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Organic light-emitting diodes (OLEDs) have entered our everyday life as we can 

nowadays find them in smartphone and television screens. Their widespread use 

can be attributed to their ability to outperform technologies based on classical 

semiconductors, whereas this is not possible or not yet achieved in other fields 

of optoelectronics such as solar cells. Current OLED efficiencies (i.e. the light 

output versus the power input) match or even surpass those of inorganic LEDs. 

Furthermore, the ability for ultra-thin processing and direct color emission 

(instead of having to rely on liquid crystals) makes them very successful in 

display technologies. In the following sections, a brief historic overview of the 

development of OLEDs is given. 

1.1. 1st Generation OLEDs 

OLEDs have come a long way since the discovery of electroluminescence in 

1936.1 Destriau was the first to show that ZnS is able to show emission when an 

electric field is applied. In 1953, Bernanose et al. for the first time observed 

electroluminescence in organic materials by introducing acridine orange (Figure 

1.1) in a cellulose matrix and applying an alternating electric field.2 10 years 

later, Pope et al. placed a layer of single crystal anthracene between two silver 

electrodes and applied a voltage to this (Figure 1.1).3 At over 400 V, the result 

was a faint, but typical emission for anthracene. When anthracene was mixed 

with tetracene, the fluorescence emission of tetracene was observed. 

 

Figure 1.1: Molecular structure of acridine orange (left) and device architecture and 

active materials used by Pope et al.3 (right).

In 1987, Tang and VanSlyke created the first electroluminescent device that 

paved the way for modern day OLEDs at the Eastman Kodak Company (Figure 

1.2).4 They described their device as being a double layer diode, wherein two 

organic layers consisting of Alq3 and a diamine were used. Alq3 acts as a green 

emitter, whereas the diamine layer is used for monopolar charge carrier (hole) 
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Figure 1.2: Device architecture applied by Tang and VanSlyke and molecular structures of 

Alq3, the diamine layer and the colored emitters coumarin 540, DCM1 and DCM2.4, 5 

transport. Around the same time, Adachi et al. published a series of papers in 

which they expanded the device structure to three layers, including hole 

transport (HTL) and electron transport layers (ETL) between which the emitting 

layer is sandwiched.6, 7 Various emitter materials such as anthracene, coronene 

and perylene6 and a 12-phthaloperinone derivative7 were used. The two-layer 

architecture from Tang and VanSlyke worked rather well because the emitters 

have relatively good electron-transporting properties. Switching to the three-

layer architecture removed this need as both barrier layers provide enhanced 

charge carrier transport and so the pool of emitter materials could be expanded. 

Adachi and coworkers further illustrated this by incorporating a hole transport 

layer with emitting properties, effectively combining the emitter and hole-

transporting layer into one.8 

In 1989, Tang et al. were able to reach substantial device efficiencies by 

sandwiching an Alq3 layer doped with green and orange-red emitters between 

two layers of pure Alq3 (Figure 1.2).5 The higher photoluminescence quantum 

yield (PLQY), i.e. the ratio of emitted to absorbed photons, of the doped films, 3 

to 5 times larger with respect to that of pure Alq3 (PLQY = 8%), was expected to 

afford an increased device performance. Whereas devices using Alq3 as the sole 

emitter afforded an efficiency of 1%, the new sensitized devices reached up to 

3%. The device efficiency is defined here as the ratio the number of photons 

emitted by the device to the number of charges injected into the device. 

In these types of sensitized devices, electrons and holes that are injected from 

the anode and cathode move through the device until they encounter each other 

and recombine to form excitons (i.e. bound electron-hole pairs). Device tuning, 
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making use of additional layers such as the hole and electron transporting 

layers, ensures that the electrons and holes recombine in the so-called active 

layer. This active layer usually consists of a ‘host’ material, i.e. a large gap 

semiconducting material capable of transporting the charge carriers to their 

destination, and an emitting material, on which the charges recombine.  

Soon afterwards, in 1990, Burroughes et al. took a different route with the 

advent of organic conjugated polymers.9 Their work involved the synthesis of a 

poly(p-phenylene vinylene) (PPV) conjugated polymer (Figure 1.3). The main 

advantage foreseen for a polymer emitter would be an improvement of the 

device stability as small molecule devices often suffer from recrystallization and 

other structural changes. However, due to the insolubility of the final polymer, a 

precursor polymer had to be processed from solution onto the bottom electrode, 

which itself was deposited on a suitable substrate, followed by a thermal 

annealing step in vacuum in which the final PPV polymer was formed. Indium tin 

oxide (ITO) was chosen as the bottom contact because of its semi-transparency, 

whereas a thin layer of aluminum was used as the top contact. In this device 

architecture, the polymer acts as the host and emitter at the same time, 

allowing charge recombination to occur on the polymer chains, followed by 

exciton diffusion until they decay and light is emitted. Unfortunately, the device 

efficiencies only reached up to 0.05%, which was attributed to failures at the 

polymer/thin metal interface. 

Since then, several strategies have been used to synthesize soluble, and thus 

readily processable, polymers for OLED applications. These strategies often

 

Figure 1.3: Polymer structures used in OLED devices. 
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encompass the incorporation of large, sometimes branched, aliphatic chains as 

these prevent stacking (and thereby emission quenching) between the 

conjugated polymer backbones. Other aromatic motifs such as thiophene, 

fluorine and phenylene have been used. Changing the polymer backbone leads 

to a variation in emission color, but could also lead to changes in device stability 

and processability. Ohmori et al. (1991) made devices with poly(3-

alkylthiophene) (P3AT)10 and poly(9,9-dihexylfluorene)11 as the active materials 

because both polymers are well soluble with emission in the orange-red and 

blue, respectively (Figure 1.3). Unfortunately, efficiencies have not been 

reported for these devices. In 1992, Grem et al. prepared a poly(p-phenylene) 

based device, similar to that of Burroughes et al., in which a precursor polymer 

was processed and the final polymer was obtained after thermal annealing 

(Figure 1.3).12 With blue emission, the device only managed to reach efficiencies 

of 0.01–0.05%, similar to the results with unfunctionalized PPV polymers. In the 

meantime, progress was made using PPV polymers and D. Braun and A.J. 

Heeger went on to functionalize the original PPV polymer with methoxy and 2’-

ethylhexyloxy side chains to create poly(2-methoxy-5-(2’-ethylhexyloxy)-1,4-

phenylene vinylene) or MEH-PPV (Figure 1.3).13 This functionalized PPV polymer 

has the benefit of being soluble in organic solvents, allowing facile processing 

without a thermal annealing step.  

Development in the field of polymer OLEDs has continued, although polymers 

such as MEH-PPV are still being used as prototypical reference materials. One 

notable example is the PDY-132 developed by Merck Gmbh, which is also 

dubbed “super-yellow” (Figure 1.3).14 This PPV-based copolymer has a high 

PLQY in the yellow region and devices with 5.3% efficiency have been obtained, 

which is among the highest values reported for polymer-based OLEDs. Early 

incorporations of polymer OLEDs can be found in for example the Norelco 

electric shaver by Philips (Figure 1.4). 

In addition to polymer OLEDs, researchers have investigated different ways of 

combining facile solution processing with excellent photophysical properties. 

Dendrimers can be designed to have extended π-conjugated structures, giving 

them semiconducting properties, but because of their branched nature, they are 

far more soluble than their polymer counterparts. Early designs were based on 

an emissive core surrounded by either a fully conjugated or partially saturated
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Figure 1.4: Norelco electric shaver by Philips with a polymer OLED screen.15 

periphery. Using conjugated or partially conjugated branches, the charge 

transport from the electrodes to the active material could be improved. In 1996, 

Wang et al. built a dendrimer around an anthracene unit using phenylene

 

Figure 1.5: Dendritic active materials studied by Wang et al.16 (top left), Pillow et al.17 

(top right), Kwok and Wong18 (bottom left) and Zou et al.19 (bottom right). 
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ethynylene units to create the branches (Figure 1.5).16 Unfortunately, the 

devices suffered from solid-state aggregation and self-quenching. Pillow et al. 

designed a dendrimer with a porphyrin core and stilbene branches (Figure 1.5), 

resulting in red emission.17 Kwok and Wong used distyrylbenzenes with 

poly(benzyl ether) type dendritic wedges (Figure 1.5).18 Their dendrimer showed 

blue emission and despite its non-conjugated periphery, it was found that 

energy transfer does occur between the branches and the core. In 2003, six-arm 

star-shaped oligofluorenes were synthesized by Zou et al. (Figure 1.5), affording 

blue emission and a maximum device efficiency of 6.8%.19  

Despite substantial efforts towards solution-processable polymer and dendrimer 

OLEDs, small molecule OLEDs have remained the main area of interest. This is 

mainly due to the lower device efficiencies obtained using polymer and 

dendrimer active materials, which themselves are a result of device defects that 

are introduced via solution processing and defects in the polymer backbones 

introduced during their synthesis. Device defects occur as the hole/electron 

transporting/blocking layers are often small molecule organic materials, which 

can partially redissolve during the addition of novel layers, making pin-holes 

more likely and leading to a poor active layer morphology. In contrast to 

polymers, small molecule emitters can be readily purified using sublimation 

techniques and they allow device fabrication via vapor deposition techniques, 

affording a higher degree of control over the layers and their morphology in 

multi-layer device stacks. 

 

In the above section, a brief summary of the history of the first generation 

OLEDs, based on simple fluorescent emitters, is provided. While some 

historically important studies are mentioned, the overview on fluorescent OLEDs 

given here is far from exhaustive. 

1.2. 2nd Generation OLEDs 

Shortly after the initial discovery by Tang and VanSlyke,4 an alternative emission 

mechanism in the form of phosphorescence was used to develop OLED devices. 

Phosphorescence is the emission from the triplet state and is not commonly 

observed in organic fluorophores (e.g. in the materials from the previous 

section) (Figure 1.6). The underlying mechanism can be explained using 
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quantum mechanics. For most organic materials, the ground state is of singlet 

nature. Absorption of a photon leads to excitation from the singlet ground state 

to one of the singlet excited states, depending on the energy of that photon. 

Because the excited triplet states have a different spin configuration, a change 

of spin is required to go from the singlet to the triplet state. Because of the laws 

of conservation of momentum, the change in spin angular momentum should be 

paired with a change of momentum elsewhere, typically in the orbital angular 

momentum. Hence, the term spin-orbit coupling (SOC) is coined to describe the 

connection between the spin and orbital angular momentum in systems ranging 

from atoms to large organic compounds. Large SOC values are typically 

observed when heavy atoms such as lead (Pb), platinum (Pt) or iridium (Ir) are 

introduced, whereas intermediate values can be found for the heavy halogens

 

Figure 1.6: Jablonski diagram showing possible transitions. VR = vibrational relaxation; 

IC = internal conversion; ISC = intersystem crossing. 

iodine (I) and bromine (Br). To achieve direct absorption into the triplet state 

and subsequent emission back to the ground state, a certain amount of SOC is 

needed. The lack of SOC in common organic molecules, however, makes them 

unable to show phosphorescence. Furthermore, when an electron and a hole 

recombine in an OLED device, the formed exciton can be either of singlet or 

triplet nature. Because there is only one possible singlet and three possible 

triplet configurations, the excitons are formed in a ratio of 25% singlets and 

75% triplets. Since phosphorescence is not possible for the 1st generation OLED 

emitters, the maximum internal quantum efficiency (IQE) can only be around 

25%. The IQE is defined as the proportion of charge carriers that are converted 

into photons. The external quantum efficiency (EQE), so far simply referred to as 

the device efficiency, is expressed as the number of photons leaving the device 
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with respect to the number of charge carriers injected into the device.20 The EQE 

is subjected to the light outcoupling efficiency, in which nearly 75% of all 

emitted light is lost. Light outcoupling is mainly diminished by internal reflection 

and destructive interference.21 

The second generation of OLED materials was designed to overcome these 

issues by the incorporation of heavy atoms. As they lead to an increase in spin-

orbit coupling, giving rise to phosphorescence, intersystem crossing (ISC) 

becomes viable (Figure 1.6). The same SOC that leads to phosphorescence also 

enables ISC from the singlet to the triplet excited state. In an OLED device with 

such a heavy metal containing emissive material, the 75% of triplet excitons 

that are inherently formed during charge recombination can now be exploited 

through the phosphorescent pathway. Subsequently, the 25% singlet excitons 

can be converted to the triplet state via ISC, leading to a maximal IQE of 100%. 

Nevertheless, even with an IQE of 100%, light-outcoupling efficiencies of around 

25% prevent EQE’s of more than 25%. 

In 1990, Kido et al. used a terbium (Tb3+) complex of acetylacetonate to 

construct a two-layer device with TPD as the hole-transporting layer (Figure 

1.7).22 The device emitted green light with a very narrow spectral width, another 

advantage of using heavy-metal complexes making them ideally suitable for 

display applications. In 1993, Kido et al. reported on a red-emitting 

tris(thienyltrifluoroacetylacetonato)Eu3+ complex which was spin-coated in a 

poly(methylphenylsilane) film because it was not possible to evaporate this 

complex (Figure 1.7).23 These two complexes are among the first examples of 

heavy-metal complexes being applied to the field of OLEDs with the intent of 

boosting the device performance in terms of EQE and color purity. Baldo et al. 

 

Figure 1.7: Terbium and Europium complexes used by Kido et al., with TPD as the hole-

transporting material.22, 23 

used a phosphorescent 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrine 

platinum(II) (PtOEP) dye as the emitter doped in Alq3 (Figure 1.8).24 With this 
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combination, more than 90% energy transfer from the Alq3 host to the porphyrin 

emitter was obtained, leading to an IQE and EQE of 23% and 4%, respectively. 

At the time, this was a record efficiency for a red-emissive OLED. The same 

research groups then reported two more red-emitting porphyrin-based OLEDs, 

again using Alq3 as the host material (Figure 1.8).25 2,7,13,17-Tetraethyl-

3,8,12,18-tetramethyl-21H,23H-porphyrine platinum(II) (PtOX) and 5,15-

diphenyl-21H,23H-porphyrine platinum(II) (PtDPP) showed similar red-shifted 

emission as PtOEP, but with varying photoluminescence quantum yields. PtOX 

and PtOEP have quantum yields of 0.44 and 0.55, respectively, as is expected 

due to the minimal structural change. PtDPP has a QY of only 0.16 as the phenyl 

groups on the porphyrin meso-positions likely lead to more non-radiative losses. 

As a result, the devices obtained with PtOX and PtOEP showed similar EQEs, 

whereas the devices containing PtDPP lagged behind. 

 

Figure 1.8: Phosphorescent Pt(II)-porphyrin emitters used by Baldo et al.24 and Kwong et 

al.25 

Introduction of a dopant into a host material was already described by Pope et 

al. as they showed doping of tetracene in anthracene gave predominant 

emission of the former.3 Tang and VanSlyke used Alq3 as a host for various 

fluorescent emitters5 and the same host material was used for the porphyrin-

based OLEDs by Baldo et al. and Kwong et al. Doping of an emitter material in a

suitable host has, in these examples, been shown to be advantageous for the 

overall efficiency of the devices. One of the key factors in achieving good 

efficiencies is the proper energy level alignment of the emitter and host 

molecules.26 Ideally, the energy levels of the host encompass those of the 

emitter to ensure exciton formation on the dye molecule. In the case of exciton 

formation on the host molecules, exciton diffusion can occur and they will 

migrate to the dye, which essentially acts as an exciton trap (Figure 1.9). The 

emitter can therefore achieve higher IQE values as emission from the host or 

other device layers is minimized. Additionally, energy transfer from the host to
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Figure 1.9: Simplified schematic of the energy levels in an OLED, ensuring exciton 

formation in the emitting layer. 

the emitter should be as high as possible and ideally approach 100%. Another 

advantage of using doping is that doped devices often give narrower 

electroluminescence than non-doped devices.26 This is particularly interesting 

when looking at full color displays where mixing of the primary colors red, green 

and blue (RGB) is necessary to obtain white light. A lower color purity (i.e. broad 

emission) leads to washed out colors. Doping also enhances stability as the 

emitter is no longer crystalline and the ETL and HTL have less tendency to 

crystallize. As doping is typically done in low amounts (<20%), the emitter 

molecules experience less self-quenching and ultimately less material is needed 

to construct efficient devices. This is particularly useful as the emitter is usually 

the most expensive component of an OLED device. 

The next important improvement on the device architecture came with the 

introduction of additional layers to enhance charge carrier confinement in the 

emitting layer and thereby improve the overall device efficiencies. Up until this 

point, only two-layer (hole-transporting and emitting) or three-layer (hole and 

electron-transporting and emitting layer) architectures were used. Ikai et al. 

introduced a hole and exciton-blocking layer consisting of perfluorinated 

compounds in a four-layer architecture (Figure 1.10).27 The device consisted of 

electron (Alq3) and hole (α-NPD) transporting layers between which the 

hole/exciton-blocking layer and emitting layer are sandwiched. The hole/exciton-

blocking layer is deposited between the emitting and electron-transporting layer 

to ensure that either holes or excitons are not able to migrate into the electron-

transporting layer for charge recombination or relaxation (Figure 1.10). This is
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Figure 1.10: Device architecture and materials used in the work of Ikai et al.27 

possible due to the low-lying HOMO and LUMO which are necessary for effective 

blocking of holes and injection of electrons, respectively. The green emitter 

tris[2-phenylpyridinato-C2,N]iridium(III), better known as Ir(ppy)3, was doped 

in 4,4’,4”-tri(N-carbazolyl)triphenylamine (TCTA), which also has hole-

transporting properties. Additional layers include an aluminum cathode, a lithium 

fluoride (LiF) electron injection layer and an ITO anode (Figure 1.10). EQEs of up 

to 19.2% were obtained using this device architecture. 

Iridium arose as one of the most suitable heavy metals to obtain highly emissive 

complexes with color tuneability, owing to the strong SOC of the iridium atom 

and strong metal-ligand charge transfer. In 2001, Adachi et al. reported three 

novel iridium complexes with modified ligands to obtain blue-emissive 

complexes.28 Due to the requirement of having high-energy singlet and triplet 

states, blue-emissive complexes are more difficult to obtain than their green or 

red counterparts. By gradually making the ligands more electron poor 

(Ir(ppy)2(acac) to Ir(Fppy)2(acac)) and by switching an acetylacetonato ligand 

for a picolinate (FIrpic), the emission was shifted from 516 to 465 nm in dilute 

chloroform solution (Figure 1.11). Using FIrpic, an EQE of 5.7 ± 0.3% was 

obtained, which was a significant improvement over existing technologies at that  

time for a blue emitter. In the same year, Adachi et al. also reported on the
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Figure 1.11: Iridium complexes and their emission reported by Adachi et al.28, 29 

highly efficient red-emitting complex bis(2-(2’-benzo[4,5-α]thienyl)pyridinato-

N,C3’)iridium(acetylacetonate) [btp2Ir(acac)] (Figure 1.11).29 With an 

electroluminescence maximum at 616 nm, it comes close to the ideal color

coordinates for video display standards. A maximum EQE of 7.5% was achieved, 

which is a significant increase over the 4% reported for the red-emitting PtOEP 

porphyrin (vide supra). Tuning of the emission color was further exploited by 

Tsuboyama et al., who reported on a large number of red-emitting iridium 

complexes in which the ligand character was made more donating or accepting 

depending on the addition of specific functional groups such as methyl or CF3.
30 

Varying the ligand strength not only changes the emission color, but also has 

implications on the phosphorescence quantum yield (ΦPh), as it changes the 

positions of the singlet and triplet energy levels (Figure 1.12). Ir(piq)3 was found 

to give very efficient red emission (λmax,Ph = 603 nm, Φp = 0.26) and a 

maximum EQE of 10.3 %.  

Next to platinum and iridium-based complexes, other heavy metals such as 

ruthenium, osmium and rhenium have also been used.31 Due to the higher 

oxidation potentials of these materials with respect to iridium, the prerequisites 

for the ligands are more strict and less design freedom is available. In 

combination with the (generally) higher EQEs for iridium-based devices, iridium 

has received most attention.32-35  
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Figure 1.12: Iridium complexes synthesized by Tsuboyama et al.30 

1.3. 3rd Generation OLEDs 

The commercial success of the second generation OLEDs has inspired 

researchers to further investigate the possibilities to further improve the device 

performance in terms of stability, lifetime and sustainability. One of the possible 

ways to do so is to apply the concept of thermally activated delayed 

fluorescence (TADF). 

1.3.1. The history of TADF 

The discovery of TADF dates back to the beginning of the 20th century. In 1929, 

Delorme and Perrin discovered delayed fluorescence emission from certain 

uranium salts both in the solid state and in solution.36 Measuring the salts at 

room temperature and at -180 °C (liquid oxygen), they observed a decrease in 

the emission lifetime, whereas the phosphorescence lifetime would go up upon 

decreasing the temperature. They therefore attributed the emission to some 

kind of delayed fluorescence. More than a decade later, Lewis et al. investigated 

the fluorescein molecule (Figure 1.13) in a solid state boric acid glass medium 
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and found delayed emission by carefully looking at the emission and its lifetime 

at various temperatures.37 In 1961, Parker et al. measured the time-resolved 

emission of eosin (Figure 1.13) in glycerol and ethanol and found the first 

example of temperature dependent delayed emission in solution.38 They found

 

Figure 1.13: Chemical structures of fluorescein and eosin Y. 

evidence for thermally activated ISC as well as direct ISC from an upper 

vibrational energy level of the singlet state to the triplet state. A prerequisite for 

these processes to occur efficiently is the proximity of the lowest excited singlet 

and triplet states, so that a small thermal barrier is left for either the ISC or the 

reverse ISC (rISC) process. The term E-type (E for eosin) delayed fluorescence 

was coined to describe the phenomenon. A year later, when investigating 

solutions of anthracene and phenanthrene (Figure 1.14), they observed similar 

delayed emission, but from singlet and triplet states that were further apart in 

energy. Therefore, a thermally activated process was ruled out. Instead, Parker 

et al. found that triplet-triplet quenching (also known as triplet-triplet 

annihilation or TTA) was most likely responsible for the formation of singlet 

excitons at very long lifetimes.39 This phenomenon occurs when two excited

 

Figure 1.14: Chemical structure of phenanthrene. 

molecules in the triplet state are in close proximity and energy transfer from one 

molecule to the other takes place. Two triplet excited states are converted to 

one singlet excited state and one molecule in the ground state, after which the 

singlet excited state can decay as delayed fluorescence. The process of TTA was 

originally named P-type delayed fluorescence after the molecule phenanthrene 

for which it was first discovered. TTA is here only mentioned because of its 

historical relevance. The detailed mechanism will be discussed later on when 

comparing the various triplet upconversion strategies.  
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Nishikawa et al. found E-type delayed fluorescence when trying to analyze 

porphyrinoid materials (Figure 1.15) based on their phosphorescence, but 

 

Figure 1.15: Porphyrinoids used by Nishikawa et al.40, 41 

instead discovered delayed emission with a similar spectral position as the 

regular fluorescence.40, 41 On top of the thermally activated nature, they 

postulated that the energy gap between the first excited singlet and triplet 

states should be less than 11 kcal mol-1 (0.5 eV) as compounds exhibiting a 

larger singlet-triplet gap would not show delayed fluorescence.41 Substituting 

the free-base porphyrins with a metal ion influences the rate of ISC and rISC 

according to the atomic number of the substituted metal ion, affording increased 

rates when going from H to Mg2+ and Zn2+. While E-type or thermally activated 

delayed fluorescence was found in numerous small molecules, such as the 

aforementioned ones but also in C70 fullerenes,42 benzophenones43 and 

aromatic thiones,44 a suitable application was not found.  

1.3.2. The theory of TADF 

In 2009, Endo et al. discovered TADF in tin(IV)-porphyrins and decided to 

implement them in OLED devices (Figure 1.16).45 Their results were in line with 

the findings of Nishikawa et al.41 that substituting the free-base porphyrins can 

lead to a significant increase in the observed TADF intensity. Although the 

compounds still contained a “heavy” metal atom, this report sparked the interest 

in the field and the search for new TADF materials began as scientists started to 

understand the design principles behind TADF in fully organic molecules. 

Following Endo’s 2009 work on tin-porphyrins,45 the amount of literature on 

TADF increased significantly and fully organic emitters for OLED applications 

were reported soon thereafter. In 2011, the Adachi group published 2-biphenyl-

4,6-bis(12-phenylindolo[2,3-a]carbazole-11-yl)-1,3,5-triazine (PIC-TRZ) as the
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Figure 1.16: SnF2-porphyrins used by Endo et al. to construct TADF-based OLEDs.45 

first metal-free TADF compound for OLED applications, affording an EQE of 5.3% 

when doped in 1,3-bis(N-carbazolyl)benzene (mCP, 6 wt%).46 In the next two 

years, 10 reports with new emitters were published, of which 9 having Adachi as 

the corresponding author47-55 and 1 from the Monkman group56. The best 

performing compounds from these reports are displayed in Figure 1.17 and 

some experimental data are listed in Table 1.1. Although these data were 

obtained through varying methods for the different compounds, they provide a 

preliminary means of comparison. With EQEs ranging from 4.4% for the earliest 

work to >13% in the later works, a huge improvement in OLED efficiency was 

already achieved. With emission maxima between 485 and 553 for most of the 

materials, the compounds were largely green-yellow emitting and only one blue 

OLED device had been reported until this point, with red TADF OLEDs not being 

reported at all. 

As was found by Parker et al.38 and Nishikawa et al.41, the mechanism of 

thermally activated delayed fluorescence relies on a series of excited state 

processes (Figure 1.18). When talking in terms of photoluminescence, a photon 

is absorbed and an electron is promoted from the (generally) singlet ground 

state to a singlet excited state according to the energy of the absorbed photon 

and the position of the singlet energy levels of the molecule in question. The
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Table 1.1: Overview of fully organic TADF reports from 2011-2013. 

Compound λmax,em 
a ΔEST (meV)b Max EQE (%) Date Reference 

PIC-TRZ 466 110 5.3 01/2011 46 

Spiro-CN 540 57 4.4 04/2012 47 

CC2TA 490 —c 11.0 08/2012 48 

SDB-tBuCbz 424 —c 9.9 08/2012 49 

PXZ-TRZ 544 —c 12.5 09/2012 50 

ACRFLCN 485 100 10.1 10/2012 51 

4CzIPN 508 83 19.3 12/2012 52 

2PXZ-OXD 517 150 14.9 05/2013 53 

DBTDO-tBuCbz 416 350 —c 05/2013 56 

tri-PXZ-TRZ 553 —c 13.3 09/2013 54 

ACRSA 494 30 16.5 09/2013 55 

a Estimated from electroluminescence or doped-film photoluminescence spectra.  
b Calculated from the onset of prompt fluorescence and phosphorescence or via an 

Arrhenius plot. c These values were not reported. 

 

Figure 1.17: Chemical structures of the TADF emitters listed in Table 1.1. 

excited state rapidly decays to the first excited singlet state in accordance to 

Kasha’s rule,57 which states that internal conversion (IC) from a higher energy 
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excited state to the lowest energy excited state of the same multiplicity occurs 

faster than any other excited state pathway. After the IC step, ISC from the 

singlet to the triplet state can occur. As previously discussed for the 2nd 

generation OLEDs, a change in the spin angular momentum has to be overcome 

by a change of orbital angular momentum through spin-orbit coupling. The use 

of heavy-metal atoms facilitates this transition due to their inherently larger 

SOC effect. However, the compounds used by Parker et al.38 and Nishikawa et 

al.41 did not contain heavy-metal atoms. The intersystem crossing rate (kISC) is 

dependent on both the energy difference between the respective singlet and 

triplet states as well as the amplitude of SOC. A smaller energy difference 

between the singlet and triplet states leads to a larger kISC. Following the initial 

intersystem crossing, reverse ISC (rISC) can occur, whereupon the exciton goes 

from the triplet state back to the singlet state. Because the triplet configuration 

is generally lower in energy than the singlet configuration for a given state in 

organic compounds, this rISC process is endoenergetic and an energy barrier

 

Figure 1.18: Schematic representation of the photophysical processes occurring upon 

photon absorbtion (top) or electrical excitation (bottom). IC = internal conversion, kS
nr/k

T
nr 

= rate of non-radiative relaxation from the singlet or triplet state, kPF = rate of prompt 

fluorescence, kDF = rate of delayed fluorescence, kISC/krISC = rate of (reverse) intersystem 

crossing, kPh = rate of phosphorescence. 
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needs to be overcome. As the name TADF implies, this barrier is overcome using 

thermal energy. This also means the barrier cannot be too large. Whereas 

Nishikawa et al. postulated a barrier of approximately 0.5 eV,41 it should be at 

least below 0.2 eV for efficient rISC.58 Once the exciton returns to its singlet 

configuration, there are two options: either the exciton decays radiatively 

through fluorescence or it undergoes a second cycle of ISC/rISC. All these 

processes are dependent on their mutual rates. As was briefly touched upon, IC 

is typically very fast (≪ 10-9 s), while fluorescence occurs at ~10-9 s. ISC and 

rISC take place on much slower timescales of around 10-7 s and 10-6 – 10-5 s, 

respectively. The latter is especially slow due to the endoenergetic nature of the 

process. While phosphorescence is spin-forbidden, it is not entirely impossible. 

However, due to the SOC dependence, it occurs only at around 10-3 s. Given 

these rates, the rate of TADF is effectively governed by the rate of rISC, as it is 

the slowest step. Delayed emission in TADF emitters is therefore often observed 

in the microsecond domain.58 As the singlet state from which radiative decay 

occurs is the same for the prompt (~10-9 s) and the delayed (~10-6 s) emission, 

their spectral shape should be identical, as was observed by Parker et al.38 and 

Nishikawa et al.41 and led them to believe the observed delayed emission could 

not be coming from phosphorescence.  

Moving to OLEDs, where excitons are formed by recombination of electrons and 

holes rather than via absorption of a photon, the processes involved are the 

same, with the exception that ISC is no longer a prerequisite for rISC to occur 

as the excitons are formed in a 25/75 ratio of singlets/triplets (Figure 1.18). 

Upconversion of the 75% formed triplet excitons via rISC gives TADF OLEDs the 

possibility to achieve up to 100% IQE. The former method of analysis via photon 

absorption rather than electrical excitation still plays a crucial role as potential 

emitters are typically characterized in this way before being tested in actual 

OLED devices. While we discussed the crucial excited state processes for 

efficient TADF, these are not the only possible pathways for the excitons to 

traverse along. Non-radiative transitions, such as IC, can also occur between the 

lowest excited singlet or triplet states and the ground state, resulting in a loss of 

the exciton energy without the irradiation of visible light. These non-radiative 

transitions are often coupled with vibrations, rotations of specific functional 

groups or the molecules as a whole and collisions with other molecules (e.g. in 



Introduction 

 

21 

 

solution) need to be minimized. The key to avoiding them is making the 

molecule very rigid, so that the possibility for the vibrations and rotations to 

occur is very low. Therefore, in TADF design, as can be seen in Figure 1.17, the 

emitters generally consist of large conjugated and often heteroaromatic 

systems.  

Next to being rigid, the key to designing efficient TADF emitters is to minimize 

the energy difference between the first excited singlet (S1) and triplet (T1) 

states. From quantum mechanics within the single transition approximation 

(STA), the singlet (ΔES) and triplet (ΔET) state energies can be written as Eq. 

1.1 and 1.2, in which subscripts i and a are used to describe the occupied (often 

the highest, i.e. HOMO) and unoccupied (often the lowest, i.e. LUMO) molecular 

orbitals (MOs), respectively. Jai is the Coulomb interaction and Kai is the 

exchange interaction between the occupied and unoccupied MOs. The energy 

difference ΔEST can then be written as Eq. 1.3. The value of Kia is related to the 

overlap between φi and φa, as indicated in Eq. 1.4. Spatial separation of φi and 

φa should therefore lead to a small Kia and hence a small ΔEST.  

𝛥𝐸𝑆 = 𝛥𝐸𝑎𝑖
1 = (𝜀𝑎 − 𝜀𝑖) − 𝐽𝑎𝑖 + 2𝐾𝑎𝑖     Eq. 1.1 

𝛥𝐸𝑇 = 𝛥𝐸𝑎𝑖
3 = (𝜀𝑎 − 𝜀𝑖) − 𝐽𝑎𝑖      Eq. 1.2 

𝛥𝐸𝑆𝑇 = 𝛥𝐸𝑎𝑖
1 − 𝛥𝐸𝑎𝑖

3 = 2𝐾𝑎𝑖      Eq. 1.3  

𝐾𝑎𝑖 =  ∬ 𝑑𝑟 𝑑𝑟′𝜑𝑎(𝑟)𝜑𝑖(𝑟)
1

|𝑟−𝑟′|
𝜑𝑎(𝑟′)𝜑𝑖(𝑟′)    Eq. 1.4 

While the single-transition approximation presents limitations that are corrected 

using TDDFT calculations (most excited states have contributions from several 

single-particle transitions), it served as a first design criterion for novel TADF 

emitters. 

In organic materials, the HOMO is typically located on the electron rich parts of 

the molecule, whereas the LUMO is typically located on the electron poor parts. 

By connecting an electron-rich moiety (often called electron-donating group or 

donor “D”) to an electron-deficient unit (often called electron-accepting group or 

acceptor “A”) via a covalent bond, localization of the frontier orbitals is only 

achieved to a given extent so that overlap remains present, leading to relatively 

large values of ΔEST. By spatially twisting the D and A groups in a molecule, the 

conjugation between them will decrease as the π-orbital overlap diminishes 

(Figure 1.19). This also leads to a better separation of the HOMO and LUMO.58 



Chapter 1 

22 

 

Therefore, the most used strategy to obtain a small ΔEST is to provide sufficient 

steric hindrance between the D and A parts of a molecule to ensure a large 

dihedral angle between the two moieties.59 Alternatively, sp3-hybridized linkages 

such as a spiro conjugation can be applied as the lack of non-hybridized p-

orbitals in an sp3-hybridized atom breaks the conjugation between its connecting 

atoms and also leads to HOMO-LUMO separation (Figure 1.19).60 Unfortunately, 

a trade-off exists between the frontier orbital overlap and the rate of 

fluorescence (kPF).
58 The oscillator strength determines the strength of the 

coupling between the singlet ground and excited state. Excitations with a smaller 

oscillator strength show weaker absorption and emission intensity than 

excitations with a large oscillator strength. The size of the oscillator strength is 

determined by the overlap between the orbitals that are involved in the given 

transition. For a HOMO->LUMO transition for example, a large overlap between 

the HOMO and LUMO will lead to a large oscillator strength, if the symmetry 

conditions are also fulfilled, and a localized excited state (1LE state, superscript 1 

for singlet and 3 for triplet states), whereas a small overlap leads to a charge- 

transfer state (1CT state, superscript 1 for singlet and 3 for triplet states) with a 

small oscillator strength. As the requirements for TADF include a small orbital

 

Figure 1.19: Optimized geometries, HOMO and LUMO topologies for a spiro conjugated 

(ACRFLCN) and a D-A based (DBTDO-tBuCbz) TADF emitter obtained using DFT (M06/6-

311G(d)) (Structures in Figure 1.17). 
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overlap, typically for the HOMO and LUMO, these transitions are paired with a 

small oscillator strength, which is unfavorable for the fluorescence efficiency. 

Luckily, TADF emitters with a high kPF and fluorescence quantum yield have 

been reported, indicating a less straightforward relationship between ΔEST and 

kPF. 

1.3.3. The spin-vibronic mechanism of TADF 

Due to the structural design of TADF emitters, they often exhibit charge-transfer 

character in their transitions. Initially, the mechanism of TADF was therefore 

expected to result from direct (r)ISC between the first singlet and triplet excited 

CT states (i.e. 1CT and 3CT). However, the law of conservation of momentum 

forbids a change in spin angular momentum without a corresponding change in 

orbital angular momentum, or in other words, a 1CT->3CT transition between 

states of the same nature is not possible as there is no change in orbital angular 

momentum,61, 62 which is also known as El-Sayed’s rule.62 Hyperfine coupling 

induced ISC was proposed as an alternative mechanism based on time-resolved 

electron paramagnetic resonance (EPR) methods,63 but due to the small values 

for hyperfine interactions (HFI), usually in the range of 10-4 meV, it is unlikely 

that HFI alone can induce strong (r)ISC in these systems.64 Furthermore, two 

experimental reports showed that the rate of reverse intersystem crossing (krISC) 

is not directly related to the size of ΔEST
65 and that, in some systems, it is 

possible to tune the excited states involved in the rISC step independently by 

changing the surrounding of the emitter.56, 66 These findings lead to a more 

dynamic rISC process, which is not strictly governed by ΔEST and not strictly 

occurring between CT states. 

Chen et al. tried to calculate krISC occurring via SOC, but found a significant 

deviation from experimental values, even for the 1CT->3LE transition, which is 

allowed according to El-Sayed’s rule.67 Marian used multi-reference methods to 

show that direct SOC was too small to explain the efficient rISC observed in 

TADF, in agreement with the work by Chen et al.67 Instead, she proposed 

vibrational mixing between the 3CT and an energetically close 3LE state to be 

responsible for the efficient rISC.68-70 Gibson et al. further elaborated on this and 

showed, through quantum dynamics simulations, the role of vibrational-

electronic (vibronic) coupling of excited triplet states on kISC and krISC.
64 For the 
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molecule PTZ-DBTO2 (Figure 1.20), time-dependent density functional theory 

(TDDFT) calculations (M06-2X/def2-TZVP under the Tamm-Dancoff 

approximation) showed the lowest singlet excited state to be of CT character 

(1CT), whereas the lowest triplet excited state is of LE character, localized on the 

donor unit (3LE). The second excited triplet state is of CT character (3CT) and is 

of the same nature as 1CT. The vibrational modes in the molecule were 

calculated using DFT and the vibrations that are eligible for thermal activation 

(<500 cm-1, 62 meV) and of the correct symmetry to couple the triplet states 

were selected to construct a Hamiltonian which was used in the dynamics 

simulations to account for spin-vibronic interactions. The vibrational analysis 

yielded 3 possible vibrational modes for coupling: a D-A bond rocking, an A 

torsion and a D-A torsion mode. Figure 1.20 shows the results of their dynamics 

simulations for the relative 1CT population associated with rISC 

over time after populating the 3LE state. In black is the result from their 

unaltered Hamiltonian. Removing the HFI (green) does not lead to a significant 

change and is therefore also ruled out as the dominant factor. Removing the 

vibronic coupling (VC, blue) entirely kills the rISC process, while increasing the 

VC by 10% slightly increases the krISC (red). Decreasing the 3LE-3CT energy gap 

by half increases krISC, indicating that both VC and ΔET1-T2 are crucial for efficient 

(r)ISC to occur. These findings show the need for two triplet states to be in close 

energetic proximity. In the aforementioned work,64 they are of CT and LE

 

Figure 1.20: Relative populations of the 1CT state associated with rISC after initially 

populating the 3LE state of PTZ-DBTO2 as simulated in the work by Gibson and co-

workers.64 Black: full model Hamiltonian, green: no HFI, blue: no VC, red: VC increased by 

10%, cyan: energy gap between 3LE and 3CT halved. The molecular structure of PTZ-

DBTO2 is given in the graph insert. 
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nature, but they can well be both of CT nature if the two CT transitions have 

different orbital character. Furthermore, the vibronic mechanism helps to explain 

why compounds with an apparently large ΔEST can still show TADF. ΔEST is 

typically obtained from the onset of the prompt fluorescence (singlet energy) at 

room temperature and delayed phosphorescence (triplet energy) at 80 K, both 

occurring from the lowest energy excited state for each multiplicity. The 

phosphorescence spectra are taken at 80 K because this transition is spin- 

forbidden and non-radiative losses dominate at room temperature. Decreasing

 

Figure 1.21: Overview of the spin-vibronic mechanism for TADF. Vibronic coupling (VC) 

between T1 and T2 ensures population of the T2 state regardless of the available thermal 

energy, resulting in a smaller effective ΔEST. 

the thermal energy and locking the conformation in a solid matrix allows the 

generally weak and red-shifted phosphorescence to be observed. The vibronic 

mechanism, however, couples the lowest excited triplet state to a higher energy 

excited triplet state to create ‘mixed’ states which are closer in energy to 1CT. 

The energy gap that triplet excitons need to overcome to undergo rISC is 

therefore smaller than the experimental ΔEST (Figure 1.21).59 

1.3.4. TADF emitters 

In the previous sections, the most important design criteria for TADF emitters 

have already been addressed, such as a large dihedral angle between the D and 

A parts to afford a good HOMO/LUMO separation and a small ΔEST, a rigid 

structure to minimize non-radiative losses and a high fluorescence quantum 

yield (Figure 1.18). From the spin-vibronic mechanism, it became clear that 

molecular vibrations, such as the D-A rocking vibration for D-A type compounds 

(Figure 1.22), play a crucial role in increasing the rISC efficiency.64,70 In 

compounds with spiro-conjugation or planar TADF emitters, other low energy 

vibrations fulfill this role, although their origin is not well understood yet. 

Therefore, most TADF emitters are constructed via a C-N bond connecting the D 
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and A parts of the molecule, as already seen in Figure 1.17. Color tuning is done 

by combining weaker or stronger donor or acceptor units to obtain more blue or 

red-shifted emission, respectively.71 The electron-donating or accepting strength 

can be gauged by looking at the HOMO energy for electron donors and the LUMO

 

Figure 1.22: D-A rocking vibration indicated by the arrows in which the D and A units 

rotate independently around the D-A bond. 

energy for electron acceptors. Donor units with a higher HOMO energy are more 

electron-donating, whereas acceptor units with a lower LUMO energy are more 

electron-accepting. These values are not readily available from experimental 

measurements, but DFT calculations can be performed on the individual building 

blocks to have an idea of their energy level positioning. The results of such DFT 

calculations (M06/6-311G(d)), performed by myself, are given in Table 1.2 for a 

number of commonly used donor and acceptor units. The chemical structures of 

these units are shown in Figure 1.23. The color of the emitter is largely 

determined by the acceptor unit because of the wider spread in LUMO energies 

(-1.40 to -3.28 e V) with respect to the spread in HOMO energies (-6.02 

to -5.26) for the donor units.† The donor unit has a minor influence based on its 

electron-donating strength. However, the steric hindrance between the donor 

and acceptor units is largely determined by the donor. Looking at Figure 1.24,

Table 1.2: HOMO and LUMO energies (in eV) for various donor and acceptor units 

commonly used in TADF emitters as obtained by DFT calculations using M06/6-311G(d). 

Donor Acceptor 

Name HOMO (eV) LUMO (eV) Name HOMO (eV) LUMO (eV) 

Cbz -6.02 -0.81 TXO2 -7.62 -1.40 

tBuCbz -5.81 -0.81 DBTDO -7.67 -1.51 

DPA -5.67 -0.30 TRZ -8.07 -1.56 

PTZ -5.51 -0.53 DBTO2 -7.22 -1.93 

DMAC -5.47 -0.27 IPN -8.40 -2.31 

TPA -5.38 -0.24 BT -7.12 -2.34 

PXZ -5.26 -0.37 HAP -7.66 -3.16 

DHP -4.72 -0.22 CNQxP -7.15 -3.28 

† Although DHP has a much lower HOMO energy than PXZ, it is not regarded as a 

typical TADF donor. 
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Figure 1.23: Chemical structures of the donor and acceptor units listed in Table 1.2. The 

D-A connection sites are indicated by dashed bonds. 

for the donor units TPA, Cbz and DMAC, the distance between the proton and 

the adjacent connection point (indicated by a dashed bond) becomes smaller, 

leading to reduced rotational freedom around the D-A bond. DPA is a special 

case because the two phenyl rings will form a propeller shape by which the 

steric hindrance is reduced with respect to the other donor units. When 

connected to an acceptor, for instance CNQxP, the D-A dihedral angles using 

these donor units were calculated using M06/6-311G(d) and vary from DPA 

(25°) < TPA (36°) < Cbz (49°) < DMAC = PTZ = PXZ (90°). Changes to the 

dihedral angles can occur when the molecular structure of the acceptor forces 

the donor units in a more perpendicular orientation, as is the case for 4CzIPN 

(Figure 1.17), which is formed by connecting 4 carbazole units to one 

isophthalonitrile. As the dihedral angle determines the overlap between the 

HOMO and LUMO orbitals, DMAC, PTZ and PXZ are more likely to give well-
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Figure 1.24: Influence of donor geometry on the dihedral angle of D-A compounds. 

separated frontier orbitals than Cbz or tBuCbz. 

