0.080*** 0.002*** 0.000*** 0.151
1960-1970 6 0.054*** 0.002*** 0.000*** 0.248
1960-1970 7 0.032*** 0.000*** 0.000*** 0.117
1960-1970 8 0.054*** 0.002*** 0.000*** 0.220
1970-1980 1 0.018*** 0.001*** 0.000*** 0.119
1970-1980 2 0.018*** 0.002*** 0.000*** 0.219
1970-1980 3 -0.012** 0.000* 0.000* 0.043
1970-1980 4 0.018*** 0.000*** 0.000*** 0.109
1970-1980 5 0.060*** 0.003*** 0.000*** 0.163
1970-1980 6 0.037*** 0.001*** 0.000*** 0.250
1970-1980 7 0.022*** 0.000*** 0.000*** 0.157
1970-1980 8 0.049*** 0.003*** 0.000*** 0.220
1980-1990 1 0.014*** 0.001*** 0.001*** 0.203
1980-1990 2 0.007*** 0.001*** 0.000*** 0.150
1980-1990 3 0.005*** 0.000** 0.005 0.055
1980-1990 4 0.022*** 0.001*** 0.004** 0.096
1980-1990 5 0.043*** 0.001*** 0.000*** 0.217
1980-1990 6 0.018*** 0.001*** 0.001*** 0.226
1980-1990 7 0.027*** 0.000*** 0.000*** 0.219
1980-1990 8 0.014*** 0.001** 0.000*** 0.083
1990-2000 1 0.035*** 0.003*** 0.002*** 0.174
1990-2000 2 0.018*** 0.002*** 0.001*** 0.176
1990-2000 3 0.026*** 0.000*** 0.003*** 0.218
1990-2000 4 0.031*** 0.001*** 0.001*** 0.093
1990-2000 5 0.074*** 0.002*** 0.000*** 0.247
1990-2000 6 0.048*** 0.002*** 0.001*** 0.188
1990-2000 7 0.031*** 0.000*** 0.000*** 0.120
1990-2000 8 0.012*** 0.000** 0.001** 0.060
2000-2010 1 0.022*** 0.001*** 0.004** 0.072
2000-2010 2 -0.010*** -0.001*** 0.000*** 0.171
2000-2010 3 -0.000 0.001 -0.001 0.000
2000-2010 4 -0.014* 0.000 -0.000 0.021
2000-2010 5 0.003 0.000 0.000 0.002
2000-2010 6 -0.012* -0.002 -0.000 0.021
2000-2010 7 0.007 0.000 -0.000 0.009
2000-2010 8 0.009** 0.000 0.000 0.027

Table 42 – The mean export growths per country. For each decade and product class (first two columns) we
test if the corresponding clusters have an export value growth in the following decade in the same product
significantly higher than zero. Here, the clusters are based on the slope in the previous decade. From left to
right the means of: highest, medium and lowest slopes clusters. Last column is the R2 of a regression using
the clusters as fixed effects. (*** 3σ , ** 2.5σ , * 2σ )
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Decade Out-competing Transitioning Displaced R2

1960-1970 0.079*** 0.014*** 0.007*** 0.269
1970-1980 0.045*** 0.001** 0.004* 0.187
1980-1990 0.030*** 0.000* 0.001* 0.300
1990-2000 0.058*** 0.028* 0.006*** 0.230
2000-2010 0.010 0.006 -0.001 0.018

Table 43 – The mean export growths per country, aggregated to the total export of the country. The coeffi-
cients can be interpreted as discussed in the caption of Table 41.

the corresponding clusters have an export value growth in the following decade
in the same product significantly higher than zero. From left to right the means
of: out-competing, transitioning, and displaced clusters. Last column is the R2

of a regression using the clusters as fixed effects. (*** 3σ , ** 2.5σ , * 2σ , we
have assumed that the error is normally distributed).
Let us consider decade 1960-1970 in product 4 (fourth row). The row tells us
that the countries in the out-competing cluster grew on average 4.3% per year
and the ones in the transitioning cluster by .1% per year. Since the displaced
cluster’s growth average was less than two standard errors from zero, we can-
not be sure that their observed growth rate is significantly different from zero.
The transitioning cluster was at least 2 standard errors away from zero (i.e.
there is a 1 in 22 chance that the result could be observed if the null hypothesis
is true); while the out-competing estimate is more than 3 standard errors from
zero (1 in 370 chance of observing such result from the null hypothesis).

Almost all cases considered show that countries in the out-competing clus-
ters performed well, given that their average slope is significantly higher than
zero (which would imply no growth). Both the displaced and the transition-
ing countries have a slope significantly lower than the countries in the out-
competing cluster. In many cases they still experienced export growth, but that
export growth was significantly lower than the one experienced by the out-
competing countries.

There are two main deviations from this rule. The first involves product 3,
which shows negative coefficients and/or lower R2. This is unsurprising, given
that SITC category 3 is dominated by the product with the highest trade traffic:
crude oil. Since its dynamics are more related to geological discoveries than
to the ability of countries to compete, it is expected to show counter-intuitive
patterns. The second exception is for all estimates using the 2000-2010 data
for calculating the clusters. Also in this case this failure can be attributed to
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external causes. The trade data we have runs only until 2013. 2011-2013 is too
short of a period to detect reliable trends, thus the test data is not good enough
to evaluate our clustering.

One could ask if we couldn’t have reached the same results simply do-
ing an autocorrelation of the growth of the exports. To answer this question,
we have made the same exercise (Table 42) with the difference that instead
of using the competition network to cluster the countries as out-competing,
transitioning and displaced, we have clustered them into three clusters based
on their commercial growth in the previous decade as high, medium and low
slope. Considering that R2 is a statistical measure of how well the regression
predictions approximate the real data points and comparing the correspond-
ing values in both tables, we see that Table 41 shows higher values of R2 in
almost all decades and product categories (the only exception corresponds to
the SITC 3 which, as we mentioned few lines above, is dominated by crude
oil). According to this, the clustering using the competition networks predicts
better the commercial performance of the countries in the following decade.

The method works at different levels of data granularity. To test this, we
repeat the full analysis, collapsing the one-digit product categories to a sin-
gle product, which stands for the entire export basket of a country. Once we
perform the analysis, we still find that the out-competing countries grow their
exports significantly more than the transitioning and displaced countries. Table
43 reports the coefficients, per decade. For instance, in the 1970-1980 decade,
the countries which were classified as out-competing in 1960-1970 grew on av-
erage almost 8%. The transitioning countries grew 1.4%, while the displaced
countries grew only 0.7%. Just as in the previous case, we fail to predict the
last decade for lack of long enough data.

We pick some interesting cases to represent graphically: our best, most
average and worst prediction among the ones reported in Table 41. Fig 4.9
depicts the slope distribution in each cluster as box plots.

In our best case, the out-competing cluster was able to correctly capture
all the eleven fastest growing countries in the manufacturing sector in the 80s.
The twelfth country, Thailand, had less than a third the average export growth
rate in the sector (∼ 4.92%) than the average of the top countries.
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Figure 4.9 – The distribution of growth rates for countries classified in the different clusters. Box plots
report medians (horizontal lines at the median of each box), whiskers (vertical lines extending to the most
extreme, non-outlier data points), caps (horizontal lines at the ends of the whiskers) and fliers (points rep-
resenting data that extend beyond the whiskers). From top to bottom: 1981-90 growth in SITC product 8
(Miscellaneous manufacturing); 1991-2000 growth in SITC product 1 (Beverages and tobacco); and 2011-
13 growth in SITC product 3 (Mineral fuels, lubricants and related materials)
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To give a better sense of this data we focus on one case from this example.
Product 8 includes all manufacturing sectors, except machines (which is prod-
uct 7) or manufactory chiefly focused on a single material (product 6). This
category includes many products with very related machine-intensive produc-
tion process, for instance a variety of garments. One of the rising economies
in this sector in the 80s was China. China grew across the board in this sec-
tor, and displaced many countries in many markets. For instance, in 1986,
China provided only .64% of watches imported in the United States, while
France provided 1.1% (http://atlas.media.mit.edu/en/visualize/t
ree_map/sitc/import/usa/show/8851/1986/). By the end of the decade,
in 1990 China rose almost tenfold in the market to provide 5.4% of US im-
ported watches, while France halved to .58% (http://atlas.media.mit.
edu/en/visualize/tree_map/sitc/import/usa/show/8851/1990/).

