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Chapter 1

Introduction

Nowadays, more than two thirds of the global population owns a smartphone [1].
On average, a smartphone is used 3 hours a day and contains 100 applications [1].
In 2018, more than $100 billions were spent by users on mobile applications (also
called mobile apps or apps) via in-app purchases, paid downloads and subscription
fees [2] and 194 billions of mobile apps were downloaded [3]. Some predictions state
that the global mobile apps revenue could get near to $1000 billions by 2023 [3].
It is clear from these numbers that the generated revenue is growing faster each
year and that this evolution is expected to continue in the next years.

All these numbers highlight the fact that mobile applications now represent a
huge market and therefore a significant source of opportunities for businesses.
However, designing and selling an app is not something trivial; some apps are
downloaded /purchased much more frequently than others, and pushing an app on
the market may therefore not always represent a good move for a company as it
requires a lot of resources. In others words, developing a new app does not always
come with financial success, and companies should be cautious about this. We
also know that the rating of a mobile application has an impact on the ranking of
the app in search results for the App Store [4]. Knowing that more or less 50%
of the customers use these stores to discover apps, rating has a direct impact on
the discovery of an app [5, 6]. Moreover, 80% of the customers check the rating
of an app before downloading it [6]. If an app has a rating of 2 stars out of 5,
only 15% of the customers state that they will consider downloading it [5, 6]. This
percentage increases to 96% if the rating is 4 stars [5, 6]. We can consequently say
that the rating also has an impact on the conversion rate to download.

For all these reasons, we decided to look at the extent to which the rating, and more
precisely the number of complete stars, of a mobile application can be predicted



using only the publication strategy of the companies developing and commercial-
izing the app (latter called "the companies"). This publication strategy includes
the variables controlled by the companies and displayed when a customer arrives
on the page of the app on an app store. Indeed, the intent here is to discover if it
would be possible to better control the presentation of a new app (which is easier
to change than the functionalities of the app) by testing several configurations and
finding the one that is the most likely to be appreciated by the customers. This
would allow companies to minimize the number of low rated (and thus riskier)
apps launched on the market. Moreover, we will compare the results of applica-
tions available on the Google Play Store store and applications available on the
Apple App Store. Our research question can be stated as follows:

e To which extent is it possible to predict the rating of a mobile application
using only its publication strategy?

For this purpose, we will first create two databases containing metadata about
applications. One database will contain metadata of apps of the Google Play Store
and the other database will contain metadata of apps of the Apple App Store.
Then, feature engineering will be used in order to extract the most important
variables from the raw data. Finally, machine learning will be used and more
precisely the following classification algorithms: decision tree, random forest, k-
nearest neighbors, support vector machine and neural networks. The results of
these algorithms will be compared and discussed.



Chapter 2

Literature review

2.1 Models of user adoption

The phenomenon of mobile applications has been addressed in several ways in the
literature. Some authors analyze customers’ feedback in order to test models to
gain insights in this domain. Hongwei Yang (2013) tried to predict the use of
mobile apps, the attitudes of customers towards these apps and the intent to use
with the Theory of Planned Behavior, the Technology Acceptance Model, and the
Uses and Gratification Theory [7]. He tested his model with a web survey answered
by American college students [7]. The results state that the following factors may
be used to predict the attitude of consumers related to apps: perceived enjoyment,
usefulness, subjective norm, and ease of use [7]. If the aim is to predict the use of
applications, the significant factors are: perceived usefulness, mobile internet use,
mobile apps intent, personal income, and gender [7]. Hans van der Heijden (2004)
got different results while investigating how user acceptance models differ based
on the type of information system used: utilitarian or hedonic [8]. He used a cross-
sectional survey answered by 1144 users of one hedonic information system for this
purpose [8]. For the analysis, he used a TAM2 model, semantic differential scales,
a factor analysis and a structural equation model [8]. He concluded that perceived
usefulness had a smaller impact on intentions to use than perceived ease of use and
perceived enjoyment for hedonic information systems [8]. As a consequence, the
impact on user acceptance models for hedonic information systems is the following:
ease of use and enjoyment replace perceived usefulness as dominant predictive
factors [8]. The study of Sang Chon Kim, Doyle Yoon and Eun Kyoung Han (2014)
had 2 goals [9]. First of all, they wanted to find factors that have an impact on
smartphone app usage based on: behavioral theories, uses and gratification theory
and previous empirical studies [9]. Then, they wanted to test a model predicting



