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Abstract
We have studied the consequence of different functionalization types onto the decoration of multi-wall carbon nanotubes 
(MWCNTs) surface by nanoparticles of bismuth and nickel oxides. Three organic molecules were considered for the function-
alization: 5-amino-1,2,3-benzenetricarboxylic acid, 4-aminobenzylphosphonic acid and sulfanilic acid. Nanotubes modifica-
tion with in situ created diazonium salts followed by their impregnation with suitable salts [ammonium bismuth citrate and 
nickel (II) nitrate hexahydrate] utilizing infrared (IR) irradiation was found the crucial stage in the homogeneous impregnation 
of functionalized CNTs. Furthermore, calcination of these samples in argon environment gave rise to controlled decorated 
MWCNTs. The currently used technique is simple as well as effective. The synthesized materials were characterized by 
XPS, PXRD, FESEM, EDX, HRTEM and Raman spectroscopy. Bismuth oxide decorations were successfully performed 
using 5-amino-1,2,3-benzenetricarboxylic acid (particle size ranges from 1 to 10 nm with mean diameter ~ 2.4 nm) and 
4-aminobenzylphosphonic acid (particle size ranges from 1 to 6 nm with mean diameter ~ 1.9 nm) functionalized MWCNTs. 
However, only 4-aminobenzylphosphonic acid functionalized MWCNTs showed strong affinity towards oxides of nickel 
nanoparticles (mainly in hydroxide form, particles size ranging from 1 to 6 nm with mean diameter ~ 2.3 nm). Thus, various 
functions arranged in the order of their increasing anchoring capacities are as follows: sulfonic < carboxylic < phosphonic. 
The method is valid for large-scale preparations. These advanced nanocomposites are potential candidates for various appli-
cations in nanotechnology.
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Article highlights

• Simple and effective method for the decoration of MWCNTs with nanoparticles of Bi and Ni oxides.
• 5-amino-1,2,3-benzenetricarboxylic acid, 4-aminobenzylphosphonic acid and sulfanilic acid were considered for 

the functionalization.
• Various functions arranged in the order of their increasing anchoring capacities are as follows: sulfonic < carbox-

ylic < phosphonic.
• The method is valid for large-scale preparations.
• Potential candidates for various applications in nanotechnology.

Keywords Carbon allotrope · Diazonium coupling agents · Nickel oxide, Bismuth oxides, Immobilization of nanoparticles

Introduction

Carbon nanotubes (CNTs) [1] are one of the great carbona-
ceous nanomaterial displaying interesting properties such 
as high aspect ratio (~ 1000), remarkable tensile strength, 
chemical stability, huge surface area, notable electrical and 
thermal properties. Such properties are linked to their func-
tionalities, structure and morphology [2] which make CNTs 
potential candidates for different applications such as in tis-
sue engineering [3], solar and fuel cells, hydrogen storage 
and generation [4], supercapacitors, lithium ion batteries, 
field emission sources and electrochemical sensors [5], to 
cite a few. CNTs are usually categorized into single-wall car-
bon nanotubes (SWCNTs) and multi-wall carbon nanotubes 
(MWCNTs) [6]. Double-wall CNTs also exist and have been 
even diazotized for further surface modification [7].

Most of the as-synthesized CNTs powders contain not 
only CNTs, but also other carbonaceous impurities (amor-
phous carbon, nanocrystalline graphite and fullerenes), 
metallic catalysts and support (silica and alumina) [8–10]. 
These impurities are detrimental to CNTs application per-
formances. To avoid this problem, impurities should be first 
removed without destroying the CNTs structure [11]. In the 
literature, chemical oxidation has been widely utilized to 
purify as-prepared CNTs. It comprises gas phase (utilizing 
 O2,  Cl2,  H2O, air, etc.), electrochemical as well as liquid-
phase oxidation (involving acid treatment, etc.). The usual 
oxidants in liquid-phase oxidation are  H2O2,  H2SO4,  HNO3, 
HCl and  KMnO4 have disadvantages: CNTs cutting, CNTs 
extremities opening and formation of undesired products on 
the CNTs surface [12]. Most of these limitations are avoided 
using a basic treatment [13].

To extend the range of their applications, CNTs are often 
decorated with various metals [14], metal oxides [15] and 
semiconducting nanoparticles [16] to improve their electric, 
optical and magnetic properties [17–19].

The nanoscale dimension (size < 10–20 nm) of these 
metals or metal oxides particles confers unique magnetic, 
chemical and optical properties, but they decrease with the 
particle size and mainly disappear beyond 40–50 nm [20]. 

Nanoparticles provide large surface area for adsorption 
[21], increase sensitivity for molecule detection [22], tune 
magnetic [23] and optical properties [24]. For example, bis-
muth can change from a semi-metal to a semi-conductor 
which makes it very interesting among nanosized materi-
als [25, 26]. Due to its large band gap (2.4–3.96 eV) [27], 
bismuth oxide  (Bi2O3) exhibits high dielectric permittivity, 
photoluminescence, oxide ion conductivity, high refractive 
index and photocatalytic activity. This makes it one of the 
most useful materials in nanotechnologies. It has various 
applications such as in the biomedical field [28], supercon-
ductors [29], fuel cells, sensors, catalysis [27], etc.  Bi2O3 
exists in five polymorphs: α (monoclinic), β (tetragonal), 
γ (bcc), δ (fcc) and ε (triclinic) [30]. α form is stable at 
low temperature (room temperature) and it changes into δ 
phase through heating at a higher temperature (729 °C), but 
comparatively other forms (β, γ and ε forms) are metastable. 
α-Bi2O3, β-Bi2O3 and δ-Bi2O3 forms display photocatalytic 
activity, but the more active heterogeneous photocatalyst is 
β-Bi2O3 [31, 32].

Nickel nanoparticles are used in numerous fields [33] due 
to their catalytic, magnetic and tribological properties [34]. 
Furthermore, compounds based on nickel exhibit high elec-
trochemical performances [35]. For example, among the var-
ious transition metal oxides/hydroxides pseudo-capacitive 
materials, nickel hydroxide is a striking candidate in high-
performance supercapacitors due to the fact that it shows 
excellent chemical stability, high specific capacitance, easy 
preparation (cost effective), distinct redox activity, layered 
structure and various morphologies [36]. However, the low 
life cycle of pseudo-capacitive Ni(OH)2 and its poor electri-
cal conductivity limit their practical applications [37]. This 
problem can be solved by combining with conductive addi-
tives such as graphene, carbon nanotubes, etc.

Various methods have been reported for MWCNTs deco-
ration with nickel or nickel oxide/hydroxide nanoparticles, 
but only a few with bismuth or bismuth oxide nanoparticles 
[5, 16, 38]. The control of the dispersion, agglomeration and 
uniformity is not yet completely resolved.
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To avoid these limitations, optimizations are needed 
at all steps of elaboration of the nanoparticles: (a) type 
of functionalization method and the structure of grafting 
molecules, (b) use of different salts or classical/IR heating 
during impregnation [39], and (c) time and temperature of 
calcination [40].

