Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

A tangible-augmented concept inventory to identify novices' misconceptions in
programming

Henry, Julie; Magis, Tom; Clarinval, Antoine; Vanderose, Benoit; Dumas, Bruno

Published in:
15th International Conference on Computer Science and Education (ICCSE 2020)

DOI:
10.1109/iccse49874.2020.9201806

Publication date:
2020

Document Version _
Early version, also known as pre-print

Link to publication

Citation for pulished version (HARVARD):

Henry, J, Magis, T, Clarinval, A, Vanderose, B & Dumas, B 2020, A tangible-augmented concept inventory to
identify novices' misconceptions in programming. in 15th International Conference on Computer Science and
Education (ICCSE 2020)., 9201806, 15th International Conference on Computer Science and Education, ICCSE
2020, Institute of Electrical and Electronics Engineers Inc., pp. 370-374, 15th International Conference on
Computer Science and Education, Delft, Netherlands, 18/08/20.
https://doi.org/10.1109/iccse49874.2020.9201806

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Jul. 2025

https://doi.org/10.1109/iccse49874.2020.9201806
https://researchportal.unamur.be/en/publications/3cfeb93a-bf83-49e5-b8d5-6ce705fe7757
https://doi.org/10.1109/iccse49874.2020.9201806

A Tangible-Augmented Concept Inventory to
Identify Novices’ Misconceptions in Programming

Henry Julie
Namur Digital Institute
University of Namur
Namur, Belgium
julie.henry @unamur.be

Magis Tom
Namur Digital Institute
University of Namur
Namur, Belgium

Dumas Bruno
Namur Digital Institute
University of Namur
Namur, Belgium
bruno.dumas @unamur.be

Abstract—Introductory programming courses are a challenge
for any teacher and a barrier for undergraduate students.
A tangible-augmented concept inventory (TACI) is developed
according to a design-oriented methodology in close collaboration
with future users (students, teachers). It aims to help teachers to
become aware of the misconceptions their students have and to
rectify them appropriately. Tests conducted with 8 experts and
9 students show promising results and lead to improvement of
the TACI.

Index Terms—Computer science education, Concept inventory,
Tangible interaction, Design-oriented research, Misconceptions

I. INTRODUCTION

Learning programming is considered difficult for novices [1]
of any age. Introductory programming courses are a challenge
for any teacher and often result in a quite high failure and drop-
out rates among undergraduate students. More and more learn-
ing resources are being developed to assist in the exploration of
basic programming concepts and computational thinking [2]-
[4]. In particular, tangible interaction is a preferred approach
to working with children [5]. However, it is rarely used when
teaching young adults [6].

Many factors come into play in explaining the difficulties
experienced by beginner-level programmers [7]. In particular,
one of them can help teachers to improve their teaching:
the misconceptions [8] that students hold beforehand. These
misconceptions hinder their progress and may discourage them
from continuing their learning. They can be identified using a
concept inventory (CI), which is a “research-based multiple-
choice test that seeks to measure a student’s knowledge of a set
of concepts while also capturing conceptions and misconcep-
tions they may have about the topic under consideration” [9].

Thus, relying on the previously documented success of tan-
gible devices and CI about basic programming concepts [10],
we argue that a tangible-augmented CI (TACI) could help
teachers to become aware of the misconceptions their students
have and to rectify them appropriately during subsequent
practical work sessions [11]. The students as well, through

Vanderose Benoit
Namur Digital Institute
University of Namur
Namur, Belgium
benoit.vanderose @unamur.be

Clarinval Antoine
Namur Digital Institute
University of Namur
Namur, Belgium
antoine.clarinval @unamur.be

Setting up

Analysis

Experts

Design

Students

Researcher

Fig. 1. Design-oriented research methodology

the manipulation of the TACI, should be able to perceive
their misunderstandings and to correct them. In order for
such a device to best meet the needs, its development must
be conducted in close collaboration with future users, i.e.
students, but also with teachers and other education experts.

II. TACI DESIGN

The TACI consists of a set of programming problems
that the user must solve and which allow measuring his/her
understanding of basic programming concepts. Rather than an-
swering a multiple-choice question, the user freely constructs
his/her answer.

The TACI is developed following a methodology inspired
by design-oriented research [12]. It is an iterative process that
articulates phases of design, set up with different audiences,
and analysis of the collected data. Thus, development is a
collaboration between the researcher developing the TACI and
experts, but also between the researcher and future users,
namely students, and education professionals (teachers, tutors,
etc.) (Figure 1).

