
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Towards distributed model checking: a network memory storage mechanism

Miche, Geoffrey

Award date:
2004

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/a1d7b859-e2c1-421e-9cc7-3daaccc45222

Instit ute of Informatics
University of Namur

Namur , Belgium

Towards distributed model checking:
A network memory storage mechanism

Geoffrey Miche

Thesis presented in order to obtain a Master's degree in Computer Science
Academic year 2003-2004

Résumé
Aujourd'hui, les systèmes hardware et logiciels continuent de prendre une place importante

dans notre vie quotidienne. Pensons, par exemple, aux ascenseurs, aux systèmes de contrôle
aérien et aux trains. Ces exemples montrent l 'importance de la fiabilité de tels systèmes.
En effet , il est facile d'imaginer le désastre qu'occasionnerait un système de contrôle aérien
défectueux. Une des conséquences pourrait être que deux avions entrent en collision à cause
d'une erreur dans la partie du système qui donne les positions des avions. Vérifier la correction
de tels systèmes est donc d'une importance cruciale.

Des méthodes existent pour vérifier de tels systèmes. L'une d'entre elles s'appelle model
checking et a souvent été utilisée avec succès pour vérifier des systèmes complexes. Le défit
principal que le model checking doit relever est de faire face au problème bien connu de
l'explosion de l'espace d'états.

Des techniques pour éviter ce problème existent. P lusieurs d'entre elles telles que la
partial order reduction ou le model checking on-the-fiy sont largement répandues. De nouvelles
techniques continuent cependant d'être développées et expérimentées. Leur but étant de
repousser la limite des systèmes sujets à ce problème.

Nous proposons, dans ce mémoire, une méthode pour éviter le problème de l'explosion
de l'espace d'états. L'idée est d'augmenter la puissance de calcul et plus particulièrement la
mémoire principale en utilisant une grappe d'ordinateurs connectés entre eux par un réseau.
L'objectif est de pouvoir allouer des quantités de mémoire très importantes pour des systèmes
complexes tout en étant performant.

Abstract
Nowadays, hardware and software systems continue to take an important place in our

daily life. Let us think of elevators, air traffic control systems and trains. These examples
show the major importance for such systems to be reliable. Indeed, they often contain bugs
and it is crucial to verify their correctness in order to avoid problems. We can easily imagine
the disaster if an air traffic control system was not verified. One of the consequences could be
that two planes collide with each other because of a bug in the part of the system that gives
the plane positions.

Methods exist for verifying such systems. One of them is called model checking and has
been used successfully in practice to verify complex systems. The main challenge with model
checking is to deal with the well-known problem of the state space explosion.

Techniques to avoid this problem exist as well. Sorne of them such as partial order reduc­
tion or on-the-fiy model checking are widely spread. New techniques however continue to be
developed and experimented. The goal is to push away the limit of systems subject to state
explosion.

We propose in this master thesis a method to avoid state space explosion. The idea is
to increase the computational power and more specifically random-access memory by using a
cluster with computers connected between them by a network. The objective is to allow the
allocation of huge amounts of memory for complex systems and to be efficient.

I want to thank more particularly my instigator, Mr.
Jean-Marie Jacquet for all his precious advice during the
writing of this thesis.

I also want to thank the research team of ParaDiSe
Laboratory and Professor Lubos Brim for their welcome
during my stay and especially my supervisor Jiri Barnat for
his precious advice during the development of the prototype
and the writing of my thesis. A special thank to Office for
International Studies of Masaryk University which allowed
me to spend a pleasant stay in Czech Republic thanks to the
activities they organize for Erasmus students.

I also think of my sister Magali, Mie, M-L, Sven, Jean­
Bernard and Ged for their precious help.

Special thanks to my girlfriend and my parents who supported
me during the writing of my thesis.

Contents

Introduction 1

1 Model checking 3

1.1 Automata 3

1.1.1 An automaton example 3

1.1.2 Definition of an automaton 3

1.1.3 Automata and state variables 5

1.1.4 Synchronization 5

1.1.5 Kripke structures . 7

1.1.6 Büchi automata 8

1.2 Temporal logic 9

1.2.1 The language of temporal logic 9

1.2.2 CTL* 10

1.2.3 CTL 13

1.2.4 LTL 14

1.3 Model checking 16

1.3.1 CTL model checking 16

1.3.2 LTL model checking 19

1.3.3 CTL * model checking 23

1.4 Properties 26

1.4.1 Reachability . 26

1.4.2 Safety 27

1.4.3 Liveness . . . 28

1.4.4 Deadlock-freeness . 30

1.4.5 Fairness properties 30

1.5 A tool: SPIN 32

2 The state explosion problem 35

ii CONTENTS

2.1 The state explosion problem . 35

2.2 On-the-Fly model checking 35

2.3 Abstraction by State Merging 36

2.4 Partial Ortler Reduction . .. 37

2.5 Distributed LTL model checking 39

2.5.1 Using additional structures 39

2.5.2 Negative Cycles 39

2.5.3 Property based distribution 40

2.5.4 DiVinE 40

3 A network memory storage mechanism 43

3.1 Programming language 43

3.2 Communication Technologies 43

3.2.1 Shared memory 43

3.2.2 Message Passing Interface 44

3.2.3 Parallel Virtual Machine . 46

3.2.4 Common Object Request Broker Architecture . 50

3.2.5 RAWTCP /UDP 52

3.2.6 Choice 52

3.3 Design of a prototype 52

3.3.1 Principles .. . 52

3.3.2 Characteristics 53

3.3.3 Approach ... 56

3.3.4 Graph browsing . 57

3.3.5 Evolution of the prototype 57

3.4 Tests 61

3.4.1 Elevator 62

3.4.2 Firewire link 64

3.4.3 Dining philosophers 66

3.5 Encountered problems 66

3.6 Conclusion 67

4 Perspectives 69

4.1 Improvements to the prototype 69
4.1.1 Optimal value for parameters 69
4.1.2 Use of non-blocking functions 70
4.1.3 Giving the storage job to the slaves 70

CONTENTS

4.1.4 Nested DFS

4.2 Re-implementing the prototype

4.2.1 A more dynamic approach .

4.2.2

4.2.3

PVM

RAW TCP/UDP

4.3 Origin of the ideas

Conclusion

Bibliography

A Diagrams

A.l Step 1: swapping randomly

A.2 Step 2: swap of full pages .

A.3 Step 3: swap of full pages and checking job for the slaves

A.4 Step 4: Last Recently Used

A.5 Step 5: LRU and checking job for the slaves .

B MPI bindings

B.l Constants .

B.2 Communicators

B.3 Functions . . .

C Code and documentation

Index

iii

71

72

72

74

75

75

77

80

81

81

81

81

81

81

89

89

89

89

93

95

List of Figures

1.1 Automaton of a traffic light

1.2 Example of an automaton with state variables .

1.3 Unfolded automaton

1.4 Transforming a Kripke structure into a finite automaton

1.5 Most common operators in CTL

1.6 Two indistinguishable automata for LTL

1.7 Procedure for labelling states satisfying formula E(JUg)

1.8 Procedure for labelling states satisfying formula EG f
1. 9 Kripke structure of the microwave oven

1.10 Automaton A

1.11 Büchi automaton H.,f

1.12 Synchronized automaton A © B-,J

1.13 Procedure to treat CTL* formula of the form E(JUg)

1.14 An automaton with history variables

1.15 A deadlock-free system

2.1 The unfolding automaton after merging

2.2 Depth-first search with partial order reduction

3.1 Collective data movement

3.2 Reduce operation

3.3 The client/server model for CORBA

3.4 CORBA bus

3.5 Graphie representation of the hashtable and its collision lists

3.6 Virtual representation of a page . . .

3. 7 Example of a page at initialization

3.8 Example of a page during execution

3.9 Breadth-first search algorithm for the prototype .

3.10 Statechart for the master in step 1

4

5

6

8

14

15

17

18

19

22

23

23

26

28

30

37

38

47

48

50

51

54

55

55

56

57

58

vi LIST OF FIGURES

3.11 Statechart for the slave in step 1 59

3.12 Statechart for the master in step 3 60

3.13 Statechart for the slave in step 3 61

4.1 Nested depth-first search algorithm . 71

4.2 Hashtable and the dynamic approach . 73

A.l Sequence diagram for the master in step 1 82
A.2 Sequence diagram for the slave in step 1 . 83
A.3 Sequence diagram for the master in step 2 84

A.4 Sequence diagram for the slave in step 2 . 85
A.5 Sequence diagram for the master in step 3 86

A.6 Sequence diagram for the slave in step 3 . 87

List of Tables

3.1 Table of results for the elevator example

3.2 Table of results for the firewire link example

3.3 Table of results for the dining philosophers example

63

65

66

Table of acronyms

LTL Linear Temporal Logic

CTL Computational Thee Logic

FIFO First In First Out

MPI Message Passing Interface

ISO International Standards Organization

ANS! American National Standards Institute

IEEE Institute of Electrical and Electronics Engineers

PVM Parallel Virtual Machine

TID Task Identifier

CORBA Common Object Request Broker Architecture

OMG Object Management Group

IDL Interface Description Language

ORB Object Request Broker

SII Static Invocation Interface

DII Dynamic Invocation Interface

IR Interface Repository

SSI Skeleton Static Interface

DSI Dynamic Skeleton Interface

OA Object Adapter

ImpIR Implementation Repository

DFS Depth-First Search

BFS Breadth-First Search

X

SSSP Single Source Shortest Path Problem

SCC Strongly Connected Component

LRU Last Recently Used

TCP Transmission Control Protocol

UDP User Datagram Protocol

Table of acronyms

Introduction

Nowadays, hardware and software systems are widely used in applications where failure is
unacceptable. Let us think of air traffic control systems, elevator control systems and trains.
These examples illustrate that it is very important to have reliable systems. A well-known
example of such a failure system is the Ariane 5 rocket which exploded less than forty seconds
after being launched. We can also imagine that two planes collide with each other because of
a bug in the part of the air traffic control system in charge of the plane positions.

The need for reliable hardware and software systems is clearly critical in view of the
involvement of such systems in our lives. Techniques to verify the correctness of those systems
exist. One of the purposes of this master thesis is to introduce the reader to the verification
technique called model checking. It is a well-known method for automatic verification of
software and concurrent systems. It has been successfully used to discover well-hidden bugs
in substantial industrial systems.

M odel checking consists in verifying properties that a system must satisfy. This check
is clone on a model which represents the system in question. Unfortunately, everything is
not perfect and this method can encounter a major problem. It is the state space explosion
problem. It appears when the model of a system contains a huge number of states. As a
consequence, the verification of systems encountering this problem is not really efficient. A
reason is that the resources of computers are limited. Methods to face up to this problem
exist and are quite efficient. Sorne of them consist in reducing the size of the memory used.
The aim of one of these methods is to take advantage of the resources of several computers
linked by a network. It is called distributed model checking and algorithms for model checking
are distributed. However, the latter suffers from revisiting1 when the graph modeling the
system is browsed.

The main purpose of this master thesis is the design and the experimentation of a prototype
which takes advantage of the increase of the computational power (especially random-access
memory) and which does not suffer from revisiting. Another goal of this prototype is to allow
to allocate more than 4 Gigabytes of memory to a program which is the maximal amount of
memory actually allocated to one process. The prototype was implemented in the framework
of the DiVinE project2 during three months.

The thesis is composed of four chapters. The first one introduces the theoretical concepts
of model checking necessary to understand our work. It describes the tasks to do in order to
apply model checking to systems. The first task is modeling and uses automata. The second

1 Revisiting is a word used to express the re-exploring of states many times.
2DiVinE is currently developed in the ParaDiSe laboratory of the Faculty of Informatics, Masaryk University,

Brno (Czech Republic).

2 Introduction

one is specification which states the properties that the model of a system must satisfy. It uses
temporal logics. The last task is the verification which is generally clone by a model checker
and which is described in a theoretical manner in the chapter. Examples are often given to
allow the reader to understand better the theoretical basis.

The second chapter is devoted to the description of the state space explosion problem and
solutions to avoid it.

The third chapter describes the design of the prototype from the analysis of the available
communication technologies between computers in a cluster to the results of the experimen­
tation. It also describes the working of the prototype.

The fourth chapter concludes this thesis by introducing possible improvements or methods
to implement the prototype from the beginning.

Chapter 1

Model checking

We are going to introduce in this chapter some theoretical concepts of model checking.
Automata and temporal logics are basic elements of model checking. Actually the algorithms
used for model checking check if a given automaton satisfies a given temporal formula. This
chapter also tackles some important properties and finishes with the description of a tool for
model checking.

1.1 A utomata

An automaton is just a machine evolving from one state to another one thanks to the
action of transitions. Automaton is a general concept which draws characteristics from the

finite automata in language theory, from Kripke structures or from transition systems in
other areas. Kripke structures, transition system and Büchi automata for automata theory
are defined in this section. The purpose of their use is to model systems in order to apply
model checking. This section is a summary of [Sch04], [BBF+o1] and [JGP99].

1.1.1 An automaton example

Example 1.1. This example from [Galps] introduces the section about automaton. The
automaton in figure 1.1 represents the model of a traffic light. The behavior of the automaton
is the following one. The color of the traffic light is red at the initial state. The light turns
green if the light is red and a car is present. If the light is orange, then the light turns red.
When the light is already green and a car is present, the light remains green. On the other
hand, if the light is green and there is no car twice in a row, then the light turns orange.

1.1.2 Definition of an automaton

Definition 1.1. We first define a set Prop = {Pi, P2, . . . } which gives us the set of elementary
properties. Now we can define an automaton as a tuple M = (S, E, T, So , l).

• S is a finite set of states;

• E is the finite set of transition labels;

4 Chapter 1. Model checking

C\
no car

no car
car

car

car

car

no car

no car

Figure 1.1: Automaton of a traffic light

• T Ç S x Ex Sis the set of transitions;

• So Ç S is the set of initial states;

• l is the mapping which associates with each state of S the finite set of elementary
properties which hold in that state.

If we take the first example in figure 1.1 , we obtain :

S = {S1 , S2, S3, S4}
E = {car,no car}
So = {Si} ;
T = {(S1 , no car, S1), (S1 , car, S2), (S2 , car, S2) , (S2 , no car, S3), (S3, car, S2), (S3, no car, S4),
(S4, no car, S1), (S4, car, S1)}

{

S1 - {red}
l _ S2 - {green, car}

- S3 - {green, ,car}
S4 - {orange}

Other useful definitions are as follows. The first concerns the path in an automaton. The
second is relative to the execution and the last concerns states with the property of being
reachable.

Definition 1.2. A path in an automaton can be defined as a sequence a, finite or infinite, of
transitions (si, ei, sD of M which follow each other .

1.1 Automata

'allen_hurdle := 0 __.

if fallen_hurdle < 2
to bump into hurdle

fallen_h urdle:=fallen_hurdle+ 1

running

to jump a hurdle

Crossing finishing line

~
if fallen_hurdle = 2
to bump into hurdle

fallen_h urdle:=fallen_hurdle+ 1

Figure 1.2: Example of an automaton with state variables

5

Definition 1.3. A complete execution or execution is an execution which is maximal. That
is to say it cannot be extended.

Definition 1.4. A reachable state is a state which appears in the execution tree of an au­
tomaton.

1.1.3 Automata and state variables

It is also possible to add what is called state variables in an automaton. A state variable
can be considered as a guard for transitions. This means that a transition cannot occur if the
condition on the variables does not hold. A feature is added to transitions: they can modify
the value of the variable(s). The example of automaton with state variables shown in figure
1.2 defines a hurdle race. If the runner bumps into more than two hurdles during the race, he
is disqualified otherwise he finishes the race. It happens that we must unfold an automaton
with state variables in order to apply model checking methods. This kind of automaton is
called transition systems. The states are called global states and they have a component which
identifies the state like in a simple automaton. This first component is called control state.
The other component gives the value of each variable (see figure 1.3). There are no more
guards with transitions seeing that the value of fallenJiurdle is known in each state.

1. 1.4 Synchronization

In order to model some big systems, it often happens that systems are split into several
models or subsystems. These models are also called system components. To obtain the global
automaton of the system, the system components have to be synchronized. The result is
called synchronized product. Here is an example of synchronized automaton: we have two
models which represent the incrementation by one of two integers. When both models are
combined, a new model where each state is the combination of both integers is obtained.
But in the global model, we want them to evolve together. So the synchronized transition is
(increment by one, increment by one) instead of(- , increment by one), (increment by one, -)
which means that they can evolve independently.

6

__.
fal

to jump a hurdle

to bump into a hurdl

to jump a hurdle

to bump into a hurdl

to jump a hurdle

running

to bump into a hurdle

Chapter 1. Model checking

Crossing finishing line

Crossing finishing line

folJQ,J

Crossing finishing line

fallQ,,

Figure 1.3: Unfolded automaton

Definition

Before defining the synchronized automaton, let us define the Cartesian product of sub­
models Mi.

Definition 1.5. Let M = (S, E, T, So, l) be an automaton where :

• E = [L ~i~n(Ei U {-}) ;

• So = (So,1, ... , So,n);

1.1 Automata 7

The definition of the Cartesian product alone does not allow the model to be synchronized.
Indeed, the fact that the symbol '-' can be used in transitions allows components to evolve
se para tel y. The creation of a set sync Ç IL <i<n (Ei U { - }) allows the synchronization. In the
example, sync equals to { (increment by one,-increment by one)}. To obtain the definition
of synchronized product, the set of transitions has to be modified.

((si, ... , sn), (ei , ... , en), (s~, ... , s~))l(ei, ... , en) E sync }
and \li, ei =' -' and s~ = Si, or ei f ' -' and (si, ei, sD E Ti

Properties

It is possible to operate a relabelling of the synchronized automaton. For example, (in­
crement by one, increment by one) can be relabelled in (increment by one). Reachable states
are states which are still reachable after synchronization. In the example, only states where
both integers are equal are reachable. Thus the reachability graph is the automaton where all
non-reachable states are deleted. An important problem associated with reachability graph
is the size of the graph. It is related to what is called the state explosion. This problem is
often met and cornes from the fact that we are confronted with a product (see definition 1.5).
An example is the unfolded automaton with variables when the global automaton is infinite.

Other types of synchronization

There exist other types of synchronization like synchronization by message passing, by
shared variables. In the first one, a distinction is made in transition labels. They are emitting
labels and reception labels. Emitting labels are denoted !m and reception labels ?m where
m is a message. Let us note that there also exist models which use asynchronous messages.
They are better for describing communication protocols whereas synchronous ones are better
for describing control or command systems(i.e.: an elevator). Concerning synchronization by
shared variables, it consists in sharing variables between several submodels of a system.

Synchronization automata are often used in Petri Nets which are suited to express parallel
systems. Indeed, they can be considered as synchronized automata perrnitting the dynamic
creation of parallel components or as automata juggling with integer counters through the
use of restricted set of primitives.

1.1.5 Kripke structures

Kripke structures are often used to model concurrent systems. They are considered as the
models of temporal logics which are defined in section 1.2. This is a kind of automata where
state labels are fondamental and the transition labels have less importance. The definition of
these structures is very similar to the one of automaton:

Definition 1.6. Prop = {Pi, P2, . . . } is the set of elementary properties. Kripke structure is
a tuple of four elements M = (S, T , So , l) .

• S is a finite set of state

8 Chapter 1. Model checking

{p,q
{p}

{q)

Kripke structure Finite automaton

Figure 1.4: Transforming a Kripke structure into a finite automaton

• T Ç S x S is a transition relation that must be total. For every state s E S, there is a
state s' E S such that T(s, s');

• So Ç S is the set of initial states;

• l is the mapping which associates with each state of S the finite set of elementary
properties which hold in that state. That are state labels.

It is easy to see that the main difference resides in the set of transitions where labels
disappear. In order to have a better view of what a Kripke structure is, the example in figure
1.4 [JGP99] shows the transformation of a Kripke structure into a finite automaton. The
finite automaton obtained is an automaton where all states are accepting. The other change
is the creation of a new state because labels move to transitions. The new state also permits
to express the transition to So with {p,q} and to S1 with {p} .

1.1.6 Büchi automata

Büchi automata can almost be considered as automata over finite words. The difference
resides in the fact that Büchi automata are used with infinite words instead of finite words.
The reason is that most concurrent systems are designed not to halt during normal execution.
So computation is modeled as infinite sequences of states. In other words, they are not
designed to end in an accepting state but rather to go through accepting states infinitely
often during an execution.

Definition 1. 7. Büchi automata can be defined as a tuple M = (S, E, So, T , F). A particular
characteristic is for F (the set of final states for finite automata over finite words). Fis called
in this case the set of accepting states and not final states.

1.2 Temporal logic 9

An execution now corresponds to an infinite path in the graph of the B üchi automaton. It is
also said that the execution is accepting when one or several accepting states appear infinitely
often during an execution. So it is possible that the Büchi automaton loops. When a Büchi
automaton has several accepting sets, it is commonly called generalized Büchi automaton.

Definition 1.8. A generalized Büchi automaton is a tuple M = (S, E, Sa, T, F1 , .. . , Fk)­
Fi , ... , Fk are the accepting sets.

Let us note that Büchi automata are used in LTL temporal logic which is described below.

