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Article
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Imagery for Built-Up Mapping in Sub-Saharan Africa
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Abstract: The rapid urbanization that takes place in developing regions such as Sub-Saharan Africa
is associated with a large range of environmental and social issues. In this context, remote sensing
is essential to provide accurate and up-to-date spatial information to support risk assessment
and decision making. However, mapping urban areas remains a challenge because of their
heterogeneity, especially in developing regions where the highest rates of misclassification are
observed. Nevertheless, urban areas located in arid climates — which are among the most vulnerables
to anthropogenic impacts, suffer from the spectral confusion occurring between built-up and bare soil
areas when using optical imagery. Today, the increasing availability of satellite imagery from multiple
sensors allow to tackle the aforementioned issues by combining optical data with Synthetic Aperture
Radar (SAR). In this paper, we assess the complementarity of the Landsat 8 and Sentinel-1 sensors
to map built-up areas in twelve Sub-Saharan African urban areas, using a pixel-level supervised
classification based on the Random Forest classifier. We make use of textural information extracted
from SAR backscattering data in order to reduce the speckle noise and to introduce contextual
information at the pixel level. Results suggest that combining both optical and SAR features
consistently improves classification performances, mainly by enhancing the differentiation between
built-up and bare lands. However, the fusion was less beneficial in mountainous case studies,
suggesting that including features derived from a Digital Elevation Model (DEM) could improve
the reliability of the proposed approach. As suggested by previous studies, combining features
computed from both VV and VH polarizations consistently led to better classification performances.
On the contrary, introducing textures computed from different spatial scales did not improve the
classification performances.

Keywords: Urban Remote Sensing; Sentinel-1; Landsat 8; Built-Up; Data Fusion; Texture; Africa

1. Introduction

Urbanization is a worldwide process associated with a wide range of environmental and human
health issues [1,2]. In Africa, the urban population is predicted to triple between 2010 and 2050,
threatening both social and environmental sustainability [3]. Monitoring built-up areas in developing
regions such as Sub-Saharan Africa is therefore crucial to understand, predict, and mitigate the risks
associated with such a rapid urbanization [4]. In this context, remote sensing plays a major role by
providing accurate spatial information on built-up areas at a relatively low cost [5,6]. However, because
of the heterogeneity of urban areas in terms of spatial structure and materials, mapping built-up with
medium resolution optical imagery remains challenging. In medium spatial resolution imagery (10-50
meters), urban pixels are made of a combination of several elements — such as buildings, roads, trees
or bare soil. Furthermore, the spectral characteristics and the spatial distribution of these objects differ
across a given urban area. High differences are also observed among the cities of the world because
of socioeconomic, cultural, historical and environmental variations [7–9]. Developing regions are the
most concerned with the urbanization-related risks, — but previous studies have shown that they
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also suffer from lower accuracies in global built-up maps [10], because of a high urban heterogeneity
coupled with a lack of reference datasets to support the training and the validation of the classification
models.

Likewise, urban areas located in arid and semi-arid climates are among the most vulnerables to
anthropogenic impacts. Despite the fact that about one third of the global land surface is characterized
by an arid or semi-arid climate according to the Köppen-Geiger classification [11,12], they also suffer
from low accuracies when it comes to built-up mapping. Due to their overlapping spectral signatures,
the differentiation between bare land and built-up in arid and semi-arid environments has proven to
be one of the main challenge associated with optical sensors in urban remote sensing. Previous studies
have shown that conventional spectral indices — such as the normalized difference built-up index
(NDBI), the normalized difference bareness index (NDBal), or the urban index (UI), are not reliable to
differentiate built-up areas from bare land in arid regions [13,14]. As a result, new approaches based
on object-oriented classification or linear spectral mixture analysis have been proposed [13,15]. New
spectral indices have also been specifically developed to tackle the issue, such as the normalized bare
land index (NBLI) [16]. Likewise, the dry built-up index (DBI) and the dry bare-soil index (DBSI)
provide a better separation between bare soil and built-up in arid regions by making use of the blue
and thermal bands of Landsat 8 [14]. Approaches based on the thresholding of spectral indices do
not require any training dataset and benefit from a low computational cost. However, as stated by
their authors, their reliability highly depends on the landscape and the climate of the study area.
For instance, the DBSI is not considered suitable in humid regions or in urban areas surrounded by
vegetation [14].