For the average case, we focus on the nine fastest growing countries, of
which the out-performing cluster captured seven. The out-performing cluster
captured all four countries that had an average yearly growth rate higher than
5%. Finally, the last plot shows a case in which the clustering did not manage
to make sense of the export patterns. This is due to the fact that every country
is an outlier in this product category, due to the importance of oil. The discov-
ery of a large reservoir or the drying up of another one is unpredictable using
the past trade patterns, and so we expect our methodology to fail in this case.
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Figure 4.10 – The aggregate coefficient values across all product across all decades (y axis) for increasing
decade lag (x axis). A decade lag equalling one means that we predict the decade after the data used to
calculate the cluster (i.e. the main result of the paper). A decade lag equalling two means we predict two
decades after the cluster data: if we had cluster data from 1960 we predict 1980 growth; if we had cluster
data from 1980, we predict 2000 growth.
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One could argue that we are capturing a random fluctuation in world trade
trends. A displacement event might be a fluke of a country entering into a
market niche and then exiting after some time. If this objection would be true,
we should expect to observe reversion to the mean. In other words, if we use
1960 clusters to predict 1970 trade shares, then 1980 trade shares are expected
to shrink by the same amount they grew in 1970. This is not the case.

Fig 4.10 shows the aggregate coefficient values across all products across
all decades for increasing decade lag. In the figure, we exclude product 3 and
clusters from 2000, for the reason explained above. The figure shows average
and standard error of the regression coefficients, per decade lag. For instance,
the first distribution (marked 1) is the average and standard error of the “Out-
competing” column of Table 41. The second distribution reports the same for
the regression coefficients predicting growth rates two decades away: for in-
stance, we calculate the clusters using the 1960-1970 data and we predict the
growth rate in the 1980-1990 period, i.e. two decades away. We see no sign
of mean reversion. In fact, clusters from 1960 still predict – on average – a
significant increase in market share in 2000, four decades later. The standard
error range increase, as expected: the further away the prediction, the more
uncertainty there is.

4.2.4 Validation

Here we validate the role detection methodology against a series of possible
objections. The first issue we address is the arbitrariness of the role detection
parameters.

In the paper we delineate a procedure to choose the δ , κ , and λ parameters.
The role detection strategy introduces other parameters that influence the re-
sult, such as kmax and α . However, we do not provide an equivalent procedure
to choose them. The reason to fix kmax = 6 and al pha = 1 comes from their
meaning. kmax should be set equal to the network’s diameter, because paths
longer than the diameter do not provide any additional topological informa-
tion. On the other hand, α = 1 is the most reasonable choice because it gives
each role an equal weight: choosing a different weight for different role would
require a reason which we cannot provide.

What is the impact of these choices on the quality of our prediction? We
pick product 1 in the 1960 decade to perform such exploration. Fig 4.11 shows
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Figure 4.11 – Robustness tests for kmax (Top) and α (Bottom). For different choices of these parameters,
we report the effect in the R2 of the prediction. We focus on product 1 in the 1960-1970 decade.

their effect on the R2 of our prediction. Note that, since this test involves
directly our predictive task, it cannot be used to find the optimal parameter
choices, because that would imply overfitting. If our best prediction comes
with, say, kmax = 4 we cannot set kmax to that value, because there would be no
way to know this before running the test.

Fig 4.11 (left) shows that kmax has a minimal impact on the prediction qual-
ity. Any value between 3 and 8 is acceptable. Performance deteriorates for
high values, as more and more noisy information from long paths is included,
while it also deteriorates for small values, when not enough information from
the network is included.
Fig 4.11 (right) shows that the impact of α is more difficult to interpret. As a
result, there is no specific guidance whether to choose α < 1 or α > 1.
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We now move to addressing the issue that our methodology is a correlative
analysis. Correlations arise randomly even for null phenomena, provided there
are enough of them. If we generate hundreds of random countries with ran-
dom export patterns, some of them will have anti-correlations strong enough
to clear our δ threshold.

To address this concern we pick 100 random triplets of exporter-importer-
product. For each exporter we generate an expected export value using a zero-
inflated Poisson negative binomial model – meaning that the export value is
directly proportional to the total amount it exported of that product, and in-
versely proportional to the importer-exporter geographical distance, control-
ling for the fact that trade data is sparse and with a heavy tail distribution, as
suggested in (Burger et al. 2009). Then we apply our methodology to detect
displacements. The expectation is that if our methodology is capturing some
real phenomenon, then it should detect more displacements from the observed
data than from the random data. This expectation is confirmed, since on aver-
age we observe two times more displacements than random expectation.

Still, this means that we expect half of inferred displacements to be noise.
This is related to our second validation analysis. Noise connections link coun-
tries at random. In such networks, there are no non-local phenomena. Our role
detection strategy operates under the assumption that the competition network
is non-random, and that the kth role score is meaningful. If a random net-
work with the same in- and out-degree distribution – but without any non-local
phenomena – would return comparable kth role scores, then it means that the
competition network could be dominated by the noisy connections.

To address this issue we generated 80 random networks which preserve
the exact in- and out-degree distributions. Each random network is generated
by picking pairs of edges at random and changing their endpoints, follow-
ing (Hanhijärvi et al. 2009). We perform our analysis and we obtain the out-
competing, transitioning and displaced clusters for our shuffled networks. We
then calculate the adjusted mutual information between the shuffled network
clusters and the observed ones. The average adjusted mutual information we
obtained is equal to .1± .02 (the theoretical maximum for identical clusters is
1, and 0 means completely independent clusters). We consider this as an argu-
ment supporting our clustering, given that shuffled networks with no non-local
interactions return clusters which are not related with the ones we observe.
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Moreover, the clusters obtained from the shuffled networks do not divide
countries well when it comes to their export growth. We replicate the result for
the 1960-1970 decade in product 1 (first row of Table 41). The clusters from
the shuffled network returned very similar growth rates with each other, and
significantly different from the non-shuffled network ones: 1.47% (shuffled)
vs 4.8% (observed) for out-competing, 1.45% (shuffled) vs 0.5% (observed)
for transitioning, and 1.24% (shuffled) vs 0.4% (observed) for displaced. The
shuffled network preserved the in- and out-degrees but disrupted non-local dy-
namics, and this analysis proved that this disruption significantly affects the
ability of sorting through the countries.

A third robustness check involves our clustering procedure. Since we com-
pare the exporter role vectors to templates, our clustering is supervised, i.e. we
impose what the clusters should look like. On the one hand, this enhances the
interpretability of the extracted clusters, on the other hand it might introduce
biases. We test for possible biases by designing an unsupervised version of the
clustering.

In this version, we still fix the number of desired clusters to three (out-
competing, transitioning, displaced), but we do not provide templates. Rather,
we run a kMeans algorithm on the role matrix. We then correlate the results of
the supervised and unsupervised clustering. We perform this test on a subset of
our parameter space. We obtain a correlation of .932± .032. Since we obtain
a very high correlation, we conclude that using a supervised strategy did not
introduce significant bias: the extracted clusters are virtually indistinguishable
from the ones extracted with an unsupervised technique.

Finally, we test whether the role detection and the clustering procedure are
necessary at all. When motivating the method we use, we showed that the
outdegree and the indegree are highly correlated, thus they cannot be used for
prediction. However, one could use their difference for making the predic-
tion. In Fig 4.12 we show the predictive power such operation has. We predict
the growth in export with the logarithm of the outdegree/indegree ratio. In all
cases but two, such test returns worse results than the role detection method –
shown in the figure below the identity line.