In TADF literature, most reports deal with the design of novel (efficient) blue 

emitters. While 2nd generation phosphorescent OLEDs are commercially viable 

for green and red emission, blue phosphorescent emitters suffer from instability 

due to the relatively weak metal-ligand bond and the inherently high triplet 

energy needed for blue emission. Blue TADF emitters might be able to overcome 

these issues, but their design is not straightforward. As mentioned before, blue 

CT emission can be achieved when relatively weak donor and acceptor units are 

coupled together. However, as their electron-donating and accepting properties 

become weaker, so does the CT character of their transitions and hence ΔEST 

becomes larger. Another issue is the use of DMAC, PTZ or PXZ as the electron-

donating groups. While these groups provide large steric hindrance and good 

HOMO/LUMO separation, their strong electron-donating properties red-shift the 

emission, often leading to blueish/green emission. Similarly, when the acceptor 

unit is too strong, the emission is also red-shifted and becomes green or even 

yellow. This explains why the first reported TADF materials were predominantly 

green or yellow emitters (Table 1.1, Figure 1.17). Nonetheless, the design of 

blue emitters has been successful, as demonstrated by the large amount of 

entries in review articles, some of them affording OLEDs with EQEs above 

20%.33, 71-75 Unfortunately, blue TADF emitters still suffer from rapid and 

significant roll-off of the device efficiency and more research to find stable, blue 

emitters is required.76, 77  

On the other end of the spectrum are the red TADF emitters. These have 

received less initial interest because there were sufficient red-emitting 

phosphorescent complexes available (Figure 1.12), affording OLEDs with decent 

EQEs. While red emitters do not suffer so much from instability issues, their 

PLQY is often much lower due to the so-called energy gap law.86, 87 As the 

energy gap between the ground and excited state becomes smaller, non-
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radiative transitions become more plausible as the upper vibrational states of 

the electronic ground state start to overlap with those of the electronic excited 

states. Because of this, the highest EQEs reported are in the range of 10‒20%, 

with a few outliers above 20%.71, 88 In 2018, Chen et al. reported a summary of 

red emitters with a maximum electroluminescence wavelength of 600 nm or 

larger.89 Additionally, due to their fully organic, and thus non-toxic nature, they 

have found application in other fields outside of OLEDs as well. In 2014, Xiong et 

al. showed that a fluorescein derivative showing delayed fluorescence could be 

used for time-resolved fluorescence imaging in biological cells. Due to the long-

lived nature, the cell autofluorescence dies out before the fluorescein delayed 

emission has, enabling to enhance the imaging contrast.78 Furthermore, the red-

shifted emission of such materials makes them viable for operation in the so-

called phototherapeutic window (600-1200 nm). Several other reports using 

TADF emitters for time-resolved imaging have been made since.79-85 Although 

the generally reported TADF emitters are not water-soluble, several solubilizing 

strategies have been developed for in vivo studies with organic dyes and 

therapeutics, and these can be readily applied here as well. 

Similar to the first generation OLEDs, researchers have tried to incorporate the 

principles of TADF in other types of molecules such as dendrimers and polymers. 

The main advantages of dendrimer and polymer structures include facile 

processing via spin- or spray-coating for large area applications such as 

television screens and solid-state lighting.74 Both fully and partially conjugated 

dendrimers have been made (Figure 1.25). In both cases, the dendrimer core 

consists of a TADF emitter which is responsible for the photophysical properties. 

The dendrons in conjugated dendrimers often consist of extended carbazole 

networks,90-93 whereas in partially conjugated dendrimers a short aliphatic chain 

connects the core with the conjugated dendrons.94, 95 In both architectures, the 

dendrons serve effectively as the ‘host’ material for the dendrimer core and 

facilitate charge recombination and charge transfer to the TADF core. Despite 

their advantages for solution processable OLEDs, the EQEs have remained much 

lower in comparison to vacuum deposited small molecule OLEDs. For a more 

extensive overview of dendritic TADF materials, several reviews can be 

consulted.72, 74, 96  

For polymer-based TADF OLEDs, several design strategies are available. First, a



Chapter 1 

30 

 

 

Figure 1.25: Molecular structures of two types of dendritic TADF emitters based on fully90 

(left) and partially95 (right) conjugated dendrons. The acceptor and donor units are 

indicated in red and blue, respectively. 

division between non-conjugated and conjugated backbones can be made 

(Figure 1.26). Within the polymers with a conjugated backbone, a second 

division can be made between polymers in which the backbone consists of 

alternating D and A units (Figure 1.26b) and polymers in which the backbone 

consists of (a single or alternating) D units to which the A unit is grafted as a 

side chain (Figure 1.26c). The opposite case in which the backbone is 

constructed of A units is less straightforward as the reactive sites used for 

polymerization are the same as those used for the construction of the D-A bond. 

In non-conjugated polymers, (Figure 1.26) the backbone is formed by 

polymerization of styrene-like97-100 or acrylate101 monomers via controlled free-

radical polymerization techniques or functionalized norbornenes102 for ring-

opening metathesis polymerization (ROMP). A TADF emitter is incorporated in 

the monomer structure and is copolymerized with another monomer containing 

a hole-transporting functionality such as carbazole. Conjugated D-A alternating 

copolymers are often used in other fields of organic electronics such as organic 

photovoltaics (OPVs) and organic photodetectors (OPDs), but they are not 

suitable for TADF applications as the overlap between the HOMO (typically 

located on the D) and The LUMO (typically located on the A) is significant and 

thus ΔEST is large. A twist in the backbone is needed, similar to the design of 

small molecule TADF emitters, leading to a breakup of the conjugation along the 

polymer backbone. The main consequence is that charge transport along the 
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Figure 1.26: Design motifs for TADF-based polymers. 

polymer backbone is severely reduced and therefore these polymers need to 

have an additional charge-transporting host material in which they are 

imbedded.103 To reduce self-quenching and to improve the charge carrier 

mobility, either a non-conjugated spacer was incorporated between the various 

D-A blocks104 or the D-A TADF emitters were copolymerized with an additional 

donor unit which acts as a kind of host material.105 The most employed strategy 

is copolymerization of multiple, typically one or two, donor units to one of which 

an acceptor unit is grafted. The other donor unit in the backbone then acts as a 

kind of host material, improving charge carrier mobility, and is sometimes 

functionalized to further improve these properties.72, 74, 103, 106-112 

1.3.5. Hyperfluorescence 

In 2014, an alternative OLED design strategy was reported by combining a TADF 

emitter with a fluorescent emitter in the active layer.113 This strategy is 

sometimes called generation 3.5 and was termed hyperfluorescenceTM by 

Kyulux. The main advantages of hyperfluorescence are the optimal usage of 

excitons (up to 100% IQE) utilising the TADF emitter and the narrow emission 

with high PLQY and large kPF for the fluorescent emitter. Because an additional 

energy transfer step is required for the fluorescent emitter, the design of these 

systems requires even more tuning of the energy levels of the OLED layers and 

active materials. 
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1.4. Alternative triplet upconversion strategies 

1.4.1. Triplet-triplet annihilation (TTA) 

Since the discovery of TTA, sometimes called triplet fusion (TF), in 1962 by 

Parker et al.39 (vide supra), it is well known as an upconversion mechanism to 

form singlet excited states. Proceeding via a Dexter energy transfer mechanism 

(Figure 1.27), two molecules with excited triplet configurations need to be in 

close proximity to form one de-excited molecule and one molecule with an 

excited singlet configuration. As twice the triplet excitation energy is generally 

larger than the first singlet excitation energy, it can occur that a higher singlet

 

Figure 1.27: Schematic overview of Dexter energy transfer in TTA (left) and how it leads 

to singlet emission by combining 2 excited triplet states (right). ET = energy transfer, NR 

= non-radiative relaxation. 

state (Sn) is formed first, after which IC takes place to arrive at the first excited 

singlet state (S1), followed by fluorescence (Figure 1.27). In time-resolved 

emission spectroscopy, TTA can be distinguished from other types of delayed 

emission by varying the laser power and looking at the delayed emission 

intensity. When the emission intensity increases linearly with a slope of 2 in a 

log-log plot versus the laser power, the emission is coming from TTA, whereas a 

slope of 1 indicates TADF. This is because the likelihood of two triplet excitons 

being in close proximity increases with high exciton formation. The TTA 

mechanism is especially prevalent under electrical excitation where, according to 

spin statistics, 75% of the excitons are formed in the triplet configuration. 

However, because two triplet states are converted to one singlet state, the IQE 

of a resulting OLED can only be 62.5% (initial 25% plus half of the triplet states 

formed), which is significantly lower than the 100% IQE achievable via 

phosphorescent or TADF OLEDs. Nevertheless, TTA has played a significant role 
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in the development of early OLED devices, and to this day remains an attractive 

prospect for the fabrication of blue-emitting OLEDs. As early fluorescent devices 

were only able to effectively use 25% of the formed excitons, the device EQEs 

were theoretically limited to ~5%, taking into account a device outcoupling 

efficiency of approximately 20% into account. However, reports of fluorescent 

based OLEDs with EQEs higher than the theoretical limit of 5% do exist. While 

other effects such as increased device outcoupling or improved selectivity for the 

generation of singlet excitons upon electrical excitation are possible, they are 

unable to account for the large increase in EQE. In 1998, Kido and Iizumi were 

the first to suggest TTA as the plausible pathway for their record EQE (at the 

time) of 7.1%.114 In 1999 and 2003, Partee et al.115 and Sinha and Monkman116 

reported TTA as an efficiency boosting mechanism in PPV and MEH–PPV based 

OLEDs, respectively. In many other reports throughout the beginning of the 21st 

century, TTA is the likely candidate to explain EQEs above 5% for traditional 

fluorescent OLEDs. However, with the advent of phosphorescent and TADF-

based OLEDs, research in this area has slowed down, with the exception of blue-

emitting materials.117-119 Despite the promise and achievement of higher EQEs 

for blue-emitting OLEDs using either phosphorescent iridium or TADF-based 

emitters, they both lack in device lifetime, while color purity is also an issue for 

the latter.117-119 Poor electrochemical stability as a result of the fluorine 

substituents typically used for blue Ir-complexes (Figure 1.11) and instability of 

the metal-ligand bonds due to the high triplet energy (>2.7 eV) causes the blue 

phosphorescent OLEDs to have poor operation lifetimes.119 While TADF emitters 

do not suffer from the same metal-ligand related issues, the inherently high 

triplet energy still causes deterioration of the emitter, with relatively short 

lifetimes as a result.119 Furthermore, the CT character of the emission leads to 

broad emission peaks, affording inferior color purity with respect to the 

phosphorescent or fluorescent competitors. Blue fluorescent emitters suffer less 

from these instability issues due to their simpler molecular structures and as 

such are only hindered by the maximal attainable IQE of 25%. An upconversion 

mechanism such as TTA is able to boost this to 62.5% and hence can make blue 

emitters based on TTA viable, as apparent in recent literature.120-122  
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1.4.2. Hybridized local and charge-transfer states 

Proposed in 2013 by Ma and co-workers, hybridized local and charge-transfer 

(HLCT) poses an alternative but similar mechanism to that of TADF (Figure 

1.28).123 The HLCT mechanism relies on intersystem crossing between an upper 

excited triplet state (Tn, n > 1) and an excited singlet state (Sn, n > 0). HLCT 

emitters rely on significant LE character in their first excited singlet state to 

ensure efficient coupling to the singlet ground state for a high PLQY. Two upper 

excited states of singlet and triplet multiplicity have to be in close energetic 

proximity for (r)ISC to occur. The lowest excited triplet state T1, typically of LE 

nature, has to be significantly below T2, typically of CT nature, and S1 to reduce 

IC from T2 to T1 and to prevent TADF from happening from T1 as large energy 

gaps reduce the coupling between the various states. ISC is enhanced when the 

upper states show hybrid LE/CT character,124 which circumvents El-Sayed’s rule, 

but is not a prerequisite for the HLCT mechanism to occur. Time-resolved 

emission measurements show that these emitters only have a single lifetime, 

instead of two as for TADF, indicating a kISC larger than kPF. The HLCT 

mechanism thus indirectly increases the amount of excitons in the singlet

 

Figure 1.28: Simplified schematic overview of the HLCT triplet upconversion mechanism 

(left) and chemical structures of some highly efficient HLCT emitters: TPMCN,122 P-TXO2,124 

BTH-DMF125 and TPA-NZP123 (right). 

configuration beyond the statistical 25%, while HLCT materials act as regular 

fluorescent emitters beyond the initial ISC step. To obtain excited states with 

hybrid LE/CT character, twisted D-A structures are designed (Figure 1.28) and 

(TD)DFT calculations are performed to assess the character and the position of 

the upper excited states as these are difficult to determine experimentally. IC is 
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the favored transition according to Kasha’s rule (vide supra) and the HLCT ISC 

mechanism is therefore not as efficient as the (r)ISC pathways of TADF can be. 

This means a significant portion of the 75% formed triplet excitons will still 

decay non-radiatively to T1 (kIC) where they are effectively trapped until they 

can further decay non-radiatively to the ground state (kT
nr). As a result, EQEs 

using this approach have only been around 10%.125, 126 Because of its heavy 

reliance on quantum chemical calculations, lack of structure-property 

relationships that can be deduced and non-ideal working conditions, the HLCT 

mechanism is currently of less interest to obtain high-efficiency OLEDs. 

1.5. Quantum chemistry in TADF 

1.5.1. Introduction to quantum chemical methods 

Quantum chemical methods are often divided in two groups: Wavefunction 

methods and density functional theory (DFT). Hartree-Fock (HF) based methods 

rely on solving the Schrödinger equation for a given wavefunction, whereas in 

density functional theory, the electron density, denoted as ρ, occupies a central 

position. Since the exact wavefunction (Ψ0) for a multi-electron system is out of 

reach, it is approximated by a single Slater determinant (Eq. 1.5).127 The Slater 

determinant is built from occupied spinorbitals (𝛩𝑖(�⃗�𝑖)) (Eq. 1.6) and each

 𝛹(�⃗�1, �⃗�2, … , �⃗�𝑁) =
1

√𝑁! ||

𝛩𝑖(�⃗�1) 𝛩𝑗(�⃗�1)

𝛩𝑖(�⃗�2) 𝛩𝑗(�⃗�2)

⋯ 𝛩𝑘(�⃗�1)

⋯ 𝛩𝑘(�⃗�2)

⋮ ⋮
𝛩𝑖(�⃗�𝑁) 𝛩𝑗(�⃗�𝑁)

⋱ ⋮
⋯ 𝛩𝑘(�⃗�𝑁)

||   Eq. 1.5 

𝛩𝑖(�⃗�𝑖) = 𝜑𝑖(𝑟𝑖)𝜎𝑖(𝜔𝑖)        Eq. 1.6 

spinorbital consists of a spatial orbital (𝜑𝑖(𝑟𝑖)) and a spin function 𝜎𝑖(𝜔𝑖) (𝛼𝑖(𝜔𝑖) or 

𝛽𝑖(𝜔𝑖) for spin up or spin down, respectively).  

To arrive at the best approximation for the exact wavefunction of the system, a 

trial wavefunction (Ψ) with an energy larger than the exact ground-state 

wavefunction (E(Ψ) > E0(Ψ0)) is constructed and, using the variational 

principle,128 its energy is minimized.129-131 The molecular orbitals (MOs; 𝜑𝑖) are 

constructed by introducing the linear combination of atomic orbitals (LCAO) 

approximation (Eq. 1.7), in which a weighted sum of a predefined set of atomic 

orbitals (AOs, 𝜒𝜇) is used.132 In Eq. 1.7, the 𝑐𝜇𝑖 are the LCAO coefficients and K is 
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the total number of atomic orbitals. From the optimized trial wavefunction (Ψ), 

the energy and other properties of the system can be derived. Alternatively, DFT 

𝜑𝑖(𝑟) = ∑ 𝑐𝜇𝑖𝜒𝑢(𝑟)𝐾
𝜇=1        Eq. 1.7 

focusses on the electron density of the multi-electron system. The first theorem 

by Hohenberg and Kohn shows that the ground-state properties of a system are 

fully determined by the electron density (𝜌(𝑟), Eq. 1.8,1.9).133 Instead of 

describing the energy as a functional of the wavefunction in HF theory, it is now 

𝜌(𝑟1) = 𝑁 ∫ … ∫|𝛹(�⃗�1, �⃗�2, ⋯ , �⃗�𝑁)|2𝑑𝜔1𝑑�⃗�1 ⋯ 𝑑�⃗�𝑁     Eq. 1.8 

with 𝑁 = ∫ 𝜌(𝑟) 𝑑𝑟       Eq. 1.9 

a functional of the electron density, E(ρ). Similarly to the use of the variational 

principle within in the HF scheme, a trial electron density (ρ) is constructed 

which has an energy higher than the exact ground-state electron density (ρ0). 

Within that frame, Hohenberg and Kohn divided the energy functional into 

several contributions (Eq. 1.10):133  

𝐸[𝜌] = 𝑇[𝜌] + 𝑉𝑒𝑒[𝜌] + 𝑉𝑒𝑁[𝜌]      Eq. 1.10 

With T[ρ] the kinetic energy functional, Vee[ρ] the electron-electron (repulsion) 

potential energy functional, and VeN[ρ] the electron-nucleus (attraction) 

potential energy functional. VeN[ρ] can be calculated for each electron and the 

remaining terms are gathered in the Hohenberg and Kohn functional (FHK) (Eq. 

1.11,1.12). In Eq. 1.12, the electron-electron repulsion term is split into two 

𝐸[𝜌] = 𝑉𝑒𝑁[𝜌] + 𝐹𝐻𝐾[𝜌]      Eq. 1.11 

with 𝐹𝐻𝐾[𝜌] = 𝑇[𝜌] + 𝐽[𝜌] + 𝐸𝑛𝑐𝑙[𝜌]     Eq. 1.12 

parts: the Coulomb functional J[ρ] and the non-classical functional Encl[ρ], which 

accounts for self-interaction, correlation and exchange. Kohn and Sham then 

rearranged the equation for the Hohenberg and Kohn functional (FHK), now FKS 

(Eq. 1.13,1.14):134 

𝐹𝐾𝑆[𝜌] = 𝑇𝑆[𝜌] + 𝐽[𝜌] + 𝐸𝑋𝐶[𝜌]      Eq. 1.13 

so that 𝐸𝑋𝐶[𝜌] = 𝑇[𝜌] − 𝑇𝑆[𝜌] + 𝐸𝑛𝑐𝑙[𝜌]     Eq. 1.14 

The Kohn-Sham functional (Eq. 1.13) consists of the kinetic energy of non-

interacting electrons (TS[ρ]), the Coulomb energy of the system (J[ρ]) and the
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exchange-correlation functional (EXC[ρ]). Whereas the first two terms can be 

calculated exactly, the exchange-correlation functional (XCF) consists of the 

kinetic energy of the whole system minus that of the non-interacting electrons 

and the non-classical functional, Encl[ρ], which in itself accounts for self-

interaction, correlation and exchange and its form is unknown. Kohn and Sham 

then expressed the electron density from a wavefunction that takes the form of 

a single Slater determinant (Eq 1.15) and using the LCAO approximation, Kohn-

Sham spinorbitals (Θi) can be constructed.  

[−
1

2
∇2 + 𝑉𝑒𝑓𝑓(𝑟)] 𝛩𝑖(𝑥) = 𝜀𝑛𝛩𝑖(𝑥)     Eq. 1.15 

Since the form of the XCF is unknown, many researchers have developed 

various XCFs with different strategies and objectives in mind. The simplest 

strategy is the local density approximation (LDA) where EXC only depends on the 

electron density (EXC[ρ]). The generalized gradient approximation (GGA) 

functionals improve the LDA functionals by introducing a dependence on the 

gradient of ρ (EXC[ρ,∇ρ]). Both consist of a separate exchange and correlation 

part with some well-known GGA functionals being BLYP (consisting of Becke’s 

B88 exchange functional135 and the Lee-Yang-Parr (LYP) correlation 

functional136), BPW91 (consisting of Becke’s B88 exchange functional135 and the 

PW91 correlation functional137) and PBE (technically PBEPBE as it consists of the 

PBE exchange and correlation functionals138). The third class of XC functionals 

are called meta-GGA functionals as they include both the dependence on the 

gradient of the density as well as a dependence on the kinetic energy density 

(∇2ρ ~ τ): EXC[ρ,∇ρ,τ]. Notable examples are M06L139 and TPSS140. Mixing 

Hartree-Fock exchange with GGA exchange functionals leads to the formation of 

hybrid functionals. This is based on the ansatz that the exact exchange energy is 

situated between the GGA exchange energy functional and the Hartree-Fock 

exchange integral.141 As a result, a fixed percentage of HF exchange is included. 

B3LYP,142 the most used functional in DFT, belongs to this category. This 

functional uses 3 parameters for the mixing ratios between the HF exchange 

integral (20%) and LDA exchange functional and between the LYP-GGA and LDA 

correlation functionals, and is combined with the B88 exchange functional. In 

PBE0, 25% of the PBE exchange functional is replaced by the HF exchange 

integral.143 Furthermore, in 2007, Zhao and Trular proposed two new hybrid 
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functionals M06 (27% exact exchange) and M06-2X (54% exact exchange) 

which have been parametrized including both transition metals and nonmetals 

for M06 and only nonmetals for M06-2X, respectively.144 Additionally, The M06 

and M06-2X functionals have been parametrized to implicitly account for London 

dispersion interactions, making them very suitable for the geometry 

optimizations of organic molecules. Other hybrid functionals used in this work 

are B971145 (a re-parameterization of the semiempirical B97146 functional 

containing 21% HF exchange) and TPSSh147 (an expansion of the TPSS 

functional using 10% HF exchange). The next improvement can be made by the 

introduction of range-separated HF exchange in these hybrid functionals. 

Incorrect asymptotic behavior of the exchange can lead to large errors on the 

calculation of excitation energies for charge-transfer and Rydberg states. In 

these functionals, the contribution of the exact exchange depends on the 

distance between the interacting electrons and is done by splitting the 1
r⁄  

function into two parts (eq. 1.16): 

     Eq. 1.16 

where erf is the standard error function and µ is a parameter determining the 

division ratio. Chai and Head-Gordon introduced the ωB97 and ωB97X 

functionals as range-separated variants of the semiempirical B97 functional with 

HF exchange varying from 0-100 and 16-100, respectively.148 Additionally, they 

added empirical dispersion corrections to account for van der Waals interactions, 

to obtain their ωB97X-D functional.149 The CAM-B3LYP functional was introduced 

as a range separated version of the famous B3LYP functional to improve on the 

charge transfer excitation energies with respect to the original functional, with a 

mixture of HF exchange and B88 exchange of 19/81% at short range and 

65/35% at long range, respectively, and a range separating parameter of 0.33 

bohr-1.150 Other examples of range-separating functionals are LC-ωPBE151 (with 

HF exchange going from 0-100% with a range-separating parameter of 0.4 

bohr-1) and LC-BLYP (with HF exchange going from 0-100% with a range-

separating parameter of 0.47 bohr-1)152. 

Both HF and DFT methods rely on the construction of MO’s via the LCAO 

approximation. In practice this is done by the choice of a basis set of AOs. A 

basis set is typically a collection of contractions of Gaussian-type orbitals 

 1

𝑟12
=

1 − 𝑒𝑟𝑓(𝜇𝑟12)

𝑟12
+

𝑒𝑟𝑓(𝜇𝑟12)

𝑟12
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(GTOs), which effectively are Gaussians. Since the product of a Gaussian is 

another Gaussian, their implementation into the Hartree-Fock or Kohn-Sham 

equations is facile. A large number of basis sets have been developed over the 

years. In this work, the basis set 6-311G(d) has mostly been used and was 

initially defined by Pople and coworkers:153-160 

“6”: 1 contraction of 6 Gaussians for the core electrons 

“311”: 3 contractions for the valence electrons: the first of 3 Gaussians and 

the second and third of 1 Gaussian each 

“G”: stands for Gaussian 

“(d)”: the addition of a set of polarization d functions for the 2nd and 3rd row 

elements. Sometimes also denoted as “*”. Subsequently, “(d,p)” or “**” 

adds a set of polarization p functions to hydrogen atoms. 

“+”: adds a set of diffuse s and p functions for the 2nd and 3rd row 

elements. 

In the next chapter, a different family of basis sets by Ahlrichs and coworkers 

was used for the calculations using the Turbomole package as these were 

specifically designed for this package.161-164 Their basis sets are named “def2-“ 

followed by an acronym matching the description of the basis set. We used the 

def2-TZVP basis set which is also of the triple-ζ split-valence type, similar to the 

6-311G(d) basis set, with sets of polarization functions. The size of the basis set 

can have a large influence on the accuracy of the calculation (if the size is too 

small) but can also lead to extended calculation times (when it is too large). The 

choice of whether to incorporate double, triple or even higher split-valence, 

polarization or diffusion functions needs to be weighed against the accuracy and 

time that is needed for the calculations to complete. Similarly, a larger system 

(i.e. a system containing more or heavier atoms and thus more electrons) 

requires more atomic orbitals to be computed and therefore will also lead to a 

longer calculation time. 

In order to probe the excited state properties, a time-dependent perturbation is 

applied to the ground-state wavefunction or electron density for HF or DFT 

based methods, respectively. Runge and Gross showed that for time-dependent 

DFT (TDDFT), the density is still uniquely defined by the external potential.165 

The time-dependent Kohn-Sham equation can be written as Eq. 1.17:166, 167 

[−
1

2
𝛻2 + 𝑉𝑒𝑓𝑓(𝑟, 𝑡)] 𝛩𝑖(𝑟, 𝑡) = 𝑖

𝛿

𝛿𝑡
𝛩𝑖(𝑟, 𝑡)     Eq. 1.17 
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with 𝑉𝑒𝑓𝑓(𝑟, 𝑡) = 𝑉(𝑡) + 𝑉𝑆𝐶𝐹(𝑟, 𝑡)     Eq. 1.18 

and 𝑉𝑆𝐶𝐹(𝑟, 𝑡) = ∫
𝜌(𝑟,𝑡)

|𝑟−𝑟′|
𝑑𝑟′ + 𝑉𝑋𝐶(𝑟, 𝑡)     Eq. 1.19 

assuming the existence of a potential 𝑉𝑒𝑓𝑓(𝑟, 𝑡), for an independent particle 

system whose orbitals 𝛩𝑖(𝑟, 𝑡) yield the same charge density 𝜌(𝑟, 𝑡) as for the 

interacting system. 𝑉𝑋𝐶(𝑟, 𝑡) (Eq. 1.18) is the exchange-correlation potential and 

is given as the functional derivative of the exchange-correlation action AXC (Eq. 

1.20):168 

𝑉𝑋𝐶[𝜌](𝑟, 𝑡) =
𝛿𝐴𝑋𝐶[𝜌]

𝛿𝜌(𝑟,𝑡)
≈

𝛿𝐸𝑋𝐶[𝜌𝑡]

𝛿𝜌𝑡(𝑟)
= 𝑉𝑋𝐶[𝜌𝑡](𝑟)    Eq. 1.20 

The unknown functional AXC of ρ over both space and time is approximated by 

EXC (the exchange-correlation functional of time-independent Kohn-Sham 

theory) which is a function of ρt at fixed t. This local approximation in time is 

commonly referred to as the adiabatic approximation and allows the use of the 

same exchange-correlation functionals as described above.168 

The linear response of the density matrix after applying a time-dependent 

perturbation can be rewritten as Eq. 1.21:169  

[(
𝐴 𝐵
𝐵∗ 𝐴∗) − 𝜔 (

1 0
0 −1

)] (
𝛿𝑃
𝛿𝑃∗) = (

−𝛿𝑉
−𝛿𝑉∗)    Eq. 1.21 

where the elements of matrices A and B are defined as 

𝐴𝑎𝑖,𝑏𝑗 = 𝛿𝑎𝑏𝛿𝑖𝑗(𝜖𝑎 − 𝜖𝑖) + 𝐾𝑎𝑖,𝑏𝑗      Eq. 1.22 

and 

𝐵𝑎𝑖,𝑏𝑗 = 𝐾𝑎𝑖,𝑗𝑏       Eq. 1.23 

with i,j for occupied and a,b for virtual molecular orbitals, 𝜖𝑎 and 𝜖𝑖 are the 

orbital energies for the virtual and occupied orbitals, respectively, Kai,bj is the 

coupling matrix [(𝑎𝑖|𝑏𝑗) + (𝑎𝑖|𝑓𝑋𝐶|𝑏𝑗)] with fXC being the first order exchange-

correlation kernel and 𝛿𝑃(𝜔) is the linear response of the KS/HF density matrix in 

the basis of the unperturbed molecular orbitals. The excitation energies are 

determined as the poles of the response functions, leading to zero eigenvalues 

on the left hand side of Eq. 1.21. Therefore, the problem can be rewritten as a 

non-Hermitian eigenvalue problem for which the solutions are the excitation 

energies:169, 170 
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[
𝐴 𝐵
𝐵 𝐴

] [
𝑋
𝑌

] = 𝜔 [
1 0
0 −1

] [
𝑋
𝑌

]      Eq. 1.24 

With 𝑋𝑎𝑖 = 𝛿𝑃𝑎𝑖(𝜔) and 𝑌𝑎𝑖 = 𝛿𝑃𝑖𝑎(𝜔). X is associated to the excitation and Y is 

associated with the de-excitation. Each excitation is characterized by an energy 

and one or multiple electronic transitions (e.g. 70% HOMO→LUMO and 30% 

HOMO-1→LUMO). By computing the transition dipole moment (𝜇𝑒𝑔) from the 

ground state (g) to the excited state (e), the oscillator strength (feg) is available: 

𝑓𝑒𝑔 =
2

3

𝑚𝑒

𝑒2ħ2
‖𝜇𝑒𝑔‖

2
∆𝐸𝑒𝑔      Eq. 1.25 

with 𝜇𝑒𝑔 = ⟨𝛹𝑒|�̂�|𝛹𝑔⟩       Eq. 1.26 

From the results of the TDDFT calculations, information regarding the CT 

character of a given transition can be obtained by analyzing the ground and 

excited state densities. Le Bahers et al. showed that by taking the difference 

between the excited and ground state densities, regions of increasing (Figure 

1.29, purple) and decreasing (Figure 1.29, cyan) electron density can be 

determined.171 When these regions are localized on the acceptor and donor units 

of the molecule, respectively, the transition is more likely of CT character. To 

quantify this, several figures of merit are used. The distance over which charge 

is transferred (dCT) is derived by taking the barycenters of positive and negative 

electron density change and calculating the distance between them. The change 

in dipole moment (Δµ) is calculated by taking the difference of the dipole 

moments of the ground and excited states. Larger dCT and Δµ values are 

characteristic of CT transitions as the regions of increased and decreased 

electron density are localized on different parts of the molecule for these 

transitions. However, they need to be considered independently for each 

 

Figure 1.29: Excited-ground state electron density differences as obtained by the method 

of Le Bahers et al., indicating the LE character (S1) and CT character (S2) of a BODIPY 

compound used in Chapter 6. The smaller dCT and Δµ values for S1 than for S2 indicate LE 

and CT character for the former and the latter, respectively. 
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molecule as the size of the molecule and possible symmetry in D-A-D systems 

can lead to small dCT and Δµ values while still having CT character. Therefore, 

careful investigation of the observed excited-ground state electron density 

differences in conjunction with the dCT and Δµ values is required to have a good 

understanding of the CT character of a given transition. 

Unfortunately, the TDDFT calculations can lead to triplet instabilities. The 

stability of the Kohn-Sham wave function with respect to symmetry breaking can 

be tested by considering an arbitrary unitary transformation of orbitals (Eq. 

1.27):172 

𝜑𝑟
𝜆(𝑟) = 𝑒𝑖𝜆(�̂�+𝑖𝐼)𝜑𝑟(𝑟)      Eq. 1.27 

where �̂� and 𝐼 are real operators. With some algebra, the energy expression can 

be derived: 

 𝐸𝜆 = 𝐸0 + 𝜆2[𝑅∗(𝐴 − 𝐵)𝑅 + 𝐼∗(𝐴 + 𝐵)𝐼] + 𝛺(𝜆3)    Eq. 1.28 

The 𝛺(𝜆3) term disappears because the energy has already been minimized 

before considering symmetry-breaking. The (A±B) term indicates the connection 

with Eq. 1.24, which can now be written as the eigenvalue equation: 

(𝐴 + 𝐵)(𝐴 − 𝐵)𝑍𝐼 = 𝜔𝐼
2𝑍𝐼      Eq. 1.29 

For pure DFT, the matrix (A-B) is always positive definite, however, the matrix 

(A+B) may have some negative eigenvalues, in which case the energy Eλ will fall 

below E0 for some value of I.172 This also corresponds to a negative value for 𝜔𝐼
2 

and, subsequently, an imaginary value of 𝜔𝐼. This mathematical relationship is 

the triplet instability. The Tamm-Dancoff approximation overcomes this problem 

by setting the matrix B equal to 0.173, 174 This decouples the linear response 

TDDFT excitation energy problem from the ground state stability problem and 

reduces Eq. 1.24 to 

[
𝐴 0
0 𝐴

] [
𝑋
𝑌

] = 𝜔 [
1 0
0 −1

] [
𝑋
𝑌

]      Eq. 1.30 

which is further simplified to  

𝐴𝑋 = 𝜔𝑋        Eq. 1.31 

Lastly, calculations are often performed on a single molecule in vacuo. However, 

for comparison to experimental results, insertion of the molecule into a suitable 



Introduction 

 

43 

 

medium might be necessary. Several strategies have been employed of which 

the polarizable continuum model (PCM) has been the most used.175-177 The 

model implicitly accounts for a solvent by enveloping the molecule inside a 

charged cavity (Figure 1.30). The PCM assumes that the most dominant 

interactions between the surrounding and solute are Coulomb interactions and it 

is therefore not suitable to investigate the influence of hydrogen-bonding 

interactions between the solvent and solute. The solvent “cage” is built to 

reproduce the empty space between the solute and the “would-be” solvent 

molecules and is dependent on the chosen solvent (Figure 1.30). The charge 

density at the surface of the cavity is dependent on the dielectric constant of the 

chosen solvent. 

These methods have been implemented in a variety of quantum chemical 

packages such as Gaussian,178 Turbomole179 and Dalton.180 

 

Figure 1.30: Simplified representation of the PCM in which the solvent cage is constructed 

by probing the outer edges of the molecule using a solvent molecule, reproduced from  

ref 177. 

1.5.2. Application of (TD)DFT to TADF 

While DFT is able to achieve similar accuracy to HF-based methods for ground-

state properties, its main merit is the reduced computational effort (computation 

time and hardware requirements) that is needed for time-dependent properties 

such as excited-state energies or excited-state geometry optimizations. This is 

especially true when using higher level HF-based methods such as the second-

order approximate coupled cluster singles and doubles model CC2, for which the 

computational cost increases rapidly (as Nx, with N a measure of the size of the 

compound; x = 5 for CC2). While their accuracy exceeds that of TDDFT, these 
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methods are inviable to calculate the excited-state properties of larger systems 

(>50 atoms) for screening purposes.25  

For TADF applications, DFT has been widely applied to optimize the ground-state 

geometries and TDDFT to calculate the first singlet and triplet excitation 

energies, and then to estimate ΔEST. The process starts with a chemical 

structure that is drawn in a software package such as ChemDraw. Using 

visualisation software such as Chem3D, Avogadro, GaussView or DrawMole, the 

Lewis structure is transformed into a 3D representation which can preliminarily 

be optimized using simple force-field optimization to speed up the calculations 

that are performed using Gaussian (for example). The coordinates are then 

inserted into a Gaussian input file and using several keywords, the required task 

is specified. The first calculation typically run is an optimization of the ground-

state geometry. Using the non-optimized coordinates, the Gaussian package 

constructs a trial density based on the specified basis set (6-311G(d) in this 

work). Using the Kohn-Sham method, the total energy of the system is 

minimized until a minimum (characterized by negligeable forces and the absence 

of imaginary frequencies) and convergence for the energy of this state is 

reached. Special care needs to be taken that the input geometry is close enough 

to the expected final geometry as local minima on the potential energy surface 

are possible. Molecules with multiple possible conformers can be pushed toward 

a higher energy conformer by changing the starting geometry appropriately. The 

XCF (in this work, M06144 for geometry optimizations) that is used in the DFT 

theorems is also specified in the input file and will have a significant influence on 

the value of the total energy of the system. Typically the influence of the used 

XCF on the geometrical parameters is relatively small when suitable XCFs are 

used. The optimized geometry can be analyzed using the same visualization 

softwares as described before, with the exception of Chem3D. From the 

geometry optimization, all structural parameters such as bond lengths and 

dihedral angles as well as the orbital energies and topologies can be extracted. 

This gives a first insight into the potential for TADF by looking at the localization 

of the HOMO and LUMO. Using the coordinates of the optimized geometry, the 

next calculations can be performed, such as a vibrational analysis, typically 

performed to verify that a minimum on the potential energy surface is obtained, 

or TDDFT. With TDDFT the ground-state geometry is taken and the excited-state 
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density is optimized. From this density, the singlet or triplet states can be 

calculated and properties such as their energy, the oscillator strengths in the 

case of singlet states and their single-particle transition natures can be 

determined. With this information, the energy levels of the various singlet and 

triplet states can be compared and an estimate of ΔEST is given. The excited-

state properties of organic molecules are even more prone to influences by the 

choice of the XCF. The next chapter delves deeper into the choice of the correct 

XCF by comparing different types of XCFs for various D-A compounds. 
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Abstract 

To gauge the suitability of an organic dye for thermally activated delayed 

fluorescence (TADF), its excited state properties are often calculated using 

density functional theory. For this purpose, the choice of the exchange-

correlation (XC) functional is crucial as it heavily influences the quality of the 

obtained results. In this work, 19 different XC functionals with various amounts 

of Hartree-Fock (HF) exchange and/or long-range correction parameters are 

benchmarked versus resolution-of-the-identity second-order coupled cluster 

(riCC2) calculations for a set of 10 prototype intramolecular donor-acceptor 

compounds. For the time-dependent density functional theory (TD-DFT) 

calculations, LC-BLYP(ω=0.20) and M06-2X are the better performing XC 

functionals when looking at singlet and triplet excitation energies, respectively. 

For the singlet-triplet energy gap, LC-BLYP(ω=0.17), LC-ωPBE(ω=0.17) and a 

hybrid LC-BLYP(ω=0.20)/M06-2X method give the smallest mean average errors 

(MAEs). Using the Tamm-Dancoff approximation (TD-DFT/TDA), the MAEs are 

further reduced for the triplet vertical excitation energies and the singlet-triplet 

energy gaps. 
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2.1. Introduction 

Computational chemistry has been instrumental to help resolving the 

mechanism behind thermally activated delayed fluorescence (TADF).1-7 Although 

higher level theoretical calculations do exist, such as the second-order 

approximate coupled cluster singles and doubles model CC2, the computational 

cost increases rapidly, as Nx with N a measure of the size of the compound (x = 

5 for CC2), making these methods inviable to calculate the excited state 

properties of larger systems for screening purposes. Density functional theory 

(DFT) is often applied to determine the dihedral angle between the donor and 

acceptor units, as well as the spatial separation of the frontier orbitals. Adiabatic 

linear-response time-dependent DFT (TDDFT) can be used to investigate the 

excitation energies of the singlet and triplet states, from which the singlet-triplet 

energy gap (ΔEST) can be deduced at a much lower cost than with higher-level 

theories such as CC2. However, the choice of the exchange-correlation (XC) 

functional in (TD)DFT calculations is of crucial importance to obtain accurate and 

reliable results. Several papers have already described the use of TDDFT or the 

Tamm-Dancoff approximation to TDDFT (TDDFT/TDA)8 to obtain accurate results 

for the first singlet and triplet vertical excitation energies of small organic 

conjugated compounds9, 10 and larger organic dyes for solar cell applications.11 

In the work of Jacquemin et al.,9 34 different XC functionals (XCFs) were 

investigated and benchmarked versus excitation energies obtained using high 

level methods such as MS-CASPT2 [i.e. multi-state complete active space self-

consistent field (CASSCF) corrected with second-order perturbation theory], 

CC2, and CC3 (i.e. approximate coupled cluster singles, doubles, and triples 

model). Among the best performing functionals in their study are BMK (42% HF 

exchange) and M06-2X (54% HF exchange). Brückner et al.12 investigated the 

singlet and triplet excitation energies for the application of singlet fission in 

organic solar cells using 14 different XC functionals benchmarked against MS-

CASPT2 calculations. On top of regular TDDFT calculations, the Tamm-Dancoff 

approximation was also assessed. The M06-2X XCF was found to give the best 

results when TDDFT singlet excitations are combined with TDA triplet values. 

Wong et al.11 investigated the behavior of the long-range corrected functional 

LC-BLYP for different values of the range-separating parameter ω on a series of 
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coumarin dyes for dye-sensitized solar cells. Their results using the B3LYP and 

modified LC-BLYP functionals were benchmarked versus CC2 calculations and 

the authors concluded that the modified LC-BLYP functional significantly 

improves the accuracy of the singlet excitation energies with respect to B3LYP. 

Of particular interest are the works of Huang et al.13, Penfold14, Sun et al.15, and 

Moral et al.16, who investigated the behavior of various functionals for TADF 

active materials and host materials. The earliest investigation by Huang et al.13 

benchmarks a series of XCFs to experimental values. The investigation includes 

long-range separated functionals, but these were found to severely overestimate 

the S1 vertical excitation energy due to the lack of tuning of the range-separated 

parameters. Moral et al.16 used PBE0 within the TDA to evaluate the S1 vertical 

excitation energies with respect to experimental values, not aiming to provide a 

benchmark, but rather to deduce structure-property relationships. Additionally, 

they employed the so-called double hybrids B2-PLYP and B2GP-PLYP to 

investigate the effects of non-local exchange and correlation on the excitation 

energies. Although the double hybrid functionals are noted to have a higher 

computational cost with similar overall results to their calculations with PBE0, 

they present a slight improvement for the compounds with a larger charge 

transfer character. Sun et al.15 and Penfold14 opted to modify the range-

separating parameter in LC-ωPBE and LC-BLYP, respectively. In both works, the 

calculated excitation energies were benchmarked against experimental values 

for the singlet excitation energies and singlet-triplet energy gaps. With ω values 

from 0.14 to 0.20 (given in bohr-1 units throughout the paper) for LC-ωPBE and 

0.15 to 0.19 for LC-BLYP, the authors found very small errors (MAE < 0.15 eV) 

with respect to the experimental values for both properties under investigation.  

In this work, the TDDFT method is employed to evaluate the first singlet and 

triplet excitation energies and the corresponding singlet-triplet energy gaps for a 

set of 10 compounds (Figure 2.1) and a number of functionals from different 

rungs of a ladder leading to quantum chemical accuracy17 are tested. Our goal is 

to find a method with a good trade-off between computational cost and accuracy 

while being applicable to an as large as possible set of compounds. The 10 

compounds were chosen from TADF literature or devised from ongoing work 

within our groups. They were selected because they span a broad range of 

experimental (and theoretical) singlet-triplet energy splitting values, together 
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with fluorescence characteristics going all the way from blue to red. 

Furthermore, the compounds were designated to consist of varying donor and 

acceptor groups to allow generalization. For compounds 1, 4, 5, 6, 9, and 10, 

TADF properties have been observed experimentally. For compound 3, it was 

shown that no TADF is present. To our knowledge, compounds 2, 7, and 8 have 

not been investigated yet in literature and no experimental data on their

 

Figure 2.1: Overview of the donor-acceptor compounds studied in this work. 



Finding the optimal exchange-correlation functional for TADF emitters 

 

59 

 

TADF behavior are available. The synthesis of compounds 2, 7, and 8 is 

therefore reported, together with their UV-VIS absorption and emission spectra. 

For the sake of consistency, we carried out similar optical characterizations for 

the other compounds to provide a data set for comparison with the quantum 

chemical predictions. Our set of XCFs includes those that were already 

previously tested with good results, such as M06-2X, LC-BLYP(ω = 0.17), and 

LC-ωPBE(ω = 0.17), the two latter with modified range-separating parameters. 

