Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

A multimedia support to the learning of interaction objects

Bodart, Thibaut; Magnier, Marc Laurent

Award date:
1999

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/07dfdcbf-a961-4b1b-9bc8-04832fcec060

&

9

8

%

oot

$

m"?:soaw“‘

FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX
NAMUR

INSTITUT D'INFORMATIQUE

A Multimedia Support to the
Learning of Interaction Objects

Thibaut Bodart
Marc-Laurent Magnier

Thesis submitted in fulfilment of the requirement
for the degree of Master in Computer Science

-September 1999-

Supervisor: Prof. Francois Bodart

RUE GRANDGAGNAGE, 21 ¢ B-5000 NAMUR (BELGIUM)

3\ &
W

FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX
NAMUR

INSTITUT D'INFORMATIQUE

Un Support Multimédia a
I’Apprentissage des Objets Interactifs

Thibaut Bodart
Marc-Laurent Magnier

Mémoire présenté en vue de I’obtention
du dipldme de Maitre en Informatique

-Septembre 1999-

Promoteur : Prof. Francois Bodart

RUE GRANDGAGNAGE, 21 ¢ B-5000 NAMUR (BELGIQUE)

Abstract

This thesis describes the development of a multimedia environment for the learning of Inter-
action Objects (I0s). This work is part of the VESALE project of the Institut d’informatique
and follows a five month internship period at the University of Port-Elizabeth (South Africa).

The objective of this environment is to give the student a good comprehension of the IO con-
cept as well as a method to select them.

The main challenge is to adapt the paper course for the web environment used in the project.
This adaptation requires an entire rethinking of the way of presenting a course. The multime-
dia environment at our disposal gives us the following opportunities to create additional val-
ues for the course:

e Interactive applications
e Increased freedom in accessing information
e The ability to organise the course in different pedagogical scenarios.

Resume

Ce mémoire décrit le développement d’un environnement multimédia pour I’apprentissage
des Objets Interactifs (OI). Ce travail s’inscrit dans le cadre du projet VESALE de I’institut
d’informatique et fait suite a un stage de cinq mois a I’Université de Port-Elizabeth (Afrique
du Sud).

L’objectif de cet environnement est de permettre a I’étudiant d’acquérir une bonne com-
préhension du concept d’Ol, ainsi qu’une méthode pour les sélectionner.

Le défi principal est I’adaptation du cours papier a I’environnement web utilisé pour le projet.
Cette adaptation nécessite de repenser complétement la facon de présenter un cours. En effet,
I’environnement multimédia a notre disposition nous donne les opportunités suivantes
d’ajouter une plus-value au cours :

e Des applications interactives
e Une plus grande liberté dans 1’acces a I’information.
e La possibilité d’organiser le cours en plusieurs scénarios pédagogiques.

Acknowledgements

Nos remerciements les plus sinceres s’adressent

Au Professeur Francgois Bodart, promoteur de ce mémoire, non pas tant pour la confiance
qu’il nous a témoigné depuis le début de ce travail que pour son intérét, son attention et son
appréciation progressivement croissante au cours de son évolution. Nous tenons également a
le remercier pour tout les conseils qu’il nous a donné au cours de la réalisation de ce travail.

To Professor Janet L. Wesson, University of Port-Elizabeth, for her friendly reception, for the
attention she gave us during our stay at UPE and for accepting to be a member of our jury.

To Mr and Mrs Dekock, University of Port-Elizabeth, for their friendliness and for showing
us how beautiful South Africa is.

To Lean Nicholls, University of Port-Elizabeth, for his help on our project.
To the rest of UPE staff.

A I’équipe VESALE, a savoir Jean-Marie Leheureux, Efrem M’baki et Abdo Bereikdar pour
leurs apports aux réunions du projet.

A Anne-Sandrine « vicky » Rosmant, pour ses précieuses notes de cours, sans lesquelles nos
études se seraient terminées en deuxieme candi.

A Rudy « bloub » Michiels et Xavier « cucumber » Gillmann pour les parties endiablées de
Starcraft qui nous ont permis de nous détendre pendant ces longs mois de juillet et aofit.

A tous les étudiants de 3°™ maitrise, pour ces années passées ensemble.

Nos derniers remerciements, et non des moindres, nous les destinons a nos parents sans qui
rien ne serait. Ils n’ont jamais cessé d’étre des parents attentifs et de montrer leur disponibilité
en toutes circonstances. Nous voudrions tout particulierement les remercier pour nous avoir
donné I’opportunité de nous construire un avenir. Et c’est tout naturellement, en reconnais-
sance de tout cela, et de biens d’autres choses encore, que nous voudrions faire un peu leur le
travail qui fiit le notre en leur dédicagant bien volontiers 1’ensemble de ce mémoire.

Table of content

Chapter 1. Introduction
1. Subject

2. Internship at the University of Port Elizabeth (South Africa)
3. Structure of this thesis

Chapter 2. The VESALE project

1. Introduction

2. Global presentation of the VESALE project modules

3. Our part of the VESALE project

3.1. The multimedia technologies illustrations base

3.2. Course notes

A »n U A W

Chapter 3. Web-based learning

1. Introduction

2. Constructivism versus Objectivism

3. Teaching/Apprenticeship paradigms

3.1. Paradigms under the control of the teacher

o e o0

3.2. Paradigms under the control of the learner

3.3. Formation strategy

4. Pedagogical scenarios

4.1. The Objectivist scenario

4.2. The Constructivist scenario

4.3. Scenarios

5. Conclusion

10
11
12
12
12
13
13

Chapter 4. Guidelines for the design of a multimedia course

1. Introduction

2. Web-design guidelines for a multimedia course

2.1. Utility and Usability

15
15
16

2.2. Information architecture

17

2.3. Writing for the web

19

2.4. Page design

21

3. Pedagogical interactive applications design guidelines

3.1. Direct manipulation

27
27

3.2. Indirect manipulation

28

3.3. Double reading

28

3.4. Related links

29

3.5. Concepts manipulated definition

29

3.6. Instructions

30

3.7. Bootstrapping

30

4. Conclusion

Chapter 5. Analysis

1. Introduction

2. Interactive applications

2.1. I0s manipulation application

30

31

31
32

2.2. AlOs selection trees manipulation application

33

3. Interaction Objects database

3.1. Conceptual analysis

38
38

3.2. Extensions

42

4. Information architecture

4.1. Course chunking

42
43

4.2. Pedagogical scenarios

43

4.3. Conceptual navigation

45

5. Page structure

5.1. Site identity and sobriety

46
46

5.2. Navigation

46

5.3. Page layout

47

5.4. Dynamic navigation generation

49

6. Ceonclusion

49

Chapter 6. Technology choices

1. Introduction

s1

2. Three-tier architecture

52

3. Client-side technologies

52

3.1. Hypertext Mark-up Language

3.2. Cascading Style Sheets

3.3. Client-side applications: Java

3.4. The UPE high-level components

4. Middleware

53
53
54
56
56

4.1. Dynamic pages generation

4.2. Database connectivity : the JDBC API

4.3. Java Web Server

S. DBMS

6. Conclusion

Chapter 7. Design

1. Introduction

2. Page design

2.1. VESALE logo

2.2. Page structure

2.3. Cascading Style Sheet

2.4. Navigation scenario

3. 10s database

3.1. Database physical schema

3.2. Database manipulation tools

3.3. Database content

4. Dynamic pages generation

4.1. Dynamic navigation

4.2. Dynamic pages

5. Interactive applications

5.1. I0s manipulation application

5.2. AIOs selection trees manipulation application

6. Course design

6.1. Methodology

6.2. Example: the “AlIO Definition” chunk

7. Conclusion

57
64
65
65

66

67
67
67
68
70
70
72
72
73
74
74
74
76
77
77
84
94
95
95
97

Chapter 8. System evaluation

1. Introduction

2. Bootstrapping

3. Contribution to the learning of 10s

3.1. Support contribution

101
101

103
104

3.2. Pedagogical approach contribution

106

4. Conclusion

Chapter 9. Conclusion

References

Appendixes

107

|

Introduction

1. Subject

The subject of this thesis is the development of the part of the VESALE project' concerning
the Interaction Objects (IOs). The objective is to give the student a good comprehension of
the 10 concept as well as a method to select them.

The main challenge is to adapt the paper course for the web environment used in the project.
This adaptation requires an entire rethinking of the way of presenting a course. The multime-
dia environment at our disposal gives us the following opportunities to create additional val-
ues for the course:

e Interactive applications
e Increased freedom in accessing information
e The ability to organise the course in different pedagogical scenarios.

As we are students in computer science and not pedagogues, the pedagogical aspect of this
work is primarily based on our personal experience. As far as pedagogy is concerned, the
course we will develop must be regarded as a prototype that will have to be criticised by
pedagogues. Nevertheless, some personal research in that field appears to be essential in order
to provide some consistency.

' See chapter 2

2 Chapter 1. Introduction

2. Internship at the University of Port Elizabeth (South Africa)

From September to January, we worked at the University of Port Elizabeth (UPE) in South
Africa. Our supervisor was Professor Janet L. Wesson.

During this internship period, we developed a library of IOs in Java. This project was realised
as part of a BSc Honour degree. The title of the report we had to write in that occasion is “7he
Representation of Abstract Interaction Objects for Reusable Object Design”. You will find it
in Appendix A.

The main things that we got out of this experience are a good knowledge of the Java pro-
gramming language as well as a deeper understanding of the IOs functioning. Moreover, the
supervision that we received during the writing process of the report was very useful for this
thesis redaction.

On a personal point of view, this immersion in such a friendly and interesting environment
was an unforgettable experience.

3. Structure of this thesis

The structure of this thesis is the following:

In chapter 2, we will shortly describe the VESALE project and more precisely which part of it
we will develop.

In chapter 3, we will gather some pedagogical knowledge that can apply to multimedia envi-
ronments.

In chapter 4, we will research some design guidelines for the development of a web-based
learning environment.

In chapter 5, we will go trough the analysis process. We will describe the expected features of
our environment.

In chapter 6, we will research the most suitable technologies to implement the desired envi-
ronment.

In chapter 7, we will use those technologies to implement the environment.

Finally, in chapter 8, we will evaluate our environment in terms of pedagogical contribution
to the learning of 1Os.

The VESALE project

1. Introduction

Teaching and research related to Human-Computer Interface (HCI) have as aim the theories,
the models, the methods and the tools necessary to all the stages of HCI life cycle [Beirek-
dar99]. Consequently, would it be useful to use the specific knowledge from this field in the
development of software tools supporting computer-aided teaching? Moreover, if this teach-
ing is in the field itself, the opportunity is given to use its content in self-illustration, therefore
enriching the learning. This principle of bootstrapping is fundamental to the VESALE project
(Visual user interface design Education Supported by a computer-Aided Learning Environ-
ment), a multimedia environment supporting the teaching of HCI.

This teaching’s support concerns four situations:

* The apprenticeship as part of the live teaching: teacher and students are face to face

e The complementary apprenticeship to the live teaching which essentially stands the
evaluation of knowledge and review of syllabus contents

e The indirect teaching or distant learning, i.e. the self-apprenticeship enriched by the
interactions with the teacher

e The co-operation to the teaching’s enrichments. In particularly, the enrichments for
reasoned cases and for illustrations of multimedia technologies.

4 Chapter 2. The VESALE project

2. Global presentation of the VESALE project modules

The multimedia environment chosen to develop the VESALE project is the World Wide Web.

This project is composed of several modules, each of them being linked to the others. The
modules are the following [Beirekdar99]:

— The course notes module

The course notes module contains the notes of the HCI course presented in the form of web
pages.

— The reasoned cases module
The reasoned cases module contains criticised examples of interfaces. This base can be en-

riched by cases suggested by students or other interested persons. Rudy Michiels and Gaétan
Prévot have tackled this subject [Michiels-Prevot99].

— The multimedia technologies illustration module

The multimedia technologies illustration module aims to favour the illustration, the explana-
tion and the comprehension of the multimedia interaction techniques

— The ergonomic rules module

The ergonomic rules module is intended to illustrate the use of the ergonomic criteria and
rules in order to build useful and usable interfaces.

— The knowledge evaluation module

The knowledge evaluation module contains exercises and questions allowing a summative
and formative evaluation.

— The video sequences module

The video sequences module contains video sequences illustrating some specific parts of the
course.

— The dialogue space

The dialogue space supports the dialogue between the professor and the student.

— The comments space

The comments space is associated with each particular base. This space makes it possible for
the students to express comments as well as for the professor to react.

Qur part of the VESALE project

wn

The figure 2-1 describes the relationships between the modules.

Knowledge
Evaluation
g

L B
£ £ e
- g E
=t + a 8‘
g . Multimedia & E’
g Ergonomic Technologies 48
- Rules llustartions

Reasoned
Cases

Data modifiable by the prof. and the student

|:| Data modifiable by the prof. only
Data accessible by the prof. and indirectly accessible by the student

Figure 2-1. The relations between the different modules of the VESALE architecture

3. Our part of the VESALE project

Our part of the VESALE project consists of the development of the multimedia technologies
illustrations base along with the course notes related to the IOs. The development of the
comment spaces attached are not of our concern.

3.1. The multimedia technologies illustrations base

This base aims to favour the illustration, the explanation and the comprehension of the course
concepts, of the multimedia interaction techniques by using the concepts and the multimedia
technologies themselves in auto-illustration [Vanderdonckt98]. This illustrations base could
be composed of screen shots, of representatives photos, of process graphical animations, of
video sequences illustrating some actions involving the human being, of synthetic vocal
comments, of simulations of interactive sessions about different software systems, of real in-
teractive applications with session recording, of interactive applications implemented ac-
cording to certain measures.

6 Chapter 2. The VESALE project

3.2. Course notes

We also have to develop the course related to I0s. These notes will be presented to the stu-
dents in the form of a hypermedia syllabus.

Web-Based Learning

1. Introduction

When placing their courses on the Internet, for either distance education or as extensions of
traditional classroom teaching methods, designers should not rush. As a matter of fact, using
new media requires new approaches to teaching. Putting course content online is more than a
matter of converting the syllabus to HTML and placing it on a server. There are important
considerations on what should and shouldn’t be placed online and what tools work best to
reach an instructional goal.

As computer scientists, our approach is primarily a technical one, centred on the implementa-
tion of technologies that could be used in a pedagogical environment. We have tackled this
problem as computer scientists and not as pedagogues. The result of this work should there-
fore be regarded as a prototype that will have to be criticised by pedagogues.

Nevertheless, some pedagogical concern must guide us in our approach while developing this
environment. First, we will confront two opposite approaches (Constructivism and Objectiv-
ism). Then, we will present six teaching/apprenticeship paradigms. For those that are relevant
to our project, we will define which applications we could develop in order to implement
them. Finally, we will suggest two ways of structuring the course.

8 Chapter 3. Web-based learning

2. Constructivism versus Objectivism

Historically, teachers have used Objectivist methods in which students are presented informa-
tion that they repeat back to the teacher. The underlying model of Objectivism is Behavioral
Psychology (based on B.F. Skinner’s work'). Behaviourists view psychology in terms of re-
sulting behaviours which can be modified by consequences (rewards and punishments).

The current trend in education appears to be Constructivism which is based on Cognitive Psy-
chology. Under this model, students are viewed as active processors of information [Koya-
nagi99].

The table 3-1 compares both opposite learning approaches.

Objectivism Constructivism
Method: Methods vary:
e Content presentation e Encourage knowledge formation
e Question is put to student e Process is different for each stu-
e Student is told if answer is right dent
e Positive reinforcement for right e Self-directed exploration
answers e Discovery learning
e Cycle is repeated for wrong an- e Construction of concepts, schema
swers and mental mode
External truths and knowledge exists for|Truth and knowledge is constructed by stu-
learners to memorise dents based on perspective and experience
Teacher controls Teacher observes, coaches and facilitates
Students learn meaning Students create meaning

Table 3-1. Objectivism versus Constructivism in education

While Skinnerian methods have been effective in learning how to train animals and helping
human beings modify their behaviour, the behaviourists fell short of what is most important in
education. Education is more than just modifying behaviours. It is also about helping the stu-
dent to learn how to develop strategies for learning. Such is the goal of the cognitive move-
ment in education as defined by Bruningz.

As articulated by Piaget3, students learn better when they can invent knowledge through in-
quiry and experimentation instead of acquiring facts presented by a teacher in class. It is diffi-
cult for a teacher to provide this kind of environment for each student in a traditional class-
room. Since there is only one teacher for many students, it is physically impossible for the
teacher to support each student's individual needs. On the other hand, multimedia computers
provide a powerful environment for helping achieve the goals of the cognitive movement in
education.

! Skinner, B. F. The Behavior of Organisms. New York: Appleton-Century-Crofts, 1938.

Skinner, B. F. Science and Human Behavior. New York: Macmillan, 1953.
? Bruning, Roger H., Schraw, G. J., and R. R. Ronning. Cognitive Psychology and Instruction. Englewood Cliffs, N.J.: Prentice Hall, 1995.
¥ Piaget, J. The Mechanisms of Perception. New York: Basic Books, 1969

Teaching/Apprenticeship paradigms ' 9

3. Teaching/Apprenticeship paradigms

Dieudonné Leclercq and Brigitte Denis [Leclercq98] describe six teaching/apprenticeship
paradigms. Three of them are under the control of the teacher and the others are under the
control of the learner as shown in figure 3-1.

Impregnation/Modelisation

Reception/Transmission Practice/Guidance

Under the control ofthe teacher

Under the control of the learner

Experimentation/Reaction Exploration/Supplying

Creation/Confrontation-Support

Figure 3-1. The six teaching/apprenticeship paradigms

3.1. Paradigms under the control of the teacher

3.1.1. Impregnation / Modelisation

a

Learners operation Impregnation

Teacher operation Model builder

The learner says “Show me”

The teacher says “Look at me doing it”

Example Students in art history learn a lot from going
to the Acropolis in addition to their theoretical
knowledge about it.

3.1.2. Reception / Transmission

Cplion .

Learners operation Receptio

Teacher operation Transmission

The learner says “Tell me”

The teacher says “You must know that...”
Example A traditional university lecture.

10 Chapter 3. Web-based learning

3.1.3. Practice/Guidance

Practice

Teacher operation Guidance

The learner says “Correct me”

The teacher says “Here is your mistake”

Example A coach corrects his athlete when he is doing
a mistake.

3.2. Paradigms under the control of the learner

3.2.1. Exploration/Supplying

e

g

Learners operation Exploration

Teacher operation Supplying

The learner says “Let me explore”

The teacher says “Here is what is available”

Example A library gives the student the opportunity to
look for information about a particular sub-
ject.

3.2.2. Experimentation/Reaction

Learners operation Experimentation

Teacher operation Reaction

The learner says “Let me manipulate”

The teacher says “Here are the cases and the resources ”
Example A flight simulator

3.2.3. Creation/Confrontation-Support

Learners operation Creation

Teacher operation Confrontation-Support

The learner says “Let me build”

The teacher says “I support you ”, “Here is what I think about
it”

Example A writer learns by creating a novel and then
confronts it to other people’s judgement.

Teaching/Apprenticeship paradigms 11

3.3. Formation strategy

Most formation systems combine several paradigms in order to compensate the weaknesses of
some with the strength of others. It is indeed not common to find a teaching/apprenticeship
situation based on only one paradigm. The combination of several paradigms makes a forma-
tion strategy.

As a reminder, the VESALE environment will be used in the following situations™:

The apprenticeship as part of the live teaching

The complementary apprenticeship to the live teaching
The indirect teaching or distant learning

The co-operation to the teaching’s enrichment

Considering those situations as well as the specific part of the VESALE environment that we
have to develop, we can consider the following paradigms:

— Paradigm 1: Impregnation / Modelisation
This paradigm could be applied as part of the face to face interaction between the students and

the teacher. For instance, we could imagine a teacher illustrating concepts like Interaction
Objects (IOs) in front of the students by manipulating them in a multimedia environment.

— Paradigm 2: Reception / Transmission

An on-line version of the syllabus concerning the multimedia technologies could be provided
to the students allowing them either to review the course or to learn it distantly.

— Paradigm 3: Practice/ Guidance
Our environment could provide applications allowing the students to manipulate concepts

such as selection trees. The environment could play the role of the guide by helping the stu-
dents in their manipulations.

— Paradigm 4: Exploration / Supplying

Our environment could allow the students to navigate freely inside the multimedia technolo-
gies base.

— Paradigm 5: Experimentation / Reaction
Our environment could provide applications allowing the students to manipulate concepts.

For instance, this environment could allow him to experience the manipulation of IOs, dis-
playing immediately the result of his actions.

* See chapter 2 section 1

12 Chapter 3. Web-based learning

— Paradigm 6: Creation / Confrontation, Support

One could wonder if the programming of IOs by students is a good pedagogical approach in
their teaching. We followed this method during our training period at the University of Port-
Elizabeth and found that it was a very good way of understanding the behaviour of IOs. Nev-
ertheless this approach would not fit well into this part of the VESALE project.

Therefore, our formation system could combine five paradigms. However, even if we will
keep all five paradigms in mind while developing this environment, our focus will be set es-
sentially on two of them, namely: the practice/guidance and experimentation/reaction para-
digms. It is indeed in the application of those two paradigms that the learning process can be
improved the most by multimedia technologies.

4. Pedagogical scenarios

In addition to the theoretical concepts, and as stated in our formation strategy (3.2), the course
could contain practical applications. Considering those two complementary parts, we could
think of two different approaches for the course presentation. We have decided to call these
approaches pedagogical scenarios. According to their underlying philosophy, we have chosen
to call them the Objectivist and Constructivist scenarios.

4.1. The Objectivist scenario

In the Objectivist scenario, the course concepts are presented initially to the student. When the
student has read everything he has to know about a particular subject, applications that sum-
marises all the concepts related are presented to him.

At this stage, he could manipulate applications in order to confirm that he has a good under-
standing of the concepts. Naturally, the definitions of every concepts used in the applications
are accessible to the student. Those accessing capabilities are working here as a reminder as
shown in figure 3-2.

Entry
Point

»_ Application

-
Y —

- i
“reminder—

Figure 3-2. In the Objectivist scenario, the entry point is the theory.

4.2. The Constructivist scenario

One can wonder if the accessing capabilities of applications could not be used to reverse the
problem. As a matter of fact, presenting applications first and allowing the student to interact
with concepts that he doesn’t already master corresponds to a Constructivist approach.

Conclusion 13

In the Constructivist scenario, the student interacts initially with applications. As soon as he is
confronted with concepts that he doesn’t understand, he can refer to the theory related as
shown in figure 3-3. Thanks to this method, the student can create his own mental model of
the subject and therefore becomes an active processor of information.

Entry

Point

Theory

¥

~ A
~ .

Econcepts definition

Figure 3-3. In the Constructivist scenario, the entry point is the application.

4.3. Scenarios

In order to develop this learning environment we have to decide which scenario we will im-
plement.

An Objectivist scenario would follow almost the same structure as the paper course but will
create additional value in the way of interactive applications allowing the users to review the
concepts. On the other hand, a Constructivist scenario would allow the students to apprehend
the concepts via the interactive applications.

As our objective is to develop a prototype, we can not exclude at the very outset any scenar-

ios. Therefore, we will implement both scenarios and will try to evaluate ultimately their re-
spective contributions to the learning of 1Os.

5. Conclusion

In order to develop our part of the project, we will try to implement two distinct scenarios
keeping the same ultimate objective in mind: making the student an active processor of in-
formation (even in the Objectivist scenario (4.1)). The web environment gives us lots of op-
portunities to fully achieve this goal.

Guidelines for the design of a
multimedia course

1. Introduction

As seen in Chapter 3, the pedagogical scenarios suggested will contain course notes as well as
interactive applications which will be implemented using web technologies. Therefore, it is
necessary to research some guidelines that we help us in our developing process.

First, we will describe some general web design guidelines and adapt them for the context of

an online course. Secondly, we will analyse some existing pedagogical interactive applica-
tions in order to deduce design principles.

2. Web-design guidelines for a multimedia course

In this section we will start by defining the key concepts of utility and usability. Then we will
examine the different ways of organising information. Afterwards we will describe how to
write it for the web. Finally, we will investigate the best ways of displaying this information.

The following guidelines apply mainly to the development of web sites. Nevertheless, they
almost all identically apply to online courses. However, we will adapt them when needed.

16 Chapter 4. Guidelines for the design of a multimedia course

2.1. Utility and Usability

When designing a web site, one of the most important things to keep in mind is improving its
usability. This concept of usability has been fully described by Jakob Nielsen [Nielsen98a].
He gives the following definition: “Usability is the measure of the quality of the user experi-
ence when interacting with something — whether a web site, a traditional software application,
or any other device the user can operate in some way or another”

The usefulness of a system is determined by two components:

e Utility: Does the system do anything that people care about? If the system does some-
thing irrelevant or if it doesn’t solve the main problem, then it does not matter whether
it is easy to use: it will be a poor system in any case.

e Usability: Can the user use the system and can he or she do so effectively? Even if the
system does exactly the right thing in theory, it will still be a poor system if the user
cannot figure out how to get it to work.

Usability is not a single number but has five characteristics:

e [Ease of learning: How fast can a user, who has never seen the user interface before,
learn it sufficiently well to accomplish basic tasks?

e Efficiency of use: Once an experienced user has learned to use the system, how fast
can he or she accomplish tasks?

e Memorability: If a user has used the system at some earlier date, can he or she remem-
ber enough to use it more effectively next time (or does the user have to start over
again learning everything every time)?

e Error frequency and severity: How often do users make errors while using the system,
how serious are these errors and how easy is it to recover from a user error?

e Subjective satisfaction: How much does the user like using the system?

All five characteristics of usability need to be considered in any design project but some of
them are more important than others. For the web, ease of learning is often the most important
usability attribute since users rarely spend enough time on any individual web site to become
expert users who care more about efficiency. Also, subjective satisfaction is critical since us-
ers can go anywhere else on the web at he click of a mouse. User errors are less critical on
most web sites, though E-commerce sites must take steps to ensure that users order the right
products and enter their credit card and shipping address correctly.

In the context of a multimedia course, we think that the focus must be set on the efficiency of
use and memorability rather than on the ease of learning since the same student will use the
course repeatedly. The user satisfaction is also very important since the aim of the project is
to attract the students towards the online version of the syllabus, which offers more features.

Web-design guidelines for a multimedia course 17

2.2. Information architecture

The information architecture of a web site defines how information is organised. In order to
build an information architecture, we have to gather information, split it into chunks and then
reorganise it.

2.2.1. Content “chunking”

The way people seek and use reference information suggests that smaller, discrete units of
information are more functional and easier to handle that long, undifferentiated tracts
[Lynch99]. This method for presenting information translates well to the web for several rea-
sons:

e Discrete chunks of information lend themselves to web links. The user of a web link
usually expects to find a specific unit of relevant information, not a book’s worth of
content.

e Chunking can help organise and present information in a uniform format. This allows
users both to apply their past experience with a site to future searches and explorations
and to predict how an unfamiliar section of a web site will be organised. This element
is particularly important in our context where the mental model that a student can have
of the course concepts depends on the organisation of its content.

e Concise chunks of information are better suited to the computer screen, which pro-
vides a limited view of long documents. Long web pages tend to disorient readers;
they require users to scroll long distances and to remember what is off-screen.

The concept of information chunk must be flexible and consistent with common sense, logical
organisation, and convenience. The nature of the content must suggest how it should be sub-
divided and organised. In the context of a course, we think that chunking the course according
to its concepts is appropriate.

Although short web documents are usually preferable, it makes sense to provide an additional
undivided version of the document in case the user want to be able to print it easily or save it
in one step.

2.2.2. Organisation structures

The technology used to organise information is hypertext. It serves as a basis for structures
that organise content hierarchically, sequentially or conceptually.

2.2.2.1. Hypertext

In a web site, the way people access information is hypertext. Hypertext is a highly non-linear
way of structuring information [Rosenfeld98, p.40]. A hypertext system involves two primary
types of components: the items or chunks of information which are to be linked, and the links
between those chunks. These components can form hypermedia systems that connect text,
data, image, video, and audio chunks. Hypertext chunks can be connected hierarchically, non-
hierarchically, or both as shown in figure 4-1.

18 Chapter 4. Guidelines for the design of a multimedia course

Figure 4-1. In hypertext systems, content chunks are connected via links
in a loose web of relationships.

Although this system provides great flexibility, it presents substantial potential for complexity
and user confusion. As users navigate through highly hypertextual web sites, it is easy for
them to get lost. They simply can’t create a mental model of the site organization. Without
context, users can quickly become overwhelmed and frustrated.

2.2.2.2. Hierarchical organisation

Information can be organised hierarchically [Rosenfeld98, p.38]. When designing informa-
tion hierarchies on the web, it is essential to consider the balance between breadth and depth.
Breadth refers to the number of options at each level of the hierarchy. Depth refers to the
number of levels in the hierarchy. If a hierarchy is too narrow and deep, users have to click
through an inordinate number of levels to find what they are looking for (Figure 4-2). If a
hierarchy is too broad and shallow, users are faced with too many options on the main menu
and are unpleasantly surprised by the lack of content once they select an option (Figure 4-3).

Figure 4-2. In this narrow and deep hierarchy, users are faced with six
clicks to reach the deepest content

Web-design guidelines for a multimedia course 19

-
b g -

Figure 4-3. In this broad and shallow hierarchy, users must choose from
ten options to reach a limited amount of content

In considering breadth, designers must pay attention to the cognitive limits of the human
mind. With the exception of particular cases, the seven plus-or-minus two rule' must be fol-
lowed. Web sites with more than ten options on the main menu can overwhelm users.

In considering depth, it is important to be even more conservative. If users are forced to click
through more than four or five levels, they may simply give up and leave the web site. At the
very least, they’ll become frustrated.

2.2.2.3. Sequential organisation

Besides the hierarchical organisation, a sequential organisation can be provided. As students
are used to this kind of organisation in their paper courses, it seems to be particularly suitable
for an online course. This organisation depends on the hierarchical one and is therefore a
complementary structure.

2.2.2.4. Conceptual organisation

The conceptual organisation is based on the relationships existing between the different in-
formation chunks. For instance an information chunk describing a particular concept could be
linked to other chunks describing either prerequisites, father or child concepts.

2.3. Writing for the web

It is an unfortunate fact that current computer screens lead to a reading speed that is approxi-
mately 25% slower than reading from paper [Nielsen96b]. Better screens have been invented
and it is just a matter of time before reading from computers is as good as reading from paper,
but for the time being information must be designed for the actual screens in use around the
world.

The reduced reading speed on computers can be compensated by good hypertext design that
allows the user to read less information and to find it faster.

On the other hand, other types of information do require the user to read large amounts of
text. Those users typically may prefer not having to sit at their screen while doing so. Thus,
even when the reading speed problem gets solved, we may still find that people decide to print
out long texts rather than read them on the screen.

' G. Miller, “The Magical Number Seven, Plus or Minus Two : Some Limits on our Capacity for Processing Information”, Psychological
Review 63, no. 2 (1956): 81-97.

Coi s el e - s o o o |

20 Chapter 4. Guidelines for the design of a multimedia course

2.3.1. Concise, scannable and objective writing

Usability studies conducted over the last four years by Jakob Nielsen have brought to the fore
three main content oriented conclusions [Nielsen97]:

e Users do not read on the web; instead they scan the pages, trying to pick out a few
sentences or even parts of sentences to get the information they want
Users do not like long, scrolling pages: they prefer the text to be short and to the point
e Users detest anything that seems like subjective information and prefer a more factual
writing style

From these observations he defines three properties of a good written online text: conciseness,
scannability and objectivity.

First, texts should be concise because users like to get information quickly. Writing concise
texts requires not only tightening of language, but also cutting of overly detailed information.
A good rewritten text should have 50% of the word count of its paper equivalent.

Texts should also be scannable because reading from computer screens is tiring and, there-
fore, users attempt to minimise the number of words they read. In order to make a web page
scannable, designers must try to use as much as possible the following techniques:

e Keywords highlighting

e Bulleted and numbered list. It slows down the scanning eyes and draws attention to
important points

e Each paragraph should contain one main idea; a second paragraph should be used for a
second idea, since users tend to skip any second point as they scan over the paragraph

e A page should start with the conclusion as well as a short summary of the remaining
contents (inverted pyramid style)

Finally texts should be objective. The information should be presented without exaggeration,
subjective claims, or boasting.

The text excerpt in the figure 4-4 is written in a promotional style.

Nebraska is filled with internationally recognized attractions
that draw large crowds of people every year, without fail. In
1996, some of the most popular places were Fort Robinson
State Park (355,000 visitors), Scotts Bluff National Monu-
ment (132,166), Arbor Lodge State Historical Park & Mu-
seum (100,000), Carhenge (86,598), Stuhr Museum of the
Prairie Pioneer (60,002), and Buffalo Bill Ranch State His-
torical Park (28,446).

Figure 4-4. A text written in a promotional style.

Web-design guidelines for a multimedia course 21

The same text, rewritten in order to be more concise, scannable and objective is shown in fig-
ure 4-5.

In 1996, six of the most-visited places in Nebraska were:
e Fort Robinson State Park
Scotts Bluff National Monument
Arbor Lodge State Historical Park & Museum
Carhenge
Stuhr Museum of the Prairie Pioneer
Buffalo Bill Ranch State Historical Park

Figure 4-5. The rewritten fext.

To measure the effect of some of the content guidelines he had identified, Jakob Nielsen
measured the usability of these two excerpts among a group of test users. His conclusion was
that the rewritten version had a 124% better usability than the original one.

2.3.2. Printing version

Readers will often want to print material from the site and read it later from paper. In order to
make it more convenient, a site should provide two versions of its content: one that is opti-
mised for online viewing and one that is optimized for printing (has good layout and is in one
piece). This print file should probably be in formats like PostScript or PDF. The URL of the
online version should be included within the text of the page so that users can find updates
and correctly cite the source.

In a distant learning context, this printing version is particularly important because it will be
used as the course notes by the students.

2.4. Page design

Users seek clarity, order, and trustworthiness in information sources, whether traditional pa-
per documents or web pages. Effective page design can provide this confidence. The spatial
organisation of graphics and text on the web page can engage readers with graphical impact,
direct their attention, prioritise the information they see, and make their interactions with the
web site more enjoyable and efficient [Lynch99, p.53]. Those considerations must also apply
when designing a web-based course.

2.4.1. Site identity

Superficial though it may seem, users enjoy some sites simply because they are aesthetically
pleasing [Lynch99, p.56]. However, it is rarely because they simply contain the most pleasing
graphics. An attractive site is distinguished by a cohesive and consistent look that presents a
unique identity. These sites graphics and page layouts are integrated with their other features
such as navigation systems, custom applications, editorial style, and so forth. Therefore, the
user doesn’t notice the individual images so much as he or she enjoys the overall atmosphere
and experience created by the site.

Designers must establish a layout grid and a style for handling text and graphics, then apply it
consistently to build rhythm and unity across the pages of the site. Repetition is not boring; it

22 Chapter 4. Guidelines for the design of a multimedia course

gives the site a consistent graphic identity that creates and then reinforces a distinct sense of
place and makes the site distinct and memorable (Figure 4-6). A consistent approach to layout
and navigation allows readers to adapt quickly to the design and predict with confidence the
location of information and navigation controls across the pages.

Figure 4-6. A same page layout and graphic identity is reproduced across
all the pages of the site

2.4.2. Sobriety

Users are not impressed with complexity that seems gratuitous, especially those who may be
depending on the site for timely and accurate work related information [Lynch99, p.16].
Pages crowded with text, links, graphics, and other components make it harder for users to
find information on those pages. Many designers forget that white space is as important a
component of a page as anything else.

Paradoxically, people complain about graphic design on the web being both dully and exces-
sive. Users neither like to scroll through endless pages of text, without a break for the eye, all
against the backdrop of a dismal grey background nor about pages displaying high-octane
graphics with loudly crashing colours. It is essential for a designer to find the right balance
according to the situation he is facing.

Technology allows designers to do so many neat things. Therefore it’s often hard for them to
resist showing all the wonders they can do with web technologies. From trite counters to
moderately annoying, revolving animated GIFs to frustrating frames to the Java applets that,
after taking eons to download don’t add any functionality. Like graphics and other aspects of
web site design, technologies should directly aid users in getting what they want out of a site
[Rosenfeld98, p. 5].

2.4.3. Navigation

In designing complex web sites, it is particularly important to provide context within the
greater whole [Rosenfeld98, p. 50]. Many contextual clues in the physical world do not exist
on the web. There are no natural landmarks and no north and south. Unlike physical travel,
hypertextual navigation allows users to be transported right into the middie of a large unfa-
miliar web site. Links from remote web pages and search engine result pages allow users to
completely bypass the front door or main page of the web site. To further complicate matters,
people often print web pages to read later or to pass along to a colleague, resulting in even
more loss of context.

Web-design guidelines for a multimedia course : 23

2.4.3.1. Building context

A few rules should always be followed to ensure that a site provides contextual clues [Rosen-
feld98, p. 51].

First, all pages should include the site’s name. This might be done as part of the title or header
of the page. As a user moves through the levels of a site, it should be clear that they are still
within that site. Carrying the graphic identity throughout the site supports such context and
consistency. In addition, if a user bypasses the front door and directly accesses a subsidiary
page of the site, it should be clear which site he or she is on.

Secondly, the navigation system should present the structure of the information hierarchy in a
clear and consistent manner and indicate the location within that hierarchy.

In the context of a web course, those guidelines could apply as shown in figure 4-7.

9 I Yale University School of Medicine —l [| Olfactory Nerve I

1_.___] 9 l____, Page 2 of 6

[ote tnrvwrsity v f vidinive. | | SwiaryWecen | Crashet rvermas | 4 | B |
Chapter contents P e S !
. Chaptpr pontents
Overview b Olactary Fpathelimm
3) sl The actory epebetion it Located in the poof sganee
Olfactory epithelium S¥ectory epitholium oopiine s repbin of the s comsy
< >
Tha epsthsien » ¥ept mowt by the seeretioas of slfscvory

or r ion Errmberat couss gids
Peripheral course ShidnskE Olfsctury reveptor cels are bipobar narve cxlls wiit &

! g et proiphesadly dewcred dendige whach teainates & 2 keot
.C_e.rl_t_ﬁ.a_LQQ_Li'ﬁQ Brogn whish propect aumerou stha

Rhinenceghalgn The cifactory ehmmesnceptors are bovated ot these vlis
Major projections

[1

gure 1-2 Oifactory epitheinm

Intesiorat ieonite! sive

Farypepmistion grrains .
Guateaneit cami)

Haxal S
Nasapaiatioe anres

Grmatns puletiom enrvn
Learre palatios mve

Figure 4-7. On the side column (1), the position inside the chapter is clearly shown. The iden-
tity of the site is on the left of the navigation bar (2). At the centre of the navigation bar (3), the
name and number of the chapter are indicated and highlighted. On the right, below the navi-
gation bar (4), the page number as well as the total of pages in this chapter are shown.

2.4.3.2. Hierarchical navigation

The simplest hierachical navigation system might consist of a graphical navigation bar at the
top and/or bottom of each page on the site [Rosenfeld98, p.54]. In order to show the context
(figure 4-8), the navigation bar should clearly highlight to which part of the hierarchy the cur-
rent page belongs to.

SUN UK HOME

Figure 4-8. On Sun’s web site, the position inside the whole site is clearly highlighted.

24 Chapter 4. Guidelines for the design of a multimedia course

More complicated navigation systems are composed of a variety of elements such as tables of
contents, site maps and search engines which provide remote access to content within the or-
ganisation structure.

2.4.3.3. Sequential navigation

Inside a part of the site, a navigation system must be provided to allow the user to navigate
sequentially [Lynch99, p.22]. This feature will often be implemented using “Previous” and
“Next” buttons (figure 4-9).

i

“Prev page™ “Next page™

Figure 4-9. Sequential navigation system using
“previous” and “next” buttons

2.4.3.4. Conceptual navigation

Learning systems should have some amount of disorientation in order to facilitate exploration
and learning [Mayes90]. While most designers are concentrating on predetermined hierarchi-
cal or sequential navigation, very little work has been done on providing a conceptual navi-
gation. The problem is that simply following links to nodes does not necessarily provide ef-
fective learning. As a matter of fact, disorientation is required sometimes in order to explore
and learn, simply by discovery.

In order to provide a conceptual navigation, the following features may apply:

— Embedded links

To provide exploration possibilities, a hypermedia course should provide links that are out-
side any hierarchical structure. The easiest way to create “learning by exploration” solution is
to create embedded links [Rosenfeld98, p.56]. Every time that the user encounters a concept in
a page that is defined in another page, a link to its definition should be provided. If the defini-
tion of the concept uses other concepts, they will also lead the user to their definitions and so
on.

This navigation could be clearer if every embedded links contained in a page is reproduced in
a dedicated space within that page.

* Ensure high usability and a quality user experience: we
conducted user tests of several advanced Web design

with established interaction principles.

* Replace our 1995 design which had become outdated (itis
a testament to its quality that a design launched in May 1995
lasted more than two years: normally it is recommended to
redesign a site every year).

Figure 4-10. An embedded link is reproduced in the left side column.

Web-design guidelines for a multimedia course 25

— Associative learning

Navigation systems can be designed to support associative learning by featuring resources
that are related to the content currently being displayed. For example, a page that describes a
concept may include “see also” links to related information. The constant challenge in navi-
gation system design is to balance this flexibility of movement with the danger of over-
whelming the user with too many options.

In the context of a course, this associative learning feature could be implemented to provide
links to concepts related to the one currently being displayed. The possibilities of such a fea-
ture using the Zephir product’ have been tackled by Elise Remy and Michela Catizzone
[Remy-Catizzone99],

2.4.4. Page layout

Graphic design creates visual logic and seeks an optimal balance between visual sensation and
graphic information [Lynch99, p.53]. Without the visual impact of shape, colour, and con-
trast, pages are graphically boring and will not motivate the viewer. Dense text documents
without contrast and visual relief are also harder to read, particularly on the relatively low-
resolution screens of personal computers. The primary task of graphic design is to create a
strong, consistent visual hierarchy in which important elements are emphasised and content is
organised logically and predictably.

2.4.4.1. Visual contrast

The overall graphic balance and organisation of the page is crucial to drawing the reader into
the content [Lynch99, p.54]. A dull page of solid text will repel the eye as a mass of undiffer-
entiated grey, without obvious clues to the structure of the information. A page dominated by
poorly designed or overly bold graphics or typography also will distract or repel users looking
for substantive content. Designers should strike an appropriate balance between attracting the
eye with visual contrast and providing a sense of organisation.

Figure 4-11. Dull; no focal points, Figure 4-12. Stronger visual struc-
no graphic structure ture, better contrast

* For more information, refer to the ARIADNE project web site at http./ariadne.unil.ch/

et e st e ece A R s b ||

26 Chapter 4. Guidelines for the design of a multimedia course

2.4.4.2. Layout grid

Current implementations of HTML do not allow the easy flexibility or control that graphic
designers routinely expect from page layout software or multimedia authoring tools
[Lynch99, p.62]. Yet HTML can be used to create complex and highly functional information
systems if it is used thoughtfully. When used inappropriately or inconsistently, the typo-
graphic controls and inlined graphics of web pages can create a confusing visual jumble,
without apparent hierarchy of importance (figure 4-13). Randomly mixed graphics and text
decrease usability and legibility, just as they do in paper pages. A balanced and consistently
implemented design scheme will increase readers’ confidence in a site (figure 4-14).