Moreover, by clustering the role scores we are compressing their informa-
tion: we go from a vector of 12 numbers to a single variable that can have only
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Figure 4.12 – The relationship between the R2 export growth prediction using the role clusters (x-axis) and
using the logarithm outdegree/indegree ratio (y-axis). Each observation is a decade-product combination:
the x-axis values are the R2 values reported in Table 41, excluding product 3 and the 2000-2010 decade. The
black line is the identity line: observations below the line are the ones for which the role clusters performed
better than the log degree ratio.

three values (out-competing, transitioning, displaced). We do so because we
believe that the role vectors might have fluctuations that might introduce noise,
and that noise will cancel out if we cluster the vectors. To verify if this is the
case, we test the same linear regression model we used in the previous sec-
tion, using the 12 role scores instead of the cluster labels. Every single model
has lower R2 than the corresponding model using the cluster labels (average
−.073± .044). We can conclude that the clusters are indeed improving the
quality of the prediction.

4.3 Discussion

In this work, we adopted an ecosystem approach to the analysis of the global
trade patterns. We see exporters as organisms competing for resources in dif-
ferent market niches. A market niche is a country importing a product. The
assumption is that exporters want to out-compete other exporters, attempting
to occupy the entire market niche. The appearance of a new exporter in a
niche can be followed by the disappearance of another country. This is what
we call a displacement event. We create a formal definition of displacements
and we systematically collect all of them along a period spanning fifty years.
A displacement event can be represented as a directed edge going from the
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out-competing exporter to the displaced one. We call the collection of all dis-
placements a “competition network”, which is a weighted directed multilayer
network, where each layer is a product class.

While the in- and out-degree of a node in a competition network have an
intuitive interpretation – being the number of displacements experienced and
caused by an exporter, respectively –, we show that in practice these measures
cannot be used for classifying countries. The reason is their very high correla-
tion. To fix this issue, we calculate network roles based on in- and out-degree
flows. By clustering nodes according to their role score, we are able to clas-
sify them in three categories: out-competing, transitioning, and displaced. We
show that these classes can be used to predict the future performance of an
exporter in a particular market, in term of growth of total export value.

Apart from its useful application in predicting the economic performance
of countries in the following years, we consider that our model, based on the
creation of a competition network, could be used as a ranking method in any
type of competition. For example, it could be used as an alternative to the Elo
rating system which is a method for calculating the relative skill levels of play-
ers in zero-sum games such as chess (Hvattum & Arntzen 2010).

Our methodology has several issues. First, it does not consider actual dis-
placements: the edge creation process is correlative by design, so we are not
really capturing if the appearance of a new exporter really caused the disap-
pearance of another. Second, it cannot be applied to all product classes: our
predictions fail when considering natural resources composing the vast major-
ity of some countries’ exports, such as crude oil. Finally, we have not built a
formal theory of why the competition network roles are predictive: we do not
control for confounding factors that might drive both growth in exports and the
position of a country in the network.
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Chapter 5
Forecasting International
Conflicts via Machine Learning
and Multilayer Social Balance

Forecasting large geopolitical changes is a key task to improve the resilience of
human society. One of the oldest and most important forecast tasks (not with-
out criticism (Cederman & Weidmann 2017)) focuses on international conflicts
(Richardson 1960, Holsti & Holsti 1991, Pettersson & Wallensteen 2015): Can
we predict when and where a new war will start? Can we estimate how large
the conflict will be? These questions are particularly relevant today, as devel-
opments in network analysis allows us to use a complex system perspective of
international relations (Clauset 2019, Pomeroy et al. 2018, Risi et al. 2019).
This perspective can integrate traditional geopolitical studies (Goldstone et al.
2010, Brandt et al. 2011, Mach et al. 2019) and it is the perspective we adopt in
this work. Here we are interested in narrowing down to the forecasting of the
outbreak of a conflict, without focusing on estimating its size or global impact.
We frame conflict forecasting as a link prediction problem (Liben-Nowell &
Kleinberg 2007, Lü & Zhou 2011). Specifically, we model international rela-
tions as a multilayer network (Kivelä et al. 2014b, Berlingerio et al. 2013). The
nodes of the network are countries. Each layer is a different type of relation
that two countries can establish between each other: trade, migration, sanc-
tions, and so on. Conflicts (wars) are one of these layers and our prediction
target, making this a multilayer link prediction problem (Rossetti et al. 2011,
De Bacco et al. 2017, Hristova et al. 2016).
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Differently from the classical multilayer link prediction, in this chapter we
also consider the sign of a relationship. Some layers in the network represent
positive relationships (trade, flight passenger commutes) while others are nega-
tive (sanctions, visa requirements). Thus, we use elements from social balance
theory (Heider 2013, Antal et al. 2005) in signed networks to augment our link
prediction strategy. Social balance theory has been applied to simple signed
networks (Leskovec et al. 2010b,a, Bachi et al. 2012, Antal et al. 2006, Moore
1978), but not to multilayer ones as we do here. Signed multilayer networks
have been analysed in the past (Szell et al. 2010), but without focusing on the
link prediction problem.
The application of (signed) network analysis to international relations is not
new (Easley & Kleinberg 2010, Vina-Cervantes et al. 2018) although it rarely
focused on the prediction of outbreaks of new conflicts.

To sum up, we build a machine learning framework to solve the signed
multilayer link prediction problem and we apply it to the prediction of new
conflict links in a network of inter-country global relations. We do so by build-
ing a multilayer social balance measure and use it as an input feature for the
decision tree learning algorithm (Safavian & Landgrebe 1991).
We find that international conflicts follow the social balance theory, as our fea-
ture positively contributes to the prediction task – specifically boosting the re-
call performance. This means that we are able to predict that, in the following
year, two countries will be in conflict due to their relations with other common
neighbours in the other layers of the network in the current year. Moreover, if
we look at false positives, we can estimate that, on average, in 55% of cases a
false positive will turn into a true positive in ∼ 2.72 years. This means that in
55% of the cases in which we predict a conflict between two countries at year
y and this conflict does not happen (false positive), the conflict happens (false
positive becomes true positive) on average 2.72 years after the predicted year,
that is at year y+2.72.

5.1 Model

We model international relations as an evolving multilayer network. For the
rest of the chapter, we use the following convention. The multilayer network
is G = {G1,G2, ...,Gt}, with Gt being the network at time t. When not rel-
evant, we omit the temporal superscript t. Each snapshot of the network is
G = (V,E,L) with V being the set of nodes (Vl specifies the nodes with at least
one connection in layer l), E the set of edges (El specifies the connections in
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layer l), and L the set of layers. c1,c2 ∈V are nodes (countries) in the network,
l1, l2 ∈ L are layers, and Nl

c is the set of neighbours of node c in layer l.

Trade

Flights

Sanctions

Conflicts

1) Multilayer Network Model 2) Feature Extraction

...

? Trade Degrees
2,1

? Flights Degrees
2, 2
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? Flights CNs
1

? Multilayer Social
Balance Score

3) Machine Learning 4) Conflict Prediction

Figure 5.1 – Our workflow. From left to right: multilayer signed network model, feature extraction (high-
lighting the main contribution of this work: the multilayer social balance score), machine learning, output
prediction.

The nodes of the network are individual countries. Each layer contains a
different type of international relationship two countries can establish between
each other. Some of these relations are positive (trade, migration, air passenger
flows), some are negative (visa requirements, sanctions, conflicts) and one of
them is neutral (Geographical border). Our main question is:

Given the status of the network at time t, would countries c1 and c2
connect on the conflict layer at time t +1?

We answer the question by building a machine learning framework. Figure
5.1 shows the workflow. First, we build the multilayer network, collecting data
from public datasets – described in the Material and Methods section. We have
datasets spanning different time periods: here we focus on the 1962-2012 pe-
riod, as it is the one for which we have the largest overlap in our data sources.
We drop data from years outside this period. Then, we extract a series of fea-
tures from the multilayer network. We feed a decision tree with these features,
which provides a binary label for each pair of countries c1 and c2. The label
equals to 1 if the algorithm predicts an edge in the conflict layer between the
countries, 0 otherwise.
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The majority of features are simple features such as the degree and the
number of common neighbors of c1 and c2 in each layer -described in Chapter
2. However, we focus in particular on a non-trivial feature we extract from the
combination of the entire multilayer structure around c1 and c2: their multi-
layer social balance.

