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Abstract 

In recent years, the video game field has been used a lot for testing machine learning algorithms but 

none of them specifically targeted the classification of replays of video games. This is why this master 

thesis is oriented towards the automatic annotation of replays using HMMs.  

Several formats of replay files exist, and the format that is used during this master thesis is one using 

multivariate times series in order to represent the game’s state at any given moment of a replay. 

The usability of HMMs for the replay annotation problem has been evaluated using three experiments 

and the results are that HMMs could be useful for some annotations but more experiments have to be 

conducted in order to have a final word. 

Keywords:  replay annotation – HMMs – semi supervised HMMs – time series 

 

 

 

 

 

Résumé 

Ces dernières années, le domaine du jeu vidéo a été beaucoup utilisé pour tester des algorithmes 

d’apprentissage automatique, mais la classification des replays de jeux vidéo n’a pas été abordée 

spécifiquement. C’est pourquoi ce mémoire est orienté vers l’annotation automatique des rediffusions 

de jeu vidéo en utilisant des HMMs 

Il existe plusieurs formats de fichiers de replays et le format utilisé durant ce mémoire est un format 

utilisant les séries temporelles à plusieurs variables afin de représenter l’état du jeu tout moment d’un 

replay. 

L’utilisabilité des HMMs dans le problème d’annotation de replays a été évaluée à l’aide de trois 

expériences et les résultats nous montrent que les HMMs pourraient être utiles pour certaines 

annotations simples cependant, d’autres expériences doivent être menées afin d’avoir un avis final sur 

le sujet. 
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1. Introduction 

This chapter will introduce the domain of e-sport, which is the domain for which a solution is 

proposed, as well as the big picture about replay annotation in video games and will. 

1.1. Contextualization 

E-sport is the term used to refer to electronic sport, such as video game competitions. An e-sport 

event may not be considered a physically-challenging event, but like the game of checkers it can be 

characterized as a mental sport. E-sport events really started in the late 90s when people gathered at 

LAN parties, places where people had to bring their own computer and monitors, in order to fight 

against each other in their favourite type of video games (Figure 1). LAN parties usually took place 

between video game amateurs, but with the growing number of people interested in e-sport, they 

slowly became huge e-sport tournaments where good players or good teams of players could win a lot 

of money. 

  

Figure 1: example of LAN party taking place in the 90s. Chris Dickens. 20 April 2005 05:04. LAN Party How to – Part 1: 
Planning and Power, < https://www.smallnetbuilder.com/lanwan/lanwan-howto/24248-lanpartyhowtopt1> 

Nowadays, the most popular types of competitive e-sport games are multiplayer online battle arenas 

(MOBA) such as League of Legends, battle royal games like Fortnite, first person shooters (FPS) like 

Counter Strike Global Offensive (CSGO) and real time strategy games (RTS) such as StarCraft II. 

According to The Loadout (https://www.theloadout.com/biggest-esports-games), a news network 

dedicated to the gaming community, grouping together the four most popular e-sport games of 2019 

(League of Legends, Fortnite, Dota 2 and CSGO) and adding up their total number of viewers results 

in a staggering 9.4 million people watching e-sport tournaments (3.9 million for League of Legends, 

2.3 million for Fortnite, 2 million for Dota 2 and 1.2 million for CSGO). The amount of money used 

as cash prizes exceeds a total of $176 million thus encouraging good video game players to pursue a 

career in the e-sport industry. 

A professional e-sport player, or pro player for short, is someone who plays video games for a living. 

It is often believed that being a professional e-sport player is easy since, unlike other sports where you 

need equipment and good physical condition, e-sport only requires a computer with an internet 

connection. Nevertheless, anyone that has tried making a living from e-sport soon realizes that the 

competition is harsh and that only the few best are able to live off it. 

https://www.smallnetbuilder.com/lanwan/lanwan-howto/24248-lanpartyhowtopt1
https://www.theloadout.com/biggest-esports-games
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The International is a good example of a famous e-sport tournament. It is an annual Dota 2 tournament 

(Figure 2), which in 2019 opposed 18 teams of 5 players and, at the end, each team won a prize 

according to its ranking. The last place (the 18
th
 place) was awarded $85,756 and the first place won 

$15,607,638. 

 

Figure 2: The International 2019 e-sport event, Monster Energy, 27 August 2019. 
<https://www.monsterenergy.com/news/the-international-2019-recap> 

Thanks to the internet, more and more professional replays (video of a video game matches) are shared 

online. This and the increasing popularity of e-sport made jobs such as professional replay casters a 

reality. This expresses a need for in-depth replay analysis since the two main roles of casters are to 

entertain and explain what the replay players are doing, thinking and planning. 

For now, the current (i) ways for replay spectators to know what is going on during any given time of 

a replay are either watching pro casters analyse and comment on a replay (Figure 4) or (ii) loading up 

a replay themselves and trying to interpret what the players’ strategies are with some help provided by 

the game itself. The general help provided by the game itself is under the form of a tag on a timeline of 

the replay. Tags represent moments when a specific action took place. Such actions are low-level 

actions such as when a player died or when a player killed another player (Figure 3). The problem with 

watching a replay is that it is time consuming since you have to watch the entirety of the replay, and it 

can last from one minute up to several hours depending on the type of games and the players’ level. 

Another annoying factor for players trying to improve their skill is the fact that replays are not often 

labelled or time-stamped by the casters or by the game. This means that for a player to find a specific 

moment of a replay, like when fights are taking place or when a player is using a specific strategy, the 

user needs to watch the entire replay and note where its perception of interesting things are happening 

(where he/she observes interesting things happening). 

 

Figure 3: Replay of CSGO where skulls are showing during which round of the competitive match the player 

MeatAlive (user name) killed an enemy player. Skull with a hole in it shows when the player performed a headshot. 

https://www.monsterenergy.com/news/the-international-2019-recap
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Figure 4: StarCraft II caster analysing a pro replay on YouTube.1 

Exploring the idea of replay annotation, we would like to create an automatic replay annotation system 

that offers higher level labels to the user contrarily with what is done now (Figure 3.). In order to show 

the usability of such system, the RTS game StarCraft II is used. 

1.2. Problem Statement 

To our knowledge, video game replay annotation using machine learning is something that has not 

been done before. For now, one of the two ways to know what is going on inside a replay is to watch it  

in its entirety and have the skills necessary to know what is happening at any given moment. The other 

way consists of watching a caster commenting on a replay. In both cases, this is time consuming and 

this is why using a simple, yet well-known, machine learning algorithm should be useful to solve this 

problem that more and more players are experiencing. 

This problem is composed of two distinct sub-problems. First, a replay needs to be able to express the 

state of the StarCraft II game at any given time. This means that if a raw replay is not sufficient to 

represent the game’s state at any given time, our solution will need to process it in order to make it 

usable by our machine-learning model. The main reason why a replay would not be sufficient to 

represent the game state is that replays are usually made in such a way that they minimize the replay’s 

size while allowing the game’s engine to play the replay back. Second, we need to be able to train 

HMM on fully labelled and partially labelled replays since a user is not restricted to entire replay 

annotations.  

1.3. Outline 

The structure in chapters for this master thesis is the following. First, after this introduction (chapter 

1.), there will be a chapter dedicated to the StarCraft II game’s mechanic and replay file format 

(chapter 2.). Second, the state of the art about automatic replay annotation and hidden Markov models 

in general is presented (chapter 3.) followed by a next chapter specifically designed to explain the 

                                                           
1 LowkoTV. “StarCraft 2: Serral Replay Analysis” Online video clip. Youtube, 6 August 2019. 

https://www.youtube.com/watch?v=M0W1_NzcSP8&t=3026s 

https://www.youtube.com/watch?v=M0W1_NzcSP8&t=3026s
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training process of hidden Markov models (chapter 4.). After that, a chapter regroups and explains the 

main contributions of this master thesis (chapter 5.) and finally, experiments are conducted (chapter 6.) 

and their results are analyses and discussed (chapter 7.). This master thesis ends on the conclusion and 

future work chapter (chapter 8.). 
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2. StarCraft II 

As mentioned at the end of the contextualization section, section 1.1, the video game StarCraft II will 

be our use case. This means that the models created for the test of the proposed method will be models 

trained on data issued from StarCraft II replays. This section is therefore specifically designed to 

explain what StarCraft II is. 

StarCraft II is a real-time strategy (RTS) game that was developed by Blizzard Entertainment in 2010. 

It is a science fiction and military combat-oriented game that contains a single player campaign as well 

as a multiplayer arena aspect. In multiplayer, players all around the globe can compete against one 

another and in recent years, the increasing popularity of the game made competitive StarCraft II 

players able to earn a living playing it. Players dominating 2020 are players such as Dark, Maru 

(Figure 5.) and Serral (these are their in-game names). 

 
Figure 5: Maru (Terran) vs Dark (Zerg) - Quarterfinals - 2019 WCS2 

 

The goal of a StarCraft II multiplayer game is to beat its opponent. For this, a player has to develop 

his/her in-game economy as well as create military units in order to attack the enemy faction and 

ultimately destroy it. A game ends when the opponent surrenders or when all his/her production 

buildings are destroyed.  

There are three main factions that the user can choose from to start a multiplayer game. The first one is 

called the “Terran”, which is the human faction of the game. The second is the “Zerg” faction, an 

alien race with insect-like units. The last one is the “Protoss” faction, which represents a 

technologically advanced alien species. Each faction has its own units and its own strength and 

weakness. For example, the Zerg faction has relatively cheap units that are weak and thus is able to 

quickly overwhelm its opponent’s main base without compromising its in-game economy. On the 

other hand, the Protoss faction has expensive units that are extremely strong: they have lots of health 

points (HP) and deal tons of damage. This usually results in a smaller amount of military units for the 

                                                           
2 StarCraft Esports. « Maru vs Dark TvZ – Quarterfinals – 2019 WCS Global Finals – StarCraft II” Online video clip. 

Youtube, 2 November 2019. https://www.youtube.com/watch?v=T7fExr5SBc4 

https://www.youtube.com/watch?v=T7fExr5SBc4
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Protoss compared to its opponent. The Terran faction is somewhere in between those two previous 

factions because its units prices are usually affordable and the damage they can deal during a fight is 

reasonable. Nevertheless, it is important to note that all these three factions are balanced and this has 

been achieved thanks to multiple game’s updates and nerfs (action of reducing the damage of a 

previously overpowered attack or increasing the price of previously inexpensive, game changing 

objects like unlocks or upgrades, etc.). 

