
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

A comprehensible pattern-oriented approach to understanding cloud and distributed
architecture's challenges

Malcourant, Anthony

Award date:
2016

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/ebb46d6b-835c-4b40-b4c0-896b8edae106

Université de Namur
Faculté d'informatique

Année académique 2015-2016

A COMPREHENSIBLE PATTERN-ORIENTED

APPROACH TO UNDERST ANDING AND

ACHIEVING CLOUD AND DISTRIBUTED

ARCHJTECTURE' S CHALLENGES

Anthony Malcourant

UNIVERSITE
DE NAMUR

Promoteur: Philippe Thiran
(Signature pour approbation du dépôt - REE art. 40)

Mémoire présenté en vue de l'obtention du grade de
Master en Sciences Informatiques

Abstract

Cloud Computing has grown in popularity over the past decade and has become more and more

competitive and widespread in large and medium companies. Unfortunate ly, Cloud is every so

often misunderstood, even by IT profess ionals. This misunderstanding often leads to poor

implementation and non-optimal use of the various available techniques and tools.

This thesis aims to present the Cloud and its challenges in a comprehensible form and to define

ways of tackling and implementing it efficiently. lndeed, thanks to the different avai lab le

patterns, the reader wil l be guided through an architectural sol ution to meet ail the Cloud

characteristics white leveraging the various benefits of Cloud and more generally Distributed

Architectures.

This work does not aim to explain how to implement the various C loud providers solutions but

rather give the reader a set of concepts and rules that shou ld be kept in mind during an

introduction of Cloud solutions. Concepts and patterns are presented in a narrative and

incremental way in order to progressively introduce the complex ity of the subject.

Le Cloud Computing a évolué en popularité depuis les dix dernières années et est devenu de

plus en plus compétitif et étendu dans les grandes et moyennes entreprises. Malheureusement, le

Cloud est encore parfois mal compris, et ce même par des professionnels de l' informatique.

Cette imcompréhension mène parfois à une mauvaise implémentation et à une utilisation

non-optimale des différentes ressources et techniques disponibles.

Cette thèse a pour objectif de présenter le Cloud et ses défis de manière compréhensible et de

définir les moyens pour l' intégrer et l'implémenter efficacement. En effet, au travers des

différents patterns disponib les, le lecteur sera guidé au travers d ' une solution architecturale qui

répond à l' ensemble des prérequis tout en exp loitant les différents bénéfices du Cloud et, plus

généralement, des systèmes distribués .

Ce travail n ' a pas pour objectif d ' expliquer comment mettre en place les solutions des différents

fournisseurs de solution C loud mais plutôt de donner au lecteur un ensemble de concepts et de

règles qui sont importants à garder à l' esprit lors d'une introduction aux solutions Cloud. Les

concepts et les patterns sont présentés de manière narrative et incrémentale de sorte à introduire

la complexité du sujet de manière progressive.

Keywords: C sloud, cha llenges, pattern-oriented, comprehensible, narrative.

Foreword

I would like to thank the following people, without whose help and support this thesis would not

have been possible. Most of ail , I would like to show my appreciation and gratitude for the

involvement of my supervisor, Mr. Philippe Thiran, who kept an eye on the shaping of the

thesis. Moreover, I wou ld like to thank Mr. André Füzfa who gave me the opportunity to finally

complete my Master by accepting my submission. I would a lso like to thank Ms. Benjamine

Lurquin for her practical information and help. Finally, I wish to thank my friends , my parents

and my girlfriend for their constant support and advices.

Table of contents
1 Introduction

2 Cloud computing

2.1 Definition

2.2 Goals and benefits

2.2.1 Reduced investments and proportional costs

2.2.2 lncreased Scalability

2.2 .3 Increased Availability and Reliabilitv

2.2.4 Ease Team Tasks

2.3 Characteristics

2.3 .1 On-demand self-service

2.3.2 Broad network access

2.3.3 Measured service

2.3.4 Resource pooling

2.3. 5 Rapid elasticity

2.3.6 Resiliency

2.4 Delivery models

2.5 Deployment models

2.6 Cloud challenge

2.6.1 Cloud challenges impact on Cloud characteristics

2.6.2 Broad Network Access

2.6.3 Measured Service

2.6.4 On-Demand Self-Serv ice

2.6.5 Rapid Elasticity

2.6.6 Resource Pooling

3 Understanding design patterns

3.1 Definition

10

12

12

12

13

14

15

15

16

16

17

18

18

21

22

22

24

25

27

28

28

28

28

29

30

30

3.2 History

3 .3 Pattern profile

4 Patterns

4.1 Introduction

4.2 Enterprise integration pattern

4.2. 1 The need for integration

4.3 Divide and Con_guer

4.3 . 1 Solution & Discussion

4.3.1.1 Layer-based Decomposition

4.3.1 .2 Pire-and-Filter-based Decomposition

4.J.LlPLQCes~-:based Decomposition

4.3.1.4 Orchestration versus choreography

4.3 .2 Impacted challenge(s)

4.4 Loose Coupling

4.4.1 Solution & Discussion

4.4.2 Impacted challenge(s)

4.5 Oueue-Centric-Worktlow

4.5.1 Solution & Discussion

4.5.1 . 1 Message-Oriented Middlewaœ

4.5.1.2 Synchronous versus asynchronous

4.5 .2 Impacted challenge(s)

4.6 Idempotent Receiver

4.6. 1 Solution & Discussion

4.6.2 lmpacted challenge(s)

4,7_Cdn

4. 7.I Solution& Discussion

4.7.2 lmpacted challenge(s)

30

30

32

32

32

32

33

34

34

34

35

35

35

36

36

36

37

37

37

39

40

41

41

41

41

42

42

4.8 Multisite deployment

4.8.1 Solution and Discussion

4.8.2 lmpacted challenge(s)

4.9 Database replication

4.9 .1 Solution and Discussion

4.9.2 lmpacted challenge(s)

4.10 Database Sharding

4.1 0.1 Solution and Discussion

4.10.2 Impacted challenge(s)

4. 1 1 Consistency

4.1 1.1 Solution and Discussion

4. l l .1.1 ACID versus BASE

4. 1 1.1 .2 Eventual versus Strictly Consistency

4.11.2 lmpacted challenge(s)

4. 12 Load Balancer

4.12.1 Solution and Discussion

4.12.2 Impacted challenge(s)

4.13 Health Monitoring

4. 13 .1 Solution and Discussion

4.14 Watchdog

4.14.1 Solution and Discussion

4.14.2 I mpacted challenge(s)

4.15 Map Reduce

4. 15.1 Solution and Discussion

4.15.2 lmpacted challenge(s)

4.16 NoSOL

4.16.1 Solution and Discussion

43

43

43

43

43

44

45

45

45

46

46

46

47

48

49

49

50

50

50

51

51

52

52

52

53

53

53

4.16.2 lmpacted challenge(s)

4J 7 External configuration Store

4. 17.1 Solution and Discussion

4.17.2 lmpacted challenge{s)

4.18 Stateless Configuration

4.18.1 Solution and Discussion

4.18. 1.1 5.6 Stateful versus Stateless

4.18.2 lmpacted challenge{s)

5 Conclusion

6 Reference-5

7 Appendix

7. 1 Div ide & Conquer

7.2 Loose coupling

7.3 Oueue-Centric-Workflow

7.4 ldemg_otentRecei\ier

7.5 Cdn

1.6 Multisite deployment

1. 7 Data base repl ication

7.8 Database Sharding

7.9 Eventual and Strict Consistency

7 . 10 Load balancer

7. 11 Health Monitoring

7.12 Watcbd..Qg

7.13 Map Reduce

1.11-NoSQL

7. 15 External confwration_Store

7. 16 Stateless Configuration

54

54

54

55

56

56

56

57

58

59

63

63

63

64

64

64

65

65

65

66

66

66

67

67

68

68

68

1 Introduction

The Cloud sounds familiar to almost anybody with notions of Internet Technologies.

Unfortunately, there is a big confusion around the Cloud and its concepts. Sometimes defined as

an infrastructure provider, as a marketing technic [67] or as a bunch of on-demand applications,

it is quite complex to have a complete view of what the Cloud really is, what it provides and

particularly of what it implies. Often considered as being the new " Big Thing" [73], the Cloud

has gained in popularity and is regularly implemented and used in companies whatever their

size. However, adopting such a paradigm contains risks. Jumping into the Cloud adventure

without a deep comprehension and an exhaustive architectural vision and ail its challenges often

leads to failure.

Based on observations from the existing literature, one can easily notice that articles fail to

provide readers with a practical and comprehensib le approach. This thesis is a first attempt to

provide information about the Cloud and more precisely, to explain how to efficiently tackle it

in an architectural point of view. The thesis is set up in multiple parts which are organised

incrementally to guide the reader progressively through the Cloud Computingcomplexity. This

thesis also undertakes to offer an alternative to the style broadly used in classical

pattern-oriented books by using a narrative approach. The reader consequently travels from

global to more fine-grained issues like in a story book. However, a classical and structured form

is provided as an appendix at the end of this thesis.

Chapter 2 intends to define Cloud Computing and explain in details the definitions broadly used

in the literature. Sorne of the main benefits of adopting the Cloud will be listed as well as its five

essential characteristics. As the goal is to provide a comprehensible approach , we will add some

widely established concepts of distributed architectures which develop and explain these

characteristics. We will then define the Cloud delivery models and deployment models to

understand what the Cloud really offers. Finally, we will go through Cloud challenges and see

how they can affect its characteristics.

Chapter 3 is a short introduction about patterns . . It gives the reader a complete definition of what

a pattern is and what it stands for. lt also defines the pattern canvas which is used in the

technical pattern section. This canvas aims to describe the pattern ofChapter 4 in a generic way,

allowing the reader to deal with each pattern with the same approach and methodology .

Chapter 4 introduces the patterns in a narrative way. lndeed, the reader is invited to ask himself

questions about the practical manner of implementing the Cloud in order to maintain and

improve its characteristics. Each pattern is introduced by a question that initiates the

interrogation of the reader. We then try as much as possible to answer this question by

providing solution(s) and discussing them. Then, we wi ll see how such solutions could impact

positively or negatively the Cloud challenges introduced in Chapter 2 and really understand why

they are so ambitious. The reader is therefore guided narratively through a series of

questions-answers that indirectly give him insights of the C loud and its concepts.

We will finally end at Chapter 5 with the conclusion of this thesis . We will summarize what

readers have learned and how it cou Id help them for further studies about Cloud Computing. We

will also present the limitations of this thesis as well as the lines of thought to go a step further.

1 Cloud computing

1.1 Definition

One can easily gather a hundred of Cloud Computingdefinitions over the Internet. However, the

National lnstitute of Standards and Technology (NIST) definition has received industry-wide

acceptance and is therefore often used as a reference in many Computer Sciences books. The

NIST published its original definition back in 2009, which was followed by multiple revised

versions after further reviews and industry inputs. ln September 2011 , they finally defined

Cloud Computing as follows [2] :

"Cloud computing is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing

resources (e.g. , networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort

or service provider interaction. This cloud mode! is composed offive

essential characteristics, three service models, and four deployment

models."

As a more concise definition example, we can quote Thomas Erl' s definition [3] :

"Cloud computing is a specialized form of distributed computing that

introduces utilization models for remotely provisioning scalable and

· measured resources."

These definitions may sti ll appear as a bit complex and therefore not clearly understood at this

point. Jndeed, it introduces new concepts which will further be covered.

1.2 Goals and benefits

Cloud advantages are numerous and well recognized by 1T professionals. The financial benefits

of the Cloud are often highlighted [70] which tends to make it THE solution to acquire.

However, Cloud Computing is neither the best solution in every case nor the cheapest one. Joe

Weinman believes that most people use simplistic models to evaluate the economics of the

Cloud. The standard argument is that considerable providers (such as Amazon, Microsoft and

Google with their proprietary solutions [69]), achieve large economies of scale and thus will be

cheaper than a "do-it-yourself' approach [4]. However, he argues, this is neither a necessary nor

a sufficient condition for Cloud computing to be valuable for companies. His example is quite

meaningful : "After ail , people rent cars ail the time, at a unit cost per day much higher than that

of owning". Similarly, he argues that the true cost reduction value of Cloud infrastructure has

nothing to do with lower unit cost, but with a no commit, pay-per-use model. " ln effect, it

doesn ' t matter that much what you pay when you use Cloud services, the key cost reduction

driver is what you pay when you don ' t use them: zero." [5].

The Weinman economic vision is probably the more realistic one. However, here are the main

global benefits a company can get by switching to Cloud Computing.

