
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Intelligent agents using belief revision

De Coster, Arnaud

Award date:
2000

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/b52490db-d451-43a7-9de8-6b36456e23ce

•

•

•

•

•

•

•

•

•

•

Facultés Universitaires Notre-Dame de la Paix, Namur
Institut d'Informatique.
Année académique 1999-2000

Intelligent Agents using BeliefRevision

Arnaud De Coster

Mémoire présenté en vue de l'obtention du grade de Maître en Informatique .

•
Acknowledgements

I would like to thank Pierre-Yves Schobbens and Mary-Williams for letting me discover the

• magic and wonderful world of intelligent agents. Thanks also to my favourite english native

secretary, Régis Francart. And thank you Luigia for being so patient !

•

•

•

•

•

•

•

•
Résumé
Le concept d' agent intelligent émergea de l'intelligence artificielle à la fin des années

• septantes. Les recherches étaient alors principalement orientées vers les agents utilisant des

representations symboliques de leurs environnements. Ce courant scientifique, toujours actif,

étudie aussi les aspects sociaux des systèmes d' agents. Les années nonantes virent apparaître

un nouveau courant dans lequel le concept d'agent est défini plus largement. Cette nouvelle

vision filt, entre autres, récupérée par le génie logiciel.

Ce travail vise à présenter le monde des agents intelligents et à déterminer la mesure dans

laquelle la 'Belief Revision' , une discipline rattachée à la vision originelle du concept

d' agent, peut trouver sa place dans le paradigme de programmation orientée agents du génie

• logiciel. Pour réaliser ces objectifs, ce travail comprend une présentation du monde des agents

intelligents, une introduction à la 'Belief Revision' et la description d'une implementation

d'un système d'agents capable de 'BeliefRevision' .

• Mots clefs : intelligence artificielle, agents intelligents, BeliefRevision, génie logiciel.

•

•

•

•

•

Abstract
The intelligent agent concept emerged from the artificial intelligence area at the end of the

seventies. Researches were then mainly oriented towards deliberative agents with symbolic

internai models. This scientific stream, still active, also studies social aspects of agents

systems. In the early nineties, appears a new stream in which the concept of agent is more

broadly defined. This new vision has been used by software engineers.

This work' s aim is to overview the intelligent agents world and to see in which measure,

Belief Revision, a topic linked to the original agent conception, could find its place in the

software engineering agents oriented programming paradigm. In order to reach this goal, this

work is composed of an intelligent agents world overview, a Belief Revision presentation and

the description of an implementation of an agents system using Belief Revision.

Keywords: artificial intelligence, intelligent agents, belief revision, software engineering .

1

•
Contents

Introduction 4

• First Part: Intelligent agents 5

1. Introduction 6

2. Different approaches and definitions of intelligent agents 8

a) Delegation and authority 8

• b) Communication 9

c) Perception ability 9

d) A set of characteristics 10

e) Intelligence 11

• 3 . Classifications of intelligent agents 13

a) Classification levels 13

b) An example of classification 15

(1) Believable agents 15

(2) Collaborative agents 16

(3) Interface Agents 17

(4) Information Agents 20

(5) Mobile agents 20

• 4. Software agents and Artificial Intelligence 23

a) Coordination in multi agents systems 24

b) The user model 27

c) Theory of intelligent agents 28

• d) Theories of Agency 29

e) Architectures of intelligent agents 30

(1) Deliberative architecture 31

(2) Reactive architectures 31

• (3) Hybrid architecture 32

(4) Heterogeneous architecture 32

5. Agent communication 34

a) Agent Communication Languages 34 1. b) Ontology 36

6. • Agents Programming 38

a) An agents programming language: Aglets 39

• 2

• b) An agents programming language: Jack 40

7. Areas of application of intelligent agents 43

a) System and network management 43

b) Mobile computers 43 • c) Information management 43

d) Workgroups 44

e) Electronic Commerce 44

t) User Interfaces 44 • g) Software engineering 45

h) Management of business processes 46

Second Part: Belief Revision 47

1. Situation 48 •
2. Introduction 49

3. Preliminaries 51

4. Rationality postulates for belief revisions 52

5. The constructive approach. 55

6. Implementing belief revision 58

Third Part: An Application 63

1. Introduction 64

2. Tools used in this application 65 •
3. Goal and situation 66

4. System architecture 67

5. Knowledge representation 69

6. Communication 70 •
7. Agents descriptions 74

a) The Interface Agent 75

b) Agent 1 and Agent2 75

c) The Gathering Agent 76 •
d) BeliefRevision Agent 77

8. Possible extensions 79

Conclusion 81

Bibliography 82 •
Appendix 88

3 •

•

•

•

•

•

•

Introduction

The intelligent agent concept finds its roots in the artificial intelligence area, in the late

seventies. Researches were then oriented towards deliberative agents with symbolic internai

models. This scientific stream, still active, studies macro issues such as negotiation, co­

ordination and communication in agents systems.

In the early nineties emerged a new stream of agent researches more oriented towards

practical issues. These researchers enlarged the concept of agent definition such that

everybody began to call everything an agent. This broad view lead to a spreading of the

intelligent agent concept to other computer science domains of research. User interfaces

designing and software engineering may be the disciplines which took the most out of this

new v1s10n.

This work' s aim is to overview the world of software agents and to see in which measure,

belief revision, a ' more classical' artificial intelligence tapie, could find its place in a system

of agents. This system of agents being used for software engineering purposes. Roughly said,

the question underlying this work could be reformulated as 'Where the old agent research

stream can find its place in the software engineering use of agents?'

Firstly, an overview of the world of intelligent agent is achieved. The concept of intelligent

agents is encompassed through the presentation of different definitions. Another way of

approaching the concept is to establish a typology of existing so-called agents. Situating

e artificial intelligence techniques in the agent world is also interesting. Tools in order to

facilitate the implementation of agents exist. They are then introduced. It is also the

opportunity to compare the agent oriented programming paradigm with the abject oriented

programming paradigm.

• Secondly, an overview of Belief Revision is presented through an axiomatic approach and a

constructive approach.

•

Thirdly, an implementation of a multi agents system using Belief Revision is presented.

A conclusion that presents the results of the analysis ends this work.

4

•

•

•

•

• First Part: Intelligent agents

•

•

•

•

• 5

1. Introduction

• "The buzzword agent has been used recently to describe everything from a word processor's

help system to mobile code that can roam networks to do our bidding. The metaphor has

become so pervasive that we're waiting for some enterprising company to advertise its

computer power switches as empowerment agents."

• Peter Wayner in [Wayner, Joch 1995]

The situation still isn 't clear five years later. Development in agent research has spread ever

since what made the word 'agent' fuzzier and it is still not clear what constitutes an agent in

• the essence. And when it cornes to a matter of ' intelligent' agent, opinions differ even more.

•

•

•

•

•

•

The fact that the concept of 'agent ' is used by a large number of persons, all working on a lot

of different areas, can in a way show the importance of this concept in plenty of different

scientific areas. (From computer science to engineering sciences passing by sociology and

psychology)

In computer sciences, the concept is used in a variety of areas such as agent oriented

programming in software engineering (as an enlargement of the object oriented programming)

[Jennings, Wooldridge 2000], in intelligent assistant agents systems (such as Microsoft office

assistants), agent used to reduce the information overload [Maes 1994], or Mobile software

agents as part of portable computers. (Laptops, Persona] Digital Assistants) [Chess 95]

This enumeration is far from complete. But a further diversification of the term would lead to

unclear concepts of what constitutes an agent and what are its characteristics .

A possible motivation to use agents emerged from the paradigm of the direct manipulation,

which is prevailing at the present time in information technology. The user is directly

manipulating the objects with which he operates .

By the never-ending increase of "information overload" and "functions overload", of which

computer users are increasingly dependent, the approach of the direct manipulation is

becoming an inadequate way of communication between computers and humans. The fact

6

that more and more people want to, or have to deal with computers, and don't have a global

understanding of the information and communication basic techniques aggravates this

discrepancy between the user interface and their requirements.

Using agents as user interface is leading to a paradigm change for indirect manipulation. The

user doesn't operate any longer directly with objects which he would like to modify, but he

assigns agents (or assistants) to this function. These have an elaborate user model and

knowledge over the field, in which they have to act, so that they can execute independently

the job. They may also possess means and tools to procure themselves this knowledge. This

paradigm change is only at its premises.

7

•

•

•

•

•

•

•

•

•

•

•
2. Diff erent approaches and definitions of intelligent agents

• There are almost as man y definitions of the term " agent " than there are scientists, developers

and joumalists, who deal with this topic. Hereafter are introduced some definitions of the term

" agent ". In each case another aspect of the term and diff erent characteristics that constitute

an agent are approached.

• This will give the opportunity to discover where agents differ from normal programs.

•

•

•

•

•

•

•

The Britannica encyclopaedia [Britannica 2000] defines the concept of« agency » as follow:

« ln law, the relationship that exists when one persan or party (the principal) engages

another (the agent) to act for him--e.g., to do his work, to sel/ his goods, to manage his

business. »

Common examples of agent that respects this definition are commercial agents and insurance

agents. lt is obvious that this definition, although it already outlines the nature of an " agent "

is not suitable in the core to define the term in the context of this work.

a) Delegation and authority

''.An agent is a piece of software that does something for you"

[Dragan 1997]

''.Agents can be considered persona/ software assistants with authority delegated from their

users. "

[Cheong 1996]

It is obvious that these definitions aren't sufficient either to define the term ' agent' . The

prerequisite that an agent has to do something for the user is also true for every tool. In his

article, the author of the first definition refines it by saying that agents are expected to

automate repetitive tasks.

The second definition requires a type of authority or power, which is transferred to an agent

from the user .

8

What exactly constitutes this power and what the agent is able to do remains unclear.

b) Communication

"an agent is a computer program whose purpose is to help a user perform some task (or set

of tasks). To do this, it contains persistent state and can communicate with its owner, other

agents and the environment in general. "

[Lingnau, Drobnik, Dômel 1995]

This definition adds an important aspect to the first definitions: In order to achieve its goal, an

agent must communicate with its owner, with other agents and its environment.

Communication with the owner leads to questions about the design of an adequate user

interface. In which manner is the owner or the orderer of an agent going to indicate the best

way possible his needs ? Is this to be done through a special programming language, or is it

the agent that has to have mechanisms of natural speech recognition?. The agent must be

instructed or he can become active on its part because it pesses means of deducing its task.

The question about the best user interface is almost as old as computers themselves.

Communication with other agents and the environment rai ses however a set of new questions.

In which language do agents exchange information? How is it guaranteed that all parties

taking part use the same means of communication ?

c) Perception ability

''An agent is anything that can be viewed as perceiving its environment through sensors and

acting upon that environment through effectors. "

[Russell, Norvig, 1995]

''Autonomous agents are computational systems that inhabit some complex dynamic

environment, sense and act autonomously in this environment, and by doing so realise a set of

goals or tasks for which they are designed "

[Maes 1995]

9

•

•

•

•

•

•

•

•

•

•

• Pattie Maes, director of the software Agents Group at the MIT Media lab, defines agents like

entities able to act in complex and dynamic environments. Additionally agents must be

autonomous, that means that they execute the majority of their functions without direct human

1 • intervention and that they can check their own status. For example they have to start and stop
1

•

•

•

•

themselves autonomously. Agents must also be autonomous in the selection of the means with

which they are going to execute their function.

d) A set of characteristics

In [Woolridge, Jennings 1995] two distinctive developments of the term " agent " are

presented according to a " weak " and a " stronger " meaning .

The weak meaning presupposes the following characteristics of an agent:

- autonomy: Agents operate without being directly influenced by any humans or other control

systems, they can check their own status and have some kind of control over their actions ;

-social ability: Agents communicate with other agents (and perhaps humans) via some kind of

agent communication language [Genesereth, Ketchpel 1994] ;

- reactivity: agents perceive their environment (which may be the physical world, a user via a

graphical user interface, a collection of other agents, the Internet, or perhaps all of these

combined), and respond in a timely fashion to changes that occur in it. This may lead to the

e fact that an agent spends most of its time in a kind of sleep state from which it will awake if

certain changes in its environment (like the arrivai of new e-mail) give rise to it;

-proactivity: agents do not simply act in response to their environment, they are able to exhibit

• goal-directed behaviour by taking the initiative;

In computer science this meaning of an agent is regarded as independent, parallel running

entity, which communicates its own encapsulated status with other entities, it is considered as

• a natural extension of the object programming orientation .

• 10

In the field of artificial intelligence, a " stronger " meaning is usually linked to the term '

agent '. To the characteristics explained above, is added that an agent has to carry more

« human » behaviour. lt has to use mentalistic notions such as knowledge, conviction,

intention and responsibility or can even express feelings. [Bates 1994].

Another thing to give software agents more a strongly anthropomorphic characteristic(a basic

condition for an agent already placed by [Foner 1993]) is to represent them with an animated

persons or faces [Maes 1994].

Other characteristics of agents, linked to a « stronger » meanmg, which are stated m [

Woolridge, Jennings 1995], are :

-mobility: the ability of an agent to move around an electronic network;

-benevolence: is the assumption that agents do not have conflicting goals, and that every agent

will therefore always try to do what it is asked to do;

-rationality: is the assumption that an agent will act in order to achieve its goals and will not

act in such a way as to prevent its goals being achieved.

e) Intelligence

Intelligence is difficult to define and therefore it is also difficult to attribute it to an agent. The

estimation of an artificial system as " intelligent" is based on the impression that an intelligent

observer or user could have in front of the system. Intelligence is to be seen therefore rather as

consequence from the behaviour of a system due to the combination of different

characteristics and not as a characteristic that one could implement in the system [Petrie

1996].

Intelligence continues to lose importance as a criteria for the distinction between agents and

conventional software. A large, complex expert system may perhaps supply intelligent

suggestions on the solution for certain problems, but is however not automatically an agent.

Intelligence is not a sufficient criteria for agents.

11

•

•

•

•

•

•

•

•

•

•

•

•
Agc-nC)'

Service interactivity

ApplH-~tlûn inrnracuvïty

Darn lnteranivlty

~

§ !
u.. !!-;.

t<'
1!i
u..

lntellli:,-enl
Agil"nts

• Preferenc-Er.. lmc.-lligt.•rltx>

•

Rl!'<1soning

Planning
Lcarnir1g

Figure 1.1 :From [Gilbert et al.95]

Nevertheless, as shown in figure 1. 1, [Gilbert et al.95] uses intelligence as an agent

characteristic that can even be evaluated. ln this paper , different sample applications are

• placed on a cube designed by the« mobility », « agency » and« intelligence» axles.

A boundary line separates the area of the intelligent agents from other programs .

•

•

•

•

• 12

3. Classifications of intelligent agents

It is impossible to create a general classification for intelligent agents due to the complexity of

the term. The only way to approach it is in a multidimensional system.

a) Classification levels

- a first dimension is the partitioning according to the degree of independence of an agent.

At the lower end of the independence rank are scripts, which must explicitly be called by the

user. Asynchronously started programs indicate a higher degree of independence.

Asynchronously started can mean either in regular time intervals or either explicitly by certain

events. At the upper end of the scale of independence, can be found programs that are nearly

constantly active and that become really independently active by observation of their

environment. (if an event or a change of status on which they want to react occurs.)

- a further dimension of classification of agents is how far is the user represented and under

which degree of autonomy can the agent act on his behalf.

At the lower rank, we can find agents that explicitly include the user within each step of their

activity. Conversely, some agents don't need any user interaction to perform their task.

Between these two extremes, agents with various degrees of autonomy exist.

For example an agent that looks for documents independently on the base of a user profile

doesn't request them automatically (this leading to useless connections costs), but this

decision is left to the user. Another example : an agent that can delete and answer

automatically to certain inquiries, can detail automatically the checked emails, but can also

delete some of them inadvertently. The confidence that the user gives to an agent, is to be

seen also on other side of the same medal. The user is only ready to grant to an agent as much

autonomy as confidence he puts into it.

- Agents, in order to correctly achieve a task for the user, must know what they are supposed

to complete.

13

•

•

•

•

•

•

•

•

•

•

•

•

At the lower end of the scale, the user model is called via procedural approach. The user , via a

direct user interface, specifies at a low level the exact activities that have to be completed for

him.