As mentioned earlier, the game contains an economical aspect. This aspect can be observed by the 

players by looking at their current resources count (minerals and vespene gas count), their number of 

town halls and their current number of workers extracting resources (Figure 6). There are two types of 

resources: minerals and vespene gas, which are only collectable using the faction’s workers and its 

town hall. Workers have to deliver the collected resources to the town hall in order for the resources to 

be used by the respective player. One town hall and twelve workers are available at the beginning of 

any StarCraft II competitive game and this allows the players to start their economy and build new 

units and structures in order to win the match. 

Concerning the structures, there are five main types of them. The first one is the town hall (or main 

building), which is used for the creation of workers and the gathering of resources since all collectable 

resources have to be brought back to the town hall. The second type of structure contains only one 

building and this building allows the vespene gas extraction from geysers. This special building has to 

be placed on unoccupied geysers and, once built, it can be used by workers to collect vespene gas. 

Compared to the mineral resources which only need a worker in order to be extracted, the vespene gas 

extraction requires a refinery, an assimilator or an extractor according to the player’s faction. The next 

type of structure, the supply depot, directly affects the total number of units a player can have on the 

map, with the maximum unit cap being set at 200 living units at any given time. Then there are the 

production buildings, which are used by the Protoss and Terran factions to produce military units. For 

the Zerg faction, the hatchery (the Zerg faction’s town hall) is the one building responsible for all the 

unit production. It acts like a beehive where the queen lays eggs in order to give birth to workers or 

military bees. The last type of building is the upgrade building type. These structures’ only goal is to 

offer the player upgrades to the attack and to the defence of most of its military units or infrastructures. 

 

Figure 6: example of resources gathering from a Protoss player. 

Nexus  

(town hall) 

Minerals 

Probe 

(worker) 

Geysers 

Assimilator 

(refinery) 
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A good StarCraft II player is a player that manages the macro and micro levels of the game while at 

the same time reading his/her opponent’s tactic. This means that the player has to be able to implement 

a long-term strategy as well as micro managing fights while scouting the map to find out what the 

other player is planning to do in order to counter it and win the game. 

This last aspect is related to fog of war (Figure 7.) and the technology tree of each faction. In order for 

a faction to produce a unit, the unit needs to be unlocked in the technology tree. Unlocks are done by 

building a structure lower in the tree. If a player sees some specific building of the opponent, he could 

potentially guess what military units will come to attack him in the near future. Guessing the 

opponent’s tactic is even more difficult since the game’s map is covered with a fog of war that only 

disappears around each unit or building of the player. This is why pro players actively send units to 

scout the enemy base. Not sending one of its workers (or overlord for the Zerg faction) scouting at the 

beginning of a game is usually a sign that the player is inexperienced. 

 

Figure 7: Zerg sending an Overlord to scout the enemy base and seeing a military unit guarding the main base entry 

as well as a building being created. 

An important aspect of StarCraft II is that it is a one hundred percent deterministic video game. No 

aspect of the game relies on randomness and this small detail affects how players play and how the 

game saves its replays. For the player, knowing that no random actions can happen means that he/she 

can more easily determine a current objective. For example, if the time taken for a unit to open fire on 

an enemy unit was random, let’s say between zero and one second, a player might think twice before 

attacking a unit. It could even be game breaking, such as in the extreme example when a competitive 

CSGO match opposing two professional teams (Cloud9 and Fnatic)
3
 was taking place on the Overpass 

map and a round was lost due to a random game event. This event was the passage of a train which 

cancelled a player’s action. 

Using StarCraft II replays and extracting meaningful information from them is not straightforward. 

This is because replays’ main task is to be played again thanks to some game’s engine. To optimize 

this task, replay’s structure is minimalistic and usually only uses one sequence of the players’ actions. 

                                                           
3 3kliksphilip. « Cloud 9 VS Fnatic : Did the train ruin it?” Online video clip. Youtube, 6 July 2015. 

https://www.youtube.com/watch?v=3wQib7egjMk 

Visible area 

for the Zerg 

player 

Visible area of the map 

https://www.youtube.com/watch?v=3wQib7egjMk
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This is possible because for deterministic games, else more information about the replays need to be 

saved as well. This sequence allows the game’s engine to easily play back the match but, without the 

proper program it is impossible to know the number of units killed by a player at any given time, or its 

army count and composition, etc. 

 

Figure 8: first elements contained in a raw StarCraft II replay file. In this case, the initialization of player Serral and 

player AGOElazer as well as mineral fields initialisation. 

 

Figure 9: raw StarCraft II replay where camera events, right click events and a unit selection event are taking place. 

There are three methods available to use replays in our machine learning algorithm. The first method 

is to use raw replays and to train a model on the list of players’ actions (Figure 8.). This implies that 

spammed keys and noise will be present in the data and this need to be addressed. A spam key is a key 

that is repeatedly pushed in order for a pro player to warmup or keep the rhythm during a game 

because it is important for them to have a high rate of actions per minutes (APM). The second method 

is the more human-like method and is used by the latest iteration of the AlphaStar artificial 
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intelligence [1]. It consists of viewing the world through the lens of a camera and to interpret the 

replay like a human would do. This means using every frame of the replayed game as data. This can 

cause problems due to the extreme complexity of information extraction from raw-pixel data. The last 

of the three methods consists of modifying raw StarCraft II replays into an appropriate format 

(Figure 9.). This can be done using libraries specially developed to manipulate replays (sc2reader 0.7.0). 

In resume, StarCraft II is a 100% deterministic game that is extremely popular, thus providing a quit 

abundant source of replay files and there exist three ways of using replay files as data for our 

algorithms. Having introduced the replay annotation problem and the video game used as a use case 

by this master thesis, the next section will review what has been done for automatic replay annotation. 
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3. State of the Art – Automatic Replay Annotation (Sequence Labelling) 

Machine learning algorithms have been applied on video games since decades. It started with checkers 

in 1959 [2] and continued todays with real time strategy games (RTS) like StarCraft II with the 

famous AlphaStar AI [3] or on the multiplayer online battle arena (MOBA) Dota II with the AI of 

Elon Musk’s start-up (OpenAI) [4]. In recent years, more and more video games allow replay analysis 

and data extraction. This in turns allows for easier machine learning algorithm tests to be performed. 

Weirdly enough, the problem of automatic replay annotation, which is closely related to the sequence 

labelling problem, has not been tackled even though thousands of unlabelled replays are available and 

even though thousands of players wish for such solution. In order to have a big picture of what has 

been done to solve the problem of replay annotation, a first section will explain the type of replay 

representation chosen for this master thesis (section 3.1). A second section (section 3.2) introduces the 

popular machine learning algorithms used to provide a sequence of label when a sequence of 

observation is given. In our case, the sequence of observations will be a sequence of the game’s state 

representation. Finally, since this master thesis aims to demonstrate the usefulness of HMMs in 

automatic replay annotation, a section will be dedicated to the explanation of what an HMM is and 

how it works (section 3.3). 

3.1. Replay Annotation 

As written at the end of chapter 2, there are three different methods available in order to use replays as 

data for our model. In the case of StarCraft II, using the first method is not ideal since StarCraft II 

replays only store the user’s actions. This does not directly allow for a good game’s state 

representation. The second method, the one using video frames of the game, is not suitable either for 

this master thesis due to the fact that information extraction from pixel-data requires humongous 

amounts of data and computer power. For these reasons, the method chosen for this master thesis is 

the third one. This method consists in transforming the raw sequence of the players’ actions into a 

sequence of values that enable easy game state representation. Such values are the number of military 

units at any given time, the amount of enemy units killed at any given time, etc. To be more precise, 

replays will be transformed into multivariate time series of twelve variables and the time step will be 

one second between each observation of the time series (Figure 10).  

 

Figure 10: multivariate time series representation of a StarCraft II replay. Here 9 of the 12 dimensions are visible and 

each line corresponds to a second of the replay. 
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The time step (represented in the extreme left column) is 1 second and this as been chosen because the 

other options would have been to use replay information at the frame granularity. A replay being 

saved with 24 frames per second, and relatively few actions happening by frames, the choice of using 

1 second was justified. 

3.2. Sequence Labelling 

Sequence labelling of time series is a problem that occurs in lots of different scientific fields. It 

consists of assigning a categorical label to each observation of a sequence. The classical example for 

sequence labelling is part of speech tagging (POS tagging) and represents the task of associating a 

word to a part of speech.  The most popular frameworks for sequence labelling are hidden Markov 

models [5], maximum-entropy Markov models (MEMMs), conditional random fields (CRFs) [6] and 

recurrent neural networks (RNNs). Of course, lots of variants of these models exist as well as 

combinations of them. For example, an RNN can be coupled with an HMM thus creating a hybrid 

solution for the sequence labelling problem [7]. Another use of RNNs that performs well is when 

RNNs are coupled with an LSTM structure. LSTM stands for Long Short-Term Memory and as 

explained in [8], if an RNN is coupled with it, this allows the model to not only look at the previous 

context, but to also look further back in the sequence. This can have a meaningful impact if previous 

observations help at labelling the current one. 

These four popular frameworks have some fundamental differences that need to be pointed out. First, 

HMMs make three strong assumptions about the modelled process. The first assumption is that the 

process they are modelling is a Markov process. This means that the probability of an event only 

depends on the previous state of the HMM and the current observation. The second assumption is that 

state transition probabilities are independent of the time at which they occur. The last assumption is 

that the emission probability of the current observation is independent of the previous observation 

given the current state of the HMM. HMMs are generative models, well known for representing 

sequential data, and this type of model has successfully been applied in fields such as POS tagging [9], 

text segmentation and information extraction. Nevertheless, it is important to notice that the training of 

the HMM is generative even though sequence labelling is a discriminative task. 

Second, MEMMs are the discriminative alternatives to HMMs. MEMMs are models used to represent 

the probability of transitioning to a state if the model has a given observation 𝑜 and the previous 

state 𝑠′. In a MEMM, the HMM transition and observation functions are replaced by a single function 

𝑃(𝑠|𝑠′, 𝑜) that provides the probability of the current state 𝑠 given the previous state 𝑠′ and the current 

observation 𝑜 [10]. The bigger difference between a MEMM and an HMM is that MEMM uses state-

observation transition functions rather than the separate transition and observation functions of the 

HMM. In other words, MEMM combines the advantages of HMMs and maximum-entropy models 

that allow state transition to depend on non-independent features of the sequence under analysis. 

