Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

A comprehensible pattern-oriented approach to understanding cloud and distributed
architecture's challenges

Malcourant, Anthony

Award date:
2016

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/ebb46d6b-835c-4b40-b4c0-896b8edae106

Université de Namur
Faculté d'informatique
Année académique 2015-2016

A COMPREHENSIBLE PATTERN-ORIENTED
APPROACH TO UNDERSTANDING AND
ACHIEVING CLOUD AND DISTRIBUTED

ARCHITECTURE’S CHALLENGES

Anthony Malcourant

UNIVERSITE
DE NAMUR

Promoteur: Philippe Thiran
(Signature pour approbation du dépdt - REE art. 40)

Mémoire présenté en vue de l'obtention du grade de
Master en Sciences Informatiques

Abstract

Cloud Computing has grown in popularity over the past decade and has become more and more
competitive and widespread in large and medium companies. Unfortunately, Cloud is every so
often misunderstood, even by IT professionals. This misunderstanding often leads to poor
implementation and non-optimal use of the various available techniques and tools.

This thesis aims to present the Cloud and its challenges in a comprehensible form and to define
ways of tackling and implementing it efficiently. Indeed, thanks to the different available
patterns, the reader will be guided through an architectural solution to meet all the Cloud
characteristics while leveraging the various benefits of Cloud and more generally Distributed
Architectures.

This work does not aim to explain how to implement the various Cloud providers solutions but
rather give the reader a set of concepts and rules that should be kept in mind during an
introduction of Cloud solutions. Concepts and patterns are presented in a narrative and
incremental way in order to progressively introduce the complexity of the subject.

Le Cloud Computing a évolué en popularité depuis les dix dernieres années et est devenu de
plus en plus compétitif et étendu dans les grandes et moyennes entreprises. Malheureusement, le
Cloud est encore parfois mal compris, et ce méme par des professionnels de I’informatique.
Cette imcompréhension meéne parfois a une mauvaise implémentation et a une utilisation
non-optimale des différentes ressources et techniques disponibles.

Cette these a pour objectif de présenter le Cloud et ses défis de mani¢re compréhensible et de
définir les moyens pour I’intégrer et I'implémenter efficacement. En effet, au travers des
différents patterns disponibles, le lecteur sera guidé au travers d’une solution architecturale qui
répond a I’ensemble des prérequis tout en exploitant les différents bénéfices du Cloud et, plus
généralement, des systemes distribués.

Ce travail n’a pas pour objectif d’expliquer comment mettre en place les solutions des différents
fournisseurs de solution Cloud mais plutét de donner au lecteur un ensemble de concepts et de
régles qui sont importants a garder a I’esprit lors d’une introduction aux solutions Cloud. Les
concepts et les patterns sont présentés de maniére narrative et incrémentale de sorte a introduire
la complexité du sujet de maniére progressive.

Keywords: C sloud, challenges, pattern-oriented, comprehensible, narrative.

Foreword

I would like to thank the following people, without whose help and support this thesis would not
have been possible. Most of all, I would like to show my appreciation and gratitude for the
involvement of my supervisor, Mr. Philippe Thiran, who kept an eye on the shaping of the
thesis. Moreover, | would like to thank Mr. André Fiizfa who gave me the opportunity to finally
complete my Master by accepting my submission. I would also like to thank Ms. Benjamine
Lurquin for her practical information and help. Finally, I wish to thank my friends, my parents
and my girlfriend for their constant support and advices.

Table of contents

| Introduction

2 Cloud computing

2.1 Definition

2.2 Goals and benefits

2.2.1 Reduced investments and proportional costs

2.2.2 Increased Scalability

2.2.3 Increased Availability and Reliability

2.2.4 Ease Team Tasks

2.3 Characteristics

2.3.1 On-demand self-service

2.3.2 Broad network access

2.3.3 Measured service

2.3.4 Resource pooling

2.3.5 Rapid elasticity

2.3.6 Resiliency

2.4 Delivery models

2.5 Deployment models

2.6 Cloud challenges

2.6.1 Cloud challenges impact on Cloud characteristics

2.6.2 Broad Network Access

2.6.3 Measured Service

2.6.4 On-Demand Self-Service

2.6.5 Rapid Elasticity

2.6.6 Resource Pooling

3 Understanding design patterns

3.1 Definition

10

12

12

13

14

15

13

16

16

17

18

18

21

22

22

24

25

27

28

28

28

28

29

30

30

3.2 History

3.3 Pattern profile

4 Patterns

4.1 Introduction

4.2 Enterprise integration pattern

4.2.1 The need for integration

4.3 Divide and Conquer

4.3.1 Solution & Discussion

4.3.1.1 Laver-based Decomposition

4.3.1.2 Pire-and-Filter-based Decomposition

4.3.1.3 Process-based Decomposition

4.3.1.4 Orchestration versus choreography

4.3.2 Impacted challenge(s)

4.4 Loose Coupling

4.4.1 Solution & Discussion

4.4.2 Impacted challenge(s)

4.5 Queue-Centric-Workflow

4.5.1 Solution & Discussion
4.5.1.1 Message-Oriented Middleware

4.5.1.2 Synchronous versus asynchronous

4.5.2 Impacted challenge(s)

4.6 Idempotent Receiver

4.6.1 Solution & Discussion

4.6.2 Impacted challenge(s)

4.7 Cdn

4.7.1 Solution & Discussion

4.7.2 Impacted challenge(s)

30

30

32

32

32

32

33

34

34

34

35

35

35

36

36

36

B

37

37

39

40

41

41

4]

41

42

42

4.8 Multisite deployment

4.8.1 Solution and Discussion

4.8.2 Impacted challenge(s)

4.9 Database replication

4.9.1 Solution and Discussion

4.9.2 Impacted challenge(s)

4.10 Database Sharding

4.10.1 Solution and Discussion

4.10.2 Impacted challenge(s)

4.11 Consistency

4.11.1 Solution and Discussion

4.11.1.1 ACID versus BASE

4.11.1.2 Eventual versus Strictly Consistency

4.11.2 Impacted challenge(s)

4.12 Load Balancer

4.12.1 Solution and Discussion

4.12.2 Impacted challenge(s)

4.13 Health Monitoring

4.13.1 Solution and Discussion

4.14 Watchdog

4.14.1 Solution and Discussion

4.14.2 Impacted challenge(s)

4.15 Map Reduce

4.15.1 Solution and Discussion

4.15.2 Impacted challenge(s)

4.16 NoSQL

4.16.1 Solution and Discussion

43

43

43

43

43

44

45

45

45

46

46

46

47

48

49

49

50

50

50

51

51

52

52

52

53

33

53

4.16.2 Impacted challenge(s)

4.17 External configuration Store

4.17.1 Solution and Discussion

4.17.2 Impacted challenge(s)

4.18 Stateless Configuration

4.18.1 Solution and Discussion

4.18.1.1 5.6 Stateful versus Stateless

4.18.2 Impacted challenge(s)

3 Conclusion
6 References

7 Appendix

7.1 Divide & Congquer

7.2 Loose coupling

7.3 Queue-Centric-Workflow

7.4 Idempotent Receiver

7.5 Cdn

7.6 Multisite deployment

7.7 Database replication

7.8 Database Sharding

7.9 Eventual and Strict Consistency

7.10 Load balancer

7.11 Health Monitoring

7.12 Watchdo

7.13 Map Reduce

7.14 NoSQL

7.15 External configuration Store

7.16 Stateless Configuration

54

54

54

55

56

56

56

57

58

59

63

63

63

64

64

64

65

65

65

66

66

66

67

67

68

68

68

1 Introduction

The Cloud sounds familiar to almost anybody with notions of Internet Technologies.
Unfortunately, there is a big confusion around the Cloud and its concepts. Sometimes defined as
an infrastructure provider, as a marketing technic [67] or as a bunch of on-demand applications,
it is quite complex to have a complete view of what the Cloud really is, what it provides and
particularly of what it implies. Often considered as being the new “Big Thing” [73], the Cloud
has gained in popularity and is regularly implemented and used in companies whatever their
size. However, adopting such a paradigm contains risks. Jumping into the Cloud adventure
without a deep comprehension and an exhaustive architectural vision and all its challenges often
leads to failure.

Based on observations from the existing literature, one can easily notice that articles fail to
provide readers with a practical and comprehensible approach. This thesis is a first attempt to
provide information about the Cloud and more precisely, to explain how to efficiently tackle it
in an architectural point of view. The thesis is set up in multiple parts which are organised
incrementally to guide the reader progressively through the Cloud Computing complexity. This
thesis also undertakes to offer an alternative to the style broadly used in classical
pattern-oriented books by using a narrative approach. The reader consequently travels from
global to more fine-grained issues like in a story book. However, a classical and structured form
is provided as an appendix at the end of this thesis.

Chapter 2 intends to define Cloud Computing and explain in details the definitions broadly used
in the literature. Some of the main benefits of adopting the Cloud will be listed as well as its five

essential characteristics. As the goal is to provide a comprehensible approach, we will add some
widely established concepts of distributed architectures which develop and explain these
characteristics. We will then define the Cloud delivery models and deployment models to
understand what the Cloud really offers. Finally, we will go through Cloud challenges and see
how they can affect its characteristics.

Chapter 3 is a short introduction about patterns. It gives the reader a complete definition of what
a pattern is and what it stands for. It also defines the pattern canvas which is used in the
technical pattern section. This canvas aims to describe the pattern of Chapter 4 in a generic way,
allowing the reader to deal with each pattern with the same approach and methodology.

Chapter 4 introduces the patterns in a narrative way. Indeed, the reader is invited to ask himself
questions about the practical manner of implementing the Cloud in order to maintain and
improve its characteristics. Each pattern is introduced by a question that initiates the
interrogation of the reader. We then try as much as possible to answer this question by
providing solution(s) and discussing them. Then, we will see how such solutions could impact
positively or negatively the Cloud challenges introduced in Chapter 2 and really understand why
they are so ambitious. The reader is therefore guided narratively through a series of
questions-answers that indirectly give him insights of the Cloud and its concepts.

We will finally end at Chapter 5 with the conclusion of this thesis. We will summarize what
readers have learned and how it could help them for further studies about Cloud Computing. We
will also present the limitations of this thesis as well as the lines of thought to go a step further.

1 Cloud computing

1.1 Definition

One can easily gather a hundred of Cloud Computing definitions over the Internet. However, the
National Institute of Standards and Technology (NIST) definition has received industry-wide
acceptance and is therefore often used as a reference in many Computer Sciences books. The
NIST published its original definition back in 2009, which was followed by multiple revised
versions after further reviews and industry inputs. In September 2011, they finally defined
Cloud Computing as follows [2]:

“Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction. This cloud model is composed of five
essential characteristics, three service models, and four deployment
models.”

As a more concise definition example, we can quote Thomas Erl’s definition [3] :

“Cloud computing is a specialized form of distributed computing that
introduces utilization models for remotely provisioning scalable and
measured resources.”

These definitions may still appear as a bit complex and therefore not clearly understood at this
point. Indeed, it introduces new concepts which will further be covered.

1.2 Goals and benefits

Cloud advantages are numerous and well recognized by IT professionals. The financial benefits
of the Cloud are often highlighted [70] which tends to make it THE solution to acquire.
However, Cloud Computing is neither the best solution in every case nor the cheapest one. Joe
Weinman believes that most people use simplistic models to evaluate the economics of the
Cloud. The standard argument is that considerable providers (such as Amazon, Microsoft and

Google with their proprietary solutions [69]), achieve large economies of scale and thus will be
cheaper than a “do-it-yourself” approach [4]. However, he argues, this is neither a necessary nor
a sufficient condition for Cloud computing to be valuable for companies. His example is quite
meaningful: “After all, people rent cars all the time, at a unit cost per day much higher than that
of owning™. Similarly, he argues that the true cost reduction value of Cloud infrastructure has
nothing to do with lower unit cost, but with a no commit, pay-per-use model. “In effect, it
doesn’t matter that much what you pay when you use Cloud services, the key cost reduction
driver is what you pay when you don’t use them: zero.” [5].

The Weinman economic vision is probably the more realistic one. However, here are the main
global benefits a company can get by switching to Cloud Computing.

1.2.1 Reduced investments and proportional costs

The first benefit of the Cloud is, according to what was previously said, its ability to reduce the
costs. This benefit is the most famous one because it is often used in businesses to promote its
use and to convince Cloud consumers. A Cloud consumer is considered as an entity (an
organization or a human) which has an arrangement with a Cloud provider and therefore who
uses resources and services it offers (Figure 2.1). Consumers and Providers are considered as
the two main actors of the Cloud Computing.

