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Abstract
Uncovering unknown or missing links in social networks is a difficult task because of their
sparsity and because links may represent different types of relationships, characterized by
different structural patterns. In this paper, we define a simple yet efficient supervised learning-
to-rank framework, called RankMerging, which aims at combining information provided by
various unsupervised rankings. We illustrate our method on three different kinds of social
networks and show that it substantially improves the performances of unsupervised methods
of ranking as well as standard supervised combination strategies. We also describe various
properties of RankMerging, such as its computational complexity, its robustness to feature
selection and parameter estimation and discuss its area of relevance: the prediction of an
adjustable number of links on large networks.

Keywords Link prediction · Social network analysis · Large networks · Learning to rank ·
Supervised learning

1 Introduction

Link prediction is a key field of research for the mining and analysis of large-scale social
networks because of its many practical applications: going from recommendation strategies
for commercial websites (Huang et al. 2005) to recovering missing links in incomplete data
(Zhou et al. 2009). Link prediction also has significant implications from a fundamental point
of view, as it allows for the identification of the elementary mechanisms behind the creation
and decay of links in time-evolving networks (Leskovec et al. 2008). For example, triadic
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closure, at the core of standard methods of link prediction is considered as one of the driving
forces for the creation of links in social networks (Kossinets and Watts 2006).

In general, link prediction consists in inferring the existence of a set of links from the
observed structure of a network. The edges predicted may correspond to links that are bound
to appear in the future, as in the seminal formulation by Liben-Nowell and Kleinberg (2007).
Theymay also be existing links that have not been detected during the data collection process,
in which case it is sometimes referred to as the missing link problem. In both cases, it can be
described as a binary classification issue, where it is decided if a pair of nodes is connected
or not. The features used are often based on the structural properties of the network of known
interactions, either at a local scale (e.g. the number of common neighbors) or at a global scale
(e.g. randomwalk or hitting time). See for example Lü and Zhou (2011) or Al Hasan and Zaki
(2011) for surveys. Other sources of information are available to predict links, in particular
node attributes such as age, gender or other profile information (Backstrom and Leskovec
2011; Bliss et al. 2013), geographic location (Scellato et al. 2011), as well as interaction
attributes: frequencies (Tylenda et al. 2009) or the time elapsed since the last interaction
(Raeder et al. 2011).

We consider this problem in the context of large social networks. In this case, the classi-
fication issue has specific characteristics: for a typical 106 nodes network, there are around
1012 candidate pairs of nodes that can be connected, most of them being completely irrel-
evant. The problem is unmanageable without restraining ourselves to subsets of pairs. One
way of doing so is to limit the prediction to pairs of nodes which are close enough, as there
is indeed a higher probability that an edge appears between nodes located at short distance.
Even with this restriction we have to handle typically rankings with 105–107 items, as we
shall see it implies solving challenges in terms of computational efficiency. Notice also that
among these items, only a very small fraction are actually connected pairs, meaning that the
two classes have very different sizes. This problem is known as class imbalance and has an
important impact on the link prediction—see for example Lichtenwalter et al. (2010). We
also discuss this question later in this paper.

The features used for classification are known to be domain-specific. As links play various
roles in social networks, they are expected to be surrounded by different types of environments
and thus, to be best identified by different features. For these reasons, schemes based on a
single metric are prone to misclassification. Machine learning methods have been widely
used to combine the available information for the purpose of classification. In recent works,
classification trees, support vector machines, matrix factorization or neural networks are
implemented to predict links in biological networks or scientific collaboration networks
(Pavlov and Ichise 2007; Kashima et al. 2009; Benchettara et al. 2010; Lichtenwalter et al.
2010; Menon and Elkan 2011; Davis et al. 2013). However, these classification methods are
not designed to easily set the number of predictions, while this property is highly desirable in
the context of link prediction in social networks. Indeed, in many practical cases, we would
like to set the number of predictions to a given value; for example if link prediction is used
for recommendation purposes, a user might want to make a few high-precision predictions
or on the contrary make a large number of predictions in order to reach all potential targets,
depending on his or her strategy. On the other hand, it means that the user has to set the
number of predictions, which is not necessary with a classification method. In this work, we
follow an approach which allows to easily set the number of predictions.

Anotherway to address the issue consists in establishing a ranking of likely links according
to a scalar metric, correlated with the existence of interactions between nodes. Therefore,
we can use the same ranking features as those raised previously for the classification task,
that is to say based on the structure or on node and link attributes. Then, the user may set
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the number of links predicted by selecting the θ top-ranked items. Using this approach, the
information brought by the various ranking features can be combined using learning-to-rank
frameworks. The general idea is to aggregate these rankings in such a way that it creates a
new, better, output ranking. Unsupervised solutions are available, such as Borda’s method
or Markov chain ordering (Dwork et al. 2001; Sculley 2007). These methods stem from
social choice theory, where there is in general no ground truth available. As a consequence,
the merged ranking is built in order to yield the best consensus among the input rankings,
defining a notion of distance of the output to the inputs. In the situation of link prediction, it
is possible to define a ground truth and therefore, to formulate the learning-to-rank task in a
supervised way.

Supervised learning-to-rank techniques have been mostly designed in the context of infor-
mation retrieval tasks, such as document filtering, spamwebpage detection, recommendation
or text summarization, see for example Freund et al. (2003), Liu et al. (2007), Burges et al.
(2011) and Comar et al. (2011). In this field, the ground truth is the relevance evaluation of
experts. In Liu (2009), the author distinguishes between three kinds of approaches. Firstly,
pointwise approaches which are the most straightforward, using the score or rank associated
to a feature to fit, for example, a regression model. One undesirable effect is that low-ranked
items tend to have an over-important role in the learning process, which is particularly critical
in the case of link prediction as rankings are very large. Secondly, pairwise approaches (Her-
brich et al. 1999) consist in transforming the ranking problem into a classification one, by
considering couple of items and learning which one should be ranked above. This transform
allows the use of supervised classification methods, as the issue now consists in predicting
if a couple of items (a, b) should be put in class a over b or in class b over a. Unfortunately
even the cheapest implementations of this approach (Chapelle and Keerthi 2010) cannot be
used to predict links on large networks, as the number of items to rank here is larger than
105. Thirdly, listwise approaches (Cao et al. 2007) use a ranking of items as ground truth.
This method is not relevant to our case because when predicting θ links, the quality of two
rankings is strictly equivalent if they provide the same amount of true prediction in their top-θ
items. More generally, information retrieval techniques primarily aim at high precision on
the top-ranked items, and stress the relative ranking of two items. As stated in Chapelle et al.
(2011), most of the research on the topic has therefore focused on improving the prediction
accuracy rather than making the algorithms scalable, which is crucial in the case of link
prediction.

Learning-to-rank in the context of link prediction in large graphs calls for specific meth-
ods, suited for large rankings. In this spirit, Subbian andMelville (2011) designed supervised
ranking aggregation methods based on the adaptation of unsupervised methods. However,
they were created for another kind of prediction task, namely influence prediction. Closer
to our work, Pujari and Kanawati (2012) adapted these methods to predict links in social
networks using supervised approaches. One method that they consider is based on giving
weights to the Borda method according to the performances of the unsupervised rankings,
in the following we refer to this aggregation method as Weighted Borda. Another, Kemeny
aggregation, is also inspired by methods trying to provide a consensus from the unsuper-
vised rankings, by minimizing the number of pairwises disagreements between rankers. This
allowed efficient predictions on 104–105 items rankings.

In this work, we propose a simple yet efficient learning-to-rank supervised framework
specifically designed to uncover links in large and sparse networks, such as social networks.
We improve the prediction by combining rankings obtained from different sources of infor-
mation. The article is organized as follows. Section 2 is dedicated to the description of the
features and metrics that we use to evaluate the performances of the link prediction. We then
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present in Sect. 3 how classic unsupervised learning methods can be applied to the prob-
lem under consideration. In Sect. 4, we present our supervised machine learning framework,
called RankMerging, which improves the quality of predictions by aggregating the informa-
tion from the unsupervised metrics. Finally, we implement this method on four large social
network datasets, during three series of experiments in Sect. 5, and compare our results to
those of other methods. We also explore aspects such as the feature selection problem, the
impact of parameters values etc, and show that RankMerging is suited to social networks
where information is partial and noisy, and the number of links to predict is large.

