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Abstract 
 

 

Using human embryonic stem cells (hESC) in regenerative medicine or in disease modeling 

requires a complete understanding of these cells. Developmentally speaking, two distinct 

states of ESC have been stabilized, a naïve pre-implantation stage and a post-implantation 

primed stage.  Among the numerous changes observed during this transition, the 

mitochondria show a transition to maturity on a morphologic point of view but also a strong 

reduction in its metabolic oxidative phosphorylation activity, suggesting another role for the 

organelle. Performing a deep analysis of two recently published CRISPR-Cas9 KO functional 

screens, we identified the heme synthesis, a partly mitochondrial pathway, as critical for the 

naïve-to-primed transition in vitro. We show here an impairment of the exit of the naïve state 

upon blockade of the pathway by reducing the heme synthesis rate with succinylacetone (SA), 

a chemical inhibitor of the ALAD, the second enzyme of the pathway. Interestingly, ESC pushed 

to exit the naïve stage with SA fail to activate the two crucial signaling pathways for the 

transition: the MAPK and TGFb. In parallel, heme synthesis inhibition promoted the 

acquisition of features found in the 2-cell embryo, as well as in a subpopulation of ESCs. We 

showed that this effect was heme-independent and due to the accumulation of succinate in 

the mitochondria, leaking to the other cellular compartments, since blocking the 

mitochondrial exit of succinate was able to prevent the acquisition of the 2C-like features. We 

propose that extra-mitochondrial succinate induces the succinylation of proteins, including 

regulators of the 2C-like-cells (2CLCs) such as nucleolin and TRIM28. Further experiments are 

required to pinpoint the exact mechanisms controlling both the exit of the naïve state and the 

acquisition of 2CLCs features. Overall, this study aims to unveil the mechanisms underlying 

the maintenance of pluripotent cells in early development. 
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Introduction 
I. Embryo development  
 

A. Generalities 
 

It is always fascinating to try to understand the mechanisms that ultimately lead to the 

formation of a new being. This question of the origins always has been a major challenge and 

lead to the developmental biology field. In the past, most of the research was limited to the 

embryo collections such as the Carnegie collection, the Kyoto collection or the Madrid 

collection. These collections gather human embryo samples at different stages that allow 

morphological analysis, crucial to understand development (Yamada, Hill and Takakuwa, 

2015). But while these collections allow the understanding of the later steps of embryo 

development, they however don’t inform much on the earlier steps, from the zygote to the 

implantation of the blastocyst, steps that are at the center of this work. It is only with the rise 

of in-vitro fertilization (IVF) techniques that knowledge on these stages started to build. 

Historically, the work on IVF began in the middle of the 20th century with the pioneer work of 

R. Edwards, P, Steptoe and J. Purdy (Edwards, Bavister and Steptoe, 1969; Edwards, Steptoe 

and Purdy, 1970), that allowed the culture of in-vitro human eggs for a few days, which lead 

ultimately to the birth of the first IVF baby in 1978. Apart from the birth of IVF babies, these 

developments also allowed the characterization of the early developmental steps such as the 

zygote genome activation (detailed in the next section), the different steps of cleavage, 

compaction or even blastulation. Following these findings, embryonic stem cell lines from 

human or mouse were then stabilized for in-vitro culture, expanding even more our 

knowledge on early development (Evans and Kaufman, 1981; Martin, 1981; Thomson et al., 
1998).  

 

As much as human development is captivating, this work will be focused on mouse 

development. In the embryology field, mice are attractive since they produce a relatively large 

litter (between 8 to 20) but also develop quickly (21 days). These features, combined to the 

ability to edit their genome, gave a serious advantage to this model, allowing to decipher the 

molecular mechanisms governing embryo development. Hence, since mice share the same 

tissues and organs as humans, understanding the mechanisms leading to the development of 

these organs is the key to someday be able to reconstruct these organs ex-vivo for a potential 

use in regenerative medicine. Finally, the use of mice tissues and samples is first preferred for 

obvious ethical barriers. In the next sections, we will discuss the major steps in embryo 

development, first from the zygote to the blastocyst, then from the blastocyst to the early 

differentiation steps.  

 

B. From zygote to blastocyst 
 

The formation of a zygote is the result of the fusion of two gametes: The egg as the 

female gamete and spermatozoa as male gamete. The union between those two is a really 

complicated process, which involves many molecular steps. The complexity of this association 

will not be detailed in this document but is nicely reviewed in (Trebichalská and Holubcová, 
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2020). The resulting zygote marks the entry into the pre-implantation period of embryonic 

development (Fig. 1A). From then on, the age of the embryo is reported depending on the 

number of days post-mating since the exact time of fertilization is unknown in-vivo. In the 

following section, we will thus refer as Embryonic (E) day to discriminate the developmental 

stage.  

 

Soon after the fertilization, both of the germ cell genomes must be reorganized in 

order to become totipotent. Indeed, after their conjugation, there is a stage with little to no 

transcription, that instead relies almost entirely on the maternal transcripts already present 

in high number in the egg. These transcripts actually drive this dramatic reprograming event, 

as elegantly shown by the work of J. Gurdon, who showed that replacing the genome of the 

zygote by the nuclei of a somatic cell could reprogram this nuclei to give rise to a developing 

embryo (Gurdon, 1962). This nuclear transfer elegantly showed the plasticity of the genome 

when exposed to the right stimuli, but also showed that the maternal egg contained all the 

factors necessary for this reprogramming.  

 

At this time in the zygote, there is thus a switch between the maternal mRNAs and 

proteins present in the egg, to the transcription and translation of zygote-encoded genes. This 

switch is called maternal-to-zygotic transition (MZT). It is during this transition that the zygote 

genome activation (ZGA) takes place (Schulz and Harrison, 2019). This is actually a two-step 

process, the first one proceeding during the S-phase of the 1 cell stage (the minor ZGA), 

Figure 1 Schematic diagram of the pre-implantation mouse embryo development. A) Temporal timeline of the pre-
implantation embryo from the zygote (E0.5) to the mature blastocyst (E4.5). The first and second cell fate commitment are 
represented by the change of color of the cells. Green= trophectoderm lineage (TE), purple= Inner cell mass (ICM), red= 
primitive endoderm and blue= epiblast. B) Representation of the polarity of the blastocyst at E4.5 with the polar embryonic 
pole harboring the ICM and the abembryonic pole on the other side of the blastocoel cavity (also caller blastocyst cavity). C) 
Representation of the compaction step forming the morula, and representation on the tight junction created between the 
blastomeres, ultimately creating a cellular polarity giving rise to the first cell commitment: TE cells with an apical domain and 
ICM with only basolateral domains. From (Mihajlović and Bruce, 2017). 
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followed by a major ZGA in the mid-to-late 2 cell stage. There is thus a time lag between 

fertilization and the ZGA. The causes for the delay in ZGA after fertilization are numerous. We 

can cite, among others, the need for accumulation of regulators of transcription, such as the 