' Organizaton A ' i Cloud A :
- ' - = |
: : : :
' ' ' \ |
. Ml f e :
2 i - - —t serice |
. CONSUMer . 4 -
\ ' o |
' ' ' 1
' ' ' |
' ' P & |
)] ' .]
[' ' |
cloud consumer cloud prowvnder

Figure 2.1- Cloud consumer and Cloud provider.

Cloud providers and Cloud consumers both benefit from this cost reduction ability. Cloud
providers lower their prices by the mass-acquisition of cheap computer resources. An interesting
quote of Thomas Erl [6] defines it perfectly : “Similar to a product wholesaler that purchases
goods in bulk for a lower price points, public Cloud providers base their business model on the
mass-acquisition of IT resources that are then made available to Cloud consumers via
attractively priced leasing package. This opens the door for organization to access powerful
infrastructure without having to purchase it themselves.” Moreover, Cloud Computing
introduces the concept of commodity computing. The purpose of commodity computing is to

utilize large numbers of readily available computing components for parallel computing to
obtain the greatest amount of useful computations for the least price [7]. Such systems are said
to be based on commodity components, since the standardization process promotes lower costs
and less differentiation between products [38]. They are based on standards and often outdated
components. Scalability, which is defined below, is therefore possible at a lower price.

1.2.2 Increased Scalability

Scalability is the ability for a system to meet the increasing or decreasing workloads by
increasing or decreasing its capabilities'. There are two kinds of scalability: vertical and
horizontal. Figure 2.2 illustrates the difference between them.

Horizontal
C60CO

Vs.

Vertical

Figure 2.2 - Vertical versus Horizontal Scaling.

On the one hand, Horizontal Scaling is the ability to connect multiple resources so that they can
work together as a single logical unit called a cluster. On the other hand, Vertical Scaling
increases the capacity of the existing hardware by adding more capacity (processing, storage,
bandwidth, etc.). Horizontal scaling is more complex and often requires more resulted
architectural concepts. It is this kind of scalability which is discussed across this thesis.

By providing pools of resources, along with tools and technologies designed to leverage them
collectively, Cloud providers can instantly and dynamically allocate IT resources to Cloud
consumers, on-demand or via manual configuration. This allows Cloud consumers to scale their
cloud-based IT infrastructure to accommodate their needs and face peaks [39].

Vertical scaling Horizontal scaling
More expensive Less expensive
IT Resources normally instantly IT Resources instantly available
available
Limited hardware capacity Not limited by hardware capacity

' Capacities and abilties

No Additional IT Resources needed Additional IT Resources needed

Table 2.1 - Vertical versus Horizontal Scaling.
1.2.3 Increased Availability and Reliability

In addition to the Scalability and financial benefits of the Cloud, Nucleus’s benchmarking effort
shows that migrating existing workloads from on-premise (“do-it-yourself” in your building)
environments to AWS or any other Cloud providers offers Cloud consumers significant
infrastructure reliability and application availability benefits [8].

Availability (or High Availability) is one of the biggest challenge and, ultimately, the holy grail
of the Cloud. It embodies the idea that services are available at anytime, from anywhere.
Availability is also linked to Reliability. Indeed, can a service constantly available but failing
still be considered as available? Of course not, a service is considered highly available when it is
constantly up and running. Availability is often defined by Cloud providers SLAs” and indicated
as a percentage of availability over a period of time. For example, in its SLA, Amazon declares
availability with a Monthly Uptime Percentage of at least 99.95% [25]. More precisely, services
cannot fail more than 30 minutes in a month. To illustrate the current Cloud providers
availabilities, we can refer to a study [45] about downtime statistics that gives us a cumulative
downtime from 2007 to 2013 for the 39 biggest Cloud providers and solutions. The total of
downtime for these providers during 6 years is significant: approximatively 2200 hours, that
being less than 0.001%.

1.2.4 Ease Team Tasks

Cloud providers offer a series of tools to support the entire software lifecycle [46,47] which
profits for a certain type of Cloud consumers: the technical teams. For example, Operations
team can benefit from monitoring and metrics tools and developers can easily multiply
environments.

In a traditional way, developers usually develop their code locally on their own machine, have
access to a shared database and so forth. This behaviour multiplies the environments and it
becomes difficult to enforce the Consistency: each developer has it own version of the core
language, its own OS system with its own update version. This kind of issue could be solved by
always installing the same environment (virtual image) and it is possible through Cloud
technologies such as Vagrant, Chef, Puppet or Docker [10]. Of course there are a lot of other
benefits: testing, deployments, repositories, demonstrations, queuing but it will not be
approached in this thesis.

2 Service Level Agrement: SLA

1.3 Characteristics

In its final definition of Cloud Computing, The NIST defines the Cloud as a model composed of

five essential characteristics [22]. The following sub-chapters aim to explain them in a more

detailed way by incorporating additional explanations. Indeed, the NIST usually uses complex
concepts without explaining them.

Individually, these Cloud characteristics may already be known and are often available in
different well-established products and services, for example, server hosting solutions or public
Web applications. It is the combination of these concepts and techniques in addition to a
significant improvement of Internet connectivity and data transfer speed that distinguishes
Cloud Computing from existing products and services and which justifies calling it the “new big
thing” [23].

1.3.1 On-demand self-service

Cloud providers enable Cloud consumers to provision computing resources (storage, calculation
power, etc.) when they need it. This is made by self-service or automation. Self-service means
that Cloud consumers are able to perform all the actions needed to acquire these resources
themselves, instead of going to the I'T department or calling the Customer Service. As shown in
Figure 2.3, self-service capabilities are usually provided through online interfaces which
abstract all the complexity and make it quite simple for non-technical profiles. This acquiring is
also possible in a automated manner but we will discuss it later when we will introduce the
concept of Elasticity.

AWS ~ Services

Amazon Web Services

Compute
EC2

Virual Servers in the Gioud

EC2 Conainer Service

i and Marage Docker Contaners

Elastic Beanstalk
Ron and Manage Web Apps

Lambda

Run Code in Resgonse 10 Events

Storage & Content Delivery

S3
Scalatie Storage in e Cloud

e CloudFront

W Gicbal Comert Dobvery Nebwork
Elastic File System “#=vew
Fulty Maragea File System for EC2
Glacier
Arctive Storage i the Cloud
Snowball

Large Scale Data Transpornt

. Storage Gateway

Hybed Siorage Integration

Database
RDS

Mansged Relationa! Database Service

. DynamoDB8
Managed NoSOL Dutabase
ElastiCache

n-Mamory Cache
Redshift

Fast, Sevple. Cost £ fective Data Warehousing

oMsS

Managed Datatase Mgration Servce

Networking
o VPC

G soisted Cous Resources
Direct Connect
Decxcated Notworx Connection 10 AWS

Route 53

Scalabie DNS and Domain Nave Regestraton

Developer Tooks
CodeCommit

Saore Code in Private (¢ Repostiones

Codel
Automate Code Deployments
CodePipeline

wr Roleste Softwere using Contiruous Delvery

Management Tools
CloudWatch

Mondor Resources and Agpicasons

CloudFormation

Croate and Manage Resoutes with Tompistes
CloudTrail
Track User Actvity and AP Usage

o Config

W Track Rescurce ivnrtory and Changes
Automate Operstions wih Chet

Service Catalog

Croate and Use Standandzed Products

Trusted Advisor

Optinizs Porformarnce and Securty

Secunity & identity
? Identity & Access Management

Manage User Access and Enoryption Kays
Service
wpr Hos! ard Marage Active Direciory
Inspecior
& Anwlyre Appicatian Security
WAF

Filler Masicous Wed Trafic
= Certificate Manager

w— Provsicn, Manage. and Deploy SS

Analytics
EMR
Managed Hadoop Framewon
- Data Pipeline
S Orchestration for Data-Driven Workfows
Elasticsearch Service
Run and Scale Elsstcseah Custen
. Kinesis
/" Work with fisal- Time Streaming Data

Machine Learning

Buld Smant Appicatiors Quakdly and Easty

Figure 2.3 - Amazon EC2 remote admin panel

1.3.2 Broad network access

“Capabilities are available over the network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms™ [2]. Services are now accessed
from anywhere, from any kind of devices and with any kind of protocols. This characteristic
looks quite generic but the idea behind is quite simple. Cloud is accessed from a lot of devices
which connect from any place across the world as illustrated in Figure 2.4.

<

e
wl
A\

) \.

Figure 2.4 - Broad Network access illustrated

1.3.3 Measured service

Cloud providers control and optimize resource use by leveraging a metering capability at
different levels of abstraction according to the type of services. Cloud provider offers are
discussed later in the delivery models. The metric can be, for example, the number of requests
made on a specific service, the response time the service takes, and so forth. Resource usage can
be managed, controlled and reported providing transparency for both the Cloud provider and the
Cloud consumer. The pay-per-use concept is only possible because of this measurable capacity.

1.3.4 Resource pooling

“The provider’s computing resources are pooled (4) to serve multiple consumers using a
multi-tenant (B) model, with different physical and virtual (C) resources dynamically assigned
and reassigned according to consumer demand. There is a sense of location-independence in
that the customer generally has no control or knowledge over the exact location of the provided
resources but may be able to specify location at a higher level of abstraction (e.g., country, state,
or data center)” [2].

This explanation contains too many information to be clearly understood when not familiar with
Cloud Computing. The NIST introduces in its sentence three new concepts which are important
to clarify in order to fully understand the resource pooling: the notion of clustering,
multi-tenancy and virtualization. The following sub-chapters will provide readers with further
explanation.

A. Clustering

A cluster consists of a set of loosely or tightly connected computers that work together so that
they can be considered as a single unit [11]. Each connected computer could be referred to as a
node or as an instance (Figure 2.5). There are multiple benefits from working with clusters.
According to IBM [12], clustering could offer benefits such as:

High processing capacity,
Resource consolidation,
Optimal use of resources,

Geographic server consolidation,

24 x 7 availability with failover protection,

Disaster recovery,

Horizontal and vertical scalability without downtime.

Instances Clusters

Figure 2.5 - Nodes versus Clusters

B. Multi-tenancy

In Cloud Computing, the meaning of multi-tenancy architecture has broadened because of new
service models that take advantage of virtualization and remote access. “A tenant is any
application that needs its own secure and exclusive virtual computing environment” [67]. The
concept of multi-tenancy enables to run one instance of an application and provide the access to
multiple users. In such a scenario, each tenant's data is isolated and remains invisible to others
(Figure 2.6).

Tenant Tenant- Tenant-

specific specific specific
customization customization customization
Application logic

Single, shared

Database stack of software
and hardware

...

-
-

Figure 2.6 - Multiple tenants isolation

C. Virtualization

Virtualization represents a technology platform used for the creation of virtual instances of IT
resources. A layer of virtualization software allows physical IT resources to provide multiple
virtual machines to themselves so that their underlying processing capabilities can be shared by
multiple users [3].

At the heart of the virtualization stands the virtual machine which can be compared to an
isolated container wherein is placed an operating system and a series of applications. The word
isolated is important because each virtual machine has to be completely separated and
independent even if a lot of them are running at the same time on the same computer or more
generally speaking on the same physical instance. The Hypervisor also called Virtual Machine
Monitor (VMM) is responsible for dynamically allocating IT resources and distributing them to
virtual machines when they need it [56]. The Hypervisor depicted in Figure 2.7 is named
VMware ESX Server [58] and is a VMWare product.

Traditional Architecture Virtual Architecture

Figure 2.7 - Traditional versus Virtualized Architecture

Most Cloud providers provide pre-made virtual images. For example, AMI (Amazon Machine
Image) is proposed by Amazon with a variety of operating systems and pre-installed
applications. It is also possible to create its own image with everything needed inside [57].
Most types of IT resources can be virtualized including servers, storage, network, and so forth.

1.3.5 Rapid elasticity

“Capabilities can be rapidly and elastically (A) provisioned, in some cases automatically, to
quickly scale out and rapidly released to quickly scale in. To the Cloud consumer, the
capabilities available for provisioning (B) often appear to be unlimited and can be purchased in
any quantity at any time” [2].

Once again, NIST uses advanced concepts in its explanation about the Elasticity. The following
sub-chapters detail them more precisely.