2 Aggregation task and performance evaluation

2.1 Description of the aggregation task

In this work, link prediction is formulated as a learning-to-rank problem. We describe
here the rank aggregation task in general. Suppose we have a set of items I =
{item1, item2, . . . , itemmax}. We also have α lists, called rankings, which contain the whole
set or a subset of I in a definite order, for example ri = [ri [1], ri [2], . . . , ri [sizei ]]. A rank-
ing is full if it contains all the elements of I and partial if it does not. The aggregation task
consists in building an output (or aggregated) ranking ro containing once all items of I . In the
context of link prediction, an item ranked is a pair of nodes and we build the output ranking
in the purpose of discovering connected pairs at the top of ro.

2.2 Performance evaluation for link prediction

The definition of a good aggregation and thus of an adequate quality estimator depends on
the purpose of the ranking problem. For example in the context of social choice theory, a
ranking represents the order of preferences of a voter, so that the aggregation process aims at
providing the best possible compromise of the different input rankings. In this case, there is
no ground truth and the quality of an aggregated ranking is often evaluated using a distance
to the input rankings. A usual choice is the Kendall tau distance between the input rankings
ri and the output ranking ro, which is defined as the number of couples of items which are
ranked in different orders in ri and ro. Notice that it is also true in the field of information
retrieval, where the notion of goodness of a ranking is usually seen as a consensus among
experts.

However considering link prediction, it is possible to define a ground truth on a learning
set, where a link either exists or not. It allows to use more appropriate performance metrics.
Considering a fixed number of predictions θ , the link is predicted or not depending onwhether
its rank falls above or below θ . The quality of a prediction is therefore assessed by measuring
the numbers of true and false positive (resp. #tp and # f p), true and false negative (#tn and
# f n) predictions in the top θ pairs, and usual related quantities: precision Pr = #tp

#tp+# f p ,

recall Rc = #tp
#tp+# f n and F1-score F = 2·Pr·Rc

Pr+Rc .
Previous works have emphasized the dramatic effect of class imbalance (or skewness) on

link prediction problems in social networks (Lichtenwalter et al. 2010; Comar et al. 2011).
The fact that the network is sparse and that there are many more pairs of nodes than links
makes the prediction and its evaluation tricky. The typical order of magnitude of the classes
ratio for a social network made of N nodes is indeed 1/N . It means that the number of
predicted links is much lower than the number of candidate pairs, consequently the fall-
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out # f p
# f p+#tn is usually very small, making the ROC curve a potentially deceptive way of

visualizing the performances, as discussed in Yang et al. (2015). For this reason and because
we aim at improving both precision and recall over a large range, in the followingwe visualize
the performances in the precision–recall space.

3 Unsupervised rankings

3.1 Rankingmetrics

In this work, we focus on structural features that assign to each pair of nodes a score based on
topological information, then pairs are ranked according to this score. Note that the metrics
usedmay produce ties, in such case the relative order of tied items is decided randomly. There
is a large number of available metrics, which are designed to be correlated to the probability
of existence of a link, see for example Zhou et al. (2009), Lü and Zhou (2011) and Al Hasan
and Zaki (2011). Moreover, we consider graphs which links may be weighted—for example,
weights may correspond to the number of interactions between two nodes. When available,
we draw benefit from the weight information to refine the prediction. Nevertheless, the goal
of this paper is neither to propose elaborate classifiers nor to delve deeply into the feature
selection process, but to present a method that takes advantage of how complementary they
are. We have, therefore, chosen classic metrics and generalized them to the case of weighted
networks—other generalizations exist in the literature, e.g. Murata and Moriyasu (2007).

3.1.1 Local features

In the following, N (i) denotes the set of neighbors of node i , its degree is δ(i) = |N (i)|,
w(i, j) is the weight of a link (i, j) and W (i) is the activity of a node i , that is the sum of
the weights of its links. Some metrics are local (also called neighborhood rankers) as they
only rank links among nodes which are at most at distance 2. The common principle to their
definition is that two nodes that have many neighbours in common are likely to be connected
to each other.

– Common Neighbors index (CN), based on the number of common neighbors shared by
nodes i and j , the corresponding unweighted and weighted scores are

sCN (i, j) = |N (i) ∩ N ( j)| and sCNw (i, j) =
∑

k∈N (i)∩N ( j)

w(i, k) · w( j, k)

– Adamic–Adar index (AA), which relies on the same principle as CN and also promotes
pairs which share low-degree neighbours,

sAA(i, j) =
∑

k∈N (i)∩N ( j)

1

log(δ(k))
and sAAw (i, j) =

∑

k∈N (i)∩N ( j)

1

log(W (k))

– Resource Allocation index (RA) is based on the same logic as AA index, but gives a
different weight to the degree of shared neighbours,

sRA(i, j) =
∑

k∈N (i)∩N ( j)

1

δ(k)
and sRAw (i, j) =

∑

k∈N (i)∩N ( j)

1

W (k)
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– Sørensen index (SR), which promotes pairs that have a large fraction of their neighbour-
hood in common,

sSR(i, j) = 2 · |N (i) ∩ N ( j)|
δ(i) + δ( j)

and sSRw (i, j) =
∑

k∈N (i)∩N ( j) w(i, k) + w( j, k)

W (i) + W ( j)
.

3.1.2 Distance-based features

Other features are distance-based, since they are calculated using the large-scale structure of
the network, and allow for the ranking of distant pairs of nodes:

– Katz index (Katz), computed from the number of paths from node i to node j of length
l, i.e. νi j (l), according to the following expression

sKatz(i, j) =
∞∑

l=1

γ lνi j (l)

Here, γ is an attenuation parameter. It must be lower than 1 and small values favour
short paths over long ones. The relevance of Katz index stems from the fact that two
nodes which are connected by many paths are more likely to be linked. Note that in the
weighted case, the number of paths is computed as if links were multilinks.

– Random Walk with Restart index (RWR), derived from the PageRank algorithm,
sRWRw (i, j) is defined as the probability that a random walker starting on node i , going
from a node k to a node k′ with probability p.w(k, k′)/W (k) and returning to i with
probability 1− p, is on j in the steady state of the process. The fact that a random walk
starting on i has a high probability to go through j indicates that both nodes are tightly
related in the network, and may therefore be linked.

– Preferential Attachment index (PA), based on the observation that active nodes tend to
connect preferentially in social networks.

sPAw (i, j) = W (i) · W ( j).

3.1.3 Intermediary features

In practice, the exact computation of distance-based metrics is expensive on large networks,
that is why approximations are often favoured to compute these scores. Both Katz and RWR
are computed using infinite sums, from now on it is approximated by keeping only the
first four dominating terms to reduce the computational cost,1 which is a usual practice for
computing large-scale centrality estimators (Lü and Zhou 2011). This approximation means
that we can only predict links between pairs of nodes at a maximum distance of 4. Notice
that it is a way to reduce the class-imbalance problem: as distant pairs are less likely to be
connected, we dismiss them in order to increase the (true positive/candidate pairs) ratio. As
the class imbalance problem is known to hinder dramatically the performance of PA, we have
restricted the ranking in this case to pairs of nodes at a maximum distance of 3. Notice that
with larger maximum distances, we can increase the maximum recall that can be reached,
but at the cost of a drop of precision.

1 The limiting factor in the experiments presented in the following is the loading in memory of the adjacency
matrix and its powers, which sizes are limited to around 1GB in our implementations.
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When even distance 4 approximation is too expensive, we use the Local Path index,
especially designed to capture the structure at an intermediary scale

sLP(i, j) = νi j (2) + γ · νi j (3)

With the same notations as Katz index and γ is the corresponding attenuation parameter.

3.2 Borda’s method

Themain purpose of this work is to develop a framework to exploit a set of α rankings for link
prediction. Here, we present an unsupervised way of merging rankings stemming from social
choice theory: Borda’s method is a rank-then-combine method originally proposed to obtain
a consensus from a voting system (de Borda 1781). Each pair is given a score corresponding
to the sum of the number of pairs ranked below, that is to say:

sB(i, j) =
α∑

k=1

|rk | − rk(i, j)

where |rk | denotes the number of elements ranked in rk , and rk(i, j) the ranking of pair (i, j)
in ranking rk .

This scoring system may be biased in the sense that it would favour some predictors—in
our case distance-based scores—by the fact that they feature more elements. In other words,
this definition does not cover well the partial ranking situation. To alleviate this problem,
we use the same method as the one cited in Dwork et al. (2001): “by apportioning all the
excess scores equally among all unranked candidates”. Another way of phrasing it is that
all unranked pairs in ranking rk are considered as ranked on an equal footing and below all
ranked pairs. Borda’s method is computationally cheap, which is a highly desirable property
in the case under consideration, where many items are ranked.