1.2 Temporal logic

It is not easy to express properties related to the behaviors of a system. There exist
several possibilities to express it. Natural language is one of them but it is too ambiguous.
So it does not suit well. Another possibility is first order logic. This one is better but it
is too mathematic for our goals. Moreover it can only express properties of states but not
properties of behaviors. Another problem of these formalisms is the problem of time which
is very important in the construction of properties. First order formulas leave the nature of
time implicit. These problems are the reasons for the creation of temporal logics. Temporal
logics can be defined as a form of logic specially tailored for statements and reasoning which
involve the notion of order in time[BBF+o1]. They permit to obtain a clearer and simpler
notation. The properties in temporal logics include the notion of time and they are very closed
to natural language. For example, temporal adverbs of natural language such as "always",
"until", ... are expressed in temporal logics. In this section three of the most used temporal
logics are detailed. This section is a summary of [BBF+Ol], [JGP99], [Roypt], [Sch04], and
[Lerpt].

1.2.1 The language of temporal logic

The basic component of temporal logic is a set of atomic propositions. It corresponds to
the set Prop = { P 1 , P2, ... } previously defined. A proposition P is thus defined as true in a
state q if and only if P E l(q).

The second component is the well-known boolean combinators. These are the constants
true and false, the negation ,, and the boolean connectives /\, V, ⇒, {:}. A formula in
which propositions and boolean combinators are combined is called propositional formula.
For example, ,licence=} ,car which means if not licence then not car.

Then there are temporal combinators composed of five elements:

• G means always in the future (in all future state of a sequence of states).
Mathematically, it can be expressed as: ::li, \/j : 0 ~ i < j : (j /\ p) . <-.::l.> C.. ~

• F means eventually (in some future state of a sequence of states).
Mathematically : ::li, \/j : 0 ~ j < i: (j /\ ,p) /\ (i /\ p).

• X means at the next time (in the next state of a sequence of states).
Mathematically : :3i,j: i 2: 0 /\ j = i + 1: (i /\ ,p) /\ (j /\ p).

7
0

Chapter 1. Model checking

• U means until. This element is more complicated than the other. It is used to combine
two properties. 1['1 U 8 states that Pi is verified until P2 is verified.
Mathematically ~ : Vj: 0 s; j < i: (i /\ P2) /\ (j /\ Pi).

• R means release. This one can be considered as the dual of U combinator. P1 R P2
means that P2 is verified along the sequence of states up to and including the first state
where Pi is verified. Let us note that P1 is not required to be verified eventually.
Mathematically : Vi, /Jj : j > i: (i /\ P1) /\ (j /\ P1) => (i /\ P2) .

G and F can give two special combinations if they follow each other. G Fp can be read as
always in a future state p will be verified. It means that p is infinitely often satisfied along

00

the considered execution. Infinitely often is noted F. The dual FG is also possible and it
00

means all the time from a certain time onwards. It is noted G.

Example 1.2.

• G(,gas ⇒ X car stops) states that "always in the future if there is no more gas in the
car then at the next state the car stops".

• G(start race ⇒ (run U cross final line)) states that "always in the future if the race
is started then runners run until they cross the final line".

And finally, there are path quantifiers. They permit to quantify over a set of executions. It
is only possible to quantify over one execution without them. There are two path quantifiers:

• A means all the executions.

• E means there exists an execution.

Example 1.3.

• AG Fp states that along every execution, at any time, there is a future state where
formula p is verified.

• AGEFp states that at any time of any execution, there exists an execution in which in
a future state, formula p is satisfied.

The difference between these examples is that the second formula can be satisfied even if there
exists an execution in which pis never verified.

1.2.2 CTL*

CTL* formulas are used to describe properties of computation trees. This is why CTL
means computation tree logic. The tree is formed by choosing a state from a Kripke structure.
This state is the initial state and then the structure is unfold into an infinite tree with the
chosen initial state as root. The obtained tree states all of the possible executions starting
from the initial state. In CTL*, both path quantifiers and temporal combinators are used .
This temporal logic has also two types of formulas. The first ones are state formulas and they

1.2 Temporal logic 11

state a property of astate (it refers to a set of executions). The second ones are path formulas
which state a property of a computation path (it refers to one execution).

The syntax of CTL* formulas is given by the following rules:

State formulas

• If p E Prop, then p is a state formula.

• If f and g are state formulas , then ,f, f V g, and f I\ g are state formulas.

• If f is a path formula, then E f and Af are state formulas.

Path formulas

• If f is a state formula, then f is also a path formula.

• If f and g are path formulas, then ,f, f V g, f I\ g, X f, F f , G f, fU g, and f Rg are path
formulas.

Before providing the semantics, the following notations are important to understand . M, s F
f means that fis true at state sin the Kripke structure1 M. M, 1r F f means that fis true
along path 1r in the Kripke structure M. f and g are state formulas and k and j are path
formulas. ni defines the suffix of 1r starting at state Si.

The semantics of CTL * formulas is defined as follows:

• M,spp <==> pEl(s).
p is true at the state s of the Kripke structure M if and only if p belongs to the set of
state labels which contains the properties which are true in that state.

• M,s F ,f <==> M,s ~ f.
The negation of f is true at the state s of the Kripke structure M if and only if the
state s of the Kripke structure M does not satisfy f.

• M, s F f V g <==> M , s F f or M, s F g.
Formula f V g is true at the state s of the Kripke structure M if and only if the state s
of the Kripke structure M satisfies f or satisfies g.

• M, s F f I\ g <==> M , s F f and M , s F g.
Formula f I\ g is true at the state s of the Kripke structure M if and only if f and g are
true together at the state s of the Kripke structure M.

• M,s F Ek <==> =ln from s I M,n F k .
Formula Ek which means that there exists an execution which satisfies k is true if and
only if there is a path 1r starting at state s such that k is true along this path in the
Kripke structure M.

• M, s F Ak <==> \:/n starting from s, M , 1r F k.
Formula Ak which means that all executions satisfy k is true if and only if for every
path 1r starting at state s, k is true along this path in the Kripke structure M.

1To remember what a Kripke structure is, see definition 1.6.

12 Chapter 1. Model checking

• M, 1r I= f {=} sis the first state of 1r and M, s I= f.
Formula f is true along a path 1r in the Kripke structure M if and only if state s is the
first one of the path in question and f is true at state s of the Kripke structure M.

• M,1r I= ,k {=} M,1r ~ k.
The negation of formula k is true along a path 1r in the Kripke structure M if and only
if k is false along path 1r in the Kripke structure M.

• M, 1r I= k V j {=} M, 1r I= k or M, 1r I= j.
Formula k V j is true along a path 1r in the Kripke structure M if and only if k is true
or j is true along path 1r in the Kripke structure M.

• M,1r I= k /\j {=} M,1r I= k and M,1r I= j.
Formula k /\ j is true along a path 1r in the Kripke structure M if and only if k and j
are true together along path 1r in the Kripke structure M.

• M,1r I= Xk {=} M,1r1 I= k.
Formula X k is true along a path 1r in the Kripke structure M if and only if k is true
along a suffix of 1r starting with the state s 1 which is the state following the first state
of 1r.

• M,1r I= Fk {=} :ly;::: 0 1 M , 1rY I= k.
Formula Fk is true along a path 1r in the Kripke structure M if and only if there exists
a suffix of 1r starting with the state sy where k is true along the suffix.

• M,1r I= Gk {=} Vi;::: 0,M,1ri 1= k.
Formula Gk is true along a path 1r in the Kripke structure M if and only if k is true
along all suffixes of 1r starting with astate Si.

• M,1r I= kUj {=} :ly;::: 0 1 M,1rY l=j and V0::; x < y,M,1rx I= k.
Formula kU j is true along a path 1r in the Kripke structure M if and only if there exists
a suffix of 1r starting with the state sy where j is true along the suffix and k is true
along suffix of 1r starting with state sx where x is between 0 and y but not equal to y.

• M, 1r I= kRj {=} Vx ;:=: 0, if for every i < x M, 1ri ~ k then M, 1rx I= j.
Formula kRj is true along a path 1r in the Kripke structure M if and only if for all x
greater than or equal to 0, if for every x strictly greater than i such k is not true along
the suffix of 1r starting from state Si then j is true along the suffix of 1r starting from
state Sx -

Example 1.4.

• A(G,sleep ⇒ Xtired) which means along every execution, at every moment, if "not
sleep" then the next state is "tired".

• AG(,sleep ⇒ EFtired) which means at any time of any execution, if "not sleep" there
exists an execution in which a future state is "tired". But it can be possible that if "not
sleep", there are no states which satisfy "tired" (if you take medications in order not to
be tired for example).

• The combination of two previous examples with a boolean combinator is possible.
A(G,sleep ⇒ Xtired) V AG(,sleep =} EFtired). The meaning is obvious.

1.2 Temporal logic 13

1.2.3 CTL

CTL is a sublogic of CTL *. It is commonly defined as a branching time logic. Both state
formulas and path formulas are allowed. However, a restriction exists. Each of the temporal
combinators X, F, G, U, and R must be absolutely preceded by a path quantifier A, E . Soit
is not possible to have formulas with a temporal combinator followed by another temporal
combinator (i.e.: A(G,sleep => Xtired)). But the second example 1.4 given for CTL* is
allowed in CTL. On the other hand, the last example is not allowed. The reason is obvious.
Formulas which are boolean combinations of path formulas containing temporal operators
(i.e.: pUq V pUt) are also not allowed.

The syntax of CTL formulas is given by the following rules:

State formulas

• If p E Prop , then p is a state formula.

• If f and g are state formulas, then -.f, f V g, and f /\ g are state formulas .

• If f is a path formula, then E f and Af are state formulas .

Path formulas

• If f is a state formula, then f is also a path formula.

• If f and gare state formulas , then Xf,Ff,Gf,fUg, and fRg are path formulas.

The main difference between syntax of CTL and CTL * resides in the fact that the syntax of
path formulas is restricted. Indeed, we can observe that path formulas have been changed in
state formulas in the second line of the path formulas syntax.

The semantics of CTL formulas is the same as for CTL *.

There are ten basic CTL operators in CTL and the most common of them are represented
in figure 1.5:

• AX and EX

• AF and EF

• AG and EG

• AU and EU

• AR and ER

It is to be noted that each of the ten operators can be expressed with EX, EG, and EU.

• AXf=,EX(,f)

• EF f = E(TrueU f)

• AGf=,EF(,f)

14 Chapter 1. Madel checking

EFp EGp p

AFp AGp p

Figure 1.5: Most common operators in CTL

• AFJ = ,EG(,f)

• A(JUG) = ,E(,gU(,f /\ ,g)) /\ ,EG(,g)

• A(f Rg) = ,E(,fU,g)

• E(f Rg) = ,A(,JU,f)

Example 1.5.

• EF sun means that it is possible to have sun one day.

• AG 4seasons means that the statement there are four seasons in a year is always true.

1.2.4 LTL

Linear Temporal Logic (LTL) is also a subset of CTL* like CTL and is commonly defined
as linear-time logic. As for CTL, there are formulas which are not allowed in LTL. If we
consider again, examples 1.4 given in CTL*. The first one A(G,sleep ⇒ Xtired), which is
not allowed in CTL, is allowed here. The second one AG(,sleep ⇒ EFtired) is not allowed
in LTL but well in CTL. And the last one is not allowed as for CTL. Here the reason is also
obvious. It can be observed from these examples that formulas with state formulas inside
cannot be expressed in LTL. The conclusion of this is LTL only treats path formulas. Hence,

1.2 Temporal logic 15

Figure 1.6: Two indistinguishable automata for LTL

a consequence is that LTL does not use path quantifiers A and E. Another consequence is
that LTL is not able to distinguish certain automata (see figure 1.6) . If a formula is true
for one of the automata then it is true for the other automaton. Indeed, LTL sees these two
automata as the same set of paths. Execution 1 is seen as {P, Q}.{P}.{-} . .. Execution 2
is seen as {P, Q}.{P}.{Q} . . . This is not the case for CTL. It is possible to find a formula
which is true for one and false for the other one. AX(EX Q !\ EX ,Q) is true in A1 and
false in A2. LTL formulas are generally noted Af where fis obviously a path formula but it
often happens that the A is not written.

The syntax of LTL formulas is given by the following rules:

Path formulas

• If p E Prop, then p is a path formula.

• If f and g are path formulas , then ,J, f V g, f !\ g , X f, F f, G f, JU g, and f Rg are path
formulas.

Before providing semantics, notations are defined as follows : f and g are path formulas ,
M, 1r I= f means that f is true along path 1r in the Kripke structure M. 1ri defines the suffix
of 1r starting at state si .

The semantics of LTL formulas is defined as follows:

• M, 1r I= f ~ s is the first state of 1r and M, s I= f.
Formula f is true along a path 1r in the Kripke structure M if and only if state s is the
first one of the path in question and f is true at state s of the Kripke structure M .

• M ,1r I= ,k ~ M,1r F k .
The negation of formula k is true along a path 1r in the Kripke structure M if and only
if k is false along path 1r in the Kripke structure M.

• M, 1r I= k V j ~ M, 1r I= k or M, 1r I= j.
Formula k V j is true along a path 1r in the Kripke structure M if and only if k is true
or j is true along path 1r in the Kripke structure M.

16 Chapter 1. Model checking

• M,-rr I= k l\j ~ M,-rr I= k and M,-rr I= j.
Formula k I\ j is true along a path -rr in the Kripke structure M if and only if k and j
are true together along path -rr in the Kripke structure M.

• M,-rr I= Xk ~ M,-rr1 I= k.
Formula X k is true along a path -rr in the Kripke structure M if and only if k is true
along a suffix of -rr starting with the state s1 which is the state following the first state
of -rr.

• M, 1r I= Fk ~ :ly 2:: 0 1 M, -rrY I= k.
Formula Fk is true along a path -rr in the Kripke structure M if and only if there exists
a suffix of -rr starting with the state sy where k is true along the suffix.

• M,-rr I= Gk ~ Vi 2:: 0,M, -rri 1= k.
Formula Gk is true along a path -rr in the Kripke structure M if and only if k is true
along all suffixes of -rr starting with a state si.

• M,-rr I= kUj ~ :3y 2:: 0 1 M ,-rrY l=j and V0 ~ x < y , M,-rrx I= k.
Formula kU j is true along a path -rr in the Kripke structure M if and only if there exists
a suffix of -rr starting with the state sy where j is true along the suffix and k is true
along suffix of -rr starting with state Sx where x is between 0 and y but not equal to y .

• M, 1r I= kRj ~ Vx 2:: 0, if for every i < x M, -rri ~ k then M, -rrx I= j.
Formula kRj is true along a path -rr in the Kripke structure M if and only if for ail x

greater than or equal to 0, if for every x strictly greater than i such k is not true along
the suffix of -rr starting from state Si then j is true along the suffix of -rr starting from
state Sx-

In view of the semantics, it is clear that LTL deals with paths and not with states. The
examples 1.2 of the car and the race are good examples of LTL temporal logic.

1.3 Madel checking

The model checking problem is very simple. It consists in finding out whether a given
automaton satisfies a given temporal formula or not. Considering Kripke structures as the
models of temporal logics, it is normal to meet them in CTL and LTL model checking.
Language theory approach is also used in model checking and it is generally preferred for
LTL model checking. This section is a summary of [BBF+Ol], [JGP99], and [Lerpt].

1.3.1 CTL model checking

In this part, we develop the way of checking model with CTL temporal formulas. As
CTL can only express states, we can reason in terms of which states satisfy which formulas.
Therefore we do not consider the executions. The algorithms for CTL model checking operate
by labelling each state where subformulas of the main formula are true. This is the main goal.

The model is represented by the Kripke structure M = (S, T, L) and the labelling is clone
with the set label (s) of subformulas of f which are true in state s. label (s) is also equal to

1.3 Model checking

procedure EU(J,g)
V:= {s I g E label(s)};

for all s EV do label(s) U {E(!Ug)};
while V-/=- 0 do

choose s EV

V:= V\{s};
for all t such that T(t, s) do

if E(!Ug) rf_ label(t) and f E label(t) then
label(t) := label(t) U {E(!Ug)};
V:= VU {t};

end if;
end for all;

end while;
end procedure

Figure 1. 7: Procedure for labelling states satisfying formula E(JU g)

17

l (s) at the initial phase. The algorithm then goes through a series of stages. During the
ith stage, subformulas with i - 1 nested CTL operators are processed. In other words, the
state-labelling algorithm is successively applied to the subformulas of a CTL formula f. This
is done by starting with the shortest subformula (most deeply nested) and works outwards to
include all subformulas off. Proceeding like this guarantees that when a subformula off is
processed, all its subformulas have already been processed. When a subformula is processed,
it is also added to the labelling of each state in which it is true. At the end of the algorithm,
state s of Kripke structure M satisfies f if and only if f E label (s).

Seeing as any CTL formula can be expressed in terms of,, V, EX, EU, and EG (see CTL
temporal logic), it is sufficient to handle them. So for formulas of the form ,J, states that
are not labeled by f are labeled. For f V g, states that are labeled either by f or by g are
labelled. For EX f, every state which has some successors labeled by f is labeled. It is more
complicated for the last two formulas. For formulas of the form E(!Ug), the goal is to find
all states which are first labelled with g. The work is then done backwards using the converse
of the transition relation T and all states that can be reached by a path in which each state
is labelled with f are found. All such states should be labelled with E(!Ug). A procedure
for the latter formulais given in figure 1.7. This procedure adds the formula to label(s) for
every s that satisfies it. The labelling of subformulas f and g have already been processed.
The other formula EG f is based on the decomposition of the graph into Strongly Connected
Component (SCC).

Definition 1.9. A strongly connected component C is a maximal subgraph such that every
node in C is reachable from every other node in C along a directed path entirely contained
within C.

C is considered nontrivial if and only if either it has more than one node or it contains
one node with a self-loop . The developed algorithm works with a restricted Kripke structure
M' = (S', T', l') obtained from M by deleting from the set S all of these states in which f does
not hold and by restricting T and l accordingly. The graph composed of S' and T' is then
divided into strongly connected components. The following stage is to find states belonging

18

procedure EG(f)
S' := {s I f E label(s)};
SCC := { C I C is nontrivial SCC of S'};
V := UcEscd8 1 s E C};

for all s EV do label(s) U {EGJ};
while V-/= 0 do

choose s EV
V:= V\{s};
for all t such that t ES' and T(t, s) do

if EGJ (/:. label(t) then
label(t) := label(t) U {EGJ};
V:= VU {t};

end if;
end for all;

end while;
end procedure

Chapter 1. Model checking

Figure 1.8: Procedure for labelling states satisfying formula EG f

to nontrivial components. After that, backward work is clone using the converse of T' to find
all the states that can be reached by a path in which each state is labeled with f. Such a
procedure is given in figure 1.8. This procedure adds EGJ to label(s) for every s. As for the
algorithm for E(!Ug), the inside formula f has already been processed.

In order to have a better understanding of the CTL model checking and theoretical con­
cepts given before, here is an example.

Example 1.6. This example from [JGP99] describes the behavior of a microwave oven.
Figure 1.9 gives the Kripke structure of the system. For a better understanding, each state
is labeled with both atomic propositions which are true and the negations of the propositions
that are false in the state. The CTL formula to check is the following: AG(Start => AF H eat).
The formula can be transformed into an equivalent formula to use the algorithms of CTL given
previously. So we obtain ,E(true U (Start /\ EG,Heat)). The first thing to dois to com­
pute the set of states which satisfy the atomic formulas and then proceed to more complicated
subformulas.

S(Start) = {2, 5, 6, 7} is the set of states which satisfy the atomic proposition Start .
S(,H eat) = {1, 2, 3, 5, 6} is the set of states which do not satisfy the atomic proposition H eat.

To compute S(EG,H eat), the set of nontrivial strongly connected components has to be
found in S' = S(,H eat). The set obtained is SCC = {{1, 2, 3, 5}}. {2, 5} (/:. SCC because it
is not the maximal subgraph. State 6 does not belong to the strongly connected component
{1, 2, 3, 5} because state 6 can not reach another state where ,H eat is true. There is no other
st rongly connected components in SCC because there is no more subgraph with strongly
connected states where ,H eat is verified in the different states and where the states are not
connected to state 1, 2, 3 or 5. We then proceed by setting V , the set of all states which
should be labeled by EG,H eat, to be the union over the elements of SCC. Thus, initially
V equals to {1, 2, 3, 5}. Seeing that no other state in S' can reach a state in V along a path

1.3 Model checking 19

7

Figure 1.9: Kripke structure of the microwave oven

in S', the computation terminates with: S(EG,Heat) = {1,2,3,5}.
The next formula to compute is S(Start /\ EG,H eat) and the result set is {2, 5}.
In order to compute S(E[True U (Start /\ EG,Heat)]), Vis set to S(Start /\ EG,Heat).
The next stage is to use the converse of the transition relation to label all states in which the
formula is true. So, this is the result:

S(E[True U (Start /\ EG,H eat)]) = {1, 2, 3, 4, 5, 6, 7}.

The last stage is to use the negation of the last subformula.

S(,E[True U (Start /\ EG,Heat)]) = 0

The last result is empty and thus does not contain initial state 1. The conclusion is that the
system described by the Kripke structure does not satisfy the given formula.

1.3.2 LTL model checking

In this subsection, two ways of LTL model checking are described. One uses Kripke
structure and is called LTL model checking by tableau. The second uses language theory and
particularly Büchi automata.