Because of the aforementioned issues, the idea of combining optical data with complementary
sensors such as Synthetic Aperture Radar (SAR) recently gained momentum. SAR has the advantages
of providing high resolution imagery independently from daylight, clouds, or weather conditions. The
C-band of the European Remote-Sensing Satellite 1 and 2 (ERS-1/2) has been widely used to monitor
urban areas [17]. In contrast to optical sensors, SAR is sensitive to the roughness of the terrain — and
thus is able to better differentiate between bare soil and built-up [18]. Previous studies have shown
that the combined use of optical and SAR data can significantly improves the accuracy of a land cover
classification [19–21]. However, classifying data provided by different sensors is not straightforward
and there is no consensus among the remote sensing community regarding the best fusion approach.
Conventional parametric classifiers which concatenate signals from different sensors into one vector
have been shown to be inefficient in modeling multi-sensor data distributions, therefore most of the
methods rely on machine learning classifiers that do not make any assumption regarding the data
distribution [22]. Fusion can occur at four different levels: (1) at the signal level, (2) at the pixel level —
by concatenating data from multiple sensors into one stacked vector [23–26], (3) at the feature level in
the context of an object-based classification that makes use of image segmentation techniques [27], or
(4) at the decision level, for instance by merging several single-source classifiers using neural networks
or support vector machines [19,28–30].

Previous studies have reported that pixel-level fusion approaches are inappropriate because of
the lack of information about the spatial context of a given pixel and the speckle noise inherent to
SAR data [22,25,31]. The extraction of textural features from SAR backscattering partially solves the
aforementioned issues [25,26], for instance by computing the grey level co-occurrence matrix (GLCM)
texture features [32,33]. However, there is no consensus on which features are the most relevant in the
context of a combined use with optical data, or on the optimal size of the moving window used to
compute the GLCM.

In this paper, we investigate the combined use of Landsat 8 and Sentinel-1 imagery to detect
built-up in twelve Sub-Saharan African case studies characterized by various climates, landscapes
and population patterns. We assess the complementarity of optical and SAR data in the context of a
pixel-level supervised classification based on the extraction of 18 GLCM texture features, with several
window sizes and from the two polarizations available with Sentinel-1 — VV and VH.
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2. Materials and methods

2.1. Case studies

Table 1. Climate, topography and population for each case study. Values are aggregated for the area
of interest. Climate data is derived from the Koppen-Geiger classification [11,12]. Mean slope and
elevation are computed from the Shuttle Radar Topographic Mission (SRTM) 30m [34]. Population is
estimated using the AfriPop/WorldPop dataset [35,36]

City (Country) Climate Mean slope Mean elevation Population

Antananarivo (MDG) Subtropical highland 8◦ 1319 m 2,436,196
Bukavu (COD) Subtropical highland 13◦ 1836 m 1,041,703
Chimoio (MOZ) Humid subtropical 4◦ 612 m 455,612
Dakar (SEN) Hot semi-arid 2◦ 14 m 3,332,985
Gao (MLI) Hot desert 3◦ 273 m 161,172
Johannesburg (ZAF) Subtropical highland 4◦ 1608 m 4,668,844
Kampala (UGA) Tropical rainforest 5◦ 1177 m 3,498,376
Katsina (NGA) Hot semi-arid 2◦ 495 m 1,027,729
Nairobi (KEN) Temperate oceanic 4◦ 1692 m 5,064,548
Ouagadougou (BFA) Hot semi-arid 2◦ 308 m 2,256,479
Saint-Louis (SEN) Hot desert 2◦ 7 m 300,518
Windhoek (NAM) Hot desert 9◦ 1811 m 383,503

Compared to natural land covers, built-up areas are highly heterogeneous at both the interurban
and the intraurban scales. As a result, a method developed in the context of an european urban area
has no guarantee to be reliable in a small urban agglomeration of Sub-Saharan Africa. This is why a
diverse set of case studies is crucial when seeking to maximize the generalization potential of a method.
In the context of built-up mapping using both optical and SAR data, the reliability of each sensor is
expected to be highly dependent on landscape and climate variables. The selected case studies for the
present analysis are presented in Table 1. The area of interest for each case study corresponds to the
rectangular 20 kilometers buffer around the city center.