We opted for averages of the optimal ω values obtained by Sun et al.15 and 

Penfold14, because this is more convenient for screening purposes than having to 

optimize this parameter for every compound, either to get the smallest errors on 

the excitation energies or to satisfy Koopmans’ theorem.18 These XC functionals 

are benchmarked against resolution-of-the-identity second-order coupled cluster 

(riCC2)19 calculations. Furthermore, this work expands the investigation on the 

accurate determination of the singlet and triplet excitation energies beyond the 

first excited states. This could lead to useful insights in other fields outside that 

of TADF such as upper state photophysics,20 singlet fission,21 and photodynamic 

therapy (PDT).22-24 Accurate determination of the second triplet excitation 

energy could be particularly useful for (image-guided) PDT applications24-26 or 

when screening materials for their potential as efficient TADF emitters according 

to the vibronic mechanism, without going as far as calculating the spin-orbit 

coupling or vibronic interactions. 

2.2. Results and discussion 

2.2.1. Synthesis and optical characterizations 

Compounds 1,27 3-6,28-30 and 931 were synthesized according to their respective 

literature procedures. Compound 10 was obtained from Lumtech Inc (LT-N545). 

Syntheses of 2, 7, and 8 were performed following the procedures presented in 

Scheme 2.1. TPA-DK27 and 1,4-dibromo-2,3-difluoro-5,6-dinitrobenzene32 were 

synthesized according to their respective literature procedures. Details with 

respect to the synthesis and characterization of these compounds are provided 

in the Supporting Information (SI).  

All electronic absorption spectra were measured on a Varian Cary 5000 UV-Vis-

NIR spectrophotometer from Agilent Technologies. Corrected steady-state 
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emission spectra were recorded on a Horiba-Jobin Yvon Fluorolog-3 

spectrofluorometer equipped with a 450 W Xenon lamp as light source, with 

excitation at the ascending slope of the charge transfer absorption band. Freshly 

prepared samples in 1 cm quartz cells were used to perform all UV-Vis-NIR 

absorption and fluorescence measurements. Fluorescence measurements were 

performed using 10 mm optical path length cuvettes under a right-angle 

arrangement. All spectroscopic measurements were done in non-degassed 

samples at 20 °C in spectroscopic grade toluene. 

 

Scheme 2.1: Synthesis procedures for compounds 2, 7, and 8: (i) ethanol/acetic acid 

(19/1) at reflux for 1 h; (ii) Pd(OAc)2, XPhos and Na(OtBu) in toluene at 110 °C for 24 h; 

(iii) bis(pinacolato)diboron, [Ir(OMe)(COD)]2, 4,4'-di-tert-butyl-2,2'-bipyridine in dry 

cyclohexane at 80 °C for 24 h; (iv) OxoneTM in THF/H2O (10/1) at room temperature for 3 

h; (v) n-BuLi, dry THF at 0 °C for 1 h, (vi) TIPSCl, dry THF at 65 °C for 16 h; (vii) n-BuLi, 

dry THF at −78 °C for 1 h; (viii) CuBr, LiBr in dry THF at 0 °C for 1 h; (ix) oxalyl chloride 

at 0 °C for 1 h; (x) FeCl3, CH3NO2 in CH2Cl2 at room temperature for 3 h; (xi) iron powder 

in acetic acid at 45 °C for 6 h; xii) acetic acid at 75 °C for 16 h; (xiii) Pd(PPh3)4, K2CO3 in 

DMF/H2O (4/1) at 130 °C for 24 h. 
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2.2.2. Theoretical and computational details 

The ground-state geometries of all compounds were fully optimized at the 

M06/6-311G(d) level.33 All vibrational frequencies are real, demonstrating the 

optimized geometries correspond to minima on the potential energy surface. For 

compound 8, the triisopropysilyl (TIPS) groups were substituted by H atoms to 

reduce the computational cost. TDDFT calculations were performed using a 

variety of XC functionals (Table 2.1), ranging from GGA, meta-GGA and global 

hybrid to range-separated hybrid XC functionals using the 6-311G(d) basis set. 

For the LC-BLYP and LC-ωPBE range-separated hybrids, the range-separating 

parameter ω was modified. The modified versions of LC-BLYP and LC-ωPBE are 

henceforth denoted with the respective value of ω in the name: LC-BLYP33 

[which is a condensed notation for LC-BLYP(ω=0.33)], LC-BLYP20, LC-BLYP17, 

and LC-ωPBE17. All excited state calculations were performed using the PCM 

model (cyclohexane) to account for an apolar environment. In addition to TDDFT 

calculations, its Tamm-Dancoff approximation was also applied for all functionals 

and all compounds, allowing the assessment of its performance with respect to 

TDDFT. From the excited state calculations, the vertical excitation energies to 

the S1 (∆𝐸𝑆0−𝑆1
= 𝐸𝑆1

− 𝐸𝑆0
), S2 (∆𝐸𝑆2−𝑆0

= 𝐸𝑆2
− 𝐸𝑆0

), T1 (∆𝐸𝑇1−𝑆0
= 𝐸𝑇1

− 𝐸𝑆0
) and T2 

(∆𝐸𝑇2−𝑆0
= 𝐸𝑇2

− 𝐸𝑆0
) states, the oscillator strengths of the corresponding 𝑆0 → 𝑆1 

and 𝑆0 → 𝑆2 transitions (𝑓𝑆0−𝑆1
 and 𝑓𝑆0−𝑆2

), and the dominant one-electron 

transitions (molecular orbital pairs) for 𝑆0 → 𝑆1 and 𝑆0 → 𝑇1 transitions were 

obtained. From these values, ∆𝐸𝑆1−𝑇1
= ∆𝐸𝑆1−𝑆0

− ∆𝐸𝑇1−𝑆0
 (also referred to as ∆𝐸𝑆𝑇) 

and ∆𝐸𝑇2−𝑇1
= ∆𝐸𝑇2−𝑆0

− ∆𝐸𝑇1−𝑆0
 were calculated. All DFT and TDDFT/TDA 

calculations were performed using the Gaussian09 program.34 

The vertical excitation properties obtained with TDDFT and TDDFT/TDA were 

benchmarked using the resolution-of-the-identity approximation of the second-

order approximated coupled-cluster model19 using the Turbomole program 

(Version 7.3.1)35. The resolution of the identity approximation for two-electron 

integrals reduces the CPU time needed to calculate these integrals. In addition, 

the method uses a partitioned form of the CC2 equations, eliminating the need 

to store double excitation cluster amplitudes. Using the riCC2 method allows 

computation of much larger systems such as the ones used in this work, 

whereas they would be difficult to perform with the unaltered CC2 method. 

Schreiber et al.36 showed that the vertical excitation energies obtained with CC2 
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are in good agreement with those obtained with even higher levels of 

approximation such as the third-order approximation of the coupled cluster 

(CC3) and coupled cluster singles, doubles and triples (CCSDT) when the 

excitations exhibit a single excitation nature. Similarly, for the oscillator 

strengths, CC2 gives similar values to CC3 and CASPT2 calculations and allows 

at least for a qualitatively consistent picture. Indeed, in these benchmarks on 

small- and medium-size closed-shell organic molecules, for singlet excitation 

energies, the mean absolute errors (MAEs) with respect to the CASPT2 reference 

data amount to 0.32 eV, 0.50 eV, and 0.22 eV for the CC2, CCSD, and CC3 

methods, whereas for the triplet excitation energies, the MAEs given in the same 

order are 0.19 eV, 0.16 eV, and 0.08 eV, respectively. An alternative choice for 

the benchmark calculations might have been the spin-scaled-component version 

of CC2, SCS-CC2,37 but recent investigations on the prediction of the valence 

excitation energies of closed-shell organic chromophores did not demonstrate an 

advantage for employing or not the spin-scaled-component scheme.12, 37-39 The 

same ground-state geometries were used for the riCC2 calculations as for the 

TDDFT and TDDFT/TDA calculations to exclude any geometry dependent 

differences. For these Turbomole calculations, def2-TZVP was chosen both as 

the main and auxiliary basis set as it also comprises split-valence triple zeta 

basis functions with polarization functions for the second- and third-row atoms. 

Additional TDDFT/def2-TZVP calculations were performed to demonstrate that 

the use of different basis sets for the riCC2 and TDDFT calculations has a 

negligible impact. Indeed, at the TDDFT/LC-BLYP17 level, differences of 

excitation energies between the def2-TZVP and 6-311G* basis sets are always 

smaller than 0.08 eV and the mean absolute difference amounts to 0.03 eV. 

Moreover, the impact of the ground state geometries on the first singlet and 

triplet excitation energies has been assessed by performing additional 

TDDFT/LC-BLYP17 excitation energy calculations on geometries optimized at the 

ωB97X-D/6-311G(d) level of approximation. The ωB97X-D40 XC functional 

accounts explicitly for London dispersion forces by using empirical expressions, 

whereas M06 was parameterized to account, implicitly, for London dispersion 

interactions. The differences of TDDFT/LC-BLYP17 excitation energies between 

the M06 and ωB97X-D optimized geometries is negligible, with a mean absolute 

difference of 0.04 eV.  



Finding the optimal exchange-correlation functional for TADF emitters 

 

63 

 

 The mean absolute errors (MAEs), mean signed errors (MSEs), and standard 

deviations are calculated for all XCFs and for both TDDFT and TDDFT/TDA 

schemes in comparison to the reference riCC2 results (difference = TDDFT – 

riCC2). The absolute average errors help to objectively determine the most 

accurate XC functional, whereas the sign-dependent average errors yield some 

insight to whether the chosen XC functional tends to over- or underestimate the 

given property. 

Table 2.1: Overview of the selected XC functionals grouped by their position on Jacob's 

ladder. 

 

XC functional % HF exchangea 

Range-separating 

parameter ω 

(bohr-1)b 

GGA 

BLYP   

BPW91   

PBE   

meta-GGA 
M06L   

TPSS   

Global hybrid GGA 

B3LYP 20  

B971 21  

PBE0 25  

Global hybrid meta-

GGA 

TPSSh 10  

M06 27  

M06-2X 54  

Long-range 

separated hybrid 

GGA/meta-GGA 

ωB97 0-100 0.40 (1.323) 

ωB97X 16-100 0.30 (1.764) 

CAM-B3LYP 19-65 0.33 (1.604) 

LC-ωPBE17 0-100 0.17 (3.113) 

LC-BLYP17 0-100 0.17 (3.113) 

LC-BLYP20 0-100 0.20 (2.646) 

LC-BLYP33 0-100 0.33 (1.604) 

LC-BLYP 0-100 0.47 (1.126) 

a For long-range corrected functionals, the % HF exchange is given at interelectronic 

distance r12 = 0 and ∞. b corresponding length L = 1/ω (Å) in parentheses 

2.2.3. Experimental spectroscopic results and earlier theoretical data  

Results from the literature are summarized in Table 2.2 for the electronic and 

optical properties of compounds 1, 3-6, and 9-10. These include experimental 

data as well as TDDFT results related to the first singlet and triplet excited 

states. Our experimental UV-VIS absorption and emission data are also given for 

the whole list of compounds. Compound 7 was found to be non-emissive. 

Although the differences between literature results and ours are generally small  
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(a few tenths of eV), the ΔEmax of absorption of 9 differs by more than one eV. 

As discussed below, the new value is much more consistent with the quantum-

chemical calculations. This new experimental value of 9 substantiates the fact 

that we enacted our own set of optical characterizations.  

2.2.4. Reference riCC2 calculations 

The benchmark riCC2 values used to reference the TDDFT and TDDFT/TDA 

calculations are given in Table 2.3. The agreement between the first vertical 

singlet excitation energies (∆𝐸𝑆0−𝑆1
) calculated using riCC2 and the experimental 

absorption maxima was verified by constructing a correlation plot between the 

two properties (Figure 2.2). The slope of the correlation plot is slightly larger 

than 1, indicating that the riCC2 vertical excitation energy increases more 

rapidly with increasing absorption maximum. The R² value of 0.95 points to a 

very good correlation between the two properties, proving the high level of 

predictability of riCC2 calculations in comparison to experimental values. 

Although the number of points is reduced, a similarly good correlation between 

riCC2 and experiment is observed for the 𝑆0 → 𝑇1 transition energies. For ΔEST no 

valid correlation could be drawn, probably because the experimental values are 

not obtained from the difference between ∆𝐸𝑆0−𝑆1
 and ∆𝐸𝑆0−𝑇1

, but rather from the 

onsets of the fluorescence (at room temperature) and phosphorescence (at 77 

K) CT emission peaks.  

Table 2.3: riCC2 excitation energies, oscillator strengths, and energy gaps for compounds 

1-10. 

 
∆𝑬𝑺𝟎−𝑺𝟏

 

(eV) 

∆𝑬𝑺𝟎−𝑺𝟐
 

(eV) 
𝒇𝑺𝟎−𝑺𝟏

 𝒇𝑺𝟎−𝑺𝟐
 

∆𝑬𝑺𝟎−𝑻𝟏
 

(eV) 

∆𝑬𝑺𝟎−𝑻𝟐
 

(eV) 

∆𝑬𝑻𝟏−𝑻𝟐
 

(eV) 

∆𝑬𝑺𝟏−𝑻𝟏
 

(eV) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

2.969 2.996 0.170 0.098 2.903 2.948 0.045 0.067 

3.468 3.496 0.157 0.131 3.337 3.354 0.016 0.130 

2.474 3.355 0.231 0.008 2.081 3.256 1.175 0.393 

2.456 2.525 0.000 0.000 2.457 2.527 0.069 -0.001 

3.524 3.718 0.396 0.004 3.227 3.411 0.185 0.297 

3.565 3.646 0.207 0.001 3.494 3.502 0.009 0.071 

1.923 1.882 0.094 0.002 1.852 1.853 0.001 0.029 

3.076 3.150 0.083 0.005 2.575 2.961 0.386 0.501 

2.692 3.488 1.011 0.585 2.159 2.809 0.651 0.534 

10 3.022 3.031 0.032 0.010 3.010 3.019 0.009 0.012 
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Figure 2.2: Correlation plots between the riCC2 vertical excitation energies and the 

experimental values for maximum absorption ∆𝐸S0−S1
 and ∆𝐸S0−T1

. 

2.2.5. TDDFT and TDDFT/TDA versus riCC2 calculations 

2.2.5.1. Singlet excitation energies and oscillator strengths 

For the vertical singlet excitation energies and the corresponding oscillator 

strengths, the choice was made to only consider states that have the same 

nature in both the riCC2 and the TDDFT or TDDFT/TDA calculations. With the 

exception of compound 7 (HOMO-1LUMO), the dominant nature of the first 

excited state of all compounds is of HOMOLUMO character for the riCC2 

calculations. Given the near degeneracy (Table 2.3) of the first and second 

vertical excitation energies, and to have the comparison between the 

compounds more in line with each other, we have chosen to take the 

HOMOLUMO transition as the first state and the HOMO-1LUMO transition as 

the second state for compound 7. In a few compound-functional combinations, 

the nature of the first singlet excited state calculated with TDDFT or TDDFT/TDA 

does not correspond to a HOMOLUMO transition. We then opted to use the 

second (HOMOLUMO) excited state to compare states of the same nature. 

Indeed, comparison between two states of different nature may lead to faulty 

conclusions about the XCFs ability to correctly predict the targeted properties. 

These statistical analyses are provided in Table 2.4 for TDDFT values and in 
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Table 2.5 for the TDDFT/TDA ones. The full list of all compounds and their 

excited state data for the first two states can be found in the SI.  

In Figure 2.3, each colored line represents a single XCF and the sign-dependent 

error with respect to the riCC2 calculation is plotted for every compound. For the 

first singlet excitation energy (Figure 2.3a), we can clearly see some functionals 

heavily overestimating (LC-BLYP, ωB97, ωB97X, LC-BLYP33) and some 

functionals underestimating (PBE, BPW91, BLYP, TPSS, M06L, TPSSh, B3LYP, 

B971, PBE0, M06) the singlet excitation energy. Overestimation of the singlet 

excitation energy typically occurs when there is too much HF exchange, i.e. for 

range-separated hybrids when the range-separating parameter is not properly 

tuned (ω is too large). Underestimation happens when there is not enough HF 

exchange present, as is the case for the GGA and meta-GGA functionals, but 

even for some of the hybrid functionals. This originates from the ultra-locality of 

the XCF and the related self-interaction error, leading to a poor description of 

the CT excitations.42, 43 We also observe some variations of the errors as a 

function of the nature of the compounds, but most XC functionals seem to follow 

the same trend. The absolute values of the errors depicted in Figure 2.3 are 

averaged per functional in Table 2.4 and are provided together with their 

standard deviation. From Table 2.4, the functionals that show a relatively small 

error are CAM-B3LYP (0.311 eV) and M06-2X (0.283 eV), but they are 

outperformed by LC-ωPBE17 (0.141 eV), LC-BLYP17 (0.157 eV) and LC-BLYP20 

(0.141 eV). From the difference between the signed and absolute errors (Table 

S2.1), it is also clear that LC-BLYP20 tends to either slightly over- or 

underestimate the singlet excitation energy for a given compound. This is likely 

due to the small size of the error, as the other functionals all show the same 

amplitudes for the signed and absolute errors. Taking the LC-BLYP XCFs, the 

signed errors range from -0.157 eV (ω = 0.17, the amount of HF exchanges 

grows the least rapidly with r12) to 0.056 eV (ω = 0.20), 0.650 eV (ω = 0.33), 

and 0.978 eV (ω = 0.47, the amount of HF exchanges grows the fastest with 

r12), demonstrating the key role of long-range exchange. Using the Tamm-

Dancoff approximation has a minor impact in the sense that large 

underestimations or overestimations of ∆𝐸𝑆0−𝑆1
 remain when employing that 

approximation.  
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The second vertical singlet energy, ∆𝐸𝑆0−𝑆2
, follows the same trend as the first 

vertical singlet energy. A decrease in the MAE is observed with increasing HF 

exchange until a minimum is reached and the error increases again as the 

amount of HF exchange becomes too high. The most notable XC functionals are 

the same as for the first vertical singlet energy, LC-ωPBE17 (0.182 eV), LC-

BLYP17 (0.192 eV) and LC-BLYP20 (0.182 eV). Again, there is little difference 

between the TDDFT and TDDFT/TDA results. For both singlet excitation energies, 

LC-BLYP20 gives the smallest MAEs. The standard deviations on the MAEs for 

both properties are related to the MAEs themselves. If the MAE decreases, so 

does the standard deviation and vice versa. A slight exception to this is M06-2X 

(0.102 eV), which has relatively small standard deviations, still comparable to 

LC-BLYP17 (0.106 eV) and LC-ωPBE17 (0.102), despite having a MAE that is 

nearly twice as large. 

For the oscillator strengths, the analysis is less straightforward because their 

amplitudes cover more than one order of magnitude [even after neglecting 

those states with very small (f < 0.05) values]. Moreover, as shown in Table 2.3 

(riCC2 values), with exception of compound 9, all compounds show relatively 

small to very small oscillator strengths. This is most definitely true for the 

oscillator strength of the 𝑆0 → 𝑆2 transition. As a matter of fact, for these very 

small oscillator strengths, most XCFs perform well because they reproduce the 

dominant character of the transition, which determines the negligible f values. 

This is illustrated by compound 4, where the 𝑆0 → 𝑆1 and 𝑆0 → 𝑆2 transitions have 

a CT character, between the donor and acceptor groups that are perpendicular 

to each other (and therefore of different symmetry). To a given extent, the 

same trend as for the first singlet excitation energies roughly holds. This is 

expected as a good representation of the excitation energy should give a good 

description of its oscillator strength. Then, as already observed for benzene 

derivatives, XCFs with a small amount of HF exchange underestimate both the 

excitation energies and oscillator strengths.44 For the 𝑆0 → 𝑆1 transition, a large 

number of functionals are within 0.2 of each other and give relatively consistent 

results. Functionals such as LC-BLYP17 (0.050), LC-ωPBE17 (0.051), LC-BLYP20 

(0.086), M06-2X (0.084), CAM-B3LYP (0.101), M06 (0.050), PBE0 (0.053), 

B971 (0.068), B3LYP (0.074 eV) and TPSSh (0.095) all have errors below 0.1, 

albeit their standard deviations are larger than the errors themselves (since the 
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errors originate from a few excited states only). Using the Tamm-Dancoff 

approximation again barely changes these general conclusions, although, in 

more detail, its impact depends on the XCF and on the excited state (𝑆1 or 𝑆2). 

Indeed, the absolute average error decreases slightly for most functionals, 

except for M06-2X and the range-separated functionals when looking at the 

𝑆0 → 𝑆1 transition. For the 𝑆0 → 𝑆2 transition, the MAEs decrease slightly for all 

functionals except for LC-ωPBE17 and LC-BLYP. The best performing functionals 

for both transitions are M06-2X, LC-BLYP17, LC-ωPBE17, and LC-BLYP20. 

2.2.5.2. First and second triplet excitation energies 

To achieve efficient intersystem crossing, the 3CT and 3LE state (or 3CT state of 

a different nature) need to be close in energy for efficient vibronic coupling to 

take place. Therefore, this work not only focuses on calculating the first, but also 

the second vertical triplet excitation energies (Figure 2.3, Tables 2.4 and 2.5). 

Looking at the data obtained using the TDDFT approach, the error on the first 

triplet excitation energy, ∆𝐸𝑆0−𝑇1
, is the smallest for M06-2X (0.162 eV). This is 

consistent with the results of Brückner et al.[9a] in their report on the singlet-

triplet gap for triplet-triplet annihilation. When looking at the other functionals 

that perform well, LC-BLYP20 (0.215 eV), LC-BLYP33 (0.231 eV), ωB97X (0.311 

eV), LC-BLYP17 (0.314 eV), CAM-B3LYP (0.332 eV), and LC-ωPBE17 (0.344 eV) 

all have absolute average errors within 0.35 eV. It is apparent that a 

substantially high amount of HF exchange is necessary to accurately describe 

the triplet energy as is observed for the LC-BLYP functionals with ω = 0.20 and 

0.33 which outperform those with ω = 0.17 and LC-ωPBE17. On the other hand, 

the unmodified LC-BLYP has a much higher MAE, indicating a too large value for 

ω. The MAEs for the second vertical triplet excitation energy, ∆𝐸𝑆0−𝑇2
, follow the 

same trend as for the first excitation energy and are even a bit smaller for all 

functionals.  

When comparing TDDFT with TDDFT/TDA, all functionals show a more consistent 

behavior throughout the series (Figure S2.1). The accuracy of all functionals 

increases as can be seen by a decrease of the absolute average error for all 

functionals. Most notable are CAM-B3LYP (0.332 eV -> 0.151 eV) and LC-BLYP 

(0.623 eV -> 0.199 eV), which gain significant accuracy and have smaller 

standard deviations when using the TDDFT/TDA approach. Upon using the TDA, 
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a number of functionals, comprising M06-2X (0.144 eV), CAM-B3LYP (0.151 eV), 

LC-BLYP20 (0.149 eV), LC-BLYP33 (0.175 eV), and LC-BLYP (0.199 eV), have 

absolute average errors within 200 meV. The sudden decrease in MAE for the 

vertical triplet excitation energies using functionals such as CAM-B3LYP and LC-

BLYP is attributed to the ground state triplet instability problem for these 

systems, which is known to occur when using XCFs with a large amount of HF 

exchange.42, 43, 45, 46 In the TDA, only excitation between occupied-virtual orbital 

pairs is allowed as opposed to conventional TDDFT, where virtual-occupied de-

excitation contributions are also allowed. The form of the TDA eigenvalue 

equation precludes the occurrence of imaginary excitation energies and hence 

circumvents the triplet instability issues that can arise. 

The error on the second triplet excitation energy is the smallest for M06-2X 

(0.133 eV) and furthermore it has also the smallest standard deviation. Second 

best is LC-BLYP20 (0.157 eV), which, despite its relatively poor accuracy with 

respect to M06-2X, has a similar standard deviation and is closely followed by 

CAM-B3LYP (0.234 eV). Other functionals that are noteworthy are (0.302 eV), 

LC-BLYP17 (0.287 eV), and LC-BLYP33 (0.248 eV), all having absolute average 

errors within 0.3 eV. The overall performance is enhanced when using the TDA, 

except for M06-2X, in which the absolute average error goes up by 25% (0.133 

-> 0.177 eV). Using TDA, LC-BLYP20 (0.123 eV) and CAM-B3LYP (0.127 eV) 

perform similarly. 

Due to the vibronic enhancement, the T1-T2 energy gap can help to explain a 

compound’s potential for TADF (Figure 2.3, Tables 2.4 and 2.5). The largest 

absolute average error is 0.400 eV (LC-BLYP), meaning that the errors are 

generally smaller than when looking at the energies of the individual states. This 

leads us to conclude that a large number of functionals benefit from a 

cancellation of two relatively large errors. Therefore, the discussion will mainly 

focus on the functionals that did well in estimating the transition energies to T1 

and T2. The best performing functional is LC-BLYP17 (0.039 eV), followed by LC-

ωPBE17 (0.050 eV), LC-BLYP20 (0.072 eV), and M06-2X (0.081 eV). Applying 

the Tamm-Dancoff approximation, the absolute average errors have significantly 

decreased further for the aforementioned functionals. Furthermore, CAM-B3LYP 

(0.213 -> 0.067 eV) performs a whole lot better under the TDA, as was also 

shown for the T1 and T2 energies.  
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Figure 2.3: Signed errors on each property for each individual XC functional for all 10 

compounds obtained using TDDFT. a) First vertical singlet excitation energy, ∆𝐸S0−S1
. b) 

Oscillator strength for the first singlet excitation, fS0−S1
. c) Second vertical singlet excitation 

energy, ∆𝐸S2−S0
. d) Oscillator strength for the second vertical singlet excitation, fS0−S2

. e) 

First vertical triplet excitation energy, ∆𝐸T1−S0
. f) Second vertical triplet excitation energy, 

∆𝐸T2−S0
. g) Triplet-triplet energy gap for the first two triplet excited states, ∆𝐸T2−T1

. h) 

Singlet-triplet gap for the first singlet and triplet excited states, ∆𝐸S1−T1
. 
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2.2.5.3. Singlet-triplet energy gap 

The first property that is typically considered when analyzing a compound for 

TADF, is the singlet-triplet energy gap. Its amplitude is correlated, with good 

approximation, to the spatial overlap between the HOMO and LUMO because the 

first singlet and triplet transitions are dominated by the HOMO-to-LUMO 

configuration. This is evidenced in Figure S2.2 at the representative M06/6-

311G(d) level of approximation. One would expect that the XC functionals that 

are accurately describing both the singlet and triplet excitation energies also 

perform well at describing the energy gap between them. Therefore, from the 

previous sections, it follows that LC-ωPBE17 (0.209 eV), LC-BLYP17 (0.156 eV), 

LC-BLYP20 (0.270 eV) and M06-2X (0.239 eV) are reliable functionals to use 

under the regular TDDFT formalism, despite not having the smallest absolute 

errors or standard deviations. Ideally, TDDFT/TDA is used and the error on the 

energy gaps for LC-ωPBE17 (0.171 eV), LC-BLYP17 (0.137 eV), LC-BLYP20 

(0.226 eV), and M06-2X (0.187 eV) is reduced. CAM-B3LYP (0.643 -> 0.303 eV) 

still shows a relatively large error on ΔEST due to its larger average error on the 

singlet excitation energy than the other two functionals. 

Surprisingly, most functionals, including the GGA and meta-GGA functionals 

without HF exchange (BLYP, BPW91, PBE, TPSS, M06L), perform well for the 

singlet-triplet energy gap. These data also explain why one of the most used 

functionals in literature (B3LYP), has not been found to give erroneous results, 

despite its poor ability to describe both the singlet and triplet excitation 

energies. The same goes for the other functionals. When looking at the singlet 

and triplet energies individually, they fail dramatically in predicting accurate 

values. The corresponding underestimations of both types of excitation energies 

have the same origin, which is related to the CT character of the excitations.58 

Therefore, their ability to accurately predict ΔEST is due to the compensation of 

two large errors, as was also seen for the T1-T2 energy gap. Ultimately, since 

they are obtained with the wrong underlying quantities, these functionals are 

not recommended, even though they might give a quantitatively correct answer 

for a certain set of compounds. Because of the large errors on the singlet and 

triplet excitation energies when using these functionals, one can never be sure 

that the calculated singlet-triplet energy gap is trustworthy, nor whether related 
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quantities like the spin-orbit couplings could be accurate since they depend on 

the nature of the excited state.  

Lastly, the possibility to use a ‘hybrid’ approach in which the vertical singlet and 

triplet excitation energies are calculated using two different functionals can be 

taken into consideration, i.e. i) LC-BLYP20 that gives the best results for the 

singlet excitation energies and ii) M06-2X that provides the best results for the 

triplet excitation energies. Combining the results from both functionals shows 

mean absolute errors on the singlet-triplet energy gap of 0.155 eV using TDDFT 

and 0.146 eV using TDDFT/TDA (Tables 2.4 and 2.5). These values are 

comparable to those obtained with single functional calculations such as LC-

BLYP17, but give better performance than functionals such as M06-2X and LC-

BLYP20 separately. 

2.2.5.4. Further discussion on the performance of the TDDFT scheme with 

respect to riCC2 

To further evaluate the XC functionals used in this work, the consistency of the 

TDDFT and TDDFT/TDA results versus the results obtained using riCC2 for the 

first excited singlet and triplet states was checked by constructing correlation 

plots. In Figure 2.4, the correlation is given for LC-BLYP20, which is the best 

performing functional for the vertical singlet excitation energies and also 

performs well for the triplet vertical excitation energies. In Figure S2.3, the 

correlation plots for all functionals used in this work can be found. While each of 

the functionals shows a linear correlation, the slopes vary widely from 0.66 to 

1.07, with R² values varying from 0.73 to 0.98. XC functionals without HF 

exchange (BLYP, BPW91, PBE, M06L, and TPSS) reproduce the riCC2 values 

poorly, with slopes much smaller than 1 and R² values below 0.85. The group of 

functionals with a small percentage of HF exchange (TPSSh, B3LYP, B971, PBE0, 

M06, and M062X) performs significantly better, especially with increasing 

amount of HF exchange. Apart from TPSSh (with only 10% of HF exchange), 

these functionals are showing correlations with R² values above 0.95, but with 

slopes that are still only around 0.9. As the amount of HF exchange increases to 

54% for M06-2X, slopes of around 1.0 with R² values of around 0.95 are found. 

Finally, the group of range-separated functionals (ωB97, ωB97X, CAM-B3LYP, 

LC-ωPBE17, LC-BLYP17, LC-BLYP20, LC-BLYP33, and LC-BLYP) shows varying 

behavior, depending on their range-separated parameter. Due to the, generally, 
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higher amount of HF exchange, the slopes of the correlation plots are all in the 

range of 0.95 – 1.07, but the R² values change heavily. In the cases where the 

range-separating parameter is too large, the amount of HF exchange increases 

rapidly and the R² values get smaller, as is the case for ωB97, ωB97X, CAM-

B3LYP, LC-BLYP33, and LC-BLYP. For the tuned range-separating functionals 

such as LC-ωPBE17, LC-BLYP17, and LC-BLYP20, both the slopes and R² values 

obtained are close to 1.0. Utilizing the Tamm-Dancoff approximation shows little 

influence on the correlation of the vertical singlet excitation energies, as was 

also shown above. For the correlation on the triplet excitation energies, the 

TDDFT/TDA approach leads to a slight decrease in the slope and R² values for 

the hybrid and non-hybrid functionals and leads to a slight increase or decrease 

in the slope depending on whether the slope was smaller or larger than 1.0 and 

a slight increase in the R² values for the range-separated functionals. Overall, it 

means the TDA approach gives a better correlation (closer to 1) for the range-

separated functionals with an increased R². It is further interesting to analyze 

the intercepts at the origin for the different first singlet and triplet excitation 

energies, which are directly related to a comparison of the regression lines. For 

GGA, mGGA, and hybrids with small amount of HF exchange, these intercepts 

vary little from the singlet to triplet excitation energies or from the TDDFT to the 

TDDFT/TDA calculations (typically by less than 0.2 eV). This gives a kind of 

impression (at the scale of the plots) that a unique regression line might 

describe the 4 sets of data. On the other hand, with large amount of HF 

exchange (global or range-separated hybrids), the intercepts at the origin are 

systematically larger for the ∆𝐸S0−S1
 values than the ∆𝐸S0−T1

 ones. In addition, for 

the triplets, there is a difference between the TDDFT and TDDFT/TDA results, 

with smaller intercepts at the origin using the TDDFT scheme.  

These results substantiate our findings in the previous sections. The functionals 

that tend to predict the vertical singlet and triplet excitation energies better, 

give better correlations to the riCC2 results. The Tamm-Dancoff approximation 

again gives improved results for the vertical triplet excitation energies, proving 

that, owing to correcting for the errors related to triplet instabilities,42 it is a very 

useful approximation to get the most accurate results from the TDDFT 

calculations. 
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Figure 2.4: Correlation between the LC-BLYP17 and riCC2 calculations for the first vertical 

singlet and triplet excitations. 

2.3. Conclusions 

In this work, the TDDFT method has been employed to evaluate the first singlet 

and triplet excitation energies and the corresponding singlet-triplet energy gaps 

on a set of 10 compounds that were designed to exhibit thermally activated 

delayed fluorescence. These compounds have been selected because they cover 

a broad range of singlet-triplet energy splitting values, together with 

fluorescence characteristics going from blue to red, while presenting a clear 

chemical diversity in terms of donor and acceptor units. By using a broad variety 

of XC functionals, our goal was to highlight the best ones in comparison to 

benchmark results evaluated at the resolution-of-the-identity second-order 

coupled cluster (riCC2) level, while the performance of the latter method against 

experimental data was preliminarily demonstrated.  

We have shown that two functionals stand out when aiming at predicting the 

vertical singlet and triplet excitation energies, being LC-BLYP20 and M06-2X. 

These functionals show steady behavior and minimal errors on the excited state 

energies in comparison to riCC2 calculations. LC-BLYP20 tends to predict the 

singlet energies more accurately than the triplet energies, whereas the opposite 

is true for M06-2X. Therefore, the singlet-triplet energy gaps that follow from 

these calculations have similar errors for a given compound. Furthermore, when 

looking at the singlet-triplet energy gaps, LC-ωPBE17 and LC-BLYP17 
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outperform LC-BLYP20 and M06-2X. The question of which functional is best to 

use then falls back to the primary focus of the investigation. If the focus is on 

the singlet state energies, LC-BLYP20 followed by LC-ωPBE17 and LC-BLYP17 

would be the optimal functionals. If the focus is rather on the position of the 

triplet states and their mutual energy difference, M06-2X would be the optimal 

functional. Using the Tamm-Dancoff approximation has no significant influence 

on the singlet excitation energies. It does, however, decrease the errors 

obtained using LC-BLYP20, LC-BLYP17, LC-ωPBE17, and M06-2X for the triplet 

excitation energies and consequently for the singlet-triplet energy gap. 

Furthermore, using TDA increases the precision of the obtained triplet energy 

errors within the set of 10 compounds. Although we have shown in this work 

that small errors for the singlet-triplet energy gap can be obtained with a large 

number of functionals, their accuracy lies in a cancellation of two large errors. 

These functionals are therefore not trustworthy.  

We therefore propose the use of the Tamm-Dancoff approximation in 

combination with either LC-BLYP17, LC-ωPBE17, LC-BLYP20, or M06-2X when 

looking at the ΔEST quantities for a given compound. Ultimately, a hybrid 

approach using the TDA approach and taking the ΔEST from the singlet and 

triplet excitation energies obtained with LC-BLYP20 and M06-2X, respectively, 

gives errors on the singlet-triplet gap that are roughly the same as those 

obtained with the best functional LC-BLYP17, but with better estimates for the 

singlet and triplet excitation energies respectively.  
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2.5. Supporting information 

2.5.1. Signed error plots (TDDFT/TDA) 

 

Figure S2.1: Signed errors on each property for each individual XC functional for all 10 

compounds obtained using TDDFT/TDA. a) First vertical singlet excitation energy, ∆𝐸𝑆0−𝑆1
. 

b) Oscillator strength for the first singlet excitation, 𝑓𝑆0−𝑆1
. c) Second vertical singlet 

excitation energy, ∆𝐸𝑆2−𝑆0
. d) Oscillator strength for the second vertical singlet excitation, 

𝑓𝑆0−𝑆2
. e) First vertical triplet excitation energy, ∆𝐸𝑇1−𝑆0

. f) Second vertical triplet excitation 

energy, ∆𝐸𝑇2−𝑆0
. g) Triplet-triplet energy gap for the first two triplet excited states, ∆𝐸𝑇2−𝑇1

. 

h) Singlet-triplet gap for the first singlet and triplet excited states, ∆𝐸𝑆1−𝑇1
. 
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2.5.2. Mean signed errors tables 
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2.5.3. Optimized geometries and HOMO/LUMO topologies 

 

Figure S2.2: Optimized geometries and HOMO and LUMO topologies for all compounds 

(calculated using M06 and 6-311G(d)). Isocontour value = 0.02 a.u. for all orbitals. 
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2.5.4. TDDFT versus riCC2 correlation plots  
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Figure S2.3: TDDFT versus riCC2 excitation energies as determined with different 

exchange-correlation functionals. 
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2.5.5. Experimental section 

2.5.5.1. Materials and methods 

Unless stated otherwise, all reagents and chemicals were obtained from commercial 

sources and used without further purification. Compounds 11, 3-6,2-4 and 95 were 

synthesized according to their respective literature procedures. Compound 10 was 

obtained from Lumtech Inc (LT-N545). 

Preparative (recycling) size exclusion chromatography (prep-SEC) was performed on 

a JAI LC-9110 NEXT system equipped with JAIGEL 1H and 2H columns (eluent CHCl3, 

flow rate 3.5 mL min−1). It was used to purify all synthesized compounds before 

performing any further analysis. NMR measurements were performed in CDCl3 on 

400 MHz instruments (Varian or Jeol). The chemical shifts (δ, in ppm) were 

determined relative to the residual CHCl3 (7.26 ppm) proton signals. MALDI-ToF 

mass spectra were recorded on a Bruker Daltonics Ultraflex II Tof/Tof. 1 μL of the 

matrix solution (16 mg mL−1 trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propenylidene]malononitrile in CHCl3) was spotted onto an MTP Anchorchip 600/384 

MALDI plate. The spot was allowed to dry and 1 μL of the analyte solution (0.5 mg 

mL−1 in CHCl3) was spotted on top of the matrix. 

2.5.5.2. Synthesis procedures 

Synthesis of TPA-QNX(F)2 (2) 

(9R,10R)-2,6-bis(diphenylamino)-9,10-dihydro-9,10-ethanoanthracene-11,12-

dione (TPA-DK) was synthesised according to literature.1 TPA-DK (68.3 mg, 0.12 

mmol) and 4,5-difluoro-1,2-benzenediamine (20.6 mg, 0.14 mmol) were heated 

to reflux for 1 h in ethanol/acetic acid (10 mL, 19/1). Orange crystals were 

formed at an early stage of the reaction. After the reaction, the mixture was 

cooled down to room temperature. The crystals were collected by filtration, 

washed with ethanol and dried under reduced pressure to obtain TPA-QNX(F)2 

(19.7 mg, 24%). 1H NMR (400 MHz, CDCl3): 7.67 (t, J = 9.3 Hz, 2H), 7.29 (d, J 

= 8.1 Hz, 2H), 7.25-7.18 (m, 10H), 7.06-6.98 (m, 12H), 6.82 (dd, J = 8.1, 2.2 

Hz, 2H), 5.34 (s, 2H). 13C NMR (100 MHz, CDCl3): 158.12, 

152.90/152.73/150.36/150.19 (dd, J = 255.5, 17.3 Hz), 147.56, 146.85, 

142.97, 136.29/136.23/136.17 (t, J = 5.9 Hz), 134.90, 129.39, 125.64, 124.74, 

123.24, 121.19, 119.76, 114.81/114.74/114.68/114.62 (dd, J = 12.6, 6.8 Hz), 

54.48. MS (ESI+) Calcd. for C46H30F2N4 [M]+: m/z 676.244, found: 676.240. 
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Synthesis of TTD-DMAC (7) 

3,6-bis(9,9-dimethylacridin-10(9H)-yl)thieno[3,2-b]thiophene (DMAC-TT) 

3,6-Dibromothieno[3,2-b]thiophene (504.8 mg, 1.69 mmol), 9,9-dimethyl-9,10-

dihydroacridine (737.1 mg, 3.52 mmol), palladium(II) acetate (22.9 mg, 0.10 

mmol), XPhos (84.2 mg, 0.18 mmol) and sodium tert-butoxide (339.2 mg, 3.53 

mmol) were dissolved in dry toluene under argon atmosphere (12 mL) in a 

flame-dried Schlenk tube. The mixture was stirred at 110 °C for 24 h and then 

cooled down to room temperature. The reaction mixture was poured into water 

and extracted with CH2Cl2. The organic phase was dried over anhydrous MgSO4, 

filtered and concentrated under reduced pressure. The crude product was 

purified by silica gel column chromatography with CH2Cl2/petroleum ether (v/v = 

20/80) as the eluent. The obtained solid was further purified by trituration in 

isopropanol, filtered and washed with CH2Cl2. The product was obtained as a 

white solid (456.7 mg, 49%). 1H NMR (400 MHz, CDCl3): 7.52 (dd, J = 7.7, 1.6 

Hz, 4H), 7.51 (s, 2H), 7.11 (ddd, J = 8.3, 7.3, 1.6 Hz, 4H), 7.03 (td, J = 7.5, 

1.3 Hz, 4H), 6.64 (dd, J = 8.2, 1.3 Hz, 4H), 1.74 (s, 12H). 13C NMR (100 MHz, 

CDCl3): 139.78, 137.41, 132.43, 131.10, 127.70, 126.80, 125.17, 121.58, 

114.02, 36.15, 30.51. 

 

10,10'-(2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thieno[3,2-

b]thiophene-3,6-diyl)bis(9,9-dimethyl-9,10-dihydroacridine) (DMAC-TT-pinacol)6 

DMAC-TT (199.0 mg, 0.36 mmol), bis(pinacolato)diboron (276.7 mg, 1.09 

mmol), 4,4ʹ-di-tert-butyl-2,2ʹ-bipyridine (22.5 mg, 0.08 mmol), and 

[Ir(OMe)(COD)]2 (28.1 mg, 0.04 mmol) were added to a flame-dried Schlenk 

under argon atmosphere and subsequently dry cyclohexane (10 mL) was added. 

The resulting mixture was stirred at 80 °C for 15 h in the dark. After cooling 

down to room temperature, the reaction mixture was poured in water and the 

organic material was extracted using CH2Cl2. The organic layer was washed with 

brine and dried over MgSO4. After removing the solvent under reduced pressure, 

the residue was purified by silica gel column chromatography with CH2Cl2 to 

afford the product as a beige solid (156.4 mg, 54%). 1H NMR (400 MHz, CDCl3): 

7.48 (dd, J = 7.7, 1.6 Hz, 4H), 7.02 (ddd, J = 8.2, 7.2, 1.6 Hz, 4H), 6.94 (td, J 

= 7.4, 1.3 Hz, 4H), 6.39 (dd, J = 8.1, 1.3 Hz, 4H), 1.86 (s, br, 6H), 1.66 (s, br, 

6H), 0.99 (s, 24H). 13C NMR (100 MHz, CDCl3): 144.08, 139.98, 134.43 (br), 
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130.37, 126.52, 125.13, 120.67, 113.75, 84.10, 53.48, 36.05, 33.92 (br), 

29.29 (br), 24.39. 

 

3,6-bis(9,9-dimethylacridin-10(9H)-yl)thieno[3,2-b]thiophene-2,5-dione (TTD-

DMAC)6 

To a solution of DMAC-TT-pinacol (152.0 mg, 0.19 mmol) in THF (10 mL) and 

H2O (1 mL) was added Oxone (372.8 mg, 0.61 mmol) in one portion at room 

temperature. The mixture was stirred at room temperature for 3 h in the dark, 

and then quenched with Na2S2O3 (aq.). The organic layer was extracted with 

hexanes, washed with water and dried over MgSO4. After evaporation of the 

solvent, the residue was purified by silica gel column chromatography with 

CH2Cl2/petroleum ether (v/v= 20/80) to give TTD-DMAC (18.9 mg, 17%) as a 

dark green/black solid. 1H NMR (400 MHz, CDCl3): 7.52 (dd, J = 7.8, 1.5 Hz, 

4H), 7.23 (ddd, J = 8.1, 7.3, 1.5 Hz, 4H), 7.11 (td, J = 7.5, 1.2 Hz, 4H), 6.76 

(dd, J = 8.1, 1.2 Hz, 4H), 1.69 (s, 12H). 13C NMR (100 MHz, CDCl3): 183.17, 

155.48, 137.69, 133.24, 132.17, 127.12, 125.89, 123.08, 114.18, 36.19, 

30.63. MS (MALDI-TOF) Calcd. for C36H28N2O2S2 [M]+: m/z 584.159, found: 

584.165. 