CNTs functionalization is a key step towards their deco-
ration with metal or metal oxides nanoparticles. It can be 
performed with aryl diazonium salts grafting which is an 
efficient method to modify various surfaces with different 
compounds including nanoparticles [41–43].

Among different aryl diazonium salts, the ones contain-
ing carboxylic, phosphonic and sulphonic group are very 
interesting for CNTs functionalizations, because they con-
tain highly acidic groups and their deprotonation leads 
to negatively charged ions which interact with positively 
charged metal ions and favor the so-called impregnation. 
Thus, their comparison in terms of anchoring affinity is of 
interest. 5-amino-1,2,3-benzenetricarboxylic acid, 4-amin-
obenzylphosphonic and sulfanilic acids have been chosen 
in this comparative study due to their cost, industrial avail-
ability and their potentials in future applications. The ions 
concentration on the CNTs surfaces together with their 

complexation ability with the acidic function strongly influ-
ences the quality of the generated nanoparticles.

The impregnation via IR irradiation leads to tiny 
nanocrystals evenly anchored on CNTs surface [11]. This IR 
effect is due to the photo-absorption and thermal properties 
of CNTs. Their ability to absorb IR irradiation, and promptly 
transferring the electronic excitations to molecular vibration 
energies, produces heat and activates the chemical processes 
[39]. Without IR irradiation, agglomerated particles tend to 
form with a very poor anchorage to the CNTs surfaces.

The present work focuses on the effect of chemical func-
tionalization (carboxylic, phosphonic and sulphonic groups) 
of MWCNTs on the quality of bismuth and nickel nanopar-
ticles: size, morphology, nature, distribution and anchorage 
on the MWCNTs surface (Fig. 1).

Materials and methods

Chemicals

5-Amino-1,2,3-benzenetricarboxylic acid (97%), ammo-
nium bismuth citrate (≥ 99%) (ABC), nickel (II) nitrate 

Fig. 1  Complete process of MWCNTs decoration with different nanoparticles
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hexahydrate (NNH), 4-aminobenzenesulfonic acid (> 98.0) 
and 4-aminobenzylphosphonic acid (97 + %) were got from 
abcr GmbH, Sigma-Aldrich, Vel s.a., ACS and Prime Organ-
ics Inc., respectively.  NaNO2 (99.2%),  HClO4 (70%), acetone 
(> 99%), NaOH (≥ 98%) and pentane (99%) were received 
from Fisher-Scientific, Merck, Chem Lab, ACS Reagent and 
Lab Scan Analytical Sciences, respectively. All these chemi-
cals were used without further purification.

Nanocyl SA (Belgium) MWCNTs (NC 7000) (> 95%, 
average diameter = 10 nm, length = 0.1–10 μm) were used 
after purification (Section “MWCNTs purification and func-
tionalization”). Milli-Q water (18.2 MΩ cm) was used in all 
experiments.

Apparatus

Functionalization and impregnation were performed under 
IR irradiation utilizing a Petra IR 11 lamp (voltage: 230 V 
and capacity: 150 W). PAN analytical diffractometer was 
used to perform X-Ray powder diffraction (XRD) studies. It 
was maintained at tube current: 30 mA and operating volt-
age: 45 kV with Cu Kα radiation (λ = 1.5418Å). Thermo 
Scientific K-Alpha X-ray photoelectron spectrometer (XPS) 
with a hemispherical analyzer and a monochromatized Al 
Kα radiation (1486.6 eV) was used. The most intense peak 
of the core level was calibrated with respect to the C1s com-
ponent (set at 284.6 eV). Tecnai 10 Philips microscope was 
used to carry out transmission electron microscopy (TEM) 
analyses. Their samples preparation steps comprise dis-
persion in ethanol and then drop casting onto grid (carbon 
coated copper). This instrument was handled at emission 

current: 5 µA and accelerating voltage: 80 kV with spot 
size: 3. HR-TEM, Tecnai G2 was functioned at emission cur-
rent: 5.77 µA, accelerating voltage: 200 kV and spot size 
− 1. FESEM is realized via JEOL JSM-7500F microscope. 
It is equipped with EDX and worked at accelerating volt-
age: 15 kV and emission current: 20 µA (working distance: 
8 mm). Raman studies were performed using ST-BX51E 
Raman optical microscope. Conditions include excitation 
laser: Ar 514.5, exposure time: 5 s, number of accumula-
tions: 10, number of kinetics: 1, laser power: 100 MW and 
software: STR (Raman).

Synthesis of the nanocomposites

MWCNTs purification and functionalization

The MWCNTs purification [13, 20] and their functionali-
zation using 5-amino-1,2,3-benzenetricarboxylic acid were 
carried out according to our previously method [20]. To get 
purified MWCNTs (p-MWCNTs), a mixture of crude MWC-
NTs (1 g) and 12 M NaOH (100 ml) solution was refluxed at 
170 °C for 12 h. Furthermore, thinned with water, filtered, 
flushed with water and then with acetone and finally dried. 
For functionalization with 5-amino-1,2,3-benzenetricarbox-
ylic acid (p-MWCNTs-D3), a mixture of purified MWCNTs 
(80 mg), 5-amino-1,2,3-benzenetricarboxylic acid (150 mg), 
 H2O (10 ml),  NaNO2 (46 mg) and  HClO4 (69 µl,) was IR 
irradiated for 1 h under constant magnetic stirring. Then, it 
was filtered, washed with pentane and then with acetone and 
lastly dried. The same procedure was used to functionalize 
p-MWCNTs with 4-aminobenzylphosphonic (125 mg) and 
sulfanilic (115 mg) acids. These are referred to as p-MWC-
NTs-CH2P1 and p-MWCNTs-S1, respectively.

Impregnation on functionalized MWCNTs

Ammonium bismuth citrate, ABC 1.875 g (0.01 M) was dis-
solved in 100 ml water. Then, p-MWCNTs-D3 was added 
to this solution. The mixture was subjected to sonication 
(5 min) and then IR irradiated (2 h.) under constant agi-
tation. Afterward, it was filtered, washed with water and 
then acetone and finally dried. This sample is known as 
p-MWCNTs-D3/ABC. The other functionalized nanotubes 
(p-MWCNTs-S1 and p-MWCNTs-CH2P1) were impreg-
nated using the same procedure and marked as p-MWCNTs-
S1/ABC and p-MWCNTs-CH2P1/ABC, correspondingly. 
On the same basis, 0.291 g (0.01 M) nickel (II) nitrate hexa-
hydrate (NNH) was used in the formation of p-MWCNTs-
D3/NNH, p-MWCNTs-S1/NNH and p-MWCNTs-CH2P1/
NNH.

Fig. 2  XRD patterns of a purified MWCNTs, b p-MWCNTs-D3/OBi, 
c p-MWCNTs-CH2P1/OBi and d p-MWCNTs-CH2P1/ONi
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Calcination of impregnated MWCNTs

The calcinations of the impregnated samples were carried 
out in a furnace furnished with a quartz tube. p-MWCNTs-
CH2P1/NNH were calcined at 400 °C for 2 h in a continuous 
argon gas environment lead to p-MWCNTs-CH2P1/ONi. To 
avoid the problem of bismuth metal evaporation during heat-
ing, p-MWCNTs-D3/ABC and p-MWCNTs-CH2P1/ABC 
were first calcined at 250 °C for 30 min in air to convert 
bismuth to bismuth oxide (bismuth oxide having a higher 
melting point than bismuth) and further heated in an argon 
gas environment at 350 °C for 30 min to form p-MWCNTs-
D3/OBi and p-MWCNTs-CH2P1/OBi, respectively.