the way factors and usage of technology are linked [9]. In their study, they used
the answers of 257 undergraduates coming from university [9]. They identified the
following factors as significant to predict the use of an app: perceived informative
and entertaining usefulness, perceived ease of use, and user review [9].

2.2 Models of App Success Factors

Another approach is to focus on the analysis of top grossing charts. Gunwoong Lee
and Raghu (2014) decided to look at how the success in an app market is impacted
by both app-related and seller-related characteristics [10]. For this purpose, they
tracked the presence of apps in the top 300 grossing charts of the Apple App Store
and analyzed the factors allowing an app to stay in these charts or not [10]. For
this purpose, they used a generalized hierarchical modeling approach, a hazard
model and a count regression model [10]. They concluded that, at a seller-level,
it is very important to diversify across categories to achieve sales performance
[10]. At an app-level, the following factors may impact positively the way an
app performs in terms of sales: being free, higher initial popularity, the fact of
investing in less popular categories, continuously updating the features of the app
and an higher number of user feedbacks [10]. Picoto, Duarte and Pinto (2019)
also used the tops grossing for their study [11]. The aim of their study was to
find the factors that could have an impact on the ranking and the success of
an app [11]. For this purpose, they took 500 top grossing apps from the Apple
App Store from which they extract the top 50 and bottom 50 for analysis [11].
Once they had identified potential antecedents for an app’s ranking, they used a
multivariate logistic regression and a Fuzzy Set Qualitative Comparative Analysis
(fsQCA) to identify the factors that could determine the success of an app [11].
They found that the following factors make it more likely for an app to be in the
top 50: category popularity, number of languages supported, package size, and
app release date [11]. A surprising result is that the higher the user rating, the
lower the probability for this app to be in the top 50 [11]. Finally, they found that
the attributes, functionalities, and longevity of an app have a bigger impact on
the success of an app than the user rating [11].

2.3 Enjoyment in Apps

June Lu, Chang Liu and June Wei (2016) decided to focus only on two factors:
enjoyment and mobility [12]. In their study, they tried to understand the link
between the perception of these factors and the intention to continue using an app
[12]. They used a second-stage continuance model and data of 584 smartphone



users collected with a survey [12]. As a result, they discovered that “the salience of
disconfirmation and beliefs in enjoyment and mobility serve as the primary driver
of the changes in satisfaction and attitude toward continuance intentions” (Lu, Liu
& Wei, 2016, p.1). Another result is that more than 60% of the variance related to
the attitude after usage can be attributed to: perceived enjoyment, mobility and
satisfaction [12]. This confirms the results of Hans van der Heijden (2004) stating
that perceived enjoyment has a big impact on intentions to use [8].