1.3 Model checking 21

Example 1. 7. To illustrate all these concepts in an example [JGP99], we can reconsider
the example 1.6 of the microwave oven. The automaton is the same than the one in figure
1.9. The formula to check is A((,Heat)UClose) which will be true in the model if it is not
possible for the oven to heat when the door is opened. It is easier to check the negation of
the formula. So we check if formula E,((,Heat)UClose) is not satisfied.

The first stage is to compute the closure of ,((,Heat)UClose). This computation is clone
by using definition 1.11. To be clearer, let f be ((,Heat)UClose). Thus, we obtain:

CL(,!)= { ,j, f, Xf, ,XJ, X ,J, Heat, ,Heat, Close, ,Close}

The next stage is to compute the set of atoms. As for the first stage, computation is clone
using the definition (see definition 1.12) . (,Heat)UClose is in KA if and only if either Close
is in KA or both ,Heat and X((,Heat)UClose) are in KA (see definition 1.12). KA has
also to be consistent with l(sA)- It means that what is in KA must be in l(sA) for state SA­
Two states contain formulas ,Close and ,H eat: state 1 and state 2. The set of formulas
associated with these states can be represented as following:

Kf = {,Close,,Heat,J ,Xf} or Kr= {,Close,,Heat,,J,X,J,,Xf}

Therefore, the atoms are (1, KD, (2, KD, (1, KD, (2, Kf'). The consistency between KA and
l(sA) is respected seeing that ,Close and ,Heat are in l(s1) and l(s2). This can be clone
for other states. We obtain the following sets for states 3, 5 and 6 which contain ,H eat and
Close:

K~ = {Close,,Heat,J,Xf} or Ki= {Close,,Heat,,J,X,J,,Xf}.

The atoms are (3, K~), (5, K~), (6, K~), (3, K{), (5, Ki), (6, Ki).

And for states 4 and 7:

K~ = {Close,Heat,J,Xf} or Kr= {Close,Heat,j,X,J,,Xf}.

Now, we can go to next stage. In this stage, the transition relations between atoms will
be given. There is a transition relation between an atom A and B if there is a transition
from s A to s B in M and for every formula of the form X f E KA, f E K B · So there is a
transition from (1, KD to (2, KD seeing that there exists a transition from state 1 to state 2
and that X f E Kf and f E Kf. It is the same for (1, KD and (2, KD but here X ,J E Kr
and ,JE Kf'. There is no transition from (1, KD to (2, KD because we have X f E Kf and
we do not have f E K~'. The remaining transitions are computed in the same way.

For the last stage, we know that astate s satisfies ,J if there is an atom (s, K) such that
,J E K and there is a path from (s, K) in the graph that leads to a self-fulfilling strongly
connected component. The latter is SCC = {1, 2, 3, 5}. When we look at the full graph, we
observe that no such atom leads to SCC. That is why the conclusion is no state satisfies
E,((,Heat)UClose). This means that each state satisfies A((,Heat)UClose).

22 Chapter 1. Model checking

11 14

15

12 13

Figure 1.10: Automaton A

LTL model checking w ith Büchi automata

We already know that LTL model checking deals with path formulas and not state formu­
las. A finite automaton will generally give rise to infinitely many different executions. These
ones are often infinite in length. These are the reasons why language theory is generally used
instead of Kripke structures. The algorithms in LTL reason on Büchi automata3 . The con­
structed automaton describes the executions which do not satisfy formula f. It is noted B ~f.
The Büchi automaton is usually associated with an automaton A representing a system for
which we want to check if it satisfies f. The result of this association is a strongly synchro­
nized automaton noted A © B~t. The new automaton represents the behaviors of A accepted
by B~t. In other words, it represents the executions of A which do not satisfy formula f .
This automaton is thus the intersection between behaviors of A which have to satisfy f and
behaviors of B~t which satisfies ,f. If this intersection is empty, the formula f holds for A.
Otherwise it corresponds to a counterexample. Checking the emptiness of a Büchi automaton
is simple. It consists in finding a strongly connected component which is reachable from an
initial state and which contains an accepting state.

Example 1.8. The example from [BBF+o1] shows how LTL model checking works with
Büchi automata. The LTL formula which has to be satisfied by the automaton A in figure
1.10 is G(out of fuel=> XFCar stops). This formula states that at any time the fact that
a car is out of fuel must be followed later by the fact that the car stops. The negation of the
formula states that there exists astate in which the car is out of fuel and after which we will
never encounter again a state in which the car stops. The Büchi automaton obtained and
shown in figure 1.11 is not deterministic. It means that it can choose to move from state qo
to q1 each time out of fuel is verified, knowing that Car stops will never hold again. We have

3See definitions 1. 7 and 1.8 for reminder.

/

22
Chapter 1. Model checking

tl t4

t5

t2

Figure 1.10: Automaton A

LTL model checking with Büchi automata

We already know that LTL model checking deals with path formulas and not state formu­
las. A finite automaton will generally give rise to infinitely many different executions. These
ones are often infinite in length. These are the reasons why language theory is generally used
instead of Kripke structures. The algorithms in LTL reason on Büchi automata

3
. The con­

structed automaton describes the executions which do not satisfy formula f. It is noted B ~f.
The Büchi automaton is usually associated with an automaton A representing a system for
which we want to check if it satisfies f. The result of this association is a strongly synchro­
nized automaton noted A @B~J· The new automaton represents the behaviors of A accepted
by B~J. ln other words, it represents the executions of A which do not satisfy formula f.
This automaton is thus the intersection between behaviors of A which have to satisfy f and
behaviors of B~f which satisfies -i f. If this intersection is empty, the formula f holds for A.
Otherwise it corresponds to a counterexample. Checking the emptiness of a Büchi automaton
is simple. It consists in finding a strongly connected component which is reachable from an

initial state and which contains an accepting state.

Example 1.8. The example from [BBF+o1] shows how LTL model checking works with
Büchi automata. The LTL formula which has to be satisfied by the automaton A in figure
1.10 is G(out of fuel=> XFCar stops). This formula states that at any time the fact that
a car is out of fuel must be followed later by the fact that the car stops. The negation of the
formula states that there exists a state in which the car is out of fuel and after which we will
never encounter again a state in which the car stops. The Büchi automaton obtained and
shown in figure 1.11 is not deterministic. It means that it can choose to move from state q0

to q
1

each time out of fuel is verified, knowing that Car stops will never hold again. We have

3See definitions 1.7 and 1.8 for reminder.

1.3 Model checking 19

7

Figure 1.9: Kripke structure of the microwave oven

in S', the computation terminates with: S(EG,H eat) = {1,2, 3,5} .
The next formula to compute is S(Start /\ EG,H eat) and the result set is {2, 5}.
In order to compute S(E[True U (Start /\ EG,Heat)]), Vis set to S(Start /\ EG,Heat) .
The next stage is to use the converse of t he transit ion relation to label all states in which the
formula is true. So, t his is t he result:

S(E[True U (Start /\ EG, H eat)]) = {1, 2, 3, 4, 5, 6, 7}.

The last stage is to use the negation of the last subformula.

S(,E[T rue U (Start /\ EG, Heat)]) = 0

The last result is empty and thus does not contain initial state l. The conclusion is that the
system described by the Kripke structure does not satisfy the given formula.

1.3.2 LTL model checking

In this subsection, two ways of LTL model checking are described. One uses Kripke
structure and is called LTL model checking by tableau. The second uses language t heory and
particularly Büchi automata.

20 Chapter 1. Model checking

LTL model checking by tableau

The idea here is to use an algorithm which involves a tableau construction.

Definition 1.10. A tableau is a graph derived from a formula from which a model for the
formula can be extracted if and only if the formula is satisfiable.

In this case, we use Kripke structure M = (S, T, l) and formulas f conformed to syntax
of LTL temporal logic2 . This means that we only consider path formulas. As for CTL model
checking, all operators do not have to be handled. It is sufficient to consider only the temporal
operators X and U. Indeed, Ff = True U f, Gf = ,F,J and f Rg = ,(,JU,g). And
formula like Af can be also transformed into an equivalent formula ,E,J. To be able to say
that the state s of the Kripke structure M satisfies Ef, three concepts have to be defined:

Definition 1.11. The closure off noted CL(!) is the smallest set of formulas containing f
and satisfying:

• ,JE CL(!) ç=> f E CL(!).

• if f V g E CL(!), then f , g E CL(!)

• if Xf E CL(!), then f E CL(!).

• if ,XJ E CL(!), then X ,JE CL(!).

• if JUg E CL(!), then f,g,X(!Ug) E CL(!).

Definition 1.12. An atom can be defined as a pair A= (sA, KA) where SA E Sand KA Ç
C L(f) U Prop such that:

• for each proposition p E Prop,p E KA ç=> p E l(sA).

• for every f E CL(!), f E KA ç=> ,J (f. KA.

• for every f V g E CL(!), f V g E KA ç=> f E KA or g E KA.

• for every ,XJ E CL(f),,Xf E KA ç=> X,J E KA.

• for every fUg E CL(f),JUg E KA ç=> g E KA or f, and X(!Ug) E KA.

In an intuitive way, an atom A= (sA, KA) is defined in such a way that KA is a maximal
consistent set of formulas that is also consistent with the labelling of s A.

Definition 1. 13. The last definition is about nontrivial strongly connected components. It
is said that a SCC noted C of a graph is self-fulfilling if and only if for every atom A in C
and for every f U g E KA there exists an a tom B in C such that g E K B ·

Now, with these concepts, we can say that astates of a Kripke structure M satisfies Ef
if and only if there exists an atom A= (s, K) in a graph such that f E K and there exists a
path in that graph from A to a self-fulfilling strongly connected component.

2See section 1.2.4 for more details.

1.3 Model checking 23

out of fuel, car stops u
1
: out of fuel, car stops

uO: out of fuel , not car stops

not out of fuel, car stops

not out of fuel, not car stops

t------------ u2: out of fuel , not car stops
out of fuel , not car stops 00

not out of fuel , not car stop:

Figure l.ll: Büchi automaton B~t

14@ ul

li® uO 14 ® uO LI@ u2

15 ® uO 15 ® u2

t2 ® uO
13@ uO

t2 ® u2
L3 ® u2

Figure 1.12: Synchronized automaton A © B~t

a counterexample and thus a bad behavior (not satisfying G(out of fuel==> XFCar stops)
if the automaton does not leave anymore state q1 without blocking. A particularity of the
Büchi automaton is that the transitions are labelled by valuations of the atomic propositions
out of fuel and Car stops. This allows the automaton to observe the propositions appearing
along an execution. The automaton representing the synchronization of A and B ~f is given
in figure 1.12. In this latter, a transition t © uo is possible if t leaves a state where out of fu el
is true or false. Transitions t © u 1 are possible if t leaves astate where out of fuel is true and
transitions t © u2 are possible if t leaves a state where car stops is false. A consequence of the
latter kind of transitions is that there is no transition from a state where out of fu el and car
stops are true to a state where both are false.

In view of the synchronized automaton, we can say that the intersection between A and
B~t where f = G(out of fuel==> XFcar stops) is not empty. Behaviors of A are therefore
accepted by A © B~t. It occurs when we reach the right part of A © B~t and when avoiding
to block. Indeed, we are in a strongly connected component containing accepting states. The
conclusion is that A does not satisfy formula G(out of fuel==> XFcar stops).

1.3.3 CTL* model checking

The idea for CTL* model checking is very simple. It consists in combining both techniques
described before. This means to use the state-labelling technique from CTL model checking

24 Chapter 1. Model checking

with LTL model checking. The latter handles formulas which are path formulas but it is
possible to extend the algorithm of LTL. This extension permits to handle formulas Ef
in which f contains arbitrary state formulas. In order to achieve that, we consider that
subformulas of f have already been processed and the labelling of states has been correctly
clone. The next stage is to replace each state subformula with a fresh atomic proposition in
the formula f and also in the labelling of the model. So a new formula is obtained and is
noted E f'. If the analysis of the formula shows us that it is in CTL, then it is logical that the
CTL model checking algorithm is chosen in order to be applied on the formula. If it appears
that the formula is not in CTL but it is a LTL path formula, then the algorithm for LTL
model checking is logically used. In both cases, the formula is added to the label set of all
of those states that satisfy it. A last case has to be treated. It concerns subformula Ef of a
more complex CTL* formula. In this case, the procedure is repeated with E f replaced by a
fresh atomic proposition and this is continued until the whole formula is processed.

More technically, the algorithm for CTL* works in stages like the one of CTL. So when
the algorithm is in stage i, formulas of level i are processed. The state formulas of level i are
defined as follows:

• Level O is obviously the level of atomic propositions.

• Level i + 1 contains all state subformulas g such that all state subformulas of g are of
level i or less and g is not contained in any lower level.

To understand better how the mechanism of levels works, we can reconsider the example 1.6
of the microwave oven from [JGP99]. The CTL* formula to verify is the following:

AG((,Close I\ Start) ⇒ A(G,Heat V F , Error))

This formula states that if the illegal sequence (,Close I\ Start) occurs, then the microwave
oven will never heat or it will eventually arrive in a state where error is not satisfied. In other
words, it will eventually be reset. The illegal sequence occurs when the start button is pressed
before the door is closed. It has to be noticed that the formula can not be expressed in CTL
because there are some temporal operators which follow each other. It is also impossible to
express it in LTL because there are path quantifiers used in the formula.

This formula can be transformed into an equivalent formula as seen previously to simplify
model checking. So if we take the negation of the formula, we obtain:

,EF(,Close I\ Start I\ E(F H eat I\ G Error))

Now that we have the formula, we can give the levels of the subformulas of this formula :

• Level O subformulas are Close, Start, H eat, and Error . These are the atomic propo-
sitions;

• Level 1 subformulas are E(F H eat I\ G Error) and ,Close;

• Level 2 subformula is EF(, Close I\ Start I\ E(F H eat I\ G Error);

• Level 3 contains the entire formula. Hence, ,EF(,Close I\ Start I\ E(F Heat I\

G Error)).

1.3 Model checking 25

In order to continue to describe the algorithm for CTL* model checking, the following
definition is necessary:

Definition 1.14. A subformula Eh1 of g which is a CTL* formulais said to be maximal if
and only if Eh1 is not a strict subformula of any strict subformula Eh of g.

As an example, let us take the following formula : E(a V E(b I\ EFc)). In this formula,
EFc is a maximal subformula of E(b I\ EFc) but not of E(a V E(b I\ EFc)).

As said before, model checking consists in checking if a given automaton satisfies a given
formula. Thus, we consider here the Kripke structure M = (S, T, l) and the CTL* formula f.
We also have to consider the state subformula g of f which is of level i. The stage i of the
algorithm leads g to be added to all states where g is true. Obviously, at this stage, states of
M have already been labelled with all state subformulas of level i - 1 or less. The manner to
treat g depends on its form. These ones are detailed as follows:

• If gis an atomic proposition, then gis in label(s) if and only if it is in l(s).

• If g = ,k, then g is added to label (s) if and only if k is not in label (s).

• If g = k V j, then g is added to label (s) if and only if either k or j are in label (s).

• If g = E g1 , then the proced ure E (g) is applied to add g to the label of all states w hich
satisfy the formula. In this latter, Eh1, . .. , Ehv are the maximal subformulas of g and
a1, ... , av are the fresh atomic propositions. In this procedure, we can observe a formula
noted g'. This is the formula where each subformula Ehi is replaced by their respective
proposition ai, The result of that is a formula Eg'i where g'i is a LTL formula. All is
done supposing that the LTL model checker updates label (s) to obtain that state s of
M satisfies g' if and only if g' E label(s). The procedure for E(g) is given in figure 1.13.

Example 1.9. The example 1.6 of the microwave aven is, once again, the reference. The
Kripke structure is thus the same that the one in figure 1.9. The formula to be treated is

,EF(,Close I\ Start I\ E(F Heat I\ G Error))

The verification proceeds as follows. At the lowest level (Ievel 0) , atomic propositions are
treated. The next level, the formula ,Close is added to states 1 and 2. The other formula
E(F H eat I\ G Error) is handled by an LTL model checking procedure seeing that this
formula is a LTL formula. The result is that the formula is false in all states. Therefore, it
is is not added to any state label. In level 2, the upper subformula EF(,Close I\ Start I\
E(F H eat I\ G Error)) is handled. It is not a CTL formula. Hence the first step is to replace
the subformula of level 1 E(F H eat I\ G Error) by the atomic proposition a. An LTL model
checking procedure is then applied to the new LTL formula obtained EF(,Closel\ Startl\a).
We observe that the formula is false in any state. Thus, in the last level, all states are labeled
with

,EF(,Close I\ Start I\ E(F H eat I\ G Error))

The conclusion is that the microwave aven respects that specification.

26

procedure E(g)
if g is a CTL formula then

apply CTL model checking for g;
return;

end if;
g' := g[aif Eh1, . . . , ak/ Ehk]i
for all s ES

for i = 1, ... , k do
if Ehi E label(s) then

label(s) := label(s) U {ai} ;
end if;

end for all;
apply LTL model checking for g';
for all s E S do

if g' E label (s) then
label(s) := label(s) U {g};

end if;
end for all;

end procedure

Chapter 1. Madel checking

Figure 1.13: Procedure to treat CTL* formula of the form E(!Ug)

1.4 Properties

It can be sometimes useful to add properties to model checking techniques. Such a property
can lead to a more efficient model checking according to the goal purchased. As an example,
if the verification goal is to check that something never occurs, then safety property is used.
In this section, five properties are detailed: reachability property, safety property, liveness
property, deadlock-freeness property and fairness property. It is to be noticed that other kinds
of properties such progress property or response property exist. This section is a summary of
[BBF+o1).

1.4.1 Reachability

Definition 1.15. A reachability property states that some particular situation can be reached.

As examples, it is possible "to enter in a critical section" or the negation is also possible
"not to enter in a critical section". This property is one of the most successful strategies for
analysing and validating computer protocols.

In temporal logic, reachability property are naturally expressed with the following begin­
ning EF. The formula which follows that beginning must be constructed without temporal
combinators. Such a kind of formula is called present tense formula. EFcritical....section
belongs to this family of formulas. It is also possible to express reachability with the EU
construction. It gives us E,carstops U ouLof-fuel. All these formulas use CTL. LTL
logic is not the best suited logic to express reachability but the latter can be used to express
reachability in a negative way.

1.4 Properties 27

Reachability is easy to verify for a mode! checker. Indeed, a mode! checker is generally
able to construct the reachability graph and in some cases, a simple look at it allows to
answer any reachability question. The set of reachable states cannot however be easy to see,
especially when several automata are synchronized. There exist two major kinds of algorithms
for reachability: forward chaining and backward chaining algorithms.

The f orward chaining algorithm constructs the set of reachable states by starting from
the initial states. Their successors are then added along the computation until the moment
where no more states can be added to the set of reachable states.

The basic idea for the backward chaining is to construct the set of states which can lead
to the states for which the reachability property is in question. The latter states are called
target states. Once it has been clone, the next step is to add the direct predecessors until
the moment where no more states can be added to the set of target states. Finally, a test is
performed on the set to check if some initial state belongs to it.

This method has two drawbacks. The first one is that a set of target states is necessary
before executing the backward search. The second is that it is often more complicated to
compute the direct predecessors than the successors of the states. A good example for this is
automata with state variables. The successors are computed directly by evaluating expressions
whereas the computation of predecessors requires solving equations and complex evaluations.

Another problem of these algorithms, and especially the forward chaining, is the state
explosion problem4 .

1.4.2 Safety

Definition 1.16. A safety property expresses that, under certain conditions, an event never
occurs.

An example of the expression of a safety property is as long as the checked flag is not
waved, the Fl race is not finished".

The elements of temporal logics which express the property are temporal combinator G
and path quantifier A in CTL logic and only the temporal combinator G in LTL. Thus, we
can have formulas such

AG,(ouLof_fuel /\ ,car_stops)

The same formula has an equivalent in LTL when the A is removed. It is to be noticed that
safety property is the negation of reachability property. Indeed, ,EF is equivalent to AG.

However, it is generally easier to express safety properties with past temporal formula. It is
called syntactic characterization. The basic idea of the latter is that when a safety property is
violated, it should be possible to notice it immediately. The formula can be written as before
AG f or G f but the difference is that f is a past formula. The combinators used to construct
such formulas are logically the opposite of the future temporal combinators. So there are
p - 1, x-1 and S which is the opposite of U. p -l means that a formula was verified at some
past instant. x-1 means that a formula was verified in the state immediately preceding the
current state. f Sg means that g was satisfied at a past instant, and that, since then, f is
satisfied. As the path to the current state is fixed, the path quantifiers A and E are not used

4The problem is discussed in chapter 2.

28 Chapter 1. Model checking

hl,h2:=false hl:=true

h 1, h2:=false hl :=false 0
h2:=true

h l :=false

h2:=true

hl :=false
h l ,h2:=false

Figure 1.14: An automaton with history variables

together with past combinators. If the example above is used with past combinators, the
formulais AG(car _stops ⇒ F- 1ouLof _Juel). It thus means that it is always true that if the
car stops then we were out of fuel earlier.

The problem which appears is that past formulas are generally not handled by model
checkers. Two solutions are proposed. The first one is to eliminate the past and to obtain
a future formula. This solution is not easy at all. The second one is to use history variables
method. The idea is to transform a formula AG f where f is a past formula in a formula
with reachability property. This is possible by using history variables. Their goal is to store
the occurrences of some past events without modifying the future behavior of the system. In
practice, it is often sufficient to associate one history variable with each subformula which has
a past combinator at its root .