Results and discussion

At the different steps of their elaboration, the synthesized 
materials have been characterized by XPS, PXRD, FESEM, 
EDX, HRTEM and Raman spectroscopy.

Crystal structure study by PXRD

PXRD analysis gave data about the crystal structure of nano-
particles (Fig. 2). The nature of particles is discussed in the 
next paragraph. In all cases, the peak found at 2θ = 25.89° is 
allocated to (002) plane of graphitic carbon. The reflections 
from (100), (004) and (110) plane of MWCNTs are related 
to the peaks at 2θ = 42.65°, 53.19 and 77.89°, respectively 

Fig. 3  TEM micrograph of a 
as-synthesized MWCNTs, b 
purified MWCNTs, c p-MWC-
NTs-D3/OBi, d p-MWCNTs-
CH2P1/OBi, and e p-MWC-
NTs-CH2P1/ONi
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[44]. Some of these peaks are not prominent in some sam-
ples (p-MWCNTs-D3/OBi and p-MWCNTs-CH2P1/OBi).

In the case of p-MWCNTs-D3/OBi samples (Fig. 2b), the 
other peaks are allocated to  Bi2O3 NPs. These peaks are pre-
sent at 2θ = 16.21° (110), 22.96° (020), 27.96° (021), 30.26° 
(121), 31.81° (002), 32.68° (220), 41.29° (122), 41.97° 
(230), 45.17° (231), 46.25° (222), 46.91° (040), 48.42° 
(140), 51.31° (141), 54.34° (023), 55.50° (241), 57.74° 
(042), 59.11° (142), 62.12° (341), 63.38° (151), 66.34° 
(004), 68.50° (440), 72.95° (351), 74.43° (243), 75.58° 
(061), 76.01° (224), 77.46° (442), 78.03° (260), 85.12° 
(044) and 86.70° (262) (Reference code: 98-005-2732) 
[16]. Their sharp and resolved structure is indicative of the 
well-crystallized nature of  Bi2O3 NPs. The peak intensity 
and position also points to the formation of the tetragonal 
 Bi2O3 β-phase {space group: P-421c, space group number: 

114, a(Å) = 7.7430, b(Å) = 7.7430, c(Å) = 5.6310 and 
α = β = γ = 90°}. PXRD patterns of p-MWCNTs-CH2P1/OBi 
(Fig. 2c) also prove that bismuth is in  Bi2O3 form (β-phase) 
and crystalline. On the contrary, the nickel hydroxide nano-
particles on p-MWCNTs-CH2P1/ONi are highly amorphous 
as no well-resolved PXRD peaks are observed (Fig. 2d). It is 
found from the literature that it is in α-Ni(OH)2 form [45]. 
There is a change in the peak intensity at 25.89° in the XRD 
pattern (Fig. 2b, c). This is related to the amount of  Bi2O3 
on the CNTs surface. Increased concentration effects CNTs 
structures to a large extent which is why the peak at (002) 
is less intense in p-MWCNTs-D3/OBi than in p-MWCNTs-
CH2P1/OBi. It is reported in the literature that the increase 
in the loading of particles causes a significant decrease in 
the peak intensity of CNTs especially the one at 25.89° and 
the particle peak becomes more intense [46].

Fig. 4  Size distributions of NPs of a p-MWCNTs-D3/OBi, b p-MWCNTs-CH2P1/OBi and c p-MWCNTs-CH2P1/ONi
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Materials morphology by TEM

TEM micrographs of crude MWCNTs, purified MWCNTs 
and calcined samples are given in Fig. 3. TEM analysis is 
used to determine the particles sizes and their distribution. 
Crude MWCNTs (Fig. 3a) contain a large amount of impuri-
ties, mainly alumina (Eq. 1) [11], eliminated after the NaOH 
treatment step (Fig. 3b). This basic treatment carried out at 
170 °C has definite advantages over acidic actions which 
cause significant damages to the nanotubes: MWCNTs cut-
ting and establishment of needless functional groups on the 
surface. Catalytic chemical vapor deposition method is used 
by NANOCYL Company to synthesize MWCNTs. The pre-
sent method does not remove completely the catalyst (tran-
sition metal) impurity, but it is not a problem because it is 
in an insignificant amount as confirmed by TEM and other 
characterizations. More importantly, NaOH treatment is 
used to purify MWCNTs as this is non-destructive method.

TEM micrographs display that the bismuth oxide decora-
tions were observed on 5-amino-1,2,3-benzenetricarboxylic 

(1)Al
2
O

3
+ 2NaOH → 2NaAlO

2
+ H

2
O.

acid functionalized MWCNTs (Fig. 3c). The particle size 
varies from 1 to 10  nm, with a Gaussian mean diam-
eter ~ 2.4 nm (Fig. 4a). In 4-aminobenzylphosphonic acid 
functionalized MWCNTs (Fig. 3d) the particle size ranges 
from 1 to 6 nm, with a Gaussian mean diameter ~ 1.9 nm 
(Fig. 4b). However, only 4-aminobenzylphosphonic acid 
functionalized MWCNTs has enough affinity for the oxides 
of nickel nanoparticles (Fig. 3e), mainly in their hydroxide 
form. Their particle size ranges from 1 to 6 nm, and Gauss-
ian mean diameter ~ 2.3 nm (Fig. 4c). Thus, the various 
functions arranged in the order of their increasing anchor-
ing capacities are as follows: sulfonic < carboxylic < phos-
phonic. This trend can be explained based on the fact that 
phosphonic has two removable hydrogens, while sulphonic 
and carboxylic groups have only one. As the functionalized 
MWCNTs with these groups are dispersed in water, they 
dissociate to produce negatively charged anion (the more the 
anions produced, the more is the anchoring affinity) which 
can attract positively charged metal ions during the impreg-
nation step. So, definitely, we expect the phosphonic group 
to exhibit a larger anchoring ability. Though carboxylic 
and sulphonic groups have the same number of replaceable 
hydrogens, here, we have used tricarboxylic groups to maxi-
mize the anchoring ability. The nanoparticles are homogene-
ously decorating the MWCNTs. No free nanoparticles are 
observed outside the carbon nanotube surfaces.