2.4 Prediction of ratings

A well-known problematic in this topic is the prediction of the user rating of
an application. Dagmar Monett and Hermann Stolte (2016) have tackled this
problem in their work [13]. They used a corpus of 1,760 annotated reviews about
130 mobile apps available on the Google Play Store [13]. Their goal was to predict
the rating based on the polarity of subjective phrases found in the reviews [13].
For this purpose, several computational models have been used and evaluated [13].
They concluded that rating could be well predicted even using only phrase-level
sentiment polarity [13]. Jingke Meng, Zibin Zheng, Guanhong Tao and Xuanzhe
Liu (2016) implemented a weight base matrix factorization (WMF') capturing user-
specific interests in order to predict an app rating for a specific user [14]. The
used dataset containing logs of user’s downloaded and uninstalled apps involved
5057 users and 4496 apps [14]. Their model got convincing results, performing
better than some other prediction models [14]. A third approach can be found
in [15]. In order to predict the rating of applications, Kevin Daimi and Noha
Hazzazi (2019) decided to use the following algorithms: Linear Regression, Neural
Networks, Support Vector Machines, Random Forest, M5 Rules, REP Tree and
Random Tree [15]. They used an Apple Store dataset composed of 7197 apps
and the following attributes: user rating count for all version, user rating count
for current version, average user rating for all version (the attribute to predict),
average user rating for current version, number of supporting devices, number of
screen shots showed for display and number of supported languages [15]. They
found that Random Forest produced the best results when predicting the rating
of an application from the Apple Store dataset [15]. Finally, Federica Sarro, Mark
Harman, Yue Jia and Yuanyuan Zhang (2018) focused on predictions achieved by
Case Based Reasoning (CBR) taking only the technical features of the apps into
account [16]. They used a dataset dating from 2011 containing 9588 apps and
1256 extracted features from the BlackBerry App World store and 1949 apps and
620 extracted features from the Samsung Android App store [16]. As a result,
they discovered that, in 89% of the cases, the rating of an app could be perfectly
predicted [16]. They also discovered that only 11-12 applications were sufficient to



achieve the best prediction when using a case-based prediction system [16]. They
thus concluded that it is possible to accurately predict the rating of an app taking
only its features into account [16].

2.5 Positioning of this work

Our work differentiates from all of the above because we will not use feedbacks
from users to test a model, neither focus on top charts. Instead, we will try
to maximize our precision when predicting the rating given by the customers of
an app. More precisely, we will try to predict the number of stars an app will
receive using classification algorithms. We will thus use the well-known star rating
used by several stores. What distinguishes this work from the other works about
prediction is the fact that we will only use variables that are under the control
of the companies and displayed on the store as predictors. This will be discussed
with more details in chapter 4. Moreover we will differentiate apps from the Apple
App Store and apps coming from the Android Play Store. For this purpose, we
gathered metadata about more than 80 000 applications for the former and 90
000 applications for the latter. Our final output will thus be trained models of
machine learning able to predict a rating (the number of stars) for an application.
The differences between this work and the presented ones are summarized in table
2.1.
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Chapter 3

Theoretical review

3.1 Supervised learning

Supervised learning is the process of training a machine learning algorithm with
pairs of input-output data in order to make predictions [17, 18]. The training
dataset is composed of different features (the input) and a label (the output) [17,
18]. The goal of the training is to allow the algorithm to be able to predict the
label of new unlabeled data based on the features [17, 18]. Two different tasks may
be accomplished: classification and regression [17, 18]. In a classification task, the
output to predict is discrete (classes, groups, categories, etc) [17]. In a regression
task, the output is continuous [17]. The algorithms presented below (3.2 until 3.6)
may all be used for classification.

One of the biggest risks while using supervised learning is overfitting. It is a
phenomenon that may occur when a machine learning model is trained [19]. It
means that the model learns the noise in the training data and not only the patterns
of interest [19]. It thus decreases the generalisation performance of the model [19].
A symptom of overfitting is a low training error and a high testing error [20]. It
often occurs when the model is too complex for the task [20]. In order to avoid
this phenomenon, different hyperparameters have to be tuned depending on the
model [20].

3.2 Decision Tree

This method creates a decision-making process based on a tree structure [21].
A tree is composed of internal nodes, edges and leaves [21]. An internal node
represents a condition that will split the tree into edges (branches) [21]. When a



branch stops splitting, its end is called a leaf [21]. Tt represents the decision [21].
Each split is based on a feature of the dataset [21].

This method has several advantages. First of all, the resulting decision-making
process is easy to understand and to interpret [21, 22]. Then, it may be used with
numerical and categorical data and with multi-output problems [21, 22]. Finally,
it makes an implicit feature selection [21, 22].

There are also some disadvantages. Decision trees often overfit (some parameters
as the maximal depth may be used to avoid it) and are quite unstable [21, 22].
Then, the optimal tree is very difficult to generate [21, 22]. Finally, a decision tree
may be biased if some classes are dominant [21, 22].