(a) PPP (b) PNN (c) NNN (d) PPN

Figure 5.2 – Signed triangles, with positive (green) and negative (red) relationships. Balanced triangles: (a)
and (b) – odd number of positive relationships. (c) and (d) are classically considered unbalanced, although,
under certain circumstances, (c) can be considered a balanced or neutral configuration.

Classical social balance theory studies triangles in signed networks. Fig-
ure 5.2 shows four possible triangles in an undirected signed network. Some
of these triangles are “balanced” meaning that the relationships are in equi-
librium. In real world signed systems, we expect to find an overexpression
of balanced triangles and an under expression of unbalanced ones. This ex-
pectation is usually met and thus can be used for link prediction: in a signed
network, missing links are more likely to carry the balanced sign.

However, in a multilayer network, depending on which layers we focus,
we can build a number of different triangles, some of which can be balanced
and some of which that are not. Figure 5.3 shows an example.

We solve the problem by considering all possible pairs of layers l1 and l2
and counting the number of potential triangles that a missing edge between
c1 and c2 could close. If l1 and l2 carry the same sign (both positive or both
negative) we expect to find a positive edge between c1 and c2, otherwise a
negative one. Formally:

MLBalc1,c2 = ∑
l1,l2∈L

∑
z∈(Nl1

c1∩Nl2
c2 )∪(N

l2
c1∩Nl1

c2 )

l1l2,

where the product of two layers (l1l2) is the arithmetic product of their
signs: 1 if they have the same sign, −1 if they are of unlike sign.
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Figure 5.3 – The multilayer social balance problem. In a monolayer signed network, the sign of
the next edge is simply the one balancing the triangle. In a multilayer signed network, we need to

look at all possible triangle combinations across layers.

5.2 Results

5.2.1 Social Balance

Our multilayer signed network has eight layers. Four of them are positive:
alliances, trade, migration, and flight traffic. Three are negative: visa require-
ments, sanctions, and conflicts. One is neutral: whether the countries share
a border or not. See Materials & Methods section for information about data
sources and cleaning. Figure 5.4 shows the number of nodes and edges for
the allies, trade, sanctions, and conflicts networks – for which we have yearly
snapshots. This figure simply shows a count of nodes per year regardless of
whether they are new nodes or old nodes re-entering the network. Table 51
shows the same counts for the flights, visas and migration layers – for which
we have a single or few snapshots, and also for the geographical border, which
is normally the same over the years.

Note from Figure 5.4 that the conflict layer is extremely sparse, with |E| ∼
|V | or even |E| < |V | for many years, meaning an average degree of two or
lower. The allies layer is even sparser, and shows interesting peaks corre-
sponding to the first (1991) and second (2003) Gulf wars, and the Balkan war
(1998), which were NATO-wide conflicts. This shows how NATO was quiet
on the frontal country-level action during the actual Cold War, and started be-
ing openly active only after the fall of the Soviet Union.
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Figure 5.4 – Number of nodes and edges per year for the trade, allies, sanctions, and conflicts
layers.

Figure 5.5 shows the complementary of the cumulative distribution of the
average degree per time step in the network (that is: total number of edges
across all ts, divided by the number of ts). The figure shows a degree of het-
erogeneity in network density – with conflict and allies being the sparser layers
and visa being the one with most edges.

Layer # Nodes # Edges
Flights 214 1,565
Visas 245 30,849
Boder 152 568
Migration 1990 173 1,566
Migration 2000 173 1,171
Migration 2010 171 1,281

Table 51 – Number of nodes and edges per year for the Flights, Visas, Border and Migration networks.
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Figure 5.5 – Complementary cumulative distribution (CCDF) of the average yearly degree across all layers
of the network for the period from 1962 to 2012. CCDF is the probability (y-axis) that a node has an average
degree equal to, or higher than, a certain value (x-axis).

Since we are planning to apply social balance theory to predict conflicts,
we should check whether social balance theory applies in the multilayer net-
work of international relations. We thus count the number of triangles of each
type we find in the network across all snapshots – note that we ignore the bor-
der sharing layer as it is not signed. There are 38.2M balanced triangles in the
multilayer network (PPP + PNN) against 147.5M unbalanced triangles (PPN +
NNN). We need to compare the counts with the expected number of triangles
of each type, given the number of nodes and edges in each layer.

The expected number of triangles with two edges in layer l1 and one edge
in layer l2 is given by:

Tl1,l2 =

(
|Vl1,l2 |

3

)
p2

l1,Vl1 ,l2
pl2,Vl1 ,l2

,

where: Vl1,l2 = Vl1 ∩Vl2 is the set of nodes that l1 and l2 have in common
(there can be no multilayer triangle if the three nodes involved are not present
in both layers), and pl1,Vl1 ,l2

is the probability that two nodes in Vl1,l2 connect in
layer l1 (similarly for pl2,Vl1 ,l2

). Note that it is possible that l1 = l2 and, in that
case, the formula reduces to the expected number of triangles in a single layer
network:

(|V |
3

)
p3.
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We find that the multilayer network of international relations follows so-
cial balance. The ratio between observed versus expected balanced triangles is
1.52, while the same ratio for unbalanced triangles is only 0.31: there is one
and a half balanced triangles per expected one, but only one unbalanced trian-
gle per three expected.

Note that, among the balanced types, PPP is vastly more overexpressed
(2.68) than PNN (1.49), meaning that the number of observed PPP triangles
is 2.86 times higher than what we would expect if the triangles would close
with a randomly selected sign, versus 1.49 for PNN. This means that, in our
particular network, in which we have not only more positive layers but also
two (Conflicts and Sanctions) of the three negative layers are very sparse in
comparison with the rest, social balance is much more suited for the prediction
of positive, rather than negative, links. Since we are interested in predicting a
negative link type (conflicts), we expect social balance to underperform.

5.2.2 Forecasting Conflicts

For the period between 1962 and 2012 we have around 1500 conflicts be-
tween countries. For Trade, for example, around 45000 links and for migra-
tion, around 73000 links. So, as we can see, conflicts data is very sparse. For
this reason, for the machine learning purpose, we have decided to split our data
chronologically and not using k-fold validation.
K-fold validation involves partitioning a sample of data into complementary
subsets, performing the analysis on one subset, and validating the analysis on
the other subset and in most methods multiple rounds of k-fold validation are
performed using different partitions, and the validation results are combined
(e.g. averaged) over the rounds to give an estimate of the model’s predictive
performance.

If we choose to go for k-fold validation the risk that we take is randomly
select training datasets that include a big portion of the conflict links, so our
model will overestimate the frequency of conflicts and therefore we will have
a large number of false positive. Basically the decision of splitting the data
chronologically was made to respect and deal with the sparseness of the con-
flicts.

The decision tree we use to forecast conflicts was trained using the multi-
layer network for the period from 1962 to 2005 to have the other 7 years (2005
to 2012) to test it. This achieves a precision of 0.62 and a recall of 0.86 (how
these values are calculated is explained in Section 3.4).
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Figure 5.6 – ROC (a) and Precision-Recall (b) curves for Decision Tree predictive model.

Figure 5.6(a) is a performance measurement for classification problem at vari-
ous thresholds settings. ROC is a probability curve and AUC represents degree
or measure of separability. It tells how much model is capable of distinguishing
between classes. Higher the AUC, better the model is at predicting correctly
the different classes. This curve plots two parameters: True Positive Rate
(TPR) which is a synonym for Recall and False Positive Rate (FPR) which is
the ratio between the number of negative events wrongly categorized as posi-
tive (false positives) and the total number of actual negative events (regardless
of classification). Figure 5.6(b) shows the trade off between precision and re-
call for different threshold. A high area under the curve represents both high
recall and high precision, where high precision relates to a low false positive
rate, and high recall relates to a low false negative rate. High scores for both
show that the classifier is returning accurate results (high precision), as well as
returning a majority of all positive results (high recall).