1.2. 1 Reduced investments and proportional costs

The first benefit of the Cloud is, according to what was previously said, its ability to reduce the

costs. This benefit is the most famous one because it is often used in businesses to promote its

use and to convince Cloud consumers. A Cloud consumer is considered as an entity (an

organization or a human) which has an arrangement with a Cloud provider and therefore who

uses resources and services it offers (Figure 2.1). Consumers and Providers are considered as

the two main actors of the Cloud Computing.

Or tzatJon Oouc:I A

1
' 1

---------------'
, _________________ ,

douci

Figure 2.1- Cloud consumer and Cloud provider.

Cloud providers and Cloud consumers both benefit from this cost reduction ability . Cloud

providers lower their prices by the mass-acquisition of cheap computer resources. An interesting

quote of Thomas Erl [6] defines it perfectly : "Similar to a product wholesaler that purchases

goods in bulk for a lower price points, public Cloud providers base their business mode! on the

mass-acquisition of 1T resources that are then made available to Cloud consumers via

attractively priced leasing package. This opens the door for organization to access powerful

infrastructure without having to purchase it themselves." Moreover, Cloud Computing

introduces the concept of commodity computing. The purpose of commodity computing is to

utilize large numbers of readily available computing components for parallel computing to

obtain the greatest amount of useful computations for the least price [7]. Such systems are said

to be based on commodity components, since the standardization process promotes lower costs

and less differentiation between products [38]. They are based on standards and often outdated

components. Scalability, which is defined below, is therefore possible at a lower price.

1.2.2 lncreased Scalability

Scalability is the ability for a system to meet the increasing or decreasing workloads by

increasing or decreasing its capabilities 1• There are two kinds of scalability: vertical and

horizontal. Figure 2.2 illustrates the difference between them.

Horizontal

vs.

Vertical

Figure 2.2 - Vertical versus Horizontal Scaling.

On the one hand, Horizontal Scaling is the ability to connect multiple resources so that they can

work together as a single logical unit called a cluster. On the other hand, Vertical Scaling

increases the capacity of the existing hardware by adding more capacity (processing, storage,

bandwidth, etc.). Horizontal scaling is more complex and often requires more resulted

architectural concepts. lt is this kind of scalability which is discussed across this thesis.

By providing pools of resources, along with tools and technologies designed to leverage them

collectively, Cloud providers can instantly and dynamically allocate IT resources to Cloud

consumers, on-demand or via manual configuration. This allows Cloud consumers to scale their

cloud-based IT infrastructure to accommodate their needs and face peaks [39].

Vertical scaling

More expensive

IT Resources nonnally instantly
available

Limited hardware capacity

1 Capacities and abilties

Horizontal scaling

Less expensive

IT Resources instantly available

Not limited by hardware capacity

No Additional 1T Resources needed Additional IT Resources needed

Table 2.1 - Vertical versus Horizontal Scaling.

1.2.3 lncreased Availability and Re/iability

ln addition to the Scalability and financial benefits of the Cloud, Nucleus's benchmarking effort

shows that migrating existing workloads from on-premise ("do-it-yourself' in your building)

environments to A WS or any other Cloud providers offers Cloud consumers significant

infrastructure reliability and application availability benefits [8].

Availability (or High A vailability) is one of the biggest challenge and, ultimately, the holy grail

of the Cloud. lt embodies the idea that services are available at anytime, from anywhere.

Availability is also linked to Reliability. Indeed, can a service constantly available but failing

still be considered as available? Of course not, a service is considered highly available when it is

constantly up and running. Availability is often defined by Cloud providers SLAs2 and indicated

as a percentage of availability over a period oftime. For example, in its SLA, Amazon declares

availability with a Monthly Uptime Percentage of at least 99.95% [25]. More precisely, services

cannot fail more than 30 minutes in a month. To illustrate the current Cloud providers

availabilities, we can refer to a study [45] about downtime statistics that gives us a cumulative

downtime from 2007 to 2013 for the 39 biggest Cloud providers and solutions. The total of

downtime for these providers during 6 years is significant: approximatively 2200 hours, that

being Jess than 0.001 %.

1.2.4 Ease Team Tasks

Cloud providers offer a series of tools to support the entire software lifecycle [46,4 7] which

profits for a certain type of Cloud consumers: the technical teams. For example, Operations

team can benefit from monitoring and metrics tools and developers can easily multiply

environments.

In a traditional way, developers usually develop their code locally on their own machine, have

access to a shared database and so forth. This behaviour multiplies the environments and it

becomes difficult to enforce the Consistency: each developer has it own version of the core

language, its own OS system with its own update version. This kind of issue could be solved by

always installing the same environment (virtual image) and it is possible through Cloud

technologies such as Vagrant, Chef, Puppet or Docker [1 O]. Of course there are a lot of other

benefits: testing, deployments, repositories, demonstrations, queuing but it will not be

approached in this thesis.

2 Service Level Agrement: SLA

1.3 Characteristics

ln its fina l definition of C loud Computing, The N IST defines the C loud as a mode l composed of

five essential characteristics [22]. The fol lowing sub-chapters aim to explain them in a more

detailed way by incorporating additional explanations. lndeed, the NIST usually uses complex

concepts without explaining them.

lndividually, these Cloud characteristics may already be known and are often availab le in

different well-established products and services, fo r example, server hosting solutions or public

Web applications. It is the combination of these concepts and techniques in addition to a

significant improvement of Internet connectivity and data transfer speed that distinguishes

Cloud Computing from existing products and services and which j ustifies calling it the "new big

thing" [23].

1.3. 1 On-demand self-service

Cloud providers enable Cloud consumers to provision computing resources (storage, calculation

power, etc.) when they need it. This is made by self-service or automation. Self-service means

that Cloud consumers are able to perform all the actions needed to acquire these resources

themselves, instead of going to the IT department or calling the Customer Service. As shown in

Figure 2.3, self-service capabilities are usually provided through online interfaces which

abstract all the complexity and make it quite simple for non-technical profiles. This acquiring is

also possible in a automated manner but we will discuss it later when we will introduce the

concept of Elasticity.

Amazon Web Services

COmpule
EC2
Vlr1ullS.--. iti.Ooucl

2 Container Service
,.. ~Conlànel,

s
eNl -

StOl'age & Con nt Deltv ry
S3

Ooucl

• aoudfronc
.. GloàollComorto.-y ~

Elasbc Fie System "
F.a,~F-.e,....,,lcfEC2

GI cler
- .,.,,.c,.,.,.,

DevelOf)IW Tools

CodeCommi1
SlinC-r, GI~

CodeOêplo)' -Godio~
Code
~ eo,, o.,..,w:,

M nagemenl Tooli
atch -~
rmation , ,_,...,

rail
"-lly-1'1"11"'-

Soca.,nty & ldenloty
• Acœss Managemen1
-~~

c:,e
~

l!locll.n,

-rvioe

Figure 2.3 - Amazon EC2 remote admin panel

1.3.2 Broad network access

"Capabilities are available over the network and accessed through standard mechanisms that

promote use by heterogeneous thin or thick client platforms" [2]. Services are now accessed

from anywhere, from any kind of devices and with any kind of protocols. This characteristic

looks quite generic but the idea behind is quite simple. Cloud is accessed from a lot of devices

which connect from any place across the world as illustrated in Figure 2. 4.

Figure 2.4 - Broad Network access illustrated

1.3.3 Measured service

Cloud providers control and optimize resource use by leveraging a metering capability at

different levels of abstraction according to the type of services. Cloud provider offers are

discussed later in the delivery models. The metric can be, for example, the number of requests

made on a specific service, the response time the service takes, and so forth. Resource usage can

be managed, controlled and reported providing transparency for both the Cloud provider and the

Cloud consumer. The pay-per-use concept is only possible because ofthis measurable capacity.

1.3.4 Resource pooling

"The provider' s computing resources are pooled (A) to serve multiple consumers using a

multi-tenant (B) mode!, with different physical and virtual (C) resources dynamically assigned

and reassigned according to consumer demand. There is a sense of location-independence in

that the customer generally bas no control or knowledge over the exact location of the provided

resources but may be able to specify location at a higher level of abstraction (e.g. , country, state,

or data center)" [2].

This explanation contains too many information to be clearly understood when not familiar with

Cloud Computing. The NIST introduces in its sentence three new concepts which are important

to clarify in order to fully understand the resource pooling: the notion of clustering,

multi-tenancy and virtualization . The following sub-chapters will provide readers with further

explanation.

A. Clustering

A cluster consists of a set of loosely or tightly connected computers that work together so that

they can be considered as a single unit [11] . Each connected computer cou Id be referred to as a

node or as an instance (Figure 2.5). There are multiple benefits from working with clusters.

According to IBM [12], clustering cou Id offer benefits such as:

• High processing capaci ty,

• Resource consolidation,

• Optimal use of resources,

• Geographic server consolidation,

• 24 x 7 availabil ity with failover protection,

• Disaster recovery,

• Horizontal and vertical scalab ility without downtime.

IMIMICti élustt!rs

Figure 2.5 - Nodes versus Clusters

B. Multi-tenancy

In Cloud Computing, the meaning of multi-tenancy architecture has broadened because of new

serv ice models that take advantage of virtualization and remote access. "A tenant is any

application that needs its own secure and exc lusive virtual computing environment" [67]. The

concept of multi-tenancy enables to run one instance of an application and provide the access to

mu ltip le users. In such a scenario, each tenant's data is isolated and remains invisible to others

(Figure 2. 6).

,

T nant
~ecific

customization
~

T nant
spec·fic

eu stomization

T nant
spe cific

co om izatio n

.--~

1:: -1 ---1 _ Af>plication logic _

' '
.... __________ _

C. Virtualization

Data base
SlnQl!8, Shared

stac k of software
nd har are

- ,

Figure 2.6 - Multiple tenants isolation

,
' 1
1

Virtualization represents a technology platform used for the creation of virtual instances of IT

resources. A layer of virtualization software allows physical IT resources to provide multiple

virtual machines to themse lves so that their underlying processing capabilities can be shared by

multiple users [3].

At the heart of the virtualization stands the virtual machine which can be compared to an

isolated container wherein is placed an operating system and a series of applications. The word

isolated is important because each virtual machine has to be completely separated and

independent even if a lot of them are running at the same time on the same computer or more

generally speaking on the same phys ical instance. The Hypervisor also called Virtual Machine

Monitor (VMM) is responsible for dynamically allocating IT resources and distributing them to

virtual machines when they need it [56]. The Hypervisor depicted in Figure 2. 7 is named

VMware ESX Server [58] and is a VMWare product.

Tra<litiorlal Architecture VirtualArcil' eC(1.lre

Figure 2.7 - Traditional versus Virtualized Architecture

Most Cloud providers provide pre-made virtual images. For example, AMI (Amazon Machine

Image) is proposed by Amazon with a variety of operating systems and pre-installed

applications. lt is also possible to create its own image with everything needed ins ide [57].

Most types of 1T resources can be virtualized including servers, storage, network, and so forth.

1.3.5 Rapid e/asticity

"Capabilities can be rapidly and e lastically (A) provisioned, in some cases automatically, to

quickly scale out and rapidly released to quickly scale in. To the C loud consumer, the

capabilities available for provisioning (B) often appear to be unlimited and can be purchased in

any quantity at any time" [2].

Once again, NIST uses advanced concepts in its explanation about the Elasticity. The fo llowing

sub-chapters detai l them more precisely.

A. Elasticity

Scalability and Elasticity may be a bit confusing because they are often used interchangeably .

However, they are quite different even if they share the same purpose which is obviously the

Adaptability. Managers and dec iders have to perfectly understand both terms because their

needs and uses in bus iness environments may differ [55].

On the first hand, Scalability is only the ability for a system to scale. "Scalability is much more

spec ific and graduai than elasticity and it is very controlled by the Cloud consumer and his

C loud provider in conjunction with the IT department" [55]. Let us consider the adaptability as

manually performed to match the needs. Entreprise can work without Elasticity for their

production environments. However, it is much more preferrable to work w ith Scalability for the

benefits we pointed earlier.

On the other hand, Elasticity mainly applies to e-commerce, mobile and web development

because of its capacity to adapt "on the fly" without human interaction . Elasticity is also a term

that was coined to promote and enable metered u e which is so prevalent in public C loud [55] .

The distinction should therefore be clearly understood: Scalability is more about manual

adaptability in private C loud. Unlike Elasticity which is widely used in public Cloud where the

adaptabily is really needed and automated. We will see the difference between private and

public Cloud at a later stage.