Raman characterization of materials

Raman spectroscopy is commonly applied to probe the 
quality of the carbon nanotubes. In the crude MWCNTs, 
Raman spectra (Fig. 5a), D band (1341 cm−1) and G band 
(1571 cm−1) are the main features. D band is a disorder-
induced characteristic, mainly accredited to the occurrence 
of amorphous or disordered carbon structures [47]. There is 
also a small shoulder peak D′ at around 1610 cm−1 which is 
allocated to the disordered symmetry of the carbon sp2 net-
work [48]. This peak is more pronounced in p-MWCNTs-
D3/OBi. The ID/IG ratio change from 1.03 to 0.87 in the case 
of  Bi2O3 nanoparticles can be related to its amount which 
influences the lattice of MWCNTs by creating more defects. 
So more  Bi2O3 nanoparticles (p-MWCNTs-D3/OBi) lead-
ing to more defect and hence increasing the  ID/IG ratio, but 
when it is the reverse case (p-MWCNTs-CH2P1/OBi), ID/IG 

Fig. 5  Raman spectra of a crude MWCNTs, b purified MWCNTs, c 
p-MWCNTs-D3/OBi, d p-MWCNTs-CH2P1/OBi, and e p-MWC-
NTs-CH2P1/ONi

Table 1  Atomic  % of the 
various samples found from the 
EDX

Materials C  % O  % % P Ni  % Bi  % Si  % Al  %

Crude MWCNTs 73.35 20.67 – – – 0.04 5.95
p-MWCNTs 98.61 1.39 – – – – –
p-MWCNTs-D3/OBi 92.62 4.12 – – 3.27 – –
p-MWCNTs-CH2P1/OBi 93.57 4.45 0.58 – 1.40 – –
p-MWCNTs-CH2P1/ONi 94.12 3.76 1.39 0.73 – – –
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is less. Thus, the parameter used to check the quality (level 
of alteration or imperfections of MWCNTs) is  ID/IG ratio. 
This ratio is 1.19 for crude MWCNTs indicating that it has 
inherent defects incorporated during their synthesis, but it 
decreases after the purification (Fig. 5b–e) and decoration 
steps. This indicates again that the present adopted method 
conserves the overall integrity of the MWCNTs as well as 
improves their quality. This is one of the advantages of the 
present work over other methods which suffer from mate-
rial quality problems (disorder in the carbon wall) after the 
modification of CNTs with nanoparticles [49, 50].

Mapping of the materials surface by EDX

Elemental compositions of synthesized materials obtained 
through EDX are listed in Table 1 and the corresponding 
spectra are displayed in Fig. 6. EDX mapping images of the 
crude MWCNTs (Fig. 7a) clearly indicate the presence of 
Al, Si, and O species originating from the support used in 
the carbon nanotubes synthesis. They are fully removed after 
the purification process (Fig. 7b) indicating its effectiveness. 
Table 1 shows the presence of the characteristic elements in 
the different samples. They are in line with the XPS data and 
authorize the success of nanocomposites synthesis.

Fig. 6  EDX spectra a crude MWCNTs, b p-MWCNTs, c p-MWCNTs-D3/OBi, d p-MWCNTs-CH2P1/OBi, and e p-MWCNTs-CH2P1/ONi
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Materials chemical composition by XPS

XPS is used to determine the surface atomic composition 
of the materials as well as to probe the chemical states of 
the metallic species. Elemental compositions of the differ-
ent samples obtained from the XPS analysis are listed in 
Table 2. The final calcined samples and purified MWCNTs’ 
survey spectra are given in Fig. 8. Purified MWCNTs exhibit 

traces of oxygen due to the presence of some residual oxy-
genated species (C–O). After the functionalization steps, 
significant enhancement in the oxygen amount was noticed 
along with the existence of other elements (P or S) char-
acteristic of the acid functions of the aryl diazonium salts 
used in the functionalizations. Also, nitrogen was evidenced 
due to the occurrence of azo connection [41, 51] (Fig. 1). 
Diazonium species (in situ generated in our case from parent 

Fig. 7  EDX mapping of a crude 
and b purified MWCNTs (black 
and white image on the left 
sides are FESEM images)

Table 2  Atomic  % of the 
samples found from the XPS 
analyses

Materials C % O % N % P % S % Na % Ni % Bi %

p-MWCNTs 98.6 1.38 – – – – – –
p-MWCNTs-D3 73.0 23.7 3.21 – – – – –
p-MWCNTs-S1 91.8 5.56 Traces – 1.72 0.89 – –
p-MWCNTs-CH2P1 91.1 6.67 0.41 1.83 – – – –
p-MWCNTs-D3/ABC 78.9 16.2 Traces – – – – 4.90
p-MWCNTs-S1/ABC 92.7 5.03 0.70 – 1.53 – – 0.03
p-MWCNTs-CH2P1/ABC 84.6 10.2 0.71 1.39 – – – 3.07
p-MWCNTs-D3/NNH 89.9 8.74 0.68 – – – 0.71 –
p-MWCNTs-S1/NNH 92.1 5.45 0.56 – 1.34 – 0.53 –
p-MWCNTs-CH2P1/NNH 84.8 10.9 0.97 2.29 – – 1.02 –
p-MWCNTs-D3/OBi 89.5 7.16 – – – – – 3.30
p-MWCNTs-CH2P1/OBi 89.3 6.45 1.05 1.16 – – – 1.99
p-MWCNTs-D3/ONi 96.3 2.56 0.79 – – – 0.37 –
p-MWCNTs-CH2P1/ONi 84.4 12.4 0.94 1.44 – – 0.77 –
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aniline) are unstable and leads mainly to –C–C– covalent 
bond formation and to a lesser extent to C–NN–C covalent 
bonds (azo connection) on the CNTs. The occurrence of 
nitrogen in the functionalized sample is confirmed by XPS.

It can be noticed that the nitrogen amount seems to be a 
function of the nature of the aromatic side groups (Table 2). 
The above facts clearly indicate the effective modification of 
the purified MWCNTs by the aryl diazonium salts bearing 
tricarboxylic, phosphonic or sulphonic acid groups. Effec-
tive impregnation with ABC was observed with tricarbox-
ylic and phosphonic groups, while successful impregnation 
with NNH was observed only with the phosphonic group 
indicating that it has a higher affinity than the sulphonic 
group for complexing this metal salt. This is based on the 
fact that in p-MWCNTs-S1/ABC, Bi is present only in very 
small quantity, contrary to the other case. So, only p-MWC-
NTs-D3/ABC and p-MWCNTs-CH2P1/ABC were consid-
ered in further experiments. Out of p-MWCNTs-D3/NNH, 
p-MWCNTs-S1/NNH, and p-MWCNTs-CH2P1/NNH, only 
p-MWCNTs-CH2P1/NNH was considered as it has the high-
est amount of Ni. So, along with purified MWCNTs used 
for comparison, only these three samples were considered 
and the complete characterizations were provided for their 
calcined derivatives which are our targeted samples. In the 
case of p-MWCNTs-S1 (Table 2), sodium is present but 
disappears after the impregnation. The metals remain in 
the samples after calcination. Only the effective decorated 
samples are highlighted in bold (Table 2). As it can be seen 
in some of the calcined samples, nitrogen is still present but 
in very low amount, indicating that after calcination, most 
of the aryl connections disappear.

In the XPS fitting, the most intense peak of the core-
level spectra was adjusted with respect to the C1 s level 
(284.6 eV). Thermo Avantage software is used for XPS peak 
fitting. Gauss-Lorentz Mix was very useful for C1s asym-
metric peak fitting [52]. Indeed, FWHM of the peaks fixed 
with reasonable range.