The set contains urban areas with various climates, landscapes and population characteristics.
In the context of built-up mapping from both optical and SAR data, optical sensors are expected
to perform well in tropical, subtropical and temperate climates (Antananarivo, Bukavu, Chimoio,
Kampala or Johannesburg) because of their ability to differentiate between the spectral signatures of
built-up and vegetation. However, densely vegetated urbain mosaics could cause some confusion.
On the contrary, SAR sensor is expected to perform better in dry climates (Dakar, Gao, Katsina,
Saint-Louis, Ouagadougou or Windhoek), and lower in mountainous urban areas surrounded with
dense vegetation and steep slopes (Antananarivo, Bukavu, or Windhoek). More generally, the various
climates and population sizes ensure that multiple urban morphologies will be encountered.
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2.2. Data Acquisition and Preprocessing

Table 2. Sentinel-1 and Landsat 8 product types and acquisition dates.

Sentinel-1 Landsat 8

Antananarivo S1A_IW_GRDH 2015-10-07 LC08_L1TP 2015-06-15
Bukavu S1A_IW_GRDH 2016-06-10 LC08_L1TP 2015-09-21
Chimoio S1A_IW_GRDH 2015-04-27 LC08_L1TP 2016-03-28
Dakar S1A_IW_GRDH 2016-05-12 LC08_L1TP 2015-12-17
Gao S1A_IW_GRDH 2016-06-13 LC08_L1TP 2016-07-08
Johannesburg S1A_IW_GRDH 2015-10-20 LC08_L1TP 2015-12-21
Kampala S1A_IW_GRDH 2016-07-04 LC08_L1TP 2016-01-29
Katsina S1A_IW_GRDH 2016-05-12 LC08_L1TP 2015-10-23
Nairobi S1A_IW_GRDH 2016-10-27 LC08_L1TP 2016-01-24
Ouagadougou S1A_IW_GRDH 2015-04-13 LC08_L1TP 2016-12-22
Saint-Louis S1A_IW_GRDH 2016-06-05 LC08_L1TP 2016-10-09
Windhoek S1B_IW_GRDH 2016-10-09 LC08_L1TP 2016-01-14

Sentinel-1 and Landsat 8 product types and acquisition dates are presented in Table 2. Landsat 8
imagery was acquired through the Earth Explorer portal of the U.S. Geological Survey (USGS) with the
landsatxplore software [37], using cloud cover as the main criterion. Additionally, monthly NDVI
values from the MODIS-based MOD13C2 dataset [38] were used to favor the most vegetated periods,
which are different depending on the case study. Scenes were acquired as Level-1 data products, thus
radiometrically calibrated and orthorectified. Calibrated digital numbers were converted to surface
reflectance values using the Landsat Surface Reflectance Code (LaSRC) [39] made available by the
USGS. Cloudy pixels were masked using the Function of Mask (FMASK) algorithm [40,41].

Sentinel-1A images were acquired through the Copernicus Open Access Hub using the
sentinelsat software [42]. Scenes belonging to the dry season were favored based on the monthly
NDVI values provided by the MODIS-based MOD13C2 dataset. Additionally, the CPC Global Unified
Precipitation dataset [43], provided by the NOAA Climate Prediction Center, was used to require at
least two days without any precipitation before the acquisition date. The last criterion for the final
scene selection was the temporal proximity to the selected Landsat 8 scene. The scenes were acquired
as Ground Range Detected (GRD) Level-1 products in the Interferometric Wide (IW) swath mode,
therefore multi-looked and projected to ground range using an Earth ellipsoid model. Preprocessing
was performed using the Sentinel Application Platform (SNAP) [44]. Firstly, orbit state vectors were
refined with precise orbit files and GRD data was calibrated to β nought. Then, thermal noise removal
was performed before applying a speckle noise reduction based on a 3 × 3 Lee filter [45], in order to
reduce the speckle noise while preserving the textural information. Finally, terrain flattening [46] and
Range-Doppler terrain correction [47] were applied based on the SRTM 1-sec Digital Elevation Model
(DEM).