There is a more elaborate approach that lets the user create a profile. For example using rules,

from which the system draws conclusions.

More highly developed approaches allow the system to create and understand a user model,

and from there what the user wants to achieve.

• Further approaches allow an independent planning of actions, in order to achieve a certain

•

target, by learning both the behaviour of users and resources from the environment on which

he acts. Such a system can discover independently new means and apply these, in order to be

able to better meet the user desires .

At the lower end of the organisation scale (according to the ability of an agent to

communicate) are agents, which don't communicate and have no interaction with other agents

but communicate exclusively with the user and/or resources. There are large quantities of

• programs, which fall into this category and are called "Believable Agents" .

•

•

•

•

•

There are systems that can communicate to one or more resources or applications and with the

user. " Interfaces Agents" as a new form of user interface or assistance systems falls into this

category. The possibility of an additional communication with other agents is a fundamental

characteristic of multi agent systems.

In networked environments agents can execute their function locally on anode or move

by the network. This characteristic is defined as mobility. An agent can achieve its task either

statically or either mobilely.

Mobile Agent systems are characterised by the fact the agents move by the network (that

means with their program code and all their data's) and go on different systems in order to

achieve their tasks .

Static agents are either local or either remote.

Static and local: The agent resides on the user side of the network, i.e. on the local computer

(Client). He may assume its environment on local and distant systems via sensors. However it

does not move by the network. Multi agents systems that operate locally and stationarily are

also conceivable .

14

- - - - - - - - - - - ----------- -

Static and remote: Agents reside in a fixed place outside the local computer system (on

servers). The user communicates over the network with them and they complete their tasks

for him from their positions.

- The architecture of the agents (deliberative, reactive, hybrid, heterogeneous (see further))

can also be consulted as classification level.

While independence, autonomy, user model and ability to communicate surely represent key

aspects of an intelligent agent, characteristics such as mobility or architecture are to be seen as

neutral characteristics. As described earlier " intelligence " was not to be regarded as a

discretely modelled characteristic that can be measured, but as the user perception of the

combination of the key characteristics.

The importance of the individual characteristics must be diff erently weighted in dependency

of respective application. For example for an interface agent, an elaborate user model can be

more important than the ability to communicate with other agents

b) An example of classification

Next, some types of agents are presented like it arises frequently in the literature. The

aforementioned types correspond to a more strongly functional classification of agents.

(1) Believable agents

According to their appellation of « Believable Agents», these have to act as naturally as

possible. Eliza, a simple program, which imitated human speech habits, is one of the earliest

examples of a Believable agent.

Driving strength for this type of agents today is the entertainment industry. ln addition,

applications in the business area are conceivable, for example in the field of virtual offices or

virtual business.

ln [Bates 1994] the importance of the feelings modelling is put forward for the reliability of

an agent character. In the context of the Oz-project of the Carnegie Mellon university [Oz

15

•

•

•

•

•

•

•

•

•

•

• 2000] animated figures by computers, that are called Woggles, can act in artificial worlds

independently.

• Another examples are the Extempo characters. This company [Extempo 2000] develops

anthropomorphic agents, who can communicate with humans.

Extempo sees as a possible application of their agents the on-line presentations of enterprises

• intheWWW.

A high degree at independence and autonomy are important aspects of this type of agent. The

• architecture of the agent system is not important and the required ability to communicate

depends on the respective task. The presented examples are not mobile. An elaborate user

model is however the key factor for Believable Agents.

•

•

(2) Collaborative agents

Agents, who operate together on the achievement of a task, result directly from the motives

for research in the area of the distributed artificial Intelligence: They are together to solve

problems, which would be too complex for a single agent or which requires distributed

authority.

The " Pleiades project " [Pleiades 1996] developed at the School of computer Science of the

• Carnegie Mellon University is to be stated as example of the architecture of such systems. In

this system, '1ask-specific" and "information-specific" agents cooperate in order to create and

manage a visitor' s schedule to CMU.

e As shown in figure 1.2, two abstraction levels of agents interact together. One, the " task

assistants " performs tasks for the user, for example, they agree on dates or collect interesting

news articles. These agents co-operate with other agents on the same abstraction level, in

order to negotiate, for example, dates. Agents of a second abstraction level, the "information

• assistants" , supply the information, which they needs for their work. These work out different

sources of information and can cooperate with other agents of the same abstraction level.

• 16

Task Assistants that were developed in the context of the project Pleiades, are a calendar

agent ("calendar apprentice"), who can not only co-ordinate dates with other calendar agents,

but can also leam the special preferred date from its user. They automatically submit

suggestions of date [Mitchel et al. 1994], a newsreader (" NewsWeeder ") and a Webbrowser

("WebWatcher"). They learn the user behaviour.

Can also be found a "Person finder", that analyses different sources of information, and in

order to find the addresses of persons communicate with other agents, as well as an agent,

who organises attendance programs ("Visitor host").

The Visitor host determines first the name, interests, current projects as well as the

organisation of the visitor. Afterwards it seeks persons that he would probably like to meet,

and agrees on a date for these meetings thanks to the calendar agents of these persons [Nwana

1996].

Collaborative Agents are independent and act autonomously. They can structure their user

model in different ways. Communication takes place between agents, users and applications,

they don't have to be mobile.

(3) Interface Agents

The best metaphor for interface agents is a personal assistant, which co-operates with the user

in its working environment. This working environment can be a simple program or a

complete operating system. The agent observes the actions of the user and makes suggestions

for him on how he could perform the tasks better, or it executes these tasks automatically and

independently. Apart from the direct observation of the user behaviour, interfaces agents can

also assume tasks. They learn to be able by positive or negative feedback of the user from the

actions they suggested and possibly also ask different agents for advice, if they don't know a

situation.

From the use of interface agents results, according to [Maes 1994], a new type of use of

computers interface, in which direct manipulation, delegation and co-operation do not

separate the relation between humans and machine any longer.

17

•

•

•

•

•

•

•

•

•

•

• Maes put into evidence two central problems on interface agents:

The first problem is the question about the ability of the agent: How does he gam the

knowledge in order to be able to help the user?

• The second problem consists of the question of the trust that the user would put in the agent,

does it gives him pieces of advice or performs tasks for him.

The approach of an independently leaming architecture represents the solution of the problem

• for Maes. The agent gains competence and trust from the user by observing him and by

removing only gradually ever more tasks from him. This slow taking over of tasks occurs for

the user transparently; that means, he can always get details on what the agent does, and can

easily ask it not to do this anymore in the future .

•

•

•

•

•

•

•

[Pearson 1996] distinguished different functions from interface agents: they can be advisory

or training active, help the user during the execution of tasks, running as deputies, or

providing a search and filtering information support .

User

Interaction

Application

Interaction

I'-'.:\\\\

monitor ·•

Agent

Advices­

feedback

-◄----►- Agent

communication

Figure 1.3 : How Interface Agents Work from [Maes, 1994]

18

The assistants that Microsoft places in its Office software, were the first examples of the use

of interface agents in a common commercial product. Even if the assistants do not act so far

yet very intelligently, the development continue to advance.

The technical facilities guarantying the success of the assistants seem to be existing, however

conceptions of a computer program observing the user leads, like Maes foresaw, to

associations of a monitoring by the machine.

Whether the assistants gam the confidence of theirs human users remams an interesting

question.

The substantial aspects of interface agents are the user model, which must be structured in the

course of the time, and their independence and autonomy that they must also win in the

course of the time. Communication with other agents can be important, but is not a key factor.

Interface agents are usually single agents.

(4) Information Agents

A pnmary function of information Agents is collecting, adapting and administrating

information from different sources. In a way, this function is also a major function of agents

of all kinds and can thus also apply to the Pleiades for example. The strongly growing

importance of the WWW as source of information induces agents specialised in information

retrieval called information Agents.

The independence and autonomy of information Agents is Jess important than an applicable

user model. Information Agents must be able to primarily communicate with the information

suppliers. They can operate locally, remotely or mobily.

(5) Mobile agents

A last class of agent, that has to be presented, is mobile agents, which roam in a computer

network. They communicate with servers and possibly also with different agents and

complete tasks for the user in this way.

According to [Nwana 1996], motivations for the use of mobile agents are:

19

•

•

•

•

•

•

•

•

•

•

• - Smaller communication costs: Instead of transferring a large quantity of information from a

distant server, in order to compress it locally or to filter the relevant sections, a mobile agent

can process the data on behalf of the user on the server side and then retum only with the

• relevant information. In addition the user must not constantly be connected to the network,

while his agent completes functions for him.

- Limited local resources: On the side of the user, resources cannot be sufficient for the

• execution and storage of large data base inquiries. A small mobile agent can however, with

the necessary provided information, execute these functions on a server and then retum with

the results to the local computer.

• - A flexible approach for distributed systems; new agents as service providers and information

collectors, can easily be added, without harming the system.

The fundamental difference between the well-known Client server paradigm of distributed

• applications and the mobile agent approach is shown in figure 1.3 .

•

• PC Server

•
PC Server

Figure 1.3: Client server vs. mobile agents [White 1996]

•
Mobile agents are objects with behaviour, a status and a place [Sommers 1997].

• 20

The task of a mobile agent defines its behaviour. The behaviour for a mobile agent is its

movements from place to place. Additionally messages between agents are a substantial

constituent of the behaviour of mobile agents.

The status of a mobile agent, thus its prograrn code and its data, must be totally enclosed

(protected and independent from its environment) so that they can be sent in a simple way to a

new place, in order to get there and resume again their execution. The substantial events in the

life cycle of a mobile agent, by which its status is modified, are its creation, its end (or

disposai), the departure to a new place (or dispatch), the arrivai at a new place and the

communication with other agents.

Places are the substantial concept of mobile agents. A place is defined as an environment in

which an agent can arrive and execute. Severa} logical places, for example several providers

of information, can be linked to a physical place, for example a network server. Places have a

similar function as the virtual machine of the prograrnming language Java: They make all

services that the agent needs for its execution available. They co-ordinate the flow of several

agents and their communication among themselves and with the system and protect the

system against non-authorised accesses.

A further substantial aspect of mobile agents is security. The security of the environrnent is to

be ensured by the concept of places. However the protection of the agents must also be

ensured in some way against the system environment that could have an interest in getting or

changing the information of the agents [Green and al 1997].

As an example of the application of mobile agents the Stormcast project at the University of

Tromso, Norway can be mentioned [Johansen 1997b]. In the context of this project, which

has been running for some years, weather information (satellite photographs) are collected

and made available. At the base of TACOMA [Johansen 1997a] the system is now developed

so that the users produce an agent over their WWW Browser, and send these to the Stormcast

server. There it selects the only necessary information from the quantity of data and finally

returns with these to the user. The quantity of data that can be transmitted is to be reduced by

the use of agents.

21

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Mobility and communication are the substantial characteristics, which constitute a mobile

agent. Other characteristics, like independence and autonomy play however an important role

with this type of agents .

22

4. Software agents and Artificial Intelligence

The place of the software agent in the area of the research of artificial intelligence 1s

overviewed in [Nwana 1996].

Software agent as multi-agents systems (MAS) together with the areas of distributed problem

solving and parallel artificial intelligence (" parallel AI ") form the area of the distributed

artificial intelligence (DAI).

According to [Green et al 97], the motivations for the increasing interest in DAI and MAS

research includes their ability:

• to salve problems that are too large for a centralised single agent to do due to resource

limitations or the sheer risk of having one centralised system;

• to allow for the interconnecting and interoperation of multiple existing legacy systems,

e.g., expert systems, decision support systems, etc.;

• to provide solutions to inherently distributed problems;

• to provide solutions which draw from distributed information sources;

• to provide solutions where the expertise is distributed, e.g., in health care provisioning;

• to enhance speed (if communication is kept minimal), reliability (capability to recover

from the failure of individual components, with graceful degradation in performance),

extensibility (capability to alter the number of processors applied to a problem), the ability

to tolerate uncertain data and knowledge;

• to offer conceptual clarity and simplicity of design.

Carl Hewitt's Concurrent Actor Madel (according to [Nwana 1996]) is considered as the

starting point of the research in software agents. He suggests an independent, interactive and

parallel running abject, which he called "Actor". It has a state protected from the environment

and can communicate with other abjects.

23

•

•

•

•

•

•

•

•

•

•

•

•

An "Actor" is a computational agent which has a mail address and a behaviour. Actors

communicate by message-passing and carry out their actions concurrently .

DAI is now concemed with deliberative agents who use a symbolic internai model for the

knowledge representation. Within this area, aspect of macro issues such as interaction and

communication between agents or strategies for Co-ordination, co-operation and conflict

e resolution are treated.

Parallel to research and development in theory, more practical research in agents architecture

and language have been achieved. This domain of research is overviewed in [Woolridge,

• Jennings 1995] and [Nwana, Woolridge 1997] and is presented later in this work.

•

•

Since 1990 the research in the area of the agents has expanded rapidly. The concept, which

before was operated under theo~etical criteria as a rather abstract research project, spread .

Starting from 1993 the rapid spreading of the Internet and the WWW led, as a global

information system, to the development of a new type of "agent", who led again to an

extension of the term "agent" .

a) Co-ordination in mufti agents systems

The following short overview of co-ordination mechanisms cornes out of [Nwana, Lee and

e Jennings 1996].

The central problem of multi agent systems is the co-ordination of individual agents. The

work of the single agents must be co-ordinated in order to achieve a global target thanks to

• the different abilities and desires of the individual agents and in order to resolve the

dependencies between the agents. Without co-ordination, systems with many autonomously

operating single agents lead to chaos.

•

•

Coordination encompasses the allocation and distribution of tasks between different agents,

the coordination and cooperation of the agents among themselves and the conflict resolution

24

or negotiation strategies; it can take place m different types: g1ven structures, contract

networks, multi-agent planning:

- The easiest possibility consists of a given fixed structure ("organisational structuring") of

the system, in which the individual roles and functions are fixed in the system. For example

the agents community can be divided into "master agents" and "slave agents" . The master

agents delegate functions to the slave agents. Another type of structure can be a so-called

"Blackboard" that is administered by master agents (that schedule the agents' reads/writes

to/from the blackboard) and is used as central start place for the distribution of tasks in the

system. A weak point of this approach is the danger of bottlenecks that can appear because of

the lack of central control instances.

In contract networks ("contract nets"), similarly to the approach of the fixed structured

systems, "manager agents" <livide the task into sub-tasks and look up for " contractor agents "

which can execute these tasks. The difference is situated in the fact that contractor agents can

also recursively become manager agents that can further <livide the task and distribute the

subtasks. Another difference is that the structure of the system is not fixed. Several contractor

agents can compete to achieve a task, so that the manager agent can select the most favourable

one to achieve a task. The approach of the contract networks offers many advantages in

comparison to the fixed structure: it doesn't lead to bottlenecks since several agents have to

compete for a task.. However, it doesn't treat the conflicts between individual agents and

assumes that ail agents cooperate. This approach is best used when the application task has a

well-defined hierarchical nature, when the problem has a coarse-grained decomposition and

when there is minimal coupling among subtasks.

- multi-agent planning means that each agent plans a methodology for the execution of the

central task. Then they are either submitted to a central instance ("centralised multi-agent

planning"), in order to eliminate inconsistencies and conflicts or submitted to the agents

community so that the adjustment is made by each agent with ail the others (" distributed

multi-agent planning"). This approach presupposes a larger quantity of information and agent

communication. However the bottleneck problem occurs again with a central instance that

checks the plans.

25

•

•

•

•

•

•

•

•

•

•

• If agents, which are not working for a common interest, have to coordinate themselves,

antagonisms will arise. This can be solved by negotiation methods.

• Negotiation is understood as:

•

"the communication process of a group of agents m order to reach a mutually accepted

agreement on some matter."

Bussman and Muller according to [Nwana, Lee, Jennings 1997]

According to the "game theory based negotiation" approach, ail possible outputs of the

• negotiation process are evaluated via an utility function based on the diff erent requirements of

the different negotiators involved. Ali the negotiators must admit this evaluation. Negotiators

try to draw the largest advantage over an iterative negotiation protocol. Cases where agents,

who lie or withhold information, in order to achieve a larger advantage, represent possible

• extensions of this approach. The fact that ail agents that take part in the negotiation must

know ail the evaluations, is the main point of criticism of this approach. Beyond that, the

number of evaluations can lead to a problem for negotiations involving many agents and

outcomes .