To predict a conflict edge at time t + 1, we drop the feature recording
whether the two countries were in conflict at time t, due to very strong autocor-
relations: multiyear conflicts should not be used to predict themselves. We also
drop the edge presence in the allied layer, as it’s trivial that allies will declare
wars to aggressors of their allies. We have also created a “short” version of the
data, where conflicts are compressed for their duration. In other words, for a
conflict spanning 1992-1996, in the short table we only have a conflict edge at
t = 1992, rather than as in the long table at t = 1992,1993,1994,1995,1996.
This seems to hurt recall, while allowing us to be more precise (precision 0.88,
recall 0.38). This is unsurprising, as we already noted that the conflict layer is
extremely sparse, and it is doubly so in the “short” version of the data.
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Figure 5.7 – Recall (top) and precision (bottom) scores for Decision Tree predictive model. Label legend:
Degree_l_cx = degree of country x in layer l; Triangles_l_Tt = number of triangles of type t between the
two countries in layer l (see Material and Methods for a depiction of the different triangle feature types);
Balance long = our multilayer balance score; all = combination of all features (with contribution zero by
default); everything else = presence of an edge in layer l.

Figure 5.7 shows the feature importance to the precision and recall evalua-
tions for the short version of the data. Feature importance refers to techniques
that assign a score to input features based on how useful they are at predicting
a target variable. This concept is explained in details in section 3.7.
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In Figure 5.7 we can see that our balance score is one of the features that play
an important role in the prediction of conflicts. However, in this case in which
we consider all the attributes (including degrees, triangles and so on) in our
model, balance score is far from being one of the most important features.

In Figure 5.7 we can see that the two most important features are the Con-
flict degrees (since our conflict data is indirect, the suffixes c1 and c2 have the
same meaning: Countries involves in conflicts), and for Recall also the Trade
degree for the importer country c2. According to the figure, Conflict degrees
add 0.7−0.8 to precision and around 0.4 to recall and Trade degree add around
0.25 to recall. Testing our model using the same training set, we have found
that the precision and recall have values of 1, which means that when we con-
sider all the attributes, we are overfitting our model. So we have decided to
run our model discarding the features that are the best candidates as being the
cause of overfitting.
Once you decide to drop a class of features, you don’t get to pick and choose
which ones you drop inside that class, you have to drop all of them. So, in our
case, we have dropped the Degree class.
After discard the degree values in our model and we have found that the Bal-
ance score is the second most important feature for Precision and the fourth
for Recall (see Fig 5.8).
These results demonstrate that not only International conflicts follow social
balance but that Balance score is a powerful feature for conflicts prediction.

We perform a number of robustness checks.

• As is implied by the names "Tree" and "Forest," a Random Forest is
essentially a collection of Decision Trees (In Section 3.2 we have ex-
plained in detail these to types of supervised learning).
A decision tree is built on an entire dataset, using all the features/variables
of interest, whereas a random forest randomly selects observations/rows
and specific features/variables to build multiple decision trees from and
then averages the results. After a large number of trees are built using
this method, each tree "votes" or chooses the class, and the class re-
ceiving the most votes by a simple majority is the "winner" or predicted
class. This is the reason why in most of the cases Random Forest is
more accurate. So, one could ask why aren’t we using random forest
directly instead of decision tree. In this case in which the main goal is
to proof the importance of Balance score in the prediction of conflicts,
and in general, in all the cases in which explainability between variable
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Figure 5.8 – Recall (top) and precision (bottom) scores for Decision Tree predictive model. In this
case we have discarded the Degree Class. Label legend: Degree_l_cx = degree of country x in layer l;
Triangles_l_Tt = number of triangles of type t between the two countries in layer l (see Material and Meth-
ods for a depiction of the different triangle feature types); Balance long = our multilayer balance score; all
= combination of all features (with contribution zero by default); everything else = presence of an edge in
layer l.
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is prioritised over accuracy, the results are easier to analyse when using
decision tree as machine learning (Liaw et al. 2002).

Since random forest chooses features randomly during the training pro-
cess, it does not depend highly on any specific set of features.

This randomized feature selection makes random forest much more ac-
curate than a decision tree, so it is suitable for situations when we have a
large dataset, and interpretability is not a major concern, but as we men-
tioned before, the main goal of this work isn’t the accuracy but to show
how international conflicts follow social balance and how our Balance
score is a key feature in the prediction of conflicts.

Nonetheless, we have tested a Random Forest classifier, Figure 5.9 shows
the feature contributions.
Since we have rather strong correlations between variables and random-
forests are not ’overfitting’ the differences, it can be the case, that the
performance is the same. Moreover as a random forest has multiple
trees, some of them can even ignore the feature of interest and take a
correlated one. This would explain the fact that most of the features
have the same Importance score.
When a dataset has two (or more) correlated features, from the point
of view of the model, any of these correlated features can be used as
the predictor, with no concrete preference of one over the others. But
once one of them is used, the importance of others is significantly re-
duced since effectively the impurity they can remove is already removed
by the first feature. As a consequence, they will have a lower reported
importance (this would explain the difference in the importance for the
same feature using the different classifiers, see Figure 5.8 and Figure
5.9). When interpreting the data, it can lead to the incorrect conclusion
showing equal or similar importance to correlated features (like we see
in Figure 5.9) and/or showing that one of the variables is a strong predic-
tor while the others in the same group are unimportant, while actually
they are very close in terms of their relationship with the response vari-
able.

On the other hand, random forest is a more cautious predictor, minimiz-
ing false positives and even more false negatives (precision 0.82, recall
0.86), and the contribution of multilayer social balance holds.
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Figure 5.9 – Recall (top) and precision (bottom) scores for Random Forest predictive model., Label legend:
Degree_l_cx = degree of country x in layer l; Triangles_l_Tt = number of triangles of type t between the
two countries in layer l (see Material and Methods for a depiction of the different triangle feature types);
Balance long = our multilayer balance score; all = combination of all features (with contribution zero by
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5.3 Discussion

• We relax the prediction task, by not limiting our prediction to the t + 1
snapshot. In practice, every time we predict a conflict, we look arbitrar-
ily far in the future for the beginning of the conflict. We find that, if a
false positive will turn into a true positive – which happens in 55% of
cases –, it does so on average in 2.72 years. Figure 5.10 shows a time-
line of such predictions: the first dot is the year of our prediction and the
second dot is the year of the actual conflict.
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Figure 5.10 – Our model has 179 false positive. This mean that our model has predicted 179 times a conflict
that didn’t happen. In this Figure we present only 25 of the 99 (55%) cases in which a false positive became
true positive after an average delay of 2.72 years. Grey dots represent the year in which the conflict was
predicted to happen and the red dots the year in which the conflict happened.

5.3 Discussion

In this chapter we aim to forecast the outbreak of international conflicts. We do
so assuming that international relations follow social balance theory: countries
will tend to form coherent groups of allies. We extend social balance theory to
the multilayer signed network model, creating a multilayer balance measure.
When we use multilayer social balance as a feature of a machine learning al-
gorithm, we see that it positively contributes to the prediction of links in the
conflict layer. This is robust to the choice of machine learning algorithm, to
different views of the data, and we also show that false positives tend to trans-
form in true positives given a lag of less than three years on average.
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Our model has a number of limitations. First, we do not really use any
theory of international relationship in our work. Even if forecasting and pre-
diction are related to the same concept, that is future oriented, there is a fine
line that differentiates them. Prediction is concerned with estimating the out-
comes for unseen data. For this purpose, you fit a model to a training data set,
which results in an estimator f (x) that can make predictions for new samples
x. Forecasting is a sub-discipline of prediction in which we are making pre-
dictions about the future, on the basis of time-series data. According to this,
although the choice of using social balance has some theoretical grounding,
we eschew from any causal implication: that is, we are not predicting con-
flicts, only forecasting them.
Second, the data collection is limited: countries can establish more relation-
ships between them than the ones we see here (co-signing international treaties,
having diplomatic missions, etc). As a result, our social balance measure is
necessarily incomplete. Third, given the structure of the multilayer network,
social balance is much more suitable for the prediction of positive, rather than
negative, links. (See section 5.2.1) Since we are predicting a negative relation-
ship – conflicts – we are not using the best feature possible, although we did
not know this beforehand.