TATA-binding protein (TBP), required for the initiation of transcription. Indeed, these TBP are 

translated from maternal mRNAs present in the egg and it would thus take some time to 

translate enough of the protein to induces a strong enough transcriptional activity (Veenstra, 

Destrée and Wolffe, 1999). One can also mention the replacement of protamines packing 

tightly the chromatin in the male gamete by maternally-encoded histones to allow an effective 

transcription of the zygote’s chromatin (Braun, 2001; Joseph et al., 2017), but also changes in 

histone post-translational modifications, reviewed in (Schulz and Harrison, 2019). All these 

processes take time to settle in and result in a delay of transcription of the zygote genome. In 

mammals, this ZGA coincides with the reactivation of some transposons or endogenous 

retroviruses but only temporarily and they are being re-silenced later. This is exemplified with 

the endogenous retroviruses MuERV-L (murine endogenous retrovirus-like) in mouse 

(Macfarlan et al., 2012) or HERVK (Human endogenous retrovirus K) in humans (Grow et al., 
2015).  

 

Specific activating transcription factors have also been identified as driving the 

initiation of the ZGA such as Zelda in drosophila (Harrison et al., 2011) or the core pluripotency 

proteins Nanog (Nanog homeobox), Oct4 (Octamer-binding transcription factor 4) and SoxB1 

(SRY (sex determining region Y)-box) in zebrafish (Lee et al., 2013). However, while these 

factors are known to be involved in the transcriptional activity of pre-implantation stem cells 

in mouse and human, their implication in the ZGA is far from being understood. On the other 

hand, in common in humans and mice, several actors have been designated. First, the 

transcriptional activator YAP1 (yes-associated protein 1) is present in the cytoplasm of the 

zygote but is progressively translocated in the nuclei starting from the 2-cell stage and its 

genetic ablation results in a drastic decrease in the expression of ZGA genes (Abbassi et al., 
2016). Then, transcription factors such as the DUX protein (double homeobox; or DUX4 in 

human) are major drivers of 2-cell stage phenotype. This gene has been linked to the 

activation of genes during ZGA as well as transposons and retrovirus such as HERVK (De Iaco 

et al., 2017; Hendrickson et al., 2017). Although its role is demonstrated, the mechanisms 

leading to its in vivo activation are not. Finally the Zscan4 cluster of genes (Zinc finger and 

SCAN domain containing 4; Zscan4a-f) was shown to regulate events related to the telomeres 

maintenance or the chromatin decompaction (Falco et al., 2007). 

 

Following this ZGA, the embryo proceeds with the division cycles without affecting the 

total cytoplasmic volume until the late blastocyst stage (E4) (Kojima, Tam and Tam, 2014). 

Because of this, after the 4th division, the cells will begin to undergo compaction events, 

triggering the establishment of tight junctions between the blastomeres (Hyenne et al., 2005; 

Fierro-González et al., 2013), leading to the formation of the morula stage (E2.5-E2.75). At this 

stage, the tight junctions create a polarity of the cell, with a basal and apical site, depending 

on their presence or not (Fig. 1C). This will allocate the appropriate subsequent cell fate 

identity (Fleming et al., 1989). These tight junctions and their associated proteins, such as the 

zona occludens 1 (ZO-1) proteins are necessary for the progression toward the next stages as 

the depletion of this protein impairs blastocyst formation (Wang et al., 2008). This polarity 

will give rise to the first cell fate decision of the embryo: separation of the trophectoderm (TE) 

on the outside, with both an apical and a basolateral side with tight junctions, and the inner 
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cell mass (ICM) on the inside, with only basolateral sides with the surrounding cells. At E3.5 

an osmotic gradient will be created by an active transport of Na+ by the TE cells, triggering the 

transport of water across the developing TE layer, forming a fluid-filled cavity, the blastocoel 

(Manejwala, Cragoe and Schultz, 1989). This cavity is asymmetrical, leaving the ICM on one 

side of the blastocyst, creating two different sides of this embryo: embryonic (with the ICM) 

and abembryonic (Fig. 1B). 

 

C. From blastocyst to post-implantation differentiation 
 

As the blastocyst progress in development, the ICM segregates into two different 

lineages at E4.5: the monolayer of primitive endoderm, on the path of differentiation and 

found at the border with the blastocoel cavity, and the pluripotent epiblast, between the polar 

TE and the primitive endoderm (Fig. 1B). This is the second cell fate decision made by the 

developing embryo (Chazaud et al., 2006). At this point, the blastocyst emerges from the zona 

pellucida, the glycoprotein layer surrounding it since the egg stage, in a step defined as the 

blastocyst hatching. Finally free, the blastocyst will then implant in the uterine wall and 

proceeds with the post-implantation development. This step is one of the most critical in the 

establishment of a successful pregnancy as it is estimated that up to 50% of fertilized eggs fail 

to implant (Wilcox et al., 2020).  

 

As the blastocyst nests in the uterus, the ICM grows toward the blastocoel cavity, 

forming a peri-implantation epiblast, later organized as an epithelium around a central lumen 

(the proamniotic cavity) and becoming the post-implantation epiblast at E6 (Bedzhov and 

Figure 2 Schematic representation of the development of the post-implantation blastocyst. The hatched blastocyst implants 
in the uterine wall at around E5. Following this step, the egg cylinder elongates, a second step of cavitation taking place in 
the middle of the epiblast cells, forming the proamniotic cavity. Around the epiblast, the visceral endoderm separates in three 
distinct regions: Extraembryonic visceral endoderm (exVE), the embryonic visceral endoderm (emVE) and the distal visceral 
endoderm (DVE), respectively from the most proximal to the most apical. At E6, the reorganization of the distal endoderm to 
the anterior region is concomitant to the initiation of the gastrulation. This alignment gives also rise to the mesoderm layer in 
the posterior region, between the epiblast and the emVE. Modified from (Rivera-Pérez and Hadjantonakis, 2014).  



 15 

Zernicka-Goetz, 2014) (Fig. 2). The specification of the three primary germ layers is then set in 

the posterior region of the epiblast: the primitive streak. In this region, at E6.5, dramatic 

changes are observed as the epiblast undergoes an epithelial-to-mesenchymal transition 

(EMT) reorganizing the junctional complexes, the cytoskeleton and the basement membrane 

(Nakaya et al., 2008). This initiates the key step of gastrulation, with emergence of mesoderm 

and further specifications of germ layers. Indeed, the epiblast bordering the proamniotic 

cavity will progressively become the ectoderm layer, the primitive endoderm facing the 

blastocoel cavity, and the mesoderm in between the two (Fig. 2). This gastrulation event 

marks the point when the cells in the embryo start losing their pluripotent capacity. The 

different lineages continue their specification, with colonization of the anterior part by the 

endoderm to form the gut endoderm, elongation of the primitive streak forming ultimately 

the notochord and the mesoderm giving rise to specialized regions such as the heart bulge in 

the anterior region (Wolpert, 2015) (Fig. 3).   