Third, CRFs represent the decision boundary between the different classes it has to learn, thus 

including CRFs in the discriminative type of classifier. CRFs are a supervised method for structured 

prediction similar to HMMs while relaxing the independence assumption of the observations and the 

Markov assumption. A CRF gives a sequence of labels for a given sequence of observation and to do 

so it takes also advantage of the information form the entire sequence to estimate the probability of the 

entire sequence of observation.  

The last commonly used framework for sequence labelling is the RNN. Compared to the previous 

models (HMMs & CRFs), RNNs do not need prior knowledge about the data. For example, RNNs do 

not need loads of task specific knowledge while HMMs do. HMMs need them in order to correctly 
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design their hidden states. Furthermore, RNNs do not make any assumptions, such as the Markov 

assumption, about the data. RNNs can be trained discriminatively [11] and their internal state provides 

a powerful and general mechanism for modelling time series. In addition, they tend to be robust to 

temporal and spatial noise. But still, the most effective use of RNNs for sequence labelling is when 

RNNs are coupled with HMMs in the so-called hybrid approach [7]. 

Having a global view of the literature to label time series and since the proposed solution of this 

master thesis uses HMMs, the last part of this section explains HMMs in more details.  

3.3. Hidden Markov Models (HMMs) 

The decision of using HMMs for this master thesis is driven by the fact that HMMs are known to 

correctly model processes that can be divided into phases and which phases changes in a more or less 

consistent fashion. Furthermore, the choice of a relatively simple, yet well-known algorithm will be 

the first step in verifying if replay annotation is doable with simple models. 

 

Figure 11: example of HMM with 3 hidden states. Its transitions (a12, a21 and a23) and emission probabilities (b11, ... 

, b34) are displayed. Source: Tdunning. 01:20, 20 January 2012. “Hidden Markov Model with Output”, Wikipedia. 

Accessed 23 May 2020, <https://en.wikipedia.org/wiki/Hidden_Markov_model> 

HMMs can be represented by a triplet λ = (𝜋, A, B) where 𝜋 = {𝜋𝑖}  is the prior probability 

distribution of the hidden states and  ∑ 𝜋𝑖
𝑛
𝑖 = 1, A is the transition probability matrix such that, each 

𝑎𝑖𝑗 represents the probability to move from state 𝑖 to state 𝑗 and the∑ 𝑎𝑖𝑗
𝑛

𝑗=1
= 1 and B represents the 

emission probabilities allowing the HMM to know the probability of observing observation 𝑜𝑖 in the 

different states of the HMM. In our use case (StarCraft II), an observation 𝑜𝑖 is a set of twelve 

continuous dimensions representing a second of a replay. 

An HMM is [5] a statistical model that represents a system which is assumed to be a Markov process 

with unobservable states, also known as, hidden states. The assumption that the process modelled by 

the HMM is Markovian means that for any given observation, its hidden state only depends on the 

previous hidden state value. 

https://en.wikipedia.org/wiki/Hidden_Markov_model
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𝑃(𝑞𝑖|𝑞1 … 𝑞𝑖−1) = 𝑃(𝑞𝑖|𝑞𝑖−1) 

As stated in [5], HMMs are useful in real world applications. To prove their usefulness, HMMs have 

been used to solve three key problems of interest appearing in the real world. 

3.3.1.  The Evaluation Problem 

The first problem is called the evaluation problem and is described as follows. Given a sequence of 

observations 𝑂 = 𝑜1, 𝑜2, … , 𝑜𝑡 and an HMM λ = (𝜋, A, B), what is 𝑃(𝑂|λ). This problem is solved by 

the Forward algorithm. 

The explanation of the Forward algorithm is taken and adapted from [12]. An HMM with N hidden 

states and a sequence of observation of size T, there are 𝑁𝑇 possible sequence of hidden states of 

length T. This means that for large values of N and T, the number of different paths increases 

exponentially. To solve, the first problem needs an efficient algorithm. This algorithm is the forward 

algorithm and has a complexity of 𝑂(𝑁2𝑇) instead of an exponential complexity.  

The forwards algorithm works by iteratively computing the likelihood probability of the sequence of 

states according to a given sequence of observation. This means that the algorithm is computing a 

matrix (NxT) where each cells 𝛼𝑡(𝑞𝑖) of the matrix represents the probability of being in state 𝑞𝑖 after 

observing the first 𝑡  number of observations according to some HMM λ. To compute this matrix, the 

algorithm starts by computing 𝛼1(𝑞𝑖) the probability of being in the state 𝑞𝑖 given the first 

observation. Those values are computed as 𝛼1(𝑞𝑖) =  𝜋𝑖𝑏𝑖(𝑜1) where 𝜋𝑖 is the probability to start the 

sequence in state 𝑞𝑖 and 𝑏𝑖(𝑜1) is the probability of observing the first observation in state 𝑏𝑖(𝑜1). This 

gives the first column of the matrix and allows for the algorithm to continue. 

The second step of the algorithm is a recursion step where it recursively compute the next column of 

the matrix by looking at the values of the previous column (this is why the first step is required).      

The formula for the recursion step is the following, 𝛼𝑡(𝑞𝑖) = ∑ 𝛼𝑡−1(𝑞𝑘)𝑎𝑘𝑖𝑏𝑖(𝑜𝑡)
𝑁

𝑘=1
, 1 ≤ i ≤ N, 1 < 

t ≤ T. Where 𝑎𝑘𝑖 represents the probability of transitioning from state 𝑞𝑘 to state  𝑞𝑖. After this step, 

the entire (NxT) matrix will be filled and thus the termination part will happen. The final action of the 

algorithm is to return the probability 𝑃(𝑂|λ) and does so by adding all the cells of the last column of 

the matrix together 𝑃(𝑂|λ) = ∑ 𝛼𝑇(𝑞𝑘)𝑁
𝑘=1 . 

3.3.2.  The Decoding Problem 

The second problem is referred to as the decoding problem and is described as follows. Given an 

HMM λ = (𝜋, A, B) and a sequence of observations  𝑂 = 𝑜1, 𝑜2, … , 𝑜𝑡 , what is the most likely hidden 

state sequence that can generate the sequence O of observations? The decoding problem is solved by 

the Viterbi Algorithm. 

The Viterbi algorithm is a recursive optimal solution to the second problem [13]. The Viterbi 

algorithm follows the same principles as the Forward algorithm. It also computes a (NxT) matrix by 

looking at the sequence of observations from left to right [12]. But now, each cell 𝑣𝑡(𝑞𝑖) of the matrix 

represents the probability that the HMM is in state 𝑞𝑖 after observing the first t observations and taking 

the path with the higher probability. 

The initialization step of this algorithm is the same as the Forward algorithm but the second and last 

steps are different. The second step, which computes the values of 𝑣𝑡(𝑞𝑖), 1 <  t ≤  T , uses 𝑣𝑡(𝑞𝑖) =

max 𝑣𝑡−1(𝑞𝑘)𝑎𝑘𝑖𝑏𝑖(𝑜𝑡) , 1 ≤  k ≤  N. Compared to the first algorithm presented, the Viterbi 
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algorithm termination step returns a list of the best hidden state sequence that generates the given 

sequence of observations O. To do so, the algorithm keeps track of the previous best hidden state for 

each observation. The returned sequence of hidden states is obtained by going backwards from the last 

best hidden state 𝑞𝑇 and always looking at the previous best hidden state saved by the algorithm. 

The Learning Problem 

The last problem is the learning problem and is described as follow. Given and an HMM λ = (𝜋, A, B) 

and a sequence of observations  𝑂 = 𝑜1, 𝑜2, … , 𝑜𝑡  or a sequence of states 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑡, how to 

modify (𝜋, A, B) so that it maximizes the probability of observing sequence O or S. This last key 

problem can be solved using the Baum-Welch algorithm. 

The Baum-Welch method [5] is an expectation-maximization (EM) algorithm. This algorithm is used 

to update the parameters of a given HMM  λ in order to increase its probability of generating a 

sequence of observation O. The HMM’s parameters the algorithm is allowed to update are the 

transition matrix A, the emission probability matrix B and the initial probability of each state 𝑞𝑖. The 

algorithm will give a locally optimal solution and does so by iteratively estimating the best triplet 

(𝜋, A, B) that can generate the observed sequence or sequences. Each of the algorithm iterations are 

guaranteed to increase the probability of observing the data. 

Now that the basics of sequence labelling and HMMs have been explained, the next chapter is 

dedicated to the different types of training for HMMs in the sequence labelling task. 
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4. HMM Training 

The data used during the training phase of any model can either be labelled or unlabelled. For the 

classification problem, this means that some data have their associated label while others do not have 

that information. In the more precise case of sequence labelling, where a sequence of label has to be 

attributed to a sequence of observation (each observation has to be classified), this means that some 

training sequences of observations do have their respective sequence of labels. Sequences of 

observations are denoted as 𝑆 = {𝑠1, … , 𝑠𝑛} where 𝑛 is the number of sequences. Each 𝑠𝑖, 1 ≤ i ≤ n 

contains a list of observations such as 𝑠𝑖 = {𝑜1, … , 𝑜𝑡𝑖
} where 𝑡𝑖 is the length of sequence 𝑠𝑖. 

The next sections will describe the three main types of training processes used to learn the HMM’s 

parameters. The first section will explain the supervised training of HMMs, the second will explore 

the opposite type of training called the unsupervised training and the last section will introduce the 

semi-supervised training of HMMs. 

Supervised Training 

In supervised training, the model has only access to a set of labelled sequences 𝑆 = {𝑠1, … , 𝑠𝑛}  and 

their respective sequences of label 𝑌(𝑙) = {𝑦1
(𝑙), … , 𝑦𝑛

(𝑙)} where 𝑦𝑖 = {𝑙1, … , 𝑙𝑡𝑖
} and where 𝑙𝑗 is the 

class to which observation 𝑜𝑗 of sequence 𝑠𝑖 belongs to. The goal is to compute the transition 

probability matrix A, the emission probabilities B and the initial probabilities for each state 𝑞𝑖. 

Computing those three parameters will define an HMM λ = (𝜋, A, B) fitted on the given labelled data. 