A. Elasticity

Scalability and Elasticity may be a bit confusing because they are often used interchangeably.
However, they are quite different even if they share the same purpose which is obviously the
Adaptability. Managers and deciders have to perfectly understand both terms because their
needs and uses in business environments may differ [55].

On the first hand, Scalability is only the ability for a system to scale. “Scalability is much more
specific and gradual than elasticity and it is very controlled by the Cloud consumer and his
Cloud provider in conjunction with the IT department™ [55]. Let us consider the adaptability as
manually performed to match the needs. Entreprise can work without Elasticity for their
production environments. However, it is much more preferrable to work with Scalability for the
benefits we pointed earlier.

On the other hand, Elasticity mainly applies to e-commerce, mobile and web development
because of its capacity to adapt “on the fly” without human interaction. Elasticity is also a term
that was coined to promote and enable metered use which is so prevalent in public Cloud [55].
The distinction should therefore be clearly understood: Scalability is more about manual
adaptability in private Cloud. Unlike Elasticity which is widely used in public Cloud where the
adaptabily is really needed and automated. We will see the difference between private and
public Cloud at a later stage.

Elasticity is about the adaptability to the workload. The term workload is used to refer to the
utilization of resources on which an application is hosted. Workload is the consequence of users
accessing the applications or the process that have to be handled automatically. Workload exists
in different forms depending on the type of resource: Data, Network, Processing, etc. Workload
has to be measurable in some form because it allows to decide whether we have to increase or
decrease the number of IT resources assigned to an application [10]. Without Workload, we

would not be able to know the different utilization and thus not able to scale and charge Cloud
consumers efficiently.

Multiple workload models exist, however, they will not be discussed in this thesis:
e Static workload,

Periodic workload,

Once-in-a-lifetime workload,

Unpredictable workload,

Continuously changing workload.

B. Provisionning

The term “on demand” mentioned in the NIST definition is easy to explain thanks to the
previous discussion about Scalability and Elasticity. On-demand is a principle wherein IT
resources are provided on an as-needed and when-needed basis [59]. The term Provisioning
defines this action of providing resources. Provisioning exists in “multiple versions™, mainly
Cloud consumer self-provisioning when resources are allocated manually and dynamic
provisioning when resources are allocated automatically based on metrics [66].

1.3.6 Resiliency

The Resiliency is excluded from the NIST definition. However, according to Thomas Erl,
Resiliency has emerged as an aspect of significant importance and its common level of support
constitutes its necessary inclusion as a common Cloud characteristic [24].

Resilient computing is a form of failover that distributes redundant implementations of IT
resources across physical locations. IT resources can be pre-configured so that if one becomes
deficient, processing is automatically handed over to another redundant implementation. Within
Cloud Computing, the characteristic of resiliency can refer to redundant I'T resources within the
same Cloud (but in different physical locations) or across multiple Clouds. Cloud consumers
can increase both the Reliability and Availability of their applications by leveraging the
Resiliency of cloud-based IT resources [60].

1.4 Delivery models

Before diving into the different delivery models, it is important to understand the six layers
which technically constitue the Cloud (Figure 2.8). The model is comparable to the OSI® layer
model. That makes it quite easy to interpret for I'T professionals.

3 Open System Interconnect

[

0-0-0
[Application Software] SaaS]
&5
©
(€
]

Business Proeesses]

b

[
[=
L

Middleware J PaaS
1

Operating Systems 1

Virtual Hardware J laaS
1

Physical Hardware]

Figure 2.8 - Application Stack and Cloud services models

e Physical Hardware. The first layer consists of the basic hardware technologies
for almost everything: networking, storage, calculation and so forth.

e Virtual Hardware. The second layer is used to share Physical Hardware
between multiple virtual counterparts. This ensures that the Virtualization is
correctly managed and that users perceive the system as if they were the one and
only owner.

® Operating Systems. The third layer is the software and OS which are installed
on top of the virtual or physical hardware layer. Indeed, these systems provide
functions and applications to interact with virtual and physical layers.

e Middleware: The fourth layer completes the third one by adding more specific
softwares which can be called Middlewares. These software can be Execution
Environment such as Java or Python. But also more complex Middleware such as
IBM Websphere or Messaging systems such as ActiveMQ. Data storage is also
included in this layer.

e Application Software: The fifth layer consists of custom applications providing
functionalities to human users or other applications. Almost every kind of
software could stand in this layer.

e Business Processes: The sixth and last layer contains the business/domain
specific processes. These processes are supported thanks to the use of multiple
applications which stand on the previous layer.

Figure 2.8 also highlights the three main Delivery Models: 1aaS, PaaS and SaaS. These three
delivery models could be compared to the three main Cloud provider’s offers.

e Infrastructure as a Service. /aaS refers to on-demand provisioning of
infrastructural resources. The Cloud provider which offers laaS is called an
IaaS provider.

e Platform as a Service. PaaS refers to providing platform layer resources,
including operating systems support and software development frameworks.

e Software as a Service. SaaS refers to providing on-demand applications
over the Internet (GMail, Google Docs, Google Drive, etc.).

In Cloud Computing State of the art [13], Qi Zhang, Lu Cheng and Raouf Boutaba from MIT*
introduce a new point of view of the delivery models. Indeed, they say that according to the
layered architecture of Cloud Computing, it is entirely possible that a PaaS provider runs its
Cloud on top of an laaS provider’s Cloud. However, in the current practice, laaS and PaaS
providers are often part of the same organization. This is why PaaS and laaS providers are often
called the infrastructure providers or Cloud providers. This idea recudes the number of models
to two as shown in Figure 2.9.

~
[End User ‘
J

Web Interface
[Service Provider (SaaS) J

¢ Utility Computing

[Infrastructure Provider (laaS, PaaS)J

Figure 2.9 - Delivery Models - New point of view

1.5 Deployment models

The NIST definition introduces several Cloud Deployment Models. Figure 2.10 depicts the
different Cloud deployment models according to two factors: level of elasticity and
pay-per-use. A public Cloud having the most tenants can enable the highest levels of elasticity
and pay-per-use where only the operational costs are billed to consumers. A community Cloud
serves fewer tenants, often collaborating companies. An upfront investment may be required by
these companies to establish the community Cloud. Also, elasticity may be reduced as the
collaborating companies may experience similar workloads. This effect is even more
predominant in a private Cloud used by only one tenant making upfront investments and
reduced elasticity even more likely. The hybrid Cloud spans all these properties as it integrates
applications hosted in the different environments. “Note that the properties displayed by Cloud
deployment types are not generic. A private Cloud accessed by a similar large and diverse user
group as a public Cloud is likely able to present the same properties. Public Clouds used only by
a few customers that experience similar workload will face similar challenges than private
Clouds” [10]. No distinction is made between the available deployment models in this thesis.

4 Masachuset Institue of Techonology

Elasticity 4

Rapid Elasticity

P Public Cloud , *
-~
7 7
” %
- 5 \
-
P Community Cloud . ~ @
y ”
2 i Hybrid Cloud

Static Scali
e £ Static Private Cloud . =
-

‘\Data Center _ -~

Up-front Operational Pay-per-Use
Investments Costs

Figure 2.10 - Level of elasticity and pay-per-use of different Cloud deployment types

1.6 Cloud challenges

Although Cloud Computing has been widely adopted by the industry, researchs on Cloud
Computing are still at an early stage. Many existing issues have not been fully addressed, while
new challenges keep emerging from industry applications. In this chapter, we will introduce a
series of these challenges and then try as much as possible to link them with the Cloud
characteristics we previously defined. Indeed, Cloud challenges are not clearly defined in the
literature and are rather specific to each business domain and strategy. However, we will try to
take a generic point of view and dress a partial map. At the end of this chapter, the reader should

be able to define a hierarchy which will be used later to classify the patterns and understand
their impact on the general Cloud purposes.

e Security: since service providers typically do not have access to the physical security
system of data centers, they must rely on the infrastructure provider to achieve full data
security. “The moving of business data to the Cloud means that the responsibility over
data security becomes shared with the Cloud provider” [71]. Furthermore, in
multi-tenancy environment, infrastructure is shared between multiple Cloud consumers
and it introduces an overlapping with trust boundaries.

e Availability as defined above.

e Network Latency: highly scalable and high performance servers do not guarantee that
the application will perform well. This is due to the main performance challenge that
lies outside of raw computational power: the transfer of data. Transmitting data across a
network does not happen instantly and the resultant delay is known as network latency.
The challenge is really important. Indeed, according to kissmetrics [26], 1 second delay
in response page could result to 7% reduction in switching from a fictive buy to areal
one.

Consistency: according to Harrap’s definition, one thing is consistent with another
when it matches or when it fits in with it. To ensure Resiliency, data has to be replicated

in multiple location. Data alterations have to be propagated properly to every replica of
data to ensure the Consistency. The concept is quite straightforward but the challenge is
real.

State: this challenge is a bit more technical but is so important it has to be declared
here. The reader should already be familiar with both concepts: stateful and stateless. It
refers to the capacity of something to retain (or not in the stateless case) a state: a bunch
of information, a transaction or whatever. Statefull nodes/instances are in opposition
with the Resiliency characteristic we mentioned earlier. Work around this obstacle is not
trivial and demands energy and ingenuity.

Reliability: stands for the ability of a system or a machine to consistently perform its
intended or required function or mission, on demand and without degradation or failure.
This definition is large and can define at least everything explained earlier. Otherwise,
reliability is a keyword the reader has to keep in mind when beginning with Cloud
Computing. In fact, reliability is one of the most important challenges and everyone
should work to make it a characteristic and not a challenge anymore. To give a
straightforward example, one of the Cloud characteristic is its ability to provide
measured services. As explained in the introduction, Cloud consumers are charged only
for their resource consumptions thanks to the pay-per-use model. What would it be if
this Monitoring is not reliable and does not charge consumers efficiently?

Multitenancy: is a reference to the mode of operation of software where multiple
independent instances of one or multiple applications operate in a shared environment.
The instances (tenants) are logically isolated, but physically integrated. The degree of
logical isolation must be complete, but the degree of physical integration will vary. The
more the physical integration is, the harder it is to preserve the logical isolation. The
degree of isolation is the main challenge.

This section shows us how arduous and ambitious can well-designed Cloud architectures and

applications be. Indeed, to maintain all the Cloud characteristics, architects have to use many

powerful and improved patterns which will be described in this thesis.

All patterns and best practices which are explained here aim to respect and maximize the
previous challenges. It could be interesting to add to these challenges the essential Cloud
application properties which are defined as /DEAL: Isolated state, Distribution, Elasticity,
Automated management and Loose coupling [27]. The majority of those concepts are already
taken into consideration except for the last one:

Loose coupling: the goal of a loose coupling architecture is to reduce the risk that a
change made within one element will create unanticipated changes within other
elements. Limiting interconnections can help isolate problems when things go wrong
and simplify testing, maintenance and troubleshooting procedures [37].

1.6.1 Cloud challenges impact on Cloud characteristics

Before diving into the pattern chapters, let us try to regroup challenges and show which
characteristics they may impact (Figure 2.11). We will explain why and how they impact them.
This point of view is simplified and personal. Indeed, security could be linked with every
characteristic if we use detailed and technical purposes but it is not the purpose of this section.

Resiliency

Figure 2.11 - Cloud challenges impact on Cloud characteristics

1.6.2 Broad Network Access

None of our challenges is linked to the Broad Network Access characteristic. Indeed, having a
large coverage over network and devices does not depend directly on Cloud technologies.
Nowadays, On-site infrastructure and Cloud both have a large diversity of protocols and tools
which allow developers and users to use it anywhere and on any device.

1.6.3 Measured Service

Reliability. Metrics and statistics of Cloud solution metering are multiple. The main
purpose is to charge Cloud consumers only for what they have actually consumed: the
pay-per-use model. The second is to perform Elasticity according to the workload and
the user preferences. Having unconsistent metrics will have a negative impact on this
characteristic.

Multi-tenancy. Collecting and saving metrics may look quite straigthforward. However,
there are multiple considerations that have to be taken into consideration when we deal
with multi-tenant environements and therefore when resources are shared.

Loose coupling. Microservices are considered as the new architectural trend [28]. What
about the possibility to charge every part independently? Does each service has to
integrate a measurable system? How to globally integrate measuring inside a distributed
environment?

1.6.4 On-Demand Self-Service

e Security, Multi-tenancy. Offering all the capabilities to manage a Cloud infrastructure is

technically complicated and may be dangerous, especially in multi-tenant environments.
Cloud providers have to provide efficient solutions to prevent Cloud consumers from
impacting other tenants in shared environments.