 

At this point the cells have committed to a particular cell fate and will continue on the 

path of differentiation and commitment. The study of these differentiation mechanisms is 

crucial for the field of regenerative medicine as the development of stem cell-based therapies 

constitutes a promising field. But beyond the understanding of the differentiation process and 

organogenesis, understanding the cellular and molecular mechanisms involved in stem cell 

maintenance and specification are also imperative. This is why the following section will be 

focused on pluripotent stem cells.  

Figure 3 Schematic representation of the post-implantation embryo development. During the later stages of gastrulation, 
the mesoderm layer (in orange) colonize the embryo leading to the heart bulge at E8. Meanwhile, the epiblast is specified into 
neurectoderm (blue), while the primitive streak expand to ultimately form the notochord (red). Around E8, the endoderm 
invaginates to form the gut endoderm. Finally, between E8 and E10 the embryo turns on itself to end up completely surrounded 
by the amniotic cavity. From (Wolpert, 2015) 
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II. Stem cells 
 

As fully developed adult beings, we rely on two crucial processes to fully form and to 

maintain the homeostasis of this state: A correct and controlled development and a capacity 

for regeneration to balance cell death in organs. These two processes are held by stem cells, 

bearing the capacity for cellular differentiation but also for self-renewal. Because of these 

features, stem cells are also of growing interest in regenerative medicine with applications in 

cellular therapy or even organ replacement. Besides, to be able to harness their full potential, 

we also need to understand them in depth, deciphering the mechanisms governing them and 

regulating their potential.  

 

The stem cell identity is pretty heterogenous and complex. To better understand them, 

they can be defined by different categories depending on two major characteristics: their 

potency or their tissue of origin. 

 

A. Potency 
 

As stem cells commit into a particular fate, they gradually lose potency such as 

explained in the embryo development. In 1957 Conrad Hal Waddington described the 

commitment of stem cells as a linear descent of a ball from a mountain (Waddington and 

Kacser, 1957) (Fig. 4). The cellular commitment is symbolized by the rolling down into a 

particular valley until reaching the most differentiated state at the bottom of the hill. The ball, 

or stem cell in this case, at the very top of the mountain would be thus considered as 

totipotent and as the ultimate stem cell potency state. These totipotent cells are represented 

by a very restricted type of cells: in mammals it is the zygote and the first blastomeres from 

the newly formed embryo. At this stage, all cellular fates are possible, from the three germ 

layers of the embryo to the extra-embryonic tissues such as the placenta. Very quickly, after 

a few rounds of divisions and at E2.5, the cells will have to enter one of the mountain’s valley 

Figure 4 Representation of Waddington's landscape in the context of stem cell differentiation. Totipotent are on top of the 
hill, with the potential to differentiate into any cell type. While going down the hill, stem cells lose potential, with first 
pluripotent cells leading to the embryo three germ layers and multipotent cells committed to one lineage. Finally, unipotent 
and differentiated cells lie at the bottom of the hill. Reprogramming or dedifferentiation events bring the cells back up, toward 
a pluri- or multipotent stage while transdifferentiation convert differentiated cells of one type to another. (Eguizabal et al., 
2013)  
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to commit to one of the two paths: The TE leading to extraembryonic tissues or the ICM for 

embryonic tissues. Having segregated from the TE cells, the cells committed toward an 

embryonic fate are now pluripotent, holding only the ability to form any of the embryonic 

tissues of the three germ layers. In vitro, this stage would be represented by the embryonic 

stem cells in the ICM (ESCs) that will be further described in section II.C. With this high 

potential, both totipotent and pluripotent cells are especially of interest for cellular therapies 

since they can differentiate into any adult cell type. Further along the development, or the 

hill’s descent, embryonic stem cells of the post-implantation epiblast will need to commit to 

one of the three embryonic germ layers: endoderm, mesoderm or ectoderm. Passed this 

point, the cell potential is restricted to one germ layer fate and will thus be called 

multipotency. The stem cells will finally become more and more specified as such as only one 

cell type is possible as potential fate, the cells became unipotent. It is typically the case for 

satellite cells or epidermal stem cells. 

 

According to this classification, embryonic stem cells, as pluripotent, hold great 

promises for regenerative medicine. However, there are still many limitations to their use as 

therapies: their sourcing is obviously ethically complicated since it implies harvesting 

developing embryos. In addition, there are also some concerns about their immunogenicity 

since they can hardly be used as autogenic grafts. Furthermore, there are also safety concerns 

as it has been shown that their incomplete differentiation could give rise to teratomas in the 

site of injection (Gordeeva and Khaydukov, 2017). To circumvent these issues, a lot of efforts 

have been put in the use of adult stem cells. Indeed, it would be convenient to harvest highly 

potent stem cells from the body, differentiate them ex-vivo and then implant them as cell 

therapy. These cells can actually be found in the bone marrow, as hematopoietic stem cells or 

mesenchymal stem cells (MSCs) or in different tissues such as adipose tissue or dental pulp. 

As opposed to ESCs, these somatic MSCs are “only” multipotent, offering a restricted 

differentiation capacity and in vitro self-renewal. The advances on their role and use in the 

clinic is nicely reviewed in (Levy et al., 2020).  

 

Long considered as unidirectional, the evolution and the restriction of the cell potential 

has been challenged by many research groups. For decades, a lot of efforts have been put into 

cell reprogramming, the art of bringing back stemness capabilities to fully differentiated cells. 

These efforts culminated in the 2012 Physiology and Medicine Nobel prize awarded to J. 

Gurdon and S. Yamanaka. J. Gurdon, whose work was described in section I.B, showed the 

reprogramming of a somatic nuclei by the egg’s factors present in the cytoplasm. This nuclear 

transfer method paved the way for further studies in the field. In 2006, S. Yamanaka and K. 

Takahashi identified a series of factors that, when overexpressed in somatic cells, were able 

to reprogram the cells into a pluripotent state. Successful reprogramming of dermal 

fibroblasts into pluripotent stem cells, then called induced pluripotent stem cells (iPSCs), was 

a major breakthrough (Takahashi and Yamanaka, 2006). With the exogenous expression of a 

few key transcription factors (OCT3/4, KLF4 (Kruppel-like factor 4), SOX2 and MYC (Proto-

oncogene c-Myc); called the OKSM cocktail, or the Yamanaka factors), the fully specialized 

fibroblast went back up Waddington’s hill to re-acquire pluripotent features and 

differentiation capacity. This discovery started a golden age in the stem cell field since these 

iPSCs could bypass all the caveats of ESCs, such as sourcing or immunogenicity.  
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B. Classification 
 

The description of stem cells based on their potential for differentiation is usually the 

most informative. Aside from that, stem cells can also be defined with regards to their tissue 

of origin.  