Example 1.10. As an example, three variables are coupled with the following formula:

The first one h1 for x- 1 P, the second one h2 for h1SQ and the last one h3 for F-1h2. All of
these variables are initially false and they are modified along an automaton.

Example 1.11. This second example from [BBF+o1J illustrates an automaton with history
variables in figure 1.14. We can observe that there are two variables. h1 is for formula
x -1crash and h2 is for (,reset) S crash. Therefore, safety formulas such as AG(alarm ⇒
x-1crash) or AG(alarm ⇒ (,reset) S crash) can be respectively expressed as AG(alarm ⇒
h1) and AG(alarm ⇒ h2). There are no more past operators and they are thus handled by
model checkers. It now means "at any time of any execution, if alarm is satisfied then h 1 is
true" and "at any time of any execution, if alarm is satisfied then h 2 is true".

1.4.3 Liveness

Definition 1.17. A liveness property states that, under certain conditions, some event will
ultimately occur.

An example of liveness property is "the program will terminate".

1.4 Properties 29

There exist two large families of liveness properties: simple liveness also called progress
and repeated liveness also called fairness. Fairness property is detailed in subsection 1.4.5.

The best suited operator of temporal logic for liveness property is the F operator . AG(req =>
AFsat) which means that "any request will ultimately be satisfied"is a formula with liveness.
Another operator is also able to express liveness. This is the U operator. However, these
formulas are a bit special. Let us consider the formula f ueUight U carstops which means
that the fuel warning light of a dashboard is switched on until the car stops. The proposition
car_stops is true in a state of a path and for all states encountered before this state, fueUight
is true. The conclusion of this is that car_stops is a liveness property because it will eventu­
ally hold and fueLlight is a safety property because it always holds beforehand. The set is
nevertheless considered as a liveness property.

Liveness properties can play two roles in the verification process. They can appear either
as liveness properties which have to be verified or as liveness hypotheses which are made on the
system model. The liveness hypothesis generally made is that the system under consideration
does not terminate or does not stay inactive without reasons. However, the hypotheses on a
model can sometimes be subtle and can lead to errors. It is possible that the model seems
correct for several aspects of the real system whereas the behaviors are not the same ones.

Despite this problem between real system and model, it remains possible to verify the
behaviors with a model checker. Two conditions must be met for this. The first condition
is that the liveness hypotheses of the model must be Jess restrictive than the desired ones.
In other words it means that the behaviors modeled are more general than those of the real
system. The second condition is that the temporal logic used must be able to express the
liveness hypotheses which are not handled by the model. This has as a consequence that
the satisfaction of a given property is only verified for the behaviors for which the liveness
hypotheses hold. It is possible to express the behaviors of a liveness hypothesis in temporal
logics. The formula fliv => g can be written and it means that g is true for the behaviors
of the liveness hypothesis. This formula is verified along paths. This is thus a LTL formula.
If g was written in CTL, then fti v would have to be inserted into each occurrence of a path
quantifier in g. For example, formula AF E f ueUightU carstops is transformed into the
following formula:

A(fliv => FE(fliv I\ fueUightUcar_stops))

Another problem of liveness properties is that they are sometimes not precise enough. The
following example is a good illustration: the fact that the button to call an elevator is pressed
does not guarantee that the request will be realised in reasonable delays. A solution is to
have a maximal delay, that is to say to have a bound. This is called bounded liveness. As an
example, if the button of an elevator is pressed, the request will be realised within 3 minutes.
However, adding this constraint leads to a safety property. Indeed, the given example of req
and sat can be written as a safety formula with past operators :

AG(sat => p- 1req)

which means that at any time sat is true if a request was expressed at a past instant.
As a consequence, all the methods for safety properties can be applied to bounded liveness
properties. In the other band, these properties can be useful for specification of timed systems.

30

x:=x+I

x:=0; y:=0

y:=y+I

Chapter 1. Model checking

if X= y

ifx>O
x:=x+l

Figure 1.15: A deadlock-free system

1.4.4 Deadlock-freeness

Definition 1.18. A deadlock-freeness property states that the system can never be in a
situation in which no progress is possible.

In other words, some undesirable event will never occur. This is considered as a correctness
property relevant for systems that are supposed to run indefinitely.

This property is generally written AGEXtrue in CTL and can be read "whatever the
state reached may be, there will exist an immediate successor state". This property can be
considered as a particular case of safety property. The reason of this is that the deadlocked
states can often be described explicitly. It is sufficient after this to verify that these states
cannot be reached .

Example 1.12. This example from [BBF+o1] illustrates deadlock-freeness. Let us consider
the automaton A in figure 1.15. This is an automaton with two integer variables. We can
say that the automaton is deadlock-free because x and y are equal in S1 and not in another
state. As a consequence, the automaton is never in S3 . As said before, deadlock-freeness
can be expressed in a safety property. So instead of using AGEX true, the safety formula
AG,(s3 /\ x ~ 0) expresses deadlock-freeness.

1.4.5 Fairness properties

Definition 1.19. A fairness property expresses that, under certain conditions, an event will
occur (or will fail to occur) infinitely often.

Examples of this property are "the gate will be raised infinitely often", "if a die is infinitely
often thrown, then the die will infinitely often roll". As said in subsection 1.4.3, this property
is also called repeated liveness.

00

As regards temporal logics, the best suited combinators to express this property are F and
00

G described in section 1.2 on temporal logics. The first one means infinitely often or an infinite
00

number of times. Soif we have F P, it is not possible to meet a final state in which P holds
but well an infinite number of states where P holds. The examples above can be written as

00 00 00

A F gate_raised and A(F die_thrown =;, F die_rolls). The second combinator which means
00

all the time from a certain time onwards is as well useful. An execution satisfying G P means
that P is true for all t he states encountered, except possibly for a finite number of them. The

1.4 Properties 31

00 00
example of the die can be also written here and the result is A(F die_rollsV G ,die_thrown).
However, everything is not fine . Fairness properties cannot be expressed in CTL seeing that
00 00

F or G are a combination of two temporal combinators. To respond to this problem, an
00 00

extension of CTL was created and it is called CTL+Fairness. The F and G are allowed in
this logic.

Fairness is often used to describe nondeterministic sequences. That is to say when a
nondeterministic choice is clone, the choice is assumed to be fair. The example of the die is a
good example. The behavior of a die when it is thrown is fair if the property

00 00 00 00 00 00

A(F 1/\ F 2/\ F 3/\ F 4/\ F 5/\ F 6)

is satisfied.

As for liveness, it is useful to make a distinction between property and hypothesis. It is to
be noticed that hypothesis is very often used.

Example 1.13. This example from [BBF+o1) uses a model of alternating bit protocol. The
components of this model are a transmitter A, a receiver B, a line AB for the messages, and
a line BA for acknowledgements. The model allows lost messages. It is represented by the
nondeterministic behavior of the lines AB and BA.

The safety property to check here is any message received is actually a message that was
emitted earlier.

Liveness properties such as any emitted message is eventually received fail because the
model allows the unreliable lines to lose all the messages.

However, if we restrict to occasionally lost messages, the nondeterministic choices have to
be restricted too. This is clone in such a way that all the messages are not lost.

Let us now consider a protocol of transmission in which emitted message corresponds to
several received messages. The liveness property to verify G(emitted ⇒ Freceived) is satisfied
by all the fair behaviors, which are expressed as

00

A(F ,loss ⇒ G(emitted ⇒ Freceived))

The situation described shows that a liveness property subject ta verification depends on a
fairness hypothesis. The liveness property is thus not anymore applied on unreliable lines but
well on a fair model which guarantees that all the messages are not lost . This model is fair
thanks to the fairness formula given above.

There exist two kinds of fairness: strong and weak fairness. These apply to fairness
properties of the form if P is continually requested, then P will be granted infinitely often.

00

Weak fairness is used when P is requested without interruption. Thence, the formulas (G
00 00

requestsY) ⇒ F P or (G requestsY) ⇒ F P are obtained. Strong fairness interprets P
is continually requested as P is requested in an infinitely repeated way but possibly with

00 00 00

interruptions. The obtained formulas are (F requestsY) ⇒ F P or (F requestsY) ⇒ F P.

32 Chapter 1. Model checking

1.5 A tool: SPIN

A model checker is described in this section. This is a practical application of the theory.
It gives a view of how to do model checking in real life. This section is a summary of [BBF+o1J .

SPIN is a tool designed by G. J. Holzmann at Bell Labs, Murray Hill , New Jersey, USA.
SPIN was developed with the goal of simulation and verification of distributed algorithms.

The first step in the process of verification is to describe the system under study in the
SPIN's specification language. The latter is called Promela. For communication, the processes
can use communication channels of the type First In First Out (FIFO), shared variables or
rendez-vous. Two operation modes are used in SPIN. The first one allows the user to get
familiar with the behavior of his/her system by simulating its execution. The other one checks
if the system satisfies properties written in LTL temporal logic.

The basic idea for SPIN cornes from the model of automata communicating via bounded
channels. A consequence is that SPIN is unable to verify systems with infinite state such
as Petri Nets. The main feature is the use of techniques to avoid state explosion such state
compression, on-the-fi.y model checking and hashing techniques.

Description of the processes

The description is thus clone with the Promela specification language. The first stage is
to define constants and global variables.

Example 1.14. To illustrate this, we consider the example from [BBF+o1] of an elevator
which serves three floors. The declaration is thus the following :

bit doorisopen[3];
chan openclosedoor=[O] of {byte, bit};

The bits array doorisopen shows if the door of a fl.oor is in the state open or closed. 1 represents
open and O corresponds to closed. The openclosedoor channel is the tool used to communicate
between the elevator and the doors. The length of the buffer associated with the channel is
O. The channel accepts messages of the form {byte,bit} where byte is for the floor to which
the operation applies and a bit for the order sent to the door of the fl.oor .

A process is described by the word proctype followed by its name and its arguments.

Example 1.15.

proctype door(byte i){
do

od
}

openclosedoor?eval(i),1;
doorisopen[i-1)=1;
doorisopen[i-1)=0;
openclosedoor!i,0

1.5 A tool: SPIN 33

The example of the process door described shows that the process takes a floor as a parameter.
It indicates that the door is open, and then that it is closed. Finally, it signals the closing
to the elevator. The do is a loop in which a nondeterministic choice is made between all
instruction sequences starting with : : (there is only one in the door process).

In a more general way, the do instruction permits guards. These ones restrict the set of
sequences that can be chosen.

Example 1.16. The mechanism of guards are used to control the process of the elevator.

proctype elevator(){
show byte floor = 1;

do

od
}

(floor != 3) -> floor++
(floor != 1) -> floor-­
openclosedoor!floor,1;
openclosedoor?eval(floor),O

The elevator process is constructed with two guards (floor != 3) and (floor != 1) . Their goal
is to check that the elevator is not at the third floor when a request for going up is submitted
and that it is not at level 1 when a request for going clown is submitted. The third operation
is to send an order to the door of the current floor. It then has to wait for the same door to
close before moving.

The next step consists in joining all these parts.

Example 1.17. The system execution starts with an initialization process init

init{
atomic{
run door(1); run door(2); run door(3);
run elevator()}
}

The instructions run door(l) and the following ones instantiate the processes corresponding
to the three doors and the elevator. Each instance of the processes then runs in parallel with
the ones that already exist.

Simulation

This mode permits to try out some executions with a graphical interface. There exist three
modes in the simulation mode. Random mode leaves the nondeterministic choice to SPIN
when we are confronted to one of it. The interactive mode leaves the choice to the user . The
last one which is the guided mode is used with the verification. When SPIN finds an error,
the execution leading to the latter is stored in order to replay the execution to find the cause.
This error is obviously a counterexample of the good behavior of the system. Simulation only
permits to view the working of the system but does not carry out the verification.

34 Chapter 1. Model checking

Verification

The verification techniques in SPIN concern the analysis of the complete system. It allows
to check that some property is satisfied by all reachable states or all the possible executions
of the system.

There exists a primitive to indicate invariants which must be satisfied when the system is
in a given state.

Example 1. 18.

assert(doorisopen[i-1] &&
!doorisopen[i%3] &&
!doorisopen[(i+1)%3]);

This specifies that when a door is open, the other ones must be closed. To be complete, this
assertion is added between the instructions to open and close door number i in example 1.15.

As regards the properties to check, there are transformed from LTL into a formula under­
standable by SPIN as the following example.

Example 1.19. G(open1 =} Xdosed1) is written [) (openl -> X closedl) .
The atomic propositions of this formula are defined as follows:

#define open! doorisopen[O]
#define closed1 !doorisopen[O]

F(open1 V open2 V open3) is written <> (openl Il open2 Il open3)

#define open! doorisopen[O]
#define open2 doorisopen[1]
#define open3 doorisopen[2]

The latter is a property which is not satisfied because the model of the elevator described can
go up and down infinitely without stopping on floors.

Chapter 2

The state explosion problem

The goal of this chapter is to introduce to the state space explosion problem and to
propose solutions toit. The exposition of the first three solutions cornes from [BBF+o1] and
[JGP99]. The distributed solution cornes from [BBv02], [BB03], [Bar02a], and [Bar02b]. The
information used to describe the DiVinE project cornes from [divml].

2.1 The state explosion problem

In chapter 1, several methods for verification of concurrent systems have been described.
The problem which has been also raised is when a model represented by an automaton ex­
plodes in the number of states generated. This is the state explosion problem. The latter
occurs in systems with many components which can interact with each other or systems which
have data structures that can assume many different values.

Example 2.1. This example cornes from [expgn]. Let us consider four queues with a capacity
of 64 bytes. A queue can be modeled as a field of the type byte and the size 64. If we consider
that each byte can have 256 values and that in each queue there are 64 different values of
the type byte, then one queue can acquire 25664 different values. And for the four queues, it
gives 256256 different states.

We can see that it grows rapidly. This is thus a problem because computer resources are
not sufficient to be able to handle it. This is an obstacle to efficient mode! checking. Severa!
solutions are described in the rest of the chapter.

2.2 On-t he-Fly model checking

Two ways for checking models have been described in section 1.3 of chapter 1. One using
Kripke structures to represent the mode! of the system. The construction of this structure
can lead to a graph with an exponential number of states. The second way constructs a
synchronized graph from an automaton A representing the concurrent system and an au­
tomaton B-.J which represents t he bad behaviors of this system. The automata used are
Büchi automata. After this construction, the emptiness of the intersection between these two
automata is checked. The latter tells if a counterexample is found. The problem which can

36 Chapter 2. The state explosion problem

appear is that the construction of the graph modelling the system can lead to a huge number
of states. For the synchronized automaton, it is often worst.

The technique called On-the-Fly model checking uses the automata theory approach. It
permits to avoid to construct the entire state space of the system. The reason for this is that
only the Büchi automaton B-,J is constructed in the first stage instead of constructing the
automaton B-,J and the entire automaton A in the first step. The states of the automaton A
are generated only when needed while checking the emptiness of its intersection with automa­
ton B-,J• One of the advantages of this technique is that when the intersection is computed,
some states of A may never be created. Another advantage is that a counterexample may be
found before the end of the creation of the two automata. Hence, when a counterexample is
found, there is no more need to continue the construction up to the completion of the inter­
section of the two automata. To conclude the section about the On-the-Fly model checking
technique, we can say that the latter leads to a reduction in the number of states generated.
A considerable space may be saved but a saving of time may also be made.

2.3 Abstraction by State Merging

Abstraction by State Merging is a method to reduce the number of states in an automaton
and cornes from [BBF+o1] . The first question is "what the word abstraction means". It
actually refers to the nature of the simplifications performed. These simplifications generally
consist in ignoring some aspects of the automaton involved. Now that t his explanation is
clone, the method can be described.

The basic idea underlying this method consists in viewing certain states of the concerned
automaton as identical. This is a kind of factorization of states. So the merged states are put
together to form a super-state and all transitions which lead out of one of the merged states
now lead out of the unique state.

Example 2.2. We can take the unfolding automaton of figure 1.3. The merged automaton is
shown in figure 2.1. The merged automaton is more readable and the number of states goes
from 10 to 5. This is an interesting result. And if the rule was to be disqualified after three
fallen hurdles instead of two, the automaton should go from 13 to 6 states. So the saving is
really significant . The other advantage is the reducing of the number of transitions. However,
problems appear for the correctness of the system. There are properties which hold in the
new automaton and not in the unfolded automaton. As an example, a runner can reach the
state 3 without running.

The merged automaton thus handles more behaviors than the non-merged automaton
but the behaviors of the non-merged automaton are nevertheless preserved. The use of state
merging is useful to verify safety properties. The reason is the following. Seeing that a merged
automaton handles more behaviors, it fulfills less safety properties. Hence, if it satisfies a
safety property then a fortiori the non-merged automaton also satisfies the property. However,
if the merged automaton does not satisfy a safety property, then it does not imply that the
non-merged automaton does not satisfy the property. No conclusions can be made.

2.4 Partial Ortler Reduction 37

to jump a hurdJc Crossing finishing line

running,

to jump a hurdJe

Crossing finishing linc
to bump into a hurdl

Crossing finishing line

running,

to jump a hurdle

to bump into a hurdl

to jump a hurdJe Crossing finishing line

Crossing finishing line

running,

10 jump a hurdle

Figure 2.1: The unfolding automaton after merging

2.4 Partial Ortler Reduction

The concerned systems in this section are the asynchronous ones. They allow to treat all
possible orderings which lead to the same state. This generally finishes with state explosion.
If we imagine, as an example, a model with n transitions which can be executed concurrently,
then n! different orderings are possible and there are 2n different states. If the temporal logic
formula does not make a distinction between these sequences, then it is very interesting to
consider only one sequence. In this case, we obtain n + 1 states.

The aim is to reduce the number of states in the graph while preserving the correctness
of the checked property. It conducts us to find a technique which allows this reduction. This
technique is partial order reduction. It is thus another technique to reduce the size of a graph.
The latter exploits the commutativity of concurrently executed transitions which result in
the same state when they are executed in different orders. This is why asynchronous systems
are concerned. Another point to underline is that the behaviors of the reduced graph are a
subset of the behaviors of the full state graph. It is also interesting to note that on-the-fi.y
model checking can be combined with partial order reduction.

Transitions are very important in partial order reduction. Indeed, it specifies which transi­
tions should be included in the reduced model and which should not. However, the definition
1.6 of Kripke structure has to be modified in order to draw a distinction between differ­
ent transitions in a system. The definition of T is changed and concerns a set of relations
instead of one transition relation. We obtain thus a state transition system. A transition

38

hash(so);
set on_stack(so)
expand_state(so)

procedure expand_state(s)
work_set(s):=ample(s);

while work_set(s) is not empty do
let a E work_set(s);
work_set(s):=work_set(s) {a};
s':=a(s)
if new(s') then

hash(s');
set on_stack(s') ;
expand_state(s')

end if;
create_edge(s, a, s');

end while;
set completed(s);

end proced ure

Chapter 2. The state explosion problem

Figure 2.2: Depth-first search with partial order reduction

a E T, a Ç S x Sis said enabled in astate s if there is astate s' such that a(s, s') and the
set is enabled(s). If it is not the case, a is said disabled.

The reduction is performed by a Depth-First Search (DFS) algorithm used to construct
the graph. The algorithm is detailed in figure 2.2.

The search starts with an initial state sa and proceeds recursively. For each state s it
selects only a subset ample(s) of the en a bled transitions enabled(s), rather than the full set
of enabled transitions which is used to construct the full graph. The depth-first search explores
only successors generated by these transitions. When a state is encountered for the first time,
it is labeled as on_stack and as completed when all of its successors have been reached . A
state marked on_stack is thus a useful information for computing ample(s). Indeed , it is not
necessary to keep transitions which lead to already encountered states. The calculation of the
latter needs to satisfy three goals :

• Many behaviors must be sufficiently present in the reduced graph to obtain correct
results from the model checking.

• The graph obtained when using ample(s) should be smaller than the one using enabled(s),
otherwise it is useless.

• The overhead in calculating ample(s) must be reasonably small.

a(s, s') is noted s' = a(s) when a is deterministic.

The model checking algorithm is then applied to the reduced state graph obtained. This
one terminates with a positive answer if the property described by the formula holds for the
full state graph. If it is not the case, then a counterexample is given. It is possible that the
counterexample differs from the one which can be obtained when using the full graph.

2.5 Distributed LTL model checking 39

2.5 Distributed LTL model checking

The goal of this technique is to solve LTL model checking but not by reducing the graph
such as the previously described techniques. It can be nonetheless combined with on-the-fi.y
model checking. The idea is to use only main memory instead of disk swapping when main
memory is entirely used. The problem actually resides in the limitation of memory available.
A solution is to increase it by building a parallel computer as a network of workstations
commonly called cluster. The sequential LTL model checking1 is based on depth-first search.
The idea is to reduce the model checking to the non-emptiness problem of Büchi automata.
This can be further transformed to a problem of detecting a reachable cycle in the graph with
an accepting state. An important point of it is the postorder which is used for cycle detection
in the graph. Postorder means that each node in a graph is visited after its children. The
problem when adapting it to distributed approach is that the DFS order is not preserved.
The reason of this is the different computer speeds in the cluster. Three approaches to deal
with this problem are possible. The first one is to use additional data structures to maintain
the global DFS order. The second one is to use a different search procedure which does not
care about DFS order. The last one is to distribute the state space in such a way that cycles
are not split up among the cluster. It allows not to care about the global DFS order.

