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Featured Application: The present work is expected to have potential applications in the field of
silicone composites, rubbers, ceramics, and epoxides. Also, it provides a novel way to understand
the nature of solvents based on Hansen solubility parameters (HSP) theory.

Abstract: The functionalization of carbon nanotubes (CNTs) plays a key role in their solubilization
and compatibility for many applications. Among the many possible ways to functionalize CNTs,
the creation of an Si–O–C bond is crucial for the formation of silicone composites. Catalyst-mediated
silylesterification is useful in creating Si–O–C bonds because it is cost-effective and uses a hydrosilane
precursor of lower reactivity than that of chlorosilane. However, it was previously demonstrated
that two important silylesterification catalysts (zinc chloride and Karstedt’s catalyst) exhibit different
selectivity for oxidized functional groups that are present on the surface of CNTs after oxidative
acid treatment. This report details the selective modification of CNTs with various oxygenated
functional groups (aromatic and nonaromatic alcohols, carboxylic acids, ethers, and ketones) using
diazonium chemistry. Modified CNTs were used to assess the specifity of zinc chloride and Karstedt’s
catalyst for oxygenated functional groups during a silylesterification reaction. Karstedt’s catalyst
appeared to be widely applicable, allowing for the silylesterification of all of the aforementioned
oxygenated functional groups. However, it showed lower efficacy for ethers and ketones. By contrast,
zinc chloride was found to be very specific for nonaromatic carboxylic acids. This study also examined
the Hansen solubility parameters of modified CNTs.

Keywords: carbon nanotubes; aryl diazonium salts; silylesterification; hydrosilanes; zinc chloride;
Karstedt’s catalyst; Hansen solubility parameters.

1. Introduction

Carbon nanotubes (CNTs) [1] have exceptional electrical, mechanical, and physical properties [2].
However, their major drawbacks are their insolubility in most common solvents, and their tendency to
form aggregates due to strong π–π and van der Waals interactions. Therefore, due to the chemical
functionalization of CNTs, it is often necessary in order to exfoliate and solubilize them before their
practical application [3,4]. Moreover, their use as reinforcement in polymers requires anchoring groups
that must be introduced by chemical functionalization.

Many different methods for the chemical functionalization of CNT sidewalls were reported [5].
One approach consists of the direct functionalization of the CNT sidewall using, for example, carbenes,
nitrenes, the Diels–Alder reaction, and diazonium [6]. This option has the advantage of preserving the
aspect ratio of CNTs, as well as their mechanical and electrical properties [7]. However, this depends
on the number of defects created in the outermost aromatic layer. A second approach concerns the
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derivatization of oxidized functional groups introduced by acidic treatments [8] at the extremities or
defective areas of CNTs. Derivatization reactions include amidation [9,10], esterification, and reactions
with silicon derivatives such as hydrosilanes and chlorosilanes [11].

Among the various options for the derivatization of oxidized functional groups, silylesterification
is a powerful way to modify the CNT surface using silane compounds [12]. This functionalization
allows for modification by many silane derivatives bearing various side chains. Hydrosilanes have
the advantage of being less reactive than their chlorosilane counterparts, which allows for the use of
less stringent experiment conditions. Usually, the coupling of hydrosilanes with oxygen-containing
molecules requires the presence of a catalyst. Depending on the catalyst’s nature, hydrosilanes react
differently with oxygenated molecules. CNT modification with an Si–O–C bond creates opportunities
for the addition of different functional groups for various applications. These include the filling of
silicone composites, rubbers [13], ceramics, and epoxides [14].

In a previous study [11], our group reported on the functionalization of oxidized CNTs
(using oxidative acid treatment) with hydrosilane as an anchoring molecule. Specifically, we
used a fluorine-bearing hydrosilane, diisopropyl(3,3,4,4,5,5,6,6,6-nonafluorohexyl) silane, which
is also referred to as Rf(iPr)2SiH. We compared two different catalysts—zinc chloride (ZnCl2) and
Karstedt’s catalyst (1,3-divinyl-1,1,3,3-tetramethyldisiloxane platinum (0) complex). CNTs oxidized by
concentrated acids, bearing several different oxygenated functional groups, reacted differently with
each catalyst. We hypothesized that the zinc chloride catalyst allowed for reactions involving only
carboxyl groups, while Karstedt’s catalyst facilitated reactions of both alcohol and carboxyl groups
that were introduced during oxidative acid treatment.