4 RankMerging framework

The ranking methods presented in the previous section use structural information in com-
plementary ways. In social networks, communication patterns are different among different
groups, e.g. family, friends, coworkers etc. Consequently, one expects that a link detected as
likely by using a specific ranking method may not be discovered using another one. In this
section, we describe the supervised machine learning framework that we created to aggre-
gate information from various ranking techniques for link prediction in social networks. In
a nutshell, it does not demand for a pair to be highly ranked according to all criteria (as in a
consensus rule), but to be highly ranked in at least one. The whole procedure is referred to
as RankMerging.2

4.1 Optimization task

The learning phase ofRankMerging aggregation is based on a greedy optimization algorithm.
We first define the optimization task that we want to achieve during this phase.

In the learning set, the items ranked are pairs of nodes which are labeled either with 1 if
they are connected and 0 otherwise. For a fixed number of predictions θ , Sθ is the sum of

2 An implementation and user guide are available on http://lioneltabourier.fr/program.html.
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the values of the labels in the output ranking ro, that is to say the number of true positive
predictions among the top θ pairs in ro. Sθ is a function of Φ = [rn1(k1), . . . , rnθ (kθ )], that
is the ordered list of length θ which contains the sequence of pairs selected: rn1(k1) means
that the first element selected is the k1th pair of ranking rn1 , etc. As an item can be present
in several rankings but put only once in the output ranking, the items appended to the output
are no longer available, in other words, all elements of the list Φ have to be distinct. If φi

denotes the number of items selected from ranking ri , note that {φ1, . . . , φα} can be trivially
derived fromΦ and that we have φ1+· · ·+φα = θ . In the most general case, we are looking
for the sequence Φ that yields the maximal value of Sθ (Φ).

Now,weprecise a fewchoices in the design of ourmethod,which simplify the optimization
task described above. The aggregation process is iterative, starting from an empty output
ranking. At each iteration, we select one of the input rankings and append its highest ranked
item available to the output ranking. Thus in our case, an element rni (ki ) can featureΦ only if
all elements above in rni are already inΦ. In short, the aggregation is realized as a sequence of
selections of input rankings. In this context, the function Sθ to optimize can be reformulated
as a function Sθ (Φ̂), where Φ̂ = [rn1 , . . . , rnθ ] is the ordered sequence of rankings selected
during the process. We are looking for a sequence which yields the maximum number of
pairs labeled 1 among the top θ pairs in ro. There is no obvious way to solve this problem
exactly, therefore, we use a heuristic method to solve it by local search.

4.2 Introductive example

While the principle of our method is quite intuitive, its technical details may be dry. That is
why we describe in this section the process qualitatively, and develop it on an example to
help the reader understanding the following sections. To avoid confusion, we denote from
now on the structures relative to the learning phase with index L and the ones relative to the
test phase with index T .

4.2.1 Learning phase

During the learning phase, we have a learning graph which is used to build the prediction
model. The pairs of nodes which are not edges of this graph constitute the set of labeled
pairs: some are not connected and others are edges of the calibration set, denoted Ecal in the
following. In practice, the prediction model is built to guess these links during the learning
phase.

Let us remind that the inputs of the learning algorithm are the unsupervised rankings,
which are obtained using various kinds of scores (or rankers) on the learning graph. Note
that a ranker may give the same score to several pairs of nodes, in this case the order of the
pairs is decided randomly. The number of predictions is set to θL . The outputs of the learning
phase are the merged ranking ro,L containing θL pairs and the values of the coefficients
{φ1, . . . , φα} defined in Sect. 4.1. These coefficients can be understood as the weights of the
input rankings in ro,L .

To approximate the optimization task defined above, we proceed in the following way.
At each step, a ranking among the input rankings is selected and its highest available pair
is appended to the output ranking ro,L . The selection process is based on an estimate of
the probability that the highest available pair is actually connected. To do so, for each input
ranking we build a sliding window Wi,L which contains the next g available pairs. The
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Table 1 Four steps illustrating the learning algorithm with rankings r1,L and r2,L (g = 5, θL = 4) (Color
table online)

Pairs predicted (i.e. ∈ ro,L ) have green backgrounds. Pairs with gray backgrounds are in the windows W1
andW2. Barred pairs with red backgrounds have already been predicted and are no longer available

window size g is the only parameter of the method that the user has to set. We denote χi the
quantity of true positive (or tp) in windowWi,L . Then, the average probability that any pair is
connected inWi,L is the ratio χi/g. We select the ranking which has the highest probability
value, that is to say the highest χi value. Ties are broken randomly, which makes the method
non-deterministic.

Let us put into practice this process on an example. In Table 1, we consider the learning
process on two input rankings r1,L and r2,L . The window size g is fixed to 5 and the number
of predictions θL = 4. Initially, there are 4 tp inW1,L and 3 tp inW2,L , consequently the first
link selected is the top-ranked pair available in W1,L , which is (1, 2). This pair is therefore
appended to the output ranking ro,L and excluded from the ranking r2,L . At step 2, we have 4
tp in both windows, the ranking is then selected randomly. Let us suppose that r2,L has been
selected, therefore, the next link added to ro,L is (5, 18). At step 3, χ1 = 4 and χ3 = 3 then
the pair selected to join ro,L is (1, 4) from r1,L . At step 4, χ1 = 4 and χ2 = 3 and the pair
selected is (5, 6) from r1,L . At this point, φ1 = 3 and φ2 = 1.
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Table 2 Illustration of the test algorithm (Color table online)

Top: φi learnt during the learning phase. Bottom: pairs in ro,T at each step of the aggregation (green back-
ground), barred pairs with red backgrounds have already been predicted and cannot be selected anymore

4.2.2 Test phase

The test phase of RankMerging consists in using the coefficients {φ1, . . . , φα} computed at
each step during the learning phase in order to select the ranking on the test set.

The inputs of the test phase are the unsupervised ranking defined on the test graph, denoted
{r1,T , . . . , rα,T }, and the {φ1, . . . , φα} learned during the learning process. Its output is the
merged ranking of items ro,T , which is initially empty. For the sake of simplicity, let us first
suppose that there are the same number of items to rank in the learning phase and in the
test phase. In this case, we make the assumption that the optimal aggregated ranking in the
test phase should be obtained by the same mixing as the aggregated ranking of the learning
set. For example, if the item ranked at position k in ro,L has been selected from ranking ri,L

during the learning process, we should rank at position k in ro,T a pair from ranking ri,T .
In Table 2, we give an example of test using the φi learnt on the example of Table 1. At

the first step of the learning algorithm, φ1 = 1 and φ2 = 0, so the top ranked item of r1,T ,
which is (2, 8), is selected at the first step of the testing process and appended to ro,T . We
iterate this process: at step 2, φ1 = 1 and φ2 = 1, we therefore append the highest available
item of r2,T to ro,T , which is (1, 8), etc.

It is possible that the number of items ranked using the learning graph and the number of
items ranked using the test graph differ. In this case, we define and compute a scaling factor
f , which is the ratio between the number of items ranked on the test set over the number
of items ranked on the learning set. Then, when predicting item in position kT in the test
output ranking, it should correspond to the item ranked in position kL = �kT / f �. This idea
can be intuitively understood using Fig. 1, the mixing should be proportional to the size of
the ranking considered. For example, if there are twice more pairs ranked in the testing set
than in the learning set, the ranking ri,T selected for kT = 1 and kT = 2 corresponds to the
ranking ri,L selected for kL = 1.

4.3 Algorithms

In this section, we describe the algorithms of RankMerging aggregation process with more
precise technical details.
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Fig. 1 Schematic representation
of the scaling factor f , ratio of
the number of pairs ranked in the
test set over the number of pairs
ranked in the training set. On this
example, the number of items
ranked in the test set is supposed
to be twice as large as the number
of items ranked in the learning
set, so that f = 2 f

r
o,L

r
o,T

4.3.1 Learning phase

The learning set in the context of link prediction is composed of a learning graph GL =
{VL , EL }, where VL is the set of vertices and EL is the set of edges. Edges of EL are not
ranked in the process and cannot be predicted. For this purpose we also have an additional
set of links Ecal among nodes of VL . During the learning phase, we aim at predicting these
additional edges, which are the pairs labeled as true positive as already mentioned.

Wehaveα different rankings {r1,L , . . . , rα,L }obtainedwith unsupervised rankingmethods
on GL . Any ranking ri,L contains exclusively pairs of (VL × VL)\EL . This set of rankings
is described as a two dimensional table RL , so that RL [i] = ri,L and RL [i][k] denotes the
pair ranked in position k of ranking ri,L .

