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Abstract

Honeypot is a decoy system with vulnerabilities introduced to trap hackers. Through

many years of evolution, a generation of smart honeypots has been developed. The self-

adaptive honeypot is a smart honeypot that is expected to respond appropriately to the

attacker’s request. In most existing self-adaptive honeypot systems, the commands sent

from the attacker play a central role in the reasoning process of the honeypot. In this

thesis, we focus on the construction of a machine learning workflow that aims at esti-

mating the risk level of these commands. Experiments show that the proposed workflow

achieves potential results.

Résumé

Honeypot est un système leurre avec des vulnérabilités introduites pour piéger les at-

taquants. Au cours de nombreuses années d’évolution, une génération de honeypots

intelligents a été développée. Le self-adaptive honeypot est un honeypot intelligent qui

devrait répondre de manière appropriée à la demande de l’attaquant. Dans la plupart des

systèmes de self-adaptive honeypots existants, les commandes envoyées par l’attaquant

jouent un rôle central dans le processus de raisonnement du honeypot. Ce mémoire se

concentre sur la conception d’un workflow d’apprentissage automatique qui vise à es-

timer le niveau de risque de ces commandes d’entrée. Les expériences montrent que le

workflow proposé produit des résultats potentiels.
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Chapter 1

Introduction

This project aims at defining a solution to estimate the risk level of the Linux commands

that are sent from the attackers to the SSH honeypots. In the following section, the con-

text and motivation will be explained. An preliminary analysis of the problem will be

presented and the research questions will be identified in Sec. 1.2. An overview of the

solution and the contributions of this thesis will finally be presented in Sec. 1.3

1.1 Context and Motivation

With the global spread of internet and the very fast development of technologies, more

and more organisations digitize their business systems and connect them to the internet.

This introduces new opportunities to our society and to the organisations themselves, but

also new related risks. Security is always a great challenge that every organisation has to

care about. While traditional methods such as IDS system or penetration testing can help

secure the network, it should aware that vulnerabilities can still exist, and can be exploited

at any time. Also, hackers never sit still. New methods and tactics to attack networks

are developed day by day along with the development of the technologies. Thus, it is

necessary to continuously study the attacks and find innovative ways of countering the

threats. Honeypot is one of the techniques that serve these purposes.

Being studied since the late 80’s, honeypots are decoy systems with intentionally in-

troduced vulnerabilities that are deployed with the intent of attracting the hackers. In [3],
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Cheswick told an interesting story about ”a merry chase” of a cracker who fell into a trap

system with fake services installed. In the literature, Cheswick’s system is considered the

first honeypot. Since then, the honeypots become more and more popular. Different hon-

eypot systems have been developed for various purposes. However, the hackers don’t

sit still! They learn to detect the honeypots by studying the characteristics of different

aspects in the target system: file system, available tools and running services, and the be-

haviour of the interaction such as the response time, the response content and format, etc.

This is a long brain teaser game between the hackers and the administrators. To counter

the hackers, a generation of smart honeypots, called self-adaptive honeypots, have been

introduced.

As will be discussed in the chapter 2, self-adaptive honeypots are expected to respond

appropriately to the attacker’s input commands so that they can avoid being finger-

printed. At the same time, the underlying target system, if exists, must still be protected.

In most existing self-adaptive honeypot systems, the commands sent from the attacker

play a central role in determining the action to be taken, no matter what algorithm is

applied in the learning process. Moreover, the input commands may have a direct im-

pact on the underlying system in the high-interactive honeypots. Integrating a module to

measure the risk of these commands may help these honeypots work smarter and protect

their underlying environment when deal with dangerous inputs.

In this master thesis, the problem of automatically estimating the risk level of the Linux

commands sent from the attackers to a honeypot is addressed. This work is conducted in

the context of a master internship, which is a small support part of the ongoing doctoral

project of Mr. Touch at the university of Namur. Inspired by the existing works about

self-adaptive honeypots, Mr. Touch proposes a new conceptual architecture of Smart

Honeypot. The core of this system is a Smart Proxy which contains a decision maker. The

input commands and environmental information are used as the base to decide the action

to be taken in return to the attacker’s request. The internship is realized with the hope

that the commands’ risk level could be a useful supplementary information that helps

augment the efficiency of the decision maker.
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In the next section, a preliminary analysis of the problem and the identified research

questions will be presented.

1.2 Preliminary analysis and research questions

The objective of this work is to construct a machine learning workflow which can estimate

the risk level of a Linux command.

The problem of estimating the risk is in fact a prediction problem: given a Linux com-

mand, we need to predict its risk level. This is a supervised learning problem which

required labeled data for training and testing purposes. During the internship, a set

of honeypot data is provided. These data were recorded from two medium-interaction

SSH honeypots which were configured and deployed by Mr. Touch . The sequences of

command lines are then extracted from the data and grouped by SSH sessions to form a

dataset. However, the available data are not yet labeled. A supplementary task is neces-

sary: We need to estimate and assign the risk level for each command in the dataset.

By analyzing the problem and the available data, we identify four research questions:

• RQ1: The available data are in form of text sequences. However, machine learning

algorithm requires numerical feature vectors. How to represent the text commands

efficiently to use in machine learning algorithms?

• RQ2: Assigning the risk level to a command is a task that requires professional

knowledge, including the understanding about the effect of the command and the

ability to measure severity of that effect. This is a time-consuming task. Is there a

way to label the data with a minimal human effort?

• RQ3: Which machine learning model will be appropriate for this task? Obviously,

the most important criterion for choosing a model is its prediction performance.

In addition, the prediction time should be as low as possible. Knowing that the

model is for an interactive system: the attacker sends a command and waits for the

response from the honeypot, the response time is very important.

• RQ4: In the security environment, bad predictions may be harmful. Which metric

will be appropriate to measure different criteria of the system?
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To tackle the problem, we firstly solve the simple case in which only 2 risk levels are

defined: normal/benign (0) and risky/malicious (1). In this case, the problem becomes a

binary classification problem. The general case with multiple risk levels is then addressed

in form of a multi-class classification problem.

1.3 Principal Contributions

The main contribution of this work is the construction of a complete machine learning

workflow to solve the problem of classifying the commands by risk levels. Through this

workflow, all the research questions are addressed. This workflow consists of differ-

ent phases: data collection and labeling (RQ1), data cleaning and pre-processing, data

transformation (RQ2), model construction(RQ3), evaluation and interpretation of the

predicted results (RQ4).

The original problem is considered in two cases. Firstly, we deal with the simple case

where only two risk levels are defined: normal/benign (0) and risky/malicious (1). The

problem is formulated as a binary classification problem. For this case, we focus on study-

ing how to transform the text data into the numerical vectors. Our contribution here is to

find out a good representation model for the Linux commands. By evaluating different

representation models, we progressively improve the performance of the binary classifi-

cation task. Our experiments show that the Doc2Vec model gives the best performance,

we achieve a 97% accuracy on the test set of our data.

Secondly, we tackle the general case where multiple risk levels can be defined. This

case is formulated as a multi-class classification problem. To label the dataset, we have to

construct a model to automatically estimate the risk level. The contribution in this step

is our solution of applying a novel Labeling Model to automatically estimate the risk level

of the unlabeled commands. The basic idea is to take into account the weak supervision

information such as the heuristic or the experts’ knowledge about the Linux commands

to describe how to estimate the risk level in a programmatic way. With the 5 estimated

risk levels produced by the Labeling model, we achieved 99% accuracy on the test set.
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This thesis is organized as follows:

Chap. 2 defines some background terms and summaries some related works.

Chap. 3 presents our proposed solution for the problem of classifying the commands

in SSH session by multiple risk levels. Two workflows are introduced in Sec. 3.1 and

Sec. 3.2, corresponding to the two case of the problem (the simple case with 2 risk levels,

and the general case). In Sec. 3.3, the choice of evaluation metric will be discussed.

Chap. 4 presents the details of the workflow to classify the commands in the simple

case (only 2 risk levels are identified: normal and malicious (risky)).

Chap. 5 presents the details of the workflow to classify the commands in the general

case where multiple risk levels could be identified.

Finally, Chap. 6 discusses more about the non-functional requirements of our system

such as the quick response time, the ability of maintenance and the interpretability of the

prediction results. We also discuss the points to improve in the future work, particularly

how to take advantage of the Labeling Model to infer more reliable label for the unlabeled

dataset if we have a ground-truth of a small subset of labeled data annotated by human

expert.
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Chapter 2

Background and related works

In this chapter, an overview of the honeypots and self-adaptive honeypots will be pre-

sented in Sec. 2.1. Next, the terms “risk” and “risk level” which are the key words in the

problem statement will be discussed in Sec. 2.2. Finally, some existing works related to

the analysis of user commands will be summarized in Sec. 2.3.

2.1 Honeypots and Self-Adaptive Honeypots

2.1.1 Honeypots

The concept of honeypots has been introduced since the early 90’s but the term honeypot

was only introduced for the first time in 2002 by Lance Spitzner [36]. Since then, sev-

eral authors proposed different definitions for this term. In 2003, Fabien Pouget et al [25]

offered a survey of the literature and introduced an intuitive definition: A honeypot con-

sists in an environment where vulnerabilities have been deliberately introduced in

order to observe intrusions.

The value of the honeypots relies in getting hacked. In industries, the honeypots are

often deployed alongside the production systems. The intent of this strategy is to trick

the hackers into hacking the decoy systems. The general purpose of honeypots is to make

the attacker believe that he is interacting with a real machine. If this purpose is achieved,
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this will allow the administrator to observe the behaviours of the attackers, then to guard

against new attacks.

There are many ways to build and deploy a honeypot. To distinguish different types

of honeypots, we can classify them by the level of interaction that they afford to attackers.

The level of interaction gives us a scale with which to measure and compare honeypots.

According to Spitzner [36], the more a honeypot can do and the more an attacker can do

to a honeypot, the greater the information that can be derived from it. However, by the

same token, the more an attacker can do to the honeypot, the more potential damage an

attacker can do.

The honeypots are grouped into three interaction categories:

• Low-interaction honeypots refers to technologies that emulates certain predesig-

nated services. They are passive (the honeypots are only listening) and allow only

limited interaction for attacker or malware as there is no real operating system

target that an attacker can operate on. This type of honeypot is evaluated as a

safer and easy way to gather information about the frequently occurred attacks and

their sources [35]. Likewise, it is relatively simple for an attacker to detect a low-

interaction honeypot because of its functional limitation.

• High-interaction honeypots are the ones that give attackers access to a real oper-

ating system and its applications. They are extremely complicated to build and

maintain. They are also at a very high level of risk. In returns, they can give a vast

amount of information about attackers and their attacks because they are more at-

tractive and they accept various types of attack. High-interaction honeypots have

been mainly used to capture and analyze autonomous propagating malware such

as worms, virus and botnets [19].