2.5.1 Using additional structures

This approach of distribution uses the Nested DFS algorithm and allows parallel execution
of the algorithm on each workstation. States are stored randomly on workstations. A Nested
DFS algorithm is divided in two searches. The goal of the first one (primary) is to find
reachable accepting states while the second one (nested) tries to detect accepting cycles. It
is thus used to check the non-emptiness. The problem is that it leads to an incorrect result
because the order is not preserved. The postorder is important for the nested-DFS. The
reason is that it must be started from the accepting states in the postorder defined by the
primary DFS. If it was not the case, then the cycle could be missed. The solution is to use a
special data structure called dependency structure which keeps the proper order of accepting
states. The latter is built in such a way that a nested DFS can start only if all the accepting
states before the starting one have finished their nested DFS. Each computer has its own
dependency structure. Then nested DFS to find an accepting cycle is done.

2.5.2 Negative Cycles

The problem of detecting accepting cycles is reduced to a problem of detecting negative
length cycles in this approach. The link with Büchi automata is the following. A Büchi
automaton corresponds to a graph in which transitions are ordered by pairs of states. If we
assign lengths to transitions in such a way that transitions from an accepting state are set
to -1 and ail others set to 0, then negative cycles coincide with accepting cycles. It allows
to reduce the problem of non-emptiness to the negative cycle problem. The latter problem
is closely linked to the Single Source Shortest Path Problem (SSSP) . It consists in finding
the shortest paths from a specific source state to every other state in a directed graph which
has weight associated with each transition. The sequential method to solve this problem is

1To remember sequential LTL mode! checking, see section 1.3.2.

40 Chapter 2. The state explosion problem

called scanning method. It main tains the distance label d(s) and its parent state p(s) for every
state s. This method must be modified in order to be able to detect negative cycles. For
the distributed algorithm, walk to root cycle detection strategy is chosen. The test is clone
by starting a walk in the parent graph from a state being updated back to the root. This
approach can be used with additional structures to allow several walks to be performed in
parallel. If the result of the walk leads to the root, then we have a cycle. Moreover, if the
length of the cycle is negative, then we have detected a negative cycle. Hence, an accepting
cycle and a counterexample.

2.5.3 Property based distribution

In order to have efficient algorithms for cycle detection in a distributed way, it is interesting
to partition the graph in such a way that no accepting cycles are divided among workstations.
It also allows to limit the nested DFS to the paths that can really form a cycle in the graph.
It is not possible to have a state which can be visited by two different nested DFS coming
from two different computers. If we apply this approach to LTL model checking, then the
automaton representing the bad behaviors is decomposed into maximal SCCs. They are
considered as heuristic to partition state space. The main idea is that the partition fonction
checks which SCC the formula part of the synchronized automaton belongs to. It then places
the state on the same computer as all the other states whose formula partis in the same SCC
in the decomposition of the automaton with bad behaviors. The nested DFS is now clone
on one computer. So other nested DFS procedures can be executed on different computers
in a simultaneous way. Each SCC are examined and if there is a result given by any nested
DFS from any computer then we have a counterexample. Improvements can be clone to this
approach. Indeed, there are three types of SCCs in the negative automaton.

• Type F (Pully accepting): any cycle within the component contains at least one accept­
ing cycle.

• Type P (Partially accepting): there is at least one accepting cycle and one non-accepting
cycle within the component.

• Type N (Non-accepting): there are no accepting cycles within the component.

The improvements are the following ones. States belonging to type N can be randomly
distributed among computers. Cycles of type F component can be detected sequentially
without using nested DFS seeing that each cycle contains an accepting cycle. As regards
type P components, they can be either placed on a single computer or distributed among the
cluster. Afterwards they can be checked for cycles.

2.5.4 DiVinE

The DiVinE project or Distributed Verification Environment for the long name is a library
developed in ParaDiSe laboratory of the Faculty of Informatics of Masaryk University in Brno
(Czech Republic). It is the practical application of the solution described in the previous
section. Its goal is to make developments of distributed verification algorithms easier . It also
comprises an implementation of some model checking algorithms and modules for easy making

2.5 Distributed LTL model checking 41

comparisons and statistics of verification algorithms. It is at a development stage at this time
and it wants to become in long term a tool like SPIN instead of being a library. The main
features of DiVinE are in support for the distributed generation of the state space, dynamic
load balancing, distributed generation of counterexamples, fault tolerance and re-partitioning.

DiVinE bas its own language to write models. The idea is that the system that we want
to model is composed of processes. These processes can transit from one process state to
another through transitions. Those transitions can be guarded 2 and can be synchronized
through channels. The word eff ect represents the assignment to variables. The elements of
this language are the following: processes, global or local variables, constants, process states,
transitions, channels and the type of system which can be synchronous or asynchronous.

Example 2.3. This is an example of a model written in DVE language.

byte x;

process A {
state r1,r2;
init rl;
trans
rl -> r2 {},
r2 -> rl { guard x==l; };

}

process B {
state r1,r2;
init rl;
trans
rl -> r2 { affect x=l; },
r2 -> rl { affect x=O; };

}

system async;

//Variables declaration

//Process declaration
//Process states
//Process states - initial state declaration
//Transitions

//Process declaration
//Process states
/ /Process states - initial state declaration
//Transitions

//Type of system

It bas already been said that the state space generation of complex system can lead to
a huge number of states and transitions. To be able to handle this, it can be interesting to
develop a kind of memory mechanism which uses main memory of several computers. Indeed,
with only one computer, it is not possible to allocate more than 4 Gigabytes of memory
for one process. It is thus not possible to carry out verification if the graph requires more
than 4 Gigabytes. The distributed mechanism allows it. This is a reason for developing a
prototype based on this mechanism and to experiment it. It can be also interesting to check
if an application level network swapping is faster than the operating system disk swapping.
As regards the distributed algorithms to do LTL model checking and the ones integrated in
DiVinE, they suffer from the problem of revisiting3. When algorithms meet the problem,
they take a lot of time to terminate. It is another important reason to try a non-distributed
algorithm which does not suffer from revisiting and which takes advantage of a bigger main

2See subsection 1.1.3 for details about guards.
3 Revisiting is a word used to express the re-exploring of states many times.

42 Chapter 2. The state explosion problem

memory built with different main memories of several computers. The design of t his prototype
and the experimentation is described in the next chapter.

Chapter 3

A network memory storage
mechanism

This chapter is devoted to the description of the prototype and the experimentations that
are carried out. The reasons to develop such a prototype have been given at the end of chapter
2. If the experiments are conclusive, then it will be reimplemented by the DiVinE team in
order to be fully compatible with DiVinE. This prototype considers only state storing seeing
that standard solutions to LTL model checking produced a counterexample without having
stored the generated transitions.

3.1 Programming language

There exists a lot of programming languages in computer science. However, all of these
are not well suited to develop a network memory storage mechanism. The best candidates
for this are Java and C/C++. Java is object oriented and is easier to take in hand but it has
a major drawback . This is the virtual machine which reduces the performance of programs.
Nevertheless, this virtual machine is also an advantage for portability. A program normally
runs on all platforms where the good virtual machine is installed. As regards C/C++, it
is harder to take in hand and it can represent a problem for portability, except when the
program respects the ANSI norm. The major advantage of C/C++ is performance. This is
the reason why this language has been chosen for the development of the prototype. Moreover,
the DiVinE librnry for which the prototype is developed is written in C/C++.

3.2 Communication Technologies

3.2.1 Shared memory

Shared memory1 is one of the two techniques for communicating between parallel processes.
It allows memory to be accessed by more than one processor and this is done via a shared
bus or a communication network. Computers using shared memory usually have some kind

1It cornes from [defry] and [wikrg].

44 Chapter 3. A network memory storage mechanism

of local cache on each processor to reduce the number of accesses to shared memory. The
problem is that they need a cache consistency protocol to ensure that one processor's cached
copy of a shared memory location is considered as erroneous when another processor writes
to that location.

3.2.2 Message Passing Interface

Message Passing Interface (MPI)2 is a de facto standard for communication among nodes3

running a parallel program on a distributed memory system. MPI is a library of routines that
can be called from programs written in several programming languages. MPI's advantage
is that it is both portable (because MPI has been implemented for almost every distributed
memory architecture) and fast (because each implementation is optimised for the hardware it
runs on) [defry]. MPI is called de facto standard because the standard groups that defined it
are not official like International Standards Organization (ISO), American National Standards
Institute (ANSI) , or Institute of Electrical and Electronics Engineers (IEEE). An important
notion with MPI is the notion of master process and slave process. The master is represented
by the integer O. In practical, MPI launches the given program on the different nodes including
the master and thus creates a process on each processor. This is why the term process is used
instead of computer. The process is thus the unit of parallelism. It is not possible to add or
delete a process during an execution. No mechanism for loading onto processors or assigning
processes to processors are provided.

Message passing is actually the second technique for communicating between parallel
processes. It is slower than shared memory but it permits to avoid the problems of contention
for memory. A system like that provides primitives for sending and receiving messages. The
latter can be asynchronous or synchronous. A synchronous send will not complete until the
receiving process has received the message. This allows the sender to have a confirmation
that the message has been successfully received. The asynchronous manner sends the message
and does not wait for a confirmation. As regards the receive primitive, it will wait until the
moment a message is received if it is synchronous whereas the asynchronous manner will
return immediately and this, either with a message or to say that no message has arrived.

Point-to-point communication

This is one of the major feature of MPI. Point-to-point communication is a way to com­
municate between pairs of processes.

When a send operation is clone, a message is sent. This one contains the data to send, the
type of the data and an envelope. The latter allows the good receiver to catch the message.
It contains some information such as destination, tag and communicator. The first two are
obvious. The tag field allows the program to make a distinction between different types of
messages. For example, if two messages are sent with a different data. This is possible that
the second message is the first to arrive whereas the first receive operation in the code is
planned for the first sent message. Thus, if there was no tag the message should be received
and the program could crash or block. So the tag is a kind of security to be sure that a

2The description of this standard is inspired by [abopi], [lamrg], [MPirg], [MPipi] and [Walml].
3 A node is the name generally given to a computer in a cluster.

3.2 Communication Technologies 45

sent message has been received by the right receive operation. The communicator specifies
the communication context. It allows a message to be received in the context within it was
sent. The communicator also specifies the set of processes which shares this communication
context. It is called process group. The latter is ordered and processes are defined by their
rank inside this group. So the valid values for destination field are from O to n - l where
n is the number of processes in the group. As an example, the predefined communicator
MPLCOMM_ WORLD allows communication with all processes that are created by MPI
when the program is executed.

So that a message is received, a receive operation has to be encountered and then the
envelope of the message is examined. If the destination field corresponds to the process which
analyzes the message, the tag field matches the tag field of the receive operation and the
process belongs to the process group, then the message is received. A status is also present
in the receive operation. Its goal is to store information in case of error.

There exist two kinds of operation modes. One is blocking and the other is non-blocking.
The blocking operations allow to be sure that the buffer containing the data is copied out
before returning from the send operation and that the buffer was filled before returning from
the receive operation. In the other hand, the non-blocking can return from the send or receive
operation before the data buffer is copied out or filled. It allows to continue the process
without completing the communication. However, MPI provides fonctions to complete the
communication. The completion of a send operation thus indicates that the sender is free to
update the locations of the send buffer. The completion of a receive operation indicates that
the receive buffer is filled. So the receiver can access it and the status object for errors is set.
The completion of an operation taken individually is said locally complete. When all processes
concerned with the operation in question are in a state of a locally complete operation, the
operation is said globally complete.

Four kinds of communication modes are possible: standard, ready, synchronous and
buffered. These modes are combined only with the send operation. The standard mode
allows a send operation to be initiated even if a matching receive has not been initiated. This
mode can be started whether a matching receive has been posted or not. It can complete
before a matching receive is posted but it is not always the case. The standard mode is said
to be non-local. The ready mode allows a send to be initiated only if a matching receive has
been initiated. If it is not the case the operation is erroneous and its result is undefined. The
completion of the send operation does not depend on the status of a matching receive and
thus the send buffer can be reused. As regards the synchronous mode, it is the same than
the standard mode. However, there is a constraint which is that the send will not complete
until the message delivery is guaranteed. In other words, the send can be started whether a
matching receive was posted or not but it will complete only if a matching receive is posted.
The last mode which is the buffered one is also similar to the standard mode but completion
is always independent of a matching receive, and the message may be buffered to be sure of
this . This mode is said to be local seeing that it does not care about what happens for another
process. There is only one mode for the receive operation which is the standard one.

Collective communication

A collective communication requires coordinated communication within a group of pro­
cesses. The tag field is not used here. The reason is that a communication involves all processes

46 Chapter 3. A network memory storage mechanism

in a group. All collective routines block until they are locally completed. There exist two kinds
of routines. One for data movement routines and the other for global computation routines.
As regards the data movement routines, there are three types. broadcast allows to transmit
data from one member to all members of a group. Gather transmits data from all group
members to one member. The last one scatter sends data from one member to all. Collective
routines such as broadcast or gather have a single originating or receiving process. Such a
process is called the root. It is thus possible to have arguments in the collective fonctions
which are ignored for all participants except the root. There exists a variant of gather where
all members can receive the data and also one for scat ter/ gather which sends from all to all.
The figure 3.1 illustrates these three types and their variants called respectively allgather and
alltoall.

The global computation routines are reduce and scan. Reduce allows each process in a
group to compute a part of the global computation. The result of each process is then
combined on the root process to obtain the global result. As an example, we can say that
each process calculates the maximum tree height for its region and process O computes the
global maximum tree height. An illustration is also given in figure 3.2. Different versions of
the reduction routine are provided depending on whether the results are made available to all
processes in the group, just one process, or are scattered cyclically across the group. Common
reduction operations are the evaluation of the maximum, minimum, or sum of a set of values
distributed across a group of processes. The scan routines perform partial reductions in which
process i receives data from processes O to i. This is also called prefix-reduction. This allows
to perform a reduction but processes which take part are not necessary all the processes of
the group.

3.2.3 Parallel Virtual Machine

Parallel Virtual Machine (PVM) 4 also uses the technique of message passing. This system
is designed to allow a network of heterogeneous machines to be used as a single distributed
parallel processor. It thus coordinates different computers to execute concurrent or parallel
computation.

Principles

PVM is based on several principles which are detailed below.

The first one is user-configured hast pool. It leaves the selection of a set of computers to the
user. Both single-processor or multiprocessor hardwares can be in the host pool. Moreover,
the host pool can be modified during an execution by adding or deleting computers.

Translucent access to hardware means that application programs can consider the hardware
environment as a collection of virtual processing elements. It can also choose to exploit the
capabilities of specific computers in the host pool by attributing computational tasks on the
most appropriate computers.

Process-based computation: the unit of parallelism is a task, an independent sequential
thread of control that alternates between communication and computation. PVM does not

4The description of PYM cornes from (pvmml] and [GBD+94].

3.2 Communication Technologies

Cl)
(l)
Cl)
Cl)
(l)
(.)

e
a.

!

data-

AO

AO A1 A2

AO

BO

CO

DO

EO

FO

AO A1 A2

BO 81 82

CO c1 c2

DO D1 D2

EO E1 E2

FO F1 F2

AO

broadcast
AO

c=> AO

AO

AO

AO

A3 A4 A5 scatter AO

c=> A1

A2

gather

~
A3

A4

A5

AO BO

AO BO

allgather

c=>
AO BO

AO BO

AO BO

AO BO

A3 A4 A5 Ao BO

83 84 85
alltoall

A1 81

C3 c4 CS

D3 D4 D5 c=> A2 82

A3 83

E3 E4 ES A4 84

F3 F4 F5 A5 85

Figure 3.1: Collective data movement

47

CO DO EO FO

CO Do EO Fa

CO DO EO FO

Co DO EO FO

CO DO EO FO

Co DO EO FO

CO DO EO FO

c1 D1 E1 F1

c2 D2 E2 F2

c3 D3 E3 F3

c4 D4 E4 F4

C5 D5 E5 F5

48 Chapter 3 . A network memory storage mechanism

_data

Ac Re

B, reduce ..
c,

De

processes

Figure 3.2: Reduce operation

enforce process-to-processor mapping. Multiple tasks can thus be executed on a single pro­
cessor.

PVM uses message-passing model. Tasks performing a part of an application workload
communicate by sending and receiving messages. Message size is limited only by the amount
of available memory.

The system supports heterogeneity in terms of computers, networks, and applications.
Message passing in PVM permits messages composed with more than one data type to be
exchanged between computers having different data representations.

The last one is the multiprocessor support. The latter permits to take advantages of
multiprocessor hardwares.

Working

The PVM system is composed of two parts. The first one consists in launching a daemon
that is situated on all computers constituting the virtual machine. A daemon is a program
which is not invoked explicitly, but which lies dormant waiting for one or several conditions
to occur. An example of a daemon is ftpd under UNIX systems. The second partis a library
of PVM interface routines. It contains primitives that are needed for the cooperation between
the tasks associated with the execution of a program.

PVM can be used at several levels. At the highest level, the transparent mode, tasks
are automatically executed on the most appropriate computer. In the architecture-dependent
mode, the user specifies which type of computer executes a particular task. In low-level
mode, the user may specify a particular computer to execute a task. In all of these modes,
PVM takes care of necessary data conversions from computer to computer as well as low-level
communication issues.

PVM can be executed in three different paradigms in order to communicate. The first
called crowd computing allows processes to execute the same code and to perform computa­
tions on different portions of the workload . This mode can be subdivided into two categories.
The first one is the master-slave like in MPI. The master is responsible for process spawn­
ing, initialization, collection and display of results , and perhaps timing of fonctions. The
slave programs perform the actual computation involved. Their workloads are allocated by
the master. They can also perform the allocations themselves. The second subdivision is

3.2 Communication Technologies 49

the node-only mode where multiple instances of a single program execute, with one process
responsible for the non-computational tasks in addition to contributing to the computation
itself. The second approach is called tree computation. Processes are spawned in a tree-like
manner. This mode can be used for applications using algorithms such branch-and-bound or
divide-and-conquer. The last approach called hybrid can be considered as a combination of
the tree model and crowd approach.

Computation model

The model is based on the concept that a program consists of several tasks. Each one is
responsible for a part of the program computational workload. It happens that an application
is parallelized along its fonctions. In other words, each task performs a different fonction .
As an example, we can imagine a program divided in the following fonctions: input, problem
setup, solution, output, and display. This method is often called functional parallelism. The
other method is data parallelism. It consists in having all the same tasks but each of them
knows and solves a small part of the data. It is similar to the reduce method in MPI. It is
possible to use previous methods independently or together.

Send and receive op erations

A task is identified by an integer Task Identifier (TID). Messages are sent to and received
from TIDs. They are generated by the daemon and are not chosen by the user. The reason
is that they must be unique in the entire virtual machine. Both send and receive operations
are identified by a TID and a message tag. It thus allows to be sure that a send operation is
received by the good receive operation.

The sender of a message does not wait for an acknowledgment from the receiver . This one
continues as soon as the message has been released on the network and the message buffer can
be safely deleted or reused. This corresponds to the blocking mode in MPI. PVM correctly
delivers messages if the destination exists. Message order from each sender to each receiver
in the system is preserved. Both blocking and nonblocking receive primitives are provided,
so a task can wait for a message without consuming processor time. A receive with timeout
is also provided, which returns after a specified period of time if no message has arrived.

Load balancing

Another feature of PVM is load balancing. It can be very usefol for applications. It allows
to be sure that each host is doing its fair share of work. It can conduct to an improvement of
the performance. The simplest method is static load balancing. In this method, the problem
is divided and tasks assigned to processors only once. The size and number of tasks can vary
according to the processing power of a given machine. When computational loads vary, a
more sophisticated dynamic method of load balancing is required. It works as a master-slaves
program where the master manages a set of tasks. It sends jobs to do to the slaves when they
become idle.

50 Chapter 3. A network memory storage mechanism

Object
Referenc

Object
Interface

Client

CORBA Bus

Request

Figure 3.3: The client/server model for CORBA

3.2.4 Common Object Request Broker Architecture

Code

Server

Common Object Request Broker Architecture (CORBA) 5 is one of the technology in fash­
ion for the moment in distributed architecture. It was created and is controlled by Object
Management Group (OMG). It is an abject oriented middelware6 . It manages the interaction
between disparate applications among the heterogeneous computing platforms. The key con­
cepts are reuse, interoperability and portability of software components. The CORBA bus
also permits to hide the technical layers such as the operating system, the processor or the
network.

Object client/server model

The bus provides an object oriented client/server model of abstraction and cooperation
between the applications. Each application can provide services represented by CORBA
objects. This is the abstraction part of the model. Interactions between applications are
represented by distance calls of the objects methods. This is the cooperation part. The notion
of client/server is only useful when an object is used. The server is the one which provides the
object and the client is the one which uses this object. The model is illustrated in figure 3.3.
In this figure , the client is a program which calls the object methods through the CORBA bus.
The abject reference is a structure referencing the CORBA object and containing information
needed to find the bus. The abject interface is the abstract type of the object and it defines
its operations and attributes. The latter is described with a special language called Interface
Description Language (IDL). IDL is a computer language for describing the interface of a
software component. It is essentially a common language for writing the "manual" on how to
use a piece of software from another piece of software. IDLs are used in situations where the
software on either sicle may not share common call semantics. Request is the mechanism to
call an operation or to access an object attribute. CORBA bus transmits requests. CORBA
abject is the targeted software component. Activation associates a CORBA object with the
implantation object. Implantation abject is the component which codes the CORBA object at

5The description of CORBA cornes from [Eng04) and [GGM04).
6 A middelware is a software agent that mediates between dilferent components such as an application

program and a network.