3.3 Random Forest

This algorithm uses a bagging approach to combine the predictions of several
models [23, 24]. Several decision trees are trained at the same time on sub-samples
of the dataset [23, 24]. Then, the most frequent prediction (for classification) is
used in order to combine the different predictions and improve the prediction
performance [23]. Random forest may also be used for feature selection [25].

The biggest advantage of this technique in comparison with decision trees is that
it is more stable [25]. However, the resulting decision-making process becomes
harder to understand and to replicate, i.e., it is closer to a black box.

3.4 KNN

The idea behind the K-Nearest Neighbors (KNN) algorithm is that similar points
are close to each other [26, 27]. It therefore calculates the distances between the
different data points and use the k nearest to make a prediction for a given data
point (using a majority vote) [26, 27].

Some advantages of this method are its simplicity and the low number of param-
eters to tune [26]. However, it may take a lot of time when the size of the dataset
or the number of predictors (k) increases [26]. Moreover this algorithm only works
with numerical columns [26].

3.5 SVM

Support Vector Machines (SVM) is an algorithm that tries to find the optimal
hyperplane that separates the data into the different classes (in the case of classi-



fication) using what is known as the kernel trick [28]. This latter impacts the way
of computing dot products [28].

This algorithm remains efficient even if there are more dimensions than samples
or if there is a high number of dimensions [28, 29]. However, a lot of time may be
required to process large datasets [28, 29]. Moreover, its performance may vary
significantly depending on the separability of the classes [28].

3.6 MLP

Multi-Layer Perceptron (MLP) is a type of Artificial Neural Networks (ANNS)
and, as such, is inspired by the human brain and central nervous system [30]. A
MLP is composed of several connected layers (themselves composed of neurons)
as illustrated in figure 3.1.

Bias

Features

Y]

Figure 3.1: one hidden layer MLP [31]

The input layer holds the input data [30]. The hidden layers are in charge of the
processing of the data [30]. Finally, the output layer contains the output of the
whole process [30]. Each arc has a weight that will be modified during the process
[30]. The interested reader is directed to [30] for more information.

This model is rather flexible and allows to learn non-linear models [31, 32]. How-
ever, the accuracy of the model may vary based on the initialization of the weights
[31]. Moreover, different hyperparameters (such as the number of layers and the
number of neurons of each layer) have to be tuned and attention must be paid to
feature scaling [31].
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Chapter 4

Methodology

4.1 Creation of the databases

To answer our research question, the first step is to collect data about mobile
applications including the rating of each app and a maximum of variables controlled
by the companies and displayed on the store. For this purpose, we use the API
of 42matters [33]. We chose this one for several reasons. First of all, it allows us
to retrieve metadata from both Android and IOS apps. Then, a lot of fields are
included and more precisely the rating of each app and several variables about the
publication strategy. There are also mechanisms to iterate over the applications
using some criteria and filters allowing us to get a maximal amount of data. Finally,
the results are returned under an easy to process format (this is explained in the
next paragraph). The risk while using data collected by another party is to get
data of bad quality. However, 42matters extracts its data directly from the Apple
App Store and the Google Play Store [33]. We can thus infer that the obtained
data is reliable.

In order to retrieve data from this API, cURL is used and a query must be built.
There are different parameters that allow to specify the criteria that the returned
apps must fulfill. A table explaining the syntax of the queries is available at [34]
for Android and at [35] for 10S. Each query returns a Json file containing apps
corresponding to the specified criteria. A maximum of 50 apps may be returned
for a single query but it is possible to use a parameter (the page number) to keep
the same criteria and get the 50 following apps. However, it is not possible to
iterate over more than 10,000 apps with the same criteria. As we want to get more
apps and are interested in the rating, we use this latter as criterion to be able to
retrieve a maximal amount of data. We divide the loading of the data in different
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steps, specifying a range of 0.5 for the rating at each time. We begin with apps
with a rating lower or equal to 0.5 and increment this until apps with a rating
between 4.5 and 5.

This allows us to build a database with several thousands of apps for each rating.
This process is repeated for the Apple App Store and the Google Play Store. As
the API returns Json files, we use MongoDB to store our data because it allows
to work in a document-oriented way.