Elasticity is about the adaptability to the workload. The term workload is used to refer to the

utilization of resources on which an application is hosted. Workload is the consequence of users

accessing the applications or the process that have to be handled automatically. Workload exists

in different forms depending on the type ofresource: Data, Network, Process ing, etc. Workload

has to be measurable in some form because it allows to decide whether we have to increase or

decrease the number of IT resources ass igned to an app lication [1 O] . Without Workload, we

would not be able to know the different utilization and thus notable to scale and charge C loud

consumers efficiently.

Multiple workload models exist, however, they will not be discussed in this thesis:

• Static workload,

• Periodic workload,

• Once-in-a-lifetime workload,

• Unpredictable workload,

• Continuously changing workload.

B. Provisionning

The term "on demand'' mentioned in the NIST definition is easy to exp lain thanks to the

previous discussion about Scalability and Elasticity. On-demand is a principle wherein IT

resources are provided on an as-needed and when-needed basis [59]. The term Provisioning

defines this action of providing resources. Provisioning exists in "multiple versions", mainly

Cloud consumer self-provisioning when resources are allocated manually and dynamic

provi ioning when resources are allocated automatically based on metrics [66].

1.3.6 Resiliency

The Resiliency is excluded from the NIST definition. However, according to Thomas Erl,

Resiliency has emerged as an aspect of significant importance and its common level of support

constitutes its necessary inclusion as a common C loud characteristic [24].

Resilient computing is a form of failover that distributes redundant implementations of IT

resources across physical locations. IT resources can be pre-configured so that if one becomes

deficient, processing is automatically handed over to another redundant implementation. Within

Cloud Computing, the characteristic of resi liency can refer to redundant IT resources within the

same Cloud (but in different physical locations) or across multiple Clouds. C loud consumers

can increase both the Reliability and Availability of their applications by leveraging the

Resiliency of cloud-based 1T resources [60].

1.4 Delivery models

Before diving into the different delivery models, it is important to understand the six layers

which technically constitue the C loud (Figure 2.8). The model is comparable to the OSI 3 layer

model. That makes it quite easy to interpret for IT professionals.

3 Open System lnterconnect

(Business Processes)
::::=:===========::·
(~ Application Softwares

Middleware PaaS

Operating Systems

Virtual Hardware laaS

Physical Hardware

Figure 2.8 - Application Stack and Cloud services models

• Physical Hardware. The first layer consists of the basic hardware technologies

for almost everything: networking, storage, calculation and so forth.

• Virtual Hardware. The second layer is used to share Physical Hardware

between multiple virtual counterparts. This ensures that the Virtualization is

correctly managed and that users perce ive the system as ifthey were the one and

only owner.

• Operating Systems. The third layer is the software and OS which are installed

on top of the virtual or physical hardware layer. lndeed, these systems provide

functions and applications to internet with virtual and physical layers.

• Middleware: The fourth layer completes the third one by adding more specific

softwares which can be called Middlewares. These software can be Execution

Environment such as Java or Python. But also more complex Middleware such as

IBM Websphere or Messaging systems such as ActiveMQ. Data storage is also

included in this layer.

• Application Software: The fifth layer consists of custom applications providing

functionalities to human users or other applications. Almost every kind of

software could stand in this layer.

• Business Processes: The sixth and last layer contains the business/domain

specific processes. These processes are supported thanks to the use of multiple

applications which stand on the previous layer.

Figure 2.8 also highlights the three main Delivery Models : IaaS, PaaS and SaaS. These three

delivery models could be compared to the three main Cloud provider' s offers.

• Infrastructure as a Service. JaaS refers to on-demand provisioning of

infrastructural resources. The Cloud provider which offers IaaS is called an

IaaS provider.

• Platform as a Service. PaaS refers to providing platform layer resources,

including operating systems support and software development frameworks.

• Software as a Service. SaaS refers to providing on-demand applications

over the Internet (GMail , Google Docs, Google Drive, etc.).

ln Cloud Computing State of the art [13) , Qi Zhang, Lu Cheng and RaoufBoutaba from MIT4
introduce a new point of view of the delivery models. lndeed, they say that according to the

layered architecture of Cloud Computing, it is entirely possible that a PaaS provider runs its

Cloud on top of an laaS provider's Cloud. However, in the current practice, laaS and PaaS

providers are often part of the same organization. This is why PaaS and laaS providers are often

called the infrastructure providers or Cloud providers. This idea recudes the number ofmodels

to two as shown in Figure 2. 9.

[______ e_n_d_u_se_r ____ __,]

l
1 Web Interface

Service Provider (SaaS)

Utility Computing

Infrastructure Provider (laaS, PaaS)

Figure 2.9 - Delivery Models - New point of view

1.5 Deployment models

The NIST definition introduces several Cloud Deployment Models. Figure 2.10 depicts the

different Cloud deployment models according to two factors: level of elasticity and

pay-per-use. A public Cloud having the most tenants can enable the highest levels of elasticity

and pay-per-use where only the operational costs are billed to consumers. A community Cloud
serves fewer tenants, often collaborating companies. An upfront investment may be required by

these companies to establish the community Cloud. Also, elasticity may be reduced as the

collaborating companies may experience similar workloads. This effect is even more

predominant in a private Cloud used by only one tenant making upfront investments and

reduced elasticity even more likely. The hybrid Cloud spans ail these properties as it integrates

applications hosted in the different environments. "Note that the properties displayed by Cloud

deployment types are not generic. A private Cloud accessed by a similar large and diverse user

groupas a public Cloud is likely able to presentthe same properties. Public Clouds used only by

a few customers that experience similar workload will face similar challenges than private

Clouds " [10). No distinction is made between the available deployment models in this thesis.

4 Masachuset Institue of Techonology

Elasticity

Rapid Elasticity

Static Scaling
1 Static

1,Data Center

Private Cloud ., .,

Up-front

lnvestments

.,

Operational
Costs

Pay-per-Use

Figure 2.10 - Level of elasticity and pay-per-use of different Cloud deployment types

1.6 Cloud challenges

Although Cloud Computing has been widely adopted by the industry, researchs on Cloud

Computing are still at an early stage. Many existing issues have not been fully addressed, while

new challenges keep emerging from industry applications. In this chapter, we will introduce a

series of these challenges and then try as much as possible to link them with the Cloud

characteristics we previously defined. Indeed, Cloud challenges are not clearly defined in the

literature and are rather specific to each business domain and strategy. However, we will try to

take a generic point of view and dressa partial map. At the end of this chapter, the reader should

be able to define a hierarchy which will be used later to classify the patterns and understand

their impact on the general Cloud purposes.

• Security: since service providers typically do not have access to the physical security

system of data centers, they must rely on the infrastructure provider to achieve full data

security. "The moving of business data to the Cloud means that the responsibility over

data security becomes shared with the Cloud provider" [71]. Furthermore, in

multi-tenancy environment, infrastructure is shared between multiple Cloud consumers

and it introduces an overlapping with trust boundaries.

• Availability as defined above.

• Network Latency: highly scalable and high performance servers do not guarantee that

the application will perform well. This is due to the main performance challenge that

lies outs ide of raw computational power: the transfer of data. Transmitting data across a

network does not happen instantly and the resultant delay is known as network latency.

The challenge is really important. Indeed, according to kissmetrics [26], 1 second delay

in response page cou Id result to 7% reduction in switching from a fictive buy to a real

one.

• Consistency: according to Harrap ' s definition, one thing is consistent with another

when it matches or when it fits in with it. To ensure Resiliency, data has to be replicated

in multiple location. Data alterations have to be propagated properly to every replica of

data to ensure the Consistency. The concept is qui te straightforward but the challenge is

real.

• State: this challenge is a bit more technical but is so important it has to be declared

here. The reader should already be familiar with both concepts: stateful and stateless. lt
refers to the capacity of something to retain (or not in the stateless case) astate: a bunch

of information, a transaction or whatever. Statefull nodes/instances are in opposition

with the Resiliency characteristic we mentioned earlier. Work around this obstacle is not

trivial and demands energy and ingenuity.

• Reliability: stands for the ability of a system or a machine to consistently perform its

intended or required fonction or mission, on demand and without degradation or failure.

This definition is large and can define at least everything explained earlier. Otherwise,

reliability is a keyword the reader has to keep in mind when beginning with Cloud

Computing . ln fact, reliability is one of the most important challenges and everyone

should work to make it a characteristic and not a challenge anymore. To give a

straightforward example, one of the Cloud characteristic is its ability to provide

measured services. As explained in the introduction, Cloud consumers are charged only

for their resource consumptions thanks to the pay-per-use model. What would it be if

this Monitoring is not reliable and does not charge consumers efficiently?

• Multitenancy: is a reference to the mode of operation of software where multiple

independent instances of one or multiple applications operate in a shared environment.

The instances (tenants) are logically isolated, but physically integrated. The degree of

logical isolation must be complete, but the degree ofphysical integration will vary. The

more the physical integration is, the harder it is to preserve the logical isolation. The

degree of isolation is the main challenge.

This section shows us how arduous and ambitious can well-designed Cloud architectures and

applications be. lndeed, to maintain ail the Cloud characteristics, architects have to use many

powerful and improved patterns which will be described in this thesis.

Ali patterns and best practices which are explained here aim to respect and maximize the

previous challenges. It could be interesting to add to these challenges the essential Cloud

application properties which are defined as IDEAL: lsolated state, Distribution, Elasticity,

Automated management and Loose coupling [27). The majority of those concepts are already

taken into consideration except for the last one:

• Loose coupling: the goal of a loose coupling architecture is to reduce the risk that _a

change made within one e lement will create unanticipated changes within other

elements. Limiting interconnections can help isolate prob lems when things go wrong

and simplify testing, maintenance and troubleshooting procedures [37).

1. 6. 1 Cloud challenges impact on Cloud characteristics

Before diving into the pattern chapters, let us try to regroup challenges and show which

characteristics they may impact (Figure 2.11). We wi ll exp Ia in why and how they impact them.

Th is point of v iew is simplified and persona!. lndeed, security could be linked with every

characterist ic ifwe use deta iled and technical purposes but it is not the purpose of this section.

Resiliency

Securily

Availability

Network Latency

Consistency

State

Reliability

Multi-tenancy

Loose coupling

Figure 2.11 - Cloud challenges impact on C loud characteristics

1.6.2 Broad Network Access

None of our challenges is linked to the Broad Network Access characteristic. lndeed, having a

large coverage over network and dev ices does not depend directly on C loud technologies.

Nowadays, On-site infrastructure and Cloud both have a large diversity of protocols and too ls

which allow developers and users to use it anywhere and on any device.

1.6.3 Measured Service

• Reliability. Metrics and statistics of Cloud so lution metering are multiple. The main

purpose is to charge Cloud consumers only for what they have actually consumed: the

pay-per-use mode!. The second is to perform Elasticity according to the workload and

the user preferences. Having unconsistent metrics wi ll have a negative impact on this

characteristic.

• Multi-tenancy . Co llecting and saving metrics may look quite straigthforward. However,

there are multiple considerations that have to be taken into consideration when we deal

with multi-tenant environements and therefore when resources are shared.

• Loose coupling. Microservices are considered as the new architectural trend [28]. What

about the possibility to charge every part independently? Does each service has to

integrate a measurable system? How to globally integrate measuring inside a distri buted

environment?

1.6.4 On-Demand Self-Service

• Security, Multi-tenancy. Offering ail the capabilities to manage a Cloud infrastructure is

technically complicated and may be dangerous, especially in multi-tenant environments.

Cloud providers have to provide efficient so lutions to prevent Cloud consumers from

impacting other tenants in shared environments.

• Reliability. Through interfaces Cloud consumers can usually scale by adding or

removing resources. This action is led thanks to statistics which are collected and

communicated to Cloud consumers. Reliability is therefore indirectly linked because of

the measure serv ice which is integrated.

1.6.5 Rapid Elasticity

• Reliability. As discussed in the Measured Service, Elasticity is enab led by the metrics

which are collected and interpreted to know whether or not, the system needs to scale.

Having unrealiable data will degrade the efficiency of the Elasticity.

• When the need for provisioning is detected, available resources have to increase rapidly.

Such consideration introduces new dependencies:

o State and Loose coupling. We know that scaling concerns adding and removing

capacities, services or nodes. These nodes have to be rapidly duplicated and

available. Keeping each node independent and stateless improves our capacity

to add or remove them.

o Network Latency is essential when the process is initialized. lndeed, it is not

acceptable for users to wait for 60 seconds before the new node availability. It
has to be hidden and the user experience should not be impacted.

o Availability is extremely linked with the Network Latency. A resource which

does not respond within a certain amount of time may be considered as

unavailable.