3.2 Communication Technologies 51

Client

Object Request Broker

Figure 3.4: CORBA bus

a given time. The implantation code contains the methods associated with the implantation
operations of CORBA object. The seruer is the container for implantation objects and for
operation executions.

CORBA bus

The bus provides interesting features. It provides a link between a few programming
languages. Gall transparency makes the request sender believe that it is done locally. Static
and dynamic calls allow to send requests to abjects. Static calls are controlled at compilation
and dynamic calls are controlled at execution. It provides interoperability between buses
as well. The composition of the bus is given in figure 3.4. In this figure, Object Request
Broker (ORB) is the layer to transmit requests to objects. Static Invocation Interface (SII) is
the static interface which allows to send requests . It is generated by IDL. Dynamic Invocation
Interface (DII) bas the same goal as SII but it is done dynamically. It is to be noted that no
SII is generated in this case. Interface Repository (IR) provides a service with abjects which
represents information given by IDL and which are available during execution. Skeleton Static
Interface (SSI) is the static skeleton interfaces which allow the object implantation to receive
requests which are for the implantation. This interface is generated by SII. Dynamic Skeleton
Interface (DSI) is the interface for dynamic skeletons. It is generated by a DII and SII are not
needed. Object Adapter (OA) is the object adaptor which aims at creating CORBA objects
and handling them. Implementation Repository (ImpIR) is the referential of implantation
which contains needed information to the activation.

Different approaches can be considered for the bus. With the process bus approach, clients
and abjects are in the same memory space. This is generally used for embedded systems. The
second one, operating system bus, allows communication to be done between processes which
are on the same computer. An example of this is the desktop manager GNOME. The next
one is seruer bus. Requests are delivered to one or several servers which are responsible for
delivering requests to distant objects. This allows a centralized management of the bus. In
the last approach, network bus, processes are situated on different computers and requests

52 Chapter 3. A network memory storage mechanism

are transmitted via the network.

3.2.5 RAW TCP /UDP

RAW is not really a technology but it rather means a concept of making the communication
protocol ourselves using TCP or UDP. With this technique, we just develop what we need
in order to implement t he network memory storage mechanism. It can lead to maximum
efficiency for communication operations, hence better performance. The major drawback of
this technique is the fact that everything has to be done from the beginning and by the
programmer. It implies a very good knowledge at a low level of network programming and a
longer development time than another technology.

3.2.6 Choice

Now that technologies which are potentially usable in our prototype have been described,
one of them has to be chosen. The prototype we will develop only needs basic communications
and guarantees on the data transfer. Shared memory is an interesting technology for its
rapidity but it remains the problem of memory consistency. The other problem is that it does
not use memory of other computers. As regards CORBA, it is a widespread technology very
useful for reuse and portability. It is sometimes useful to have a high-level programming but
we do not need such a level for our prototype. Moreover, data to exchange are states of a
graph which are just a sequence of bytes. An object-oriented middelware appears to be not
appropriated for our goals. Another reason is that we just need basic operations to send and
receive data when CORBA provides heavy operations to exchange abjects. The last argument
against CORBA is that it is not well suited for performance. Indeed, it takes a lot of time to
communicate. The best suited technology seems to be RAW TCP /UDP seeing that just what
we need is developed. Thus, it leads to high performance. This technique can nevertheless
take more time to develop than using an existing technique or more problems may be met
if it is not well implemented. This is t he reason why we do not choose it. The last two
technologies, MPI and PVM, are also well suited for our goals. Bath provide basic and more
complicated send and receive operations for data. It is thus easy to transmit states between
processes. Bath also allow to develop efficient programs. It appears that PVM is better in
some points such as load balancing, dynamic process management which are not implemented
in MPI. It thus seems that PVM is the right choice. However, MPI is the technology already
used in the development of DiVinE project. Since t he prototype to develop and to experiment
is destined for DiVinE, the logical choice is to choose MPI instead of PVM.

3.3 Design of a prototype

3.3.1 Principles

The principles of t he prototype are quite simple. It has t hree main principles. As model
checking which is applied in the context of the prototype is based on LTL temporal logic and

3.3 Design of a prototype 53

the automata theory, the first one is thus to go through a given synchronized automaton 7 . The
next goal is to store astate and the last one is to find if astate has already been stored. The
reason for treating only states is the possibility to generate a counterexample without storing
transitions and has previously been explained. Therefore, transitions will not be treated in
the prototype. When a state is encountered since we go through the automaton, the prototype
calls a fonction to check if the given state has already been stored. If it is not the case, then a
fonction is called to store the state in memory. A positive result to the check fonction means
that the state was previously encountered and that we are in a cycle.

3.3.2 Characteristics

The prototype has several important characteristics. The two major ones are the use of a
hashtable and memory pages.

The hashtable is responsible for keeping information about the place where a state is
stored. The place is a page. The existence of a hashtable implies the existence of a hashing
fonction. The latter cornes from DiVinE. The reason is that a hashing fonction was imple­
mented in a first time seeing that the one used in DiVinE was not really good. However,
it appears that the developed one leads to very bad results. Indeed, information about al­
most all states of a graph were stored in only one line of the hashtable instead of being split
up among the elements of the hashtable. A new hashing fonction was later implemented in
DiVinE and this one leads to better results. This is the reason for using the hashing fonction
from DiVinE. The hashtable is a table in which each element contains a list called collision
list. It is possible when hashing two different states that the result of the hashing leads to the
same element in the hashtable. It is thus important to have a solution to avoid the crushing
of a previously stored information about a state in this element. In order words, it is impor­
tant to protect the information already stored and to allow new information about another
state to be stored in the same element of the hashtable. This solution is the collision list.
The collision list is simply a chained list in which each element contains information about a
state. All cells relate to a different state. It means that each element of information in the
hashtable is different. It is due to the fact that a state and its information are stored only
once respectively in the page and in the hashtable. A cell of the collision list is composed of
three smaller cells. One for the identification number of the page where the state is stored.
The second contains the position of the state in the page. The last one points to the next cell
of the list. The hashtable and its collision lists are illustrated in figure 3.5. Let us note that
the size of the hashtable is given by the user in a first time and it is modified to obtain the
first prime number next to the given one. Using a prime number permits a better hashing
than with a non prime number. The elements of the hashtable are set to null pointer at initial
time. The hashtable is on the master8 and not on the slaves9 . In the figure, the size of the
hashtable is equal to m elements with m > O. The collision list of element i with 1 ::; i ::; m
have a size ni where ni ~ O.

A page is simply a sequence of bytes in the prototype. Its goal is to contain states which
are sequences of bytes too. The fact that we use bytes to represent a page is a will to have

7 As reminder a synchronized automaton is the product of synchronization between the automaton modelling
the system and the one illustrating the bad behaviors of this system.

8The master is the node on which the prototype is launched.
9 A slave is a node of the cluster but not the master.

54 Chapter 3. A network memory storage mechanism

Hashtable ----id
~..-~ --~~ ---► 1 id posVl

-+-----!~ id os -+-----!► ~..-~

---► 1 id lposVl

----id
1---~,-.....l 1----+--I

----id ..__,.___.........., .__....,___.__

Figure 3.5: Graphie representation of the hashtable and its collision lists

low-level representations for data. It means that high-level fonctions such as the ones which
operate on strings are not used. However, a page can be imagined as a table made of two
columns. It is illustrated in figure 3.6. The first row of the table is not used to store astate.
It is actually used to ident ify a page. So the left column of this row contains the identification
number of the page. This number is used in each element of collision lists and allows to know
in which page the state associated with the element of the list is stored. The right column of
this first row is used to know the number of the first free row in the page. It means that if
states are already stored, the right column indicates the row which follows the last stored state
in the page and which is free. This row is obviously free because states are stored sequentially
in the page. In other words, if states are stored in the page, the rows following the last stored
state until the end of the page are free and previous rows are filled. Having zero in the last
row permits to put this zero in the first row when astate is stored and to know that the page
is full for the next storage. Thus, to obtain the real size of the page, the wished size given by
the user is incremented by one. All pages are set to this size. The right column of the first
row and the last row are set to zero at the initial phase. The remaining rows indicate the
next row free of states. Each row where a state is stored has the right column set to zero.
Each row free of states are set to the next free row.

Example 3.1. The size given by the user for pages is 10. So the page is composed of 11 rows
which are not filled with a state. The first row thus contains the identification number of the
page and the first row which does not contain a state. Let us imagine that the identification
number is 20. The page at initialization is shown in figure 3.7. The first free row is thus

3.3 Design of a prototype 55

identifica tion number füst free row

s tate next free row

s tate next free row

s tate next free row

s tate next free row

s tate page full

Figure 3.6: Vi rtual representation of a page

Initialization

20

f ree 2

f ree 3

f ree 4

f ree 5

f ree 6

f ree 7

f ree 8

f ree 9

f ree 10

f ree 0

Figure 3.7: Ex ample of a page at initialization

56 Chapter 3. A network memory storage mechanism

During execution

20 5

State 1 0

State 2 0

State 3 0

State 4 0

free 6

free 7

free 8

free 9

free 10

free 0

Figure 3.8: Example of a page during execution

row 1. Let us now consider that we are at a given step of the execution. The right column of
the first row is set to 5. It means that four states have been already stored and that the next
state will be stored at row 5. The right column of this latter row is thus set to 6, 7 for row
6, 8 for row 7, 9 for row 8, 10 for row 9 and 0 for row 10. This is shown in figure 3.8.

3.3.3 Approach

The chosen approach is a static approach. It consists in creating all the memory storage
at the beginning of the execution of the prototype. All the pages and the hashtable are
thus created at the initialization phase of the prototype. Another reason to talk about static
approach is that no pages, rows of a page or elements of the hashtable are deleted or added
during an execution. The size of the pages and the hashtable is fixed at the beginning of the
prototype and are given by the user. The number of pages per node 10 is also given by the user
and does not change. It is due to the fact that it is not possible to add or delete processes
with MPI. The collision lists are the only ones which evolve during execution. Indeed, cells
containing information about states can be added to them. It is however not possible to delete
cells. It is coherent not to be able to delete a cell because deleting this information means that
the state concerned is not stored anymore. Moreover, allowing deleting cells without deleting
these ones in a page is a problem because it means that the state will be stored several times
if it is in a cycle of the graph. To be able to do it , a fonction to delete the state in the page
must be implemented and this is not the goal of the prototype.

10 A node is a computer belonging to the cluster created with MPI.

3.3 Design of a prototype

procedure BFS()
queue := { initstate}
while queue is not empty do

state : = Head(queue)
queue:= Tail(queue)
foreach s E Succ(state) do

queue := queue U { s}
end foreach;

end while;
end procedure

Figure 3.9: Breadth-first search algorithm for the prototype

3.3.4 Graph browsing

57

The algorithm to browse the graph is based on Breadth-First Search (BFS). The first test
to do with the prototype is to check if it works fine and if it gives the right number of states in
the graph. It permits to see if a state is stored several times or only one as we want. DFS and
nested DFS algorithms stop when a cycle or an accepting cycle is detected. It does not allow
to check if all the states are stored only once. This is the reason for using a BFS algorithm
despite the latter may lead to bad performance. The pseudo-code for the BFS algorithm is
given in figure 3.9. This algorithm is only used to browse the graph and does not include the
treatment for storing or checking states. The algorithm puts the initial state of the graph in
a queue. It then enters in a loop if the queue is not empty. The first state of the queue is
popped and for each successors of this state, we put them at the end of the queue. It means
that all direct successors of a state are treated before to go deeper into the graph.

3.3.5 Evolution of the prototype

The goals of this section are to describe the different evolution steps of the prototype and
their working. The prototype uses blocking MPI fonctions to send and receive data in the
cluster in all steps. However the used fonctions are asynchronous. It means that a sender
must not wait that the matching receive operation is published in the MPI environment. The
sequence diagrams illustrating the treatment of astate are detailed in appendix A. The reader
is invited to consult appendix C to obtain more details about the steps of the prototype.

Step 1: swapping randomly

The first step in the development of a prototype is to swap two pages between the master
and a slave. It works as follows. The BFS algorithm is thus used to browse the graph.

When a state is popped from the queue11 , this one is treated as follows. The state is
checked in order to see whether it has already been stored in a page or not. To proceed,
the state is hashed by the hashing fonction. The result is the position in the hashtable.
Afterwards, the collision list is browsed and for each cell encountered, the information is used
to check if it corresponds to our state. It is to be noted that if the state has already been

11 For more details on the BFS working, see section Graph browsing.

58 Chapter 3. A network memory storage mechanism

page requested not on master

ask to slaves

swap of pages

memory entirely used

retum "No more space available"

Figure 3.10: Statechart for the master in step 1

stored, the browsing of the collision list has obviously stopped. The identification number
is used to find the page where the state is supposed to be stored. If the page is not on the
master , then a search is clone on slaves to find the page. When it is found , the slave containing
the page swaps it with a page on the master. The master one is chosen randomly among the
pages existing on it. When the right page is on the master, the information from the cell
is used to compare our state with the state already contained in the page. If the result is
positive, then the state is not stored and the BFS algorithm continues. For a negative result,
the prototype continues with a storing fonction.

The storing part of this step consists in finding a page with free space. The search for
free space is done on the master. If all the pages are full, slaves are sequentially called to find
a page with free space. It means that the first node is called, then the second one if pages
from the first node are full and so on. When a page with free space is found on a slave, the
latter swaps the page as explained above. After the swap, the state is stored in the page by
the master. States are sequentially stored in pages 12 . The information concerning our state
is also put in the hashtable. The position in the hashtable is given by the hashing fonction.
The state is put in a new cell at the beginning of the collision list. We thus take advantage of
locality by putting information into a cell at the beginning of the list. Indeed, if the browsing
of the graph is in a cycle, then a state has already been stored in the first cells of the list and
we can stop earlier the browsing of the list.

The statechart of the master is shown in figure 3.10 and in figure 3.11 for the slaves. In
the figures, the word page is used for both the page in which a state is checked and a page
with free space for the storage.

12 See section 3.3.2 for details.

3.3 Design of a prototype 59

request to find a page

page found

swap of pages

page not found

retum "no page found"

Figure 3.11: Statechart for the slave in step 1

Step 2: swap of full pages

The working of this step is the same as the one explained in step 1. The difference resides
in the page which is chosen on the master when a swap must be made when storing or when
checking if a state is stored. Indeed, in this case, the prototype calls a fonction to find a page
on the master which is full. The idea is to keep on the master the page which contains free
space and to move full pages to the slaves. This step is a transition to step 3.

The statecharts are the same as in step 1.

Step 3: swap of full pages and checking job for the slaves

This step provides a new important feature. It keeps the features of step 2 but the new
one concerns the verification of a previously stored state. When a state is popped from the
queue, it is checked to see if it has already been stored in a page. The state is hashed and the
collision list matching with the result of the hashing is browsed. The identification of the page
is thus taken from cell in the list. If the page is on the master, then the working is the same
as in step 1. But if the page is not on the master, then the information (both identification
number and position of the state in the page) is sent to the slaves. All the slaves search for
the page. The one on which the page is checks the state stored at the position number sent
by the master with the state sent at the same time. If there is a match, a positive result is
sent to the master. In the other case, a negative result is sent. Afterwards the master calls
the fonction to store the state if the state has not already been stored. The use of blocking
MPI fonctions is important here because the master must wait the answer of slaves before
storing the state. If non-blocking fonctions were used, states could be stored several times.

The storing fonction works as in step 2. If no page with free space is found on the master,

60 Chapter 3 . A network memory storage mechanism

page for state checking not on master

send state and its information

page with free space not on master

ask to slaves

swap of pages

memory entirely used

retum "No more space available"

receiving resuh for state checking

Figure 3.12: Statechart for the master in step 3

then a swap is made. When a page with free space is found on a slave, the latter page and
the full page chosen on the master are exchanged. The advantage of moving full pages is that
we keep pages with free space on the master. This is interesting seeing that the fonction to
store a state can swap pages and that the fonction to check a state does not need to swap. A
gain of performance can thus be made because the number of swaps are lesser.

The statecharts for master and slave are respectively given in figures 3.12 and 3.13.

Step 4: Last Recently Used

This step is similar to step 2. It does not use the changes made in step 3. The modification
resides in a Last Recently Used (LRU) which is added to the prototype. The latter contains
the last used pages on the master. When a swap is made, instead of choosing a full page on
the master, a page which is not in the LRU list is chosen. This allows to keep on the master
pages w hich are often used.

For example, it is possible that states which follow each other can often be encountered.
Seeing that the page is sequentially filled, some of them or all of them can be in the same
page. This page is subject to be used a few times. It can thus be interesting to keep it on the
master and take advantage of spatial locality.

The statecharts are the same as in step l.

3.4 Tests 61

receiving state and its information

request to find a page with free space

page with free space not found

retum "no page found"

return result of the check for an already stored state

Figure 3.13: Statechart for the slave in step 3

Step 5: LRU and checking job for the slaves

The last step is a mix of steps 3 and 4. The working is the same as in step 3. When a
state is checked to see whether it is stored or not, the job is clone by the slaves if the page
supposed to contain the state is not on the master.

As regards storage job, it is almost clone in the same way. The difference is that when a
swap must be clone, the page from the master is chosen according to the LRU list as in step
4.

The statecharts are the same as in step 3.

3.4 Tests

A series of tests have been clone on the different steps of the prototype. All the examples
chosen for the tests corne from DiVinE and are thus written in DYE language. The first
objective of the test was obviously to check if the number of stored states matches the number
of states in the graph of the example. The second objective is to see which step gives the
best performance and the last one is to change parameters such as the size of the hashtable
in order to see how the prototype responds to these changes in terms of performance. Tests
have been executed on computers equipped with hyperthreaded Pentium4 2.06GHz and 1
Gigabyte of RAM.

62 Chapter 3. A network memory storage mechanism

3.4.1 Elevator

The example chosen here is an elevator which serves 14 floors. The graph is composed
of 165424 states and 495096 transitions. If the prototype works fine, every step has to store
165424 states. The size of states is constant and is equal to 15 bytes. Results are given
in table 3.1. In the table, the parameters are np for the number of nodes in the cluster,
hashsize is the size of the hashtable, pagesize is the number of states per page, and nbr _pages
is the number of pages per node. The column Common info is some information which is
common to the execution of each step. sis t he number of states which were stored during an
execution. used is the percentage of use for the hashtable. max_list is the maximum length
for collision lists. w is the number of times that the prototype swapped pages between the
master and a slave. avg is the average of cells per collision lists. The collision lists considered
by avg are the ones corresponding to the use of elements of the hashtable. For example, if
the hashtable is used at 80%, the average is calculated on the basis of these 80%. The 20
remaining percents are not taken into consideration. As regards time results, a double point
separates hours, minutes, and seconds. A simple point separates seconds and thousandth
seconds. System is the implementation of the prototype for only one computer. It uses the
resources of one computer. For system, the number of pages must be multiplied by np in order
to obtain the number of pages on the computer. This is due to the fact that the total amount
of memory allocated is split up between the nodes of the cluster and nbr _pages multiplied
pagesize corresponds to the amount of memory for one node.

Analysis

The first observation is that all the different steps store the right number of states which is
165424. This observation is also true when parameters are changed. We can already conclude
that the first aim is achieved and that the prototype works fine.

System release is obviously faster than the prototype because it uses only one computer
and the graph fits in main memory. The fastest step for the elevator example is step 1. It can
be explained by the fact that a random function is used to choose the page. This is quite rapid.
The other steps search for a full page or a full page which has not recently been used (LRU).
Time gained from swapping full pages or non recently used pages instead of randomly chosen
pages is lost while the search in order to find these full pages is clone. Another explanation
which is complementary with the previous one is that swapping randomly allows to swap
pages with free space and we can sometimes keep full pages which are more often used on the
master. In other words, the random fonction works fine with the elevator example. It also
means that the states in a page do not follow the obtained order while the graph is being
browsed. Indeed, a page which is not full can be swapped.
As regards steps 3 and 5, they are faster than steps 2 and 4 because the check for an already
stored state is clone by the slaves. So the number of times that a swap is clone between the
master and a slave goes clown and it takes less time. However they are slower than step 1
because of the explanation given in the first paragraph but also because of the use of blocking
MPI fonctions. Indeed, the master waits and does nothing while slaves are checking. It
represents an important waste of time. Step 3 is faster than step 5. Indeed, handling a LRU
list is quite heavy. The list is often browsed several times in order to choose the page on the
master which must be swapped and each time that a page is used, the list is updated. We

3.4 Tests 63

Parameters System Step 1 Step 2 Step 3 Step 4 Step 5
Common
info

hashsize= 165437 s= l65424
pagesize=2000 0:8.54 49:08.16 1:35:10 1:08:12 1:36:45 1:08:46 used=63%
nbr_pages=30 w=0 w=26875 w=l97090 w=53 w=l65437 w=53 max.Jist=8
np=3 avg=l.57
hashsize=80021 s= l65424
pagesize=2000 0:08.73 56:43.57 1:57:27 1:15:26 1:57:15 1:15:51 used=86%
nbr_pages=30 w=0 w=60366 w=259762 w=53 w=281082 w=53 max.Jist= 11
np=3 avg=2.41
hashsize=300007 s= l65424
pagesize=2000 0:08.42 46:46.28 1:27:49 1:05:00 1:28:59 1:06:00 used=41%
nbr_pages=30 W=0 w=l4148 w=l68483 w=53 w=l75048 w=53 max.Jist=7
np=3 avg=l.34
hashsize= 165437 s= l65424
pagesize=600 0:11.57 48:33 .95 1:28: 12 1:08:56 1:27:19 1:09:38 used=63%
nbr_pages= 100 w=0 w=22772 w=201247 w=l76 w=203343 w=l76 max.Jist=8
np=3 avg= l.57
hashsize= 165437 s= l65424
pagesize= 3000 0:08:01 50:47.21 1:43:36 1:07:31 1:57:28 1:08:11 used=63%
nbr_pages=20 w=0 w=29726 w=l95003 w=36 w=22349 w=36 max.Jist=8
np=3 avg= l.57
hashsize= 165437 s=l65424
pagesize=3000 0:08.01 42:01.14 1:28:31 45:39.12 1:26:32 45:41.50 used =63%
nbr_pages=30 w=0 w=l2592 w=l29990 w=26 w=l31463 w=26 max.Jist=8
np=2 avg= l.57
hashsize= 165437 s=l65424
pagesize=3000 0:08.01 56:17.80 1:56:21 1:16:47 2:17:39 1:19:02 used=63%
nbr_pages=l5 w=0 w=45627 w=235798 w=41 w=274437 w=41 max.Jist=8
np=4 avg= l.57

Table 3.1: Table of results for the elevator example

thus waste, as explained previously, more time to find the page to swap using a LRU list than
simply searching for a full page to swap.