The aim of this study was to assess the selectivity of silylesterification reactions on CNTs by using
CNTs modified by derivatives of aryl diazonium salts as a starting material. In contrast to products
obtained after oxidation using concentrated acid mixtures, diazonium-mediated modification allows
for the preparation of CNTs with controlled surface chemistry [15–17]. In addition, the advantage
of using diazonium modification is that oxidative treatment can affect CNT conductivity. This has
been proven in a previous study by measuring the electrical conductivity of buckypaper (a thin sheet
of aggregated CNTs) [7] prepared from diazonium-modified CNTs and oxidized CNTs. Using a
silylesterification reaction [11], the selectivity of both catalysts for various oxygenated functional
groups on aryl diazonium derivatives was investigated (Table 1).

A schematic representation of the approach proposed in this work is shown in Figure 1.

Appl. Sci. 2019, 12, x 3 of 13 

A schematic representation of the approach proposed in this work is shown in Figure 1. 

 

Figure 1. Schematic representation of this study’s approach. Expected results based on above 
hypothesis. 

CNTs functionalized by diazonium chemistry were characterized by using their Hansen 
solubility parameters (HSPs). 
  

CNT–CH2–OH 

 

Alcohol group separated from aromatic ring by 
methylene group 

CNT–C(O)–
CH3 

 

Ketone linked to aromatic ring 

CNT–O–CH3 

 

Ether linked to aromatic ring 

Figure 1. Schematic representation of this study’s approach. Expected results based on above hypothesis.



Appl. Sci. 2020, 10, 109 3 of 11

Table 1. Carbon-nanotube (CNT) samples, aniline precursors used for in situ diazonium-mediated
functionalization, and side chain targeted for hydrosilylation.

Sample Name Aniline Precursor Targeted Side Chain

CNT–COOH
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CNTs functionalized by diazonium chemistry were characterized by using their Hansen solubility
parameters (HSPs).

2. Materials and Methods

2.1. Diazonium-Mediated Modification

Multiwalled carbon nanotubes (MWNTs) were purified prior to modification by diazonium in
order to remove alumina (a catalyst support). Purification was achieved by refluxing 4 g of MWNTs
into 500 mL sodium hydroxide solution (6 moles) for 12 h. The purified MWNT sample was then
thoroughly washed with deionized water [15]. MWNT functionalization by diazonium chemistry
was carried out by modifying a previously reported procedure [15]. Briefly, 20 mg of purified CNTs
was dispersed in 10 mL of deionised water containing 6.0 × 10−4 moles of the appropriate aniline
derivative (depending on the desired functional group, refer to Table 1), along with 6.0 × 10−4 moles
of sodium nitrite and 8.0 × 10−4 moles of perchloric acid. This mixture was stirred for 60 min under
IR irradiation and then washed with deionized water. It was then washed with acetone and dried at
room temperature.

2.2. Silylesterification

All MWNT 6 samples were functionalized with diisopropyl(3,3,4,4,5,5,6,6,6-nonafluorohexyl)silane
(Rf(iPr)2SiH) using either ZnCl2 or Karstedt’s catalyst.

When using ZnCl2 as a catalyst, 10 mg of functionalized MWNTs, 40 µl of
diisopropyl(3,3,4,4,5,5,6,6,6-nonafluorohexyl)silane, and 1 mg of ZnCl2 were added into 20 mL
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of dimethylformamide (DMF) and stirred at 80 ◦C for 16 h at atmospheric pressure. The product was
then washed with DMF and dried at 120 ◦C.

When using Karstedt’s catalyst, 10 mg of functionalized MWNTs, 40 µl of
diisopropyl(3,3,4,4,5,5,6,6,6-nonafluorohexyl)silane, and 1 µl of a 0.120 M solution of Karstedt’s
catalyst in xylene were added to 20 mL of toluene and stirred at 80 ◦C for 16 h at atmospheric pressure.
The product was then washed with toluene and dried at 120 ◦C.

2.3. Determination of Hansen Solubility Parameters

Determination of the HSPs of a given solute was described in previous publications [18,19]. Briefly,
1 mg of solute was added to 1 mL of the tested solvent. The sample was sonicated for 1 min using a
sonication tip (1 cycle and maximum amplitude) and centrifugated for 30 min at 3500 rpm (PICCOLO,
220 V and 60 W). Solvent quality (i.e., its ability to maintain a high amount of solute in a stable solution)
was estimated with a visual comparison to standards of known concentration. Although rough,
this protocol was demonstrated to provide valuable results with regard to HSP determination [20].
The solubility of each CNT sample in 40 different solvents was determined. Solvents were classified as
“bad,” “good,” or “very good”, and then processed using HSPiP software [19]. This yielded the most
reliable solubility sphere with regard to “good” solvents. The center of the sphere corresponded to the
HSPs of functionalized CNTs.