Considering an HMM λ  of N hidden states (one for each type of possible label) characterized by a 

triplet (𝜋, A, B). Considering a sequence of observation 𝑠 = {𝑜1, … , 𝑜𝑡} where t is the length of the 

sequence and where 𝑜𝑖 is a vector of m values. Considering 𝑙 = {𝑙1, … , 𝑙𝑡} the sequence of labels 

corresponding to the s sequence. Training the HMM λ with the labelled sequence s starts by 

computing the N values of 𝜋, the initial probabilities of each states. 𝜋𝑖 can easily be obtained from 

labelled sequences by dividing the number of times state 𝑞𝑖 started a sequence s by the total number of 

sequences in the training set. The transition probability matrix A can also easily be computed using 

only the sequences of labels (labels representing hidden states) by counting how many times the 

hidden state 𝑞𝑖 moved to state 𝑞𝑗 and dividing this value by the number of hidden state transitions 

initiated by the selected 𝑞𝑖 state. Doing this iteratively for each states gives the transition probability 

matrix A of dimension (NxN).  

Finally, the emission probabilities matrix of HMM λ is computed according to the type of observations 

in the sequence. There are two types of observations: finite observations and continuous observations. 

Finite observations correspond to symbols belonging to a finite set of symbols. Thus, for this type of 

observation, computing the emission probability of a given symbol α by a hidden state 𝑞𝑖 is done by 

counting how many times this symbol appeared in hidden state 𝑞𝑖 divided by the total number of 

symbols observed by 𝑞𝑖. For continuous observation, things are different. This is because in order to 

have non-zero probabilities of observing a real number in an infinite set of real numbers, the model 

needs to approximate its emission probability by using a probability density function (pdf). If an 

observation 𝑜𝑖 of a sequence s is a single continuous value, this can be achieved using the probability 

density function of a Normal distribution of mean 𝜇 and standard deviation σ. The value obtained by 

doing the probability density function will approximate well enough the emission probability by 

giving a probability of observing values in a range of real numbers instead of giving the probability of 

observing a specific real number (which is zero). To return to our use case that uses a vector of twelve 

continuous values instead of a single one, the emission probability can be computed using 
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multivariate Gaussian distributions and their respective probability density function. Multivariate 

Gaussian distributions (Figure 12) are essentially a set of Gaussian (or Normal) distributions and the 

pdf value is obtained using the different means 𝜇𝑖  and standard deviation σi of the different Gaussian 

distributions. In our use case that uses twelve continuous values per observation, this means that the 

HMM needs to store twelve means 𝜇𝑖 and twelve standard deviations σi. 

 

Figure 12: example of multivariate Gaussian distribution (in this case of 2 random variables). Source: Bscan. 15:28, 

22 March 2013. “File:MultivariateNormal.png”, Wikipedia. Accessed 24 May 2020, 

<https://en.wikipedia.org/wiki/Multivariate_normal_distribution> 

Now, the triplet (𝜋, A, B) is fitted and the HMM was fitted on the labelled sequences s. 

4.1. Unsupervised Training 

In unsupervised training, the model does not have any label to work with. This means that an artificial 

sequence of labels needs to be determined for each unlabelled sequence of observation. This can be 

achieved thanks to different clustering methods before training takes place or during the training.  

Associating a label before the training process can be achieved using a classic clustering algorithm 

such as the k-means algorithm. This classic algorithm for unsupervised learning was invented by 

Lloyd in 1957 [14] and later, other versions of it such as the adaptive k-means of Macqueen [28] were 

developed. After the creation of artificial sequences of labels for the training data, the training process 

is the same as in supervised training since now the model does have a set of labelled sequences 

𝑆 = {𝑠1, … , 𝑠𝑛}  and their respective sequences of label 𝑌(𝑙) = {𝑦1
(𝑙), … , 𝑦𝑛

(𝑙)}. 

Another way of dealing with unsupervised learning is to first initialize the model and then train on the 

unlabelled data. As illustrated in [15] and [16] where the HMM is first initialized and where the 

HMM’s parameters are iteratively updated using the Baum-Welch algorithm to best fit the unlabelled 

data. [16] Proposes a clustering methodology for sequence data using HMM.  Even if our sequence 

labelling case is different from the clustering problem, the training process will remain the same. 

4.2. Semi-Supervised Training 

Using unlabelled data in order to increase the model’s performance and robustness is possible as 

demonstrated in [17] and applying such a method for HMMs has also been done [18]. This is due to 

the ever increasing enthusiasm in developing semi-supervised algorithms since most of the real world 

problems do not have an infinite quantity of training labels to train models on. This section will start 

by presenting what is intended by semi-supervised learning and will finish by listing and explaining 

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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the three different strategies that exist in order to utilize unlabelled data in the semi-supervised training 

process. 

As specified in [19], semi-supervised training consists in the training of an HMM λ with labelled data 

𝐿 = {𝑜𝑖
(𝑙), 𝑦𝑖

(𝑙)}
𝑖=1

𝑁𝑙
 and unlabelled data  𝑈 = {𝑜𝑖

(𝑢)}
𝑖=1

𝑁𝑢
 where 𝑁𝑙 is the number of labelled data, 

where 𝑁𝑢 is the number of unlabelled data and 𝑦𝑖
(𝑙) the label of the 𝑖𝑡ℎ data. In order to train the 

HMM λ on unlabelled data, a label has to be given to each unlabelled data.  

This can be done using graph-based algorithm such as the label propagation algorithms [20] (Figure 

13.) to infer the label of unlabelled data by connecting similar observations together and propagating 

the label information through it from labelled to unlabelled node [21]. However, label propagation 

quality is hugely affected by the type of graph used by the algorithm. 

 

Figure 13: Example of how the Label Propagation Algorithm works. Authors: Mark Needham & Amy E. Hodler, 

Neo4j. 4 March 2019. <https://neo4j.com/blog/graph-algorithms-neo4j-label-propagation/> 

Another method used to train a model in a semi-supervised way is called the self-training method. 

This method consists in using the few labelled data to train a first iteration of the model, followed by 

using this first iteration of the model to give a label to each of the unlabelled data. Finally, the model 

trains itself again with its newly labelled data and does so until no more unlabelled data are available. 

This way for a model to train itself has been popularized in fields such as natural language processing 

[22] and image recognition [23]. A recurrent problem with self-training models is that if they wrongly 

label unlabelled data during the first iteration, it will reinforce itself during the next iteration and thus 

learn something incorrect and lose in efficiency. 

To conclude this section, three semi-supervised algorithms to train HMMs will be explained [19]. 

These three algorithms belong to the self-training method of semi-supervised learning since they do 

not use any other classifier to annotate the unlabelled data. 

The first algorithm is the SSHC-1 algorithm and works as follows: 

https://neo4j.com/blog/graph-algorithms-neo4j-label-propagation/
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Figure 14: SSHC-1 algorithm. (Semi-supervised Sequence Classification with HMMs, Shi Zhong, 2004) 

 

The HMM is using the SSHC-1 algorithm defined in [19] to fit the HMM on the unlabelled 

multivariate time series data. The SSHC-1 algorithm works by taking as input a set of 𝑁𝑙 labelled 

sequences O(𝑙) = {𝑜1
(𝑙), … , 𝑜𝑁𝑙

(𝑙)} with labels 𝑌(𝑙) = {𝑦1
(𝑙), … , 𝑦𝑁𝑙

(𝑙)}, 𝑁𝑢 unlabelled 

sequences O(𝑢) = {𝑜1
(𝑢), … , 𝑜𝑁𝑢

(𝑢)}, and an HMM λ structure. The algorithm is composed of four 

steps. 

The first step of this algorithm is an initializing step (already done in our case) and consists of using 

the labelled sequences O(𝑙) in order to have the transition matrix A and the emission probabilities B of 

the HMM.  

After this first step, each unlabelled sequence 𝑜𝑖
(𝑢)  will have a label given 

by 𝑦𝑖
(𝑢) = 𝑎𝑟𝑔𝑚𝑎𝑥 log 𝑃(𝑜𝑖

(𝑢)| λ), where λ is the initialized HMM. In our case, the Viterbi algorithm 

is used in order to give a label to all the unlabelled observations.  

The third step consists of the model estimation step. During this step, the parameters of the λ HMM 

will be re-estimated in order to fit the newly labelled data. This is done by updating the mean and 

covariance of the Gaussian distributions of each hidden state using the MLE [24] estimates on the 

observations. Then, the transition probability matrix A is updated using the new sequence of hidden 

states given by the Viterbi algorithm. The final step simply consists of checking if labels given by the 
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previous λ HMM are the same as the newly updated HMM. If this is the case, the SSHC-1 algorithm 

stops, otherwise it goes back to step 2. 

The second algorithm uses the first and last steps of the first algorithm (SSHC-1) but modifies the 

second and third steps. The second algorithm frees the labelled sequences after the supervised learning 

step and consequently a labelled sequence given in the training set may be assigned a completely 

difference sequence of labels in the later semi-supervised iterative steps. 

 

Figure 15: SSHC-2 algorithm. (Semi-supervised Sequence Classification with HMMs, Shi Zhong, 2004) 

 

The last of the three semi-supervise HMM-based classification algorithms (SSHC-3) also uses the first 

and fourth step of SSHC-1 but like the SSHC-2 algorithm, it also modifies the second and third steps. 

Compare to the first two algorithms, SSHC-3 only uses once the labelled sequences, during the 

supervised step. Then it only performs the model’s parameters update using the trained HMM from the 

supervised step and the unlabelled sequences. As verified in [19], this model underperforms since it 

uses less data compare to the other that still uses all labelled and unlabelled data during the semi-

supervised step. 

 

Figure 16: SSHC-3 algorithm. (Semi-supervised Sequence Classification with HMMs, Shi Zhong, 2004) 

This concludes this chapter on HMM types of training and leads this master thesis to the next chapter.  
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5. Contribution 

The main contribution of this master thesis consists in the training of a semi-supervised HMM on 

multivariate time series representation of replays. This chapter starts by explaining the multivariate 

time series representation of replays, followed by a section explaining how realistic user annotation 

was obtained and ends with a section describing the HMM training process. 

5.1. Multivariate Time Series Representation of Replays 

The first task was the transformation of raw StarCraft II replays (Figure 8, 9.) into multivariate time 

series of twelve dimensions (Figure 10). This is needed because raw replays are not directly usable to 

represent the game’s state at any moment of the replay. Furthermore, this simplification of the game’s 

state into twelve dimensions will allow the removal of noise from StarCraft II replays, such as the 

spam of a key by the user, and it will allow more efficient training/testing of our model by limiting the 

number of dimensions taken into account. 