The observation resulting from the changes operated on parameters is that the hashtable
is not well filled. For a size close to the number of states in the graph, the theoretical result is
maximum one cell per elements of the hashtable. In practice, the percentage of used elements
is equal to 63%. It is not very good. The maximum length for a collision list is 8 cells. It thus
takes more time to check astate (because the list has to be visited several times until the end)
than if the maximum length was 1 cell. A reduction of the size leads to a slower performance
because each time a state is checked, the collision list is visited. In this case, the maximum
length of a list is 11 cells and all the lists are generally longer. Indeed, the average number of
cells per used list is 2.41 cells when it is 1.57 for the size close to the number of states to store.
It is an important difference and it explains the longer execution time. The used percentage
goes up to 86%. An increase of the size leads to better performance. Indeed, if we look at
the results, the average goes from 1.57 up to 1.34 and the maximum length decreases by one.
The used percentage falls to 41%. However, the gained time is not significant. Thus, having
a big hashtable is not very useful.
We can also observe that changing the number of pages per node has a slight influence on
the performance. Increasing the number of pages to 100 per nodes improves slightly the

64 Chapter 3. A network memory storage mechanism

performance of step 1. Step 3 and 5 encounter the opposite effect. In the case of a decreasing
from 30 to 20 pages per nodes, the slight changes are observed and the opposite effect is
observed. Step 1 shows an increasing of the execution time and for steps 3 and 5 a decreasing
is observed. All these changes can be explained by the variations in the number of swaps
when comparing with the first test. The variation of these parameters is not a key point to
speed up the prototype for this example.
Another interesting factor is the number of nodes in the cluster. The observation is that when
the number of computers is decreased, the prototype is more rapid. The opposite effect is
obviously observed for an increase of the number of computers in the cluster. The gain or
waste of time are relatively important and apply to all steps of the prototype. It is thus a
parameter to take into account. The explanation is that the number of swaps decreases when
the number of computers decreases and vice-versa. Indeed the amount of pages on the master
is bigger and the master can thus process more states before working with the slaves. In this
case, step 3 and 5 are doser to step 2. Step 5 is also doser to step 3 because the number of
times the LRU list is browsed when a page must be swapped is smaller .

3.4.2 Firewire link

The second example is the model of layer link protocol of the IEEE-1394. In other words,
it is the protocol for the firewire bus. The number of states in the graph is 188420 and the
number of transitions is 462598. States have a size of 59 bytes. The results of the tests are
shown in table 3.2. The concepts used in the table of the elevator are also used here.

Analysis

As for the elevator example, the first objective is achieved. All steps have stored 188420
states. This is also true when executing with different parameters.

System remains the fastest and it is normal seeing that it fits in main memory. We can
observe that it takes more time to execute. The main difference with the previous example is
that step 1 is not faster than the other steps. It can be explained by the fact we are not lucky
with the random fonction which chooses the page to swap on the master. If we look doser,
then we can observe that the number of time the prototype swapped is greater than for the
elevator example. This number is also doser to the number obtained for steps 2 and 4. That
is not the case for the elevator. All the different executions of the prototype on the firewire
protocol example show the same behavior for step 1. That is to say a number of swaps doser
to the one of the other steps, excepted for steps where the checking job has been given to the
slaves.
The step which gives the best performance is step 3. The reason is the same as for the elevator
example. It takes more time to handle the LRU list than choosing simply a full page if we
compare with step 5. If the comparison is clone with steps 2 and 4, then it is explained by
the fact that the number of times the prototype swapped is lower. However, the blocking
fonctions play again a key role in the performance decrease.
As regards the changes operated on parameters, the hashtable also encounters filling problems.
The percentage is not really high and the observation is the same as the one described in the
elevator example. For a size close to the number of states to store, the ideal percentage is
not met and is equal to 63%. The maximum length of collision lists is 7 cells. When the size

3.4 Tests 65

Parameters System Step 1 Step 2 Step 3 Step 4 Step 5
Common

1 info

hashsize= 188431 s= l88420
pagesize= 1000 0:23.46 52:38.30 54:14.48 42:57.44 55:01.35 43:24.86 used=63%
nbr_pages=63 w=0 w=44846 w=49686 w=l26 w=52410 w=l26 max..Jist=8
np=3 avg=l.58
hashsize=50021 s=l88420
pagesize= 1000 0:24.72 1:36:58 1:38:27 53:45.73 1:45:22 52:43.29 used=97%
nbr_pages=63 w=O w=l69278 w=l82865 w=l26 w=l88198 w=l26 max..Jist=l6
np=3 avg=3.86
hashsize=360007 s=l88420
pagesize= 1000 0:23.27 47:38:27 48:26.27 44:43.40 47:57.04 43:14.33 used=41%
nbr_pages=63 w=0 w=23366 w=26847 w=l26 w=28602 w=l26 max..Jist=7
np=3 avg=l.28
hashsize= 188431 s=l88420
pagesize=500 0:26.44 47:10.62 46:58.19 43:59.24 50:33.82 46:52.43 used=63%
nbr_pages= 126 w=0 w=44221 w=50151 w=251 w=50409 w=251 max..Jist=8
np=3 avg=l.58
hashsize= 188431 s=l88420
pagesize=3000 0:22.45 1:12:46 1:10:44 46:19.19 1:16:46 48:59.23 used=63%
nbr_pages=21 w=0 w=47610 w=49622 w=42 w=56028 w=42 max..Jist=8
np=3 avg=l.58
hashsize= 188431 s=l88420
pagesize=945 0:23.82 42:42.42 50:34.07 39:54.80 50:42.87 39:36.26 used=63%
nbr_pages= 100 w=0 w=25053 w=29099 w=lO0 w=29132 w=lO0 max..Jist=8
np=2 avg=l.58
hashsize= 188431 s=l88420
pagesize=378 0:28.37 58:04.98 1:00:06 50:31.55 1:00.15 53:20.30 used=63%
nbr_pages=l00 w=0 w=64019 w=74808 w=399 w=74791 w=399 max..Jist=8
np=5 avg=l.58

Table 3.2: Table of results for the firewire link example

is smaller, the percentage is higher. For our example, a size of 50021 implies a use of 97%.
However, the maximum length is of 16 cells and the average number of states per used lists
goes from 1.58 to 3.86. The difference is significant and it explains the results obtained in
terms of execution time. When the size is bigger, the percentage of use decreases to 41% in
our example. It only allows to decrease the maximum length of a list by one. The averagè
number goes from 1.58 to 1.28. This is nota huge difference and it explains the slight decrease
of execution time.
The changes operated on a page are interesting. We can observe it is more rapid when the
number of pages is greater, except for steps with the checking job given to the slaves. It is
slower when the number of pages is lower. It is due to the fact that it takes less time to swap
small pages than big pages.
The number of nodes is also very interesting. When the number of nodes decreases, the
number of swaps decreases. It speeds up the prototype because the master works for a longer
time. In case of an increase of the number of nodes, the performance from step 2 to step 5
are not good if we compare with the first test. However, the interesting point is that step
1 becomes more efficient than the other steps. It even seems more efficient than the results
obtained for the first test.

66 Chapter 3 . A network memory storage mechanism

Parameters

hashsize= 177167
pagesize=900
nbr_pages= 100
np=2

System

0:21.10
w=0

Step 1

2:02:45
w=37609

Step 2 Step 3 Step 4 Step 5

4:27:31 2:23:07 4:29:51 2:42:47
w=249568 w=97 w=252909 w=97

Table 3.3: Table of results for the dining philosophers example

3.4.3 Dining philosophers

Common
info

s=177147
used=63%
max..Jist=8
avg=l.58

The third example is based on the dining philosophers. Eleven philosophers have dinner
and one of them is left handed. The graph of the model is composed of 177147 states and
1299078 transitions. States have a size of 33 bytes. In view of the number of transitions, the
execution time will be greater if we compare with the previous examples. The results of the
tests clone are shown in table 3.3. The concepts used in the table of the elevator are also used
here.

Analysis

First of all, states are stored only once and the right number has been stored by the
prototype. The first objective is also achieved for this example.

System remains as usual the most rapid. We can also observe that the execution time for
all steps is very high. It is explained by the huge number of transitions and the number of
states which is nearly the same as the ones met in the other examples. A major point is that
as for the elevator example the most efficient step is the number l. The reasons for that are
the same as in the elevator example. The number of swaps between step 1, step 2 and 4 is
great. There are around 7 times less states in step 1 than in step 2 and step 4. It explains the
big difference in terms of execution time which is approximately two hours. The difference
between step 1 and steps 3 or 5 which is around 20 minutes. It is explained by the fact that
it ta.kes more time to find a full page or a page not recently used for swapping than a page
chosen by the random fonction.

Tests in which parameters vary have not been clone since the access to computers of the
laboratory have been restricted. The other reason is that the prototype has the same behavior
as in the previous examples13 .

3.5 Encountered problems

Several problems have been encountered when developing the prototype. One is a mis­
understanding with the principles that the prototype must follow 14 . Indeed, the prototype
which was under development did not match the vision of the Czech supervisor. The other
ones are technical. Release problems between DiVinE and MPI were encountered. It took a

13See previous examples to see how it evolves.
14The idea of the program developed when there was the rnisunderstanding is given in chapter 4, dynamic

approach.

3.6 Conclusion 67

lot of time to resolve them. Because of that, the working tests concerning the communication
between nodes were delayed. There were also problems when executing the different steps.
Computers in the lab were changed, computers were switched off while executing, processes
were killed for obscure reasons. We encountered power cuts, script failures as well. Let us
note that the tests were mostly executed in ParaDiSe laboratory from Belgium.

3.6 Conclusion

In view of the results given by the different examples, we can say that the prototype
achieves its first goal which is to be a network memory mechanism. It is possible to use it for
large models which need more than 4 Gigabytes of memory.

The drawback is that the prototype is not fast. The changes operated in order to improve
the prototype by adding a LRU list, swapping only full pages or giving the checking job to
the slaves are not efficient when we compare them with our expectations. The performance
problem probably cornes from the use of blocking fonctions, especially when a check for an
already stored state is carried out by the slaves. It also seems that the performance decreases
with an increase of the number of nodes. Despite the fact that the fastest step is not step 1
in the firewire example (except when the number of nodes is greater), it is the most efficient
step. It is possible that the bad performance is due to the fact we are not lucky with thé
random fonction in the firewire example. However it may be useful to find an alternative
to step 1. Indeed, if the performance depends on the example, then it is not interesting to
execute step 1 to see whether it works well or not with this example. The size of the hashtable
is doser to our expectations when it is closed to the number of states to store. As regards
the page size, it is slightly better when pages are not too big.

Thus the improvements to do concern the performance of the prototype. These improve­
ments are the topic discussed in the next and last chapter.

------------------------------- -

Chapter 4

Perspectives

It has been shown in the previous chapter that the prototype achieves its main goal which is
to be sure that the states of a graph are stored only once. However, the prototype suffers from
a lack of performance. The different sections of this chapter concern the improvements and
the other possible manners to implement the prototype from the beginning. The solutions
proposed in this chapter do not necessary lead to better performance. The prototype is
experimental and experimentations must be carried out to verify whether the solutions speed
up the prototype or not.

4.1 lmprovements to the prototype

4. 1. 1 Optimal value for parameters

The first point developed is the optimization of the value given to the different parameters
of the program. The results from the tests have shown that better results are obtained when
the number of nodes is small. It is thus interesting to evaluate how many computers are
needed to execute the program.

The other value which is interesting to optimize is the size of the hashtable. The previous
chapter has shown that it is more interesting to have a hashtable size closed to the number of
states to store. However, the hashtable has a use of 63% in the examples. The latter can be
improved to be doser to the ideal value of 100%, which means maximum one cell per collision
lists. In order to put a cell into a collision list, the state is hashed to know the position of
this list in the hashtable. Seeing as the hashing fonction is responsible for the place where
the information about a state is placed in the hashtable, a solution is to improve this hashing
fonction. It increases the percentage upper than 63% and reduce the maximum length of the
collision lists. It means a faster prototype. Indeed, when a state is checked to see whether
it has already been stored or not, the state is hashed and the collision list is browsed. If the
distribution of the states in the hashtable is better and collision lists are smaller, then the
time needed to check a state is lower too. However, such a hashing fonction is not easy to
obtain and it can take a lot of time. It can even be impossible to find a better fonction since
it is experimentation.

70 Chapter 4 . Perspectives

4.1.2 Use of non-blocking funct ions

An interesting improvement to do is to change the prototype in order to support non­
blocking fonctions. As explained before, the prototype currently uses blocking fonctions . It
means that when a checked operation on a state is carried out and the page given by the
information cell in the collision list is not on the master , the master waits for the result of the
check clone by the slaves. The master is thus idle for that time. This is the case of steps 3 and
5. The other steps are also concerned but it is less important. It is therefore interesting to
modify the prototype in order to allow the master to continue the execution while the check
is clone by the slaves. It is not necessary to use non-blocking fonctions for the storage job of
the prototype seeing that the page with free space chosen is always swapped on the master
and that the master needs this page to store the state. In other words, this is only the master
which carries out the storage job.

Let us note that it is not an easy task to do. The coordination between the master and
the slaves to optimize the workload must be correctly clone in order to avoid a deadlock of the
prototype or errors. For example, it is possible that a slave or the master catch the wrong send
or receive operations and that leads to deadlock most of the time. If the master continues to
work while the check is carried out by the slaves, then the master can not start storing a state
before obtaining the result of the check. However the master can swap a page to prepare the
storage if there is no more free space on it. These examples show the difficulty of coordinating
the operations inside the cluster. It is obvious that the use of non-blocking fonctions speeds
up the prototype. This decrease of execution time can be significant for steps 3 and 5.

4.1.3 Giving the storage job t o the slaves

Another solution to improve the performance of the prototype is to allow slaves to store
states when there are no more pages with free space on the master. The tests have shown
that when the slaves carry out the checking job the steps are more rapid than the steps which
swap all the time. Time can be also gained if the storage job is clone by the slaves. It can
be however less significant when we compare with the time gained in steps 3 and 5. This
is normal seeing that the number of times the prototype checks if a state is stored can be
significantly greater than the number of times the prototype stores a state. This improvement
permits to avoid swapping.

Despite the time gained with this solution, it will be a pity if the operations between
nodes are blocking. Hence the other advantage related to the previous subsection is to take
advantage of non-blocking fonctions. Indeed, we can imagine that when a check is carried out,
all the slaves send information about free space on it at the same time. So when a state must
be stored, the master sends the information to the node with free space without waiting for
a response. The node can be the one with the smallest identification number if we want that
the stored states follow the order in which we encountered them while browsing the graph. If
it is not the case, any node with free space can be chosen. T he slaves are responsible for the
storage and the master can store information in the hashtable and goes on with the execution.

Let us notice that, with this solution, there are no more swaps. The steps 2 to 5 which
search for an ideal page to swap are not useful anymore. The time spent when searching for
a full page or working on the LRU list can be spared. It is logical that the execution time
will decrease and the prototype will be then more efficient.

4.1 lmprovements to the prototype

state := initstate;
DFS(state);

procedure DFS(state)
if (state, 0) (/. visited then

visited := visited U { (state, 0)}
in_stack := in_stack U { state}
foreach s E Succ(state) do

DFS(s)
end foreach;
if Accepting(state) then

NDFS(state)
endif
in_stack := in_stack \ { state}

end if
endprocedure;

procedure NDFS(state)
if (state, 1) (/. visited then

visited := visited U { (state, 1)}
foreach s E Succ(state) do

if s E in_stack then
Report("Cyde")

else NDFS(s)
endif

end foreach;
end if

endprocedure;

Figure 4.1: Nested depth-first search algorithm

4.1.4 Nested DFS

71

Nested DFS is the last solution proposed to improve the prototype. It is doser to model
checking and especially to LTL model checking1 . The idea is to use here other algorithms to
browse the graph of a model in order to verify a model instead of using the BFS algorithm.
The latter is nonetheless slow. The nested DFS allows to find an accepting cycle in the graph
of a synchronized product2 . The latter corresponds to a counterexample and thus a bad
behavior of the system. It means that the model of the system is not good. At this time, it is
not necessary to continue since a counterexample has been found. The use of these algorithms
leads to better performance seeing that if the model is not good, we stop. Moreover, it allows
the prototype to do model checking and verify the correctness of a system. It is the major
improvement to do in order to have a more efficient prototype. The pseudo-code for nested
DFS algorithm from [BBv02] is given in figure 4.1.

1The one using automata theory.
2The synchronized product is the product of the automaton modeling the system and the automaton

representing the bad behaviors of the system.

72 Chapter 4. Perspectives

In this figure , a state is first checked if it has not already been discovered by the DFS
procedure. Number O and 1 are used to indicate whether the state has been encountered by
the DFS procedure or by the NDFS procedure. It allows to goes through every reachable state
only once. The state is then put on a stack and its successors are generated. The algorithm
calls itself until no more successors can be generated. The next step is to check if the current
state is accepting. If it is the case the nested DFS procedure is called. In other words, the
nested DFS is started when the first DFS backtracks from an accepting state. The state is
popped from the stack if it is not accepting.

The nested DFS first checks if the state given as a parameter is not a previously visited
state by the procedure. If it is not, then the state is added to the set of visited ones. Afterwards
ail the successors of the state are generated and for each of them, the algorithm checks if they
are on the stack handled by the DFS procedure. If it is on the stack, then it means that a
cycle has been detected and the algorithm stops. The states met in the nested DFS procedure
compose the counterexample. These states are the ones labelled with integer 1. If it is false,
then the algorithm calls itself. When the nested DFS is clone without success, the DFS
procedure resumes.

4.2 Re-implementing the prototype

4.2.1 A more dynamic approach

The dynamic approach is another approach which the prototype can use. The static
approach3 allocates the memory at the beginning of the execution of the prototype. The
problem which can be encountered is that the memory allocated is exhausted and no more
space is available. With the dynamic approach, there are no more pages in which states
are stored. This approach actually allocates the memory needed for the hashtable at the
beginning of the execution. This is quite normal because a reallocation of tables during an
execution is not a rapid and reliable operation. It is not possible as for the static approach
to change the size of the hashtable. States are stored directly in the hashtable. The collision
list thus contains cells in which states are stored. The list evolves as the graph is browsed.
State space is thus not limited by the amount allocated to pages. This is the reason why
this approach is said to be dynamic. Another special feature is that the hashtable is split up
among the nodes of the cluster. It is considered as a distributed hashtable. lt allows to use the
memory of all the computers composing the cluster. It is the network memory mechanism.
If the size of the hashtable is m , then it is split up among the nodes. Each hashtable of a
node has a size of m/n where n is the number of nodes in the cluster. The size is an integer.
Hence, the size of each hashtable can not be the same if the result of m/n is a real . The
different collision lists have a size of k ~ O. Cells contain different states. i is the ith node
in the cluster and O ::; i < n. An illustration of the split hashtable is given in figure 4.2.
The working is the following one. When the graph is browsed and astate is encountered, the
state is hashed and the result gives the position of its collision list in the hashtable. It means
that for the hashing fonction ail the parts of the different hashtables are put together and it
appears to be only one big hashtable. With this position, we can know to which node the
state must be sent. It is obvious seeing that the position is in a part of the hashtable and

3For more details, see chapter 3, subsection 3.3.3.

4.2 Re-implementing the prototype 73

NodeO

Hashtable - State 1 - State 1 -- - - ... 1 State I/I

- State 1 - State 1 -- - •I State VI

- State 1 State 1 •I State IZI

. . .

- State 1 State 1 - - ---►-1 State VI

- State 1 - State 1 --~•-1 State IZ\

Node i
Hashtable - - State 1 - State 1 -- - - - •\ State !/ !