• Medium-interaction honeypots offer more interaction capabilities than low inter-

action honeypots but less functionalities than high-interaction honeypots. They are

still the emulators, they do not provide any real underlying operating system. As

a result, medium-interaction honeypots are safer than the high-interaction ones. In

these honeypots, the daemons are designed to mimic the functionality of some real

7



applications when they interact with users. They give the attacker a better illusion

of a real system and get more possibility to interact. This type of honeypot has many

advantages, but developing such a system requires knowledge about the provided

protocols and services. The more services a honeypot provides, the more compli-

cated it is to deploy and maintain it.

The honeypots are popularly used in research and industries because of their many

advantages. They can be used to detect unauthorized activities such as scanning. They

can also be configured and deployed to capture the latest worm for analysis. The honey-

pots collect data that records only malicious activities. This is a data source of high value

because there is very little noise. These data can be used for analyzing attacks, profiling

attackers or training a smart security system.

2.1.2 Self-adaptive Honeypots

With the application of machine learning techniques, honeypots are becoming smarter.

Self-adaptive honeypots refer to the smart honeypots that can learn to make decision of

actions to be taken while interacting with attackers.

The first self-adaptive honeypot was introduced in 2011 by Wagener et. al. [37]. That

is a high-interaction honeypot which exposes a SSH service. The system leverages the

game-theoretic concepts and a variant of reinforcement learning method to learn to inter-

act with the hackers. It can decide to execute the received command or perform another

predefined action with a probability detected by reinforcement learning. The experimen-

tal results show that behavioral strategies are dependent on contextual parameters and

can serve as advanced building blocks for intelligent honeypots.

Inspired by the system of Wagener, some variants of the self-adaptive honeypot with

adaptations and improvements have been presented. Pauna et. al. [23] proposed a case-

adaptive honeypot, called CASSH, based on the existing medium-interaction honeypot

Kippo. The honeypot was designed using the Beliefs-Desires-Intentions agent model with

the learning capabilities of Case Base Reasoning technique, i.e. the actions are planned

using the accumulated experience learned from the similar tasks. In the next step, Pauna

8



and Bica created a new changing behavior honeypot system called RASSH [20]. In this

system, the machine learning SARSA algorithm is used in the reinforcement learning

module to decide what action to be taken in responding to the attacker’s command. Ac-

cording to the authors, this system overlaps some of the disadvantages in the existing

systems. Recently, the same author proposed an improvement with the use of deep Q-

learning (DQN) algorithm to fully automate the decision process for a self-adaptive SSH

honeypot [22] and an IoT honeypot [21].

Besides the works of Pauna, in a study by Luo et. al. [15], an ”intelligent-interaction”

honeypot named IoTCandyJar was introduced for IoT devices. This system learns the

behaviours of IoT devices using a set of potential responses for the captured requests

collected from different public available IoT devices. To pass attacker’s checks, multiple

heuristics and reinforcement learning mechanism are applied to help the system learn

the best responses which has a high probability to be the one that the attackers wait for.

Their result shows that the honeypot is improved in term of session length and number

of captured attacks.

In another work, Dowling et. al. proposed another improvement of the self-adaptive

honeypot with a new state-action space formalism that aims at interact with the auto-

mated malware [6] [5].

In most self-adaptive honeypot systems, including the target system of this work, the

commands sent by attackers play an important role. They are the primary mean to de-

scribe the interaction situation, which influences directly the decision on which action to

take. Analyzing these commands and deriving useful information such as their risk level

can then be helpful to improve the performance and the effectiveness of those systems,

especially the SSH honeypots. In Sec. 2.3, some studies on the analysis of user commands

in SSH compromises will be discussed.

2.2 Risk Level Definition

According to the EBIOS Risk Manager method guide [9], the term “risk” and “risk level”

are defined as follows:

9



• Risk: Possibility of a feared event occurring and that its effects affect the missions of

the studied object.

• Risk Level: Measurement of the extent of the risk, expressed by combining the sever-

ity and the likelihood.

The term “feared event” which is used in the definition of risk is also defined in the

EBIOS guide:

• A feared event is associated with a business asset and harms a security need or

criterion of the business asset (examples: unavailability of a service, illegitimate

modification of a high temperature threshold of an industrial process, disclosure of

classified data, modification of a database). The feared events to be exploited are

those of the strategic scenarios and relate to the impact of an attack on a business

asset. Each feared event is assessed according to the level of severity of the conse-

quences, using metrics.

Let identify the feared event in our context. This work concentrates on evaluating the

risk level of the Linux commands sent from an attacker to a honeypot after he successfully

logged in to the system with a SSH username and password. Then the feared event is

the action “send a command to the system” of the attacker. At the moment when the

system evaluates the command, it’s obvious that the command was sent successfully (so

that the honeypot received and will process it). Then, the possibility of the feared event

occurring is 1. By consequence, the estimation of the risk level of a command becomes

the evaluation of its severity.

It is not easy to estimate the risk level of each Linux command. Firstly, this task re-

quires expert knowledge and experience to correctly evaluate how a command can make

change to a system. Secondly, the severity of executing a command depends heavily on

the state of its environment. For example, someone types a command rm to delete a file in

the system. In the terminal (or the bash history), only the command name and file name

present. But the result of the action depends on many environmental factors. Does the

files exist in the current directory? Does the current user have the write permission on it?

If the file doesn’t exist or the user doesn’t have the write permission, then the command

10



“rm” doesn’t have any impact on the system. By contrast, that command can make a

catastrophe if the target file is important.

In this work, the environmental factors are not yet taken into account (but the com-

mand parameters are still considered). We consider only the impact that a command can

cause to the system when all necessary conditions are satisfied for it to be successfully

executed. With this assumption, the command “rm” is always dangerous because an

attacker can always delete any file that he wants.

2.3 Related works on the analysis of SSH compromises

Since their appearance, the honeypots have been providing a high quality source of ma-

licious data for analysis. Various works have been published, revealing the attacking

patterns and the behaviour of the attackers.

Despite many researches on attack data, few works exploit the sequences of com-

mands sent from the attackers. In [27], Ramsbrock et. al. presented a method to profile

the behaviour of the attackers by exploiting the snapshots of Linux commands captured

from their high-interaction honeypots. The authors identified seven groups of commands

representing the typical actions that an attacker can take: check software configuration,

install a program, download a file, run a rogue program, change password, check hard-

ware configuration and change the system configuration. The attacker profile is then

represented in form of a state machine where the actions are represented by the states

and their orders are represented by the transitions.

In [7], Dumont et. al. leverages the malicious Linux commands recorded from their

SSH honeypots to learn a system that can detect the malicious remote Shell sessions. The

collected honeypot session logs are used together with the content of the .bash history

files crawled from github.com to form a data set for training and testing purpose. The n-

grams are then extracted from the sequences of 1-4 consecutive commands and used as

features to train a k-nearest-neighbors classifier. Even if the proposed pipeline is quite

simple, the experimental results are impressive: the classifier reaches a true positive rate

of 99.4% and a true negative rate of 99.7% with sequences of four shell commands.
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The solution proposed by Dumont et. al. [7] is for detecting the malicious SSH ses-

sions. In the problem of classifying commands by level of risk, this model can be useful

when the number of risk levels is reduced to 2, i.e a command could be evaluated to be

one of the two case: safe (benign) or risky (malicious). The approach of Dumont is then

re-implemented as a part of the proposed solution and plays the role of a baseline model.

Next, this baseline will progressively be improved by introducing different representa-

tion models for text data. Later, an original solution to the full problem of classifying

the commands by multiple risk levels will be proposed without requiring hand-labeled

data. The method reasoning and the implementation are presented in the chapter 3, 4 and

5 of the thesis.

Summary Chapter Background and related works

In this chapter, the definitions of honeypot and self-adaptive honeypot are pre-

sented.

The honeypots can be classified by their level of interaction, there are 3 categories:

low-interaction honeypot, high-interaction honeypot and medium interaction hon-

eypot.

The definitions of the terms risk and risk level are also presented. The risk level of

a command sent to the honeypot is its degree of severity.

The estimation of the risk level of a command is complicated because of the under-

lying environment state. In this work, we consider only the impact that a command

can cause to the system when all necessary conditions are satisfied for it to be suc-

cessfully executed.

This chapter also summaries some existing works related to the analysis of user

commands. Some of them give us inspiration to elaborate the solution that will be

presented in Chapter 3.
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Chapter 3

Solution Elaboration

This chapter presents our proposed solution for the problem of classifying the commands

in SSH session by multiple risk levels. We consider two cases in this thesis. In the simple

case where there are only two risk levels: normal (level 0) and risky (level 1), our problem

is a binary classification problem. By discriminating these two class, we indeed solve the

problem of detection of malicious commands. In the general case, we need to classify

a command by different risk levels, that is a multi-class classification problem. Another

approach to this problem is to use the syntax analyzer to analyze the Linux command. A

traditional rule-based method can then be used to filter the processed commands through

a set of specific rules. The disadvantage of this approach will be discussed in Chap. 5

when we have multiple risk levels to estimate for each command. The biggest advantages

of Machine Learning approach is that (i) we do not have to maintain a complicated set of

rules (ii) we can define clearly the performance metrics to evaluate the models, (iii) we

can generalize (make prediction) with unseen data.

Our work focuses on building a complete workflow to accomplish the tasks defined

above. Applying the machine learning methods for classification is only on step in the

whole workflow. The other important parts are: data collection, data labeling, data clean-

ing and pre-processing, data transformation, evaluating of the predictive model and in-

terpreting the results. The complete workflows for the two cases are presented in details

in Sec. 3.1 and Sec. 3.2. The most important parts of our work are in (i) the representation
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learning for the text data and (ii) the procedure of automatically building the Label Model

for labeling the dataset.

3.1 Workflow for the Detection of Malicious Commands

We first consider the problem of classifying the commands by risk levels in a special

case where there are only two levels: normal (benign, label 0) and risky (malicious, la-

bel 1). It now becomes a binary classification problem of identifying if a command is

risky/malicious (class positive) or normal/benign (class negative). It can also be consid-

ered as a problem of detecting the malicious commands. 1 The proposed workflow for

solving this problem is illustrated in Fig. 3.1.

Binary	Classification:	Detection	of	Malicious	Commands

Data Collection

Bash log

Honeypot
Cowrie log Malicious

(label 1)

Benign/Normal
(label 0)

Data Transformation

Command Label

pwd 0

touch my_draft.txt 0

... ...

rm -rf abc.txt 1

service iptables stop 1

Transform text
command into

vectors 

(e.g., Count-Vector,
Bag-of-Word, TF-

IDF, Doc2Vec)

X y

[0.12, 0.56, ...., 0.33] 0

[0.24, 0.67, ...., 0.09] 0

... ...

[0.01, 0.08, ...., 0.12] 1

[0.76, 0.81, ...., 0.04] 1

Construction of Classification Model

Classification Model
(KNN, SVM, ...)

Prediction
0/1

Figure 3.1: Workflow of binary classification problem for detecting malicious commands.

The most important part is how to transform the text data into numerical data (vector) to

use in the Machine Learning algorithms.