4.2 Feature engineering

Then, we extract the different variables that will be later used in the prediction
of the rating. The main criterion to choose these variables is that they must be
controlled by the companies before launching the app on the market and displayed
on the store. Indeed, the final goal is to predict the rating of apps before commer-
cializing them.

We also analyze and adapt the raw data in order to detect potential problems (such
as missing values or duplicated rows) and give it the right shape for the different
algorithms. Indeed, some of them have requirements for the data in order to run
successfully.

Moreover, we use dimensionality reduction techniques in order to check if it in-
creases the performances of our models. Principal Component Analysis (PCA)
and Random Forest are used for this purpose [36, 37]. The former allows to cre-
ate new uncorrelated features and the latter allows to extract the most important
features of our dataset [36, 37].

This step is realised with python.

4.3 Training of the models

Finally, classification algorithms are used because our goal is to predict the number
of complete stars an app will receive and not the precise rating. This step is
also performed using python. We train the following models with the prepared
data:

e Decision Tree

e Random Forest

o KNN

13



e SVM
¢ MLP

Most of these models have been chosen using the flowchart presented in [38]. We
just added the Decision Tree and the MLP that are not listed in the mentioned
chart as the former is very simple and the latter is very flexible [21, 31]. Also, we
do not use the linear SVC model as we already chose SVM. Indeed, the latter may
be used with a linear kernel and, even if it represents another implementation, the
results are often similar with the linear SVC [29].

The training process is the following for each model. We first divide our data
into train data (80%) and test data (20%). The train data is used to tune the
hyperparameters and the test data allows us to measure the accuracy of each model
on data never seen before. In order to find the optimal hyperparameters for each
model, we proceed in different steps. First, we analyze the evolution of the accuracy
depending on the values of some hyperparameters. Then, a grid search is used to
compare different configurations based on cross-validation. Once this tuning is
finished, we test the final model with the test data. Three kinds of accuracies
are calculated for each model: a training accuracy, a validation accuracy and a
testing accuracy. The first is the accuracy obtained when predicting the labels
of the data used to train the model. The second is the accuracy obtained with
the best configuration while tuning the hyperparameters. The third accuracy is
obtained by predicting the labels of the test data. The training and the validation
accuracies are biaised because they are used to enhance the model.

Python is also used for this step and more precisely the functions from the scikit-
learn package. The performances of the different algorithms are discussed and
compared. The performances of a random prediction are also computed in order
to have a reference point.
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Chapter 5

Results: Android applications

5.1 Feature engineering

5.1.1 Selection of the variables

We obtained a database containing 96,178 rows and 53 fields. The entire list
of fields may be found at [39]. Obviously, a big part of these variables did not
interest us. As a reminder, we only wanted to keep the variables controlled by the
companies and displayed on the store. Moreover, we had to transform some fields
in order to make them usable. The kept fields and their possible transformations
are presented in table 5.1. We did not take the list of countries where the app
is available neither the languages supported by the app as features because we
consider that these variables may be impacted by the success of the app after the
commercialization.
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5.1.2 Analysis and preparation of the data

First of all, as we created our database in different steps, there were some dupli-
cated rows. Indeed, the rating of an app may change from one week to another.
We thus deleted them and arrived to a database of 94,581 rows.

Then, we managed the different categorical features (category, content rating).
We first checked the distribution of the values of each column to see if some of
them were under-represented. When several values appeared less than 1000 times
in a column, we aggregated them into a new category "other" in order to keep only
the relevant values. As explained before, some algorithms are not able to handle
categorical input. We therefore decided to use one-hot-encoding [40]. This method
allows to transform a categorical column in several boolean columns (one for each
category) [40].

The next step was the scaling of the numerical columns. This was another require-
ment for some of our models. We decided to use standardization (z = (z — u)/0)
to decrease the impact of the outliers in the features [40].