- State 1 - State 1 -- - State
State 1 State 1 State
State 1 State 1 -- State

State 1 State 1 ► I State IZJ

.. .

- State 1 State 1 - • I State IZ\

- State 1 State 1 - :., \ State V)

Node n-1
Hashtable -

- State 1 - State 1 - -
State 1 State 1

. ..

State 1 State 1 ------1~ _S_t_at_e~V~\

Figure 4.2: Hashtable and the dynamic approach

74 Chapter 4. Perspectives

that this part corresponds to a certain node. When the information is received by the right
node, the collision list corresponding to the given position in the part of the hashtable is then
browsed and the state is checked with the one contained in the cells. If there is a match,
the browsing of the graph goes on and the same procedure with the new state is started. If
the ~tate has not already been stored, then the state is added at the beginning of the list.
Afterwards the browsing of the graph can go on.

The idea can however be improved by using non-blocking fonctions. It is possible because
when a state is hashed, it is transmitted to the node which owns the part of the hashtable
relating to the result of the hashing and this node is responsible for the check and the storage.
We are thus sure that if the state has already been stored, it is on this node and not another
one. Moreover, no messages or results must be sent to master at the end of the treatment of
the state. When the part of hashtable owned by the master is not concerned by the treatment
of astate, it can simply send the state and the result of the hashing to the slave and afterwards
continue the browsing of the graph while a slave is treating the state. Hence, it seems that
time is gained and the performance are improved.

Nothing is perfect and this method has thus a drawback. It is possible that the physical
memory of anode is more used than the one of another node. It depends on the quality of
the hashing fonction. When the latter does not give good results, the collision lists are bigger
and the percentage of use of the complete hashtable is weak. If we are not lucky, then a node
will contain more states than another node and for a very large graph it can be a problem.
However, we can be luckier and despite the bad quality of the hashing, the sharing out among
nodes is more efficient. In the other hand, if the hashing is efficient (close to 100% of use of
the hashtable), then the sharing out is almost perfect. When we look at the tests of chapter
3, we can observe that a size of the hashtable greater than the number of states in the graph
is not ideal for this method. The smaller size is better for the sharing out but it may not
be perfect because of the increase of the maximum length of collision lists. The ideal should
be that the size of the hashtable is equal to the number of states to store but on condition
that the actual hashing fonction is improved. With the actual fonction, it seems that a size
slightly smaller than the number of states remains the best. This method seems to be very
interesting to experiment.

4.2.2 PVM

When PVM was described in chapter 3, it seemed to be the technology which suits best
for the design of the prototype. However, MPI was chosen because it has already been used in
the DiVinE project. It is not impossible to use both technologies in the project on condition
that the prototype is not linked with another part of DiVinE which uses MPI. In that way,
the prototype can take advantage of PVM and the features that it provides. An interesting
feature is load balancing. It allows to share out the workload between the nodes. So each
node are not idle for a certain time. Another paradigm such as the tree computation, hybrid
or node-only can also be used instead of the master-slaves method 4 .

4For more details about PYM paradigms, see PYM section in chapter3.

4.3 Origin of the ideas 75

4.2.3 RAW TCP /UDP

This method is possible to design if we want to improve the prototype by using communi­
cation operations which are the most efficient. As said before, this method probably requires
more time to develop. Indeed, all the communication operations are manually implemented
by the designer of the prototype.

An idea is to develop a system with a main node and where daemons are launched on
the computers. All daemons must be launched manually on each computer. It can be clone
with "ssh"command. This daemon is listening for requests. The connection will be clone
through sockets between computers. On each computer, one socket is devoted to the listening
of requests and another one is used for sending or receiving data. It is also possible to add a
node in the cluster if it is needed. Indeed, if the daemon is launched on a computer and the
latter sends information to the main node, then it will be registered on the main node and this
one canuse the new added node. It works more or less like an architecture Client/Server. The
main node sends the information, after nodes have been registered to it, in order to allocate
the memory needed for the execution. We can also imagine that the allocation of memory
is clone when the node received its first job. It allows not to block resources when the node
does not work. Methods used to do load balancing are also possible to implement.

The protocol used can be Transmission Control Protocol (TCP) if we want to be sure that
data are received. If the prototype tolerates losses, it can be envisaged to use User Datagram
Protocol (UDP). It even permits to speed up the execution.

4.3 Origin of the ideas

The origin of the ideas which have been proposed in this chapter in order to improve the
prototype is discussed in this section.

Most improvements of the first part of the chapter were suggested at the end of the training
period in Czech Republic: optimal value for the size of the hashtable, the storage job for the
slaves, and nested DFS algorithm for browsing the graph. However, the idea to modify the
hashing function was not planned. It cornes from the observation of the last obtained results
as well as the use of non-blocking functions and the research to find an optimal value of the
number of nodes.

As regards the second part concerning the re-implementation of the prototype, all the
ideas that have been developed have not been suggested and also result from the observation
of the performance of the prototype.

Conclusion

Hardware and software systems are present everywhere in our daily life. The correctness
of these systems is very important in order to avoid problems which can cost a lot of money
in some cases. Methods have been developed to verify all these systems and model checking
is one of them. It is probably the one which is the best suited for verifying systems.

Model checking is based on the model of systems and the verification of properties which
must be satisfied by these systems. This model is a graph with states and transitions. We have
seen that the biggest fear is to encounter the state space explosion problem which happens
when the number of states is huge. When this problem is met, the program can not be efficient.
The main challenge for model checking is to deal with this problem. Methods to avoid the
state explosion problem have been described. They suggest solutions to reduce the number of
states that are generated. Sorne of them have nevertheless drawbacks. Indeed , the methods
to reduce the number of states generated such as partial order reduction or abstraction apply
to a subset of the behaviors of the full graph. It is often sufficient to verify the most important
properties. Another technique has been described. It uses the computation power of several
computers grouped in a cluster. This is the distributed model checking method. We have also
seen that this method may suffer from the revisiting problem. Another way is to use non­
distributed algorithms and to take advantage of a large memory composed with the memories
of several computers.

It is therefore in this context that we try to develop a prototype of a network memory
mechanism. Different difficulties have been encountered since the beginning of the devel­
opment of the program. Most of them are technical. The main goal of the prototype has
however been achieved. The mechanism works fine and the states belonging to the model of a
system are correctly stored. It is even possible to use it when the model requires more than 4
Gigabytes of memory. We have thus shown that it was possible to build a big random-access
memory in order to handle huge industrial systems.

The prototype evolved for three months of development. In addition, we have shown that
a reflexion on techniques in order to improve the performance was clone. They have been
implemented. Unfortunately, the prototype remains quite slow. Thus, it is not really efficient
at this moment. It is probably due to the use of non-blocking fonctions for communicating
inside the cluster and models which contain a big number of cycles.

In view of the poor performance, we can conclude that the development of the prototype
is not a complete success. That is why perspectives for future work have been defined.

We hope that the reader has realized that model checking is an interesting domain of re­
search and, above all, very useful to verify the correctness of huge industrial systems. Finding
new methods to allow model checking to deal with the state explosion problem as well as to

78 Conclusion

develop a program using parallel and distributed concepts is not an easy task to do. Since the
main goal is achieved and considering the poor performance of the prototype, we can finally
say that we have won a battle but not the war.

Bibliography

[abopi] http://www.mpi-softtech.com/products/cluster/about...mpi/. (Last visit on July
28th 2004) .

[Bar02a] J. Barnat. How to distribute ltl model-checking using decomposition of negative
daim automaton. In SOFSEM 2002 Student Research Forum Proceedings, Milovy,
Czech Republic, 2002.

[Bar02b] J. Barnat. Using verified property to partition the state space in ltl model­
checking. In Proceedings of the Summer School on Modelling and Verifying Parallel
Processes {MOVEP '2002), Nantes , France, 2002.

[BB03] L. Brim and J. Barnat. Distribution of explicit-state ltl model-checking. In Thomas
Arts and Wan Fokkink, editors, 8th International Workshop on Formal Methods
for Industrial Critical Systems (FMICS 03) , volume 80 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2003.

[BBF+o1] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit , L. Petrucci, Ph.
Schnoebelen, and P. McKenzie. Systems and Software Verification: model-cheking
techniques and tools. Springer, 2001. ISBN 3-540-41523-8.

[BBv02] J . Barnat, L. Brim, and I. Cerna. Property Driven Distribution of Nested DFS. In
VCL 2002: The Third International Workshop on Verification and Computational
Logic, Pittsburgh PA, October 5, 2002 {held at the PLI 2002 Symposium), 2002.

[defry] http://www.hyperdictionary.com/dictionary /. (Last visit on August 12th 2004).

[divml] http://anna.fi.muni.cz/divine/index.html. (Last visit on August 4th 2004) .

[Eng04] V. Englebert. Systèmes coopératifs. Namur, Belgium, 2004.

[expgn] http://www.cesnet.cz/doc/techzpravy /2002/ipv6hwdesign/. (Last visit on July
30th 2004).

[Galps] Stéphane Galland. Les circuits séquentiels. EURISE department, Jean-Monnet
University, http: //set.utbm.fr/membres/ga1land/enseignement/archi/seq2.ps.
(Last visit on July 26th 2004) .

[GBD+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine. A User's Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994. ISBN 0-262-57108-0.

80

[GGM04]

[JGP99]

[lamrg]

[Lerpt]

[MPirg]

[MPipi]

[pvmml]

[Roypt]

[Sch04]

[Walml]

BIBLIOGRAPHY

J-M. Geib, C. Gransart, and P. Merle. Corba: des concepts à la pratique.
http://www.rennes.supelec.fr/rennes/si/equipe/lme/ENSEIGNEMENT/TD_CO
RBA/cours_CORBA.pdf, (Last visit on August 2nd 2004).

E. Clarke Jr, O. Grumberg, and D. Peled. Madel checking. The MIT Press, 1999.
ISBN 0-262-03270-8.

http://www.lam-mpi.org/. (Last visit on August 12th 2004) .

Flavio Lerda. Ltl model checking. Carnegie Mellon University, www-
2.cs.cmu.edu;-emc/15-820A/reading/ltLmodeLchecking.ppt. (Last visit on July
5th 2004).

http://www.mpi-forum.org/. (Last visit on August 12th 2004).

http://www-unix.mcs.anl.gov/mpi/. (Last visit on August 12th 2004).

http://www.csm.ornl.gov/pvm/pvm_home.html. (Last visit on August 1st 2004).

Abhik Roychoudhury. Temporal logics. National University of Singapore,
www.comp.nus.edu.sg;-cs4271/1ectures/1ec3-4.ppt. (Last visit on July 5th 2004).

P-Y. Schobbens. Preuves automatiques et preuves de programmes. Namur,
Belgium, 2004.

David W. Walker. Mpi From fundamentals to
http://www.cs.utk.edu;-dongarra/WEB-PAGES/cs594-200l.html.
July 28th 2004) .

applications,
(Last visit

[wikrg] http://wikipedia.org. (Last visit on August 12th 2004).

[worMC] http://www.fi.muni.cz/concur2002/PDMC/. (Last visit on August 12th 2004).

Appendix A

Diagrams

The sequence diagrams for the treatment of a state by the different steps of the prototype
are presented in this appendix.

A. 1 Step 1: swapping randomly

The sequence diagrams of step 1 for the treatment of a state are shown in figure A. l for
the master and in figure A.2 for the slaves.

A.2 Step 2: swap of full pages

The sequence diagrams of step 2 are illustrated in figure A.3 for the master and in figure
A.4 for the slaves.

A.3 Step 3: swap of full pages and checking job for the slaves

The following figures illustrate sequence diagrams for the treatment of a state in step 3.
Figure A.5 concerns the master and figure A.6 concerns the slaves.

A .4 Step 4 : Last Recently Used

The sequence diagrams are the same as in step 2.

A. 5 Step 5: LRU and checking job for the slaves

The sequence diagrams are the same as in step 3.

82

0-- -1- -1 - - - - -
1

ffi---

ffi

ai
üi
ltl
~
~
0
üi

ai
üi
ltl
~
t::
Ql
V)

.!:

~
ltl

(/)
Ql

i

ai
üi
ltl
~

Ql

ltl c..
üi
i:5
Ql

i

l­
i

Appendix A: diagrams

1---- --

Figure A.l: Sequence diagram for the master in step 1

A.5 Step 5: LRU and checking job for the slaves

0-
Q)
Cl
<tl
a.
"O
C

""

+

♦

Q)

~
ui
a.
<tl
:t
V,

1

~ -

♦

- - - -

!
ui
t::
Q)
V,

.!:

ffi- 1-------i

[TI

Q)
0
<tl

(/)
Q)

i

l­
i

..li) 1----- -
~
ui
<tl

~

Figure A.2 : Sequence diagram for the slave in step 1

83

84

0----

0--
0
<Ù
:l5
.'!! .s::
(/)

ra
.s::

ai
in ra
~
-g
""

4-----

1

ai
in ra
~
t::
Q)
(/)

.!:

[TI---

O}

Appendix A: diagrams

1------

Figure A.3: Sequence diagram for the master in step 2

A.5 Step 5: LRU and checking job for the slaves

0-
u
ai

i
.s::
"' "' .s::

-i­

l

1

~-----

ffi -i----------t

O}

1-

Figure A.4: Sequence diagram for the slave in step 2

85

1------
1

86

1 i~--------1--t--------

0--
<J
ai

~ .s::
~

.s::

-1- - - - - -
1

♦

~

.8
~
~
t::
Q)
V,

.5

[I} -t-----------1

IB

1
1-

♦

Appendix A: diagrams

♦ ♦

Figure A.5: Sequence diagram for the master in step 3

A.5 Step 5: LRU and checking job for the slaves

0-

~
üi
-0
C:
-=

IB-
O
(/)

O}

!
üi
-0
~
.9
(/)
.!!!

+-----
1

Q)

i:i
üi
~
0
in

~
~

Q)

"' c..
in
i:5
Q)

.ê

l­
i

Figure A.6: Sequence diagram for the slave in step 3

87

1------

-------------------------------------- - - -- -

Appendix B

MPI bindings

The appendix B contains a detailed description of the MPI fonctions, MPI constants and
MPI communicators used in the prototype. All descriptions are for C programming language.
The description cornes from [MPipi].

B .1 Constants

MPLCHAR: char
MPLINT: int
MPLUNSIGNED: unsigned int
MPLANY _SOURCE: it allows to accept a message from anyone in a receive operation.

B.2 Communicators

The type of communicators are MPLComm in C.
MPLCOMM_ WORLD: contains all the processes created on each node of the cluster.

B.3 Functions

MPl_init

This fonction initializes t he MPI execution environment

Synopsis

#include "mpi.h"
int MPI_Init(int *argc, char ***argv)

Input Parameters

90

argc Pointer to the number of arguments
argv Pointer to the argument vector

Errors

MPLSUCCESS

No error; MPI routine completed successfolly.

MPLERR....OTHER

Appendix B: MPI bindings

This error class is associated with an error code that indicates that an attempt
was made to call MPLJNIT twice. MPLJNIT may only be called once in a program.

MPLAbort

This fonction terminates MPI execution environment

Synopsis

#include "mpi.h"
int MPI_Abort(MPI_Comm comm, int errorcode)

Input Parameters

comm Communicator for tasks to abort
errorcode Error code to return to the calling environment

Notes

It terminates all MPI processes associated with the communicator comm. If it is
MPLCOMM_WORLD, then all the processes created by MPI terminates.

MPLComm_size

This fonction determines the size of the group associated with a communicator

Synopsis

#include "mpi.h"
int MPI_Comm_size (MPI_Comm comm, int *size)

Input Parameters

comm Communicator.

Output Parameters

B.3 Functions 91

size returns an integer which contains the number of processes in the group of comm.

MPLComm_rank

This fonction determines the rank of the calling process in the communicator

Synopsis

#include "mpi.h"
int MPI_Comm_rank (MPI_Comm comm, int *rank)

Input Parameters

comm Communicator.

Output Parameters

rank returns an integer which contains the rank of the calling process in the group
of comm.

MPLSend

This fonction performs a basic send

Synopsis

#include "mpi.h"
int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm)

Input Parameters

buf initial address of sending buffer (choice)
count number of elements in sending buffer (positive integer)
datatype datatype of each element of the sending buffer (handle)
<lest rank of destination (integer)
tag message tag (integer)
comm Communicator (handle).

Notes

The fonction may block until the message has been received. It is one of the blocking
fonction used in the prototype.

MPI_Recv

92 Appendix B: MPI bindings

This fonction performs a basic receive

Synopsis

#include "mpi.h"
int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,

MPI_Comm comm, MPI_Status *status)

Input Parameters

count maximum number of elements in receiving buffer (positive integer)
datatype datatype of each element of the receiving buffer (handle)
<lest rank of source (integer)
tag message tag (integer)
comm communicator (handle).

Output Parameters

buf initial address of the receiving buffer (choice)
status status object

Notes

The fonction may block until a message has been received. It is the other block­
ing fonction used in the prototype.

MPLFinalize

This fonction terminates the MPI execution environment

Synopsis

#include "mpi.h"
int MPI_Finalize()

Notes

All processes must call this routine before exiting. The number of processes run­
ning after this routine has been called is undefined; it is recommended not to perform more
than a return rc after calling M PI _Finalize.

Index

Abstraction by State Merging, 36
Accepting cycle, 39-42
Accepting states, 39
Ample set, 38
Atom, 20-21
Atomic propositions, 9
Automaton

definition, 3
definition of a path, 4
definition of a reachable state, 5
definition of an execution, 4

finite automata, in language theory, 3
Kripke structures, 3
transition systems, 3

Büchi automata, 8
definition, 8
emptiness, 22
generalized Büchi automaton, 9

Backward chaining, 27
BFS, 57
Boolean combinators , 9

Bounded liveness, 29
Branching time logic, 13
Buffered mode, 45

Cell, 53, 57- 66
Closure, 20-21
Collective communication

broadcast, 46
Collision list , 53, 57- 66
Communication context, 45
CORBA, 50- 52

bus, 51
client/server model, 50- 51

CTL, 13
semantics, 13
syntax, 13

CTL model checking, 16

CTL*, 10
semantics, 11
syntax, 11

CTL* model checking, 23
CTL+Fairness, 31

Daemon, 48
Deadlock-freeness property, 26, 30

definition, 30
Depth-first search, 38
DFS, 57
Distributed LTL model checking, 39- 42

additional structures, 39
negative cycles, 39-40
property based distribution, 40

DiVinE, 1, 40- 43, 52, 66, 74
Dynamic approach, 72- 74

Enable set, 38
Envelope, 44

Fairness hypotheses, 31
Fairness property, 26 , 29- 31

definition, 30
First order logic, 9
Forward chaining, 27
Fully accepting, 40

Globally complete, 45
Graph browsing, 57
Guard, 5

Hashing, 57- 66
Hashing fonction, 53
Hashtable, 53, 57- 66
History variables, 28

Kripke structure, 7, 16
definition, 7
restricted Kripke structure, 17

96

Last recently used, 60
Linear-time logic, 14
Liveness hypotheses, 29
Liveness property, 26, 28- 29

definition, 28
Locally complete, 45-46
LTL, 14

semantics, 15
syntax, 15

LTL model checking, 19
by tableau, 20

definition, 20

Maximal subformula, 25
Message passing, 44, 46
Microwave oven example, 18- 21, 24
Middelware, 50
Model checking, 1, 16
Modeling, 1
MPI, 44-46, 52

Collective communication, 45- 46
gather, 46
prefix-reduction, 46
reduce, 46
scan, 46
scatter, 46

Data movement routines , 46
Point-to-point communication, 44

MPI bindings, 89- 92

Nested DFS, 39, 57, 71
Network memory mechanism, 67
Non-accepting, 40
Non-blocking fonctions, 70

On-the-Fly model checking, 36- 37, 39
Optimal values for parameters, 69

Page,53-54, 57-66
Partial order reduction, 37- 38
Partially accepting, 40
Past combinators, 28
Past temporal formula, 27
Path formulas, 11- 15
Path quantifiers, 10, 15
Petri nets, 32
Postorder , 39
Present tense formula, 26

Process group, 45
Progress property, 26
Propositional formula, 9
PYM, 46-49, 52, 74

computation model, 49

INDEX

crowd computing paradigm, 48
master-slave, 48
node-only, 49

data parallelism, 49
functional parallelism, 49
host pool, 46
hybrid paradigm, 49
load balancing, 49
send and receive operations, 49
tree computation paradigm, 49
working, 48

RAW TCP /UDP, 52, 75
Reachability property, 26, 28

definition, 26
Ready mode, 45
Repeated liveness, 29, 30
Response property, 26
Revisiting, 1

Safety property, 26-27, 30, 36
definition, 27

Scanning method, 40
Sequence diagram, 81
Shared memory, 43-44
Simple liveness, 29
Specification, 1
SPIN, 32- 34
Standard mode, 45
State

accepting states, 8
control states, 5
global states, 5
state variables, 5

State explosion, 7, 27, 32, 35
State formulas, 10- 14
State space explosion, 1- 2
Storage jobs, 70
Strong fairness, 31
Strongly connected component, 17

self-fulfilling, 20-21
Swap, 57- 66

INDEX

Synchronized product, 5, 22
definition, 5- 7
reachability graph, 7
relabelling, 7

Synchronous mode, 45
Syntactic characterization, 27

Tag field, 44- 45
Target states, 27
Temporal combinators, 9
Temporal logics, 9, 16
Transition system, 38

Weak fairness, 31

97