 

 Totipotent stem cells, as described in the previous section, are only found in a tight 

window of time and space: at the 1- and 2-cell stages of the embryo. There, the blastomeres 

still haven’t committed to any particular fate, capabilities that will disappear soon after as the 

cells divide (see section I.B.). In the case of pluripotent stem cells two subdivisions are made: 

on one hand it encompass cells found in the ICM of the embryo (from E2.5 to E6.5-7) that are 

thus called embryonic stem cells (ESCs) and that will account for the “naturally” occurring 

pluripotent stem cells, and on the other hand, the iPSCs developed by Yamanaka (Takahashi 

and Yamanaka, 2006), that would be the reprogrammed, artificial ones. These two 

populations retain the ability to form the three germ layers. 

 

 Adult/somatic tissues also contain stem cells, although these are at best multipotent. 

The MSCs represent a wide variety of those and are initially derived from the mesoderm layer. 

They are found in a wide variety of tissues such as adipose tissues or the dental pulp, but initial 

studies focused on bone marrow-derived stem cells (BM-MSCs). The general definition of 

MSCs involves the expression of a subset of surface markers (such as CD73, CD90 or CD103; 

clusters of differentiation) and lack the expression of others (HLA-DR, CD14, CD19 or CD45) 

but especially the ability to differentiate into fat, bone and cartilage (Wobma and Satwani, 

2021). Importantly, there is a lot of interest in those cells as they lack of expression of the 

major histocompatibility complex (MHC) thus avoiding the immune system recognition. This 

capacity, coupled to their immunosuppressive action makes them attractive for regenerative 

medicine. Indeed, they have been shown to secrete a variety of anti-inflammatory or 

immunosuppressive proteins such as kynurenine through the expression of indolamine2,3 

dioxygenase (IDO1) enzyme, or cytokines such as interleukins 8 or 10 (IL-8 and -10) (Pittenger 

et al., 2019). These properties explained that MSCs are harnessed, and used as therapies, for 

several pathologies linked with inflammation such as osteoarthritis or myocardial infraction 

or even amyotrophic lateral sclerosis. However, the hype that followed the positive results of 

preclinical studies is fading as most of the current clinical studies fail to replicate them robustly 

enough (Levy et al., 2020). 

 

 For the control of tissue homeostasis, resident populations of stem cells are also 

present to balance the natural cell death or damages from injuries. The cells, such as satellite 

cells in muscle or intestinal stem cells, will divide and replace the lost cells to maintain the 

organ function (Ferraro, Lo Celso and Scadden, 2010). These cells are somewhat rare and are 

often considered as unipotent: Intestinal stem cells will divide asymmetrically to provide a 

daughter stem cell and a daughter cell that will replenish the intestinal crypt epithelium. While 

this process of division and differentiation is constant in this population, since the crypts are 

renewed frequently (in mouse the small intestine renews every 5 days (Barker, De Wetering 

and Clevers, 2008)), some adult stem cell populations can remain dormant for a while if not 

presented with the right stimuli, such as muscle stem cells that will be activated for the 

production of new myofibrils in response to injury of weight-bearing exercise (Schultz, 1996). 
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C. Embryonic stem cells 
 

The successful isolation of cells from the mouse pre-implantation blastocyst by Evans, 

Kaufman and Martin (Evans and Kaufman, 1981; Martin, 1981) in 1981 enabled scientists to 

investigate the molecular mechanisms that are the root of pluripotency. Before then, 

researchers eventually used cells from a teratocarcinoma, a form of malignancy from the germ 

line cells. From this tumor, they were able to isolate embryonal carcinoma cells, much 

resembling the ESCs from the developing embryo (Martin and Evans, 1974). However, as their 

name indicates, these cells are malignant and their use was thus less significant than the 

normal ESCs. At the time, the trick to obtain a successful isolation and growth in culture of 

ESCs was the use of a layer of mitotically inactive murine embryonic fibroblasts (termed feeder 

layer; MEFs). Interestingly, not all the mouse strains would be permissive to the isolation of 

ESCs, the 129 strain would be pretty efficient at in vitro stabilization whereas the CBA strain 

would require adaptations to the original protocol (Batlle-Morera, Smith and Nichols, 2008; 

Nichols and Smith, 2011). The aim to the isolation and culture of ESCs in vitro lies in the goal 

to be able to edit their genome to generate transgenic animals for a better understanding of 

the physiology.  

 

The key cytokine that enables growth of ESCs is the leukemia inhibitory factor (LIF), 

activating the Janus kinase (JAK) – signal transducer and activation of transcription 3 (STAT3) 

pathway (Williams et al., 1988). By itself however, this molecule still doesn’t allow the 

stabilization of ESC lines from non-permissive strains such as CBA. This was achieved by an 

active repression of the ERK (Extracellular signal-Regulated Kinases) pathway, shown 

responsible for the early differentiation of ESCs (Burdon et al., 1999). Ultimately, in vitro 
maintenance of ESCs from the pre-implantation blastocyst was broadly achieved adding a final 

inhibitor for the glycogen synthase kinase 3b (GSK3b), promoting protein biosynthesis and 

Wnt activation (Ying et al., 2008). This culture condition with the two inhibitors and LIF is thus 

called 2iL. More recently, ESCs have also been isolated from more advanced, post-

implantation epiblasts (Brons et al., 2007; Tesar et al., 2007). Compared to the 2iL ESCs from 

the pre-implantation blastocyst, these post-implantation ESCs require FGF2 (Fibroblast 

growth factor 2) and activin A to sustain their growth.  

 

These ESCs retain their pluripotent features in vitro. Their phenotype, as described 

earlier, is characterized by the ability to form the three germ layers of the embryo and has to 

be associated with a capacity for self-renewal. To date, several assays have been developed 

to truly assess the pluripotent capacities of cells grown in vitro. First, the cells have to be able 

to differentiate upon withdrawal of cytokines cocktails maintaining them in the pluripotent 

state (the 2iL or FGF-activin cocktails), with or without the addition of specific differentiating 

molecules. This differentiation process can also be performed in a 3D setup, giving rise to 

embryoid bodies (EB), that recapitulate some aspects of early embryogenesis (Zeevaert et al., 
2020). Since there isn’t any direct assessment of functionality of the product of this 

differentiation, this would be considered as a weak proof of pluripotency. The formation of 

teratomas, by injecting the cells subcutaneously in a mouse followed by the histological 

analysis of the resulting tumor would bring this functionality to the pluripotency assessment. 