2.3. Feature Extraction

Grey Level Co-Occurence Matrix (GLCM) textures were computed with an interpixel distance of 1
and 32 levels of quantization using Orfeo Toolbox [48], after a 2% histogram cutting on the source SAR
data. GLCMs were constructed for the direction angles 0, 45, 90, and 135 degrees ; but only the average
value was considered. The GLCMs were computed independently for each polarization (VV and VH)
and multiple window sizes (5 × 5, 7 × 7, 9 × 9, and 11 × 11). A set of 18 textures was extracted: energy,
entropy, correlation, inertia, cluster shade, cluster prominence, haralick correlation, mean, variance,
dissimilarity, sum average, sum variance, sum entropy, difference of entropies, difference of variances,
and two information measures of correlation (IC1 and IC2). This resulted in the extraction of 72 texture
features for each polarization, that is, 144 in total.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 October 2018                   doi:10.20944/preprints201810.0695.v1

http://dx.doi.org/10.20944/preprints201810.0695.v1


5 of 13

Several GLCMs texture features can be highly correlated, such as energy and entropy, or inertia
and the inverse different moment. In order to reduce the dimensionality of the dataset, a Principal
Component Analysis (PCA) was performed on each combination of polarization and window size.
Only the first six components of each PCA — which consistently explained more than 95% of the
variance, were retained. This reduced the number of features from 144 to 48.

SAR features were reprojected to Universal Transverse Mercator (UTM) coordinate system only
after the computation of GLCM textures in order to minimize the destruction of textural information.
All Landsat 8 bands — including thermal bands, were retained without further processing except of
co-registration to the spatial resolution of SAR products (i.e. about 10 meters).

2.4. Classification

The binary classification task — built-up vs. non-built-up, was performed using the Random Forest
(RF) classifier, which has been shown to be relatively performant in the context of multisource and
multimodal data classification [49–51]. The implementation was based on Python and a set of libraries,
including: NumPy [52], SciPy [52], and Rasterio [53] for raster processing, Shapely [54] and Geopandas
for vector processing and Scikit-learn [55] for machine learning. The Python code that supported the
present study is available on Github (https://github.com/yannforget/landsat-sentinel-fusion), and
the associated datasets can be acquired through Zenodo (https://zenodo.org/record/1450932).

Table 3. Label, input features and number of dimensions of the 12 classification schemes.

# Scheme label SAR features Optical features Dims.

1 optical None Landsat bands 8
2 vv_5x5 PCA GLCM 5x5 VV None 6
3 vh_5x5 PCA GLCM 5x5 VH None 6
4 vv_vh_5x5 PCA GLCM 5x5 [VV, VH] None 12
5 vv_vh_7x7 PCA GLCM 7x7 [VV, VH] None 12
6 vv_vh_9x9 PCA GLCM 9x9 [VV, VH] None 12
7 vv_vh_11x11 PCA GLCM 11x11 [VV, VH] None 12
8 vv_vh_5x5_9x9 PCA GLCM [5x5, 9x9] [VV, VH] None 24
9 vv_vh_5x5_11x11 PCA GLCM [5x5, 11x11] [VV, VH] None 24
10 fusion_5x5 PCA GLCM 5x5 [VV, VH] Landsat bands 18
11 fusion_9x9 PCA GLCM 9x9 [VV, VH] Landsat bands 18
12 fusion_11x11 PCA GLCM 11x11 [VV, VH] Landsat bands 18

In order to assess the optimal combination of features in the context of a pixel-based supervised
classification, 12 different classifications were performed using different input features. Table 3 lists the
features used for each classification scheme. The schemes #1 to #9 were single-source classifications,
based either on optical or SAR data. Previous studies suggested that combining several window sizes
could improve classification accuracies by including spatial information from multiple scales [56]. The
schemes #2 to #9 were designed to identify the optimal window size and polarization combination to
classify built-up areas using Sentinel-1. Finally, the schemes #10 to #12 included both optical and SAR
data with different window sizes for the computation of the GLCMs.

In the 12 classification schemes, the RF ensemble was constructed with 50 trees and a maximum
number of features per tree equal to the square root of the total number of features — as suggested
by previous studies [50]. Imbalance issues in the training dataset between the built-up and the
non-built-up classes were overcome by a random over-sampling of the minority class [57]. Additionally,
in order to ensure the reproducibility of the results, fixed random seeds were used.

2.5. Validation

Reference polygons were digitized from very high spatial resolution imagery through Google
Earth to support both the training and the validation of the classification models. Four land cover
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classes were collected: built-up, bare soil, low vegetation (sparse or small vegetation), and high
vegetation (dense and tall vegetation). All non-built-up samples (bare soil, low vegetation and high
vegetation) were concatenated to build the binary (built-up vs. non-built-up) training and validation
datasets. However, specific land cover samples were also used to assess the performance of the models
in specific areas. Table 4 shows the number of polygons collected for each land cover and each case
study, together with the amount of resulting samples (in pixels) after rasterization.