We also had to modify the rating in order to have the classes that we wanted. We
used the following rounding rules:

e rating class = 0 if rating < 0.5

e rating class = 1 if rating >= 0.5 and < 1.5

rating class = 2 if rating >= 1.5 and < 2.5

rating class = 3 if rating >= 2.5 and < 3.5

rating class = 4 if rating >= 3.5 and < 4.5
e rating class = 5 if rating >= 4.5

Finally, as the number of rows with missing values in the resulting dataset was very
low (less than 100), we just deleted them. We also kept only the applications with
at least 50 ratings from the customers. Indeed, for several apps, the average rating
was not calculated on enough individual ratings to be significant. An important
consequence is that there was no application with a rating of 0 star any more,
reducing the number of classes to 5. Our final dataset thus consisted of 64504
rows and 65 columns. Figure 5.1 and table 5.2 describe this latter.
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Figure 5.1: Distribution of the ratings for Android apps

Metric Value
Number of rows 64504
Number of columns 65

Number of free apps 63556

Most represented categories

Most represented content ratings

Number of apps containing iap
Number of apps containing ads

Number of apps with a promo
video

Mean length of the description
Mean length of the title
Mean size

Mean number of screenshots

Tools (5550 apps)
Entertainment (4659 apps)
Finance (3158 apps)

Everyone (51519 apps)
Teen (8101 apps)
10+ (2454 apps)

18410
36464
21231

1389 characters
22 characters
27.7 megabytes
10

Table 5.2: Summary of the Android dataset



5.1.3 Reduction of dimensionality

Two methods were used to decrease the number of features. First, we applied
a Principal Component Analysis keeping 95% of the variance. This returned 24
principal components. Then, we used the built-in feature selection of the Random
Forest to keep only the variables with a relative importance bigger than 0.01. The
9 remaining features based on this process are represented in figure 5.1.

Feature Importances

std_desc

std_size

std_short_desc

std_title

std_screen

std_iap_max

contains_ads

std_iap_min

promo_video

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Relative Importance

Figure 5.2: The most important features for Android apps

We can see that 5 features are significantly more important than the others: the
length of the description, the size, the length of the short description, the length
of the title and the number of screenshots.

5.2 Training of the models

The training of the different models for Android apps is summarized in table 5.3.
A reference point is given with a random prediction (1/number of classes).
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All these results have been achieved using the methodology presented in section
4.3. The confusion matrices corresponding to the testing results are available in
appendix A. As a recall, the training accuracy is biaised because it is used during
the optimisation of the parameters of the models. The validation accuracy is also
biaised as it is used to tune the hyperparameters. The testing accuracy is thus the
most significant approximation of the true accuracy of the model.

We can see that the performances of all the models are rather close during the
testing phase. It varies between 44.3% and 50.1% with Random Forest achieving
the best score. This last result is more than twice the result of a pure random pre-
diction. Another conclusion is that both feature selection methods fail to improve
the results. Using the confusion matrices, we can also see that the rating 1 star is
often neglected by the models as there are too few samples. Moreover, the models
are less accurate when predicting a rating of 5 stars. A reason could be the lower
amount of data for this rating.
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Chapter 6

Results: 10S applications

6.1 Feature engineering

6.1.1 Selection of the variables

The database of I0S apps counted 81,000 rows and 52 fields. It is important to
note that some fields were available for Android but not for IOS and vice versa.
This explains why different fields were used for IOS in comparison with Android.
The used selection criteria was also that the variables must be controlled by the
companies and displayed on the store. Table 6.1 presents the kept fields for IOS

apps.
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6.1.2 Analysis and preparation of the data

The same processing steps as in section 5.1.2 have been used to prepare the

data.
1.
2.

SIS A

Deletion of the duplicated rows.

Management of the categorical features (contentAdvisoryRating, primary-
GenreName) through one-hot encoding and creation of "other" categories.

Scaling of the numerical columns through standardization.
Creation of the rating classes using the same rules as in section 5.1.2.
Deletion of the rows with missing values.

Filtering of the apps, keeping only applications with at least 50 individual
ratings.

The final dataset had 41856 rows and 31 columns. Again, there was no app with
a rating of 0 star. Figure 6.1 and table 6.2 give a description of the dataset.