However, this assay has caveats as incompletely reprogrammed cells could also form 

teratomas (Chan et al., 2009). Instead, the formation of chimeras can overcome these issues. 

If true pluripotent cells are injected in a pre-implantation blastocyst, they should be able to 
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reenter development and contribute to the three germ layers of the chimeric embryo. This is 

further highlighted if the generated chimeras are able to give functional offspring, showing 

the capacity for germline transmission. But since the resident stem cells of the blastocyst could 

compensate for some defects in the tested cells, the complementation of a tetraploid 

blastocyst would be needed to certify the pluripotency. Indeed, the tetraploid cells cannot 

develop normally (Nagy et al., 1993) so if a complemented tetraploid blastocyst manages to 

develop into a functional embryo, then it proves the true pluripotent features of the tested 

cells (De Los Angeles, 2019).  

 

With this classification method on the developmental capacities of pluripotent stem 

cells, the exploration of the molecular mechanisms for the maintenance of these features is 

now possible. At the core of the pluripotency phenotype lies a group of three transcription 

factor: octamer-binding transcription factor 4 (Oct4), Nanog homeobox (Nanog) and SRY (sex 

determining region Y)-box 2 (Sox2). The coordinated action of these factors maintains the 

stemness phenotype in pluripotent cells, and it is thus unsurprising to find them as the factors 

used for cellular reprogramming (Takahashi and Yamanaka, 2006; Yu et al., 2007). Their 

control over pluripotency is such that knockout (KO) of any of the three is embryo lethal, 

through a loss of self-renewal and pluripotency features (Ivanova et al., 2006; Masui et al., 
2007). Since the isolation of embryonic stem cells from blastocysts (Evans and Kaufman, 

1981), these factors have been under scrutiny for their role in the maintenance of 

pluripotency and it appears that their tight regulation is essential to maintain balance 

between self-renewal, stemness and differentiation.  

 

Figure 5 Regulation of lineage specification by key transcription factors. The maintenance of pluripotency and the initiation 
of differentiation is tightly regulated by a titration of the various transcription factors (TFs). In a pluripotent state, most TFs 
balance each other for the repression and/or induction of the specific lineages. When this balance is lost and one TF takes 
over the others, the specification into a particular lineage is triggered. A green arrow reflects an activating function while a 
red arrow represents an inhibition. Dax1= DSS-AHC Critical Region On The X Chromosome Protein 1; Sall4= Spalt Like 
Transcription Factor 4; Esrrb= Estrogen Related Receptor Beta; Nanog= Nanog homeobox; Tbx3= T-Box Transcription Factor 
3; Oct4= POU Class 5 Homeobox 1; Sox2= SRY-Box Transcription Factor 2; Zic3= Zic Family Member 3. From (Loh, Lim and 

Ang, 2015) 
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As opposed to the two other transcription factors (TFs), Nanog is the only one that 

seems dispensable for maintenance of the stemness phenotype in vitro, while being 

indispensable in vivo (Chambers et al., 2007). Depletion of Oct4 or Sox2 in ESCs leads to 

differentiation. Outside of their core regulation of pluripotency, these factors can have 

different outcomes on pluripotency. Oct4, uniformly expressed in all pluripotent cells,  

promotes mesoderm differentiation and represses ectoderm specification, while its 

downregulation results in a shift to the trophectoderm fate (Niwa, Miyazaki and Smith, 2000). 

On the other hand, Sox2 balances Oct4 as it represses mesoderm and promotes ectoderm 

fates (Fig. 5) (Thomson et al., 2011). These two TF, along with Nanog, also work cooperatively 

and with positive feedback autoregulatory loops: Nanog regulates the expression of both Oct4 

and Sox2, and the Oct4-Sox2 complex activates the transcription of Nanog (Boyer et al., 2005). 

This complex can also bind the respective promoters, mostly activating their transcriptions, 

indeed it has been proposed that Oct4 could bind to the Nanog promoter and repress it  (Fig. 
6) (Loh et al., 2006; Kalmar et al., 2009).  It is not surprising that many of their DNA-binding 

site are overlapping and also correlate with enhancers associated with terms such as 

“Stemness” or “Differentiation” (Boyer et al., 2005; Loh et al., 2006; Young, 2011). Interactions 

between these factors in regulation of stemness or differentiation is further explored in recent 

reviews by M. Li and J. C. Izpisua Belmonte (Li and Belmonte, 2017; Li and Izpisua Belmonte, 

2018). 

 

 

D. The naïve and primed pluripotent stem cells 
 

Even though the core pluripotency network is conserved in pluripotent stem cells, 

many differences also separate different populations. As described in the previous section, 

ESCs can be derived from either the pre- and the post-implantation epiblasts. While both of 

them are able to self-renew, differentiate into the three germ layers and form teratomas 

when injected in mouse, respecting the fundamental principles of pluripotency, they do not 

match in their ability to form chimeras. Indeed, while pre-implantation ESCs successfully form 

chimeras when injected in pre-implantation blastocysts, post-implantation ESCs (also called 

EpiSCs) rarely do, except when injected in developmentally matched blastocysts (Brons et al., 
2007; Tesar et al., 2007). This major developmental difference prompted the use of two 

specific names respectively for pre- or post-implantation derived ESCs: naïve ESCs and primed 

Figure 6 Autoregulatory loops between the three core transcription factors in pluripotency. 
Cooperation of the three core TFs maintains the pluripotency state of ESCs, acting together to 
maintain their own expression. The transcription factors are represented by the blue circles 
and the promoter regions by the pink rectangles. A dotted line shows the product of the 
activation of a promoter while a solid arrow represents the binding to a particular promoter. 
(Boyer et al., 2005) 
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ESCs (Fig. 7) (Nichols and Smith, 2009).  Interestingly, the isolated human ESC (hESCs) from 

pre-implantation blastocysts share many similarities with the primed mESCs, such as the 

morphology or the signaling dependency (FGF2 and activin A), as detailed hereafter (Thomson 

et al., 1998). Retrospectively, even if these cells were isolated from the pre-implantation 

blastocyst, they were actually stabilized in the primed state. It took about 15 years to stabilize 

hESCs in the naïve state, thanks to modulation of the growth culture conditions (Gafni et al., 
2013a; Takashima et al., 2014; Theunissen et al., 2014; Ware et al., 2014). At the molecular 

level, numerous differences exist between the two states, as described in the following 

paragraphs. 

 

1. Signaling dependency 
 

Over time, the culture conditions of ESCs from either mouse or human changed, for 

either a better preservation from spontaneous differentiation or for better self-renewal 

capacities.  