 

Synthesis of DTBQx-BDT-TIPS (8) 

2,6-bis(triisopropylsilyl)benzo[1,2-b:4,5-b']dithiophene (BDT-TIPS)7  

To a solution of benzo[1,2-b:4,5-b']dithiophene (1.26 g, 6.63 mmol) in THF 

(10.0 mL), n-BuLi (2.5 M in hexane; 8.0 mL, 19.89 mmol) was added dropwise 

at 0 °C and the mixture was stirred for 1 h at room temperature. Afterwards, 

triisopropylsilyl chloride (4.2 mL, 19.6 mmol) was slowly added. After the 

mixture was heated to reflux for 16 h, it was poured out in a beaker containing 

water (100 mL) and hydrochloric acid (1 M, 100 mL). The resulting precipitate 

was collected by vacuum filtration and washed with water, methanol and n-

hexane. The filtrate was then evaporated under reduced pressure and the 

remaining solid was triturated in n-hexane, followed by filtration and subsequent 

washing with n-hexane. BDT-TIPS was obtained as a white solid (2.49 g, 75%). 

1H NMR (400 MHz, CDCl3): 8.30 (s, 2H), 7.50 (s, 2H), 1.48-1.37 (m, 6H), 1.16 

(d, J = 7.4 Hz, 36H). 13C NMR (100 MHz, CDCl3): 140.62, 138.95, 138.31, 

131.55, 115.63, 18.66, 11.85. 
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(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[1,2-b:4,5-b'] 

dithiophene-2,6-diyl)bis(triisopropylsilane) (BDT-TIPS-pinacol)7 

A mixture of BDT-TIPS (1.635 g 3.25 mmol), bis(pinacolato)diboron (1.48 g, 

5.81 mmol), [Ir(OMe)(COD)]2 (107.2 mg, 0.16 mmol), and 4,4'-di-tert-butyl-

2,2'-bipyridine (94.8 mg, 0.35 mmol) in dry cyclohexane was stirred in the dark 

at 80 °C for 16 h under nitrogen atmosphere. After cooling down to room 

temperature, evaporation of the solvent under reduced pressure gave a residue, 

which was purified by silica gel column chromatography with CH2Cl2/petroleum 

ether (v/v= 20/80) to yield BDT-TIPS-pinacol as a white solid (555.3 mg, 27%). 

The reaction also yields unreacted BDT-TIPS as well as disubstituted BDT-TIPS-

pinacol as the main side products. 1H NMR (400 MHz, CDCl3): 8.39 (s, 1H), 8.35 

(s, 1H), 7.52 (s, 1H), 1.47 (s, 12H), 1.50-1.39 (m, 6H), 1.19 (d, J = 7.4 Hz, 

36H). 13C NMR (100 MHz, CDCl3): 148.3, 144.0, 140.0, 138.7, 138.0, 137.7, 

134.1, 130.8, 118.1, 116.0, 83.7, 24.8, 18.4, 11.6. 

 

1,2-di(thiophen-3-yl)ethane-1,2-dione  

3-Bromothiophene (2.34 mL, 24.69 mmol) was added dropwise to a solution of 

n-BuLi (2.5 M in n-hexane; 11.0 mL, 27.50 mmol) in THF (50 mL) and the 

resulting mixture was stirred at −78 °C for 1 h. The reaction mixture was 

subsequently added to a homogeneously stirred suspension of CuBr (3.59 g, 

25.03 mmol) and LiBr (4.34 g, 49.98 mmol) in THF (50 mL) at 0 °C and the 

mixture was stirred for 1 h at this temperature. After dropwise addition of oxalyl 

chloride (1.1 mL, 12.57 mmol), the reaction mixture was again stirred for 1 h at 

0 °C. The reaction was quenched with a saturated aqueous NH4Cl solution (40 

mL). After partial removal of the reaction solvent under reduced pressure, the 

product was extracted with hexanes and the organic phase was washed with a 

saturated aqueous NH4Cl solution, water and brine. The organic phase was dried 

over MgSO4, filtered and the solvent was removed under reduced pressure. The 

residue was purified by silica gel column chromatography with CH2Cl2/petroleum 

ether (v/v= 50/50) to give a yellow crystalline product (2.11 g, 76%). 1H NMR 

(400 MHz, CDCl3): 8.36 (dd, J = 2.9, 1.2 Hz, 2H), 7.70 (dd, J = 5.1, 1.2 Hz, 

2H), 7.40 (dd, J = 5.1, 2.9 Hz, 2H). 
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benzo[2,1-b:3,4-b']dithiophene-4,5-dione 

To a stirring solution of 1,2-di(thiophen-3-yl)ethane-1,2-dione (1.00 g, 4.50 

mmol) in CH2Cl2 (200 mL), a solution of FeCl3 (2.92 g, 18.00 mmol) in 

nitromethane (25 mL) was added dropwise. The reaction mixture was stirred for 

at room temperature for 3 h after which the reaction was quenched with a 1 M 

aqueous HCl solution (50 mL). The product was extracted with chloroform and 

washed with a 1 M aqueous HCl solution, water and brine. The organic phase 

dried over MgSO4, filtered and the solvent was removed under reduced 

pressure. The residue was purified by silica gel column chromatography using 

chloroform as the eluent and after evaporation of the solvent under reduced 

pressure, a black crystalline product was obtained (0.60 g, 61%). 1H NMR (400 

MHz, CDCl3): 7.50 (d, J = 5.2 Hz, 2H), 7.21 (d, J = 5.2 Hz, 2H). 

 

3,6-dibromo-4,5-difluorobenzene-1,2-diamine 

1,4-Dibromo-2,3-difluoro-5,6-dinitrobenzene8 (1.00 g, 2.76 mmol) and iron 

powder (2.25 g, 40.29 mmol) were stirred in acetic acid (40 mL) at 45 °C for 6 

h. The solution was cooled down to room temperature and then poured into a 

cold NaOH solution (5%, 100 mL). The product was extracted with ethyl acetate 

and washed with a saturated aqueous NaHCO3 solution. The organic phase was 

collected, dried over MgSO4, filtered and the solvent was removed under 

reduced pressure to obtain the product in a quantitative yield (0.82 g). 1H NMR 

(400 MHz, CDCl3): 5.16 (s, 4H). 

 

8,11-dibromo-9,10-difluorodithieno[3,2-a:2',3'-c]phenazine (DTPz) 

Benzo[2,1-b:3,4-b']dithiophene-4,5-dione (0.50 g, 2.27 mmol) and 3,6-

dibromo-4,5-difluorobenzene-1,2-diamine (0.69 g, 2.27 mmol) were dissolved in 

acetic acid (20 mL) and the resulting solution was stirred at 75 °C for 16 h. The 

reaction was quenched with a saturated aqueous NaHCO3 solution. The product 

was extracted with chloroform and washed with a saturated aqueous NaHCO3 

solution, water and brine. The organic phase dried over MgSO4, filtered and the 

solvent was removed under reduced pressure. The product was purified by 

recrystallization from CH2Cl2/MeOH to acquire a yellow crystalline product (0.94 

g, 85%). 1H NMR (400 MHz, CDCl3): 8.53 (d, J = 5.3 Hz, 2H), 7.65 (d, J = 5.3 

Hz, 2H). 
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8,11-bis(2,6-bis(triisopropylsilyl)benzo[1,2-b:4,5-b']dithiophen-4-yl)-9,10-

difluorodithieno[3,2-a:2',3'-c]phenazine (DTPz-BDT-TIPS) 

DTPz (90.2 mg, 186.5 µmol), BDT-TIPS-pinacol (245.0 mg, 389.6 µmol) and 

tetrakis(triphenylphosphine)palladium(0) (10.7 mg, 9.3 µmol) were added to a 

flame-dried Schlenk flask. The flask was evacuated and backfilled with nitrogen 

three times and pre-degassed anhydrous DMF (16 mL) and a K2CO3 solution (2 

M, 4 mL) were added. The reaction mixture was heated at 130 °C and stirred for 

24 h under a nitrogen atmosphere. The reaction mixture was poured into water, 

then extracted with dichloromethane and dried over MgSO4, filtered and washed. 

After evaporation of the solvent under reduced pressure, the product was 

purified by silica gel column chromatography with CH2Cl2/petroleum ether (v/v= 

20/80) as the eluent. DTPz-BDT-TIPS was further purified using preparative 

(recycling) GPC and was obtained as a yellow solid (60.0 mg, 24%). 1H NMR 

(400 MHz, CDCl3): 8.57 (d, J = 2.0 Hz, 2H), 7.70 (d, J = 1.9 Hz, 2H), 7.47 (dd, 

J = 5.3, 1.7 Hz, 2H), 7.23 (s, 1H), 7.16 (dd, J = 5.3, 2.1 Hz, 2H), 7.12 (s, 1H), 

1.45-1.18 (m, 12H), 1.17-0.90 (m, 72H). 13C NMR (100 MHz, CDCl3): 151.72, 

151.55, 149.16, 148.97, 142.74, 142.64, 140.86, 140.80, 139.19, 139.16, 

138.94, 138.54, 138.48, 138.24, 138.18, 137.07, 137.03, 136.06, 134.61, 

131.90, 131.76, 131.62, 131.54, 124.41, 124.34, 124.33, 124.27, 119.24, 

119.18, 116.53, 77.38, 18.69, 18.66, 18.60, 18.55, 18.50, 18.46, 18.38, 11.85, 

11.82, 11.76, 11.71. MS (ESI+) Calcd. for C72H94F2N2S6Si4 [M]+: m/z 1328.479, 

found: 1328.475. 
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2.5.6. UV-VIS absorption and emission (fluorescence) spectra 

 
Figure S2.4: Normalized absorption spectra (solid lines) of all compounds and their 

corresponding normalized fluorescence spectra (dashed lines) in toluene. Spectra are 

normalized to their charge transfer bands. 
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Table S2.3: Spectroscopic data for all compounds in toluene.a 

Compound 
λabs 

(nm)b 

λem 

(nm)c 

Δ�̅� 

(cm-1)d 

1 421 578 6452 

2 368 486 6598 

3 510 668 4638 

4 481 645 5286 

5 375 473 5525 

6 362 414 3470 

7 613 —e —e 

8 430 553 5173 

9 480 602 4222 

10 395 519 6049 

a Only data on the charge transfer bands are given. b Charge transfer absorption 

maximum. c Charge transfer fluorescence emission maximum. d Stokes shift. e No 

fluorescence observed. 
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2.5.7. NMR spectra  

 

Figure S2.5: 1H NMR spectrum of compound 1 in CDCl3. 

 

 

Figure S2.6: 1H NMR spectrum of compound 2 in CDCl3. 
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Figure S2.7: 13C NMR spectrum of compound 2 in CDCl3. 

 

Figure S2.8: 1H NMR spectrum of compound 3 in DMSO-d6. 

 



Finding the optimal exchange-correlation functional for TADF emitters 

 

97 

 

 

Figure S2.9: 1H NMR spectrum of compound 4 in CDCl3. 

 

 

Figure S2.10: 1H NMR spectrum of compound 5 in CDCl3. 
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Figure S2.11: 1H NMR spectrum of compound 6 in CDCl3. 

 

Figure S2.12: 1H NMR spectrum of compound 7 in CDCl3. 
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Figure S2.13: 13C NMR spectrum of compound 7 in CDCl3. 

 

Figure S2.14: 1H NMR spectrum of 8,11-dibromo-9,10-difluorodithieno[3,2-a:2',3'-

c]phenazine (DTPz) in CDCl3. 
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Figure S2.15: 1H NMR spectrum of compound 8 in CDCl3. 

 

Figure S2.16: 13C NMR spectrum of compound 8 in CDCl3. 
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Figure S2.17: 1H NMR spectrum of compound 9 in CDCl3. 
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Chapter 3 

Benzo[1,2-b:4,5-b']dithiophene as a 

weak donor component for push-pull 

materials displaying thermally activated 

delayed fluorescence or room 

temperature phosphorescence 
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Abstract 

In the search for high-performance donor-acceptor type organic compounds 

displaying thermally activated delayed fluorescence (TADF), triisopropylsilyl-

protected benzo[1,2-b:4,5-b']dithiophene (BDT-TIPS) is presented as a novel 

donor component in combination with two known acceptors: dimethyl-9H-

thioxanthenedioxide (TXO2) and dibenzo[a,c]phenazinedicarbonitrile (CNQxP). 

For a broader comparison, the same acceptors were also combined with the 

well-studied dimethyldihydroacridine (DMAC) donor. Optimized BDT-TIPS-

containing structures show calculated dihedral angles of around 50° and well-

separated highest occupied and lowest unoccupied molecular orbitals, although 

experimentally we observe rather large singlet-triplet energy gaps. By varying 

the acceptor moiety and the resulting ordering of excited states, room 

temperature phosphorescence (RTP) attributed to localized BDT-TIPS emission is 

observed in TXO2-BDT-TIPS, whereas CNQxP-BDT-TIPS affords a combination of 

TADF and triplet-triplet annihilation (TTA) delayed emission. In contrast, strong 

and pure TADF was observed for TXO2-DMAC as the donor unit, while CNQxP-

DMAC showed a mixture of TADF and TTA at very long times. Overall, BDT-TIPS 

represents a new low-strength donor component for push-pull TADF emitters 

that is also able to induce RTP properties. 
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3.1. Introduction 

While a near infinite number of D-A-D materials can be prepared, with their 

color and thermally activated delayed fluorescence (TADF) performance largely 

controlled by the choice of D and A, the pool of available donor units is relatively 

small. As indicated in Chapter 1, there are only about 7 different types of donor 

units or derivatives thereof which are being used in the design of most TADF 

emitters. Inspired by the field of organic photovoltaics (OPV), where it is widely 

used in push-pull type conjugated polymers,1 benzo[1,2-b:4,5-b']dithiophene 

(BDT) was chosen here as a promising novel donor unit for TADF emitters. First 

used to construct polymers for OPV applications in 2008,2 the BDT unit is 

favored for its rigid and planar nature, very high hole mobility and low-lying 

HOMO level. Another key aspect is that, via the conventional coupling on the 

BDT α-positions (Figure 3.1), highly planar, conjugated polymers can be 

constructed, leading to high charge-carrier mobility’s, good inter-chain mobility’s 

and red-shifted absorption necessary for low-band gap OPVs.1 One of the most 

well-known polymers based on BDT is PTB7 (Figure 3.1), which was one of the 

few devices reaching a PCE of 7% at the time.3-5 Because coupling via the α-

positions leads to planar structures, this is not useful for TADF applications as 

the HOMO and LUMO would not be separated. 

In 2012, Nakano et al.6 reported on the direct borylation of α-silyl-protected BDT 

unit on the benzene core (Figure 3.1), making subsequent coupling to another

 

Figure 3.1: Chemical structures of benzo[1,2-b:4,5-b']dithiophene, 4,8-bis(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[1,2-b:4,5-b']dithiophene and PTB7. 
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halogen-functionalized aromatic molecule possible via Suzuki-Miyaura cross-

coupling. Although their report was on the synthesis of di-substituted BDT 

molecules, tuning of the reaction conditions allows the synthesis of the 

monofunctionalised BDT molecule.7 Coupling on the BDT benzene core could 

allow the synthesis of highly twisted D-A compounds when combined with a 

suitable acceptor molecule.  

In this chapter, 2,6-bis(triisopropylsilyl)benzo[1,2-b:4,5-b']dithiophene (BDT-

TIPS) was used to construct D-A-D compounds with two different acceptors, 9,9-

dimethyl-9H-thioxanthene-10,10-dioxide (TXO2)8-12 and dibenzo[a,c]phenazine-

11,12-dicarbonitrile (CNQxP)13. For comparison, the 9,9-dimethyl-9,10-

dihydroacridine (DMAC) analogues were also synthesized and investigated. 

Density functional theory (DFT) calculations showed large spatial separation 

between the HOMO and LUMO for the DMAC-based compounds and moderate 

separation for the BDT-TIPS-containing structures. Theoretical ΔEST values, as 

estimated from time-dependent DFT (TDDFT), are large for the BDT-TIPS 

compounds and very small for the DMAC-containing materials. Accordingly, 

BDT-TIPS was found to generate room temperature phosphorescence (RTP) or 

TADF emission depending on the choice of acceptor and resulting position of the 

relevant excited states. 

While RTP is not common in organic molecules as discussed in Chapter 1, 

appropriate positioning of the singlet and triplet excited states can increase the 

rate of intersystem crossing (ISC) while a low-lying (localized) triplet state can 

trap the exciton. Because TADF emitters are designed to be rigid to overcome 

non-radiative transitions, this also benefits any trapped triplet excitons as they 

have the possibility of radiative transition from the excited triplet to the ground 

state if there is significant coupling between the two, leading to 

phosphorescence at room temperature. These RTP emitters typically show a 

relatively low triplet emission quantum yield making them inefficient for OLEDs, 

nonetheless their long-lived, and often red-shifted emission, can still be useful 

for other applications such as bio-imaging,14-16 sensing applications17, 18 and in 

glow-in-the-dark19 or security inks20. 
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3.2. Results and discussion 

3.2.1. Material synthesis 

The novel BDT-TIPS donor building block was synthesized as a boronic ester 

according to literature, as shown in Scheme 3.1.7 Triisopropylsilyl (TIPS) 

protection is necessary to prevent boroester formation on the thienyl 2- and 3-

positions. Coupling to different acceptors was achieved using Suzuki-Miyaura 

cross-coupling, while Buchwald-Hartwig cross-coupling was used for the DMAC 

compounds. Full details of all synthetic procedures are included in the supporting 

information (SI). 

 

Scheme 3.1: Synthesis pathways for all studied compounds: (i) n-BuLi, THF, 0 °C, 1 h; 

(ii) TIPSCl, THF, 65 °C, 16 h; (iii) Bis(pinacolato)diboron, [Ir(OMe)(COD)]2, 4,4'-di-tert-

butyl-2,2'-bipyridine, cyclohexane, 80 °C, 24 h; (iv) 9,9-dimethyl-10H-acridine, Pd2(dba)3, 

HPtBu3BF4, NaOtBu, toluene, 107 °C, 21 h; (v) BDT-TIPS-pinacol, Pd(PPh3)4, K2CO3, 

toluene/H2O (4/1), 80 °C, 24 h; (vi) 9,9-dimethyl-10H-acridine, Pd(OAc)2, HPtBu3BF4, 

NaOtBu, toluene, 120 °C, 24 h. 
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3.2.2. Quantum-chemical calculations 

Geometry optimizations were performed on the isolated BDT-TIPS donor (Figure 

S3.8) and the 4 different D-A-D emitters (Figure 3.2) using DFT (M06/6-

311G(d)). The excited state properties were calculated by TDDFT using LC-BLYP 

with a modified range-separating parameter (ω=0.17 a0
-1) as the exchange 

correlation (XC) functional.7, 21 TDDFT calculations were performed under the 

Tamm-Dancoff approximation and using the polarizable continuum model (PCM) 

in cyclohexane to simulate a non-polar environment in the Gaussian16 

package.22 The CT character of the involved states was investigated by looking 

at the differences of ground and excited state electron densities (Figure S3.9 

and S3.10). These were characterized by the distance over which charge is 

transferred, calculated according to the work of Le Bahers et al.,23 and the 

related change in dipole moment. For the geometry optimizations, the TIPS 

groups were explicitly included to accurately judge their influence on the 

electronic and structural properties. 

Although TXO2-DMAC has already been investigated before,8-11, 24 it was 

included in the calculations to allow straightforward comparison between the 

DMAC and BDT-TIPS donor systems. The CNQxP acceptor is also known from 

literature and was previously used to construct D-A systems with phenyl-spaced 

DMAC and diphenylamine (DPA) units.13 However, to the best of our knowledge, 

direct coupling between CNQxP and DMAC has not been reported before. A 

similar dibenzo[f,h]quinoxaline-2,3-dicarbonitrile entity was used to construct D-

A-D systems containing DMAC (amongst other donors), but this acceptor has a 

lower electron deficiency, providing slightly blue-shifted emission.25 In these two 

examples, TADF was observed experimentally. 

Large dihedral angles of around 90° were observed for the two DMAC-containing 

compounds (Table 3.1), leading to well-separated HOMO and LUMO distributions 

(Figure 3.2). The two compounds with BDT-TIPS donor groups show 

considerably smaller dihedral angles of around 50°. This is not unexpected, 

since the central six-membered ring is flanked by two smaller five-membered 

rings, as opposed to the six-membered rings in DMAC, affording less steric 

control over the D-A dihedral angle.26 The consequences of these smaller 

dihedral angles are also apparent looking at the HOMO and LUMO distributions 

(Figure 3.2), with the BDT-TIPS compounds showing increased overlap between 
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the HOMO and LUMO, in particular for TXO2, with the proximity of the two donor 

moieties in CNQxP-BDT-TIPS possibly leading to additional steric interactions. 

The smaller calculated dihedral angles for the BDT-TIPS compounds are 

consistent with larger oscillator strengths for the molecular S0->S1 transitions 

(having a largely dominant HOMO to LUMO character), along with their larger 

singlet-triplet energy gaps (Table 3.1). 

 

Figure 3.2: HOMO and LUMO topologies obtained using LC-BLYP(ω=0.17) for the 

optimized geometries of the different emitters investigated in this work. Isocontour values 

of 0.02 a.u. were used for all orbitals. 

TDDFT calculations were then performed to investigate excited singlet and triplet 

energies and their respective energy differences (Table 3.1). The TXO2-based 

compounds have S1 energies that are higher than those based on CNQxP, 

indicative of the lower acceptor strength of the TXO2 core. Similarly, the singlet 

energies of the compounds containing the BDT-TIPS donor are higher than for 

their DMAC counterparts, demonstrating the lower donor strength of the BDT-

TIPS group. While all D-A-D compounds show small energy gaps between the 

first and second triplet energies (∆𝐸𝑇2−𝑇1
), only the DMAC-containing compounds 

show a small calculated ΔEST. It is therefore anticipated that the BDT-TIPS donor 

will require highly sophisticated molecular design strategies to afford TADF 

behaviour, to overcome its intrinsically small D-A angles and the associated 

large orbital overlap. To account for vibration-induced symmetry-breaking 

effects, additional TDDFT calculations were performed with modified dihedral 

angles (±10°), revealing the weak intensity of the low-energy transitions of the 
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DMAC-based compounds, while the excitation energies and other excited state 

properties are only impacted in a negligible way (Figure S3.1). The CT nature of 

the first and second excited singlet and triplet states was also investigated 

(Table 3.2). TXO2-DMAC shows CT character in its first excited singlet and 

triplet states, as indicated in Figure S3.9. This property is associated with CT 

distance (dCT) values of around 1.49 Å and relatively large change in dipole 

moment (Δµ) upon excitation. This strong CT nature, combined with the small 

ΔEST, contributes significantly to the high EQEs (> 20%) obtained with this TADF 

emitter.8-10, 27 TXO2-BDT-TIPS, on the other hand, shows more localized 

excitations for both the singlet and triplet excited states, as shown in Figure 

S3.8 and as indicated by the much smaller dCT and Δµ values. This localized 

excitonic nature arises from the shared LUMO distribution on the BDT-TIPS and 

acceptor units, whereas for TXO2-DMAC the LUMO resides entirely on the TXO2 

part. Despite having two triplet states in close proximity, the large ΔEST restricts 

the possibility for TADF to occur. Like TXO2-DMAC, CNQxP-DMAC also shows 

good HOMO-LUMO separation and a small ΔEST. The first singlet and triplet 

excited states also show strong CT character, with large values for dCT and Δµ. 

For CNQxP-BDT-TIPS, the situation is less straightforward. Whereas the two 

first singlet excited states show strong CT character, the first and second triplet 

excited states have mixed charge-transfer (CT) and localized excited (LE) state 

character (due to contributions of multiple one-particle transitions) as they show 

intermediate dCT and Δµ values (Figure S3.10). 

3.2.3. Photophysical characterization 

The steady-state absorption and emission spectra of the BDT-TIPS containing D-

A-D materials in 1wt% doped zeonex films show large differences in absorption 

and emission energy, due to the different electron-withdrawing strengths of the 

TXO2 and CNQxP acceptor units (Figure 3.3). TXO2-DMAC8-11, 24, 27 has been 

studied in this host before, and data are presented here too to enable direct 

comparison to TXO2-BDT-TIPS. Both materials containing CNQxP have 

structured low energy absorption bands, corresponding to ππ* transitions of the 

CNQxP unit with some D-A CT character, and are slightly shifted with respect to 

each other due to the different electron-donating properties of the DMAC and 

BDT groups. The BDT-TIPS and DMAC donor units also have a large influence on 
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the D-A-D emission wavelengths, with the DMAC-based materials showing 

emission maxima red-shifted by 19 nm (0.12 eV) for TXO2 and 68 nm (0.22 eV) 

for CNQxP compared to the BDT-TIPS analogues. This is in line with the stronger 

donor character for the DMAC group, leading to a larger CT character of the 

emission and lower energy emission. These findings are in line with the results 

from the TDDFT calculations, as also evidenced by the simulated absorption 

spectra (Figure S3.1). The emission spectrum for TXO2-BDT-TIPS is quite 

narrow in comparison to that of TXO2-DMAC, suggesting a more localized 

nature of the emission. On the other hand, the emission spectra for both 

CNQxP-based compounds are broad, suggesting predominant CT character. The 

CNQxP-BDT-TIPS emission is unique in that it shows some structure and its 

onset is very close to the absorption edge, which could be due to dual emission 

of a higher energy 1LE and lower 1CT state. Indeed, separate emission bands

 

Figure 3.3: Steady-state absorption (top) and emission (bottom) spectra at room 

temperature in zeonex film. 
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corresponding to the shoulder and peak of the steady-state emission are 

observed in time-resolved measurements (Figure S3.3), supporting this 

assignment. Time-dependent emission spectra and decays were then obtained 

using a pulsed laser and iCCD camera to investigate the dynamic photophysics 

in these systems. From the contour plots of the normalized spectra and the total 

emission decays in zeonex (Figure 3.4a,c, and spectra in Figure S3.2), it is 

apparent that TXO2-BDT-TIPS has no delayed emission in the microseconds 

regime (the spectra in Figure 3.4a in this time region are consistent with 

normalized CCD baseline signal). High-energy LE emission consistent with the 

steady-state photoluminescence (PL) is observed at first, which relaxes over the 

first 50 ns to a red-shifted CT state before emission falls below the sensitivity 

limit of the instrument. A longer living and further red-shifted emission spanning 

into the millisecond domain is then observed. Comparing the millisecond 

emission spectra at room temperature and at 80 K (Figure 3.5 bottom), it is 

apparent that the room temperature and 80 K emission come from the same 

state in TXO2-BDT-TIPS and are therefore both attributed to phosphorescence. 

From the onset of the prompt fluorescence (PF) at room temperature and the 

phosphorescence at 80 K, the singlet and triplet energies and the corresponding 

singlet-triplet energy gap were calculated (Table 3.3). With an experimental 

ΔEST of 0.78 eV (vs. 0.93 eV calculated), TADF is excluded as a possible delayed 

fluorescence (DF) emission mechanism in TXO2-BDT-TIPS. The occurrence of 

RTP is attributed to the presence of the BDT-TIPS donor, as this emission 

mechanism was not observed for TXO2-DMAC (Figure 3.4b).  

For CNQxP-BDT-TIPS, a combination of LE and CT emission seems to be 

present at early decay times (Figure S3.3), which implies a reduced electron 

transfer rate to form the CT state compared to the other materials. Like in 

TXO2-BDT-TIPS, this is probably due to the BDT group having moderate 

dihedral angles with respect to the acceptor unit and having a rather weak 

electron-donating strength (as judged by comparison of the PL colour to the 

DMAC compounds). As the “LE” emission dies out, the CT emission remains 

throughout the remainder of the decay, although at very long times (> 1 ms) 

the “LE” emission seemingly reappears. The same short-wavelength emission is 

present at early decay times at 80 K, but does not reappear near the end of the 

decay (Figure S3.3). Furthermore, the microsecond emission present at room 
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Figure 3.4: Contour plots for the normalized room temperature time-resolved emission 

spectra of TXO2-BDT-TIPS (a), TXO2-DMAC (b), CNQxP-BDT-TIPS (d) and CNQxP-

DMAC (e) in zeonex, along with the emission intensity decays (c and f). 

temperature is absent at 80 K. At long times in the decay at 80 K, a red-shifted 

emission is seen, which is attributed to the true phosphorescence of the system 

(Figure S3.3). The absence of the microsecond emission at 80 K demonstrates 

temperature dependency as expected for TADF emission. The singlet (2.35 eV) 

and triplet (2.17 eV) energies from the experimental data lead to a singlet-

triplet gap of 0.18 eV, which is large but not insurmountable at room 

temperature (Table 3.3)52 The red-shifted microsecond emission in zeonex at 

room temperature has an onset of around 2.30 eV, indicating that TADF is a 
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Table 3.3: Photophysical properties and kinetics for TXO2-DMAC, TXO2-BDT-TIPS, 

CNQxP-DMAC and CNQxP-BDT-TIPS in zeonex. 

Compound 
ES 

(eV) a 

ET 

(eV) b 

ΔEST 

(eV) c 

τFp 

(ns)d 

τFd 

(µs)e 
kISC 

f krISC 
f 

TXO2-DMAC 3.20 3.02 0.18 12.71 67.89 5.44x107 4.27x104 

TXO2-BDT-

TIPS 
3.14 2.36 0.78 4.51 2.69x104 —g —g 

CNQxP-DMAC 2.07 2.09 -0.02 52.66 
4.67/ 

1.80x103 
1.04x107 5.17x105 

CNQxP-BDT-

TIPS 
2.35 2.17 0.18 2.12 1.86x103 —g —g 

BDT-TIPS 3.24 2.48 0.76 0.78 4.40x104 —g —g 

a Taken from the onset of the prompt fluorescence (PF) emission. b Taken from the onset 

of the phosphorescence emission at ms timescales at 80 K. c Calculated as Es – ET.  
d Lifetime of prompt fluorescence (Fp). 

e Lifetime of delayed fluorescence (Fd). 
f kISC and 

krISC rates were determined using kinetic fitting of the PF and DF emission according to 

literature.45 g Due to the lack of microsecond emission and/or unambiguous identification 

of a pure TADF mechanism, kinetic fitting was not performed. 

potential emission pathway. The blue-shifted millisecond emission in CNQxP-

BDT-TIPS is instead suggested to arise from triplet-triplet annihilation (TTA) 

and subsequent emission from singlet LE states. The same LE states are also 

formed directly following photoexcitation, which is why they share the same 

spectra at very early and very late decay times. The signal arising from TTA is 

long lived but weak, and so it is only observable once the TADF emission has 

fully decayed, and is completed suppressed at low temperatures which restrict 

triplet migration through the film. This assignment is also verified by the TDDFT 

calculations. Due to the apparent symmetry in the system S1 and S2 are of 

HOMO and HOMO-1 to LUMO character, respectively, and consist of D->A CT 

transitions (Figure S3.10). Looking at the third excited singlet state (S3), it 

represents the first singlet excited state with a localized character and has an 

energy only 0.12 eV (17 nm) higher than that of S1 (Table S3.1, Figure S3.10). 

It is therefore possible that S3 is the LE state that we observed in the 

experimental time-resolved decays at early and long times. Similarly, the first 

two excited triplet states (T1, T2) are D->A CT transitions whereas T3 is localized 

on the acceptor and is 0.15 eV higher in energy than T1 (Table S3.1, Figure 

S3.10). According to the spin-vibronic mechanism for TADF, these states have 

the potential to mix and decrease the effective ΔEST. While the theoretical ΔES1T1 

is rather large (0.45 eV), the experimental energy gap (0.18 eV) is not and 
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taking into account the precision of the TDDFT calculations, this mechanism is 

viable. 

CNQxP-DMAC has consistent emission throughout the decay with an onset of 

about 2.15 eV (577 nm) in the microsecond regime. A short-wavelength 

contribution is present at very early decay times and reappears in the very long 

millisecond emission similar to that of CNQxP-BDT-TIPS (Figure 3.4e). At 80 K, 

the emission is slightly red-shifted and the short-wavelength contribution at the 

start of the decay is less intense and does not reappear at longer times (Figure 

S3.4). Even at 80 K, delayed emission is present at all times throughout the 

decay. As the onset of the spectra also remains the same, this is indicative of 

TADF emission with a very small ΔEST, as supported by the experimental 

determination of the singlet and triplet energies (Table 3.3). This is unusual as 

the TADF seemingly persists at 80 K whereas the low wavelength emission 

attributed is suppressed. We suggest that the very delayed high-energy 

emission is also generated by TTA and subsequent emission from LE states that 

are initially formed by photoexcitation as the position and localization of the S3 

state of CNQxP-DMAC is similar to that of CNQxP-BDT-TIPS. Additionally, the 

full decay of CNQxP-DMAC (Figure 3.4f) shows two regions of increased 

intensity at around 10-6 and 10-3 seconds, whereas Figure 3.4e shows delayed 

emission at a constant wavelength. While the first region can be attributed to 

TADF, the second region appears at earlier times with respect to the onset of 

TTA (> 10-3 s). This is unusual and may indicate the presence of two rISC 

pathways, showing TADF with largely varying krISC values.  

To better understand the positioning of LE states in these materials, the BDT-

TIPS donor itself was also embedded in a zeonex matrix and its time-dependent 

emission was recorded at room temperature and at 80 K (Figure 3.5, S3.5). As 

suggested by the calculations, the singlet and triplet emission are well separated 

with onsets at 3.24 and 2.48 eV, respectively (Table 3.3). It is remarkable how 

the BDT-TIPS group itself shows emission at several tens of milliseconds, even 

at room temperature. Comparing the spectra at room temperature and at 80 K 

shows that both the prompt and millisecond emission have the same onset at 

each temperature, and are thus coming from the same states in both cases. This 

is attributed to the presence of the sulphur atoms in the BDT core, which 

enhance SOC when compared to commonly used atoms such as carbon and 
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nitrogen. Having two of these sulphur atoms could boost the SOC enough to 

enhance ISC from the S1 to the T1 state and subsequently enable the strong RTP 

observed in the donor fragment. 

For TXO2-BDT-TIPS, it is possible that the observed RTP is coming from 

localized emission corresponding to the BDT-TIPS unit (Figure 3.5). When 

looking at the the pure BDT-TIPS and TXO2-BDT-TIPS spectra at room 

temperature and at 80 K, the similarities in the peak shape and onset indicates 

that emission is coming from similar states in both materials. The difference in 

onset could be due to the acceptor properties of TXO2, slightly lowering the BDT 

triplet energy level in the D-A-D compound, or from the vibrational mode of the 

highest energy vibronic peak in the BDT-TIPS phosphorescence spectrum being 

suppressed in the D-A-D material. Furthermore, the ground‒excited state 

electron density differences predict the T1 and T2 states to be localized on the 

BDT-TIPS group (Figure S3.9). CNQxP-BDT-TIPS behaves differently, as

  

Figure 3.5: Emission spectra obtained at a 44.7 ms delay for BDT-TIPS, CNQxP-BDT-

TIPS and CNQxP-DMAC (top), and for BDT-TIPS, TXO2-BDT-TIPS and TXO2-DMAC 

(bottom) at 80 K and at room temperature. 
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microsecond emission (attributed to TADF) is also observed. The large difference 

in the onset of the emission at several milliseconds at room temperature and at 

80 K allows us to exclude RTP for this compound. One of the reasons for this is 

that the CT triplet of the D-A-D compound has a lower energy than the localized 

BDT-TIPS triplet state and coupling to the ground state from the CT triplet state 

is inefficient. Alternatively, rISC could be competing with the radiative relaxation 

from the T1 state due to the smaller ΔEST with respect to TXO2-BDT-TIPS and 

the improved SOC. The ground‒excited state electron density differences (Figure 

S3.10) show significant CT character for the lowest excited triplet state, 

supporting this hypothesis. 

The short-wavelength emission at a few nanoseconds in the decays of CNQxP-

BDT-TIPS (Figure 3.6) and CNQxP-DMAC (Figure S3.4) is attributed to the 

presence of a locally excited singlet state (1LE) above the TADF-active CT singlet 

(vide supra). The sterically hindered conformation in which the donor units 

reside likely slows down electron transfer and hence the internal conversion of 

the photoexcited 1LE state to the lower 1CT state. This is especially true at 80 K, 

where nuclear motion is further restricted and the prompt emission exhibits dual 

character over a longer time span. To explain the reoccurring short-wavelength 

1LE emission at long lifetimes, we identify TTA as the most likely mechanism. 

Having a much longer lifetime than TADF, TTA typically occurs in the millisecond 

domain and requires two molecules to be in close proximity. In TTA, two triplet 

excitons are up-converted into one singlet exciton of higher energy, and even 

though the emitter is doped at only 1 wt% in zeonex, it is plausible that weak 

TTA is observed at very long times (once brighter and faster-decaying emission 

from TADF-active states is depleted). Because the energy of two triplet excitons 

is larger than the energy of the 1LE state, this state can be populated. Loss of 

the red emission edge at several tens of milliseconds for CNQxP-BDT-TIPS 

suggests that as TADF emission dies out, the emission band becomes dominated 

by pure 1LE emission with significant vibronic character. CNQxP-DMAC does not 

lose its red emission edge and is therefore a combination of both 1LE and 1CT 

emission even at very long lifetimes - resulting from TTA and very long-lived 

TADF, respectively. In CNQxP-BDT-TIPS, which also has a larger ΔEST, TTA 

seems to be more intense as it starts to appear at earlier decay times and 

becomes more prominent in the longer millisecond regime. The absence of LE 
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Figure 3.6: Time-resolved emission extracted from the room temperature decay of 

CNQxP-BDT-TIPS showing the slow transfer from 1LE to 1CT emission at short lifetimes 

and the reappearance of pure 1LE emission at very long lifetimes. 

emission in the millisecond domain for both compounds at 80 K is also 

consistent with either a TADF or TTA mechanism, as these processes are both 

inhibited at lower temperatures. 

3.2.4. Laser power experiments 

To verify a TADF mechanism in the microsecond domain in both CNQxP 

compounds, the dependence of emission intensity on excitation laser power was 

measured by attenuation of the excitation beam with reflective neutral density 

filters. Both compounds were probed with a delay time after the laser pulse of 4 
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µs and an integration time of 12 µs. Even at very low powers (0.2 µJ vs. 78.0 µJ 

at the start of the measurement), the slope of the log-log plot remains unity, 

suggesting TADF-like behaviour. In the case of TTA, we would expect this slope 

to increase at low excitation power (second order with the exciton density). 

Similar measurements at longer delay times reveal that the slopes become 

slightly larger (Figure S3.6b,d), which could indicate the presence of a TTA 

emission contribution at very long times. However as we observe a combination 

with TADF at these delay times, we still do not observe a gradient of 2 that is 

otherwise indicative of ‘pure’ TTA emission (Figure S3.7b,d). 

3.3. Conclusions 

In this work, we have introduced a triisopropyl-substituted benzo[1,2-b:4,5-

b']dithiophene (BDT-TIPS) donor unit that is directly coupled via the central 

phenyl moiety, giving rise to two new donor-acceptor-donor emitters. In 

contrast with analogous 9,9-dimethyl-9,10-dihydroacridine (DMAC) containing 

compounds, TXO2-BDT-TIPS was found to show room temperature 

phosphorescence as a result of a low-lying localized triplet state on the BDT-

TIPS group itself. The BDT-TIPS precursor was investigated and was found to 

also exhibit phosphorescence at room temperature, presumably due to the 

sulphur atoms that afford increased spin-orbit coupling and thereby enhance the 

radiative T1->S0 relaxation. The CNQxP-DMAC chromophore prepared in this 

work was found to show TADF, with a very small ΔEST value giving rise to 

delayed emission even at 80 K. Its BDT-TIPS counterpart also showed delayed 

emission attributed to TADF. Despite larger ΔEST (0.18 eV) than its DMAC 

counterpart, the BDT-TIPS promotes (r)ISC by increased spin-orbit coupling in 

the CNQxP compound, leading to long-lived orange TADF. At longer times, 

triplet-triplet annihilation (TTA) repopulating the 1LE state gives rise to resurgent 

short-wavelength LE emission for both CNQxP compounds. 

Although RTP and very long lived TADF/TTA emission are not desirable for OLED 

applications, the long-lived and red-shifted emission for TXO2-BDT-TIPS and 

CNQxP-BDT-TIPS may find future use in other applications such as imaging or 

sensing.55-57 Furthermore, the BDT-TIPS donor investigated here represents a 

valuable addition to the library of available donor compounds for TADF, 

particularly suitable to generate deep-blue emission. 
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3.5. Supporting information 

3.5.1. Experimental details 

3.5.1.1. Materials and methods 

All reagents and chemicals were obtained from commercial sources and used 

without further purification. Benzo[1,2-b:4,5-b']dithiophene was acquired from 

TCI Europe. Dry solvents were obtained using an MBraun solvent purification 

system (MB SPS-800) equipped with alumina columns. Preparative (recycling) 

size exclusion chromatography (SEC) was performed on a JAI LC-9110 NEXT 

system equipped with JAIGEL 1H and 2H columns (eluent chloroform, flow rate 

3.5 mL min-1). Proton and carbon nuclear magnetic resonance (1H and 13C NMR) 

spectra were obtained on a Varian or Jeol spectrometer operating at 400 MHz for 

1H (100 MHz for 13C). Chemical shifts (δ) are given in ppm relative to CDCl3 (δ = 

7.26 ppm for 1H NMR, δ = 77.06 ppm for 13C NMR). All NMR spectra were taken 

at room temperature, unless stated otherwise. Matrix-assisted laser 

desorption/ionization - time-of-flight (MALDI-ToF) mass spectra were recorded 

on a Bruker Daltonics Ultraflex II ToF/ToF. Approximately 1 µL of the matrix 

solution (16 mg mL-1 trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propenylidene]malononitrile (DTCB) in chloroform) was spotted onto an MTP 

Anchorchip 600/384 MALDI plate. The spot was allowed to dry and 1 µL of the 

analyte solution (0.5 mg mL-1 In chloroform) was spotted on top of the matrix. 

All solution-based absorption spectra were recorded on a Varian Cary 5000 UV-

Vis-NIR spectrophotometer from Agilent Technologies. Steady-state emission 

spectra (in solution) were recorded on a Horiba-Jobin Yvon Fluorolog-3 

spectrofluorometer equipped with a 450 W Xe lamp as the light source. All 

spectroscopic measurements were done in spectroscopic grade solvents. Films 

were prepared via drop-casting using a mixture of the emitter and host (zeonex) 

in toluene at 1 wt% of the emitter in zeonex. The initial solution concentrations 

were 100 mg mL-1 for zeonex. The films were drop-casted onto a quartz 

substrate at 65 °C to facilitate evaporation of the solvent. Absorption and 

emission spectra of the films were collected using a UV-3600 double beam 

spectrophotometer (Shimadzu) and a Fluoromax fluorimeter (Jobin Yvon), 

respectively. Time-resolved photoluminescence spectra and decays were 

recorded using a nanosecond gated spectrograph-coupled iCCD (Stanford) using 
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an Nd:YAG laser emitting at 355 nm (EKSPLA). Laser power experiments were 

conducted using an N2 laser (Lasertechnik Berlin) emitting at 337 nm with the 

same nanosecond gated spectrograph-coupled iCCD (Stanford) camera, 

attenuating the excitation using reflective neutral density filters. 

3.5.1.2. Synthesis procedures 

9,9-Dimethyl-9,10-dihydroacridine (DMAC)1, 2,7-dibromo-9,9-dimethyl-9H-

thioxanthene-10,10-dioxide (TXO2)2, 2,7-bis(9,9-dimethylacridin-10(9H)-yl)-

9,9-dimethyl-9H-thioxanthene-10,10-dioxide (TXO2-DMAC)3 and 3,6-

dibromodibenzo[a,c]phenazine-11,12-dicarbonitrile (CNQxP)4 were synthesized 

according to literature procedures. 