Table 4. Number of reference pixels for each case study and land cover. Enclosed in brackets: the
number of polygons before rasterization.

Built-up Bare Soil Low Vegetation High Vegetation

Antananarivo 42,596 (110) 31,769 (67) 60,423 (53) 22,338 (50)
Bukavu 30,762 (54) 5,956 (20) 19,196 (21) 7,308 (22)
Chimoio 29,040 (79) 17,405 (59) 11,891 (63) 11,347 (50)
Dakar 123,386 (76) 14,367 (41) 60,993 (53) 29,739 (33)
Gao 18,998 (74) 46,834 (45) 805 (25) 1,348 (25)
Johannesburg 570,282 (260) 69,106 (91) 97,100 (112) 26,315 (37)
Kampala 41,528 (89) 5,049 (34) 21,033 (44) 9,376 (22)
Katsina 37,507 (95) 11,710 (55) 4,411 (31) 2,107 (28)
Nairobi 60,371 (103) 15,030 (46) 18,947 (41) 12,666 (23)
Ouagadougou 83,540 (62) 22,477 (24) 66,624 (15) 26,078 (7)
Saint-Louis 13,154 (64) 24,162 (47) 25,701 (40) 10,388 (22)
Windhoek 62,464 (60) 50,247 (79) 26,032 (48) 14,655 (28)

In order to ensure the independence of the training and validation datasets, the reference samples
were randomly splitted at the polygon level — the samples inside a given polygon being characterized
by a high spatial autocorrelation. Each classification is performed ten times with different random
splits, then assessment metrics (F1-score, land cover accuracies) and classifier characteristics (feature
importances, probabilities) were averaged for statistical and visual interpretation.

3. Results and Discussion

Table 5. F1-score obtained by each classification scheme in each case study (see Table 3 for the
characteristics of each scheme). In red: best F1-score for a given case study.

Optical SAR Fusion

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Antananarivo 0.92 0.77 0.61 0.79 0.83 0.86 0.88 0.86 0.88 0.93 0.93 0.93
Bukavu 0.92 0.83 0.74 0.85 0.89 0.91 0.93 0.91 0.93 0.94 0.96 0.96
Chimoio 0.83 0.32 0.10 0.37 0.45 0.54 0.58 0.50 0.55 0.90 0.90 0.90
Dakar 0.95 0.68 0.65 0.74 0.76 0.78 0.80 0.78 0.80 0.95 0.96 0.95
Gao 0.76 0.83 0.71 0.81 0.82 0.83 0.82 0.83 0.83 0.81 0.81 0.80
Johannesburg 0.96 0.88 0.88 0.90 0.91 0.92 0.93 0.92 0.93 0.97 0.98 0.98
Kampala 0.98 0.92 0.77 0.93 0.95 0.96 0.97 0.96 0.97 0.98 0.98 0.98
Katsina 0.93 0.94 0.92 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97
Nairobi 0.94 0.79 0.76 0.83 0.86 0.88 0.90 0.87 0.90 0.96 0.96 0.96
Ouagadougou 0.98 0.65 0.43 0.67 0.70 0.72 0.74 0.71 0.73 0.98 0.99 0.99
Saint-Louis 0.89 0.56 0.06 0.55 0.61 0.64 0.67 0.63 0.66 0.96 0.95 0.94
Windhoek 0.97 0.69 0.64 0.76 0.81 0.85 0.88 0.85 0.87 0.97 0.97 0.97

Table 5 presents the F1-score obtained with each classification scheme in each case study. In 10 case
studies out of 12, optical-based schemes reached a higher F1-score than SAR-based schemes. The two
case studies where SAR-based schemes appears more accurate are Gao (+7.6 points) and Katsina (+3.4
points): two small urban areas located in an arid climate characterized by a domination of bare land in
the landscape. However, the trend is not confirmed by the low scores obtained by SAR-based schemes
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in cities such as Ouagadougou and Saint-Louis, which present similar characteristics. These results
suggest that optical-based schemes are superior to SAR-based schemes in the context of pixel-based
classifications from a single sensor. This can be explained by the speckle noise inherent to SAR data and
by the loss of spatial resolution that occured during the computation of the GLCM textures. However,
in 11 case studies out of 12, the multi-sensor classification schemes reached the highest F1-scores — the
only exception being Gao, where the SAR-based scheme performed better. In most of the case studies,
complementing optical data with SAR features improved the classification performances, sometimes
dramatically (+6.7 points in Chimoio, +6.6 in Saint-Louis, +5.8 in Gao, +4 in Bukavu and Katsina).
This suggests that combining optical and SAR-based GLCM textures in the context of a pixel-based
classification can be a reliable and robust strategy.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1-score