.’.'—.——.._..—.—_
T T
P —————

Figure 4-13. Poor page layout, no Figure 4-14. Better layout, balanced
visual hierarchy.

No one design grid system is appropriate for all web pages. A consistent, logical screen layout
must be established, one that allows designers to “plug in” text and graphics without having to
stop and rethink the basic design approach on each new page. Without underlying design grid,
the project’s page layout will be driven by the problems of the moment, and the overall design
of the web site will seem patchy and confusing.

2.4.4.3. Additional guidelines
When designing web pages, it is also advised to consider the following guidelines:

— Reading becomes uncomfortable when there are too many words per line. If there is a
long distance between the end of a line and the beginning of the next line, the eye has to
make a significant shift to return to the left margin. Also, if the eye must traverse great
distances on a page, the reader is easily lost and must hunt for the beginning of the next
line. Quantitative studies show that moderate line length significantly increases the legi-
bility of the text. Designers should use tables to limit the line length, ideally to ten to
twelve words per line [Lynch99, p.68].

— A “scan column” along the left side of the page can be very useful. It does two jobs: it
provides space for local links to related material (2.4.3.4), and gives visual relief by nar-
rowing the right text column.

Pedagogical interactive applications design guidelines 27

— Designers should avoid using frames [Nielsen96a; Lynch99, p.74]. Actually they present
major drawbacks:

e URLs stop working: the addressing information shown at the top of the browser no
longer constitutes a complete specification of the information shown in the win-
dow. ! ;

e If users create a bookmark in their browser they may not get the same view back
when they follow the bookmark at a later date since the bookmark doesn’t include
a representation of the state of the frames on the page.

e Many browsers cannot print framed pages appropriately.

e Search engines have trouble with frames since they dont know what composites of
frames to include as navigation units in their index.

e Many web sites that offer users a choice between regular and framed versions have
found that most users prefer frame-free designs.

— Web pages layout should be optimized according to the lowest screen resolution used by
its potential audience [Lynch99, p.57].

3. Pedagogical interactive applications design guidelines

In order to develop pedagogical interactive applications, we decided to analyse existing appli-
cations so that we could extract some general principles. The reference we used was Micro-
soft Encarta 1999. We deduced from this analysis six principles. In addition to them, we will
adapt the fundamental principle of bootstrapping to this context.

3.1. Direct manipulation

Direct manipulation offers the user the opportunity to interact with concepts, to manipulate
them directly. This allows him to be an active processor of information while “entertaining”
himself with the manipulation.

The figure 4-15 shows parts of a direct manipulation application explaining the concept of
lever. The user can extend the lever until the weight of the little girl is able to balance the
weight of the elephant.

S L L L
= 3m oy 600 m ————
i

i .

Figure 4-15. The concept of lever (Microsoft Encarta 99).

28 Chapter 4. Guidelines for the design of a multimedia course

3.2. Indirect manipulation

In an indirect manipulation application, the user doesn’t interact with the concept itself but
rather with its attributes. Manipulating an attribute has an influence on the concept represen-
tation.

Indirect manipulation helps the user to identify the attributes of a particular concept. Moreo-
ver, it gives him an understanding of the links existing between the attributes and the concept.

The figure 4-16 shows how the representation of a fractal tree depends on its orientation, its
complexity or on the colour of its brunch and trunk. The user doesn’t manipulate the tree but
its attributes.

ARDRES

HERATEUR

A r'aide de l'ordinateur, vous pouvez créer des
Images simples, ressemblant 4 des arbres ou 3
des buissons, qui présentent des propriétés fractales.

Pour créer un arbre, le programme utilise le
modéle du Générateur d'arbres.

Figure 4-16. Two stages of the conception of a fractal tree (Microsoft Encarta 99).

3.3. Double reading

In a direct or indirect concept manipulation, the user doesn’t always see clearly the conse-
quences of his actions. Therefore it is important to give him a second reading (figure 4-17).

Pedagogical interactive applications design guidelines 29

Figure 4-17. When the user modifies directly the size of the lever (1), a mathematical interpretation of his
action is displayed (2). (Microsoft Encarta 99).

3.4. Related links

Related links are a collection of links to concepts that are in some way related to the concept
currently displayed’. They offer the opportunity to go deeper in the understanding of a par-
ticular concept. The figure 4-18 represents an application designed to explain the concept of
DNA chain. It offers links to related concepts such as “Genetic”, “Genetic code” or “Nucleic
and Deoxyribonucleic Acid”.

Figure 4-18. The concept of DNA chain (Microsoft Encarta 99).

3.5. Concepts manipulated definition

When presenting a concept, it is interesting to define the other concepts that are used in its
manipulation.

baieines tueuses, les
orques se reconnaissert a leur peau noire
et blanche. Chaque méichoire comporte
: 11 dents coniques acérées, idéales pour
. saisir ot déchirer les proles. Les orques
sort les plus grands prédateurs de lfocéan,

elies consommert presque tout ce qui

Figure 4-19. The definitions of whale and orka in the concept of alimentary pyramid (Microsoft Encarta 99).

¥ This principle is analogous to associative learning (2.4.3.4)

30 Chapter 4. Guidelines for the design of a multimedia course

In the figure 4-19, aquatical animals are used to explain the concept of alimentary chain.
When clicking on a particular animal representation, its definition is shown.

3.6. Instructions

In a concept manipulation application, it is also interesting to present the user some hints on
the possible course of actions. It can show what is the best manipulation scheme to apply in
order to get a better understanding of a concept. In the figure 4-20, an application presenting
the fundamentals of probability advice the user to select the amount of tries and to press the
“Lancer” button. It then recommends observing the occurrences of the number 7 over several
launches.

14 %

=

|

Figure 4-20. The concept of probability (Microsoft Encarta 99).

3.7. Bootstrapping

This fundamental principle states that every teaching process must follow the principles that it
presents. For instance, a driving teacher can not tell his student to drive under 50 km/h in
town while driving at the speed of 100 km/h !

4, Conclusion

In this chapter, we have researched some guidelines that will help us to develop the course
notes as well as the interactive applications. As we have a solid theoretical basis at our dis-
posal, we can now begin to describe the functionnalities of the environment. This is the pur-
pose of the next chapter.

Analysis

1. Introduction

As described in Chapter 2, our part of the VESALE project consists on the development of
the multimedia technologies database as well as the course notes related. In this chapter, we
will describe the functionnalities of the environment that we will implement.

First, we will describe which interactive applications could be implemented. Then we will
realise the conceptual analysis concerning the database. Afterwards, we will organise the
course notes and will incorporate in this structure both the database consultation and the inter-
active applications. Finally, we will research the best way to present the course to the stu-
dents.

2. Interactive applications

As stated in Chapter 3', it could be pedagogically interesting to provide interactive application
to manipulate some concepts related to the Interaction Objects (10Os).

As IOs are by nature interactive, it seems obvious that allowing students to interact with them
objects could considerably improve their learning. Therefore, we decided to provide an 10s
manipulation application.

! See chapter 3 section 3.3.

32 Chapter 5. Analysis

As the IOs selection mechanism is quite complex and contains lots of rules, it seems also suit-
able to provide the students with an application that will allow them to acquire an intuitive
feeling of the right IO to select in a particular case. Therefore we decided to develop a selec-
tion mechanism manipulation application.

2.1. I0s manipulation application

The first interactive application that we will develop is the IOs manipulation application.
2.1.1. Objectives of this application

Our objective in developing this application is not to teach how to program a User Interface
with IOs, but is to teach what is their potential.

Consequently, the primary goal of this application is to give the user a good comprehension of
the capabilities of some IOs. We want the user to be able to understand what can be done with
those objects, and therefore, what they are good for. This application will be particularly im-
portant for complex objects.

2.1.2. Abstract and Concrete interaction objects

An Abstract Interaction Object (AIO) is an object used for the input and the display of data
that the user can see, feel and manipulate. When working with AIOs, the focus is set on the
behaviour of the object instead of on his graphic representation.

A Concrete Interaction Object (CIO) is an instance of an AIO. It is synonymous to a control, a
physical interactor, a widget or a presentation object. Unlike AIOs, CIOs have a graphical
representation depending on the graphical and presentation tool they belong to.

2.1.3. Principles followed
In the development of this application, we will follow those principles’:

— Direct manipulation

The best way to understand exactly how an AIO works is certainly to manipulate it directly.
Therefore the application will provide a way of manipulating directly CIOs that are instances
of AlOs.

— Indirect manipulation

Giving the student the possibility to manipulate directly some AIOs is certainly not enough if
we want him to understand the full potential of those objects. An AIO presents some features
that can’t be manipulated directly such as its colour, its size or its orientation. Therefore, this
application will provide a way of manipulating the attributes of the AIOs, and will immedi-
ately reflect those changes.

? See chapter 4 section 3 for their definitions

Interactive applications 33

— Double reading

This double reading principle will be implemented as a consequence of the direct and indirect
manipulation features.

If the student changes the value of an attribute, he will perceive the result of his action of two
different ways. First, the value of the attribute will change and secondly, the object manipu-
lated will react to this change. Identically, if the student manipulates directly an object, he will
perceive the result of his manipulation on this object, and will secondly notice that an attribute
has changed.

— Related links

A few links to related concepts should be provided by the application. For instance, links to
the manipulated AIO description, to ergonomic rules or to the selection rules related to some
AlOs could appear on the interface application.

— Concepts manipulated definition

Some concepts manipulated will be defined whether on a linked web page or as “tooltips™ (or
hints). The main manipulated concepts in this application will be the attributes.

— Bootstrapping

At the level of this application, the bootstrapping principle will be implemented by giving the
user the opportunity to manipulate the CIOs that have been used in order to build the applica-
tion interface.

2.2. AlOs selection trees manipulation application

The second interactive application that we will develop is the selection tree manipulation ap-
plication.

2.2.1. AlOs selection tree

The concept of selection tree that we will use is excerpt from Jean Vanderdonckt’s Ph. D.
thesis [Vanderdonckt97, p. 151-206]. It provides a mechanism for the selection of I0s [Bo-
dart-Magnier99]’.

* The section 4.1.1. of appendix A provides a more detailed definition of the concept.

34 Chapter 5. Analysis

The Figure 5-1 represents a selection tree used for the selection of AIOs.

Selection tree

—| Criterion 1 value = value 1 Il

—, Criterion 1 value = value 2 Criterion 2 value = value 1

Criterion 2 value = value 2

Figure 5-1. A selection tree

A selection tree consists of nodes and leaves. A definition of those concepts follows.

— The nodes

A node is a decision point where the tree is divided into several sub-trees. (figure 5-2). When
reaching a node, the user has to decide what is the value of the criterion associated with the
node, and then go through the sub-tree connected to this particular value.

Tree if the value of the

N criterion is value 1
Criterion 1 value =valug 1 |--—vccmmmmm e

Tree if the value of the

Ak criterion 2 is value 2
CHReron 1 Yol = YA @' [moe—-~mmmmmm e e mia wo e -

Figure 5-2. A node

For instance, if the value of the criterion 1 is equal to value 2 (figure 5-3), then the upper part
of the tree is irrelevant and the user can go trough the lower part of the tree.

Selection tree

Criterion 1 value = vaiue 1
Criterion 1 vaiue = value 2

Figure 5-3. A selection tree

Interactive applications 35

— The leaves.

A leaf represents an AIO (figure 5-4). When the user reaches a leaf, it means that the selected
AIO for his particular needs is the AIO represented by the leaf.

SE— Ao

Figure 5-4. A leaf

2.2.2. Split selection tree
Even if we adapted Vanderdonckt’s selection tree [Vanderdonckt97, Appendix D p.60-68]"
during our internship at UPE in order to include some more suitable AIOs’, we decided to
take his trees without doing any modifications to develop this application. Anyway, while
developing it, we will consider the fact that the selection tree used might be adapted to include
new objects. A mechanism will be provided to allow the teacher to change easily the tree han-
dled by this application.

The size of the entire tree being quite considerable, we decided to split it into eight different
selection trees (named D1, D2, ..., D8) according to the type of the values handled. The Fig-
ure 5-5 shows the fop-level selection tree.

—' Selection of AlOs m

r| Type = Time F— [Treept T[]
1 S, __4—[Type = Date —{] Treep2]
— Type=Boolean | [TreeD3 ||
-—{ Type = Graphical }——1] Tree D4 j |
—{ Type=iteger }— [Treeps ||
— Type = Real —{ [Treeps []
—{ Type = Alphanumeric]—{ | Tree D7 [|

——(Interaction Type = Display i | Tree D8 l |

Figure 5-5. The selection tree and its sub-trees

Consequently, the student won’t navigate inside the entire tree, but inside one of the height
sub-trees defined.

2.2.3. Objectives of this application

The main objective that we want to achieve is that a student who has used this application for
some time will know exactly which AIOs he must or mustn’t use when developing an inter-
face. He would not be able to do so because he has learned the trees by heart but because he
got accustomed with each selection criteria. By acquiring reflexes, he will then be able to se-
lect the most suitable AIO for each particular case.

* See appendix A section 8.1 for a graphical version of Vanderdonckt's trees.
* See appendix A section 8.2 for a graphical version of our trees.

36 Chapter 5. Analysis

2.2.4. Principles followed
In the development of this application, we will follow those principles®:

— Indirect manipulation

An indirect manipulation feature will be provided. The key concepts that the user will ma-
nipulate are the selection criteria’. The student will be able to assign values to some selection
criteria and will immediately see the result of this indirect manipulation. This result will be
displayed as a partition of the AIOs included in the selection tree. The AIOs will be divided in
two distinct sets; one for the AIOs that can be selected according to the values assigned to the
selection criteria and one for the AIOs that can’t be selected.

For instance, if the user assigns the value “Low” to the “Density” criterion in the tree dis-
played in figure 5-6, then the AIOs set can be divided into two sub-sets:

e one containing the AIOs that can be selected, namely “AIO 17, “AIO 37, “AlIO 5” and
“AIO 77

e one containing the AIOs that can’t be selected, namely “AIO 27, “AlIO 4”, “AlIO 6”
and “AlO 8”

— Npoin[23] Densty = Low |—(=

Density =High |—(T

—{ Npoin [4MagN] Densty =Low |—()

M=t] WesedDomen |— T: Densty=Hgh |—(=
—{Noo in IMagh, Tm] Densty =Low |—(" =)

Densty = High |—(° T e)

L—{"Npo in JTm +inf) Densty =Low |—{(T T =)

Density = High H i S SE TO -)

Figure 5-6. A sub-tree of the main selection tree

— Double reading

A double reading feature will also be provided. As soon as a student assigns a value to a spe-
cific criterion, the application will indicate the implications in term of expected features for
the AIOs that can be selected.

For instance, if the student assigns the value “Unknown” to the “Domain” criterion, the appli-
cation will display the following message: “The AIOs that can be selected provide the possi-
bility for the user to add a value.”

The combination of this double reading principle with the indirect manipulation one will pro-
vide the following feature: the student will know that the objects displayed in the set of AIOs
that can be selected have the features described by the double reading messages. For instance,
in the example displayed in the figure 5-6, the assignment of the “Low” value to the

“ See chapter 4 section 3 for their definitions
" The criteria used in the selection trees are fully explained in [Bodart-Magnier99] section 4.1.2.1.

Interactive applications 37

“Density” criterion will display the following double reading message: “The AIOs that can
be selected can take up a lot of room space”. Therefore the user will know that the objects
displayed in the set of AIOs that can be selected take up a lot of room space.

— Bootstrapping

The principle of bootstrapping will also be implemented for the selection of the IOs used in
this application interface. This means that the components used in the interface will have to be
selected according to the selection tree handled by the application.

Consequently, the interface of this application might be used as an illustration in the course
notes related to the concept of selection tree.

— Concepts manipulated definition

The concepts manipulated will be defined inside the application interface. The main manipu-
lated concepts are:

e The selection criteria. As those concepts are fully explained in the course notes, a
link to a page illustrating each criterion should be provided.

e The AIOs. The AIOs have often names that are not very expressive like
“Scrollable Drop-Down Graphic List Box” or “Check Box + Editable Non-
Contextual Accumulator + Group Box”. Those concepts should therefore be illus-
trated by a picture representing an instance of those AIOs, as well as a link to their
definition pages.

— Related links

A few links to related concepts should be provided by the application. For instance, links to
the manipulation application, to ergonomic rules or to the selection rules related to some AIOs
could appear on the interface application.

— Instructions

Some instructions concerning the manipulations that the user can do will be displayed. For
instance, the application could tell the user that if a particular AIO is displayed in the list of
the objects that can’t be selected, the assignment of a specific value to a criterion will make
that this object could then be selected.

Moreover, if an AIO is displayed in the list of the AIOs that can be selected, the application
could tell the user that in order to make this object the only one that can be selected, some
criteria assignments should be made.

38 Chapter 5. Analysis

3. Interaction Objects database

The database we have to develop will contain information about interaction objects. The pur-
pose of gathering all this information about IOs in a database instead of creating static web
pages is to allow the teacher to easily insert the description of new objects.

First, we will decide on which information should be stored in the database. Secondly we will
analyse which extensions could be brought in the future in order to link this database to the
other bases of the VESALE project

3.1. Conceptual analysis

In this section we will describe all the entities and associations related to the concepts of
AIOs, CIOs, attributes, events, primitives and ergonomic rules®.

3.1.1. The AIO entity type

An AIO entity represents an Abstract Interaction Object and contains the following attributes:

e [daio: a short name which identifies the AIO
e Enname: the English name of the AIO

Frname: the French name of the AIO

Description: the description of the AIO

e Category: the category the AIO belongs to. The possible values are “action”,

“scrolling”, “static”, “dialog”, “control” and “feed-back”
e Manipurl: the URL of the manipulation application (if available)

The figure 5-7 gives the graphical representation of the AIO entity type.

aio
idaio
enname
frname
description
category
maniputl
id: idaio

Figure 5-7. The AIO entity type

¥ The entire conceptual schema is in appendix B section 1.

Interaction Objects database

The table 5-1 gives an example of a possible AIO entity.

Idaio: LIB

Enname: List Box

Frname: Liste de sélection

Description: A List Box displays the possible
choices in which the user can
select one or more than one.

Category: Control

Manipurl: /oia/oi/apps/listbox.class

Table 5-1. An instance of the AIO entity type

3.1.2. The Attribute, Event and Primitive entity types

An Attribute entity represents a management attribute of an AIO. It contains two attributes: a
name (which identifies it) and a description. The table 5-2 gives an example of a possible
instance of the Attribute entity type.

Name: ATTR_NB_ITEM_DISPLAYD
_LIST

Description : number of items displayed in a
list

Table 5-2. An instance of the Attribute entity type.

An Event entity describes an action that the user can execute on an AIO. It contains two at-
tributes: a name (which identifies it) and a description. The table 5-3 gives an example of a
possible instance of the Event entity type.

Name: EVT_ITEM_SELECTED_LIST
Description : Event generated when the user
selects an item in a list

Table 5-3. An instance of the Event entity type.

A Primitive entity describes an external manipulation primitive used to interact with an AIO.
It contains two attributes: a name (which identifies it) and a description. The table 5-4 gives
an example of a possible instance of the Primitive entity type.

Name: PR_ADD_ITEM_LIST
Description : Adds an item to the list
Table 5-4. An instance of the Primitive entity type.

An AIO can have from 0 to N Attributes, Events or Primitives. On the other hand, an Attrib-
ute, Event or Primitive can belong to from 0 to N AIOs. The figure 5-8 illustrates the relation-
ships between the AIO entity type and the Attributes, Events and Primitives entity types.

40 Chapter 5. Analysis

attribute
nm. y
id: name 0.N
exists i
—N : ‘aio
idaio
event h“\ enname
name | ON _._U-N frname
description| existsin @ has description|
id: catego:
id: name ON / mam?ou?{
A% id:idaio
0-N
exists in
primitive
name
description)
id: name

Figure 5-8. Relationships between the AIO entity type and the Primitives, Attributes and
Events entity types.

3.1.3. The Inheritance association type
An AlO can inherit from 0 to N AIOs. This relationship is illustrated is the figure 5-9.

0-N 0-N
isinherited by inherits from

aio
idsio
enname
frname
description|
category
manipurl
id:idaio

Figure 5-9. The inheritance association type

This inheritance association type between the AIO entity type and itself describes the fact that
an AIO is an aggregate of other AIOs and, therefore, inherits from the characteristics of its

aggregating objects. The figure 5-10 shows how the “Combo Box™ AIO is an aggregation of
two AIOs.

An Edit Box
A Combo Box [Comic sans Mg
Comic sans MS

A List Box

Figure 5-10: A Combo Box and its aggregating AIOs

Interaction Objects database 41

3.1.4. The CIO entity type

A CIO entity represents a concrete interaction object and contains the following attributes:

e Idcio: a number which identifies the CIO along with the instantiation association.
e Name: the name of the CIO

e Description: the description of the CIO

e Graphtool: the graphical tool of the CIO

e Prestool: the presentation tool of the CIO

The figure 5-11 gives a graphical representation of the CIO entity type as well as the instan-
tiation association type.

aio
idaio
enname
frname
desctiption]
category
manipurl
id: idaio

I
0-N

is instantiated by

1-1
instarlmates

cio

idcio

name

desctiption

representation

graphtool

prestool

id: instantiation is instantiated by
idcio

Figure 5-11. The CIO entity type and the instantiation association type |

3.1.5. The Ergrule entity type

An ergrule entity represents an ergonomic rule. It contains the following attributes:

Idrule : a number which identifies the rule

Rule: the content of the rule

Posex: a positive example illustrating a correct application of the rule
Posexillustr: an illustration of the positive example

Negex: a negative example showing the rule violated

Negexillustr: an illustration of the negative example

Justification: the justification of the rule

42 Chapter 5. Analysis

An ergonomic rule can concern from O to N AIOs. The ergonomic rule concept is much more
complex that what appears here. As part of this work, we limited ourselves to a basic ergo-
nomic rule entity type. This entity type will be significantly enhanced as part of a next stage
in the VESALE project.

aio ergrule
idaio idrule
enname rule
frname i 0-N sioesgrule O-N | posex
description] is concerned by CONCens posexillusty
category negex
maniputl negexillustr
id:idaio justification

id: idrule

Figure 5-12. The CIO entity type and the instantiation association type

3.2. Extensions

One of most important features of the VESALE project is the interconnection of the data-
bases. For instance, the Interaction Objects database could easily be linked with the video
sequence database which is not yet implemented.

The reasoned cases database could also be easily linked to the IOs database. It could indeed
be quite interesting to present to the user a few pictures showing a particular interaction object
used (either positively or negatively) in a particular context. This reasoned cases database is
being implemented at the moment by Rudy Michiels and Gaétan Prévot [Michiels-Prévot99].

4., Information architecture

At this stage, we will organise the course notes and will incorporate in this structure both the
database consultation and the two interactive applications.

First, we will divide the course into small pieces of information. Secondly, we will organise
those chunks according to the pedagogical scenarios defined in chapter 3°. Finally, we will
say a few words about how we have organised a conceptual navigation'’

Y See chapter 3 section 4
1" See chapter 4 section 2.2.2.4.

Information architecture 43

4.1. Course chunking

We have divided the course into information chunks according to the concepts they present''.
One chunk will be at a later stage displayed on one web page. Ideally, one chunk will contain
only one concept. Anyway, in some cases, the concept description will be too long to fit on
the one and a half screen limit stated in the guidelines. In that case, we will split the concept
into sub-concepts.

For instance, the concept of AIO was too long to fit on one page. The paper course first de-
fined the concept of AIO itself. It then explained how to describe an AIO. Finally it presented
the categories of AIOs. We have decided that the web version of the AIO concept definition
will be subdivided into three information chunks. A first chunk is the concept itself, which is
then subdivided into two sub-concepts: the description and the categories (figure 5-13).

AlO Concept

l
v v

AlO Description AlO Categories

Figure 5-13. The AIO concept information chunk and its two sub-concept.

We have applied the same process to the course concerning the AIO selection. Finally, we
obtained about forty chunks of information.

4.2. Pedagogical scenarios

Now that we have divided the course into information chunks, we have to organise them into
architectures. As stated in chapter 3'? we will organise the chunks according to two distinct
scenarios. We will also introduce a third scenario that corresponds to a particular VESALE
application: the apprenticeship as part of the live teaching.

4.2.1. Scenario 1: Objectivism oriented

In this scenario, we will approximately follow the paper course structure. The two interactive
applications will take place in two distinct sections and will follow their related theory.

5 i 8 G 5 i i 13 . . 14
This scenario is composed of a hierarchical architecture ~ along with a sequential one ™

' See chapter 4 section 2.2.1.
"2 See chapter 3 section 4

"7 See chapter 4 section 2.2.2.2
' See chapter 4 section 2.2.2.3

44 Chapter 5. Analysis

— Hierarchical architecture

The top level of the hierarchical architecture is shown in figure 5-14. You will find the com-
plete hierarchical architecture of this scenario in Appendix C"°.

10 Selection

l I })

Interactive
Objects

Table of contents AlOs database Selection trees AlOs selection

Figure 5-14 The top-level hierarchical architecture of the Objectivist scenario

— Sequential architecture

The top level of the sequential architecture is shown in figure 5-15. You can find the complete
sequential architecture in Appendix C'°.

IO Selection

hd 2 ¥

Interactive
Objects

Table of contents |—»f -+ AlOs database |+ Selectiontrees » AlOs selection

Figure 5-15 The top-level sequential architecture of the Objectivist scenario

: 4.2.2. Scenario 2: Constructivism oriented

This scenario will divide the course into two main parts: the inferactive objects and the A10s
selection. The first part will begin with the IOs manipulation application while the second will
begin with the selection tree application.

This scenario is composed of a hierarchical architecture along with a sequential one:

— Hierarchical architecture

The top level of the sequential architecture is shown in figure 5-16. You can find the complete
sequential architecture in Appendix e

15 See appendix C section 1.1
' See appendix C section 1.2
' See appendix C section 2.1

Information architecture 45

|O Selection

4 k. ¥

Interactive .
Table of contents Objects AlOs selection

Figure 5-16. The top-level hierarchical architecture of the Constructivist scenario
— Sequential architecture

The top level of the sequential architecture is shown in figure 5-17. You can find the complete
sequential architecture in Appendix bl

|O Selection

|

4 L4
Interactive
Objects

Table of contents AlOs selection

Figure 5-17 The top-level sequential architecture of the Constructivist scenario

4.2.3. Customisable life teaching scenarios

If a teacher uses the VESALE environment during a lecture, he could want to reorganise the
course according to the currently taught matter.

One solution could be to provide the teacher with a dedicated interface in which he can select
and order the pages or applications of the course that he wants to present during his next lec-
ture. Once the pages are selected and ordered, the system could generate a specific scenario
including a hierarchical and a sequential navigation containing only the content selected by
the teacher. We don’t intend to implement this features and, therefore, we won’t go any fur-
ther in its development.

4.3. Conceptual navigation

The conceptual navigation is independent from any navigation scheme and therefore is com-
mon to all scenarios. It is supported by embedded and associative learning links'?.

Every time the user encounters a concept that is defined in another page, an embedded link to
its definition page will be provided.

" See appendix C section 2.2
' See chapter 4 section 2.4.3.4.

46 Chapter 5. Analysis

Associative learning intend to organise the course according to a conceptual graph. We have
decided not to build this conceptual graph as part of this thesis, and consequently, not to in-
clude those conceptual links in the course.

5. Page structure

Now that we have content organised in scenarios, we have to think about a consistent way of
presenting it to the learner. The web design guidelines described in chapter 4% will help us in
developing a web page structure that will be usable, i.e. memorable, easy to learn and pleas-
.22

n g2
5.1. Site identity and sobriety

A student reading the course has to be fully focused on the content. He should not have to
adapt himself to each page of the site. Each individual page must present a same layout grid,
navigation scheme and graphical stylezz.

Furthermore, it is important to think the site in term of sobriety” . Once again, we must not
forget that our audience is composed of students who want an effective design that serves

usability.

Site identity and sobriety are two capital elements to keep in mind when thinking about the
navigation and the pages layout.

5.2. Navigation

Some elements are fundamentals in order to build context>* and must therefore be included on
each page of the site.

First, all pages must show a logo of the site providing a link to its home page. This logo could
be either the university’s logo or a specific logo for the project. This second solution seem to
be better since a link to the VESALE home page on the university’s logo can be confusing for
users.

Secondly we will provide hierarchical, sequential and conceptual navigation systems inside
the pages.

5.2.1. Hierarchical navigation system

The hierarchical navigation system of a chapter will present the structure of the information in
a clear and consistent way and indicate the location within the hierarchical organisation.

2 See chapter 4 section 2

2! See chapter 4 section 2.1.

22 See chapter 4 section 2.4.1
2 See chapter 4 section 2.4.2
2 See chapter 4 section 2.4.3.1

Page structure 47

In order to ensure that the student can build a good mental model of a chapter structure, we
will provide the following information on every pages:

The chapter name presented as a link to the chapter’s first page

The current section name

The position of the page in the chapter hierarchy presented as a hypertext menu
The numeric position of the page in the chapter

In addition to the elements described above, the hierarchical navigation system will include a
table of contents for the chapter.

5.2.2. Sequential navigation system

The sequential navigation system will allow the user to view the next as well as the previous
page in the sequential organisation of the course.

5.2.3. Conceptual navigation system

A dedicated place in the page structure will be reserved in order to bring to the fore the em-
bedded and associative learning links.

If a link redirects the user to an external web site, it must be clear for the user that following
this link will take him to another site. This can be achieved by preceding external links with a
special icon.

5.3. Page layout

Now that we have identified all the elements that will be displayed on each page, we have to
find a way to organise them in a layout grid®.

5.3.1. Visual contrast

As suggested in Chapter 4°°, we will try to build a layout with a strong visual structure and a
good contrast. We will adopt a structure divided into four major parts: header, left column,
text body and footer as shown in figure 5-18.

Figure 5-18. The general visual aspect of a page

* See chapter 4 section 2.4.4.
% See chapter 4 section 2.4.4.1.

48 Chapter 5. Analysis

5.3.2. Layout grid

Now that we know which elements will be part of the pages structure and that we have a gen-
eral idea of the visual layout we can build a layout grid that will be used throughout the site®.

The logo, being the guaranty of the site identity will be placed in the top left corner of the
page. Therefore, the logo will be a sort of intersection between the left column and the header

section.

The header section will regroup simple navigation information helping the user to know
which page he is reading. Additionally, the header section will provide the user with the se-
quential way of browsing the course. Consequently, this section will regroup the chapter
name, the page name, the numeric position of the page in the chapter and the sequential navi-
gation bar.

The left column will regroup more complex navigation information. It will provide the user

with the exact position of the page inside the chapter as well as all kinds of related content
links. Consequently, this section will regroup the section structure and the embedded links.

Finally, the footer section will provide copyright information as well as a copy of the sequen-
tial navigation bar.

The figure 5-19 shows our page structure.

VESALE
LOGO

Chapter
Structure

See Also

Figure 5-19. The layout grid of the site pages

?7 See chapter 4 section 2.4.4.2.

Conclusion 49

5.4. Dynamic navigation generation

As pleasing as it may seem, this navigation scheme suffers from its apparent complexity and
its total lack of flexibility. For instance, if the teacher wants to add a page in the middle of a
chapter, he has to change the surrounding pages sequential navigation bars and the section
structure in almost every pages as well as the table of contents.

Keeping in mind that we have to improve flexibility without sacrifying usability, we must
find a way to generate all the navigation elements dynamically.

The best way to achieve this goal is to generate all navigational parts of a page according to
one unique table of content. Therefore, adding a page to the course will be as easy as modi-
fying this unique table.

6. Conclusion

In this chapter, we described the elements that we will develop as part of this thesis. What we
need now is suitable technologies in order to implement them. This is the purpose of the next

chapter.

Technology choices

1. Introduction

In chapter 5, we have described the elements that we will develop as part of this thesis. In this
chapter explains we will explain how we selected the most suitable technologies in order to
implement those elements.

While we were working on this thesis, the technologies that will be used for the VESALE
project were not yet selected. Therefore, we had to make our own technological choices. Nev-
ertheless, we tried as far as possible to use platform independent technologies so that the re-
sult of this work could be effectively incorporated into the project.

First, we will explain why our architecture is typically a three-tier one. Then, we will select
technologies for each tier, namely: client-side, middleware and database.

52 Chapter 6. Technology choices

2. Three-tier architecture

The architecture of our project is typically a three-tier architecture as shown in figure 6-1.

Client System -
=3
D Database
LS
Middleware

Client System

Figure 6-1. A three-tier architecture

The first tier is composed of all the client systems making HTTP request to the web server
placed in the middle-tier. As the HTTP protocol is platform independent, the client systems
can be of any kinds as long as they support this protocol at the top of the TCP/IP protocol.

The web server composes the middle-tier along with the technology used to serve and gener-
ate web pages. The middleware is linked to both the client systems using the HTTP protocol
and to the DBMS?.

The third tier is composed of the database. Its goal is to store data and to respond to the que-
ries executed by the middle-tier.

3. Client-side technologies

In order to reach our objectives, we need client-side technologies able to do the following
things:

e To present information content to the user. This point has already been discussed
and the technology used will be HTML.

e To provide a way to execute applications such as the IOs manipulation application
and the selection trees application.

' HyperText Transfer Protocol
? DataBase Management System

Client-side technologies 53

As we said before, the client systems can be of any kinds as long as they support the HTTP
protocol at the top of the TCP/IP protocol and provide a way of presenting HTML formatted
information, namely a browser. As long as those conditions are respected, our system will be
cross-platform.

Today’s crop of web browsers are far more than data readers [Goodman98, p.15]. Each one
includes a highly customised content rendering engine, a scripting language interpreter, a link
to a custom Java virtual machine (JVM), security access mechanisms, and connections to re-
lated software modules. The instant we decide to author content that will be displayed in a
web browser, we must concern ourselves with the capabilities built into each browser. Fortu-
nately, there is a certain level of interoperability due to industry-wide standards.

The VESALE Project specifications states that the browser used will be Netscape Navigator
4.x. As far as possible, we will try to stay cross-browser. Nevertheless, it is possible that one
of our applications run perfectly on Netscape Navigator and shows an undesired behaviour
when executed on Internet Explorer. Concerning the course notes, we will try to create
browser-independent pages.

3.1. Hypertext Mark-up Language

Hypertext Mark-up Language (HTML) is the lingua franca for publishing hypertext on the
World Wide Web [Raggett99]. It is a non-proprietary format based upon W3C recommenda-
tions and uses tags to structure documents.

HTML can be created and processed by a wide range of tools, from simple plain text editors
to sophisticated “What You See Is What You Get” (WYSIWYG) authoring tools. The most
powerful tools are situated between those two extremes; they offer the advantages of a
WYSIWYG editor as well as the flexibility of a plain text editor. We will use such a tool in
order to build our pages, namely Dreamweaver 2.0 by Macromedia.

3.2. Cascading Style Sheets

As stated in our analysis of the problem’, we want a site that possesses its own identity. This
identity concerns as far the graphical aspect as the typographical one. To ensure that each
page of the site is rendered equally, using the same typographical conventions, we have de-
cided to use the Cascading Style Sheet (CSS) feature. This CSS technology is implemented in
both 4.x versions of Internet Explorer and Netscape Navigator.

A style sheet is a definition of how content should be rendered on the page [Bos99]. The link
between a style sheet and the content it influences is either the tag name of the HTML ele-
ment that holds the content or an identifier associated with the element by way of an attribute
(CLASS attribute). That’s how the separation of style from content works: the content is igno-
rant of the style and the style is ignorant of the content.

¥ See chapter 5 section 5.1.

54 Chapter 6. Technology choices

The following example (figure 6.2) shows how the <H1> tag is normally rendered in Net-
scape Navigator and how it looks like using a style sheet definition.

<html> <htrl>

<head> <head>

<title>Without Style</title> <title>With Style</title>

</ head> <link rel="stylesheet" href="style.css"></head>
<body bgcolor="#FFFFFF"> <body bgcolor="#FFFFFF">

<hl>Header 1 without style</hl>| <hl>Header 1 with style</hl>

</body> </body>

</html> </html>

l

a,chaph { font-family: Arial, Helvetica, sans-3sesrif;
font-size: 12pt; font-weight: bold: color:
text-transform: none : text-decoration: none;
rext-indent: Spxz; border-color: #9CCEQC klack black:
font-family: "Comic Sans MS"; font-size: 18pt:;
text-decoration: underline: font-style: italic}
v { font-familv: Verdana, Arial, Helvetica,
font-asize: 12pt; ylor: #414167; text-deco
text-indent: 10pt}

hi

-

: undexline

v

Header 1 without style Header 1 with style
Figure 6-2. A HTML header with and without the style sheet definition

3.3. Client-side applications: Java

The best way to present an application to the user without breaking the continuity of the web
course is to execute it directly in the browser.

The two major technologies to do such a thing are Microsoft’s ActiveX and Sun’s Java. As
we explained earlier, the projects specifications states that Netscape Navigator will be fa-
voured to the detriment of Internet Explorer. As ActiveX is a Microsoft proprietary standard
and can only be used freely with Internet Explorer4, we can not use this technology. Conse-
quently, we will use Java to implement the interactive applications. Those applications will
be implemented as Java applets using components from the Swing library.

3.3.1. Java

Java is two things: a platform5 and a simple, architecture-neutral, object-oriented, portable,
distributed, high-performance, interpreted, multithreaded, robust, dynamic and secure high-
level programming language® [Sun99al.

Java is also unusual in that each Java program is both compiled and interpreted. With a com-
piler, a Java program is translated into an intermediate language called Java bytecodes. The
bytecodes is the platform-independent code interpreted by the Java interpreter. With an inter-
preter, each Java bytecodes instruction is parsed and run on the computer.

* A paying plug-in exist for Netscape Navigator

3 For more details about the Java Platform, See “The Java Tutorial”, http://java.sun.com/docs/books/tutorial/index.html
® Those words are explain in details by James Gosling and Henry McGilton “The Java Language Environment”,
http:/jjava.sun.com/docs/white/langenv/

Client-side technologies 55

Compilation happens just once; interpretation occurs each time the program is executed. The
figure 6-3 illustrates how this works.

,—» Interpreter
' Program.class 1001001101100 D
Program java

Figure 6-3. Difference between Compilation and Interpretation in Java

Java bytecodes can be seen as the machine code instructions for the JVM. Every Java inter-
preter, whether it’s a Java development tool or a web browser that can run Java applets, is an
implementation of the JVM. Java bytecodes help make "write once, run anywhere" possible.
Java programs can be compiled into bytecodes on any platform that has a Java compiler. The
bytecodes can then be run on any implementation of the JVM (figure 6-4).

Java

Program class

Win32 JVUM Solaris JVM MAC JVM

Macintosh
Figure 6-4. The cross-platform functionality of Java

The Java code is compiled into bytecodes by the JDK’. Some IDE?® exists to make Java pro-
gramming easier. We will use such a tool, namely Borland’s JBuilder 2.0.

3.3.2. Java applet

A Java applet is a Java program that adheres to certain conventions that allows it to run
within a Java-enabled browser such as Netscape Navigator or Internet Explorer. Unlike an
ActiveX control that is downloaded just one time, a Java applet is downloaded every time it’s
needed.

3.3.3. Swing

Swing9 is a Java API'® that simplifies and streamlines the development of UI components.
The Swing components are the visual components (such as menus, tool bars, dialogs...) that
are used in graphically based applets and applications'".

7 Java Development Kit

* Integrated Development Environment

? officially known as Java Foundation Class

' Application Programming Interface

' list of the swing component is provided in the appendix A section 8.5.

56 Chapter 6. Technology choices

One the most important feature of Swing components is that they are lightweight [Sun99a].
That means they dont use any platform-specific implementations. Instead, Swing creates its
components using pluggable look-and-feel (L&F) modules that are written from scratch and
don’t use any peer code at all. Consequently, Swing components can typically be incorporated
into a program using less code that older "heavyweight" components required'. Therefore,
Swing components use fewer system resources and produce smaller and more efficient appli-
cations than their heavyweight AWT counterparts. Swing has three standard L&F: Metal,
Window and Motif.

3.3.4. Java Plug In

If the use of Swing components will enhance greatly our application interfaces, it is a also an
issue. Even if it is now part of the Java 2 platform (aka JDK 1.2), it is unfortunately not fully
supported by the current versions of the web browsers. In order to execute an applet that uses
Swing components, the browser has to be upgraded with the adequate plug-in.

A plug-in is an implementation of the part of a browser that dynamically loads when needed
[Friesen99]. Both Netscape and Microsoft have added this feature to their browsers.

Sun's solution to the fact that the current browsers don’t support the Swing classes is the crea-
tion of a plug-in for Java, known as Java Plug-in.

3.4. The UPE high-level components

During our stay at the University of Port Elizabeth (South Africa), we designed a library of
High Level Components'® using Swing. What we decided to call the High Level Components
are final components opposed to the Low Level Components, which are non-final components.
That means that the user can include them directly into a form. They have simple methods and
properties that make them easy to use.

When working with High Level Components, the user will have to write minimal code to fi-
nally get complete and useful components. The High Level components are the combination
of Low Level Components, which means that the entire interaction between those components
is already implemented inside the High Level Components. This library will be used to design
our applications.

4. Middleware

A middle tier is something that helps connecting one endpoint to another (an applet to a data-
base, for example) and along the way adds a little something of its own [Hunter98, p.244].
The most compelling reason for putting a middle tier between a client and a data source is that
software in the middle tier (commonly referred to as middleware) can include business logic.
Business logic abstracts complicated low-level tasks (such as updating database tables) into
high-level tasks (placing an order), making the whole operation simpler and safer.

In our case, the middleware will be used for several applications.

"2 a more detailed description of the Swing architecture is provided in appendix A section 4.2.1.3.
'* more details about the development of this library are available in appendix A

Middleware 57

First, the middleware should provide a way to generate or modify web pages. This will be
used in the following situations:

e When the user requests a dynamic page which must be generated from data stored
in the database.
e When the user requests a static page whose navigation will be placed dynamically.

Secondly, the middleware should provide a way to access directly the IOs database. This will
be used in the following situations:

e When the teacher wants to update the IOs database.
e When an applet needs some information about IOs stored in the database.

4.1. Dynamic pages generation

At this stage we have to find a technology able to generate and modify web pages dynami-
cally. Lots of products on the market provide that feature and in such a fast moving market,
new technologies appears every month.

The implementation of the VESALE project has not started yet and consequently, we don’t
want our programs to be too dependent of a particular technology.

4.1.1. CGlI

The Common Gateway Interface, normally referred to as CGI, was one of the first practical
techniques for creating dynamic content [Hunter98, p.2]. With CGI, a web server passes cer-
tain requests to an external program. The output of this program is then sent to the client in
place of a static file. The advent of CGI made it possible to implement all sorts of new func-
tionality in web pages, and CGI quickly became a de facto standard, implemented on dozens
of web servers.

It's interesting to note that the ability of CGI programs to create dynamic web pages is a side
effect of its intended purpose: to define a standard method for an information server to talk
with external applications. This origin explains why CGI has perhaps the worst life cycle
imaginable. When a server receives a request that accesses a CGI program, it must create a
new process to run the CGI program and then pass to it, via environment variables and stan-
dard input, every bit of information that might be necessary to generate a response. Creating a
process for every such request requires time and significant server resources, which limits the
number of requests a server can handle concurrently. The figure 6-5 illustrates how a process
is created for each request.