 

a)  mESC 
 

The pioneering experiments in 1981 were able to stabilize the first mESCs by using a 

feeder layer of MEFs and serum products (Evans and Kaufman, 1981; Martin, 1981). The 

addition of LIF to the growth media a few years later further enhanced the stability of mESCs 

and allowed their growth without the need of MEFs (Williams et al., 1988). Together, this 

culture condition is now referenced as the Serum/LIF (SL) medium and is able to maintain 

Figure 7 Schematic representation of the developmental potential of the different stages of stem cells. Depending on the 
stem cell stage, different outcomes are expected for stem cells in the in vivo assays for pluripotency. While teratoma formation 
after subcutaneous injection is relatively easy, it lacks assessment of functionality. On the other hand, chimera formation by 
blastocyst injection represents better the pluripotency of embryos. However, in the case of primed PSCs, only a stage-matched 
blastocyst allows the development of a chimera. (De Los Angeles, 2019) 
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Oct4+/Nanog+ cells in culture for many passages. The pluripotency of the mESC was shown by 

the ability to form chimeras in pre-implantation blastocysts.  

 

However, subsequent efforts were made in order to switch to serum-free conditions, 

the serum being highly variable from batch to batch. This was achieved using BMP2 or BMP4 

(Bone morphogenic proteins 2/4) in conjunction with LIF (Ying et al., 2003). Used alone, BMP4 

induces differentiation into the mesoderm lineage (Johansson and Wiles, 1995) but together 

with LIF it enables feeder-free and serum-free mESC growth (Ying et al., 2003). Then, since 

reports showed that activation of ERK1/2 signaling was responsible for hasty differentiation, 

inhibitors of the pathway, mostly via MEK (mitogen-activated protein kinase kinase) inhibition, 

were introduced (Burdon et al., 1999). Today, mESCs are considered at a “ground state” when 

grown in a 2i/LIF (2iL) medium, using GSK3b inhibition in addition to the MEK inhibition. GSK3b 

inhibition was shown to maintain self-renewal of mESCs and hESCs through Wnt activation 

(Sato et al., 2004). The name ground state comes from the fact that mESCs grown in those 

conditions are less heterogenous and better resist to spontaneous differentiation than the SL 

counterparts (Ying et al., 2008). To date, most of the research is performed with these two 

main growth conditions, SL and 2iL, but combinations of the serum, the LIF and the inhibitors 

have been used at some point. 

 

Primed mESCs, or EpiSCs, require completely different signals for in vitro maintenance. 

Instead of a repression of the MAPK pathway through MEK inhibition, they require FGF2 

signals for its activation, coupled with Transforming growth factor b (TGFb) and/or activin A 

pathway activation (Brons et al., 2007; Tesar et al., 2007). Alternative growth conditions have 

also been described for EpiSC maintenance, for example using the GSK3b inhibitor and a 

tankyrase inhibitor or FGF2 with the tankyrase inhibitor but these conditions have been shown 

to retain higher levels of naïve markers expression (Kim et al., 2013). The inhibition of 

tankyrase leads to a stabilization of AXIN and a subsequent reduction in Wnt signaling by 

promoting the b-Catenin destruction complex (Huang et al., 2009). To date, the FGF2 and 

activin A are still the canonical signals required for derivation of primed mESCs (Kinoshita et 
al., 2020). 

 

b) hESC 
 

For years, the isolation of pre-implantation epiblast stem cells from human blastocyst 

was only possible in EpiSC-like conditions (activin A and FGF2) since LIF wasn’t able to support 

their growth (Thomson et al., 1998). Sometimes thought to be due to inter-species 

differences, the quest for the true naïve hESC state didn’t stop. All within a year, multiple 

teams and subsequent protocols have been described to reach this naïve stage (Chan et al., 
2013; Gafni et al., 2013a; Takashima et al., 2014; Theunissen et al., 2014; Ware et al., 2014). 

The strategies used by those research groups are different and some even use the expression 

of transgenes. Indeed, the overexpression of either Oct4 and KLF4 or KLF2 and KLF4 was able 

to revert primed hESCs to the naïve state if cultured in 2iL conditions (Hanna et al., 2010). 

However, finding transgene-free naïve hESCs would shed light on the mechanisms governing 

these pluripotent cells in human, allowing a comparison with rodents. It is a few years later 

that such cocktails were developed. First, Gafni and coworkers used a cocktail of FGF, LIF and 

TGF-b, with inhibitors of MEK, GSK3b, p38 and JNK (c-Jun N-terminal kinase) (Gafni et al., 
2013a). With this cocktail of factors, named Naive Human Stem cell Medium (NHSM), they 
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were able to bring hESCs to a state that allows chimera formation in mouse blastocysts for the 

first time. In parallel, others have used an almost as complex cytokine and small molecule 

cocktail as in the team of R. Jaenisch, using LIF and activin A together with inhibitors of MEK, 

GSK3b, BRAF (serine-threonine kinase B-Raf), SRC (Proto-oncogene tyrosine-protein kinase) 

and ROCK (Rho-associated, coiled-coil containing protein kinase); a cocktail named 5iLA 

(Theunissen et al., 2014). Occasionally, FGF2 was included for a 5iLAF formulation. This 

transgene-free cocktail was able to revert primed ESC into a naïve state (state described in 

section II.D.2) and also allowed the isolation of ESCs directly from blastocysts. Alternatively a 

pan-PKC (protein kinase C) inhibitor (targeting PKCα, PKCβ, PKCγ and PKCδ) or a pan-HDAC 

(Histone deacetylase) inhibitor were used (Takashima et al., 2014; Ware et al., 2014).  

 

2. Molecular features 
 

The characterization of the different stages and/or culture conditions of ESCs relies on 

the analysis of molecular markers such as gene expression, transcription factor localization 

and/or epigenetic landscape. Since these cell stages were first uncovered in mice, we will 

focus here on those. These differences are compiled in Figure 8.  

 

a) Transcription factor circuitry 
 

Even though all ESCs express the pluripotent marker Oct4, one of the most crucial 

difference between naïve and primed cells is the regulation of expression of this transcription 

factor. The promoter of the Pou5f1 gene, coding for Oct4, contains two distinct enhancer-

binding regions, one being proximal (PE) and the other one located further away from the 

transcription start site (TSS) called distal enhancer (DE). It has been shown that while naïve 

mESCs use preferentially the DE, primed ones use the PE (Tesar et al., 2007; Han et al., 2010; 

Choi et al., 2016). Hanna and his team used this specificity to validate the naïve state of their 

hESCs using luciferase constructs (Hanna et al., 2010).  

 

The transcription factor circuitry found in naïve and primed cells also differ drastically. 