Optical

SAR VV 5x5

SAR VH 5x5

SAR VV VH 5x5

SAR VV VH 7x7

SAR VV VH 9x9

SAR VV VH 11x11

SAR VV VH 5x5 9x9

SAR VV VH 5x5 11x11

Fusion 5x5

Fusion 9x9

Fusion 11x11

Figure 1. Box plot of the F1-score obtained with each classification scheme for each case study.

The performance of each classification scheme is summarised in Figure 1, which confirms the
previously observed trends. The difference between the various SAR-based classification schemes
is also highlighted. Classifications based on the VV polarization reached higher scores compared
to the ones based on the VH polarization. However, combining texture features derived from both
polarizations appears to increase the reliability of the classification models, leading to higher scores
and a lower standard deviation. Likewise, the window size used for the computation of the GLCM
did influence the classification scores. In our case studies, larger window sizes led to higher scores and
reduced the variability across the case studies. We previously stated the hypothesis that combining
several window sizes could increase the classification performance by including spatial information
from multiple scales. The results obtained tend to refute this hypothesis, as the schemes combining
textures from two window sizes did not perform better. Generally, the fusion schemes consistently
obtained the highest scores. However, contrary to the trend observed in single-sensor SAR-based
schemes, combining optical data with larger window sizes textures does not seem to increase the
classification performance. Fusion schemes that include textures computed with smaller window sizes
(5 × 5 and 9 × 9) benefited from slightly less variability across the case studies.
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Figure 2. Grouped Random Forest feature importances for the fusion scheme in each case study. VV
and VH groups correspond to the SAR features derived from a given polarization. Multispectral and
thermal groups correspond to the Landsat 8 bands.

In classifiers based on a forest of decision trees such as RF, the relative contribution of each feature
can be evaluated through the feature importance measure. The value ranges from 0.0 to 1.0, where
0.0 would indicate a feature that does not contribute to the classification, and 1.0 a feature that alone
classifies all samples. Figure 2 shows the repartition of the importance measure across the input
features used in the fusion classification scheme, grouped by data source: VV or VH polarization for
SAR data, and multispectral or thermal for optical data. Generally, texture features derived from the
VV polarization and multispectral bands from Landsat 8 were the features contributing the most to the
construction of the decision trees. Considering the lower scores obtained in single-sensor classification
schemes with SAR data, lower importances for SAR features could be expected. However, the grouped
importance of SAR features was superior to the importance of optical features in 5 case studies, and
exceeded 40% of the contribution in 10 case studies. Furthermore, the relative importance of optical
and SAR features did not appear correlated with their respective scores in the context of a single-sensor
classification. For instance, in Antananarivo and Nairobi, the best SAR-based classification scheme
reached a F1-score lower than the optical-based scheme by, respectively, 4.2 and 3.9 points. However,
in the context of the fusion scheme, the contribution of SAR features was superior to the contribution of
optical features. This suggests that the combination of both optical and SAR features adds information
to the classifier that cannot be modeled in the context of a single-sensor classification.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 October 2018                   doi:10.20944/preprints201810.0695.v1

http://dx.doi.org/10.20944/preprints201810.0695.v1


9 of 13

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy

Fusion 11x11

Fusion 9x9

Fusion 5x5

SAR VV VH 5x5 11x11

SAR VV VH 5x5 9x9

SAR VV VH 11x11

SAR VV VH 9x9

SAR VV VH 7x7

SAR VV VH 5x5

SAR VH 5x5

SAR VV 5x5

Optical

Bare soil Low vegetation High vegetation

Figure 3. Classification accuracy in specific land covers for each scheme.

As previously stated, combining SAR-based textural information and optical imagery is expected
to improve the classification performance in bare lands. Figure 3 shows the mean accuracy of each
classification scheme in three non-built-up land covers: bare soil, low vegetation and high vegetation.
As expected, the performance of the classification model in bare soil areas was superior in SAR-based
schemes than in optical-based schemes. On the contrary, SAR-based classification schemes, especially
the ones based on the VH polarization, suffered from low accuracies in densely vegetated areas. Finally,
fusion schemes based on both SAR and optical data benefited from the complementarity between both
sensors and present high accuracies in the three land covers.