Reliability. Through interfaces Cloud consumers can usually scale by adding or
removing resources. This action is led thanks to statistics which are collected and
communicated to Cloud consumers. Reliability is therefore indirectly linked because of
the measure service which is integrated.

1.6.5 Rapid Elasticity

Reliability. As discussed in the Measured Service, Elasticity is enabled by the metrics
which are collected and interpreted to know whether or not, the system needs to scale.
Having unrealiable data will degrade the efficiency of the Elasticity.

e When the need for provisioning is detected, available resources have to increase rapidly.
Such consideration introduces new dependencies:

o State and Loose coupling. We know that scaling concerns adding and removing
capacities, services or nodes. These nodes have to be rapidly duplicated and
available. Keeping each node independent and stateless improves our capacity
to add or remove them.

o Network Latency is essential when the process is initialized. Indeed, it is not
acceptable for users to wait for 60 seconds before the new node availability. It
has to be hidden and the user experience should not be impacted.

O Availability is extremely linked with the Network Latency. A resource which
does not respond within a certain amount of time may be considered as
unavailable.

1.6.6 Resource Pooling

The complexity of the resource pooling is often managed by the Hypervisor. All the complexity
and the challenges therefore rely on him. However, it is easy to understand how Cloud
challenges could impact it:
e Network Latency is important because when it fails, it creates feeling of unavailability.
Resource pooling has to be quick in order to avoid the user experience alteration.
® Multi-tenancy, Loose coupling and State can be regrouped together as they serve a
common purpose: separation of concern (SoC).

The reader has been guided through Cloud Computing and more precisely through its
definitions, benefits, characteristics and challenges. A further sub-chapter unveils how Cloud
challenges could impact its characteristics giving the reader a large understanding of the real
stakes. Now that the primers and fundamentals are set, we will introduce the purpose of patterns
and learn on what they are essentially focused.

2 Understanding design patterns

2.1 Definition

“The simplest way to describe a pattern is that it provides a proven solution to a common
problem individually documented in a consistent format and usually as part of a larger
collection” [29]. Without acknowledging it, we use patterns in everyday life to solve common
issues. In software engineering, patterns are usually called design patterns. There are many
types of design patterns and many types of contexts wherein they can be applied.

“Patterns should be prescriptive, meaning that they should tell you what to do. They do not just
describe a problem, and they do not just describe how to solve it, they tell you what to do to
solve it. Each pattern represents a decision to make. The point of the patterns and the pattern
language is to help making decisions that lead to a good solution for a specific problem, even if
the initial problem was not entirely the same, and even if the knowledge and experience to
develop that solution are not yet known” [30].

2.2 History

Patterns were introduced by Christopher Alexander during the 80’s in his book 4 pattern
language. The book intended to provide a complete working alternative to our present ideas
about architecture, building and planning [31]. “This book provides rules and pictures, and
leaves decisions to be taken from the precise environment of the project. It describes exact
methods for constructing practical, safe and attractive designs at every scale, from entire
regions, through cities, neighborhoods, gardens, buildings, rooms, built-in furniture, and fixtures
down to the level of doorknobs™ [72]. In fact, Christopher Alexander was just explaining how to
solve commun architectural and design (chairs, color, tablement placement, etc.) issues.

In 1994, after the release of Design Patterns: Elements of Reusable Object-Oriented Software,
design patterns gained in popularity [32]. Nowadays, there are a lot of different books speaking
about architecture, development and application design.

2.3 Pattern profile

In Smalltalk Best Practice Patterns [33], Ben Kent uses a style that is fairly close to the
Alexandrian form. The Alexandrian form is very appreciated due to its style which defines
patterns in a prose-like way. As a result, even though each pattern follows an identical,

well-defined structure, the format avoids headings for each individual sub-section, which
disrupts the discussion flow. To improve readability, the format uses style elements such as
structures, indentation, and pictures to help the reader quickly identify important sections [30].
Our patterns are described as much as possible in the Alexandrian way.

Title Names the thing created as a result of executing the pattern. Intended to
be used conversationally to refer to the pattern.

Pictogram An image used to illustrate the pattern.

Problem(s) Stated as a question. Reading the problem will quickly tell the reader
whether he is interested in the pattern or not.

Solution and Gives the reader a concrete recipe for creating the thing named by the

discussion title of the pattern. The solution will give him insights to tackle
efficiently the initial problem and tell him how to make practical use of
the pattern. It may also contain examples of use and further explanations
or clues and issues to watch out for.

Impacted According to the title of this thesis, patterns are explained to help us
challenge(s) achieving Cloud Computing challenges. However, this part shows which
challenges are positively but also negatively impacted.

Table 3.1- Best Practice Patterns

Patterns are now demystified and their purposes are clear. The following chapter will use the
pattern approach in addition to its profile to explore the reader doubts and incomprehensions
about the Cloud and its concrete setup. With a pattern-oriented approach, the idea is to take the
reader point of view and ask ourself questions that may not have been covered in previous
chapters.

3 Patterns

3.1 Introduction

This thesis does not intend to teach the reader how to implement and install a Cloud solution. It
only gives him insights on how and why such issues exist and how he places his system in a bad
position by neglecting it.

Several patterns include concepts which were briefly introduced in Chapter 2. However, we will
give a more precise description, mostly by defining potential issues and solutions. Patterns are
introduced in a logical way starting from the easiest to the more complex one. Each pattern
gives the reader an overview of potential solution(s) and introduces new issues and
interrogations. We will also discuss how Cloud challenges are impacted by using such pattern.
Indeed, changing the way systems are architectured, impacts and complexifies them.

3.2 Enterprise integration pattern

3.2.1 The need for integration

“Enterprises are typically comprised of hundreds, if not thousands, of applications that are
custom-built. These applications are acquired from a third-party, part of a legacy system, or a
combination thereof, operating in multiple tiers of different operating system platforms. It is not
uncommon to find an enterprise that has 30 different Websites, three instances of SAP and
countless departmental solutions™ [34]. Creating a single, big application to run a complete
business is impossible. That is why distributed application have appeared. In distributed
environment, it is possible to execute business functions, regardless of how many internal
systems the business function cuts across. In order to support such things, these systems need to
be integrated. Application integration has to provide efficient, reliable and secure data exchange
between multiple enterprise applications.

The difference between Cloud architecture and distributed architecture is blur. Cloud
architecture may be compared to distributed architecture depending on the way it is
implemented. We can compare it to the paradigm Interface vs Implementation. Distributed
architecture is an interface and the Cloud architecture is one way to deal with it. According to
this statement, Cloud Architecture should benefit from EAP Patterns. All these patterns were

° Enterprise Integration Architecture

defined a long time ago by Gregor Hohpe and Bobby Woolf in their book: “Entreprise
Integration Patterns™ [34]. This book offers a broad range of patterns such as message
transformations, message enrichments, message distributions and so forth. As it is not the
purpose of this thesis, the reader is invited to refer to this book if more explanations about
integration patterns are needed. Figure 4.1 illustrates a series of available EAI patterns..

E
Gl | 2] |==O0

arcaree Camtent
[r——— [
o
[]-=o O-e0 .0
&
Lratare §mw Moamaboe Cxaw Chadt

- ‘3‘: .

Do oo bt & A Meringey

Simbueny B
wrran) Med e Donent Latuw CutErge
Crarss Onannat Chrwwst

Compores Peocena s g

M ia g Fone
o E oo 16
R By Sy Hegetio

Figure 4.1 - Enterprise Integration Patterns overview

3.3 Divide and Conquer

How is it possible to build a complex application without building a
big single one that contains everything? As described in the EAI
pattern section, even if it is possible, creating a monolithic application
with everything inside, is not recommended at all. Indeed, Cloud
applications have to rely on multiple, possibly redundant IT resources
to ensure that the unavailability of one IT resource does not affect the
application as a whole.

3.3.1 Solution & Discussion

The solution is quite simple: divide and conquer. Divide and Conquer is an algorithm design
paradigm based on multi-branched recursion. A divide and conquer algorithm works by
recursively breaking down a problem into two or more sub-problems (divide), until these
become simple enough to be solved (conquer). The solutions to the sub-problems are then
combined to provide a solution to the initial problem [35]. There are multiple logical
decomposition approaches to split an application into multiple components which will briefly be

introduced in the following sections.

3.3.1.1 Layer-based Decomposition

This type of decomposition is well-established in

Software Engineering. This approach decomposes

User Interface

the application into separate logical layers. The
below example shows the three main layers usually Processing

used:
e User Interface (UI),
e Processing (Business),
e Storage (Persistence).

Storage

Figure 4.2 - Layer-based

3.3.1.2 Pire-and-Filter-based Decomposition

Figure 4.3 - Pipe-and-Filter-based

This type of decomposition is
well-established in Enterprise Integration
Architecture. Each filter provides a certain
function that is performed on an exchange.
This processing takes an input exchange
and produces an output exchange. All those
filters are interconnected with pipes
ensuring that the output of one filter is the
input of the next filter in a processing
chain.

3.3.1.3 Process-based Decomposition

This decomposition is widely inspired by the
Microservices paradigm. A process is composed
of a series of activities which are executed in a
specific order. Each activity provides a simplistic
process which is not necessarily significant when , ;
used alone. However, grouped with the others, it % y 3 j
becomes a complete and viable solution. Multiple . . - g
solutions which enable communication between
them are introduced in the next section.

Figure 4.4 - Process-based

3.3.1.4 Orchestration versus choreography

There is a huge debate about Orchestration and Choreography definitions [20]. The easiest way
to explain both is to illustrate them (Figure 4.5 and 4.6). Service orchestration can be
compared to a control tower. The pilot of the plane approaching or departing the terminal area
communicates with the tower rather than explicitly with other pilots. The tower literally
orchestrates the flight. One way to think about service choreography is to think about a dance
company. All dancers move in synchronization with the others but no one is leading or
directing. Dances are choreographed through the individual dancers working in conjunction
with one another [23]. Both solutions could be suitable depending on the environment.

(3)

\ Receive (\ f
|) | mmmmm | ,‘ i ; | . '
| Service A | | Service B | ; Service A | Reply Service B I

| e | | I % > | |
| - ' Send N — Iy ﬁ/"’ i)

‘W i voke | Composite|

| | Service | _
JL i1 l f\l/\“ - <| Qj\\?

S oo B) IR U A vV
' DY e L | ¢ *@:J;' t
| Service D | ' Service C | Service D | | Service C
L) ooessmd | R])
Figure 4.5 - Choreography Figure 4.6 - Orchestration

3.3.2 Impacted challenge(s)

e Loose Coupling. Obviously, by dividing and separating logic and concern,

components and services become increasingly feebly tied together.
® Reliability also benefits from this separation. Indeed, when properly handled,
isolated components which fail do not impact the others.

e State, however, tends to be harder to deal with. Indeed, components and services
which are part of the same business logic, often have to share states. During
Online shopping for example, the service which is responsible for sending the
confirmation email and the service which is responsible for debiting the account
should both share the state of the basket.

3.4 Loose Coupling

The previous chapter brings about a new interrogation. How to
D reduce component dependencies? Availability and Network
Latency are very important challenges. To achieve them, the main
D way seems to be the Scalability through the Elasticity. How could it
be possible to rapidly scale if all components are tied together?

[P

3.4.1 Solution & Discussion

Loose coupling is defined here as a pattern. However, it could also be a good practice to
consider it as a goal which can essentially be achieved by using a communication canal between
components. The metaphor that properly illustrates this idea is the communication between
people from different origins. What makes them capable of communicating? Firstly,
communication tools such as speech and hearing, secondly: the language and messages. Even if
a person can speak to anybody, if these people do not share a common language, they will not
be able to understand each other. It is the same for services or components in Computer
Sciences.

To communicate, services have to provide endpoints. Endpoints are entries that enable other
services to send them information and therefore to communicate. Endpoints are generally
configurable. For example, services could decide to accept only requests which come from a
specific environment, with a specific format in a specific language and so forth. In Software
Oriented-Architecture, the terms REST and SOAP are often used. Both are message
transmission protocols which define a series of rules which have to be respected to enable the
communication. That is why services developed in REST are not able to communicate with
services developed in SOAP, and vice versa. They both have endpoints to interact with but are
not capable to understand all the messages they receive. It is quite similar to the previous
example about people and the way they communicate.