1. 6. 6 Resource Pooling

The complexity of the resource pooling is often managed by the Hypervisor. Ali the complexity

and the challenges therefore rely on him. However, it is easy to understand how Cloud

challenges could impact it:

• Network Latency is important because when it fails, it creates feeling ofunavailability.

Resource pooling has to be quick in order to avoid the user experience alteration.

• Multi-tenancy, Loose coupling and State can be regrouped together as they serve a

common purpose: separation of concern (SoC).

The reader has been guided through Cloud Computing and more precisely through its

definitions, benefits, characteristics and challenges. A further sub-chapter unveils how Cloud

challenges cou Id impact its characteristics giving the reader a large understanding of the real

stakes. Now that the primers and fundamentals are set, we will introduce the purpose of patterns

and learn on what they are essentially focused.

2 Understanding design patterns

2.1 Definition

"The simplest way to describe a pattern is that it provides a proven solution to a common

problem individually documented in a consistent format and usually as part of a larger

collection" [29]. Without acknowledging it, we use patterns in everyday life to solve common

issues. ln software engineering, patterns are usually called design patterns. There are many

types of design patterns and many types of contexts wherein they can be applied.

" Patterns should be prescriptive, meaning that they shou ld te ll you what to do. They do notjust

describe a problem, and they do not just describe how to so lve it, they tell you what to do to

solve it. Each pattern represents a dec ision to make. The point of the patterns and the pattern

language is to help making decisions that lead to a good solution for a specific problem, even if

the initial problem was not entirely the same, and even if the knowledge and experience to

develop that solution are not yet known" [30].

2.2 History

Patterns were introduced by Christopher Alexander during the 80 ' s in his book A pattern

language. The book intended to provide a complete working alternative to our present ideas

about architecture, building and planning [31]. "This book provides ru les and pictures, and

leaves decisions to be taken from the precise environment of the project. It describes exact

methods for constructing practical, safe and attractive designs at every scale, from entire

regions, through cities, ne ighborhoods, gardens, buildings, rooms, built-in furniture , and fixtures

down to the level of doorknobs" [72]. ln fact, Christopher Alexander wasjust explaining how to

solve commun architectural and design (chairs, co lor, tab lement placement, etc.) issues.

ln 1994, after the re lease of Design Patterns: Elements of Reusable Object-Oriented Software,

design patterns gained in popularity [32]. Nowadays, there are a lot of different books speaking

about architecture, development and application design.

2.3 Pattern profile

ln Smalltalk Best Practice Patterns [33], Ben Kent uses a sty le that is fair ly close to the

Alexandrian form. The Alexandrian form is very appreciated due to its sty le which defines

patterns in a prose-like way . As a result, even though each pattern follows an identical,

well-defined structure, the format avoids headings for each individual sub-section, which

disrupts the discussion flow . To improve readability, the format uses style elements such as

structures, indentation, and pictures to help the reader quickly identify important sections [30).

Our patterns are described as muchas possible in the Alexandrian way.

Title Names the thing created as a result of executing the pattern. Intended to
be used conversationally to refer to the pattern.

Pictogram An image used to illustrate the pattern.

Problem(s) Stated as a question. Reading the problem will quickly tell the reader
whether he is interested in the pattern or not.

Solution and Gives the reader a concrete recipe for creating the thing named by the
discussion title of the pattern. The solution will give him insights to tackle

efficiently the initial problem and tell him how to make practical use of
the pattern. It may also contain examples of use and further explanations
or clues and issues to watch out for.

lmpacted According to the title of this thesis, patterns are explained to help us
challenge(s) achieving Cloud Computing challenges. However, this part shows which

challenges are positively but also negatively impacted.

Table 3.1- Best Practice Patterns

Patterns are now demystified and their purposes are clear. The following chapter will use the

pattern approach in addition to its profile to explore the reader doubts and incomprehensions

about the Cloud and its concrete setup. With a pattern-oriented approach, the idea is to take the

reader point of view and ask ourself questions that may not have been covered in previous

chapters.

3 Patterns

3.1 Introduction

This thesis does not intend to teach the reader how to implement and installa C loud solution. lt

only gives him insights on how and why such issues exist and how he places his system in a bad

position by neglecting it.

Severa! patterns include concepts which were brietly introduced in Chapter 2. However, we will

give a more precise description, mostly by defining potential issues and solutions. Patterns are

introduced in a logical way starting from the easiest to the more complex one. Each pattern

gives the reader an overview of potential so lution(s) and introduces new issues and

interrogations. We wi ll a lso discuss how Cloud challenges are impacted by using such pattern.

lndeed, changing the way systems are architectured, impacts and complexifies them.

3.2 Enterprise integration pattern

3.2. 1 The need for integration

" Enterprises are typically comprised of hundreds, if not thousands, of appl ications that are

custom-built. These applications are acquired from a third-party, part of a legacy system, or a

combination thereof, operating in multiple tiers of different operating system platforms. lt is not

uncommon to find an enterprise that has 30 different Websites, three instances of SAP and

countless departmental so lutions" [34]. Creating a single, big app lication to run a complete

business is impossible. That is why distributed application have appeared. ln distributed

environment, it is possible to execute business functions , regard less of how many internai

systems the business function cuts across. 1 n order to support such things, these systems need to

be integrated. Application integration has to provide efficient, reliable and secure data exchange

between multiple enterprise applications.

The difference between Cloud architecture and distributed architecture is blur. C loud

architecture may be compared to distributed architecture depending on the way it is

implemented. We can compare it to the paradigm Interface vs lmplementation. Distributed

architecture is an interface and the C loud architecture is one way to deal with it. According to

this statement, Cloud Architecture should benefit from EAI' Patterns. Ali these patterns were

5 Enterprise lntegration Architecture

defined a long time ago by Gregor Hohpe and Bobby Woolf in their book: "Entreprise

lntegration Patterns" [34]. This book offers a broad range of patterns such as message

transformations, message enrichments, message distributions and so forth. As it is not the

purpose of this thesis, the reader is invited to refer to this book if more explanations about

integration patterns are needed. Figure 4.1 illustrates a series of available EAI patterns ..

c-i-

~ 00 0 - - -
~ [8] ~ ._.. - - --

~ G -
~ •

' -[Q]
c:- -- -~ ---· ...

E] ...,_ - - -a -

Figure 4.1 - Enterprise lntegration Patterns overview

3.3 Divide and Conquer

How is it possible to build a complex application without building a
big single one that contains everything? As described in the EAI
pattern section, even if it is possible, creating a monolithic application
with everything inside, is not recommended at ail. Indeed, Cloud
applications have to rely on multiple, possibly redundant IT resources
to ensure that the unavailability of one 1T resource does not affect the
application as a whole.

3.3. 1 Solution & Discussion

The solution is quite simple: divide and conquer. Divide and Conquer is an algorithm design

paradigm based on multi-branched recursion. A divide and conquer algorithm works by

recursively breaking down a problem into two or more sub-problems (divide), until these

become simple enough to be solved (conquer). The so lutions to the sub-problems are then

combined to provide a solution to the initial problem [35]. There are multiple logical

decomposition approaches to split an application into multiple components which will briefly be

introduced in the following sections.

3.3.1.1 Layer-based Decomposition

This type of decomposition is well-established in
Software Engineering. This approach decomposes
the application into separate logical layers. The
below example shows the three main layers usually
used:

• User Interface (UI),
• Processing (Business),
• Storage (Pers istence). Figure 4.2 - Layer-based

3.3.1.2 Pire-and-Filter-based Decomposition

Figure 4.3 - Pipe-and-Filter-based

This type of decomposition is
well-establ ished in Enterprise Integration
Architecture . Each filter provides a certain
function that is performed on an exchange.
This processing takes an input exchange
and produces an output exchange. Ali those
filters are interconnected with pipes
ensuring that the output of one filter is the
input of the next filter in a processing
chain.

3.3.1.3 Process-based Decomposition

This decomposition is widely inspired by the
Microservices paradigm. A process is composed
of a series of activities which are executed in a
specific order. Each activity provides a simplistic
process which is not necessarily significant when
used atone. However, grouped with the others, it
becomes a complete and viable solution. Multiple
solutions which enable communication between
them are introduced in the next section.

Figure 4.4 - Process-based

3.3.1.4 Orchestration versus choreography

There is a huge debate about Orchestration and Choreography definitions [20]. The easiest way

to explain both is to illustrate them (Figure 4.5 and 4. 6). Service orchestration can be

compared to a control tower. The pilot of the plane approaching or departing the terminal area

communicates with the tower rather than explicitly with other pilots. The tower literally

orchestrates the flight. One way to think about service choreography is to think about a dance

company. Ali dancers move in synchronization with the others but no one is leading or

directing. Dances are choreographed through the individual dancers working in conjunction

with one another [23]. Both solutions cou Id be suitable depending on the environment.

[SeNice A] <
Reeelve

[SeNice B] [SeNice A];; ~ [SeNice B]
> Send

~ ij ~ ij tnvok~ Composite <;dJ
~ Service

~~
[seeace D] <

[SeNice C] [SeNice D] <;dJ [SeNice C]
>

Figure 4.5 - Choreography Figure 4.6 - Orchestration

3.3.2 lmpacted challenge(s)

• Loose Coupling. Obviously, by dividing and separating logic and concern,

components and services become increasingly feebly tied together.

• Reliability also benefits from this separation. Indeed, when properly handled,

isolated components which fait do not impact the others.

• State, however, tends to be harder to deal with. lndeed, components and services

which are part of the same business logic, often have to share states. During

Online shopping for example, the service which is responsible for sending the

confirmation email and the service which is responsible for debiting the account

should both share the state of the basket.

3.4 Loose Coupling

□ · □
' -- - ---r----- -

O i O
The previous chapter brings about a new interrogation. How to
reduce component dependencies? Availability and Network
Latency are very important challenges. To achieve them, the main
way seems to be the Scalability through the Elasticity. How could it
be possible to rapidly scale if ail components are tied together?

3.4. 1 Solution & Discussion

Loose coupling is defined here as a pattern. However, it could also be a good practice to
consider it as a goal which can essentially be achieved by using a communication canal between
components. The metaphor that properly illustrates this idea is the communication between
people from different origins. What makes them capable of communicating? Firstly,
communication tools such as speech and hearing, secondly: the language and messages. Even if
a person can speak to anybody, if these people do not share a common language, they will not
be able to understand each other. lt is the same for services or components in Computer
Sciences.

To communicate, services have to provide endpoints. Endpoints are entries that enable other
services to send them information and therefore to communicate. Endpoints are generally
configurable. For example, services could decide to accept only requests which corne from a
specific environment, with a specific format in a specific language and so forth. ln Software
Oriented-Architecture, the terms REST and SOAP are often used. Both are message
transmission protocols which define a series of ru les which have to be respected to enable the
communication. That is why services developed in REST are not able to communicate with
services developed in SOAP, and vice versa. They both have endpoints to interact with but are
not capable to understand ail the messages they receive. It is quite similar to the previous
example about people and the way they communicate.

As the reader may have understood, having loose coupled component is not straigtforward. The
complexity lies in the way they interact with each other. Multiple solutions exist: webservices,
queue-centric workflows, remote procedure calls (RPC) and so on.

3.4.2 lmpacted challenge(s)

Loose coupling was considered as a challenge in Chapter 2. Therefore, it directly impacts

it. lt also impacts almost ail the other challenges:

• Network latency grows because the communication is no more realised through

direct call ins ide a global system. Depending on the so lution you put in place,

performance cou ld be badly impacted .

• State becomes more and more complex to manage as your object travels through

multiple systems which are likely to be hosted in different environments.

• Availability. As more and more systems are added to enable com munication, it

adds more and more poss ible points of failure. Moreover, as the system becomes

distributed across multiple systems (Divide and Conquer), it sti ll adds other

points offailure.

• Consistency. As data go through more and more services, it can be more easi ly

degraded or lost.

• Security. Data trans it over the Network and ail services have endpoints.

Divide and Conquer with loosely coupled components is an important topic in distributed

architectures and therefore, in C loud architectures. Such architecture impacts everything and

completely changes the way software deve lopment is classically managed.

3.5 Queue-Centric-Workflow

How to practically make loose coupled components or services
communicate with each other? Which kind of intermediate system is
used in common distributed architectures?