 

2,6-bis(triisopropylsilyl)benzo[1,2-b:4,5-b']dithiophene (BDT-TIPS)5  

To a solution of benzo[1,2-b:4,5-b']dithiophene (1.262 g, 6.63 mmol) in dry THF 

(10.0 mL), n-BuLi (2.5 M in hexane; 8.0 mL, 19.89 mmol) was added dropwise 

at 0 °C and the mixture was stirred for 1 h at room temperature. Afterwards, 

triisopropylsilyl chloride (4.2 mL, 19.6 mmol) was slowly added. After the 

mixture was heated to 65 °C for 16 h, it was poured out in a beaker containing 

water (100 mL) and hydrochloric acid (1 M, 100 mL). The resulting precipitate 

was collected by vacuum filtration and washed with water, methanol and n-

hexane. The filtrate was then evaporated under reduced pressure and the 

remaining solid was triturated in n-hexane, followed by filtration and subsequent 

washing with n-hexane. BDT-TIPS was obtained as a white solid (2.49 g, 75%). 

1H NMR (400 MHz, CDCl3): 8.29 (s, 2H), 7.50 (s, 2H), 1.48‒1.37 (m, 6H), 1.15 

(d, J = 7.4 Hz, 36H). 13C NMR (100 MHz, CDCl3): 140.62, 138.95, 138.31, 

131.55, 115.63, 18.66, 11.85. 

 

(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[1,2-b:4,5-b'] 

dithiophene-2,6-diyl)bis(triisopropylsilane) (BDT-TIPS-pinacol)6  

A mixture of BDT-TIPS (671.4 mg, 1.34 mmol), bis(pinacolato)diboron (571.0 

mg, 2.25 mmol), [Ir(OMe)(COD)]2 (53.0 mg, 0.08 mmol), and 4,4'-di-tert-butyl-

2,2'-bipyridine (46.2 mg, 0.17 mmol) in dry cyclohexane was stirred in the dark 

at 80 °C for 16 h under nitrogen atmosphere. After cooling the reaction mixture 

down to room temperature, evaporation of the solvent under reduced pressure 

afforded a residue, which was purified by silica gel column chromatography 
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using CH2Cl2/petroleum ether (v/v= 20/80) as the eluent to yield BDT-TIPS-

pinacol as a white solid (355.8 mg, 42%). The reaction also yielded unreacted 

BDT-TIPS (129.0 mg, 19%) as well as disubstituted BDT-TIPS-pinacol (127.3 

mg, 13%) as the main side products. 1H NMR (400 MHz, CDCl3): 8.39 (s, 1H), 

8.35 (s, 1H), 7.52 (s, 1H), 1.47 (s, 12H), 1.50‒1.39 (m, 6H), 1.19 (d, J = 7.4 

Hz, 36H). 13C NMR (100 MHz, CDCl3): 148.29, 143.97, 139.98, 138.68, 137.97, 

137.73, 134.11, 130.77, 118.15, 115.95, 83.73, 24.77, 18.38, 18.37, 11.64, 

11.55. 

 

2,7-bis(2,6-bis(triisopropylsilyl)benzo[1,2-b:4,5-b']dithiophen-4-yl)-9,9-

dimethyl-9H-thioxanthene 10,10-dioxide (TXO2-BDT-TIPS) 

2,7-Dibromo-9,9-dimethyl-9H-thioxanthene-10,10-dioxide (TXO2: 99.7 mg, 

239.6 µmol), BDT-TIPS-pinacol (333.2 mg, 529.8 µmol) and 

tetrakis(triphenylphosphine)palladium(0) (23.1 mg, 20.0 µmol) were added to a 

flame-dried Schlenk flask. The flask was evacuated and backfilled with nitrogen 

three times and pre-degassed anhydrous toluene (12 mL) and a K2CO3 solution 

(2 M, 4 mL) were added. The reaction mixture was heated at 80 °C and stirred 

for 24 h under a nitrogen atmosphere. The mixture was then poured into water 

and extracted with dichloromethane. The organic phase was dried over MgSO4, 

filtered and the solvent was evaporated under reduced pressure. The product 

was purified by silica gel column chromatography using CH2Cl2/petroleum ether 

(v/v = 20/80) as the eluent. TXO2-BDT-TIPS was further purified using 

preparative (recycling) SEC and was obtained as a white solid (150.1 mg, 50%). 

1H NMR (400 MHz, CDCl3, 50 °C): 8.52 (2x d, J = 8.1 Hz, 2H), 8.41 (2x s, 2H), 

8.30 (2x d, J = 1.5 Hz, 2H), 8.03 (2x dd, J = 8.1, 1.5 Hz, 2H), 7.65 (2x s, 2H), 

7.52 (2x s, 2H), 2.05 (2x s, 6H), 1.54–1.39 (m, 12H), 1.20 (2x d, J = 7.5 Hz, 

72H). 13C NMR (100 MHz, CDCl3, 50 °C): 146.23, 144.69, 141.93, 140.81, 

139.88, 139.39, 139.20, 137.00, 135.96, 132.13, 129.94, 128.76, 128.24, 

127.71, 124.95, 115.95, 39.83, 31.20, 18.69, 11.91. MS (MALDI-ToF) Calcd. for 

C71H102O2S5Si4 [M]+: m/z 1258.56, found: 1258.48. 
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3,6-bis(2,6-bis(triisopropylsilyl)benzo[1,2-b:4,5-b']dithiophen-4-

yl)dibenzo[a,c]phenazine-11,12-dicarbonitrile (CNQxP-BDT-TIPS) 

CNQxP (99.8 mg, 204.4 µmol), BDT-TIPS-pinacol (283.5 mg, 452.0 µmol) and 

tetrakis(triphenylphosphine)palladium(0) (13.6 mg, 11.8 µmol) were added to a 

flame-dried Schlenk flask. The flask was evacuated and backfilled with nitrogen 

three times and pre-degassed toluene (12 mL) and a K2CO3 solution (2 M, 4 mL) 

were added. The reaction mixture was heated at 80 °C and stirred for 24 h 

under a nitrogen atmosphere. The mixture was then poured into water and 

extracted with dichloromethane. The organic phase was dried over MgSO4, 

filtered and the solvent was evaporated under reduced pressure. The product 

was purified by silica gel column chromatography using CH2Cl2/petroleum ether 

(v/v = 20/80) as the eluent. CNQxP-BDT-TIPS was further purified using 

preparative (recycling) SEC and was obtained as an orange solid (43.0 mg, 

16%). 1H NMR (400 MHz, CDCl3): 9.59 (d, J = 8.3 Hz, 2H), 8.98 (s, br., 2H), 

8.88 (s, 2H), 8.34 (s, 2H), 8.33 (d, J = 8.3 Hz, 2H), 7.58 (s, 2H), 7.53 (s, 2H), 

1.33 (h, J = 7.6 Hz, 6H), 1.18 (h, J = 7.4 Hz, 6H), 1.04 (d, J = 7.4 Hz, 36H), 

0.87 (d, J = 7.4 Hz, 36H). 13C NMR (100 MHz, CDCl3): 146.15, 144.12, 142.20, 

141.85, 140.70, 139.38, 139.34, 138.68, 137.46, 137.01, 133.47, 132.13, 

129.95, 129.75, 128.54, 128.51, 128.09, 125.11, 115.88, 115.40, 113.49, 

18.53, 18.33, 11.73, 11.61. MS (MALDI-ToF) Calcd. for C78H98N4S4Si4 [M]+: m/z 

1330.58, found: 1330.59.  

 

3,6-bis(9,9-dimethylacridin-10(9H)-yl)dibenzo[a,c]phenazine-11,12-

dicarbonitrile (CNQxP-DMAC) 

CNQxP (100.5 mg, 205.9 µmol), 9,9-dimethyl-9,10-dihydroacridine (96.1 mg, 

459.2 µmol), palladium(II) acetate (12.6 mg, 56.1 µmol), tri-tert-

butylphosphine tetrafluoroborate (16.8 mg, 57.9 µmol) and sodium tert-

butoxide (47.3 mg, 492.2 µmol) were dissolved in dry toluene (16 mL) under 

argon atmosphere. The mixture was stirred at 120 °C for 24 h and then cooled 

down to room temperature. The mixture was then poured into water and 

extracted with CH2Cl2. The organic phase was dried over anhydrous MgSO4, 

filtered and the solvent was removed under reduced pressure. The crude 

product was purified by column chromatography using CH2Cl2/petroleum ether 

(v/v = 20/80) as the eluent. CNQxP-DMAC was further purified using 



Chapter 3 

128 
 

preparative (recycling) SEC and was obtained as a red solid (13.4 mg, 9%). 1H 

NMR (400 MHz, CDCl3): 9.67 (d, J = 8.5 Hz, 2H), 8.90 (s, 2H), 8.45 (d, J = 1.9 

Hz, 2H), 7.83 (dd, J = 8.5, 1.9 Hz, 2H), 7.61–7.40 (m, 4H), 7.12–6.72 (m, 8H), 

6.42–6.14 (m, 4H), 1.72 (s, 12H). 13C NMR (100 MHz, CDCl3): 145.75, 145.49, 

142.20, 140.43, 137.53, 135.31, 132.23, 130.55, 130.36, 128.61, 126.51, 

126.17, 125.71, 121.25, 115.22, 114.19, 113.90, 36.11, 31.56. MS (MALDI-

ToF) Calcd. for C52H36N6 [M]+: m/z 744.30, found: 744.31. 
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3.5.2. Additional TDDFT calculations 

  
T

a
b

le
 
S

3
.1

: 
T
D

D
F
T
 
re

s
u
lt
s
 
fo

r 
th

e
 
v
e
rt

ic
a
l 

s
in

g
le

t 
e
x
c
it
a
ti
o
n
 
e
n
e
rg

ie
s
 
a
n
d
 
c
o
rr

e
s
p
o
n
d
in

g
 
o
s
c
il
la

to
r 

s
tr

e
n
g
th

s
, 

th
e
 
v
e
rt

ic
a
l 

tr
ip

le
t 

e
x
c
it
a
ti
o
n
 e

n
e
rg

ie
s
, 

th
e
 n

a
tu

re
 o

f 
th

e
 v

a
ri
o
u
s
 t

ra
n
s
it
io

n
s
, 

c
h
a
rg

e
 t

ra
n
s
fe

r 
d
is

ta
n
c
e
 (

d
C
T
) 

a
n
d
 c

h
a
n
g
e
 i
n
 d

ip
o
le

 m
o
m

e
n
t 

(Δ
µ
, 

e
x
c
it
e
d
 –

 g
ro

u
n
d
 s

ta
te

 d
ip

o
le

) 
a
c
c
o
m

p
a
n
y
in

g
 t

h
e
 S

0
->

S
3
 a

n
d
 S

0
->

T
3
 t

ra
n
s
it
io

n
s
 i
n
 c

y
c
lo

h
e
x
a
n
e
. 

 
S

3
 

T
3
 

C
o
m

p
o
u
n
d
 

E
 (

e
V
) 

f 
N

a
tu

re
 

d
C
T
 (

Å
) 

Δ
µ
 (

D
) 

E
 (

e
V
) 

N
a
tu

re
 

d
C
T
 (

Å
) 

Δ
µ
 (

D
) 

T
X

O
2

-D
M

A
C

 
3
.6

9
 

0
.0

0
b
 

H
->

L
+

1
 

1
.3

7
 

6
.9

8
 

3
.4

3
 

H
->

L
+

1
 

0
.5

9
 

1
.5

3
 

T
X

O
2

-B
D

T
-T

I
P

S
 

3
.9

4
 

0
.0

2
 

H
->

L
+

2
 

1
.8

6
 

4
.1

9
 

3
.4

6
 

H
-3

->
L
+

1
 

1
.5

9
 

2
.7

5
 

C
N

Q
x
P

-D
M

A
C

 
3
.0

1
 

0
.0

0
b
 

H
-1

0
->

L
 

0
.5

6
 

1
.8

4
 

2
.6

1
 

H
-1

0
->

L
 

1
.2

0
 

4
.0

8
 

C
N

Q
x
P

-B
D

T
-T

I
P

S
 

3
.0

4
 

0
.0

2
 

H
-1

4
->

L
 

1
.1

9
 

4
.0

1
 

2
.6

2
 

H
-1

4
->

L
 

0
.1

1
 

0
.3

9
 

b
 T

h
e
 v

a
lu

e
 f
o
r 

th
e
 o

s
c
il
la

to
r 

s
tr

e
n
g
th

 d
o
e
s
 n

o
t 

c
h
a
n
g
e
 w

h
e
n
 m

o
d
if
y
in

g
 t

h
e
 D

-A
 d

ih
e
d
ra

l 
a
n
g
le

 b
y
 ±

1
0
°
. 



Chapter 3 

130 
 

 

Figure S3.1: Simulated UV-VIS spectra from the TDDFT results for the optimized 

geometries (top) and molecules with a modified dihedral angle of ±10° for the DMAC-

containing compounds (bottom). 
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3.5.3. Time-resolved emission spectra 

 

Figure S3.2: Time-resolved emission at various times in the photoluminescence decay for 

TXO2-BDT-TIPS in zeonex at room temperature (left) and at 80 K (right). 
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Figure S3.3: Time-resolved emission at various times in the photoluminescence decay for 

CNQxP-BDT-TIPS in zeonex at room temperature (left) and at 80 K (right). 

450 500 550 600 650 700 750
0.0

0.2

0.4

0.6

0.8

1.0

450 500 550 600 650 700 750
0.0

0.2

0.4

0.6

0.8

1.0

450 500 550 600 650 700 750
0.0

0.2

0.4

0.6

0.8

1.0

450 500 550 600 650 700 750
0.0

0.2

0.4

0.6

0.8

1.0

450 500 550 600 650 700 750
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 A

re
a

 (
a

.u
.)

Wavelength (nm)

 0.8 ns

 3.5 ns

 10.0 ns

 18.2 ns

 41.6 ns

 78.5 ns

 156.3 ns

 333.2 ns

N
o

rm
a

liz
e

d
 A

re
a

 (
a

.u
.)

Wavelength (nm)

 0.8 ns

 3.5 ns

 10.0 ns

 18.2 ns

 41.6 ns

N
o

rm
a

liz
e

d
 A

re
a

 (
a

.u
.)

Wavelength (nm)

 686.4 ns

 1.4 s

 2.8 s

 5.6 s

 12.6 s

 22.4 s

 44.7 s

 89.1 s

N
o

rm
a

liz
e

d
 A

re
a

 (
a

.u
.)

Wavelength (nm)

 354.8 s

 707.9 s

 1.4 ms

 2.8 ms

 5.6 ms

 12.6 ms

 28.2 ms

 44.7 ms

room temperature 80 K
N

o
rm

a
liz

e
d

 A
re

a
 (

a
.u

.)

Wavelength (nm)

 158.5 s

 354.8 s

 707.9 s

 1.4 ms

 2.8 ms

 5.6 ms

 12.6 ms

 28.2 ms

 44.7 ms



BDT as a novel donor unit for TADF or RTP materials 

 

  133 

 

 

Figure S3.4: Time-resolved emission at various times in the photoluminescence decay for 

CNQxP-DMAC in zeonex at room temperature (left) and at 80 K (right). 
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Figure S3.5: Prompt fluorescence and phosphorescence at room temperature (rt) and at 

80 K for the BDT-TIPS precursor. 
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3.5.4. Laser power experiments 
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Figure S3.6: Laser power experiments using a N2 laser: a) CNQxP-DMAC, time delay 

(TD) = 4 µs, integration time (IT) = 12 µs; b) CNQxP-DMAC, TD = 100 µs, IT = 10 ms; 

c) CNQxP-BDT-TIPS, TD = 4 µs, IT = 12 µs; d) CNQxP-BDT-TIPS, TD = 2 ms, IT = 3 

ms. 
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Figure S3.7: Time-resolved emission used for the determination of the laser power 

dependence of Figure S6 taken at a laser power of 78.2 µJ and at various time delays (TD) 

and integration times (IT). 
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3.5.5. Optimized geometry and orbital topologies for BDT-TIPS 

 

Figure S3.8: Optimized geometry and orbital topologies for the BDT-TIPS precursor. 
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3.5.6. Ground/excited state electron density differences 

 

Figure S3.9: Ground/excited state electron density differences for TXO2-DMAC (left) and 

TXO2-BDT-TIPS (right). Isocontour values = 0.0004 a.u. for all densities. The cyan 

regions indicate a decrease in charge density whereas the purple regions indicate an 

increase in charge density. 
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Figure S3.10: Ground/excited state electron density differences for CNQxP-DMAC (left) 

and CNQxP-BDT-TIPS (right). Isocontour values = 0.0004 a.u. for all densities. The cyan 

regions indicate a decrease in charge density whereas the purple regions indicate an 

increase in charge density. 
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3.5.7. NMR-spectra 

 

Figure S3.11: 1H NMR spectrum of BDT-TIPS in CDCl3. 

 

Figure S3.12: 13C NMR spectrum of BDT-TIPS in CDCl3. 
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Figure S3.13: 1H NMR spectrum of BDT-TIPS-pinacol in CDCl3. 

 

Figure S3.14: 13C NMR spectrum of BDT-TIPS-pinacol in CDCl3. 
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Figure S3.15: 1H NMR spectrum of TXO2-BDT-TIPS in CDCl3. 

 

Figure S3.16: 13C NMR spectrum of TXO2-BDT-TIPS in CDCl3. 



BDT as a novel donor unit for TADF or RTP materials 

 

  143 

 

 

Figure S3.17: 1H NMR spectrum of TXO2-DMAC in CDCl3. 

 

Figure S3.18: 13C NMR spectrum of TXO2-DMAC in CDCl3. 
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Figure S3.19: 1H NMR spectrum of CNQxP-BDT-TIPS in CDCl3. 

 

Figure S3.20: 13C NMR spectrum of CNQxP-BDT-TIPS in CDCl3. 
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Figure S3.21: 1H NMR spectrum of CNQxP-DMAC in CDCl3. 

 

Figure S3.22: 13C NMR spectrum of CNQxP-DMAC in CDCl3. 
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Abstract 

A novel strong electron-acceptor unit, 9,10-difluorodithieno[3,2-a:2',3'-

c]phenazine (DTPz), is synthesized and applied in the design of two donor-

acceptor type emitters. Using 9,9-dimethyl-9,10-dihydroacridine (DMAC) or 

triisopropyl-substituted benzo[1,2-b:4,5-b']dithiophene (BDT-TIPS) as donor 

component, push-pull type chromophores exhibiting charge-transfer emission 

are obtained and found to afford long-lived delayed emission via either thermally 

activated delayed fluorescence (for DMAC) or room temperature 

phosphorescence (for BDT-TIPS). 
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4.1. Introduction 

While research has mainly focused on the development of blue and green-

emitting molecules showing thermally activated delayed fluorescence (TADF), 

red-emitting materials are equally useful for the development of all-TADF 

organic light-emitting diodes (OLEDs), as well as for bio-imaging applications.1-3 

Furthermore, research on red-emitting materials might lead to new insights for 

the development of near-infrared (NIR) emitting materials.4 NIR-OLEDs can be 

useful in biomedical applications such as blood oximetry,5, 6 photothermal and 

photodynamic therapeutic applications,7-9 but are also used in security 

authentication technologies exploiting biometrics10 and they could be integrated 

as transmitters in ‘visible’ light communication (VLC) networks.11 

One of the main challenges in designing red-emitting materials is the energy gap 

law, as discussed in Chapter 1. As the energy levels of the singlet and triplet 

excited states come closer to that of the ground state, overlap between the 

vibrational levels of these states becomes more plausible and non-radiative 

transitions are enhanced. Furthermore, because red-emitting materials often 

consist of large conjugated systems or highly electron-deficient components, 

they typically have low-lying localized triplet states which act as exciton traps. 

In recent years, the search for novel red-emitting TADF materials has focused 

heavily on the dibenzo[a,c]phenazine scaffold (Figure 4.1).12-22 Even the CNQxP-

based compounds from Chapter 3 are built from this phenazine acceptor.20 

Several functionalization strategies are employed to further red-shift the 

emission, such as incorporation of fluorine or cyano groups on various positions 

of the dibenzo[a,c]phenazine13, 16-18 or extension to a dibenzo[a,c]dipyrido[3,2-

h:2′,3′-j]phenazine scaffold.12, 21 Multiple donor groups have been utilized, going 

from the very large triazatruxene18 to the smaller 9,9-dimethyl-9,10-dihydro-

 

Figure 4.1: Molecular structures of dibenzo[a,c]phenazine (left) and dithieno[3,2-a:2',3'-

c]phenazine (right), with the possible functionalization sites indicated by colored dashed 

bonds. 
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acridine (DMAC),14, 16, 17, 19, 22 phenoxazine,12, 19, 21 triphenylamine13, 15, 17 and 

carbazole derivatives.16 Having a similar structure, dithieno[3,2-a:2',3'-

c]phenazine (DTPz, Figure 4.1) is a known acceptor unit in the field of organic 

photovoltaics, affording UV-VIS absorption maxima well over 600 nm when 

combined in a donor-acceptor copolymer.23-25 In this chapter, we have further 

functionalized the DTPz unit with fluorine substituents on the 9 and 10 positions 

(indicated in red in Figure 4.1) to make it more electron-withdrawing and thus a 

stronger acceptor. To the 9,10-difluorodithieno[3,2-a:2',3'-c]phenazine, DMAC 

was coupled through a Buchwald-Hartwig type reaction. Additionally, the 

triisopropylsilyl-functionalized benzo[1,2-b:4,5-b']dithiophene (BDT) unit, 

introduced in Chapter 3, was used as an alternative donor and coupled in a 

Suzuki cross-coupling reaction with DTPz. While the DTPz-BDT-TIPS molecule 

was already introduced in Chapter 2, we only investigated it from a theoretical 

perspective, having little information on its photophysical properties, which are 

investigated in the following sections.20  

Quantum-chemical calculations show a small overlap between the HOMO and 

LUMO for both D-A combinations. Experimentally, TADF or RTP behavior is seen 

dependent on the donor unit and the resultant singlet and triplet energy levels. 

In the TADF material (DTPz-DMAC), the very long delayed fluorescence lifetime 

is attributed to a poor reverse intersystem crossing (rISC) rate, despite the 

small ΔEST. 

4.2. Results and discussion 

4.2.1. Material synthesis 

DTPz, DTPz-BDT-TIPS26 and DMAC27 were prepared using previously reported 

methods. Coupling was done via Buchwald-Hartwig (DMAC) or Suzuki (BDT-

TIPS) cross-coupling reactions (Scheme 4.1). Full synthetic details can be found 

in the supporting information.  

4.2.2. Quantum-chemical calculations 

The geometries of the DTPz acceptor and the two D-A-D chromophores were 

optimized using density functional theory (DFT) calculations with M06/6-

311G(d). Time dependent DFT (TDDFT) calculations were performed to calculate
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Scheme 4.1: Synthesis pathways towards DTPz-DMAC and DTPz-BDT-TIPS: (i) 9,9-

dimethyl-9,10-dihydroacridine, Pd(OAc)2, XPhos, NaOtBu, toluene, 110 °C, 24 h; (ii) BDT-

TIPS-pinacol, Pd(PPh3)4, K2CO3, DMF/H2O 4/1, 130 °C, 24 h. 

the singlet and triplet energies using a modified LC-BLYP (ω=0.17) XC functional 

with 6-311G(d) as the basis set under the Tamm-Dancoff approximation.26 

TDDFT calculations were performed using the polarizable continuum model 

(PCM) (cyclohexane) to simulate a non-polar environment. All calculations were 

performed using the Gaussian16 package.28 The CT character of the involved 

states for the D-A-D compounds was calculated according to the work of Le 

Bahers et al.29 Here, the difference between the ground and excited state 

densities is taken for a given transition, visualizing the regions of 

increased/decreased electron density upon transitioning from the ground to an 

excited state. These density differences allow to identify the donor and acceptor 

parts of the molecule in a (CT) transition and allow an estimate of the amount of 

charge-transfer character. 

The optimized geometries (Figure 4.2) show large dihedral angles, around 85° 

for DTPz-DMAC, as often seen for DMAC-based compounds,30 and around 59° 

for DTPz-BDT-TIPS. The smaller dihedral angles for the BDT-TIPS donor were 

also observed in previous work and are due to the decrease in steric hindrance 

for the five-membered fused rings.20 The TIPS groups, although bulky, are not 

expected to hinder the vibrational modes of the BDT group as they are facing 

away from the acceptor unit. Furthermore, the acceptor acts as a spacer 

between the two BDT groups, and from the optimized geometries (Figure 4.2) it 

is apparent that the TIPS groups on two adjacent BDT units do not influence 

each other. The HOMO and LUMO orbitals are well separated (Figure 4.2), 

suggesting strong CT character, which is further confirmed by looking at the 

nature of the first singlet vertical excitation energies and the CT distances (dCT) 
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(Table 4.1). The increase in dipole moment (Δµ) between the ground and 

excited state densities further supports this interpretation. For DTPz-BDT-TIPS, 

the first triplet excited state shows localized character as indicated by the much 

smaller dCT and Δµ values. This is also visualized by considering the difference 

between the ground and excited state electron densities (Figure S4.7), where 

the densities are clearly localized on the DTPz unit. The HOMO-1 and HOMO-2 

topologies are given in Figure S4.6 as they play a role in the other transitions 

under consideration here. 

The TDDFT calculations predict singlet excitation energies of 2.20 eV (564 nm) 

for DTPz-DMAC and 2.73 eV (454 nm) for DTPz-BDT-TIPS (Table 4.2). DTPz-

DMAC was found to have a theoretical ΔEST of 0.03 eV, whereas that of DTPz-

BDT-TIPS is 0.43 eV. The acceptor DTPz was also included in the calculations, 

 

Figure 4.2: HOMO and LUMO topologies for DTPz-DMAC and DTPz-BDT-TIPS as 

obtained with LC-BLYP(ω=0.17)/6-311G(d). 
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affording singlet and triplet excitation energies of 3.11 and 2.37 eV, 

respectively. From the analysis of the CT character of the excited states, we 

observed localization of the first excited triplet state of DTPz-BDT-TIPS on the 

acceptor (Figure S4.7). Therefore, we expected a similar excitation energy for 

this state as for the non-functionalised acceptor unit, which is confirmed by the 

calculations (Table 4.2). For DTPz-DMAC, the first triplet state is of CT 

character with electron density being transferred from the DMAC to the DTPz 

parts of the compound (Figure S4.7). UV-VIS absorption spectra were simulated 

(Figure S4.1) and are dominated by the LE bands which are higher in energy 

than the aforementioned CT states. Their profiles are in close agreement with 

the experimental spectra (Figure 4.3). 

4.2.3. Photophysical characterization 

From the steady-state emission spectra in zeonex film, a broad and non-

structured emission is visible for both compounds (Figure 4.3). A distinct shift is 

observed between DTPz-DMAC and DTPz-BDT-TIPS, the onset of the former 

being red-shifted by nearly 77 nm (0.33 eV), indicating stronger CT character 

for the DMAC donor. The solvatochromism was investigated by measuring the 

steady-state emission in solvents of varying polarity, which is indicative of CT 

state emission for both materials (Figure S4.2). No solvatochromism was 

observed for the UV-VIS absorption spectra, indicating the LE character of these  

 

Figure 4.3: Steady-state absorption (dashed lines) and emission (full lines) spectra at 

room temperature and time-resolved emission at a 44.7 ms delay time at 80 K (dotted 

lines) in zeonex film for DTPz-DMAC (red) and DTPz-BDT-TIPS (blue). 
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bands. In Figure 4.4a,b the contour maps of the normalised time-resolved 

emission spectra of DTPz-DMAC in zeonex at room temperature and at 80 K 

are shown. After a fast decaying prompt emission, the intensity falls below the 

sensitivity limit of the camera. At several microseconds, the intensity reappears 

at exactly the same wavelength as the prompt emission and persists until 

around 12 milliseconds. In Figure 4.4c, the decay of the total emission intensity 

is plotted. At 80 K, the emission drops below the sensitivity of the iCCD after 

approximately 50 nanoseconds and it is not until several hundreds of 

microseconds that a new red-  

Table 4.3: Photophysical properties for DTPz-DMAC and DTPz-BDT-TIPS in zeonex film.  

Compound 
ES 

(eV)a 

ET 

(eV)b 

ΔEST 

(eV)c 

τFp  

(ns)d 

τFd  

(µs)e 
kISC

f krISC
f 

DTPz-DMAC 2.16 2.11 0.04 8.4 422.6 7.8x107 2.5x105 

DTPz-BDT-TIPS 2.49 2.09 0.40 4.3 2.6x104 —g —g 

a Taken from the onset of the prompt fluorescence. b Taken from the onset of the 

phosphorescence at ms timescales at 80 K. c Calculated as ES – ET. 
d lifetime of prompt 

fluorescence (Fp) 
e lifetime of delayed fluorescence (Fd) 

f kISC and krISC were determined 

using kinetic fitting of prompt and delayed fluorescence according to literature. 31 g Cannot 

be determined due to the lack of TADF emission. 

shifted emission band appears (attributed to phosphorescence and shown in 

Figure 4.3). Figure S4.3 shows individual spectra taken at various times showing 

a clear difference in onset between the room temperature and 80 K delayed 

emission. The lack of microsecond delayed emission at 80 K is consistent with a 

TADF mechanism being disrupted by the lack of available thermal energy at 

these temperatures, and phosphorescence emission instead dominating at 

longer times. Calculating ΔEST from the onsets of the fluorescence and 

phosphorescence emission (Table 4.3), a rather small gap of 0.04 eV is found, 

which is in good agreement with the quantum-chemical calculations. The long 

lifetime of the delayed emission at room temperature (422.6 µs) likely arises 

from slow rISC which is confirmed by kinetic fitting of the room temperature 

decay. DTPz-BDT-TIPS shows a very different behavior in zeonex films. Only 

short-lived prompt CT emission followed by a long-lived emission is observed 

(Figure 4.4d,f and Figure S4.4). The long micro- to millisecond emission can be 

attributed to phosphorescence rather than delayed fluorescence, as the spectra 

at room temperature and 80 K show the same structured peak shape and onset
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Figure 4.4: a) Normalized time-resolved emission spectra for DTPz-DMAC (a) and DTPz-

BDT-TIPS (b) in zeonex at room temperature. Decay of the total emission for DTPz-

DMAC (c) and DTPz-BDT-TIPS (d) at room temperature (rt) and at 80 K in zeonex. 

(Figure 4.5 and Figure S4.3). Additionally, a small contribution likely arising 

from triplet-triplet annihilation (TTA) can be seen at around 525 nm in the room 

temperature delayed spectrum as the onset is similar to that of the prompt 

emission. The lack of TADF emission is not surprising given the much larger 

theoretical ΔEST for this material (0.43 eV). The experimental ΔEST calculated 

from the onset of the prompt fluorescence at room temperature and the 

phosphorescence at 80 K is 0.40 eV (Table 4.3) and is in excellent agreement 

with the calculations. Similar observations were also made for TXO2-BDT-TIPS in 
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previous work, where the lowest triplet excited state was found to be localized 

on BDT-TIPS and this donor unit showed RTP by itself.20 However, the difference 

between the ground and excited state electron densities showed that the first 

excited triplet state is localized on the DTPz acceptor rather than on the BDT 

donor for DTPz-BDT-TIPS (Figure S4.7). Therefore, the phosphorescence likely 

originates from the acceptor core and not from the BDT-TIPS donor. The DTPz 

acceptor without bromine atoms was also subjected to time-resolved emission 

spectroscopy and was found to exhibit phosphorescence at room temperature 

(Figure 4.5). Given the presence of sulphur atoms in the DTPz core, it is 

plausible that the increased SOC accompanied with this is sufficient to allow 

radiative relaxation through the T1->S0 pathway. 

 

Figure 4.5: Overlap of the emission spectra at 44.7 ms for DTPz-DMAC, DTPz-BDT-

TIPS, DTPz and BDT-TIPS at room temperature and at 80 K in zeonex. 

The full decays as a function of normalized total emission versus time are shown 

in Figure 4.4c and 4.4d. For DTPz-DMAC in zeonex, a clear difference is seen 

between the decays at room temperature and 80 K. The relatively high intensity 

but very long-lived emission is indicative of a thermally activated process with a 

slow rate of rISC. DTPz-BDT-TIPS shows virtually no emission in the 

microsecond domain in zeonex films. At longer lifetimes, a small emission 

contribution is observed, illustrative of RTP behavior (as outlined above). 

Finally, the dependence of the delayed fluorescence intensity with respect to the 

laser power was determined for both compounds in zeonex film. For DTPz-

DMAC, the measurement was done at a 5 µs delay time and 750 µs integration 

time and shows a linear power law dependence with a slope of 1 (Figure S4.5), 
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indicating that we are not observing TTA but rather TADF in this time domain. 

DTPz-BDT-TIPS did not show any early microsecond emission. Therefore, we 

probed the late microseconds to milliseconds domain with a 630 µs delay time 

and 10 ms integration time to make sure the main delayed emission could be 

attributed RTP instead of TTA. However, from the time-resolved spectral 

measurements at room temperature and at 80 K we could already conclude that 

this emission band is most likely due to phosphorescence. The laser power 

measurement further solidified these observations (Figure S4.5). 

4.3. Conclusions 

We have synthesized two new D-A-D compounds based on the novel 9,10-

difluorodithieno[3,2-a:2',3'-c]phenazine (DTPz) acceptor. This acceptor was 

coupled to the strong TADF donor 9,9-dimethyl-9,10-dihydroacridine (DMAC) 

and a weaker benzo[1,2-b:4,5-b']dithiophene (BDT-TIPS). Photophysical 

analysis showed that both compounds exhibit long-lived delayed emission in a 

zeonex film. DTPz-DMAC was found to exhibit TADF properties. Despite a small 

singlet-triplet energy gap (0.05 eV), the rate of reverse intersystem crossing is 

rather small, leading to long-lived delayed fluorescence. DTPz-BDT-TIPS was 

found to show RTP from the acceptor unit at room temperature in a nonpolar 

zeonex matrix. Although the materials do not display ideal TADF properties for 

OLED applications, their long-lived and red-shifted emission clearly show that 

they can be used for other applications such as imaging, sensing or security 

inks.1-3, 32 Combined with other appropriate donor groups and suitable hosts, 

DTPz may be valuable in the continuing pursuit of efficient deep-red TADF 

materials for OLEDs. 
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4.5. Supporting information 

4.5.1. Experimental details 

4.5.1.1. Materials and methods 

All reagents and chemicals were obtained from commercial sources and used 

without further purification. Dry solvents were obtained from an MBraun solvent 

purification system (MB SPS-800) equipped with alumina columns. Preparative 

(recycling) size exclusion chromatography (SEC) was performed on a JAI LC-

9110 NEXT system equipped with JAIGEL 1H and 2H columns (eluent 

chloroform, flow rate 3.5 mL min-1). Proton and carbon nuclear magnetic 

resonance (1H and 13C NMR) spectra were obtained on a Varian or Jeol 

spectrometer operating at 400 MHz for 1H (100 MHz for 13C). Chemical shifts (δ) 

are given in ppm relative to CDCl3 (δ = 7.26 ppm for 1H NMR, δ = 77.06 ppm for 

13C NMR). Matrix-assisted laser desorption/ionization - time-of-flight (MALDI-

ToF) mass spectra were recorded on a Bruker Daltonics Ultraflex II ToF/ToF. 1 

µL of the matrix solution (16 mg mL-1 trans-2-[3-(4-tert-butylphenyl)-2-methyl-

2-propenylidene]malononitrile (DTCB) in chloroform) was spotted onto an MTP 

Anchorchip 600/384 MALDI plate. The spot was allowed to dry and 

approximately 1 µL of the analyte solution (0.5 mg mL-1 In chloroform) was 

spotted on top of the matrix. High-resolution electrospray ionization mass 

spectrometry (ESI-MS) was performed using an LTQ Orbitrap Velos Pro mass 

spectrometer equipped with an atmospheric pressure ionization source operating 

in the nebulizer assisted electrospray mode. All solution-based absorption 

spectra were recorded on a Varian Cary 5000 UV-Vis-NIR spectrophotometer 

from Agilent Technologies. Steady-state emission spectra in solution were 

recorded on a Horiba-Jobin Yvon Fluorolog-3 spectrofluorometer equipped with a 

450 W Xe lamp as light source. All spectroscopic measurements were done in 

spectroscopic grade solvents. Zeonex films were prepared via drop-casting using 

a mixture of the emitter (1 wt%) and host (zeonex) in toluene. The initial 

solution concentrations were 1 mg mL-1 for the dopant and 100 mg mL-1 for 

zeonex. The films were drop-casted onto a quartz substrate at 65 °C to facilitate 

evaporation of the solvent. Absorption and emission spectra of the films were 

collected using a UV-3600 double beam spectrophotometer (Shimadzu) and a 
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Fluoromax fluorimeter (Jobin Yvon). Time-resolved photoluminescence spectra 

and decays were recorded using a nanosecond gated spectrograph-coupled iCCD 

(Stanford) using an Nd:YAG laser emitting at 355 nm (EKSPLA). Laser power 

experiments were conducted using an N2 laser (Lasertechnik Berlin) emitting at 

337 nm with the same nanosecond gated spectrograph-coupled iCCD (Stanford) 

camera, attenuating the excitation using reflective neutral density filters. 

4.5.1.2. Material synthesis and characterization 

8,11-Dibromo-9,10-difluorodithieno[3,2-a:2',3'-c]phenazine (DTPz-Br2)
1, 9,9-

dimethyl-9,10-dihydroacridine (DMAC)2 and (4-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(triisopropylsilane) 

(BDT-TIPS-pinacol)1 were synthesized according to literature procedures.  

 

8,11-bis(9,9-dimethylacridin-10(9H)-yl)-9,10-difluorodithieno[3,2-a:2',3'-

c]phenazine (DTPz-DMAC) 

DTPz-Br2 (199.9 mg, 411.2 µmol), 9,9-dimethyl-9,10-dihydroacridine (194.4 

mg, 928.9 µmol), palladium(II) acetate (22.3 mg, 99.3 µmol), 2-

Dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (XPhos, 80.6 mg, 169.0 

µmol) and sodium tert-butoxide (101.6 mg, 1.1 mmol) were dissolved in dry 

toluene (12 mL) under argon atmosphere. The mixture was heated to reflux for 

24 h while stirring and then cooled down to room temperature. The reaction 

mixture was poured into water and extracted with CH2Cl2. The organic phase 

was dried over anhydrous MgSO4, filtered and the solvent was evaporated under 

reduced pressure. The crude product was purified by silica gel column 

chromatography using CH2Cl2/petroleum ether (v/v = 20/80) as the eluent. 

DTPz-DMAC was obtained as an orange solid (116.8 mg, 38%). 1H NMR (400 

MHz, CDCl3): 7.76 (d, J = 5.3 Hz, 2H), 7.67-7.62 (m, 4H), 7.10 (d, J = 5.3 Hz, 

2H), 7.07-7.03 (m, 8H), 6.42-6.39 (m, 4H), 2.00 (s, 6H), 1.98 (s, 6H). 13C NMR 

(100 MHz, CDCl3): 152.82 (dd, 1JC-F = 264.8 Hz, 2JC-F = 17.3 Hz), 140.07, 

139.83, 137.65 (t, 3JC-F = 2.7 Hz), 136.77, 134.16, 131.13, 126.83, 125.39, 

125.18 (d, 2JC-F = 17.3 Hz), 125.16, 124.60, 121.65, 113.49, 36.47, 32.81, 

29.11. MS (MALDI-ToF) Calcd. for C46H32F2N4S2 [M]+: m/z 742.20, found: 

742.17. 
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8,11-bis(2,6-bis(triisopropylsilyl)benzo[1,2-b:4,5-b']dithiophen-4-yl)-9,10-

difluorodithieno[3,2-a:2',3'-c]phenazine (DTPz-BDT-TIPS)1 

DTPz-Br2 (90.2 mg, 186.5 µmol), BDT-TIPS-pinacol (245.0 mg, 389.6 µmol) and 

tetrakis(triphenylphosphine)palladium(0) (10.7 mg, 9.3 µmol) were added to a 

flame-dried Schlenk flask. The flask was evacuated and backfilled with nitrogen 

three times and pre-degassed DMF (16 mL) and a K2CO3 solution (2 M, 4 mL) 

were added. The reaction mixture was heated at 130 °C and stirred at this 

temperature for 24 h under a nitrogen atmosphere. The reaction mixture was 

poured into water and extracted with dichloromethane. The organic phase was 

dried over MgSO4 and filtered. After evaporation of the solvent under reduced 

pressure, the product was purified by silica gel column chromatography using 

CH2Cl2/petroleum ether (v/v = 20/80) as the eluent. DTPz-BDT-TIPS was 

further purified using preparative (recycling) SEC and was obtained as a yellow 

solid (60.0 mg, 24%). 1H NMR (400 MHz, CDCl3): 8.57 (d, J = 2.0 Hz, 2H), 7.70 

(d, J = 1.9 Hz, 2H), 7.47 (dd, J = 5.3, 1.7 Hz, 2H), 7.23 (s, 1H), 7.16 (dd, J = 

5.3, 2.1 Hz, 2H), 7.12 (s, 1H), 1.45-1.18 (m, 12H), 1.17-0.90 (m, 72H). 13C 

NMR (100 MHz, CDCl3): 151.72, 151.55, 149.16, 148.97, 142.74, 142.64, 

140.86, 140.80, 139.19, 139.16, 138.94, 138.54, 138.48, 138.24, 138.18, 

137.07, 137.03, 136.06, 134.61, 131.90, 131.76, 131.62, 131.54, 124.41, 

124.34, 124.33, 124.27, 119.24, 119.18, 116.53, 77.38, 18.69, 18.66, 18.60, 

18.55, 18.50, 18.46, 18.38, 11.85, 11.82, 11.76, 11.71. MS (ESI+) Calcd. for 

C72H94F2N2S6Si4 [M]+: m/z 1328.479, found: 1328.475. 
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4.5.2. Simulated UV-VIS absorption spectrum 

 

Figure S4.1: Simulated UV-VIS absorption spectra for DTPz-DMAC and DTPz-BDT-TIPS 

using LC-BLYP(ω=0.17)/6-311G(d) and the PCM (cyclohexane). 
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4.5.3. Steady-state absorption and emission spectra in solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4.2: Steady-state absorption (dotted lines) and emission (full lines) spectra in 

methylcyclohexane (MCH), toluene, chloroform (CHCl3) and acetonitrile (MeCN) for DTPz-

DMAC (top), DTPz-BDT-TIPS (middle) and DTPz (bottom). For DTPz-DMAC, no 

emission was observed in MeCN. All spectra were recorded from non-degassed solutions. 
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4.5.4. Time-resolved emission spectra 

 

Figure S4.3: Time-resolved emission at various times in the photoluminescence decay for 

DTPz-DMAC in zeonex at room temperature (left) and at 80 K (right). 
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Figure S4.4: Time-resolved emission at various times in the photoluminescence decay for 

DTPz-BDT-TIPS in zeonex at room temperature (left) and at 80 K (right). 
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4.5.5. Laser power experiments 

 

 

Figure S4.5: Laser power experiments using a N2 laser: DTPz-DMAC was probed at a 

delay time of 5 µs for an integration time of 750 µs. DTPz-BDT-TIPS was probed at a 

delay time of 630 µs for an integration time of 10 ms. 
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4.5.6. Orbital topologies 

 

Figure S4.6: Orbital topologies for DTPz-DMAC (left) and DTPz-BDT-TIPS (right) 

obtained using DFT with LC-BLYP(ω=0.17)/6-311G(d). Isocontour values of 0.02 a.u. were 

used for all orbitals. 
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Table S4.1: Orbital energies for DTPz-DMAC and DTPz-BDT-TIPS as obtained using 

DFT with LC-BLYP(ω=0.17)/6-311G(d). 

 HOMO-2 (eV) HOMO-1 (eV) HOMO (eV) LUMO (eV) 

DTPz-DMAC -7.38 -6.62 -6.60 -1.56 

DTPz-BDT-TIPS -7.32 -6.89 -6.79 -1.42 
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4.5.7. Ground/excited state electron density differences 

 

Figure S4.7: Ground/excited state electron density differences for DTPz-DMAC (left) and 

DTPz-BDT-TIPS (right). Isocontour values = 0.0004 for all densities. Cyan regions 

indicate a decrease in electron density upon excitation, while purple regions indicate an 

increase in electron density. 
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4.5.8. NMR spectra 

 

Figure S4.8: 1H NMR spectrum of DTPz-DMAC in CDCl3. 