Notwithstanding these limitations, even it wasn’t the main goal of this
work, we have achieved good precision and recall values. This is even more
impressive given the extreme sparsity of international conflict data. There was
already some prior work showing that social balance holds at the international
level (Antal et al. 2006, Moore 1978), but this is the first proof that it does
so even considering multiple different international relationships, not just al-
liances and military pacts.

We can extend the present work in multiple ways. First we can address
some of the limitations. Specifically, we could include more possible rela-
tionships between countries: economic ties, business travel, diplomatic rela-
tionships, hacking attacks, trade tariffs, and so on. Second, we could use the
multilayer social balance theory to try and predict positive, rather than nega-
tive, outcomes: a task for which the measure might be more suited. Finally,
we could apply multilayer social balance theory also to micro systems as well,
rather than looking at the level of international relationships between state ac-
tors.
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5.4 Materials and Methods

5.4.1 Data

Our multilayer signed network includes eight layers, trade, migration, flights,
border, visas, sanctions, conflicts and allies. Since our main goal is to show that
international conflicts follow social balance, we had to assign signs (positive
or negative) to each of the layers in order to create different kind of triangles
between them. According to this we assume trade, migration, flights and al-
lies as positive relations. We consider that if two countries exchange products,
passengers in flights for business, tourism or any other purpose, if inhabitants
of one country migrate to the other, and specially, if two countries are allies in
a war, it is a sign of good relation between them, or at least it is an indication
that the countries don’t have any kind of restriction between them. The border
layer remained as neutral because we cannot say whether sharing a border is
a positive or a negative relationship. Sanctions, Visas and Conflicts are the
negative layers of our system.
Here we report our data sources for each of them. Note that some layers are
directed and some are undirected. For consistency, all directed layers are ren-
dered undirected by making the edges symmetric.

5.4.1.1 Positive Layers

Trade. The trade data comes originally from the CEPII dataset (Gaulier & Zig-
nago 2010), further cleaned and publicly available from http://atlas.cid.
harvard.edu/engage#data-download). The original dataset splits yearly
country-country trade flows into different product (SITC). Links are weighted
accordingly to the trade intensity value in millions of dollars. The data spans
from 1962 to 2013. For this data we had to aggregate all the categories of
products because we were only interested in the total amount of the trades be-
tween the each pair of countries per year. Since this layer is dense, we perform
further data cleaning (via backboning) as we detail below.

Migration. For the migration data we rely on official statistics from the
UN about the stock of migrants originating from one country and living in the
other (DESA 2013). We have four snapshots: 1990, 2000, 2010 and 2013.
We associate each year with the closest year in the data. For instance, the
migration layer at time t = 1988 uses data from the 1990 snapshot. We find this
appropriate given the strong autocorrelation in the data. As Figure 5.11(left)
shows, the correlation of the logarithm of stocks between snapshots is always
higher than 0.96, even at 23 years of distance.
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Figure 5.11 – The strong autocorrelations in our data. (Left) The migration layer across years. (Right) The
flight layer: 2010 versus 2014 installed seating capacity (one observation per country pair).

Flights. To create the flight layer we obtained data from OAG https://ww
w.oag.com/. OAG collects data of all flights between all airport and provided
us with the total installed seating capacity for planes flying from country c1
to country c2. We only have information for the years 2010 and 2014. Just
like in the migration layer, we interpolate the data, on the basis of its strong
autocorrelation (Figure 5.11(right)). We also performed network backboning
on this layer, as we detail below.

Allies. The allies information comes from the same source as the conflict
layer. For each conflict, the dataset includes the full coalition on both sides. If
two countries are on the same side, we establish an link in the allies layer. We
discuss the data source more in depth below.

5.4.1.2 Negative Layers

Visas. We collected information about the current visa regime between pairs of
countries from Wikipedia (https://en.wikipedia.org/wiki/Category:
Visa_requirements_by_nationality). The source reports different types
of visa regimes (“visa required”, “Electronic Entry Visa”, “Visa on arrival”,
etc). Since this is a negative network, we establish a link between countries if
the country requires a visa or outright refuses to admit citizens of the other
country. This is a necessarily static dataset that only includes information
about the current status, which is a large limitation of our study. However, it is
the only way we can include such layer, as historic data about visa regimes is
notoriously sparse and noisy (De Haas & Czaika 2013).

Sanctions. We use the Threat and Imposition of Economic Sanctions
(TIES) dataset, version 4 (Morgan et al. 2014). For each sanction we have
the beginning and end date (if any) and the countries involved. The data spans

100



5.4 Materials and Methods

from 1945 to 2005. We have an edge in the layer at time t if, in year t, the two
countries had a sanction relationship (either a new one or the continuation of
an old one).

Conflicts. The conflict data comes from the Uppsala Conflict Data Pro-
gram (Gleditsch et al. 2002, Pettersson & Eck 2018) (https://ucdp.uu.se
/). The data includes both country-level wars as well as civil wars and internal
threats. We drop intra-country conflicts from the data, focusing exclusively on
global level events – when there was at least a state-level actor on both sides of
a war. The data spans from 1939 to 2016. The data includes information about
the coalitions on each side. We create a biclique connecting all countries in a
coalition with all countries in the opposite coalition – while we create coalition
cliques per conflict in the allied layer.

5.4.1.3 Neutral Layer

Geographical distance. Conflicts are more likely to happen between neigh-
bouring countries for a number of logistic reasons. Therefore, we augment our
machine learning features by also considering information on whether the two
countries share a border. This is a layer in our network, although it does not
carry a sign, as we cannot say whether sharing a border is a positive or a neg-
ative relationship. The data comes from the CEPII dataset (Mayer & Zignago
2011).

5.4.2 Preprocessing

5.4.2.1 Data Cleaning

As mentioned in the main text, for all layers with yearly snapshots, we only
consider the 1962-2012 interval.

The trade, migration, and flight networks are weighted and noisy: the like-
lihood of a weak and insignificant relationship between any two countries is
high. We thus need to estimate statistical significance and drop the edges which
do not represent robust signals between countries. We do so via network back-
boning, specifically using the noise corrected backboning technique (Coscia
& Neffke 2017). The backboning algorithm generates an expectation of the
edge weight given the propensities of nodes c1 and c2 of connecting. It then
allows to filter edges with a parameter δ which represent the minimum t-score
level we allow in the network. All edges with a significance lower than δ are
removed. We fix the following δ values per layer: flights 100, migration 2.95,
trade 6.16.
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We chose the noise corrected backboning because it is the backboning
technique which maintains the largest number of nodes in the network while
at the same time reducing the most the number of spurious edges. In the flight
layer, the backboned version has 214 nodes (against 216 original nodes in the
non-backboned version), and 1,574 edges (against 4,391). Figure 5.12 shows
the yearly evolution of the number of nodes and edges before and after back-
boning for the trade and migration layers.
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Figure 5.12 – Number of nodes and edges before and after the backboning process for the trade and migra-
tion layers.

5.4.2.2 Feature Extraction

There are three classes of features we feed to the machine learning classifier.
Each layer provides one or more features in all three classes, unless otherwise
specified. The fourth feature class is a multilayer feature – the multilayer so-
cial balance – which we already described.

Feature Class #1. The first feature class we extract is the presence of an
edge in a layer. Thus this feature uses the correlation (or the anti-correlation)
of a given layer with the conflict network. For instance, if there was a trade
link between c1 and c2 at time t, we will have a 1 in this feature when trying
to predict a conflict at time t +1. We omit this feature for the conflict layer, as
ongoing conflicts spanning multiple years would make this feature overwhelm
everything else – and it is not interesting to predict that an ongoing conflict will
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continue. We also omit this feature in the allies layer, as it is equally obvious
that two allies will engage in the conflict together.

Feature Class #2. The second feature class we extract is the degree of the
nodes in a layer. This generates two features: the degree of c1 and the degree
of c2. So, if c1 had seven trade links at time t, the feature equals to 7 when
predicting conflicts at time t +1.