3.5.1 Solution & Discussion

3.5.1.1 Message-Oriented Middleware

The Queue-Centric-Workflow pattern uses queues which are provided by a specific software

called a Messaging System or Message-Oriented Middleware (MOM) . To understand the QCW

pattern, it is important to clarify what Messaging system does imply. A Messaging System

manages messaging the way a database system manages data persistence. Just as an

administrator must populate the database with the schema for an application 's data, an

administrator must configure the messaging system with the channels that define the paths of

communication between components/services/applications. The messaging system then

coordinates and manages the sending and receiving of messages . "The primary purpose of a

database is to make sure each data record is safely persisted and likewise the main task of a

messaging system is to tranfer messages from senders to receivers in a reliable way" [14].

The reason a Messaging System is needed to move messages from one service to another is that

services and networks that connect them are inherently unreliable. Just because one serv ice is

ready to send a message does not mean that the others are ready to receive it. Even if both are

ready, the network may not be working or may fail to transmit the message properly. A

messaging system offers solutions to overcome failures such as reprocessing, persistence,

transactions and so forth.

Messaging system enables two kind of channels:

• Queue (Figure 4. 7)

• Topic (Figure 4.8)

Messages

Figure 4. 7 - Messaging system with a queue

Subscriber #1

Publisher Topic

Messages

Figure 4.8 - Messaging system with a topic

The flow is quite simple: senders add messages to the queue and receivers read them from it.

When a message is dequeued (otherly said consumed from the queue), it is not removed entirely

from the queue. The message is hidden for a specified amount oftime (the duration is specified

during the dequeue operation and can be increased). We call this period the invisibility window

(Figure 4.9). When a message is within its invisibility window, it is not available for dequeuing

and therefore not visible for other receivers/consumers. One issue can be introduced when

message processing takes more time than its window invisibility period. Indeed, the message

becomes again available and is processed for the second time. There are two copies of the

message which transit over the system.

0 set visible A
é) v read ''"'" o•w,it, (V V 1 • ~ D ''"'"'

___)' Ad I t 'bl Aacknowledge ~ ~ e e e vset lnVISI eV

ietvisible

visibility
timeout

Figure 4.9 - Invisibility window

This issue introduces the notion of idempotency. In Computer Sciences, the term idempotent is

used more comprehensively to describe an operation that will produce the same results if

executed once or multiple times [15]. For example, according to the HTTP specification, the

HTTP verbs PUT, GET and DELETE are ail indempotent operations. Indeed, assuming their

successes, ail requests executed once or 100 times, will produce the same result [16]. If your

system operations are not idempotent, you have to manage duplicated messages properly.

With ail previous explanations about Middleware systems, the Queue-Centric-Workflow Pattern
is straightforward as depicted in Figure 4.1 O. Another useful information is available on this
picture: the possibility to have more than one sender (or producer) and more than one receiver
(or consumer).

Figure 4.10 - Queue-Centric-Workflow Pattern

3.5.1.2 Synchronous versus asynchronous

Another benefit from using a Messaging system is that it enables asynchronous

communications. As shown in Figure 4.11 , with synchronous communication, a call is made to

a remote component, which blocks until the operation completes. In the opposite, with

asynchronous communication, the calier does not wait for the operation to complete before

returning, and may not even care whether or not the operation completes at ail.

Synchronous

Process A

Wait fo r
response

Process B

Asynchronous

Process A Process B

Continue
working

Gel.
response

Figure 4.11 - Asynchronous versus Synchronous

Synchronous communication can be easier to deal with: we know when processes have

successfully completed or not. Asynchronous communication can be very useful for

long-running jobs, where keeping a connection open for a long period of time between the client

and server is impractical. lt also works very well when you need low latency, where blocking a

call while waiting for the result can slow things down and degrade the user experience. "Due to

the nature of mobile networks and devices, firing off requests and assuming things have worked

(unless to ld otherwise) can ensure that the U1 remains responsive even if the network is highly

laggy. On the flipside, the technology to handle asynchronous communication can be a bit more

involved" [19] .

These two different modes of communication can enable two different idiomatic styles of

collaboration: respectively requestl response and event-based. Each of these idiomatic can fit
effectively, there is no best solution. One important factor to consider is how well these styles

are suited for solving your problems considering their complexity and the real plus-value.

3.5.2 lmpacted challenge(s)

• Availability. Multiple serv ices cou Id be added as senders or receivers . lt therefore

provides a nice mechanism to scale and enhance the availability.

• Network Latency. Unlike what we said in the previous point, Network Latency

cou Id also benefit from QCW pattern because of its asynchronous ability.

• Reliability and Consistency. Queue system isolates sub-components from each

other so the failure of one component does not impact the others. Messaging

System also provides mechanics to ensure that messages are not lost [74] .

3.6 Idempotent Receiver

Messaging systems and idempotency are now familiar but how is it
possible to simply deal with duplicates? How to efficiently deal
with duplicate messages in distributed architectures?

3. 6. 1 Solution & Discussion

There are two ways to deal with duplicate messages:

1. lgnoring them,

2. Defining the logic to support them.

In order to ignore duplicates, receivers (or consumers) have to keep track of the previously

received messages. Many Messaging systems automatically assign unique identifiers to each

message without the application having to worry about them. When a message with an already

consumed message identifier is received, the system ignores it as depicted in Figure 4.12.

Message

1 2 2 Filter 1 2

Message
ID

Figure 4.12 - Idempotent Receiver explained

Defining the logic to support idempotency mainly depends on your application. This case is not

explained in this thesis because this is out of the architectural scope.

3.6.2 lmpacted challenge(s)

Reliability.

3.7 Cdn

00

B

How is it possible to reduce Network Latency for commonly
accessed files through globally distributed users? The goal is to

speed up delivery of content. Content is anything that can be stored in a

file such as images, videos or documents. If such content is located too

far from the user accessing it, the network latency may increase.

Moreoever, storing content in only one centralized location could

become a problem if the data center crashes.

3. 7. 1 Solution & Discussion

CDN or Content Distribution Network seems to be quite generic and the concept is used in each

studied providers. The CDN is a service that functions as a globally distributed cache. The CON

keeps copies of application files in many different locations across the world (Figure 4.13).

When a user needs a file, retrieving it from the closest location will be faster than retrieving it

from the origin. "A CDN is really useful when files are accessed multiple times. Files that are

intended to be rarely accessed, or that are for only a single user, are usually not good candidates

for a CON" [17]. Otherly said, CON refers to content replication across multiple physical

locations. The pattern is also called "Cache Aside Pattern" or "Static Content Hosting Pattern".

Wlthout a CDN

..

With a CON

9 ..
9

1,

. a
..

9

Figure 4.13 - CON illustrated

3. 7.2 lmpacted challenge(s)

,.

• Network Latency directly benefits from this pattern. The distance between users

and files is reduced and therefore the transfer time is positively impacted.

• Availability is enhanced due to multiple locations where the data is stored.

Indeed, when a node faits , as there are multiple replications across the network, it

remains indirectly available.

• However, due the replication mechanism, Consistency could be harder to

manage.

3.8 Multisite deployment

00 How is it possible to reduce network latency for the applications
and improve user experience? As explained in the introduction, due
to its broad network access, the Cloud is used from unpredictable
locations, globally distributed across many geographical locations.
Will Chinese users experiment the same user experience as Belgian
ones if the application is located in France?

3.8. 1 Solution and Discussion

Multisite Deployment Pattern is similar in some ways to CDN, in that it strives to bring

applications closer to the users. Multisite Deployment Pattern focuses on deploying a single

application to more than one data center.

3.8.2 lmpacted challenge(s)

This pattern is quite similar to the previous one and therefore offers the same advantages and

disavantages: Network Latency, Availability and Consistency.

3.9 Database replication

Static files and applications are now demultiplied across multiple
locations but databases are not. Applying previous patterns just moves
the problem to another point: the database. lt will definitely not support
the charge and become the single point of failure . Is there a way to
scale out the database?

3.9. 1 Solution and Discussion

lndeed, as it is the case for applications and static files, databases can be replicated into multiple

locations. Replication is the process of copying data, but the problems associated with it are

these of managing and maintaining multiple copies of the same information: the consistency.

The most simple replication concept is master-slave(s) (Figure 4.14) as it solves a lot of

common problems which can be encountered with one single instance. Replication is not a

pattern which is only applicable in Cloud or distributed architectures because it is broadly used

to manage backup and loads in old on-premise, single node applications.

Slave 1 Slaw! 2 Slave3

Figure 4.14 - Master-Slaves Replication

Write operations are performed on the master and read operations can be performed on every

replicas (master and slaves). The difficulty results in the data replication from master to slave(s).

Generally, these operations are performed through asynchronous updates using Messaging

Sytems. However, this behaviour can be overriden by any particular need or preference. Figure

4. 15 from Cloud Computing Patterns [l O] shows an example of replications using a Messaging

system. This example contains information which are not discussed in this thesis such as the

message obfuscation to hide some information or the message enrichment. This example aims to

give the reader an idea of the complexity which is hidden behind the notions of Consistency and

Replication.

~~ Message
(~~-Filter

r+ (o- □ -(07
(t)~

Storage)
Offering

(

+ t l

L(o- +-L-(o.J ..

~~ Message
< ~1,g;

Enricher
) I #Sef3

j~ ,: ecure Secure
/

Figure 4.15 - Replication complexity with enrichment and obfuscation

3.9.2 lmpacted challenge(s)

• Availability and Network Latency are positively impacted by replication due to

the same condition than CDN and Multisite deployment patterns.

• Consistency and Reliability become quite tricky to manage because of the data

replication.

3.10 Database Sharding

Having multiple database sounds efficient. However, how could it
be possible to store big data? Indeed, such data are too big to be
contained in on ly one database. Performances would be
unacceptable and the system would become unstable.

3.10.1 Solution and Discussion

Sharding a database is starting with a single database and then split its data up across two or

more databases called shards. Each shard shares the same database schema. The data is

distributed so that each row appears in exactly one shard. The combined data from ail shards

represent the en tire data and is the same as the original database data (Figure 4.16) [65].

There are multiple reasons to shard. For
example, you can decide to shard because data
do not fit into a single node instance. Therefore
you have to <livide the data into simi larly s ized
shards to make it fit. You could also shard for
performance reasons. Divide the data across
shard nodes in such a way that ail nodes
experience the same volume of database
queries and updates.

1t is also important to know that ail tables are
not necessarily shared but rather rep licated into
each shard. lt is for example the case with
reference data which is mostly read and
therefore replicated [54].

Figure 4.16 - Database Sharding

Historically, sharding has not been so popular because it was not built in and required specific

application logic. The result was a significant increase in cost and complexity. Nowadays,

Cloud platforms mask that complexity. For example, Windows Azure offers a system called

Federation. The feature helps app lications to manage a collection of shards, keeping the

complexity out of the application layer [53].

3.10.2 lmpacted challenge(s)

• Availability and performances which could benefit to Network Latencies.

• The complexity about consistency and reliability is hidden by the vendor

platform but it could also be impacted: positively because it does not require

implementation but also negatively in case of very specific needs.

3.11 Consistency

□□□
□□□
□Dl __ _ l

Data availability is improved but is there any way to deal
efficiently with its consistency? Consistency seems to be the black
sheep, so are there ways to practically deal with it without impacting
the availability?

3. 11. 1 Solution and Discussion

3.11.1.1 ACID versus BASE

In Distributed Computer Systems, the Eric Brewer's theorem, also known as CAP theorem,

states that it is impossible to simultaneously provide ait three of the following guarantees [18]:

• Consistency

• Availability

• Partition Tolerance (correct operation, even if nodes within the application are eut off

from the network and unable to communicate.)

The CAP Theorem posits that out of the three guarantees, applications can only pick two of

them. Therefore, it principally depends on what you have to achieve. Each solution has its own

benefits and drawbacks. Obviously, any horizontal scaling strategy is based on data partitioning;

therefore, architects are forced to decide between Consistency and Availability. ln other words,

they have to decide between eventual and strict consistency, which are detailled below. Each

paradigm has its own characteristics and can be linked with ACID or BASE guarantees.

ACID guarantees a series ofthings and is often linked to strict consistency [62]:

• Atomicity: Ali of the operations in the transaction will complete, or none will.

• Consistency: The database will be in a consistent state when the transaction begins and

ends.

• Isolation: The transaction will behave as if it is the only operation being performed

upon the database.

• Durability: Upon completion of the transaction, the operation will not be reversed.

BASE, however, does not guarantee the consistency and is therefore associated with the eventual

consistency [63] :

• Basically Available: This constraint states that the system does guarantee the

availability of the data as regards CAP Theo rem; there will be a response to any request.

But that response could still fail to obtain the requested data or the data may be in an

inconsistent or changing state, much like waiting for a check to clear into your bank

account.