A multivariate time series is a sequence of multiple time-dependent variables. In our case, twelve 

variables need to be known for each second of a replay and those values will represent the state of the 

StarCraft II replay at any given second. Each replay will be represented by a multivariate time series 

and will constitute the set of observations used by the HMM. This dataset of n replays can be 

represented as 𝐷 = {𝑟1, … , 𝑟𝑛} where 𝑟𝑖 = {𝑜1, … , 𝑜 𝑡𝑖} ∀  1 ≤ 𝑖 ≤ 𝑛  and where  𝑡𝑖 is the number of 

seconds in the 𝑖𝑡ℎ replay of the dataset 𝐷. Each observation   𝑜𝑗 = {𝑣1, … , 𝑣12} where 𝑣1 represents 

the first dimension of the 𝑗𝑡ℎsecond of a replay and where 𝑣12represents the 12𝑡ℎ dimension for the 𝑗𝑡ℎ 

second of the replay. It is important to note that all of the replays in the dataset do not have the same 

duration. The length of a replay (in seconds) varies from 100 seconds up to 2000 seconds. 

The second task dealt with the different possible types of user annotation. In order to show that the 

proposed solution is viable for replay annotation, we had to train HMMs on different types of realistic 

user annotation. 

5.2. Realistic User Annotations 

Types of user annotation can vary from entirely labelled to entirely unlabelled time series, passing by 

partially labelled time series. While entirely labelled sequences do not cause any trouble to the HMM 

training, sparse annotation causes lots of troubles. This is because HMM needs a continuous sequence 

of labels in order to learn its transition matrix. This section will explain the different approaches 

followed by this work in order to deal with the sparse annotation problem. 

First of all, a partially labelled multivariate time series is a multivariate time series without labels for 

all of its components. This means that for a sequence of observation 𝑜𝑖
(𝑙), its sequence of labels 𝑦𝑖

(𝑙) is 

such that there is at least one position where the label is not a user state and thus is not defined 

(unlabelled states are represented by the ‘0’ sign). An extreme case would be where no labels are 

given by the user and, to solve this issue, our solution would have to resort to clustering techniques in 

order to generate some labels. 

HMM needing a sequence of observations and a sequence of hidden states (labels) to be able to adjust 

its parameters, we decided to try two different methods in order to give a label to all unlabelled 

observations. 

The first method consists of labelling all unlabelled observations as being part of the so called 

“unlabelled” state. This “unlabelled” state will be represented by the value ‘0’. This guarantees that the 



24 
 

model does not modify or manipulate the user’s representation of the states but it also implies that a 

single state can characterize all the unlabelled portions of a multivariate time series. This new question 

raised will be tested and answered in section 6, the experiment section.  

The second method uses multiple “unlabelled” states in order to represent all the unlabelled portions 

of multivariate time series. The different “unlabelled” states are represented by values ranging from 

‘1000’ to ‘1010’. The way used to compute the exact number of “unlabelled” states used by the model 

will be defined in the next section. This increase in the number of states should allow for a more 

precise fitting of the unlabelled data and this is why we will be looking at this in section 6, the 

experiment section. 

5.2.1. Add an “unlabelled” State 

In this section, the method used to fill the user’s annotations is a method using a single “unlabelled” 

state. This means that all unlabelled observations will be tagged with the label ‘0’. 

Sparse annotations of data can happen for two main reasons. The first one being that a user may have 

forgotten to annotate a portion of a replay or he may potentially skip parts of a replay due to a lack of 

time. In this case, an “unlabelled” state should not exist since the user is interested in full annotation of 

the data. This means that inserting a new “unlabelled” state could cause precision problems since the 

model will learn a specific hidden state for it. This will result in a sparse annotation of the data by our 

HMM.  

Secondly, a user may voluntarily skip portions of a replay that are not interesting for him. This means 

that the model’s label for some replays could be sparse in order to only label the portions of the replay 

the user is interested in. This is the opposite of the above example where a user would not need an 

“unlabelled” state. 

In the case of partially labelled replays with the use of a single “unlabelled” state, the training steps are 

the same as for the fully-labelled training except that a new hidden state has to be added. User’s 

partially labelled replays are used to initialized the HMM’s transition probability matrix as well as the 

emission probabilities and then, fitting on the unlabelled data occurs. 

Add Multiple “Unlabelled” States 

Another method to complete the user partial annotation is to use multiple “unlabelled” states. These 

“unlabelled” states have an id ranging from ‘1000’ to ‘1010’ and if the model labels an observation as 

being one of those states, it will simply not tag it at all. The user will only see his/her own states (the 

states he/she defined during his/her replay annotation). 

To find out the appropriate number of “unlabelled” states for some user’s partially annotated replays, 

we are trying to find the best Gaussian mixture model that represents the unlabelled data. In order to 

achieve this task, the information-theoretic criterion (BIC) is used. To find the best suited model, a 

model selection step is necessary. The model selection is composed of two dimensions, the first one 

being the number of components composing the Gaussian mixture and the second one being the 

covariance type used by the mixtures (Figure 17). This has been implemented using the algorithm 

given by the Scikit-learn library and modifying it to suit our data.  
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Figure 17: Example of clustering using different Gaussian mixture models (GMMs). Author Jake VanderPlas. Python 

Data Science Handbook, 2016. <https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-

mixtures.html> 

5.2.1.1. Model Selection Using Bayesian Information Criterion (BIC) 

Choosing the best model amongst a finite set of model is a common problem lot of statisticians are 

facing [25]. It is necessary to use a metric that takes into account the number of parameters used by the 

model. This will allow the selection of the model that best fit the data without overfitting it. In our 

case, an extreme case of overfitting over the training set would be if the model uses a mixture for 

every unlabelled data point.  

BIC is a parametric method and represent the likelihood criterion penalized by the model complexity 

in terms of number of parameters. The BIC value is computed for each of the different models 

following the equation [26]. 

𝐵𝐼𝐶 =  −2 ∗ 𝐿 + log(𝑛) ∗ 𝑘, 

Where L is the maximized value of the likelihood function of the Gaussian mixture model, n is the 

number of observations and k is the number of parameters estimated by the model (here k=2, the 

number of component in the model and the covariance type of the model’s components). 

When all the BIC values have been computed, the best value (the lowest one) is selected and the 

corresponding model is chosen to label unlabelled data point (Figure 18.). The data points are given a 

label corresponding to the component of the Gaussian mixture they are belonging to. This means that a 

conversion step needs to be undertaken in order to change the label proper to the Gaussian mixture 

model to the corresponding label for the HMM. Labels that are obtained by the Gaussian mixture 

model are updated by adding 1000 to all of the labels. 

𝑙𝑖 = 𝑙𝑖
′ + 1000,  

https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html
https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html
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Where 𝑙𝑖
′ is a label form the Gaussian mixture model and 𝑙𝑖 a label used by the HMM. 

 

Figure 18: Graph showing the evolution of the BIC value with the number of clusters. Pierce, Magretha & Dzama, 
Kennedy & Hefer, Charles & Muchadeyi, Farai. (2015). Genomic population structure and prevalence of copy number 

variations in South African Nguni cattle. BMC Genomics. 

For example, if the user partially annotated a replay of length 10 as {1,1,1,1, 𝟎, 𝟎, 𝟎, 𝟎, 2,2} (where 0s 

are unlabelled seconds of the time series), a Gaussian mixture model will be selected to best fit the 

observations where label is equal to 0. Then supposing the resulting model has 2 components, a 

proposed annotation of the unlabelled observations could be {1,1,2,2}. Those labels would then be 

updated according to the rule defined in the previous paragraph and the resulting final annotation for 

the replay would be {1,1,1,1, 𝟏𝟎𝟎𝟏, 𝟏𝟎𝟎𝟏, 𝟏𝟎𝟎𝟐, 𝟏𝟎𝟎𝟐, 2,2}. Which implies that the HMM now has 

an hidden state corresponding to label 1, 2, 1001 and 1002. 

5.2.1.2. Fitting of the Gaussian Mixture with EM Algorithm 

The Gaussian mixture model of Scikit-learn implements and uses the expectation-maximization 

(EM) algorithm for the fitting of the model. This algorithm is composed of two major steps [27]. The 

first step is the expectation step (E-step) which estimates the missing variables in the dataset. And the 

second step is the maximization step (M-step) that maximizes the parameters of the model in the 

presence of the data (Figure 19). 
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Figure 19:  An overview of the EM algorithm. After initialization, the E-step and the M-step are alternated until 

the parameter estimate has converged (no more change in the estimate). (Moon, T. K. (1996)) [27] 

Finally, all the unlabelled observations have a label and the training steps are now the same as in fully 

labelled replays but with the difference that “unlabelled” states have been added to the user’s states 

and HMM’s hidden states. 

5.3. HMMs training 

The third task was the actual training of an HMM in a semi-supervised way. To achieve this task, the 

SSHC-1 algorithm described in [19] was chosen and implemented using the Python programming 

language.  This algorithm uses the labelled data (data provided by the user) to constrain the HMM. It 

is clear that the accuracy of the HMM will depend on the quality of the user’s labelled multivariate 

time series and the amount of user’s multivariate time series. This is why an important work on 

managing the different types of user’s annotation was done. The SSHC-1 algorithm was chosen 

because compare to SSHC-2/3, it retains the user ‘labels and only attributes new labels to the 

unlabelled replay, thus not modifying the user’s input. 

If all of the observations contained in all of the multivariate time series of the user have a label, the 

HMM training can be done without intermediary steps. This is because if all observations have a label, 

there is no need to insert an ‘unlabelled’ hidden state to the model (to represent unlabelled 

observations of the training replays). If it is not the case, the user has to choose between using one or 

multiple “unlabelled” state(s). 

The training of HMM is also influenced by the presence or the lack of unlabelled replays. Since our 

solution’s plan is to resort to semi-supervised training, the user can decide to add unlabelled replays or 

not. Now having a sequence of labels for every replay and a list of unlabelled replays (or an empty 

list), the training of the HMM in a semi-supervised way can occur using the SSHC-1 algorithm. 