CGI-Based Web Server

Request for CGI1 Child process for CGI1

Request for CGI2 Child process for CGI2

Request for CGI1 Child process for CGI1

Figure 6-5. Te CGl life cycle

58 Chapter 6. Technology choices

Even though the FASTCGI technology alternative improves this process proliferation prob-
lem by creating a single persistent process for each FastCGI program, it is still resources con-
suming.

Another problem with this CGI technology is that it does nothing to help a CGI program to
interact more closely with the server.

4.1.2. Server specific technologies

A few others server specific technologies are available in order to create dynamic content:

— Server extension APIs

Several companies have created proprietary server extension APIs for their web servers
[Hunter98, p.4]. For example, Netscape provides an internal API called NSAPI (now becom-
ing WAI) and Microsoft provides ISAPI. Using one of these APIs, it is possible to write
server extensions that enhance or change the base functionality of the server, allowing the
server to handle tasks that were once relegated to external CGI programs. As the figure 6-6
illustrates, server extensions exist within the main process of a web server.

Web Server with Server Extension API

Request for

ServerExtensionl Serverin ‘

Request for
ServerExtension2

Request for "\ ServerExtension 2
ServerExtensionl . ; :

Figure 6-6. The Server Extensin life cycle

Because server-specific APIs use linked C or C++ code, server extensions can run extremely
fast and make full use of the server's resources. Server extensions, however, are not a perfect
solution by any means. Besides being difficult to develop and maintain, they pose significant
security and reliability hazards: a crashed server extension can bring down the entire server.
And, of course, proprietary server extensions are inextricably tied to the server API for which
they were written and often tied to a particular operating system as well.

— Active Server Pages

Microsoft has developed a technique for generating dynamic web content called Active Server
Pages, or sometimes just ASP [Hunter98, p.5]. With ASP, an HTML page on the web server
can contain snippets of embedded code (usually VBScript or JScript, although it's possible to
use nearly any language). This code is read and executed by the web server before it sends the
page to the client. ASP is optimised for generating small portions of dynamic content.

Middleware 59

— Server-side JavaScript

Netscape too has a technique for server-side scripting, which it calls server-side JavaScript, or
SSJS for short [Hunter98, p.5]. Like ASP, SSJS allows snippets of code to be embedded in
HTML pages to generate dynamic web content. The difference is that SSJS uses JavaScript as
the scripting language. With SSJS, web pages are precompiled to improve performance. Sup-
port for server-side JavaScript is available only with Netscape FastTrack Server and Enter-
prise Server Version 2.0 and above.

Although all these technologies are among the most efficient for creating dynamic content,
they are all tied to a specific web server. At this stage of the VESALE project, no decisions
have been made concerning the web server used. Consequently, it would be injudicious to opt
for one of these technologies considering that the switch from a server to another would re-
quire the rewriting of the whole code.

4.1.3. Java servlets

On the web, middle tiers are often implemented using Java servlets [Hunter98, p.6]. A servlet
is a generic server extension (a Java class) that can be loaded dynamically to expand the
functionality of a server. They provide a convenient way to connect clients built using HTML
forms or applets to back-end servers. A client communicates its requirements to the servlet
using HTTP, and the business logic in the servlet handles the request by connecting to the
back-end database. Moreover it provides several techniques to generate dynamic web pages.

4.1.3.1. Servlets life cycle

Servlets are commonly used with web servers, where they can take the place of CGI scripts. A
servlet is similar to a proprietary server extension, except that it runs inside a JVM on the
server (figure 6-7), so it is safe and portable. Servlets operate solely within the domain of the
server: unlike applets, they do not require support for Java in the web browser.

Java Servlet-based Web

Request for
Servlet 1

Request for Servlet 1
Servlet 2 4

Request for I« servlet 2
Servlet 1

Figure 6-7. The servlet life cycle

Unlike CGI and FastCGI, which use multiple processes to handle separate programs and/or
separate requests, separate threads within the web server process handle all servlets. This
means that servlets are also efficient and scalable. Because servlets run within the web server,
they can interact very closely with it to do things that are not possible with CGI scripts.

60 Chapter 6. Technology choices

Another advantage of servlets is that they are portable: both across operating systems as we
are used to with Java and also across web servers. All of the major web servers support them.

4.1.3.2. Servlets features

We believe that servlets offer a number of advantages over other approaches, including port-
ability, power, efficiency, endurance, safety, elegance, integration, extensibility, and flexibil-
ity. Let's examine each in turn [Hunter98, p.10].

— Portability

Because servlets are written in Java and conform to a well-defined and widely accepted API,
they are highly portable across operating systems and across server implementations. It is
possible to develop a servlet on a Windows NT machine running the Java Web Server and
later deploy it effortlessly on a high-end Unix server running Apache.

— Power

Servlets can harness the full power of the core Java APIs: networking and URL access, mul-
tithreading, image manipulation, data compression, database connectivity, internationalisa-
tion, remote method invocation (RMI), CORBA connectivity, and object serialisation, among
others.

Servlets are also well suited for enabling client/server communication. With a Java-based
applet and a Java-based Servlet, object serialisation is used to handle client/server communi-
cation quite easily. This object serialisation feature allows an applet and a servlet to exchange
Java objects without having to develop a custom protocol the handle the communication.

— Efficiency and endurance

Servlet invocation is highly efficient. Once a servlet is loaded, it generally remains in the
server's memory as a single object instance. Thereafter, the server invokes the servlet to han-
dle a request using a simple, lightweight method invocation. Unlike with CGI, there's no pro-
cess to spawn or interpreter to invoke, so the servlet can begin handling the request almost
immediately. Multiple, concurrent requests are handled by separate threads, so servlets are
highly scalable.

Servlets, in general, are naturally enduring objects. Because a servlet stays in the server's
memory as a single object instance, it automatically maintains its state and can hold on to ex-
ternal resources, such as database connections, that may otherwise take several seconds to
establish.

— Safety

Servlets support safe programming practices on a number of levels. Because they are written
in Java, servlets inherit the strong type safety of the Java language. In addition, the servlet
API is implemented to be type-safe. While most values in a CGI program, including a nu-
meric item like a server port number, are treated as strings, values are manipulated by the
Servlet API using their native types, so a server port number is represented as an integer.
Java's automatic garbage collection and lack of pointers mean that servlets are generally safe

Middleware 61

from memory management problems like dangling pointers, invalid pointer references, and
memory leaks.

Servlets can handle errors safely, due to Java's exception-handling mechanism. If a servlet
divides by zero or performs some other illegal operation, it throws an exception that can be
safely caught and handled by the server, which can politely log the error and apologise to the
user. If a C++-based server extension were to make the same mistake, it could potentially
crash the server.

— Elegance

The elegance of servlet code is striking. Servlet code is clean, object oriented, modular, and
amazingly simple. One reason for this simplicity is the Servlet API itself, which includes
methods and classes to handle many of the routine chores of servlet development. Even ad-
vanced operations, like cookie handling and session tracking, are abstracted into convenient
classes.

— Integration

Servlets are tightly integrated with the server. This integration allows a servlet to co-operate
with the server in ways that a CGI program cannot. For example, a servlet can use the server
to translate file paths, perform logging, check authorisation, and, in some cases, even add us-
ers to the server’s user database. Server-specific extensions can do much of this, but the proc-
ess is usually much more complex and error-prone.

— Flexibility

Servlets are also quite flexible. For instance, a HTTP Servlet can be used to generate a com-
plete web page using lots of different methods.

4.1.3.3. HTTP request handling

When a client connects to a server and makes an HTTP request, the request can be of several
different types, called methods [Hunter98, p.14]. The most frequently used methods are GET
and POST. Put simply, the GET method is designed for getting information, while the POST
method is designed for posting information.

The GET method, although it's designed for reading information, can include as part of the
request some of its own information that better describes what to get, such as an x, y scale for
a dynamically created chart. This information is passed as a sequence of characters appended
to the request URL in what's called a query string. Placing the extra information in the URL in
this way allows the page to be bookmarked or emailed like any other.

The POST method uses a different technique to send information to the server because in
some cases it may needs to send megabytes of information. A POST request passes all its
data, of unlimited length, directly over the socket connection as part of its HTTP request
body. The exchange is invisible to the client. The URL doesn't change at all. Consequently,
POST requests cannot be bookmarked or emailed or, in some cases, even reloaded.

62 Chapter 6. Technology choices

The servlet instance loaded inside the memory of the web server simply needs to define a do-
Get() function to be able to respond to GET request and a doPost() function to be able to re-
spond to POST requests. The response to a specific HTTP request returned by the web server
is the value returned by either the doGet or doPost functions. The result can be either an
HTML page, a string, a Java serializable object, a picture or any kind of media. The figure 6-7
illustrates how the web server handles an HTTP request.

Get Request » || Get Request
—=]
l4——Get Response———| [=] | f¢———Get Response
—Post Request———m(] Post Request

- [4———Post Response——— ml[m“ 4——Post Response
gooon

Client System Web Server Servlet Instance

Figure 6-7. An HTTP servlet handling GET and Post request

4.1.3.4. Pages generation using serviets

The Servlet API provides various ways to generate dynamic web pages. The main methods
are the following:

— Server-side includes

Servlets can be embedded inside HTML pages with something called server-side include
(SSI) functionality [Hunter98, p.27]. In many servers that support servlets, a page can be pre-
processed by the server to include output from servlets at certain points inside the page.

A server that supports SSI detects the <SERVLET> tag in the process of returning the page
and substitutes in its place the output from the Servlet (figure 6-8).

<HTML>
<HEAD>
request l@
) B)
(=] <HEAD>
<BODY>
L <SERVLET CODE=Seet1>
</SERVLET>
erse | [N '
) joaooo
/ \ </BODY>
Web Server <HTML>

Figure 6-8. Server-side include

— Servlet chaining

In many servers that support servlets, a request can be handled by a sequence of servlets
[Hunter98, p.30]. The request from the client browser is sent to the first servlet in the chain.
The response from the last servlet in the chain is returned to the browser. In between, the out-

Middleware 63

put from each servlet is passed (piped) as input to the next servlet, so each servlet in the chain
has the option to change or extend the content (figure 6-9).

request

I T
0000000 K

Web Server

Figure 6-9. Servlet chaining

Servlet chaining can change the way web content creation is approached. For instance, a site
can be improved by replacing automatically some custom tags on every page served by the
web server.

— Java Server Pages

Recently, Sun announced a new way to use servlets, called Java Server Pages (JSP)
[Hunter98, p.37]. JSP's functionality and syntax bear a remarkable resemblance to ASP
(4.1.2).

JSP operates in many ways like server-side includes. The main difference is that instead of
embedding a <SERVLET> tag in an HTML page, JSP embeds actual snippets of servlet code
(figure 6-10). It's an attempt by Sun to separate content from presentation, more convenient
than server-side includes for pages that have chunks of dynamic content intermingled with
static content in several different places.

Just like server-side includes and servlet chaining, JSP doesn't require any changes to the

Servlet API. But it does require special support in the web server. This support is not yet in-
cluded in most web servers but it's expected to be introduced soon.

Jsp file

<HTML>»

request E THEAD,
—=1 i
<HEAD
=
;% java code.... %>
response m”””"
—{ 100000 —
Web Server hilas

Figure 6-10. Generating Java Server Pages

64 Chapter 6. Technology choices

Unfortunately, the JSP technology is still too young and therefore too unstable to be used to
generate pages.

The SSI technology is efficient and implemented in most web servers supporting servlets but
can be not very efficient in certain applications. For instance, if the result of a same database
query has to be placed at several scattered places on a same web page, the query will be exe-
cuted as many times as the <SERVLET> tag is included in the page as shown in the figure 6-
11. Consequently, this would not be the best technology to use in order to generate our web
pages from data stored in the IO database.

<HTML>
<HEAD>

</HEAD>
<BODY>

<SERVLET CODE=Sendet1>
</SERVLET>

<SERVLET CODE=Senet1> | Database
</SERVLET>

<SERVLET CODE=Senet!>
</SERVLET>

</BODY>
</HTML>

Figure 6-11. A page including three includes

The servlet chaining technology would certainly be the most efficient considering our specific
needs, namely generating a dynamic page from data stored in the database and adding dy-
namically the navigation features to the pages served. For instance, we could add a servlet in
the chain whose work is to add the navigation features. Identically, the dynamic pages could
be generated by passing them to a particular servlet in the chain whose job would be to re-
place specific tags by the content of a single database query.

4.1.4. Pages generation technology choice

From all this, it appears that the servlet technology is the most adapted to our specific re-
quirements. This Java-based architecture that we opted for presents the advantage of being
platform independent.

In order to generate and modify the web pages served, we will use mainly the servlet chaining
method.

4.2. Database connectivity : the JDBC API

Now that we have opted for the servlets technology on the middleware, we need a method to
communicate with a database using the Java programming language. The solution provided
by Java is called the JDBC'* API.

" Java DataBase Connectivity

DBMS 65

JDBC is an SQL' level API, which means that it allows the construction of SQL statements
and their embedding inside Java API calls [Reese97, p.51]. In short, programmers basically
use SQL. JDBC lets programmers smoothly translate between the world of the database and
the world of the Java application. The results from the database, for instance, are returned as
Java variables, and access problems get thrown as exceptions. JDBC attempts to remain as
simple as possible while providing developers with maximum flexibility.

[f a Java program wants to communicate with a particular DBMS, it must register its specific
JDBC driver. As shown in the figure 6-12, a Java program can communicate with several

DBMSs.
/DWR

Sybase driver Oracle driver Informix driver

Sybase Oracle Informix

Figure 6-12. A Java program accessing several different DBMSs

Another very interesting feature of JDBC is that a programmer can develop an application
with a specific DBMS and decide suddenly to use another DBMS. If the new DBMS offers a
JDBC driver, the programmer won’t have to modify his program to take this change into ac-
count.

4.3. Java Web Server

The next step is to choose a web server supporting Java servlets. We opted for Sun’s Java
Web Server, unofficially considered the reference implementation for how a servlet engine
should support servlets [Hunter98, p.8]. It is written entirely in Java and is very easy to install
and configure.

The choice of a web server is not a crucial one at the moment as we opted for a platform in-
dependent technology, namely the Java servlets. If in later stages of the VESALE project it
appears that this web server is not suitable anymore, the servlets written could be instantane-
ously plugged into another web server.

5. DBMS

The choice of a DBMS to implement our IOs database was in fact a very simple one as it had
already been decided to use Oracle 8 to implement all the VESALE databases. As Oracle 8
provides a JDBC driver, it will be easy to make queries to the database through a Java pro-
gram using the JDBC API.

' Standard Query Language

66 Chapter 6. Technology choices

6. Conclusion

In this chapter, we have researched technologies and methods that will be used to develop our
part of the VESALE project. Those technologies being platform independent, the elements
that we will implement could be easily adapted for the technologies chosen for the VESALE

project.

In the next chapter, we will use those technologies to implement the elements described in the
analysis.

Design

1. Introduction

In this chapter, we will present the design process that we followed in order to implement the
elements described in chapter 5 using the technologies chosen in chapter 6.

First, we will describe the page template that we created for the course pages. Then, we will
explain how we created the IOs database and how we developed tools allowing the user to
manipulate it. Afterwards, we will explain how we generated dynamically both the navigation
and the IOs description pages. Thereafter, we will describe the interactive applications we
developed. Finally, we will explain how we have rewritten the course to adapt it for the web.

2. Page design

In this section, we will illustrate how we have designed a page template that will be used re-
peatedly throughout the course.

2.1. VESALE logo

The logo that will be displayed on every pages' must be simple and effective in its design. It
must be different from the University’s logo because it links to the VESALE Home Page.
Furthermore, the logo must convey a certain symbolic of what VESALE is.

! See chapter 5 section 5.3.2.

68 Chapter 7. Design

After some preliminary tests, we have realised three different logo concepts:

Our first logo (figure 7-1) represents a student juggling
with concepts. This logo has two major drawbacks: it is
difficult to identify the student at a lower scale and its
general aspect is a little too “childish”.

Figure 7-1. First logo

Our second logo (figure 7-2) symbolises the human
thinking with circles and the computer reasoning with
lines and bits. It also has drawbacks: it is not sober and
totally unscalable since details disappear at a lower
scale.

Figure 7-2. Second logo

Our third logo (figure 7-3) is simple, effective and scal-
able. The shape of the triple V reminds the support of
the course, namely the World Wide Web (WWW). The
black V represents the interaction between human

VES ALE thinking (V crossed by circles) and the machine (V
crossed by squares).

Figure 7-3. Third logo

We have decided to use the third logo because we think that it is the one who will fit better on
our pages and that convey the strongest symbolic.

2.2. Page structure

In order to design the page layout grid presented in the analysis® using HTML, we have cho-
sen to use HTML tables.

One of the advantages of tables for designing layout grids is that it has not to be symmetrical.
For instance, a table can have two columns but the left one can be composed of one row while
the right one has two (figure 7-4).

? See chapter 5 section 5.3.2.

Page design 69

Cell2
Celi3

Cell 1

<table border="1" width="75%">
<tr>
<td rowspan="2">Cell 1</td>
<td>Cell 2</td>
</tr>
<tr>
<td>Cell 3</td>
</tr>
</table>

Figure 7-4..4 simple table and the corresponding HTML code
Moreover, a table cell can contain another table.

We used asymmetrical and embedded tables to design our layout grid. The figure 7-5 shows
the general table design of the layout.

Chapter's Name] . -
Logo " Page Name ! Seqlvxenual yavgatxon Zone
Chapter
Structure Text Zone
Ad Hoc R = -
Navigation Copyright Information | Sequential Navigation Zone

Figure 7-5. The general table structure of the layout grid
Since tables are also used to place graphical elements at specific positions, the table structure

we designed is far more complicated that the one presented in figure 7-5. The final look of the
layout grid including all the graphical elements is presented in figure 7-6°.

Arrow Zone

‘VESALE

Search Zone

Text Zone
Chapter Structure

Ad Hoe Navigation

Copyright Information

Figure 7-6. The final layout grid including graphical elements

¥ The corresponding code is in appendix D section 1.

70 Chapter 7. Design

2.3. Cascading Style Sheet

The cascading style sheet® that we have designed is an external file called by every pages of
the site. Therefore, if we want to change the style of a specific element in every pages, all we
have to do is to modify this single file".

The tags we used for the navigation elements are subclasses of existing tags. For instance, the
left column links are subclasses of the “anchor” HTML element. This allows the designer of
the page content to use standard tags (e.g. P, H1 to H6) in order to include content in the page

body.

2.4. Navigation scenario

As presented in the analysis®, there are multiple ways of accessing a specific page in the
course. Therefore, a page will provide a way of accessing other pages according to the hierar-
chical and sequential architecture.

2.4.1. Sequential navigation

An arrow zone is displayed on every pages (figure 7-7). By simply clicking on the left arrow,
the previous page in the sequential architecture’ will be displayed. Identically, by clicking on
the right arrow, it is the next page in this architecture that will be displayed.

Moreover, when the user rolls the mouse over one arrow, a hint will indicate which concept is
presented in the linked page. The page order in the sequential architecture of the chapter is
displayed below the arrows.

ik
Environnement Physicue

Figure 7-7. The arrow zone
2.4.2. Hierarchical navigation

The left column shows the structure of the current section to the user (figure 7-8). In that
structure, the current sub-section of the page in the hierarchical architecture® is highlighted

with a white background.

* See chapter 6 section 3.2.

3 The style sheet code is in appendix D section 2.
“ See chapter 5 section 5.2.

" See chapter 5 section 5.2.2.

* See chapter 5 section 5.2.1.

Page design 71

s 30 W e 8 ek w i UL 3 or S U8
hames sk oot i e Bners s

3 nend® 2 3% 2 IaG as ¢ Deea soke I ot scitien pumbowan soamoa. 6. e gPo
TR W e sk T oo e

e i e

e o]

ravastano

Définition d'OIA

Figure 7-8. The hierarchical structure zone

Moreover, the pages provide links to both the chapter and section first pages. As shown in
figure 7-9, the zone 1 gives the names of the current page and chapter. The chapter’s name is
preceded by it’s position in the course structure and links to the chapter’s first page. The text
in zone 2 is the name of the chapter’s section containing the current page. It is preceded by its
order in the chapter structure and links to the section first page. Finally, the VESALE logo in
zone 3 links to the VESALE Home Page.

\//

VESALE;

ik S o S 2R e o i
ko 5 R SRy 2 | ol

by

Figure 7-9. The user can go back to the chapter’s first page (1) or to the
section’s first page (2). He can also access the site home page by clicking
on the VESALE logo (3).

2.4.3. Conceptual navigation

A dedicated place in the left column is reserved for a copy of the embedded links (figure 7-8
above).

T R PP P T T ey S = T 1 T e R e |

72 Chapter 7. Design

3. IOs database

3.1. Database physical schema

The physical schema of the IOs database’ has been derived from the conceptual schema'’

(figure 7-10).

. aip attr inheritance
. idaio Inh_idaio
attribute name idaio
nate id: idaio id: Inh_idaio
description name idaio
id: name acc acc
acc || refname ref: idaio
acc [l ace
refidaio ref: Inh_idaio
acc [ace
aioevent
idaio ai0 i
vy oo — .amergrule : ergrule
o a0 idrule idrule
HERE i SIS idaio rule
desctiption name frname - 1deule posex
id: name acc description Cidai i
: idaio osexillusty
ace {}\“_ ref: name category acc flegex
Py manipurl ref: idaio negexilluste
tel. 1acacm id:idaio acc justification
acce ref’ idrule o id:idrule
acc acc
aioprim
i idaio :
pmﬁve name cio
name T Is instantiated by
description name
— name o
id: name agin des cnpuon.
acc ‘C}\ A representation
NEB graphtool
ref: idaio prestsol
soc ?dcm : ;
id: Is instantiated by
idcio
acc
ref: Is instantiated by
acc

Figure 7-10. The 10s database physical schema

The most important choice we have made in the design of the database is to store all the
graphics as a string representing the picture’s URL rather than as a binary object. First, strings
are much easier to handle that binary objects. This decision will save us a lot of time when
exchanging pictures between HTML pages, servlets and the database. Secondly, the pictures
stored in the database will be mainly displayed inside HTML pages, which means that each
picture needs an URL to be embedded inside a page. It is much more efficient to insert the

? The SQL script used to generate the database is in the appendix B section 2.
1" See appendix B section 1.

10s database 73

URL of the picture file inside the page rather than having a servlet sending a binary stream
representing the picture to the user’s browser.

3.2. Database manipulation tools

3.2.1. HTML forms

The next stage is to provide the tools that will be used by the teacher in order to manipulate
the database. We decided to implement those tools as web pages using forms. HTML forms
are much easier to create and more efficient to use than Java applets for instance. They pro-
vide the basic interaction objects that we need such as edit boxes, drop—down combo boxes,
list boxes and multi-line edit boxes.

3.2.2. Request handling process

The HTML forms used to manipulate the database are linked with servlets in order to execute
database queries. The request handling process is illustrated in figure 7-11.

D | post Request— | =
=snrmnen

—-Post Confirmation—| Hm] HHH l4—Post ConfirmatioR—{
oo

Post Reques

Client System Web Server Call Method

|0DBUpdater

Execute query

10s database

Figure 7-11. The request handling process

When the user has fill in a form whose function is to update the database, he pushes on the
submitting button of the form. The result of this action is that a POST HTTP request will be
send to a particular servlet on the web server along with all the data entered by the user. This
servlet (IODBServlet) will gather all the data received and send it to the JODBUpdater object
by calling a database modification primitive (figure 7-11). This IODBUpdater object contains
what we would call the business logic of our application. For instance, if we want to change
completely the database, we just have to modify this object without having to update the
HTML forms and the JODBServlet.

74 Chapter 7. Design

3.3. Database content

Now that the database is created and that we have tools to update it, we have to fill it with
information concerning IOs. As part of this thesis, we will limit ourselves to a few demon-
stration IOs that we will develop entirely.

The main references that we will use to add content are the following:

e Une description orientée objet des objets interactifs abstraits utilisés dans les inter-
faces homme-machine [Vanderdonckt96]

e GUI design essentials [Weinschenk97]
GUI design handbook [Fowler98]

e Ameritech Graphical User Interface Standards and Design Guidelines [Ameri-
tech99]

e MacOs Graphical User Interface Standards and Design Guidelines [Apple99]

e Java Look and Feel Design Guidelines [Sun99b]

4. Dynamic pages generation

As stated in chapter 6'', we will use Java servlets to generate both the navigation elements
and the IOs description pages.

4.1. Dynamic navigation

As stated in chapter 5'%, we will generate all the navigation elements of the pages dynami-
cally. The idea is to provide the designers of the course syllabus with tools that give him
great flexibility concerning the course structure.

In a dynamic navigation generation, the course structure will be stored somewhere on the web
server or in a database. If the teacher wants to modify the course structure, he will only have
to modify the stored course structure.

The implementation of several pedagogical scenarios as described in chapter 5’ 7 would re-
quire the management of several course structures descriptions. However, we have decided by
simplicity to limit ourselves to the case of a unique course structure.

4.1.1. Course structure

To implement this dynamic navigation generation feature, we have first developed a way of
describing the course structure. This could be implemented either as a text file stored on the
web server or as part of the database.

The solution we opted for is the text file format. The course structure will be described in a
text file following a specific syntax'*.

' See chapter 6 section 4.

"> See chapter 5 section 5.4.

¥ See chapter 5 section 4.2.

" The course structure syntax is in appendix E section 1 and the course definition is in appendix E section 5.

Dynamic pages generation 75

4.1.2. Custom tag

Every static web pages on the server as well as the dynamic pages contain parts that have to
be replaced with the HTML code implementing the navigation elements. Those parts are
identified by a specific tag indicating which element must replace it.

This tag has the following format: <VESALE=relplacedelement>, where replacedelement
indicates which element has to be placed in the page"’.

4.1.3. Servlet chain

As stated in chapter 6'°, the method we will use to modify web pages dynamically is the
servlets chaining one. The servlet chain implemented is shown in figure 7-12.

Get r

<HTML>
<HEAD></HEAD>
<BODY>
Get Request—p o
</ESALE=value1» Course structure
-+—Get Response— o
</HTML>

'\'
erver

Client System

¥
o
0

Navigation

Get Response

<HTML>
<HEAD></HEAD>
<BODY>

<table> <ftable

</BODY>
<SHTML>

Figure 7-12. The dynamic navigation generation process

The HTMLFileServer (figure 7-12) servlet is called by the web server when he receives a re-
quest for an .html file. This servlet analyses it and returns the requested file. This file contains
the custom tags defined above and is then passed to the NavigationTagReplacer servlet.

The work of this NavigationTagReplacer servlet is to replace the custom tags with the HTML
code implementing the navigation elements. This servlet will call some methods of the Navi-
gation object in order to get this code.

' A pages containing those tags is displayed in appendix E section 2.1.
1 See chapter 6 section 4.1.4.

76 Chapter 7. Design

This Navigation'” object stores the course structure and contains the exact format of the navi-
gation elements. As those elements are specific to each web page, those methods are called
with the file name as an argument.

When the NavigationTagReplacer servlet knows the new content of all the tags that have to
be replaced, the HTML code of the file is then passed to a Replacer object'® which returns the
same text in which all the replacements have been made. This new text' is then sent to the
user’s browser.

4.2. Dynamic pages

To generate web pages dynamically, we can easily use the same method that the one used to
generate dynamically the navigation elements. A dynamic page would then be a static tem-
plate stored on the web server which contains some custom tags at the places where the con-
tent must be inserted.

Instead of parsing each file twice to place the navigation elements and to add the dynamic
content, it would be more efficient to make all the needed replacements at the same time. The
figure 7-13 illustrates how we slightly modified our architecture.

Get request
<HTML>
<HEAD»></HEAD>
— <BODY>
Get Request—»| | =5] - Course structure
EE <VESALE=value1>
= <VESALE=AIODefinition>
la——Get Response—— | <BODY>
| !!!m <HTML>
1 1000000
Web Server
File Name
HTML code. Navigation
........... I only for some specific
requests
X AR for every request
- -AlO identifier- - -
IODBReader
---HTML code- - - -
Get Response T
query result query
I0s database
<HTML>)
<HEAD»><HEAD>
<BODY>»
;table>,,,,<nable>
AlList Boxisa
<BODY>
<HTML>

Figure 7-13. The dynamic pages and navigation generation process

'7 The source code of the Navigation object is in appendix E section 3.1.
' The source code of the Replacer object is in appendix E section 3.2.
'Y A page containing the navigation elements is in appendix E section 2.2.

Interactive applications 77

The NavigationTagReplacer servlet has been replaced by a more general TagReplacer-
Servler”. After having gathered the HTML code for the navigation elements, this servlet will
check if the page contains dynamic content (using its file name that will use some conven-
tions). If the page contains dynamic content concerning an AIO, the servlet will get the code
for this content by calling some methods on the JODBReader object.

This /ODBReader’’ object executes queries on the I0s database, formats them into HTML
code and sends it to the Servlet.

Finally, all the replacements will be executed at the same time by the Replacer object and the
new text will be send to the user’s browser.

An example of generated IOs description pages is available in appendix E**.

5. Interactive applications

523

In chapter 57, we have described the features that both applications should provide.

As bootstrapping24 is the most important design principle of the VESALE project, we have
followed the selection trees that we teach in order to select the IOs used in our applications
interfaces®.

Those applications have been developed as Java applets®® using the UPE high-level compo-
nents library®’.

5.1. I0s manipulation application

5.1.1. The UPE High-level components library

To develop this manipulation application, we needed a library of components that could be
easily plugged into such an application. This choice was easy to make because the library that
we have developed28 fits perfectly in that purpose.

5.1.2. Application description

We have defined three zones that will each implement specific features:

e The AIO zone, which allows the user to select the AIO to manipulate

e The CIO zone, which allows the user to manipulate a CIO implementing the selected
AIO

e The Attributes zone, which allows the user to manipulate indirectly the CIO

» The source code of the TagReplacer object is in appendix E section 3.4.
2! The source code for the IODBReader object is in appendix E section 3.3.
2 See appendix E section 4.

' See chapter 5 section 2.

¥ See chapter 2 section 1, chapter 3 section 3.7.

%5 This justification is in appendix F section 3.

% See chapter 6 section 3.3.2.

?7 See chapter 6 section 3.4.

 See chapter 6 section 3.4.

78 Chapter 7. Design

5.1.2.1. The AlO zone

The AIO zone allows the user to select a specific AIO. A CIO related to this AIO will be dis-
played in the CIO zone, and the user will be able to manipulate it (figure 7-14).

Figure 7-14. The AIO zone

In order to implement the related links principle”, a few links related to the manipulated AIO
are provided. Those links are displayed as icons that react when the user rolls the mouse over
it by displaying an hint indicating the destination of the link (figure 7-15).

Figure 7-15. An hint is displayed when the student rolls the mouse over the icons

The buttons on the right-hand side of the zone provide links to

The description of the AIO

The CIOs related to the displayed AIO

The selection rules for the displayed AIO

The ergonomic rules for the displayed AIO
The cases in which the displayed AIO appears

5.1.2.2. The CIO zone

The CIO zone implements the direct manipulation principle®®. This zone allows the user to
manipulate directly a CIO related to the selected AIO.

The figure 7-16 shows this CIO zone containing a Non-Editable Contextual Accumulator®' on
which the user can execute simple operations like selecting or deselecting items.

?” See chapter 5 section 2.1.3.
* See chapter 5 section 2.1.3.
*! The description of this object is in appendix A section 3.3.2.2.2.

Interactive applications 79

i'iném ??aymg a Non-Editable Contextual Accu-
mulator

Figure 7-16. The

5.1.2.3. The Attributes zone

The Attributes zone will implement the indirect manipulation principle™.

This zone displays the attributes of the CIO manipulated and allows the student either to
change their values or to evaluate them.

— Attributes values
This object is quite similar to other object inspectors that are used in some Integrated Devel-

opment Environments (IDE) like Delphi or Visual Basic. In those IDE, the user can entirely
customise his components (figure 7-17).

Figure 7-17. In Delphi 3.0, the user can fully customise his components

2 See chapter 5 section 2.1.3.

80 Chapter 7. Design

In this application, the objective is not to allow the student to customise the CIO, but is rather
to allow him to understand what are its attributes. Therefore, it would not be very useful to let
the user type any possible values for an attribute. We have decided to provide for each attrib-
ute a set of values that are typical for it. For instance, the most often used values for a “Label”
attribute are strings such as “Name”, “Address”, and so on (figure 7-18).

Figure 7-18. The possible values for the
“Label” attribute of a CIO

— AlOs selected for the attributes manipulation

Some attributes are quite complex and would require even more complex AIOs in order to
attribute values to them. For instance, the “Selected Values” attribute of a Non-Editable Con-
textual Accumulator is composed of a string list. The right AIO to manipulate this attribute
would then be the Non-Editable Contextual Accumulator itself. Even if this would certainly
improve the bootstrapping of the application, we have decided not to use those complex
AlOs. It would indeed be quite confusing to have to manipulate a particular component to be
able to understand how the same component works. Even if this approach is pedagogically
interesting and would deserve to be more thoroughly studied, we have decided to use only
two basic AIOs to manipulate the attributes.

The components used are the following:

e A Drop-Down List Box for the attributes that are not composed of multiple values
(figure 7-18). It is indeed one of the most basic components available and there-
fore, we assume that the student is at least able to manipulate it. It is almost the
only prerequisite needed to use this application.

e A Multi-Line Label®® (in a scroll pane) for the attributes that are composed of
multiple values (figure 7-19). This means that the student can only modify this at-
tribute by manipulating directly the CIO.

Figure 7-19. The “Possible values” of a CIO
are displayed in a Multi-Line Label

¥ The description of this object is in appendix A section 3.3.2.2.2.

Interactive applications 81

— Attributes definitions

In order to implement the concepts manipulated definitions principle*, the attributes will be
defined as hints that appears when the user rolls the mouse over their names (figure 7-20).

Figure 7-20. The attributes are defined as hints.

— Attributes values assignments

In order to implement the double reading principle®, the changes made on an attribute are
reflected immediately on the manipulated CIO while the changes made directly on the ma-
nipulated CIO are reflected immediately on the related attributes.

The figure 7-21 shows how the assignment of the value “14” to the “Visible Rows” attribute
of the Non-Editable Contextual Accumulator is reflected on the manipulated CIO.

"Visible Rows" attribute

Manipulable CIO

Figure 7-21. The assignment of the value “14” to the “Visible Rows” attribute of the
Non-Editable Contextual Accumulator is reflected on the manipulated CIO.

The figure 7-22 shows how the selection of items in the manipulated CIO is reflected in the
“Selected Values” attribute.

Manipulable CIO "Selected Values" attribute

Figure 7-22. The selection of items in the manipulated CIO is reflected in the “Selected Values” attribute.

* See chapter 5 section 2.1.3.
% See chapter S section 2.1.3.

82 Chapter 7. Design

— Attributes list

The attributes of the manipulated CIO are displayed in a scroll pane (figure 7-23).

5.1.2.4. The Application Interface

The figure 7-24 shows the application interface.

Figure 7- The application interface

Interactive applications 83

5.1.3. Application arghit_écture

The main challenge in designing this application was to be able to reuse the High-Level Com-
ponents that we had developed during our stay at the University of Port-Elizabeth without
having to modify them. i '"

Figure 7-25: A labelled component with the label on the left of the panel.

As explained in appendix A%, most of those components extend the LabelledComponent
class. The labelled component is the combination of a label with a panel in which it is possi-
ble to add components (figure 7-25).

In terms of relationships, we can say that the LabelledComponent class is inherited by from 0
to N components, while the components inherits from one and only one LabelledComponent
(figure 7-26).

Labelled Component]

[
0-N
is inherited by

1-1
inherits from

l UPE High-Level Comp onentl

Figure 7-26. The ERA diagram of the relationships between
the components and the Labelled Component class

To be able to plug in those components in our applications, we had to make the following
changes:

e The Labelled Component class doesn’t extend the JPanel class anymore, but now
extends the AbstractCIO class. This AbstractCIO” class contains a set of empty
standards methods and attributes covering all the methods and attributes that could
be used in the library of components.

% See appendix A section 4.2.2.2.1.
7 The source code for this class is in appendix F section 1.1.

84 Chapter 7. Design

e The High-Level components are inherited bgf one and only one subclass which
adds to this component the list of its attributes’®.

The figure7-27 illustrates the relationships between those classes.

Abstract CIO 11 : 11 ——{Labelled C {
Standards methods[0-N] ™ is inherited by inherits from —
Attributes[0-N] 0 IN

is inherited by

1-1
inhen'tls from

UPE Manipulated Component X 3
T P N P inherliti B ... UPE High-Level Component
Ml isinherited by [Standards methods[0-N]

Figure 7-27. Relationships between the main classes

From all this, we can conclude by saying that the CIO zone can add an instance of any com-
ponent to the panel, and then call any methods defined in the AbstractCIO class. The applica-
tion knows exactly what are the methods that are overridden by the UPE High-Level compo-
nent by looking at the attributes list overridden by its subclass. As our components complies
with the Java Beans conventions® this matching is trivial.

5.2. AlOs selection trees manipulation application

In chapter 5*°, we have described the features that this application should provide.
5.2.1. Application description

We can isolate four zones that each implement specific features:

e The criteria zone, which allows the user to select selection criteria

e The AIOs partition zone, which presents the AIOs as two distinct sets according to the
fact that they can be selected or not

e The Advice zone, which gives instructions to the user about what he can do

e The AIO zone, which displays information and links about AIOs

5.2.1.1. The Criteria zone

This zone will implement both the indirect manipulation and the double reading feature®'.

* The source code for an example of subclass is in appendix F section 1.2.
* The definition of Java Beans is provided in appendix A section 4.2.1.2.
* See chapter 5 section 2.4.

*I See chapter 5 section 2.2.4.

Interactive applications 85

— Tree selection

The first choice that the user must make is the specific selection tree*” in which he wishes to
navigate. Therefore, the first criteria that the he must select is the interaction type. If the inter-
action type selected is the input/output one, he must then select the type of information han-
dled.

Figure 7-28. The Input/Output panel Figure 7-29. The Output panel

The AIOs selected for the selection of the interaction type is a Tabbed Pane, while the AIO
selected for the value type is a Drop-down List Box. The figure 7-28 shows the input/output
(Acquisition/Restitution) panel, while the figure 7-29 shows the Output (Restitution unique-
ment) panel.

— Criterion value assignment

In order to assign a value to a selection criterion, we decided to use a Drop-Down List-Box
displaying the possible values for each criterion(figure 7-30).

Figure 7-30. Selection criteria

* See chapter 5 section 2.2.2.

86 Chapter 7. Design

A student must not compulsorily assign a value to a specific criterion. Therefore, each Drop-
Down List Box will be preceded with a Check Box*? allowing him either to assign a value or
to remove a value previously assigned for this criterion by disabling the Check Box. The fig-
ure 7-31 shows a criterion in its two states.

Figure 7-31. A selection criterion in its two states (enabled on the left and disabled on the right)
— Ceriterion definition
We have also implemented the concepts manipulated definition principle* in this application.

The labels naming the criteria are in fact links to the definition page of those criteria on the
on-line syllabus (figure 7-32).

Link to the definition

Figure 7-32. The label identifying a criterion links to the definition page of the criterion
— Double reading

In order to implement the double reading feature®, a message will be displayed below each
criterion describing the implications in term of expected features for the objects that can be
selected. The figure 7-33 illustrates the double reading message if the value of the “Density”
criterion is “Low” while the figure 7-34 illustrates this message if the value is “High”.

Figure 7-33. If the value assigned to this density crite- Figure 7-34. If the value assigned to this density crite-

rion is “Low”, then the message states that the objects rion is “High”, then the message states that the objects

that can be selected must fit well in a screen that con- that can be selected must fit well in a screen that con-
tains few other objects tains a lot of other objects

* The description of this object is in appendix A section 3.3.2.2.2.
* See chapter 5 section 2.2.4.
* See chapter 5 section 2.2.4.

Interactive applications 87

— Criteria list

The list of criteria used in the selected sub-tree is presented in a panel that displays a scroll
bar if the number of criteria is more than two (figure 7-35 and 7-36).

Figure 7-35. The criteria list for the Input/Output — Figure 7-36. The criteria list for the Input/Output —
Integer sub-tree Boolean sub-tree

5.2.1.2. The Red/Green zone

This zone will present the set of AIOs included in the selection tree currently displayed. The
objects that we used are List Boxes*®. The background colour of the list that displays the
AlOs that can be selected is green, while the colour of the second list is red. The same colours
will also be used in the advice zone.

— Initialisation

When the user selects a selection tree, the green list is initialised. It contains all the AIOs that
are part of the selected tree (figure 7-37).

* The description of this object is in appendix A section 3.3.2.2.2.

Chapter 7. Design

Figure 7-37. A the top, the green list contains all the AIOs con-
tained in the selected sub-tree

— Criterion change

When the user assigns a value to a specific criterion, this zone must be updated.

If the user assigns a value to some criteria, part of the AIOs displayed in the green list can not
be selected according to the value assigned to those criteria. Consequently, those objects are
moved to the red list (figure 7-38).

Figure 7-38. If the user assigns a value to a criterion, 14 AIOs can’t
be selected according to the value of this criterion.

s AR

"

Interactive applications 89

If the user changes the value assigned to a criterion, some AIOs displayed in the green list
moves to the red list and inversely. To indicate that an object has switched from lists, it is
displayed at the top of the list and is preceded by an arrow: (figure 7-39).

Figure 7-39. If the user changes the value assigned to a criterion,
two AIOs that could not be selected are now in the green list while
three other AIOs moved from the green list to the red list.

5.2.1.3. The Advice zone

This zone will implement the instruction principle*’. It will provide instructions about what
the user can do and gives him the opportunity to execute them automatically.

The figure 7-40 displays the advice zone after its initialisation.

Figure 7-40. The advice zone after its initialisation

47 See chapter 5 section 2.2.4.

90 Chapter 7. Design

— Selection of an AIO in the green list
When the user selects an AIO in the green list, a green advice is displayed in the advice zone.

A green advice indicates to the user the criteria assignments that he should make in order to
have only the selected AIO displayed in the green list. The light bulb button at the top of the
zone is green to indicate that the advice displayed is a green one (figure 7-41).

Green light bulb Green list

Figure 7-41. A green advice

If the user clicks on the green light bulb button, the advice is then executed automatically, and
the selected AIO is the only object in the green list (figure 7-42).

Green list

Figure 7-42. The green advice of the figure 7-41 has been executed automatically.
— Selection of an AIO in the red list
When the user selects an AIO in the red list, a red advice is displayed in the advice zone.
A red advice indicates to the user the criteria assignments that he should make in order to

have the AIO displayed in the green list. The light bulb button at the top of the zone is red to
indicate that the advice displayed is a red one (figure 7-43)

e N

Interactive applications 91

:

Red light bulb Red list

Figure 7-43. A red advice

If the user clicks on the red light bulb button, the advice is executed automatically, and the
selected AIO is moved to the green list (figure 7-44). At that time, a green advice is displayed
and the user can execute it to make the selected AIO the only one that can be selected.

Green light bulb Green list

Figure 7-44. The red advice of the figure 7-43 has been executed automatically.

— Multiple advises

A green or red advice can be composed of several assignment lists. In that case, the user has
the opportunity to move from one advice to another using the arrow buttons at the top of the
zone (figure 7-45).

Figure 7-45. The arrow buttons allows the user to move from one
advice to another.

92 Chapter 7. Design

5.2.1.4. The AlO zone

The AIO zone implements the related links and concepts manipulated definition principles*.