 

Figure S4.9: 13C NMR spectrum of DTPz-DMAC in CDCl3. 
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Figure S4.10: 1H NMR spectrum of compound DTPz-BDT-TIPS in CDCl3. 

 

Figure S4.11: 13C NMR spectrum of compound DTPz-BDT-TIPS in CDCl3. 
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Chapter 5 
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4DTP-IPN – a novel red TADF emitter 
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5.1 Introduction 

First published in 2012 by Adachi et al.,1 2,4,5,6-tetra(9H-carbazol-9-

yl)isophthalonitrile, better known as 4CzIPN (Figure 5.1), is one of the most 

studied thermally activated delayed fluorescence (TADF) emitters to date, with 

over 450 search results (publications and patents) in Scifinder.† Adachi et al. 

investigated the electroluminescence properties of 4CzIPN in an OLED device, 

achieving green emission and an external quantum efficiency (EQE) of 

19.3±1.5%.1 The steric hindrance created by the proximity of the 4 

9H-carbazole (Cz) units and the two cyano groups induces a large twist between 

the donor (D) and acceptor (A) parts, separating the highest occupied and 

lowest unoccupied molecular orbitals (HOMO and LUMO, respectively). 

Furthermore, a very small experimental singlet-triplet energy difference (ΔEST) 

of 0.08 eV was found, indicative of fast rISC and efficient TADF properties.1 

 

Figure 5.1: Molecular structure of 4CzIPN. 

Kim et al. showed that for 4CzIPN, a significant batochromic shift in the CT 

state emission occurs with increasing concentration in a nonpolar host.2 This 

behavior was attributed to the solid-state solvation effect (SSSE) in which the 

polarity of dopant 4CzIPN molecules influences the other surrounding 4CzIPN 

molecules, just as solvent molecules would do in solution. However, this was 

refuted by Northey et al. as the SSSE was shown to be not as effective as the 

analogous phenomenon in liquid solvents due to the inability of the solid-state 

molecules to rearrange.3 Etherington et al. investigated the photophysics of this 

materials in more detail, looking at potential dimer formation (Figure 5.2) that 

could lead to the shift of the CT emission.4 Sublimation of pristine 4CzIPN lead 

to the formation of several fractions, all consisting of crystal polymorphs but 

showing different emission properties. Photophysical characterization of 4CzIPN  

† Search conducted on 07/09/2020. 
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Figure 5.2: Schematic representation of the full (FO) or partial overlap (PO) between 

carbazole units. Reproduced from Ref. 4. 

in different hosts and at different concentrations lead them to believe dimer 

formation in the solid state was responsible for the observed batochromic shift.4 

In this chapter, in an attempt to overcome these dimer emissions, 9H-carbazole 

was replaced by dithieno[3,2-b:2',3'-d]pyrrole (DTP). DTP is a widely used 

building block for the development of push-pull (small molecule and conjugated 

polymer) materials for organic solar cells (OSCs)5-8 and has also been used for 

the design of fluorescent materials.9 For OSC materials, DTP is attractive 

because of its planar and strong electron-donating nature and the tunability of 

the N-substituent. This helps in the construction of low bandgap copolymers with 

red-shifted absorption. While thiophene derivatives have been used for the 

development of fluorescent emitters, the photoluminescence quantum yield 

(PLQY) of such materials is generally rather low.6, 9 Locking the flexible nature of 

2,2’-bithiophene by ring fusion between the two thienyl units with an N-alkyl 

moiety leads to a significant increase in the PLQY as non-radiative decay 

pathways are restricted.6, 9 Furthermore, the photochemical stability of the DTP 

unit renders DTP-based emitters one of the most successful thiophene-based 

fluorescent materials.9-11 

While coupling of DTP via the α-positions would lead to largely planar molecules, 

coupling via the N-atom yields sterically hindered and twisted architectures. 

Using isophthalonitrile (IPN) as the acceptor to construct 2,4,5,6-tetrakis(4H-

dithieno[3,2-b:2',3'-d]pyrrol-4-yl)isophthalonitrile (4DTP-IPN), a very similar 

structure to that of 4CzIPN can be obtained. In this chapter, the synthesis and 

photophysical characterization of 4DTP-IPN are reported and a preliminary 

investigation into the presence or absence of dimer formation for this compound 

is performed. 
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5.2 Results and discussion 

5.2.1 Synthesis  

For the synthesis of DTP, several methods have been reported.12, 13 Förtsch et 

al. compared several synthetic pathways and developed a single-step synthesis 

using triphenylsilylamine as the ring-closing reagent.12 The intermediate 

triphenylsilyl-protected DTP is not found and instead the reaction proceeds 

directly to the unprotected DTP in high yields of around 72%. However, after 

several attempts, no product could be obtained under these conditions and even 

changing the catalytic system to Pd2(dba)3 - (tBu)3PH(BF4) did not lead to the 

formation of the desired product. Instead, a two-step procedure was used, 

involving the synthesis of a carbamate protected DTP and subsequent 

deprotection (Scheme 5.1). This synthesis protocol was also reported by Förtsch 

et al., but gives a lower overall yield due to the ring-closure and deprotection 

steps with yields of around 46 and 81%, respectively.13 Despite having a lower 

overall yield, the two-step synthesis affords better control over the reaction 

conditions and allows the intermediate to be isolated and purified before the 

final deprotection step. The final nucleophilic substitution reaction between DTP 

and tetrafluoroisophthalonitrile was performed according to the synthesis 

procedure for the analogous 4CzIPN.1 The detailed synthetic procedure can be 

found in the supporting information. 

 

Scheme 5.1: Synthesis pathways for 4DTP-IPN: (i) Pd2(dba)3, (tBu)3P, 

triphenylsilylamine, NaOtBu, toluene, 80 °C, 16 h; (ii) CuI, tert-butyl carbamate, N,N'-

dimethylethylenediamine, K2CO3, toluene, 110 °C, 24 h; (iii) K2CO3, methanol, room 

temperature, 5 h; (iv) tetrafluoroisophthalonitrile, NaH, THF, 50 °C, 16 h. 
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5.2.2 Quantum-chemical calculations 

Density functional theory (DFT) calculations were performed to optimize the 

geometry of 4DTP-IPN and 4CzIPN‡ (M06/6-311G(d)).14 All frequencies were 

found to be real, indicating that the optimized geometries correspond to minima 

on the potential energy surfaces. Time-dependent DFT (TDDFT) calculations 

using a modified LC-BLYP15 range-separated exchange-correlation functional 

with the Pople 6-311G(d) basis set under the Tamm-Dancoff approximation16 

were performed. The range-separating parameter ω was set to 0.17 bohr-1 for 

LC-BLYP, in accordance with the findings of previous works.17, 18 Furthermore, 

the TDDFT calculations were performed using the polarizable continuum model 

(PCM) with cyclohexane to simulate a non-polar environment. All calculations 

were performed in the Gaussian16 package.19 Following the work of Le Bahers et 

al.20, the charge-transfer (CT) character of the singlet and triplet transitions 

under consideration was investigated by looking at the difference between the 

ground and excited state electron densities. 

The calculated geometries of 4CzIPN and 4DTP-IPN (Figure 5.3) are similar 

because of the steric repulsion among the donor units, resulting in similar D-A 

dihedral angles (Table 5.1). The main difference between the two compounds 

can be found in the HOMO distribution. For 4DTP-IPN, the HOMO is located 

solely on the neighboring three DTP units and any HOMO-LUMO overlap comes 

from the LUMO extending onto the DTP units. On the other hand, 4CzIPN shows 

mutual overlap between the HOMO and LUMO on both the donor and acceptor 

parts. This difference in frontier orbital overlap is reflected in the oscillator 

strengths of  the first and second excited singlet states (Table 5.1), which are 

significantly smaller for 4DTP-IPN. The overlap also influences ΔEST, which is 

smaller for 4DTP-IPN as well. 

Table 5.1: TDDFT results for the first vertical singlet excitation energies and 

corresponding oscillator strengths, the first and second vertical triplet excitation energies 

and dihedral angles (obtained from DFT geometry optimization).  

Compound 
∆𝐸𝑆1

 

(eV) 
𝑓𝑆1

 
∆𝐸𝑆2

 

(eV) 
𝑓𝑆2

 
∆𝐸𝑇1

 

(eV) 

∆𝐸𝑇2
 

(eV) 

∆𝐸𝑇2−𝑇1
 

(eV) 

∆𝐸𝑆1−𝑇1
 

(eV) 

D-A angle 

(°)a 

4DTP-IPN 2.63 0.001 2.76 0.009 2.57 2.63 0.06 0.06 57 

4CzIPN 2.84 0.095 3.11 0.156 2.68 2.82 0.14 0.16 62 

a Taken as the average of 8 possible torsion angles. 

‡ Although 4CzIPN has been investigated using quantum-chemical calculations 

(M06-2X/6-31G(d)) in the past,1 they have been repeated using our methodology 

for consistency and facile comparison of the properties. 
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The TDDFT calculations show that the first excited singlet state of 4DTP-IPN is 

slightly lower in energy, illustrative of the stronger electron-donating strength of 

the DTP with respect to the carbazole unit (Table 5.1). This also implies that 

4DTP-IPN will lean more closely toward the red end of the spectrum, whereas 

4CzIPN is a green emitter. Both compounds have a relatively small theoretical 

ΔEST, with 4DTP-IPN having the smaller of the two. The calculated triplet-triplet 

gaps have about the same size as the singlet-triplet gaps for both compounds, 

indicating that S1 and T2 are close in energy. According to the spin-vibronic 

mechanism of TADF, this is beneficial for the rISC as the two triplet states 

become coupled.21, 22  

 

Figure 5.3: Optimized geometries and HOMO and LUMO for 4DTP-IPN and 4CzIPN. 

Isosurface values of 0.02 a.u. were used for all orbitals. 

Looking at the differences between the ground and excited state electron 

densities (Figure 5.4), both compounds show predominant CT character, as 

indicated by the localized nature of the diminishing (cyan) and increasing 

(purple) charge density regions on the donor and acceptor units, respectively. 

This is quantified as the amount of charge that is transferred (qCT) during the
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Figure 5.4: Ground-excited state electron density differences for the first and second 

excited singlet and triplet states. Isosurface values of 0.0004 a.u. were used for all 

densities. The cyan regions indicate a decrease in charge density, whereas the purple 

regions indicate an increase in charge density. 

transition in Table 5.2. 4DTP-IPN shows full CT character (qCT = 1.0) for its first 

and second singlet excited states and also for the first triplet excited state. The 

second triplet excited state shows slightly less CT character. Overall, 4CzIPN 

shows less CT character, indicated by the reduced qCT values (Table 5.2). This is 

likely due to the better overlap between the frontier orbitals, as illustrated in 

Figure 5.3 and Figure S5.3. 

Table 5.2: Nature of the various transitions (H = HOMO, L = LUMO) and amount of 

charge transfer (qCT) accompanying the S0->Sx and S0->Tx transitions in cyclohexane. 

 S1 S2 T1 T2 

Compound Nature qCT Nature qCT Nature qCT Nature qCT 

4DTP-IPN H->L 1.00 H-1->L 1.00 H->L 1.00 H-1->L 0.84 

4CzIPN H->L 0.84 H->L+1 0.97 H->L 0.83 H-4->L 0.65 

5.2.3 Photophysical characterization 

The steady-state absorption and emission spectra for 4DTP-IPN and 4CzIPN in 

a solid host are shown in Figure 5.5. While the UV-VIS absorption spectra are 

very similar, the emission shows a clear red-shift for 4DTP-IPN, confirming the 

aforementioned stronger electron-donating character of the DTP unit. Solution 
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measurements for 4DTP-IPN (Figure 5.5) show the solvatochromic behavior of 

the emission, indicating CT character, whereas the absorption is virtually 

independent of the solvent. Additionally, the emission spectra in toluene and 

chloroform show a shoulder on the red side of the emission peak, which could be 

indicative of aggregation in solution. Simulation of the UV-VIS absorption 

spectra (Figure S5.2) revealed the influence of higher energy localized singlet 

states for the absorption spectra of both. 

 

 

Figure 5.5: Steady-state absorption and prompt (0.8 ns) time-resolved emission spectra 

in polystyrene for 4DTP-IPN and in zeonex for 4CzIPN (top) and steady-state absorption 

and emission spectra for 4DTP-IPN in methylcyclohexane (MCH), toluene and chloroform 

(CHCl3) (bottom). 

Time-resolved emission experiments were then conducted to obtain the room 

temperature and 80 K emission decays for 4DTP-IPN in a variety of host 

materials. Zeonex and polystyrene were chosen as two polymeric hosts in which 
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the emitter was doped at 0.1 and 1 wt% with respect to the polymer (Figure 

S5.9). Bis[2-(diphenylphosphino)phenyl]ether oxide (DPEPO) and 1,3-

bis(triphenylsilyl)benzene (UGH-3) (Figure S5.9) were used as small molecule 

hosts at a 10 wt% dopant concentration to mimic their doping concentration in 

potential light-emitting devices.  

Polymeric hosts are typically more flexible in nature and are found to give 

similar photophysical results as solution measurements for solvents of a similar 

polarity. This is because the polymer chains are not ordered and steric hindrance 

between the polymer chains can give rise to voids in which solvent can get 

trapped. For these reasons, the emitter doped in zeonex often behaves similar 

to being dissolved in methylcyclohexane.23 Polystyrene is less often reported in 

literature, but is expected to behave similarly to toluene. However, because 

these polymers are not conjugated, they are unable to transport charge carriers 

and cannot be used in optoelectronic devices. For this purpose, small molecule 

semiconducting materials with a large HOMO-LUMO offset such as DPEPO and 

UGH-3 are often used. In contrast to polymers, small molecule host materials 

can be co-evaporated with the active materials to create more homogeneous 

device layers with a higher control over layer thickness and morphology. The 

packing in these small molecule host layers is tighter and can influence the 

dihedral angles, and thus indirectly influence the optical properties of the emitter 

material. Furthermore, the polarizability and dielectric constant of the small 

molecule host materials can also influence the optical properties of the TADF 

emitter.23-25 Despite their inherent inability to conduct charge carriers, polymeric 

host materials are still useful to probe the photophysical properties of TADF 

emitters. The samples can easily be prepared via drop-casting and due to the 

high polymer viscosity, thicker films can be made. 

In Figure 5.6, the time-resolved emission spectra extracted from the full 

emission decays at room temperature (left) and at 80 K (right) for 4DTP-IPN 

doped at 1 wt% in zeonex are shown. Following the excitation (λexc = 355 nm), 

emission with an onset of around 513 nm (2.42 eV; Table 5.3) is observed at 

room temperature until several microseconds, when it starts to blue-shift slightly 

over time. In Figure 5.6c, the intensity has become very weak, nearing the 

detection limit of the iCCD camera, and seemingly stabilizes. At 80 K (Figure 

5.6d-f), the emission at 0.8 ns is very similar to that at room temperature at 0.8 
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ns, indicating that the same emissive excited state is involved. However, the 

emission then red-shifts slightly over the course of several hundred nanoseconds 

until it stabilizes again in the microseconds regime. Contrary to the room 

temperature spectra, the emission persists into the milliseconds regime and 

slightly blue-shifts again as time increases. With typical lifetimes of several up to 

tens of nanoseconds for prompt fluorescence, the long-lived emission at room 

temperature is likely caused by ISC followed by a triplet upconversion 

mechanism such as TADF. The blue-shift in the microsecond regime for 4DTP-

IPN at room temperature (Figure 5.6b) could be due to the non-homogeneous 

distribution of the dihedral angles of the various 4DTP-IPN molecules in the 

polymer host.23 Molecules with a less ideal conformation, i.e. smaller dihedral 

angles, will have a larger ΔEST because the overlap between the HOMO and 

LUMO increases. This imposes a smaller rISC rate because the energy gap that 

needs to be overcome is now larger and the resulting emission emerges at a 

later time. The changing dihedral angles also destabilize the position of the 1CT 

state, causing the emission to blue-shift.  

For triplet upconversion mechanisms such as TADF or triplet-triplet annihilation 

(TTA), one would expect them to be absent at 80 K due to their temperature 

dependency. This is apparently not the case as the delayed emission is present 

throughout the decay at 80 K, although a decrease in emission intensity is 

apparent by the decreased signal to noise ratio at 156.3 and 333.2 ns (Figure 

5.6d). With an experimental ΔEST of 0.04 eV (0.06 eV theoretically), obtained 

from the onsets of the prompt fluorescence at room temperature and the time-

resolved millisecond emission at 80 K, it is possible to have delayed emission 

even at 80 K, as is sometimes also seen for other compounds.23 Therefore, we 

attribute the initial red-shift at 80 K (Figure 5.6d) to prompt CT emission 

followed by TADF emission from the lowest vibrational energy level of the 1CT 

state. Upon excitation by the laser, higher vibrational levels are reached as the 

excitation energy is larger than the energy of the 1CT state. However, due to the 

decreased thermal energy at 80 K, rISC is likely to occur to the lowest 

vibrational energy level of the 1CT state because this requires the least amount 

of energy. This is visible as the blue edge of the emission red-shifts, whereas 

the red-edge of the emission remains relatively constant throughout this initial 

period in the decay (Figure 5.6d). In the microseconds regime, the emission at 
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Figure 5.6: Emission spectra extracted from the time-resolved emission decay of 4DTP-

IPN in a 1 wt% doped zeonex film at room temperature (left) and 80 K (right). 

80 K remains constant because of the reduced thermal energy and hence 

smaller rISC values (Figure 5.6e). In the milliseconds regime, the emission blue-

shifts (Figure 5.6f) and, similar to what we observed at room temperature in the 

microseconds regime, we attribute this behavior to the non-homogeneous 

distribution of the dihedral angles in the host. These effects are again delayed in 

time because the experiment is taking place at 80 K. The small ΔEST makes it
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Table 5.3: Photophysical properties for 4DTP-IPN and 4Cz-IPN doped at 1 wt% in 

zeonex. 

Compound 
ΔES 

(eV)a 

ΔET 

(eV)b 
ΔEST (eV)c τFp (ns)d τFd (µs)e kISC

f krISC
f 

4DTP-IPN 2.42 2.38 0.04 30.33 8.30 1.82x107 3.90x105 

4CzIPN 2.79 2.69 0.10 19.68 12.25 1.33x107 1.37x105 

a Taken from the onset of the prompt fluorescence (PF) emission. b Taken from the onset 

of the phosphorescence emission at millisecond times at 80 K. c Calculated as ES – ET.  
d Lifetime of prompt fluorescence (Fp). 

e Lifetime of delayed fluorescence (Fd). 
f kISC and 

krISC rates were determined using kinetic fitting of the PF and DF emission according to 

literature.26 

difficult to distinguish between the TADF and phosphorescence pathways, and 

depending on the rISC and phosphorescence rates, a combination of the two 

mechanisms may be observed. The observed behaviour of 4DTP-IPN seems to 

be independent of the concentration (0.1 vs 1 wt% doped in zeonex), but also 

independent of the used host material as it behaves the same in polystyrene, 

DPEPO and UGH. The time-resolved emission spectra of 4DTP-IPN in these host 

materials can be found in the supporting information (Figures S5.4-S5.8). The 

full emission decays for 4DTP-IPN at room temperature in the various host 

materials are plotted in Figure 5.7. It is apparent that the decays all show the 

same shape, indicating the similar behaviour in the various host materials. In 

the small molecule hosts, the decays are a little bit shorter, which is due to the 

fact that the films are less thick and the emission intensity drops below the 

sensitivity of the iCCD camera at earlier time scales. 

 

Figure 5.7: Time-resolved emission decays for 4DTP-IPN in various host materials. 
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5.2.4 Laser power experiments 

Measuring the emission intensity at various laser powers can help to distinguish 

between TADF and TTA as the delayed emission mechanism since TADF scales 

with the laser power as a power 1, whereas TTA scales as a power 2.27 This is 

especially valid at very low laser powers where the triplet generation is not 

saturated by the laser power. As can be seen in Figure 5.8, the area of the 

emission spectrum versus the laser power yields a linear correlation with a slope 

of 1.01 and an R2 value of 1, indicative of a TADF mechanism. 

 

Figure 5.8: Area under the emission curve versus the laser power for a 1 wt% 

polystyrene film of 4DTP-IPN. 

5.2.5 Dimer formation 

In the original report by Etherington et al.,4 dimer formation was observed for 

4CzIPN when comparing different fractions obtained using sublimation as a 

material purification tool. Although all fractions corresponded to 4CzIPN, their 

photophysical properties were clearly different, indicating the presence of 

different species of 4CzIPN, including monomeric and dimeric species. 

Increasing the dopant concentration of 4CzIPN in zeonex from 0.3 to 1 wt% 

revealed a red-shift in the emission over the course of several tens of 

nanoseconds, followed by a blue-shift when the TADF emission appeared (Figure 

5.9a,b). The 10wt% films are dominated by dimer emission, but have 

contributions of monomeric species at very early times (Figure 5.9c). 
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Figure 5.9: Nanosecond emission of 4CzIPN doped at various concentrations in zeonex 

(a-c) and electroluminescence of a device based on 4CzIPN doped in mCBP at various 

concentrations. The filled yellow peak overlaid in each panel is the dimer emission 

observed after a 11 ns delay time from a 10 wt% zeonex film of 4CzIPN at RT using 532 

nm excitation. Used with permission of Etherington et al. 
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energy (±0.1 eV), especially when looking at 80 K (±0.3 eV), it could be that 

the prompt emission of 4DTP-IPN is dominated by dimer emission, whereas the 

microseconds emission (RT) and milliseconds emission (80K) show increasing 

contribution from the monomeric species. This would also be in line with the 

decreased solubility of 4DTP-IPN with respect to 4CzIPN and the observed 

aggregation shoulder in the solution based emission measurements. However, 

as these blue and red shifts in the time-resolved spectra can be attributed to 

many factors or even a combinations of factors, it is challenging to resolve the 

underlying mechanisms based on the available data and additional 

measurements, for example using different concentrations are needed to fully 

elucidate their cause.  

5.3 Conclusions 

We have shown the synthesis and photophysical characterization of 4DTP-IPN, 

using the 4H-dithieno[3,2-b:2',3'-d]pyrrole (DTP) moiety as a novel donor unit 

to construct emissive D-A type compounds. Time-resolved emission 

spectroscopy showed the presence of TADF, as observed by the long-lived 

fluorescence emission and small theoretical (0.06 eV) and experimental (0.04 

eV) ΔEST values. 4DTP-IPN afforded a red-shifted emission in comparison to the 

9H-carbazole analogue (4CzIPN), which has been investigated extensively in 

literature prior to this study. A recent report by Etherington et al. showed a high 

tendency for 4CzIPN to form dimers in doped films at concentrations of 10 wt% 

or higher.4 The presented experiments with 4DTP-IPN illustrated that, at the 

minimum, there is a different tendency towards dimer formation. The current 

results are inconclusive to determine whether dimer formation is decreased or 

effectively enhanced by incorporation of the DTP unit. 

Nevertheless, these results show that 4DTP-IPN has the potential of achieving 

higher color purity than 4CzIPN, whereas the red-shifted nature suggests high-

efficiency red-emitting OLEDs might be produced when incorporated into a 

suitable host. Further studies of the concentration-dependent behavior in doped 

films, sublimation, and PLQY of 4DTP-IPN, as well as incorporation in OLED 

devices, is planned. 
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5.5 Supporting information 

5.5.1 Experimental details 

5.5.1.1 Materials and methods 

All reagents and chemicals were obtained from commercial sources and used 

without further purification. Dry solvents were obtained using an MBraun solvent 

purification system (MB SPS-800) equipped with alumina columns. Preparative 

(recycling) size exclusion chromatography (SEC) was performed on a JAI LC-

9110 NEXT system equipped with JAIGEL 1H and 2H columns (eluent 

chloroform, flow rate 3.5 mL min-1). Proton and carbon nuclear magnetic 

resonance (1H and 13C NMR) spectra were obtained on a Varian or Jeol 

spectrometer operating at 400 MHz for 1H (100 MHz for 13C). Chemical shifts (δ) 

are given in ppm relative to CDCl3 (δ = 7.26 ppm for 1H NMR, δ = 77.06 ppm for 

13C NMR). All NMR spectra were taken at room temperature. Matrix-assisted 

laser desorption/ionization - time-of-flight (MALDI-ToF) mass spectra were 

recorded on a Bruker Daltonics Ultraflex II ToF/ToF. Approximately 1 µL of the 

matrix solution (16 mg mL-1 trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propenylidene]malononitrile (DTCB) in chloroform) was spotted onto an MTP 

Anchorchip 600/384 MALDI plate. The spot was allowed to dry and 1 µL of the 

analyte solution (0.5 mg mL-1 In chloroform) was spotted on top of the matrix. 

All solution-based absorption spectra were recorded on a Varian Cary 5000 UV-

Vis-NIR spectrophotometer from Agilent Technologies. Steady-state emission 

spectra (in solution) were recorded on a Horiba-Jobin Yvon Fluorolog-3 

spectrofluorometer equipped with a 450 W Xe lamp as the light source. All 

spectroscopic measurements were done in spectroscopic grade solvents. Films 

were prepared via drop-casting using a mixture of the emitter and host in 

toluene at the designated concentrations. The films were drop-casted onto a 

quartz substrate at 65 °C to facilitate evaporation of the solvent. Absorption and 

emission spectra of the films were collected using a UV-3600 double beam 

spectrophotometer (Shimadzu) and a Fluoromax fluorimeter (Jobin Yvon), 

respectively. Time-resolved photoluminescence spectra and decays were 

recorded using a nanosecond gated spectrograph-coupled iCCD (Stanford) using 

an Nd:YAG laser emitting at 355 nm (EKSPLA). Laser power experiments were 

conducted using an N2 laser (Lasertechnik Berlin) emitting at 337 nm with the 
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same nanosecond gated spectrograph-coupled iCCD (Stanford) camera, 

attenuating the excitation using reflective neutral density filters. 

5.5.1.2 Synthesis procedures 

4H-Dithieno[3,2-b:2',3'-d]pyrrole (DTP) was synthesized according to 

literature.1 

 

2,4,5,6-tetrakis(4H-dithieno[3,2-b:2',3'-d]pyrrol-4-yl)isophthalonitrile (4DTP-

IPN) 

NaH (60% in oil; 105.1 mg, 2.63 mmol) was added slowly to a stirred solution 

of DTP (455.7 mg, 2.54 mmol) in dry THF under nitrogen atmosphere at room 

temperature. After 10 min, tetrafluoroterephthalonitrile (101.6 mg, 0.51 

mmol) was added and the reaction mixture was stirred for 16 h at 50 °C in an 

oil bath. Thereafter, the excess of NaH was quenched with water (0.5 mL). The 

resulting solid was filtered off, washed with water and EtOH, and dried under 

vacuum. 4DTP-IPN was obtained as a yellow solid (388.0 mg, 91%). 1H NMR 

(400 MHz, CDCl3): 7.43 (d, J = 5.4 Hz, 2H), 7.28 (d, J = 5.4 Hz, 2H), 6.98 (d, J 

= 5.4 Hz, 4H), 6.69 (d, J = 5.4 Hz, 2H), 6.62 (d, J = 5.4 Hz, 4H), 6.04 (d, J = 

5.4 Hz, 2H). 13C NMR (100 MHz, CDCl3): 144.92, 143.99, 143.39, 142.50, 

141.77, 130.29, 125.27, 124.51, 123.77, 120.21, 119.88, 118.75, 111.97, 

111.79, 110.93, 109.24. 
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5.5.2 Additional calculations 

 

Figure S5.1: Chemical structures of 4DTP-IPN and 4CzIPN indicating the donor units 

D1-D4 for the determination of the dihedral angles in Table S5.1. 

Table S5.1: Dihedral angles for the individual donor units of 4DTP-IPN and 4CzIPN as 

indicated in Figure S5.1. 

 D1 (°) D2 (°) D3 (°) D4 (°) 

4DTP-IPNa,b 56.1 58.3 58.5 56.3 

4CzIPNa,b 72.0 57.8 61.1 57.8 

a Taken as the average of 2 possible torsion angles. b For 4DTP-IPN and 4CzIPN, D1 and 

D3 have 2 similar dihedral angles whereas D2 and D4 have two largely differing angles. 
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Figure S5.2: Simulated UV-VIS spectra from the TDDFT results for the optimized 

geometries of 4DTP-IPN and 4CzIPN. 
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5.5.3 Time-resolved emission spectra 

 

Figure S5.4: Emission spectra extracted from the time-resolved emission decay of 4DTP-

IPN in a 0.1 wt% doped zeonex film at room temperature (left) and 80 K (right). 
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Figure S5.5: Emission spectra extracted from the time-resolved emission decay of 4DTP-

IPN in a 0.1 wt% doped polystyrene (PS) film at room temperature (left) and 80 K (right). 
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Figure S5.6: Emission spectra extracted from the time-resolved emission decay of 4DTP-

IPN in a 1 wt% doped polystyrene (PS) film at room temperature (left) and 80 K (right). 
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Figure S5.7: Emission spectra extracted from the time-resolved emission decay of 4DTP-

IPN in a 10 wt% doped DPEPO film at room temperature (left) and 80 K (right). 
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Figure S5.8: Emission spectra extracted from the time-resolved emission decay of 4DTP-

IPN in a 10 wt% doped UGH film at room temperature (left) and 80 K (right). 
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Figure S5.9: Molecular structures of zeonex, polystyrene, UGH-3, DPEPO and mCBP. 
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5.5.4 NMR spectra 

  

Figure S5.10: 1H NMR spectrum of 4DTP-IPN in CDCl3. 

 

Figure S5.11: 13C NMR spectrum of 4DTP-IPN in CDCl3. 

 



Study of the aggregation behaviour of 4DTP-IPN 

 

  207 

 

5.5.5 Coordinates of optimized geometries 

4DTP-IPN 

C     0.31593    -1.16290    -0.34644 

C     -0.39206    0.00001    0.00001 

C     0.31587    1.16295    0.34647 

C     1.72037    1.15729    0.35022 

C     2.42811    0.00008    0.00005 

C     1.72044    -1.15717    -0.35015 

C     2.42087    -2.30016    -0.83224 

N     2.98234    -3.22664    -1.22812 

C     2.42074    2.30033    0.83231 

N     2.98216    3.22683    1.22818 

N     3.82283    0.00011    0.00007 

C     4.65547    0.86799    -0.71020 

C     5.97854    0.55013    -0.44710 

C     5.97855    -0.55000    0.44708 

C     4.65549    -0.86780    0.71028 

S     7.04345    -1.55311    1.36308 

C     5.68424    -2.36992    2.07876 

C     4.47853    -1.90591    1.65198 

C     4.47849    1.90611    -1.65188 

C     5.68419    2.37008    -2.07874 

S     7.04342    1.55321    -1.36317 

N     -1.79101    -0.00003    0.00001 

C     -2.62127    0.83282    -0.74735 

C     -3.94559    0.53241    -0.46697 

C     -3.94557    -0.53259    0.46695 

C     -2.62123    -0.83293    0.74734 

S     -5.00829    -1.47731    1.44674 

C     -3.64602    -2.24790    2.21059 

C     -2.44116    -1.80937    1.75390 

C     -2.44124    1.80928    -1.75389 

C     -3.64612    2.24774    -2.21061 

S     -5.00836    1.47706    -1.44678 

N     -0.36070    -2.32671    -0.72574 

C     -1.44216    -2.40782    -1.60674 

C     -2.10005    -3.61347    -1.42369 

C     -1.40988    -4.31869    -0.40536 

C     -0.35737    -3.51956    0.00918 

S     -1.52697    -5.73358    0.57543 

C     -0.15958    -5.21556    1.51816 

C     0.36603    -4.02662    1.11148 

C     -1.97227    -1.60176    -2.63872 

C     -3.05235    -2.20495    -3.20428 

S     -3.42306    -3.76338    -2.52088 

N     -0.36084    2.32673    0.72575 

C     -1.44231    2.40779    1.60674 

C     -2.10025    3.61342    1.42367 

C     -1.41010    4.31866    0.40535 
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C     -0.35755    3.51958    -0.00918 

S     -1.52724    5.73354    -0.57545 

C     -0.15982    5.21557    -1.51817 

C     0.36584    4.02666    -1.11148 

C     -1.97240    1.60172    2.63872 

C     -3.05251    2.20485    3.20426 

S     -3.42328    3.76327    2.52085 

H     5.87149    -3.17585    2.77655 

H     3.52806    -2.29856    1.99753 

H     3.52801    2.29882    -1.99736 

H     5.87143    3.17601    -2.77654 

H     -3.82969    -3.01794    2.94912 

H     -1.49112    -2.19239    2.11463 

H     -1.49122    2.19236    -2.11461 

H     -3.82982    3.01777    -2.94914 

H     0.20694    -5.86465    2.30313 

H     1.23521    -3.56828    1.57176 

H     -1.59754    -0.63206    -2.94879 

H     -3.67839    -1.82436    -4.00126 

H     0.20667    5.86467    -2.30314 

H     1.23504    3.56835    -1.57175 

H     -1.59763    0.63203    2.94879 

H     -3.67854    1.82425    4.00123 

 

4CzIPN 

C     -0.24202    1.13518    -0.44212 

C     0.46683    -0.00024    0.00010 

C     -0.23916    -1.13728    0.44270 

C     -1.64361    -1.11836    0.46242 

C     -2.34619    -0.00338    0.00118 

C     -1.64641    1.11307    -0.46087 

C     -2.37676    2.19184    -1.03961 

N     -2.97965    3.05166    -1.51582 

C     -5.90338    0.46485    0.54901 

C     -5.90304    -0.47108    -0.54934 

C     -4.55928    -0.74006    -0.86211 

N     -3.74595    -0.00476    0.00190 

C     -4.55981    0.73206    0.86409 

C     -6.90768    -1.08485    -1.29043 

C     -6.55670    -1.94222    -2.31880 

C     -5.21480    -2.18641    -2.61909 

C     -4.19509    -1.58728    -1.89712 

C     4.02837    0.56248    0.45421 

C     4.02932    -0.55493    -0.45633 

C     2.68748    -0.86971    -0.72657 

N     1.86641    0.00134    -0.00032 

C     2.68600    0.87426    0.72534 

C     2.33492    1.86190    1.63312 

C     3.35734    2.58076    2.23103 
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C     4.69723    2.30730    1.94747 

C     5.03914    1.29162    1.07122 

C     5.04130    -1.28181    -1.07406 

C     4.70106    -2.29821    -1.95012 

C     3.36159    -2.57465    -2.23278 

C     2.33798    -1.85810    -1.63414 

C     2.15965    3.55166    -1.65821 

C     1.45672    4.31266    -0.65463 

C     0.39245    3.51853    -0.19845 

N     0.42275    2.28632    -0.88024 

C     1.49685    2.32114    -1.78377 

C     1.88749    1.37096    -2.71276 

C     3.01079    1.64230    -3.47678 

C     3.70732    2.84437    -3.33738 

C     3.27809    3.81031    -2.44323 

C     1.67373    5.56266    -0.08621 

C     0.83526    5.99631    0.92627 

C     -0.21433    5.19147    1.37122 

C     -0.45114    3.94291    0.81693 

C     -2.37104    -2.19908    1.04119 

N     -2.97142    -3.06074    1.51727 

C     2.16849    -3.54809    1.65834 

C     1.46702    -4.31088    0.65509 

C     0.40085    -3.51923    0.19900 

N     0.42858    -2.28682    0.88050 

C     1.50295    -2.31903    1.78378 

C     1.89167    -1.36775    2.71245 

C     3.01574    -1.63640    3.47629 

C     3.71493    -2.83693    3.33701 

C     3.28769    -3.80403    2.44317 

C     1.68660    -5.56055    0.08692 

C     0.84878    -5.99631    -0.92517 

C     -0.20270    -5.19390    -1.37005 

C     -0.44208    -3.94572    -0.81603 

C     -4.19630    1.57917    1.89945 

C     -5.21646    2.17987    2.61947 

C     -6.55817    1.93727    2.31698 

C     -6.90849    1.08006    1.28827 

H     -7.95446    -0.88930    -1.06581 

H     -7.33213    -2.42928    -2.90455 

H     -4.96343    -2.85788    -3.43656 

H     -3.15026    -1.76576    -2.14494 

H     1.29700    2.07755    1.87467 

H     3.10486    3.37375    2.93137 

H     5.47694    2.89133    2.43017 

H     6.08363    1.06225    0.86859 

H     6.08541    -1.05011    -0.87212 

H     5.48174    -2.88048    -2.43336 

H     3.11040    -3.36817    -2.93298 

H     1.30038    -2.07603    -1.87498 
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H     1.34210    0.43979    -2.84123 

H     3.35268    0.90014    -4.19479 

H     4.58649    3.02732    -3.95013 

H     3.80632    4.75755    -2.35336 

H     2.49941    6.18398    -0.42782 

H     0.99087    6.97259    1.37837 

H     -0.86796    5.55099    2.16219 

H     -1.27777    3.33261    1.17308 

H     1.34422    -0.43779    2.84085 

H     3.35611    -0.89331    4.19407 

H     4.59465    -3.01777    3.94961 

H     3.81804    -4.75010    2.35340 

H     2.51374    -6.17997    0.42846 

H     1.00640    -6.97238    -1.37706 

H     -0.85576    -5.55507    -2.16074 

H     -1.27012    -3.33729    -1.17210 

H     -3.15165    1.75629    2.14905 

H     -4.96562    2.85127    3.43716 

H     -7.33396    2.42550    2.90128 

H     -7.95514    0.88584    1.06188 

 

5.5.6 Supporting information references 

1. S. Förtsch and P. Bäuerle, Polym. Chem., 2017, 8, 3586-3595. 
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6.1 General introduction 

While in the previous chapters, the importance of density functional theory 

(DFT) and time-dependent DFT (TDDFT) for thermally activated delayed 

fluorescence (TADF) has been illustrated, its uses are much more widespread. In 

photodynamic therapy (PDT), a therapeutic agent (i.e. a photosensitizer) 

absorbs light to form an exciton and, via intersystem crossing (ISC), is able to 

convert this exciton to the triplet state, after which the energy is transferred to 

an oxygen molecule which is excited from its triplet ground state to the highly 

reactive singlet excited state.1-3 Similar to TADF, the excited state properties 

(excitation energy, ISC, etc.) of the applied photosensitizer play a crucial role in 

the efficient application of the technology. In section 6.2, a report by Deckers et 

al.4 on the design, experimental and quantum-chemical analysis of novel 

BODIPY-based photodynamic therapy agents is highlighted, in which the 

quantum-chemical calculations played a major role in resolving the underlying 

mechanism for efficient ISC in these materials. 

Next to the excited-state properties, analysis of the geometrical parameters of 

conjugated polymer materials can help to explain experimental properties such 

as the HOMO and LUMO energies as obtained via cyclic voltammetry (CV). The 

first example deals with homocoupling, which occurs when two donor (D) or 

acceptor (A) units are coupled to each other (D-D or A-A) instead of forming D-A 

linkages during the polymerization reaction (section 6.3).5 Homocoupling is often 

detrimental for the device performance as large structural changes occur in the 

polymer backbone, leading to changes in the mixing between the donor and 

acceptor materials in a bulk heterojunction (BHJ) blend, reduced charge 

transport along the polymer backbone, the formation of charge traps and the 

potential mismatching between the frontier orbital energy levels of the donor 

polymer and its surrounding layers.6-9 Using quantum-chemical calculations, we 

were able to explain the increase in HOMO energy and the observed reduction in 

OPV device efficiency for a series of polymers with increasing homocoupling 

content. In a third study (section 6.4), the bis(perylene diimide) acceptor unit 

was polymerized with various thiophene-based donor units to construct electron 

donor polymers for organic solar cells.10 To understand the experimental CV and 

UV-VIS absorption data, DFT calculations were performed on the optimized 
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geometries of the resulting polymers and their implications on the experimental 

data. Finally, halogenation of the donor or acceptor polymers applied in BHJ 

organic solar cells is used to fine-tune various properties, such as the UV-VIS 

absorption profile, the frontier orbital energy levels, mixing enthalpy and charge 

carrier mobility. Investigation of the effects of halogenation on a series of donor 

and acceptor polymers for BHJ solar cells via DFT and TDDFT calculations helped 

to solidify the experimental findings (section 6.4).11 

In the following sections, the quantum-chemical calculations performed in the 

aforementioned examples will be discussed in more detail. A complete overview 

of the work performed can be found in the respective publications.4, 5, 10, 11 
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6.2 Functionalized BODIPYs for photodynamic therapy 

Boron dipyrromethene (BODIPY) dyes represent a particular class within the 

broad array of potential photosensitizers. Their highly fluorescent nature opens 

the door for theragnostic applications, combining imaging and therapy using a 

single, easily synthesized chromophore.12-15 However, near-infrared (NIR) 

absorption is strongly desired for photodynamic therapy to enhance tissue 

penetration.16 Furthermore, singlet oxygen should preferentially be generated 

without the incorporation of heavy atoms, as these often require additional 

synthetic efforts and/or afford dark cytotoxicity.14, 15, 17, 18 Solutions for both 

problems are known, but have never been successfully combined in one simple 

BODIPY material. Here, we present a series of compact BODIPY-acridine dyads, 

active in the phototherapeutic window and showing balanced brightness and 

phototoxic power. Although the donor-acceptor design was envisioned to 

introduce a charge transfer state to assist in intersystem crossing, quantum-

chemical calculations refute this. Further photophysical investigations suggest 

the presence of exciplex states and their involvement in singlet oxygen 

formation. 

6.2.1 Design of BODIPY dyes 

The design of the photosensitizers (PSs) started from the highly fluorescent 

1,3,5,7-tetramethyl-BODIPYs, with varying meso-functionalities such as a 

hydrogen atom (7a), mesityl (7b) or 1,5-dichlorophenyl (7c) group (Scheme 

6.1). The meso-positions are easily modifiable during the BODIPY synthesis and 

typically do not influence the photophysical properties of the resulting 

compounds to a large extent. Groups with a large steric hindrance such as 

mesityl or 1,5-dichlorophenyl can reduce non-radiative losses, leading to an 

improvement in the photoluminescence quantum yield (PLQY). The methyl 

groups on the BODIPY core are acidic enough to enable Knoevenagel-type 

condensations to extend the π-conjugated system and shift the absorption and 

emission toward the red end of the spectrum.19, 20 We chose a strongly electron 

donating acridine group, generating a push-pull type structure (Scheme 6.1) to 

further increase the bathochromic shift. The idea behind the donor-acceptor 

dyad design was, similar to the spin-vibronic mechanism for TADF,21-23 to 
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increase the mixing between triplet states in order to improve ISC between the 

first singlet excited and an upper triplet excited state.24 The first triplet excited 

state for BODIPY dyes is typically very low in energy with respect to the first 

singlet excited state (see below, Table 6.2). Two different spacer units (phenyl 

and thienyl) were chosen to functionalize the acridine group with and to enable 

the Knoevenagel-type condensation with the BODIPY core. 

 

Scheme 6.1: Molecular structures of the various BODIPY compounds used in this work. 

Density functional theory (DFT) calculations were then performed to optimize 

the geometries of all 6 BODIPY compounds. For this purpose, the M06 

 

Figure 6.1: Different possible conformers for 8a and 9a. Geometries were optimized 

using M06/6-311G(d). 
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exchange-correlation functional was used in combination with the 6-311G(d) 

basis set. Two types of conformers were thought to be possible for both the 

phenyl (8a-c) and thienyl-spaced (9a-c) BODIPYs (Figure 6.1). They differ in 

the orientation of the double bond with respect to the BODIPY core and result in 

a larger or smaller distance between the acridines, which is especially visible for 

9a. In Figure 6.1, the right hand side conformer for both 8a and 9a has the 

lowest energy and was hence chosen for all the calculations in this work. The 

optimized geometries show a large dihedral angle (> 80°) between the acridine 

donor and the phenyl or thienyl spacer for BODIPYs 8b,c and 9b,c. The meso-

groups are nearly perpendicular to the BODIPY core and are therefore not 

expected to influence the BODIPY properties to a large extent. The BODIPY core 

and styryl/thienylvinyl spacer are coplanar, extending the conjugation and

 
 

Figure 6.2: Optimized geometries and frontier orbitals for BODIPYs 8a and 9a in 

chloroform as obtained using DFT calculations with M06-2X/6-311G(d) and the PCM. 