This workflow is inspired by the work of Dumont et. al [7]. In brief, we first need to

collect example commands for both classes, then transform the text commands into the

numerical vectors. Different representation models to transform the text commands are

reviewed including the traditional Bag-of-Word model [11], the TF-IDF model [12] and

1The name negative, positive class come from the analogy in medical testing. If a patient is infected
by a disease, we say the patient is positive to the disease X. In the binary classification, the positive class is
assigned label 1 and the negative class is assigned level 0 (or -1, but in our work, we use label 0, that can be
interpreted as zero risk level, i.e. no risk.
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the modern Doc2Vec model [13]. These models are explained in great details in Chap. 4.

Combining these representation models with different classification models gives us dif-

ferent pipelines for the malicious commands detection task. These pipelines are evaluated

with the guideline presented in Sec. 3.3.

3.2 Workflow for the Classification of Commands by Mul-

tiple Risk Levels

The proposed workflow for the problem of classification of commands by multiple risk

levels is illustrated in Fig. 3.2.

In this problem, we will work uniquely on the commands captured on the two honey-

pots deployed by Mr. Touch in his doctoral project. The classification task is a supervised

learning problem, so the labeled data are required for training and testing purpose. In

our case, the labeled data (the risk level associated with each command) are not yet avail-

able. In order to build the dataset for a supervised learning model, we first need to label

the data, i.e assign the risk level to each command in the dataset. Hand-labeling a large

amount of text commands is a time-consuming task that requires the expert knowledge.

We propose to use the Labeling Model [28], a novel approach to build the data program-

matically and automatically with weak supervision.

As illustrated in Fig. 3.2, in the Data Collection phase, we firstly do the exploratory data

analysis (by using an unsupervised machine learning method such as topic modeling) to

gain some insights about the dataset. We also benefit from some prior knowledge about

the Linux commands (of an expert or of the Linux users) to describe the rules of how to

estimate - no need to very accurate - the risk level of a particular command. We then write

an ensemble of labeling functions (in Python) to encode these knowledge and heuristics

and construct a Labeling Model. The result model will automatically assign the label for

each unlabeled command in the dataset.

In the next phase, the text data are transformed into vector of features. This phase

follows the similar workflow as in the binary classification problem. The result training

15



vectors will then be fit to a multi-class classification model. Since the labeling functions are

flexible and very easy to maintain, based on the performance of the classification, we can

turn back to update the heuristics and improve the Labeling Model.

Multi-class	Classification:	Classification	of	Commands	by	Risk	Levels

Data Collection

Honeypot
Cowrie log

Human Prior
Knowledge

Exploratory data analysis

Topic Modeling (Clustering) Word-cloud

Proposed  Heuristics
         and   Keywords

Automatic and Programmatic Labeling

LabelModel

Command Label

0 pwd -1

1 mkdir temp -1

...

N bash script.sh -1

Label

0 R0

1 R1

...

N R3

Labeling Functions

Data Transformation

Command Label

pwd R0

mkdir temp R1

... ...

service iptables stop R4

bash script.sh R3

X y

[0.12, 0.56, ...., 0.33] 0

[0.24, 0.67, ...., 0.09] 1

... ...

[0.01, 0.08, ...., 0.12] 4

[0.76, 0.81, ...., 0.04] 3

Construction of 
Classification Model

Classification
Model
(LogisticRegression)

Multi-class
Prediction

Figure 3.2: Workflow of multi-class classification problem for classifying the commands

by risk levels. The most important part is the procedure to estimate risk level for the

unlabeled commands using the novel Labeling Model.

3.3 Evaluation of Classification Models

Typically in a classification problem, the performance of a classifier can be measured by

the accuracy metric. The accuracy is calculated in function of the number of data points in

the test set that are correctly classified. This is the standard metric for any kind of classifi-

cation model. However, for the binary classification model for sensitive applications such
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as fraud transaction detection, cancer diagnosis or our malicious command detection, we

need another metric. Let think of the following examples: a fraud transaction is predicted

as legit and is processed, a cancer patient is diagnosed as just having a benign tumor and

goes home without any special treatment, and a dangerous malicious command is classi-

fied as normal and allowed to be executed in the real system. These are some examples of

bad prediction in the binary classification problem, where the positive value (fraud, can-

cer, malicious) are predicted as negative (legit, benign, normal). In these cases, this kind

of inaccurate prediction can cause harmful consequences. As the accuracy of a machine

learning model never reaches 100%, for the sensitive applications, another metric called

confusion matrix is useful to estimate the inaccurate prediction part in more detail.

Table 3.3 explains the content of a confusion matrix. The definition and representation

of confusion matrix are sometimes confused, particularly for the binary classification.

Here we use the notation in the Machine Learning textbook of Murphy [18].

Predicted Label

Negative (0) Positive (1)

True 
Label

Negative (0) True Negative False Positive

Positive (1) False Negative True Positive

Figure 3.3: Definition of confusion matrix for the classification problem.

The following metrics are reported in the confusion matrix:

• True Negative: Real negative is predicted as negative.

• True Positive: Real positive is predicted as positive.

• False Positive: Real negative is predicted as positive.

• False Negative: Real positive is predicted as negative.

The True Negative and True Positive reflect the accuracy of the prediction and are expected

to be high. The False Positive error is also called false alarm error and often less critical than
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the False Negative error in our specific problem. It should note that, the criterion of these

metrics depends on the problem. Let us consider another problem of spam detection. The

spam emails are labeled positive (class 1) and the non-spam emails are labeled negative

(class 0). The goal of a spam detector is to prevent the spam emails from appearing in the

primary mail box, instead put them in the spam folder. In practice, if some spam emails

are classified as normal (False Negative error), we will be a little annoyed seeing the spam

emails in the mail box, but that is not a big problem. On the contrary, if an important

working emails is classified as spam (False Positive error), we can not see them in the mail

box and we may miss some important information. In this case, the False Positive is more

critical than the False Negative and should be reduced as much as possible.

Back to our binary classification model, the target is to increase the accuracy while

maintaining a low False Negative error. There are also some other suggested targets for

the binary classification such as increasing the recall of the positive class and increasing

the precision of the negative class. However these targets are not clear and do not show the

natural of the problem. Choosing the appropriate metrics for the problem is an important

step, and defining the evaluation metrics beforehand helps us focus on the target. 2 (See

more details in Chap. 4)

The confusion matrix and the accuracy metric are also used for the problem of classi-

fication by multiple risk levels. In this task, the labeled data are not available. We thus

construct a Labeling Model to automatically assign the labels for our dataset. The target

in this task is to increase the accuracy and reduce both False Negative and False Positive

errors. (See more details in Chap. 5).

2We do not simply apply the machine learning model on the available data and report the results. In-
stead, we define the target for our system first, and then collect data, train the model towards this target.
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Summary Chapter Solution Elaboration

We are constructing a workflows for a system, that can (i) automatically detect if

an input command is benign/normal or malicious and (ii) tell how risky an input

command is. We propose to formulate these tasks as classification problems:

• A Binary Classification problem to classify an input command as normal (class

0) or malicious (class 1).

• A Multi-class Classification problem to assign a particular risk level for each

input command.

We build different Machine Learning pipelines to solve these two problems. In

order to make a Machine Learning solution work, we need labeled data, we need

to train a model to learn from data so we can output prediction on the unseen data.

• We first collect the data, label them, pre-process and transform them into nu-

merical vectors.

• We train different classification models, explain how to evaluate these model

and draw attention to the importance of reducing the False Negative error.

Our contribution in this work is 3-fold:

• We construct a complete machine learning workflow to solve the problem of

classifying the commands by multiple risk levels, which is the objective of this

work.

• We evaluate different ways to represent the input text commands and find

that the Doc2Vec model works best. We achieve around 97% accuracy for the

binary classification.

• We propose to use Labeling Model, an automatic and programmatic way to

label a large dataset that provide reliable labels. That help us achieve around

99% accuracy for the multi-class classification with five defined risk levels.
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Chapter 4

Detection of Malicious Commands in

SSH Session

The first problem we are dealing with is to detect the malicious commands. Indeed, this

is the simple case in our main problem of classifying the commands by risk level where

there are only two risk levels: 0 (normal, benign) and 1 (risky, malicious). With this for-

mulation, we make an assumption saying that, the commands in the working sessions of

normal users are considered benign and the commands in the SSH sessions of the attack-

ers captured on the honeypots is considered malicious.

If we have enough good examples for the benign and the malicious commands, we

can train a binary classification model to discriminate these two classes. As discussed in

Sec. 2.3, the work of Dumont et. al. [7] fits quite well with this problem. We therefore re-

implement the model of Dumont as part of our solution and use it as our baseline model.

First, the commands from different sources are collected to form the dataset (Sec. 4.1).

Second, the representation models are built to transform the text data into feature vectors.

In Sec. 4.2 we review the simple Bag-of-Word model followed by some more robust and

widely used models (N -command, TF-IDF and Doc2Vec). These representation models

are experimented with different classification models in Sec. 4.3. We analyze in depth

the performance of the proposed workflow based on the accuracy and the False Negative

error.
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4.1 Data Collection and Pre-processing

Since the classification models require labeled data, we have to collect sufficient example

for both classes benign and malicious. In our experiments, two sources of data are used.

• Benign example commands are collected from public bash log files in Github. They

are the history of input commands of normal users in their working sessions. We

crawl 660 long .bash_history files containing 210, 402 commands. The label 0

(negative class) are assigned to these commands to indicate that they are benign

(coming from normal users).

• Malicious example commands are collected from the two honeypots by Mr. Touch .

These data include 694, 643 commands of 76, 778 short sessions. All these commands

are assigned the label 1 (positive class indicating malicious/risky commands).

There are 905, 045 commands in total, 70% of them is used to train the classification

and the remaining 30% (271, 514 commands) is reserved for the test set. Following the

workflow proposed in Fig. 3.1, we focus on building representation models to transform

the text commands into vectors and building classification models for detecting malicious

commands. The representation model and classification model are trained and tuned on

the training set. In the prediction step, the test data is first passed through the represen-

tation model to obtain the feature vectors. These vectors are then fed to the classification

model to get the final prediction result. 1

The data representation models presented in this chapter are also used in the work-

flow of the classification of the commands by multiple risk-levels (Chap. 5). Before build-

ing the representation models, a simple pre-processing step is applied to the input text

commands in order to remove the unique strings like random generated file names, long

file paths, email addresses, IP addresses and URLs.

1We do not use a separate validation set since training a complex model like Doc2Vec takes time. We
tune the hyper-parameters of the models mostly by grid search with several common values. We simply
compare the accuracy on the training and on the test set to avoid overfitting.
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4.2 Representation Learning for text data

The text command is comprehensive to human, however, in order to analyze them using

Statistical Machine Learning techniques, we have to perform mathematical operations on

them. Thus the text data must be transformed into numerical vectors (which is called

the feature vectors). Several basic techniques in Natural Language Processing (NLP) are

applied to process the textual commands.