C1  s core-level XPS spectra of purified MWCNTs, 
p-MWCNTs-D3, p-MWCNTs-CH2P1, and p-MWCNTs-
S1 are depicted in Fig. 9. The analysis of C1s XPS data 
of p-MWCNTs-D3 (Fig. 9b) evidences the presence of six 
peaks [53]. The first peak (right side), broad asymmetric and 
intense, is a result of sp2-hybridized graphitic carbon occur-
ring at 284.4 eV. Whereas, the peak at 285.4 is accountable 
for sp3-hybridized character of carbons indicative of struc-
tural imperfections on the CNTs. It is very usual to see pecu-
liar line-shape, asymmetrically broadened C1s peak with a 
very slow decreasing intensity very slowly towards higher 
binding energy side in carbonaceous materials such as 
graphites, vitreous carbons, carbon nanotubes, etc. [54]. This 
is related to its conductive nature. Furthermore, modification 
with different groups creates defects which also contribute 
to the C1s peak shape [55]. Thus, the asymmetry factor is 
related to semi-metal effects happening from conduction 
band electrons [52]. The peaks corresponding to carbon 
attached to oxygen single bonds (C–O), carbon attached to 
oxygen double bonds (C=O) and carbon associated with two 
oxygen atoms (–COO) occur at 286.3, 287.5 and 289.6 eV, 
respectively. It is worth to note that C–O C1s peak compo-
nent in all the samples (Fig. 9), except in p-MWCNTs-D3 
(Fig. 9b), is weak and narrow, because p-MWCNTs-D3 con-
tains three carboxylic groups.

Lastly, the aromatic characteristic shake-up peak of CNTs 
appears at 290.5 eV. While considering p-MWCNTs-CH2P1 
and p-MWCNTs-S1, the peaks related to C–P (Fig. 9c) and 
C–S (Fig. 9d) bounds, respectively, are not clearly detect-
able, because they appear at similar energies as the sp2 C–C 
feature [56–59]. The peaks correspond to P2p (133.7 eV) 
and S2p (168.5 eV) for p-MWCNTs-CH2P1 and p-MWC-
NTs-S1, respectively (Fig. 9). These energies indicate that 
P and S atoms are in an oxidized form. XPS does not pro-
vide direct evidence on the carbon–carbon chemical bond 
between CNTs and added species. However, it does it indi-
rectly by measuring the C–C sp3 component indicative of 
CNTs external surface structural defects resulting from 
the covalent functionalization. When comparing the fit-
tings of purified and functionalized MWCNTs, a significant 
enhancement is observed in the C–C sp3 peak intensity. The 
major difference is found in the case of the tricarboxylic 
group (Fig. 9).

XPS high-resolution spectra of metal oxides pre-
sent in p-MWCNTs-D3/OBi, p-MWCNTs-CH2P1/OBi 
and p-MWCNTs-CH2P1/ONi are revealed in Fig. 10. In 
p-MWCNTs-D3/OBi, the Bi 4f spectrum (Fig. 10a) consists 

Fig. 8  XPS survey scan spectra of a purified MWCNTs, b p-MWC-
NTs-D3/OBi, c p-MWCNTs-CH2P1/OBi and d p-MWCNTs-CH2P1/
ONi
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Fig. 9  C1  s core-level XPS spectra of a purified MWCNTs, b p-MWCNTs-D3, c p-MWCNTs-CH2P1, d p-MWCNTs-S1. P2p spectra of e 
p-MWCNTs-CH2P1, and S2p spectra of f p-MWCNTs-S1
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of a doublet. The peaks at 159.5 and 164.8 eV, separated 
by 5.3 eV, are allotted to Bi  4f7/2 and Bi  4f5/2, respectively. 
This corresponds to  Bi3+ oxidation state of  Bi2O3 form [60]. 
The circumstances are similar for p-MWCNTs-CH2P1/
OBi (Fig. 10b) (Bi  4f7/2 and Bi  4f5/2 at 159.9 and 165.2 eV, 
respectively). In p-MWCNTs-CH2P1/ONi (Fig. 10c), the 
peaks position and pattern of the Ni2p spectrum reveal that 
Ni is mostly in hydroxides form [61].

Reaction pathway

Organic compounds possessing a common functionality 
R-N2

+  X− (where R = alkyl, aryl and X = counter anion) are 
known as diazonium salts. The key mechanism of diazo-
nium formation is displayed in Fig. 11. Mostly, diazonium 
salts synthesis is obtained via reaction of aromatic amines 
and nitrous acids (normally, in situ produced nitrous acid 

is achieved by treating sodium nitrite with a mineral acid) 
resulting in a nitrosyl cation (Fig. 11a). Perchloric acid is 
used in the present case. In this work, the impurities on crude 
MWCNTs are removed by refluxing them in NaOH aqueous 
solutions [62]. A simple technique for their functionalization 
is applied by creating in situ diazonium compounds from 
their respective parent anilines. The main advantage is that 
it does not require isolating the diazonium salts after their 
synthesis. When these react with the carbon surface, they 
form C–NN–C covalent bonds [41, 51], but diazonium salts 
mostly undergo dissociation to form aryl cation (hetero-lytic 
detachment: aryl cation and  N2) and aryl radicals  (e− dona-
tion through a reducing agent, de-diazoniation may occur via 
homo-lytic disconnection, leading to an unstable aryl radical 
and  N2) [63] which form –C–C– covalent bond after react-
ing with carbon surface (Fig. 1). Thus, apart from C–NN–C 
covalent bonds’ formation [64], other possible interface 

Fig. 10  XPS high resolution spectra of metal oxides present in a p-MWCNTs-D3/OBi, b p-MWCNTs-CH2P1/OBi and c p-MWCNTs-CH2P1/
ONi
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bonds are either CNT-Aryl or an interfacial azoether link-
age such as CNT–O–N=N-Aryl. The existence of azoether 
has been proved in the literature using ToF–SIMS [65, 66]. 
Furthermore, the latter can undergo dediazonation reaction 
leading to the formation of CNT-O-Aryl. Eventually, esteri-
fication can occur after reaction of carboxylates with diazo-
nium groups followed by dediazonation. It is also possible 
that the diazonium can be adsorbed and remains attached to 
COO-groups from CNTs by electrostatic interactions [67]. 
The diazonium-grafted functions are reacted with the aque-
ous salt solutions (impregnation step). During this process, 
the acidic ends loose protons and react with the metallic cati-
ons. When IR irradiation is applied, metal precursors (ABC 
or NNH) are more efficiently impregnated on the MWCNTs 
surfaces [40]. After calcination, small nanoparticles are 
formed at the surface of the MWCNTs (Fig. 1).