We previously explained that each ranking is equipped with a sliding windowWi , that we
denoteW[i] from now on, as it is practically stored as a table of sets. Each window contains
exactly g items, which are the highest ranked pairs in this ranking, still available for selection.
A window can be located using a start index ρ which is the rank of the highest available pair
and an end index σ which is the rank of the highest pair out the window. Storing these indices
in tables, ρ[i] and σ [i] are respectively the start and end index ofW[i]. Notice that initially
σ [i] − ρ[i] = g, however it is not true during the whole process.

We also need to store the output ranking ro,L in a table of length θL (the number of
predictions, which set by the user). Most importantly, we need to register the values of
{φ1, . . . , φα}. We store them in a two dimensional table Φ, so that Φ[i][k] is the value of φi

at the kth step of the aggregation process, that is the selection of item ro,L [k]. Note also that
the values of {φ1, . . . , φα} at the kth step of the aggregation are the values corresponding to
θL = k. So, when the number of predictions is θL , we can actually make a prediction for any
value k ≤ θL .

Now that all the useful structures are defined, we describe in a few words the aggregation
process. At any step k, we evaluate for eachwindow the number of links that it contains, which
is χi = |W[i] ∩ Ecal|. The ranking selected is the one for which this quantity is maximum,
ties being broken randomly. The highest ranked pair of the selected ranking is appended in
position k of the output ranking ro,L . We register which ranking RL [ j] has been selected
by incrementing the value of Φ[ j], that is to say Φ[ j][k] = Φ[ j][k − 1] + 1, while for the
other rankings (i 	= j), Φ[i][k] = Φ[i][k − 1]. Then, the windowsW[i] are updated so that
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each window contains exactly the g highest ranked available pairs in RL [i]. The process is
iterated until ro,L contains θL items.

The algorithm corresponding to this process is described in Algorithm 1. In the description
of the algorithm, we dropped the index L for the sake of readability.

Algorithm 1: RankMerging method: learning algorithm.
inputs : table of rankings R; real edge set Ecal ;

maximum number of predictions θ ; window size g;
outputs: table Φ; merged ranking ro;
// initialization, ∀i ∈ {1, . . . , α}:
begin

W[i] ← g first links inR[i]; // pairs in window Wi
χ [i] ← |W[i] ∩ Ecal |; // number of actual links in window Wi
ρ[i] ← 1; // start index of window Wi
σ [i] ← g + 1; // end index of window Wi
k ← 1; // counter of the number of items ranked in ro

while k ≤ θ do
imax ← index corresponding to maximum χ [i];
ro[k] ← R[imax ][ρ[imax ]];
ρ[imax ] ← ρ[imax ] + 1;
k ← k + 1;
Φ[imax ][k] ← Φ[imax ][k − 1] + 1; // record φimax at step k
∀i ∈ {1, . . . , α} and i 	= imax , Φ[i][k] ← Φ[i][k − 1]; // record other φi
∀i ∈ {1, . . . , α}, update(W[i], χ [i], ρ[i], σ [i], ro[k]); // update windows Wi

Procedure: update(W[i], χ [i], ρ[i], σ [i], ro[k]):
begin

// take away the selected pair from Wi:
if ro[k] ∈ W[i] then

W[i] ← W[i]\{ro[k]}
// increase ρi until reaching an available pair in ri:
while R[i][ρ[i]] ∈ ro do

ρ[i] ← ρ[i] + 1;

// increase σi until having g pairs in Wi:
while |W[i]| ≤ g do

l ← R[i][σ [i]];
σ [i] ← σ [i] + 1;
if l /∈ ro then

W[i] ← W[i] ∪ {l};
χ [i] ← |W[i] ∩ Ecal |; // update number of links in window Wi

4.3.2 Test phase

The test set is composed of a test graph GT = {VT , ET }, where VT is the set of vertices and
ET is the set of edges. Edges of ET are not ranked in the process and cannot be predicted. We
aim at predicting edges of an additional set Eperf , which is used to measure the performances
of the method.

We have α different rankings {r1,T , . . . , rα,T } obtained with unsupervised ranking meth-
ods on GT . The feature used to obtain ri,T on the test graph is the same as the feature
used to obtain ri,L on the learning graph. Any ranking ri,T contains exclusively pairs of
(VT × VT )\ET . Here again, this set of rankings is described as a two dimensional tableRT ,
so that RT [i] = ri,T and RT [i][k] denotes the pair ranked in position k of ranking ri,T .
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The test phase consists in aggregating rankings of RT according to the {φ1, . . . , φα}
learnt on the training network GL . This process yields an aggregated ranking ro,T , which
is the final output of the method. The number of pairs selected from any ranking RT [i] is
stored in a table Λ, such that Λ[i] is the number of pairs selected from RT [i]. At step
k′ of the testing phase, the ranking selected for the aggregation process should be the
ranking selected at step k of the learning phase so that k = �k′/ f �. Let us recall that
f is the ratio of the number of items ranked in the test set over the number of items
ranked in the learning set. Practically speaking, it means that for all i ∈ {1, . . . , α}, we
append available items from ranking RT [i] to ro,T until we have Λ[i] = Φ[i][k] with
k = �k′/ f �. Notice also that the size θT of ro,T cannot exceed f times the size of ro,L , that
is f · θL .

Finally, the pairs appended to the output ranking are the highest ranked available pairs of
RT [i]. For this purpose, we define a table C, in which we store the location of the top-ranked
available pair in C[i]. The corresponding process is described in Algorithm 2. We dropped
the index T in the algorithm for the sake of readability.

Algorithm 2: RankMerging method: testing algorithm.
inputs : table of rankings R; Φ table;

maximum number of predictions θ ; scaling factor f ;
outputs: aggregated ranking ro;
// initialization, ∀i ∈ {1, . . . , α}:
begin

C[i] ← 1; // location of the highest ranked available item in ri
Λ[i] ← 0; // number of items selected from ri
k ← 1; // index of the learning tables φi
k′ ← 1; // number of items ranked in ro

while k′ ≤ θ do
for i ∈ {1, . . . , α} do

while Λ[i] < Φ[i][k] do
if R[i][C[i]] /∈ ro then

ro[k′] ← R[i][C[i]];
Λ[i] ← Λ[i] + 1;
k′ ← k′ + 1;
k ← �k′/ f �;

C[i] ← C[i] + 1;

4.3.3 Complexity

A substantial benefit of the learning algorithm is that we need to go through each learning
ranking only once. Moreover, by using appropriate data structures to store the windows
Wi—e.g., associative arrays of sets—it is easy to manage each update in O(1). So if we have
α rankings and θL predictions, it implies a O(α · θL) temporal complexity. Similarly, the
test phase demands to go through the test rankings once, yielding a O(α · θT ) complexity.
Moreover, most of the memory used is due to the storage of the rankings, which is also
O(α · θL) or O(α · θT ). These time and space consumptions are in general insignificant
with regard to the complexities of the preliminary unsupervised classification methods, as is
confirmed by the experimental computation times (see Sect. 5.6).
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4.4 Properties related to social choice theory

In the context of social choice theory, ranking aggregation methods are often built in order to
satisfy a set of properties that guarantee their goodness (Arrow 2012). Two of the properties
which are often considered as desirable are (a) satisfying the Condorcet criterion (in its
extended version), and (b) being Kemeny optimal. The former means that if a majority of
rankings prefers an item i to an item j then it should be the case of the aggregated ranking.
The later means that the Kendall tau distance from the output ranking to the inputs is minimal.
Our method satisfies neither of these two properties.3

However, it is important to underline that RankMerging is not built for the purpose of
social choice. These characteristics are relevant in an unsupervised context, where there is
no ground truth to evaluate the result. The underlying assumption is that each ranking should
have the same weight and the distance to the input is the criterion to evaluate the quality of an
aggregation. As argued in Subbian and Melville (2011) too, there is a ground truth available
in the context of supervised ranking aggregation tasks, that is the number of true positive
predictions on the learning set. As a consequence, satisfying these properties is not a priority
for our purpose and we naturally favoured the number of true predictions for the design of
RankMerging.

4.5 Design justification

Let us recall that the aggregation process aims at finding the maximum value of a function
Sθ (Φ̂), which is the sum of the labels of the output rankings of the learning phase. The labels
are either 1 (if the link exists) or 0 (if it does not)—see Sect. 4.1. In this section, we explain
why the design that we have chosen for the algorithm should be efficient to achieve this task,
and what is the influence of parameter g in the process.