When the user selects an AIO in either the red or green list, the AIO zone is updated and dis-
plays information and links about this object (figure 7-46). The links are identical to those
provided in the manipulation application (5.1.2.1.).

Figure 7-46. The AIO Zone displays information about the selected AIO

5.2.1.5. The application interface

The figure 7-47 shows the application interface.

=

Figure 7-47. The application interface

* See chapter 5 section 2.2.4.

Interactive applications 93

5.2.2. Application architecture

The architecture of this application is composed mainly of six modules (or objects as Java is
an Objet-Oriented language) : ..

— The AIO zone module

The goal of the 410 zone module is to display information about AIOs. This object imple-
ments the AIO zone (5.2.1.4.).

— The Advice zone module

The goal of the Advice zone module is to display advises. This object implements the Advice
zone (5.2.1.3.).

— The Red / Green zone module

The goal of the Red / Green zone module, is to display the partition of the AIOs. This object
implements the Red / Green zone (5.2.1.2.).

— The Criteria zone module

The goal of the Criteria zone module is to allow the user to assign values to selection criteria.
This object implements the Criteria zone (5.2.1.1.).

— The Coordinator module

The goal of the Coordinator module is to listen to the events generated by the other modules,
and to dispatch them by calling methods of other modules.

— The SelectionTree module

The goal of the SelectionTree® module is to send to the other modules information about the
selection trees and the AIOs handled.

The information concerning the selection tree is taken from a text file describing its struc-
ture™® (figure 7-48). This allows the teacher to modify the selection tree without having to
modify the application code.

The information concerning the AIOs (such as its english name, its representation, ...) are
taken directly from the IOs database (3.). However, as the 10s database is not yet filled with
content, a text file contains the information concerning the AIOs (figure 7-48). A few meth-
ods should be rewritten in this SelectionTree object in order to extract information directly
from the database.

* The code of the SelectionTree Java class is in the appendix F section 2.3.
% The syntax for this text file as well as the selection tree that we used are in the appendix F sections 2.1. and 2.2.

94 Chapter 7. Design

—— Selection tree

intialization

10s database

Figure 7-48. The SelectionTree object

This SelectionTree contains all the “intelligence” of the application. When a module needs
information about either AIOs or the selection tree, it communicates with this object (figure 7-

T
AlO Zone @ AdviceZD Green /Red Zone

:

Legend ;
" el Selection tree
+——» communicates with Selection Tree inttialization———— (text file)

O atyect intialization

10s database

Figure 7-49. The application main modules architecture

6. Course design

To design the course notes, we had to map each information chunk defined in chapter 5°' to a
web page. As advised in chapter 4°% the content has been rewritten according to the guide-
lines of conciseness, scannability and ot;jectivity. Moreover, we have implemented the con-
ceptual navigation described in chapter 5°°.

5! See chapter 5 section 4.1.
’2 See chapter 4 section 2.3.
53 See chapter 5 section 4.3.

Course design 95

6.1. Methodology

The following methods have been used during the rewriting process:

e Use of bulleted lists
e Highlighting of keywords
e Reduction of “useless” words or sentences

Moreover, when we met a concept defined in another chunk, we included a link to the web
page defining it.

6.2. Example: the “AlO Definition” chunk

The following example illustrates the way we proceeded in order to map content for the “AlIO
definition” chunk. The text in the figure 7-50 is excerpt from the paper course.

Du concept d'OIC découle un probléme de généralisation: un méme OIC peut se
retrouver dans plusieurs environnements physiques sous diverses appellations. Si seul
l'outil de présentation change, seule la représentation graphique change; si, en plus,
l'outil graphique varie, le comportement de 1'OIC peut connaitre des variantes.

Style : X Bold Style : Bo!d
[Italic) D talic
g g:gﬁ:?led B Underined
[] outlined

Figure IL 10: Un méme objet interactif dans différents environnements

Par exemple, le méme OIC de la Figure 11.10 existe dans différents environments :
«Check box» dans Ms-Windows, «XmToggleButton» dans OSF/Motif, «BoxArray»
dans Garnet. Pour pallier cette carence, le concept d'objet interactif abstrait est envis-
agé.

Un objet interactif abstrait (OIA) constitue une abstraction de l'ensemble des OIC de
méme type indépendamment des environnements physiques qui ’accueillent. Chaque
OIA est décrit selon un modéle en deux sections:

1. Une section descriptive des caractéristiques de 1'OIA : outre les noms et abrévia-
tions, on y définit I'OIA, sa nature, son type et ses relations éventuelles d'agrégation;

2. Une section comportementale : on y décrit les relations d'héritage, les opérations
permises (i.e. les causes de déclenchement et leurs effets), les attributs abstraits, les
événements abstraits et les primitives abstraites spécifiant le comportement de ['ob-
jet. Cette description orientée objet respecte les propriétés d'encapsulation (la ges-
tion de l'objet s'effectue par ses primitives abstraites seules) et d'héritage (les objets
de tout sous-type d'un type héritent des propriétés du sur-type et peut posséder, en
plus, des propriétés spécifiques).

Figure 7-50. The AIO definition part of the paper course

96 Chapter 7. Design

The text in figure 7-51 illustrate the result of the rewriting and linkage process.

Du concept d'OIC découle un probléeme de généralisation: un méme OIC peut se
retrouver dans plusieurs environnements physiques sous diverses appellations. Si
seul l'outil de présentation change, seule la représentation graphique change; si, en
plus, I'outil graphique varie, le comportement de I'OIC peut connaitre des variantes.

Figure II-10. Un méme OIC dans trois environnements différents.

Style : X Bold Style : Bold
0 Italic D Relic
g gﬁ:ﬁ:ﬂ“ B Underiined
[] outiined

’Outﬁnndl

Un objet interactif abstrait (OIA) constitue une abstraction de 1'ensemble des OIC
de méme type indépendamment des environnements physiques qui 1’accueillent.
Chaque OIA est décrit selon un modele en deux sections:

1. Les caractéristiques de 1'OIA :
e Nom
Abréviations
Définition
Nature
Type
Relations éventuelles d’agrégation

2. Le comportement de I’OIA :
e Relations d'héritage
Opérations permises
Attributs abstraits
Evénements abstraits
Primitives abstraites

Cette description orientée objet respecte les propriétés
e D’encapsulation : la gestion de 'objet s'effectue par ses primitives ab-
straites seules.
e D'héritage : les objets de tout sous-type d'un type héritent des propriétés
du sur-type et peut posséder, en plus, des propriétés spécifiques.
Figure 7-51. The AIO definition information chunk

Conclusion 97

We brought the following transformations to the original text:

e We reduced the words count by 25% (169 instead of 225). It is less than the 50% re-
duction advised by Jakob Nielsen®. The reason is that, basically, a course contains
less useless words than a business oriented brochure.

We substituted every enumeration with bulleted lists.

We transformed the concepts defined in another chunk into hypertext links.

We repositioned the legend at the top of the figure. We did it to prevent a figure to be
displayed with its legend hidden due to the limited vertical view of the page on a
screen.

7. Conclusion

In this chapter, we described the design process that we followed. Now that we have imple-
mented this prototype, we have to evaluate what is its contribution to the learning of Interac-
tion Objects. This is the purpose of the next chapter.

34 See chapter 4 section 2.3.1.

System Evaluation

1. Introduction

In this chapter, we will evaluate the system as implemented in the previous chapter. As boot-
strapping is the most important design principle of the VESALE project, we will first look
into how our interactive applications have implemented it. Secondly, we will try to evaluate
what such a system can bring to the learning process of the Interaction Objects (I0s).

The present reflection is based on our own personal experience of the university courses that
we had to study and not on pedagogical theories.

2. Bootstrapping

At our level, bootstrapping means that the AIOs selected to build our applications will be the
best AIOs possible for the particular context in which they are used. As we explained in the
design of our applications', the AIOs used have been selected according to the selection trees
presented in the course.

It is interesting to notice a few cases in which the bootstrapping principle is applied at a
higher level. For instance, the figure 8-1 shows the selection tree application on which the
only AIO that can be selected according to the values that the student assigned to the criteria
is the Static Icon” object.

' See chapter 7 section 5.
? The description of this object is in appendix A section 3.3.2.2.2.

100 Chapter 8. System evaluation

Figure 8-1. The selection tree application

The AIO zone will then display a picture of this Static Icon AIO. The AIO used for this fea-
ture is a Static Icon, which means that the Static Icon picture is displayed inside the same
Static Icon component. This will hopefully reinforce the feeling of the student that a Static
Icon AIO must be used when only one graphical information must be given to the user.

Another example of bootstrapping is when the selected AIO in the IOs manipulation applica-
tion is a Drop-Down List Box® (figure 8-2). As the AIOs used to manipulate this AIO are
mostly Drop-Down List Boxes, this application is even more efficient because the student
manipulates twice as much the Drop-Down List Box AIO as other manipulated AIOs.

* The description of this object is in appendix A section 3.3.2.2.2.

et
A

R

Contribution to the learning of IOs 101

Figure 8-2. The manipulation application when the manipulated AIO is the Drop-Down List Box

3. Contribution to the learning of I0s

In this section, we will evaluate our web version of the course. We will base this evaluation
on our experience as students of the Institut d’informatique who had to learn a HCI course
including the part concerning the 10s*. We will wonder if such an environment would have
helped us in the learning of this course and more generally what could be the contribution of a
multimedia environment to the learning.

First, we will evaluate what is the contribution of the on-line course in comparison with the
paper syllabus. Secondly, we will try to estimate what is the potential pedagogical contribu-
tion of this environment.

* We followed this course as part of our “2*™ maitrise”. It was given at that time by Jean Vanderdonckt.

Chapter 8. System evaluation

3.1. Support contribution

We will try to weigh what is gained and what is lost in the on-line version of the syllabus in
comparison with the paper course version. This comparison concerns essentially the supports
of the course, namely a multimedia computer and a paper syllabus.

In order to stay focussed on what is really important, we will not compare the web course
with the actual paper course but rather with an “ideal course’”. This means that considerations

like the typographic consistence and the page structure will not be taken into account.

3.1.1. What we have gained
— The conceptual navigation

When the student encounters a concept that he doesn’t understand in the paper course, he has
to search through the whole syllabus in order to find its definition. On the opposite side, for
every concepts used in the definition of another concept in the web course, a link to its defini-
tion page is provided. The figure 8-3 shows the web version of the AIO definition. The defi-
nition in itself is the same as in the paper course but in the web version the student can easily
access related concepts definitions.

Définition

Du concept d'OIC découle un probléme de généralisation: un méme OIC peut se retrouver dans
plusieurs environnements physiques sous diverses appellations.

St seul 'outil de présentation change, seule la représentation graphique change; si, en plus, I'outil
sraphique varie, le comportement de 1'OIC peut connaitre des variantes.

Un objet interactif abstrait (OLA) constitue une abstraction de l'ensemble des OIC de méme
type indépendamment des environnements physiques qui l'accueillent.

Figure 8-3. The AIO definition contains links to the concepts of CIO,
physical environment, presentation tools and graphical tools.

— Hierarchical navigation

If the student wants to know where he is in a paper course, he can always refer to the table of
contents. What the web version of the course adds, is that the hierarchy as well as the present
position in this hierarchy are always displayed. Therefore, the student always keeps in mind
the course structure. The figure 8-4 shows clearly that in our web course, the hierarchy is de-
veloped for the current section and the current page is highlighted.

Moreover, this representation of the course structure allows the student to access directly a
desired information without having to locate it in the middle of less important information. A
typical example in this course is the description of the attributes, events and primitives of the
AlOs. In the paper course, if the student is not interested in these AIOs features, he will have
to turn a few pages describing them between each AIO description. In comparison, he can
reach directly the desired information in the web course.

5 : :
We means a course with a consistent layout, a table of content, a clear structure,...

Contribution to the learning of 10s 103

Définition d'0O1A

Définition d'0IC

Des. des OIA
Cat. O1A

Figure 8-4. The firs menu shows that the user is currently reading the CIO defini-
tion. The second one tells the user that he is reading the AIO definition and that this
section contains two other parts.

— Visual memorisation

In a paper course, the titles structure is often page-dependent rather than structure-dependent.
It means that just because there is space left on the bottom of a paper page, a section title can
be separated from its content. Moreover, a paper page is not extensible which means that a
concept can hold on a half page or be spread across several ones.

In our web course, each page begins with its concept title and contains only what a user can
expect from that title (figure 8-5). This is not only a layout consideration but we think that it
increases the possibilities of visual memorisation of the concept presented in the page. Ac-
cording to our experience, it is indeed easier to memorise a concept if a unique visual repre-
sentation is provided.

SR

Figure 8-5. Content mapping.
— Support capabilities
In a paper course, the illustrations are in black and white and are often photocopied copies of

poor quality. Moreover, this support enables no interaction. On the opposite side, a multime-
dia support offers the possibility to present colourful illustrations and interactive applications.

104 Chapter 8. System evaluation

3.1.2. What we have lost
— Portability

While a web based course needs a computer and a connection to the Internet or to the univer-
sity intranet, a paper course can be read anywhere.

— Support qualities

A paper course offers a better visual comfort than a computer screen. A student can also an-
notate and highlight the text of the paper course while it is not (at the moment) possible with
the web course. Moreover, notions like the course size according to the thickness of the sylla-
bus are simply gone. In other words, students lose their traditional landmarks.

— Sequential navigation

Even if the web course provides a sequential navigation, it also provides a conceptual one that
can be as much an advantage as a trap. The student can indeed get lost in the links and forget
what he has seen and understood from what he has not. On the opposite side, the paper course
eludes this issue by imposing the sequentiality .

3.1.3. Support contribution balance

We think that the ultimate advantage of a paper course over a web course is that it is the most
natural learning support for us (students of the “old generation™). Consequently, our preferred
support remains the paper course but we can certainly take advantage of such a multimedia
learning environment as a complementary support. Nevertheless, we think that a generation
that would have used multimedia environments as learning tools since their youngest age
could consider such an environment as a primary learning support.

3.2. Pedagogical approach contribution

During our studies, we have noticed two different conceptions in the way a teacher introduces
a particular subject. Some teachers start their course by flooding the students with theories
without any illustrations. Others start with an illustration that we won’t be able to resolve be-
fore the end of the theory presentation. Needless to say that we are in favour of the second
approach. The reason is that, in that case, we know what we can expect from the course, why
we will have to learn theory and what is the context.

This idea of reversing the logical presentation of a concept (examples prior to the theory) is
the main application of Constructivism® that we have faced during our studies. In our context,
the idea of Constructivism goes far beyond introducing a concept with an illustration. In the
suggested Constructivist scenario’, we give the opportunity to manipulate the concepts in
order to introduce the theory in its context.

The concepts manipulation is not a predetermined process: what a student can deduct from the
manipulation will certainly be different from what another will. This idea that each student

¢ See chapter 3 section 2.
7 See chapter 5 section 4.2.1.2.

Conclusion 105

builds his own mental model is completely new for us. We don’t know if this can have a
positive influence on the learning process. It could lead to a much deeper understanding be-
cause the mastering of a model built by the student is stronger that the mastering of an in-
stilled model. On the other hand, it could also turn out to be completely confusing for the stu-
dent and therefore unusable. Since we are not pedagogues, this issue is beyond our reach.

4. Conclusion

Before starting developing this learning environment, we where not really convinced of its
usefulness in the learning of interactive objects. As a matter of fact, the disadvantages of such
a computer-based environment explained in this chapter make us think that it will likely be
used as a complementary study support by the students in the short term.

Nevertheless, the original approach provided by such an environment seems to be a major
contribution to the learning of Interaction Objects. As computer scientist, it is difficult for us
to evaluate its exact contribution.

Conclusion

The objective of this thesis was the development of a multimedia environment for the learning
of Interaction Objects (I0s). This work was part of the VESALE project of the Institut
d’informatique. The challenge we faced was to take advantage of the freedom we had in order
to develop the most efficient learning environment possible. This freedom was twofold.

First, we were free to implement whatever could contribute to a better learning process. In-
deed, the only things that we had to develop were the IOs database and the course notes re-
lated. We had few constraints concerning the expected features of those elements. The most
important things that we brought are probably the interactive applications and the pedagogical
scenarios. On one hand, the interactive applications' enable the student to be active in his
learning process. On the other hand, the pedagogical scenarios?, and more precisely the Con-
structivist one, provide different ways of thinking the course structure.

Secondly, besides the fact that this project had to be included in a web environment, we were
free to use whatever technologies could help us in order to implement it. Indeed, the tech-
nologies used for the VESALE project development were not yet chosen at the time we wrote
this thesis. Therefore, this challenge was to select and master technologies whose potentials
and working were unknown to us. The most important technology we have learned was cer-
tainly the Java programming language. We have received the opportunity to familiarise our-
selves with it during our stay at the University of Port-Elizabeth, and we went deeper into its
knowledge for this project. It allowed us to develop the interactive applications, the dynamic
pages generation as well as the dynamic navigation.

! See chapter 5 section 2.
? See chapter 5 section 4

Finally, let’s remind that we based ourselves on our own experience as computer scientist
students to develop this environment. Therefore, it must be regarded as a prototype that will
have to be criticised by pedagogues in order to validate (or invalidate) its pedagogical contri-

bution.

From a personal point of view, we can say that this final year of our studies brought us a lot.
Our stay in South Africa gave us indeed the opportunity to live in contact with a very friendly
and humanly enriching culture. Moreover, this thesis gave us the opportunity to work on a
concrete project. In such a motivating context, we have learned a lot and, therefore, prepared
ourselves for our first step in the professional live.

References

[Ameritech99]
Ameritech Web Site, Ameritech Graphical User Interface Standards and Design Guidelines,
http:\\www.ameritech.com/, 1999

[Apple99]
Apple Web Site, MacOs Graphical User Interface Standards and Design Guidelines,
http://www.apple.com, 1999

[Badot-Detez98]
P. Badot, V. Detez, “Vers un corpus de régles ergonomiques pour la création de sites Web ",
master thesis, Institut d’informatique, FUNDP, Namur, 1998

[Beirekdar99]

A. Beirekdar, “VESALE (Visual user interface design Education Supported by a computer-
Aided Learning Environment) : Specification document”,
http://www.info.fundp.ac.be/~vesale/, July 99

[Bodart93]
F. Bodart, Y. Pigneur, Conception assistée des systemes d’information: Méthode, modéles,
outils , Masson, 1993

[Bodart99]

F. Bodart, J-M. Leheureux, E. Mbaki, A. Beirekdar, “Definition of the project VESALE
:Visual user interface design Education Supported by a computer-Aided Learning Environ-
ment”, http.//www.info. fundp.ac.be/~vesale/, July 99

[Bodart-Magnier99]
Th. Bodart, M.L. Magnier ,“The Representation of Abstract Interaction Objects for Reusable
Object Design”, UPE.

[Bos99]
B. Bos, “Web Style Sheets”, http://www.w3.org/Style/, August 99

[Campbell99]
K. Campbell, “The Web: Design for Active Learning”, http.//www.atl.ualberta.ca

[Catizzone-Remy99]
M. Catizzone, E. Remy, “Virtual University”, master thesis, Institut d’informatique, FUNDP,
Namur, 1999

[Eckel98]
B. Eckel, Thinking in Java, Prentice Hall, Upper Saddle River, NJ, 1998

[Farley98]
J. Farley, Java Distributed Programming, O’Reilly & Associates, Inc., Sebastopol, 1998

[Fowler98]
S. Fowler, GUI design handbook, McGraw-Hill, 1998

[Friesen99]
G. Friesen, “Plug into Java with Java Plug-in”, http://www.javaworld.com/, June 99

[Goodman98]
D. Goodman, Dynamic HTML, The Definitive Reference, O’Reilly & Associates, Inc., Se-

bastopol, 1998

[Hofstetter99]
Fred T. Hofstetter, “Cognitive Versus Behavioral Psychology”,
http://www.udel.edu/fth/pbs/webmodel. htm

[Hunter98]
J. Hunter, W. Crawford, Java Serviet Programming, O’Reilly & Associates, Inc., Sebastopol,

1998

[Koyanagi99]
Mark Koyanagi, “Putting courses on-line: Theory and Practice”, lost reference

[Kreines99]
D. C. Kreines, B. Laskey, Oracle database administration, O’Reilly & Associates, Inc., Se-

bastopol, 1999

[Leclercq98]
D. Leclercq, B. Denis, “Objectifs et paradigmes d’enseignements/apprentissage”, Pour une
Pédagogie Universitaire de Qualité, p 83-105, Nardaga, Sprimont (Belgium), 1998

[Lynch99]
P. J. Lynch, S. Horton, Web Style Guide: Basic Design Principles for Creating Web Sites,
Yale University Press, New Haven and London, 1999

[Mayes90]
Mayes, “Conceptual Space Navigation”
http.//cbl.leeds.ac.uk/nikos/tmp/hypemedia/subsection2 5 2 11.html

[Michiels-Prévot99]
R. Michiels, G. Prévot, “A case base as a learning tool for the design of human computer in-
terfaces ”, master thesis, Institut d’informatique, FUNDP, Namur, 1998

[Morkes97]
J. Morkes, J. Nielsen, “Concise, SCANNABLE, and Objective: How to Write for the Web”,

http://www.useit.com, 1997

[Morkes98]
J. Morkes, J. Nielsen, “Applying Writing Guidelines to Web Pages ”, http://www.useit.com,

January 6, 1998

[Nielsen96a]
J. Nielsen, “Why frames suck (most of the time)”, Attp.//www.useit.com, December 1996

[Nielsen96b]
J. Nielsen, “In Defence of Print ”, http.//www.useit.com, February 1996

[Nielsen96¢]
J. Nielsen, “The rise of the sub-site”, http.//www.useit.com, September 1996

[Nielsen97]
J. Nielsen, “ How Users Read on the Web ”, http.//www.useit.com, October 1, 1997

[Nielsen98a]
J. Nielsen, “What is Usability?”, http://www.zdnet.com/devhead/stories/articles, September
14, 1998

[Nielsen98b]
J. Nielsen, “Web Usability: why and How”, http.//www.zdnet.com/devhead/stories/articles,
September 14, 1998

[Nielsen99a]
J. Nielsen, “How to Structure Your Web Site”, http://www.zdnet.com/devhead/stories/articles,

May 4, 1999

[Nielsen99b]
J. Nielsen, PJ Schemenaur, Jonathan Fox, “Writing for the Web”, Attp.://www.sun.com, July
1999

[PVWGI8]
PVWG, http://'www.info.fundp.ac.be/~vesale/PVWG

[Raggett99]
D. Raggett, 1. Jacobs, “HyperText Markup Language”, http://www.w3c.org/MarkUp/, Febru-
ary 99

[Reese97]
George Reese, Database programming with JDBC and Java, O’Reilly & Associates, Inc.,
Sebastopol, 1997

[Rosenfeld98]
Louis Rosenfeld, Peter Morville, Information Architecture for the World Wide Web, O’Reilly
& Associates, Inc., Sebastopol, 1998

[Strommen92]
Erik F.Strommen, “Constructivism, Technology, and the Future of Classroom Learning”,
http://www.ilt.columbia.edu/k12/livetext/docs/construct. html,

[Sun99a]
Sun Microsystems, “The Java Tutorial, A practical guide for programmers”,
http://java.sun.com/docs/books/tutorial/index. html, July 99

[Sun99b]
Java Look and Feel Design Guidelines ,Alpha draft, http.//www.java.sun.com/, June 1999

[Sun]
Sun Web site, Attp://www.sun.com

[Vanderdonckt96]

J. Vanderdonckt, Une description orientée objet des objets interactifs abstraits utilisés dans
les interfaces homme-machine (course notes), Institut d’informatique - Facultés Universitaires
Notre-Dame de la Paix, Belgium, Namur, 1996

[Vanderdonckt97]

J. Vanderdonckt, Conception assistée de la presentation d'une interface homme-machine er-
gonomique pour une application de gestion hautement interactive. PHD Thesis . Insitut
d’Informatique, Namur, Belgium, July 9, 1997

[Vanderdonckt98]
J. Vanderdonckt, J-M. Leheureux, “Vesale : un environnement de support multimédia a

I’enseignement des interfaces homme-machine”, Attp.//www-
ihm.Iri fr/ihm98/contributions/20 _Vanderdonkt/VesPos.htm, 1998

[Weinschenk97]
S. Weinschenk, P. Jamar, Sarah C. Yeo, GUI design essentials, Wiley Computer Publishing,
1997

[Yale99a]
Yale Style Manual, Attp.//info.med.yale.edu/caim/manual

[Yale99b]
Cranial Nerves, http

- Appendixes

Table of contents

Appendix A: The Representation of Abstract Interaction Objects for Reusable
Object Design

1. Introduction 7
1.1. Foreword)
1.2. AIOs and CIOs 7
1.3. Description of the VEROD project 7
1.4. Our role in this project 10

2. Problem statement 11
2.1. Definition of the problem: The selection of IOs 11
2.2. Knowledge-Based Techniques (Vanderdonckt, 1995) 11
2.3. Discussion (Vanderdonckt, 1995) 11

3. Requirement Analysis 13
3.1. Introduction 13
3.2. Selection of user interface components 13
3.3. Library of components 13

4. Analysis and design 27
4.1. Design of the selection algorithm 27
4.2. Design of the components 39

5. System evaluation 49
5.1. Class Model 49
5.2. Selection of AIOs 49
5.3. Alternatives 55
5.4. CIOs 55
5.5. Implementation 56

Conclusion 59

7. References 60

Appendix 61
8.1. Vanderdonckt’s selection trees 61
8.2. Simplified selection trees 2
8.3. AIOs and their alternatives 82
8.4. High Level CIOs and their implemented AIOs 85
8.5. Overview of the Swing components 88

8.6. Selection rules spreadsheets 92

Appendix B: 10s database

1. Conceptual schema

96

2. SQL database creation script

96

Appendix C : Information architecture

1. Objectivist Scenario

1.1. Hierarchical Navigation

100
100

1.2. Sequential Navigation

101

2. Constructivist Scenario

2.1. Hierarchical Navigation

103
103

2.2. Sequential Navigation

105

Appendix D : Page Design
1. Page Code

2. Style Sheet Code

Appendix E: Dynamic generation

1. Course structure syntax

2. Pages examples

2.1. Page containing the <VESALE> tags

108
109

112

112
113

2.2. Page in which the <VESALE> tags have been replaced
3. Source Code

114

3.1. Navigation

115
115

3.2. Replacer

120

3.3. IODBReader

122

3.4. NavigationTagReplacer

125

4. 1Os description pages

5. Course structure definition

128
132

Appendix F: Interactive applications
1. IOs Manipulation application

1.1. AbstractCIO class

1.2. ListBoxAccManipulation class

2. Selection trees application

2.1. Selection tree description syntax

2.2. Selection tree description

2.3. Selection tree class

3. Justification of the AIOs selected

3.1. 10s Manipulation application

3.2. Selection trees application

134
134
135

136
136
137
140

144
144
145

The Representation of Abstract
Interaction Objects for
Reusable Object Design

From September to January, we worked at the University of Port Elizabeth (UPE) in South
Africa. Our supervisor was Professor Janet L. Wesson.

During this internship period, we developed a library of 10s in Java. The title of the report we
had to write in that occasion is “The Representation of Abstract Interaction Objects for Reus-
able Object Design”.

University of Port Elizabeth
Department of Computer Science and Information Systems
Port Elizabeth 6000

The Representation of Abstract Interaction
Objects for Reusable Object Design

A treatise submitted by
Thibaut Bodart and Marc-Laurent Magnier

Supervisor: Prof. Janet Wesson
Co-supervisor: Mr. Leon Nicholls

Academic year 1999

Introduction 7

1. Introduction

1.1. Foreword

This report is the result of four months of work at the Department of Computer Science and
Information Systems of the University of Port Elizabeth. The project we’ve been working on
was part of the “A Visual Environment for Reusable Object Design” (VEROD) project. Our
supervisors were the professor Janet Wesson and Leon Nicholls.

1.2. AlOs and CIOs

The concrete interactive objects (CIOs) are the graphical objects for the input and the display
of data that the user can see, feel and manipulate. CIO is synonymous to a control, a physical
interactor, a widget or a presentation object. They have one and only one graphic representa-
tion. They are used at the physical level.

The Abstract Interactive Objects (AlOs) abstract both presentation and behaviour of CIO’s.
When working with AIO’s, the focus is set on the behaviour of the object instead of on his
graphic representation. They are used at the logical level.

For instance, the List Box AIO (see Figure 3.9) is an abstraction of the Macintosh CIO
Scrolling Box and of the MS-Windows CIO List Box. Both CIO have the same properties,
events and methods but have a different graphic representation.

1.3. Description of the VEROD project

A Visual Environment for Reusable Object Design (Nicholls, 1998)

Graphical user interfaces (GUI's) have become accepted interface standards for interactive
design. More recently, object based GUI’s such as Windows 95, have extended the interactiv-
ity and usability of these interfaces by encapsulating the functionality of interactive elements.

These developments impose serious burdens on programmers. Programming in these GUT’s is
complex and requires expertise in a wide range of fields from low-level coding techniques to
Human Computer Interaction (HCI) principles required for good interface design. In addition,
popular programming languages have merely been extended to support the development of
GUTI’s. Therefore, GUI programming is done in a textual language, which results in very little
separation between the application and interface code. The final code is not reusable and is
very difficult to maintain.

To improve reusability and reliability of programming code, more modular architectures such
as the object-oriented approach, are being applied. Designing systems using an object-
oriented approach involves finding the objects in the problem domain and constructing the
relations among the objects. The objects must be structured so that their functionality is as-
signed in a way that leads to clear delegation of system capabilities that are factored for ease
of reuse (Goldberg et al., 1994).

8 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

The development of modern interactive applications is also hampered by the lack of inte-
grated modeling techniques and tools. Separate modeling techniques and tools are used during
the different stages of development of an application. In addition, many of the problems faced
in user interface development are caused by the low abstraction level on which design deci-
sions are made, which again results in lack of overview in the design process (Lauridsen,
1995). Several solutions to these problems have been proposed and include object-oriented
programming, visual-programming environments, visual programming languages and visual
object-oriented programming.

To make it easier to program GUI’s several visual environments for textual programming
languages have been developed. Examples include OpenStep (for Objective C), Visual Basic
(for Microsoft Basic) and VisualAge (for Smalltalk). These environments integrate tools like
graphical editors, visual browsers and visual tracers for debugging. Although it is possible to
quickly generate interfaces for small, general applications, any application specific function-
ality has to be hard coded by the programmer using the textual programming language. It is
up to the programmer to map the semantics of the underlying problem domain onto the proper
representations in the user interface. It is clear that the developers of these textual program-
ming languages find it very difficult to adapt to the new requirements that are very different
from what the languages were originally designed. Existing textual programming languages
have been overextended to support the visual and interactive nature of modern graphical inter-
faces.

Rather than just extend and patch existing textual languages to support the programming of
graphical interfaces, several visual programming languages have been developed. These lan-
guages have a visual syntax consisting of graphical elements such as pictures, forms and an-
imations (Cox, 1994). A visual syntax may incorporate spatial information such as contain-
ment or connectedness, and visual attributes such as location or colour. Most of these lan-
guages are graphical such as dataflow languages or state-transition languages. However, the
notations of these languages are typically very formal and mathematical in nature and do not
easily handle the complexity of real world applications.

Several researchers have tried to combine the advantages of reusability and extensibility of
object-oriented design, and the accessibility of visual programming. Their research has re-
sulted in the development of visual object-oriented programming languages. While object-
oriented programming has been most successful in the design and implementation of large
systems, visual programming has historically been most successful when applied to small
programs. However, there is recent academic and commercial interest in component-based
programming, whereby existing objects are combined using various visual techniques to build
large systems. The functionality and semantics of the objects map to business entities (such as
a customer, an invoice, a claims form, etc.), so they represent business objects. These compo-
nents also extend beyond traditional business objects to include real world artifacts like calen-
dars and clocks. These objects are produced as independent executables that use external mes-
saging mechanisms to communicate. These developments hold the promise of easily building
applications and their interfaces from well-defined and well-tested components.

Although the motivation behind the development of visual object-oriented programming
seems sound, they pose many problems for expressing and managing large amounts of infor-
mation, computation and relationships among system elements. These include the following:

Introduction 9

How to transform an object-oriented model into a GUI;

How to integrate modeling tools and visual programming environments;
How to ensure that the user interface conforms to HCI guidelines; and
How to automate the creation of the user interface.

b o =

Several approaches to solving these difficult problems have been proposed. Some provide
assistance at the design level (Vanderdonckt, 1993) or by evaluating the produced GUI and
making ergonomic proposals or critiques (Lowgren & Nordquist, 1992). Other approaches are
concerned with connecting domain analysis to GUI design. For example, UIDE (de Baar et
al., 1992) uses a data model, GENIUS (Janssen et al., 1993) uses an entity-relationship model
and petri-nets, Mecano (Puerta et al., 1994) uses a domain model; and TRIDENT (Bodart et
al., 1995) uses both a modified Entity-Relationship model and a task model as a basis for Ul
design. However, most of these approaches only look at parts of the design problem.

If the object-oriented approach could be used during the entire development of a new applica-
tion from the initial analysis to the final interface design, many benefits could result. Model-
ing techniques and tools that support the object-oriented approach could then be integrated.
The underlying semantics of the problem domain could also be easily mapped onto the se-
mantics of interface components. The design of visual interfaces could then use visual tools
that support the semantics of the interface elements rather than just their graphical nature, as
is current practice.
This project therefore proposes the development of a visual programming environment that
would use the rich semantic modeling capabilities of the object-oriented approach during the
entire development of an application. The environment will support:

1. The interactive definition of object types and functionality;

2. The interactive management of these reusable objects to build applications;

3. The interactive definition of an object’s visual display; and

4. The use of stored ergonomic knowledge to generate a user interface.

The proposal is to develop the environment to look and work very similar to the interface of
Visual Basic, but to provide support for the development of applications and their interfaces
on a much higher level of abstraction. The environment will be implemented in the Java pro-
gramming language. Java has quickly become a standard as a cross-platform technology. Java
supports component technology in the form of Java Beans. Java Beans provide a standard
application programming interface (API) that can be extended to support the development of
robust business objects.

The environment will support the design of a visual data dictionary through non-traditional
methods. Traditionally data models are designed using formal programming languages or
explicitly within a DBMS using a DDL. This environment, however, proposes to support the
visual definition of the data dictionary through the interactive definition of class types. A new
class is added to the schema by manipulating visual elements to construct a graphical template
from which a new class type is generated. The environment would provide a toolbar of de-
fined classes that could be visually manipulated and grouped to define new classes.

The environment will further distinguish between concrete interaction objects (CIO) and ab-
stract interaction objects (AIO). A CIO is a real interface element that the user can manipulate
such as a push button or list box. AIO’s consist of abstractions of all CIO’s from both pres-
entation and behaviour points of view. The abstraction of the user interaction provides several
significant advantages. Firstly, a high-level description of the user interface such as that pro-
vided by an abstract interface model allows the designer to reason at a level of abstraction

10 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

abstraction removed from implementation details, focusing on the behaviour and semantics of
the interface rather than the interaction details. Secondly, it takes account of existing user
interface design guidelines. Thirdly, it is easier to provide tool support for the process when it
is decomposed into a number of sub-activities, each with their own concerns and associated

guidelines.

The programmer would therefore design the data dictionary by gathering AIO’s on a visual
form. Each of these AIO’s can be interactively customized to represent the semantics of the
underlying concepts in the problem domain. The mapping of the AIO’s onto CIO’s will be
performed by the system based on the declared semantics of the schema information and cri-
teria like available screen space. The system would present the programmer with a list of pos-
sible CIO’s from a repository of interface objects. The resulting set of forms could serve as
the conceptual model of the underlying application.

To help the designer with the eventual interface design, the environment will support several
expert systems that use the semantics of the AIO’s. These include tools to validate the inter-
face design against HCI guidelines for issues like colour and visual layout.

1.4. Our role in this project

The part of the VEROD project we worked on was the mapping of the AIO’s onto CIO’s. We
have been asked to provide the VEROD project with a set of rules for the selection of the in-
teraction objects (IOs) as well as with a complete library of CIOs implemented in Java.

Problem statement 11

2. Problem statement

2.1. Definition of the problem: The selection of I0s

The problem we had to solve was the question of which interaction objects should be used in
each particular case. Ergonomic rules for selecting IOs can be found in style guides, stan-
dards, design guides or some empirical studies. Here follows a description of the problem.

2.2. Knowledge-Based Techniques (Vanderdonckt, 1995)

A first prototype of the supporting system was grounded on several algorithms for selecting
IOs from a series of functional and operational specifications (e.g., data type, data length,
number of possible values, domain definition, expandability by user). As these algorithms
were completely imbedded within the system, they were rendered completely opaque. As er-
gonomic rules were coded by algorithms that vary from one data type to another, they were
virtually unmaintainable.

A second version introduced a set of selection rules contained in an expert system. There was
a clear need for identifying each possible value for each specification to avoid multiple con-
ditions (e.g., date type = alphanumeric AND date type <> integer OR....., THEN interaction
object = list box) that are hard to manipulate by designers. The system was able to select a
single IO out of twenty-five different IOs from seventeen parameters for nine supported data
types. Therefore, the production rules have been made canonical, leading to a better under-
standing and customization of rules, but also leading to three shortcomings:

1) Rule redundancy : the canonization of production rules implies redundancy because a
same ergonomic rule can be found at different situations;

2) Lack of visibility and follow-up: one salient feature of expert system is the ability to fully
explain their reasoning. Executing production rules textually is not very representative for
designers;

3) Exceeding of specification work: the more specifications are provided, the more appropri-
ate the selected IO will be. But designers dislike to be forced to specify all details of each
information or action before the automatic selection. It is too constraining and unrealistic.

2.3. Discussion (Vanderdonckt, 1995)

Whereas rule redundancy seems impossible to avoid, the two last problems have been ad-
dressed as follows:

1) The lack of visibility of production rules invited us to order rules into decision tables that
can be graphically represented by decision trees techniques. The production rules in the
expert system do not need to adhere to particular execution order since the flow of control
is not determined by the order in which the selection rules have been coded. This is no
longer the case with decision tables and decision trees. Decision trees illustrate search in a

Bl P (i .

12 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

state-space representation where a preferred order of rule processing is imposed. This or-
der might not be optimal in all cases. But the fact that the selection for an appropriate 10
through a decision tree can be illustrated graphically is far most appreciated by designers.
Each node represents a state where a current IO is selected, and the links represent a
change from this state to another representing a more ergonomic IO. This change results
from this examination of the current value of the information specification.

2) This version of selection was rather automatic and straightforward since an IO was se-
lected from all the specification contained in a repository. Designers’ attitude was passive.
To make them more participative, it was suggested not to force them to input all required
specifications before generation. Instead, they provide minimal specification for each in-
formation. From this, the software automatically selects a first proposal. According to the
current state in the decision tree, the software becomes more interactive by asking design-
ers one question at a time. The different possible answers, corresponding to the allowed
future paths in the decision tree, are presented.

When the designer provides an answer, not only a more ergonomic IO is selected but the cor-
responding specification is added in the repository. Designers are more likely to see the direct
impact of multiple specifications. Therefore, the decision tree could be explored with forward
chaining, backward chaining, or bi-directional chaining. As long as the designer wants to pro-
ceed, a more ergonomic IO is selected.

Graphical representation of decision trees combined with flexibility implied by directional
and progressive chaining offer a truly computer-aided selection of IOs which seems really
active by establishing explicit control by designers.

Another interesting feature included in the computer-aided selection of interaction objects is
its independence across multiple computing platforms. Indeed, rather than selecting particular
CIOs, the system is based on an abstraction of behaviour (AIO), leaving presentation aspect
outside. Thus, decision rules contained in the decision tree no longer work on particular in-
stances of interaction objects belonging to different environments, but rather select an AIO.

Requirement Analysis 43

3. Requirement Analysis

3.1. Introduction

In order to solve the problem (see 2.1), our project could be split into two different linked
problems:

1) The first problem was to provide a set of rules to select 1Os.
2) The second problem was the development of a library of CIOs containing all the compo-
nents involved as an output into the selection rules.

3.2. Selection of user interface components

The problem we had to solve was the question of which interaction objects should be used in
each particular case. In order to make the right decision we need a matching mechanism be-
tween needs and components.

For instance, if the user needs a component to describe the “Name” attribute of a person, this
particular attribute can be described with a few criteria like

e the type of this attribute,

e the domain of values of this attribute,

e the number of values in the attribute.

In this case, the type of the value of the attribute is an alphanumeric value. The domain is
unknown and the number of values in the attribute is /. Giving those 3 criteria, the selection
mechanism will be able to identify that the most suitable IO for this particular attribute will be
an Edit box (see Figure 3.5) allowing the user to type in an alphanumeric value into a text
field.

3.3. Library of components

3.3.1. Low Level Components

Most Integrated Development Environment (IDE) (Delphi, Visual Basic,...) provides the user
with user interface components (Ul components) that are seldom used in isolation. Some-
times, the user will have to combine many of those components in order to make a single use-
ful IO.

For instance, if a designer needs a UI component that allows the user to type in his surname,
he will need to combine the following components:

14 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

1) A label (Figure 3.1) in order to explain to the user what is the value expected.

2) A text field (Figure 3.2) in which the user will be able to type in his surname

[Smith I
Figure 3.2 : A text field

3) A panel (Figure 3.3) in which the designer will add the label and the text field if he wants
those two components to move simultaneously

" Figure 3.3 : A panel

Moreover, the designer will have to explicitly define the mnemonic relationship between the
label and the text field to allow the user to give the focus to the text field by typing the “ALT+
mnemonic” key combination.

We will call all those components that need to be combined in order to produce a single us-
able IO, the Low-Level Components. They are non-final components, which means that they
can’t be used in isolation.

3.3.2. High Level Components

3.3.2.1. Definition

What we decided to call the High Level Components are final components opposed to the Low
Level Components which are non-final components. That means that the user can include
them directly into a form. They have simple methods and properties that make them easy to
use. When working with High Level Components, the user will have to write minimal code to
finally get complete and useful components. The High Level components are the combination
of Low Level Components, which means that the entire interaction between those components
is already implemented inside the High Level Components.

Requirement Analysis 15

For instance, if a designer needs a component that allows the user to type in his surname, he
won’t need to combine himself Low Level Components and will simply add to his form the
Edit Box High Level Component. (see Figure 3.4 below)

3.3.2.2. Description of the High Level Components

3.3.2.2.1. Introduction

The following tables contain a short description of most of the High Level Components that
will be used later on this report. Those components described are AIOs, which means that the
pictures are only indicative of what could be the graphical representation of the component.

We decided to sort these components according to the type of the values that they handle.

The different categories are:

BN oA L KD s

Non-specific components (see Table 3.1)
Integer components (see Table 3.2)

Date components (see Table 3.3)

Time components (see Table 3.4)
Boolean components (see Table 3.5)
Graphical components (see Table 3.6)

3.3.2.2.2. Non-specific components

Definition

Graphical representation

An Edit Box is a rectangular control in
which the user enters or edits a single line

text.

Figure 3.5: An Edit Box

An Edit Box Accumulator (or Editable
Non-Contextual Accumulator) is the com-
bination of an Edit Box (see Figure 3.5
above) with an Accumulator. It allows the
user to select an undefined number of text
values if the domain of values is unknown.

i i L =le e
Figure 3.6 : An Edit Box Accumulator (or Editable Non-Contextual Accumulator)

16 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

19,square de quinaux

A Multi-Line Edit Box is a rectangular : :
5100 Wierde - Belgique|

control in which the user enters or edits a
multiple-line text.