•

•

•

•

•

Beside this approach a lot of further considerations for automatic negotiations still remain.

According to [Nwana, Lee, Jennings 1997] independent third mediators can be placed

between the parties in order to submit negotiation suggestions. A practical approach is

[Chavez et al. 1997] Kasbah, a " market place for agents ", on which agents deal with

products. The most important parameter, by which the negotiation is determined, is the

required price for a product, which, on the basis of different strategies falls up to a certain

minimum. If an agent is ready to pay the required price, the deal, after an acknowledgement

of the user, can take place. It is thus a kind of auction. Auctions are a very formalised form of

negotiation about a certain product attribute, usually the price, and can be automated

relatively easily .

26

b) The user model

The construction of a user model, thus information about the interests, targets and general

preferences of a user, also plays a central role for intelligent agents. lt must learn what are the

desires of the users.

Machine leaming traditional techniques are, according to [Green et al 97], the symbolic and

subsymbolic classification.

- ln the symbolic classification all possible status of the system are divided into classes on the

basis of a fini te number of attributes, these forming a decision tree. Then a status (a leaf of the

tree) of the system can be determined by matching the no des of the decision tree with the

observed attributes.

- The subsymbolic classification uses neural networks and detects samples of attributes and

not the attributes themselves. 'Supervised neural networks' are trained before on the basis of

well-known categories, where false conclusions are eliminated gradually. "Unsupervised

nearly networks" are able to form independently different classes on the basis of samples and

to arrange the samples in these classes.

A disadvantage of traditional techniques of the machine learning is that, except for the

unsupervised neural networks, leaming before the use of the system must take place and that

no possibility of leaming during the operation exists.

The approach of directly leaming from the environment [Green et al 1997] wants to achieve

this independent leaming. Possible procedures are " Reinforcement Learning ", " Leaming by

Observation" and learning by statements also called " Instructional Learning ".

- Reinforcement Leaming is based on the approach that on the basis of a function, from each

state of the system, a certain action can be triggered. When several actions can be triggered

from a particular state, a selection strategy is used to decide which one is eventually executed.

The function is automatically adapted to the user behaviour on the basis of a learning

algorithm in the course of the time. Substantial aspects of this approach are thus the leaming

algorithm and the selection strategy.

27

•

•

•

•

•

•

•

•

•

•

•
- Learning by observation means that individual agents imitate and thus learn their behaviour

by observation of the behaviour of more experienced agents. It is not necessary to have an

• active teacher; the agents can learn and observe independently.

•
- Another learning method is learning by statements. Agents are explicitly instructed a certain

behaviour. This can take place via the user, or via an experienced agent .

Another approach that achieves the same results is the" Case Based Reasoning" [Green et al

1997]. Here, system users are divided into classes and each individual is assigned to a class on

the basis of his actions steps. Then stereotyped behaviours, which the agent exercises, are

• assigned to this class. As soon as a user is assigned to a class, his behaviour can modify the

stereotyped behaviour of the class. The advantage of this approach consists of the fact that

individual user profiles can be formed during a short period of time, this is not the case with

the interaction of only one user .

•
c) Theory of intelligent agents

Starting point for considerations to formai theories of agent systems is the thesis that the

• behaviour of agents seems to be determined by faith, desires, etc ... [Woolridge, Jennings

1995]. The philosopher Daniel Dennett shaped the term "Intentional system" for such

systems.

• However simple systems such a light switch can also be described as intentional systems: A

light switch is a simple, cooperative agent, whose function consists of letting current flow if it

believes that we require it. The way to communicate with it is simply the pressure put on it.

• It becomes clear that such a description does not make sense for a light switch. lntentional

descriptions are however useful in systems with complex functionality that can not be guessed

easily. Here an intentional description serves as tool for abstraction in order to predict,

describe and explain the behaviour of complex systems. For example (partly even

e unconsciously) the behaviour of a computer will often be described by this way in place of

describing it via its technical components .

• 28

Intentional characteristics that describe an agent, can be divided according to [Woolridge,

Jennings 1995] in two categories: " information attitudes " that are related to the information

that the agent has about its environment, and " pro attitudes ", by which actions of the agent

are controlled. Information attitudes are faith and knowledge. Desires, intention, obligation,

selected among other things, define pro-attitudes.

Intentional attitudes do not permit a semantically unique description with classical formai

logic means (for example, is " faith " to be formalised within a boolean logic?). The most

common approach for the formai representation of intentional characteristics is based on the "

Possible Worlds" model after Hintikka, which is here only roughly sketched following [

Woolridge, Jennings 1995].

In this logic, an agent's beliefs can be characterised as a set of possible worlds. Each world

represents a state that can be considered possible given what the agent knows. These worlds

are denoted epistemic alternatives. The agent believes whatever is true in all epistemic

alternatives. This type of representation seems simple at first sight, however a practicable

formai description from this model can be derived over modal logic.

In this model, an agent believes all valid formulas (including all possible tautologies, which

are infinite) and all the consequences of its beliefs (also infinite). These two problems

constitute the logical omniscience problem. Since any real system is resource bounded, it

seems that the possible worlds model is inappropriate for representing resource bounded

believers This ' Logical Omniscience problem ' is not solved yet and represents the starting

point of further research in this area.

d) Theories of Agency

Combinations of the different components of information attitudes and pro-attitudes have to

be refined in order to have a more practical approach.

Severa} theories of putting these attributes in relation are presented in [Woolridge, Jennings

1995]:

29

•

•

•

•

•

•

•

•

•

•

•

•

-Moore's theory matter is the question of what an agent needs to know in order to be able to

perform some action. He formalised a model of ability in a logic containing a modality for

knowledge, and a dynamic logic- for modelling action

-According to Cohen and Levesque's theory, two basic attitudes are used: beliefs and goals.

Others attitudes, such as intention, are defined in terms of these.

• -Rao and Georgeff have developed a logical framework for agent theory based on three

primitive modalities: beliefs, desires, and intentions. A rational agent bas bounded resources,

limited understanding and incomplete knowledge of what happens in the environment in

which it lives. Such an agent bas beliefs about the world and desires to satisfy, driving it to

• form intentions to act. An intention is a commitment to perform a plan. ln general, a plan is

only partially specified at the time of its formulation since the exact steps to be performed

may depend on the state of the environment when they are eventually executed. The activity

of a rational agent consists of performing the actions that it intended to execute without any

• further reasoning ; until it is forced into a revision of its own intentions by changes of its

beliefs or desires.

•

•

•

•

•

-Singh bas developed an interesting family of logics for representing intentions, beliefs,

knowledge, know-how, and communication in a branching-time framework

There is still no clear consensus in either the AI or philosophy communities about precisely

which combination of information and pro-attitudes are best suited to characterising rational

agents.

e) Architectures of intelligent agents

In this paragraph based on [Woolridge, Jennings 1995] and [Nwana, Ndumu 1997] ,general

concepts of architecture of agent system are introduced. This constituting a kind of practical

approach of the agents theories .

30

(1) Deliberative architecture

The classical, deliberative architecture of an agent system is based on the symbolic approach

of artificial intelligence. In a reasoning system, logical conclusions are made on the basis of

an explicit symbolic picture of the reality, these determine the further behaviour of the

system. The main problems with this approach are the complexity of most symbol

manipulation algorithms and the difficulty of theorem proving in even simple logic.

Others problems are related to the deliberative architectures. How can the real world be

transferred into a symbolic representation? How can complex connections of the real world be

represented symbolically and how new conclusions can be pulled from it? The first question

leads to the research in the areas of pattern recognition, voice recognition, automatic learning,

the second to the areas of knowledge representation, automatic reasoning and planning. These

problems are still not solved despite the immense volume of works generated by them.

Here follow some example of deliberative architectures :

-Planning agents are agents that have the characteristic of being able of dynamically

programming a sequence of execution in order to reach a goal. An early planning system is

STRIPS. This system uses a symbolic description of both the world and a desired goal state,

and a set of actions descriptions, which characterise the pre- and post- conditions associated

with various actions. It then attempts to find a sequence of actions to reach the goal by

matching the posts-conditions of actions against the desired goal.

- As mentioned earlier, Rao and Georgeff have developed an agent theory based on the

information attitude of belief and the pro-attitudes of desires and intention. Sorne researchers

have also developed agent architectures based on these attitudes. These architectures

constitute a kind of refinement of the Beliefs Desires Intentions agent theory. As examples,

the IRMA, PRS and COSY are systems based on the BDI architectures.

(2) Reactive architectures

Brooks pointed new ways out in AI and also for the agent research with its criticism at the

symbolic approach .

31

•

•

•

•

•

•

•

•

•

•

• In place of applying global pictures of the reality into a symbolic representation and applying

mechanisms for automatic reasoning on this knowledge base, he suggests an architecture that

gets along completely without a symbolic representation. Many independent and very simple

• agents operate hierarchically on the solution of a problem. They constantly are in contact with

the real world thanks sensors and react immediately to modifications. On base of the "

subsumption architecture" he has developed controls for mobile robots [Woolridge, Jennings

1995].

•
Maes states the following as main arguments for a reactive architecture of agent systems:

They are relatively simple and interact with other agents easily in basics ways. A complex

• behaviour develops nevertheless from this simplicity. Moreover they permit a stronger form

of the division of responsibilities: different modules operate autonomously in each case on

one function. There is no model for a global behaviour. Thirdly reactive systems operate very

much more near the reality, since they work without complex models of the world but directly

• with it. [Maes 1991] quoted in [Nwana, Ndumu 1997]

•
The problem of reactive agent systems is the difficulty to predict their behaviour .

(3) Hybrid architecture

Hybrid agents as the mixture of deliberative and reactive agent systems, is a suggestion to

combine the respective advantages of both architectures. They usually consist of subsystems,

• of which the deliberative sections are responsible for planning and decision making, while the

reactive section can react faster to occurrences of the real world, without being dependent on

the deliberative system. Reactive systems bring characteristics such as robustness, faster times

of response and adaptability into hybrid architectures. Deliberative systems add aspects of the

e long-term goal orientation.

(4) Heterogeneous architecture

The approach of a heterogeneous architecture emerged from the consideration that in a real

• system many agents of different natures have to cooperate together, in order to achieve a more

increased value than if each agent operates individually .

• 32

According to [Genesereth, Ketchpel 1994] a basic condition of existence for such a system is

a common language. An agent has to be able to communicate, similarly to the paradigm of

object orientation, via messages with other agents. In contrast to the object-oriented

programming in which messages can have a different meaning from object to object, agents

have to speak an uniform language with other agents.

A second problem of heterogeneous agent systems and of multi agent systems is generally the

question of how the communication of the agents can be organised among themselves. Does

have each agent to be able to communicate directly with every different one or should a

special mediator (" broker ") organise the communication. Such systems are called " federated

system ". The immense administration effort is a substantial argument against direct

communication. Each agent must know every different one, in order to be able to

communicate with it. In open, dynamically expandable systems, this is often also not possible

at all. Therefore the approach of a mediator, as shown in figure 1.4, which provides the

contact between the partners, is more common.

Agent Agent Agent Agent

Agent

Figure 1.4: F ederated system [Genesereth, Ketchpel 1994]

In a federated agent system the agents indicate an agent language, their desires and abilities to

the facilitators . The facilitators look up then suitable partners and open the communication

connection between them. Mediators can have also functions, which go beyond the pure

switching, as for example translations of the agent language or the allocation of a demand for

several providers.

33

•

•

•

•

•

•

•

•

•

•

•

5. Agent communication

a) Agent Communication Languages

A reason for the application of multi agent systems is the acceptance that a group of agents

can obtain an increase in value compared to an individual agent. [Nwana, Woolridge 1997]

The increase in value of multi agents system can usually be achieved only by communication

of the individual agents among themselves. When the communication among agents is made

1 .. implicitly, i.e. if each agent knows always exactly what the other agents would ask it just by

observing the environment, a system of multi agent could get along without communication.

However, this situation can only be reached only in very small trivial systems.

• Communication is necessary for systems in which agents cooperates in order to achieve a

common target and in environments where agents compete with different targets.

Purpose of communication can be the exchange of information, intentions or targets between

e two or more agents. In addition, the delegation of tasks and the monitoring of their execution,

assuming or rejecting a task or displaying the progress, success or failure can be possible

contents.

• The " Knowledge Query and Manipulation Language " (KQML, [Finin et al 1994])

represents an approach to standardise the language with which agents communicate together ..

KQML is a result of the DARP A project " Knowledge Sharing Effort " (KSE) [Neches 1994

].

•
Communication layer

Message layer

Content layer

Figure 1.5: An abstract view of the KQLM language from [Nwana, Woolridge 1997]

• 34

For example the record in the figure 1. 7 states that a chip is larger than another.

(ask-if

: language KIF

:ontology Chips

:content(>(* (width chipl) (length chipl))

* (width chip2) (length chip2))))

(reply

: language KIF

:ontology Chips

: in-reply-to Agent 1

:content (true))

Figure 1.8: An example of KQML performatives embedding KIF.

In the figure 1.8, is an example of KIF embedded in KQML as part of communication

between two agents. Agent 1 asks first whether chip 1 is larger than chip 2 and agent 2

acknowledges this afterwards.

The " chip " ontology, which is used in the example must be determined : what the terms "

chipl ", " chip2 ", " width " and " length " mean in this special context, must be available to

both communication partners.

37

•

•

•

•

•

•

•

•

5. Agent communication

a) Agent Communication Languages

A reason for the application of multi agent systems is the acceptance that a group of agents

can obtain an increase in value compared to an individual agent. [Nwana, Woolridge 1997]

The increase in value of multi agents system can usually be achieved only by communication

of the individual agents among themselves. When the communication among agents is made

implicitly, i.e. if each agent knows always exactly what the other agents would ask it just by

observing the environment, a system of multi agent could get along without communication.

However, this situation can only be reached only in very small trivial systems.

Communication is necessary for systems in which agents cooperates in order to achieve a

common target and in environments where agents compete with different targets.

Purpose of communication can be the exchange of information, intentions or targets between

two or more agents. In addition, the delegation of tasks and the monitoring of their execution,

assuming or rejecting a task or displaying the progress, success or failure can be possible

contents.

The " Knowledge Query and Manipulation Language " (KQML, [Finin et al 1994])

represents an approach to standardise the language with which agents communicate together. .

KQML is a result of the DARP A project " Knowledge Sharing Effort " (KSE) [Neches 1994

].

Communication layer

Message layer

Content layer

Figure 1.5: An abstract view of the KQLM language from [Nwana, Woolridge 1997]

34

As shown in figure 1.5, KQML is structured in three layers. In the content layer is transmitted

the actual message. About the contents of this message KQML does not state anything. It

could be anything, as long as it is ASCII-representable. The " message layer " defines

different categories of messages (illustrated by the figure 1.6) as well as the protocol,

according to which these are to be exchanged. By protocol, it is meant the rules that agents

must use when initiating and maintaining an exchange. KQML specifies several protocols,

including synchronous (where a blocking query waits for an expected reply) and

asynchronous (which involves non-blocking messages). The 'Communication layer' provides

the security for the transfer of the messages between the agents.

Category

Basic informational performatives

Basic query performatives

Multi-response query performatives

Basic effector performatives

Generator performatives

Capacity definition performatives

Notification performatives

Networking performatives

Facilitation performatives

Reserved performative names

Tell, deny, untell, cancel

Evaluate, reply, ask-if, ask-about, ask-one,

ask-all, sorry

Stream-about, stream-all

Achieve, unachieve

Standby, ready, next, rest, discard, generator

Advertise

Subscribe, monitor

Register, unregister, forward, broadcast, pipe,

break

Broker-one, broker-all, recommended-one,

recommend-all, recruit-one, recruit-all

Figure 1.6:Some KQML performatives from [Nwana, Woolridge 1997]

Although the use of a general agent language for heterogeneous agent systems is obvious,

there is number of other approaches for communication between agents beside KQML.

Usually only one subset of the KQML message is implemented, often also in another meaning

and with other protocols. Many today's prototypes use an owned agent language.