During the learning phase of the algorithm, we select elements of the input rankings
according to these rankings order. This choice is efficient provided that input rankers aremade
so that highest ranked pairs have a higher probability of being true positive predictions—
which is expected from a good classifier. Moreover, we choose a ranking depending on a
quality evaluator, that is χi/g. Considering that χi is the number of elements with label 1 in
the sliding window of ranking ri,L , χi/g can be understood as the probability that a random
element in the window is a true positive.

To investigate how efficient the aggregation process on the learning graph should be, we
measure if the quality evaluator is indeed decreasing throughout the process. We show on
Fig. 2 a typical example of the evolution of χi/g for a given ranker (Common Neighbors) in
a given experiment (on the PSP dataset, see Sect. 5.1.1) and different g values.

We can observe that the decreasing condition is nearly fulfilled during the process if g is
large enough. However, it does not mean that the best solution for the merging problem is to
take g as large as possible, as the larger g gets, the lesser χi/g is an accurate estimation of
the probability that the next pair selected is an element with label 1. Therefore, we have to
manage a trade-off by tuning parameter g in order to obtain the best possible performance
of RankMerging.

3 It can also be shown that RankMerging does not verify independence of irrelevant alternatives, weak mono-
tonicity and continuity.On theother hand, it satisfies the properties of consistency, unanimity, non-dictatoriality,
neutrality, anonymity and non-constancy.
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Fig. 2 Function χi
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5 Experiments

5.1 Datasets

5.1.1 PSP phonecall network

We investigate a call detail record of approximately 14 × 106 phonecalls of anonymized
subscribers of a European phone service provider (PSP) during a 1month period. Users
are modeled as nodes, and a link represents the existence of a communication relationship
between two users. A call between two users is a directed interaction, and we filter out calls
which are not indicative of a lasting relationship (e.g., commercial calls) by considering only
calls on bidirectional links, i.e. links that have been activated in both directions. After this
filtering has been applied, interactions between users are considered as undirected. The total
number of phone calls between nodes i and j is the weight of this link. The resulting network
is composed of 1,131,049 nodes, 795,865 links and 10,934,277 calls.

5.1.2 DBLP coauthorship network

The second dataset under study is the collection of computer science publications DBLP,4

which roughly contains 19 × 106 papers. We study the collaboration network, where nodes
of the network are authors and links connect authors who published together and links are
weighted according to their number of collaborations. The network features 10,724,828 links
and 1,314,050 nodes.

5.1.3 Pokec social network

Pokec is a popular online social network in Slovakia.5 We consider the network of friendship
links between accounts. In its original version there are around 31×106 friendship links, but
friendship is directed in Pokec, so we only kept reciprocated friendships in the spirit of the
preprocessing of the PSP dataset. The final network contains 8,320,600 links and 1,632,804
nodes.

4 Available at http://konect.uni-koblenz.de/networks/dblp_coauthor.
5 Available at http://snap.stanford.edu/data/soc-pokec.html.
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5.1.4 Facebook social network

We also study a subpart of Facebook network, which has been described in Viswanath et al.
(2009).6 This dataset is considered in a link prediction setting (rather thanmissing link recov-
ery). It registers communication among users via their Facebook wall from approximately
2005 to 2008.We restricted ourselves to 700days of data from January 1st 2007 to November
30th 2008, as the activity over the first 2years is low. Temporal labels are rounded to have
a daily granularity. The final temporal network contains 45,612 nodes, 175,651 links and
532,318 interactions (wall posts), links are considered undirected.

5.2 Benchmarks for comparison

In order to assess the efficiency of RankMerging, we compare its performances to existing
techniques.

• We first compare to the various unsupervised rankings described in Sect. 3.
• We also compare to classic supervised techniques for classification tasks. As stated in Al

Hasan et al. (2006), there are a lot of such methods available, which performances are
usually comparable. Because of the number of items to be classified, we restricted our-
selves to several computationally efficient methods, namely k nearest neighbors (NN),
decision trees (also known as classification trees CT ) and AdaBoost (AB).7 The learn-
ing features used for the classification task are the unsupervised ranks of the pairs. We
have used implementations from Python scikit learn toolkit.8 Note that these techniques
are not specifically designed for link prediction tasks. As a consequence, there is no
obvious way of controlling the number of predictions. We obtain several points in the
precision–recall space by varying the algorithms parameters, respectively the number of
neighbors k with NN, the minimum size of a leaf with CT, and the number of pruned trees
with AB.

• Finally, we compare our results to a supervised learning-to-rank technique. We underline
that most of the classic techniques are not available here, as the rankings considered
have so many items that it is not conceivable to use a method which complexity is
worse than linear or linearithmic. For example, methods based on the pairwise compar-
ison of rankings, are not available here. We use the weighted Borda method proposed
in Pujari and Kanawati (2012), which follows the same principle as the unsupervised
Borda method, except for the fact that the input rankings are weighted according to their
level of performance on a training set. Several weighting schemes are proposed in that
article, and we use the maximization of precision, in which weights are proportional to
the precision of the predictions related to the input rankings. We do not use the local
Kemeny and supervised Kemeny methods either (Subbian and Melville 2011), because
even if the merging process is presented as a linearithmic function of the size of the rank-
ings, the whole procedure is actually quadratic as there is a preliminary pairwise score
computation.

6 Available at http://konect.uni-koblenz.de/networks/facebook-wosn-wall.
7 We used a version of AdaBoost which combines the results of several pruned classification trees.
8 http://scikit-learn.org/, for more details, see Pedregosa et al. (2011).
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5.3 Series 1

The first series of experiments aims above all to describe how themethodworks on a practical
example. We focus on the PSP dataset and explore the impact of the parameter g value and
the question of the feature selection.

A possible motivation for recovering missing links in the context of a phone service
provider is that PSPs only have access to records involving their own clients, so that they
have an incomplete view of the social network as a whole. In several practical applications,
however, this missing information is crucial. An important example is churn prediction, that
is the detection of clients at risk of leaving to another PSP. This risk is known to depend
on the local structure of the social network (Dasgupta et al. 2008; Ngonmang et al. 2012).
Therefore, the knowledge of connections between subscribers of other providers is important
for the design of efficient customer retention campaigns. This series of experiments has been
designed for this application, that is to say the prediction of links among the users of a PSP
competitor.

5.3.1 Protocol

A Phone Service Provider is usually confronted to the following situation: it has full access
to the details of phone calls between its subscribers, as well as between one of its subscriber
and a subscriber of another PSP. However, connections between subscribers of other PSPs
are hidden. In order to simulate this situation from our dataset, we divide the set of nodes V
into three disjoint sets: V1, V2 and V3. V1 ∪V2 would be subscribers to the PSP, V3 would be
subscribers to competitors. V1, V2 and V3 form a partition of V and a partition of the set of
links E ensues. During the learning phase, links V1–V1 and V1–V2 are known, defining the
set of links EL of the graph GL , and we calibrate the model by guessing links V2–V2, defining
the set Ecal . During the test phase, all the links are known except for links V3–V3, and we
aim at guessing these links to evaluate the performances, we denote this set of links Eperf .
Users have been assigned randomly to V1, V2 and V3 according to the proportions 50, 25,
25%. With these notations, we have:

– GL = (VL = V1 ∪ V2 , EL), it contains 848,911 nodes and 597,538 links and we aim at
predicting the 49,731 links in Ecal.

– GT = (VT = V , ET = E\Eperf ), it contains 1,131,049 nodes and 746,202 links and we
aim at predicting the 49,663 links in Eperf .

5.3.2 Unsupervised learning process

We plot the results obtained on GL to predict Ecal links for the above classifiers. For the
sake of readability, we only represent a selection of them in Fig. 3. The evolution of the
F1-score significantly varies from one classifier to another. For example, it increases sharply
for CN, and then more slowly until reaching its maximum, while RWRw rises smoothly
before slowly declining. Borda’s aggregation improves the performance of the classification,
especially considering the precision on the top-ranked pairs. RankMerging method aims at
exploiting the differences between these profiles. Given the difficulty of the task, precision
is low on average. For instance, when recall is greater than 0.06, precision is lower than 0.3
for all rankers. We only used structural features here, making it impossible to predict links
between nodes which are too distant from each other (further than four steps in our case).
On the one hand we are thus limited to small recall values, but on the other hand, limiting
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Fig. 3 Results obtained on the learning set for various structural classifiers. Left: F1-score as a function of the
number of predictions. Right: precision versus recall curves

predictions to pairs of nodes which are close is a way of reducing the class imbalance effect
aforementioned. Indeed, we dramatically reduce the set of candidate pairs, while the set of
connected pairs is reduced by a much smaller factor as closer nodes have a higher probability
of being connected (Lichtenwalter et al. 2010). Finally, note that the process considered here
is a partial aggregation process, as different rankings feature a different number of pairs (e.g.,
AAw and RWRw), but this does not affect its functioning.