Number of apps

12000 4
10000 4
8000 -
6000 -
4000 A
2000 A
0 .
1 2 3 4 5

Rating

Figure 6.1: Distribution of the ratings for IOS apps
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Metric Value
Number of rows 41856
Number of columns 31
Number of free apps 37912
Number of apps available on 40650
iPhone

Number of apps available on iPad 41697
Number of apps supporting VPP 41849
distribution

Number of apps supporting Game 36545
Center

Number of categories 15

Most represented categories

Number of content ratings

Most represented content ratings

Mean length of the description
Mean length of the title
Mean size

Mean number of iPhone screen-
shots

Mean number of iPad screenshots

Games (13298 apps)
Other (5086 apps)
Entertainment (3807 apps)

5

4+ (28476 apps)
12+ (5715 apps)
174 (5037 apps)

1384 characters
20 characters
145.7 megabytes
5

Table 6.2: Summary of the IOS dataset
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6.1.3 Reduction of dimensionality

in order to reduce the number of features, we also used PCA and Random Forest
(see section 5.1.3). A 95% PCA gave 15 principal components. Figure 6.2 repre-
sents the 10 features with a relative importance larger than 0.01 for the Random
Forest.

Feature Importances

std_size

std_desc

std_name

std_screen

std_ipad_screen

cat_is_Games

GameCenterEnabled

bool_price

content_is_4+

cat_is_Other

0.00 0.05 0.10 0.15 0.20 0.25
Relative Importance

Figure 6.2: The most important features for Android apps

We can see that 3 features are significantly more important than the others: the
size, the length of the description and the length of the name. The number of
screenshots is also rather important.

6.2 Training of the models

Table 6.3 summarizes the training of the different models for I0OS apps.
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The methodology presented in section 4.3 has also been used to get these results.
The confusion matrices corresponding to the testing results may be found in ap-
pendix B. Table 6.3 shows that all the models have close testing performances. It
varies between 45.2% and 49.6% and the best score is achieved by Random Forest.
We can see that the random prediction is completely outperformed. This time,
PCA seems to enhance slightly the results for KNN and SVM. The confusion ma-
trices show that the models neglect the rating 1 star most of the time due to the
small amount of data for this rating. The accuracy of the models when predicting
the rating 2 stars is also significantly smaller than for the other ratings. The reason
could be the smaller amount of samples for this rating.
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Chapter 7

Discussion

7.1 Comparison of the performances

We can see that the models achieve rather close results when predicting the rating
of applications from both the Apple App Store and the Google Play Store. The
best score is achieved by the Random Forest model for both stores and is around
50%. This is more than twice the result of a random prediction (20%). This
means that, in 50% of the cases, the number of stars that a mobile application
will get may be predicted using only its publication strategy. Another conclusion
is that the most important features are the same for both stores: the length of the
description, the size, the length of the title and the number of screenshots. These
are all variables that the customer will encounter before using the application. This
means that the rating of an app is influenced by elements available before the use
of this application. Looking at the Pearson correlation coefficients between these
variables and the rating (see appendix C), the number of screenshots, the size and
the length of the description are significantly and positively correlated with the
rating for both stores (between 0.13 and 0.35 for the correlation coefficients).

7.2 Recommendations to apps designers

We think that a system of rating prediction for applications including the publica-
tion strategy would enhance the ability of apps designers to produce highly rated
apps. Indeed, this would allow them to test several configurations of features and
select the one that has the highest probability to get a high number of stars. Based
on our results, such a system is conceivable. Indeed, we achieved an accuracy of
50% using only basic variables. We think that this score could be enhanced by
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increasing the number of variables taken into account.

We also identified different variables that have an impact on the rating. First of
all, an higher number of screenshots helps to increase the rating of an application.
Then, the rating is likely to be higher when the description is long. Finally, bigger
apps (in terms of size) tend to have an higher rating.