Two aspects of the TACI are distinguished: the didactic
aspect, i.e. the misconceptions to be identified and how to
identify them, and the human-computer interaction (HCI)

Fig. 2. A program written in blocks

aspect, i.e. the shape of the TACI and the interactions with
it. Experts were invited to collaborate on both aspects.

A. Didactical Aspect

Through the TACI, the user builds a program answering
a short problem focused on the manipulation of a basic
programming concept. Here, the concepts covered are the
variable, the conditional structure, and the loop. Based on [10],
several problems have been foreseen, allowing to identify ma-
jor misconceptions such as the reading direction of a variable
assignment, the number of iterations of a loop according to its
condition statement, or the understanding of Boolean algebra
within a condition.

A problem is composed of a statement and of a specific
set of blocks to assemble to build the program answering
the statement (Figure 2). Each block represents an instruction
written in pseudo-code. These instructions can be incorrect,
illustrating some of the misconceptions that learners may have.
The solution proposed must be evaluated and the result of
this evaluation must be made explicit. Thus, the following
information must be provided: the value of the variables used
in the program when it is executed; if the solution is incorrect,
the line impacted and the error that occurred; a theoretical
explanation of the concept correcting the misconceptions (Fig-
ure 3).

B. HCI Aspect

The choice of a programming language working with tan-
gible blocks takes its inspiration from the numerous existing
devices [13]-[15]. The blocks have been printed in 3D and are
magnetically assembled one under the other, for a reading of
the program from top to bottom. The blocks can be assembled
in several positions to support indentation (Figure 2). Each
block represents one instruction printed on a strip of paper
attached to it. Each instruction has a unique tag, and thus can
be scanned and recognized.

& Cartorithmique

Essaie encore

avaut11.0

Point d'attention: Tant que plus petit ou égal dans
le 2éme bloc

Explication: Lorsquon utilise la condition plus
petit ou égal, on incrémente ici une fois de trop
la variable. Quand a vaudra 10, on rentrera une

derniere fois dans la boucle et elle passeraa 11.

On voulait:
10.0 comme valeur pour a

Tant que plus petit
ou égal

entier a = 0

tant que a <= 10 alors
a=a+lRy

Fig. 3. Feedback screen

Cartorithmique

Prépare ta solution, puis

&loigne les blocs non utilisés. . . .
Scan ta solution en tenant Iécran verticalement

(sens du texte), vérifie que tous les blocs sont
détectés avec le chiffre puis touche écran.

Appuie sur
r.

Touche I'écran pour continuer.

Fig. 4. Home screen of the application

Besides the set of tangible blocks, the TACI includes an
application running on a tablet or a smartphone. It is composed
of three screens: a home screen, a screen for scanning, and a
screen displaying feedback to the user. Touching one screen
allows moving to the next one, and a backspace button allows
going back to the previous screen. First, the home screen
explains how the TACI works (Figure 4). Second, the scanning
screen returns what is captured by the tablet/smartphone’s
camera. The number of recognized blocks (and thus, recog-
nized instructions) is indicated, allowing the user to correct
the scan if necessary (Figure 5). Third, the feedback screen
displays the feedback associated to the scanned program
(Figure 3).

III. TACI SET Up

The first design iterations of the TACI carried out in
collaboration with experts lead to a functional prototype. Two
test phases were then organized. The first phase consisted in
presenting the TACI to 8 computer science education experts
who teach programming courses or practical sessions and
who would potentially use the TACI with their students. The
second phase involved 9 students following an introductory
programming course in their first year of university. The
objective of these test phases was to obtain feedback on the
user experience, but also on the potential of the TACI to be
used in a teaching/learning context.

A. Formative Test with Teaching Staff

The participants were asked to solve three problems using
a set of blocks containing pseudo-code instructions specific
to each problem. Problem 1 involves a set of 12 blocks and
tests the understanding of the concept of variable. It consists
in writing a program which result is an exchange of value
between two variables. Problem 2 involves a set of 8 blocks
and tests the understanding of the concept of conditional
structure. It consists in writing a program which result is the
assignment of a defined value to a variable when a condition
involving Boolean algebra is present. Problem 3 involves a
set of 7 blocks and tests the understanding of the concept of
loop. It consists in writing a program with a defined number
of loop iterations.

Ethnographic observations were carried and the User Ex-
perience Questionnaire (UEQ) [16] was completed by all
participants.

Six experts (75%) found problem 2 too difficult for novices.
In addition, the pseudo-code used to write the instructions
confused some experts. Two experts (25%) were surprised that
typing was explicit (“integer a = 2”). Six experts omitted the
“end if” block. Two experts said they had difficulties to have
a global view of all the blocks available in a set.