3. Results

In the first part of this section, the characterizations of functionalized CNTs are described. In the
second part, the solubility of functionalized CNTs in various solvents, the corresponding HSPs, and
their correlation with grafted functional groups are described.

3.1. Diazonium-Mediated Modification

MWNT samples functionalized by diazonium (CNT–COOH, CNT–CH2–COOH, CNT–OH,
CNT–CH2OH, CNT–C(O)–CH3, and CNT–O–CH3) were characterized using X-ray photoelectron
spectroscopy spectra and changes to their HSPs. In the case of characterization using XPS, difficulties
were created by the fact that functionalization does not introduce a new element to the modified
sample. Therefore, the fit of the C1s peak was used to assess functionalization efficacy. The C1s fit table
(Table 2) was established using previously reported values [21,22] and analysis of standard samples
such as those containing regraphitized MWNTs. The element composition and components of the C1s
peaks for the six samples are summarized in Table 3 and Figure 2, respectively. Figure 2 shows the C1s
high-resolution XPS spectra for the six samples and contributions of the various components.

Table 2. XPS fitting parameters of various C1s peak components.

Type C sp2 (%) C sp3 (%) C–O (%) C=O(%) C(O)–O (%) Shake-up (%) Carbide (%)

Energy (eV) 284.4 ± 0.2 285.0 ± 0.2 285.8 ± 0.2 286.9 ± 0.2 289.2 ± 0.2 291.0 ± 0.2 283.7 ± 0.2

Table 3. Quantity of oxygen, carbon, and nitrogen in XPS spectra for six different diazonium-modified
multiwalled carbon nanotubes (MWNTs).

At.% CNT–COOH CNT–CH2–COOH CNT–OH CNT–CH2–OH CNT–C(O)–CH3 CNT–O–CH3

C 91.3 ± 0.3 85.7 ± 0.2 92.6 ± 1.1 88.9 ± 0.3 93.9 ± 0.2 92.4 ± 0.6
N 0.9 ± 0.4 6.4 ± 0.4 0.5 ± 0.5 2.5 ± 0.1 0.1 ± 0.1 0.7 ± 0.7
O 7.7 ± 0.1 7.8 ± 0.2 6.9 ± 0.6 8.6 ± 0.1 6.0 ± 0.2 6.9 ± 0.1
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nanotube samples.

Both the element composition and contributions of various components of the C1s peak were
highly reproducible, as demonstrated by small standard deviations. Table 3 shows the amount
of increased oxygen in the six samples after functionalization. In samples where the side chain
was separated from the aromatic core by a methylene group, a noticeable nitrogen peak was seen.
High-resolution spectra of the N1s peak in those samples (CNT–CH2–COOH and CNT–CH2–OH)
showed an asymmetric peak at 400.0 eV. Diazonium bridges exhibited a binding energy of 398.5 eV
(Figure 3, standardization using methyl orange), which was close to that of amines (399.5 eV, depending
on the side chain). Therefore, the conclusion that the N1s peak originated from a diazonium bond was
derived from (i) the asymmetry of the peak, which is characteristic of delocalized electrons, and (ii) the
absence of a decrease in intensity after further washing, which removes adsorbed molecules.
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Figure 4 shows an increase in the Csp3 component in all functionalized samples. This increase was
consistent with diazonium-mediated functionalization, as this modification transforms sp2 carbons of
the CNT sidewall into Csp3 carbons [23].
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When assessing functionalization via C1s peak fitting, it was found that MWNT–COOH
and MWNT–CH2–COOH samples contained a C(O)–O component (2.6% and 2.8%, respectively).
Additionally, the Csp3 component was larger in the CNTs functionalized with –CH2–COOH than in
their –C(O)–O counterpart, which was consistent with the presence of an additional methylene group.

For CNTs functionalized with –OH and –CH2–OH, the C–O component (285.8 ± 0.2 eV) increased
by 4.4% and 4.5%, respectively, with a larger sp3 component in the case of –CH2–OH functionalization.
This confirmed the grafting effectiveness for both side chains.