Conclusions

The different functionalizations (5- amino-1,2,3-benzenet-
ricarboxylic acid, 4-aminobenzylphosphonic acid and sul-
fanilic acid) impact the decorations of MWCNTs with oxides 
of bismuth and nickel nanoparticles. Crystalline bismuth 
oxide decorations were successfully achieved using function-
alized MWCNTs with 5- amino-1,2,3-benzenetricarboxylic 

acid (particle size ranging from 1-10 nm, ~ 2.4 nm Gaussian 
mean diameter) and 4-aminobenzylphosphonic acid (par-
ticle size ranging from 1 to 6 nm, ~ 1.9 nm Gaussian mean 
diameter) functionalized MWCNTs. However, only 4-amin-
obenzylphosphonic acid functionalized MWCNTs showed 
sufficient affinity towards nickel oxides nanoparticles 
(mainly in hydroxide form, particle size ranging from 1 to 
6 nm and ~ 2.3 nm Gaussian mean diameter). Bismuth oxide 
nanocrystal decoration on MWCNTs using 5- amino-1,2,3-
benzenetricarboxylic acid is considered for the first time. 
The increasing anchoring abilities of the different functions 
are as follows: sulfonic < carboxylic < phosphonic. 4-Amin-
obenzylphosphonic acid has been utilized fruitfully for the 
first time to decorate MWCNTs with metal oxide nanopar-
ticles (Ni and Bi). Its anchoring capacities make it a promis-
ing molecule for yet-to-develop new materials by decorating 
MWCNTs with other metallic nanoparticles. The present 
methodology, in addition to its simplicity and effectiveness, 
is valid for large-scale preparations.
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Fig. 11  Mechanism of the chemical route followed for MWCNTs functionalization: a formation of  NO+ and b generation of diazonium species



312 Journal of Nanostructure in Chemistry (2019) 9:299–314

1 3

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict of 
interest.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

 1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 
56–58 (1991)

 2. Bhakta, A.K., Mascarenhas, R.J., D’Souza, O.J., Satpati, A.K., 
Detriche, S., Mekhalif, Z., Dalhalle, J.: Iron nanoparticles deco-
rated multi-wall carbon nanotubes modified carbon paste electrode 
as an electrochemical sensor for the simultaneous determination 
of uric acid in the presence of ascorbic acid, dopamine and l-tyros-
ine. Mater. Sci. Eng. C 57, 328–337 (2015)

 3. Kouser, R., Vashist, A., Zafaryab, M., Rizvi, M.A., Ahmad, S.: 
Biocompatible and mechanically robust nanocomposite hydrogels 
for potential applications in tissue engineering. Mater. Sci. Eng. 
C 84, 168–179 (2018)

 4. Wang, H., Zhou, H., Zhang, W., Yao, S.: Urea-assisted synthesis 
of amorphous molybdenum sulfide on P-doped carbon nanotubes 
for enhanced hydrogen evolution. J. Mater. Sci. 53, 8951–8962 
(2018)

 5. Erady, V., Mascarenhas, R.J., Satpati, A.K., Bhakta, A.K., Mekha-
lif, Z., Delhalle, J., Dhason, A.: Carbon paste modified with Bi 
decorated multi-walled carbon nanotubes and CTAB as a sensitive 
voltammetric sensor for the detection of Caffeic acid. Microchem. 
J. 146, 73–82 (2019)

 6. Georgakilas, V., Perman, J.A., Tucek, J., Zboril, R.: Broad family 
of carbon nanoallotropes: classification, chemistry, and applica-
tions of fullerenes, carbon dots, nanotubes, graphene, nanodia-
monds, and combined superstructures. Chem. Rev. 115, 4744–
4822 (2015)

 7. Joyeux, B.X., Mangiagalli, P., Pinson, J.: Localized attachment of 
carbon nanotubes in microelectronic structures. Adv. Mater. 21, 
4404–4408 (2009)

 8. Farghali, A., Tawab, H.A.A., Moaty, S.A.A., Khaled, R.: Func-
tionalization of acidified multi-walled carbon nanotubes for 
removal of heavy metals in aqueous solutions. J. Nanostruct. 
Chem. 7, 101–111 (2017)

 9. Elyassi, M., Rashidi, A., Hantehzadeh, M.Reza, Elahi, S.M.: 
Hydrogen storage behaviors by adsorption on multi-walled car-
bon nanotubes. J. Inorg. Organomet. Polym. Mater. 27, 285–295 
(2017)

 10. Jiang, M., Ou, G., Ma, R., Kao, K., Lin, W., Chen, J.: Deposition-
float-assembly formation mechanism of continuous hollow cylin-
drical carbon nanotube sock via floating catalyst chemical vapor 
deposition. J. Mater. Sci. 54, 6961–6970 (2019)

 11. Bhakta, A.K., Kumari, S., Hussain, S., Martis, P., Mascarenhas, 
R.J., Delhalle, J., Mekhalif, Z.: Synthesis and characterization of 
maghemite nanocrystals decorated multi-wall carbon nanotubes 
for methylene blue dye removal. J. Mater. Sci. 54, 200–216 (2019)

 12. Kilinç, E.: γ-Fe2O3 magnetic nanoparticle functionalized with 
carboxylated multi walled carbon nanotube: synthesis, charac-
terization, analytical and biomedical application. J. Magn. Magn. 
Mater. 401, 949–955 (2016)

 13. Chungchamroenkit, P., Chavadej, S., Yanatatsaneejit, U., Kiti-
yanan, B.: Residue catalyst support removal and purification of 
carbon nanotubes by NaOH leaching and froth flotation. Sep. 
Purif. Technol. 60, 206–214 (2008)

 14. Al-kahtani, A.A., Almuqati, T., Alhokbany, N., Ahamad, T., Nau-
shad, M., Alshehri, S.M.: A clean approach for the reduction of 
hazardous 4-nitrophenol using gold nanoparticles decorated mul-
tiwalled carbon nanotubes. J. Clean. Prod. 191, 429–435 (2018)

 15. Elbasuney, S., Zaky, M.G., Radwan, M., Sahu, R.P., Puri, I.K.: 
Synthesis of CuO nanocrystals supported on multiwall carbon 
nanotubes for nanothermite applications. J. Inorg. Organomet. 
Polym Mater. 29, 1407–1416 (2019)

 16. Bhakta, A.K., Detriche, S., Kumari, S., Hussain, S., Martis, P., 
Mascarenhas, R.J., Delhalle, J., Mekhalif, Z.: Multi-wall carbon 
nanotubes decorated with bismuth oxide nanocrystals using infra-
red irradiation and diazonium chemistry. J. Inorg. Organomet. 
Polym Mater. 28, 1402–1413 (2018)

 17. Mccafferty, L., Stolojan, V., King, S.G., Zhang, W., Haq, S., 
Silva, S.R.P.: Decoration of multiwalled carbon nanotubes with 
protected iron nanoparticles. Carbon N. Y. 84, 47–55 (2015)

 18. Scarselli, M., Camilli, L., Castrucci, P., Nanni, F., Gobbo, S.Del, 
Gautron, E., Lefrant, S., Crescenzi, M.De: In situ formation of 
noble metal nanoparticles on multiwalled carbon nanotubes and 
its implication in metal–nanotube interactions. Carbon N. Y. 50, 
875–884 (2012)