5.3.3 Supervised merging process

According to the description in Sect. 4.3, φi are computed on GL to discover Ecal links, and
then used tomerge rankings onGT to discover Eperf links.Note thatwe apply the scaling factor
f  1.5, according to its definition in Sect. 4.2.2, to adapt the φi learnt to the test rankings.
Considering the value of g, it is fixed in order to obtain the best possible performance on
the learning set. Our numerical experiments show that the performance of the algorithm is
robust over a large range of values of g (see Table 4). It is of course a desirable property,
because if the results were varying a lot under small variations of g, it would make the
parameter g difficult to tune. Concerning feature selection, we argue in the following that
the user may aggregate as many rankings as possible. In fact, the information provided by
different rankings may be redundant, but the merging process is such that the addition of
a supplementary ranking is computationally cheap. Moreover, if a ranking does not bring
additional information, it should simply be ignored during the learning process.

5.3.4 Results

We plot in Fig. 4 the evolution of the F1-score and the precision–recall curve obtained with
RankMerging, for g = 200, aggregating the rankings of the following classifiers: AAw , CNw,
C N , SRw , Katzw (γ = 0.1), PAw , RWRw (p = 0.8) and Borda’s method applied to these
seven classifiers.We observe thatRankMerging performs better thanBorda, and consequently
better than all the unsupervised methods explored, especially for intermediary recall values.
It was expected, as RankMerging incorporates the information of Borda’s aggregation here.
We measure the area under the precision–recall curves to quantify the performances with a
scalar quantity. RankMerging increases the area by 8.3% compared to Borda. Note also that
this improvement is not significantly affected by the fact that the method is not deterministic.
Let us recall that there are two sources of non-determinism in the protocol: pairs of the
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Table 3 Improvement (in %) to Borda’s method of the area under the curve in the precision–recall space, for
the aggregation of different rankings

AAw CNw CN SRw Katzw PAw RWRw Borda imp. (%)

x x x x x x x x 8.3

x x x x x x x 3.2

x x x x x x − 0.7

x x x x x − 1.0

x x x x − 2.0

x x x x x x x 8.2

x x x x x x 8.1
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Fig. 4 Results obtained with RankMerging on the test set (learning with g = 200), compared to various
benchmarks. Left: F1-score as a function of the number of predictions. Right: precision versus recall curves

input rankings with similar scores are ranked randomly, and ties between rankers which have
similar χ during the aggregation process are also broken randomly. Here, the fluctuations
between two realizations of a same experiment are marginal.

Concerning the supervised classification benchmarks, we observe that they perform well,
but only for a low number of predictions (it is comparable to Borda for approximately
1000–2000 predictions). Unsurprisingly, AdaBoost is an ensemble method and outperforms
Decision Trees and k Nearest Neighbors for an optimal parameter choice, but the perfor-
mances are of the same order of magnitude, in line with the observations in Al Hasan et al.
(2006). As formerly stated, these methods are not designed to cover a wide range of the
precision–recall space, and therefore perform very poorly out of their optimal region of use.

On the minus side, Weighted Borda method slightly outperforms RankMerging on this
dataset. Indeed, we measure that Weighted Borda improves by 4.0% the area under the
precision–recall curve compared to RankMerging. We discuss in the next series of exper-
iments, where our method is more accurate, what can be the reasons for this observation.
Another negative point that should be noticed is that RankMerging has been designed for
problems with large rankings. The window size g implies an averaging effect which causes
the method to lack efficiency on the top-ranked items. As a consequence, it is not suited to
problems with a low number of predictions—as would be the case for information retrieval
tasks for example.
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Table 4 Improvement to Borda’s
method of the area under the
curve in the precision–recall
space, for different values of g

g 10 100 200 300 400 500 1000 2000

imp. −0.8 5.5 5.4 5.2 5.0 4.7 4.0 2.7

gT 10 100 200 300 400 500 1000 2000

imp. 2.7 8.2 8.3 7.9 7.4 7.2 6.4 5.6

Top: learning set, bottom: test set

Feature selectionWe evaluate the influence of the structural metrics in Table 3. A comprehen-
sive study of the matter would be long and repetitive considering all possible combinations
of rankings, and we restrict ourselves to a few examples. An important result to notice here
is that the addition of a ranking does not decrease the quality of the merging process—except
for small fluctuations. So ideally, a user may add any ranking to his own implementation
of the method, whatever the source of information is, it should improve—or at least not
worsen—the prediction. This statement in consistent with the experimental observations that
we have made on all the datasets presented here. Note that the design of the method is sup-
posed to favour this behaviour: if a ranking brings too little information to the aggregation
process, then it should be ignored during the learning process. The issue of feature selection
is critical for the link prediction problem, for instance consensus methods performances drop
dramatically with a poor feature choice, so these experimental observations are encouraging
for future usages of RankMerging.
Parameter g The dependency on g value is shown in Table 4. Results indicate that the perfor-
mances are close to the maximum in the interval [100; 300] on the learning set. Windows of
width g are defined during the learning process, as seen in Sect. 4.3. However, it is interesting
to define an equivalent gT of g on the test set, that is to say to count the number of links present
in the next gT available pairs of the rankings, and see which would be the corresponding
improvement. It allows, indeed, to validate the assumption that the weights computed on the
learning set may be extrapolated to the test set. As confirmed by the results in Table 4, the
performances are close to the maximum in the interval [100;300]. It confirms that choosing
g according to the best aggregation on the learning set ensures that the final performance
of RankMerging should be good. It is interesting to note that the performance is maximum
for intermediate values, around g = 200. This is the right balance between small g which
fluctuate too much to provide a good local optimum, and large g, for which the windows
are too large to properly evaluate which ranking is the best ranker available, as discussed in
Sect. 4.5.

5.4 Series 2

In the second series of experiments, we focus on DBLP and Pokec datasets. Here, we inves-
tigate in more details the impact of the sizes of the learning and test sets.

5.4.1 Protocol

A few points differ from the protocol of the first series, in order to easily change the sizes of
the learning and test sets. All the nodes belong to both GL and GT , the partition is made on
the set of links E . We use the same denomination, that is to say:

– EL are the links of GL ,
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– Ecal are the links to guess during the learning phase, to calibrate our model,
– Eperf are the links to guess during the testing phase, to evaluate the performance of the

method.

During the learning phase, EL links are used to guess Ecal links. During the test phase, the
links of GT , that is to say ET = EL ∪Ecal are used to guess Eperf . We generate several samples
such that |Ecal| = |Eperf |, but with various values for |Ecal|, the missing information increases
as this set grows larger. The samples are defined by the missing links ratio |Ecal|/|E|.

Another noteworthy difference is that these networks have a much higher average degree
than the PSP network, making the computation of the large-scale rankers expensive in both
memory and time. Therefore, we limited ourselves to the less costly local and intermediary
metrics, more precisely: AAw, CNw , SRw, RAw, LPw (γ = 0.1) and Borda’s aggregation.

For the same reasons, the number of pairs is very large when only considering nodes at
distance 2 (larger than 108). Since it would not make much sense to predict that many links
in a social network, we choose to reduce the rankings length by focusing on the intersection
of rankings: we kept only 106 pairs, which feature the intersection of the tops of all rankings.
Borda’s method is then applied on the intersected rankings. In this setting of experiments, the
rankings in the learning set and in the test set have the same sizes so that the scaling factor
f = 1 during the whole series.

5.4.2 Results

We plot in Fig. 5 the results obtained on the test sets of both DBLP and Pokec datasets,
for samples where the missing links ratio |Ecal|/|E| = 0.077. In both cases, RankMerging
outperforms the unsupervised methods, but the improvement is much more visible for DBLP
than for Pokec. In this series of experiments too, performances are not significantly affected
by the fact that the method is not deterministic.

In the case of DBLP, a closer examination shows that at the beginning of the process, we
closely follow Sørensen index curve, which is the most efficient unsupervised ranking for
low number of predictions. Then its performance drops, and other rankings are chosen during
the aggregation process (mostly Local Path ranking). In the case of Pokec, pairs aggregated
initially mainly come fromAdamic–Adar ranking, then this index soon gets less efficient than
Resource Allocation index, which takes over until the end of themerging process. Pokec gives
a good indication of what happens when the rankings are not complementary enough, and
that one of them is more efficient than the others: the aggregation nearly always choose the
pairs from this ranking and do not improve significantly the performance. Notice that in
both cases, Borda’s method is not the most efficient unsupervised method: as some rankings
perform very poorly, they dramatically hinder the performance of Borda’s method.