The MWNT–C(O)–CH3 sample contained larger C=O (1.3%, 286.9 eV) and C(O)–O (1.2%, 289.2
eV) components. This confirmed the presence of a highly oxidized functional group (a ketone) on the
MWNT surface. An increase in Csp3 contribution was observed due to the presence of a methyl group
on the ketone molecule. CNTs modified with an –O–CH3 side chain displayed high C–O contribution
(5.6%, 285.8 eV), which is characteristic of ether.

HSPs are a means to describe interactions between a solute and a solvent. Each compound
is described by three parameters: A dispersion parameter, accounting for dispersion forces (δd);
a polar parameter (δp), accounting for dipole–dipole interactions; and a hydrogen-bond parameter
(δh). A solute and solvent that are characterized by close parameters are compatible and thus soluble
in each other. By contrast, compounds with largely different parameters are immiscible. Therefore, it is



Appl. Sci. 2020, 10, 109 7 of 11

possible to determine HSPs of an unknown compound by testing its solubility in several solvents with
known HSPs. Some solvents appear to be “good solvents.” On a tridimensional plot (using the three
parameters as axes), “good solvents” are encompassed by a sphere with a center corresponding to the
solubility of the compound with unknown HSPs. HSP theory [20] was proven to be applicable in the
case of CNTs (crude and functionalized), and could therefore be used to characterize functionalized
CNTs. Modified CNTs should be characterized by different HSPs from those of the starting material,
and each functionalization produces CNTs with different parameters. HSPs were determined for six
modified samples (Table 4), and the corresponding solubility spheres are shown in Figure 5.

Table 4. Hansen solubility parameters (HSPs) for six samples of diazonium-modified CNTs.

Sample δd (MPa1/2) δp (MPa1/2) δh (MPa1/2)

CNT–COOH 17.9 14.5 7.7
CNT–CH2–COOH 18.1 14.4 8.7

CNT–OH 16.2 19.2 13.5
CNT–CH2–OH 21.1 8.4 14.4
CNT–C(O)–CH3 18.1 8.6 5.3

CNT–O–CH3 17.8 5.1 7.8
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The six modified samples exhibited HSPs (Figure 6 and Table 4) that differed from those of
nonfunctionalized MWNTs (δd = 19.7 MPa1/2, δp = 6.2 MPa1/2, and δh = 4.2 MPa1/2). COOH- and
CH2–COOH-modified CNTs were characterized by similar HSPs. They showed strong polar parameters
and moderate hydrogen bond parameters, which was consistent with the grafting of a carboxyl-like
functional group. Comparatively, CNTs modified with MWNT–OH and MWNT–CH2–OH displayed
HSPs with greater hydrogen-bond contribution but lower (at least for MWNT–OH) polar contribution,
which was consistent with an alcohol-like functional group. CNTs modified with ketone and ether side
chains were characterized by lower polar and hydrogen-bond parameters compared with samples
functionalized with alcohol or carboxyl functional groups. As shown in Table 5, the HSPs of
MWNT–C(O)–CH3 and MWNT–O–CH3 were consistent with the tabulated values for ketones and
ethers. Ketones are characterized by a greater polar parameter than the hydrogen-bond parameter.
The ether showed low polar and hydrogen-bond parameters, with δp being lower than δh [19].
A comparison between Tables 4 and 5 clearly shows that CNTs modified by MWNT–C(O)–CH3 and
MWNT–O–CH3 were characterized by HSPs that were very close to those of aromatic molecules with
corresponding functions (acetophenone and anisole, respectively).

Table 5. Hansen solubility parameters for molecular characteristics of ethers and ketones. Values
compared to those in Table 4.

Functional Group Molecule δd (MPa1/2) δp (MPa1/2) δh (MPa1/2)

Ketone
Acetone 15.5 10.4 7.0

2-Butanone 16.0 9.0 5.1
Acetophenone 19.6 8.6 3.7

Ether
Diethylether 14.5 2.9 5.1

Dipropylether 15.2 3.4 4.2
Anisole 17.8 4.1 6.7

On the basis of XPS and HSP characterizations, it could be concluded that the six different
modifications were successful. Therefore, those samples were used to test the selectivity of
silylesterification catalysts.

3.2. Silylesterification

Table 6 and Figure 6 summarize the atomic percentages of various elements in 12 samples produced
by the derivatization of six types of diazonium-modified CNTs using either zinc chloride or Karstedt’s
catalyst. Figure 7 displays XPS comparisons of the samples’ survey spectra after derivatization with
diazonium and silylesterification with either zinc chloride or Karstedt’s catalyst.