Figure 3.7 : A Multi-Line Edit Box

" 2 = " 1, Torquay Street
A Multi-Line Edit box Accumulator is the summerstrand

combination of a Multi-Line Edit Box (see
Figure 3.7 above) with an Accumulator. It
allows the user to select an undefined |
number of multi-line text values if the do- | Figure 3.8: A Multi-Line Edit Box Accumulator
main of values is unknown.

A List Box is a convenient, preconstructed
control for displaying a list of choices for
the user. The choices can be either text,
icons, or both. The purpose of a list box is
to display a collection of items and, in
most cases, support selection of a choice of
an item or items in the list.

Figure 3.9: A List Box

A Scrollable List Box is a List Box (see
Figure 3.9 above) with a “fast” scrollbar
allowing a much faster scrolling.

Requirement Analysis

17

e,

Like a single selection List Box (see Figure
3.9 above), a Drop-Down List Box pro-
vides for the selection of a single item
from a list of items; the difference is that
the list is displayed upon demand. In its
closed state, the control displays the cur-
rent value for the control. The user opens
the list to change the value

Figure 3.11: A Drop-Down List Box

A List Box Accumulator (or Non-Editable
Contextual Accumulator) is a control that
allows the user to select one or more than
one value among the values displayed into
a List Box (see Figure 3.9 above). The first
list is called the "values list" while the sec-
ond list is called the "selected values" list.
If the user wants to add an item to the se-
lection, he selects an item into the values
list and clicks on the "add" button. If the
user wants to remove an item from the
selection, he selects an item into the se-
lected values list and clicks on the "re-
move" button. The "add all" and "remove
all" buttons allows the user either to select
all the values or to deselect all the selected
values.

A Combo Box is a control that combines a
text field with a List Box (see Figure 3.9
above). This allows the user either to type
in an entry or to choose one from the list.

Figure 3.13: A Combo Box

A Drop-Down Combo Box combines the
characteristics of an Edit Box (see Figure
3.5 above) with a Drop-Down List Box

18 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

(see Figure 3.11 above). A Drop-Down
Combo Box is more compact than a regu-
lar Combo Box (see Figure 3.13 above); it
can be used to conserve space, but requires
additional user interaction to display the
list.

Figure 3.14: v Combo x

A Combo box Accumulator (or Editable
Contextual Accumulator) is the combina-
tion of a Combo Box (see Figure 3.13
above) with an Accumulator. It allows the
user to select an undefined number of text
values if the domain of values is mixed.
That means that some of the possible val-
ues are known, but that the user can also
add new values.

A Group Box is a container that groups
components sharing a same informational
structure. A Title Label can be used to in-
form the user on the content of the Group
Box.

Other font

Figure 3.15: A Combo box Accumulator (or ditale Contextual Accumulator)

10000 15 & & hare
john Smith 081-40.10.57

19, Torquay Street
6000 Summerstand PE

Figure 3.16 : A Group Box

A Radio Group is a group of Radio
Buttons. A Radio Button is an item
that can be selected or deselected,
and which displays its state to the
user. In a Radio Group only one
button at a time can be selected.

Figure 3.17: A Radio Group

A Text Radio Group is a Radio Group (see
Figure 3.17 above) that allows the user to
choose either one of the displayed values
or to edit another value in an Edit Box. If
the ‘other’ value is unselected, the Edit Box
is disabled.

Value 47

Figure 3.18: A Text Radio Group

Requirement Analysis

19

| A Scale is a component that lets the user
graphically select a value by sliding a knob
within a bounded interval.

A Table is a component that presents
data’s in a two-dimensional table format.

Figure 3.20: A Scale

Figure 3.21: A Table

A Unitary List Box is a text box that ac-
cepts a limited set of discrete input values
that can make up a circular loop. The user
can't type a text value directly into the
control but he can use the buttons to in-
crement or decrement the value.

[January o
Figure 3.22: A Unitary-List Box

A Masked Label is a display area that al-
lows the user to display values from differ-
ent types such as Date, Time, Integer and
String.

Figure 3.23: Four masked labels

A Multi-Line Label is a display area that
allows the user to display a multi-line
String.

Figure 3.24: A Multi-Line Label

Table 3.1: Non-specific components

20 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

3.3.2.2.3. Integer components

Definition

Graphical representation

A Spin Button is a text box that accepts a
limited set of discrete ordered input values
that can make up a circular loop. The user
can type a text value directly into the con-
trol or use the buttons to increment or dec-
rement the value.

Figure 3.25: A Spin Button

A Spin Button Accumulator is the combi-
nation of a Spin Button (see Figure 3.25
above) with an Accumulator. It allows the
user to select an undefined number of nu-
meric values if the domain of values is
unknown

» 3.26: A Spn Button Acc

A Numeric Scrollbar is a control that al-
lows the user to select a numeric value
either by scrolling the scrollbar or by typ-
ing the value into the Spin Button (see
Figure 3.25 above).

|

Figure 3.27: A Numeric Scrollbar

Requirement Analysis

21

A Numeric Radio Group is a Radio Group
(see Figure 3.17 above) that allows the
user to choose either one of the displayed
values or to select another value in a Spin-
Button (see Figure 3.25 above). If the
‘other’ value is unselected, then the Spin-
Button is disabled.

Fi igure39: A Numeric Radio Group

Table 3.2: Integer components

3.3.2.2.4. Date components

Definition

Graphical representation

A Calendar is a control that allows the
user to select either one or a group of
dates.

Figure 3.30: A Calendar

A Drop-Down Calendar is a control that
allows the user to select one date. It is bet-
ter to use a Drop-Down Calendar instead
of a Calendar (see Figure 3.30 above)
when the screen density is high. It works
just like a Drop-Down List Box (see Fig-
ure 3.11 above) except that it is a calendar
that is displayed when the user clicks on
the button.

00l
|

Figure 3.31: A Drop-Down Calendar

A Date Spinner is a component that allows
the user to select a date value.

Figure 3.32: A Date Spinner

22 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

A Date Spinner Accumulator is the combi-
nation of a Date Spinner (see Figure 3.32
above) with an Accumulator. It allows the
user to select an undefined number of dates
if the domain of values is unknown.

A Date Radio Group is a Radio Group (see
Figure 3.17 above) that allows the user to
choose either one of the displayed values
or to select another value in a Date Spinner
(see Figure 3.32 above). If the ‘other’ value
is unselected, then the Date Spinner is dis-

abled. . .
Figure 3.34: A Date Radio Group

Table 3.4: Date components

3.3.2.2.5. Time components

Definition Graphical representation

A Time Spinner is a component that allows

the user to select a time value. PR X N T e

A Time Spinner Accumulator is the combi-
nation of a Time Spinner (see Figure 3.36
above) with an Accumulator. It allows the
user to select an undefined number of time
values if the domain of values is unknown.

A Time Radio Group is a Radio Group (see
Figure 3.17 above) that allows the user to
choose either one of the displayed values
or to select another value in a Time Spin-
ner (see Figure 3.36 above). If the ‘other’
value is unselected, then the Time Spinner
is disabled.

Figure 3.38: A Time Radio Group

Table 3.5: Time components

Requirement Analysis

23

33226 Boole'an, components

Definition

Graphical representation

A Switch is a Component that allows the
user to choose between two opposites
values

Figure 3.40: A Switch

A Check Box is an item that can be se-
lected or deselected, and which displays
its state to the user.

; tgu 31.' Ck oxes

A Check Box Group is a group of Check
Boxes (see Figure 3.41 above). In a
Check Box Group more than one button
can be selected at a time.

|
|
|
|

Figure 3.42: A Check Box Group

A Boolean List Box is a List Box (see
Figure 3.9 above). that contains Check
Boxes (see Figure 3.41 above). It is use-
ful if the number of Check Boxes needed
is too big.

Table 3.6: Boolean components

3.3.2.2.7. Graphical components

Definition

Graphical representation

A Static Icon allows the user to display a
picture.

Figure 3.44: A Static Icon

24 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

A Browse Button is a control that allows the
user to select a graphical value. It is the
combination of a push button and a Static
Icon (see Figure 3.44 above). When the user
clicks on the button, an open file dialog box
pops up and the user can select a file.

A Browse Button Accumulator (or Editable
Non-Contextual Graphical Accumulator) is
the combination of a Browse Button (see
Figure 3.45 above) with an Accumulator. It
allows the user to select an undefined num-
ber of graphical values if the domain of val-
ues is unknown.

Figure .46.' we Button A cmulalor o Editable No
Accumulator)

A Graphical Combo Box is a Combo Box
(see Figure 3.13 above) that is used to select
a graphical value. To select a value, the user
can either use the Browse Button (see Figure
3.45 above) to select a file or select one of
the values of the list.

ol

7: A Graphical Combo Box

Figure 3.4

Requirement Analysis

25

A Drop-Down Graphical Combo Box is a
control that allows the user to select a
graphical value. It is better to use a Drop-
Down Graphical Combo Box instead of a
Graphical Combo Box (see Figure 3.47
above) when the screen density is high. It
works just like a Drop-Down List Box (see
Figure 3.11 above) except that the user has
the possibility to select a value that is not in
the list by using the browse button.

A Graphical Combo box Accumulator (or
Editable Contextual Graphical Accumula-
tor) is the combination of a Graphical
Combo Box (see Figure 3.47 above) with an
Accumulator. It allows the user to select an
undefined number of graphical values if the
domain of values is mixed. That means that
some of the possible values are known, but
that the user can also add new values.

F i.49: Graphical Combo box Accumulator (or
Editable Contextual Graphical Accumulator)

A Radio Icon Group is a group of
Graphical radio buttons. A Radio
Button is an item that can be selected
or deselected, and which displays its
state to the user. In a Radio Icon
Group, only one button at a time can
be selected.

Figure 3.50 - A Radio Icon Group

Table 3.7: Graphical components

26 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

3.3.2.3. Advantages of the High Level Components

Providing the user with a library of high level components instead of a library of Low Level
Component presents the following advantages:

1) As combined components they have some simplified layout managers. For instance, the
label of an Edit Box can be placed either above or on the left of the text field according to
the wish of the user. (see Figure 3.52 and 3.53 below)

Fi 3.52 : An horizontal Edit B
e i s Figure 3.53 : A vertical Edit Box

2) Some of these High Level Components are not available in most of the existing IDE.
Therefore the designers often use a less suitable UI component instead of the most appro-
priate one. Most of the time, those components are unknown to the user. One of the best
illustrations is the List Box Accumulator (see Figure 3.12).

3) The interaction between all the combined Low Level Components is already implemented
inside the High Level Component. For instance, the List Box Accumulator component
(see Figure 3.12) implements the entire interaction between the buttons and the List
Boxes. For instance, if the user clicks on the Add button, the selected value in the first
List Box will be added to the second one.

All these characteristics lead to the conclusion that the High Levels Components can give to
their user a valuable gain of time and give him the opportunity to use more suitable compo-
nents. This is why we decided that the library of components that we will develop would con-
sist of High Level Components.

Analysis and design 27

4. Analysis and design

The problem can be split into two main stages. The first one is the definition of the selection
rules used in the implementation of the selection algorithm. The second one is the design of
all the components.

4.1. Design of the selection algorithm

4.1.1. Selection trees

For all the reasons previously explained (see 2.3), the technique we decided to use to imple-
ment a selection algorithm is the technique of the selection trees.

The Figure 4.1 below represents a selection tree used for the selection of AIOs.

Selection tree

Criterion 1 value = value 1

Criterion 1 value = value 2 Criterion 2 value = value 1

Criterion 2 value = value 2

Figure 4.1: A selection tree

A selection tree consists of nodes and leaves. A definition of those concepts follows.

1) The nodes

A node is a decision point where the tree is divided into several sub-trees. (see Figure 4.2 be-
low). When reaching a node, the user has to decide what is the value of the criterion associ-
ated with the node, and then go through the sub-tree connected to this particular value.

i o N o

28 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

Tree if the value of the

A criteriond is value 1
Criterion 1 value=value1 |-cmcmmm oo,

Tree if the value of the

e criterion 2 is value 2
Criterion 1 value =valys 2 [=-=---eecncrmrnmccaneae

Figure 4.2 : A node

For instance, if the value of the criterion 1 is equal to value 2 (see Figure 4.3 below), then the
upper part of the tree is irrelevant and the user can go trough the lower part of the tree.

Selection tree

Criterion 1 value = value 1

Criterion 1 value = value 2 Criterion 2 value = value 1
- Criterion 2 value = value 2

Figure 4.3 : A selection tree

2) The leaves.

A leaf represents an AIO (see Figure 4.4 below). When the user reaches a leaf, it means that
the selected AIO for his particular needs is the AIO represented by the leaf.

Figure 4.4 : A leaf

4.1.2. Vanderdonckt’s selection trees

In order to create rules for the selection of AIOs, we based our research on the selection trees
defined by Jean Vanderdonckt in (Vanderdonckt, 1997). Vanderdonckt’s selection trees are

Analysis and design ‘ e AR 2

defined at the AIO level in order to make this selection problem independent of the target
graphical environment. (see 1.2 : AIOs and CIOs)

4.1.2.1. Selection criteria

The selection criteria (that willl be the nodes of the trees) he decided to take into account are
the following:

1. Interaction type

This criterion defines whether the AIO’s goal is to get a value from the user (Input) or to
show a value to the user (Display).

The possible values are:

e Input
e Display
2. Type

This criterion defines what is the type of the values handled.

The possible values are:
e Date (e.g. 12 November 1998, 13 April 1256)

e Time (e.g. 12:56 , 9:33:25)
e Graphical (e.g. alogo, a picture)
e [nteger (e.g. 5,6,3)
e Real (e.g. 5.36, 5.665589)
e Alphanumeric (e.g. John Smith, Erdd-65-ssa)
e Boolean (e.g. True, False)
3. Domain

This criterion defines the type of the domain.

The possible values are:

e Known: The domain is known if all the possible values are known. For instance,
the domain for a “Sex” attribute is known because the two possible values (Male
and Female) are known.

e Unknown: The domain is unknown if all the possible values are unknown. For in-
stance, the domain for a “date of birth” attribute is unknown. If the possible values
were defined between two specific dates (e.g. 13 November 1996 and 13 Novem-
ber 1997), then the domain would be known.

e Mixed: The domain is mixed if some of the possible values are known but some
others are unknown. For instance, the domain for a “city of birth” attribute is
mixed because the most current city names are known (e.g. Port Elizabeth, Cape
Town, Johannesburg) but it is impossible for the system to know all the existing
cities.

30 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

4, Choice
This criterion defines whether the user has to select one or more than one value.
The possible values are:

e Simple (or Number of values to choose = 1): In this case, the user has to select
only one value. For instance, the “date of birth” attribute consists of only one date.

e Multiple (or Number of values to choose > 1): In this case, the user can select
more than one value. For instance, the “first names” attribute consists of several
names (e.g. John Fitzgerald)

5. Number of possible values

This criterion defines the number of values included into the domain.

6. Continuity of the domain

This criterion defines whether or not the domain is continuous.

The possible values are:

e True: In this case, the domain is continuous. For instance, if the user has to select a
date between January 11, 1999 and January 31, 1999 then the domain is continu-
ous.

e False: In this case, the domain is discontinuous. For instance, if the user has to se-
lect a date among a list of dates that are unrelated (e.g. {January 11, 1999; Febru-
ary 25, 1995; March 3, 1976;...}), then the domain is discontinuous.

7. Length
This criterion defines what is the maximum length of the possible values.

For instance, the length of the “surname” attribute is 30 because most of the possible values
for this attribute are less than 30 characters long.

8. Precision
This criterion defines what is the precision level expected to select a value.
The possible values are:

e High
o [Low

9. Preference for selection

Analysis and design 31

This criterion defines whether the user prefers to select a value with the mouse or if he prefers
to type in a value.

The possible values are:
e True: In this case, the user prefers to select a value.
e False: In this case, the user prefers to type in a value.

10. Opposites values

This criterion defines whether or not the possible values are opposites. It is used only if the
type of the values handled is Boolean.

The possible values are:
e True: In this case, the possible values are opposites. For instance, if the user has to
select whether the temperature of the water is hot or cold, the two possible values
(hot and cold) are opposites values.
e [False: In this case, the possible values are not opposites. For instance, if the user
has to select whether the temperature of the water is hot or not, the two possible
values are “hot” or it’s negation “not hot”.

11. Screen Density

This criterion defines whether the screen density is high or low.

The possible values are:
e High: In this case, there is not a lot of screen space left.
e Low: In this case, there is a lot of screen space left.

12. Orientation

This criterion defines what is the orientation of the AIO.

The possible values are:
e Vertical: In this case, the orientation of the AIO will be a vertical one.
e Horizontal: In this case, the orientation of the AIO will be a horizontal one.
e Circular: In this case, the orientation of the AIO will be a circular one.
e Undefined: In this case, the orientation of the AIO will be undefined.

13. Data Type

This criterion defines whether each data is a single value or consists of several different val-
ues.

The possible values are:

32 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

e FElementary: In this case, each data is a single value. For instance, a “name” at-
tribute consists of only one alphanumeric value. (e.g. Smith, Jones, Williams)

e List: In this case, each data consists of more than one value. For instance, an
“address” attribute consists of a house number, a street, a zip code and a city name.
(e.g. 16, Torquay Street, 6000, Port Elizabeth)

14. Data Number

This criterion defines the number of different types displayed into a single piece of informa-
tion.

The possible values are:

e /: In this case, a data consists of several values of the same type. For instance, the
“temperatures forecast” attribute for the next week consists of 7 integer values.
(e.g. {26,26,25,23,31,32,25})

e >]: In this case, a data consists of several values of different types. For instance,
an “address” attribute consists of integer fields for the house number and the zip
code, as well as of an alphanumeric field for the street name and the city name.
(e.g. 16, Torquay Street, 6000, Port Elizabeth)

15. Number of values to display

This criterion defines whether the AIO must be able to display one or more than one value.

The possible values are:

e /: In this case, the AIO is only able to display one value. For instance, the number
of values to display for a “daily temperatures of the last week” attribute is 1 be-
cause only one week is taken into account. (e.g. {26,26,25,23,31,32,25})

e >]: In this case, the AIO is able to display more than one value. For instance, the
number of values to display for a “daily temperatures for all the weeks of last
year” attribute is 52 because 52 weeks are taken into account. (e.g.
{26,26,25,23,31,32,25}, {27,26,25,23,31,32,25},
{13,26,25,23,31,32,25},{26,26,31,23,31,32,25}, ...)

4.1.2.2. Quadrants

When looking at the whole selection tree, it is interesting to notice that some parts of it are
redundant. For instance, the Figure 4.5 and 4.6 below show two identical tree parts.

Type = Alphanumerio | NeoinR3) fie
: g Npo in [4,MagN] j

Npo in JMagN,Tm] &

Figure 4.5: a part of the selection tree

Analysis and design 33

Type = Real

Figure 4.6: another part of the selection tree

In order to simplify the representation of the trees, it is easy to put together all those common
parts into distinct selection trees that we will call quadrants. (see Figure 4.7 below)

[Nve=1 }—{KnownDomah'—m [Neonizal |

Npo in [4 MagN]
Npo in JMagN,Tm]

Figure 4.7 : The QI quadrant

Six different quadrants have been defined and named Q1, Q2, Q3, Q4, Q5 and Q6. (see Figure
A.1 and A.2, Appendix A)

Those common parts will be replaced into the main selection tree by a reference to a specific
quadrant. (see Figure 4.8 and 4.9 below)

[Type = Alphanumeric I-—W | Type = Real I—W

Figure 4.8 : The sub-tree has been replaced by a Figure 4.9 : The sub-tree has been replaced by a reference to the
reference to the quadrant quadrant

4.1.2.3. Splitting of the selection tree

The size of the entire tree being quite considerable, we decided to split it into 8 different se-
lection trees (named D1, D2, ..., D8) according to the type of the values handled. The Figure
4.10 below shows the top-level selection tree.

34 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

Selection of AlOs "n

—l Type = Time j——-{ l Tree D1]]
—[Type = Date }—{ I Tree D2 , l
._.I

Type = Boolean I—l | Tree D3 l l

— Interaction type = Input —

Type = Graphical }—' [Tree D4 I |
Type = Integer l———| | Tree D5 | |

]

o

— Type = Real | Treeps ||
]

Type = Alphanumeric }-—i I Tree D7 | I

—lInteraction Type = Display { I Tree D8 |]

Figure 4.10 : the top-level selection tree

The individual selection trees are displayed in the Figure A.3 to A.11 (Appendix A).

4.1.2.4. Abbreviations used in the trees

The abbreviations used in the selection trees are contained in the Table 4.1 below.

MagN |Magical number (= 7 +- 2 according to the experience level of the user)

Bn Maximum number of distinguishable values on a Scroll Bar, Scroll Cursor or a
| Scale (= +- 10)

| Lm Maximum length of an alphanumeric item (= +- 40)

Tm Maximum number of items in a list (= +- 50)

Npo |Number of possible values

Nvc |Number of values to choose

Nvd |Number of values to display

Table 4.1: Abbreviations used in the selection trees

4.1.3. Adaptation of Vanderdonckt’s rules

We decided to adapt Vanderdonckt’s trees for two reasons. First because his trees contain too
many AlIOs. If we wanted to develop efficiently a library of UI components, we had to limit
ourselves in the number of components implemented. Secondly, because a few criteria didn’t
seem appropriate to us and because some AIO’s choices could be improved. These will be
discussed below.

The individual simplified selection trees are in the Appendix B .

Analysis and design 35

4.1.3.1. Modifications

: The modifications that we made are the following:

1) Vanderdonckt’s trees contain the screen density criterion that doesn’t seem suitable at this
stage of the design process. When selecting an AIO, the user is not aware of the number
and the size of the other components surrounding this AIO. Therefore the screen density
choice will be postponed to a later stage.

In the trees, we always selected the “Low screen density” AIO by default. Ultimately we will
add to some of the AIOs an alternative component that takes less screen space.

For instance, the tree in the Figure 4.11 below has replaced the tree in the Figure 4.12.

Npo in JMagN,Tm] Density = Low

e

Figure 4.11: Part of Vanderdonckt's selection tree

Npo in JMagN,Tm] ua

Figure 4.12: Part of Vanderdonckt's tree without the screen density criterion

2) The orientation criterion has been removed from the trees. The reason is that, when se-
lecting an AIO, the user is not aware of the number and the size of the other components
surrounding this AIO. Therefore the orientation choice will be postponed to a later stage.

For instance, the tree in the Figure 4.13 below has replaced the tree in the Figure 4.14.

l o § T i s
| Orientation = Vertical]-——

[Npoin [2,3] |——| Orientation = Horizontal

—{ Orientation = Circular

— Oriertation = Undefined .
Figure 4.13: Part of Vanderdonckt's selection tree

L Npo in [2,3]

Figure 4.14: Part of Vanderdonckt's selection tree without the orientation criterion

3) The Time (see Figure A.3) and Date (see Figure A.4selection trees have been considerably
changed in order to include components like the Calendar (see Figure 3.30) and the Time
Spinner (see Figure 3.36).

36

Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

4)

In some cases, we decided to use more specific AIOs. For instance, instead of using an
Edit Box to select one value of the Integer, Date or Time type if the domain is unknown,
we use more suitable components like the Spin Button (see Figure 3.25), the Date Spinner
(see Figure 3.32) and the Time Spinner (see Figure 3.36). According to the same princi-
ple, we used components like the Date Spinner Accumulator (see Figure 3.33), the Time
Spinner Accumulator (see Figure 3.37) and the Spin Button Accumulator (see Figure
3.26) instead of the Editable Non-contextual Accumulator (or Edit Box Accumulator) (see
Figure 3.6).

The result of this process of simplification was that the number of rules dropped from 256
to130.

4.1.3.2. Selection criteria

The Table 4.2 below compares the criteria used in Vanderdonckt’s trees with those used in
our simplified trees.

Criterion Name Used in Vanderdonckt’s | Used in our trees
trees

Interaction type Yes Yes
Type Yes Yes
Domain Yes Yes
Choice Yes Yes
Number of possible values Yes Yes
Continuity of the domain Yes Yes
Length Yes Yes
Precision Yes Yes
Preference for selection Yes Yes
Opposites values Yes Yes
Screen density Yes

No
Orientation Yes

No
Data type Yes Yes
Data number Yes Yes
Number of values to dis- Yes Yes
play

Table 4.2: Comparison of the selection criteria used

4.1.4. Transformation of the selection trees

The next stage was the transformation of the trees into a structure much easier to implement
into the VEROD project (see 1.3).We used Excel worksheets to contain and represent the
rules in the selection trees.

Analysis and design 37

4.1.4.1. Representation of the criteria

Each criterion will be represented as a column into the spreadsheets. Thirteen columns will
then represent the thirteen criteria used in our trees (see Table 4.2).

In order to simplify the presentation of the rules, we split the main selection tree into 2 parts at
the level of the interaction type criterion. The rules related to the input interaction type will be
in the spreadsheet A while the rules related to the display interaction type will be in the
spreadsheet B as shown in Figure 4.15 below.

Selection of AlOs ”

g §

— Interactiontype =Input — Spreadsheet A :Input

L—linteraction Type = Display Spreadsheet B :Display

Figure 4.15: The selection tree has been split into two spreadsheets

4.1.4.2. Representation of the rules

Each terminal leaf of the selection trees represents one rule. Each node that led to a particular
leaf represents a condition that led to the selection of a particular AIO. The path followed in
the tree in order to reach a particular leaf can identify each particular leaf. (see Figure 4.16
below)

D5. Selection of
AlQ for Integer data
input

Unknown Domain

Nvo=1

Figure 4.16: The path leading to a particular leaf

38 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

For instance, the rule represented by the Figure 4.16 above could be translated into the fol-
lowing formula:

“If the interaction type = input

And if the type = integer

And if the number of values to choose = 1
And if the domain is unknown

Then the selected AIO is a Spin Button”

Or

“(interaction type = input) A (type = integer) A (number of values to choose = 1) A (unknown
domain) = selected AIO = Spin Button”

Each rule can then be represented into the spreadsheets as a row. Each condition that led to a
leaf (or an AIO) will be represented by a specific value in the column of the criterion involved
into the condition.

For instance, the rule represented by the tree in the Figure 4.16 above will be presented into
the input spreadsheet by the Table 4.3 below.

Selected |Type [Domain |[Choice Npo|Cont |Lg |Preci- [Preference |Oppo-

AlO sion for selection |sites
values

Spin Inte- [Un- Simple

Button ger |known |(Nvc=1)

Table 4.3: A rule into the spreadsheet

The spreadsheets A (input interaction type) and B (display interaction type) are in the Appen-
dix F.

4.1.5. Lower Density Alternatives for some AlOs

The AIOs handled by the selection rules are High Density AIOs. That means that they take up
a great deal of space screen. For instance, the user won’t have space enough to put 15 List
Boxes into a form. Therefore we linked some AIOs with a Lower density AIO.

For instance, the alternative for the List Box (see Figure 3.9) will be the Drop-Down List Box
(see Figure 3.11).

Finally the number of AIOs handled by the trees, including the additional alternative AIOs is
equal to 92. The list of all the AIOs, along with their Lower Density alternatives is in the Ta-
ble C.1 (Appendix C).

Analysis and design 39

4.2. Design of the components

4.2.1. Development platform

4.2.1.1. Java

In agreement with our supervisors, we have chosen to use Java as development language for
our High Level Components Library. The reasons for this will be discussed below.

Java is a simple, object-oriented, network-enabled, interpreted, robust, secure, architecture
neutral, portable, high-performance, multithreaded, dynamic language. Java makes program-
ming easier because it is object-oriented and has automatic garbage collection. In addition,
because compiled Java code is architecture-neutral, Java applications are ideal for a diverse
environment like the Internet. (Sun Microsystems 1998,1)

4.2.1.2. Java Beans (Sun Microsystems 1998,1)

The Java Beans API makes it possible to write component software in the Java programming
language.

Components are self-contained, reusable software units that can be visually composed into
composite components, applets, applications, and servlets using visual application builder
tools (IDE). That’s the main reason why we chose the Bean technology as a development
standard for our High-Level Components Library.

Java Bean components are known as Beans. A "Java Beans-enabled" builder tool maintains
Beans in a palette or toolbox. You can select a Bean from the toolbox, drop it into a form,
modify it's appearance and behaviour, define its interaction with other Beans, and compose it
and other Beans into an applet, application, or new Bean. All this can be done without writing
a line of code. (see Figure 4.17 below)

40 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

4/ VEROD - [Untitled. verod]

Figure 4.17 : ‘ mam'pulalioo a Beans (from VEROD)
The following list briefly describes key Bean concepts:

e Builder tools discover a Bean’s features (that is, its properties, methods, and events) by
adhering to specific naming conventions, known as design patterns, when naming Bean
features or by explicitly providing property, method, and event information with a related
Bean Information class.

e Properties are a Bean’s appearance and behaviour characteristics that can be changed at
design time. Naming conventions are that for an “X” property, you need a getter method
called “getX” and a setter method called “setX” or “isX” is the property is a Boolean
value. .

e Beans expose properties so they can be customized at design time. Customization is sup-
ported in two ways: By using property editors, or by using more sophisticated Bean cus-
tomizers.

e Beans use events to communicate with other Beans. A Bean that wants to receive events
(a listener Bean) registers its interest with the Bean that fires the event (a source Bean).
Builder tools can examine a Bean and determine which events that Bean can fire (send)
and which it can handle (receive).

e Persistence enables Beans to save their state, and restore that state later. Once you've
changed Bean’s property, you can save the state of the Bean and restore that Bean at a
later time.

Analysis and design 41

e A Bean’s public methods are no different from Java methods, and can be called from other
Beans or a scripting environment.

4.2.1.3. Java Foundation Classes

We decided to use The Java Foundation Classes (JFC) to design High-Level Components.
The following text on JFC demonstrates why it is the top-choice in GUI design and, therefore,
why we chose it. The JFC include many ready-to-use UI components, nicknamed Swing
components.

4.2.1.3.1. Swing Architecture (Sun Microsystems 1998,2)

Swing, is a GUI component kit that simplifies and streamlines the development of UI compo-
nents. Windowing components are the visual components (such as menus, tool bars, dialogs
and the like) that are used in graphically based applets and applications.

One the most important feature of Swing components is that they are lightweight. That means
that Swing components dont use any platform-specific implementations (which AWT pro-
grammers often refer to as "peers."). Instead, Swing creates its components using pluggable
look-and-feel (PL&F) modules that are written from scratch and don’t use any peer code at all.
Consequently, Swing components can typically be incorporated into a program using less
code that older "heavyweight" components required. Therefore, Swing components use fewer
system resources and produce smaller and more efficient applications than their heavyweight
AWT counterparts. Swing has three standard L&F: Metal, Window and Motif.

From an API perspective, the Swing component set extends, but does not replace, the pre-
Swing Abstract Windowing Toolkit (AWT). In fact, Swing sits atop part (but not all) of the
AWT tool set, as shown in the Figure 4.18 below.

Accessibility

Figure 4.18: The Swing Architecture

The diagram in the Figure 4.18 shows how Swing sits on top of a number of the APIs that
implement the various parts of JFC, including the Java 2D and Drag and Drop APIs. Al-
though both those APIs are part of JFC, they are not part of Swing. That’s because certain
tasks that they perform require use of native code. And Swing components, as we have seen,

42 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

never rely on peer code. So Java 2D and Drag-and-Drop appear beneath, not inside, the rec-
tangle labeled “Swing” in the diagram. So does the old-style AWT component set, which is
extended (but not replaced) by Swing.

Swing is based on the Model View Controller (MVC) architecture (see Figure 4.19 below).
Classic MVC architecture divides each component into three parts: a model, a view, and a
controller. In classic MVC architecture, the model manages whatever data or values the com-
ponent uses, such as the minimum, maximum, and current values used by a scroll bar. The
view manages the way the component is displayed. And the controller determines what hap-
pens when the user interacts with the component—for example, what occurs when the user
clicks a button control.

Figure 4.19: The MVC architecture

The Swing architecture is based on a modified MVC design. Classic MVC architecture is
simple and elegant, and the Swing team started designing the Swing component set, they ex-
perimented with using a pure MVC design. But they soon discovered that classic MVC ar-
chitecture didn’t work very well in real-world Swing application. So they wound up basing
Swing architecture on a modified adaptation of the traditional MVC design. To implement
Swing components, the Swing team created a modified MVC design. The component design
that the Swing team eventually settled on is sometimes referred to a separable model archi-
lecture.

In Swing's separable model design, the model part of a component is treated as a separate
element, just as the MVC design does. But Swing collapses the view and controller parts of
each component into a single UI object. The result is an architecture that looks like the one in
Figure 4.20.

Figure 4.20: The Swing architecture

Swing’s separable model architecture was developed because the creators of Swing found that
the traditional MVC design didn't work well in practical terms in Swing-style components.
It’s mainly because the view and controller parts of a traditional MVC-based component re-
quire a tight coupling that is sometimes difficult to achieve in practical terms. For example,
traditional MVC architecture makes it very hard to create a generic controller that doesn't
know at design time what kind of view will eventually be used to display it.

Analysis and design 43

The Ul Manager: To handle the look-and-feel characteristics of its modified-MVC compo-
nents, Swing defines a class called the UI Manager, which always keeps track of the current
look and feel and its defaults. The UI manager, shown on the right in the Figure 4.20, controls
the look-and-feel capabilities of each Swing component by communicating with the compo-
nent’s UI object, as shown in the diagram.

The Ul Delegate: In the Swing API, the name of each generic component class is preceded by
a "J" -- for example, classes in the Swing set are named JButton, JTree, JTable, and so on.
Each generic component class handles its own individual own view-and-controller responsi-
bilities. But, as shown in the preceding diagram, each class delegates the look-and-feel-
specific aspects of its responsibilities to whatever Ul object the currently installed look-and-
feel provides. For this reason, the UI object that’s built into every Swing component is some-
times referred to as the Ul delegate.

The Component Ul Class: In Swing, all Ul delegate classes are derived from a superclass
named Component UL This class contains most of the important machinery for making
Swing’s pluggable look-and-feel work. Its methods deal with UI installation and uninstalla-
tion, and with delegation of a component’s geometry-handling and painting. Delegate Uls are
described in more detail later, in the Pluggable Look and Feel section of this article.

The Component Model Interface: In component design circles, it’s generally considered good
practice to center the architecture of an application around its data rather than around its user
interface. To support this paradigm, Swing defines a separate model interface for each kind of
component that can store or manipulate values or data. This separation provides Swing pro-
grams with the option of plugging in their own customized model implementations. You can
use the Default or a Custom Component Models.

If an application doesn’t explicitly provide its own model implementation for a particular
component, Swing creates and installs a default model implementation which implements that
component's model interface.

4.2.1.3.2. Overview of the Swing Components

A list of the Swing components is contained in the Appendix E.
The main categories are:

1.Basic Controls : Exist primarily to get input from the user; generally also show simple
state.

Buttons (JButton, JRadioButton, JCheckBox, JToggleButton)

Combo box (JComboBox)

List (JList)

Menu (JMenu, JMenuBar, JMenultem)

Slider (JSlider)

ScrollBar (JScrollBar)

Text fields (JTextField)

Tool bar (JToolBar)

A Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

2. Editable Displays of Formatted Information: Display highly formatted information that can
be edited by the user.
. o Table (JTable)
o Text (JTextField, JPasswordField , JTextArea)
e Tree (JTree)
e Color chooser (JColorChooser)
e File chooser (JFileChooser)

3. Uneditable Information Displays: Exist solely to give the user information.
e Label (JLabel, Imagelcon)
e Progress bar (JProgressBar)
e Tool tip JToolTip)
4. Space-Saving Containers: Display more information in less space.
e Scroll pane (JScrollPane)
e Split pane (JSplitPane)
e Tabbed pane (JTabbedPane)

4.2.1.4. Conclusion

Our High Level Components Library will be designed in Java, using the Swing architecture
and Java Beans conventions.

We decided to create our own L&F which we will call the “Hyper-Metal” L&F. This new
L&F is an alteration of the Metal L&F. The reason for this is that it would have taken too
much time to implement three L&F for each components. This means that our components
won’t be able to switch between the three standard Swing L&F (Windows, Metal and Motif).

4.2.2. Components Design
4.2.2.1. High Levei CIO’s

Actually most of the AIOs handled by the selection rules present lots of similarities with other
AlOs. For instance, the only difference between a List Box (see Figure 3.9) and a Scrollable
List Box (see Figure 3.10) is the fact that two “Double Arrows” buttons are added to the
scrollbar of the Scrollable List Box. Therefore, one High Level CIO could implement both
AIO’s. A particular property of this CIO will allow the user to transform the List Box into a
Scrollable List Box.

At this point we grouped the 92 AIOs used in the trees (see Table D.1 in Appendix D) ac-
cording to their similarities. We defined 42 groups that will represent 42 High Level CIO’s or
components. For example, see the High Level Component List Box and the corresponding
AlOs in Table 4.4 below.

Analysis and design 45

High-level Components |AlO's

List Box List Box

Multiple Selection List Box

Graphical List Box

Scrollable Graphical List Box

Scrollable List Box

Scrollable Multiple Selection List Box

Multiple Selection Graphical List Box

Scrollable Multiple Selection Graphical List Box

Table 4.4: List Box and the corresponding AIOs

The list of the High Level Components is in the Appendix D.

4.2.2.2. Conventions

In the implementation process of the library we followed the following conventions:

4.2.2.2.1. The LabeledComponent class

Most of the UI components extend the Labeled Component class. The labeled component is
the combination of a label with a panel in which it is possible to add components. (see Figure
4.21 and 4.22 below).

Figure 4.21: A labeled component with the label on the left of the panel.

Figure 4.22: A labeled component with the label above the panel.

46 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

That means that almost all the UI components of our library contain a label as well as meth-
ods to set the position and the alignment of the label.

4.2.2.2.2. The GroupBox class

The Group Box component (see Figure 3.16) is a panel with an optional border in which the
user can add components. This component is very useful if the designer wants that several Ul
components move simultaneously. Moreover, a simplified layout manager is implemented
inside the Group Box allowing the user to add a component at a specific position inside the
panel.

4.2.2.2.3. Values and selectedValues properties

We decided to follow the following name conventions:

e When the user has to select a value among a list or a set of possible values, the value
property of the UI component represents the possible options in which the user can select
a value. In that case, the selectedValue or selectedValues property represents the value(s)
selected by the user among the possible values. For instance, the setValue method of the
List Box (see Figure 3.9) sets the content of the list while the setSelectedValue method
sets which ones of the values displayed in the list are selected or not.

e When the user has to select one value and if no possible values are presented into a par-
ticular component, the value property represents the value that he has typed in or selected.
For instance, the setValue method of an Edit Box (see Figure 3.5) sets the text of the text
field.

4.2.2.2.4. Events fired

Most of the UI components of the library fire events when the value of a key property has
changed. The key properties are most of the time the “values” or ”selectedValues” properties
(see 4.2.2.2.3 above) . If the user wants to listen for a property change event, he needs to add a
Property Change Listener to the component as shown in Figure 4.23.

myComponent.addPropertyChangeListener(new PropertyChangeListener ()

{
public void propertyChange(PropertyChangeEvent e)

{
if (e.getPropertyName() == "value")

{
// code if the “value” property has changed

}

}
D;

Figure 4.23: How to listen for a change of the “value” property.

Analysis and design 47

4.2.2.2.5. Hyper-Metal Look and Feel

We tried to develop UI components that look the same-as the Swing components in their
Metal Look and Feel (see Appendix E). For instance, the look of the Switch component uses
the color as well as the texture of the Swing JScrollBar component as shown in the Figure
4.24 below.

Figure 4.24: A Switch compared with a Swing JScrollBar.

4.2.2.2.6. Editable and Non-editable colors.

We decided to define two different colors that will be used each time that a component is ed-
itable or non-editable. For instance, the Combo Box (see Figure 4.25 below) is the combina-
tion of an Edit Box, which is editable, with a List Box, which is non-editable.

Figure 4.25: How we used the Editable and Non-editable colors.

That means that the user will be able to make the difference quite easily between two Ul
components whose only difference is the fact that they are editable or not. For instance, the
Figure 4.26 below shows a Unitary List Box and a Spin Button. The only visible difference is
the color of the text field. The color of the text field of the Spin Button is white (= editable
color) while the color of the text field of the Unitary List Box is the non-editable color.

Figure 4.26: A Spin Button and an Unitary List Box

48 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

4.2.2.2.7. Constants

Most of the constants needed to customize the UI components are stored into the Constants
class.

For instance, if the user wants to change the orientation of a Switch (see Figure 3.40), he will
write:

MySwitch.setOrientation(Constants. VERTICAL);

4.2.2.2.8. ToolBox

All the pictures, borders, internal constants as well as some very useful private methods are
stored into the ToolBox class. This class’ access is private.

4.2.2.2.9. Orientation

We tried as often as possible to create two different orientations for each Ul component. The
two Figures below show a vertical Date Spinner Accumulator (Figure 4.27) as well as a hori-
zontal Date Spinner Accumulator (Figure 4.28).

Figure 4.28: A horizontal Date Spinner Accumulator

Figure 4. vertical Date Spinner Accumulator

4.2.2.3. Application Programming Interface (API)

The description of ail the components can be found in the APL. You can consult the API on
our site at : XXX.

System evaluation 49

5. System evaluation

In order to evaluate our work, we decided to create a form using some of our UI components.
The goal of this form will be the registration of a student for courses.

5.1. Class Model

The class model for the student registration is shown in the Figure 5.1 below.

Number et

Name registers for
Date of birth 1.

Sex

Address
Phone Number
Racial group
on scolarship
Save

Find

Register Student

studies in

0.k

Department

Name

Figure 5.1: Class Model for Student registration

5.2. Selection of AlOs

5.2.1. Student Attributes
1) Number

This attribute represents the registration number of the student.

50 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

Path followed in the selection tree:

e The value of the interaction type criterion is Input
e The type of the value is Integer.

e The number of values to choose is 1

e The domain is unknown

The AIO selected is a Spin Button as shown in the Figure 4.16.

2) Name
This attribute represents the full name of the student.

Path followed in the selection tree:

e The value of the interaction type criterion is Input

The type of the value is Alphanumeric

The number of values to choose is 1

The domain is unknown

The length of the name is inferior to 40 (see Lm in Table 4.1)

As shown in the Figure 5.2 below, the selected AIO is a Single-Line Edit Box.

D7. Selection of
AlOfor
Alphanumeric data
inpit.

et Nvo=1 —{Unknown Domain }—{ Length <= Lm l——{v{’;‘)

Figure 5.2: The selection path of the AIO for the Name attribute.

3) Date of birth

This attribute represents the date of birth of the student.

Path followed in the selection tree:

e The value of the interaction type criterion is Input
e The type of the value is Date

e The number of values to choose is 1

e The domain is unknown

e The preference for selection is true

As shown in the Figure 5.3 below, the selected AIO is a Date Spinner.

System evaluation 3

D2. Selection of ||
AlO for Da

s Preference for 7
Ro=d selection = false DES Sy J

Figure 5.3: The selection path of the AIO for the Date of birth attribute.

4) Sex

This attribute represents the sex of the student.

Path followed in the selection tree:

e The value of the interaction type criterion is Input

e The type of the value is Boolean because the number of possible values for this attribute is
2 (Male or Female)

e The two possible values are opposite values.