35

b) Ontology

By an ontology one understands the background knowledge (" world knowledge ") over facts

and connections between them, which is essential for the execution of successful

communication. Ontology extends the syntax of a language by a necessary semantics. One

can compare an ontology with the controlled vocabulary of a database.

Similarly to the agent languages, it is also necessary that all the partners that take part in the

same communication , if they want to inform themselves, must use the same ontology. For

many limited domains of knowledge there are ontologies usually integrated in prototypes. As

it is the case of owned languages it cornes also here to problems, if the systems must

communicate. Also the extension of an existing ontology, in order to cover for example a new

field of knowledge, becomes difficult with an implicit integration.

A little practicable solution would be the creation of a global ontology with a all global "

world knowledge ". There are nevertheless attempts to manage this venture. The CYC project

is by far the most ambitious project in this area.

The "Knowledge interchange format " (KIF) tries to take another way, in order to solve the

problem of the semantics of messages. Like KQML from the KSE project, the DARP A

developed KIF a Meta pattern for different knowledge bases. By a common Meta pattern

different knowledge bases becomes interoperable and modular.

KIF is a prefix version of first order predicate calculus with extensions to support non­

monotonie reasoning and definitions.

(> (* (width chipl) (length chipl))

(* (width chip2) (length chip2)))

Figure 1.7: Example ofKIF from : [Genesereth, Ketchpel 1994]

36

For example the record in the figure 1. 7 states that a chip is larger than another.

(ask-if

: language KIF

:ontology Chips

:content(>(* (width chipl} (length chipl}}

* (width chip2) (length chip2))))

(reply

: language KIF

: ontology Chips

: in-reply-to Agent 1

:content (true))

Figure 1.8: An example ofKQML performatives embedding KIF.

In the figure 1.8, is an example of KIF embedded in KQML as part of communication

between two agents. Agent 1 asks first whether chip 1 is larger than chip 2 and agent 2

acknowledges this afterwards.

The " chip " ontology, which is used in the example must be determined : what the terms "

chipl ", " chip2 ", "width " and " length " mean in this special context, must be available to

both communication partners.

37

•
6. Agents Programming

• Generally an agent can be implemented in any programming language. In order to simplify

the development of agents, many extensions of conventional programming languages exist.

Also a list of many of these programming languages with which special aspects of an agent

can be more easily developed can be found at [AgentBuilder 2000].

•

•

•

•

•

•

L

Agents, who can communicate with their system environment or move as mobile agent from a

system to another, need interfaces for these systems, so they can interact on standardised run

time environments in different systems, from which they can migrate to another.

In particular for mobile agents different systems were conceived by many companies. General

Magies Telescript was one of the first commercially available environments for mobile

agents. Innumerable other architecture approaches exists. Among the most popular, can be

found Aglets [Aglets 2000], Concordia [Concordia 2000] and Grasshopper [Grasshopper

2000].

By the important use that the programming language Java gained for distributed applications

it is not a surprise that Java based architectures for mobile agents are increasingly more

common.

An interoperability between the systems of different manufacturers is indispensable for the

success of mobile agents. Several bodies work in order to create agents standards for a better

interoperability [The agent society 2000] : the Agent Society via its Agent Interop Working

Group, the Active Group, the Foundation for Intelligent Physical Agents (FIPA), the IETF,

the Object Management Group via its Mobile Agent Facility Specification and the WWW

Consortium .

38

a) An agents programming language: Aglets

The Aglets system lays on Java as programming language. Aglets are Java objects, which can

transport themselves from host to host, that means that they can stop their execution at any

time, transport themselves to another host and carry on again their execution once they arrive

there. The Java Aglet API (J-AAPI; " Java Aglet Application Programming Interface ")

[Lange 1997] as a fundamental interface description between Aglets and their system

environment follows these development principles:

-simplicity and expandability: The Aglet development should be as simple as possible for

Java programmer.

-platform independent: Aglets should be executable on all host, which support the J-AAPI.

- industry standard: The J-AAPI is to become an industry standard.

- security: Non-trusted aglets shouldn't become a risk for the hosts.

Aglets transfer from host to host and aglet communication uses an agent transfer Protocol

("ATP" [Lange, Aridor 1997]). This application level protocol defines the syntax for the

designation and identification of agents in the Internet as well as a transmission protocol for

transferring agents from host to host. ATP is not only used by aglets. According to [Lange,

Aridor 1997]: « While mobile agents may be programmed in many different languages and

for a variety of vend or specific agent platforms (consisting of virtual machines and libraries),

ATP offers the opportunity to handle agent mobility in a general and uniform way. »

The Java-Aglet API defines the following classes of the Aglet system [Lange 1997]:

• An aglet is a mobile Java object that visits aglet-enabled hosts in a computer network.

It is autonomous, since it runs in its own thread of execution after arriving at a host,

and reactive, because of its ability to respond to incoming messages.

• A context is an aglet's workplace. It is a stationary object that provides a means for

maintaining and managing running aglets in a uniform execution environment where

the host system is secured against malicious aglets. One node in a computer network

may host multiple contexts.

39

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• A proxy is a representative of an aglet. It serves as a shield for the aglet that protects

the aglet from direct access to its public methods. The proxy also provides location

transparency for the aglet. That is, it can hide the real location of the aglet.

• A message is an abject exchanged between aglets. It allows synchronous as well as

asynchronous message passing between aglets. Message passing can be used by aglets

to collaborate and exchange information in a loosely coupled fashion .

• A message manager allows for concurrency contrai of incoming messages.

• An itinerary is an aglet's travel plan. It provides a convenient abstraction for non­

trivial travel patterns and routing.

• An identifier is bound to each aglet. This identifier is globally unique and immutable

throughout the lifetime of the aglet .

"Aglets are possibly the most applicable mobile agent technology at the present moment in

time."

[Green et al. 1997]

b) An agents programming language: Jack

• JACK Intelligent Agents is a framework in Java for multi-agent system development built by

the company Agent Oriented Software Pty. Ltd.

•
According to [Jack 1999] : « The company's aim is to provide a platform for commercial,

industrial and research applications. To this end, its framework supplies a high performance

light-weight implementation of the BDI architecture and can be easily extended to support

different agent models or specific application requirements. »

• Other products from universities and different companies supply implementations of the BDI

architecture [AgentWeb 2000] : dMARS, UMPRS Agent, JAM and Tileworld .

• 40

' JACK Intelligent Agents' is developed in Java and Uses JACK Agent Language, JAL, which

follows the standard JAV A/Object Oriented paradigm.

Jack agents have been designed mainly for use as components of larger environments. On one

hand, an agent must coexist and be visible as simply another object by non-agent software.

On the other hand, a Jack programmer must be allowed to easily access any other component

ofa system.

For similar reasons, Jack agents are not linked to any specific agent communication language.

Jack provides a native lightweight communication infrastructure. Nothing prevents the

adoption of a high level symbolic protocol such as KQML. However Jack has been oriented

towards industrial object-oriented middleware and message passing infrastructures.

As mentioned earlier, JACK Intelligent Agents is an implementation of the BDI architecture.

This is reflected by the relation between the JACK Agent Language components and the BDI

information attitude and pro-attitudes as shown in the figure 1.9.

Databases Events Plans

Assert Observe post Select handle
restract change

....... •················ ·············• ········· ········· ······Plan

Beliefs

···••••••··••••••··•··••·•··•·•··············•·•···--{·•••···•••··•·····•·········••·········::::::::::::::::.:~:·:·:·:::-.-.·•"""°•W••••••••• ~;;;;;.,,;,."''••

Observe \ ... •········ Step

environmen~\ 1,····· intention

·• Messages

Figure 1.9: BDI attitudes and Jack components

JACK base components and methods can be described as follows [JACK 2000]:

41

•

•

•

•

•

•

•

•

•

•

1•
• Agent, which models the main reasoning entities in JACK.

• • Event, which models occurrences and messages that these agents must be able to respond

to. Events may arise externally from messages from other agents, or internally as a

consequence of one of the agent's own actions, or in response to one of its internal goals.

• • Plan, which models procedural descriptions of what an agent does to handle a given

•

•

•

event. All the action that an agent takes is prescribed and described by the agent's plans.

Plans possess methods to determine their relevancy to particular kinds of events or to a

particular events occurrences.

• Database, which models an agent's knowledge as beliefs that follow either a closed world

or open world semantics. Databases represent an agent's beliefs as first order relational

tuples, and maintain their consistent logical and key constraints. Databases can be defined

to automatically send events when particular beliefs modifications occur.

• Capability, which aggregates functional components (events, plans, databases and other

capabilities) that agents canuse .

42

7. Areas of application of intelligent agents

The use of intelligent agents is judged useful in man y ranges of application. Many approaches

of the term have been pointed out earlier under many different definitions, but other

approaches can be seen. Enumeration of the areas of application partly follows [IBM 1995]

and [Nwana 1996].

a) System and network management

In the area of system and network management, the agent term emerged early. The

expenditure guarantying always the availability of the systems continues to increase in the

measure, in which the information and communication technology at the basis become more

complex. Here, intelligent agents help the system operators and administrators to detect ,seek

out and recover.

In a complex system, there are agents who monitor in each case several items of the system.

According to this model, agents recover simple errors or inform superordinate instances if

they cannot solve it.

b) Mobile computers

Computers become ever smaller and more mobile. The use of " Persona! Digital Assistants "

(PDA) is increasing. Intelligent agents, who operate within a network, can execute functions

for the user independently, without that he must be constantly connected with the network

possibly via an expensive communication medium. They can receive and sort for example

emails, look for information or coordinate themselves with other agents. [Chess 95]

c) Information management

The intelligent organisation of detailed information is already an active area of research.

Agents could help to sort information by learning the user behaviour or via a type of' social

filtering '. 'Social filtering' means that the user agent determines the relevance of certain

information by cooperation with others agents which users potentially share the same

interests.

43

•

•

•

e

- - - - - ___ __________________ _.

•

•

•

•

•

•

•

•

Agents can adapt over the time to the needs and tasks of a certain user, by becoming familiar

step by step with their interests, preferences and habits. These agents, like a human assistant,

gradually replace their users to perform some functions and to take some decisions.

Also the active search for information can be simplified by the use of agents. By the access to

ever more sources of information and the increasing importance of the WWW, agents are

needed to sort informations in order to find relevant ones.

d) Workgroups

In workgroups, agents, who are active for the respective members of the group, can solve

problems by cooperation without effort of their human orderers. For example intelligent

agents can maintain a department calendar and react independently to modifications, by

informing other agents and postponing dates. Several agents do not have to exclusively

cooperate. They can also compete in a certain measure. For example, if it is question of the

assignment of limited resources.

e) Electronic Commerce

Electronic commerce is a growing with the popularity of the Internet. On one hand, buyers

need to find sellers of products and services. They also need to find product information and

expert advice. On the other hand, sellers need to find buyers and they need to provide expert

advice about their product or service. Both buyers and sellers need to automate the handling

of their electronic business.

Intelligent agents can be useful in the electronic commerce in a number of ways. Once they

have the specifications of a product, agents can "go shopping" for a user. They can also actas

"salespeople" for sellers by providing product or service sales advice and helping them to

solve their problems.

J) User Interfaces

Although the user interface has been improved thanks graphical user interfaces (GUls), for

many, it remains difficult to learn and use computers. As applications of computers improve,

44

the user interface needs to accommodate the increase in complexity. As user populations grow

and diversify, computer interfaces need to learn user habits and preferences and adapt to

individuals.

Intelligent agents can help to solve both these problems. Intelligent agent technology allows

systems to monitor the user's actions, develop models of user abilities in order to

automatically help when problems arise.

g) Software engineering

As already mentioned, agents are considered as a natural extension of the object programming

orientation. Being so, agents oriented programming inherits of ail the benefits of the object

oriented programming A similarity of both these approaches is that both emphasise the

importance of interactions between entities. However, according to [Jennings, Woolridge

1998] there are also a number of important differences:

• Objects are generally passive in nature: they need to be sent a message before they corne

alive.

• When one of his methods is invoked, an object doesn't have any choice about refusing to

perform the invoked method. This approach may suffice for smaller applications in co­

operative and well-controlled environments, it is not suited to either large or competitive

and open environments.

• Object-orientation fails to provide an adequate set of concepts and mechanisms for

modelling complex systems. Complex systems require richer problem solving

abstractions. Individual objects represent too fine a granularity of behaviour and method

invocation is a too primitive mechanism for describing the types of interactions that take

place.

• Object- oriented approaches provide minimal support for structuring collectives (basically

inheritance class hierarchies define relationships). Complex systems involve a variety of

organisational relationships (of which "part-of, and "is-a,, are but two of the simpler

kinds).

45

•

•

•

•

•

•

•

•

•

•

l1) Management of business processes

The execution of business processes is for a long time supported by the information and

communication technology. Autonomous software agents undertake the monitoring of

business processes and permit a decentralised administration. So, autonomous agents can

adjust faster to new situations.

Also, the use of agents permits a more exact modelling of the reality, since the organizational

structure of the enterprises can be illustrated more exactly. Strongly distributed enterprises, in

the extreme completely virtual enterprises, profit from the application of agents for the

support of business processes.

Part of business processes can be executed by an agent wich knows the necessary steps for the

• completion of the job. This one will divide the job into subtasks and will send these subtasks

to other more specialized agents owned by morte specialized company departments.

According to [Woolridge, Jennings 1995], the use of agents is a natural way to face the

e distribution of data and resources .

•

•

•

•

• 46

•

•

•

l e Second Part: Belief Revision

•

•

• 47

•
1. Situation

• Classical logics have played an important role in computer science. It has been an important

tool for developing architecture and software. According to the logicians, the human way of

reasoning is also amenable to analysis using classical logic. However, artificial intelligence

researchers have shown that classical logic is not sufficient and robust enough to make

computers reasoning like humans. Humans do not reason as a classical reasoning system.

They jump to conclusions based on commonsens reasoning. By commonsense reasoning,

humans refer to such statements as " . .it is my experience that 'this' must be the case." Or " ...

there is no good reason not to believe 'this'" .

•
So the goal of nonmonotonic reasoning is to model the way in which commonsense is used by

humans. So, nonmonotonic reasoning must be able to jump to conclusions and be sufficiently

robust so that when a conclusion reached by nonmonotonic reasoning is shown to be wrong, it

• may be revised. Nonmonotonic reasoning is a new logic developed by artificial intelligence

searchers and is based on classical logic. Roughly said, their property of nonmonotonicity

means that the amount of conclusions that can be drawn decreases when the amount of

prem1sses mcreases

•

•

•

•

•

Most well known nonmonotonic logics are: Circumscription developed by John McCarthy,

Default Logic developed by Reiter, autoepistemic developed by Moore and Belief Revision

developed by Carlos Alchourron, Peter Gardenfors and David Makinson. [Alchourr6n et al.,

1985]

Most nonmonotonic logics are processes that allow a reasoner to make plausible conjectures

in the absence of complete information. Belief revision is differentiated from them by the fact

that in place of dealing with incomplete informations, it deals with the dynamics of belief

systems. It models how an agent or a computer system updates its beliefs when receiving new

information .

48

2. Introduction

Dynamically, a reasoned can updates its belief system (a set of sentences called a theory and

noted T) on three main ways:

(i)

(ii)

(iii)

Expansion: A new sentence together with its logical consequences is added to a

theory T. The belief system that results from expanding K by a sentence a will be

denoted T+ a.

Revision: A new sentence that is inconsistent with a theory T is added, but in order

that the resulting belief system is consistent some of the old sentences in T are

deleted. The result of revising T by a sentence a will be denoted T* a.

Contraction: Sorne sentence in T is retracted without adding any new facts . In order

that the resulting system is consistent some other sentences from T may have to be

given up. The result of contracting T with respect to the sentence a will be denoted

T-a.

Expansions ofbelief systems can be handled easily. T+a can simply be defined as the logical

closure of T together with a:

(Def) ra = {b: T u{a} 1- b}

On the other hand, the revision and the contraction of a theory with respect to a sentence are

not so trivial.