Isosurface values of 0.02 a.u. were used for all orbitals. 

leading to the desired red-shifted absorption and emission. From the geometry 

optimization, the frontier orbital topologies are obtained, showing localization of 

the HOMO and LUMO on the styryl/thienylvinyl-BODIPY, whereas the HOMO-1 is 

localized on the acridines for all BODIPYs (Figure 6.2). The orbitals shown in 

Figure 6.2 were obtained using M06-2X to have a more consistent picture with 

the time-dependent DFT (TDDFT) calculations. This is because the HOMO and 

8a 

9a 

LUMO HOMO HOMO-1 
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HOMO-1/HOMO-2 being close in energy and a reversal occurs when calculating 

the orbital energies with M06 instead of M06-2X. 

6.2.2 Photophysics 

BODIPYs 8a-c and 9a-c were subjected to a detailed photophysical 

characterization (performed by J. Deckers) to examine their intended use as 

theragnostic agents. Initial characterization was performed in chloroform, but 

was later extended to toluene and dimethyl sulfoxide (DMSO). UV-VIS 

absorption and fluorescence measurements (Figure 6.3) were performed to 

estimate whether the photosensitizers could act in the phototherapeutic window 

(i.e. the wavelengths where scattering is small, the absorption in human tissue

 

Figure 6.3: Normalized absorption spectra for BODIPYs 8a-c and 9a-c (left) and their 

corresponding normalized fluorescence emission spectra (right) in chloroform solution. 

Table 6.1: Spectroscopic data for BODIPY dyads 8a-c and 9a-c as obtained in chloroform 

solution.a 

BODIPY λabs (nm)b λem (nm)c ε (M-1cm-1)d Фf
e ФΔ

f 

8a 643 654 122,300 0.47 ±0.02 0.29 ±0.04 

8b 633 645 119,900 0.63 ±0.03 0.23 ±0.02 

8c 648 664 100,100 0.38 ±0.02 0.31 ±0.07 

9a 674 689, 764 107,300 0.069 ±0.002 0.03 ±0.01 

9b 664 678, 751 98,200 0.091 ±0.002 0.05 ±0.03 

9c 681 697, 782 98,400 0.052 ±0.002 0.06 ±0.04 

a All values are averages from three independent measurements. b Absorption maximum.  
c Fluorescence emission maximum/maxima. d Molar attenuation coefficient. e Fluorescence 

quantum yield determined vs nile blue (Фf = 0.27, λexc = 605 nm) (for 8a-c) or vs 

aluminum phthalocyanine chloride (Фf = 0.41, λexc = 645 nm) (for 9a-c) in spectrograde 

ethanol as a reference. Standard deviations are reported. f Singlet oxygen quantum yield 

determined vs methylene blue (ФΔ = 0.52, λexc = 639 nm) in spectroscopic grade ethanol 

as a reference by monitoring the absorbance of 1,3-DPBF at 414 nm. Standard deviations 

are reported. 
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is minimized and the irradiation has the largest penetration depth; 600 – 800 

nm). Furthermore, the singlet oxygen quantum yields (ФΔ) were collected by 

monitoring the absorbance of 1,3-diphenylisobenzofuran (1,3-DPBF) as singlet 

oxygen scavenger during excitation at 639 nm (Table 6.1).25, 26 Additionally, all 

systems were found to be photostable for more than three hours under 639 nm 

illumination. The fluorescence quantum yields (Фf) are moderate, but still 

significant (47, 63, and 38% for 8a, 8b, and 8c, respectively). Both the 

absorption and emission profiles resemble the typical narrow BODIPY shape with 

a smaller shoulder. Furthermore, the BODIPY dyads with a phenyl spacer 

between the BODIPY and acridine subunits were able to generate 1O2. Relative 

ФΔ measurements resulted in good values ranging from 23% for the meso-

mesityl variant 8b to 31% for the meso-2,6-dichlorophenyl variant 8c. We can 

exclude that the 1O2 generation capability originates from the orthogonality 

between the meso-group and the BODIPY core, since meso-unsubstituted 

BODIPY 8a also affords a significant ФΔ value of 29%. Moreover, the high molar 

attenuation coefficients (above 100,000) indicate their excellent light harvesting 

abilities. The absorption profiles of BODIPYs 9a-c resemble these of their styryl 

counterparts, but are red-shifted to a greater extent, as expected due to the 

more electron donating character of the thienyl linkers. Remarkably, the thienyl 

spacer results in a very different fluorescence emission profile. The first emission 

maxima are found between 680 and 700 nm, while a second, more intense and 

broad emission band with maxima ranging from 750 up to 780 nm appears. 

Although high molar attenuation coefficients are obtained for these systems, Фf 

and ФΔ values are very low.  

To understand where these absorption and emission peaks are coming from, and 

to verify whether we are dealing with charge-transfer (CT) emission or not, 

TDDFT calculations using M06-2X as the exchange-correlation functional and 6-

311G(d) as the basis set were performed. The vertical excitation energies were 

calculated in various environments (toluene, chloroform and DMSO) using the 

polarizable continuum model (Table 6.2). The singlet excitation energies for 

BODIPYs 8a-c show that 8b has the highest first excitation energy, followed by 

8a and 8c. This is expected given the electron donating nature of the mesityl 

group, whereas the 2,6-dichlorophenyl group is slightly electron withdrawing. 

BODIPYs 9a-c have lower excitation energies, in correspondence to the 
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bathochromically shifted absorption and emission spectra. Furthermore, these 

compounds follow the same trend concerning variations of the meso-groups. In 

all cases, the energy differences between the different solvents are minimal. 

These observations correspond nicely to the trends that were also found 

experimentally (Figure 6.3). The oscillator strength of the S0S1 transition is 

large (> 0.9) for all compounds, hinting to a large extinction coefficient for this 

transition. The second singlet energy level is much higher in energy (> 0.7 eV) 

in all cases, with the corresponding oscillator strength being negligible, except 

for dyad 9a in DMSO and 9c in all three solvents, where it is still very small. 

There are two triplet states of interest in these BODIPY compounds. The lowest 

triplet state has an excitation energy of around 1.00 eV for all molecules. This 

means there is still enough energy to overcome the excitation barrier for 3O2, 

which is around 0.98 eV (1270 nm). The second triplet state is around 2.49 eV 

for BODIPYs 8a-c and around 2.24 eV for BODIPYs 9a-c. Based on the 

calculations, and keeping the possible error on the obtained triplet excitation 

energies in mind, the lowest triplet state in 9a and 9c might be too low in 

energy for efficient 1O2 formation, as observed experimentally. The dominant 

nature of the one-particle transitions for the first singlet states is of 

HOMOLUMO (localized) character. For the second singlet excited state, the 

character varies between HOMO-1LUMO (8a, 8b in chloroform, 9a, 9b, and 9c 

in DMSO) and HOMO-2LUMO (8b in toluene and DMSO, 8c and 9c toluene and 

chloroform), depending on the compound and the solvent in which it was 

calculated. However, the nature remains the same, since both HOMO-1 and 

HOMO-2 are localized on the acridine moiety, leading to a CT-type excitation. 

For the first and second triplet excited states, the dominant nature is of 

HOMOLUMO and HOMO-3LUMO character, respectively. 

The CT character of the various transitions was investigated and the distance 

over which charge is transferred (denoted as dCT) and the change in dipole 

moment upon excitation (Δµ) were calculated (Table 6.3). The CT distance was 

calculated according to the work by Le Bahers et al.27 From the dCT values (< 1.0 

Å), it is clear that the S0S1, S0T1, and S0T2 transitions are of local 

character. On the other hand, the S0S2 transition is of CT character (dCT >> 

1.0 Å). The change in dipole moment (Δµ) follows the same trend: a large

increase in dipole moment is observed for S0S2, whereas the other transitions
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show a slight decrease in dipole moment upon excitation. The TDDFT 

calculations correspond well with the observed localized absorption and emission 

spectra, in which very little solvatochromism is observed (Figure 6.4). However, 

from Table 6.2, the CT emission attributed to the high-wavelength emission 

band in dyads 9a-c in all solvents could not be confirmed at the theoretical 

level. There is indeed an energy level with CT character, but it is much higher in 

energy than the first singlet excited state, and not slightly lower as would be 

expected from the photophysical data. Furthermore, the oscillator strengths are 

negligible for this transition in all cases. Therefore, another process is expected 

to be involved in these BODIPY systems. 

Table 6.3: Charge-transfer distance (dCT) and change in dipole moment (Δµ, excited state 

dipole - ground state dipole) accompanying the S0->Sn and S0->Tn transitions in 

chloroform. 

BODIPY 
S0S1 S0S2 S0T1 S0T2 

dCT (Å) Δµ (D) dCT (Å) Δµ (D) dCT (Å) Δµ (D) dCT (Å) Δµ (D) 

8a 0.57 -1.1 4.86 17.8 0.48 -1.2 0.47 -0.7 

8b 0.67 -1.4 5.00 18.1 0.65 -1.8 0.38 -0.6 

8c 0.79 -1.6 5.13 17.8 0.71 -2.0 0.62 -1.0 

9a 0.82 -1.7 4.53 18.1 0.52 -1.5 0.64 -1.2 

9b 0.94 -2.0 4.79 19.3 0.71 -2.1 0.62 -1.1 

9c 0.99 -2.1 4.93 20.8 0.71 -2.2 0.74 -1.4 

Solvatochromic experiments were conducted in toluene and DMSO in addition to 

chloroform to distinguish the localized and CT emission bands. The absorption 

bands remained similar in all solvents for all BODIPYs. While the low-wavelength 

emission remains unaltered in the various solvents, the observed high-

 

Figure 6.4: Normalized absorption spectra (solid lines) for BODIPYs 8a and 9a and their 

corresponding normalized fluorescence emission spectra (dashed lines) in toluene, 

chloroform, and DMSO. The same trends were generally observed for the other BODIPY 

dyads. 
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wavelength emission for BODIPYs 9a-c (Figure 6.4) red-shifts with solvent 

polarity from toluene to DMSO, suggesting CT character for this emission. In 

addition, this high-wavelength emission band also appears for BODIPYs 8a-c in 

DMSO. This solvent-dependent behavior seems indicative of CT emission and the 

proximity of the CT and LE bands for BODIPYs 8a-c points toward a narrow 

energetic spacing between these states. These findings are in contrast with the 

aforementioned TDDFT calculations for the singlet excitation energies. As the 

mutual ratio between the intensities of the LE and CT emission bands seemed to 

change between measurements and solvents, exciplex formation was 

coined as a possible explanation for the observed photophysics. BODIPYs 8a and 

9a were investigated in chloroform (Figure 6.5) and DMSO at various 

concentrations to verify whether the emission bands were indeed concentration 

dependent. 

 

Figure 6.5: Fluorescence emission spectra, normalized to concentration, for a dilution 

series of 8a (left) and 9a (right) in chloroform (λexc = 605 nm, slit width = 2 nm for 8a; 

λexc = 645 nm, slit width = 5 nm for 9a). The stock solution contained ca. 1 mg BODIPY 

dissolved in 5 mL chloroform. 

As shown in Figure 6.5, the emission intensity decreases with concentration, as 

expected, but more importantly, a clear shift between the relative intensities of 

the LE and CT bands occurs for 8a (±650 and ±700 nm, respectively) and 9a 

(±680 and ±755 nm, respectively), which is indicative for exciplex formation. 

The 9a-c series seems more affected by the concentration as the exciplex or CT 

emission band is seen in all solvents. Similar results were found for both 

compounds in DMSO and can be found in the original work.4 

As direct ISC from singlet to triplet is unlikely, exciplex formation could be a key 

element in the ISC abilities. Exciplex states can live relatively long as there is no 
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ground state counterpart, and they have a strong polar nature, as seen for CT 

states.28 Hence, exciplexes can serve the same purpose as CT states, assisting 

in triplet formation. In the BODIPY-acridine dyads described in this work, ISC 

from a 1Exciplex state to a 3Exciplex state is expected to provide ISC, 

immediately followed by a fast internal conversion to the lowest 3LE state. 

Exciplexes have also been used in OLED devices, where the spatial separation 

between the donor and acceptor molecules of the exciplex (i.e. one molecule 

transfers an exciton to the second molecule) provides a small energy splitting 

between the 1Exciplex and 3Exciplex states, respectively.29, 30 Additionally, 

similar ISC to an exciplex triplet state from an excited state complex has already 

been observed for some BODIPY dyes, although the examples are scarce.28, 31, 32 

Finally, the crucial influence of the acridine moiety was proven by synthesizing 

BODIPY dyes that lack this functionality. For this purpose, the BODIPY dyads

    

Figure 6.6: Chemical structures of BODIPYs 8x and 9x (left) and normalized fluorescence 

emission spectra (right) of 4, 7a, 8x, 9x, 8a, and 9a in chloroform solution. 

without meso-group were chosen and the new acridine-free BODIPYs are dubbed 

8x and 9x (Figure 6.6). The acridine unit by itself (4) was also measured. The 

emission spectra (Figure 6.6) reveal BODIPY-like emission for 8x and 9x, 

lacking the observed CT or exciplex emission bands which were especially visible 

for BODIPY 9a. Measurement of the fluorescence and singlet oxygen quantum 

yields revealed very high Φf values with no tendency for singlet oxygen 

formation (Table 6.4). We therefore concluded that the acridine moieties play a 

key role in the exciplex formation and that the exciplexes are responsible for 

efficient ISC leading to balanced Φf and ΦΔ. 
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Table 6.4: Spectroscopic data for 4, 7a, 8x, and 9x as obtained in chloroform solution. 

Compound λabs (nm)a λem (nm)b Фf
c ФΔ

d 

4 285 457 0.01 -e 

7a 509 513 0.96 -e 

8x 634, 346 644 0.79 0.01 

9x 661, 371 671 0.50 0.02 

a Absorption maximum. b Fluorescence emission maximum/maxima. c Fluorescence 

quantum yield determined vs 1,4-bis(5-phenyl-2-oxazolyl)benzene (λexc = 300 nm, Фf = 

0.97 in cyclohexane; for 4), rhodamine 6G (λexc = 488 nm, Фf = 0.94 in ethanol; for 7a), 

cresyl violet (λexc = 580 nm, Фf = 0.56 in ethanol; for 8x), or nile blue (λexc = 605 nm, Фf 

= 0.27 in ethanol; for 9x) as a reference. d Singlet oxygen quantum yield determined vs 

methylene blue (ФΔ = 0.52, λexc = 639 nm) in spectroscopic grade ethanol as a reference 

by monitoring the absorbance of 1,3-DPBF at 414 nm. e Not determined. 

6.2.3 Conclusions 

We successfully designed novel BODIPY photosensitizers which are active in the 

phototherapeutic window with balanced fluorescence and singlet oxygen 

generation quantum yields. Extension of the conjugated BODIPY core lead to 

red-shifted absorption and emission while the introduction of the acridine moiety 

was key to the singlet oxygen generation. While the quantum-chemical 

calculations were not able to provide direct proof for the exciplex mechanism, 

the lack of viable CT states motivated us to further investigate the optical 

properties of the BODIPYs dyes. Concentration dependent emission, as seen for 

BODIPYs 8a and 9a, was attributed to exciplex emission. Exciplexes are known 

to exhibit efficient ISC and are likely the reason why our photosensitizers 

performed as well as they did. The acridine unit plays a crucial role in this 

behavior as BODIPY compounds without the acridine (8x and 9x) did not show 

exciplex emission, were unable to generate singlet oxygen and instead showed 

high fluorescence quantum yields. Further investigation of the exciplex 

mechanism for these BODIPY compounds is planned. 

Additionally, these BODIPY photosensitizers cannot be tested in cells without 

embedding as they are not water-soluble and will therefore be used in 

nanoparticles for cell studies in the future. 

  



Chapter 6 

226 
 

6.3 The effects of homocoupling on the optoelectronic 

properties of low bandgap polymers for organic 

photovoltaic applications 

Push-pull type conjugated polymers applied in organic electronics do not always 

contain a perfect alternation of donor and acceptor building blocks. Mis-

couplings can occur, which have a noticeable effect on the device 

performance.6-9 In this work, the influence of homocoupling on the 

optoelectronic properties and photovoltaic performance of PDTSQxff polymers is 

investigated, with a specific focus on the quinoxaline acceptor moieties. A 

homocoupled biquinoxaline segment was intentionally inserted in specific ratios 

during the polymerization. These homocoupled units caused a gradually blue-

shifted absorption, while the HOMO energy levels decreased only significantly 

upon the presence of 75 to 100% of homocouplings. DFT calculations showed 

that the homocoupled acceptor unit generates a twist in the polymer backbone, 

which leads to a decreased conjugation length and a reduced aggregation 

tendency. The virtually defect-free PDTSQxff afforded a solar cell efficiency of 

5.4%, which only decreased strongly upon incorporating a homocoupling degree 

over 50%.  

6.3.1 Results and discussion 

A series of PDTSQxff (i.e. poly(dithienosilole-difluoroquinoxaline) copolymers 

(Figure 6.7) with an increasing amount of acceptor-acceptor homocoupling (P1 

= 0%, P2 = 5%, P3 = 25%, P4 = 50%, P5 = 75%, P6 = 100%) was 

synthesized by G. Pirotte and submitted to a variety of characterization 

techniques such as size-exclusion chromatography (SEC; to estimate the molar 

masses), cyclic voltammetry (CV; to estimate the HOMO and LUMO energy

 

Figure 6.7: Molecular structures of the PDTSQxff polymers synthesized by G. Pirotte. 
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levels) and UV-VIS absorption spectroscopy (to verify the absorption profile). 

The obtained CV values (Table 6.5) show that the LUMO energy level of the 

pristine PDTSQxff polymer is barely affected by the presence of homocoupling. 

The HOMO levels also remain constant up to 50% homocoupling and significant 

differences were only detected for the 75% and pure homocoupled polymers (P5 

and P6). Because of the constant LUMO and decreasing HOMO, the bandgap 

increases with increasing homocoupling content. UV-VIS absorption 

spectroscopy in solution and thin film (Figure 6.8) showed that a small 

percentage of homocoupling (5%) does not significantly change the absorption 

profile of the polymer, while the presence of larger amounts clearly causes a 

blue-shift of the absorption maximum (Table 6.5) and alters the color of the 

polymer in solution. The blue-shift is most pronounced when comparing 0-25, 

25-50 and 50-75% of homocoupling, whereas increasing the homocoupling 

content from 75 to 100% only changes the width of the absorption band. Very 

similar observations were made for the solid state spectra. In the solid state 

spectra, the blue-shift is likely enhanced due to a decrease in aggregation upon 

increasing the homocoupling percentage, with the virtually defect-free polymer 

having a clear red-shifted shoulder in the absorption spectrum, similar to the 

behaviour of (semi-crystalline) polythiophenes. A diminishing presence of this 

shoulder across the polymer series indicates that homocoupling significantly 

decreases the tendency to aggregate, even at low concentrations (5%).  

Table 6.5: Overview of the characterization data for PDTSQxff polymers P1-P6 with 

different homocoupling content. 

Parameter P1 P2 P3 P4 P5 P6 

(Qxff)2 [%]a 0 5 25 50 75 100 

Mn [kDa]b 30.1 25.2 27.6 24.5 25.6 30.2 

Đc 1.29 1.12 1.31 1.49 1.25 1.28 

λmax [nm]d,e 649 [630] 647 617 587 [608] 570 568 [577] 

E(HOMO) [eV]e,f -5.49 [-5.21] -5.51 -5.48 -5.51 [-5.29] -5.62 -5.71 [-5.41] 

E(LUMO) [eV]e,f -3.40 [-2.63] -3.42 -3.40 -3.40 [-2.64] -3.42 -3.43 [-2.63] 

∆EEC [eV]e,g 2.09 [2.58] 2.09 2.08 2.11 [2.65] 2.20 2.28 [2.78] 

∆Eopt [eV]h 1.65 1.68 1.66 1.68 1.89 1.95 

a Percentage of homocoupling. b Number average molecular weight obtained via SEC.  
c Dispersity taken as Mw/Mn. 

d Determined from the UV-VIS absorption spectra of the 

polymer solutions in chloroform. e Values in brackets are obtained using (TD)DFT 

calculations. f Determined by CV measurements from the onset of oxidation/reduction.  
g Electrochemical gaps determined as LUMO-HOMO. h Optical gaps estimated from the 

wavelength at the intersection of the tangent line drawn at the low energy side of the 

absorption spectrum with the x-axis. 
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Figure 6.8: Normalized UV-VIS absorption spectra of polymers P1-P6 in chloroform 

solution (left) and in thin film (right). 

To further unravel the influence of homocoupling on the backbone conjugation, 

DFT calculations were performed using the M06 exchange-correlation 

functional33 and the 6-311G(d) basis set. First, the ground state geometries 

were optimized for the individual donor and acceptor moieties, the donor-

acceptor combinations (DA) and acceptor-acceptor (AA) homocoupled moieties 

(Figure 6.9). The alkyl chains were replaced with methyl groups to facilitate the 

calculations without changing the electronic properties of the oligomers. Several 

conformations for the donor and acceptor units have been considered and the 

calculations were performed using the most stable conformers (Table 6.6). 

D-A-D-A-D oligomers were constructed to mimic their polymeric counterparts 

with 0 (P1), 50% (P4) (one A-A linkage) and 100% (P6) (two A-A linkages) 

homocoupling (Figure 6.10). From the geometry optimizations for both the AA 

homocoupled units and the oligomers containing 50% and 100% homocoupling 

(Figure 6.10), a large dihedral angle between the adjacent acceptor units of 

around 57° was observed. The insertion of a homocoupled acceptor unit 

therefore causes a deviation from planarity, which will significantly lower the 

ability of the polymer chains to aggregate upon film formation. Within the same 

polymer chain, this deviation results in a decrease of orbital overlap and 

therefore in a decrease in conjugation. This is also apparent from the obtained 

orbital topologies (Figure 6.11), in which it is clear that upon increasing the level 

of homocoupling, the HOMO is more localized on the dithienosilole (DTS) units 

instead of the entire backbone, whereas the LUMO remains largely unchanged. 

This is reflected in the calculated HOMO and LUMO energies (Table 6.5). Time-
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Figure 6.9: Optimized geometries and conformational study on the donor and acceptor 

units and D-A and A-A combinations. Calculations were performed using M06/6-311G(d). 

dependent density functional theory (TD-DFT) calculations using the M06 

exchange-correlation functional33 and the 6-311G(d) basis set, and taking into 

account the environment (chloroform) effects using the polarizable continuum 

model, were performed to simulate the absorption spectra of the polymers 

containing 0, 50 and 100% homocoupling (Figure 6.12). These simulated 

spectra show a blue-shift with increasing homocoupling percentage, in line with 

the experimental observations. The calculations also confirm a stabilization of 

the HOMO level, while the LUMO remains constant. 
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Table 6.6: Energies, populations and HOMO/LUMO energies for the donor, acceptor and 

D-A and A-A combinations in Figure 6.9. 

Name 
Energy 

(Hartree) 

ΔE 

(kJ/mol) 

Pop. 

(%) 

εHOMO 

(eV) 

εLUMO 

(eV) 

Δε 

(eV) 

DTS -1472.71334 — — -5.84 -1.31 4.53 

Qx1 -1719.64836 — 94.72 -6.37 -2.35 4.02 

Qx2 -1719.64554 7.41 5.04 -6.41 -2.34 4.07 

Qx3 -1719.64264 15.00 0.24 -6.50 -2.35 4.15 

DTS-Qx1 -3191.18229 — 65.34 -5.66 -2.42 3.24 

DTS-Qx2 -3191.18129 2.63 34.66a -5.72 -2.40 3.32 

Qx-Qx1 -3438.12002 — 99.36 -6.32 -2.42 3.90 

Qx-Qx2 -3438.11526 12.52 0.64 -6.30 -2.43 3.87 

a After consideration of the HOMO/LUMO topologies and first excited state, this conformer 

was deemed to not show a significant influence on the electronic properties of the 

oligomers and was therefore not taken into account. 

 

Figure 6.10: Optimized geometries of oligomers containing a) P1: 0%, b) P4: 50% and 

c) P6: 100% of homocoupling. Calculations were performed using M06, 6-311G(d). 

a) 

b) 

c) 
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Figure 6.11: HOMO (left) and LUMO (right) topologies for the oligomers containing a) P1: 

0%, b) P4: 50% and c) P6: 100% homocoupling. Calculations were performed using M06, 

6-311G(d). 

 

Figure 6.12: Simulated UV-VIS spectra for the different oligomers. Calculations were 

performed using TDDFT with M06, 6-311G(d), IEFPCM with chloroform as a solvent and 

taking into account the first 30 excited states. A full-width at half maximum of 0.3 eV was 

chosen for the Gaussian around each excitation energy. 
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6.3.2 Conclusions 

Using DFT calculations, we were able to understand the structural changes that 

A-A homocoupling imposes on a PDTSQxff polymer chain by varying the amount 

of homocoupling. This was done by creating oligomers of alternating D-A or D-A-

A units followed by geometry optimization and calculation of the excited states 

using time-dependent DFT. From simple parameters like dihedral angles and 

HOMO and LUMO topologies, we were able to explain the observed experimental 

properties. Twisting of the polymer backbone leads to localization of the HOMO 

on the polymer donor unit (DTS) and is the cause for the observed increase in 

HOMO energy and the blue-shift in UV-VIS absorption as a result of the decrease 

in conjugation length. This also influences the charge-carrier transport, which is 

found to diminish upon increasing the percentage of homocoupling. As a result, 

solar cell efficiency goes down with an increasing amount of homocoupling.  

These large systems showcase the potential of DFT and TDDFT calculations for 

geometry optimization and excited state property calculations. 
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6.4 Understanding the optoelectronic properties of bis(perylene 

diimide) acceptor polymers for organic photovoltaic 

applications 

Fullerene-free organic photovoltaics have recently reached impressive power 

conversion efficiencies above 18% for single junctions, increasing their 

competitiveness with respect to alternative thin-film technologies.34 In most 

record devices, electron-donating conjugated polymers are combined with novel 

generation small molecule acceptors.35-38 All-polymer organic solar cells, on the 

other hand, still lag behind in efficiency, although they have specific advantages 

in terms of ink formulation and long-term operational stability.38-41 Another point 

of attention is the synthetic complexity of the active layer materials, notably on 

the side of the new acceptor molecules. Therefore, the present study focuses on 

the implementation of the stable and cost-effective perylene diimide structure as 

the key component of high-performance electron-accepting polymers. The 

synthesis, structural and optoelectronic characterization of four push-pull type 

copolymers containing the electron-deficient bis(perylene diimide) (bis-PDI) unit 

are reported, as well as the photovoltaic analysis of these acceptor materials in 

combination with a well-known donor polymer (PTB7-Th). The acceptor 

polymers differ in the electron-rich part of the alternating push-pull structure 

and their solar cell power conversion efficiencies range from 3.2 to 4.7%. The 

maximum efficiency - the best performance achieved with a bis-PDI polymer so 

far - is obtained for the structurally most simple polymer, containing merely 

thiophene as the electron-rich building block. Controlled degradation under blue 

light in air is monitored by the bleaching of the relevant UV-Vis absorption 

bands, demonstrating high stability for the bis-PDI-thiophene containing 

polymers as compared to some prototype small molecule acceptors (FBR and 

ITIC).  

6.4.1 Results and discussion 

Four acceptor polymers for bulk heterjunction solar cells based on bis(perylene 

diimide) (bisPDI) were synthesized by R. Lenaerts, with varying electron-

donating groups such as thiophene (PTbPDI), dithiophene (PTTbPDI), 

terthiophene (PTTTbPDI) and benzodithiophene (PBDTbPDI) (Figure 6.13). 
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Figure 6.13: Chemical structures of the bisPDI acceptor polymers. 

Similar to the previous section, these polymers were characterized using SEC, 

CV and UV-VIS absorption spectroscopy. SEC analysis demonstrated number-

average molar masses (Mn’s) of 19, 23, 37 and 30 kg mol-1 for PTbPDI, 

PTTbPDI, PTTTbPDI and PBDTbPDI, respectively, all with a dispersity (Đ) of 

2.0 or lower (Table 6.7). All four polymers have similar low-lying lowest 

unoccupied molecular orbital (LUMO) levels around -4.2 eV, as estimated from 

cyclic voltammetry (CV) experiments, while the highest occupied molecular 

orbital (HOMO) levels and HOMO-LUMO gaps (Eg
EC) differ depending on the 

electron-rich monomer used (Table 6.7). PTbPDI has the largest Eg
EC of the four 

polymers (1.81 eV), followed by PBDTbPDI (1.80 eV), PTTbPDI (1.73 eV) and 

PTTTbPDI (1.45 eV). The UV-Vis absorption spectra in solution (Figure 6.14) 

show a gradual red-shift of the absorption onset, starting in solution from 674 

nm for PTbPDI to 742 nm for PTTbPDI, 761 nm for PBDTbPDI and 800 nm 

for PTTTbPDI.  

From the CV measurements, a substantial increase in HOMO energy appears 

when moving from PTTbPDI to PTTTbPDI. To shed more light on this, density 

functional theory (DFT) calculations were carried out with the M06 exchange- 

correlation functional33 and the 6-311G(d) basis set. For each of the acceptor
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Table 6.7: Molar mass (distribution), optical and electrochemical properties of the 

acceptor polymers. 

 
Mn 

(kg mol-1)a 
Đb 

λmax  

(nm)c 
HOMOd,e 

(eV) 

LUMOd,e  

(eV) 

Eg
EC f 

 (eV) 

Eg
OP g  

(eV) 

PTbPDI 19 2.0 551 -6.03  

[-6.36] 

-4.22  

[-3.81] 

1.81 

[2.55] 

1.84 

PTTbPDI 23 2.0 494, 

337 

-5.96  

[-6.17] 

-4.23  

[-3.76] 

1.73 

[2.41] 

1.67 

PTTTbPDI 37 1.4 512, 

400 

-5.68  

[-5.90] 

-4.23  

[-3.73] 

1.45 

[2.17] 

1.55 

PBDTbPDI 30 1.9 545, 

377 

-6.05  

[-5.99] 

-4.25  

[-3.75] 

1.80 

[2.24] 

1.63 

a Number average molecular weight obtained via SEC. b Dispersity taken as Mw/Mn.  
c Determined from the UV-VIS absorption spectra of the polymer solutions in chloroform.  
d Determined by CV from the onset of oxidation/reduction. e Calculated values (DFT) 

between brackets. f Electrochemical gaps determined as LUMO-HOMO. g Optical gaps 

estimated from the wavelength at the intersection of the tangent line drawn at the low 

energy side of the absorption spectrum with the x-axis.  

polymers, two conformations of the same model oligomer were optimized to find 

the most stable form (Figure 6.15, Table 6.8). These conformers differ in the 

orientation of the two bis-PDI units with respect to each other. From the most 

stable conformers, it is clear that the HOMO energy increases linearly when 

going from PTbPDI to PTTbPDI and finally PTTTbPDI (Table 6.7). When 

looking at the HOMO distribution in Figure 6.16, this becomes clear as the HOMO 

becomes less delocalized over the entire backbone and more localized on the 

donor unit. The energy of the LUMO, which is mostly localized on the bis-PDI

 

Figure 6.14: UV-Vis absorption spectra of the different polymers in chloroform solution. 
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Figure 6.15: Optimized geometries of the D-A-D-A-D oligomers mimicking PTbPDI, 

PTTbPDI, PTTTbPDI and PBDTbPDI. 

Table 6.8: Energies and HOMO/LUMO energies for the oligomers depicted in Figure 6.14. 

Name 
Energy  

(Hartree) 

ΔE  

[kJ mol-1] 

εHOMO 

[eV] 

εLUMO 

[eV] 

Δε  

[eV] 

PTbPDI1 -7287.9427 4.54 -6.39 -3.81 2.58 

PTbPDI2 -7287.9444 — -6.36 -3.81 2.55 

PTTbPDI1 -8943.1053 0.35 -6.17 -3.75 2.42 

PTTbPDI2 -8943.1055 — -6.17 -3.76 2.41 

PTTTbPDI1 -10598.2690 -1.28 -5.90 -3.73 2.17 

PTTTbPDI2 -10598.2685 — -5.90 -3.74 2.16 

PBDTbPDI1 -9858.6004 2.23 -5.98 -3.75 2.23 

PBDTbPDI2 -9858.6013 — -5.99 -3.75 2.24 

PTbPDI2 

PTTbPDI2 PTTbPDI1 

PTTTbPDI2 PTTTbPDI1 

PBDTbPDI2 

PTbPDI1 

PBDTbPDI1 
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units (Figure 6.16), remains almost constant throughout the entire series, as 

also concluded from the CV experiments. The calculated values for the HOMO-

LUMO gap follow a linear trend, which is in line with the CV and UV-VIS data. 

The seemingly large jump in the CV data from PTTbPDI to PTTTbPDI is also 

observed in the calculations (Table 6.8), but less in the UV-VIS data. From the 

optimized geometries, it is clear that a large twist is present between the two 

PDI subunits, as well as between the PDI and the donor segments. This twisting 

of the polymer backbone hinders the stacking behavior of the acceptor 

polymers, allowing better mixing with the donor polymer.42 

 

Figure 6.16: HOMO (left) and LUMO (right) distributions for the most stable conformers 

of PTbPDI, PTTbPDI, PTTTbPDI and PBDTbPDI. 
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6.4.2 Conclusions 

The bis-PDI unit was chosen because its twisted nature reduces phase 

separation between the donor and bisPDI acceptor polymer in all-polymer bulk 

heterojunction solar cells. Unfortunately, it also breaks conjugation along the 

polymer backbone, reducing charge carrier transport. A conformational analysis 

was required to ensure conformers with the lowest possible energy to allow 

comparison with experimental results. Using density functional calculations 

(DFT), we were again able to deduce structure-property relationships. Good 

qualitative agreements between experimental and theoretical results were 

found. The bis-PDI polymers were especially “tricky” as the largest one 

(PBDTbPDI) consists of 250 atoms, making these oligomers the largest 

compounds that I have performed DFT calculations on. 
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6.5 The effects of halogenation on PBDTT-TQxT based non-

fullerene polymer solar cells 

The rapid advancement in the development of non-fullerene acceptors has led to 

single-junction polymer solar cells with efficiencies over 18%.34 Even with these 

novel acceptor materials, the choice of the donor polymer remains important. 

Tuning of the donor and acceptor compatibility in terms of absorption, frontier 

orbital energy levels, mixing enthalpy and charge carrier mobility is routinely 

performed by side chain variation.43 Fluorination presents an additional powerful 

approach to optimize these parameters.44-50 Although significantly less studied, 

chlorination can give rise to similar effects, while donor-acceptor phase 

separation due to fluorophobic interactions is less of an issue.51-54 Moreover, 

from a material synthesis point of view, the introduction of chlorine groups is in 

many cases much more straightforward. In this work, we present a series of 

push-pull type benzo[1,2-b:4,5-b']dithiophene-alt-quinoxaline donor polymers 

and compare the behavior of the non-halogenated, fluorinated and chlorinated 

derivatives in polymer solar cells when combined with small molecule and 

polymer type non-fullerene acceptors. The solar cell efficiencies vary from 2.4 to 

8.4%, elucidating the large impact of these small structural variations. Best 

results are achieved for the chlorinated donor polymer, affording a high open-

circuit voltage, balanced charge carrier mobilities and favorable donor-acceptor 

interactions. Combined with the easier synthesis of chlorinated materials, this 

indicates that more emphasis should be put on chlorination as a valuable 

approach to tune the properties of organic semiconductors for solar cell blends 

(and other optoelectronic applications). 

6.5.1 Results and discussion 

Three different donor copolymers based on thiophene-substituted 

benzodithiophene (BDTT) combined with a difluorinated quinoxaline (Qx) were 

synthesized (Figure 6.17). The impact of halogenation was investigated by 

functionalizing the BDT monomer with either non-halogenated, difluorinated or 

monochlorinated thienyl moieties. One single chlorine atom was introduced (as 

opposed to two fluorine atoms) to prevent severe twisting of the thienyl side 

chains. Additionally, chlorination of the established acceptor polymer
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Figure 6.17: Chemical structures of the donor polymers PBDTT-TQxT, PBDT2FT-TQxT 

and PBDTClT-TQxT, and the acceptors PNDI(2OD)2T and PNDI(2OD)2T2Cl. 

PNDI(2OD)2T38 was performed to see whether halogenation of the acceptor 

polymer can have the same beneficial effects as chlorination of the donor 

polymer.  

The polymer donor materials have similar absorption patterns with a main band 

due to intramolecular charge transfer peaking around 600 nm and smaller bands 

which can be attributed to π-π transitions of the individual building blocks 

(Figure 6.18). The absorption spectra of the halogenated polymers are slightly 

blue-shifted compared to the reference polymer PBDTT-TQxT. The optical gaps 

are within the range of 1.71 to 1.79 eV (Table 6.9). Based on cyclic voltammetry 

(CV) measurements, the HOMO energy level for both the fluorinated and the 

chlorinated donor polymer are found to be around −5.55 eV, whereas the HOMO 

of PBDTT-TQxT is slightly higher (−5.46 eV). The LUMO energy levels remain 

virtually the same (−3.35 eV) (Table 6.9), as expected since the quinoxaline 

monomer remains unaffected. The lower HOMO levels for the halogenated donor 

polymers are in line with the blue-shifted absorption spectra. Chlorination of the
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Figure 6.18: UV-Vis-NIR absorption spectra of the different donor and acceptor polymers 

in chloroform. 

the polymer acceptor PNDI(2OD)2T, yielding PNDI(2OD)2T2Cl, has a more 

significant impact on the absorption spectrum. The absorption spectrum of the 

latter is strongly blue-shifted compared to that of the former, with an optical gap 

in film of 1.70 eV, compared to 1.52 eV, for the pristine polymer (Table 6.9, 

Figure 6.18). The absorption maximum of PNDI(2OD)2T2Cl is blue-shifted to 

~600 nm (vs ~700 nm for PNDI(2OD)2T and 684 nm for the fluorinated 

analogue55, 56), likely due to a combination of electronic and steric factors.  

To achieve additional insights on the above optical and electrochemical results 

and to get an idea of the geometry of the BDTT-TQxT and NDI-2T copolymer 

structures, density functional theory (DFT) calculations were carried out with the 

M06 exchange-correlation functional33 and the 6-311G(d) basis set. The 

geometries of D-A-D-A-D (D = donor, A = acceptor) type oligomers for NDI-2T 

and D-A-D-A oligomers for BDTT-TQxT were optimized (Figure 6.19). Different 

conformations (with respect to the orientation of the D and A subunits) were 

investigated and the most stable conformers were further analyzed. For the 

NDI-2T oligomers, the influence of the relatively large chlorine atoms on the 

dihedral angle between the two thiophene units is obvious. The torsion angle 

between the central thiophene units enlarges from 24.4° for PNDI(2OD)2T to 

46.0° for PNDI(2OD)2T2Cl. This is in line with the blue-shifted absorption for 

PNDI(2OD)2T2Cl as the larger twist disrupts conjugation along the polymer 

backbone. The HOMO is also slightly less delocalized along the oligomer 

backbone (Figure 6.20). For the PBDT-TQxT series, the influence of the halogen
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Table 6.9: Molar mass (distribution), optical and electrochemical data for the donor and 

acceptor polymers. 

 
Mn  

(104 g mol-1)a 
Đb 

HOMO  

(eV)c,d 

LUMO  

(eV)c,d 

λmax  

(nm)d,e 

Eg
OP  

(eV)f 

PBDTT-TQxT 4.5 2.0 -5.46 

[-5.34] 

-3.35 

[-2.69] 

623 

[500] 

1.71 

PBDT2FT-TQxT 5.0 2.1 -5.58 

[-5.43] 

-3.37 

[-2.80] 

604 

[507] 

1.79 

PBDTClT-TQxT 7.1 1.8 -5.53 

[-5.45] 

-3.35 

[-2.81] 

617 

[506] 

1.78 

PNDI(2OD)2T 4.2 2.4 -6.02 

[-5.92] 

-3.99 

[-3.49] 

698 

[548] 

1.52 

PNDI(2OD)2T2Cl 5.7 2.0 -6.30 

[-6.40] 

-4.13 

[-3.70] 

609 

[484] 

1.70 

a Number average molecular weight obtained via SEC. b Dispersity taken as Mw/Mn.  
c Determined by CV from the onset of oxidation/reduction. d Calculated values 

(DFT/TDDFT) between brackets. e Determined from UV-VIS absorption spectra of the 

polymer solutions in chloroform. f Optical gaps estimated from the wavelength at the 

intersection of the tangent line drawn at the low energy side of the absorption spectrum 

with the x-axis. 

atoms is smaller because they are found in the BDT side chains, as opposed to 

being in the backbone for the acceptor polymers. No apparent changes in the 

HOMO nor LUMO topologies can be observed as the thiophene units in the BDT 

side chains appear to be electronically decoupled from the BDT unit itself. 

However, due to the electron-deficient nature of these atoms, it is viable that 

they decrease the donor strength of the BDT units. The calculated HOMO-LUMO 

energy levels are in good (qualitative) agreement with the trends observed 

experimentally (Table 6.9). Additionally, time-dependent DFT (TDDFT) 

calculations using a modified LC-BLYP (ω = 0.2) exchange-correlation 

functional57 and 6-311G(d) as the basis set were performed to simulate the UV-

VIS absorption spectra in cyclohexane using the polarizable continuum model 

(PCM) (Figure 6.21). While the blue-shift for PNDI(2OD)2T2Cl with respect to 

PNDI(2OD)2T is reflected correctly, this is not the case for the halogenated 

PBDTT polymers, although the effects are small, even in the experimental data. 

As discussed before, the chlorine atoms in the PNDI polymers cause a large twist 

in the polymer backbone, breaking the conjugation. This effect plays a much 

larger role than the halogenation does for the PBDTT-based polymers, where the 

structural changes take place in the BDT side chain, showing a large dihedral 

angle with the BDT, even without halogenation. 
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Figure 6.19: Optimized geometries for PBDTT-TQxT, PBDT2FT-TQxT, PBDTClT-TQxT, 

PNDI(2OD)2T and PNDI(2OD)2T2Cl. 
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Figure 6.20: HOMO/LUMO topologies for PBDTT-TQxT, PBDT2FT-TQxT, PBDTClT-

TQxT, PNDI(2OD)2T and PNDI(2OD)2T2Cl. (isocontour values of 0.02 a.u. for all 

orbitals). 

HOMO 

PBDTT-TQxT 
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Figure 6.21: Simulated UV-VIS absorption spectra for the polymers considered in this 

section. Cyclohexane was chosen as the solvent in the PCM. A full-width at half maximum 

of 0.3 eV was chosen for the Gaussian around each excitation energy. 

6.5.2 Conclusions 

While halogenation of either the donor or acceptor polymer in a bulk 

heterojunction organic solar cell might afflord higher device efficiencies, the 

positioning of the halogenation sites is crucial. As shown for the PNDI-based 

polymers, halogenation of the backbone thiophene units leads to a large 

increase in the dihedral angle between the various units, disrupting the 

conjugation along the backbone and leading to an increase of the HOMO energy. 

Halogenation of the thiophene side chain on the BDT donor unit has a negligible 

influence on the calculated properties of the PBDTT-based polymers. 

Experimentally, a small blue-shift is observed in the UV-VIS spectra upon 

moving from the non-halogenated to chlorinated and finally fluorinated 

thiophene side chain, which could be due to the varying electron-withdrawing 

strength of the halogen substituents. The calculated HOMO and LUMO energies 

are in qualitative agreement with the experimental values derived from CV 

measurements. 
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Summary, conclusions and outlook 
 

 

 

7.1 Summary 

Organic light-emitting diodes (OLEDs) are nowadays part of our everyday life, 

since they can be found in display applications such as modern television or 

smartphone screens and in solid-state lighting. OLEDs have become the most 

successful branch of organic electronics owing to their ability to compete with 

other technologies such as inorganic LEDs, which is related to their ability to 

achieve high efficiencies (i.e. the light output versus the power input), high color 

purity and color tunability. Especially for display applications, their contrast and 

color gamut are unparalleled.  

OLED technology has come a long way since Pope et al. discovered 

electroluminescence in an anthracene crystal.1 Several classes of compounds 

have been used, moving from fluorescent molecules (1st generation OLEDs) to 

heavy-metal containing organometallic complexes (2nd generation OLEDs) and, 

ultimately, the use of emitters displaying thermally activated delayed 

fluorescence (TADF, 3rd generation OLEDs). The 1st generation fluorescent 

emitters suffered from rather low device efficiencies as the triplet state acts as a 

loss pathway for 75% of the excitons formed in a charge recombination process. 