Feature Class #3. The final feature class at the layer level is the number of
triangles in which c1 and c2 are involved, There are four types of possible tri-
angles, generating three features – as two triangle types are equivalent. Figure
5.13 shows the possible type of triangles:

c2c1

(a) T1

c2c1

(b) T2

c2c1

(c) T3

c2c1

(d) T4

Figure 5.13 – The four types of triangles we count to generate the “Triangle_x” features.

• Triangle T1 is a closed triangle: the number of common neighbors be-
tween c1 and c2 if they are connected.

• Triangle T2 is a triangle open on the c1-c2 side: the number of common
neighbors between c1 and c2 if they are not connected.

• Triangles T3 and T4 are triangles open on a different side: the com-
bined degree of c1 and c2 if they are connected, minus their common
neighbors.

5.5 Additional Results

5.5.1 Predictions vs Conflicts

Our model was able to assess the number of conflicts expected to happen in the
following year. See Figure 5.14 for details. We can see that our model using
both Decision tree and Random Forest as predictive method is, in general,
timid. This means that, the predictions are in the vast majority of the years
under the right number of conflicts.
As we can see, when it comes to predicting the number of conflicts that will
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happen in a year, or in other words, how bad a year is going to be based on
the number of conflicts that will happen, Decision tree is a better predictor. In
the figure we can see how in certain years the number of predictions is almost
equal to the real number of conflicts. On the other hand, random forest in its
predictions remains always below the real number of conflicts.
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Figure 5.14 – Number of conflicts vs the number of conflicts predicted per year for Decision Tree (Left)
and Random Forest (Right) predictive model.

2005 2006 2007 2008 2009 2010 2011 2012
Year

0

20

40

60

80

100

120

Nu
m

be
r o

f C
on

fli
ct

s/
Ri

gh
t P

re
di

ct
io

ns

Number of Conflicts
Right predictions of Conflicts

0 1 2 3 4 5 6 7
Year

0

20

40

60

80

100

120

Nu
m

be
r o

f C
on

fli
ct

s/
Ri

gh
t P

re
di

ct
io

ns

Number of Conflicts
Right predictions of Conflicts

Figure 5.15 – Number of conflicts vs right number of conflicts predicted (True Positive) per year for Deci-
sion Tree (Left) and Random Forest (Right) predictive model.

Figure 5.15 shows the evolution of our forecasting accuracy per year. We
can see that in both cases (Decision Tree on the left and Random Forest on the
right), although the right predictions curve follows more or less the conflicts
curve, the predictive models are timid, in both cases the prediction curve is
below the conflicts curve during all the time frame.

The percentage of false positives for the Decision Tree and Random For-
est are 32% and 17% respectively. On the other hand, the percentage of false
positives that become true positive after a delay of 2.72 and 2.46 are 55% and
89% for Decision Tree and Random Forest respectively.

Figure 5.16 shows the percentage of right predictions per year for both De-
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Figure 5.16 – Percentage of right predictions (True Positives) per year for Decision Tree and Random Forest
predictive models

cision tree and Random Forest predictive method. As we can see, both of them
are very similar and go from 45%−65% approximately.

On the other hand, since conflict data is very scarce, only 1,564 conflicts
in 50 years, our model is very well trained to predict when a conflict will NOT
happen. This is demonstrated by the high percentages of true negatives ob-
tained for both predictive models, 99.93% and 99.98% for Decision tree and
Random Forest respectively. This means that both models have extremely high
accuracies.
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Figure 5.17 – Number of conflicts vs the number of conflicts predicted per year for Decision Tree (Left)
and Random Forest (Right) predictive model for the "short" version of the data.

Figure 5.17 shows the number of conflicts per year vs the number of con-
flicts predicted for the "short" version of the data. Remember that in the short
version of the data we consider the initial year of each conflict. As we can
see, even if it is a very sparse data (only 56 conflicts in the period of 7 years),
Decision Tree predictive model has a remarkable accuracy. On the other hand
Random Forest didn’t predict any conflict for this version of the data.

105



CHAPTER 5. FORECASTING INTERNATIONAL CONFLICTS VIA MACHINE

LEARNING AND MULTILAYER SOCIAL BALANCE

5.5.2 Conflicts vs Visa requirement

The visa layer is particularly problematic, given that it shows a static snapshot
of the current status, which was different in the past, however, from 1962 to
2012 there were 1564 conflicts and 1273 were between countries with a visa
requirement link, it means that 81.4% of the conflicts (wars) during this period
were between countries that in certain way didn’t have the best relation. Figure
5.18 shows this effect. Virtually (96.8%) all conflicts in the 2001-2005 period
were between countries with a visa requirement link. This is expected as those
snapshots are the closest temporally to our visa data. However, only ∼ 50% of
conflict in 1996 were between countries with a visa link. We can expect that
those countries had a visa requirement at that time, which has been relaxed by
now.
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Figure 5.18 – Percentage of Conflicts between countries that have a Visa requirement.

Interestingly enough, this does not seem to hurt our precision. In fact, if
anything, precision goes down as we move closer to the present, as Figure
5.16 shows. This is probably due to many confounders factors – as mentioned
before, the number of actual conflicts makes the prediction harder – but it
shows that the static nature of the visa layer is not necessarily a significant
problem.

5.5.3 Conflicts vs Sanctions

In (McCormack & Pascoe 2017) the authors demonstrate that through their use
as tools of military containment, sanctions play an unappreciated role in inter-
national politics. They also show that sanctions can be used to smooth shifts
in relative power that would otherwise lead to preventive war.
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5.5 Additional Results

The question of how states might use sanctions in order to display their resolve
over a disputed issue in international politics has been central to the sanctions
literature. Because sanctions are costly, a theory explaining their imposition
as an alternative to war might look to their signalling properties – because of
their costliness, sanctions or the threat of sanctions provide a way for states to
demonstrate their resolve, either through sinking costs or tying hands (Banks
et al. 1991, Fearon 1997). If sanctions serve a signalling purpose, the sanc-
tioner might use the costliness of sanctions to demonstrate its own resolve on
the issue at hand. Economic sanctions may include various forms of trade bar-
riers, tariffs, and restrictions on financial transactions (Haidar 2017).

Conflicts Sanctions
Afghanistan United States
Syria South Africa
Iraq Germany
Saudi Arabia Egypt
United States Russia
Viet Nam Viet Nam
United Kingdom China
Somalia Italy
North Korea Israel
Israel Romania
Portugal Japan
Palestine India
Australia Brazil
Uganda Chile
France Argentina

Table 52 – Top 15 of countries more involved in Conflicts (left) and Sanctions (right)

In our dataset, from 1564 conflicts (remember that in this work when we
mention conflicts we refer specifically to wars) that happened in the period
from 1962 to 2012 only 4 of them were preceded or followed by a sanction.
Table 52 shows the Top 15 of the countries involved the most in Conflicts (left)
and Sanctions (right). Conflicts network isn’t a directed network, so we just
counted the number of conflicts per country and make a single table. By the
other hand, Sanctions network is directed, so what we have done is to split it
between sanction-sending and sanction-receiving countries and make the Top
countries list considering the both roles. We found that only 3 countries are in
both lists, United States, Viet Nam and Israel.
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CHAPTER 5. FORECASTING INTERNATIONAL CONFLICTS VIA MACHINE

LEARNING AND MULTILAYER SOCIAL BALANCE

Although the efficacy of sanctions is debatable and sanctions can have unin-
tended consequences (Lee 2018), according to our results, they are an effective
measure so that countries that have some type of problem between them, solve
them in a civilized way and avoid reaching conflicts in which weapons are in-
volved.

Table 52 shows us that there are different kind of countries in both lists,
countries with different economic, historical, social and geographical condi-
tions. Our results show that the countries that receive or impose sanctions
tend not to engage, in general, in wars and that sanctions can be used to off-
set shifts in military power that would otherwise cause commitment problem-
driven wars. This argument indicates that sanctions can be used as a tool for
peace (McCormack & Pascoe 2017).
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Chapter 6
Discussion

In this work we have made an analysis, using the tools that the study of net-
works provide us, of different aspects regarding relations between countries.
We have considered the world as a great multilayer network in which the nodes
represent the countries and the links have different meanings depending on the
problem addressed. The versatility of networks allowed us to consider links
from commercial relationships to competencies in an ecosystem. In the two
works presented in this thesis, the analysis of multilayer systems has been fun-
damental, since this has allowed us to analyze the competitions for exports
between countries considering all the different categories of products and in
another work to create a conflicts forecasting model that consider as input some
of the relationships that countries establish between them.