Regarding the application, some ergonomic problems have
been reported for the scanning screen. The position of the
button to launch the scan made the tablet difficult to handle.
In addition, the success of the scan and the recognition of the
instructions were not perceived by the experts. The feedback
presented following the evaluation of a solution was also
commented. Indentation problems, which generate a warning,
should be reported as an error instead. The red color used to
emphasize some information was considered too aggressive.
Finally, the general layout of the feedback, the different
fonts used, and the insufficient size of the characters made
reading difficult. Most of the experts did not read all of the
information, being more attracted by the images than by the
text.

Overall, the TACI was well-received by the experts. More-
over, it was considered rather easy to use and learn: an error
observed in the interaction with the TACI is not reproduced
afterwards. To support these results, a UEQ user experience
questionnaire was completed by each of the experts at the
end of the session. Six criteria were evaluated on a 7-point

& Cartorithmique

Fig. 5. Blocks recognized by the application

Likert scale ranging from -3 to 3 (Figure 6): attractiveness,
perspicuity, efficiency, dependability, stimulation, and novelty.

The data collected through this test phase led to the TACI
version presented in this article. The “end if”” and “end while”
statements have been removed. The indentation of blocks has
been made mandatory. The button launching the scan has been
replaced by a simple tap on the touch screen. Finally, all
messages sent to the user have been revised to improve their
readability.

B. Early Validation with Students

The nine students who participated in the second test
phase have been taking an introductory university course in
programming for one semester. These students came from
two different majors: four of them studied Computer Science
(INFO) and five studied Business Engineering (INGE). They
were randomly selected among the 140 students following the
introductory course. The entire experiment was video recorded
from two perspectives: a global perspective capturing the
students’ interactions with the blocks and with the researcher,
and a more focused perspective on the students’ interactions
with the application running on a tablet. The resulting videos
were annotated and the full dialogues were transcribed.

Only problem 1 was proposed to the students. In order to
measure the influence of the pseudo-code, and taking into
account the observations made by the experts, the instructions
were translated into natural language (Figure 7). The two
sets of blocks (blocks in pseudo-code and blocks in natural
language) were proposed simultaneously. The students were
free to choose the one they wanted to start with.

Six students (5 INGE and 1 INFO - 66%) preferred to start
the test with the instructions written in natural language. One
student chose to start with the instructions in pseudo-code
because he was afraid that he would misunderstand some of
the nuances when reading natural language. Two of the six
students who were first confronted to natural language were

2,50

2,00 - mm Excellent

1,50 —— i Good

1,00 Above Average
0,50 —

0,00 Below Average
-0,50 I Bad

-1,00 T T T T T =#=Mean

Attractiveness Perspicuity Efficiency

Dependability Stimulation

Novelty

Fig. 6. UEQ Results

Pseudo-code: integer a = 3
Natural language: I declare a variable of integer type, name
it “a” and initialize it to 3

Fig. 7. Assign a variable in two languages

unable to solve the problem. For one of them (1 INFO), the
use of pseudo-code did not help to propose a solution either.
Three of these six students chose the wrong block describing
a variable assignment, showing that they were reversing the
reading direction of the = symbol.

Natural language was considered more difficult by 8 stu-
dents (88%), in particular because of the length of the texts.
The pseudo-code is, according to the students, closer to what
they know (i.e. the Python language). However, one student
(1 INGE) said that he better understood the instruction in
its working thanks to natural language, and three students (3
INFO) did not understand typing and thus ignored it. The
students admitted that results may have differed, had they
manipulated the TACI before starting the introductory pro-
gramming course. One student suggested coloring the blocks
by instruction type.

Two students experienced difficulties with the application
to return to a previous screen and to scan the blocks. These
difficulties were easily overcome.

Regarding the feedback received by the application, three
students (3 INFO - 33%) could not locate the error because
they did not understand the information on the incorrect
block number. One explained that he considers that a block
represents several instructions, and not only one. Four students
(44%) did not read all the information displayed after the scan
and focused instead on the information on the error location.

One student (1 INGE - 11%) managed to solve the problem
in both pseudo-code and natural language in one try. One
student (1 INFO) experimented with the TACI before trying to
solve the problem to see the type of feedback provided after
the scan.

Overall, the TACI and its potential use in the practical work
sessions of their course was well-received by the students.
Nonetheless, one student (1 INGE) mentioned that the play-

fulness of the TACI could be a risk, as it opposes to the serious
nature of learning.

IV. TACI ANALYSIS

Regarding the first test phase, the results of the UEQ
(Figure 6) were compared with the values of a standard
dataset!, following UEQ analysis practice. It emerged that two
aspects of the TACI need to be improved, namely perspicuity
and dependability.