• Soft state: The state of the system could change over tim e, so even during times

without input there may be changes going on due to ' eventual consistency,' thus the

state of the system is always 'soft. '

• Eventual consistency: The system will eventually become consistent once it stops

receiving input. The data wi ll propagate to everywhere it should sooner or later, but the

system wi ll continue to receive input and is not checking the consistency of every

transaction before it moves onto the next one. Werner Vogel ' s article " Eventually

Consistent - Revisited" covers this topic in much greater detail.

3.11.1.2 Eventual versus Strictly Consistency

ln an eventually consistent database, simultaneous requests for the same data value may return

different values (Figure 4.17). This condition is temporary, as the value becomes "eventually"

consistent [17]. Eventual consistency is not a deficiency or design flaw. When used

appropriately, it is a real feature.

Oat_a Canter 2

Wnte

X

Figure 4.17 - Eventual consistency illustrated

A simple example can be found with DNS6
• When the I P address for a do main name is changed,

it usually takes hours to be propagated to ail ONS servers across the Internet. This is considered

as a good tradeoff. 1 Ps change infrequently enough that we tolerate the occasionnai

inconsistency in exchange for huge sca lability.

The eventual consistency model has a number of variations that are important to consider:

• Causal consistency . If process A has communicated to process B that it has updated a

data item, a subsequent access by process B will return the updated value, and a write is

guaranteed to supersede the earlier write. Access by process C that has no causal

relationship to process A is subject to the normal eventual consistency rules.

• Read-your-writes consistency . This is an important model where process A, after it has

updated a data item, always accesses the updated value and will never see an older

value. This is a special case of the causal consistency mode 1.

• Session consistency. This is a practical version of the previous mode 1, where a process

accesses the storage system in the context of a session. As long as the sess ion exists, the

6 Domain Name System: DNS

system guarantees read-your-writes consistency. If the session term inates because of a

certain failure scenario, a new session needs to be created and the guarantees do not

overlap the sessions.

• Monotonie read consistency. If a process bas seen a particular value for the object, any

subsequent access will never return any previous values.

• Monotonie write consistency. ln this case the system guarantees to serialize the writes

by the same process. Systems that do not guarantee this level of consistency are

notoriously hard to program.

The opposite of eventual consistency is called strict/y, strongly or guarantee consistency.

Whatever or whenever you read the data, this one is always up-to-date. Cloud Computing

allows to work with such consistency. For example, some Cloud providers such as Windows

Azure Storage off ers this kind of consistency [17].

Strict consistency could be achieved by blocking the read until the write operation is finished

(Figure 4.18). However, depending on the number of replicat, this operation could serious ly

impact the network latency and the perception of availability for ail the users.

Oa,ta Centar 1 o,ata Conter 2

F------~-- Replic.ate ' ______, ___ __ _
i NodeA 1
1 X 1 R phc e
, ... ____ ___ 1

Write

X

F--------:~
i NodeC 1
' 1

l ___ T __ J ---

î
Blockfor
Read ng

Readets re block~ un 1
repllcatlofl ls complete

Figure 4.18 - Strict Consistency with blocking system

3.11.2 lmpacted challenge(s)

Depending on the so lution you have chosen, different challenges may be impacted: Network

Latency, Availability and Consistency.

3.12 Load Balancer

Having multiple nodes in clusters introduces a new interrogation:
How is it possible to distribute requests across them?

3. 12. 1 Solution and Discussion

Load Balancing consists of dividing the amount of requests that have to be processed to two or

more nodes so that more work can be achieved in the same amount oftime (Figure 4.19). Load

balancer logic can be implemented in different ways:

• Round Robin is the simplest implementation as it distributes the Joad equally in a

sequential manner. If the cluster consists of 3 nodes, each node will receive the same

amount of requests: 1, 2, 3, 1, 2, 3 and so on.

• Weighted Round Robin works in the same way except that nodes are weighted. More

weight means that more requests will be received.

• Property based is the more convenient way to deal with load balancing. lndeed, the load

balancer analyses a specific property and decides whether or not the Joad can be sent to

this node. The property could for example be the response time. When anode responses

after a too long period, the Joad balancer considers it as not available and sends the

request to another one. Other properties cou Id be considered.

UXJd 8alnf1Cllf

t t t
0

s..-, s.n..,2 • • - - • • • • S..-H

Figure 4.19 - Load balancer illustrated

Load balancer is a piece of software (or sometimes hardware) which can be redundant to

minimize the risk of "single point offailure" .

3.12.2 /mpacted challenge(s)

• Network Latency. Requests are balanced to multiple instances.

• Availability. Requests are balanced to available instances (See next point).

3.13 Health Monitoring

+
Having multiple nodes and distributing the charge across ail of them
sounds very ingenious. However, is it possible to ensure that ail of
them are available? lndeed, Joad balancer wi ll distribute requests
accross ail nodes but what about nodes which are down?

3. 13. 1 Solution and Discussion

Monitoring is a good practice and often a business requirement for web applications, databases,

shared-services and so forth. Jndeed, with such system, we are able to check whether everything

is available and performs correctly or not. There are a lot of factors that can affect applications

such as network latency, performance, storage, bandwidth. Furthermore, a service may fai t

partially or entirely due to any of these factors . lt is therefore important to monitor them

effic iently.

A Health Monitoring is usually performed in two phases:

1. Collect: a request is made to services which respond to it. Responses are often collected

and saved into a persistence store for further analys is and statistics.

2. Analysis: the service responses are analysed and the result is compared to metrics to

decide whether or not the service is healthy.

Several existing services and tools are available for monitoring web applications by submitting

a request to a configurable set of endpoints, and evaluating the resu lt against a set of

configurable ru les. lt is relatively easy to create a service endpoint whose sole purpose is to

perform some functional tests on the system [1 7].

6.13.2 Impacted challenge(s)

• Network latency, availability and Reliability could benefit from this pattern.

Indeed, failures are now detected proactively. lt is simple to identity and to

correct them.

3.14 Watchdog

Node failure are now identified . However, is there a way to react to
such information? How will this information help to provide a better
solution? Is it possible to use monitoring information to enable
elasticity? When a node fails, users may experiment increasing
network latencies until a manual intervention is done: unpractical.

3.14.1 Solution and Discussion

Collecting and Analysing data as introduced in the previous point is called metering. Metering
is the process of measuring and recording the usage of an entire application, individual parts of
an application, specific services or resources [17). Almost everything is measurable:

• The amount of storage for each user,
• The total size of data transfered,
• The number of queries for a specific service,
• The response time for a specific service,
• and so forth.

In Cloud Computing, Metrics are essential and are the basics of almost everything. As
discussed, Cloud enables a pay-per-use mode 1. This model is based on ail the recorded metrics.
Another concept mainly linked with metrics is the Elasticity. Elasticity was earl ier defined as
the abi li ty to adapt the resources needed to cope with workloads dynamically. To cope with
workloads and therefore to perform scalability, these metrics are essential: without them, it is
impossible to know whether or not it is necessary to scale.

The watchdog (or Dynamic Failure Dectection And Recovery) pattern purpose is to ensure High
Availability. lt is therefore responsible for the provisioning according to metrics and user
pref erences (Figure 4.20).

_,,

Metrics ~

&
User preferences

WATCHDOG

~

~

~

~

Add or remove
nodes/components

Collect
and

store

,.

t

Figure 4.20 - Watchdog provisionning based on metrics

3.14.2 lmpacted challenge(s)

• Availability, Network Latency and Reliability.

3.15 Map Reduce

Having multiple nodes and distributing the charge across all of
them sounds very ingenious. However, how is it possible to
use a cluster to process one big file more efficiently?

3. 15. 1 Solution and Discussion

Cloud applications often have large data to manipulate and process. Map Reduce is a data

processing approach that enables the parallel processing of large data sets. By using this pattern,

the limitation factor becomes only the size of the cluster. lt is implemented as a cluster wherein

each node works on a specific and smaller part of the data. This pattern can be compared to the

Divide and Conquer one. This pattern is not typically used on small data sets but rather on what

the industry refers to as Big Data. There is no specific rule to establish where Big Data starts

and stops but we can reasonably consider data as "Big" when they are too big to be handle with

a single machine.

Map Reduce requires two main functions : a mapper and a reducer. The large data set to be

processed is firstly split up into multiple parts and then mapped to multiple nodes. Afterwards,

the individual results of all the processing nodes are consolidated into a large result data set

(Figure 4. 21). This consolidation operation is called: reduce. During the reduce phase,

additional functions can be added such as sum, average and so on.

Map

Reduce

Figure 4.21 - Map-Reduce illustrated

3.15.2 lmpacted challenge(s)

• Network Latency is one of the most impacted challenge as it is by far the purpose

of this pattern. More nodes are available to parallelize the work that has to be

done.

• Consistency is impacted as the treatment is shared by multiple nodes. Hopefully,

such processes are performed by specific technologies such as Hadoop which

guarantees the consistency [49).

3.16 NoSQL

The concept of Big Data is actually hype but how is it possible to
store ail these data? Classical database systems look obsolete when
the data exceeds a specific amount: the performances decrease and
the system becomes unstable.

3. 16. 1 Solution and Discussion

Before <living into the NoSQL paradigm, it is important to recall where we corne from.

Relational databases were born in the era of mainframes and business applications. ln fact, the

first commercial implementation was released by Oracle in 1979: Oracle 2 [50). "These

databases were designed to run on a single server and the only way to increase their capacities

was to scale up by upgrading components" [1). Needless to say that this behaviour is not

optimal in distributed environments. Nowadays, Cloud databases present their own challenges.

"They emerged as a result of the exponential growth of the Internet and the rise of distributed

applications. These databases were engineered to meet a new generation of enterprise

requirements: operate at any scale" [51).

NoSQL and classical RDBMS differ in their data models and in the way they distribute data

among multiple nodes. RDBMS have strict data models which are hard to change and usually

provoke downtime when it has to be updated on production environments. Moreover, RDBMS

have difficulties dealing with semi-structured data.

NoSQL supports multiple data models :

• Key-value stores. Similar to maps and dictionaries where datais identified by a

unique key .

• Document-oriented stores. The evolution of the previous data mode) stores

information as documents which are no more represented by a single value but by

a series of information which are organized freely (often like in a JSON file) .

• Column family stores.
• Graph databases. These systems tend to provide rich query models where

simple and complex relationships can be interrogated to make direct and indirect

inferences about the data in the system.

According to their internai functioning, NoSQL and RDBMS systems are very different in term

of performances. NoSQL data models allow significant increase in term of persistence and

research [52].

3.16.2 lmpacted challenge(s)

• Network latency.

• Availability is a lso improved due to the built-in sharding system which are offered by

NoSQL vendors.

3.17 External configuration Store

Dynamic Provisioning is performed by the Watchdog. Virtual Images are
used when new resources are allocated but what about specific additional
configurations? How can configuration of the scaled applications be
controlled in a coordinated way?

3. 17. 1 Solution and Discussion

The majority of runtime environments includes specific information often contained in

configuration files also called property files. ln classical architecture, the software directly

contains these files and it becomes harder to maintain because once you have to update some

property values, you have to redeploy the entire app lication or service. Such deployment causes

an unacceptable downtime and therefore impacts the availability.

Moreover, the limitation of such system is that each configuration file belongs to the service

wherein it is contained. Otherly said, the property file cannot be used for the other services. For

exarnple, with Multisite Deployment pattern we discussed earlier, each of your services will

contain a specific property file. This will badly impact the reliabil ity: are each property files the

same for ail our instances?

The solution is to store these property files , these settings outside of our applications or services

in an externat storage system. Storage systems can be everyth ing we can imagine: relational

databases, file systems, key-value stores, and so forth . One thing to keep in mind is the ease to

edit these configurations. As depicted in Figure 4.22, once these files are externalized, the

information has to be transmitted to the services or the application to keep them updated.

8 -
8 Extèmal liil

A ,,.,,, +----4a----l►I __ '_on_f-ig_u_r;i;-tl-o-n--1◄-----.,-----p
_ store I Cloud

1 ,u,..,,. ,,

l -8 :
As> 011 _____, L-------+ •

Altemativ
optlon

Figure 4.22 - Extemalized configuration illustrated

In Computing Cloud patterns [l 0), they identified two ways to transmit information and

therefore to refresh services with updated versions of the property files (Figure 4.23):

1. Pushing. the property files and their values are pushed to the

services when a change is made. This is commonly done by

asynchronous messages using Messaging Systems.

2. Pulling. Services or applications pull periodically the storage system

to check whether any change has been made.