7.3 Limitations and future works

First of all, the number of features extracted from the raw data could be increased.
Indeed, the variables presented in this work are quite basic. In order to find more
of them, a first idea would be to use text mining on the description and the title.
These two fields seem to be very important in the prediction of the rating while
taking only the length into account. More information could be extracted from
these two fields.

Then, we only looked at the publication strategy while we know that the content of
the app will play a big role in determining the rating. The intent was to look at the
importance of the presentation of the app for the rating. Therefore, we did not take
technical features or information about the content of the app into account (except
the category and the content rating). It would now be interesting to analyze the
impact of the publication strategy on the success (number of downloads) for apps
that have the same rating. It would allow to see if the presentation of an application
makes a difference in terms of success for apps of the same quality.

Finally, a low number of apps rated 1 or 5 stars for Android and 1 or 2 stars for
IOS remained after data processing. This means that our models were not able to
predict these classes well. It would be interesting to build a database containing
an equal and sufficient amount of apps for each rating with at least 50 individual
ratings for each application.

30



Chapter 8

Conclusion

In this work, we looked at the extent to which the rating of an application can
be predicted using only its publication strategy. The goal was to determine the
importance of this latter in the way a customer perceives an application. The
following classification algorithms were used to predict the rating: decision tree,
random forest, KNN, SVM, MLP. We used metadata about 96,178 Android apps
and 81,000 IOS apps. The performances of the algorithms were compared and dis-
cussed. We discovered that, for both stores, 50% of the ratings could be predicted
using only variables controlled by the companies before the commercialization and
displayed on the store. Moreover, the most important variables for the predictions
were the length of the description, the size, the length of the title and the number
of screenshots. Some recommendations were made to apps designers and future
works were discussed.
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Appendix A

Confusion matrices for Android
apps

Confusion matrix

Predicted

2251
& 17.45%

b}
\
)
-
~ Vv ] ™ “ &
\)& ’

Actual

Figure A.1: Decision Tree

36



Predicted

Predicted

Confusion matrix

1
1
ks 0.01%
136 1572 1001 238 144
T 1.05% 12.19% 7.76% 1.84% 1.12%
64 992 1823
3 0.50% 7.69% 14.13%
18 243 975
& 0.14% 1.88% 7.56%
7 36 85 165
S 0.05% 0.28% 0.66% 1.28%
12901
N
[
B\
~ Vv > b* “ N
X
Actual
Figure A.2: Random Forest
Confusion matrix
) IIIIIIII
3357
141 1116 314 192
1.09% 8.65%
4004
57 1625
3 0.44% 12.60%
4574
18
b 0.14%
9
kJ 0.07%
12901
o
N\
~ Vv ) ™ “ N
e

%,

Actual

Figure A.3: KNN

37



Predicted

Predicted

\
[
-

Confusion matrix

2 2
0.02% 0.02%

1978
5 &

9
Actual

Figure A.4: SVM

Confusion matrix

125 1511
0.97% 11.71%

74 1684
0.57% 13.05%

17 275 1062
0.13% 8.23%

0.07%

12901

&
Q7
e

Actual

Figure A.5: MLP

38



Appendix B

Confusion matrices for 10S

apps
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Appendix C

Correlation between the most

important variables and the

[ ]
rating
Rating Number  Size Length of Length of
of screen- descrip- the title
shots tion
Rating 1 0.35 0.13 0.27 0.25
Number of screenshots  0.35 1 0.21 0.24 0.14
Size 0.13 0.21 1 0.096 0.044
Length of description 0.27 0.24 0.096 1 0.41
Length of the title 0.25 0.14 0.044 0.41 1

All the coefficients are significant at a 0.01 level

Table C.1: Pearson correlation coefficients for Android
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Rating Number  Size Length of Length of

of screen- descrip- the title
shots tion
Rating 1 0.24 0.19 0.22 0.081
Number of screenshots  0.24 1 0.15 0.25 -0.03
Size 0.19 0.15 1 0.064 -0.077
Length of description 0.22 0.25 0.064 1 0.17
Length of the title 0.081 -0.03 -0.077 0.17 1

All the coefficients are significant at a 0.01 level

Table C.2: Pearson correlation coeflicients for IOS
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