4.2.1 Basic Concepts

Our dataset is a collection of Linux commands. Each command is called a document. A

document is in fact a sequence of text, it can be as long as a book/an article or as short as

a message/a tweet. In our context, basically, we treat each command as a document. We

can also treat one command and several previous commands as a document. A document

can be tagged, that means it can be accompanied by a list of tags to indicate different

labels/properties assigned to it. For the problem of classification the command by risk

level, each command is tagged by it corresponding estimated risk level.

When processing a document, it can be tokenized, i.e., separated into tokens by some

rules (such as breaking at the end of each sentence or breaking by the white space). In

our application, a document is one or several commands glued together, the tokenizer

simply breaks a document into words or terms. For example, tokenzing the command

pip install --upgrade gensim gives a list of tokens (or unigram)

[’pip’, ’install’, ’--upgrade’, ’gensim’].

It can be useful if we care about not only individual word but also a group of consecutive

words. For example, for the command given above, if we would like to extract all pairs

of two consecutive words (called bigram or 2-gram), we have

[’pip_install’, ’install_--upgrade’, ’--upgrade_gensim’].

Similarly, if we extract a tuple of three words (called trigram or 3-gram), we have

[’pip_install_--upgrade’, ’install_--upgrade_gensim’].

The whole dataset is called the corpus. The corpus can be understand as a standard

way to organize the data, which is used by the model such as a topic model (which looks
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for the hidden topics/themes in the corpus). In general, the most common task in NLP is

to infer the latent (hidden) structures in the corpus. These structures can be the groups of

documents with close semantic meaning or the classes of documents with the same tag.

In order to do that, the corpus must be manipulated mathematically and numerically. By

characterizing a document, we can represent each document as a vector of its features.

Different ways to characterize the document give us different representation models.

4.2.2 Document Representation Model

The most fundamental and most important document representation model is the Bag-of-

Words (BoW) model. In the early 50s, Zellig Harris, an influence linguist found that, “each

language can be described in terms of a distributional structure, i.e. in terms of the occurrence

of parts relative to other parts” [11]. The BoW model represents each document by the

occurrence (frequency) of each word.2 First, a dictionary of vocabulary is constructed

from all the words in the corpus. The dictionary contains all the unique tokens with their

frequency in the corpus. The dictionary can be made richer by using n-gram (normally 2-

gram or 3-gram) tokens. (In that way, we can have a dictionary that contains at the same

time unigram, 2-gram and/or 3-gram and so on). As the dictionary can be very large,

we should consider to limit its size D, set several rules to ignore the stop words, to filter

out the strange words that appears very few times, etc. The BoW model is exactly this

dictionary (of size D) with the optimal data structure to store and retrieve data efficiently.

A document is encoded by a vector of size D (called a count-vector). The indices of

element in the vector correspond to the words stored in the dictionary (that depends on

the data structure), and the values are the number of occurrence of the corresponding

word.

Despite its simplicity, the BoW model is still useful in many situations, particularly

in our application, due to two reasons. First, the Linux commands (a document in BoW

model) are often non-ambiguous. A command has an unique name and does specific,

2It should clearly note that, the occurrence is the count of how many times a word appears in the doc-
uments, it is an integer number. The frequency is the count normalized, and is float number. But in a
general BoW model, we can use two terms interchangeably. We will specify the usage of frequency in other
(TF-IDF) model.
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deterministic task(s). It is distinguishable by its name (and/or some specific parameters).

That makes a document in a BoW model distinguishable by specific word(s) in the dic-

tionary. Second, the set of Linux commands is limited and very small in comparison to

the set of vocabulary in human language, thus it makes the construction of BoW very fast

and efficient. However, the largest disadvantage of BoW model is that the order of the

words in a document is completely ignored. We can overcome this shortcoming by using

n-gram tokens (n > 1) to specify the order of words (which is usually called the spatial

information).

This idea is also applied in computer vision and usually called Bag of Visual Fea-

tures [38] model. This approach bases on hand-crafted visual features like Scale Invariant

Feature Transform (SIFT) [14] feature, which is the vector of mathematical descriptions of

local keypoints in an image. Instead of representing the image by a matrix of pixels, it can

be represented by a histogram of visual features, which brings more semantic meaning

for the vision tasks.

4.2.3 More Robust Representation Models

The basic BoW model represents the document by count-vector. The first improvement

discussed above is to use n-gram to specify the order of the words. For example, we can

create a BoW model with all unigram, bigram and trigram for each document (denoted

as {1, 2, 3}-gram). The second improvement is to represent the command in its context.

We use the notation 1-command to denote that only one current command is processed

at a time. N -command notation denotes that the current command and N − 1 previous

commands are merged together to create a new bigger command that hold the historical

context [7]. The third improvement is to use more robust representation models like TF-

IDF or Doc2Vec model. These proposed representation models will be detailed in this

section.3

3In this chapter, we should distinguish two notations: n-gram is a combination of n consecu-
tive/adjacency tokens and N -command is a combination of a command and its N −1 previous commands.
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N -command

In the BoW model, one command in the dataset is considered as a document. However

it can be more useful when we consider a command in its surrounding context. The

context around a command is limited to the N − 1 previous commands since in the real

situation, we can only access the historical input commands. In each SSH session, an

N -command can be created by taking the current command and applying a sliding win-

dow of size N to its previous commands. 1-command means that only one command

is considered at a time. More specifically, the N -command representation for the com-

mand cmd(t) is defined as a list of the command itself and its previous N − 1 commands

cmd(t−1), . . . , cmd(t−N−1). An example for the construction of 3-command is illustrated in

Fig. 4.1. With this approach, a command (a document) cmd(t) is now represented by a new

document [cmd(t−N−1), . . . , cmd(t−1), cmd(t)]. In the new document, the input order of the

commands is preserved. The new document can be now fed directly to the BoW model

or other representation models.

Figure 4.1: Example of N -command representation. From a list of input commands, we

group the current command with its two previous commands in their order to create a

new set of 3-command documents. In this example, the resource url in the wget command

is replaced by URL , the file path used in chmod and bash commands are replaced by

PATH for readability.

N -command representation can be more robust than 1-command for malicious com-

mand detection (as explained in our experiment in the next section), but is it always suit-

able for different problems? In the binary classification problem, all the commands in
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every SSH session are assigned the same label. Taking N commands in the same session

together to create a new document is logical and reasonable since this does not change the

label of the new document. However, in the multi-class classification problem (where the

commands are classified by different risk levels - Chap. 5), the commands in the same ses-

sion have different labels. Combining a command with its historical commands makes

a confused set of labels and it does not help the classification task. For that reason, in

our experiments, both 1-command and N -command is used and compared for the binary

classification task (Sec. 4.3), and only 1-command is used for multi-class classification task

(Sec. 5.4).

TF-IDF Model

In the original BoW model, the input document is represented by a count-vector, in which

each element count(t, d) is the raw count of the number of times the word (term) t ap-

pears in the given document d. We can see that, even when the stop words and the very

common words are removed, there are still several terms that occur much more often

than other terms, for example, the keywords or the specific (technical) terms in an article.

Moreover, if the document d is long, the term t can have more chances to appear in d. For

another document d′ having similar content as d but is shorter, the same term t has less

chances to appear in d
′ than in d. This weakness of the count-vector in BoW model comes

from the fact that the raw count is not normalized. A simple way to normalize this raw

count is to divide it by the count of all other term t
′ in the document t. The term frequency

(TF) of a term t for the given document d is defined as

TF (t, d) =
count(t, d)∑

t′∈d count(t
′ , d)

. (4.1)

With the normalization defined above, we can only avoid the dominant of the very

frequent terms. In one hand, the term frequency of all the term in a document must

sum to one. That means if there are many common terms in the document, the values

of f(t, d) for the other terms will be low. It is necessary to re-weight TF (t, d). The first

weighting function proposed by Karen S. Jones [12] was originally called term specificity
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and later became the famous inverse document frequency (IDF) function. The intuition is

that “term which occurs in many documents is not a good discriminator, and should be

given less weight than one which occurs in few documents” [12].

The idea of the IDF function is derived from Information Theory [33]. The high prob-

ability events (the event that occurs very often) have low information. For example, the

weather has been hot for two weeks in Namur, it is not surprise when we see the weather

forecast say it will be 33◦C tomorrow. Inversely, the low probability events (the event oc-

curs very rarely) have high information. With the same example, if it is said that there will

be a thunderstorm and heavy rain tomorrow morning, it will be more surprise. Back to

our model, if the terms which appear across many documents in the corpus C will bring

less information since they can not be used to distinguish the different documents. The

less-common terms that appear in few documents in the corpus are more informative and

can be used to distinguish these documents.

For a discrete event x which has a probability of occurrence p(x), the Shannon informa-

tion of this event is quantified by

information(x) = − log(p(x)) = log
1

p(x)
.

The term t plays the role of the event x. The probability p(x) can be interpreted as the

probability that the term t appears in any document in the corpus C. And thus the inverse

document frequency of the term t in the corpus C is defined as

IDF (t, C) = log
|C|

1 + |d ∈ C : t ∈ d|
, (4.2)

where |C| is the number of documents in the corpus, |d ∈ C : t ∈ d| is the number of docu-

ments in which the term t appears.4 Finally, the TF-IDF of a term t for a given document

d in the corpus C is defined as

TF-IDF(t, d, C) = TF (t, d) · IDF (t, C). (4.3)

4The denominator is adjusted by adding a constant (1) to avoid the divide-by-zero error when the term
t is not indexed in the corpus (and thus it does not appear in any document).
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The TF-IDF model represents each document d by a vector of TF-IDF values for every

term t in the corpus C. TF-IDF model produces useful representation of documents in

such a way that similar documents have similar vector representations (which is often

measured by the cosine distance). Thanks to this characteristic, this model is widely used

in Information Retrieval [26]. In our experiments, the pipelines using the representation

of TF-IDF model give the best accuracy (See more details the next session).

Modern Word2Vec and Doc2Vec Models

With the goal of representing a document by a vector, one naive approach is to represent

every word in the document by a vector of same length (e.g., using Word2Vec model [16])

then average these vectors. However, this method does not preserve the order of the

words. An other powerful solution is the Paragraph Vector model [13], which is known

as Doc2Vec or Sentence2Vec model. It is an unsupervised representation learning method

used to transform a text with variate length (a document, a paragraph or a sentence) to a

fixed-length feature vector. This model bases on the Word2Vec model, which is presented

briefly as follows.

One of the most useful techniques in computational linguistic is to learn a distributed

representation of word in a vector space, i.e. to represent each word by a vector [1]. “Ditributed”

here means that, the word is not processed alone but is considered in the surrounding con-

text. For example, the word “foot” in the context of the sentence “Neil Armstrong is ready to

plant the first human foot on another world” 5 means a part of human body. In another context

like in the sentence “Each chair is arranged one foot apart.”, “foot” is a unit of measure. Since

the context of a word is important, a word should be represented in a distributed manner.