A well-known example can illustrate this:

An reasoning system beliefs that 'all birds fly' and that 'Tweety is a bird', consequently it

also believes that 'Tweety can fly' . But later, it discovers that it was mistaken because it

appears that 'Tweety cannot fly' at all. How should it modify its knowledge ? Off course, it

49

•

•

•

•

•

•

•

•

•

•

1

1

/.
has to remove 'Tweety can fly' but it has to remove other beliefs that are in conflict with its

recent discovery that 'Tweety cannot fly ' . It appears that it has several possible courses of

action to follow in this regard: it can retract the information that 'Tweety is a bird ' , it can

• retract that ' all birds fly ' or it can retract both of these beliefs.

•

•

•

•

•

•

•

•

So it appears that it is not possible to easily give an explicit definition of revisions and

contractions as for expansions .

Nevertheless, some intuitive basics principles are useful for the research of such definitions.

Modifications to the knowledge base have to be rational and guided by the principle of

minimal changes. By ' rational' it is meant that the reasoner realises that inconsistencies are

problematical and thus seek to avoid them. The 'principle of minimal change' means that as

much information should be conserved as is possible in accordance with an underlying

preference relation. The underlying preference relation is used to capture the information

content of the knowledge base, the reasoning agent's commitment to this information, and

how the information should behave under change. This concept of minimal change is not to

be evaluated by cardinality measures but rather by the interdependencies among the

knowledge .

When approaching the problem of belief rev1s1ons (and contractions) there are two

approaches: the axiomatic and the constructive. The axiomatic approach consisting in

defining some constraints, some postulates that revision and contraction functions have to

respect, so this approach defines a class of functions for revisions and a class of functions for

contractions. The constructive approach consisting in defining a particular function for each

class of contraction and revision functions.

Firstly, the axiomatic method will be presented. Then, it will be shown that a preference

relation called an epistemic entrenchment ordering contains sufficient information to

construct these change functions.

After the presentations of the postulates and the proposais for revision methods, the two

approaches will be connected via theorems .

This presentation is mainly based on [Williams, 1997] and [Williams, 1998].

50

---------------------------- - - -------~-~ -

3. Preliminaries

A language L which is based on first order logic will be used. The set of all logical

consequences of a set T c L, that is {a:T 1- a}, is denoted by Cn(T). A theory of L is any

subset of L close under 1-- A consistent theory of L is any theory of L that does not contain

both a and -,a, for any sentence a of L. A complete theory of L is any theory of L such that

for any sentence a of L, the theory contains a or -,a. We shall denote by KL the set of all

theories of L.

51

•

•

•

•

•

•

•

•

•

•

•
4. Rationality postula tes for belief revisions

• As seen earlier, expansion models the simplest change to a knowledge base i.e. the acceptance

of information without the removal of any previously accepted information.

•

•

•

The expansion of a theory T with respect to a sentence a is the logical closure of T and a.

More formally, an expansion function + is a function from KL x L to KL, mapping (T,a) to T+ a

where T+a=Th(T u {a}). Expansion is a monotonie operation: Tc T+a. If-,a E T, then T+a is

inconsistent. If -,a <t. T, the principle of minimal change is respected since T+ a would be the

smallest change we can logically make to T in order to incorporate a .

A contraction of T with respect to a sentence a consists of the removal of a set of sentences

from T so that a is no longer implied, provided a is not a tautology. Formally, a contraction

function - is any function from KL x L to KL, mapping (T,a) to Ta which satisfies the

following postulates. For any a,b EL and any T E KL:

Cl) Ta EKL

C2) ra cr.

• C3) If a fi! T, then Tc Ta

C4) If not 1- a, then a fi! ra.

CS) Tc(Tara

•

•

•

•

C6)/f l-a Hb, then ra = Tb .

C7) Tan Tb cTaAb

C8) If a fi! T aAb then TaAb c Ta

These postulates embody the principle of minimal change and act as integrity constraints for

change functions.

Cl) says that the result of a contraction is a theory.

C2) says that contracting a theory only involves the removal of old information and never the

incorporation of new information.

C3) says that when information ais not in believed then taking it away should have no effect

C2) and (3) say that if ais not in T, then Ta=T.

52

C4) says that if ais nota tautology then it must be removed in the contraction Ta.

CS) says (with the previous four) that if a E T then T=(Tat a. lntuitivelly, it means that a

minimal amount of information is lost during the contraction.

C6) says that the same result is obtained when a contraction is made with respect to equivalent

logical sentences.

C7) says that the theory that results from contraction with respect to aAb sould never be

smaller than taking the intersection of Ta and Tb.

C8) says that if a is not contained in the contraction with respect to the conjunction aAb then

the contraction with respect to this conjunction cannot be larger than the theory obtained by

contraction a alone.

Given Cl) and C6), C7) and C8) imply that T aAb is equivalent to either Ta, Tb or Tan Tb.

Revision attempts to change a knowledge base as little as possible in order to incorporate

newly acquired information. This new information may be inconsistent with the knowledge

base. In order to maintain consistency, some old information may need to be retracted. Thus

revision functions are nonmonotonic in nature.

Formally, a revision function • is any function from KL x L to KL, mapping (T,a) to T•a wich

satisfies the following postulates. For any a,b E Land any T E KL:

(l) Ta EKL

(2)a E Ta.

(3) Ta c'I'a

(4) If -a ~ T then T'a c Ta

(5) If Ta = _L then 1- -a

(6)/f l-a Hb, then Ta = Tb.

(7) Ta/\b c(Ta;+b

(8) If -a ~ Ta then (T a;+b c T a/\b

(1) says that revising a theory results in a theory.

(2) says that the information to be added by a revision is always successfully incorporated.

53

•

•

•

•

•

•

•

•

•

•

•
(3) says that revising a theory can never incorporate more information than an expansion

operation.

(4) says that if -,a is not in T then the expansion of T with respect to a is contained in the

• revision with respect to a.

(3) and (4) say that if ais consistent with T then T•a=T+a_

(5) says that the only way to obtain an inconsistent theory is to revise with an inconsistent

sentence a.

• (6) says that revision functions are syntax independent.

•

•

•

,.

(7) says that the theory that results from revising with respect to aAb should never contain

more than the revision with respect to a followed by the expansion with respect to b.

(8) says that if -,a is not contained in the revision with respect to a then the revision with

respect to a followed by the expansion with respect to a should not contain more information

than the theory that results from revising withrespect to aAb.

If the revision function• satisfies the first six postulates, then the postulates (7) and (8) imply

that T* avb is equivalent to T* a, T*b or T* a n T*b.

The following theorems gives the relation between the various change functions:

If - is a is a contraction fonction and + the expansion fonction, then • defined by the Levi

Jdentity below de.fines a revision fonction.

• +
Ta = (T-.a) a

If * is a revision fonction, then - defined by the Harper identity below de.fines a contraction

• function.

• Ta = TnT-a

•

• 54

5. The constructive approach.

As it has been mentioned earlier, the above postulates do not provide a mechanism for

defining a particular function but they describe classes of functions. To isolate a unique

function, additional structure is necessary. This structure is a preference relation such as an

epistemic entrenchment ordering.

Intuitively, this preference relation can be used to determine a change function by providing a

selection criteria that can be used to identify those sentences to be retracted, those to be

retained, and those to be acquired during changes.

Given a theory T of L, an epistemic entrenchment related to T is any binary relation s on L

satisfying the conditions below:

(EE 1) If a s b and b s c, then a s c.

(EE2) For al/ a, b EL, if a 1- b then as b.

(EE3) For al/ a, b EL, as a /\ b or b sa /\ b.

(EE4) When T ~ ..1, a ~ T iff a s b for ail b EL.

(EE5) If b sa for ail b EL, then 1- a.

If a s b, b is said being at least as entrenched as a.

a < b if a s b and not b s a.

If a s b and b s a, a and b are said being aqually entrenched.

(EE 1) says that an epistemic entenchment is transitive.

(EE2) says that if a is logically stronger than b, then b is at least as entrenched as a.

(EE3) with (EEl) and (EE2) implies that a cunjunction is ranked at the same level as its least

ranked conjunct.

(EE4) says that sentences not in the theory Tare minimal.

(EE5) says that tautologies are maximal

55

•

•

•

•

•

•

•

•

•

•

•
The set cut~(a) contains all the sentences that are at least as entrenched as a.

More formally:

•
For an epistemic entrenchment ordering 5 and a sentence a, de.fine cut.5:(a) = {b:a9J }.

An important property of an epistemic entenchement is that it is a total preorder of the

• sentences in L such that the following theorems holds:

•

•

•

•

•

•

•

If 5is an epistemic entrenchment, thenfor any sentence a, cut.5:(a) is a theory .

A subtheory of a finitely axiomatizable theory may not be finitely axiomatizable. A finite

description of an epistemic entrenchment ordering is useful for developping a computational

model for change functions:

An epistemic entrenchment ordering 5 is finitely representable if and on/y if it has a finite

number ofnatural partitions, and for ail a EL, cut.5:(a) isfinitely axiomatizable .

The next theorem from Gardenfors and Makinson provides a constructive method for building

a contraction function from an epistemic entrenchment ordering:

Let T be a theory of L. For every contraction function - for T there exists an epistemic

entrenchment 5 re/ated to T such that (E) is true for every a E L. Converse/y, for every

epistemic entrenchment 5 related to T, there exists a contraction function - such that (E) is

true for every a E L.

(K) Ta= { {b ET: a < a vb} ifnot 1-a
T otherwise

56

An analogous result for revision is provided in the theorem below:

Let T be a theory of L. For every revision fonction * for T there exists an epistemic

entrenchment S related to T such that (E*), below, is trne for every a E L. Converse/y, for

every epistemic entrenchment S related to T, there exists a revision fonction * for T such that

(E*) is trne for every a EL.

{ {b EL: --, a < --, av b} if not 1---, a

-1 otherwise
(E*) T*a =

57

•

•

•

•

•

•

•

•

•

•

•
6. lmplementing belief revision

• Many difficulties arise when developping a computational model of belief revision.

•

•

•

•

•

•

•

•

First, appears a representation problem because the epistemic entrenchment ordering typically

ranks an infinite number of sentences .

Secondly, the epistemic entrenchment is lost in the process of change, and then the iteration

of change functions is not naturally supported .

In order to face this problem, a finite partial entrenchment ranking is defined as a finite

representation of a finitely representable epistemic entrenchment ordering.

A finite partial entrenchment ranking grades the content of a finite knowledge base according

to its epistemic importance. Inuitively, the higher the value assigned to a sentence the more

firmly held it is, or the more entrenched it is.

A finite partial entrenchment rank:ing is a function B from a finite subset of sentences into the

interval [0,1] such that the following conditions are satisfied for alla E dom(B):

(PERl) {b E dom(B): B(a) < B(b)} not 1- a if ais nota tauto/ogy.

(PER2) Jfl- -a, then B(a) =O .

(PER3)B(a) =l ifandonlyif l-a.

(PERl) says that sentences assigned a value higher than an arbitrary sentence a, do not

entai} a .

(PER2) says that inconsistent sentences are asigned zero.

(PER3) says that tautologies are assigned 1.

A finite partial entrenchment ranking can be used to represent a finitely representable

epistemic entrenchment ordering .

58

The numerical assignment can be viewed in two distinct ways:

• qualitatively, where the relative ordering of sentences is used.

• quantitavely, where the numerical assigned to sentences possesses some extra meaning,

such as probability, and a calculus based on their numerical value adopted.

The family of ail finite partial entrenchment ranking is denoted by J3 .

In a finite partial entrenchment ranking, sentences mapped to numbers greater than zero

represent explicit beliefs. Their logical closure represents the implicit beliefs.

Define the explicit information content represented by B E J3 to be { a E dom(B): B(a) > O},

and denote it by exp(b). Similarly, define the implicit information content represented by B E

J3 to be Th(exp(B)), and denote it by content(B).

A finite partial entrenchment ranking usually represents an incomplete specification of a

reasoning system preferences from wich an epistemic entrenchment ordering can be

generated. In order to describe this generated epistemic entrenchment ordering, it is necessary

to rank implicit information.

Let a be a nontautological sentence. Let B be a finite partial entrenchment ranking. We de.fine

the degree of acceptance of a to be

degree(B,a) - {
largest j such that {b E exp(B): B(b) ~j} 1- a if a E content (B)

0 otherwise

A procedure for adjusting a finite partial entrenchment ranking can be described.

For this adjustment, not only the new information is needed but also its ranking.

Adjustments use a policy for change based on an absolute minimal measure; they transmute a

finite partial entrenchment ranking so as to incorporate the desired new information using an

absolute minimal measure of change.

59

•

•

•

•

•

•

•

•

•

•

•

•

•

a is the new information to be incorporate. (contingent sentence.)

The number i (0 s i < 1) is its degree of acceptance.

The set of contingent sentences is denoted L ~-

Let a E L ~ and O si < 1. We de.fine the a4iustment of a fini te partial entrenchment ranking B

to be a fonction * such that

B *(a,i) = { (H(a,i))

(B"(-a, oJr (a,i)

if i s degree(B,a)

otherwise

• where

•

•

•

•

•

•

lf(a,i)(b) ~ {
i if degree(B,a) =degree(B, avb) andB(b) > i

B(b) otherwise

for ail b E dom(B), and

B(b) if B(b)>i

i ifa Hb or B(b) si < degree(B, a ➔ b)

degree(B, a ➔ b) otherwise

for ail b E dom(B) u {a}

Two processes are at work in an adjustment. Sentences migrate up or down the ranking.

Migration downwards is related to contraction, whilst movement upwards is related to

expans10n.

Another more practical transmutation is maxi-adjustment. It allows the user to specify

dependencies among beliefs using Spohnian Reasons wich is defined as follows:

If a, b in exp(B) and we preserve the properties of a partial entrenchment ranking, then b is a

reason for a iff degree(b ➔ a) > degree(a) .

60

A maxi-adjustment involves the absolute minimal change of a partial entrenchment ranking

required to incorporate the desired new sentence such that currently held information is

retained unless there is an explicit reason to retract it.

Let B E /3 be finite. We enumerate the range of B in ascending order as Jo.J 1, ... JRmax- Let a be a

contingent sentence,)m=degree{B,a) and O .sï s)Rmax• Then the (a,i) maxi-adjustment of Bis

B *(a,i) defined by:

B *{a,i) = { (ff{a,i)) ifi sdegree(B,a)

(B-(-, a, 0) ;+ (a, i) otherwise

wherefor ail b E dom{B), we de.fine B"(a,i) asfollows:

1. For b with B(b) >)m we have B"{a,i)(b) = B(b).

2. For b with i < B(b) s)m, suppose we have defined B·(a,i)(b) for b with B(b) Z)m-kfor k = -

1,0,J,2, ... ,n-1, thenfor b with B(b) =)m-n we have

ff(a,i)(b) =

i if a 1- b or
a not 1- b and b Er
where I'is a minimal subset of
{b :B(b) =)m-n} such that
{b :B"(a,i)(b) >)m-n} u r 1- a

B(b) otherwise

3. For b with B(b) si we have B"(a,i)(b) = B(b).

And for all b E dom(B) u {a} we define B+(a,i) as follows:

B+(a,i)(b) - l B(b) if B(b)>i
i if a= b or B(b) si < degree(B, a -+ b)

degree{B, a -+ b) otherwise

61

•

•

•

•

•

•

•

•

•

•

•
Both adjustment and maxi-adjustment can be described by procedural algorithms. Their

• implementations require the support of a theorem prover .

•

•

•

•

•

•

•

• 62

•

•

•

•

• Third Part: An A1mlication

•

•

•

•

1.
63

•
1. Introduction

• In this part, an application consisting of an agents system using Belief Revision is described.

This implementation underlines the software engineering advantages of the agents oriented

programming paradigm.

This application consists of a system of co-operative agents working together in order to

• extract a consistent set of beliefs from several sources .

•

•

•

•

•

•

• 64

2. Tools used in this application

In order not to reinvent the wheel and to facilitate the implementation, several tools are used.

As seen earlier, agent-programming languages exist in order to facilitate the development of

agents systems. ' JACK Intelligent Agents' and its programming language 'JACK Agent

Language' being at disposition, they have been used for this application. A description of this

tool can be found in the first part of this work.

In order to extract a consistent set of beliefs, the system uses SATEN [SATEN 97] and

V ADER [V ADER 97]. Both have been developed in Java, by the CIN project at the Business

Technology Research Laboratory of the University of Newcastle, Australia. V ADER is a first

order logic theorem prover used by SATEN, a system for first order logic theory extraction

and revision.