As the reader may have understood, having loose coupled component is not straigtforward. The

complexity lies in the way they interact with each other. Multiple solutions exist: webservices,
queue-centric workflows, remote procedure calls (RPC) and so on.

3.4.2 Impacted challenge(s)

Loose coupling was considered as a challenge in Chapter 2. Therefore, it directly impacts
it. It also impacts almost all the other challenges:

® Network latency grows because the communication is no more realised through
direct call inside a global system. Depending on the solution you put in place,
performance could be badly impacted.

e State becomes more and more complex to manage as your object travels through
multiple systems which are likely to be hosted in different environments.

® Availability. As more and more systems are added to enable communication, it
adds more and more possible points of failure. Moreover, as the system becomes
distributed across multiple systems (Divide and Conquer), it still adds other
points of failure.

e (onsistency. As data go through more and more services, it can be more easily
degraded or lost.

e Security. Data transit over the Network and all services have endpoints.

Divide and Conguer with loosely coupled components is an important topic in distributed
architectures and therefore, in Cloud architectures. Such architecture impacts everything and
completely changes the way software development is classically managed.

3.5 Queue-Centric-Workflow

. How to practically make loose coupled components or services
communicate with each other? Which kind of intermediate system is

used in common distributed architectures?

3.5.1 Solution & Discussion

3.5.1.1 Message-Oriented Middleware

The Queue-Centric-Workflow pattern uses queues which are provided by a specific software
called a Messaging System or Message-Oriented Middleware (MOM). To understand the QCW
pattern, it is important to clarify what Messaging system does imply. A Messaging System

manages messaging the way a database system manages data persistence. Just as an
administrator must populate the database with the schema for an application’s data, an
administrator must configure the messaging system with the channels that define the paths of
communication between components/services/applications. The messaging system then
coordinates and manages the sending and receiving of messages. “The primary purpose of a
database is to make sure each data record is safely persisted and likewise the main task of a

messaging system is to tranfer messages from senders to receivers in a reliable way™ [14].

The reason a Messaging System is needed to move messages from one service to another is that
services and networks that connect them are inherently unreliable. Just because one service is
ready to send a message does not mean that the others are ready to receive it. Even if both are
ready, the network may not be working or may fail to transmit the message properly. A

messaging system offers solutions to overcome failures such as reprocessing, persistence,
transactions and so forth.

Messaging system enables two kind of channels:

o Queue (Figure 4.7)
e Topic (Figure 4.8)

‘ Sender

Messages

Figure 4.7 - Messaging system with a queue

‘g_-y{ Subscriber #1

Subscriber #2
N

l Publisher

Messages

Subscriber #3
Nesmmtm——

Figure 4.8 - Messaging system with a topic

The flow is quite simple: senders add messages to the queue and receivers read them from it.
When a message is dequeued (otherly said consumed from the queue), it is not removed entirely
from the queue. The message is hidden for a specified amount of time (the duration is specified
during the dequeue operation and can be increased). We call this period the invisibility window
(Figure 4.9). When a message is within its invisibility window, it is not available for dequeuing
and therefore not visible for other receivers/consumers. One issue can be introduced when
message processing takes more time than its window invisibility period. Indeed, the message
becomes again available and is processed for the second time. There are two copies of the
message which transit over the system.

e(s\e’t visible e gl

e write

Gl . Receiver
acknowledge
/Gdelete °set invisible e .
set visible
visibility
timeout

Figure 4.9 - Invisibility window

This issue introduces the notion of idempotency. In Computer Sciences, the term idempotent is
used more comprehensively to describe an operation that will produce the same results if
executed once or multiple times [15]. For example, according to the HTTP specification, the
HTTP verbs PUT, GET and DELETE are all indempotent operations. Indeed, assuming their
successes, all requests executed once or 100 times, will produce the same result [16]. If your
system operations are not idempotent, you have to manage duplicated messages properly.

With all previous explanations about Middleware systems, the Queue-Centric-W orkflow Pattern
is straightforward as depicted in Figure 4.10. Another useful information is available on this
picture: the possibility to have more than one sender (or producer) and more than one receiver
(or consumer).

Figure 4.10 - Queue-Centric-Workflow Pattern

3.5.1.2 Synchronous versus asynchronous

Another benefit from using a Messaging system is that it enables asynchronous
communications. As shown in Figure 4.11, with synchronous communication, a call is made to
a remote component, which blocks until the operation completes. In the opposite, with
asynchronous communication, the caller does not wait for the operation to complete before
returning, and may not even care whether or not the operation completes at all.

Synchronous Asynchronous

“ o ea—— 1 — —
Process A (Process B . ProcessA | | Process BJ
' =y Ui , 2 e
Wait for Continue
response working
i Get -
response

Figure 4.11 - Asynchronous versus Synchronous

Synchronous communication can be easier to deal with: we know when processes have
successfully completed or not. Asynchronous communication can be very useful for
long-running jobs, where keeping a connection open for a long period of time between the client
and server is impractical. It also works very well when you need low latency, where blocking a
call while waiting for the result can slow things down and degrade the user experience. “Due to
the nature of mobile networks and devices, firing off requests and assuming things have worked
(unless told otherwise) can ensure that the UI remains responsive even if the network is highly
laggy. On the flipside, the technology to handle asynchronous communication can be a bit more
involved” [19].

These two different modes of communication can enable two different idiomatic styles of
collaboration: respectively request/response and event-based. Each of these idiomatic can fit
effectively, there is no best solution. One important factor to consider is how well these styles
are suited for solving your problems considering their complexity and the real plus-value.

3.5.2 Impacted challenge(s)

® Availability. Multiple services could be added as senders or receivers. It therefore
provides a nice mechanism to scale and enhance the availability.

® Network Latency. Unlike what we said in the previous point, Network Latency
could also benefit from QCW pattern because of its asynchronous ability.

® Reliability and Consistency. Queue system isolates sub-components from each
other so the failure of one component does not impact the others. Messaging
System also provides mechanics to ensure that messages are not lost [74].

3.6 Idempotent Receiver

Messaging systems and idempotency are now familiar but how is it

possible to simply deal with duplicates? How to efficiently deal
with duplicate messages in distributed architectures?

3.6.1 Solution & Discussion

There are two ways to deal with duplicate messages:
1. Ignoring them,
2. Defining the logic to support them.

In order to ignore duplicates, receivers (or consumers) have to keep track of the previously
received messages. Many Messaging systems automatically assign unique identifiers to each
message without the application having to worry about them. When a message with an already
consumed message identifier is received, the system ignores it as depicted in Figure 4.12.

Message
Filter 1 2 Receiver
B

Figure 4.12 - Idempotent Receiver explained

Defining the logic to support idempotency mainly depends on your application. This case is not
explained in this thesis because this is out of the architectural scope.

3.6.2 Impacted challenge(s)
Reliability.

3.7 Cdn

How is it possible to reduce Network Latency for commonly

QQ accessed files through globally distributed users? The goal is to
speed up delivery of content. Content is anything that can be stored in a

file such as images, videos or documents. If such content is located too

6 far from the user accessing it, the network latency may increase.

Moreoever, storing content in only one centralized location could
become a problem if the data center crashes.

3.7.1 Solution & Discussion

CDN or Content Distribution Network seems to be quite generic and the concept is used in each
studied providers. The CDN is a service that functions as a globally distributed cache. The CDN
keeps copies of application files in many different locations across the world (Figure 4.13).
When a user needs a file, retrieving it from the closest location will be faster than retrieving it
from the origin. “A CDN is really useful when files are accessed multiple times. Files that are
intended to be rarely accessed, or that are for only a single user, are usually not good candidates
for a CDN” [17]. Otherly said, CDN refers to content replication across multiple physical
locations. The pattern is also called “Cache Aside Pattern” or “Static Content Hosting Pattern”.

Without a CON
& a
a a a
ER -
& a &
- a
| With a CON
| Q a
| o a v P 9
‘ \ doa @ > y ¥
\ e °o *
| 9 &

Figure 4.13 - CDN illustrated

3.7.2 Impacted challenge(s)

e Network Latency directly benefits from this pattern. The distance between users
and files is reduced and therefore the transfer time is positively impacted.

® Availability is enhanced due to multiple locations where the data is stored.
Indeed, when a node fails, as there are multiple replications across the network, it
remains indirectly available.

e However, due the replication mechanism, Consistency could be harder to
manage.

3.8 Multisite deployment

il (f“\ﬁ\ How is it possible to reduce network latency for the applications
1__/ S and improve user experience? As explained in the introduction, due
to its broad network access, the Cloud is used from unpredictable
vierore locations, globally distributed across many geographical locations.
| reawas |
Y Will Chinese users experiment the same user experience as Belgian
ones if the application is located in France?

3.8.1 Solution and Discussion

Multisite Deployment Pattern is similar in some ways to CDN, in that it strives to bring
applications closer to the users. Multisite Deployment Pattern focuses on deploying a single
application to more than one data center.

3.8.2 Impacted challenge(s)

This pattern is quite similar to the previous one and therefore offers the same advantages and
disavantages: Network Latency, Availability and Consistency.

3.9 Database replication

Static files and applications are now demultiplied across multiple
locations but databases are not. Applying previous patterns just moves
the problem to another point: the database. It will definitely not support

the charge and become the single point of failure. Is there a way to
scale out the database?

3.9.1 Solution and Discussion

Indeed, as it is the case for applications and static files, databases can be replicated into multiple
locations. Replication is the process of copying data, but the problems associated with it are
these of managing and maintaining multiple copies of the same information: the consistency.

The most simple replication concept is master-slave(s) (Figure 4.14) as it solves a lot of
common problems which can be encountered with one single instance. Replication is not a
pattern which is only applicable in Cloud or distributed architectures because it is broadly used
to manage backup and loads in old on-premise, single node applications.

‘-

T R
Slave 2 Slave 3

Figure 4.14 - Master-Slaves Replication

Write operations are performed on the master and read operations can be performed on every

replicas (master and slaves). The difficulty results in the data replication from master to slave(s).

Generally, these operations are performed through asynchronous updates using Messaging
Sytems. However, this behaviour can be overriden by any particular need or preference. Figure
4.15 from Cloud Computing Patterns [10] shows an example of replications using a Messaging
system. This example contains information which are not discussed in this thesis such as the

message obfuscation to hide some information or the message enrichment. This example aims to
give the reader an idea of the complexity which is hidden behind the notions of Consistency and

Replication.

3 #5ef3
Message %:
@E e [RRILx

Message
Enricher

Secure Insecure

Figure 4.15 - Replication complexity with enrichment and obfuscation

3.9.2 Impacted challenge(s)

® Availability and Network Latency are positively impacted by replication due to
the same condition than CDN and Multisite deployment patterns.

e (Consistency and Reliability become quite tricky to manage because of the data
replication.

3.10 Database Sharding

Having multiple database sounds efficient. However, how could it
be possible to store big data? Indeed, such data are too big to be
contained in only one database. Performances would be
unacceptable and the system would become unstable.

3.10.1 Solution and Discussion

Sharding a database is starting with a single database and then split its data up across two or
more databases called shards. Each shard shares the same database schema. The data is
distributed so that each row appears in exactly one shard. The combined data from all shards
represent the entire data and is the same as the original database data (Figure 4.16) [65].

There are multiple reasons to shard. For
example, you can decide to shard because data
do not fit into a single node instance. Therefore
you have to divide the data into similarly sized
shards to make it fit. You could also shard for
performance reasons. Divide the data across
shard nodes in such a way that all nodes
experience the same volume of database
queries and updates.

It is also important to know that all tables are
not necessarily shared but rather replicated into
each shard. It is for example the case with
reference data which is mostly read and
therefore replicated [54].

Figure 4.16 - Database Sharding

Historically, sharding has not been so popular because it was not built in and required specific
application logic. The result was a significant increase in cost and complexity. Nowadays,
Cloud platforms mask that complexity. For example, Windows Azure offers a system called
Federation. The feature helps applications to manage a collection of shards, keeping the

complexity out of the application layer [53].

3.10.2 Impacted challenge(s)

Availability and performances which could benefit to Network Latencies.
The complexity about consistency and reliability is hidden by the vendor
platform but it could also be impacted: positively because it does not require

implementation but also negatively in case of very specific needs.

3.11 Consistency

Data availability is improved but is there any way to deal
efficiently with its consistency? Consistency seems to be the black

sheep, so are there ways to practically deal with it without impacting

§ L the availability?