Figure 4. Random Forest class probabilities in Katsina, Nigeria. a) Aerial view of the case study;
b) optical scheme probabilities; c) fusion_5x5 scheme probabilities; d) fusion_11x11 scheme
probabilities. Satellite imagery courtesy of Google.

Figure 4 shows the probabilistic output of three different classifiers: one based only on optical
data, and two based on both optical and SAR data with different GLCM window sizes. Visually, the
fusion classifiers appears to better distinguish between the built-up areas and the surrounding bare
lands. This leads to lower rates of misclassification after thresholding of the probabilities, as previously
shown by the assessment metrics. A side effect of the data fusion is the disappearance of the road
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network from the built-up class. Indeed, the classifier highly relies on the textural information from
the SAR features to discriminate between built-up and bare land, and roads are therefore excluded
from the built-up class.

Figure 5. Random Forest class probabilities in Bukavu, D. R. Congo. a) Aerial view of the case study; b)
optical scheme probabilities; c) sar_vv_vh_5x5_11x11 scheme probabilities; d) fusion_11x11 scheme
probabilities. Satellite imagery courtesy of Google.

There is some cases where data fusion is less beneficial. Figure 5 shows the probabilistic output
of the optical, SAR, and fusion schemes in Bukavu. This case study, located in a mountainous area,
presents two major obstacles for SAR data: dense vegetation in the north-west and steep slopes in
the south-east. Mapping the probabilistic output of the SAR-based classifier reveals the confusion
occurring in these areas. As a result, the probabilistic output of the fusion-based classifier appears
nearly as a copy of the optical-based one.

4. Conclusion

With the increasing availability of free imagery from multiple sensors such as Sentinel-1 and
Landsat 8, data fusion is one of the main challenge in remote sensing. The objective of this paper
was to assess the combined use of both Landsat 8 and Sentinel-1 imagery with a fusion scheme that
relies on a simple pixel-based classifier. The main expectation was a better discrimination between
built-up and bare soil areas in the context of urban mapping in Sub-Saharan Africa. The presented
results suggest that the complementarity between medium resolution optical and SAR sensors can be
exploited in the context of a supervised pixel-based classification. However, to make the pixel-based
approach effective, textural information must be extracted from SAR backscattering in order to reduce
the speckle noise and to provide contextual information at the pixel level.

Classification schemes including both optical and SAR features reached the highest scores in 11
case studies out of 12. Single-sensor classifiers making use of GLCM textures derived from the VV
polarization outperformed the ones based on the VH polarization. Nevertheless, combining both
polarizations consistently increased the classification performance. Likewise, large GLCM window
sizes (9 × 9 or 11 × 11) provided a slight improvement of the classification performance both in the
context of single-sensor classification and in fusion schemes. However, contrary to an hypothesis
that we formulated, combining textures derived from multiple GLCM window sizes — in order to
include spatial information from multiple scales at the pixel level, did not lead to a better classification
performance. The visual interpretation of the results obtained suggests that small GLCM window sizes
favor the detection of isolated settlements and buildings, whereas larger window sizes lead to a better
differentiation between built-up areas and bare lands. In the context of this study, the RF classifier was
not able to take advantage of both.

The assessment of the classifiers performances in specific land covers confirmed the high level of
complementarity between the two sensors. Single-sensor SAR-based classifications presented high
accuracies in bare soil areas, but suffered from a confusion between dense vegetation and buildings.
On the contrary, optical-based classifiers showed a high ability to discriminate between vegetation
and built-up, but a low differentiation between bare soil and built-up — especially in the most arid
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landscapes such as in Gao or Katsina. This complementarity was correctly modeled by the RF classifier
and, as a result, the fusion schemes presented high accuracies in both bare lands and vegetated areas.

Nevertheless, the fusion was less beneficial in case studies characterized by the presence of dense
vegetation and steep slopes — for instance in a mountainous and subtropical urban areas such as
Bukavu. However, in this case, the RF classifier was able to learn from the training dataset that SAR
data were not reliable. This suggests that including features derived from a DEM — for instance slope
and aspect, could improve the model ability to quantify the reliability of SAR data at the pixel level.
Such a strategy could also take place at the decision level. Further work is also required to assess the
reliability of the presented approach in the context of similar sensors such as Sentinel-2, ERS-1 and
ERS-2.
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