The next chapter focuses on conducting some experiments in order to verify the usefulness of HMMs 

for the sequence labelling problem. 
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6. Experiments 

This chapter concerns all the processes needed in order to make valuable experiments for the proposed 

method. This starts from the data extraction from raw StarCraft II replays and ends in test of the 

method. The first section introduces the data extraction process from raw replays and the creation of 

the datasets from those extracted data. 

6.1. Dataset Extraction 

The dataset used during this research has been created from StarCraft II replays downloaded from 

https://lotv.spawningtool.com/. This website is specialized in StarCraft II (related) content and 

contains hundreds of pro replays. 

197 replays are used to generate our dataset and all of them are replays of 1 vs 1 pro match. This 

means that we can get two points of views for each of the replay, the point of view of player 1 and the 

one of player 2, thus giving us a total of 394 entries in our dataset. As mentioned in the introduction, 

replays are essentially an ordered list of the players’ actions. This format of replay makes it convenient 

for the StarCraft II engine to render a replay but it makes it difficult to represent the state of the game 

at any given time. Our model will need to label each second of a replay as being either part of one of 

the user’s defined states or the model’s unlabelled state. This means that a pre-processing step needs to 

be applied on the replays before using them as training material. The pre-processing step has to 

convert the 197 StarCraft II replays into 394 multivariate time series with as dimensions things such as 

the number of military unit, the number of workers, the number of buildings, etc. 

6.1.1.  Dataset Creation 

The dataset creation process is composed of two steps. First, StarCraft II replays are converted into a 

multivariate time series of 6 dimensions. Second, the first derivative of each of the 6 dimensions will 

be computed and added to the time series. This will allow our model to bypass the Markov hypothesis 

(hypothesis that the modelled process is Markovian) as well as to more easily make links between the 

values for the dimensions of a replay at time t and the values at time t+1. 

Game’s information is extracted from a replay using the sc2reader Python library, which is open 

source and MIT licensed. This library allows the extraction of various information contained in 

StarCraft II replays and is combined with our own python code (Figure 20.) to extract the 6 

dimensions we need. Having those 6 dimensions, we will be able to make the conversion of the replay 

file into a time series of 6 dimensions. The 6 dimensions desired are: 

- The worker count  : “workers” 

- The army count : “army” 

- The building count : “building” 

- The enemy worker killed count : “enemy_scv_killed” 

- The enemy army killed count : “enemy_army_killed” 

- The enemy building destroyed count : “enemy_building_killed” 

The time series will have values for each of the 6 dimensions for every second of any StarCraft II 

replay. 

https://lotv.spawningtool.com/
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Figure 20: Action of transforming raw replay files into multivariate times. This is achieved by using the sc2reader 

python library and our own python code to read and manipulate replays in order to count the number of unit killed at 

any given second of replays, etc. 

Since replays do not key track of the value of those 6 dimensions, we had to keep track of those values 

in our “Pre-processing Code”. This was done by initializing the value to their default start according to 

the player’s faction (Table 1.). 

 workers army Building enemy_Building_killed enemy_army_killed enemy_scv_killed 

Terran 12 0 1 0 0 0 

Protoss 12 0 1 0 0 0 

Zerg 12 1 1 0 0 0 

Table 1: initial values of the 6 dimensions according the player's faction 

After initializing the dimensions, the time series is filled with values for each of the dimensions for 

each second of the game and for each of the two players. In this study, we are only focusing on 1vs1 

game and so we start computing the first 3 dimensions (‘workers’, ‘army’ and ‘Building’) for the 

player 1 and then for the player 2 since those values can easily be computed.  

Having done this step, we can compute the number of enemy workers, army and building units killed 

for each of the two players by looking at the values of ‘workers’, ‘army’ and ‘Building’ of the other 

player. This is done by looking at the value of a dimension at the time t and looking if at time t+1 this 

value increased or decreased. This has been done in order to better estimate the number of enemy units 

killed since the classic StarCraft II replay format does not allow an easy way to figure out these 

values. 

Finally, after completing the time series for the 6 dimensions for every second of the replay, we can 

compute the slope for the 6 dimensions for a final number of 12 dimensions for each second of a 

StarCraft II replay. 
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6.1.2.  Dataset Completion with the First Order Derivative 

To compute and have a precise first derivative, we first have to smooth the values for the six 

dimensions of our time series. This is necessary because the number of any type of units easily makes 

“stair” diagrams as you can see in blue in the graphs below (Figure 21.). 

        

    

       

Figure 21: graphs of the 6 dimensions over time (before & after smoothing). The blue line represents the raw 

data extracted from a replay file. The green line represents the smoothed version of the raw data and is obtained 

using a lowpass filter. 

In order to smooth the values of the six current dimensions, a low pass filter is applied on them. The 

choice of this method was discussed during the development of this master thesis and was further 

motivated by [28]. This filter was applied in order to remove as much high-frequency noise as possible 

and in order to compute a more precise first derivative. Several procedures exist in order to find the 

best low pass filter adapted to the data [28], such as the nearly equal ripple approximation (NER) or 

the nearly equal ripple derivative filter (NERD), but in our case, the low pass filter was manually 

tweaked until satisfactory results occurred (Figure 21.). 
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After this smoothing step, we use the linregress statistical function to calculate a linear least-squares 

regression for our dimensions and then get the slope of the regression line. Linregress uses a segment 

of 15 seconds in orders to compute the first order derivate of any dimension. 

 

Figure 22: Graphs showing the evolution of the first derivate (slope) for the 'workers' dimension (left) and 'army' 

dimension (right). 

6.2. Evaluation Protocol 

This section aims at explaining the protocol used to evaluate the quality of our model. First of all, the 

evaluations of the models are done on testing replays and this means that none of those replays have 

been used during the training process. The testing set of replays is composed of 247 replays and 

models evaluation is done 30 times on 20 replays each time. This allows us to have the mean score of 

the model as well as the 95% confidence interval and the variance. 

The specificity of our evaluation protocol is that we first constituted 30 testing sets of 20 random 

replays before computing the score of the different models on those 30 testing sets. This guarantees an 

equal and correct evaluation of the models thus allowing the comparison between the models’ score. 

The models are evaluated according to three different metrics. Those values are the f1-score, the recall 

and the precision of the model. Those values are able to be computed only if we can have the correct 

sequence of labels for a given replay. This is why we decided to use labelling rules to get the correct 

answer. This also means that the states trying to be learned by the models can be described using 

simple to complex rules and thus the comparison of the models label and the correct labels is possible. 

Finally, it is important to clarify that the model’s evaluation will only happen for parts of the replays 

where a label is expected. As schematized in (Figure 23.), the top parts illustrate the evaluation of a 

replay annotation where a label is expected for every second of the replay (labels are ‘s0’, ‘s1’ and 

‘s2’). A red cross symbolizes where the model was evaluated and where the annotation was wrong or 

missing. The green square represents correct annotation by the model. An empty space (not a red cross 

or a green square) represents a section (a second or multiple seconds) of the replay that is not taken 

into account by the evaluation process. Sections like this are section where no labels are expected 

(Figure 24.) and are represented by “/” in the correct labels timeline. 
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Figure 23: Example of evaluation showing the part of the replay used in the evaluation process (the green regions 

between the correct label and the Model's labels) 

 

 

Figure 24: Example of evaluation showing the part of the replay used in the evaluation process (the green regions 

between the correct label and the Model's labels) 

6.2.1.  Recall, Precision and F1-Score 

This section explains the three evaluation method used for the HMMs evaluation. Those 3 methods are 

the recall computation method, the precision computation method and the f1-score computation 

method [29].  But first, we need to define what ‘true positive’, ‘false positive’, ‘true negative’ and 

‘false negative’ means and to do this a simple example with two classes is chosen. The two possible 

classes are the ‘positive’ class and the ‘negative’ class. In this context,  

- ‘True positive’  = correctly identified label as being ‘positive’ 

- ‘False positive’  = incorrectly identified label as being ‘positive’ 

-  ‘False negative’  = incorrectly identified label as being ‘negative’ 

In our case, there can have more than two classes but this does not change things since a multiclass 

problem can be represented as a set of multiple two-class problem. 

The first metric is 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

The recall is the ability of the model to find all the positive samples and the best score recall can 

achieve is 1 and the lowest being 0. 

Next, the precision computation method is. 

Precision =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

The precision is a bit different from the recall since precision expresses the ability of the model not to 

label as positive a sample that is negative. 

Finally, we will explain the f1-score. 
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𝑓1 = 2 ∗
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 

The f1-score value is computed from the precision and the recall value by taking their harmonic mean. 

The f1-score is a value that seeks a balance between the precision and the recall thus providing a more 

accurate measurement for our model. The best f1-score value is 1 and implies that the recall and the 

precision have 1 as value as well. 

6.2.2.  Labelling Rules 

As mention in section 5.2, labelling rules are used in our evaluation method. This section aims at 

explaining what are those methods and how are they used in the evaluation process. 

Our labelling rules are used to allow the computation of the recall and the precision score which in 

turns allows the computation of the f1-score. The reason our labelling rules allows the computation of 

those metrics is that our rules gives the correct expected label for any given second of any given 

StarCraft II replays. This means that we can now compare the labels output of the different models 

with the correct expected value and so compute the number of ‘true positive’, ‘false positive’ and 

‘false negative’.   

Labelling rules are used during the experiments section of the thesis. 

6.3. Experiments Conducted 

In order to evaluate the usefulness of HMMs as sequence labelling tools for automatic replay 

annotation, three experiments have been conducted. Each experiment is focused on a specific 

parameter of the model in order to see its effect on the HMM’s efficiency. As stated in section 6.2.1, 

the f1-score, the precision and the recall values will be utilized in order to follow the model’s 

efficiency according to the different parameters used in the experiments. 

The three experiments are also done on two distinct cases, one simple case and another more 

challenging case. This is done in order to evaluate the HMM’s efficiency on different scenarios with 

different learning complexity. The complexity of a state to be learn is linked to how often this specific 

state appears during a replay and how many dimensions (from the twelve dimensions used to represent 

the game’s state) are required in order to create rules that finds all of the occurrence of this state. 