Fig. 4.2 illustrates how to represent a word in a distributed manner. To understand this

schema, we can think as follows. On one hand, the information of a word w(t) (like its

meaning) can be determined by its surrounding words [w(t−2), w(t−1), w(t+1), w(t+2)]. This

is called Word2Vec Continuous Bag-of-Word model in Fig. 4.2a. On the other hand, the

information of a word w(t) (like the emotions it brings) can also be distributed (shared)

5https://www.nasa.gov/mission pages/apollo/apollo11.html
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to its surrounding words [w(t−2), w(t−1), w(t+1), w(t+2)]. This is called Word2Vec Skip-gram

model in Fig. 4.2b.

(a) Word2Vec Continuous Bag-of-Word model. (b) Word2Vec Skip-gram model.

Figure 4.2: Illustration of Word2Vec Model.6

The Doc2Vec model is exactly the Word2Vec model with an additional document en-

coding information. In that way, a word will be predicted from not only its surround-

ing words but also the document containing that word. In our experiment, we use the

Doc2Vec implementation in gensim [32]7.

4.3 Binary Classification Models

Several reviewed representation models for text are applied to our problem of detection

of malicious commands. This section discusses briefly the used classification methods,

6The figures are taken from the the blog post of Sebastian Ruder [34] (URL: https://ruder.io/word-
embeddings-1)

7Gensim Doc2Vec URL: https://radimrehurek.com/gensim/models/doc2vec.html
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how to use the feature vector representation of Linux commands with these classification

models and how to evaluate the prediction results.

The experiments are performed with two classification methods. The first one is the K-

Nearest Neighbor (KNN) model (with K=5). This model is simple, very fast to train since

it simply remembers the whole training set, but the prediction time is very slow. The

second one is the Support Vector Machine (SVM) [4] model, which is robust and more

memory efficient than KNN. SVM model works well with high dimensional data. It will

find a hyper-plane to linearly separate the training data. However, the hyper-parameters

of this model is more difficult to tune. We use the LinearSVC implementation in scikit-

learn [24] and find these best hyper-parameters for our dataset: {C = 0.1, tol = 1.5e−3}8.

By combining different representations with different classification models, we do the

experiments with four different pipelines, which are summarised in Table 4.1.

Context Feature Representation Classification Accuracy False Negative

1-command 1-gram + BoW KNN 89.13% 28,878

3-command

1-gram + TF-IDF

LinearSVC

98.13% 2,292

{1, 2, 3}-gram + TF-IDF 98.27% 2,066

{1, 2, 3}-gram + Doc2Vec 96.71% 1,449

Table 4.1: Summary of the experimental results for binary classification problem.

The baseline model (using simple count-vector representation of 1-command BoW

model and KNN, similar to one of the models proposed by Dumont et al. [7]) has a low

accuracy of 89% on the test set of our own data. It also has a serious problem, that is the

False Negative error is too high. That means, for this model, there are many (around 28K)

malicious commands classified as benign. The detailed classification report can be found

in Table 4.2.
8C, one of the most important hyper-parmeters of a linear SVM model, is the coefficient of the regular-

ization (‘l2-regularization’ is used in our experiment). tol is the tolerance for stopping criteria.
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The LinearSVC model is more difficult to train (that requires tuning several hyper-

parameters), but the accuracy on the test set is good enough and the prediction is very

quick. The quick prediction is helpful when we want to deploy the classification model

on real system as we have to make decision in real-time to respond to the input command

of the attacker. The three other pipelines in Table 4.1 are trained using LinearSVC with

the same hyper-parameters to facilitate the comparison.

As explained in Sec. 3.3, the False Negative metric is important for our binary classifi-

cation problem. This metric measures how many malicious commands are predicted as

benign. In real system, if the malicious commands are passed through and executed, they

can make harmful impact to the system. We make efforts to reduce this False Negative

error without reducing the accuracy.

All three proposed pipelines give better results than the baseline model. The first

pipeline using 3-command 1-gram with TF-IDF features achieves a good accuracy on the

test set (Table 4.3). The False Negative is enormously reduced from more than 28K cases

to 2, 292 cases. The second pipeline uses {1, 2, 3}-gram, slightly reduces the False Negative

to 2, 026 cases (Table 4.4). Finally, the last pipeline uses Doc2Vec embedding, reduces the

False Negative to 1, 449 cases (Table 4.5) with a small decrease of performance. In conclu-

sion, the last model is considered as the best one since it achieves a good accuracy while

maintaining a very low False Negative error.
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Baseline model with count-vector

Precision Recall F1-score Support

Class 0 0.68 0.99 0.81 63010

Class 1 1.0 0.86 0.92 208504

Accuracy 0.89 271514

Highlights

• The model is fast to train
but very low in prediction
(the disadvantage of KNN
model)
• Low accuracy.
• Very high False Negative,

that is unacceptable in our
system.

Table 4.2: Binary classification results with baseline model.

3-command 1-gram, TF-IDF features

Precision Recall F1-score Support

Class 0 0.96 0.96 0.96 63010

Class 1 0.99 0.99 0.99 208504

Accuracy 0.98 271514

Highlights

• The accuracy is largely im-
proved in comparison to
the baseline model.
• The False Negative is also

enormously reduced from
more than 28K cases to
2, 292 cases.
• The good performance is

obtained thanks to the
better representation (us-
ing 3-command) and the
better classification (Lin-
earSVM).

Table 4.3: Binary classification results with 3-command 1-gram and TF-IDF features.
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3-command {1,2,3}-gram, TF-IDF features

Precision Recall F1-score Support

Class 0 0.97 0.96 0.96 63010

Class 1 0.99 0.99 0.99 208504

Accuracy 0.98 271514

Highlights

• Using {1, 2, 3}-gram (a
tuple of 3 consecutive
tokens) improves slightly
the performance.
• The False Negative is re-

duced a little (from 2, 292
to 2, 066 cases).

Table 4.4: Binary classification results with 3-command {1, 2, 3}-gram and TF-IDF fea-

tures.

3-command {1,2,3}-gram, Doc2Vec

Precision Recall F1-score Support

Class 0 0.97 0.88 0.93 63010

Class 1 0.97 0.99 0.98 208504

Accuracy 0.97 271514

Highlights

• The accuracy is slightly
lower than the models us-
ing TF-IDF features.
• We achieve a lowest False

Negative of 1, 449 cases
among the 4 experimented
pipelines.

Table 4.5: Binary classification results with the output of Doc2Vec model.
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Summary Chapter Detection of Malicious Commands in SSH Session

In this chapter, we formulate the problem as a binary classification problem: iden-

tify that a command is benign (class 0 - class negative) or malicious (class 1 - class

positive). The bash logs from Github (containing histories of normal users’ input

commands in their working sessions) are used as examples for the negative class.

The commands captured in the Cowrie logs from two honeypots (setup in our

project) are used as examples for the positive class. These three important points

are discussed:

1. Construction of a robust representation model for text command that trans-

form text into vector of features.

2. Comparison of different pipeline for the binary classification task.

3. Evaluation of the accuracy of the predictive model with a focus on the False

Negative, an important metric in our malicious command detection problem.

In order to obtain an useful representation of a command, we can consider the con-

text around it. For example, for a current input command cmd(t), we take two pre-

vious commands to create a 3-command representation: [cmd(t−2), cmd(t−1), cmd(t)].

Each 3-command is considered as a document and we use Doc2Vec model to trans-

form this document into a vector.

There are many binary classification model. The simplest one, a K-Nearest Neigh-

bors model can be trained very quickly but the prediction is very slow. Inversely,

the more complicated but powerful model like the linear SVM model is more

difficult to train but the prediction is very accurate and efficient.

Our proposed pipeline:

{bash logs + honeypots logs} −→ Doc2Vec model −→ Linear SVM classification

gives 97% accuracy and low False Negative on the test set.
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Chapter 5

Classification of the Commands in SSH

Session by Risk Levels

Going beyond the detection of malicious commands, we now tackle a more difficult prob-

lem: classifying input commands by risk levels. Simply speaking, we need to estimate

how is risky a command to our system in order to help a smart honeypot make decision.

For example, if the command has a low risk level, the honeypot can let it pass through

and can let it be executed. On the contrary, if the command has a high risk level, the

honeypot can block it in order to prevent it from being executed in the real system.

The classification model requires labelled data, which are the pairs of a command and

its assigned risk level. In our case, we lack the correct risk level associated with each com-

mand, that make the automatic classification task impossible. We have discussed what is

the risk level of a command and how to estimate in Sec. 2.2. We present several useful

observations in our proper data (in Sec. 5.1) that can help us to find the heuristics to es-

timate the risk level (in Sec. 5.2). From these heuristic, we can programmatically build the

training data by constructing the labeling functions (details in Sec. 5.3). With the new esti-

mated labels, we build a multi-class classification model and demonstrate its predictions

on the real input commands (Sec.5.4). In the following sections, we will assign to each

command a level of risk in range from R0 to R4. R0 is the lowest risk level, indicating

that a command is not risky. R4 is the highest risk level, indicating that a command is
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very dangerous. A solution to automatically label the risk level to the dataset (using a

novel approach called Labeling Model) will also be presented.

5.1 Exploratory data analysis

We have now an unlabelled dataset containing 694, 643 commands captured in the Cowrie

logs by two honeypots. We found that there are not much human manual attacks on these

honeypots, and the content of the SSH sessions are quite similar.1 Most of commands are

probably sent from automatic programs which scan for the exposed IP address and try to

exploit the resource on these machines. Before building a classification model, we must

do several Exploratory Data Analysis tasks in order to understand our data.

5.1.1 Observation 1: Word Cloud

Figure 5.1: Word-cloud of the top 100 frequent tokens parsed from the commands in our

dataset. Only the valid tokens starting with alphabetic letter are considered.

First of all, from the corpus of input commands captured in the honeypots, we take

the top 100 most frequent tokens and visualize them in form of the word-cloud as shown in

Fig. 5.1. In fact we extract the alphabetic tokens from the text commands, remove the low

1Thanks to Mr. Touch for the preliminary analysis and the discussion.
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frequent (uncommon) tokens and use the size of the text to present the relative frequency

of each token. This word-cloud helps us to see the common commands (or tokens) used in

the attack sessions. It is clear that the frequency of the commands does not tell anything

about the their risk level. However it gives us the first intuition about what happened

in a remote session: maybe some scripts was downloaded with curl and executed by

bash/sh, and all the traces were deleted by touching the history with histfilesize.

This helps us to draw our attention to the most used commands, without worry about all

the available commands in the system. 2 We can therefore invite the experts in Security

domain to estimate the risk level only for an important subset of Linux commands for our

system.

5.1.2 Observation 2: Topic Modeling

In addition, it can be helpful if we can see different group of input commands in our

system. This type of analysis is unsupervised since we can simply regroup the commands

by their similarities. For the text data, we apply a topic modeling method to find the hid-

den topics (semantic clusters) in the data. Latent dirichlet allocation (LDA) model [2] is

widely used since it does not only reveal the hidden topics but also provides the most

representative words in each topic. The result of LDA model for our data with eight top-

ics is shown in Table 5.1. We can change the number of topics to see different patterns.