The comparison to supervised classification methods is interesting here9: Classification
Trees as well as k Nearest Neighbors perform poorly on Pokec, however the results on DBLP
show that NN and above all CT perform better than RankMerging on a limited range. This
observation highlights a limit of our learning-to-rank aggregation method for the purpose of
link prediction: the prediction performance cannot be widely better than the performances
of the rankings that have been used as features for the learning, while classification methods
can. There is however a compensation, as the number of predictions is not constrained, as in
the case of classification.

We also compare to the Weighted Borda method, which is the only learning-to-rank super-
vised method considered here, given the very large sizes of the rankings (c.f. Sect. 5.2). To

9 Notice that AdaBoost does not provide exploitable results on both networks as it predicts too few links.
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Fig. 5 Results obtained with RankMerging on the test set. Top: DBLP (learning with g = 4000). Bottom:
Pokec (learning with g = 2000)

implement this method, we need to learn a new set of coefficients for every ranking size,
that is to say for every measurement point in the precision–recall space. We observe that
the Weighted Borda method is efficient for a relatively low number of predictions. It outper-
forms RankMerging on a short range: on [0; 2000] on DBLP and on [0; 5000] on Pokec. But
as in the case of supervised classification methods, its performance drops for larger num-
ber of predictions and RankMerging is more efficient when considering the area under the
precision–recall curve, as can be seen in Fig. 6. This result contrasts with the observation in
the first series of experiments where Weighted Borda is more efficient. We think that it stems
from the fact that in the second series of experiments, the unsupervised rankings are more
redundant, in the sense that different rankers rank the same items high. While RankMerging
takes into account this property to compute the contribution of a ranking during the learning
phase, Weighted Borda does not.
Learning set size We now explore the impact of the learning set size on the performance
of the method. We generated five different samples with missing links ratios: 0.05, 0.10,
0.15, 0.20 and 0.25. In Fig. 6, we plot the area under the precision–recall curves for the
samples generated, and compare them to the most efficient unsupervised methods tested. We
observe that RankMerging outperforms both the unsupervised and supervised learning-to-
rankmethods in nearly all cases. However, the differences vanishwhen the size of the learning
set decrease, that is to say when the missing information grows. It seems that this observation
stems from the fact that a ranker dominates the others when information is missing, so that
the merging method tends to stick to the most performing ranker.
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Fig. 6 Area under the precision–recall curve for different missing links ratios. Top: DBLP dataset, bottom:
Pokec dataset

5.5 Series 3

In the third series of experiments, we focus on the Facebook dataset, which is considered in
a predictive context.
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5.5.1 Protocol

In the case of this series, we aim at predicting links, which implies that the protocol is adapted
to such a task.

– The graph GL contains the 46,953 nodes which appear at least once during the whole
period of collection (from January 1st 2007 to November 30th 2008), that is the set V .
Its links EL are the 304,306 links which appear in the dataset during the first 600days
period.

– Links used for calibration Ecal are the links appearing for the first time between day 601
and day 650, that is 16,411 links.

– And the links to be guessed during the test phase Eperf are the links appearing for the first
time between day 651 and day 700, that is 22,509 links.

As usual, GL = (V, EL ) is used to label pairs during the learning phase in order to guess
links in Ecal. Then the graph GT = (V, EL ∪ Ecal) is used to label pairs during the test phase
to guess links in Eperf .

The ranking metrics used to produce the unsupervised input rankings are CNw , AAw,
RAw , SRw , LP (with γ = 0.1) and the unsupervised Borda aggregation of these rankings. We
compare the results obtained to the supervised Borda method (with weights computed from
the precision of the input rankings). Note also that we have dropped classification techniques
for comparison purposes to the other methods, as it has been discussed previously that the
prediction yielded have very different properties compared to the other techniques.

5.5.2 Results

The results obtained are gathered in Fig. 7. We can see that the overall aspect of the results
are qualitatively similar to what we have observed in the other series of experiments. When
computing the area under the precision–recall curve, RankMerging outperforms by 6.6%
the unsupervised version of Borda aggregation, which is the second most efficient method
here, and by 8.1% supervised Borda, which is the third most efficient. A closer look at the
learning process indicates that RankMerging first selects pairs essentially from the Borda
ranking, then jumps from Borda to the Adamic–Adar ranking regularly. It starts selecting
pairs fromother rankings (Resource Allocation) only after the first 100,000 predictions. These
experiments show that the method is also efficient in a prediction context when compared
to other methods. However, it should be noticed that precisions in a prediction context are
low for all methods which comes from the fact that this task is even more challenging than
missing link recovery.

5.6 Experimental running times

To give the reader a better grasp of the practical running times, we indicate in Table 5 the order
of magnitude of the running times of the two first series of experiments. We used standard
implementations on a workstation with 16 × 3GHz CPU throughout the experiments and
specify the order of magnitude of the computation times. In all cases, we report the total time
to obtain the results presented in the series of experiments, meaning that we sum the running
times of the experiments of the learning and test phases for the supervised processes.10

10 We do not include in the computation times of the supervised methods the time necessary to produce the
unsupervised rankings inputs.
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Fig. 7 Results obtained on the link prediction problem on Facebook data. Left: F1-score as a function of the
number of predictions. Right: precision versus recall curves

Table 5 Running times of the different prediction models, given in seconds

Unsupervised Sup. classification Weighted Borda Rank merging

Local Inter Borda CT NN AB

PSP < 10 30 < 10 210 4 × 104 500 200 200

DBLP 6 × 104 7 × 104 40 400 800 1100 1200 1200

Pokec 5 × 104 1 × 105 30 300 400 1000 1000 1000

Running times are measured in seconds and given with one or two significant digits. The
results reported here correspond to:

– Unsupervised rankings: we report the execution times of a typical local feature (Adamic–
Adar),11 an intermediary feature (Local Path) and Borda method.

– Supervised classification: we report the execution times for the three classification meth-
ods used (Classification Trees, k Nearest Neighbours, AdaBoost). As each measurement
point needs a calibration of the model, the results reported correspond to a 10 points
measurement.

– Supervised learning-to-rank:we report the execution times of theWeighted Bordamethod
andRankMerging. Note that the computation time of theWeighted Bordamethod depends
on the number of measurement points as a new point demands a new aggregation with
different weights. Similarly, one has to adjust the parameter g of RankMerging using its
best performance on the learning set, therefore we need to run the learning phase of the
method with several g values. In both cases, we use 24 measurements to evaluate the
running times.

Several pointsmay be noticed regarding thesemeasures. First,RankMerging andWeighted
Borda have comparable running times in all cases, which was expected as RankMerging, like
Weighted Borda, go through each ranking exactly once. They are both suited to supervised
learning-to-rank on large rankings.

Considering the whole learning-to-rank process, the bottleneck is the computation of the
unsupervised rankings. Concerning PSP, it can be observed that the running times of local
unsupervised methods is only a few dozens of seconds while it is several hours on the Pokec

11 The running times are of the same magnitude for the other local metrics.
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andDBLP datasets. It stems from the fact that PSP ismuch sparser thanDBLP and Pokec, and
the typical sizes of the rankings are shorter for PSP: as mentioned previously, PSP rankings
are of the order of 105 items, while DBLP and Pokec rankings are larger than 108 items.
Note also that the computation times of global metrics (not reported here) is much larger
than local metrics as they generally rely on the computation of matrix products. For example,
RWR typically takes a few hours to run on PSP, while it is untractable on Pokec and DBLP.

6 Conclusion

In thiswork,we have presentedRankMerging, a supervisedmethodwhich aggregate rankings
from unsupervised rankers to improve the performance of link prediction. This learning-to-
rank method is straightforward and computationally cheap—its complexity is O(α · θ),
where α is the number of rankings aggregated and θ the number of predictions. It is suited to
prediction in large networks, as θ can be tuned according to the application needs. Its design
implies that the precision on top-ranked items cannot be significantly improved, making
RankMerging more appropriate for relatively large number of predictions. We implemented
it on four different large social networks, and showed that in each case, it competes with the
methods available at this scale, such as the Weighted Borda method. It is especially efficient
when the unsupervised input rankers are complementary, but its performances are robust to
the addition of redundant information.