3.11.1 Solution and Discussion

3.11.1.1 ACID versus BASE

In Distributed Computer Systems, the Eric Brewer’s theorem, also known as CAP theorem,
states that it is impossible to simultaneously provide all three of the following guarantees [18]:

Consistency

Availability

Partition Tolerance (correct operation, even if nodes within the application are cut off
from the network and unable to communicate.)

The CAP Theorem posits that out of the three guarantees, applications can only pick two of
them. Therefore, it principally depends on what you have to achieve. Each solution has its own
benefits and drawbacks. Obviously, any horizontal scaling strategy is based on data partitioning;

therefore, architects are forced to decide between Consistency and Availability. In other words,

they have to decide between eventual and strict consistency, which are detailled below. Each

paradigm has its own characteristics and can be linked with ACID or BASE guarantees.

ACID guarantees a series of things and is often linked to strict consistency [62]:

Atomicity: All of the operations in the transaction will complete, or none will.
Consistency: The database will be in a consistent state when the transaction begins and
ends.

Isolation: The transaction will behave as if it is the only operation being performed
upon the database.

Durability: Upon completion of the transaction, the operation will not be reversed.

BASE, however, does not guarantee the consistency and is therefore associated with the eventual

consistency [63]:

Basically Available: This constraint states that the system does guarantee the
availability of the data as regards CAP Theorem; there will be a response to any request.
But that response could still fail to obtain the requested data or the data may be in an
inconsistent or changing state, much like waiting for a check to clear into your bank
account.

Soft state: The state of the system could change over time, so even during times
without input there may be changes going on due to ‘eventual consistency,’ thus the
state of the system is always ‘soft.’

Eventual consistency: The system will eventually become consistent once it stops
receiving input. The data will propagate to everywhere it should sooner or later, but the
system will continue to receive input and is not checking the consistency of every
transaction before it moves onto the next one. Werner Vogel’s article “Eventually
Consistent — Revisited” covers this topic in much greater detail.

3.11.1.2 Eventual versus Strictly Consistency

In an eventually consistent database, simultaneous requests for the same data value may return
different values (Figure 4.17). This condition is temporary, as the value becomes “eventually”

consistent [17]. Eventual consistency is not a deficiency or design flaw. When used
appropriately, it is a real feature.

Data Center 1 Data Center 2

f '
] ¥
: Node A | Replicate
o B :’—“—“‘
- -‘: sl U (R (R . "
,f. AT ¥ ,’4' f‘ —————— - '3'
I Node B i { NodeC E
' X i : Xold !
Write Read Read
X X Xoid
TS et

Figure 4.17 - Eventual consistency illustrated

A simple example can be found with DNS®. When the IP address for a domain name is changed,
it usually takes hours to be propagated to all DNS servers across the Internet. This is considered

as a good tradeoff. IPs change infrequently enough that we tolerate the occasionnal
inconsistency in exchange for huge scalability.

The eventual consistency model has a number of variations that are important to consider:

Causal consistency. If process A has communicated to process B that it has updated a
data item, a subsequent access by process B will return the updated value, and a write is
guaranteed to supersede the earlier write. Access by process C that has no causal
relationship to process A is subject to the normal eventual consistency rules.
Read-your-writes consistency. This is an important model where process A, after it has
updated a data item, always accesses the updated value and will never see an older
value. This is a special case of the causal consistency model.

Session consistency. This is a practical version of the previous model, where a process
accesses the storage system in the context of a session. As long as the session exists, the

® Domain Name System: DNS

system guarantees read-your-writes consistency. If the session terminates because of a
certain failure scenario, a new session needs to be created and the guarantees do not

overlap the sessions.

e Monotonic read consistency. If a process has seen a particular value for the object, any
subsequent access will never return any previous values.

e Monotonic write consistency. In this case the system guarantees to serialize the writes
by the same process. Systems that do not guarantee this level of consistency are
notoriously hard to program.

The opposite of eventual consistency is called strictly, strongly or guarantee consistency.
Whatever or whenever you read the data, this one is always up-to-date. Cloud Computing
allows to work with such consistency. For example, some Cloud providers such as Windows
Azure Storage offers this kind of consistency [17].

Strict consistency could be achieved by blocking the read until the write operation is finished
(Figure 4.18). However, depending on the number of replicat, this operation could seriously
impact the network latency and the perception of availability for all the users.

Data Center 1 Data Center 2
T =% Replicate
i .
i NodeA
! Replicate
g E_ﬁ 1
LS. LRI .
. SRS I T S -
e e -1 T g
N 4 i
| NodeB | ! NodeC |
1 x ; : X !
Write ' Block for i Block for
X Reading X Reading X
Readers are blocked unul
replication |5 complete

C

¥ U1 R .|

Figure 4.18 - Strict Consistency with blocking system

3.11.2 Impacted challenge(s)

Depending on the solution you have chosen, different challenges may be impacted: Network
Latency, Availability and Consistency.

3.12 Load Balancer

Having multiple nodes in clusters introduces a new interrogation:
How is it possible to distribute requests across them?

3.12.1 Solution and Discussion

Load Balancing consists of dividing the amount of requests that have to be processed to two or
more nodes so that more work can be achieved in the same amount of time (Figure 4.19). Load
balancer logic can be implemented in different ways:

® Round Robin is the simplest implementation as it distributes the load equally in a
sequential manner. If the cluster consists of 3 nodes, each node will receive the same
amount of requests: 1, 2, 3, 1, 2, 3 and so on.

e [Weighted Round Robin works in the same way except that nodes are weighted. More
weight means that more requests will be received.

® Property based is the more convenient way to deal with load balancing. Indeed, the load
balancer analyses a specific property and decides whether or not the load can be sent to
this node. The property could for example be the response time. When a node responses
after a too long period, the load balancer considers it as not available and sends the
request to another one. Other properties could be considered.

Chont

o
gd

Figure 4.19 - Load balancer illustrated

Load balancer is a piece of software (or sometimes hardware) which can be redundant to
minimize the risk of “single point of failure”.

3.12.2 Impacted challenge(s)

e Nerwork Latency. Requests are balanced to multiple instances.
e Availability. Requests are balanced to available instances (See next point).

3.13 Health Monitoring

Having multiple nodes and distributing the charge across all of them
sounds very ingenious. However, is it possible to ensure that all of
them are available? Indeed, load balancer will distribute requests
accross all nodes but what about nodes which are down?

3.13.1 Solution and Discussion

Monitoring is a good practice and often a business requirement for web applications, databases,
shared-services and so forth. Indeed, with such system, we are able to check whether everything
is available and performs correctly or not. There are a lot of factors that can affect applications
such as network latency, performance, storage, bandwidth. Furthermore, a service may fail
partially or entirely due to any of these factors. It is therefore important to monitor them
efficiently.

A Health Monitoring is usually performed in two phases:
1. Collect: a request is made to services which respond to it. Responses are often collected
and saved into a persistence store for further analysis and statistics.
2. Analysis: the service responses are analysed and the result is compared to metrics to
decide whether or not the service is healthy.

Several existing services and tools are available for monitoring web applications by submitting
a request to a configurable set of endpoints, and evaluating the result against a set of
configurable rules. It is relatively easy to create a service endpoint whose sole purpose is to
perform some functional tests on the system [17].

6.13.2 Impacted challenge(s)

e Network latency, availability and Reliability could benefit from this pattern.
Indeed, failures are now detected proactively. It is simple to identity and to
correct them.

3.14 Watchdog

Node failure are now identified. However, is there a way to react to
..‘ such information? How will this information help to provide a better
“ solution? Is it possible to use monitoring information to enable
elasticity? When a node fails, users may experiment increasing

network latencies until a manual intervention is done: unpractical.

3.14.1 Solution and Discussion

Collecting and Analysing data as introduced in the previous point is called metering. Metering
is the process of measuring and recording the usage of an entire application, individual parts of
an application, specific services or resources [17]. Almost everything is measurable:

The amount of storage for each user,

The total size of data transfered,

The number of queries for a specific service,
The response time for a specific service,

and so forth.

In Cloud Computing, Metrics are essential and are the basics of almost everything. As
discussed, Cloud enables a pay-per-use model. This model is based on all the recorded metrics.
Another concept mainly linked with metrics is the Elasticity. Elasticity was earlier defined as
the ability to adapt the resources needed to cope with workloads dynamically. To cope with
workloads and therefore to perform scalability, these metrics are essential: without them, it is
impossible to know whether or not it is necessary to scale.

The watchdog (or Dynamic Failure Dectection And Recovery) pattern purpose is to ensure High
Availability. 1t is therefore responsible for the provisioning according to metrics and user
preferences (Figure 4.20).

Collect
and
store

Metrics
.3
User preferences

WATCHDOG

Add or remove
nodes/components

Figure 4.20 - Watchdog provisionning based on metrics

3.14.2 Impacted challenge(s)

e Availability, Network Latency and Reliability.

3.15 Map Reduce

Having multiple nodes and distributing the charge across all of
them sounds very ingenious. However, how is it possible to
use a cluster to process one big file more efficiently?

3.15.1 Solution and Discussion

Cloud applications often have large data to manipulate and process. Map Reduce is a data
processing approach that enables the parallel processing of large data sets. By using this pattern,
the limitation factor becomes only the size of the cluster. It is implemented as a cluster wherein
each node works on a specific and smaller part of the data. This pattern can be compared to the
Divide and Conquer one. This pattern is not typically used on small data sets but rather on what
the industry refers to as Big Data. There is no specific rule to establish where Big Data starts
and stops but we can reasonably consider data as “Big” when they are too big to be handle with
a single machine.

Map Reduce requires two main functions: a mapper and a reducer. The large data set to be
processed is firstly split up into multiple parts and then mapped to multiple nodes. Afterwards,
the individual results of all the processing nodes are consolidated into a large result data set
(Figure 4.21). This consolidation operation is called: reduce. During the reduce phase,
additional functions can be added such as sum, average and so on.

Figure 4.21 - Map-Reduce illustrated

3.15.2 Impacted challenge(s)

e Network Latency is one of the most impacted challenge as it is by far the purpose
of this pattern. More nodes are available to parallelize the work that has to be
done.

e (onsistency is impacted as the treatment is shared by multiple nodes. Hopefully,
such processes are performed by specific technologies such as Hadoop which
guarantees the consistency [49].

3.16 NoSQL

The concept of Big Data is actually hype but how is it possible to
store all these data? Classical database systems look obsolete when
the data exceeds a specific amount: the performances decrease and
the system becomes unstable.

3.16.1 Solution and Discussion

Before diving into the NoSQL paradigm, it is important to recall where we come from.
Relational databases were born in the era of mainframes and business applications. In fact, the
first commercial implementation was released by Oracle in 1979: Oracle 2 [50]. “These
databases were designed to run on a single server and the only way to increase their capacities
was to scale up by upgrading components” [1]. Needless to say that this behaviour is not
optimal in distributed environments. Nowadays, Cloud databases present their own challenges.
“They emerged as a result of the exponential growth of the Internet and the rise of distributed
applications. These databases were engineered to meet a new generation of enterprise
requirements: operate at any scale” [51].

NoSQL and classical RDBMS differ in their data models and in the way they distribute data
among multiple nodes. RDBMS have strict data models which are hard to change and usually
provoke downtime when it has to be updated on production environments. Moreover, RDBMS
have difficulties dealing with semi-structured data.

NoSQL supports multiple data models:

e Key-value stores. Similar to maps and dictionaries where data is identified by a
unique key.

e Document-oriented stores. The evolution of the previous data model stores
information as documents which are no more represented by a single value but by
a series of information which are organized freely (often like in a JSON file).

Column family stores.

Graph databases. These systems tend to provide rich query models where
simple and complex relationships can be interrogated to make direct and indirect
inferences about the data in the system.

According to their internal functioning, NoSQL and RDBMS systems are very different in term
of performances. NoSQL data models allow significant increase in term of persistence and
research [52].

3.16.2 Impacted challenge(s)

o Network latency.
® Availability is also improved due to the built-in sharding system which are offered by
NoSQL vendors.

3.17 External configuration Store

Dynamic Provisioning is performed by the Watchdog. Virtual Images are
used when new resources are allocated but what about specific additional
configurations? How can configuration of the scaled applications be
controlled in a coordinated way?

3.17.1 Solution and Discussion

The majority of runtime environments includes specific information often contained in
configuration files also called property files. In classical architecture, the software directly
contains these files and it becomes harder to maintain because once you have to update some
property values, you have to redeploy the entire application or service. Such deployment causes
an unacceptable downtime and therefore impacts the availability.