Technically, the found topics are not good enough to represent all the input commands in

our dataset because of two reasons: (i) the command (which is considered as a document)

is short w.r.t. the usual literature document, and (ii) it is often very hard to see the seman-

tic relationship between the tokens (called words in LDA) in a command. However, we

can find that the obtained groups are coherent enough. For instance, Topic 1 talks about

the commands for downloading like wget or curl and the relevant pattern related to

internet resource like http:_PATH_ or _IP_. Topic 6 talks about the chmod command

2In the sunrise.info.fundp.ac.be server of UNamur, we found 3309 available commands when

running the command compgen -bakc| wc -l. That includes all bash built-ins, reserved keywords,

aliases and custom commands found in $PATH. In fact the built-ins commands in a Linux system is not too

many, maybe around 160 commands - to the best of our knowledge.
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Topic 1 Topic 2 Topic 3 Topic 4

|
http:_PATH_
wget
curl
-o
_IP_
perl
-q
-
-s

|
_PATH_
rm
cd
-rf
passwd
bash
grep
cat
_STRING_

_PATH_
ls
>
uname
-la
&
nohup
2>&1
-s
-v

echo
sh
._PATH_
_STRING_
-e
&
histfilesize=0
export
"
_PATH_

Topic 5 Topic 6 Topic 7 Topic 8

mv
ssh1.txt
_IP_
perl
p.txt
lscpu
-n
.ssh_PATH_
cu.txt
w.txt

chmod
+x
777
u+x
0777
0755
1
{
linux2.6
linux2.4

ps
killall
-9
perl
_STRING_)
touch
-l
https:_PATH_
_STRING_
[khelper0]

history
rm
ssr.sh
unset
-rf
histfile
y.txt
teamtftp2.sh
_IP_
histlog

Table 5.1: Eight topics and their representative keywords detected by LDA model.

and its parameters like +x, 777 to make a file executable. Topic 8 touches the history

with some actions to remove history log file or delete an environment variable controlling

the history file size. And so on and so forth.

5.2 Proposed Risk Level Estimation

Based on the observations on the clusters of commands and the summary of top frequent

commands in our dataset, we propose a simple way to estimate the risk level of the com-

mands as following:

• Consider a small subset of related Linux commands at a time, for example, the

group of network related commands or file permission related commands, etc.
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• Within each group, we assign relatively a similar risk level for the similar or closely-

related commands. For example, if we assign a risk level of 2 to wget command,

we should assign the same risk level to curl command since these two command

can be used to achieve a similar task and can be an alternative of each other.

• The risk level assigned to each command does not need to be perfect. The most

important property of the estimated risk level is its consistency. As explained be-

fore, the similar commands should have similar risk level. It is easy to manu-

ally check this property, for example, the commands less, more, head, tail

should have the same risk level no matter what way to estimate them. The estimated

risk level should also be logic. For example, in the same group of user-related com-

mands, the command who (for displaying who are logged-in) should be less risky

than the command userdel (for deleting an user in the system).

In that way, we end up with the following proposed groups of closely related basic

Linux commands and their estimated risk level: 3

• Basic commands related to file and directory manipulation and simple text edition

(Table 5.2).

• Hardware information related commands (Table 5.3).

• System information related commands (Table 5.4).

• User information related commands (Table 5.5).

• Access control, remote control, file permission and environment variable related

commands (Table 5.6).

• Process/Service/Daemon related commands (Table 5.7).

• Network related commands (Table 5.8).

More over, after progressively modifying the above groups multiple times, we found

that we can add several simple heuristics to identify a risky command.

3The important point to keep in mind is that, the proposed risk level estimation is not perfect, it is

subjective, it may have many controversial points. All of these defects come from the limited knowledge of

mine own. However it can be modified and improved easily thanks to the programmatic labeling approach

(which is presented in the next section).
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Command Short Description Risk Level

cd Change director R0

echo Display input text/string R0

ls list files R0

pwd Print working directory R0

wc Show number of words, lines R0

awk Manipulate text file, e.g. text parsing R1

cp Copy files/directories R1

grep Search for specific pattern in a file R1

gzip Compress .gz file R1

head Show first n lines R1

less Show content R1

ln Create symbolic link R1

locate Find (files and directories) for a given name R1

more Show content R1

mkdir Create directory R1

mv Rename file R1

sed Edit text file R1

scp Secure copy R1

tail Show last n lines R1

tar Compress/decompress files R1

touch Create new file R1

cat Append to file R2

make Utility to help compile source files R2

mount Mount a device or remote directory R2

vi Create/edit text file R2

rm Remove file R4

rm -rf Recursively remove a directory (no confirm) R4

Table 5.2: Basic commands and their estimated risk level.
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Command Short Description Risk Level

free Display free and used memory R1

hdparm disk data information R1

lsblk Show information about block devices R1

lshw List hardware configuration information R1

lspci Show PCI devices R1

lsusb Show USB devices R1

dmidecode Show hardware information from the BIOS R2

dmesg Show bootup messages R2

df Show disk info (free and used space) R2

du Show disk usage R2

fdisk Show/modify disk partitions R3

Table 5.3: Hardware information related commands and their estimated risk level.

Command Short Description Risk Level

date Show current date/time R0

hostname Show system hostname R0

uname Show system information or kernel info R0

uptime Display how long the system has been running R0

lsof List of all open files (resources) on the system R3

timedatectl Change system clock R3

Table 5.4: System information related commands and their estimated risk level.

• A command that is too long (more than 80 characters).

• A command using mysterious base64 string.

• A command that modifies history, e.g., remove all history (history -c) or disable

history(set +o history or unset HISTFILE).

• A command that modifies system packages (install/uninstall), e.g., apt-get install

or make install.

• A command that controls firewall service or modifies firewall configuration/rules.

• A command that disables/stops a services, e.g., systemctl stop firewalld or

systemctl disable firewalld.
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Command Short Description Risk Level

id Show details of active users R1

last Show last system login R1

w Show result of who and uptime commands R1

who Show list of logged-in users R1

whoami Show who you are logged-in as R1

adduser Add new user R3

groupadd Add new group R3

chpasswd Update passwords (for a list of users in the system) R4

passwd Set/change password for one user R4

userdel Delete user R4

usermod Modify properties of user (e.g. change group) R4

Table 5.5: User information related commands and their estimated risk level.

Command Short Description Risk Level

chmod Change file permission R2

chmod +x Make file executable R2

chmod 777 Assign full permission to everyone R2

chown Change file ownership R2

ssh Connect to remote host R3

telnet Connect via telnet R3

su switch user R4

sudo Use root privileges R4

chattr Change attribute of a file R4

set Change system environment variables, e.g. $PATH R4

unset Delete env. variables R4

source Make the changed env. variables take effect R4

EXPORT Make env. variables available (e.g. be exported to child-
processes)

R4

Table 5.6: Access control, remote access, file permission and environment variables re-

lated commands and their estimated risk level.
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Command Short Description Risk Level

htop Show running processes R1

top Show running processes R1

ps Show running processes R1

kill Kill process by id R4

killall Kill process (and child processes) by labelled name R4

pkill Kill process by name R4

service Control daemon, e.g. service name [start/stop/restart]R4

systemctl Control system process R4

Table 5.7: Process/Service/Daemon related commands and their estimated risk level.

Command Short Description Risk Level

wget Download file R2

curl Download file R2

ifconfig Display all network interfaces R3

netstat Scan active listening ports R3

dig Show DNS information R3

host Show IP lookup of a domain (like IP address) R3

hostname Show local IP address R3

tcpdump Capture packages on an interface R4

Table 5.8: Network related commands and their estimated risk level.

• A command containing sensitive keywords like ”hack”, ”hacked”, ”hacking”, ”anony-

mous”, etc.

• A command to execute a shell, python, perl script (e.g., bash, sh, python, perl).
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5.3 Construction of a Labeling-Model

The groups of related Linux commands defined above and the ensemble of heuristics give

us the essential keywords and rules to estimate the risk level. The question now is how to

transfer this prior knowledge into the label for the real dataset without manually labeling

each command. The solution is Snorkel [28]4, a system for programmatically building and

managing training datasets. Instead of hand-labeling the data, we will write the labeling

functions to express our constraints. For example, given a rule saying that, a command

to download an external script from the internet is assigned a risk level of 2/4, a corre-

sponding labeling function (written in Python using snorkel package [31]) is as follows.

Example of Labeling Function

from snorkel.labeling import labeling_function

@labeling_function()

def lf_download(cmd):

black_list = ["wget", "curl"]

return R2 if any(token in black_list for token in cmd.split())

else UNKNOWN

In this example, the risk level 2/4 is defined by R2 constant, and the UNKNOWN will be

assigned to the command if it does not contain any of two keywords wget, curl. From

the given labeling functions, snorkel construct a Labeling Model that learns from defined

rules and heuristics to automatically assign label (the estimated risk level) to the unla-

beled data. In theory, the Labeling Model can learn the combination of different labeling

functions. It constructs a complicate probabilistic model to predict the label probability of

a data point given different labeling functions [29]. In the language modeling tasks like

sentiment analysis for example, a sentence can be assigned different emotional nuances

and the model will learn the weight of different emotions in order to determine the final

score [10]. On the contrary, our task is to assign one risk level for each command. The

risk level is not a categorical variable (no natural ordering among the categories), but it is

4https://www.snorkel.org/
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an ordinal variable instead (the order matters). A custom deterministic Labeling Model is

created to adapt with our task. It simply assigns the highest risk level among all the risk

levels assigned by different labeling function for a given command.

For example the command

echo IyEvYmluL2Jhc2gKZWNobyAiSGVsbG8gV29ybGQhIg== | base64 --decode | bash

will be assigned a risk level 3, which is the highest one assigned by:

• the labeling function related to the basic command group (echo - risk level 0),

• the heuristic related to base64 string (risk level 3),

• the heuristic related to executing a command (with bash - risk level 3),

• the heuristic related to the long command (risk level 2).

A complete list of 30 labeling functions that encode the proposed estimation for the groups of

commands is presented in Table 5.2 to Table 5.8 and the additional heuristics are detailed in the

supplementary material at the end of this thesis. It should note that, the labeling functions do not

need to be perfectly accurate [30]. They can correlated with other labeling function, or can even

overlap or conflict with others. And thus command in the dataset can be labeled by one or more

labeling function or even by no labeling function.

The proposed keywords and heuristics are types of weak supervision information. When the

full labels for the entire data is not provided, we can still use the labeling function to represent

the domain knowledge (about the Linux commands) in the form of noisy, programmatic rules and

heuristics. This approach is different to the traditional rule-based approach. In the rule-based

methods, the set of fixed rules must be defined in advance and we are not allowed to have the

conflict rules. Also in these methods, the order of the defined rules matter. When the number of

rule increases, we have to make more efforts to manage the rules to satisfy the order constraints

and to avoid conflicts. With programmatic approach provided by snorkel, the rules can be very

simple and easy to combine, that makes the maintenance easier.