In mouse, a robust expression of Klf2/4, Tfcp2l1 (Transcription factor CP2-like 1), Esrrb 

(estrogen Related Receptor b) or even Tbx3 (T-box 3) is observed and their downregulation is 

required for proper transition to the primed stage (Dunn et al., 2014). The expression of these 

factors is reminiscent of the pathways required for stabilization of the naïve state: Esrrb and 

Tbx3 are expressed downstream of Wnt activation (Waghray et al., 2015; Huang et al., 2018) 

while Klf4 and Tfcp21 are regulated by the LIF-STAT3 axis (Chen et al., 2015). At the other end 

of the spectrum, EpiSCs cells express higher levels of Otx2 (Orthodenticle homeobox 2), Zic2 

(Zic family member 2), Fgf-5 and -15 (fibroblast growth factor 5/15) (Fig. 8) (De Los Angeles, 

2019; Kinoshita et al., 2020). 

 

The subcellular localization of TFE3 (Transcription Factor Binding To IGHM Enhancer 3) 

transcription factor is also shown to be regulated between the two stages: while observed 

almost exclusively in the nucleus in naïve cells, TFE3 is kept in the cytoplasm of primed cells 

(Betschinger et al., 2013; Mathieu et al., 2019). Again, this reinforce the naïve-specific circuitry 

as many of the genes targeted by TFE3 are involved in the activation of the Wnt pathway, 

critical for the maintenance of the naïve state (Xu et al., 2016; Mathieu et al., 2019). In turn, 
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the regulation of TFE3 subcellular localization is known to be regulated by the activity of the 

mTOR complex (mammalian target of rapamycin) (Martina et al., 2014; Mathieu et al., 2019).  

 

b) Epigenetic regulation 
 

Another important feature in the distinction between naïve and primed ESCs is the 

activation state of the second X chromosome in female ESCs. Indeed, in order to compensate 

for the presence of two X chromosomes, there is a random inactivation of one of the 

chromosomes, to restore the correct dosage of X-linked gene expression (Disteche, 2016). 

This inactivation occurs early in the development, so that naïve cells still carry two active X 

(XaXa), while primed present one inactive chromosome (XaXi) (Fig. 8) (Silva et al., 2009).  

 

Aside from the X chromosome pattern of activation, the epigenetic landscape of naïve 

and primed ESCs is also dramatically differently organized. On one hand, the naïve ESCs show 

Figure 8 Hallmarks of naïve and primed hESC features. 1) While both states express the core pluripotency factors (OCT4, 
SOX2, NANOG), naïve cells express specific markers (KLF-4;-5;-17, TFCP2L1 or DDPA3 and 5) while primed ESCs express a 
another subset of genes as well (ZIC2 and 3, OTX2 or DUSP6). (2) Naïve cells show a global hypomethylated DNA profile 
compared to primed and (3) two active X chromosomes in female. (4) Two enhancers for OCT4 expression have been 
identified and naïve ESCs preferentially use the distal enhancer (DE) while primed cells use the proximal one (PE). (5) A net 
increase of repressive H3K27me3 marks at polycomb associated genes is observed in primed cells. (6) Specific surface marker 
pattern characterizes naïve and primed hESCs. (Collier and Rugg-Gunn, 2018) 
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a global DNA hypomethylation status compared to EpiSCs (Hackett et al., 2013). This 

difference was also highlighted when comparing cells grown in 2iL or in SL conditions, the later 

presenting a higher methylation state, although still lower than EpiSCs. This underlines the 

more permissive state of the SL growth condition, with cells presenting an heterogenous 

pattern of gene expression (Kumar et al., 2014). This difference in methylation patterns is 

complex but includes two main features : a lower expression of the DNA methylation 

machinery (DNA methyltransferases 3a and 3b; DNMT3a/b) but also a defective recruitment 

machinery, with decreased protein levels of UHRF1 (Ubiquitin-like, with PHD and RING finger 

domains 1) in naïve cells (Ficz et al., 2013; von Meyenn et al., 2016). Differences in the parental 

imprinting of gene methylation is also observed between the two stages: it was shown that 

the reprogramming of primed ESCs to naïve or the long term culture of naïve cells induce a 

loss of methylation in imprinted regions leading sometimes to biallelic gene expression, that 

is not reacquired when transitioned back to the primed stage (Pastor et al., 2016; Liu et al., 
2017).  

 

On the other hand, dramatic changes in the landscape of histones modifications have 

also been noted. These changes have been extensively reviewed  in (Gö Kbuget and Blelloch, 

2019). An example of epigenetic marks that is modified during the progression of 

development is the trimethylation of the lysine 27 of the histone 3 (H3K27me3), increasing 

dramatically in primed cells (Fig. 8) (Marks et al., 2012; Sperber et al., 2015). This repressive 

mark is shown to regulate for example the expression of Wnt pathway genes such as 

WNT5A/5B/8A, AXIN2, LEF1 (Lymphoid Enhancer Binding Factor 1) (Sperber et al., 2015). This 

is in accordance with the known role of Wnt pathway in the maintenance of the naïve state 

(Sperber et al., 2015; Xu et al., 2016). Interestingly, it has been shown that the presence of 

the polycomb repressive complex 2 (PCR2), the complex actively methylating the H3K27, is 

not required in ground state mESCs (Chamberlain, Yee and Magnuson, 2008). This has been 

also proved for the human naïve cells, offering another criteria for the characterization of 

naïve state (Moody et al., 2017). However, although PRC2 is dispensable for the maintenance 

of the pluripotent stage, PCR2-deficient cells present a compromised capacity for further 

differentiation highlighting the need for epigenetic rewiring in the differentiation processes  

(Landeira et al., 2010; Walker et al., 2010). 

 

c) Metabolic activity 
 

Finally, if we consider glycolytic activity, oxidative phosphorylation (OXPHOS) usage 

and fatty-acid b-oxidation, naïve and primed ESCs present a completely different profile. 

These differences are summarized in figure 9 and reviewed over the years (Wu, Ocampo and 

Belmonte, 2016; Mathieu and Ruohola-Baker, 2017; Tsogtbaatar et al., 2020).  

 

The naïve-to-primed transition is marked by a dramatic switch between a naïve 

bivalent (glycolytic and oxidative) energetic state to a primed almost exclusively glycolytic 

state (Zhou et al., 2012; Sperber et al., 2015). This metabolic difference can be the driver of 

the transition since the activation of OXPHOS enhances the reprogramming of primed murine 

PSC into naïve state, while inhibition of the OXPHOS activity through the activity of Lin28 (lin-

28 homolog A) or HIF1a (Hypoxia-inducible factor 1-a; described below) pushes naïve cells 

forward (Sperber et al., 2015; Zhang et al., 2016; Sone et al., 2017). As the metabolic hub of 

the cell, the mitochondrion is a key player in this transition and, interestingly, its morphology 
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changes dramatically during this conversion. Albeit using their mitochondria and their 

electron transport chain (ETC) complexes at a higher rate, naïve cells do not possess mature 

mitochondria. It is only during the transition that this organelle goes from a round shaped with 

sparse and irregular cristae to more elongated mitochondria with well-defined transverse 

cristae. All these changes were described as one of the major hallmarks of the implantation 

of the embryo in human (Sperber et al., 2015), mice (Zhou et al., 2012) or even dogs (Tobias 

et al., 2018). This morphological and metabolic remodeling occurring during the naïve-to-

primed transition is reminiscent to the  remodeling of the cell’s metabolism observed during 

stem cell differentiation, during which the cell re-acquires an OXPHOS-based metabolism or 

conversely switches to a glycolytic based metabolism during reprogramming (reviewed in 

(Zhang et al., 2012; Wanet et al., 2015)). The same metabolic switch is also observed in cancer 

cells, an effect described as the Warburg effect (Warburg, Wind and Negelein, 1927). 