As shown in the Figure 5.4 below, the selected AIO is a Switch.

DSSeI ction of |
AlO for Boolean
~ datalnput

Opposites values = True

Figure 5.4: The selection path of the AIO for the Sex attribute.

5) Address.

This attribute represents the address of the student.

Path followed in the selection tree:

e The value of the interaction type criterion is Input

e The type of the value is Alphanumeric

e The number of values to choose is 1

e The domain is unknown

e The length of the name is superior to 40 (see Lm in Table 4.1)

As shown in the Figure 5.5 below, the selected AIO is a Multi-Line Edit Box

32 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

D7. Selection of

Alofor
Alphanumeric data
. Inpi

'1:::‘

= Nvo=1 —{Unknown Domain H Length > Lm l—(e Mulli-Line Edit Box)

Figure 5.5: The selection path of the AIO for the Address attribute

6) Phone Number

This attribute represents the phone number of the student.

The selection is the same as for the name attribute, and therefore the selected AIO is a Single-
Line Edit Box.

7) Population group
This attribute represents the population group of the student.

Path followed in the selection tree:

e The value of the interaction type criterion is Input

e The type of the value is Alphanumeric

e The number of values to choose is 1

e The domain is mixed because in addition to the usual values (Black, White, Coloured,
Asian), some other values are possible.

e The number of possible values is between 4 and 7 (= Magical Number, see Table 4.1).

As shown in the Figure 5.6 below, the selected AIO is a Radio Button + Label + Edit Box +
Group Box.

e Hve=1

€ _{ Npo in [4,MagN] }—{ryp.-ummn.aH, _ Radio Bution + Label + Edit Box + Group Box)

Figure 5.6: The selection path of the AIO for the Population group attribute

8) On scholarship

This attribute defines whether or not the student received a scholarship.

Path followed in the selection tree:
e The value of the interaction type criterion is Input

System evaluation 53

e The type of the value is Boolean because the number of possible values for this attribute is
2 (true or false)
e The two possible values are not opposite values.

As shown in the Figure 5.7 below, the selected AIO is a Check Box.

Opposites values = False

Figure 5.7: The selection path of the AIO for the on scholarship attribute

5.2.2. Department Attribute

The only attribute of a department is the name. A student studies in one and only one depart-
ment.

Path followed in the selection tree:

e The value of the interaction type criterion is Input

The type of the value is Alphanumeric

The number of values to choose is 1

The domain is known

The number of possible values is between 7 (Magical number) and 50 (Tm, see Table 4.1)

As shown in the Figure 5.8 below, the selected AIO is a List Box.

D7. Selection of |l

AIO

— Nvo=1

Figure 5.8: The selection path of the AIO for the department name attribute

54 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

5.2.3. Courses Attribute

The only attribute of a course is its name. The student can register for one or more than one
different courses.

Path followed in the selection tree:

e The value of the interaction type criterion is “Input”

The type of the value is Alphanumeric

The number of values to choose is superior to 1.

The domain is known

The number of possible values is over 50 (Tm, see Table 4.1).

As shown in the Figure 5.9 below, the selected AIO is a Scrollable Non-editable Accumula-
tor.

D7. Selection of
AlO for
Alphanumeric data

input

b Nve>1

[known Domain |—E4—{ NpoiniTm+in] |~ Scroilable Non-Editable Contextual Acoumulater)

Figure5.9 : The selection path of the AIO for the courses name attribute

5.2.4. AlOs recapitulation

Attribute name AlIO

Number Spin Button

Name Edit Box

Date of birth Date Spinner

Sex Switch

Address Multi-Line Edit Box

Phone number Edit Box

Population group Radio Button + Label + Edit Box +
Group Box

On scholarship Check Box

Department Name List Box

Courses names Scrollable Non-editable Accumulator

Table 5.1: Summary of the attributes and the selected AIOs

System evaluation 55

5.3. Alternatives

At this stage, we must consider for each AIO whether or not it is pertinent to replace it with
its low-density alternative. The possible alternatives are in the Table C.1 (Appendix C).

Let’s decide for instance to replace the List Box selected for the department name attribute

with a Drop-Down List Box.

5.4. ClOs

For each AIO, we must now define which component of our library will be used. The Table
D.1 (Appendix D) shows for each AIO which High Level Component of our library should be
used.

The Table 5.2 below shows for each attribute, the component of our library that will be used.

Attribute name | AIO Component of our
library

Number Spin Button Spin Button

Name Edit Box Edit Box

Date of birth Date Spinner Date Spinner

Sex Switch Switch

Address Multi-Line Edit Box Multi-Line Edit Box

Phone number | Edit Box Edit Box

Population Radio Button + Label + Edit Box + | Text Radio Group

group Group Box

On scholarship | Check Box Check Box

Department Drop Down List Box Drop Down List Box

Name

Courses names | Scrollable Non-editable Accumulator List Box Accumulator

Table 5.2: Matching between the AIOs and the components of our library

The “Find”, “Save” and “Register” methods will be implemented with the use of the Swing
JButton component.

56 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

5.5. Implementation

The Figure 5.10 below shows a picture of the form generated.
B T p——

18, Torquay Street
6000 Summerstand PE

Business Information Syste
Computer Architecture 1.1
Computer Architecture 1.2 »
Management Information System

Figure 5.10 : The Student Registration form

The code written in order to implement this form is the following:

public class TestUPE
{

public static void main(String[] args)
{
/* GroupBox containing the information about the student*/
GroupBox groupStudent = new GroupBox();
GroupStudent.setTitle("Student");

/* Student Number */

SpinButton number = new SpinButton();
number.setLabel("Student number");

number.setMnemonic(’t);

number.setMaximum(10000);

number.setColumns(15);
number.setComponentHorizontalLocation(110);
groupStudent.addComponent(number,1,1,1,1,Constants.LEFT);
/* Student Name */

EditBox name = new EditBox();

name.setLabel("Name");

name.setMnemonic('m’);

RN AR

System evaluation

57

name.setColumns(16);
name.setComponentHorizontalLocation(110);
groupStudent.addComponent(name,2,1,1,1,Constants.LEFT);

/* Address */ b

MultiLineEditBox address = new MultiLineEditBox();
address.setlLabel("Address");

address.setMnemonic('d’);

address.setEditBoxSize(new Dimen-
sion(name.getComponentSize().width,50));
address.setComponentHorizontalLocation(110);
address.setLabelCentered(false);
groupStudent.addComponent(address,3,1,1,1,Constants.LEFT);
/* Date of birth */

DateSpinner dateOfBirth = new DateSpinner();
dateOfBirth.setLabel("Date of birth");
dateOfBirth.setCountry(Constants.UK);
dateOfBirth.setMnemonic(’f’);
dateOfBirth.setDateFormat(Constants.LETTER);
dateOfBirth.setComponentHorizontalLocation(110);
groupStudent.addComponent(dateOfBirth,1,2,1,1,Constants.LEFT);
/* Phone Number*/

EditBox phone = new EditBox();

phone.setLabel("Phone Number");
phone.setComponentHorizontalLocation(110);
phone.setColumns(19);

phone.setMnemonic(’h’);
groupStudent.addComponent(phone,2,2,1,1,Constants.LEFT);
/* Faculty of the student*/

DropDownListBox faculty = new DropDownListBox();
faculty.setLabel("Faculty");
faculty.setComponentHorizontalLocation(110);
faculty.setAutomaticSize(false);

faculty.setMnemonic(’c’);
faculty.setCellWidth(dateOfBirth.getComponentSize().width - 30);
faculty.setAlphabeticalOrder(Constants.INCREASING);

faculty.setStringValues(new String([] {"Computer Sci-
ence","Biology","Arts","Law","Physics","Mathematics","Medicine","Zoology","B
otanics"});

groupStudent.addComponent(faculty,3,2,1,1,Constants.LEFT);
/* Scholarship */

CheckBox scholarship = new CheckBox();
scholarship.setText("on scholarship");
groupStudent.addComponent(scholarship,5,1,1,1,Constants.LEFT);
/* Sex of the student */

Switch sex = new Switch();

sex.setLabel("Sex");

sex.setOnValue("Male");

sex.setOffValue("Female");
sex.setComponentHorizontalLocation(110);
groupStudent.addComponent(sex,4,1,1,1,Constants.LEFT);

58 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

/* Population group */
TextRadioGroup populationGroup = new TextRadioGroup();
PopulationGroup.setTitle("Population group");
PopulationGroup.setValues(new String[] {"Black","White","Coloured","Asian"});
GroupStudent.addComponent(populationGroup,4,2,2,1,Constants. CENTER);
GroupStudent.setComponentSpacing(5,5);
/* Find button */
JButton find = new JButton("Find");
GroupStudent.addComponent(find,1,3,1,1,Constants.LEFT);
/* Save button */
JButton save = new JButton("Save");
GroupStudent.addComponent(save,2,3,1,1,Constants.LEFT);
/* Group Box containing the information about the courses */
GroupBox groupCourses = new GroupBox();
GroupCourses.setTitle("Courses");
/* courses */
ListBoxAcc courses = new ListBoxAcc();
courses.setCellWidth(200);
courses.setValuesLabel("Courses");
courses.setSelectedValuesLabel("Selected courses");
courses.setListType(Constants.SET);
courses.setStringValues(new String[] {"Algorithmics 1.1","Algorithmics
2.1","Algorithmics 1.2","Algorithmics 2.1","Computer practice 1.1","Computer
practice 1.2","Computer practice 2.1","Computer practice 2.2","Advanced pro-
gramming 3.1""Advanced programming 3.2","Advanced programming
3.3","Business Information Systems 2.1""Business Information Systems
2.2","Computer Architecture 1.1","Computer Architecture 1.2","Management
Information Systems 3.1","Management Information Systems 3.2","End User
Computing 1.1","End User Computing 1.2"});
groupCourses.addComponent(courses,1,1,4,4,Constants.LEFT);
/* Button */
JButton register = new JButton("Register");
GroupCourses.addComponent(register,1,5,1,1,Constants.RIGHT);
GroupCourses.setComponentSpacing(5,5);
/* Frame */
JFrame frame = new JFrame("Student Registration");
frame.getContentPane().add("North",groupStudent);
frame.getContentPane().add("South",groupCourses);
WindowListener | = new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);} };
frame.addWindowListener(l);
frame.pack();
frame.show();

}
}

Conclusion 59

6. Conclusion

Here is the conclusion that we came to:

The selection trees handle rules that can meet the requirements of most users. The main
existing data types are handled (Time, Date, Graphical,...) as well as input and display
components.

The library of components contains more than 40 High Level Components, that is to say
more than most of the IDE available on the market, and covers the main needs in the
building of user interfaces. Some of the components are not working perfectly at the mo-
ment and will be considerably improved in the next months.

60 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

7. References

Nichols, L. (1998). A4 Visual Environment for Reusable Object Design At
http://www.cs.upe.ac.za/staff/csalen/PHD 1 .htm

Vanderdonckt, J. (1993) A Corpus on Selection Rules for Choosing Interaction Objects.
Technical Report, number 93/3, FUNDP Namur Institute of Computer Science.

Vanderdonckt, J. (1995) Knowledge-Based Systems for Automated User Interface Generation
. the TRIDENT Experience. Technical Report, In Proceedings of CHI’'95 — May 7-8 1995,
Denver, Colorado, USA, 21-33.

Vanderdonckt, J. (1997) Conception assistee de la presentation d’une interface homme-
machine ergonomique pour une application de gestion hautement interactive. PHD Thesis .
Insitut d’Informatique, Namur, Belgium

Sun Microsystems (1998,1), The Java Tutorial at http://java.sun.com/docs/books/tutorial/

Sun Microsystems (1998,1) The Swing Connection at http://java.sun.com/products/jfc/tsc/

£ 01 [SUpAponQ) [y 24n31

Quadrants 1,2,3.
Nve =1

Known Domain

Density = Low |———(ey

— Npoin[23] ~_|::

Density = High]—-———(

—{ Npo in [4 Magh]

Density =Low |——(Radio Butfon + Group Box

Density = High

—{Npo in Magh,Tm]

Density = Low

Density = High

—f Npo in JTm,+inf]

Density = Low }—@

(7
i

Density = High

P

Density = Low H Radio Button + Label + Edit Box)

— Npoin[23] J—E

Densty = High |—— DropDown CombaBox)

—-| Npo in [4 MagN]

Densty = Low |—{Radio Button + Label + Edit Box + Group Box)

Density = High ¢ Drop-Down Combo Box)

-—{Npo in IMagN,Tm] Density = Low }—(~ ComboBox)
’—[{roensﬂy = High H Drop-Down Combo Box)

L Npoin ITm,#inf] Density =Low |——" """ Scrollable Combo Box)
4.—[:(Density = High }—(. Drop-Down Scrollable Combo Box:)

S99} UOI}I[8S S,})OUOPIBPUEA L8

Xjpuaddy '8

xipuaddy

19

9 0) SIUDAPOND) (T'Y 24nB1s]

Quadrants 4,5,6.
Nvc > 1 . ;
Voo 0 B3
1 Npo in [4,MagN] }
Ve

INpo in]MagN,Tm] Density = Low

Density = High

Npo in]Tm.+inf] Density = Low

Density = High

Unknown Domain

O

=

Npo in [2,3]

Npo in]MagN,Tm] Density = Low
Density = High

Npo in]Tm +inf] Density = Low
Density = High

29

us1sa(q 1021g() 2]qpsnay 40f s1221g() UO1IDAIU] JIDAISQY Jo uonypuasaiday ayy ‘Y xipuaddy

2241 U0102]as Indut awL] Y} €'y 24n31,]

D1. Selection of
AlQO for Time data
Input

— Nve=1

—| Unknown Domain II

o Nvc =1

Discontinuous
Domain

Continuous
Domain

[

s AT £
1 Npo in [2,Bm] Precision = High [i
Precision = Low Orientation = Vertical I—(

[Oriertation = Horizonti}—(
| Orientation = Circular i—-—(

{Orientation = Undefined }——(:

Npo in]1Bm,Tm] Precision = High | (3 Spin Buttons or 3 Edit

Oriertation = Vertical |——(ScrollCy
{Orientation = Horizortal |—("
I Orientation = Circular]——(<

[Orientation = Undefined I—(

Boxes

SRR

Precision = Low

—| Npo = Tm } {

ScrollBar +EdtBox)

——‘ Mixed Domain IF

I Unknown Domain If

— [Known Domain

el bt i

Mixed Domain I

xipuaddy

£9

2247 U01102]2s Indut AV Y} 'Y 24n31

D2. Selection of
AlO for Date input

Nve=1

—{ Unknown Domain }

Discontinuous

Known Domain "
Domain

Continuous
Domain

\—~ Nve>1

Npo in [2,Bm]

Npo in]Bm,Tm]

Preference for
selection = True

a1

Density = Low }—1

Calendar)

Preference for
selection = False

Preference for
selection = True

—| Npo > Tm }

Preference for
selection = False

—1 Mixed Domain }

Domain

Known Domain

Mixed Domain

[

r9

usisaq 1021g0) 2]qusnay 40f $1921q(0) U0V L2IU] JOD4ISGY JO uonpuasa.day ayj 'y xipuaddy

2241 U01122]2s Indul UDIJOOG Y} Gy 24NS1,]

D3. Selection of
AlQ for Boolean
data Input

Opposites values = True

[Orientation = Vertical

|
—-{Orientation = Horizontal

—l Orientation = Circular

Opposites values = False

_|0rientation = Undefined

(Twa Values Dia

Horizortal Switch

~ CheckBox

xipuaddy

<9

2241 101102]2s Indut po1ydpan) ays Jo fjoy 1541 Y1 :9'y 24n31]

D4. Selection of
AlO for Graphic
data input (1/2)

Mve=1

Unknown Domain I

|

Density = Low e

Edit GraphicWindow)}

Density = High o

Browse Button

Known Domain }—_{ Npo in [2,3] J—-{ Orientation = Vertical

Density = Low]—(ot

VedcalRedolcon)

— Oriertation = Horizortal

-1 Orientation = Circular

orientation = Undefined

-—ero in [4 MagN] h_{ Orientation = Vertical

-[Oriemation = Horizontal

—[Oriertation = Circular

—10riemation = Undefined

Npo in JMagN,Tm]

Density = Low ¥

Density = High

L—{ Npo in]Tm, +inf] =

. Scrollable Graphic List Box

Density = Low
Denstty = High !

 Scrollable Drop-Down Graphic ListBox)

99

udisa(q 102190 21qvsnay 40f s1921q(Q) U01IIVLIU] JOD4SGY JO uonpuasa.day 2y ‘v xipuaddy

201 uonoapes Indut porydp.ar) dY) JO Jey puodas ay) L'y a3

D4. Selection of
AIO for Graphic
data input (2/2)

Nvc=1

—1 Mixed Domain]—

)

Nvec=1

— Npoin 23])-[: Density =Low |—{' ‘Radio lcon + Radio Button + Label "Other" + Edit Graphic Window

Density = High H

" Radio oon + Recli Buffon + Label "Other" + Browse Bulton

>

—{ Npo in [4 Magh] }-D Density = Low |—{(Radio Icon + Radio Button + Label "Other" + Edit Graphic Window + Group Box

Denstty = High > Button + Group Box -

)

—pro in MagN,Tm] J—U Density = Low

Density = High

¢
L{ Npo in]Tm,#inf] }-[lroensnynow s
-

Denstty = High Scroliable Drop-Down Graphic Combo Box

—1 Unknown Domain IF

——'Wown Domain }—

—| Npoin [2,3] }

owse Bution + Edtable Non-Contextual Accumuator

—1 Npo in [4 MagN] }

Check Box + Stafic icon

P ama

~ Check Box + Static lcon + GroupBox

—|Npo in MagN,Tm] '-I:: Density = Low]——(A LebelediconGroug

Density = Hish |—{ Muttiple Selection Graphic List Box or Non-Editable Graphic Accumulator

—1 Npo in]Tm +inf]

Density = Low

—lTAixed Domain }—

Scrollable Muttiple Selection Graphic List Boxor
crollable Non-Editable Cartextual Graphic Accumulator

Density = High

_| Npo in [2,3] }

{__ CheckBox + Static Icon + Label *Other" + Edit Graphic Window

—-‘ Npo in [4 MagN) IL
—|Npo in MagN,Tm] IL

{{ Check Box + Static Icon + Label "Other” + Edit Graphic Window + Group Box

{ . Ediable Contextual Graphic Accumulator

L{ Npo in JTm +inf] IL

{ . Scraliable Editable Cortextual Graphic Accumulator

xipuaddy

L9

201 uonoapes Indut 4a8azuf oY) 8"y N3]

D5. Selection of
AlO for Integer data
input

Nve=1

Known Domain

Disortinuous

Q2

Domain

Q1

Cortinuous

Domain _{ Npo in [2,8m]

Precision = High }—

—| Orientation = Vertical J_(

Vertical Thermometer

—{Orientation = Horizontal |—{ " Horizontal Thermometel
—{ Oriertation = Circular |— Dl

Oriertation = Undefined |—{ Horizontsl Thermometer

Precision = Low h

—{ Oriertation = Vertical |—{ = ScrollCursor

—Orientation = Horizontal

—{ Npoin JBm,Tm]]—l:: Precision = High |

Precision = Low

Orientation = Vertical

Orientation = Circular

Orientation = Undefined

L' Npo » Tm =

e L

Nve>1

89

usisac] 1921g0) 2]qpsnay 4of s121qQ) Uo1IIVIU] 19D AISqY JO uonpuasaday ay 'y xipuaddy

291 uotoajas dur [eay] oY) 6’y 231y

D6. Selection of
AlO for Real data
input

Nve=1

—-—rUnknown Domain }

| Unknown Domain [

Nvc=1

Mixed Domain |

Mixed Domain |

xipuaddy

69

Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

_ UIEWOQ PIXIW

L 1

L UIEWOJ umouy _

w < yibuan

s u]ll* w => ybua

L=t]

UIPWOoQ umoulun —

}<OAN J

/]

[ulEWoq paxiy |

| S adhaiui A i |

[UIEWOQ UMOUY l

%08 11p3 2UIT-HInN

wn < yibuan

xog1p3 suralbuig posem

. Tl w => yibus

sl it B

70

ulEWoq umowun |

L =0AN

-

indul
ejep ouswnueydpy
10} OIV
jo uonoses “.d

Figure A.10: the Alphanumeric input selection tree

2041 U01102]3S ApjdSIT 2y : [['Y 24n31,]

D8. Selection of
AlO for data display

Masked Single-Line Edt Box)

b o

" Wasked Srgle-Line EL B0

— Data type = Elementary

— Data type = List

Data number > 1

Data number =1

——1 Type = Hour MNvd=1 }
— Type = Date Nvd=1 |
Nyd>1
— Type = Graphic Nvd=1
——{ Type =Boolean Nvd=1 |
Nvd>1
—-{ Type = Integer Nyd=1
—{ Type = Real Nvd=1
I Type = Alphanumeric Nvel=1 Length <=Lm
Length » Lm
Nyd>1
Type = Sound

s length(d) <=Lm

% length(d) > Lm

——-| Type = Hour }
Type = Date

Type = Graphic

-—1 Type = Boolean }
Type = Integer

——1 Type = Real {
Type = Alphanumeric

Length <= Lm

Length»Lm |——{

 Table of Mutti-Line Edit Boxes

xipuaddy

IL

v Quadg}aﬁts

SRR __ - ——i Npo in [2,3] ;7 (Ratiio Button :)
—1 Npo in [4,MagN] } {_ - RadioButton + GroupBox)

—1Npo in JMagN,Tm] lr
L‘ Npo in JTm +inf] }7

£ 01 [SupaponQ) :['g 24n31.{

e

Npo in [4 Magh]

—ino in JMagN,Tm] 'r

L‘ Npo in JTm,+inf] }7 Corve o SCt’ollﬁbleCombOBox e :)

éL

soa4) uoposjds paylduis ‘'8

uS1sa(] 1921q0) 2]qpsnay 40f $192[q(0) U0V LIU JOVAISqY JO UODIUISILARY Y] "V xipuaddy

9 01 { SjuDPONQ) (T g 24N31]

Npoin [2,3]

xipuaddy

Known Domain

| Npo in [4 MagN] }

|Npo in JMagN,Tm] l[

Npo in JTm +inf]

A A

Q6 err

Npo in [4 MagN]

—{ Type=iteger |
— Type=Date |—{
—[Type = Hour H
L—{Type = Undefined |
——r Type = Integer
——{ Type =Date
— Type = Hour

-

Check Box + Label + Time Spinn

—'Npo in MagN,Tm] }

—i Npo in]Tm,+inf] }

Type = Undefined Check Box + Label + Ecit Box + Accumulator + Group Box
G _ Edtable Contextual Accumulator 2]
& Scroliable Editable Contextual Accumulator)

&L

Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

74

anJ] = uBWoQg
SNONUIUOD

“ UIBWOQ PaxIy _||

asjed = upwWoq
SNoNURUOD

UIBWOQ UAAOUY

“ UleWOog uAMouUNUn _||

anJ) = urwoq
sSnonuLOD

C 1auuds swy 3

asje = uWoQg
SNONUIIOD

| < 3AN

L=0AN

Figure B.3: the Time input selection tree

2241 U0122]28 ndut A Yy g 24n31.]

DZ Selection of '

xipuaddy

= Preference for 7
i |Unknow: :n:Domam } selection = true _ Selercer
-
Preference for 7 -
selection = false L Date Spinner

Nve=1 Pt i i
Known Domain Dlsc;;:.::;ous
Continuous Preference for 7 z =
domain selection = true 1 Calender (restricted domain)
Preference for P = z
selection = false {__ Dete Spinner (restricted domain)

——-I Mixed Domain } m Date

~{Giwowm bansi | o (Vave e
Known Domain Dis?;::;ws &4
ey ot sipind (Miple selection Calendar (rstricted domain)
ko s (" Dete Spinner (restricted domain) + Accumusior

L—i Mixed Domain }

(Y4

Check Box

True
False

76 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

Opposites values
Opposites values

Figure B.5: the Boolean input selection tree

2241 uo1122]as ndut [po1ydpar) ayy :9°g 2431

D4. Selection of
O for Graphic
data input

Nvc=1

——1 Unknown Domain i

——-[Known Domain }—

_| Npo in [2,3] }

—i Npo in [4 MagN] %

leo in MagN, Tm] }
L—-l Npo in]Tm +inf] }

Nvc=1

Ji 5
{ Mixed Domain }—

— Npoin[23] }

€ Browse Button %)
{ ~ Radolcon)
{ . Radio lcon + Group Box

p

\

£

b

£

—| Npo in [4 MagN] ;

£

—ino in JMagN,Tm] }

—‘ Npo in]Tm +inf] I

Scroliable Graphical Combo Box

——1 Unknowyn Domain }

—|7Known Domain }—

— Npoin[23] J'i

—| Npo in [4 MagN] i

—-|Npo in IMagh, Tm] }

{ Browse Buton + Accumulator)
{ ~ Check Box + Static lcon
(~ Check Box + Static Icon + Group Box

 Non-Editable Cantextual Graphical Accumulator

L{ Npo in JTm,+inf] }

L—r Mixed Domain]—

_{ Npo in [2,3] }

—1 Npo in [4 MagN] i

-|Npo in MagN,Tm] }
——1 Npo in JTm +inf] }

{ ‘Scrollable Non-Edtsble Contextusl Graphical Accumuator

{ Check Box + Label "Other” + Browse Button + Accumulator

(Check Box + Label "Other” + Browse Button + Accumulator + Group Box
¢ Editable Contextual Graphical Accumulator

{ Scrollable Editable Contextual Graphical Accumulator

OO @Y Y @Y N O Y

xipuaddy

L,

Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

uRWOQ PaXIy

UIBLWIOEQ UANOUY

[T ——

1 ulRwoQq uasouyun EDR

“ w) < ody _IJ

MO = UOISIDald

YBIH = uoisioald

|
L

wy'wgl uody |—

AADT] = UOISID3.d

{ uBiH = uorsaig [wgzluody |

ulewoq
ShoNURJoD

uigwiop
snonupuoasiq

urewo(PaXIN

L<OAN

UI2WOQ UAMDUY

1=0AN

Figure B.7.: the Integer input selection tree

78

{ uopng uds

e

UIRLIO(UAAOUYUN _||

221 uonoayas indut pay 2y :g'g 31

D6, Selection of ||
AIO for Real data

.

nput

Nyve=1

Nyc=1

xipuaddy

6L

Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

80

_ uleWwoq paxipy _

———f

I UIBWOJ Umou _

| R e e i i A

w < ybuan

L<OAN

w = ybuan ulEWwoq L y _.__

| ulewoq paxiy]

| st i .) B

| UIEWOQ UMOUY]

| e it R

ur < yibusn

w =3 yjbuan

ulewoq un |

L =0AN

Figure B.9: the Alphanumeric input selection tree

2241 UONIINAS Avydsiq 2y : (] g 24n31

——i Type = Time Nvd=1 } (Masked Label J
8. Selection of Nvd>1 { ListBox)
or data display " Type=Date a1} g
—{ Type = Graphic NvdL} { §
Nvd»1 { o
L Data type = Elementary { Type = Boolean Nve=1 Oppostes values = True S
Opposites values = False H
Nvd»1 £
—{ Type = Integer Nyvl=1 }
Nvd>1
— Type=Real Nvd=1 |)
Nve>1]
\—-l Type = Alphanumeric Nvd=1]
)
Nvd=1)
L-{ Datatype = List Data number » 1 .’: , Extended Table .]
] Y G T LT S
o] wewsae)
] G YT —
e} R, 1 —
e s)
Length <=Lm _ Table of Masked Labels)
Length>Lm | —(Table of Masked Muti-Line Labels)

xipuaddy

I8

82 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

8.3. AlOs and their alternatives

Num|AIOs Lower Density alternatives
Boolean List Box

Browse Button

Browse Button + Accumulator
Calendar Drop-Down Calendar
Calendar (Restricted domain) Drop-Down Calendar
Check Box

Check Box + Group Box

Check Box + Label "Other" + Browse
Button + Accumulator

9|Check Box + Label "Other" + Browse
Button + Accumulator + Group Box
10{Check Box + Label + Date Spinner + Ac-
cumulator

11|Check Box + Label + Date Spinner + Ac-
cumulator + Group Box

12|Check Box + Label + Edit Box + Accu-
mulator

13|Check Box + Label + Edit Box + Accu-
mulator + Group Box

14|Check Box + Label + Spin Button + Ac-
cumulator

15{Check Box + Label + Spin Button + Ac-
cumulator + Group Box

16/Check Box + Label + Time Spinner + Ac-
cumulator

17]1Check Box + Label + Time Spinner + Ac-
cumulator + Group Box

18|Check Box + Static Icon

19]Check Box + Static Icon + Group Box
20]Combo Box Drop-Down Combo Box
21|Date Spinner

22|Date Spinner (Restricted domain)

23|Date Spinner (Restricted domain) + Accu-
mulator

24|Date Spinner + Accumulator
25|Drop-down Calendar

26|Drop-Down Graphical Combo Box
27|Drop-Down Graphical List Box
28|Drop-Down List Box

29|Drop-Down Scrollable Combo Box
30|Drop-Down Scrollable Graphical Combo
Box

31|Drop-Down Scrollable Graphical List Box
32|Drop-Down Scrollable List Box

RO|IJ| N[N W N |—

Appendix

83

33

Editable Contextual Accumulator

Multiple Selection Combo Box

34

Editable Contextual Graphical Accumula-
tor

35|Extended Table
36|Graphical Combo Box Drop-Down Graphical Combo Box
37|Graphical List Box Drop-Down Graphical List Box
38|List Box Drop-Down List Box
39|Masked Label
40|Masked Multi-Line Label
41|Multi-Line Edit Box
42|Multi-Line Edit Box + Accumulator
43|Multiple Selection Calendar
44|Multiple Selection Calendar (Restricted
domain)
45|Multiple Selection Combo Box
46{Multiple Selection Graphical List Box
47|Multiple Selection List Box
48|Non-Editable Contextual Accumulator Boolean List Box / Multiple Selection
List Box
49|Non-Editable Contextual Graphical Accu-{Multiple Selection Graphical List Box
mulator
50{Radio Button Drop-Down List Box
51|Radio Button + Group Box Drop-Down List Box
52|Radio Button + Label + Date Spinner Drop-Down Combo Box
53|Radio Button + Label + Date Spinner +|Drop-Down Combo Box
Group Box
54|Radio Button + Label + Edit Box Drop-Down Combo Box
55|Radio Button + Label + Edit Box + Group|Drop-Down Combo Box
Box
56|Radio Button + Label + Spin Button Drop-Down Combo Box
57|Radio Button + Label + Spin Button +|Drop-Down Combo Box
Group Box
58|Radio Button + Label + Time Spinner Drop-Down Combo Box
59|Radio Button + Label + Time Spinner +|Drop-Down Combo Box
Group Box
60}Radio Icon Drop-Down Graphical List Box
61|Radio Icon + Group Box Drop-Down Graphical List Box
62|Radio Icon + Radio Button + Label|Drop-Down Graphical Combo Box
"Other" + Browse Button
63|Radio Icon + Radio Button + Label|Drop-Down Graphical Combo Box
"Other" + Browse Button + Group Box
64|Scale + Masked Label
65|Scroll Bar + Masked Label
66|Scroll Bar + Spin Button (Restricted Do-
main)
67|Scrollable Boolean List Box
68|Scrollable Combo Box Drop-Down Scrollable Combo Box
69|Scrollable Editable Contextual Accumula-|Scrollable Multiple Selection Combo

Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

Accumulator Box
70|Scrollable Editable Contextual Graphical
Accumulator
71|Scrollable Graphical Combo Box Drop-Down Scrollable Graphical
Combo Box
72|Scrollable Graphical List Box Drop-Down Scrollable Graphical List
Box
73|Scrollable List Box Drop-Down Scrollable List Box

74|Scrollable Multiple Selection Combo Box

75|Scrollable Multiple Selection Graphical
List Box

76|Scrollable Multiple Selection List Box

77|Scrollable Non-Editable Contextual Accu-|[Scrollable Boolean List Box / Scrollable

mulator Multiple Selection List Box
78|Scrollable Non-Editable Contextual|Scrollable Multiple Selection Graphical
Graphical Accumulator List Box

79|Single-Line Edit Box

80|Single-Line Edit Box + Accumulator

81|Spin Button

82|Spin Button + Accumulator

83|Static Icon

84|{Switch

85|Table of Check Boxes

86|Table of Masked Labels

87|Table of Masked Multi-Line Labels

88|Table of Static Icons

89|Time Spinner

90|Time Spinner (restricted domain)

91|Time Spinner (restricted domain) + Accu-
mulator

92|Time Spinner + Accumulator

Table C.1: AIOs and their alternatives

Appendix

85

8.4. High Level CIOs and their implemented AlOs

Num

High Level CIOs

AlOs

—

Boolean List Box

Boolean List Box
Scrollable Boolean List Box

N

Browse Button

Browse Button

)

Browse Button Accumu-
lator

Browse Button + Accumulator

Calendar

Calendar

Calendar (Restricted domain)

Multiple Selection Calendar

Multiple Selection Calendar (Restricted domain)

Check Box Group

Check Box

Check Box + Group Box

Check Box + Static Icon

Check Box + Static Icon + Group Box

Combo Box

Combo Box

Multiple Selection Combo Box

Scrollable Combo Box

Scrollable Multiple Selection Combo Box

Combo Box Accumulator

Editable Contextual Accumulator
Scrollable Editable Contextual Accumulator

8|Date Check Box Group Check Box + Label + Date Spinner + Accumulator
Check Box + Label + Date Spinner + Accumulator +
Group Box
9(Date Radio Group Radio Button + Label + Date Spinner
Radio Button + Label + Date Spinner + Group Box
10|Date Spinner Date Spinner

Date Spinner (Restricted domain)

1

I

Date Spinner Accumulator

Date Spinner (Restricted domain) + Accumulator
Date Spinner + Accumulator

12

Drop-Down Calendar

Drop-down Calendar

13|Drop-Down Combo Box |Drop-Down Scrollable Combo Box
14|Drop-Down Graphical[Drop-Down Graphical Combo Box
Combo Box
Drop-Down Scrollable Graphical Combo Box
15|Drop-Down List Box Drop-Down Graphical List Box

Drop-Down List Box
Drop-Down Scrollable Graphical List Box
Drop-Down Scrollable List Box

16|Edit Box Single-Line Edit Box

17|Edit Box Accumulator Single-Line Edit Box + Accumulator

18|Graphical Check Box|Check Box + Label "Other" + Browse Button + Accu-
Group mulator

Check Box + Label "Other" + Browse Button + Accu-

mulator + Group Box

86

Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

19|Graphical Combo Box Graphical Combo Box
Scrollable Graphical Combo Box
20|Graphical Combo Box|Editable Contextual Graphical Accumulator
Accumulator
Scrollable Editable Contextual Graphical Accumulator
21|Graphical Radio Group Radio Icon + Radio Button + Label "Other" + Browse

Button
Radio Icon + Radio Button + Label "Other" + Browse
Button + Group Box

22

List Box

Graphical List Box

List Box

Multiple Selection Graphical List Box

Multiple Selection List Box

Scrollable Graphical List Box

Scrollable List Box

Scrollable Multiple Selection Graphical List Box
Scrollable Multiple Selection List Box

2.

2

List Box Accumulator

Non-Editable Contextual Accumulator

Non-Editable Contextual Graphical Accumulator
Scrollable Non-Editable Contextual Accumulator
Scrollable Non-Editable Contextual Graphical Accumu-
lator

24

Masked Label

Masked Label

23

Multi-Line Edit Box

Multi-Line Edit Box

26

Multi-Line Edit Box Ac-
cumulator

Multi-Line Edit Box + Accumulator

27|MultiLine Label Masked Multi-Line Label
28|Numeric ~ Check Box|Check Box + Label + Spin Button + Accumulator
Group
Check Box + Label + Spin Button + Accumulator +
Group Box
29|Numeric Radio Group Radio Button + Label + Spin Button

Radio Button + Label + Spin Button + Group Box

30

Numeric ScrollBar

Scroll Bar + Masked Label
Scroll Bar + Spin Button (Restricted Domain)

31|Radio Group Radio Button

Radio Button + Group Box

Radio Icon

Radio Icon + Group Box
32|Scale Scale + Masked Label
33|Spin Button Spin Button

34|Spin Button Accumulator [Spin Button + Accumulator
35|Static Icon Static Icon
36({Switch Switch
37|Table Extended Table
Table of Check Boxes
Table of Masked Labels

Table of Masked Multi-Line Labels

Appendix

87

Table of Static Icons

38|Text Check Box Group

Check Box + Label + Edit Box + Accumulator
Check Box + Label + Edit Box + Accumulator + Group
Box

39(Text Radio Group

Radio Button + Label + Edit Box
Radio Button + Label + Edit Box + Group Box

40|Time Check Box Group |Check Box + Label + Time Spinner + Accumulator
Check Box + Label + Time Spinner + Accumulator +
Group Box

41|Time Radio Group Radio Button + Label + Time Spinner

Radio Button + Label + Time Spinner + Group Box

42|Time Spinner

Time Spinner
Time Spinner (restricted domain)

43|Time Spinner Accumulator

Time Spinner (restricted domain) + Accumulator
Time Spinner + Accumulator

Table D.1: High Level CIOs and their implemented AIOs

88 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

8.5. Overview of the Swing components

JFC

Component Code Name Common Name
JToolTip Tool tip
JTree Tree view
JWindow Plain {undadorned)

window

Appendix

89

JFC
Component Code Name Common Name
JApplet Applet
JButton Command button
JCheckBox Checkbox
JCheckBoxMenuItem Checkbox menu
item
JColorChooser Color chooser
JComboBox Noneditable and
editable combo
boxes
JDesktopPane Desktop pane
JComboBox Noneditable and
editable combo
boxes
JDesktopPane Desktop pane
JDialog Dialog box,

secondary window,
and utility window

90

Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design

JFC
Component Code Name Common Name
JEditorPane Editor pane
JFrame Primary window
JInternalFrame Internal frame,
minimized internal
frame, and palette
JLabel Label
JList List
JMenu Drop-down menu
and submenu
JMenuBar Menu bar
JMenultem Menu item
JOptionPane Alert box
JPanel Panel

JPasswordField

Password field

Appendix

91

JFC
Component Code Name Common Name
JSlider Slider
JSplitPane Split pane
JTabbedPane Tabbed pane
JTable Table
JTextArea Plain text an
JTextField Editable and
noneditable
field (single
JTextPane Formatted te
pane
JToggleButton Toggle butto

JToolBar

Toolbar

sapny uonoajas Avjdsiq '8 21901

Hum AIO DataType | Type “:::er Hvd Lg 0"’,'::?