Heavy-metal organometallic complexes allowed to overcome this issue by using 

the triplet state as the main radiative pathway. This emission, known as 

phosphorescence, enabled up to 100% exciton conversion as the heavy-metal 

complexes possess significant spin-orbit coupling (SOC) for the remaining 25% 

singlet excitons to cross over to the triplet state via intersystem crossing (ISC). 

These phosphorescent emitters make up most of the current commercial OLEDs. 
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However, the use of heavy-metal atoms, which are scarce and expensive, is 

discouraged by the ongoing search for a more sustainable and eco-friendly 

society. Here, TADF emitters might provide an answer. By tuning of the 

molecular structure of donor-acceptor type compounds, the singlet and triplet 

excited state energy levels can be brought close enough for reverse intersystem 

crossing (rISC) to occur. The remaining energy barrier can be overcome by 

thermal energy and the main emission pathway is fluorescence. Due to the 

thermally activated rISC, the secondary emission is delayed with a lifetime in 

between that of the prompt fluorescence and phosphorescence for organic 

compounds.  

Nowadays, the main focus of OLED research, is on the emissive material, as 

many advances have already been made for the other parts of the OLED device 

stack and these are generally applicable to all generations. Most attention has 

been given to blue emitters as these are the most difficult material to obtain due 

to stability issues. Investigations on red emitters have lagged behind. However, 

an increasing interest for the red and near-infrared (NIR) range of the 

electromagnetic spectrum is apparent in recent literature. 

In this PhD thesis, the main goal was to expand on the known pool of donor and 

acceptor moieties that can be used to construct D-A and D-A-D type emissive 

materials for 3rd generation OLEDs. To achieve this, different fields of organic 

electronics, most notably the field of organic photovoltaics (OPV), served as an 

inspiration for new building blocks that have not been applied before in the field 

of OLEDs. The use of quantum chemistry methods such as density functional 

theory (DFT) allowed me to rationally design new emitters based on the findings 

from the calculations. 

The second chapter therefore dealt with the quest to find the optimal exchange-

correlation functional (XCF), a crucial part of the DFT calculations as it 

determines the accuracy of the obtained properties to a large extent. A series of 

10 prototypical donor-acceptor compounds were subjected to thorough 

investigation with DFT and time-dependent DFT (TDDFT) and their excited state 

properties such as the excitation energies and oscillator strengths were 

calculated using 19 different XCFs with various levels of complexity. These 

values were benchmarked against a high level wavefunction method called 

resolution-of-the-identity second order approximation coupled-cluster (riCC2). 
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While some XCFs performed well for the singlet-triplet energy splitting, the 

individual singlet and triplet energies were highly over- or underestimated, 

rendering these functionals untrustworthy. Finally, we opted for range-separated 

XCFs, which include a given percentage of exact Hartree-Fock (HF) exchange 

that increases with the interelectronic distance. Proper tuning of the range-

separating parameter (ω) leads to a correct balance between a small amount of 

HF exchange at small distances and a large amount of HF exchange at large 

distances and gave the best results. The most notable functionals were LC-BLYP 

and LC-ωPBE with a value for ω of 0.17 bohr-1. Additionally, a so-called global 

hybrid XCF M06-2X, with a fixed percentage of HF exchange of 54% at all 

distances, gave comparable results. Application of the Tamm-Dancoff 

approximation (often used to overcome triplet instabilities) was found to 

improve the error on the triplet excitation energies with respect to those 

obtained using riCC2, and resulted in even smaller errors for the singlet-triplet 

energy splittings. 

With the best-performing XCF, I engaged in the design of novel TADF emitters. 

Benzo[1,2-b:4,5-b']dithiophene (BDT) is a well-known donor unit in organic 

photovoltaics as it possesses a high electron-donating strength, high planarity 

and often affords a high charge carrier mobility. Unfortunately, conventional 

coupling via the α-positions would lead to planar D-A molecules, not-likely to 

show TADF properties. As such, a synthetic pathway to couple the donor and 

acceptor units via the benzene core of the BDT had to be developed. In chapter 

3, the BDT unit was coupled to 2 different acceptors: 9,9-dimethyl-9H-

thioxanthene-10,10-dioxide (TXO2) and dibenzo[a,c]phenazine-11,12-

dicarbonitrile (CNQxP). Moreover, to compare their properties, two 9,9-

dimethyl-9,10-dihydroacridine (DMAC) analogues were designed, which 

previously showed TADF behavior. Although the TDDFT calculations predicted a 

rather large gap for the novel BDT compounds, the large HOMO/LUMO 

separation seemed promising and the compounds were synthesized in order to 

investigate their photophysical properties. Photophysical characterization in 

zeonex films showed prompt and delayed emission for all 4 compounds. 

However, their nature differed. The DMAC-containing compounds showed TADF, 

whereas the BDT-based compounds showed room temperature phosphorescence 

(RTP) when TXO2 was chosen as the acceptor and TADF when CNQxP was 
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chosen as the acceptor. The RTP behavior of TXO2-BDT-TIPS is unusual and 

was attributed to the presence of multiple sulfur atoms in the BDT unit. 

Therefore, we investigated the BDT-TIPS donor unit by itself and found similar 

RTP behavior in zeonex film. CNQxP-BDT-TIPS and CNQxP-DMAC showed 

long-lived TADF with some triplet-triplet annihilation (TTA) at very long emission 

times. The main difference between TXO2-BDT-TIPS and CNQxP-BDT-TIPS is 

the acceptor strength. While the localized triplet state of the BDT-TIPS group, 

responsible for the phosphorescent behavior, is below the CT states for TXO2-

BDT-TIPS, this is not the case for CNQxP-BDT-TIPS. The smaller 

experimental singlet-triplet energy splitting also resulted in the possibility of 

rISC to occur for CNQxP-BDT-TIPS, whereas this is not possible for TXO2-

BDT-TIPS. 

In Chapter 4, the difluorodithieno[3,2-a:2',3'-c]phenazine (DTPz) scaffold, again 

known from the OPV field, was used as an acceptor unit to construct (TADF) 

emissive materials. DTPz possesses a significant electron-accepting strength 

allowing the development of red-emitting materials. Two donor materials, BDT-

TIPs (introduced in chapter 3) and DMAC, were coupled to the DTPz acceptor, 

resulting in D-A type compounds with CT emission. The calculated singlet-triplet 

energy splitting was small for DTPz-DMAC (0.03 eV), whereas for DTPz-BDT-

TIPS (0.43 eV) it was of the same order as for CNQxP-BDT-TIPS (chapter 3). 

Time-resolved emission decays in zeonex film revealed a different behavior for 

the DMAC and BDT-TIPS containing compounds. While DTPz-DMAC showed 

TADF behavior with long-lived emission and a peak maximum around 630 nm, 

DTPz-BDT-TIPS showed RTP behavior with an onset similar to the 

phosphorescence of DTPz-DMAC. This suggests emission from the DTPz core 

instead of the BDT-TIPS unit, as found in chapter 3. Subsequent analysis of 

DTPz in zeonex showed that DTPz by itself indeed shows similar RTP behavior. 

One of the most well-known TADF emitter materials, is 4CzIPN, originally 

reported by Adachi and coworkers.2 It was further studied by Etherington et al.3 

and was found to show extensive dimer formation in doped OLED films. Dimer 

emission is undesired in OLED devices as it compromises the color purity. The 

dimers are formed by interactions between the carbazole units of the 4CzIPN 

molecules. To overcome these interactions, 4H-dithieno[3,2-b:2',3'-d]pyrrole 

(DTP) was chosen as the donor unit to replace 9H-carbazole in chapter 5. DTP is 
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a well-known donor unit in the field of OPV, where it is typically coupled via the 

α-positions and the central nitrogen atom is alkylated for improved solubility of 

the resulting polymers. Synthesis via a carbamate intermediate allows the free-

base DTP to be obtained after which it can be used in nucleophilic aromatic 

substitution or Buchwald-Hartwig type reactions. The former was applied in this 

thesis to construct 4DTP-IPN, using similar reaction conditions as for the 

synthesis of 4CzIPN. 4DTP-IPN showed red-shifted emission with respect to 

that of 4CzIPN and exhibited TADF properties in a variety of films. Due to the 

very small theoretical and experimental singlet-triplet splittings, it was difficult 

to distinguish between its delayed emission and phosphorescence, even at 80 K. 

While its aggregation behavior is certainly different to that of 4CzIPN, the 

photophysics of 4DTP-IPN at various concentrations in solution and thin film 

give rise to contradicting observations and further experiments are needed to 

solidify whether it is less likely or rather more likely to form dimers. 

In the final chapter (Chapter 6), four additional publications were discussed in 

which quantum-chemical calculations were applied to gain insights into the 

experimental properties of small molecule or polymeric compounds. The first 

publication dealt with the design of boron dipyrromethene (BODIPY) 

photosensitizers, developed to efficiently form singlet oxygen for photodynamic 

therapy. (TD)DFT calculations lead to insights in the photophysics of the BODIPY 

dyes and indirectly pointed toward the presence of exciplex emission, which was 

confirmed experimentally. The incorporation of a DMAC unit was found to be 

crucial for the singlet oxygen generation and the exciplex formation and the 

latter is expected to be responsible for the efficient ISC. The remaining 

publications all dealt with structure-property relationships in which oligomeric 

species were used to mimic the behavior of polymer chains. By looking at their 

optimized geometries, we were able to explain the interplay between the 

electronic properties and molecular orbital delocalizations in series of similar 

polymers. 

7.2 Conclusions and outlook 

In this thesis, the strengths, weaknesses and possibilities of quantum-chemical 

calculations, specifically using density functional theory, have been discussed. It 

has presented an enormous advantage for the design of novel TADF materials as 
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screening of large numbers of potentially interesting compounds is possible in a 

limited timeframe. Furthermore, the same principles used to study TADF 

emitters can readily be expanded to other fields employing organic 

chromophores, as was illustrated for the BODIPY photosensitizers in Chapter 6. 

By simplifying polymer structures to more accessible oligomers, DFT calculations 

have also helped to establish structure-property relationships. While the 

calculation of other properties such as spin-orbit coupling (SOC) is accessible by 

(TD)DFT, their use in TADF has not been demonstrated to a large extent. 

Additionally, SOC alone is not always sufficient to explain the observed TADF 

properties, as discussed in the introduction of this thesis when exploring the 

spin-vibronic mechanism of TADF. Such spin-vibronic calculations are more 

time-consuming and more difficult to perform on a screening basis.  

The results from Chapter 2 show that a good estimate for the first singlet and 

triplet excitation energies can be obtained given the correct choice of the 

exchange-correlation functional (XCF). Despite several publications stressing the 

use of modified range-separated XCFs, the majority of literature relies on the 

use of regular hybrid XCFs (such as B3LYP) or non-optimal range-separated 

XCFs (such as CAM-B3LYP). In this thesis, we have shown the ability to correctly 

predict the behavior of a variety of real, TADF-targeted D-A compounds and we 

strongly encourage others to do the same. 

In Chapters 3, 4 and 5, the successful development of novel emitters using 

building blocks from the field of organic photovoltaics was shown. Although not 

all compounds showed TADF, their properties are interesting from a fundamental 

point of view. With a focus on red-emitting materials, CNQxP-BDT-TIPS, 

DTPz-DMAC and 4DTP-IPN all show orange to red emission. The 

implementation of BDT-TIPS as a new donor unit and DTPz as a new acceptor 

unit lead to a mixture of TADF and room temperature phosphorescence (RTP), 

depending on the donor/acceptor used. This was attributed to the presence of 

sulfur atoms, affording a larger amount of SOC than the usual carbon and 

nitrogen atoms. However, TXO2-DMAC, also containing a sulfur atom, does not 

show the same RTP behavior. It is therefore interesting to further investigate the 

effects that sulfur atoms can have on the emissive properties of TADF emitters, 

as well as the effects on ISC in other fields such as photodynamic therapy. 
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Although several TADF emitters were synthesized and their photophysics was 

investigated via time-resolved fluorescence, the delayed emission was rather 

long-lived. This is indicative that, although our approach was successful, there is 

still room for progress. Additionally, it also shows that simply designing a 

molecule on paper, and having promising calculated ground and excited state 

properties, is not a guarantee for success. This is one of the reasons why the 

TADF community is still continuously looking for new emitter materials. What we 

have not been able to verify in this work are the electroluminescence properties 

when incorporating our newly designed emitters in OLED devices. Here, thermal 

deposition of the doped films can lead to slight alterations in the emitter 

photophysics as different host materials from the herein employed zeonex host 

are being used. The most important device characteristic ultimately is the 

external quantum efficiency (EQE). Even though a high photoluminescence 

quantum yield (PLQY) and a high rate of rISC are prerequisites for efficient 

TADF, there is no guarantee that an emitter will show a high EQE when 

incorporated into an OLED device and as such this largely remains a trial and 

error approach. With the large number of TADF emitters known in literature, the 

next steps toward the development of highly efficient and commercially viable 

TADF OLEDs will be optimization of the device physics and stability. While device 

stability is still an issue, new types of emitting materials might be able to 

overcome this. Furthermore, knowledge of the degradation pathways for these 

devices could lead to new insights to design more stable architectures. Another 

major factor limiting device performance is the light outcoupling efficiency of 

OLED devices. Here, roughly 75% of all the photons emitted in the active layer 

are lost through the formation of surface plasmon polarons on the metal-

electrode interface or total internal reflection owing to the refractive index 

mismatch between the various layers in the OLED stack.4 This is mainly related 

to the random orientation of the transition dipoles of all the emitter molecules in 

the active layer, leading to light emission in all directions. Fixed orientation of 

the transition dipole, preferably parallel to the layer orientation, could 

significantly improve light outcoupling efficiencies and this is likely influential in 

some of the best performing OLED devices reported in literature.  

Alternatively, development of TADF emitters for other applications such as time-

resolved bio-imaging is an interesting cross-pollination from which both fields 
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can profit. While TADF emitters are generally not water soluble, several 

encapsulating strategies are known in literature and they have already been 

applied to the field of TADF imaging. Something that has not been investigated 

(to the best of my knowledge) is a phototherapeutic agent, such as the BODIPYs 

from Chapter 6, which has both TADF properties (which renders it suitable for 

time-resolved imaging) and the ability to generate singlet-oxygen. 

Computationally guided design could make this a reality and possibly some of 

the emitters presented in this thesis could exhibit the desired properties. 

Despite the large amount of reports appearing in TADF literature, major 

breakthroughs have not been reported over the last years. As the field is 

maturing, the number of new TADF emitters will likely keep on expanding and it 

is only a matter of time until the next major breakthrough occurs. The most 

significant advances can maybe be made in the field of near-infrared (NIR) 

OLEDs, which has attracted only minor attention until recently.5, 6 With potential 

applications in biological and biomedical fields, but also in telecommunication 

and security, there is enough motivation to explore this region of the 

electromagnetic spectrum. The task at hand is certainly not easy since, with 

increasingly red-shifted emission, the PLQY drops as a result of the energy gap 

law. Furthermore, detection of NIR wavelengths reaches beyond the 

specifications of traditional photoluminescence setups, often requiring the 

acquisition of new instruments. Another major breakthrough might come from a 

field where a combination of TADF and regular fluorescence emitters is utilized. 

Introduced by Adachi and coworkers in 2014,7 this method relies on charge-

recombination and ISC by a TADF emitter, after which electron transfer occurs 

to a regular fluorescent emitter. Doping of a small percentage of the fluorescent 

emitter is sufficient to dominate the emission if the energy transfer is efficient. 

This method has the ability to combine the best of TADF and fluorescent 

emitters as the TADF emitters provide up to 100% singlet excitons, while the 

fluorescent emitters provide a high radiative rate with minimal non-radiative 

losses and a narrow emission, leading to a high color purity. However, the 

addition of a second emissive material adds a whole new set of constraints to 

the design of these types of OLED devices as the efficient energy transfer 

between the TADF molecule and the fluorescent emitter becomes another factor 

to take into account. 
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Nonetheless, I believe the future for OLEDs is a bright one and more 

breakthroughs will follow in the coming years in this highly interesting and 

continuously evolving field. 

7.3 Nederlandstalige samenvatting 

Organische licht-emitterende dioden (OLEDs) hebben zich verankerd in ons 

dagelijks leven, waar we ze aantreffen in beeldschermen van moderne 

flatscreentelevisies en smartphones, maar ook in meer traditionele verlichting. 

Organische LEDs hebben zich ontwikkeld tot de meest succesvolle tak van de 

organische elektronica dankzij hun competitiviteit met alternatieve 

technologieën. OLEDs combineren immers een hoge efficiëntie (d.w.z. de 

lichtoutput versus de energie-input) met een goede zuiverheid en 

afstembaarheid van de kleur. Voor beeldschermen zijn het contrast en het 

kleurbereik ongeëvenaard. 

De OLED-technologie heeft reeds een lange weg afgelegd sinds Pope et al. 

elektroluminescentie ontdekten in een antraceenkristal.1 Verschillende klassen 

van organische verbindingen zijn sindsdien onderzocht, gaande van fluorescente 

moleculen (1ste generatie OLEDs) tot organometaalcomplexen (2de generatie 

OLEDs) en tenslotte materialen die thermisch geactiveerde uitgestelde 

fluorescentie (TADF) vertonen (3de generatie OLEDs). De 1ste generatie 

fluorescente OLED emitters waren beperkt in efficiëntie ten gevolge van de 

25/75%-verdeling van singlet- en triplet-excitons die gevormd worden na 

elektrische excitatie, waarvan enkel de singlet-excitons radiatief verval 

vertonen. Organometaalcomplexen laten radiatief verval vanuit de 

triplettoestand toe door gebruik te maken van spin-orbitaal-koppeling (SOC). 

Deze tripletemissie, beter gekend als fosforescentie, maakt het mogelijk om 

100% van de gevormde excitons te benutten voor emissie aangezien dezelfde 

SOC het ook mogelijk maakt om de 25% resterende singlet-excitons om te 

zetten naar de triplettoestand via intersysteemkruising (ISC). De huidige 

commerciële OLED-materialen komen grotendeels uit deze klasse van 

fosforescente emitters. Desalniettemin wordt het gebruik van ‘zware’ metalen, 

die tevens ook schaars en duur zijn, ontmoedigd omdat ze minder duurzaam 

zijn. TADF-emitters bieden hiervoor een oplossing. Door het nauwkeurig 

afstemmen van de moleculaire structuur van donor-acceptor (D-A) organische 
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verbindingen, kunnen de singlet- en triplet-energieniveaus dicht bij elkaar 

gebracht worden. Wanneer dit gebeurt, kan de resterende energiebarrière 

overwonnen worden door thermische energie en worden de 75% triplet-excitons 

omgezet naar de singlettoestand via omgekeerde intersysteemkruising (riSC), 

gevolgd door fluorescentie. Omdat deze overgang een relatief lange levensduur 

heeft, is ook de resulterende fluorescentie van deze excitons vertraagd in de 

tijd. De levensduur van vertraagde fluorescentie bevindt zich dan ook tussen die 

van de onmiddellijke fluorescentie en fosforescentie in. 

Tegenwoordig ligt de focus van het OLED-onderzoek sterk op het emitterend 

materiaal aangezien er al veel vooruitgang is geboekt in de andere (technische) 

aspecten van OLEDs en deze vaak toepasbaar zijn op alle generaties van OLED-

materialen. De meeste aandacht is uitgegaan naar het ontwerp van materialen 

die blauw licht uitzenden, omdat deze vaak onderhevig zijn aan 

stabiliteitsproblemen. Aan de andere kant van het zichtbaar spectrum blijken 

rode emitters echter ondervertegenwoordigd, hoewel er een toenemende 

interesse is in de wetenschappelijke literatuur voor rood- en nabij infrarood-

emitterende materialen. 

Het hoofddoel van deze doctoraatsthesis was om de gekende verzameling van 

donor- en acceptoreenheden voor TADF-emitters uit te breiden op basis van 

inzichten uit andere subdomeinen van de organische elektronica, met name 

organische zonnecellen (OPVs), door enkele van de daar gekende bouwstenen 

toe te passen in TADF-materialen. Kwantumchemische methoden zoals density 

functional theory (DFT) werden toegepast om op rationele wijze nieuwe 

moleculen te ontwerpen en ze te onderwerpen aan een computationele pre-

screening. 

Het tweede hoofdstuk van deze thesis omvat daarom de zoektocht naar de 

optimale exchange-correlation functional (XCF), die een cruciale rol speelt in het 

accuraat bepalen van de eigenschappen van organische moleculen in de 

aangeslagen toestand. Een reeks van 10 prototype D-A-verbindingen werd 

onderworpen aan een grondige analyse via DFT en tijdsafhankelijke DFT 

(TDDFT) om hun eigenschappen in de aangeslagen toestand te bepalen met 19 

verschillende XCFs. Deze waarden werden dan vergeleken met waarden voor 

dezelfde eigenschappen bekomen via een golffunctiemethode genaamd 

“resolutie-van-de-identiteit tweede orde benadering van de gekoppelde cluster” 
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(riCC2). Daar waar sommige XCFs goede resultaten gaven voor het singlet-

triplet energieverschil (ΔEST), bleken deze de individuele singlet- en 

tripletenergieën niet accuraat te voorspellen, waardoor de desbetreffende XCFs 

niet betrouwbaar zijn voor het screenen van onbekende moleculen. Uiteindelijk 

werd er gekozen voor XCFs met een gescheiden bereik van het percentage 

Hartree-Fock (HF) uitwisseling, d.w.z. de “range-separated XCFs”, waarbij de 

HF-uitwisseling toeneemt met toenemende interelektronische afstand. Gepaste 

optimalisatie van de bereik-scheidende parameter (ω) zorgt voor een goede 

balans tussen de hoeveelheid HF-uitwisseling bij kleine en grote 

interelektronische afstanden en leidt tot de beste resultaten in vergelijking met 

de riCC2 methode. De meest performante XCFs waren LC-BLYP en LC-ωPBE, 

met een waarde voor ω van 0.17 bohr-1. Bovendien gaf een globale hybride XCF, 

genaamd M06-2X, met een vast percentage HF-uitwisseling van 54% op alle 

interelektronische afstanden, vergelijkbare resultaten met deze van de range-

separated XCFs. Toepassen van de Tamm-Dancoff-benadering voor TDDFT (die 

vaak gebruikt wordt om het triplet-instabiliteitsprobleem aan te pakken) gaf een 

verbetering van de fout op de triplet-excitatie-energieën ten opzichte van de 

riCC2-waarden, alsook in de fout op ΔEST voor de verschillende verbindingen. 

Met de meeste performante functionaal op zak ben ik dan op zoek gegaan naar 

nieuwe ontwerpen voor D-A-D-moleculen die TADF kunnen vertonen. Benzo[1,2-

b:4,5-b']dithiofeen (BDT) is een gekende vlakke, elektronenrijke bouwsteen die 

vaak gebruikt wordt in OPV-materialen, waarbij over het algemeen een hoge 

mobiliteit voor ladingdragers bereikt kan worden. Helaas zou conventionele 

koppeling van de BDT-eenheid via de α-posities van de thiofeeneenheden leiden 

tot vlakke D-A-verbindingen die meer dan waarschijnlijk geen TADF vertonen. 

Zodoende werd er een alternatief synthesepad ontwikkeld om de donor- en 

acceptoreenheden te koppelen via de benzeenkern van de BDT-eenheid. In 

hoofdstuk 3 werd de BDT-eenheid gekoppeld aan twee verschillende acceptoren, 

met name 9,9-dimethyl-9H-thioxantheen-10,10-dioxide (TXO2) en 

dibenzo[a,c]fenazine-11,12-dicarbonitrile (CNQxP). Om hun eigenschappen te 

kunnen vergelijken werden eveneens twee 9,9-dimethyl-9,10-dihydroacridine 

(DMAC) analoga gesynthetiseerd, waarvan de TADF-eigenschappen al gekend 

waren. Hoewel de TDDFT-berekeningen een relatief grote ΔEST voorspelden, 

werd op basis van de relatief goede scheiding van de HOMO- en LUMO-orbitalen 
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besloten om deze verbindingen toch aan te maken en hun fotofysische 

eigenschappen te bestuderen. De tijdsafhankelijke emissie in een zeonexfilm 

vertoonde zowel onmiddellijke als vertraagde fluorescentie voor alle 4 de 

verbindingen. De aard van de emissie verschilde echter. Daar waar de DMAC-

verbindingen TADF-eigenschappen vertoonden, gaven de BDT-gebaseerde 

verbindingen fosforescentie bij kamertemperatuur (RTP) wanneer TXO2 als 

acceptor gebruikt werd en TADF voor CNQxP als acceptor. De RTP-

eigenschappen van TXO2-BDT-TIPS zijn ongebruikelijk en werden 

toegeschreven aan de aanwezigheid van meerdere zwavelatomen in de BDT-

eenheid. De BDT-TIPS-precursor werd daarop zelf onderzocht en bleek eveneens 

RTP te vertonen in film. CNQxP-BDT-TIPS en CNQxP-DMAC gaven 

langlevende TADF, met een kleine bijdrage van triplet-triplet annihilatie (TTA) bij 

zeer lang tijden. Het grote verschil tussen TXO2-BDT-TIPS en CNQxP-BDT-

TIPS bevindt zich in de sterkte van de elektronenaccepterende eenheid. Daar 

waar de gelokaliseerde triplettoestand van BDT-TIPS, verantwoordelijk voor de 

RTP-eigenschappen, zich beneden de charge-transfer (CT) toestanden van 

TXO2-BDT-TIPS bevindt, is dit niet het geval voor CNQxP-BDT-TIPS. De 

kleinere experimentele ΔEST resulteert ook in de mogelijkheid om omgekeerde 

intersysteemkruising te krijgen voor CNQxP-BDT-TIPS, terwijl dit niet mogelijk 

is voor TXO2-BDT-TIPS.  

In hoofdstuk 4 werd dan difluordithiëno[3,2-a:2',3'-c]fenazine (DTPz), opnieuw 

geïnspireerd door het OPV-veld, geïntroduceerd als een alternatieve 

acceptoreenheid om materialen met TADF-eigenschappen te ontwerpen. DTPz 

bezit een significant elektronenacceptor-karakter dat toelaat om rode fluoroforen 

te ontwikkelen. Twee donormaterialen, BDT-TIPS (reeds geïntroduceerd in 

hoofdstuk 3) en DMAC, werden gekoppeld aan de DTPz-acceptor, resulterend in 

D-A-D-verbindingen met CT-emissie. De berekende ΔEST was klein voor DTPz-

DMAC (0.03 eV), terwijl deze voor DTPz-BDT-TIPS (0.43 eV) van dezelfde 

grootte-orde was als voor CNQxP-BDT-TIPS (uit hoofdstuk 3). 

Tijdsafhankelijke emissiemetingen in zeonex onthulden opnieuw een verschillend 

gedrag voor de DMAC- en BDT-TIPS-bevattende materialen. DTPz-DMAC 

vertoonde TADF, met een maximum bij 630 nm en een lange levensduur, terwijl 

DTPz-BDT-TIPS RTP vertoonde, met een energie gelijkaardig aan de 

fosforescentie van DTPz-DMAC. Dit suggereert dat de RTP-eigenschappen van 
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DTPz-BDT-TIPS niet afkomstig zijn van de BDT-TIPS-eenheid, maar van de 

DTPz-eenheid. Analyse van de DTPz-bouwsteen in zeonex onthulde ook RTP-

eigenschappen voor deze acceptoreenheid. 

Eén van de meest bestudeerde TADF-moleculen, 4CzIPN, voor het eerst 

gepubliceerd door Adachi et al.,2 werd verder in detail bestudeerd door 

Etherington et al.3 nadat er een bathochrome verschuiving van de emissie werd 

vastgesteld in gedopeerde films met een toenemende concentratie van de 

emitter. Zij achterhaalden dat dimeer-emissie aan de basis lag van de 

bathochrome verschuiving in de gedopeerde OLEDs. Dimeer-emissie is echter 

ongewenst aangezien het de zuiverheid van de emissiekleur vermindert. De 

dimeren worden gevormd door niet-covalente interacties tussen de 

carbazooleenheden (Cz) van de verschillende 4CzIPN-moleculen. Om deze 

interacties te vermijden werd in hoofdstuk 5 4H-dithiëno[3,2-b:2',3'-d]pyrrool 

(DTP) gekozen ter vervanging van 9H-carbazool. DTP is een gekende 

donorbouwsteen in het OPV-domein, waar het vaak gekoppeld wordt via de α-

posities van de thiofeeneenheden en het centrale stikstofatoom gealkyleerd 

wordt om de oplosbaarheid te verbeteren. Synthese van DTP via een carbamaat-

intermediair laat toe om het ‘vrije-base’ DTP te bekomen dat vervolgens via 

nucleofiele aromatische substitutie of Buchwald-Hartwig-koppeling aan een 

acceptoreenheid gehecht kan worden. 4DTP-IPN werd in ons geval via 

nucleofiele aromatische substitutie bekomen, op basis van gelijkaardige 

omstandigheden als voor de synthese van 4CzIPN. 4DTP-IPN vertoonde een 

rood-verschoven emissie ten opzichte van 4CzIPN en eveneens TADF in 

verschillende gedopeerde films. Door de zeer kleine theoretische en 

experimentele ΔEST bleek het moeilijk om onderscheid te maken tussen de 

vertraagde emissie en fosforescentie, zelfs bij 80 K. Het aggregatiegedrag van 

4DTP-IPN is zeker verschillend met dat van 4CzIPN, maar de fotofysische 

metingen geven geen uitsluitsel of het nu meer of minder dimeervorming geeft 

en verdere experimenten zijn nodig om dit met zekerheid vast te stellen. 

In het laatste hoofdstuk werden 4 bijkomende publicaties besproken waarin 

quantumchemische berekeningen toegepast werden om inzichten te verwerven 

in de experimentele eigenschappen van kleine moleculen of polymeren. De 

eerste publicatie ging over het ontwerp van boor-dipyrrometheen (BODIPY) 

fotosensibilisatoren, ontworpen voor fotodynamische therapie. (TD)DFT-
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berekeningen gaven inzicht in de fotofysische eigenschappen van de BODIPY-

moleculen en wezen indirect op de aanwezigheid van exciplex-emissie, die 

nadien ook experimenteel bevestigd kon worden. De aanwezigheid van de 

DMAC-eenheden in de BODIPY-chromoforen bleek essentieel voor de vorming 

van singletzuurstof en de exciplexvorming, die verwacht wordt verantwoordelijk 

te zijn voor de goede intersysteemkruising. De overige drie publicaties 

handelden allemaal over structuur-eigenschapsrelaties waarin oligomere 

verbindingen gebruikt werden om de eigenschappen van polymere materialen 

voor organische zonnecellen na te bootsen. Door de geoptimaliseerde structuren 

te analyseren, waren we in staat om de wisselwerking tussen de elektronische 

eigenschappen en de moleculaire orbitaal-delokalisaties te verklaren in 

specifieke reeksen van gelijkaardige polymeren. 

7.4 Résumé en français 

Les diodes électroluminescentes organiques (OLEDs) font aujourd'hui partie de 

notre vie quotidienne, puisqu'elles se retrouvent dans des applications 

d'affichage telles que les écrans de télévision ou de smartphone modernes et 

dans l'éclairage à semi-conducteurs. Les OLEDs constituent la branche la plus 

aboutie de l'électronique organique en raison de leur capacité à concurrencer 

d'autres technologies telles que les LEDs inorganiques, ce qui est lié à leur 

capacité à atteindre des rendements élevés (c'est-à-dire le rendement lumineux 

par rapport à la puissance absorbée), ainsi qu’à des pureté et accordabilité de 

couleurs élevées. Surtout pour les applications d'affichage, leur contraste et leur 

gamme de couleurs sont inégalés. 

La technologie OLED a parcouru un long chemin depuis que Pope et 

collaborateurs ont découvert l'électroluminescence dans un cristal d'anthracène.1 

Plusieurs classes de composés ont été utilisées, passant des molécules 

fluorescentes (OLEDs de 1ère génération) aux complexes organométalliques 

contenant des métaux lourds (OLEDs de 2e génération) et, finalement, 

l'utilisation d'émetteurs affichant une fluorescence retardée activée 

thermiquement (TADF, OLEDs de 3e génération). Les émetteurs fluorescents de 

1ère génération ont le désavantage de présenter une faible efficacité du 

dispositif car les états triplet agissent comme des voies sans issue pour 75% des 

excitons formés dans un processus de recombinaison de charge. Les complexes 
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organométalliques de métaux lourds ont permis de surmonter ce problème en 

utilisant l'état du triplet comme voie radiative principale. Cette émission, connue 

sous le nom de phosphorescence, a permis la conversion de jusqu’à 100% des 

excitons car les complexes de métaux lourds possèdent un couplage spin-orbite 

(SOC) significatif de sorte que les 25% d'excitons singulets restants passent à 

l'état triplet via le croisement intersystème (ISC). Ces émetteurs 

phosphorescents constituent la plupart des OLEDs commerciales actuelles. 

Cependant, l'utilisation d'atomes de métaux lourds, rares et coûteux, est 

découragée par la recherche permanente d'une société plus durable et plus 

respectueuse de l'environnement. Ici, les émetteurs TADF pourraient apporter 

une réponse. En accordant la structure moléculaire des composés de type 

donneur-accepteur, les niveaux d'énergie des états excités singulet et triplet 

peuvent être suffisamment proches pour que le croisement intersystème inverse 

(rISC) se produise. La barrière énergétique restante peut être surmontée par 

l'énergie thermique et la principale voie d'émission est la fluorescence. En raison 

du rISC activé thermiquement, pour les composés organiques, l'émission 

secondaire est retardée d'une durée de vie entre celle de la fluorescence rapide 

et de la phosphorescence. 

De nos jours, l'objectif principal de la recherche sur les OLEDs est le matériau 

émissif, car de nombreuses avancées ont déjà été faites pour les autres 

composantes et celles-ci sont généralement applicables à toutes les générations. 

La plus grande attention a été accordée aux émetteurs bleus car ce sont les 

matériaux les plus difficiles à obtenir en raison de problèmes de stabilité. Au 

contraire, les investigations sur les émetteurs rouges sont à la traîne. 

Cependant, un intérêt croissant pour la gamme rouge et proche infrarouge (NIR) 

du spectre électromagnétique est apparent (apparu ?) dans la littérature 

récente. 

Dans cette thèse de doctorat, l'objectif principal était d'élargir le pool connu des 

fragments donneurs et accepteurs qui peuvent être utilisés pour construire des 

matériaux émissifs de type D-A et D-A-D pour les OLED de 3ème génération. 

Pour y parvenir, différents domaines de l'électronique organique, notamment le 

domaine du photovoltaïque organique (OPV), ont inspiré la sélection de 

nouveaux blocs de construction qui n'avaient pas été utilisés auparavant dans le 

domaine des OLEDs. L'utilisation de méthodes de chimie quantique telles que la 
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théorie de la fonctionnelle de la densité (DFT) m'a permis de concevoir de 

manière rationnelle de nouveaux émetteurs sur la base des résultats des calculs. 

Le deuxième chapitre a donc traité de la recherche d’une fonctionnelle 

d’échange-corrélation (XCF) optimale, une partie cruciale des calculs DFT car 

elle détermine dans une large mesure la précision des propriétés obtenues. Une 

série de 10 composés prototypes donneurs-accepteurs ont été soumis à une 

investigation approfondie avec la DFT et la DFT dépendante du temps (TDDFT) 

et leurs propriétés d'état excité telles que les énergies d'excitation et les forces 

d'oscillateur ont été calculées en utilisant 19 XCF différentes avec des niveaux 

de complexité croissante. Ces valeurs ont été comparées à une méthode de 

fonction d'onde de haut niveau appelée méthode des agrégats couplés (coupled 

cluster) approximée au deuxième ordre et recourant à la résolution de l'identité 

(riCC2). Alors que certaines XCF se comportent bien pour estimer les différences 

entre les énergies singulet et triplet, les énergies individuelles singulet et triplet 

étaient fortement sur- ou sous-estimées, rendant ces fonctionnelles peu fiables. 

Enfin, nous avons opté pour des XCF à séparation de portée, qui incluent un 

pourcentage d'échange exact Hartree-Fock (HF) augmentant avec la distance 

interélectronique. Un réglage correct du paramètre de séparation de distance 

(ω) conduit à un équilibre correct entre une petite quantité d'échange HF à de 

petites distances et une grande quantité d'échange HF à de grandes distances et 

a donné les meilleurs résultats. Les fonctionnelles les plus notables étaient LC-

BLYP et LC-ωPBE avec une valeur pour ω de 0,17 bohr-1. En outre, une 

fonctionnelle hybride globale (M06-2X), avec un pourcentage fixe d'échange HF 

de 54% à toutes les distances, a donné des résultats comparables. L'application 

de l'approximation de Tamm-Dancoff (souvent utilisée pour surmonter les 

instabilités de type triplet) s'est avérée réduire l'erreur sur les énergies 

d'excitation des triplets par rapport à celles obtenues en utilisant riCC2, et a 

entraîné des erreurs encore plus petites pour les différences d’énergie singulet-

triplet. 

Avec la XCF la plus performante, je me suis engagé dans la conception de 

nouveaux émetteurs TADF. Le benzo[1,2-b:4,5-b']dithiophène (BDT) est une 

unité donneuse bien connue dans le domaine du photovoltaïque organique car il 

possède une force donneur d'électrons élevée, une planarité élevée et offre 

souvent une mobilité élevée des porteurs de charge. Malheureusement, un 
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couplage conventionnel via les positions α conduirait à des molécules D-A 

planaires, peu susceptibles de présenter des propriétés TADF. En tant que tel, 

une voie synthétique pour coupler les unités donneur et accepteur via le noyau 

benzénique du BDT a dû être développée. Dans le chapitre 3, l'unité BDT a été 

couplée à 2 accepteurs différents: le 9,9-diméthyl-9H-thioxanthène-10,10-

dioxyde (TXO2) et le dibenzo[a,c]phénazine-11,12-dicarbonitrile (CNQxP). De 

plus, pour comparer leurs propriétés, deux analogues de la 9,9-diméthyl-9,10-

dihydroacridine (DMAC) ont été conçus, car ils étaient connus pour présenter un 

comportement TADF. Bien que les calculs TDDFT prédisent un écart assez 

important pour les nouveaux composés BDT, la grande séparation spatiale 

HOMO / LUMO semble prometteuse et les composés ont été synthétisés afin 

d'étudier leurs propriétés photophysiques. La caractérisation photophysique des 

films zeonex a montré une émission rapide et retardée pour les 4 composés. 

Cependant, leur nature diffère. Les composés contenant du DMAC présentaient 

du TADF, tandis que les composés à base de BDT présentaient une 

phosphorescence à température ambiante (RTP) lorsque TXO2 était choisi 

comme accepteur et TADF lorsque CNQxP était choisi comme accepteur. Le 

comportement RTP du TXO2-BDT-TIPS est inhabituel et a été attribué à la 

présence de plusieurs atomes de soufre dans l'unité BDT. Par conséquent, nous 

avons étudié l'unité donneuse BDT-TIPS seule et avons trouvé un comportement 

RTP similaire dans le film zeonex. CNQxP-BDT-TIPS et CNQxP-DMAC ont 

montré un TADF à longue durée de vie avec une certaine contribution 

d’annihilation triplet-triplet (TTA) à des temps d'émission très longs. La 

principale différence entre TXO2-BDT-TIPS et CNQxP-BDT-TIPS est la force 

de l'accepteur. Alors que l'état du triplet localisé du groupe BDT-TIPS, 

responsable du comportement phosphorescent, est inférieur aux états à 

transfert de charge (CT) pour TXO2-BDT-TIPS, ce n'est pas le cas pour 

CNQxP-BDT-TIPS. La plus petite différence d’énergie singulet-triplet 

expérimentale a également entraîné la possibilité d'un rISC pour CNQxP-BDT-

TIPS, alors que ce n'est pas possible pour TXO2-BDT-TIPS. 

Dans le chapitre 4, l’entité difluorodithiéno[3,2-a:2',3'-c]phénazine (DTPz), 

connue dans le domaine OPV, a été utilisée comme unité accepteur pour 

construire des matériaux émissifs (TADF). Le DTPz possède une capacité à 

donner des électrons significative permettant le développement de matériaux 
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émettant dans le rouge. Deux matériaux donneurs, le BDT-TIP (présenté au 

chapitre 3) et le DMAC, ont été couplés à l'accepteur DTPz, ce qui a donné des 

composés de type D-A avec émission de CT. La différence d’énergie singulet-

triplet calculée était faible pour le DTPz-DMAC (0,03 eV), tandis que pour le 

DTPz-BDT-TIPS (0,43 eV), elle était du même ordre de grandeur que pour le 

CNQxP-BDT-TIPS (chapitre 3). L’analyse de la succession des émissions 

résolues en temps dans le film zeonex a révélé un comportement différent pour 

les composés contenant du DMAC et du BDT-TIPS. Alors que le DTPz-DMAC a 

montré un comportement TADF avec une émission de longue durée et un pic 

maximum autour de 630 nm, le DTPz-BDT-TIPS a montré un comportement 

RTP avec un début similaire à la phosphorescence du DTPz-DMAC. Cela 

suggère une émission depuis le cœur DTPz au lieu de l'unité BDT-TIPS, comme 

indiqué dans le chapitre 3. Une analyse ultérieure de DTPz dans zeonex a 

montré que DTPz en lui-même montre en effet un comportement RTP similaire. 

L'un des matériaux d'émetteur TADF les plus connus est le 4CzIPN, initialement 

rapporté par Adachi et ses collègues.2 Il a été étudié plus en détail par 

Etherington et al.3 et s'est avéré conduire à la formation de dimères dans des 

films OLED dopés. Or, l'émission de dimères n'est pas souhaitée dans les 

dispositifs OLED car elle compromet la pureté de la couleur. Les dimères sont 

formés par des interactions entre les unités carbazole des molécules 4CzIPN. 

Pour surmonter ces interactions, le 4H-dithiéno[3,2b:2',3'd]pyrrole (DTP) a été 

choisi comme unité donneuse pour remplacer le 9H-carbazole au chapitre 5. Le 

DTP est une unité donneuse bien connue dans le domaine de l'OPV, où il est 

généralement couplé via les positions α et l'atome d'azote central est alkylé pour 

une solubilité améliorée des polymères résultants. La synthèse via un 

intermédiaire carbamate permet d'obtenir le DTP sans chaîne alkyl après quoi il 

peut être utilisé dans des réactions de substitution nucléophile aromatique ou de 

type Buchwald-Hartwig. Le premier a été appliqué dans cette thèse pour 

préparer 4DTP-IPN, en utilisant des conditions de réaction similaires à celles de 

la synthèse de 4CzIPN. Le 4DTP-IPN a montré une émission décalée vers le 

rouge par rapport à celle du 4CzIPN et a présenté des propriétés TADF dans 

une variété de films. En raison des très petites valeurs, expérimentales et 

calculées, des différences d’énergie singulet-triplet, il était difficile de faire la 

distinction entre son émission retardée et sa phosphorescence, même à 80 K. 
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Bien que son comportement d'agrégation soit certainement différent de celui du 

4CzIPN, les mesures photophysiques du 4DTP-IPN à diverses concentrations 

en solution et en couche mince donne lieu à des observations contradictoires et 

d'autres expériences sont nécessaires pour déterminer s'il est moins probable ou 

même plus susceptible de former des dimères. 

Dans le dernier chapitre (chapitre 6), quatre publications supplémentaires ont 

été discutées dans lesquelles des calculs de chimie quantique ont été réalisés 

pour aider à l’interprétation des propriétés expérimentales de petites molécules 

ou de composés polymères. La première publication portait sur la conception de 

photosensibilisateurs au bore dipyrrométhène (BODIPY), développés pour 

former efficacement de l'oxygène singulet pour la thérapie photodynamique. Les 

calculs (TD)DFT conduisent à des informations sur la photophysique des 

molécules BODIPY et indiquent indirectement la présence d'une émission par des 

exciplex, ce qui a été confirmé expérimentalement. L'incorporation d'une unité 

DMAC s'est avérée cruciale pour la génération d'oxygène singulet et la formation 

d'exciplex et ce dernier devrait être responsable de l'ISC efficace. Les autres 

publications traitaient des relations structure-propriété dans lesquelles des 

espèces oligomères étaient utilisées pour imiter le comportement des chaînes 

polymères. En regardant leurs géométries optimisées, nous avons pu expliquer 

l'interaction entre les propriétés électroniques et les délocalisations des orbitales 

moléculaires dans des séries de polymères similaires. 
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