So far, we have exclusively focused on structural information in order to predict unknown
links. However, the framework is general and any feature providing a ranking for likely pairs
of nodes can be incorporated. Additional structural classifiers are an option, but other types
of attributes can also be considered, such as the profile of the users (age, hometown, etc), or
timings of their interactions. In the latter case, for instance, if i and j are both interacting with
k within a short span of time, it is probably an indication of a connection between i and j . From
a theoretical perspective, RankMerging provides a way to uncover the mechanisms of link
creation, by identifying which sources of information play a dominant role in the quality of a
prediction. The method could be applied to various types of networks, especially when links
are difficult to detect. Applications include network security—for example by detecting the
existence of connections between machines of a botnet—and biomedical engineering—for
screening combinations of active compounds and experimental environments in the purpose
of medicine discovery.

Acknowledgements The authors would like to thank Emmanuel Viennet and Maximilien Danisch for useful
bibliographic indications. This paper presents research results of the Belgian Network DYSCO (Dynamical
Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme, initiated
by the Belgian State, Science Policy Office. The scientific responsibility rests with its authors. This work
is also funded in part by the ANR (French National Agency of Research) under Grants ANR-15-CE38-
0001 (AlgoDiv) and ANR-13-CORD-0017-01 (CODDDE), by the French program “PIA—Usages, services
et contenus innovants” under Grant O18062-44430 (REQUEST), and by the Ile-de-France FUI21 program
under Grant 16010629 (iTRAC). We also acknowledge support from FNRS.

References

AlHasan,M., Chaoji, V., Salem, S., & Zaki,M. (2006). Link prediction using supervised learning. In SDM’06:
Workshop on link analysis, counter-terrorism and security.

Al Hasan, M., & Zaki, M. (2011). A survey of link prediction in social networks. In Social network data
analytics (pp. 243–275). Berlin: Springer.

123



Machine Learning (2019) 108:1729–1756 1755

Arrow, K. J. (2012). Social choice and individual values (Vol. 12). New Haven: Yale University Press.
Backstrom, L., & Leskovec, J. (2011). Supervised randomwalks: Predicting and recommending links in social

networks. In Proceedings of the fourth ACM international conference on web search and data mining
(pp. 635–644). ACM.

Benchettara, N., Kanawati, R., & Rouveirol, C. (2010). Supervised machine learning applied to link prediction
in bipartite social networks. In International conference on advances in social networks analysis and
mining (ASONAM) (pp. 326–330). IEEE.

Bliss, C. A., Frank, M. R., Danforth, C. M., & Dodds, P. S. (2013). An evolutionary algorithm approach to
link prediction in dynamic social networks. arXiv:1304.6257.

Burges, C. J. C., Svore, K. M., Bennett, P. N., Pastusiak, A., & Wu, Q. (2011). Learning to rank using an
ensemble of lambda-gradient models. Journal of Machine Learning Research-Proceedings Track, 14,
25–35.

Cao, Z., Qin, T., Liu, T. Y., Tsai, M. F., & Li, H. (2007). Learning to rank: From pairwise approach to listwise
approach. InProceedings of the 24th international conference on machine learning (pp. 129–136). ACM.

Chapelle, O., Chang, Y., & Liu, T. Y. (2011). Future directions in learning to rank. In Yahoo! learning to rank
challenge (pp. 91–100).

Chapelle, O., & Keerthi, S. S. (2010). Efficient algorithms for ranking with SVMs. Information Retrieval,
13(3), 201–215.

Comar, P. M., Tan, P. N., & Jain, A. K. (2011). Linkboost: A novel cost-sensitive boosting framework for
community-level network link prediction. In 11th international conference on data mining (ICDM) (pp.
131–140). IEEE.

Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A. A., & Joshi, A.
(2008). Social ties and their relevance to churn in mobile telecom networks. In Proceedings of the 11th
international conference on extending database technology (pp. 668–677). New York: ACM.

Davis, D., Lichtenwalter, R., & Chawla, N. V. (2013). Supervised methods for multi-relational link prediction.
Social Network Analysis and Mining, 3(2), 127–141.

de Borda, J. C. (1781). Mémoire sur les élections au scrutin. In Histoire de l’Académie Royale des Sciences.
Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for the web. In Pro-

ceedings of the 10th international conference on world wide web (pp. 613–622). ACM.
Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (2003). An efficient boosting algorithm for combining

preferences. The Journal of Machine Learning Research, 4, 933–969.
Herbrich, R., Graepel, T., & Obermayer, K. (1999). Large margin rank boundaries for ordinal regression. In

Advances in neural information processing systems (pp. 115–132).
Huang, Z., Li, X., & Chen, H. (2005). Link prediction approach to collaborative filtering. In Proceedings of

the 5th ACM/IEEE-CS joint conference on digital libraries (pp. 141–142). ACM.
Kashima, H., Kato, T., Yamanishi, Y., Sugiyama, M., & Tsuda, K. (2009). Link propagation: A fast semi-

supervised learning algorithm for link prediction. In SDM (Vol. 9, pp. 1099–1110). SIAM.
Kossinets, G., & Watts, D. J. (2006). Empirical analysis of an evolving social network. Science, 311(5757),

88–90.
Leskovec, J., Backstrom, L., Kumar, R., & Tomkins, A. (2008). Microscopic evolution of social networks.

In Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 462–470). ACM.

Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for social networks. Journal of the
American Society for Information Science and Technology, 58(7), 1019–1031.

Lichtenwalter, R. N., Lussier, J. T., & Chawla, N. V. (2010). New perspectives and methods in link prediction.
In Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 243–252). ACM.

Liu, T. Y. (2009). Learning to rank for information retrieval. Foundations and Trends in Information Retrieval,
3(3), 225–331.

Liu, Y. T., Liu, T. Y., Qin, T., Ma, Z. M., & Li, H. (2007). Supervised rank aggregation. In Proceedings of the
16th international conference on world wide web (pp. 481–490). ACM.

Lü, L., & Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: Statistical Mechanics
and its Applications, 390(6), 1150–1170.

Menon, A. K., & Elkan, C. (2011). Link prediction via matrix factorization. In Joint european conference on
machine learning and knowledge discovery in databases (pp. 437–452). Berlin: Springer.

Murata, T., &Moriyasu, S. (2007). Link prediction of social networks based on weighted proximity measures.
In International conference on web intelligence (pp. 85–88). IEEE.

Ngonmang, B., Viennet, E., & Tchuente, M. (2012). Churn prediction in a real online social network using
local community analysis. In Proceedings of the 2012 international conference on advances in social
networks analysis and mining (ASONAM 2012) (pp. 282–288). IEEE Computer Society.

123

http://arxiv.org/abs/1304.6257


1756 Machine Learning (2019) 108:1729–1756

Pavlov, M., & Ichise, R. (2007). Finding experts by link prediction in co-authorship networks. FEWS, 290,
42–55.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pujari, M., & Kanawati, R. (2012). Supervised rank aggregation approach for link prediction in complex
networks. In Proceedings of the 21st international conference companion on world wide web (pp. 1189–
1196). ACM.

Raeder, T., Lizardo, O., Hachen, D., & Chawla, N. V. (2011). Predictors of short-term decay of cell phone
contacts in a large scale communication network. Social Networks, 33(4), 245–257.

Scellato, S., Noulas, A., & Mascolo, C. (2011). Exploiting place features in link prediction on location-
based social networks. In Proceedings of the 17th ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 1046–1054). ACM.

Sculley, D. (2007). Rank aggregation for similar items. In Proceedings of the 2007 SIAM international con-
ference on data mining (pp. 587–592). Philadelphia: SIAM.

Subbian, K., & Melville, P. (2011). Supervised rank aggregation for predicting influencers in Twitter. In
Privacy, security, risk and trust (PASSAT) and 2011 IEEE third international conference on social
computing (SocialCom), 2011 IEEE third international conference on (pp. 661–665). IEEE.

Tylenda, T., Angelova, R., & Bedathur, S. (2009). Towards time-aware link prediction in evolving social
networks. In Proceedings of the 3rd workshop on social network mining and analysis (p. 9). ACM.

Viswanath, B., Mislove, A., Cha, M., & Gummadi, K. P. (2009). On the evolution of user interaction in
Facebook. In Proceedings of the 2nd ACM SIGCOMM workshop on social networks (WOSN’09).

Yang, Y., Lichtenwalter, R. N., & Chawla, N. V. (2015). Evaluating link prediction methods. Knowledge and
Information Systems, 45(3), 751–782.

Zhou, T., Lü, L., & Zhang, Y. C. (2009). Predicting missing links via local information. The European Physical
Journal B, 71(4), 623–630.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