The integration ofthese logic engines with JACK agents doesn't present any problems. JACK

being developed for facilitating the integration of JAVA objects.

In order to communicate, the agents use the KQML standard language which description can

be found in the first part of this work.

65

•

•

•

•

•

•

•

•

•

•

•
3. Goal and situation

e The system has been design to solve the following problem:

At a time given by the user, two agents having different beliefs on the same area have to put

in common their beliefs about this area in order to enjoy each other's beliefs. Inconsistencies

• may appear in this common set.

This application consists of a multi benevolent agents system. These agents are co-operative

and the system is co-ordinated via a given structure. They communicate via the KQML

• language and use their own ontology .

•

•

•

•

•

• 66

4. System architecture

Before presenting the architecture of this system, it can be interesting to present the

underlying principles that lead its design:

• This multi-agents system has to be considered as a part of a larger system where others

agents, applications and users can also interact with the already existing agents. Among

other characteristics of this system reflecting this principle, the capability of

communicating via the standard KQML protocol can be mentioned. A possible extension

of this architecture is presented at the end ofthis part.

• In this architecture design, the accent is put on the software engmeenng advantages

presented by the use of agents. As seen earlier, agents oriented programming paradigm is

considered as an extension of the object oriented programming paradigm. So the re-use of

agents, the grouping of different functions of the same nature in the same agent and a

maximum modularity are taken into account.

The intentional global behaviour of this system shown in figure 3. 1 can be described as

follow:

When the user wants that Agent 1 and Agent2 put their beliefs together, he launches the agent

being the interface between him and the system. Then this Interface Agent orders the

Gathering Agent to begin its job. This one requests the desired beliefs and their rankings to

Agent 1 and Agents2 which give them it. Once both beliefs sets are gathered into one set, the

Gathering Agent add rules with the highest ranking to this set and sent it to the Belief

Revision Agent. The added rules can be considered as integrity constraints on these beliefs.

The Gathering Agent orders him to make an extraction on the given sentences. When it is

done, it sends back the inconsistent-safe beliefs to the Gathering Agent which, after removing

the rules, dispatch them to both Agent 1 and Agent2.

67

•

•

•

•

•

•

•

•

•

•

• Agentl Agent2

11
• .__G_a_th_e_r_in_Q_A_Qe_n_t __ _.l <----- Interface Agent

11
• BeliefRevision Agent

Figure 3 .1: Agents and communication channels

•

•

•

•

•

•

• 68

_J

5. Knowledge representation

As seen in the JACK overview chapter, agent's beliefs are implemented through instances of

the Database class. To be used, an instance of a Database has to have predefined fields. So, in

order that an agent possesses a meaning of what it beliefs, and to profit what is offered by the

Database class, the content of a database has to be considered as a set of arguments of the

same predicate. (I.e. an agent will possess as many database objects as it beliefs different class

ofthings)

This implies that a JACK agent won't be able to dynamically learn new classes of things, as

its database formats are pre-defined.

1t also implies that JACK doesn't naturally support the representation of complex formulas.

69

•

•

•

•

•

•

•

•

•

•

•
6. Communication

• Sorne KQML performatives are used for the agent' s communication. It is clear that others

performatives may be used to fulfil the same task. Nevertheless, the presented set seems to be

the most efficient one .