These 30 functions are summary in the Fig. 5.2. The coverage metric indicates how a labeling

function covers the entries of the dataset. This metric is counted when one data point is labeled

by at least one labeling function. The coverage of all labeling function do not sum to one since

one data point can be covered by more than one labeling functions. If one data point is labeled by

more than one labeling function (maybe with the same or with different labels), it will count for

the overlap metric. When a data point is labeled differently by two labeling function, it will count
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Labeling Function Name Estimated 
Risk Level Coverage Overlaps Conflicts

1 basic_cmds_g1 [0] 33.88% 19.30% 19.30%
2 basic_cmds_g2 [1] 30.14% 28.28% 19.14%
3 basic_cmds_g3 [2] 19.66% 19.15% 19.15%
4 basic_cmds_g4 [4] 3.58% 0.00% 0.00%
5 hardware_info_g1 [1] 10.33% 9.19% 0.06%
6 hardware_info_g2 [2] 0.00% 0.00% 0.00%
7 hardware_info_g3 [] 0.00% 0.00% 0.00%
8 system_info_g1 [0] 15.14% 0.06% 0.06%
9 system_info_g2 [] 0.00% 0.00% 0.00%
10 user_info_g1 [1] 4.57% 0.00% 0.00%
11 user_info_g2 [] 0.00% 0.00% 0.00%
12 user_info_g3 [4] 5.77% 5.77% 5.77%
13 file_permission [2] 0.35% 0.02% 0.00%
14 remote_access [] 0.00% 0.00% 0.00%
15 access_control [4] 0.01% 0.00% 0.00%
16 env_variable [4] 3.70% 0.93% 0.00%
17 process_g1 [1] 4.62% 0.02% 0.00%
18 process_g2 [4] 0.06% 0.05% 0.04%
19 network_g1 [2] 0.40% 0.14% 0.01%
20 network_g2 [3] 0.01% 0.00% 0.00%
21 network_g3 [] 0.00% 0.00% 0.00%
22 lf_long_cmd [2] 0.22% 0.22% 0.10%
23 lf_base64 [3] 0.61% 0.61% 0.42%
24 lf_history [4] 1.86% 0.93% 0.00%
25 lf_install [3] 0.00% 0.00% 0.00%
26 lf_schedue [3] 4.55% 0.00% 0.00%
27 lf_firewall [4] 0.02% 0.02% 0.00%
28 lf_disable_services [4] 0.03% 0.02% 0.00%
29 lf_sensitive_keywords [4] 0.00% 0.00% 0.00%
30 lf_execute [3] 5.83% 5.23% 5.04%

Figure 5.2: Summary of the defined labeling functions. These labeling functions are

shown by their name, following by three metrics. The most important metric is the cov-

erage, that measures how do the labeling function cover the unlabeled data.

for the conflict metric. This is a big advantage of snorkel that allows the user to freely define the

flexible labeling functions without worrying about the hard constraints of rule conflicts.

Fig. 5.2 shows that, most of the commands in our dataset come from the group of basic com-

mand. However, it should consider all other labeling functions of other groups to make sure that

we can cover as much as possible the commands in our dataset. The labeling process is very

quick, it take around 1.5 minutes to label around 700K commands. Therefore, we can progres-
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sively change the keywords, the proposed estimation of risk level and improve the labeling func-

tions. Fig. 5.3 shows a histogram of the number of command for each estimated risk level. That

gives the first insight of the distribution of the class labels which can be helpful when building a

multi-class classification model.

The most important point to keep in mind that, the performance of the downstream classifica-

tion model does not depend on the labels, but it depends on the representation of the input data

and the model itself. In our work, when we have only unlabeled data, the proposed solution of

applying Labeling Model helps us encode the prior knowledge (from Table 5.2 to Table 5.8) into our

dataset to make the classification task possible.
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Figure 5.3: Histogram showing the number of command for each estimated risk level.

5.4 Classification of Commands by Estimated Risk Levels

We assume that the estimated risk levels provided by the Labeling Model are reliable enough to

use as class labels for our dataset. In order to build a multi-class classification model to classify the

command by the estimate risk level, we follow the same pipeline defined in the Chapter 4. From

694, 643 commands in the honeypot logs, 70% of them are used for the training set and 30% of

them are reserved for the test set. Firstly, the text data need to be transformed into numerical vec-

tors. We compare two representation models: a simple Bag-Of-Word model and a more powerful

Doc2Vec model. These two models are trained only using the corpus in the training set. For the

first model, the training and test data are then represented by the Count-Vector. For the second

model, the data are represented by the output embedding of the Doc2Vec model. Secondly, we
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train a Logistic Regression model5 with the extracted features produced by these two represen-

tation models. We use the Logistic Regression model implement in scikit-learn [24] and tune the

C parameter (which control the regularization) and the solver (which determine the strategy of

for multi-class classification). The best hyper-parameters found by cross validation and the high-

lighted classification results are reported in the Table 5.9. The chosen liblinear solver [8] makes

the Logistic Regression model faster in training phase and also in prediction, that is suitable for

real-time prediction in the real system.

Embedding vector size Classification model Accuracy

Model 1 count-vector(128) LogisticRegression
(C = 1e−3, solver = ”liblinear”)

95.05%

Model 2 Doc2Vec(128) 99.58%

Table 5.9: Tuned hyper-parameters for representation and classification models. The clas-

sification accuracy on the test set can be greatly improved when using the Doc2Vec model.

Figure 5.4: Multi-class classification using count-vector as input features.

5It should not confuse this model with other one of similar name: Linear Regression is a regression

model used to predict real output value. Logistic Regression is a linear (multi-class) classification model.
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Figure 5.5: Multi-class classification using Doc2Vec features.

In order to evaluate the performance of the classification model, we measure the accuracy of

the prediction result and analyze the confusion matrix on the test set. The confusion matrices

are detailed in Fig. 5.4 (for the model using Bag-of-Word features) and in Fig. 5.5 (for the model

using Doc2Vec embedding). It is clear that, by using a better representation, the accuracy of the

classification model can be greatly improved. Moreover, the False Negative and False Positive error

in total are reduced.

The quantitative metrics can be useful for comparing the different models. It can be more

helpful to see how the predictive model works with the real input commands. Some examples of

input commands and the result if we run these commands in a Linux machine are shown in the

Listing Demo Input Commands. The following prediction is obtained from the Model 1 (using simple

count-vector features of a Bag-of-Word model + Logistic Regression).6 The prediction result is

shown in Fig. 5.6. It is consistent with the rules defined in Table 5.2, Table 5.8, Table 5.6 and the

heuristic of executing a bash script.

6The pipeline of Model 1 is faster than Model 2 since the Model 2 takes more time to build the Doc2Vec

embedding. In development and evaluation of the proposed risk level estimation, we use the Model 1.
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Demo Input Commands
$uname -a
Linux xlap2 4.15.0-34-generic #37-Ubuntu SMP Mon Aug 27 15:21:48 UTC 2018
x86_64 x86_64 x86_64 GNU/Linux

$mkdir temp

$cd temp

$wget https://pastebin.com/raw/suLEviDH
--2020-08-14 13:58:27-- https://pastebin.com/raw/suLEviDH
Resolving pastebin.com (pastebin.com)... 104.23.99.190, 104.23.98.190
Connecting to pastebin.com (pastebin.com)|104.23.99.190|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/plain]
Saving to: ‘suLEviDH’

suLEviDH [ <=> ] 89 --.-KB/s in 0s

2020-08-14 13:58:27 (3,15 MB/s) - ‘suLEviDH’ saved [89]

$more suLEviDH
#!/bin/bash

echo IyEvYmluL2Jhc2gKZWNobyAiSGVsbG8gV29ybGQhIg== | base64 --decode | bash

$chmod +x suLEviDH

$bash suLEviDH
Hello World!

$rm -rf ../temp

Command Predicted 
Risk Level

uname -a R0
mkdir temp R1
cd temp R0
wget https://pastebin.com/raw/suLEviDH R2
chmod +x suLEviDH R2
bash suLEviDH R3
rm -rf ../temp R4

Figure 5.6: Demonstration of model prediction for user input commands.
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Summary Chapter Classification of the Commands in SSH Session by Risk Levels

In this chapter, we deal with a multi-class classification problem. Each command is now

classified by different risk level. The risk level of each Linux command is not well defined

since it depends on the usage context. It also requires domain experts’ knowledge to be

correctly evaluated in different situation.

Classifying a large, unlabeled dataset (of more than 900K commands) is challenging. We

propose the following pipeline to solve this problem.

{UNLABELED honeypots logs} −→ Exploratory Data Analysis −→ Proposed Keywords

and Heuristics −→ Labeling Functions −→ {LABELED text commands} −→ Doc2Vec −→

Logistic Regression model.

The most important contribution in this chapter is our labeling functions.

• We start by observing the top frequent commands in the honeypot logs and the dif-

ferent groups of commands provided by a topic modeling model.

• We propose coherent and consistent keywords and heuristics that can help us to as-

sign risk level for a given command.

• We then write down an ensemble of labeling functions using snorkel library to

encode our heuristics.

• Thanks to these labeling functions, we construct a noisy-but-consistent LabelModel

which will assigns an estimated risk level for each command in our large, unlabelled

dataset.

This automatic and programmatic way to encode prior knowledge gives us a reliable anno-

tated dataset. We construct a dataset of 6 classes: 5 classes of increasing risk level from R0

to R4 and one class UNKNOWN for the error commands or the commands not covered by

our LabelModel. We use Logistic Regression model which outputs 6 scores for each input

command, that help determine risk level in an intuitive way. Finally we obtain an accuracy

measure of 99.58% on the test set.
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Chapter 6

Discussion and Conclusion

In the context of a smart honeypot, we propose a complete workflow to solve the problem of

classifying the Linux commands in a SSH session by multiple risk levels. Beside the target of a

high accuracy, low False Negative and False Positive error of the prediction results, we also consider

other non-functional requirements in Sec. 6.1. We also discuss briefly what we have done and

what we should improve in Sec. 6.2

6.1 Discussion

The first non-functional requirement in our system is the the response time. The predictive model

is a part of a decision marker inside the Smart Proxy in a Honeypot. It is required to make pre-

diction with high accuracy and extreme low response time since the honeypot has to return the

result in (nearly) real-time. This requirement depends on the classification model. For that reason,

the linear SVM model and Logistic Regression model are chosen since they do not have too many

hyper-parameters to tune (like a Neural Network trained by Stochastic Gradient Descent) and the

training and testing phrases are very fast. 1

The second non-functional requirement that we care about is the explainability. In the multi-

class classification task, we apply the Labeling Model to automatically assign labels for our dataset.