In the first work we have adopted an ecosystem approach to the analy-
sis of the global trade patterns. We have represented exporters as organisms
competing for resources in different market niches. A market niche was de-
fined as country importing a product. The fundamental assumption was that
exporters want to out-compete other exporters, attempting to occupy the entire
market niche. The appearance of a new exporter in a niche can be followed
by the disappearance of another country. This is what we have called a dis-
placement event. We have created a formal definition of displacements and we
have systematically collected all of them along a period spanning fifty years.
A displacement event was represented as a directed edge going from the out-
competing exporter to the displaced one. We have called the collection of all
displacements a “competition network”, which is a weighted directed multi-
layer network, where each layer is a product class.
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While the in- and out-degree of a node (country) in a competition network
have an intuitive interpretation – being the number of displacements experi-
enced and caused by an exporter, respectively –, we have showed that in prac-
tice these measures cannot be used for classifying countries. The reason is
their very high correlation. To fix this issue, we have calculated network roles
based on in- and out-degree flows. By clustering nodes according to their role
score, we were able to classify them in three categories: out- competing, tran-
sitioning, and displaced. We showed that these classes can be used to predict
the future performance of an exporter in a particular market, in terms of the
growth of total export value.
This classification is a meaningful one: when testing the future export pat-
terns of these countries, we show that out-competing countries have distinctly
stronger growth rates than the other two classes.

This methodology has some issues and could lead to future developments.
First, it does not consider actual displacements: the edge creation process is
correlative by design, so we are not really capturing if the appearance of a new
exporter really caused the disappearance of another. We have not built a formal
theory of why the competition network roles are predictive: we do not control
for confounding factors that might drive both growth in exports and the posi-
tion of a country in the network.

In the second work presented in this thesis, we have used a multilayer
signed network model to forecast the outbreak of international conflicts. We
did so assuming that international relations follow social balance theory: coun-
tries will tend to form coherent groups of allies. We have extended social bal-
ance theory creating a multilayer balance measure. When we use multilayer
social balance as a feature of a machine learning algorithm, we see that it pos-
itively contributes to the prediction of links in the conflict layer.
Apart from that, our machine learning model can forecast with high precision
how conflictive the next years will be, and not only that but also the countries
that will be involved. We also showed that false positives tend to transform
into true positives given a lag of less than three years on average.

However, this work has also some limitations. First, we do not really use
any theory of international relationship in our work. We are actually not pre-
dicting conflicts, only forecasting them. Second, the data collection is limited.
As a result, our social balance measure is necessarily incomplete. Third, given
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the structure of the multilayer network, social balance is much more suitable
for the prediction of positive, rather than negative, links and since we are pre-
dicting a negative relationship – conflicts – we are not using the best feature
possible, although we did not know this beforehand.
Notwithstanding these limitations, we achieve good precision and recall val-
ues. This is even more impressive given the extreme sparsity of international
conflict data.

In the development of this thesis we have made use of the tools offered by
the study of networks to scrutinize relations between countries from a different
perspective. Our goal hasn’t been to understand the historical, political or
economic reasons why the relations between countries are in certain way, but to
use them as input for predictive models. We consider the countries as elements
of a big multilayer complex network in which the links between them can
represent any kind of relations that the countries can establish between them.
This perspective is easy to implement and it has been proved, with the accuracy
of the predictive models presented in this thesis, to be an effective one.
We open with the aforementioned works the possibility of further exploring
international relations from this perspective.

Future Work

Fingerprints in the world-trade market

As we have mentioned before, the common thread of the works presented
in this thesis is the study and analysis of the effects of the appearance and
disappearance of both positive and negative links on the dynamics and orga-
nization of networks. Continuing in this same line of thought, we have begun
the study of the traces, whether positive or negative, of certain economic and
historical events that in one way or another have impacted actual society. We
wanted to include different types of events, both positive, such as economic
agreements and negative, such as wars. We present these preliminary results
as a preview of what could be a very interesting future work in the same line
of research that we have handled throughout these years in the preparation of
this thesis.

So far the events that we have studied are: two of the most important eco-
nomical agreements in the last 20 years, the creation of the Euro as unique
currency for a very select group of countries in Europe, the signing of the eco-
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nomical agreement between countries in South America, MERCOSUR and the
Gulf War and the war between Iran and Iraq.

The fundamental questions that we try to answer with this work are: Do po-
litical tensions have economic consequences? Do economic agreements have
a positive impact on trade as expected?

According to Franko, “the theoretical underpinning of free trade is the
theory of comparative advantage, which states that countries should trade
those goods that they can most efficiently produce to maximize global output.”
(Franko 2018).
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Figure 6.1 – Total shares inside of Eurozone (left) and Mercosur (right).

Figure 6.1 shows the evolution in time of the total export market shares
(including all the different categories of products, See section 4.1.1) within the
corresponding countries belonging to each agreement, before, during and after
the two economical events that we are considering, the creation of the Euro and
MERCOSUR. In this case, the export market shares are calculated by dividing
the exports between the countries within the agreement by the total exports of
the countries within the agreement to the rest of the world (including the coun-
tries within the agreement), and it is expressed as percentage.

Let’s start from the fact that, although in both cases the main goal has been
the reinforcement of the commercial relations between the involved countries,
these two events have different economic purposes and were created under dif-
ferent conditions and within different historical, social, economic and cultural
contexts. Therefore their economic effects are not expected to be the same.
However, considering that these events occurred with the purpose of increasing
trade within their corresponding involved countries, we can observe in Figure
6.1 that this expected behaviour is not obvious and that if we want to delve
into the effects of these events and discover if the economies involved have
been really benefited independently, a graph of the total export shares within
the zones is not a enough source of information. Trade system is complex, and
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must be treated and studied as such (Bhattacharya et al. 2008).

The other two events that we have considered are two of the most important
wars of the end of the last century, the Gulf War and the war between Iran
and Iraq. In the context of the study of networks, a war between countries
is represented with the appearance of new negative links between the nodes
(countries) participating in that war. The effects of war are widely spread and
can be long term or short term (Machel et al. 1996). Effects of war include
mass destruction of cities and have long lasting effects on a country’s economy.
(Olmsted 2015)
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Figure 6.2 – Total shares Before, During and After Iran-Iraq (left) and Gulf (right) Wars

Once more, we have to start by clarifying that the reasons that led to these
wars are totally different. Despite this, the economic and political effects on
the countries that participate in wars have common denominators and for this
reason it is natural to expect a more or less similar effect in both cases (Olm-
sted 2015).
Figure 6.2 shows us how the negative effects of wars on trade among partici-
pating countries can occur abruptly as in the case of the Gulf War or in a more
slightly progressive way and can even not cancel completely the trade relations
between the countries involved as in the case of Iran-Iraq war. Once again, the
complexity of the relationships between countries makes it impossible to mea-
sure the consequences of the wars in the network considering only the total
changes in exports between the participating countries.

The fundamental objective of this work raises the study and analysis of
the effects of the appearance of new positive and negative links in a network
brought to an economic and political context (Schweitzer et al. 2009). Since
nodes (countries in the case) and links are parts of a chaotic complex system,
the appearance of these new links in the network affects to each of the ele-
ments in a different way, for this reason, if we want to delve into the details
of the effects on the structure and dynamics of temporary networks after the
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appearance of new links, the study of the network as a whole is insufficient.
The differences in the effects lie in the structure itself of the network (cluster-
ing coefficient, degree distribution, etc.) and the initial role of each node, for
example, nodes with a greater number of connections will be affected differ-
ently from nodes with few connections (Maoz 2010). To evaluate the effects of
these appearances it is important and necessary to make use of the tools pro-
vided by the study of temporal networks to analyze structural changes and re-
organizations of previously existing connections (Lambiotte & Masuda 2016,
Johansson 1995).
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