During the second test phase, interactions with the applica-
tion appeared to have improved. More work needs to be done
on the feedback because some students did not read all the
information displayed and therefore missed out on some of the
learning, such as the awareness of their misconceptions. On
the other hand, the use of the TACI allowed understanding the
difficulties that students have in reading instructions in natural
language and, in turn, in understanding basic programming
concepts. Their preference for pseudo-code is explained by
its proximity to the Python programming language and by
the routines they have implemented during their learning. It
appears that they are able to write an assignment, without un-
derstanding how it works, by retaining a pattern to reproduce.

V. CONCLUSION

A tangible-augmented concept inventory (TACI) is devel-
oped following an iterative methodology emphasizing collab-
oration between experts, students, and teachers. It aims to help
introductory programming course teachers to become aware of
the misconceptions their undergraduate students have and to
rectify them appropriately.

Although the results of the first iterations are promising,
there is still work to be done. First, on the feedback presented
by the application, as the current TACI does not help students
to become aware of their misconceptions. Second, on the
implementation of additional problems to allow identifying a
majority of the misconceptions. Finally, additional tests should
be conducted with real novices to observe their behavior
toward instruction languages.

Uhttps://www.ueg-online.org/Data from 452 studies involving 20,190 people
and relating to the analysis of software, web pages, social media, web shops,
etc.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Robins, A., Rountree, J., & Rountree, N. (2003). “Learning and teaching
programming: A review and discussion”. Computer science education,
13(2), 137-172.

Kelleher, C., & Pausch, R. (2005). “Lowering the barriers to program-
ming: A taxonomy of programming environments and languages for
novice programmers”. ACM Computing Surveys (CSUR), 37(2), 83-
137.

Gross, P, & Powers, K. (2005, October). “Evaluating assessments
of novice programming environments”. In Proceedings of the first
international workshop on Computing education research (pp. 99-110).
Yu, J., Roque, R. (2018, June). “A survey of computational kits for
young children””. In Proceedings of the 17th ACM conference on
interaction design and children (pp. 289-299).

Shaer, O., & Hornecker, E. (2010). “Tangible user interfaces: past,
present, and future directions”. Foundations and Trends® in Hu-
man—Computer Interaction, 3(1-2), 4-137.

Henry, J., Dumas, B., & Bodart, A. (2018, October). “Programmation
tangible pour les enfants: analyse de I’existant, classification et oppor-
tunités”.

Lahtinen, E., Ala-Mutka, K., Jarvinen, H. M. (2005). “A study of the
difficulties of novice programmers”. ACM sigcse bulletin, 37(3), 14-18.
Sorva, J., Karavirta, V., & Malmi, L. (2013). “A review of generic
program visualization systems for introductory programming education”.
ACM Transactions on Computing Education (TOCE), 13(4), 1-64.
Wittie, L., Kurdia, A., & Huggard, M. (2017, October). “Developing a
concept inventory for computer science 2”. In 2017 IEEE Frontiers in
Education Conference (FIE) (pp. 1-4). IEEE.

Henry, J., & Dumas, B. (2019, October). “Towards the identification of
profiles based on the understanding of programming concepts: the case
of the variable”. In 2019 IEEE Frontiers in Education Conference (FIE)
(pp. 1-8). IEEE.

Qian, Y., Hambrusch, S., Yadav, A., Gretter, S., & Li, Y. (2020).
“Teachers’ Perceptions of Student Misconceptions in Introductory Pro-
gramming”. Journal of Educational Computing Research, 58(2), 364-
397.

Anderson, T., & Shattuck, J. (2012). “Design-based research: A decade
of progress in education research?”. Educational researcher, 41(1), 16-
25.

Marco, J. B., Baptiste-Jessel, N., & Truillet, P. (2018, October).
“TaBGO: programming with tangibles blocks”. In Proceedings of the
30th Conference on I'Interaction Homme-Machine (pp. 179-185).
Horn, M. S., & Jacob, R. J. (2007, April). “Tangible programming in the
classroom with tern”. In CHI’07 extended abstracts on Human factors
in computing systems (pp. 1965-1970).

Horn, M. S., & Jacob, R. J. (2007, February). “Designing tangible
programming languages for classroom use”. In Proceedings of the 1st
international conference on Tangible and embedded interaction (pp. 159-
162).

Schrepp, M., Hinderks, A., & Thomaschewski, J. (2017). “Design and
Evaluation of a Short Version of the User Experience Questionnaire
(UEQ-S)”. INIIMAL, 4(6), 103-108.