1 [Masked Label E lementary |[How Simple (=1)
2|List Box Elemertary |How Multiple (=1)
3|Masked Label E lementary |Date Simpe (=1)
4|List Box Elementary |[Date Multiple (=1)
5|Static lcon E lementary |[Graphic Simple (=1)
6 |Graphic List Box E lementary |Graphic Muttiple (>1)
7 |Switch E lementary [Bodesn Simple (=1) VRA
8|Check Box E lementary [Bodean Simple (=1) FAUX
S|Bodean List Box Elementary |[Bodesn Muttiple (>1)

10 Masked Lsbel E lementary |Integer Simple (=1)

11 |List Bax E lementary |Integer Multiple (=1)

12 |Masked Label Elementary |Red Simple (=1)

13|List Box Elementary [Red Multiple (=1)

14 Masked Label E lementary [Alpharumeric Simple (=1) |<=Lm

15 Masked MultiLine Label E lementary |Alphanumeric Simple(=1) |=>Lm

16 |List Box E lementary |[Alpharumeric Muttiple (=1)

17 |[E xtended Table List =1

18 |Table of Masked Labels List How 1

19|Table of Masked Labels List Dste 1

20|Table of Static Icons List Graphic 1

21 |Table of Check Boxes List Bodean 1

22 |Table of Masked Labels List Integer 1

23 [Table of Masked Labels List Res 1

24 |Table of Masked Labels List Alphanumeric 1 <= Lm

25(Table of Masked MutiLine Labels |List Alpharumeric 1 =Lm

s;aaqspealds s9|n4 Uuonad’vIas "'9°8

6

usisa(] 1921g0) 2]qusnay 10f $192[qQ) UONIVLI] 19D4ISqY Jo uonyvUasaday ay | "y Xipuaddy

‘5’ Al
Appendix 93
Appendix F : INPUT Selection Rules
Preference
Num Al0 Type Domain Choice Npo Cont | Lg |Precision for Qpposites
values
} selection
1{Time Spinner Time Unknown _|Simple(Nvc = 1)
2|Radio Button lime Known Simple(Nve = 1) [[2,3] FALSE
3|Radio Button + Group Box lime Known p =1) |[4.MagN FALSE
4|List Box lime Known S vc=1) [[MagN,Tm] [FALSE
5|Scrollable List Box [ime Known S =1) |[Tm +inf] |FALSE
6|Time Spinner (restricted domain) Time Known Simple(Nve = 1) TRUE
7|Radio Button + Label + Time Spinner lime Mixed Simple(Nve = 1) [[2.3]
8|Radio Button + Label + Time Spinner + Group Box lime Mixed Simple(Nvc = 1) 4 MagN]
9|Combo Box lime Mixed =1) MagN,Tm
10{Scrollable Combo Box Time Mixed Simp =1 m, +inf]
11|Time Spinner + Accumulator lime Unk Multiple(Nvc > 1)
12|Check Box lime Known Multiple(Nve > 1) [[2,3] FALSE
13|Check Box + Group Box lime nown Multiple(Nve > 1) [[4 MagN] |FALSE
14|Non-Editable Contextual Accumulator lime Known Multiple(Nve > 1) |[|MagN,Tm] |FALSE
15|Scrollable Non-Editable Contextual Ac lime Known Multipl >1) |[Tm+infl |FALSE
16|Time Spinner (restricted domain) + Ac lat lime Known Multiple(Nvc > 1) TRUE
7|Check Box + Label + Time Spinner + Ac I lime Mixed Multiple(Nvc > 1)][2.3]
8|Check Box + Label + Time Spinner + Accumulator + Group Box _|Time Mixed Multiple(Nvc > 1) |[4 MagN]
9|Editable Contextual Acc | Multiple(Nve > 1) [JMagN, Tm]
20|Scrollable Editable C | A lat Multiple(Nvc > 1) [[Tm, +inf]
21|Calendar Simple(Nvc = 1) TRUE
22|Date Spi Simple(Nvc = 1) FALSE
23|Radio Button imp =1) 23] FALSE
24|Radio Button + Group Box Simple(Nve = 1) 4 MagN] |FALSE
25|List Box Simple(Nve = 1) [|MagN,Tm] |FALSE
26|Scrollable List Box Simple(Nve = 1) m+nf] |FALSE
27|Calendar (Restricted domain) Simple(Nvc = 1) TRUE TRUE
28|Date Spinner (Restricted domain Simple(Nvc = 1) TRUE FALSE
29|Radio Button + Label + Date Spinner Simple(Nve = 1) [[23]
30{Radio Button + Label + Date Spinner + Group Box Simple(Nve = 1) 4, MagN]
31|Combo Box imple(Nve = 1) MagN,Tm]
32|Scrollable Combo Box Simple(Nve = 1) []Tm,+inf]
33|Muttiple Selection Calendar Multiple(Nvc > 1) TRUE
34|Date Spinner + Accumulator Multiple(Nvc > 1) FALSE
35|Check Box Multipl >1) |[[23] FALSE
36{Check Box + Group Box Multipl >1) |[4MagN] [FALSE
37|Non-Editable Contextual A | Date Known Multiple(Nve > 1) |[MagN,Tm] |FALSE
38|Scrollable Non-Editable Contextual Accumulator Date Known __ [Multiple(Nvc > 1) [[Tm +inf] |FALSE
39|Multiple Selection Calendar (Restricted domain) Date Known Multiple(Nve > 1) TRUE TRUE
40{Date Spinner (Restricted domain) + Acc | Date Known Multiple(Nve > 1) TRUE FALSE
41|Check Box + Label + Date Spinner + Accumulator Date Mixed Multiple(Nve > 1) [[2 3]
__42|Check Box + Label + Date Spinner + Accumulator + Group Box __ |Date Mixed Multiple(Nve > 1) [[4 MagN]
43|Editable C | Accumulator Date Mixed Multiple(Nve > 1) [[MagN,Tm]
44|Scrollable Editable Contextual Accumulator Date Mixed Multiple(Nve > 1) [JTm +inf]
45|Switch oolean TRUE
46{Check Box Bool FALSE
47 |Browse Button Graphical [Unknown |Simple(Nvc = 1)
48|Radio lcon Graphical _[Known Simple(Nve = 1) 23]
49|Radio Icon + Group Box Graphical _[Known Simple(Nve = 1) 4 MagN]
50|Graphical List Box Graphical _[Known Simple(Nvc = 1) [|MagN Tm]
51[Scrollable Graphical List Box Graphical _[Known Simple(Nvc = 1) m, +inf]
52[Radio Icon + Radio Button + Label "Other” + Browse Button Graphical _|Mixed Simple(Nve = 1) |[2.3]
53|Radio Icon + Radio Button + Label "Other” + Browse Button + Grou|Graphical _[Mixed Simple(Nve = 1) 4 MagN]
54|Graphical Combo Box Graphical |Mixed Simple(Nve = 1) _[[MagN,Tm]
55|Scrollable Graphical Combo Box Graphical _|Mixed Simple(Nvc = 1) m,+inf]
56|18 Button + A | Graphical [Unknown |Multiple(Nvc > 1)

94 Appendix A. The Representation of Abstract Interaction Objects for Reusable Object Design
57|Check Box + Static Icon Graphical _|Known Multiple(Nve > 1) [[2.3]
58|Check Box + Static Icon + Group Box Graphical _[Known Multiple(Nve > 1) |[4,MagN]
59|Non-Editable C | Graphical A I Graphi Known Multiple(Nve > 1) [][MagN,Tm]
60| Scrollable Non-Editable Contextual Graphical Accumulator Graphical |Known _ [Multiple(Nvc > 1) _|]Tm,Hnf]
61|Check Box + Label "Other" + Browse Button + Accumulator Graphical _|Mixed Multiple(Nve > 1) |2 3]
62|Check Box + Label "Other” + Browse Button + Accumulator + Grou|Graphical _[Mixed Multiple(Nve > 1) |4, MagN]
63|Editable Contextual Graphical A lator Graphi Mixed Multiple(Nve > 1) |]MagN Tm]
64|Scrollable Editable Contextual Graphical Accumulator Graphical IMixed Multiple(Nve > 1) |[Tm, +inf]
65|Single-Line Edit Box AlphanumerUnknown |Simple (Nvc=1) <=Lm
66|Multi-Line Edit Box AlphanumerUnknown |Simple =1) >Lm
67 |Radio Button AlphanumerdKnown Simple (Nvc=1) 23]
68[Radio Button + Group Box AlphanumerKnown Simple (Nve=1) 4 MagN]
69|List Box AlphanumerKnown Simple (Nvc=1) MagN,Trn]
70{Scrollable List Box Alphanumer Known Simple (Nve=1) m,+inf]
71|Radio Button + Label + Edit Box AlphanumerMixed Simple (Nvc=1) 23]
72|Radio Button + Label + Edit Box + Group Box Alph Mixed Simple (Nvc=1) 4 MagN]
73[Combo Box AlphanumerMixed . |Simple (Nvc=1) MagN Tm]
__74|Scrollable Combo Box Alph {Mixed Simple (Nvc= [Tm, +inf]
75|Single-Line Edit Box + Accumulator Alph {Unkn Multiple (Nve>1) <=Lm
76[Multi-Line Edit Box + Accumulator AlphanumenUnknown [Multiple (Nve>1) >Lm
77 |Check Box Al Known Multiple (Nve>1) 3]
78|Check Box + Group Box AlphanumenKnown __[Multiple (Nvc>1) [[4 MagN]
79|Non-Editable Contextual Accumulator Al el Known Multiple (Nve>1) MagN, Tm]
B80|Scrollable Non-Editable C | A lat: Alphanumer Known Multiple (Nve>1) m,+inf]
81|Check Box + Label + Edit Box + Accumulator AlphanumenMixed Multiple (Nve>1) _ [[23]
82|Check Box + Label + Edit Box + Ac I + Group Box AlphanumenMixed Multiple (Nvc>1) 4, MagN]
83|Editable Contextual Ac Alph el Mixed Multiple (Nve>1) [JMagN,Tm]
__B4|Scrollable Editable Contextual Accumulator AlphanumerMixed Multiple (Nvc>1) []Tm, +inf]
85|Edit Box Real Unknown _[Simple (Nve=1)
86|Radio Button Real Known Simple (Nvc=1) 23]
87 |Radio Button + Group Box Real Known Simple (Nvc=1) 4 MagN]
88|List Box Real Known Simple (Nvc=1) MagN,Tm]
89{Scrollable List Box Real Kn Simple (Nvc=1) m, +inf]
90|Radio Button + Label + Edit Box Real Mixed Simple (Nvc=1) 23]
91|Radio Button + Label + Edit Box + Group Box Rea Mixed Simple (Nvc=1) 4 MagN]
92|Combo Box Rea Mixed Simple (Nve=1) MagN,Tm]
93|Scrollable Combo Box Real Mixed Simple (Nvc=1 [Tm, +inf]
94|Edit Box + Accumulator Real Unknown _|Multiple (Nvc>1)
95|Check Box Real Known Multiple (Nvc>1) 23]
96|Check Box + Group Box Real Known Multiple (Nvc>1) 4 MagN]
97 |[Non-Editable Contextual Accumulator Rea Known Multiple (Nve>1) MagN, Tm]
98|Scrollable Non-Editable Contextual Accumulator Rea Known Multiple (Nve>1) m,+inf]
99|Check Box + Label + Edit Box + Accumulator Rea Mixed Multiple (Nvc>1) 23]
100|Check Box + Label + Edit Box + Accumulator + Group Box Real Mixed Multiple (Nvc>1) 4, MagN]
101|Editable C | Accumulator Real Mixed Multiple (Nvc>1) MagN Tm]
102|Scrollable Editable C | Ac |at; Real Mixed Multiple (Nve>1) m,+inf]
103)Spin Button integer Unknown _|Simple (Nve=1)
104[Radio Button Integer Known Simple (Nve=1) 23] FALSE
105|Radio Button + Group Box Integer Known Simple (Nvc=1) 4 MagN] |FALSE
106]List Box Integer Known Simple (Nve=1) MagN Tm] |FALSE
107 [Scrollable List Box |Integer Known Simple (Nvc=1) m,+inf] FALSE
108|Scroll Bar + Masked Label]I'nlegar Known Simple (Nvc=1) 2,Bm] TRUE High
109|Scale + Masked Label Integer Known Simple (Nve=1) 2,8m] TRUE Low
110{Scroll Bar + Spin Button (Restricted Domain) Integer Known Simple (Nve=1) 1Bm,Tm] TRUE High
111|Scale + Masked Label Integer Known Simple =1) 1Bm, Tm] TRUE Low
112|Scroll Bar + Spin Button (Restricted Domain) nteger Known _ |Simple (Nve=1) |>Tm TRUE
113|Radio Button + Label + Spin Button nteger Mixed Simple (Nvc=1) 23
114|Radio Button + Label + Spin Button + Group Box nteger Mixed Simple (Nve=1) 4 MagN]
115{Combo Box Integer Mixed Simple (Nvc=1) MagN,Tm]
116{Scrollable Combo Box Integer Mixed Simple (Nvc=1) m, +inf]
117|Spin Button + Accumulator Integer Ink Multiple (Nvc>1)
1181Check Box Integer Known Multiple (Nvc>1) 23]
119{Check Box + Group Box Integer Known Multiple (Nvc>1) 4 MagN]
120[Non-Editable C | A I |integer Known _ [Multiple (Nve>1) [|MagN, Tm]
121|Scrollable Non-Editable Contextual Accumulator Known Multiple (Nve>1) 'm +nf]
122|Check Box + Label + Spin Button + Accumulator Mixed Multiple (Nvc>1) 23]
_123[Check Box + Label + Spin Button + Accumulator + Group Box Mixed Multiple (Nve>1) [[4,MagN]
_liﬂédnabh Contextual Accumulator Mixed Multiple (Nve>1) MagN, Tm]
125|Scrollable Editable C | Ac I Mixed Multiple (Nve>1) [JTm +inf]

10s Database

This section contains information concerning the IOs datatbase.

96 Appendix B. 1O0s database

1. Conceptual schema

The figure B-1 shows the conceptual schema of the IOs database.

inheritance
attribute
name 0-N 0-N
description is inherited by inherits from
id: name \U-N
oy, |idaio g
event T enname o
name aioevent gt TemE L o aioergrule 0N posexillust.r
dagcsit —0-N desctiption| is concerned by concemns B
escription] negex
e category .
id: name 0-N manipusl negexillusty
o justification
id: idaio e
T id:idrule
0-N
0-N is instantiated by
name
description| 11
id: name insta.qtiates
cio
idcio
name
description
representation
graphtool
prestool
id:instantiation.is instantiated by
idcio

Figure B-1. The conceptual schema of the los database

2. SQL database creation script

-- Database Section

create database IOs database;

-- DBSpace Section

-- Table Section

create table aio (

SOL database creation script

97

idaio char(3) not null ,
enname varchar2 (50),

frname varchar2(50) not null ,
description long,

category char(l) not null ,
manipurl varchar2 (50),
primary key (idaio));

create table attribute (
name varchar2(50) not null ,
description long not null ,
primary key (name)) ;

create table cio (
idaio char(3) not null ,
idcio numeric(2) not null ,
name varchar2(50) not null,
description long,
representation varchar2 (50),
graphtool varchar2(40) not null ,
prestool varchar2 (40),
primary key (idaio, idcio) ,
foreign key (idaio) references aio);

create table event (
name varchar2 (50) not null ,
description long not null ,
primary key (name)) ;

create table inheritance (
Inh_idaio char(3) not null ,
idaio char(3) not null ,
primary key (Inh_idaio, idaio) ,
foreign key (idaio) references aio ,
foreign key (Inh_idaio) references aio);

create table primitive (
name varchar2(50) not null ,
description long not null ,
primary key (name));

create table aioattr (
idaio char(3) not null ,
name varchar2(50) not null ,
primary key (idaio, name) ,
foreign key (name) references attribute ,
foreign key (idaio) references aio);

create table aioevent (
idaio char(3) not null ,
name varchar2(50) not null ,

98 Appendix B. 1O0s database

primary key (idaio, name) ,
foreign key (name) references event ,
foreign key (idaio) references aio);

create table aioprim (
idaio char(3) not null ,
name varchar2(50) not null ,
primary key (idaio, name) ,
foreign key (name) references primitive ,
foreign key (idaio) references aio);

create table ergrule (
idrule numeric(5) not null ,
name varchar2(50) not null ,
rule long not null,
posex varchar2 (300),
posexillustr wvarchar2 (50),
negex varchar2(300),
negexillustr varchar?2 (50),
justification wvarchar2(300),
primary key (idrule));

create table aiorule (
idaio char(3) not null ,
idrule numeric(5) not null ,
primary key (idrule, idaio) |,
foreign key (idrule) references ergrule ,
foreign key (idaio) references aio);

Information Architecture

After having divided the course into information chunks, we have organized them into hierar-
chies. We have organized information according to two distinct scenarios.

In the first scenario (Objectivist), we have approximately followed the paper course structure.
The two interactive applications take place in two distinct sections (Interactive Objects and
AlOs selection).

The second scenario (Constructivist) organizes the course into two main parts: the interactive
objects and the AIOs selection. The first part begins with the IO manipulation application
while the second part begins with the selection application.

Here, you will find the complete information architecture for the two scenarios. Each of them
include the hierarchical and sequential navigation

100 Appendix C. Information architecture

1. Objectivist Scenario

1.1. Hierarchical Navigation

1.1.1. Top Level

10 Selection

| l ! |

Interactive
Objects

Table of contents| AlOs database Selection trees AlOs selection

1.1.2. Interactive Objects Section

Interactive
Objects
|
+ ¥]] L ¥ 3
Int ti Physical Mapping from A
nteraction - y sica s L lanip ulation
Systems CIO definition SRS AIO definition é‘&’ to ERA diagram Application

AlO

characteristics AlQ categories

1.1.3. AlOs Database Section

AlO Database

|
| l

Alphabetical
listing
I l 1

Specific AIO]

Categories listing

description

' | } | | } } | l

Manip ulation ¢ Cases (link : .
(link to the C'_O = Ergonomic to case Selection Vld.eo Attributes Primitiv es Events
Gl description rules rules clip
application) database)

Ry

Objectivist Scenario 101

1.1.4. Selection Trees Section

Selection Trees

v y
| Selection trees iy
i Criteria
[definition
|

I
| | ! | ! ! !

Number of Continuity of the
possible values domain

Number of values

Type Domain Choice to display

1.1.5. AlOs Selection Section

AlOs Selection

AlO selection for
a logical window

AlO selection for
a function

AlO selection for
a message

A
AlO selection for
an information

AlO selectionfor
an information

AlO selectionfor
simple information

group liste input/output
Selection
application
1.2. Sequential Navigation
1.2.1. Top Level
10 Selection

Table of Interactive | | AR

contents Objects database -+ Selection treest+ AlOs selection

1.2.2. Interactive Objects Section

102

Appendix C. Information architecture

Interactive
Objects
1 - fye ¥
Interaction L} 10 gefinition f» _ PhYSical 1 | a0 detinition Mapping from | | ERA diagram |—s Manipulation
Systems environnement A B Application
AlO "
characteristics T R e
1.2.3. AlOs Database Section
AIO Database
Alphabetical T
listing Categories listing
Specific AIO
description
Manipulation i Case; (link .]
(link to the C'.o. Ergonomic to case Selection queo Attributes Primitives Events
A description rules rules clip
application) database)
1.2.4. Selection Trees Section
Selection Trees
Selection trees o
e - Criteria
definition
|
‘ . ; - %
i § & 5 3 \E
. 3 Number of Continuity of the Number of values
Tipe N e B CRo ™ possible values domain to display

Constructivist Scenario

1.2.5. AlOs Selection Section

AlOs Selection

AlO selection for
a logical window

AlO selection for
a function

AlO selection for
a message

AlO seléctlon for
an information

AlO selection for
+—»| an information

s

AlO selécnon for
simple information

group liste input/output
Selection
application
2. Constructivist Scenario
2.1. Hierarchical Navigation
2.1.1. Top Level
10 Selection
Table of Interactive
contents AlOs selection

Objects

104

Appendix C. Information architecture

2.1.2. Interactive Objects Section

Interactive
Objects
Manipulation Interaction S Physical - Mapping from .
Application AlO Database Systems CIO definition ahvitoRREiGHY AIO definition AIO to CIO ERA diagram

.

Alphabetical
listing

Categories listing

T_l__l

Specific AIO
description

J—I_l

AlO

characteristics

AlO categories

]

]

]

]

]

l

Manipulation
(link to the

application)

Cio
description

Ergonomic Gases fiok Selection
rules J0ica56 rules
database)

e

Video
clip

Attributes

Primitives “ Events

2.1.3. AlOs Selection Section

AlOs
|
i ! l
Sel_ectiqn Selection AlOs
application - e
Selection it AIO sel ection AIO sel ection AIO sel ection Pl ¢ cl s
definition i alogical " afunction " amessage L Siee
liste input/output
- : Number Continuity of Number of
e Domain Choics possible values| |~ domain " to display

Constructivist Scenario

105

2.2. Sequential Navigation

2.2.1. Top Level

10 Selection

Table of contents

Interactive
Objects

AlOs selection

2.2.2. Interactive Objects Section

Interactive
Objects
|
Manipulation Interaction 5 Physical wor Mapping from .
Application > AIO Database Systems > CIO definition |- ervinoomeat AlO definition AOwClo [ERA diagram
Alpt’al_aetlcal I——»{ Categories listing A'o. - AIO categories
listing characteristics
Specific AIO
description
Manipulation : h : > Case:; (link . . : h h
" Clo Ergonomic Selection Video . —
- U
(Imlf to the description HiHee: to case riles clip - Attributes Primitives Events H
lication database’

To Interaction Systems

2.2.3. AlOs Selection Section

AlOs selection
T
ai:'Iiecc:\?:n | Trees AlOs Selection
| i
| i ! “] , ! |
e : s AlO selection for AlO selection for AlO selection for
Selection trees o AlO selection for AlO selection for AlO selection for i 4 ¢ 5) 3 A
ey Criteria . L Y > an information an information [simple information
definition a logical window a function amessage roup liste input/output
l : & . % : To AIO Selection
Type Domain N Choice |,| Numberof | | Continuity ofthe | | Number of values|

-1

possible values

domain

to display

Page Design

This section contains documents concerning the design of the pages.

108 Appendix D. Page Design

1. Page Code

Here is the HTML code of a page template:

<html>

<head>

<title><VESALE=TITREPAGE></title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<LINK REL=STYLESHEET TYPE="text/css" HREF="style.css">

</head>

<body bgcolor="#FFFFFF">
<table border="0" CELLSPACING="0" CELLPADDING="0">
<tr>
<td rowspan="4" width="157" align="Ileft" valign="top" bgcolor="#63639C">
<table border="0" width="157" CELLSPACING="0" CELLPADDING="0">
<tr>
<td colspan="2"></td>
</tr>
<tr>
<td width="143" height="59" bgcolor="#63639C" valign="top"><img sre="../images/pixel.gif" width="143"
height="1">
<VESALE=RECH></td>
<td width="14" height="59"></td>
</tr>
<tr>
<td colspan="2"></td>
</tr>

<tr>
<td colspan="2" bgcolor="#9CCE9C" valign="top"><VESALE=CHAPN>

</td>
</tr>
</table>
<p><VESALE=MENU></p>
<p align="center"></p>
<p> </p>

</td>
<td width="436" height="115" valign="top" bgcolor="#9CCE9C">
<table width="436" height="115" border="0" CELLSPACING="0" CELLPADDING="0">
<tr>
<td width="436" height="14"></td>
<Jtr>

<tr>
<td width="436" height="79" valign="top"><VESALE=CHAPTER><VESALE=TITRE>

</td>
</tr>
<tr>
<td width="436" height="22" bgcolor="#FFFFFF"></td>
</tr>
</table>
</td>
<td height="115" width="157" valign="top" align="left">
<table border="0" CELLSPACING="0" CELLPADDING="0">
<tr>
<td width="23" height="115" rowspan="3" valign="top"></td>
<td width="11" height="74" bgcolor="#63639C">.<VESALE=FL></td>
<td width="23" height="115" rowspan="3" valign="top"></td>
</tr>
<tr>
<td width="111" height="6"></td>
</tr>
<tr>
<td width="111" height="35" bgcolor="#9CCE9C">
<p CLASS="num" align="center">.<VESALE=NUM></p>
</td>
</tr>
</table>
</td>
</tr>
<tr>

Style Sheet Code 109

<td width="593" height="200" colspan="2" valign="top">
<p> </p>
</td>
</tr>
<tr>
<td colspan="2"></td>
</tr>
<tr>
<td colspan="2" bgcolor="#63639C" valign="top">
<table border="0" CELLSPACING="0" CELLPADDING="0" width="583" >
<tr>
<td width="511">
<p CLASS="light" align="center">.<VESALE=PIED></p>
</td>
<td width="72"><VESALE=FL>

</td>
</tr>
</table>

</td>
</tr>
</table>
</body>
</html>

2. Style Sheet Code

Here is the style sheet code that we included in all our web pages:

p.menuchap { font-family: Arial, Helvetica, sans-serif; font-size: 10pt; font-weight: bold; color: #000000 ; text-transform: none}
p-chaph { font-family: Arial, Helvetica, sans-serif; font-size: 12pt; font-weight: bold; color: #63639C; text-transform: none }

p-titleh { font-family: Arial, Helvetica, sans-serif; font-size: 20pt; font-weight: bold; color: #000000; text-transform: none; text-indent: 5pt;
line-height: 3pt}

p.num { font-family: Arial, Helvetica, sans-serif; font-size: 14pt; font-weight: bolder; color: #63639C; text-transform: none}
p.light { font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 10pt; font-weight: bold; color: #8989B4; text-transform: none}

a.niv2 { font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 8pt; font-weight: bold; text-indent: 15px; text-decoration: none; text-
align: left; clip: rect(); color: #000000; height: 19px; width: 157px; line-height: 16px; vertical-align: middle}

aniv3 { font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 8pt; font-weight: bold; text-indent: 15px; text-decoration: none; text-
align: left; clip: rect(); color: #FFFFFF; height: 19px; width: 157px; line-height: Spt; vertical-align: middle }

a.niv4 { font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 8pt; font-weight: bold; text-indent: 25px; text-decoration: none; text-
align: left; clip: rect(); color: #FFFFFF; height: 19px; width: 157px; line-height: 5pt; vertical-align: middle }

a.sniv2 { font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 8pt; font-weight: bold; text-indent: 15px; text-decoration: none; text-
align: left; clip: rect(); color: #000000; height: 19px; width: 157px; line-height: 16px; vertical-align: middle }

p.niv2 { font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 8pt; font-weight: bold; text-indent: 15px; text-decoration: none; text-
align: left; clip: rect(); color: #000000; height: 19px; width: 157px; line-height: 16px; vertical-align: middle }

p.niv3 { font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 8pt; font-weight: bold; text-indent: 15px; text-decoration: none; text-
align: left; clip: rect(); color: #9CCE9C; height: 19px; width: 157px; line-height: 5pt; vertical-align: middle }

a.chaph { font-family: Arial, Helvetica, sans-serif; font-size: 12pt; font-weight: bold; color: #63639C; text-transform: none ; text-decoration:
none; clip: rect(); text-indent: 5px; border-color: #9CCE9C black black }

hl { font-family: "Comic Sans MS"; font-size: 18pt; text-decoration: underline; font-style: italic; text-transform: none }

h2 { font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 12pt; color: #414167; text-decoration: underline ; text-indent: 10pt}
td.core { margin-left: 3px}

a.chapm { font-family: Arial, Helvetica, sans-serif; font-size: 10pt; font-weight: bold; color: #63639C; text-transform: none ; text-decoration:
none; clip: rect(); border-color: #9CCE9C black black ; border: black }

fig { font-family: Arial, Helvetica, sans-serif; font-size: 9pt; font-style: italic}

110 Appendix D. Page Design

h2 { font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 16pt; color: #006600; margin-left: 10px; font-weight: lighter}

p.titre { font-weight: 700; font-family: Verdana, Arial, Helvetica, sans-serif}

p.texte { font-family: Georgia, "Times New Roman", Times, serif; font-size: 12pt; margin-left: Spx }

Dynamic Generation

This section contains documents and code related to the dynamic generation of the IOs de-
scriptions pages as well as as to the dynamic navigation.

L2 Appendix E. Dynamic generation

1. Course structure syntax

Here is the syntax of the course structure description:

<structure> = <startchar> <page>* <endchar>
<startchar> = “D”

<endchar> = “F”

<linestartchar> = “*”

<lineendchar> = “*”

<separator> = “#”

<page> = <linestartchar> <level> <separator> <shortname>

<separator> <longname> <separator> <url> <lineendchar>

<level> =1 | 2 | 3 | 4] 5

<shortname> = chaine de caracteére
<longname> = chaine de caractere
<url> = chaine de caracteére

2. Pages examples

This section contains a few page examples.

Pages examples I13

2.1. Page containing the <VESALE> tags

The figure E-1 illustrates a page containing the VESALE tags that will have to be replaced by
the HTML code implementing the navigation elements.

CUESALE=FL>

VESALE

CUESALE=RECH)> efinition

Tout environnement physique est identifié par deux composants:

| CUESALE=CHAPN>.

CUESALE=HMENU>

» Un outil graphique : c'est un programme et/ou un ensemble de procédures permettant la
manipulation d'un ensemble d'OIC au sein d'un environnement physique particulier, 1.e
créer, afficher, activer, modifier, désactiver, effacer et détruire ;

« Un outil de présent: monl c'est la bibliothtque des représentations graphiques des OIC en |

fonction de I'outil graphique.
Outil de présentation

Un outil de présentation peut &tre univoquement déterminé par un outil graphique particulier (Ex
: Display Postscript est 'outil de présentation spécifique a I'outil graphique NextStep). Mais dun |
outil graphique, on peut associer un ou plusieurs (mais un seul a un instant donné) outils de H
présentation (Ex : avec l'outil graphique Sun-Windows, on peut utiliser 'outil de présentation
Garnet ou Open Look). Dans ce cas, les attnibuts concrets, les événements concrets et les
primitives concrétes restent constants tandis que la représentation graphique varie

Outil graphique

qui est chargé de gérer la

Par conséquent, tout OIC posséde une représentation graphique unique qui est produite par
chaque paire (outil graphique, outil de présentation).

Le gestionnaire de fenétres doit évidemment gérer I'écran du poste de travail sur lequel il est |
installé, mais il peut aussi gérer celui de n'importe quel poste de travail distant (Ex : tous les postes
de travail d'un réseau bati suivant le modéle client-serveur X-Windows). :

L'écran physique est caracténsé par une résolution honizontale (Ex : 1024%768) et un certain
nombre de couleurs prises parmi une palette maximale (Ex : 256 ou 16M).

La fenétre physique constitue une région convexe fermée de I'écran (le plus souvent
rectangulaire), délimitée graphiquement ou non, gérée comme un tout par le gestionnaire de
fenétres.

Figure La fenétre physique du Bioc Note sous Windows NT 4

CUESALE=FL>

Figure E-1. A page containing the VESALE tags

114 Appendix E. Dynamic generation

2.2. Page in which the <VESALE> tags have been replaced

The figure E-2 shows the page displayed in figure E-1 in which the VESALE tags have been
replaced.

VESALE

Définition

Tout environnement physique est identifié par deux composants:

¢ Un ontil graphique : c'est un programme et/ou un ensemble de procédures permettant la
manipulation d'un ensemble d'OIC au sein d'un environnement physique particulier, i.e.
créer, afficher, activer, modifier, désactiver, effacer et détruire

* Un outil de présentation : c'est la bibliotheque des représentations graphiques des OIC en
fonction de 'outil graphique.

Envir. Physique
Outil de présentation

Un outil de présentation peut étre univoquement déterminé par un outil graphique particulier (Ex
: Display Postscript est 'outil de présentation spécifique & I'outil graphique NextStep). Mais & un
outil graphique, on peut associer un ou plusieurs (mais un seul 2 un instant donné) outils de
présentation (Ex : avec l'outil graphique Sun-Windows, on peut utiliser I'outil de présentation
Gamet ou Open Look). Dans ce cas, les attributs concrets, les événements concrets et les
primitives concrétes restent constants tandis que la représentation graphique varie.

Outil graphique

Chagque outil graphique inclut au moins un gestiounaire de fenétres qui est chargé de gérer la
partition d'un ou de plusieurs ecrans physiques en fenétres physiques.

Par conséquent, tout QIC posséde une représentation graphique unique qui est produite par
chaque paire (outil graphique, outil de présentation).

Le gestionnaire de fenétres doit évidemment gérer I'écran du poste de travail sur lequel il est
installé, mais il peut aussi gérer celui de n'impotte quel poste de travail distant (Ex : tous les postes
de travail d'un réseau bati suivant le modéle client-serveur X-Windows).

L'écran physique est caractérisé par une résolution horizontale (Ex : 1024x768) et un certain
nombre de couleurs prises parmi une palette maximale (Ex : 256 ou 16M).

12 fenétre physique constitue une région convexe fermée de I'écran (le plus souvent
rectangulaire), délimitée graphiquement ou non, gérée comme un tout par le gestionnaire de
fenétres.

Figure La fenétre physique du Bioc Note sous Windows NT 4

Figure E-1. A page containing the VESALE tags

Source Code

115

3. Source Code

3.1. Navigation

package Vesale.Navigation;

import
import
import
import

i
4
s

public
i
4
b9 4

protect

protected
protected
protected
protected
protected

"
i
/7

private
private
private
private
private
private
private
private

//
//
L

java.
java.
java.
java.

io0.%*;
ubil.*;
awt.event.*;
lang.*;

Navigation

class Navigation {

Constants

ed static int STARTLETTER = ’'D’;

static int ENDLETTER = 'F’
static int FIELDSEPARATOR
static char EMPTYCHAR = '-';
static char RULESTART = '*’;
statiec char g = """;

I#I;

S I s

Internal variables

Vector navTree = new Vector();
int[) ewrnmiv = {0,0,0,0,0%};

int

actniv=0;

File inputFile = new File("navstruct.txt");
FileReader in;
char c;

int

currentPos=0;

String currentURL = "";

Initialization

public Navigation ()

{

parseNavText () ;

}

e
4
i

Private methods

/** readoneline
* this method read a line in the
* tree text file **/

i

//

g
44
1&

/7
1L

4

64

AL
1/

116

Appendix E. Dynamic generation

public void readoneline () throws IOException
(T,

/** parseNavText
* this method build the navigation tree
* based on a formated text file**/

public void parseNavText ()
L=+

/** searchPos

* this method returns the position of the page

* identified by its URL in the navTree by setting
* the global variables currentPos and currentURL
* to the right value

*k)

private void searchPos (String lurl)
{
ing. i=0;
boolean found = false;
if (lurl!=currentURL)
{
while (i<navTree.size())
{
Menultem men = (Menultem)navTree.elementAt (i) ;
String curl = men.getPage() .getURL() ;
if (curl.compareTo(lurl)==0)
{
found=true;
currentURL=1lurl;
currentPos=1;
currentURL=1lurl;
i=navTree.size() ;
}
else {i++;};
|
}
else {found=true;};
if (found==false)
{
currentPos=0;
currentURL="Not Found";
Y

/** getTitle

* This methods returns the PageTitle related to
* the given URL. A PageTitle is composed of the
* chapter's name, its index and URL and the

* page title.**/

private PageTitle getTitle (String urlReq)
fo i)

/** getArrowZone
* This methods returns the ArrowZone related to

Source Code @474

the given URL. An ArrowZone 1is composed of the
level of the current page in the hierarchy,

the next and previous <Page>, the position of
the page in the hierarchy and the total number
of pages in the course. A <Page> is composed of
* a page name and a URL. **/

* ¥ % % %

private ArrowZone getArrowZone (String lurl)

£ wsm

/** getMenu

* This methods returns the menu related to

* the given URL. A menu is a Vector of <Menultem>
* A menultem is composed of a <Page> and

* a index value**/

private Vector getMenu (String lurl)
{
searchPos (lurl) ;
Vector vmenu = new Vector () ;
MenuItem mi = (Menultem)navTree.elementAt (currentPos) ;
int [] curIndex = mi.getIndex();
int curniv = mi.getLevel();
int [] tstIndex;
Menultem test;
for (int j=0; j<navTree.size();j++)
{
test = (Menultem)navTree.elementAt (j);
tstIndex = test.getIndex();

if (curniv==1) {i.f
((tstIndex[0]==curIndex([0])&&(tstIndex([1l]!=0)&&(tstIndex[2]==0))
{vmenu.addElement (test);};};

if (cuemivs=2) {(if
((tstIndex[0]==curIndex[0])&&(tstIndex[l]==curIndex[1l]) &&
(tstIndex[2] !=0)&& (tstIndex([3]==0)) {vmenu.addElement (test);};};

if (curniv>=3) {if
((tstIndex[0]==curIndex[0])&&(tstIndex[l]==curIndex[l])&&
(tstIndex[2]==curlIndex[2])&&(tstIndex[3] !=0)&&(tstIndex[4]==0))
{vmenu.addElement (test);};};

if (curnivs=4) {(if
((tstIndex[0]==curIndex[0])&&(tstIndex[l]==curIndex[l])&&
(tstIndex[2]==curIndex[2])&&(tstIndex[3]==curIndex[3])&&
(tstIndex[4]!=0)&& (tstIndex[5]==0)) {vmenu.addElement (test);};};
}i

return vmenu;

/** getIndex

* This methods returns the table of content of

* the chapter that includes the given URL.

* A table of content is a Vector of <MenulItem>**/

private Vector getIndex (String lurl)
| (TR

118 Appendix E. Dynamic generation

/** getStructure

* This methods returns the section's structure

* related to the given URL. A strcture is composed
* of the section's name, its index and the URL of
* the section's main page

**/

private Structure getStructure (String lurl)

il

L v
2K Public methods r i
L //

/** getTitleHTML

* This methods returns the HTML code
* of a title for the specified URL
**/

public String getTitleHTML (String lurl)
N

/** getPageTitleHTML

* This methods returns the HTML code

* of a page title for the specified URL
**/

public String getPageTitleHTML (String lurl)
T

/** getChapterHTML

* This methods returns the HTML code

* of a chapter title for the specified URL
**/

public String getChapterHTML (String lurl)
Ty

/** getNumPagesHTML

* This methods returns the HTML code

* for the position of the page specified
* by its URL in the total number of pages
* in the course.

**/

public String getNumPagesHTML (String lurl)
fiar otk

/** getArrowZoneHTML

* This methods returns the HTML code

* of the arrow zone for the specified URL
**/

public String getArrowZoneHTML (String lurl)
el

Source Code 119

/**

getMenuHTML

* This methods returns the HTML code
* of a menu for the specified URL

**/

public String getMenuHTML (String lurl)

{
by
{

String code = ("");
Vector vmenu = getMenu (lurl) ;

int[] curniv = ((Menultem)navTree.elementAt (currentPos)) .getIndex();
Menultem mi;

int[] miniv;

for (int i=0;i<vmenu.size();i++)
{
mi = (Menultem)vmenu.elementAt (i) ;
miniv = mi.getIndex() ;
if (mi.getLevel()==2) {code=
code+"\n<table border="+g+"0"+g+" width="+g+"157"+g+" CELLSPAC-
ING="+qg+"0"+g+" CELLPADDING="+g+"0"+g+" back-
ground="+g+"../images/back.gif"+g+">\n<tr>\n<td>
"

&

+mi.getPage () .getShortname () +"</td>\n</tr>\n</table>\n";};
if (mi.getLevel ()==3)
1
if ((miniv([l]l==curniv[l])&& (miniv[2]==curniv[2]))
i
code="...";
}
else
{
code=" .« "}
}s:
3.
if (mi.getLevel()>=4) {
if (miniv==curniv)
{
code="...";
}
else
{
code=?"_..";
}i
Y

return code;

}

catch (Exception e) {return e.toString();};

}

/** getIndexHTML

* Th

is methods returns the HTML code

* of a table of content for the
* specified URL

**/

public String getIndexHTML (String lurl)

{ s

.}

120 Appendix E. Dynamic generation

/** getStructureHTML

* This methods returns the HTML code
* of the section's structure for

* the specified URL

**/

public String getStructureHTML (String lurl)
Wl

/** getFooterHTML

* This methods returns the HTML code
* of the page footer

**/

public String getFooterHTML ()
{is o}

/** getSearchHTML

* This methods returns the HTML code

* of the search engine (a gif image at
* the moment)

**/

public String getSearchHTML (String lurl)
{oars

3.2. Replacer

package Vesale.Tools;

import java.util.*;
import java.sqgl.*;
import java.awt.event.*;
import Vesale.DB.*;
import java.lang.*;
import java.io.*;

public class Replacer

{

Vector replacements = new Vector():;
public String firstTag = "VESALE";

/* empty constructor */
public Replacer () {}

/* add a replacement */
public void addReplacement (ReplacedTag tag)
{
replacements.addElement (tag) ;
}

/* clear all the replacements */
public void clearReplacements ()

{

replacements.clear () ;

}

Source Code 121

/* replace all the <firsttag=value> strings with the specified value */
public String replaceLine(String line)
{
Ty
{
int index = 0;
String searchedString = "<" + firstTag;
String tag = new String();
String newString = new String();
while ((index = line.indexOf (searchedString, index)) >= 0)
{
/* index + firstTag.length() + 1 = indice du premier caractére de |
la valeur a remplacer */
tag = line.substring(index + firstTag.length() + 2;
line.indexOf (">",index + 1));
newString = getNewString(tag);
if (newString.length() >= 0)
{
line = line.substring(0,index) + newString + line.substring(index +
3 + tag.length() + firstTag.length());
index += newString.length();
}
}
return line;
}
catch (NullPointerException e) {return new String ("NullPointer dans re-
place");}
}

/* returns the string that will replace a specific tag*/
private String getNewString (String tag)
{

try
{
for (int i1 = 0; (i < replacements.size()) ; 1i++)
{
if (((ReplacedTag)replacements.elementAt(i)).tag.compareTo(tag) == 0)
return ((ReplacedTag)replacements.elementAt(i)) .value;

}
return new String();
}
catch (NullPointerException e) { return new String("NullPointerException
replace: " + e.toString());}
}
}

package Vesale.Tools;

import java.util.*;
import java.sqgl.*;
import javax.swing.?*;
import java.awt.event.*;
import java.lang.*;
import java.io.*;

public class ReplacedTag
{

public String tag = new String();
public String value = new String();

122

Appendix E. Dynamic generation

public ReplacedTag(String tag, String value)

{
this.tag = tag;

this.value = value;

}

public ReplacedTag()

{
}

public String toString()

{

return " (" + tag + " par " + value + “)"l'

3.3. IODBReader

package Vesale.DB;

import java.util.*;
import java.sqgl.*;

import java.awt.event.*;

import java.lang.*;
import java.io.*;
import Vesale.Tools

* .
. ’

public class AIODBReader

{
Connection conn =
int count = 0;

null;

/* Prepared statements */

PreparedStatement
PreparedStatement
PreparedStatement
/* event */
PreparedStatement
PreparedStatement
/% primitive */
PreparedStatement
PreparedStatement
¥ REO *
PreparedStatement
PreparedStatement
PreparedStatement
PreparedStatement
PreparedStatement
PreparedStatement
PreparedStatement
PreparedStatement
/i A 5
PreparedStatement
PreparedStatement
[* xules */
PreparedStatement

/% Constructor */

public AIODBReader ()

listAttributes;
attributeDescription;
infoAttribute;

listEvents;
eventDescription;

listPrimitives;
primitiveDescription;

infoAIO;

getAIOName;

1listAIOs;
listEventsAIO;
listAttributesAIO;
listPrimitivesAIO;
listIsInheritedByAIOQ;
listInheritsFromAIO;

getCIOs;
getAIOPic;

getRules;

Source Code 123

try

{
DriverManager .registerDriver (new oracle.jdbc.driver.OracleDriver ());

debug ("Driver OK") ;

}
catch (Exception e) {debug("Driver KO"); }
connect () ;

/* disconnect */
public void disconnect ()
{
try
{
conn.close() ;

}
catch (Exception e) {}

/* connect */
private void connect ()

{

try
{
conn = DriverManager .getConnection
("jdbc:oracle:thin:@localhost:1521:0rc3" ,"scott" , "tiger");

debug ("Connexion OK") ;

}

catch (SQLException s) {debug("Connexion KO");}

Exy

{
/* sql prepared statements */
/* here follows the initialisation of all the sql queries used 1in this
class */
/* attributes */

listAttributes = conn.prepareStatement ("select name from attribute or-
der by name ");
infoAttribute = conn.prepareStatement ("select description from attrrib-

ute where name = ?");

attributeDescription = conn.prepareStatement ("select description from
attribute where name = ?");

/* events */

listEvents = conn.prepareStatement ("select name from event order by
name ") ;

eventDescription = conn.prepareStatement("select description from
event where name = ?");

/* primitives */

listPrimitives = conn.prepareStatement ("select name from primitive
order by name ") ;

primitiveDescription = conn.prepareStatement ("select description from
primitive where name = ?");

/* aio */

1listAIOs = conn.prepareStatement ("select frname, idaio from aio order
by frname ");

infoAIO = conn.prepareStatement ("select enname, frname, definition,

category, manipurl from aio where idaio = ? ");

124 Appendix E. Dynamic generation

listAttributesAIO = conn.prepareStatement ("select attribute.name, at-
tribute.description from aioattr, attribute where idaio = ? and attrib-
ute.name = aioattr.name") ;

listEventsAIO = conn.prepareStatement ("select event .name,
event .description from aioevent, event where idaio = ? and event.name =
aloevent.name") ;

listPrimitivesAIO = conn.prepareStatement ("select primitive.name,
primitive.description from aioprim, primitive where idaio = ? and primi-
tive.name = aioprim.name") ;

listInheritsFromAIO = conn.prepareStatement ("select idaio, frname

from aio where idaio in(select distinct inheritance.inh_idaio from inheri-

tance where idaio = ?)");
listIsInheritedByAIO = conn.prepareStatement ("select idaio, frname
from aio where idaio in (select distinct inheritance.idaio from inheritance

where inh_idaio = ?)");

getAIOName = conn.prepareStatement ("select frname from aio where
idaio = 2");

getAIOPic = conn.prepareStatement ("select representation from cio
where idaio = ?");

1% eio %/

getCIOs = conn.prepareStatement ("select idaio, id-
cio,name,description, graphtool,prestool, representation from cio where
idaio = 2%);

I* rule */

getRules = conn.prepareStatement ("select name, rule, posex, negex

from ergrule where idrule in (select idrule from aiorule where idaio =
T)G
debug ("Statement OK") ;

}
catch (SQLException s) {debug("Statement KO");}

public ErgRule[] getRelatedRules(String idaio)
{
try
{
Vector vec = new Vector();
synchronized(this)
{
getRules.clearParameters() ;
getRules.setString (1, idaio) ;
ResultSet res = getRules.executeQuery() ;
while (res.next())
{
ErgRule ergrule = new ErgRule() ;
ergrule.setName (res.getString(1l));
ergrule.setEnonce(res.getString(2));
ergrule.setPosex(res.getString(3)) ;
ergrule.setNegex (res.getString(4));
ergrule.setPosexillustr (res.getString(5));
ergrule.setNegexillustr(res.getString(6));
ergrule.setJustification(res.getString(7));
vec.addElement (exrgrule) ;
¥
}

return ToolBox.ErgRuleVectorToArray (vec) ;

}
catch (SQLException s) { return new ErgRule[] £¥:)

Source Code

/* Xy
/* Opérations sur les OIC *A
/* */

public CIO[] getRelatedCIOs(String idaio)
{
txy
{
Vector vec = new Vector();
synchronized (this)
{
getCIOs.clearParameters () ;
getCIOs.setString(1l,idaio);
ResultSet res = getCIOs.executeQuery() ;
while (res.next())
{
CIO cio = new CIO();
cio.setDescription(res.getString(4));
cio.setIdaio(new AIO (idaio, getAIOName (idaio))) ;
cio.setName (res.getString(3));
cio.setGraphtool (res.getString(5)) ;
cio.setPrestool (res.getString(6)) ;
cio.setRepresentation(res.getString (7)) ;
vec.addElement (cio) ;
}
}
return ToolBox.CIOVectorToArray (vec) ;
}
catch (SQLException s) { return new CIO[] £33

and so on.....