The first case is called the “simple case” and is composed of 3 states. Those three states are 

characterized using one dimension, the number of workers of the player, and all seconds of a replay 

should be labelled as one of those three states (Figure 25.). The labelling rule used for this case is the 

following. Given a replay 𝑟 = {𝑜1, … , 𝑜𝑡}, where 𝑜𝑖 is the 𝑖𝑡ℎ second of the replay represented by a 

vector of twelve dimensions (workers, army, Building, etc.). The label expected for 𝑜𝑖 is given by  

∀ 𝑜𝑖𝑖𝑛 𝑟, 𝑟𝑢𝑙𝑒(𝑜𝑖) = {

1 𝑖𝑓 (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 𝑎𝑙𝑖𝑣𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑜𝑖) ≤ 40            
2 𝑖𝑓 40 <  (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 𝑎𝑙𝑖𝑣𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑜𝑖) ≤ 70
3 𝑖𝑓 (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 𝑎𝑙𝑖𝑣𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑜𝑖 > 70              
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Figure 25: Example of correct replay annotation for a simple case. The annotation is symbolized by the colour code 

(green=state 1, red=state 2 and cyan=state3). 

The second case is referred as the “complex case” and is composed of 2 hidden states. One state is 

used for the military fights and the other state is used for the attacks against workers. This case is more 

complex due to the rarity of such labels in replays and because in order to create a labelling rule for 

this case, at least 4 dimensions are needed and the rule needs to look at several observation of the 

sequence instead of only one. Those four dimensions are the army and worker count, the number of 

enemy military unit killed and the number of enemy workers killed. The correct sequence of labels for 

this complex case is also obtained using a rule and this rule tags as ‘1’ the fights between military 

units if at least 6 military units died in a row and if less than 5 seconds separates each death (in green) 

and tags as ‘2’ if an attack on workers happens and if at least 3 workers died with less than 5 seconds 

between each worker death (in red). In a case where a military fight happens at the same time as a 

fight against workers, the second event takes precedence and thus labels the second as being ‘2’. 

(Figure 26. shows an example of correctly labelled replay for the complex case.). 

  

Figure 26: Example of correct replay annotation for a complex case. The annotation is symbolized by the colour code 

(green=state 1, red=state 2). Two different views of the same replay. 

Each models used during the three experiments were models trained using the SSHC-1 algorithm 

which trains HMMs on labelled and unlabelled sequences of observations. In the case where no 

unlabelled data were used, the training of the model was done using supervised learning. 
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6.3.1.  Experiment 1 - The Effect of Unlabelled Replays 

This experiment has been performed to compare HMMs trained on different quantities of unlabelled 

replays. This experiment has been performed on the simple and on the challenging case. For each case, 

the experiment was repeated three times. One with the number of labelled replays set to 1, a second 

time with 15 labelled replays and a third times where there were 50 labelled replays. 

During the training of the HMMs, the labelled replays of the simple case were all entirely labelled and 

for the complex case, all the military fights and attacks on the workers have been labelled. 

Nevertheless, the complex case has most of its labels consisting of the “unlabelled” state since the 

labelling rule doesn’t label observation not belonging to fights or workers attacks. 

6.3.1.1. Simple Case 

The f1-score, precision and recall graphs for the different values of labelled replays are stationary and 

do not seem to fluctuate with the number of unlabelled replays. 

 

 

 

Figure 27: f1-score (top row), precision (middle row), recall (bottom row) evolution of HMMs trained with 1 (left), 15 

(middle) and 50 (right) labelled replays and a varying number of unlabelled replays. 

The figures in (Figure 27.) show a constant value for their respective score but also show that the 

variance decreases with the number of labelled replays used during the training of the model. 

Furthermore, HMMs seem to correctly learn the different states since the means of the workers is 

between the ranges fixed by the labelling rule (see section 6.3 for more information about the labelling 

rule, results in Table 2.).  

State Mean of workers 

‘1’ 26.59 

‘2’ 58.03 

‘3’ 75.94 

Table 2: Mean of workers for state ‘1’, ‘2’ and ‘3’. This are the values for the HMM trained with 50 labelled replays and 
72 unlabelled replays. 
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Figure 28: example of replays annotation using an HMM trained with 15 labelled replays and 0 unlabelled replays (left) 
and 100 unlabelled replays (right). 

6.3.1.2. Complex Case – One “Unlabelled” State 

For the complex case, graphs stopped being constant and take a flatten bell shape when the number of 

labelled replay used for training is 15. When the number of labelled replays is 50, the bell completely 

flattened but the curve seems to increase when the number of unlabelled replays passes 45 unlabelled 

replays. 

 

 

 

Figure 29: f1-score (top row), precision (middle row), recall (bottom row) evolution of HMMs trained with 15 labelled 

replays (left), 50 labelled replays (right) and a varying number of unlabelled replays. 
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Here are two example of replay annotation using an HMM that maximizes the f1-score. The first 

annotation is given on a random replay using an HMM trained with 15 labelled replay and 3 

unlabelled replays (Figure 29.) and the second example of annotation is given using an HMM trained 

on 50 labelled replays and 100 unlabelled replays (Figure 29.). Their respective correct annotations 

(using the labelling rules) are given as well. Each colour represents a hidden state and the black colour 

represents unlabelled seconds of a replay. 

 

Figure 30: Correct and model’s annotation for a replay.                  Figure 31: Correct and model’s annotation for a replay. 

The model’s annotations show that the HMM has difficulty in learning the transitions. In figure 31, 

there is only one transition from one hidden state to another while the correct annotation should have a 

dozen transitions. Nevertheless, the annotations of the first model (Figure 30.) are quite similar to the 

correct annotation while still having trouble in learning fast changing states. The first model also 

correctly identified the main uninteresting parts of the replay (from 350 sec to 480 and from 600 to 

650) 

 

6.3.1.3. Complex Case – Multiple “Unlabelled” States 

When multiple hidden states are used to represent the unlabelled seconds of a replay, the overall 

model’s efficiency stays the same, compare to the HMM using a single hidden state to represent 

unlabelled seconds, and converges at the same values (0.2 for the f1-score, 0.4 for the precision and 

0.18 for the recall). Using multiple “unlabelled’ hidden states completely remove the bell-shape of the 

graphs and as observed by the initial metrics’ value, passing from 15 labelled replays to 50 does not 

seem to help the learning process of the HMM. Nevertheless, Adding 100 unlabelled replays seemed 

to slightly improve the model (passing the f1-score value from 0.1 to 0.2, the precision from 0.3 to 0.4 

and passing the recall from 0.1 to 0.15). 
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Figure 32: f1-score (top row), precision (middle row), recall (bottom row) evolution of HMMs trained with 15 labelled 

replays (left), 50 labelled replays (right) and a varying number of unlabelled replays. 

Here are two examples of annotations using an HMM trained on 50 labelled replays. The first 

annotation is produced by an HMM trained with a single unlabelled replay (Figure 33.) and the second 

annotation used an HMM trained with 100 unlabelled replays (Figure 34.). Like in section 6.3.1.2, the 

correct annotations are given as well to allow the comparison between the models ‘annotations. 
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Figure 33: Correct and model’s annotation for a replay.                  Figure 34: Correct and model’s annotation for a replay. 

In both annotations, the HMM does not seem to correctly learn annotations with rapidly changing 

hidden states. This is shown by the lack of unlabelled states (black colour) after the 500 seconds mark. 

 

6.3.2.  Experiment 2 - The Effect of Labelled Replays 

This experiment has been performed to compare HMMs trained on different quantities of labelled 

replays. It is the opposite of the previous experiment and it fixes the number of unlabelled replays 

while varying the number of labelled replays used during the HMM training phase. HMMs have been 

trained on three quantities of fixed unlabelled replays. The first quantity is 0, the second one is 50 and 

the last one is 100.  

6.3.2.1. Simple Case 

In this case, for the three values of unlabelled replays used, the f1-score and precision score tends to 

increases when the number of labelled replays increases and seems to get constant when HMMs are 

using four or five labelled replays. For the recall metric, it seems to slightly decrease when labelled 

replays are added in the training process while still converging at the end. The variance of the three 

scores also hugely decreases when more labelled replays are used.  
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Figure 35: f1-score (top row), precision (middle row), recall (bottom row) evolution of HMMs trained with 0 (left), 50 
(middle) and 100 (right) unlabelled replays and a varying number of labelled replays. 

Adding more and more labelled replays, if the user takes the time to give lots of correct annotations, 

the metrics of the HMMs (f1-score, precision and recall) all converge towards the same values even 

though models uses different number of unlabelled replays for training (0, 50 or 100). This would 

suggest that using unlabelled replays for a simple case (a case equivalent to the first labelling rule) is 

useless. 

 

6.3.2.2. Complex Case – One “Unlabelled” State 

In the complex case with 50 unlabelled replays and with one “unlabelled” state, an interesting pattern 

appears. F1-score, precision and recall graphs all show a rapid increase in their values when the 

number of labelled replays increases, directly followed by a steady descent after their peak values have 

been achieved. 

The same happens when the fixed number of unlabelled replays is equal to one hundred and in this 

case, another interesting thing happens. It seems that using 100 unlabelled replays (instead of 50) 

allows the HMM to maximize its f1-score value before an HMM using 50 unlabelled replays. 
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Figure 36: f1-score (top row), precision (middle row), recall (bottom row) evolution of HMMs trained with 0 (left), 50 

(middle) and 100 (right) unlabelled replays and a varying number of labelled replays. 

Two example of replay annotations will be displayed to show annotation differences between an 

HMM that stopped when the f1-score reached its maximum (HMM using 100 unlabelled replays and 3 

labelled replays) (Figure 37. and Figure 38.) and an HMM that used 100 labelled replays (Figure 39. 

and Figure 40.) This result is quite surprising since adding labelled replays should help the model (as 

observed in the simple case, section 6.3.2.1). 

 

Figure 37: Correct and model’s annotation for a replay.                  Figure 38: Correct and model’s annotation for a replay. 
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Figure 39: Correct and model’s annotation for a replay.                  Figure 40: Correct and model’s annotation for a replay. 

In both replays, the annotation of the HMM trained with 100 labelled replays is lacking the state ‘2’ 

(red colour) while the HMM trained with only 3 labelled replays always used the state ‘2’ label. 

Hidden state ‘2’ representing attacks on workers, which is rare comparatively to army on army fights, 

this could mean that hidden state ‘2’ was drowned by the unlabelled hidden state (black colour) and 

the hidden state ‘1’ (green colour). In both HMMs, the transition matrix is similar, thus meaning that 

the learning of the emission probability is the main cause for this decrease in efficiency. 
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6.3.2.3. Complex Case – Multiple “Unlabelled” States 

Results in figure 41 have a similar pattern to figure 36. Adding labelled replays seems to increase the 

scores of all the three metrics but passing a certain value of labelled data, the scores suddenly drops 

and seems to converge. Contrarily to the case with a single “unlabelled” state, here the graphs seem to 

display a more saw-tooth like shape. 