Moreover, the limitation of such system is that each configuration file belongs to the service
wherein it is contained. Otherly said, the property file cannot be used for the other services. For
example, with Multisite Deployment pattern we discussed earlier, each of your services will
contain a specific property file. This will badly impact the reliability: are each property files the
same for all our instances?

The solution is to store these property files, these settings outside of our applications or services
in an external storage system. Storage systems can be everything we can imagine: relational
databases, file systems, key-value stores, and so forth. One thing to keep in mind is the ease to
edit these configurations. As depicted in Figure 4.22, once these files are externalized, the
information has to be transmitted to the services or the application to keep them updated.

| External
on |4 ‘ » configuration - »
‘- store

T
1
i
menavenlia - 1
i
]
1
]
1
— . r 1
AERTTa100 | f—— . -------- S _—
Alternative 4'

Locst cache option Database

Figure 4.22 - Externalized configuration illustrated

In Computing Cloud patterns [10], they identified two ways to transmit information and
therefore to refresh services with updated versions of the property files (Figure 4.23):
1. Pushing. the property files and their values are pushed to the
services when a change is made. This is commonly done by
asynchronous messages using Messaging Systems.
2. Pulling. Services or applications pull periodically the storage system
to check whether any change has been made.

Configuration

2 Manager
read
e
, ()

config

config

Figure 4.23 - Pushing versus Pulling information to services

Both solutions are suitable. However, having a lot of services which pull periodically is not the
most optimal solution. It will generate network activities which are not needed when no changes
have been performed. Therefore, pushing information to services may be a better solution.

3.17.2 Impacted challenge(s)

® Reliability increases because all instances share the same configurations which
are placed in a unique place.

e Resiliency is positively impacted because we are now able to have similar copies
of our services into clusters. Indeed, by sharing property configurations and
images, services are now created identically.

3.18 Stateless Configuration

New services are duplicated and available in the cluster. Load balancer is
now able to send request to them. What if a user is redirected to a fresh

new instance? It will not contain any information about him and will
consider him as not authenticated or whatever. How is it possible to

create stateless instance and keep user information available?

3.18.1 Solution and Discussion

3.18.1.1 5.6 Stateful versus Stateless

Before diving into the explanations, it is important to understand what stands behind the word
"state". Session state or state is a context wherein several information are maintained such as
security access token, user’s name, shopping cart content and so forth. Consider an application
which is deployed in a cluster with 2 or more nodes. A first-time visitor adds an item to its
shopping cart. Where is this cart stored? Is it stored on the node or somewhere else? The answer
lies on how the session state is managed.

When the information is stored on the node, this node is defined as stateful as it retains the
information. The benefit of stateful node is that it is quite simple to store and retrieve
information because it is located in the “local memory”. However, the Cloud native approach is
to have session state without stateful nodes. A node can be kept stateless simply by avoiding
storing user information locally but rather storing them externally. For example, in cookies or
external data stores. The idea is quite similar to the previous pattern: external configuration

store.
Stateli.rf - \'Stateful

Nosession Session

| No Login Login

| No Basket Basket

i Static Content Dynamic Content

Figure 4.24 - Stateless versus Stateful

Stateful nodes are unpractical in a cluster environment and that is why they are not the best
approach in Cloud environments. It is quite simple to understand: imagine a Cluster with 2
nodes whereon an application is deployed. A user firstly connects to the node A and logs in. The
node A is stateful and stores all the user information. The user refreshes the page and his request
is distributed to the node B. Unfortunately, node B has no information about this user (because

it is actually stored on the node A). The user is therefore considered as not logged in and his
basket is empty.

The solution is similar to the previous one: states externalization. There are multiple options to
realize the externalization. The first one consists of using cookies to store client information on
his side. Cookies, web cookies, Internet cookies are small pieces of data which are stored in the
user’s web browser while the user is accessing services and applications. When users
communicate with our services, these pieces of data are linked to the request and therefore the
information is transmitted. The second solution is to externalize the state in a storage system.
Users will be identified by a uniquer identifier and their states will be retrieved according to it.
States could also be cached to avoid services to call the store systems and therefore improve the
performances. Figure 4.25 illustrates both behaviours.

L 3

Deuest
R 1

\—
: Conﬁ]g?I (8 External State]

config I

Figure 4.25 - External state storage

B
!

3.18.2 Impacted challenge(s)

e State is managed in a more profitable way, especially in Cloud and distributed
environments where the scalability is performed and sometimes required.

e Resiliency. Node failure will not cause data corruption or loss. Each node of the cluster
is now capable of taking charge of every requests. No more information is retained
inside of them.

® Network latency could be impacted depending on the chosen solution. Indeed, if

services have to call storage systems to retrieve information every times, the system will
perform more slowly.

® Reliability looks easier because information are stored in more robust systems: browser,
databases and so forth.

4 Conclusion

This thesis gives readers a broad overview of the complexity in distributed and more precisely
Cloud environments. We started by introducing the Cloud and its benefits to raise awareness
among readers about its potential and popularity. We then listed all its characteristics and
highlighted the challenges they introduced. The analysis of the literature allowed us to provide
the reader with a series of complementary information to deeply and comprehensively
understand Cloud definitions which are broadly used in Computer Sciences books.

We also defined a pattern-oriented approach which was inspired by the Alexandrian form.
However, the pattern profiles were simplified and written in a narrative approach to enable
readers to focus on the problem, its solution(s) and the affected Cloud challenges.

We have seen that each step to get closer to the best architectural solution introduced new
questions and new concepts. Fortunately, readers were literally guided through the Cloud
complexity thanks to questions which were introduced in a logical and incremental manner.

We sincerely think that this thesis succeeds in providing a much more comprehensible approach
for readers which are not familiar with Cloud or distributed environments. By giving them the
basic concepts, they should now be able to properly define the Cloud, to understand its
challenges and to complete their knowledge with additional readings more easily.

However, we distinguished several improvement axes which would require supplementary
works and researches. Indeed, the chosen patterns in the last chapter were just an overview of all
the questions the readers may ask themselves. Further reading about Enterprise applications,
SOA architectures and Cloud architectures will be necessary to go in depth into implementation.
The questions about Multi-tenancy and Security were not deeply covered in this thesis and
should therefore be addressed in further readings. It is also important to keep in mind that
having a broad overview of the Cloud architectures does not mean that we are able to implement
them.

5 References

10.
11.

17.
18.

19.
20.

21
22,

Couchbase, “Why NoSQL?”, http://www.couchbase.com/nosgl-resources/what-is-no-sql. [Online,
Available on May, 13th 2016]

Mell, Peter, and Tim Grance. The NIST definition of cloud computing. p. 2. 2011

Erl, Thomas, Ricardo Puttini, and Zaigham Mahmood. Cloud computing: concepts, technology, &
architecture. Pearson Education. Chapter 3, p. 28. 2013

Weinman, Joe. Cloudonomics: The business value of cloud computing. John Wiley & Sons. 2012
Reuven Cohen, “Is Cloud Computing really cheaper?”,
http://www.forbes.com/sites/reuvencohen/2012/08/03/is-cloud-computing-really-cheaper. [Online,
Available on April, 25th 2016]

Erl, Thomas, Ricardo Puttini, and Zaigham Mahmood. Cloud Computing: concepts, technology, &
architecture. Pearson Education. Chapter 3, p. 41. 2013

Dorband, J., Josephine Palencia, and Udaya Ranawake. Commodity computing clusters at goddard
space flight center. Journal of Space Communication. p. 113-123. 2003

Nucleus research, “Benchmarking availability and reliability in the Cloud: Amazon Web Services”,
https://d0.awsstatic.com/analyst-reports/Benchmarking%20A vailability%20and%20Reliability%20in
%20the%20Cloud Nucleus%20Research_2014%20.pdf. [Online, Available on May, 23th 2016].
Young, Marcus. Implementing Cloud Design Patterns for AWS. Packt Publishing Ltd. 2015. Kindle
location 315/3258. 2015

Leymann, Christoph Fehling Frank, et al. Cloud Computing patterns. p. 50. 2014,

Wikipedia, "Computer Cluster", https://en.wikipedia.org/wiki/Computer_cluster. [Online, Available
on April, 25th 2016]

. IBM, "IBM Cluster Systems", http://www-03.ibm.com/systems/clusters/benefits.html. [Online,

Available on April, 25th 2016]

. Zhang, Qi, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and research challenges.

Journal of internet services and applications 1.1. p. 7-18. 2010

. Hohpe, Gregor, and Bobby Woolf. Enterprise integration patterns: Designing, building, and

deploying messaging solutions. Addison-Wesley Professional. 2004

. Restcookbook, "What Are Idempotent And/or Safe Methods?”, http://restcookbook.com/HTTP

Methods/idempotency. [Online, Available on April, 25th 2016]

. World Wide Web Consortium (W3C), “HTTP Specifications”,

https://www.w3.org/Protocols/rfc26 16/rfc2616-sec9.html. [Online, Available on May, 23th 2016]
Wilder, Bill. Cloud architecture patterns: using microsoft azure. O'Reilly Media, Inc.. 2012

Wikipedia, "CAP Theorem", https://en.wikipedia.org/wiki/CAP_theorem. [Online, Available on April,

25th 2016]

Newman, Sam. Building Microservices. O'Reilly Media, Inc. p. 16. 2015

Boris Lublinsky, "Orchestration vs. Choreography: Debate Over Definitions",
http://www.infog.com/news/2008/09/Orchestration. [Online, Available on April, 25th 2016]
Mark Richards, Microservices vs Service-Oriented Achitecture. O'Reilly Media, Inc.. 2016.
Mell, Peter, and Tim Grance. The NIST definition of cloud computing. p. 2. 2011

23,

24.

25.

26.

27,
28.

29.

30.

31

32.

36.

37

38.

39,

40.

41.

42.

43.

44.

45.

46.

Leymann, Christoph Fehling Frank, et al. Cloud computing patterns. Chapter 2.2 - Application
Workloads. p. 4. 2014

Erl, Thomas, Ricardo Puttini, and Zaigham Mahmood. Cloud computing: concepts, technology, &
architecture. Pearson Education. Kindle location 1570/7400. 2013

Amazon Web Services Inc., "Amazon EC2 SLA", https://aws.amazon.com/fr/ec2/sla. [Online,
Available on April, 25th 2016]

Sean Work, "How Loading Time Affects Your Bottom Line?",
https://blog.kissmetrics.com/loading-time. [Online, Available on April, 25th 2016]

Leymann, Christoph Fehling Frank, et al. Cloud computing patterns. p. 6. 2014.

Martin Fowler, "Microservices", http://martinfowler.com/articles/microservices.html. [Online,
Available on April, 25th 2016]

Erl, Thomas, Robert Cope, and Amin Naserpour. Cloud computing design patterns. Prentice Hall
Press. Kindle location 858/7529. 2015

Hohpe, Gregor, and Bobby Woolf. Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley Professional. 2004.

Alexander, Christopher, Sara Ishikawa, and Murray Silverstein. 4 pattern language: towns, buildings,
construction. Vol. 2. Oxford University Press. 1977.

Wikipedia, "Software Design Pattern", https://en.wikipedia.org/wiki/Software_design_pattern.
[Online, Available on April, 25th 2016]

. Beck, Kent. Smalltalk Best Practice Patterns. Volume I: Coding. Prentice Hall, Englewood Cliffs, NJ.

1997.

. Hohpe, Gregor, and Bobby Woolf. Enterprise integration patterns: Designing, building, and

deploying messaging solutions. Addison-Wesley Professional. 2004.

. Wikipedia, "Divide and Conquer Algorithms",

https://en.wikipedia.org/wiki/Divide_and conquer_algorithms. [Online, Available on April, 25th
2016].