Figure 4.23 - Pushing versus Pulling information to services

Both solutions are suitable. However, having a lot of services which pull periodically is not the

most optimal solution. It will generate network activities which are not needed when no changes

have been performed. Therefore, pushing information to services may be a better solution .

3.17.2 lmpacted challenge(s)

• Reliability increases because ail instances share the same configurations which

are placed in a unique place.

• Resiliency is positively impacted because we are now able to have similar copies

of our services into clusters. Indeed, by sharing property configurations and

images, services are now created identically .

3.18 Stateless Configuration

New services are duplicated and avai lable in the cluster. Load balancer is
now able to send request to them. What if a user is redirected to a fresh
new instance? lt will not contain any information about him and will
consider him as not authenticated or whatever. How is it possible to
create stateless instance and keep user information available?

3. 18. 1 Solution and Discussion

3.18.1.1 5.6 Stateful versus Stateless

Before diving into the explanations, it is important to understand what stands behind the word

"state". Session state or state is a context where in several information are maintained such as

security access token, user ' s name, shopping cart content and so forth . Consider an application

which is deployed in a cluster with 2 or more nodes. A first-time visitor adds an item to its

shopping cart. Where is this cart stored? Is it stored on the node or somewhere else? The answer

lies on how the session state is managed.

When the information is stored on the node, this node is defined as stateful as it retains the

information . The benefit of stateful node is that it is quite s imple to store and retrieve

information because it is located in the " local memory" . However, the Cloud native approach is

to have session state without stateful nodes. A node can be kept stateless simply by avo iding

storing user information locally but rather storing them externally. For example, in cookies or

externat data stores. The idea is quite similar to the previous pattern : externat configuration

store.

Statele;t'

Nos.esslon
No Logln
No Ba~ket
S,tatit Conl@nt

~ tateful

~~1lon
Lo,in
Ba kel
OynamiÇ COMèlll

Figure 4.24 - Stateless ve rsus Statefu l

Stateful nodes are unpractical in a cluster environment and that is why they are not the best

approach in Cloud environments. It is quite simple to understand: imagine a Cluster with 2

nodes whereon an application is deployed. A user firstly connects to the node A and logs in. The

node A is stateful and stores ail the user information. The user refreshes the page and his request

is distributed to the node B. Unfortunately, node B has no information about this user (because

it is actually stored on the node A). The user is therefore considered as not logged in and his

basket is empty.

The solution is similar to the prev ious one: states externalization. There are multiple options to

rea lize the externa lization. The first one consists of using cookies to store client information on

his side. Cookies, web cookies, Internet cookies are small pieces of data which are stored in the

user 's web browser while the user is access ing serv ices and applications. When users

communicate with our services, these pieces of data are linked to the request and therefore the

information is transmitted. The second sol ution is to external ize the state in a storage system.

Users will be identified by a uniquer identifier and their states will be retrieved according toit.

States cou Id also be cached to avoid serv ices to ca ll the store systems and therefore improve the

performances. Figure 4.25 illustrates both behav iours.

l
(8 External State)

Figure 4.25 - Externat state storage

3.18.2 lmpacted challenge(s)

• State is managed in a more profitable way, especially in Cloud and distributed

environments where the scalability is performed and sometimes required.

• Resiliency. Node failure will not cause data corruption or loss. Each node of the cluster

is now capable of taking charge of every requests. No more information is retained

inside ofthem.

• Network latency could be impacted depending on the chosen solution. Indeed, if

services have to call storage systems to retrieve information every times, the system wi ll

perform more slowly.

• Reliability looks easier because information are stored in more robust systems: browser,

databases and so forth.

4 Conclusion

This thesis gives readers a broad overview of the complexity in distributed and more precisely

C loud environments. We started by introducing the C loud and its benefits to raise awareness

among readers about its potential and popularity. We then li sted ail its characteristics and

high lighted the challenges they introduced. The analysis of the literature a llowed us to provide

the reader with a series of complementary information to deeply and comprehensively

understand Cloud definitions wh ich are broad ly used in Computer Sciences books.

We also defined a pattern-oriented approach which was inspired by the Alexandrian form.

However, the pattern profiles were simplified and written in a narrative approach to enable

readers to focus on the problem, its solution(s) and the affected Cloud challenges.

We have seen that each step to get closer to the best arch itectural solution introduced new

questions and new concepts. Fortunately, readers were literally guided through the C loud

complexity thanks to questions which were introduced in a logical and incremental manner.

We sincerely think that this thesis succeeds in providing a much more comprehens ible approach

for readers which are not familiar with C loud or distributed environments. By giving them the

basic concepts, they should now be able to properly define the Cloud, to understand its

challenges and to com plete their knowledge with additional readings more eas ily.

However, we distinguished several improvement axes which wou ld require supplementary

works and researches. I ndeed, the chosen patterns in the last chapter were just an overview of ail

the questions the readers may ask themselves. Further reading about Enterprise applications,

SOA architectures and Cloud architectures wi ll be necessary to go in depth into implementation.

The questions about Multi-tenancy and Security were not deeply covered in this thesis and

should therefore be addressed in further readings. lt is also important to keep in mind that

having a broad overview of the C loud architectures does not mean that we are able to implement

them.

5 References

1. Couchbase, "Why NoSQL?", http: //www.couchbase.com/nosgl-resources/what-is-no-sgl. [Online,

Available on May, 13th 2016]

2. Meil, Peter, and Tim Grance. The NIST definition of cloud computing. p. 2. 2011

3. Erl, Thomas, Ricardo Puttini, and Zaigham Mahmood. Cloud computing: concepts, technology, &
architecture. Pearson Education. Chapter 3, p. 28. 2013

4. Weinman, Joe. Cloudonomics: The business value of cloud computing. John Wiley & Sons.2012

5. Reuven Cohen, " fs Cloud Computing really cheaper?",
ht:tt>: //www.forbes.com/s ites/reuvencohen/2012/08/03/is-cloud-computing-real ly-cheaper. [On I ine,

Available on April, 25th 2016]

6. Er! , Thomas, Ricardo Puttini , and Zaigham Mahmood. Cloud Computing: concepts, technology, &
architecture. Pearson Education. Chapter 3, p. 41. 2013

7. Dorband, J. , Josephine Palencia, and Udaya Ranawake. Commodity computing clusters al goddard
spacejlight center. Journal ofSpace Communication. p. 113-123 . 2003

8. Nucleus research , "Benchmarking availability and reliability in the Cloud: Amazon Web Services",
https: / /dû .awsstatic.com/analyst-reports/Benchmark ing%20A vai labi I ity%20and%20 Rel iabi I ity%20 in

%20the%20Cloud Nucleus%20Research 2014%20.pdf. [Online, Available on May, 23th 2016].

9. Young, Marcus. Jmplementing Cloud Design Patterns for A WS. Packt Publishing Ltd. 2015 . Kindle

location 315/3258. 2015

1 O. Leymann, Christoph Fehling Frank, et al. Cloud Computing patterns. p. 50.2014.

11. Wikipedia, "Computer Cluster", ht:tt>s://en.wikipedia.org/wiki/Computer cluster. [Online, Available

on April, 25th 2016]

12. IBM , "!BM Cluster Systems" , http: //www-03.ibm.com/systems/clusters/benefits.html. [Online,

Available on April, 25th 2016]

13. Zhang, Qi , Lu Cheng, and Raouf Boutaba. Cloud computing: state-ofthe-art and research challenges.

Journal of internet services and applications 1.1 . p. 7-18.2010

14. Hohpe, Gregor, and Bobby Woolf. Enterprise integration patterns: Designing, building, and

deploying messaging solutions. Addison-Wesley Professional. 2004

15 . Restcookbook, "What Are Idempotent And/or Safe Methods?", http: //restcookbook.com/HTTP

Methods/idempotency. [Online, Available on April, 25th 20 16]

16. World Wide Web Consortium (W3C), "HTTP Specifications",

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.htm1. [Online, Avai lable on May, 23th 2016]

17. Wilder, Bill. Cloud architecture patterns: using microsoft azure. O'Reilly Media, Inc .. 2012

18. Wikipedia, "CAP Theorem", https: //en.wikipedia.org/wiki/CAP theorem. [Online, Available on April ,

25th 2016]

19. Newman, Sam. Building Microservices . O'Reilly Media, Inc. p. 16. 2015

20. Boris Lublinsky, "Orchestration vs. Choreography: Debate Over Definitions",
http://www.infog .com/news/2008/09/0rchestration. [Online, Available on April , 25th 2016]

21. Mark Richards, Microservices vs Service-Oriented Achitecture. O'Reilly Media, Inc .. 2016.

22. Meil , Peter, and Tim Grance. The N!ST definition of cloud computing. p. 2.2011

23. Leymann, Christoph Fehling Frank, et al. Cloud computing patterns. Chapter 2 .2 - Application

Workloads. p. 4. 20 14

24. Erl , Thomas, Ricardo Puttini, and Zaigham Mahmood. Cloud computing: concepts, technology, &

architecture. Pearson Education. Kindle location 1570/7400. 20 13

25. Amazon Web Services Inc. , "Amazon EC2 SLA" , https: //aws.amazon.com/fr/ec2/sla. [Online,

A vailable on April , 25th 2016]

26. Sean Work, "How Loading Time Affects Your Bottom Line?",
https: //blog.kissmetrics.com/loading-time. [Online, A vailable on April, 25th 20 16]

27. Leymann, Christoph Fehling Frank, et al. Cloud computing palterns . p. 6. 2014.

28. Martin Fowler, "Microservices" , http: //martinfowler.com/articles/microservices .html. [Online,

A vailable on April , 25th 2016]

29. Erl , Thomas, Robert Cope, and Amin Naserpour. Cloud computing design patterns . Prentice Hall

Press. Kindle location 858/7529. 20 15

30. Hohpe, Gregor, and Bobby Woolf. Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley Professional. 2004.

31. Alexander, Christopher, Sara lshikawa, and Murray Silverstein. A pattern language: towns, buildings,
construction. Vol. 2. Oxford University Press. 1977.

32. Wikipedia, "Software Design Pattern", https: //en.wikipedia.org/wiki /Software design pattern.

[Online, Available on April , 25th 20 16]

33. Beck, Kent. Smalltalk Best Practice Patterns. Volume 1: Coding. Prentice Hall , Englewood Cliffs, NJ.

1997.

34. Hohpe, Gregor, and Bobby Woolf. Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley Professional. 2004.

35. Wikipedia, "Divide and Conquer Algorithms",
https: //en.wikipedia.org/wiki/Divide and conguer algorithms. [Online, Available on April , 25th

2016].

36. Wikipedia, "A Pattern Language", https: //en.wikipedia.org/wiki/A Pattern Language. [Online,

Available on April , 25th 2016]

37. Margaret Rouse, "What ls Loose Coupling?",
http: //searchnetworking.techtarget.com/definition/loose-coupling. [Online, Availab le on April, 25th

2016]

38. Wikipedia, "Commodity Computing", https://en.wikipedia.org/wiki /Commodity computing. [Online,

Available on April 25th 2016]

39. What ls Cloud, "lncreased Scalability" ,

http: //whatiscloud.com/goals and benefits/ increased scalability. [Online, Avai lable on April , 25th

2016]

40. RabbitMQ, "What Can RabbitMQ Do for You ?", https://www.rabbitmg.com/features.html. [Online,

Availab le on April , 25th 2016]

41. Amazon Web Services Inc., "Amazon SQS - Service De File D'attente De Messages",
http://aws.amazon.com/fr/sgs. [Online, Available on April , 25th 20 16]

42. Wikipedia, "Data Exchange", https: //en.wikipedia.org/wiki /Data exchange. [Online, Available on

Apri l, 25th 2016]

43. Plummer, Daryl C., et al. Five re.fining attributes of public and private cloud computing. Gartner

Research 167182.5. 2009

44. Herbst, Nikolas Roman, Samuel Kounev, and Ralf H. Reussner. Elasticity in Cloud Computing: What

lt ls, and What lt ls Not. /CAC. 20 13

45. Gagna ire, Maurice, et al. Downtime statistics of current cloud solutions. International Working Group

on Cloud Computing Resi liency, Tech. Rep. 20 12

46. Amazon Web Services Inc., "Cloud Computing D'entreprise avec A WS'' ,
https: //aws.amazon.com/fr/enterprise/?nc2=h gl ny livestream blu. [Online, Available on Apri l,

22th 20 16]

47. Microsoft Azure, "Documentation Web Apps",
https://azure.microsoft.com/fr-fr/documentation/services/app-service/web. [Online, A vailable on

April, 22th 20 16)

48. Benoît Fleury, "SOAP vs. REST: Choisir la Bonne Architecture Web Services",
http ://blog. c I ever-age. com/fr/2006/ 1 0/2 7 /soap-vs-rest-cho i si r-1 a-bon ne-arch i tectu re-web-serv i ces.