•

•

•

•

•

1 Agent! 1 Agent2

\;>0~')_ s.. / / JI J,
2

~~~~ /!Il! 
~, G-a-th_e_r-in_g_A_g_e_n_t_~, ___ 1 __ j Interface Agent 

6' 

7 7' 

1 Belief revision Agent 

Figure 3.2: Communication via KQML performatives 

To be as much clear and generic as possible and because the ontology is not standard, 

messages contents are not presented. Exception is made for the 'achieve' performative where 

contents are unique. 

• The different performatives used in the system are (with numbers referring to figure 3.2): 

8 achieve:go 

The 'achieve' performative is an order to act. In this case, it is ordered to begin the task . 

• 
2 and 3) stream-all 

• 70 



The requested beliefs being about selected areas of interest, these are gathered in particular 

database tables. This performative contains two kind of SQL message both requesting all the 

data' s of a table. 

4 and 5) reply 

The ' stream ail ' performative being a request for several replies, each 'reply' performative 

contains one table item. 

4' and 5') eos 

The gathering agent doesn't know the amount of beliefs that it is receiving. So this predicate 

indicate the end of the beliefs stream 

6) insert 

The Belief Revision agent is ordered to in sert one knowledge per 'insert' performative. 

6') achieve: extract 

Being confronted to an unknown number of 'insert' messages, this performative signais the 

end of the stream and order to extract what has been received. 

7) insert 

Each 'insert' performative is accompanied by the knowledge to insert. 

7') achieve: dispatch 

The Gathering Agent is warned that the stream of beliefs to be inserted in its temporary 

database ends. It is then ordered to dispatch the beliefs to both Agentl and Agent2. 

8 and 9) delete-all 

During, all the se operations, Agent 1 and Agent2 had to carry on their activities with their own 

non-updated beliefs. Before receiving the common beliefs, they have to delete all their old 

beliefs related to the particular areas in order that there are no contradictions. 

8' and 9') insert 

Agentl and Agent2 receive the common beliefs. Each insert performative being accompanied 

by one of the common beliefs to be inserted. 

71 

• 

• . 

• 

• 

• 

• 

• 

• 

., 
• 



• 
8" and 9") achieve: ok 

Via this performative, Agent 1 and Agent2 are warned that the stream of beliefs is finished and 

• that they can carry on their tasks. 

• 

It can be noticed that every time the set of beliefs has to be sent, it is sent knowledge after the 

other in order not to have too large messages on the network . 

As mentioned in its description chapter, JACK only offers a lightweight communication 

mechanism: messages are objects of the class MessageEvent, an extension of the class Event. 

They are sent by an agent to another known agent. These messages are treated via a plan by 

• the repository as normal events. So, originally, Jack agents don't posses any way of situating 

a message in a dialog. 

For each agent, the use of a finite automate corresponding to each dialog it has with another 

• agent is a solution to this problem. This can easily be implemented via a variable for each 

dialog. Its content corresponding to the current state of the dialog. When receiving a message, 

an agent has to check if it is expected in the dialog with its sender. So, the repository can 

• 

• 

• 

switch the automate to another state by changing the variable content. When sending a 

message, an agent has also to update its dialog automate. 

For an agent, these variables (each variable corresponding to a dialog with a particular agent) 

are part of its beliefs. So, the set of these variables has to be in one of its database . 

This mechanism ought an agent to have several concurrent dialogs at the condition that they 

don' t interfere on the same databases . 

This mechanism leads to the fact that agents communication intelligence, the way of it leads a 

dialog is dependent of the sophistication of its dialog automate. Moreover, in this case, the 

dialog automate being implemented in the agent code, an agent cannot modify its code by 

himself in order to better lead a dialog. 

• A better way of handling dialogs would be to entirely represent them as beliefs . 

• 72 



With what Jack offers, handling of messages is the next one: 

Messages are events. If a message is unexpected (i.e. shouldn't appear at this moment in the 

dialog, or its performative is unknown), its repository has to treat it. (At least to reply that it 

doesn't understand the message). 

So, an agent has to treat any messages it receives. In the JACK Agent Language, a plan can 

only treat a particular class of event. Trough both these consideration, it can be deduced that 

different KQML performatives have to be of the same class. Otherwise if an agent receive a 

message it doesn't know (the event class isn't treatable), it wouldn't be able to reply that it 

doesn't understand it. 

Using JACK, the best way to implement the capability of handling KQML performatives 

would be to make agents able of treating only one class of event thanks different plans. Each 

performative is treated via one plan. Ail these plan treating the same class of event. The 

checking of the matching plan-performative takes place in the 'context' section of the plan. 

There is also one plan to treat unknown performatives. 

When receiving a message, an agent will try its plan one after the other up to the moment it 

find the right one dedicated the received performative. 

73 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 
7. Agents descriptions 

• In this section, the different agents used in the system are described. For more clarity, these 

descriptions don't reference the codes used at the implementation. The agent's code can be 

found in the appendix of this work. The agents' architectures are presented via diagrams. 

Agents are denoted by a bold lined rectangle. Inside this rectangle, databases are denoted by 

• rectangles, plans are denoted by hexagons and messages are denoted by rounded rectangles. 

Java objects are denoted by trapezoids. The situation of an object being a component of 

another object is represented by a trapezoid inside a trapezoid. An arrow from a message 

rectangle to a plan hexagon means a 'is handled by' relation. An arrow from a plan to an 

• event means a ' sends' relation. An arrow leaving a rectangle and heading hexagon means a ' is 

consulted by' relation. An arrow from a plan to a database denoted a 'modifies' relation . 

• 

• 

• 

• 

• 

• 

[2:J I DatabMe 1 0 [ Message 

Figure 3.3: Diagrams notation 

Java 
Obiect 

It can be noticed that in the implementation, each agent is running on its own process, so the 

system can be spread on different machines . 

Ali agents, when created, send themselves a message to initialise some of their knowledge. 

Ali these agents, except the Interface Agent, are deliberative. They possess a kind of 

representation of their possible dialogs and adapt their behaviour according to them. The 

Gathering agent also has the representation of what it has to send to the others. It is clear that 

at this state of the system their deliberative feature can be dubious. 

In order to be able to respond to the sender of a message that is not understood, normally 

every agent should possess a plan to treat this message. This plan has not been implemented 

and is not present in the architecture diagrams . 

74 



a) The Interface Agent 

This agent is reactive. It doesn't possess any symbolic representation of the world and only 

act by reflex. 

Because agents can only communicate with the world via messages, a user cannot directly 

interact with an agent. So this agent constitutes the interface between the user and the system 

of agents. lt sends the' achieve go' performative when its process is created. 

Because of its simplicity, its architecture is not presented. 

b) Agentl and Agent2 

Their architectures can be represented as follow: 

Database 1 

Stream 
ail 

Reply: 
content 

eos:in­
reply-to 

Database 2 

Delete 
ail 

States 

Insert: 
content 

Figure 3.5: Agentl and Agent2 architecture. 

On 
create 

creation 

Achieve: 
ok 

75 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

For both agents, knowledge about a particular area that has to be gathered are located in 

databasel and in database2. Because of the JACK way of representing beliefs, each database 

is a set of arguments of the same predicate. Each item of a database is accompanied by its 

ranking. Originally, all rankings are the same for all the items of the same database for each 

agent. The particularity of these agents, is that, before the gathering of beliefs, they pesses 

different rankings for the same database. For example, Agentl is specialised in contents of 

• databasel and Agent2 is specialised in contents of database2. Another characteristic is that 

• 

• 

• 

• 

• 

• 

• 

these databases are semantically linked . 

c) The Gathering Agent 

Its architecture is the following one: 

Achieve 
:go 

Buffer 

Stream­
all 

Reply: 
content 

Rules 

eos:in­
reply-to 

Insert: 
content 

States 

Achieve 
:extract 

Insert: 
content 

Achieve: 
dispatch 

On 
create 

creation 

Insert: 
content 

Achieve 
: ok 

76 



Figure 3 .4: Gathering agent architecture 

The existence of this agent is justified by modularity requirements. Thanks this agent, the 

whole system is more flexible and can easily be updated. For example, if a new beliefrevision 

agent is more efficient than the existing one, the Gathering agent has just to redirect the 

messages to this new one. The belief revision agent replacement is made transparently for the 

user and for Agentl and Agent2. 

This agent explicitly possesses the rules, the integrity constraints that databases to be gathered 

have to respect. Once received in its temporary database, beliefs from both Agent 1 and 

Agent2, this agent add the rules with the highest ranking and then send the database to the 

belief revision agent. 

Once the set of consistent beliefs is sent back from the Belief Revision Agent, the Gathering 

Agent removes the rules and dispatches the set of common consistent beliefs to Agent 1 and 

Agent2. 

d) Belief Revision Agent 

That is this agent that uses parts of the belief revision system SATEN. 

So, apart from its communication ability, this agent is able of extracting theories and revising 

information. Although its hasn't been yet programmed to handle dialogs of revision request. 

77 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Its architecture can be described as follow: 

BeliefRevision engine 

Theory 
Base 

Insert 
content 

Insert: 
content 

States 

Achieve: 
extract 

Figure 3. 6: Belief Revision agent architecture 

creation 

lnsert: 
content 

Achieve: 
dispatchh 

This agent extracts the set of beliefs it received from the gathering agent. The result of the 

extraction is a set ofbeliefs respecting the integrity constraints . 

78 



8. Possible extensions 

As mention earlier, the architecture design of this system has been directed by the idea that 

this agents system has to be seen as a part of a larger system. 

A possible extension would be the next one: 

DB 
1 1 DB 

n n n 
DB 1~ Agentl Agent2 Agent3 

u u u 
Interface q Gathering Agent ,~ Interface 

-~ ~ 1 Agent3 1 ~ 1 Belief Revision 

Figure 3. 7: A possible extension 

As shown in figure 3. 7, databases which tables need to be gathered can be linked to the 

system through new or existing agents foreign agents system could ask belief revision 

services trough a negotiator agent. Another authorised user could log to the system through 

his interface agent. Another foreign agents system could request a database through a 

negotiator agent, which check the accesses. 

This extension would rise new problems to be solved. 

Among improvements to be made in order to face this new situation: 

79 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

Negotiator agents should possess sophisticated communication abilities. Agents having many 

concurrent dialogs should have systems to prevent interference. Agents in contact with 

foreign systems should have beliefs about authorised accesses . 

80 



1. 

1. 

Conclusion 

After having introduced both intelligent agents and Belief Revision, this work presented an 

approach of using belief revision in an application consisting of a system of agents. It has 

been shown that the use of agents has been particularly useful in order to have a flexible 

system. However, the use of belief revision has not been of a great importance. lts usefulness 

has not been demonstrated. 

Severa} reasons to this fact can be put forward: 

• First of ail, it can be mentioned that the application hasn't been well chosen for this 

demonstration. The nature of the application doesn't let a great part to the belief revision 

functionality. Communication among agents has been more underlined. 

A second reason that can be linked to the first one is that belief revision is more useful in 

• dynamic situations. In its present state, this application is really static one. Moreover, the use 

of JACK, a not enough flexible tool used for implementing the system, reinforced this static 

feature. 

A third reason that has also to be linked to the first one is that the belief revision ability is not 

• situated on the good level. In fact, it shouldn 't be use as a tool for a system of agents but as an 

individual tool for agents. Its importance may have been demonstrated if the whole system 

was considered as a unique agent by agents outside the system. 

• Nevertheless, as seen in this work, in order to present more software engineering advantages 

than objects, agents have to communicate. The application demonstrated this communication 

importance. It also demonstrated the necessity of handling communication as being part of an 

agent's beliefs. The agents need to have symbolic representations of the handled dialogs . 

• 

• 

• 

Maybe the place of belief revision would be there, in communication, in the agent oriented 

programming paradigm. The first stream of research about intelligent agents would have its 

place in the macro-issues of agent-oriented software engineering . 

81 



• 
Bibliography 

[AgentBuilder 2000] 

• http://www. agentbuilder. corn/ AgentTools/index.html 

• 

• 

• 

• 

• 

• 

• 

• 

[AgentWeb 2000] 

http://www.cs.umbc.edu/agents 

[ Aglets 2000] 

http://www. tri. ibm. co .jp/ aglets/ 

[Alchourr6n et al., 1985] 

Alchourr6n C. Gardenfors P. and Makinson D., On the logic of theory change: Partial meet 

contraction functions and their associated revision functions, Journal of Symbolic Logic 50, 

pp. 510-530. (1985) 

[Bat es 1994] 

Bates, J, The Role of Emotion in Believable Characters. Communications of the ACM (37) 7. 

S. 122ff ACM-Press, New York, NY, USA (1994) . 

[Britannica 2000] 

http://www.britannica.com 

[Chavez et al.1997] 

Chavez, A; Dreilinger, D.; Guttman, R. ; Maes, P., A Real-Life Experiment in Creating an 

Agent Marketplace in Proceedings of the Second International Conference on the Practical 

Application of Intelligent Agents and Mufti-Agent Technology (PAAM'97) . London, UK 

(1997) . 

[Cheong 1996] 

Cheong, F.-C., Internet Agents: Spiders, Wanderers, Brokers, and Bots. New Riders 

Publishing, Indianapolis, IN, USA (1996) . 

82 



[Chess 95] 

Chess D., GrosofB., Harrison C., Levine D., ltinerant Agents for Mobile Computing, Number 

RC 20010, IBM T.J. Watson Research Center, February 1995. 

[Concordia 2000] 
http://www. meitca. com/HSL/Projects/Concordia 

[Dragan 1997] 

Dragan, R.V., Looking Forward: Agent Software. PC Magazine 25th of .March (1997). 

http://www.pcmag.com/special/anniversary/forward/lfr6.htm 

[Extempo 2000] 

http://www.extempo. corn. 

[Finin et al. 1994] 

Finin, T. ; Fritzson, R.; McKay, D.; McEntire, R., KQML as an agent communication 

language in Proceedings of the 4rd International Conference on Information and Knowledge 

Management (CIKM). ACM Press, New York, NY, USA (1994). 

[F oner 1993] 

Foner, L. : What's an Agent, Anyway? A Sociological Case Study. Agents Memo 93-01 , MIT 

Media Lab, Cambridge, MA, USA (1993). 

[ Genesereth, Ketchpel 1994] 

Genesereth, M . R. ; Ketchpel, S. R., Software Agents. Communications of the ACM (37) 7. S. 

48ff. ACM-Press, New York, NY, USA (1994). 

[Gilbert et al.95] 

Gilbert, D.; Aparicio, M .; Atkinson, B. ; Brady, S.; Ciccarino, J. ; Grosof, B. ; O'Connor, 

P.,Osisek, D.; Pritko, S.; Spagna, R.; and Wilson, L., IBM Intelligent Agent Strategy, 

IBM Corporation. (1995) 

[Grasshopper 2000] 
http://www.ikv.de/products/ grasshopper/ 

83 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

[ Green et al. 1997] 

Green, S.; Hurst, L. ; Nangle, B.; Cunningham, P.; Somers, F.; Evans, R. , Software Agents: a 

review. Report of the Intelligent Agent Group am Trinity College Dublin, IE (1997) . 

[IBM 1995] 

The Role of Intelligent Agents in the Information Infrastructure . IBM Corporation Research 

Triangle Park, NC, USA (1995) . 

[Jack 1999] 

Busetta P., Rônnquist R., Hodgson A. , Lucas A., JACK Intelligent Agents- Componentsfor 
Intelligent Agents in Java, Agent Oriented Software Pty Ltd. (1999) 

e [Jack 2000] 

Cobum M., Jack Intelligent Agent User Guide, Agent Oriented Software Pty Ltd. (2000) 

[Jennings, Woolridge 1996] 

• Jennings, N .; Woolridge, M., Software Agents in IEEE Review (42) 1. S. l 7ff Los Alamitos, 

CA, USA (1996). 

[Jennings, Wooldridge 98] 

• Jennings N.R., Wooldridge M., Agent-Oriented Software Engineering.(1998) 

[Johansen 1997a] 

Johansen, D., The Tacoma Project. University ofTromso, NO und Comell University, lthaca, 

• NY, USA (1997). 

• 

• 

[Johansen 1997b] 

Johansen, D., The StormCast Project. University ofTromso, NO (1997). 

[Lange 1997] 

Lange, D. B., Java Ag/et Application Programming Interface (J-AAPI) White Paper -Draft 2. 

IBM Tokyo Research Laboratory, JP (1997) . 

84 



[Lange, Aridor 1997] 

Lange, D. B.; Aridor, Y., Agent Transfer Protoco/ - ATP/0.1. IBM Tokyo Research 

Laboratory, JP ( 1997). 

[Lingnau, Drobnik, Dômel 1995] 

Lingnau, A.; Drobnik, O.; Dômel, P.: An HTTP-based Infrastructure for Mobile Agents. 

World Wide Web Journal - Fourth International World Wide Web Conference Proceedings, 

Boston, MA, USA (1995) 

[Maes 1991] 

Maes, P. (Hrsg.), Designing Autonomous Agents: Theory and Practice from Bio/ogy to 

Engineering and Back. MIT-Press, London (1991 ). 

[Maes 1994] 

Maes, P., Agents that reduce work and information overload in Communications of the ACM 

(37) 7. S.30ff. ACM-Press, New York, NY, USA (1994). 

[Maes 1995] 

Maes, P., Artificial Life Meets Entertainment: Life like Autonomous Agents m 

Communications of the ACM (38) 11. S. 108ff. ACM Press, New York, USA (1995). 

[Mitchel et al. 1994] 

Mitchel, T. ; Cartiana, R.; Freitag, D.; McDermott, J.; Zabowski, D. Experience with a 

Learning Persona/ Assistant in Communications of the ACM 37 (7). S. 81ff. ACM-Press, 

New York, NY, USA (1994). 

[Neches 1994] 

Neches, R., Overview of the DARPA Knowledge Sharing Effort. (1994). 

[Nwana 1996] 

Nwana, H. S., Software Agents: An Overview. Knowledge Engineering Review (11) 3. S. 

205ff. Cambridge University Press (1996). 

85 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• [Nwana, Ndumu 1997] 

Nwana, H. S.; Ndumu, D. T., "An Introduction to Agent Technology" (1997) 

• [Nwana, Lee, Jennings 1997] 

Nwana, H.S.; Lee, L. ; Jennings, N. R., Co-ordination in Mufti-Agent Systems (1997). 

[Nwana, Woolridge 1997] 

e Nwana, H.S.; Woolridge, M., Software Agent Technologies (1997). 

• 

• 

• 

• 

• 

• 

• 

[Oz 2000] 

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/oz/web/oz.html 

[Pearson 1996] 

Pearson, S., An Overview of Agent Technology, HP Technical Paper HPL-96-40. Hewlett­

Packard Company, Palo Alto, CA, USA (1996) . 

[Petrie 1996] 

Petrie, C. J., Agent-Based Engineering, the Web, and Intelligence in IEEE Expert (11) 6. 

S.24ff Los Alamitos, CA, USA (1996) . 

[Pleiades 1996] 

http ://www. cs. cmu. edu/~softagents/pleiades/index. html 

[Russell, Norvig, 1995] 

Russell, Stuart J. and Norvig P., Artificial Intelligence: A Modem Approach, Englewood 

Cliffs, NJ: Prentice Hall (1995) 

[SATEN 97] 
http:/ /infosystems. newcastle. edu. au/webworld/ saten/ 

[The agent society 2000] 

http://www.agent.org/ 

86 



[VADER 97] 

http ://infosystems. newcastle. edu. au/webworld/vader/ 

[Wayner, Joch 1995] 

Wayner, P.; Joch, A., Agents of Change in Byte (20) 3. McGraw-Hill, New-York, USA 

(1995). 

[White 1996] 

White, J., Mobile Agents White Paper. General Magic, Sunnyvale, CA, USA (1996). 

[Williams, 1997] 
Williams M-A., Belief Revision in Non-monotonie Reasoning, G. Antoniou ,The MIT Press. 

(1997) 

[Williams, 1998] 
Williams M-A., Applications of Belief Revision. (1998) 

[Woolridge, Jennings 1995] 

Woolridge, M. J.; Jennings, N . R, Intelligent Agents: Theory and Practice. Knowledge 

Engineering Review 10 (2). Cambridge University Press, USA (1995). 

87 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

Appendix 

Source Code 

Interface Agent 

Interface_ agent.agent 

import 
import 

aos.jack.jak.core.*; 
java.io.*; 

agent interface_agent extends Agent { 

#sends event messaj mes; 
#handles event ecrire; 
#uses plan ecriture; 

public interface_agent(String n) 
super (n ) ; 

public void launch() 
{ 