The prediction performance of the system does not depend on how we label the data. However to

understand how the Labeling Model works and evaluate the quality of the assigned labels, we need

1The implementation of these two models in scikit-learn use LIBLINEAR, a fast and high efficient library

for large dataset [8]. (https://www.csie.ntu.edu.tw/c̃jlin/liblinear/, https://github.com/cjlin1/liblinear).
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to analyze this model. The interpretability of a complex model is important [17]. We need to know

the explanation for the prediction of the model. For example, we can ask: Why does the Labeling

Model assign such label to a given command? One simple way to do that is to investigate what are

the labeling functions that process a given command. Fig. 6.1 shows an example of several com-

mands which are processed by multiple labeling functions. The Involved Labeling Functions column

shows a list of labeling functions (detailed in the appendix) that process the given command and

the corresponding risk level. By observing this type of explanation, we can find out the labeling

functions that do not work as expected, update them in order to improve the Labeling Model.

Commands Involved Labeling 
Functions

unset history histfile histsave 
histzone

env_variable [4]

lf_history [4]

service iptables stop

process_g2 [4]

lf_firewall [4]

lf_disable_services [4]

dmidecode | grep vendor | head -n 1
basic_cmds_g2 [1]

hardware_info_g2 [2]

processid=$(ps -u | grep -v _STRING_ | 
grep cat | grep _STRING_ | head -n 1)

basic_cmds_g2 [1]

basic_cmds_g3 [2]

lf_long_cmd [2]

Figure 6.1: Analyzing the explainability of the Labeling Model: what are the labeling func-

tions that process a given command?

The third non-functional requirement of our system is the ability of maintenance. A good pre-

dictive model should generalize well (predict for unseen data). We train the predictive model on a

specific set of data collected in the past. These data are processed by two models in our workflow:

the Labeling Model for automatically assigning labels and the classification model for prediction

task. When the new data come and the predictive model does not perform well, we should up-

date the system to learn from these data. One simple strategy is to re-train these two models. In

our case, this strategy is feasible since the models are not too large. By design, updating the La-
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beling Model is easy: we can simply add new labeling functions to express the new rules or new

heuristics, re-train and test the new Labeling Model to obtain the new set of labels. Since the label-

ing functions are allowed to be conflicted or overlapped, adding new functions does not affect the

old ones. That make the maintenance easy and manageable since we do not have to deal with te-

dious tasks of managing the dependency, order, priority or conflict among the labeling functions.

In contrast, updating the classification model is more difficult. We need some algorithms that can

learn incrementally: i.e. learn from new training examples (that is called online learning or incremen-

tal learning). The proposed linear classification models (linear SVM and Logistic Regression) can

be adapted for online learning by using the optimization procedure based on stochastic gradient

descent (SGD). Since the SGD learns from the mini-batches, we can continue to train the old model

with the new mini-batches containing the new data. 2

6.2 Conclusion and Future Work

Applying machine learning to a specific problem is challenging. Our problem is to classify the

commands in the SSH session by multiple risk levels. We solve this problem by starting with the

simple case of binary classification and then go to the more general case of multi-class classifica-

tion. Four research questions are proposed to guide our work to focus on four important steps

in the workflow: (i) data collection and labeling, (ii) data transformation, (iii) model construction,

(iv) evaluation and interpretation of the predicted results. We obtain the good results for both

tasks. All of our results are reproducible. 3

However, there are several points that can be improved in this work. First, we can collect more

diverse data which capture more attacking scenarios. Second, the data representation step may

also be improved using the modern Recurrent Neural Network (RNN) or the Long Short Term

Memory (LSTM) model to learn more powerful representation. Third, we should consider the on-

line learning algorithm in order to update the predictive model with new data. Fourth, we can set

weights for the groups of commands presented in Sec. 5.2 according to different requirements. For

example, in the web servers the group of network related commands may have higher weights,

2scikit-learn support SGDClassification for online learning:

https://scikit-learn.org/stable/modules/generated/sklearn.linear model.SGDClassifier.html
3All of our analyses can be found in this link: https://www.kaggle.com/thuyngandao/bashlogs
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while in the storage servers the group of commands related to file manipulation may have higher

weights.

The last and most important point to improve is in the process of automatic data labeling.

From the conceptual aspect, we propose to categorize the Linux commands into groups of related

commands. The similar commands in each groups are assigned similar risk levels in order to make

sure that the risk levels are relatively coherent. From the practical aspect, the proposed risk levels

for each command is encoded into the dataset via the Labeling Model. But, we have not yet tackled

the problem of evaluating the quality of the automatic labels. Human assessment is needed to

verify the predicted labels or to debug the Labeling Model (as shown in Fig. 6.1). Another efficient

way to do this is to collect a small set of hand-labeled data from experts in the domain, called the

ground-truth. Data in the ground-truth will be passed through the Labeling Model. By evaluating

the predicted labels and the ground-truth labels, we can improve Labeling Model.
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Supplementary material: Labeling Functions

DAO Thuy Ngan

Definition of different groups of command with estimated risk level.

First, we define the labeling function based on analyzed keywords.

keyword_labeling_func_config = {

# basic command

"basic_cmds_g1": (R0, ["cd", "pwd", "ls", "wc", "echo", "which"]),

"basic_cmds_g2": (
R1, ["grep", "locate", "mkdir", "cp", "scp", "mv", "ln",

"touch", "more", "less", "head", "tail", "tar", "gzip",
"awk", "sed"]),

"basic_cmds_g3": (R2, ["vi", "cat", "make", "mount"]),

"basic_cmds_g4": ( R4, ["rm", "-rf"]),

# hardware information related commands

"hardware_info_g1": (R1, ["free", "lshw", "lsblk", "lspci", "lsusb", "lscpu", "nproc", "hdparm"]),

"hardware_info_g2": (R2, ["dmesg", "dmidecode", "df", "du"]),

"hardware_info_g3": (R3, ["fdisk"]),

# system information related commands

"system_info_g1": (R0, ["uname", "uptime", "date", "hostname", "cal"]),

"system_info_g2": (R3, ["lsof", "timedatectl"]),

# user information related commands

"user_info_g1": (R1, ["w", "who", "whoami", "id", "last"]),

"user_info_g2": (R3, ["adduser", "groupadd"]),

"user_info_g3": (R4, ["usermod", "userdel", "passwd", "chpasswd"]),
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# access control, remote access, file permission related commands

"file_permission": (R2, ["chmod", "chown", "+x", "777"]),

"remote_access": (R3, ["ssh", "telent"]),

"access_control": (R4, ["sudo", "su", "chattr"]),

# change system envirionment variables

"env_variable": (R4, ["set", "unset", "source", "export"]),

# process related commands

"process_g1": (R1, ["ps", "top", "htop"]),

"process_g2": (R4, ["kill", "pkill", "killall", "service", "systemctl"]),

# network related commands

"network_g1": (R2, ["wget", "curl", "ip"]),

"network_g2": (R3, ["ifconfig", "netstat", "dig", "host", "hostname"]),

"network_g3": (R4, ["tcpdump"]),
}

The constants R0, ..., R4 in the code above denote different risk level and are defined simply as
UNKNOWN = -1
R0, R1, R2, R3, R4 = 0, 1, 2, 3, 4

Morover, we define the labeling functions based on heuristics:

We use several additional heuristics to indicate the malicious commands.

• A command that are too long (e.g., having more than 80 characters).

• A command using mysterious base64 string. (See example above, the base64 string is a bash script that
simply echos “Hello World!”. When this string is decoded, it can be executed by piping the decoded
script to bash.)

• A command that modifies history, e.g., remove all history disable history unset HISTFILE (do not
remember input commands).

• A command that modifies system packages (install/uninstall), e.g., apt-get install or event make
install.
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• A command that controls firewall service or modifies firewall config/rules.

• A command that disables/stops a services, e.g., systemctl stop firewalld or systemctl disable
firewalld

• A command containing sensitive keywords like “hack”, “hacked”, “hacking”, “anonymous”, etc.

• A command to execute a script (bash, python, perl script, etc).
from snorkel.labeling import labeling_function

@labeling_function()
def lf_long_cmd(cmd):

# Assign some risk level to a too-long command
return R2 if len(cmd) > 80 else UNKNOWN

@labeling_function()
def lf_base64(cmd):

# Using mysterious base64 string
black_list = ["base64", "--decode"]
return R3 if any(token in black_list for token in cmd.split()) else UNKNOWN

@labeling_function()
def lf_history(cmd):

# Maninpulate history
black_list = ["history", "histfile", "histsize", "histfilesize"]
return R4 if any(token in black_list for token in cmd.split()) else UNKNOWN

@labeling_function()
def lf_install(cmd):

# Modify system package (install, uninstall)
black_list = ["install", "uninstall", "yum", "apt-get", "snap"]
return R3 if any(token in black_list for token in cmd.split()) else UNKNOWN

@labeling_function()
def lf_schedue(cmd):

# Automatically schedule jobs
black_list = ["crontab"]
return R3 if any(token in black_list for token in cmd.split()) else UNKNOWN

@labeling_function()
def lf_firewall(cmd):

# Control firewall service or modify firewall config/rules
black_list = ["firewall", "firewalld", "iptables"]
return R4 if any(token in black_list for token in cmd.split()) else UNKNOWN

@labeling_function()
def lf_disable_services(cmd):

# Disable/Stop services, e.g. `systemctl stop firewalld` or `systemctl disable firewalld`
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black_list = ["disable", "stop"]
return R4 if any(token in black_list for token in cmd.split()) else UNKNOWN

@labeling_function()
def lf_sensitive_keywords(cmd):

# Sensitive keywords like "hacked", "anonymous"
black_list = ["anonymous", "hack", "hacked", "hacking"]
return R4 if any(token in black_list for token in cmd.split()) else UNKNOWN

@labeling_function()
def lf_execute(cmd):

# Execute script (e.g., bash or python or perl script)
black_list = ["./", "._PATH_", "bash", "sh", "perl", "python", "python3"]
return R3 if any(token in black_list for token in cmd.split()) else UNKNOWN

Construction of labeling function using snorkel

from snorkel.labeling import LabelingFunction

def keyword_lookup(cmd, keywords, label):
if any(word in cmd.lower() for word in keywords):

return label
return UNKNOWN

def make_keyword_lf(f_name, keywords, label=UNKNOWN):
return LabelingFunction(

name=f_name,
f=keyword_lookup,
resources=dict(keywords=keywords, label=label),

)

Create labeling functions and apply them to the given unlabeld dataset

# Create a list of all labeling functions based on keywords

labeling_functions = [
make_keyword_lf(f_name=f_name, keywords=keywords, label=label)
for f_name, (label, keywords) in keyword_labeling_func_config.items()

]

# And ones based on heuristics

labeling_functions += [
lf_long_cmd,
lf_base64,
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lf_history,
lf_install,
lf_schedue,
lf_firewall,
lf_disable_services,
lf_sensitive_keywords,
lf_execute

]

# Apply these labeling functions to the unlabeled dataset

from snorkel.labeling import LFApplier

applier = LFApplier(lfs=labeling_functions)
L_train = applier.apply(np.array(cmds_flat))

# ==> `694643it [01:16, 9102.28it/s]`

# Generalte a table to analyze the coverage of each defined labeling function

from snorkel.labeling import LFAnalysis

LFAnalysis(L=L_train, lfs=labeling_functions).lf_summary()
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