[Online, Available on May, 3th 2016)

49. Apache Hadoop, "Introduction" ,
htt_ps :/ /hadoop.apache.org/docs/r2. 7. 1 /hadoop-project-d ist/hadoop-common/fi lesystem/ introduction.ht

ml. [Online, Available on May, 3th 2016)

50. Oracle, "Oracle 2", http: //www.orafag.com/wiki/Oracle 2. [Online, Available on May, 3th 20 16)

51 . MongoDB, "NoSQL Databases Explained', https: //www.mongodb.com/nosgl-explained. [Online,

Available on ay, 03th 2016)

52. Sergey Sverchkov, "Evaluating NoSQl performance: Which database is rightfor your data?",
https:// jaxenter.com/evaluating-nosg 1-performance-wh ich-database-is-ri ght-for-your-data-107 481 .htm

1-[Online, Available on May, 23th 20 16)

53. George Huey, "SQL Azure - Scaling Out with SQL Azure Federation",
https://msdn .microsoft.com/en-us/magazine/hh848258.aspx. [Online, Available on May, 23th 20 16)

54. Agildata, "Database sharding ', http: //dbshards.com/database-sharding. [Online, Available on May,

23th 2016)

55. Guy Fardone, "Cloud Elasticity and Cloud Scalability Are Not the Same Thing",
http://www.evo l veip. net/c loud-elasticity-and-cloud-scalabi I ity-are-not-the-same-th ing-2. [On I ine,

Available on May, 03th 2016)

56. VM Ware, "Virtualization Essentials",
https://www.vmware.com/fi les/pdf/GA TED-VMW-EBOOK VI RTUALIZA TION-ESSENTIA LS.pdf

[Online, Availble on May, 03th 20 16)

57. Amazon Web Services Inc., "Amazon Machine Images (AMI)",
http://docs.aws.amazon .com/A WSEC2/latest/UserGuide/AMls.html. [Online, Availble on May, 03th

2016)
58. IBM , "Hypervisors, Virtualization, and the Cloud: Dive into the VMware ESX Server Hypervisor" ,

http://www.ibm.com/developerworks/cloud/ library/cl-hypervisorcompare-vmwareesx. [Online,

Availble on May, 03th 2016)

59. Technopedia, "What ls On-Demand Computing (ODC) ?",
https://www .techopedia.com/definition/ 1308/on-demand-computing-odc. [Online, A vailable on May,

23th 2016)

60. VM Ware, "The Benefits of Virtualizationfor Small and Medium Businesses" ,
http: //www.vmware.com/files/pdf/YMware-SMB-Survey.pdf. [Online, A vailable on May, 23th 2016)

61. Google Cloud, "Balancing Strong and Eventual Consistency with Google Cloud Datastore",
https://cloud.google.com/datastore/docs/articles/balancing-strong-and-eventual-consistency-with-goog

le-cloud-datastore. [Online, Available on May, 23th 2016)

62. Technopedia, "What ls ACID in Databases?",
https: //www.techopedia.com/defin ition/23 949/atom icity-cons istency-iso lation-durabi I ity-acid.

[Online, Avai lble on May, 03th 20 16)

63 . ACM Queue, "Base: An Acid Alternative", http://gueue.acm.org/detail.cfm?id= 1394 128. [Online,

Available on May, 23th 2016)

64. Eric A. Brewer, "Towards Robust Distributed Systems",
http://www.cs.berke ley.edu/~brewer/cs262b-2004/PODC-keynote.pdf. [Online, Available on May,

23th 2016)

65. DBShards, "Database Sharding" , http://dbshards.com/database-sharding. [Online, Available on May,

23 th 2016)

66. Margaret Rou se, "What ls Cloud Provisioning?" ,

http://searchcloudprovider.techtarget.com/definition/cloud-provisioning. [Online, A vailable on May,

23th 20 16]

67. Sreedhar Kajeepeta, "Multi-tenancy in the Cloud: Why lt Matters",

http: //www.computerworld.com/article/2517005/data-center/multi-tenancy-in-the-cloud--why- it-matte

rs.html. [Online, Available on May, 23th 2016]

68. Marketing School , "What ls Cloud Marketing?",

http://www.marketing-schools.org/types-of-marketing/cloud-marketing.html# link 1. [Online,

Available on May, 23th 2016]

69. James Maguire, "Cloud Computing Market l eaders, 2015",

http://www.webopedia.com/Blog/cloud-computing-market-leaders-2015.html. [Online, A vailab le on

May, 13th 2016]

70. IBM, "Companies look to Cloud to save Money, Build Business",

http: //www.ibm.com/midmarket/us/en/article cloud4 1209.htm l. [Online, Avai lable on May, 13th

2016]

71. What Js Cloud, "lncreased Security vulnerabilities",

http: //whatiscloud.com/risks and challenges/ increased security vu lnerabi I ities. [On I ine, A vai tab le

on May, 13th 20 16]
72. Wikipedia, "Christopher Alexander" , https://en.wikipedia.org/wiki/Christopher Alexander. [Online,

Available on May, 13th 2016]

73 . Technoped ia, "Why lndust,y Cloud ls the Next Big Thing?",
https: //www.techopedia.com/2/31534/trends/cloud-computing/why-industry-cloud-is-the-next-big-thi

.o.g. [Online, Available on May, 13th 2016]

74. Enterprise lntegration Patterns, "Enterprise lntegration Patterns - Guaranteed Delivery",

http://www.enterpriseintegrationpatterns.com/patterns/messaging/GuaranteedMessaging.html .

[Online, Available on May, 13th 20 16]

6 Appendix

6.1 Divide & Conquer

How to avoid building a single monolithic application that contains every thing?

• Loose cou pl ing
• Reliability
• State

6.2 Loose coupling

Divide and Conquer is an algorithm design paradigm based

on multi-branched recursion. A divide and conquer

algorithm works by recursively breaking down a problem

into two or more sub-problems (divide), until these become

simple enough to be solved (conquer). The solutions to the

sub-problems are then combined to give a solution to the

initial prob lem [35)

• Layer-based Decomposition
• Pire-and-Filter-based Decomposition
• Process-based Decomposition

How to reduce components/services/applications dependencies?

□ : □ ' ------ r-- --- --o · o
• Loose coupling
• Network Latency
• State
• Availability
• Consistency
• Security

Loose coupling can essentially be achieved by using a
communication canal between components. Having loose
coupled component is not straigtforward. The complexity
lies in way they interact with each other. Multiple solutions
exist:

• Web services
• Queues or tapies
• Remote Procedure Calls (RPC)

6.3 Queue-Centric-Workflow

How to enable communication between components/services/applications?

• Loose coupling
• Network Latency
• Availability
• Reliability
• Consistency

6.4 Idempotent Receiver

The Queue-Centric-Worktlow pattern uses queues which

are provided by a specific software called a Messaging

System or Message-Oriented Middleware (MOM) . The

reason a Messaging System is needed to move messages

from one service to another is that services and networks

that connect them are inherently unreliable. Just because

one service is ready to send a message does not mean that

the others are ready to rece ive it.

How to deal with duplicated messages in Messaging Systems?

• Reliability

6.5 Cdn

In order to ignore duplicates , receivers (or consumers) have

to keep track of the previous ly received messages. Many

Messaging Systems automatically assign unique identifiers

to each message without the application having to worry

about them. When a message with an already consumed

message identifier is received, the system ignores it.

How to reduce Network Latency for commonly accessedfiles?

00

ô
• A vailability
• Network Latency
• Consistency

CDN or Content Distribution Network seems to be quite

generic and the concept is used in each studied providers.

The CDN is a service that functions as a globally distributed

cache. The CON keeps cop ies of application files in many

different locations across multiple locations. When a user

needs a file , retrieving it from the closest location will be

faster than retrieving it from the origin.

6.6 Multisite deployment

How ta reduce Network Latency for applications and improve user experience?

00

• Availability
• Network Latency
• Consistency

6.7 Database replication

Multisite Deployment Pattern is similar in some ways to

CDN, in that it strives to bring applications closer to the

users. Multisite Deployment Pattern focuses on deploying a

single application to more than one data center.

How ta reduce Network Latency for databases?

• Availability
• Network Latency
• Consistency

6.8 Database Sharding

As it is the case for applications and static files, databases

can be replicated into multiple locations. Replication is the

process of copying data, but the problems associated with it

are these of managing and maintaining multiple copies of

the same information: consistency.

The most simple replication concept is master-slave(s) as it

solves a lot of common problems which can be encountered

with one single instance.

How ta deal efficient/y with big data?

• Availability
• Network Latency
• Consistency

Sharding a database is starting with a single database and

then split its data up across two or more databases called

shards. Each shard shares the same database schema. The

data is distributed so that each row appears in exactly one

shard . The combined data from ail shards represent the

entire data and is the same as the original database data.

• Reliability

6.9 Eventual and Strict Consistency

How to deal efficient/y with consistency (eventual and strict)?

□□□
□□□ □Dr ·· ·,

: ---!

• Availability
• Network Latency
• Consistency

6.10 Load balancer

In an eventually consistent database, simultaneous requests

for the same data value may return different values. There

are multiple variations:

• Causal consistency

• Read-your-writes consistency

• Session consistency

• Monotonie read consistency

• Monotonie write consistency

The opposite of eventual consistency 1s called strict/y,

strongly or guarantee consistency. Whatever or whenever

you read the data, this one is always up-to-date. It can be

achieved by blocking the read until the write operation is

finished .

How to distribute requests between ail components/services/applications?

• A vailability
• Network Latency

6.11 Health Monitoring

Load Balancing consists of dividing the amount ofrequests

that have to be processed to two or more nodes so that more

work can be achieved in the same amount of time. Load

balancer logic can be implemented in different ways:

• Round Robin

• Weighted Round Robin

• Property based

How to ensure ail componentslservices/applications are up and running?

+
• Availability
• Network Latency
• Reliablity

6.12 Watchdog

Monitoring is a good practice and often a business

requirement for web applications, databases,

shared-services and so forth. Indeed, with such system, we

are able to check whether everything is available and

performs correctly or not. There are a lot of factors that can

affect applications such as network latency, performance,

storage, bandwidth. Furthermore, a service may fail

partially or entirely due to any of these factors . It is

therefore important to monitor them efficiently.

How ta perform elasticity based on health monitoring information?

• Availability
• Network Latency
• Reliablity

6.13 Map Reduce

The watchdog (or Dynamic Failure Dectection And
Recovery) pattern purpose is to ensure High Availability. It
is therefore responsible of the provisioning according to
metrics and user preferences.

How ta use a cluster ta perform Big data and parallelize process?

• Network Latency
• Consistency

Cloud applications often have large data to manipulate and

process. Map Reduce is a data processing approach that

enables the parai lei processing of large data sets. By using

this pattern, the limitation factor becomes only the size of

the cluster. It is implemented as a cluster wherein each node

works on a specific and smaller part of the data.

Map Reduce requires two main functions: a mapper and a

reducer. The large data set to be processed is firstly split up

into multiple parts and then mapped to multiple nodes.

Afterwards, the individual results of all the processing

nodes are consolidated into a large result data set.

6.14 NoSQL

How to perform elasticity based on health monitoring information?

• Key-value stores

• Document-oriented stores

• Column family stores

• Graph databases

• Availability
• Network Latency
• Reliablity

6.15 External configuration Store

How to scale out and contrai the way images are created?

• Resiliency
• Reliablity

The solution is to store property files , settings outs ide of the

applications or services in an extemal storage system.

Storage systems can be everything: relational databases, file

systems, key-value stores, and so forth . One thing to keep in

mind is the ease to edit these configurations.

6.16 Stateless Configuration

How to work with stateless componentslservices/applications?

• State
• Resiliency
• Network Latency
• Reliablity

The solution is simple: states extemalization. There are

multiple options to realize the extemalization. The first one

consists of using cookies to store client information on his

side. Cookies, web cookies, Internet cookies are small

pieces of data which are stored in the user' s web browser

white the user is accessing services and applications. When

users communicate with our services, these pieces of data

are linked to the request and therefore the information is

transmitted. The second solution is to extemalize the state in

a storage system. Users wi ll be identified by a uniquer

identifier and their states wi ll be retrieved according to it.

States could also be cached to avoid services to called the

store systems and therefore improve the performances.