send("gathery@Carlton",mes.messaj ("lancement")); 

messaj .event 

event messaj extends MessageEvent 

public String content; 

#posted as 
messaj (String what) 

{ 

content=what; 



Gathering Agent 

Gathering_ agent. agent 

import 
import 

aos.jack.jak.core.*; 
java.io.*; 

agent gathering_agent extends Agent 

#private database states st(); 
#private database buffer buf(); 
#private database rules ru(); 

#handles event messaj; 
#uses plan achieve_go; 
#uses plan reply_content; 
#uses plan insert content; 
#uses plan eos_in_reply_to; 
#uses plan achieve_dispatch; 

#posts event oncreate oc; 
#handles event oncreate; 
#uses plan creation; 

public gathering_agent(String n) 
{ 

super (n); 
postEvent(oc.oncreate()); 

Buffer.db 

database buffer extends OpenWorld { 
// the db where the gathering agent stock formulas+ranking 
// before sending it to the extractor 

#key field String formula; 

#indexed query get_any(logical String f); 
#indexed query get_element(String e); 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

states.db 

database states extends ClosedWorld { 

#key field String name; 
#value field String state; 
#indexed query get_ifstate(String n,String s); 
#indexed query get_state(String n,logical Strings); 

rules.db 

database rules extends OpenWorld { 
Il rules ta use, with their rank=0.99 

#key field String rule; 

#indexed query get_any(logical String r); 

creation. plan 

import java.lang.System; 

plan creation extends Plan 

#handles event oncreate oc; 
#modifies database states st; 
#modifies database rules ru; 

body() 
{ 

st.assert("interfacia@Melbourne","ready",Cursor.TRUE); 
st.assert("gathery@Carlton","ready",Cursor.TRUE); 
Il a revoir car y manque init. de agencyl 

ru.assert("*X(*V(*W( (-Equal(V,W)&Isaresidentof(X,V))-> 
-Isaresidentof(X,W)) ))&(-Equal(wavre,namur)& 
-Equal(namur,wavre)&Equal(namur,namur)&Equal(wavre,wavre)),0.999"); 
ru. assert ( "*A(*B ( ! C (Ismarriedwith (A, B) 
->(Isaresidentof(A,C)&Isaresidentof(B,C))))),0.998"); 



achieve _go. plan 

import java.lang.System; 

plan achieve_go extends Plan 

#handles event messaj mes; 
#modifies database states st; 

context () 
{ 

mes.contenu.startsWith("achieve_go") && st.get_ifstate(mes.from,"ready"); 
} 

body() 
{ 

System.out.println(""+mes.from +"traitement de lancement"); 

st.assert("agencyl@Hamilton","waiting_stream",Cursor.TRUE); 
@send("agencyl@Hamilton",mes.messaj ("stream-all:content ismarriedwith,* 
isaresidentof,*")); 

st.assert("agency2@Agency2land","waiting_stream",Cursor.TRUE); 
@send("agency2@Agency2land",mes.messaj ("stream-all:content ismarriedwith,* 
isaresidentof,*")); 

insert _content.plan 

import java.lang.System; 
import java.lang.Double; 

plan insert content extends Plan 

#handles event messaj mes; 

#modifies database states st; 
#modifies database buffer buf; 

context () 
{ 

mes.contenu.startsWith("insert:content"); 
} 

body() 
{ 

} 

String formula=mes.contenu . substring(mes.contenu.indexOf(" ")+1); 
System.out.println("ai recu formula: "+formula); 
if (formula.startsWith("Ismarriedwith") 1 

formula.startsWith("Isaresidentof")) 
buf.assert(formula); 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

reply _content.plan 

import java.lang.System; 
import java.lang.Double; 

plan reply_content extends Plan 

#handles event messaj mes; 
#modifies database states st; 
#modifies database buffer buf; 

context () 
{ 
mes.contenu.startsWith("reply:content") 
&& st.get_ifstate(mes.from,"waiting_stream") 

} 

body() 
{ 

String dbname=mes.contenu.substring(14,mes.contenu.indexOf(",")); 
System.out.println(""+dbname); 
String content=dbname+"("+mes.contenu.substring 
(mes.contenu.indexOf(",")+1,mes.contenu.lastindexOf(","))+")"; 
double rank=new 
Double(mes.contenu.substring(mes.contenu.lastindexOf(",")+1)) 
.doubleValue(); 
buf.assert(""+content+","+rank,Cursor.TRUE); 
} 

oncreate. event 

event oncreate extends Event { 

#posted as 
oncreate () 

{ 



eos_in_reply _to.plan 

import java.lang.System; 

plan eos_in_ reply_to extends Plan 

#handles event messaj mes; 
#modifies database states st; 
#modifies database buffer buf; 
#modifies database rules ru; 

context () 
{ 

mes.contenu.startsWith("eos:in-reply-to") 
&& st.get_ifstate(mes.from,"waiting_stream"); 

} 

body() 
{ 

st.assert(mes.from,"ready",Cursor.TRUE); 
logical String value; 
st.get_state("gathery@Carlton",value); 
if (value.as string() .equals("ready")) 

{ 

st.assert("gathery@Carlton","receivedl",Cursor.TRUE); 
} 

if (value.as_string() .equals("receivedl")) 
{ 

} 

st.assert("gathery@Carlton","received2",Cursor.TRUE); 
int limite=buf.nFacts(); 
for (int i=l;i<=limite;i++) 

{ 

logical String f; 
buf.get_any(f); 
@send("extracty@Extractland",mes.messaj ("insert:content 
"+f.as_string()+"") ); 
buf.get_element(f.as_string()) .retractAll(); 
} 

logical String r; 
for (Cursor c=ru.get_any(r) ;c.next(); ) 

{ 

} 

@send("extracty@Extractland",mes.messaj ("insert:content 
"+r.as_string()+"")); 

@send("extracty@Extractland",mes.messaj ("achieve:extract")); 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

achieve _ dispatch. plan 

import java.lang.System; 

plan achieve_dispatch extends Plan 

#handles event messaj mes; 
#modifies database states st; 
#modifies database buffer buf; 

contex t () 
{ 

mes.contenu.startsWith ( "achieve:dispatch"); 
} 

body ( ) 
{ 

@send("agencyl@Hamilton",mes.messaj ("delete-all:content 
Ismarriedwith,*")); 
@send("agencyl@Hamilton",mes.messaj("delete-all:content 
Isaresidentof,*") ); 
@send("agency2@Agency2land",mes.messaj ( "delete-all:content 
Ismarriedwith,*")); 
@send("agency2@Agency2land",mes.messaj ("delete-all:content 
Isaresidentof,*")); 
int limite=buf.nFacts(); 
for (int i=l;i<=limite;i++) 

{ 

logical String f; 
buf.get_any(f); 
String dbname=f.as string() .substring(0,13); 
String arg=f.as_string() .substring (14,f.as_string() .indexOf ( " ) ")); 
String ranking=f.as_string(). 
substring(f.as_string( ) .indexOf(" ) " ) +2); 
System.out.println("J'envoie: "+dbname+","+arg+","+ranking); 
@send("agencyl@Hamilton",mes.messaj ("insert:content 
"+dbname+", "+arg+", "+ranking) ) ; 
@send("agency2@Agency2land",mes.messaj ("insert:content 
"+dbname+", "+arg+", "+ranking)); 

buf.get_element(f.as_string()) .retractAll(); 
} 



messaj . event 

event messaj extends MessageEvent 

public String content; 

#posted as 
messaj (String what) 

{ 

content=what; 

Belief Revision agent 

extracteur. agent 

import 
import 

aos.jack.jak.core.*; 
java .io.*; 

agent extracteur extends Agent { 

#private database states st(); 
#handles event messaj; 
#uses plan insert_content; 
#uses plan achieve extract; 
#posts event oncreate oc; 
#handles event oncreate; 
#uses plan creation; 
#sends event messaj; 

public static TheoryBase formulas= new TheoryBase(); 
public static MaxiAdj reviseur= new MaxiAdj (formulas); 

public extracteur(String n) 
{ 

super (n); 
postEvent(oc.oncreate()); 

} 

states.db 

database states extends OpenWorld 

#key field String name; 
#value field String state; 
#indexed query get_ifstate(int i, Strings); 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

messaj. event 

event messaj extends MessageEvent 

public String content; 

#posted as 
messaj (String what) 

{ 

content=what ; 

oncreate. event 

event oncreate extends Event { 

#posted as 
oncreate () 

{ 

creation. plan 

import java.lang.System; 

plan creation extends Plan 

#handles event oncreate oc; 
#modifies database states st; 

body() 
{ 

st.assert("gathery@Carlton","waiting_insert",Cursor.TRUE); 
} 



achieve _ extract. plan 

import java.lang.System; 
import java.lang.Double; 

plan achieve_ex tract extends Plan 

#handles event messaj mes; 
#modifies database states st; 

context () 
{ 

mes.contenu.startsWith("achieve:extract") 
&& st.get_ifstate(mes.from,"waiting_insert") 

} 

body() 
{ 

extracteur.reviseur.doExtract(); 
System.out.println("Resultat "); 
System.out.println(""+extracteur.reviseur.base.toString()); 
int limite=extracteur.reviseur.base.beliefs.mod(); 
for (int i=0;i<limite;i++) 

{ 

String formula=extracteur.reviseur.base.beliefs.contents[i]; 
double ranking=extracteur.reviseur.base.rankings.contents[i]; 
@send("gathery@Carlton",mes.messaj ("insert:content 
"+formula+","+ranking) ); 

@send("gathery@Carlton",mes.messaj ("achieve:dispatch") ); 
extracteur.reviseur.base=new TheoryBase(); 

insert _content.plan 
import java.lang.System; 
import java.lang.Double; 

plan insert content extends Plan 

#handles event messaj mes; 
#modifies database states st; 

context () 
{ 

mes.contenu.startsWith("insert:content"); 
} 

body() 
{ 

String formula=mes.contenu.substring(mes.contenu.indexOf(" 
")+1,mes.contenu.lastindexOf(",")); 
double rank=new Double(mes.contenu .substring(mes.contenu 
.lastindexOf(",")+1)) .doubleVa l ue(); 
extracteur.reviseur.base . addBelief(formul a,rank); 

) 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

Agentl 

agency _ agent.agent 

import 
import 

aos.jack.jak.core.*; 
java.io.*; 

agent agency_agent extends Agent { 

#private database isaresidentof resi( ) ; 
#private database ismarriedwith mari(); 
#private database states st(}; 
#handles event messaj; 
#uses plan stream_all_content; 
#uses plan delete_all_content; 
#uses plan insert_content; 
#posts event oncreate oc; 
#handles event oncreate; 
#uses plan creation; 

public agenc y_agent(String n) 
{ 

super (n ) ; 
postEvent(oc . oncreate()); 

) 

states.db 

database states extends OpenWorld 

#key field String name; 
#value field String state; 
#indexed query get_ifstate(int i, Strings); 

i saresidentof. db 

database isaresidentof e x tends OpenWorld 
#key field String name; 
#value field String city_name; 
#value field double ranking; 
#indexed query 
get_any(logical String n,logical String c,logical doubler); 
#indexed query get_element(String n,String c, doubler); 



ismarriedwith. db 

database ismarriedwith extends OpenWorld 
#key field String name_man; 
#key field String name_woman; 
#value field double ranking; 
#indexed query 
get_any(logical String m,logical String w,logical doubler); 
#indexed query get_element(String m,String w,double r); 

messaj . event 

event messaj extends MessageEvent 

public String content; 

#posted as 
messaj (String what) 

{ 

content=what; 

oncreate. event 

event oncreate extends Event { 

#posted as 
oncreate () 

{ 

creation. plan 

import java.lang.System; 

plan creation extends Plan 

#handles event oncreate oc; 
#modifies database states st; 
#modifies database isaresidentof resi; 
#modifies database ismarriedwith mari; 

body() 
{ 

} 

st.assert("gathery@Carlton","ready",Cursor.TRUE); 
resi.assert("jacqueline","wavre",0.7); 
resi. as sert ( "mireille", "namur", 0. 7); 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

·• 

• 

• 

• 

• 

• 

• 

• 

stream _ all _content.plan 

import java.lang.System; 

plan stream_all_content extends Plan { 

#handles event messaj mes; 
#modifies database states st; 
#reads database isaresidentof resi; 
#reads database ismarriedwith mari; 

context () 
{ 

} 

mes.contenu.startsWith("stream-all:content") && 
st.get_ifstate(mes.from,"ready"); 

body() 
{ 

st.assert(mes.from,"preparation_stream_all" ,Cursor.TRUE ); 
String dbname=mes.contenu.substring(19,mes.contenu.indexOf(",")); 
dbname="Isaresidentof"; 
String noml="Isaresidentof"; 
if (dbname.equals(noml)) 

{ 

int dbnfacts=resi.nFacts(); 
logical String n; 
logical String v; 
logical doubler; 

for (Cursor c=resi.get_any(n,v,r);c.next(); 
{ 

} 

@send(mes.from,mes.messaj("reply:content 
"+dbname+", "+n+", "+v+", "+r)); 
System.out.println("je renvoie "+"reply:content 
"+dbname+", "+n+", "+v+", "+r); 
} 

String dbname="Ismarriedwith"; 
String nom2="Ismarriedwith"; 
if (dbname.equals(nom2)) 

{ 

} 

int dbnfacts=mari.nFacts(); 
logical String m; 
logical String w; 
logical doubler; 
for (Cursor c=mari.get_any(m,w,r);c.next(); 

{ 

@send(mes.from,mes.messaj ("reply:content 
"+dbname+", "+m+", "+w+", "+r)); 
System.out.println("je renvoie "+"reply:content 
"+dbname+", "+m+", "+w+", "+r); 

@send(mes.from,mes.messaj ("eos:in-reply-to")); 
st.assert(mes.from,"ready",Cursor.TRUE); 

l ____ _ 



delete _ail_ content. plan 

import java.lang.System; 

plan delete_all_content extends Plan { 

#handles event messaj mes; 
#modifies database states st; 
#modifies database isaresidentof resi; 
#modifies database ismarriedwith mari; 

context (} 
{ 

} 

mes.contenu.startsWith("delete-all:content"};// && 
st.get_ifstate(mes.from,"ready"}; 

body(} 
{ 

String dbname=mes.contenu.substring(19,mes.contenu.index0f(",") }; 
String noml="Isaresidentof"; 
if (dbname.equals(noml}} 

{ 

int limite=resi.nFacts(); 
for (int i=l;i<=limite;i++} 

logical String n; 
logical String c; 
logical doubler; 
resi.get_any(n,c,r); 
resi.get_element(n.as_string(},c.as string(),r.as double(}} 
.retractAll(}; 
} 

String nom2="Ismarriedwith"; 
if (dbname.equals(nom2}) 

{ 

int limite=mari.nFacts(); 
for (int i=l;i<=limite;i++} 

} 

logical String m; 
logical String w; 
logical doubler; 
mari.get_any(m,w,r); 
mari.get_element(m.as_string(},w.as_string(),r.as_double()) 
. retractAll(}; 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

,. 
• 

• 

• 

• 

• 

• 

• 

• 

in sert_ content. plan 

import java.lang.System; 
import java.lang.Double; 

plan insert_content extends Plan 

#handles event messaj mes; 
#modifies database states st; 
#modifies database isaresidentof resi; 
#modifies database ismarriedwith mari; 

context () 
{ 

mes.contenu.startsWith("insert:content"); 
&& st.get_ifstate(mes.from,"waiting_insert") 

} 

body() 
{ 

String dbname=mes.contenu.substring(15,mes.contenu.indexOf(",")); 
String first=mes.contenu.substring(mes.contenu.indexOf(",")+1 
,mes.contenu.indexOf(",",mes.contenu.indexOf(", 11 )+1)); 
String second=mes.contenu.substring(mes.contenu.indexOf 

(
11

,
11 ,mes.contenu .indexOf(", ")+l )+l,mes.contenu.lastindexOf(", 11

)); 

Double temp=new Double(mes.contenu.substring 
(mes.contenu.lastindexOf(",")+1)); 
double ranking=temp.doubleValue(); 
if (dbname=="Ismarriedwith") 

mari.assert(first,second,ranking); 
if (dbname=="Ismarriedwith") 

mari.assert(first,second,ranking); 



delete _ all _content.plan 

import java.lang.System; 

plan delete_all content extends Plan { 

#handles event messaj mes; 
#modifies database states st; 
#modifies database isaresidentof resi; 
#modifies database ismarriedwith mari; 

context () 
{ 

} 

mes.contenu.startsWith("delete-all:content");// && 
st.get_ ifstate(mes.from,"ready"); 

body() 
{ 

String dbname=mes.contenu.substring(19,mes.contenu.indexOf(",") ) ; 
String noml="Isaresidentof"; 
if (dbname.equals(noml)) 

{ 

int lirnite=resi.nFacts(); 
for (int i=l;i<=lirnite;i++) 

} 

logical String n; 
logical String c; 
logical doubler; 
resi.get_any(n,c,r); 
resi.get_element(n.as_string(),c.as string(),r.as_double()) 
.retractAll(); 
} 

String norn2="Ismarriedwith"; 
if (dbname.equals(nom2)) 

{ 

int lirnite=rnari.nFacts(); 
for (int i=l;i<=lirnite;i++) 

{ 

} 

logical String m; 
logical String w; 
logical doubler; 
mari.get_any(m,w,r); 
mari.get_element(m.as_string(),w.as string(),r.as double()) 
.retractAll(); 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Agent2 

agency _agent.agent 

import 
import 

aos.jack.jak.core.*; 
java.io.*; 

agent agency_agent extends Agent { 

#private database isaresidentof resi(); 
#private database ismarriedwith mari(); 
#private database states st() ; 
#handles event messaj; 
#uses plan stream_all_content; 
#uses plan delete_all_content; 
#uses plan insert_content; 
#posts event oncreate oc; 
#handles event oncreate; 
#uses plan creation; 

public agency_agent(String n) 
{ 
super (n); 
postEvent(oc.oncreate()); 

) 

states.db 

database states extends OpenWorld 

#key field String name; 
#value field String state; 
#indexed query get ifstate(int i, Strings); 

isaresidentof.db 

database isaresidentof extends OpenWorld 
#key field String name; 
#value field String city name; 
#value field double ranking; 
#indexed query 
get_any(logical String n,logical String c,logical doubler); 
#indexed query get_element(String n,String c, doubler); 

' 



ismarriedwith.db 

database isrnarriedwith extends OpenWorld 
#key field String narne_rnan; 
#key field String narne wornan; 
#value field double ra~king; 
#indexed query 
get_any(logical String rn,logical String w,logical doubler ) ; 
#indexed query get_elernent(String rn,String w,double r); 

messaj . event 

event rnessaj extends MessageEvent 

public String content; 

#posted as 
rnessaj (String what) 

{ 

content=what; 

oncreate. event 

event oncreate extends Event { 

#posted as 
oncreate () 

{ 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

creation. plan 

import java.lang.System; 

plan creation extends Plan { 

#handles event oncreate oc; 
#modifies database states st; 
#modifies database isaresidentof resi; 
#modifies database ismarriedwith mari; 

body() 
{ 

} 

st.assert("gathery@Carlton","ready",Cursor.TRUE); 
mari.assert("jacqueline","georges",0.7); 
resi.assert("georges","namur",0.4); 
resi. assert ( "mireille", "wavre", 0. 4); 



stream _ all _content.plan 

import java.lang.System; 

plan stream_all content extends Plan { 

#handles event messaj mes; 
#modifies database states st; 
#reads database isaresidentof resi; 
#reads database ismarriedwith mari; 

context () 

• 

• 

{ . 
} 

mes.contenu.startsWith("stream-all:content") && 
st.get_ifstate(mes.from,"ready"); 

body() 
{ 

st.assert(mes.from,"preparation_stream_all",Cursor.TRUE); 
String dbname=mes.contenu.substring(19,mes.contenu.indexOf (",")); 
dbname="Isaresidentof"; 
String noml="Isaresidentof"; 
if (dbname.equals(noml)) 

{ 

int dbnfacts=resi.nFacts(); 
logical String n; 
logical String v; 
logical doubler; 

for (Cursor c=resi.get_any(n,v,r);c.next(); 

@send(mes.from,mes.messaj ("reply:content 
"+dbname+", "+n+", "+v+", "+r)); 
System.out.println("je renvoie "+"reply:content 
"+dbname+", "+n+", "+v+", "+r); 
} 

} 

String dbname="Ismarriedwith"; 
String nom2="Ismarriedwith"; 
if (dbname.equals(nom2)) 

{ 

} 

int dbnfacts=mari.nFacts(); 
logical String m; 
logical String w; 
logical doubler; 
for (Cursor c=mari.get_any(m,w,r);c.next(); 

{ 

@send(mes.from,mes.messaj ("reply:content 
"+dbname+", "+m+", "+w+", "+r)); 
System.out.println("je renvoie "+"reply:content 
"+dbname+", "+m+", "+w+", "+r); 

@send(mes.from,mes.messaj ("eos:in-reply-to") ); 
st.assert(mes.from,"ready",Cursor.TRUE); 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

delete _ all _content.plan 

import java.lang.System; 

plan delete_all_content extends Plan { 

#handles event messaj mes; 
#modifies database states st; 
#modifies database isaresidentof resi; 
#modifies database ismarriedwith mari; 

context () 
{ 

} 

mes.contenu.startsWith("delete-all:content");// && 
st.get_ifstate(mes .from,"ready"); 

body() 
{ 

String dbname=mes.contenu.substring(l9,mes.contenu.indexOf("," ) ); 
String noml= "Isaresidentof"; 
if (dbname.equals(noml)) 

{ 

int limite=resi.nFacts(); 
for (int i=l;i<=limite;i++) 

logical String n; 
logical String c; 
logical doubler; 
resi.get_any(n,c,r); 
resi.get_element(n.as string(),c.as string(),r.as_double()) 
.retractAll(); 
} 

String nom2="Ismarriedwith"; 
if (dbname.equals(nom2)) 

{ 

int limite=mari.nFacts(); 
for (int i=l;i<=limite;i++) 

} 

logical String m; 
logical String w; 
logical doubler; 
mari.get_any(m,w,r); 
mari.get_element(m.as_string(),w.as string(),r.as_double()) 
.retractAll(); 



insert _content.plan 

import java.lang.System; 
import java.lang.Double; 

plan insert_content extends Plan 

#handles event messaj mes; 
#modifies database states st; 
#modifies database isaresidentof resi; 
#modifies database ismarriedwith mari; 

context () 
{ 

mes.contenu.startsWith("insert:content"); 
&& st.get_ifstate(mes.from,"waiting_insert") 

} 

body() 
{ 

String dbname=mes.contenu.substring(lS,mes.contenu.indexOf(",") ); 
String first=mes.contenu.substring(mes.contenu.indexOf(",")+l 
,mes.contenu.indexOf(",",mes.contenu.indexOf(",")+l)); 
String second=mes.contenu.substring(mes.contenu.indexOf 
(",",mes.contenu.indexOf(",")+l)+l,mes.contenu.lastindexOf(",")); 
Double temp=new Double(mes.contenu.substring 
(mes.contenu.lastindexOf(",")+l)); 
double ranking=temp.doubleValue(); 
if (dbname=="Ismarriedwith") 

mari.assert(first,second,ranking); 
if (dbname=="Ismarriedwith") 

mari.assert(first,second,ranking); 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

delete _ail_ content. plan 

import java.lang.System; 

plan delete_all content extends Plan { 

#handles event messaj mes; 
#modifies database states st; 
#modifies database isaresidentof resi; 
#modifies database ismarriedwith mari; 

context () 
{ 

} 

mes.contenu.startsWith("delete-all:content") ;// && 
st.get_ifstate(mes.from,"ready"); 

body() 
{ 

String dbname=mes.contenu.substring(l9,mes.contenu.indexOf(",") ) ; 
String noml="Isaresidentof"; 
if (dbname.equals(nornl)) 

{ 

int lirnite=resi.nFacts(); 
for (int i=l ;i<=lirnite;i++) 

} 

{ 

logical String n; 
logical String c; 
logical doubler; 
resi.get_any(n,c,r); 
resi.get_elernent(n.as_string(),c.as string(),r.as double()) 
. retractAll () ; 
} 

String norn2="Isrnarriedwith"; 
if (dbnarne.equals(norn2)) 

{ 

int lirnite=mari.nFacts(); 
for (int i=l;i<=lirnite;i++) 

{ 

logical String m; 
logical String w; 
logical doubler; 
rnari.get_any(rn,w,r ); 
mari.get_element(m.as string(),w.as string(),r.as_double()) 
.retractAll(); 
Systern.out.println("nbr faits ds boucle "+mari.nFacts()); 

} 