Table 6. Atomic % of various elements in six samples of diazonium-modified CNTs that were
silylesterified with either zinc chloride or Karstedt’s catalyst.

Samples Catalyst C % O % N % F % Si % Pt % Zn %

CNT–COOH
ZnCl2 91.0 ± 0.4 7.3 ± 0.1 0.4 ± 0.4 0.0 0.0 - 1.2 ± 0.1

Karstedt’scatalyst 84.3 ± 0.2 6.4 ± 0.3 1.4 ± 0.1 5.7 ± 0.7 1.1 ± 0.1 0.7 ± 0.1 -

CNT–CH2–COOH ZnCl2 87.2 ± 0.6 6.2 ± 0.3 4.1 ± 0.3 2.4 ± 0.1 0.5 ± 0.1 - 0.6 ± 0.1
Karstedt’scatalyst 81.9 ± 0.9 7.4 ± 0.3 6.3 ± 0.4 3.0 ± 0.8 0.8 ± 0.2 0.5 ± 0.1 -

CNT–OH
ZnCl2 94.3 ± 0.7 4.8 ± 0.1 0.2 ± 0.2 0.6 ± 0.4 0.0 - 0.0

Karstedt’s catalyst 85.7 ± 3.2 8.9 ± 3.3 0.4 ± 0.1 3.1 ± 0.6 1.3 ± 0.1 0.5 ± 0.1 -

CNT–CH2–OH ZnCl2 89.8 ± 1.1 7.2 ± 0.5 2.2 ± 0.1 0.0 1.5 ± 0.1 - 0.0
Karstedt’s catalyst 85.5 ± 0.2 6.1 ± 0.2 2.4 ± 0.2 3.9 ± 0.2 1.9 ± 0.2 0.2 ± 0.2 -

CNT–C(O)–CH3
ZnCl2 93.6 ± 0.5 5.0 ± 0.1 1.2 ± 0.4 0.1 ± 0.1 0.0 - 0.0

Karstedt’s catalyst 89.3 ± 0.5 5.6 ± 0.1 1.6 ± 0.3 1.5 ± 0.3 1.8 ± 0.1 0.1 ± 0.1 -

CNT–O–CH3
ZnCl2 91.4 ± 0.5 5.6 ± 0.3 1.5 ± 0.2 0.8 ± 0.1 0.6 ± 0.1 - 0.0

Karstedt’s catalyst 91.3 ± 0.5 5.3 ± 0.3 0.8 ± 0.8 1.7 ± 0.3 0.9 ± 0.1 0.0 -
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The observed fluorine percentages (in bold) showed two extremely different types of behavior
depending on the used catalyst.

Karstedt’s catalyst allowed for the silylesterification of all oxygenated functional groups.
The process was more efficient for carboxyls and alcohols, regardless of whether they contained
an aromatic ring [24,25].

Zinc chloride catalyzed the silylesterification of only nonaromatic carboxylic acids.
This observation complements our previous report that found zinc chloride to be selective for
carboxyl groups [11].

4. Conclusions

In this report, we demonstrated the selectivity of two catalysts for several oxygenated functional
groups in CNT silylesterification.

To achieve this goal, we used a two-step approach that consisted of (i) the selective functionalization
of CNT sidewalls with various oxygenated functional groups (carboxylic acid, alcohol, ketone, and
ether) and (ii) a study of the selectivity of silylesterification catalysts using fluorinated hydrosilane as a
probe molecule.

Selective CNT sidewall functionalization with six different oxygenated functional groups was
assessed using XPS survey spectra, high-resolution spectra of C1s peaks, and their characteristic HSPs.
XPS C1s high-resolution spectra showed components that were characteristic of each of the grafted
functional groups. HSP solubility characterization also demonstrated behaviors typical of the grafted
functional groups.

Subsequent derivatization of oxygenated side chains by silylesterification using either zinc chloride
or Karstedt’s catalyst showed differences in their selectivity. Karstedt’s catalyst appeared to be highly
efficient in the silylsterification of both alcohol and carboxylic acid, regardless of the presence of an
aromatic ring. This catalyst was slightly less effective in the silylesterification of ethers and ketones.
As previously reported, zinc chloride appears to be specific to carboxylic acid groups. Moreover, its
selectivity is strictly limited to nonaromatic carboxylic acids.

The difference in selectivity described in this report paves the way for the modification of CNTs
using two different oxygenated groups.
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