3.4. NavigationTagReplacer

import java.awt.event.*;
import java.io.*;

import java.util.*;

import java.sqgl.*;

import java.math.*;

import javax.servlet.*;
import javax.servlet.http.*;
import Vesale.DB.*;

import Vesale.Tools.*;
import nav.Navigation.*;

public class TagReplacerServlet extends HttpServlet
{

ToolBox t = new ToolBox();
Navigation nav;
AIODBReader db;

/* initialisation */
public void init (ServletConfig config) throws ServletException
{

super.init (config);

try

126 Appendix E. Dynamic generation

db = new AIODBReader () ;
log("Connect") ;
nav = new Navigation();
log("Nav created");

}

catch (Exception e) { log("db not connected: " + e.toString()); }

/* destroy method */
/* execute when the servlet is freed from the memory */
public void destroy/()
{
db.disconnect () ;
log ("Disconnect") ;

/* DoGet Method : this method is executed when the servlet receives a GET
HTTP request */
public void doGet (HttpServletRequest req, HttpServletResponse res) throws
ServletException, IOException
{
ServletOutputStream out = res.getOutputStream() ;
String file = reg.getPathTranslated() ;
if (file == mill)
{
out.println("The request file doesn’t exist");
return;
}
res.setContentType ("text/html") ;
/* reads the requested file */
String content = t.readFile(new File(file));
/* generates a replacer object according to the requested URI */
Replacer replacer = getReplacer (reqg.getRequestURI()) ;
/* adds replacements if the requested URL is a dynamic page */
replacer = modifyReplacer (replacer,req);
/* returns the modified file */
out.println(replacer.replacelLine (content)) ;

/* adds replacements if the requested file is a dynamic page */
public Replacer modifyReplacer (Replacer replacer, HttpServletRequest req)
{

try

{
String uri = removeParameters (req.getRequestURI()) ;

if (uri.compareTo("/oi/oia/ficheoia.html") == 0)
{
/¥ OLA */
InfoAIO info = db.getInfoAIO(req.getParameter("oia"));
replacer.addReplacement (new Replaced-
Tag ("IDAIO", reqg.getParameter ("oia")));
replacer.addReplacement (new Replaced-

Tag ("ENGNAME" , info.getEngname())) ;
replacer.addReplacement (new ReplacedTag ("FRNAME", info.getFrname())) ;

replacer.addReplacement (new Replaced-
Tag ("CATEGORIE", info.getCategory()));

Source Code 127

replacer.addReplacement (new Replaced-
Tag ("DEFINITION", info.getDefinition()));
replacer.addReplacement (new Replaced-

Tag ("HERITEDE" , HTMLConverter .AIOArrayToHTML (info.getInheritsfrom()))) ;

replacer.addReplacement (new ReplacedTag ("ESTHERITEPAR", HTMLCon-
verter .AIOArrayToHTML (info.getIsinheritedby())));
replacer.addReplacement (new Replaced-
Tag ("OIA",req.getParameter ("oia")));
if (info.getCIO() != null)
{
replacer.addReplacement (new ReplacedTag ("OUTIL", nL -

info.getCIO() .getGraphtool() + ")"));
replacer.addReplacement (new ReplacedTag("REPRESENTATION", HTMLCon-
verter .picToHTML (info.getCIO() .getRepresentation(),
info.getCIO() .getName())));
}
else
{
replacer.addReplacement (new ReplacedTag("OUTIL",""));
replacer.addReplacement (new ReplacedTag ("REPRESENTATION", "Aucune
représentation disponible")) ;
}
}
else if (uri.compareTo("/oi/oia/ficheattributs.html") == 0)
{
and so on..
}
return replacer;
}
catch (Exception e) { log ("plante add replacer :" + e.toString()); re-
turn new Replacer();}

}

public String removeParameters (String url)
{
try
{
return url.substring(0,url.indexOf("?"));

}

catch (Exception e) { return url;}

/* returns the replacer object initialised with the replacements for the
navigational elements */
public Replacer getReplacer (String uri)
{
Replacer replacer = new Replacer();
String file = removeParameters (uri) ;
replacer.addReplacement (new ReplacedTag ("CHAPTER",
nav.getChapterHTML (file))) ;
replacer.addReplacement (new ReplacedTag ("MENU", nav.getMenuHTML (file)));
replacer.addReplacement (new ReplacedTag("PIED",nav.getFooterHTML()));
replacer.addReplacement (new ReplacedTag ("TITRE",nav.getTitleHTML (file))) ;
replacer.addReplacement (new ReplacedTag ("RECH",nav.getSearchHTML (file))) ;

replacer.addReplacement (new Replaced-
Tag ("FL",nav.getArrowZoneHTML (file))) ;
replacer.addReplacement (new Replaced-

Tag ("NUM" ,nav.getNumPagesHTML (file))) ;

128

replacer.addReplacement (new

Tag ("CHAPN" ,nav.getStructureHTML (file)));

replacer.addReplacement (new

Tag ("PAGETITLE" ,nav.getPageTitleHTML (file))) ;
return replacer;

4. 10s description pages

This section contains screen captures of the I0s description pages.

The figure E-3 shows the AIO description page for the Edit Box object.

VESALE

OIA: Champ d'édition uni-lineaire
Définition
« Nom anglais:Edit Box, Single Line Entry Field
« Nom frangais: Champ d'édition uni-linéaire
« Description:

Atteibads abstraity contrdle permettant a l'utilisateur d'introduire et de manipuler des chaines de caractéres en

Eviramants shricad : : o : : bt
e ey utilisant le clavier. Il est constitué d'un libellé, d'une invitation & saisir et d'une zone

C rectangulaire dans laquelle le texte peut étre introduit.

* Représentation (Java):

Murdpulstion
Cas

« Catégorie:OIA de contrble
Héritage
+ Heérite de:

° Libelle
° Invitation a saisir

« Est hérité par:

Aucun OIA

Figure E-3. The AIO description page

Appendix E. Dynamic generation

Replaced-

Replaced-

[Os description pages

129

The figure E-3 shows the CIOs description page for the Edit Box object.

OIA:Champ d'édition uni-linéaire
Edit Box(Java/Swing (metal I&f))

Edit Box composée d'un libellé et d'un champ d'édition. Cet objet a été réalisé avec la librairie
Swing de Java.

Description d'un OIA

Aritaids wbaiomis

Evdrmments abstriits Edit Text Field(MacOs)

Prirmlives whairaies

fdgias Ergoraamgues
Rdgies de séiection Before noon: -
Clip v &

Manipadation
Cas

Edit Box(Windows 3.x)

ient Data

Name: ||.leny Siegel l

Address: 34 W. 22nd St. |

[Milwaukee. W1 53202 |
Phone: [(414) 392-5566

Employer: [Nov!hem Electric |

L]
Edit Box(OSF/Motif)

Figure E-3. The CIOs description page for the Edit Box object.

130 Appendix E. Dynamic generation

The figure E-4 shows the ergonomic rules description page for the Edit Box object.

OlA: Champ d'édition uni-linéaire
Dimension des champs d'édition

Enoncé:

La longueur des champs d'édition ne peut excéder 40 caractéres. Au dela, il faut partitionner.

Description d'un OIA

Airibus absirails Dimension des champs d'édition

Eviénaments abstraits
Prinutives mbricailes

Qes-:nphc»n des DI Enoncé.

Régla de réiection

e Le dimensionnement des champs d'édition doit étre le résultat d'une considération double:
Cas

« lattrait de I'apparence visuelle

* la disponibilité de I'espace d'affichage

Exemple positif:

bouton de commande peut étre redimensionné pour qu'il soit justifié latéralement avec d'autres
objets.

L]
Champ non modifiable

Enonceé:
Sile contenu d'un champ d'édition n'est pas modifiable, ceiui-ci doit étre légérement grisé

Exemple positif:

Employer: :—— Available

Ppusiau e ey Temporaril
loyer: S “emporanly
Employer [.,.._,_,._.M.,MMJ protected and

1ahl

Figure E-4. The ergonomic rules description page for the Edit Box object.

1Os description pages

131

The figure E-5 shows the attributes description page for the Edit Box object.

OlA: Champ d'édition uni-linéaire

Attributs abstraits:
« AT _EDIT_CHAINE:

Chaine de caractéres constituant le contenu du champ d'édition

« AT_EDIT_CURSEUR_POS:

attribut speacute;cifiant la position courante du curseur d'insertion dans le texte tel que
Description d'un OlA 1<=AT EDU_CURSEUR_POS<=AT _EDU_LONG~COUR

Prirntves whrirmies « AT_EDIT_EDITABLE:
Dasonphon des attribut booléen spécifiant Si le champ d'édition uni-linéaire est éditable par l'utilisateur au

Régias Ergononnguas 7 .
fidgles de rélection moment de sa présentation

Maripdation

Cas « AT_EDIT_LONG_CHAMP:
attribut spécifiant la longueur de la chaine maximale de caractéres que le champ peut
afficher en une fois tel que | <=AT_EDU_LONG_CHAMP <= AT _EDU_LONG_MAX

N.B.: Si AT _EDU_LONG~CHAMP < AT EDU_LONG_MAX, alors il est nécessaire
de gérer un défilement honizontal du contenu du champ d'édition.

« AT_EDIT_LONG_COURANTE_CHAINE:
longueur de la chaine courante de caractéres contenue dans le champ d'édition tel que 0 <
AT EDU_LONG_COUR <= AT EDU_LONG_MAX

« AT_EDIT_LONG_MAX_CHAINE:
attribut spécifiant la longueur de la chaine maximale de caractéres que peut contenir un
champ d'édition.

« AT_EDIT_MODE:
attnibut spécifiant le type de mode de saisie du champ d'édition = (Edition, Recouvrement)

[l

° le type général: tout caractére éditable;

° le type alphanumérique : A-Z, a-z,0-9, +, -, point ".", espace " ", virgule "," , deux
points

° le type alphabétique : A-Z, a-z,

° le type numérique : 0-9, +, -, virgule ", point "~".

= (Général ,Alphanumérique, Alphabétique, Numérique)

« AT_EDIT_VAL_INIT:
chaine de caractéres contenue dans le champ d'édition au moment de la saisie ou de
l'affichage. Il s'agit soit de la valeur de saisie par défaut si on se trouve en mode de saisie
soit de la valeur fournie par l'application si on se trouve en mode d'affichage.

Figure E-5. The attributes description page for the Edit Box object.

132 Appendix E. Dynamic generation

5. Course structure definition

Here is the definition of the course structure:

D*1#Sélection des Objets Interactifs#Sélection des OI#oi/index.htm*
2#Table des Matiéres#TDM#oi/tdm/tdmoi.html

2#0bjets Interactifs#0I#o0i/oi.html

3#Moyens d'Interaction#Moyens d'Interaction#/oi/oi/moyint.html
3#0bjets Interactifs Concrets#0IC#o0i/oic.html

3#Environnement Physique#Envir. Physique#/0i/oi/enviphys.html
3#0bjets Interactifs Abstraits#OIA#/oi/oi/oia.html

4#Description des OIA#Des. des OIA#/o0i/oi/desoia.html

4#Catégories d'OIA#Cat. OIA#/oi/oi/catoia.html

3#Transformation d'OIA en OIC#De OIA & OIC#/oi/oi/transoia.html
3#Application de Manipulation#Manipulation#/oi/seloia/apps-manip.html
3#Diagramme EA#Diagramme EA#/o0i/oi/oiea.html

2#Base des OIA#Base des OIA#/oi/oia/oia.html

3#Classement Alphabétique#Clas. Alphabétique#/oi/oia/alphabétique.html
3#Classement par Catégorie#Clas. par Cat.#/oi/oia/categories.html
2#Les Arbres de Sélection#Arbres de Sélection#/oi/trees/probleme.html
3#4Définition d'Arbre#Définition d'Arbre#/oi/trees/def.html

3#Criteéres de sélection#Critéres#/oi/trees/criteres.html

4#Type d'interaction#Interaction#/oi/trees/typeinter.html

4#Type d'information#Type Info#/oi/trees/type.html

4#Domaine de définition#Domaine#/oi/trees/domaine.html

4A#Nombre de choix possibles# Choix Possibles#/o0i/trees/choixpos.html
4A#Nombre de valeurs possibles# Valeurs Possibles#/oi/trees/valpos.html
4#Continuité du domaine# Continuité#/oi/trees/continuite.html
4#Longueur de 1l'information# Longueur Info#/oi/trees/longueur.html
4#Précision# Précision#/oi/trees/precision.html

A#Préférence pour la sélection#Pref. Sélection#/oi/trees/prefsel.html
4#Antagonisme#Antagonisme#/oi/trees/antagonisme.html

4#Densité d'écran#Densité#/oi/trees/densite.html
4#Orientation#Orientation#/oi/trees/orientation.html

4#Type de donnée#Type de Donnée#/oi/trees/typedonnee.html

4#Nombre de type de donnée#Nbre Type de Donnée#/oi/trees/nbretype.html
*4#Nombre de valeurs a afficher#Nbre Valeurs af-
ficher#/o0i/trees/nbreval.html*

2#Sélection des OIA#Sélection des OIA#/oi/seloia/probleme.html

3#Pour une fenétre logique#FL#/o0i/seloia/selfl.html

3#Pour une fonction#Fonction#/oi/seloia/selfonction.html

3#Pour un message#Message#/oi/seloia/selmessage.html

3#Pour un groupe d'informations#Groupe Info#/oi/seloia/selgroupe.html
3#Pour une liste d'informations#Liste Info#/oi/seloia/selliste.html
3#Pour une information simple#Info Simple#/oi/seloia/selinfo.html
*4#Application de Consultation#Consultation#/oi/seloia/apps-consult.html*F

Interactive Applications

This section contains documents and code related to the interactive applications.

134

Appendix F. Interactive applications

1. I0s Manipulation application

1.1. AbstractCIO class

package Vesale.Manipulation;

import javax.swing.?*;
import java.awt.Color;

public class AbstractCIO extends JPanel

{
/* the

following methods do nothing */

/* they will have to be overidded */

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
tion) {}
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

void setValue(String s) {};

String getValue() { return null;};

void setLabel (String s) {};

String getLabel() { return null;};

void setStringValues (String[] newValues) {};

String[] getStringValues (){ return null;}

void setSelectedIconValue (Imagelcon newSelectedValue) ({}
ImageIcon getSelectedIconValue () {return null;}

void setSelectedStringValues (String[] newSelectedValues) {}
String([] getSelectedStringValues (){ return null;}

void setSelectedValues (String[] newSelectedValues) {}
String[] getSelectedValues (){ return null;}

void setSelectedStringValue (String newSelectedValue) {};
String getSelectedStringValue (){ return null;}

void setSelectedValue (String newSelectedValue) {};
String getSelectedValue (){ return null;}

void setVisibleRows (int newVisibleRows) {}

int getVisibleRows () { return -1;}

void setAlphabeticalOrder (int newAlphabeticalOrder) {}
int getAlphabeticalOrder() ({ return -1;}

void setType (int newType) {}

int getType() { return -1;}

void setSelectedIndex (int newSelectedIndex) {}

int getSelectedIndex (){ return -1; }

void setSelectedIndices (int[] newSelectedIndices) {}
int[] getSelectedIndices () { return null;}

void setAllowsMultipleSelection (boolean newAllowsMultipleSelec-
boolean isAllowsMultipleSelection/() { return false; }

void setBackgroundColor (Color newBackgroundColor) {}

Color getBackgroundColor() { return null; }

void setSelectionColor (Color newSelectionColor) { }

Color getSelectionColor() { return null; }

void setEnabled(boolean newEnabled) ({}

boolean isEnabled() { return false;}

void setLabelPosition(int newLabelPosition) {}

int getLabelPosition() { return -1; }

void setLabelCentered(boolean newLabelCentered) {}
boolean getLabelCentered() { return false; }

void setMnemonic (char newMnemonic) {}

char getMnemonic() { return ’ ’; }

void setColumns (int newColumns) {}

int getColumns() { return -1; }

void setValuesLabel (String newValuesLabel) {}

10s Manipulation application

133

public
public
public

String getValuesLabel() { return null;}
void setSelectedValuesLabel
String getSelectedValuesLabel ()
public void setValuesMnemonic (char newValuesMnemonic)

public char getValuesMnemonic() { return ‘' ’;}

public void setSelectedValuesMnemonic (char newSelectedValuesMnemonic)

public char getSelectedValuesMnemonic () { return
public void setListType(int newListType) {}
public int getListType() { return -1;}

public
public
public

public
public

public boolean isEditable (

/* this methods is used to get the attributes related to a component */

void setOrientation(int newOrientation)
int getOrientation() { return -1;}
void setOrderButtonsDisplayed(boolean newOrderButtonsDisplayed)

boolean isOrderButtonsDisplayed/()
void setEditable (boolean newEditable)

) { return false; }

public int[] getAttributesList() { return null;}

1.2. ListBoxAccManipulation class

package Vesale.Manipulation.CIO;

import UPE.*;
import Vesale.Manipulation.*;

/* this class extends the ListBoxAcc component of the UPE library */
public class ListBoxAccManipulation extends ListBoxAcc

{

public ListBoxAccManipulation()

{

super () ;

}

public int[] getAttributesList ()

{

return new int/[]

{

ManipulationConstants.
ManipulationConstants.
ManipulationConstants.
ManipulationConstants.
ManipulationConstants.
ManipulationConstants.
ManipulationConstants.
ManipulationConstants.
ManipulationConstants.
ManipulationConstants.
ManipulationConstants.
ManipulationConstants.

ORIENTATION,
VISIBLEROWS,
STRINGVALUESACC,
SELECTEDSTRINGVALUES,
LABELDISPLAYED,
LABELDISPLAYEDMNEMONIC,
LABELSELECTED,
LABELSELECTEDMNEMONIC,
ORDERBUTTONSDISPLAYED,
ALPHABETICALORDER,
BGCOLOR,

SELCOLOR,

(String newSelectedValuesLabel) {}

{ return null;}

{1

{ return false;

(.

}

{

136 Appendix F. Interactive applications

2. Selection trees application

2.1. Selection tree description syntax

Here is the syntax that is used to describe the selection tree handled by the selection tree ap-
plication:

<tree> = <inputtree> <outputtree>

<inputtree> = <startchar> <inputtreedescription> <endchar>
<outputtree> = <startchar> <outputtreedescription> <endchar>
<startchar> = “D”

<endchar> = “F”

<linestartchar> = “*”

<lineendchar> = “*”

<separator> = “/*¢

<emptychar> = “-"

<inputtreedescription> = <inputtreedescriptionrule>*
<outputtreedescription> = <outputtreedescriptionrule>*
<inputtreedescriptionrule> = <linestartchar> <aioid> <separa-

tor> <typdesc> <separator> <domain> <separator> <nvc> <separa-
tor> <npo> <separator> <continuity> <separator> <length>
<separator> <precisicion> <separator> <prefsel> <separator>
<opposites> <separator> <density> <lineendchar>

<outputtreedescriptionrule> = <linestartchar> <aioid> <separa-
tor> <datatype> <separator> <datanumber> <separator> <nvc>

<separator> <typedesc> <separator> <length> <separator> <nvd>
<separator> <length> <lineendchar>

<datatype> = S | M | <emptyvalue>
<datanumber> = S | M | <emptyvalue>
<nvd> = S | M | <emptyvalue>
<aioid> = chaine de caractere libre

<typedesc> = A | I | B| E| G| H |D

Selection trees application

137

<domain> = I | C | M | <emptyvalue>

<nvc> S | M | <emptyvalue>
<npo> = chaine de caractére libre | <emptyvalue>

<continuity> = V | F | <emptyvalue>

<length> = V | F | <emptyvalue>

<precision> E | F | <emptyvalue>

<prefsel> = V | F | <emptyvalue>

<opposites> = V | F | <emptyvalue>

<density> = E | F | <emptyvalue>

2.2. Selection tree description

Here is the description of the selection trees:

D*EBX/H/L/S/=l=l=l=/={=/=*
RBU/RB/CIS/12,3]) IRl <t=t=1~[F
DLB/H/C/S/(2,31/F/-/-/-/~-/E
RBG/H/C/S/[4,MagN] /F/-/-/-/-/F
DLB/H/C/S/[4,MagN] /F/-/-/-/-/E
LLBX/H/C/S/]MagN, Tm] /F/-/-/-/-/F
DLB/H/C/S/]MagN, Tm] /F/-/-/-/-/E
DSL/H/C/S/)Tm, +inf]) /F/-/-/-/-/F
DLB/H/C/S/)Tm, +inf] /F/-/-/-/-/E
SBA/H/C/S/(2,Bm]/V/-/E/=/-/-
SCA/H/C/S/(2,Bm] /V/=/F/=/-/-
TSP/H/C/S/]1Bm,Tm] /V/-/E/=/~/-
SCA/H/C/S/]1Bm,Tm] /V/-/F/-/~-/-
SEB/H/C/S/>Tm/V/=/=/-/-/-
RBE/H/M/S/(2,31/-/-/-/-/-/F
DCB/H/M/S/[2,31/~/=/-/~/~/E

BEG/H/M/S/(4,MagN]/-/-/-/-/-/F
DCB/H/M/S/[4,MagN]/-/-/-/-/-/E
COB/H/M/S/]MagN,Tm] /-/-/-/-/-/F
DCB/H/M/S/]MagN,T™n] /-/-/-/-/-/E
SCB/H/M/S/])Tm, +infl /-/-/-/-/-/F
DSC/H/M/S/])Tm, +inf)/-/-/-/-/-/E
CBX/H/C/M/[2,3)/-/-/-/-/-/-

CBG/H/C/M/[4,MagN]/-/-/-/-/-/-

NCA/H/C/M/]MagN,Tm]) /-/-/-/-/-/F
MLB/H/C/M/]MagN,Tm] /-/-/-/-/-/E
BLB/H/C/M/]MagN,Tm] /-/-/-/-/-/E
SEA/H/C/M/])Tm,+infl/-/-/-/-/-/F
SSC/H/C/M/)Tm, +infl /-/-/-/-/-/E
ENA/H/TI/M/={-1=1=f=4—1-
CBA/H/M/M/ [2,3)/=/=/=[=1=]~

CAG/H/M/M/ [4,MagN]/-/~/-/-/-/-

ECA/H/M/M/1MagN, Tm) /~/-/-/-/~/F
MSC/H/M/M/]1MagN,Tm] /-/-/-/-/-/E
SEA/H/M/M/]1Tm, +infl/-/-/-/-/-/F
SSC/H/M/M/1Tm, +inf) /-/-/-/-/-/E
*EBXY DL LSS =)= ===~ i=-%
RBU/D/C/S/[2,3)/F/-/-/-/-/F
DLB/D/C/S/[2,31/F/-/-/-/-/E

138

Appendix F. Interactive applications

RBG/D/C/S/[4,MagN] /F/-/-/-/-/F
DLB/D/C/S/[4,MagN] /F/-/-/-/-/E
LBX/D/C/S/]MagN, Tm] /F/-/-/-/-/F
DLB/D/C/S/]1MagN, Tm] /F/~-/-/-/-/E
DSL/D/C/S/)Tm, +inf] /F/-/-/-/-/F
DLB/D/C/S/]1Tm, +inf) /F/-/-/-/-/E
CAL/D/C/S/[2,Bm]/V/-/-/V/-/F
DCA/D/C/S/[2,Bm] /V/-/-/V/-/E
MSE/D/C/S/[2,Bm]/V/-/-/F/-/-
DSP/D/C/S/]1Bm,Tm) /V/=-/-/V/=-/-
MSE/D/C/S/1Bm,Tm] /V/-/-/F/-/-
MSE/D/C/S/>Tm/V/=/-/-/-/-
RBE/D/M/S/(2,3)/-/-/-/~/-/F
DCB/D/MSS/(2,3)/-/-/-/-/~-/E
BEG/D/M/S/[4,MagN] /-/-/-/-/-/F
DCB/D/M/S/[4,MagN] /~-/-/~-/-/-/E

COB/D/M/S/]1MagN,Tm] /-/-/-/-/-/F
DCB/D/M/S/]1MagN,Tm]} /-/-/-/-/-/E
MSCBYDM/LS) T, #inE]) /=F~1-=f=F-/F*
DSC/D/M/S/ 1T, +infl /-/~/=/~{~/E
CBE/DIC/M/ (2, 3] [=I=l=l=]={=

CBG/D/C/M/ [4,MagN])/-/-/-/-/-/-

NCA/D/C/M/]MagN,Tm] /-/-/-/-/-/F
MLB/D/C/M/]MagN, Tm] /-/-/-/-/-/E
BLB/D/C/M/]MagN,Tm] /-/-/~-/-/-/E
SEA/D/C/M/]1Tm, +inf] /-/-/-/-/-/F
Ssc/D/C/M/]1Tm, +infl /-/-/-/-/-/E
RENAIDS LM =b=f=d ==l =f=*
CBA/D/M/M/ [2,3)/=/=/=/=/~/-

CAG/D/M/M/ [4,MagN]/~=/~=/=/=/~-/-

ECA/D/M/M/]1MagN,Tm] /-/-/-/-/-/F
MSC/D/M/M/)MagN, Tm] /-/-/-/-/-/E
SEA/D/M/M/]1Tm, +infl /-/-/-/-/-/F
SSC/D/M/M/]Tm, +infl/-/-/-/-/-/E
SSW/BL ===~ f=l=1=/V]~*

YCBX/Bf =/~~~ {~[~[~/F]=-*
EGW/G/1/S/~-/-/-/-/-/-/F
YRBU/GI IS~ [~/ =/=/~[E¥*
VRI/G/C/S/12,31/-/-/-/-/-/F
DGL/G/C/S/[2,3)/-/-/-/-/-/E
VRG/G/C/S/[4,MagN] /-/-/-/-/-/F
DGL/G/C/S/[4,MagN]/-/-/-/-/-/E
LIG/G/C/S/]1MagN,Tm] /-/-/-/-/-/F
DGL/G/C/S/]MagN,Tm] /-/-/-/-/-/E
SGB/G/C/S/]1Tm, +inf)/-/-/-/-/-/F
SDG/G/C/S/]1Tm, +inf)/-/-/-/-/-/E
RIW/G/M/S/[2,3)/~/~/-/-/-/F
RIB/G/M/S/[2,3)1/-/-/-/-/-/E
RWG/G/M/S/[4,MagN])/-/~/-/-/-/F
IBB/G/M/S/[4,MagN]/-/-/-/-/-/E
GCB/G/M/S/]1MagN, Tm] /-/~-/-/-/-/F
DGC/G/M/S/]1MagN,Tm] /-/-/-/-/-/E
SGR/G/M/S/]1Tm, +inf)/-/-/-/-/-/F
SGC/G/M/S/]1Tm, +inf]/-/-/-/-/-/E
BBA/G/I/M/=/=/-/-/-/-/-
CBI/G/C/M/[2,31/-/=/-/~/-/-

CIG/G/C/M/[4,MagN])/~/-/-/-/-/-

LIG/G/C/M/]MagN,Tm] /-/-/-/-/-/F
MGL/G/C/M/]MagN,Tm] /-/-/-/-/-/E
NGA/G/C/M/]MagN,Tm] /-/-/-/-/-/E
LIG/G/C/M/ 1T, +inf]) /=1 =/=/~/~|F
SGL/G/C/M/])Tm, +inf) /-/-/-/-/-/E
SNG/G/C/M/]1Tm,+inf] /-/-/-/-/-/E
CIW/G/M/M/(2;3]/~/~/~1~1~/-

CEW/G/M/M/ [4,MagN]/-/-/-/-/-/-

EGA/G/M/M/]MagN,Tm]} /-/-/-/-/-/-
SGA/G/M/M/]1Tm, +inf)/-/-/-/-/-/-
XEBRSTILLBY === ={==1=*
RBUST/CHS/[2,3) IF/-F=[~{~/F
DLB/I/C/S/[2,31/F/~/-/-/-/E
RBG/I1/C/S/[4,MagN]/F/-/-/-/-/F

DLB/I/C/S/[4,MagN]/F/-/-/-/-/E
LBX/I/C/S/1MagN,Tm] /F/-/-/-/-/F
DLB/I/C/S/]MagN,Tm] /F/-/-/-/-/E
DSL/I1/C/S/]1Tm,+inf] /F/-/-/-/-/F
DLB/I1/C/S/]1Tm,+inf) /F/-/-/-/-/E
VTH/I/C/S/(2,Bm])/V/-/E/-/-/-

Selection trees application 139

SCA/I/C/S/[2,Bm] /V/-/F/-/[-/-
SPB/I/C/S/1Bm,Tm]/V/-/E/-/-/-
VSB/I/C/S/1Bm,Tm) /V/-/F/=-/-/~-
SSP/I/CIS/>TmM// == [={=[~
RBE/I/M/S/(2,3)/={</-1-}-(F
DEB/I/MIS/ [2, 3] [-f=l~f~f-{E
BEG/I/M/S/[4,MagN]/~-/-/-/-/-/F
DCB/I/M/S/[4,MagN]/-/-/-/-/-/E
*COB/I/M/S/)MagN,Tm]/-/-/-/-/
*DCB/I/M/S/]1MagN,Tm]/-/-/-/-/
SCB/I/M/S/)Tm+inE)/ =/ =/ ==/~ [F
{=l=d=
[={=1

*DSC/I/M/S/]Tm, +inf] /-/-/-
*CBX/I/c/m/(2,3)/-/-/-
CBG/I/C/M/[4,MagN]/~/-/-/-/-/-

NCA/I/C/M/]1MagN,Tm]/-/-/-/-/-/F
MLB/I/C/M/]MagN,Tm]/-/-/-/-/-/E
BLB/I/C/M/]MagN,Tm]/~-/-/-/-/-/E
SEAR/T/C/M/IYTm,+inf) /=/=/=/~/=/F
ssc/1/c/M/ 1 Tm,+infk]/=/=]=/=/-/E
ENA/I/I/M/-/-/-/-/-/-/-
*CBA/TIMIMI[2:3) b~d=d=L-T-1-%

CAG/I/M/M/[4,MagN]/-/-/=/-/-/-

£~f=1
I=1=1
SEA/I/M/M/]Tm,+infl)/-/-/-/-/-/F
*SSC/I/M/M/) Tm, +ink] [=/=/=/=]
/
/

*EBX/RIT/SI =11~/ ~f=/=1~
RBU/R/C/S/[2,3)/F/=1~L=/~/F
DLB/R/C/S/[2,3)1/F/-/-/-/-/E
RBG/R/C/S/[4,MagN] /F/-/-/-/-/F
DLB/R/C/S/[4,MagN] /F/-/-/-/-/E
LBX/R/C/S/)MagN,Tm] /F/-/-/-/-/F
DLB/R/C/S/]MagN, Tm] /F/-/-/-/~-/E
DSL/R/C/SL VT, #inf) fB/~L~/ -] ~/F
DLB/R/C/S/])Tm, +inf) /F/~-/-/~/-/E
RBE/R/M/S/ [2,3]/=/={={=/-/F
DCB/R/M/S/[2,3]) /-t~{-{~~-/E
BEG/R/M/S/(4,MagN]/~-/-/~-/-/-/F
DCB/R/M/S/[4,MagN]/-/-/-/-/-/E
*COB/R/M/S/]MagN,Tm] /-/-/-/-/
*DCB/R/M/S/]MagN,Tm] /-/-/-/~/
SCB/R/M/ S/ 1T, +inE] /-/—/ /= ~/E
F=ld=f=f
l=d=/

*DSC/R/M/S/1Tm, +inf] /-
*CBX/R/ICIM/[2,3] /-/-/~
CBG/R/C/M/[4,MagN]/~-/-/-/-/-/-

NCA/R/C/M/]1MagN,Tm] /-/-/-/-/-/F
MLB/R/C/M/]1MagN,Tm] /-/-/~/-/-/E
BLB/R/C/M/]MagN,Tm] /-/-/-/-/-/E
SEA/R/C/M/]1Tm, +inf]l /-/-/-/-/-/F
SSC/R/C/M/]1Tm, +infl /-/-/-/-/-/E
ENA/R/I/M/=/=/=]-1={=]-
CBR/R/M/M/[2,3)/=t=]=/=]-/-

CAG/R/M/M/ [4,MagN]/~/-/-/-/-/-

*SSC/R/M/M/]Tm, +inf] /-
*EBX/A/I/S/-/-IF(={={~
*MLE/A/T/S]={=IVI={={=
*ENA/A/I/M/-/-/F/-/-/-
*AME/A/I/M/-/-/V/-/-/-
*RBU/A/C/S/[2,3)/F/-/-
*DLB/A/C/S/[2,31/F/-/-
RBG/A/C/S/[4,MagN]/F/-/ =/ F
DLB/A/C/S/[4,MagN]/F/-/-/-/-/E
LBX/A/C/S/]1MagN,Tm]) /F/-/-/~-/-/F
DLB/A/C/S/]1MagN,Tm] /F/-/-/-/-/E
DSL/A/CYS/ 1 Tm,#inE) JB/=[=[=}/=(F
DLB/A/C/S/])Tm, +inf) /F/-/-/-/-/E
RBE/A/M/S/[2,3)/-/-/-/-/-/F
DCBYAYM/S/ 12, 3V - L=t =~ ~IB
BEG/A/M/S/[4,MagN]/-/-/-/-/-/F
DCB/A/M/S/[4,MagN]/-/-/-/-/-/E

COB/A/M/S/]1MagN,Tm] /-/-/-/-/-/F
DCB/A/M/S/1MagN,Tm] /-/-/-/-/-/E
SCB/A/M/S/]1Tm, +inf] /=/-/-/-/-/F
DSC/A/M/S/]1Tm, +inf] /-/-/-/-/-/E

140 Appendix F. Interactive applications

CBX/A/CIN/ [2,3]) [=f=/={=l=1=
CBG/A/C/M/[4,MagN]/-/-/-/=/-/-

NCA/A/C/M/]1MagN,Tm] /-/-/-/-/-/F
MLB/A/C/M/]1MagN,Tm] /-/-/-/-/-/E
BLB/A/C/M/]1MagN,Tm] /-/-/-/-/-/E
SEA/A/C/M/]1Tm, +inf]/-/-/-/-/-/F
SSC/A/C/M/]1Tm, +inf) /-/-/~-/-/-/E
SENRIBLTIML =~ === =1~*
CBA/A/M/M/[2,3]1/-/-/-/-/-/-

CAG/A/M/M/ [4,MagN]/-/-/-/-/-/-
ECA/A/M/M/]MagN,Tm] /-/-/-/-/-/F
MSC/A/M/M/]MagN, Tm] /-/~-/-/-/-/E
SEA/A/M/M/]Tm, +infl /-/-/-/-/-/F
*SSC/A/M/M/])Tm,+inf) /-/-/-/-/-/E*F
D*MSE/S/-/H/-/S/-*
LBX/S/-/H/-/M/-
YMBE/S/ /D) -8 -*
YEBX/SY~/D/ =/ M -*

*SIC B =G =/Bf=>
PLB/ S/~ G/ —{M/-
CEXS 8L~ 1B~ /8]/—-
BLB/S/-/B/-/M/-
MSE/S/-/1/=/S/-

XLBX B/ ~/T /[~ /M)=*
MSE/S/-/R/-/S/-
LBX/S/~/R/~/M/=
MSE/S/-/A/-/S/F
KEB/S/-/A/-/S/V
LBX/S/=/A[=[M[-
EXT/M/M/~/F/-/-
PAN/M/M/-/V/-/-

*TME/M/S/H/-/-/-
*TME/M/S/D/-/-/-
*TIC/M/S/IG)-/~/~
*BLB/M/S/B/~/-/~-
ROME/M/ ST /= 1~
TME/M/S/R/-/-/-
TEB/M/S/A/-/~-/F
*TLE/M/S/A/-/-/V*F

*
*
*
*
*

2.3. Selection tree class

package Vesale.TreeExplorer;

import java.io.*;

import java.util.*;

import javax.swing.*;
import javax.swing.event.*;
import java.awt.event.*;
import java.lang.*;

import UPE.*;

import java.net.*;

public class SelectionTree

{

/* constructor */
public SelectionTree ()

{
/* read the selection tree from the text file */
parseTree() ;
/* read information about AIOs from the text file */
parseAIOs () ;

}

/* Input and Out trees */

Selection trees application 141

private Vector inputtree = new Vector();
private Vector outputtree = new Vector();

private Hashtable aiosIdKey = new Hashtable() ;
private Hashtable aiosNameKey = new Hashtable() ;

/* constants used to parse the tree */

protected static int STARTLETTER = 'D’;
protected static int ENDLETTER = 'F’;
protected static int FIELDSEPARATOR = '/’;
protected static int FIELDSEPARATORAIO = '#’;
protected static char EMPTYCHAR = '-';
protected static char RULESTART = ’'*’;

String fileContent;
int pos = 0;
char c¢;

/* Public methods */

/**
* A partir d'un OIA, d'un type d'interaction, d'un type de valeur et d'une
* liste de couples (criteres,valeurs), renvoie une liste de critval
*nécessaire pour que cet objet soit sélectionnable */
public Vector getRedAIOsChanges(String aio, int interaction,
String type, Vector critvalvector)

{

if (interaction == ExplorerConstants.INPUT)

{

return getRedAIOsChangesInput (aio, type,critvalvector) ;

}

else

{

return getRedAIOsChangesOutput (aio,critvalvector) ;

/**
* A partir d'un OIA, d'un type d'interaction, d'un type de valeur et d'une
* liste
* de couples (critéres,valeurs), renvoie un vector de vector de critval
* nécessaire pour que cet objet soit le seul sélectionné */
public Vector getGreenAIOsChanges (String aio, int interaction,
String type, Vector critvalvector)

{

if (interaction == ExplorerConstants.INPUT)

{

return getGreenAIOsChangesInput (aio, type,critvalvector) ;

}

else

{

return getGreenAIOsChangesOutput (aio,critvalvector) ;

/**

* A partir d’un type d’intercation, d’un type de valeur et d’une liste de
* couples (critéres,valeurs), renvoie la liste des OIA correspondants

**/

142 Appendix F. Interactive applications

public AIOsPartition getAIOs (int interaction, String type,
Vector critvalvector)
{
if (interaction == ExplorerConstants.INPUT)

1
return getAIOsInput (type,critvalvector) ;

}
else

{
return getAIOsOutput (critvalvector) ;

/**
* A partir d'un type d'interaction et d'un type, renvoie les criteéres
* intervenant dans cet arbre
**/
public Vector getCriteria (int interaction, String type)
{
try
{

if (interaction == ExplorerConstants.INPUT)

{

return getCriterialnput (type);
}
else

{
return getCriteriaOutput () ;
}
}
catch (Exception e) { return new Vector();}

}

/**
* A partir d'un criteéres, renvoie les différentes valeurs présentes
* dans un certain arbre
**/
public Vector getCriterionValues (int interaction, String type, int crite-
rion)
{
tEY
{
if (interaction == ExplorerConstants.INPUT)
{
return getCriterionValuesInput (type,criterion) ;
}
else
{
return getCriterionValuesOutput (criterion);
}
}

catch (Exception e) { return new Vector(); }

}

/* retourne le nom de l'oia */
public String getAIOName (String id)
{
try
{
return ((AIO)aiosIdKey.get(id)) .getName/() ;

Selection trees application

143

catch (Exception e) { return "connait pas";}

}

/* retourne le nom de l’oia */
public boolean getAIOManip(String id)
{
return ((AIO)aiosIdKey.get(id)) .isManip/();
}

/* retourne le nom de 1l’oia */
public String getAIOPic(String id)
{
return ((AIO)aiosIdKey.get(id)) .getPic();

/* retourne 1’id de l’oia */
public String getAIOId(String name)
{
return (String)aiosNameKey.get (name) ;

¥

/* retourne le tableau de noms d’oia */
public String[] getAIOsNames (String[] tab)
{

String[] newTab = new String[tab.length];

for (int 1 = 0 ; i < tab.length; i++)

{

newTab[i] = getAIOName (tab[i]);
}
return newTab;

}

/* getAIOsIds */
public String([] getAIOsIds(String[] tab)
f
String[] newTab = new String[tab.length];
for (int 1 = 0 ; i < tab.length; i++)
{
newTab[1] = getAIOId(tab(i]);
}
return newTab;
3

/* Private methods */

// if your are interested to this private methods,

}

you can contact us //

144 Appendix F. Interactive applications

3. Justification of the AIOs selected

In order to justify the selection of the AIOs used in the applications, we will use Jean Vander-
donckt’s selection trees’.

3.1. I0s Manipulation application
3.1.1. AlO zone

The required AIO is:
— AlO for the selection of the manipulated AIO

Criteria:

e Interaction type = Input/Output

e Value type = Alphanumeric

e Number of values to choose = 1

e Known Domain (the information concerning the AIOs that can be manipulated is
stored in the 1Os database)

e Number of possibles options in]MagN,Tm] (depends on the number of AIOs that can
be manipulated)

e Screen density = High

Selected AIO = Drop-Down List Box

3.1.2. Attributes zone

The required AIO are:
— AIO for the assignment/displaying of a non-composed vaiue

Criteria:
e Interaction type = Input/Output
Value type = Alphanumeric
Number of values to choose = 1
Known Domain
Number of possibles options in][MagN,Tm] (depends on the attribute)
Screen density = High

Selected AIO = Drop-Down List Box

! See appendix A section 8.1

Justification of the AIOs selected

145

— AIO for the displaying of a composed value

Criteria:

e Interaction type = Output
Data type = Elementary
Value type = Alphanumeric
Number of values to display = 1
Length > Lm

Selected AIO = Multi-Line Edit Box (non editable)

3.2. Selection trees application

3.2.1. Criteria Zone
The required AlOs are:

— AIO for the selection of the value type

Criteria:
e Interaction type = Input/Output
Value type = Alphanumeric
Number of values to choose = 1
Known Domain
Number of possibles options in [MagN,Tm]
Screen density = High

Selected AIO = Drop-Down List Box

— AIO for the selection of a criterion value

We would like to select the same AIO for all the criteria in order to improve the homogeneity

of the application.

The criteria have the same values as for the value type AIO (see above). Therefore, the AIOs

used will be Drop-Down List Boxes.
— AIO to enable/disable the criterion

Criteria:
e Interaction type = Input/Output

e Value type = Boolean because the state of the criterion is either disabled or enabled.

e Opposites values = false

Selected AIO = Check Box

146 Appendix F. Interactive applications

3.2.2. Red / Green Zone

The required AIOs are:
— AlO used to display the AIOs that can be selected

Criteria:
e Interaction type = Input/Output
Value type = Alphanumeric
Number of values to choose = 1
Known Domain
Number of possibles options in [MagN,Tm)]
Screen density = Low because only two AIOs will be displayed in that zone

Selected AIO = List Box
— AIO used to display the AIOs that can’t be selected

See the selection of an AIO to display the AIOs that can be selected.

3.2.3. Advice Zone

— AIlO used to display an advice

Criteria:

e Interaction type = Output
Data type = Elementary
Value type = Alphanumeric
Number of values to display = 1
Length > Lm

Selected AIO = Multi-Line Edit Box (non editable)

— AlO used to execute the advice automatically

To launch an action, the selected AIO is a button.

3.2.4. AlO Zone

The required AlOs are:
— AIO used to display the AIO picture

Criteria:
e Interaction type = Output
e Data type = Elementary
e Value type = graphical

Justification of the AIOs selected 147

e Number of values to display = 1

Selected AIO = Static Icon