 19. Manasa, G., Bhakta, A.K., Mekhalif, Z., Mascarenhas, R.J.: Vol-
tammetric study and rapid quantification of resorcinol in hair dye 
and biological samples using ultrasensitive maghemite/MWCNT 
modified carbon paste electrode. Electroanalysis 31, 1363–1372 
(2019)

 20. Bhakta, A.K., Detriche, S., Martis, P., Mascarenhas, R.J., Del-
halle, J., Mekhalif, Z.: Decoration of tricarboxylic and monocar-
boxylic aryl diazonium functionalized multi-wall carbon nano-
tubes with iron nanoparticles. J. Mater. Sci. 52, 9648–9660 (2017)

 21. Khan, A.A., Kumari, S., Chowdhury, A., Hussain, S.: Phase tuned 
originated dual properties of cobalt sulfide nanostructures as pho-
tocatalyst and adsorbent for removal of dye pollutants. ACS Appl. 
Nano Mater. 1, 3474–3485 (2018)

 22. Eteya, M.M., Rounaghi, G.H., Deiminiat, B.: Fabrication of a new 
electrochemical sensor based on Au-Pt bimetallic nanoparticles 
decorated multi-walled carbon nanotubes for determination of 
diclofenac. Microchem. J. 144, 254–260 (2019)

 23. Yang, Z., Li, L., Hsieh, C., Juang, R.: Co-precipitation of magnetic 
Fe3 O4 nanoparticles onto carbon nanotubes for removal of cop-
per ions from aqueous solution. J. Taiwan Inst. Chem. Eng. 82, 
56–63 (2018)

 24. Chaudhary, D., Singh, S., Vankar, V.D., Khare, N.: ZnO nano-
particles decorated multi-walled carbon nanotubes for enhanced 
photocatalytic and photoelectrochemical water splitting. J. Pho-
tochem. Photobiol. A Chem. 351, 154–161 (2018)

 25. Lee, S., Ham, J., Jeon, K., Noh, J., Lee, W.: Direct observation of 
the semimetal-to-semiconductor transition of individual single-
crystal bismuth nanowires grown by on-film formation of nanow-
ires. Nanotechnology. 21, 405701–405706 (2010)

 26. Zhou, G., Li, L., Li, G.H.: Semimetal to semiconductor transition 
and thermoelectric properties of bismuth nanotubes. J. Appl. Phys. 
109, 1143111–1143118 (2011)

 27. Sharma, S., Mehta, S.K., Ibhadon, A.O., Kansal, S.K.: Fabrica-
tion of novel carbon quantum dots modified bismuth oxide (a-Bi2 
O3/C-dots): material properties and catalytic applications. J. Col-
loid Interface Sci. 533, 227–237 (2019)

 28. Ahamed, M., Akhtar, M.J., Khan, M.A.M., Alrokayan, S.A., 
Alhadlaq, H.A.: Oxidative stress mediated cytotoxicity and apop-
tosis response of bismuth oxide (Bi2O3) nanoparticles in human 
breast cancer (MCF-7) cells. Chemosphere 216, 823–831 (2019)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


313Journal of Nanostructure in Chemistry (2019) 9:299–314 

1 3

 29. Suib, N.R.M., Nur-Akasyah, J., Aizat, K.M., Abd-Shukor, R.: 
Electrical properties of nano Bi2O3 added (Bi, Pb) Sr-Ca-Cu-O 
superconductor. J. Phys: Conf. Ser. 1083, 1–6 (2018)

 30. Malligavathy, M., Iyyapushpam, S., Nishanthi, S.T., Padiyan, D.P.: 
Remarkable catalytic activity of Bi2O3/TiO2 nanocomposites 
prepared by hydrothermal method for the degradation of methyl 
orange. J. Nanoparticle Res. 19, 144 (2017)

 31. Lu, Y., Zhao, Y., Zhao, J., Song, Y., Huang, Z., Gao, F., Li, N., 
Li, Y.: Induced aqueous synthesis of metastable β-Bi2O3 micro-
crystals for visible-light photocatalyst study. Cryst. Growth Des. 
15, 1031–1042 (2015)

 32. Schlesinger, M., Schulze, S., Hietschold, M., Mehring, M.: Meta-
stable β-Bi2O3 nanoparticles with high photocatalytic activity 
from polynuclear bismuth oxido clusters. Dalt. Trans. 42, 1047–
1056 (2013)

 33. Chowdhury, A., Khan, A.A., Kumari, S., Hussain, S.: Superad-
sorbent Ni–Co–S/SDS nanocomposites for ultrahigh removal of 
cationic, anionic organic dyes and toxic metal ions: kinetics, iso-
therm and adsorption mechanism. ACS Sustain. Chem. Eng. 7, 
4165–4176 (2019)

 34. Qiu, S., Zhou, Z., Dong, J., Chen, G.: Preparation of Ni nanopar-
ticles and evaluation of their tribological performance as potential 
additives in oils. J. Tribol. 123, 441–443 (2001)

 35. Tian, Y., Zhou, X., Huang, L., Liu, M.: A facile gas–liquid co-
deposition method to prepare nanostructured nickel hydroxide 
for electrochemical capacitors. J. Inorg. Organomet. Polym. 23, 
1425–1430 (2013)

 36. Gong, L., Liu, X., Su, L.: Facile solvothermal synthesis Ni(OH) 2 
nanostructure for electrochemical capacitors. J. Inorg. Organomet. 
Polym. 21, 866–870 (2011)

 37. Patil, U.M., Gurav, K.V., Fulari, V.J., Lokhande, C.D., Joo, 
O.H.S.: Characterization of honeycomb-like “β -Ni(OH)2” thin 
films synthesized by chemical bath deposition method and their 
supercapacitor application. J. Power Sources. 188, 338–342 
(2009)

 38. Cerovac, S., Guzsvány, V., Kónya, Z., Ashrafi, A.M., Svancara, 
I., Roncevic, S., Kukovecz, Á., Dalmacija, B., Vytras, K.: Trace 
level voltammetric determination of lead and cadmium in sedi-
ment pore water by a bismuth-oxychloride particle-multiwalled 
carbon nanotube composite modified glassy carbon electrode. 
Talanta 134, 640–649 (2015)

 39. Venugopal, B.R., Detriche, S., Delhalle, J., Mekhalif, Z.: Effect 
of infrared irradiation on immobilization of ZnO nanocrystals on 
multiwalled carbon nanotubes. J. Nanopart. Res. 14, 1079 (2012)

 40. Martis, P., Venugopal, B.R., Seffer, J.-F., Delhalle, J., Mekha-
lif, Z.: Infrared irradiation controlled decoration of multiwalled 
carbon nanotubes with copper/copper oxide nanocrystals. Acta 
Mater. 59, 5040–5047 (2011)

 41. Mahouche-Chergui, S., Gam-Derouich, S., Mangeney, C., Che-
himi, M.M.: Aryl diazonium salts: a new class of coupling agents 
for bonding polymers, biomacromolecules and nanoparticles to 
surfaces. Chem. Soc. Rev. 40, 4143–4166 (2011)