   

   

   

Figure 41: f1-score (top row), precision (middle row), recall (bottom row) evolution of HMMs trained with 0 (left), 50 
(middle) and 100 (right) unlabelled replays and a varying number of labelled replays. 

6.3.3.  Experiment 3 - The Effect of Partially Labelled Replays  

This last experiment was made to determine the impact of label sparsity in the HMM’s efficiency. To 

do this experiment, HMMs have been trained on replays with less and less of the available labels. The 

first batches of models were trained on fully labelled replays and the following batches of models so a 

constant decrease of 10% in their available labels. 

The removal of labels in order to keep x percent of them was done by following this simple method. 

First, the appropriate labelling rule was used to obtain the correct sequence of labels for each replay. 

Second, for each replay, compute the number of user labels (labels different from ‘0’ or ‘1000’, 

‘1001’, etc.) and calculate how much labels need to be removed in order to keep x percent of the user 

annotation. Finally, remove the obtained number of user annotation in a random fashion. This last 

point may not be realistic since a human player that partially annotates replays usually annotates them 

by portions (Figure 42) instead of by random selected seconds. Nevertheless, this method will allow 

for an evaluation of HMMs without taking the user’s way of annotating as parameter. This aspect 

could be tested in a whole new experiment where HMMs would be trained with different type of 

sparse annotations. 
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Figure 42: realistic sparse annotation of a replay. The user annotation is constituted of three states (‘1’, ‘2’ and ‘3’). 

For this experiment, HMMs were trained with fixed number of labelled and unlabelled replays. 

6.3.3.1. Simple Case 

For the simple case, all HMMs were trained on 15 labelled replays but two parameters varied. First, 

three types of HMMs were trained. One type is without unlabelled replays, another with 50 unlabelled 

replays and a last type using 150 unlabelled replays. Second, the percentage of labels to remove varied 

from 0 to 90 percent.  

 

The results of this experiment show that removing labels decreases the HMM’s efficiency. But this 

decrease in efficiency is relatively small. When 90 % of labels are removed, there is only a decrease of 

0.5 in the f1-score (from 0.4 to 0.3). This was not expected and means that for a simple case 

(equivalent to the first labelling rule) fully annotating replays is not really necessary. This also allows 

for a time gain since users could potentially annotate a small portion of the replay instead of its 

entirety. 

   

   

   

Figure 43: f1-score (top row), precision (middle row), recall (bottom row)  evolution of HMMs trained with 15 labelled 

replay and 0 unlabelled replays (left), 50 unlabelled replays (middle) and 150 unlabelled replays (right) when the 

percentage of label to remove is varying. 

 

 

 

     ‘1’          ‘2’                                         ‘2’  ‘1’                                                                         ‘1’ ‘3’        ‘1’ 
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6.3.3.2. Complex Case – One “Unlabelled” State 

In a the complex case with one “unlabelled” state used to represent unlabelled seconds of a replay, the 

different do not seem to be affect by the percentage of labels. This means that for complex case 

(similar to the complex labelling rule), using sparse annotation do not seem to affect the HMM’s 

efficiency. This could be explained by the fact that in the complex case, labels are already scarce. If 

labelled portions of a replay already represent less than 5% of the replay, passing from 5 % to 1% will 

not fundamentally change the HMMs. 

   

   

   

Figure 44: f1-score (top row), precision (middle row), recall (bottom row)  evolution of HMMs trained with 15 labelled 

replay and 0 unlabelled replays (left), 50 unlabelled replays (middle) and 150 unlabelled replays (right) when the 

percentage of label to remove is varying. 

 

Nevertheless, the use of unlabelled replays increases the starting score of the 3 marks (f1-score, 

precision and the precision) as seen in the graphs horizontal graphs of the three scores. For the f1-

score, the score of the starting HMMs using 15 labelled replays and 0 unlabelled replays while the 

score of the HMMs using the same number of labelled replays but with more unlabelled replays 

(passing from 0 to 150) is starting at 0.3. 

 

6.3.3.3. Complex Case – Multiple “Unlabelled” States 

The complex case with multiple unlabelled hidden states to represent the unlabelled portions of a 

replay exhibits the same behaviour as the previous experience. Nevertheless, all scores are slightly 

lower and this is due to the higher number of hidden states the HMMs have to learn. 
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Figure 45: f1-score (top row), precision (middle row), recall (bottom row) evolution of HMMs trained with 15 labelled 

replay and 0 unlabelled replays (left), 50 unlabelled replays (middle) and 150 unlabelled replays (right) when the 

percentage of label to remove is varying. 
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7. Analysis and Discussion 

Three experiments were developed to evaluate the efficiency of replay annotation using HMMs. The 

HMMs were using a set of hidden states to represent the different types of user labels, one or multiple 

hidden states to represent unlabelled portions of replays and a multivariate time series representation 

of replay files (section 5.1).  

Before the experiments, it was believed that HMMs would easily be able to learn simple annotation 

cases but the experiments seem to contradict this hypothesis. Graphics of Sections 6.3.1.1, 6.3.2.1 and 

6.3.3.1 all show a low recall score which results in a low f1-score value as well (the f1-score is 

computed from the recall and the precision scores). After analysis, this does not seem to be the result 

of an error in the code or to be a problem in the learning of the HMMs, since the expected values for 

the means are respected and correct. At least two hypotheses are available to explain this unexpected 

result. First, this could be caused by the replays used as training material. Replays vary a lot in terms 

of length, thus some labels (hidden states) are scarce. For example, the last label of the simple case 

only happens when the number of workers is greater than 70, which only happens in games lasting 

more than 5 minutes and where fights against workers are rare. However, labels ‘1’ and ‘2’ often 

appear in replays of small lengths (Figure 46). The second hypothesis is that the representation of 

replays as multivariate time series is not appropriate. This was part of our master thesis hypothesis 

(section 3.1) but can now be considered as a future work to be able to confirm (or not) the usefulness 

of HMM in the replay annotation case, where simple states have to be learned by the model. 

 

Figure 46: Replays of 400 and 650 seconds where the state '2' is not present (green = state ‘1’, red = ‘state 2’). 

Contrarily to the simple case, the complex case was not expected to be easily learned by HMMs and 

the results given by the experiment section are mixed results. Annotations given by trained HMMs in 

Figures 30 and 31 show the potential of HMMs but also show their flaws. For example, the HMMs 

detect the red and green labels (state ‘1’ and ‘2’) but do not properly learn the fast transitions that are 

happening in the complex labelling rule. The use of multiple hidden states in order to learn the fast 

transitions between states do not seem successful since all the metrics (f1-score, precision and recall) 

are slightly higher when HMMs are using a single unlabelled state (this can be observed by comparing 

metrics of figures 29 and 32 as well as by comparing metrics of figures 36 and 41 and comparing 

figure 44 with the figure 45). This could imply that using a single hidden state to represent unlabelled 

portions of replays is relevant and allows the model to better learn the labelling rule. It is also 

computationally interesting since this decreases the training time of the HMMs. Nevertheless, the 

overall efficiency of the HMMs for complex annotation is low with a recall and f1-score around the 

0.2 mark.  
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Another analysis that can be done is that when an HMM needs to learn simple states (similar to the 

first labelling rule), using unlabelled data does not seem to help the model whatsoever. It is also 

unexpected for the best f1-score metric to be obtained by the models using a single labelled replay 

(Figure 26.). An explanation for this behaviour could be that since the testing procedure evaluated the 

score of 10 different HMMs trained on 1 labelled replay (and different values of unlabelled replays) 

out of 600 testing replays, the randomly selected 10 replays used for the training were extremely good 

replays (having all three states appearing). On the other hand, HMMs trained on 50 labelled replays 

have lots of replays only containing the ‘1’ and ‘2’ states (Figure 46.). This can happen since some 

replays last only a few minutes and since, in these short replays, the number of workers does not have 

the time to climb above the 70 mark. This also seems to happen in the complex case but contrarily to 

the simple case, the complex case shows that using few unlabelled replays can help the learning of the 

HMMs when labelled replays are few in number as well. This can be explained by the scarcity of 

labels and the rapid transitions between them, therefore the model does not seem to correctly learn 

such complex states. 

Analysing the second experiment (section 6.3.2) confirms the general belief that using more labelled 

data usually yields better results. Nevertheless, sections 6.3.2.2 and 6.3.2.3 tell us that after a certain 

quantity of labelled replays, things start to degenerate and the different scores of the different 

evaluation metrics decrease. This was not expected but could be explained by the variations in quality 

of the training replays, some being more representative than others that are generally too short or do 

not have lots of labels. Nevertheless, the presence of representative replays which are not as good 

should not be a negative point since, in real life, the percentage of short or not-action-packed replays is 

similar to the training set. 

 

Finally, analysing the effect of sparse replay annotations tells us that the sparsity of labels does not 

seem to greatly affect the overall HMMs’ learning process. The only affecting parameters are the 

number of labelled and unlabelled replays used for the training and the complexity of the states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

8. Conclusion and Future Work 

In conclusion, to be able to accept HMMs as a good replay labelling tool, more experiments need to be 

conducted and more types of learning algorithm and state representation have to be tried. To discover 

the true efficiency of the solution proposed in this work, HMMs should be compared to other types of 

models applied on the replay labelling task. The comparison between HMMs and other types of 

models was not part of the scope of this master thesis but could be an interesting subject for a future 

work. 

In the future, trying to solve the replay annotation problem using Gaussian mixtures distributions 

instead of multivariate Gaussian distributions to represent the hidden states could allow the HMMs to 

learn complex annotation such as the complex case discussed in the experiment section. 

Another promising path would be the introduction of Active Leaning in the HMM learning process. 

This would allow the user to more easily train a model to fit his/her labels and, with the different 

Active learning methods present in the literature good results are likely to emerge from this.  

Trying to solve the replay annotation problem using another type of HMM, such as hierarchical 

HMMs, or another completely different model like RNNs could also be an interesting point to start 

from. Of course, applying such methods on a game other than StarCraft II can yield different results 

and thus is worth exploring. 
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