Wikipedia, "4 Pattern Language", https://en.wikipedia.org/wiki/A_Pattern_Language. [Online,
Available on April, 25th 2016]

Margaret Rouse, "What Is Loose Coupling?",
http://searchnetworking.techtarget.com/definition/loose-coupling. [Online, Available on April, 25th
2016]

Wikipedia, "Commodity Computing", https://en.wikipedia.org/wiki/Commodity_computing. [Online,
Available on April 25th 2016]

What Is Cloud, "/ncreased Scalability",
http://whatiscloud.com/goals_and_benefits/increased_scalability. [Online, Available on April. 25th
2016]

RabbitMQ, "What Can RabbitMQ Do for You?", https://www.rabbitmq.com/features.html. [Online,
Available on April, 25th 2016]

Amazon Web Services Inc., "dmazon SOS — Service De File D'attente De Messages",
http://aws.amazon.com/fr/sgs. [Online, Available on April, 25th 2016]

Wikipedia, "Data Exchange", https://en.wikipedia.org/wiki/Data_exchange. [Online, Available on
April, 25th 2016]

Plummer, Daryl C., et al. Five refining attributes of public and private cloud computing. Gartner
Research 167182.5. 2009

Herbst, Nikolas Roman, Samuel Kounev, and Ralf H. Reussner. Elasticity in Cloud Computing: What
It Is, and What It Is Not. ICAC. 2013

Gagnaire, Maurice, et al. Downtime statistics of current cloud solutions. International Working Group
on Cloud Computing Resiliency, Tech. Rep. 2012

Amazon Web Services Inc., "Cloud Computing D'entreprise avec AWS",
https://aws.amazon.com/fr/enterprise/?nc2=h_gl_ny_livestream_blu. [Online, Available on April,
22th 2016]

47.

48.

49.

50.

51

52

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Microsoft Azure, "Documentation Web Apps",
https://azure.microsoft.com/fr-fr/documentation/services/app-service/web. [Online, Available on
April, 22th 2016]

Benoit Fleury, "SOAP vs. REST : Choisir La Bonne Architecture Web Services",
http://blog.clever-age.com/fr/2006/10/27/soap-vs-rest-choisir-la-bonne-architecture-web-services.

[Online, Available on May, 3th 2016]
Apache Hadoop, "Introduction",

ml. [Onlme Avallable on May, 3th 2016]

Oracle, "Oracle 2", http://www.orafag.com/wiki/Oracle_2. [Online, Available on May, 3th 2016]
MongoDB, "NoSQL Databases Explained", https://www.mongodb.com/nosql-explained. [Online,
Available on ay, 03th 2016]

Sergey Sverchkov, “Evaluatmg NoSQL performance: WhICh database is right for your data?”,

L [Onlme Available on May, 23th 2016]

George Huey, “SQL Azure - Scaling Out with SQL Azure Federation™,
https://msdn.microsoft.com/en-us/magazine/hh848258.aspx. [Online, Available on May, 23th 2016]
Agildata, “Database sharding”, http://dbshards.com/database-sharding. [Online, Available on May,
23th 2016]

Guy Fardone, "C [()ud Elasticity and C loud Scalability Are Nol the Same Thing",

Avallable on May, 03th 2016]

VM Ware, “Virtualization Essentials”,

https://www.vmware.com/files/pdf/ GATED-VMW-EBOOK_VIRTUALIZATION-ESSENTIALS.pdf
[Online, Availble on May, 03th 2016]

Amazon Web Services Inc., "Amazon Machine Images (AMI)",

http://docs.aws.amazon.com/A WSEC2/latest/UserGuide/AMIs.html. [Online, Availble on May, 03th
2016]

IBM, "Hypervisors, Virtualization, and the Cloud: Dive into the VMware ESX Server Hypervisor",
http://www.ibm.com/developerworks/cloud/library/cl-hypervisorcompare-vmwareesx. [Online,
Availble on May, 03th 2016]

Technopedia, "What Is On-Demand Computing (ODC)?",
https://www.techopedia.com/definition/1308/on-demand-computing-odc. [Online, Available on May,
23th 2016]

VM Ware, "The Benefits of Virtualization for Small and Medium Businesses",
http://www.vmware.com/files/pdf/VMware-SMB-Survey.pdf. [Online, Available on May, 23th 2016]
Google Cloud, "Balancing Strong and Eventual Consistency with Google Cloud Datastore",
https://cloud.google.com/datastore/docs/articles/balancing-strong-and-eventual-consistency-with-goog
le-cloud-datastore. [Online, Available on May, 23th 2016]

Technopedia, "What Is ACID in Databases?",
https://www.techopedia.com/definition/23949/atomicity-consistency-isolation-durability-acid.
[Online, Availble on May, 03th 2016]

ACM Queue, "Base: An Acid Alternative", http://queue.acm.org/detail.cfm?id=1394128. [Online,
Available on May, 23th 2016]

Eric A. Brewer, “Towards Robust Distributed Systems”,
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf. [Online, Available on May,
23th 2016]

DBShards, "Database Sharding", http://dbshards.com/database-sharding. [Online, Available on May,
23th 2016]

66.

67.

68.

69.

70.

i

72,

73.

74.

Margaret Rouse, "What Is Cloud Provisioning?”,
http://searchcloudprovider.techtarget.com/definition/cloud-provisioning. [Online, Available on May,
23th 2016]

Sreedhar Kajeepeta, "Multi- tenancv in the Cloud: Why It Matters

rs.html html [Onlme Available on May, 23th 2016]
Marketmg School, " What Is Cloud Marketing?",

Avallable on May 23th 2016]

James Maguire, "Cloud Computing Market Leaders, 2015",
http://www.webopedia.com/Blog/cloud-computing-market-leaders-2015.html. [Online, Available on
May, 13th 2016]

IBM, "Companies Look to Cloud to save Money, Build Business",
http://www.ibm.com/midmarket/us/en/article_cloud4 1209.html. [Online, Available on May, 13th
2016]

What Is Cloud, "Increased Security vulnerabilities",

http://whatiscloud.com/risks_and_challenges/increased_security_vulnerabilities. [Online, Available
on May, 13th 2016]

Wikipedia, "Christopher Alexander", https://en.wikipedia.org/wiki/Christopher_Alexander. [Online,
Available on May, 13th 2016]
Technopedla "Why lndustrv Cloud Is the Next Big Thmg e

ng. [Onlme Avallable on May, 13th 2016]
Enterprise Integration Patterns, "Enterprise Integration Patterns - Guaranteed Delivery",

http://www.enterpriseintegrationpatterns.com/patterns/messaging/GuaranteedMessaging.html.
[Online, Available on May, 13th 2016]

6 Appendix

6.1 Divide & Conquer

How to avoid building a single monolithic application that contains everything?

Loose coupling
Reliability
State

6.2 Loose coupling

Divide and Conquer is an algorithm design paradigm based
on multi-branched recursion. A divide and conquer
algorithm works by recursively breaking down a problem
into two or more sub-problems (divide), until these become
simple enough to be solved (conquer). The solutions to the
sub-problems are then combined to give a solution to the
initial problem [35]

e [Layer-based Decomposition
e Pire-and-Filter-based Decomposition
® Process-based Decomposition

How to reduce components/services/applications dependencies?

Loose coupling
Network Latency
State
Availability
Consistency
Security

Loose coupling can essentially be achieved by using a
communication canal between components. Having loose
coupled component is not straigtforward. The complexity
lies in way they interact with each other. Multiple solutions
exist:

e Web services
® Queues or topics
e Remote Procedure Calls (RPC)

6.3 Queue-Centric-Workflow

How to enable communication between components/services/applications?

Loose coupling
Network Latency
Availability
Reliability
Consistency

6.4 Idempotent Receiver

The Queue-Centric-Workflow pattern uses queues which
are provided by a specific software called a Messaging
System or Message-Oriented Middleware (MOM). The
reason a Messaging System is needed to move messages
from one service to another is that services and networks
that connect them are inherently unreliable. Just because
one service is ready to send a message does not mean that
the others are ready to receive it.

How to deal with duplicated messages in Messaging Systems?

e Reliability

6.5 Cdn

In order to ignore duplicates, receivers (or consumers) have
to keep track of the previously received messages. Many
Messaging Systems automatically assign unique identifiers
to each message without the application having to worry
about them. When a message with an already consumed
message identifier is received, the system ignores it.

How to reduce Network Latency for commonly accessed files?

€33
0

e Network Latency
o Consistency

CDN or Content Distribution Network seems to be quite
generic and the concept is used in each studied providers.
The CDN is a service that functions as a globally distributed
cache. The CDN keeps copies of application files in many
different locations across multiple locations. When a user
needs a file, retrieving it from the closest location will be
faster than retrieving it from the origin.

6.6 Multisite deployment

How to reduce Network Latency for applications and improve user experience?

e -"_) i

L AL 3

e Availability
e Network Latency
e Consistency

6.7 Database replication

Multisite Deployment Pattern is similar in some ways to
CDN, in that it strives to bring applications closer to the
users. Multisite Deployment Pattern focuses on deploying a
single application to more than one data center.

How to reduce Network Latency for databases?

® Availability
e Network Latency
e Consistency

6.8 Database Sharding

As it is the case for applications and static files, databases
can be replicated into multiple locations. Replication is the
process of copying data, but the problems associated with it
are these of managing and maintaining multiple copies of
the same information: consistency.

The most simple replication concept is master-slave(s) as it
solves a lot of common problems which can be encountered
with one single instance.

How to deal efficiently with big data?

e Availability
e Network Latency
e Consistency

Sharding a database is starting with a single database and
then split its data up across two or more databases called
shards. Each shard shares the same database schema. The
data is distributed so that each row appears in exactly one
shard. The combined data from all shards represent the
entire data and is the same as the original database data.

e Reliability

6.9 Eventual and Strict Consistency

How to deal efficiently with consistency (eventual and strict)?

In an eventually consistent database, simultaneous requests
for the same data value may return different values. There

are multiple variations:
ool e Causal consistency
Read-your-writes consistency

e Session consistency
e Availability e Monotonic read consistency
e Network Latency e Monotonic write consistency

e Consistency
The opposite of eventual consistency is called strictly,
strongly or guarantee consistency. Whatever or whenever
you read the data, this one is always up-to-date. It can be
achieved by blocking the read until the write operation is
finished.

6.10 Load balancer

How to distribute requests between all components/services/applications?

Load Balancing consists of dividing the amount of requests
that have to be processed to two or more nodes so that more
work can be achieved in the same amount of time. Load
balancer logic can be implemented in different ways:

e Round Robin

e Weighted Round Robin

® Availability e Property based
e Network Latency

6.11 Health Monitoring

How to ensure all components/services/applications are up and running?

Monitoring is a good practice and often a business
requirement for web applications, databases,
shared-services and so forth. Indeed, with such system, we
are able to check whether everything is available and
performs correctly or not. There are a lot of factors that can
affect applications such as network latency, performance,

® Availability storage, bandwidth. Furthermore, a service may fail
e Network Latency

e partially or entirely due to any of these factors. It is
e Reliablity

therefore important to monitor them efficiently.

6.12 Watchdog

How to perform elasticity based on health monitoring information?

The watchdog (or Dynamic Failure Dectection And
Recovery) pattern purpose is to ensure High Availability. It

‘. is therefore responsible of the provisioning according to

metrics and user preferences.

e Availability
e Network Latency
e Reliablity

6.13 Map Reduce

How to use a cluster to perform Big data and parallelize process?

Cloud applications often have large data to manipulate and
process. Map Reduce is a data processing approach that
enables the parallel processing of large data sets. By using

this pattern, the limitation factor becomes only the size of l
the cluster. It is implemented as a cluster wherein each node

works on a specific and smaller part of the data.

e Network Latency Map Reduce requires two main functions: a mapper and a
e Consistency reducer. The large data set to be processed is firstly split up
into multiple parts and then mapped to multiple nodes.
Afterwards, the individual results of all the processing
nodes are consolidated into a large result data set.

6.14 NoSQL

How to perform elasticity based on health monitoring information?

Availability

Network Latency

Reliablity

Key-value stores
Document-oriented stores
Column family stores
Graph databases

6.15 External configuration Store

How to scale out and control the way images are created?

Resiliency
Reliablity

The solution is to store property files, settings outside of the
applications or services in an external storage system.
Storage systems can be everything: relational databases, file
systems, key-value stores, and so forth. One thing to keep in
mind is the ease to edit these configurations.

6.16 Stateless Configuration

How to work with stateless components/services/applications?

O

i

e State

e Resiliency

e Network Latency
e Reliablity

The solution is simple: states externalization. There are
multiple options to realize the externalization. The first one
consists of using cookies to store client information on his
side. Cookies, web cookies, Internet cookies are small
pieces of data which are stored in the user’s web browser
while the user is accessing services and applications. When
users communicate with our services, these pieces of data
are linked to the request and therefore the information is
transmitted. The second solution is to externalize the state in
a storage system. Users will be identified by a uniquer
identifier and their states will be retrieved according to it.

States could also be cached to avoid services to called the
store systems and therefore improve the performances.