 42. Gonzalez-Gaitan, C., Ruiz-Rosas, R., Morallon, E., Cazorla-
Amoros, D.: Functionalization of carbon nanotubes using amin-
obenzene acids and electrochemical methods. Electroactivity 
for the oxygen reduction reactions. Int. J. Hydrogen Energy. 40, 
11242–11253 (2015)

 43. Mohamed, A.A., Salmi, Z., Dahoumane, S.A., Mekki, A., Carbon-
nier, B., Chehimi, M.M.: Functionalization of nanomaterials with 
aryldiazonium salts. Adv. Colloid Interface Sci. 225, 16–36 (2015)

 44. Cao, A., Xu, C., Liang, J., Wu, D., Wei, B.: X-ray diffraction 
characterization on the alignment degree of carbon nanotubes. 
Chem. Phys. Lett. 344, 13–17 (2001)

 45. Li, Y., He, C., Timofeeva, E.V., Ding, Y., Parrondo, J., Segre, C., 
Ramani, V.: β -Nickel hydroxide cathode material for nano-sus-
pension redox flow batteries. Front. Energy. 11, 401–409 (2017)

 46. Largani, S.H., Pasha, M.A.: The effect of concentration ratio and 
type of functional group on synthesis of CNT–ZnO hybrid nano-
material by an in situ sol–gel process. Int. Nano Lett. 7, 25–33 
(2017)

 47. Xin, F., Li, L.: Decoration of carbon nanotubes with silver nano-
particles for advanced CNT/polymer nanocomposites. Compos. 
Part A 42, 961–967 (2011)

 48. Dettlaff, A., Sawczak, M., Klugmann-Radziemska, E., 
Czylkowski, D., Miotkb, R., Wilamowska-Zawłocka, M.: High-
performance method of carbon nanotubes modification by micro-
wave plasma for thin composite films preparation. RSC Adv. 7, 
31940–31949 (2017)

 49. Sen, B., Kuzu, S., Demir, E., Akocak, S., Sen, F.: Highly mono-
disperse RuCo nanoparticles decorated on functionalized mul-
tiwalled carbon nanotube with the highest observed catalytic 
activity in the dehydrogenation of dimethylamine-borane. Int. J. 
Hydrogen Energy 42, 23292–23298 (2017)

 50. Zhang, J., Zhang, X., Chen, S., Gong, T., Zhu, Y.: Surface-
enhanced Raman scattering properties of multi-walled carbon 
nanotubes arrays-Ag nanoparticles. Carbon N. Y. 100, 395–407 
(2016)

 51. Maho, A., Detriche, S., Fonder, G., Delhalle, J., Mekhalif, Z.: 
Electrochemical co-deposition of phosphonate-modified carbon 
nanotubes and tantalum on nitinol. ChemElectroChem. 1, 896–
902 (2014)

 52. Smith, M., Scudiero, L., Espinal, J., Mcewen, J., Garcia-perez, M.: 
Improving the deconvolution and interpretation of XPS spectra 
from chars by ab initio calculations. Carbon N. Y. 110, 155–171 
(2016)

 53. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., 
Siokou, A., Kallitsis, I., Galiotis, C.: Chemical oxidation of mul-
tiwalled carbon nanotubes. Carbon N. Y. 46, 833–840 (2008)

 54. Yang, D., Sacher, E.: Carbon 1 s X-ray photoemission line shape 
analysis of highly oriented pyrolytic graphite: the influence of 
structural damage on peak asymmetry. Langmuir 22, 860–862 
(2006)

 55. Estrade-szwarckopf, H.: XPS photoemission in carbonaceous 
materials: a ‘“defect”’ peak beside the graphitic asymmetric peak. 
Carbon N. Y. 42, 1713–1721 (2004)

 56. Puziy, A.M., Poddubnaya, O.I., Socha, R.P., Gurgul, J., Wis-
niewski, M.: XPS and NMR studies of phosphoric acid activated 
carbons. Carbon N. Y. 46, 2113–2123 (2008)

 57. Liu, Z., Peng, F., Wang, H., Yu, H., Tan, J., Zhu, L.: Novel phos-
phorus-doped multiwalled nanotubes with high electrocatalytic 
activity for O2 reduction in alkaline medium. Catal. Commun. 
16, 35–38 (2011)

 58. Larrude, D.G., da Costa, M.M.E.H., Monteiro, F.H., Pinto, A.L., 
Freire Jr., F.L.: Characterization of phosphorus-doped multiwalled 
carbon nanotubes. J. Appl. Phys. 111, 0643151–0643156 (2012)

 59. Siow, K.S., Britcher, L., Kumar, S., Griesser, H.J.: XPS study of 
sulfur and phosphorus compounds with different oxidation states. 
Sains Malays. 47, 1913–1922 (2018)

 60. Lee, K.Y., Hwang, H., Kim, T.H., Choi, W.: Enhanced photo-
catalytic activity of bismuth precursor by rapid phase and surface 
transformation using structure-guided combustion waves. ACS 
Appl. Mater. Interfaces. 8, 3366–3375 (2016)

 61. Biesinger, M.C., Payne, B.P., Lau, L.W.M., Gerson, A., Smart, 
R.S.C.: X-ray photoelectron spectroscopic chemical state quanti-
fication of mixed nickel metal, oxide and hydroxide systems. Surf. 
Interface Anal. 41, 324–332 (2009)

 62. Bhakta, A.K., Mascarenhas, R.J., Martis, P., Delhalle, J., Mekha-
lif, Z.: Multi-wall carbon nanotubes decorated with barium oxide 
nanoparticles. Synth. Catal. Open Access. 3, 1–4 (2018)

 63. Blanch, A.J., Lenehan, C.E., Quinton, J.S.: Dispersant effects in 
the selective reaction of aryl diazonium salts with single-walled 



314 Journal of Nanostructure in Chemistry (2019) 9:299–314

1 3

carbon nanotubes in aqueous solution. J. Phys. Chem. C 116, 
1709–1723 (2012)

 64. Doppelt, P., Hallais, G., Pinson, J., Podvorica, F., Verneyre, S.: 
Surface modification of conducting substrates. Existence of azo 
bonds in the structure of organic layers obtained from diazonium 
salts. Chem. Mater. 19, 4570–4575 (2007)

 65. Jacques, A., Chehimi, M.M., Poleunis, C., Delcorte, A., Delhalle, 
J., Mekhalif, Z.: Grafting of 4-pyrrolyphenyldiazonium in situ 
generated on NiTi, an adhesion promoter for pyrrole electropoly-
merisation? Electrochim. Acta 211, 879–890 (2016)

 66. Jacques, A., Saad, A., Chehimi, M.M., Poleunis, C., Delcorte, A., 
Delhalle, J., Mekhalif, Z.: Nitinol modified by In situ generated 

diazonium salts as adhesion promoters for photopolymerized pyr-
role. Chem. Sel. 3, 11800–11808 (2018)

 67. Li, Q., Batchelor-McAuley, C., Lawrence, N.S., Hartshorne, R.S., 
Compton, R.G.: The synthesis and characterisation of controlled 
thin sub-monolayer films of 2-anthraquinonyl groups on graphite 
surfaces. New J Chem. 35, 2462–2470 (2011)

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