 

Crucial to the metabolic switch observed when transitioning to the primed stage is the 

activation of the HIF1a response. Together with the beta subunit (HIF1b; ARNT), HIF1a forms 

a heterodimer functioning as a transcription factor for genes with a hypoxia-responsive 

element (HRE) in the promoter region. The regulation of the activity of the pathway is 

dependent on the O2 concentration (Fig. 10). Indeed, in normoxic conditions, prolyl-

hydroxylase domain (PHDs) proteins catalyze the hydroxylation of HIF1a on prolines 402 and 

564, in a process dependent on 2-oxoglutarate and O2. These post-translational modifications 

are then recognized by von Hippel-Lindau (pVHL) protein, which is part of the E3 ubiquitin 

ligase complex. This triggers the poly-ubiquitination of the HIF1a protein and its further 

degradation by the proteasome. HIF1a and 1b are constitutively expressed and thus 

Figure 9 Distinct metabolic features of naïve and primed ESCs. Compared to primed ESCs, naïve ESCs display a higher 
mitochondrial oxidative metabolic activity than primed cells, highlighted by a higher mitochondrial membrane potential 
(Dym), increase in OXPHOS activity and fatty acid b-oxidation. On the other hand, NNMT reduces the SAM pool available for 
histone and DNA methylation. Drivers of the metabolic remodeling such as HIF1a or Lin28 are able to precipitate the switch 
to the primed state, along with the loss of NNMT unlocking SA for epigenetic remodeling. Increasing the OXPHOS activity in 
primed cells, through STAT3 for example, is able to reprogram primed ESC into naïve. (Wu, Ocampo and Belmonte, 2016) 
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continuously degraded under a high pO2. When the concentration in oxygen drops, a condition 

called hypoxia, the activity of the PHDs drops as well, promoting the stabilization of HIF1a 

that further translocates into the nucleus and exert its activity after dimerization with HIF1b. 

This mode of activation will trigger the cellular response to hypoxia. Indeed, HIF1a 

transcriptional activity increases the expression of the pyruvate dehydrogenase (PDH) kinase 

(PDK1), a repressor of the PDH complex activity, thus efficiently reducing the entry of pyruvate 

in the TCA cycle and thus reducing the activity of the oxygen-consuming ETC (Kim et al., 2006). 

In parallel, HIF1a also triggers the transcription of genes involved in glycolysis, efficiently 

regulating the metabolic switch observed in the transition (Zhou et al., 2012; Sperber et al., 
2015). By efficiently switching the metabolism from bivalent in naïve to mostly glycolytic in 

primed, HIF1a stabilization pushes thus ESCs toward the primed stage (Zhou et al., 2012). On 

the other hand, HIF1a knock-out naïve ESCs fail to properly transition (Sperber et al., 2015). 

Interestingly, this metabolic switch is also observed during the reprogramming of somatic 

cells, with bivalent metabolism, to iPSCs, mostly glycolytic. In a similar manner, HIF1a has also 

been shown to control the switch and enhance the reprogramming efficiency if overexpressed 

(Mathieu et al., 2014).  

 

In addition to OXPHOS, the mitochondria participate to other metabolic pathways such 

as the TCA, the fatty acid beta-oxidation, the heme synthesis, the degradation and synthesis 

of several amino acids, the folate pathway, etc. Several of these non-OXPHOS pathways are 

also involved during the naïve-to-primed transition. For instance, the beta oxidation of fatty 

acids is strongly reduced during the naïve-to-primed transition of human and murine cells, 

partly due to CPT-1 (carnitine palmitoyltransferase 1) inhibition-mediated blockage of fatty 

Figure 10 Schematic representation of the cellular response to hypoxia through the hypoxia-inducible factors (HIFs). In 
normoxia, the HIFa subunits are recognized by prolyl-hydroxylase domain proteins (PHD) and hydroxylated thanks to O2. 
These post-translational modifications are then recognized by the von Hippel-Lindau protein (pVHL) and targeted to the 
proteasomal degradation by a poly-ubiquitination. In hypoxia, the inactivation of PHDs allows the translocation of the HIFa 
subunits to the nucleus where HIFa acts as transcription factor as a heterodimer with the HIFb subunit (also called ARNT) 
(Lee et al., 2019) 
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acid import to the mitochondrial matrix, by a CPT1A downregulation by micro RNAs (miRNAs) 

and repressive chromatin marks, as shown with the oxygen consumption rate when the cells 

are presented with palmitate (C16:0) (Sperber et al., 2015). These major differences in 

metabolic function were only shown with either glucose or palmitate (Sperber et al., 2015) 

and so far primed cells do not show an increase of mitochondrial respiration when presented 

with  these substrates. The energy source of these cells could however be non-classical 

substrates such as amino acids catabolism or other types of fatty acids. For example, 

exogenous glutamine was shown to support a robust ESC self-renewal and  stemness 

maintenance in both mESCs and hESCs (Carey et al., 2015; Marsboom et al., 2016; Tohyama 

et al., 2016). Furthermore, the mitochondrial function is also essential to provide the 

metabolites such as a-ketoglutarate (Carey et al., 2015; TeSlaa et al., 2016) or even S-adenosyl 

methionine (SAM) (Sperber et al., 2015) that are necessary for epigenetics modifying enzymes 

(reviewed in (Matilainen, Quirós and Auwerx, 2017)) also playing a key role during the 

transition. These critical mitochondrial functions, independent from the OXPHOS activity, 

might be the reason why a mitochondrial maturation is observed during the conversion to the 

primed stage. 

 

Interestingly, this metabolic switch seems to be intertwined with the changes in the 

epigenetic landscape. This is exemplified by the crosstalk between the NNMT enzyme 

(Nicotinamide N-methyl transferase) and the repressive methyl marks on histones. NNMT, 

whose expression is regulated by the LIF-STAT3 pathway, is highly expressed in naïve cells. 

This enzyme consumes SAM, a precursor for histone and DNA methyl modifications,  acting 

thus as a “methyl-sink” and reducing the abundance of SAM available for  these  epigenetic 

modifications (Sperber et al., 2015). This allows for example the maintenance of an activated 

Wnt pathway, necessary for naïve cell maintenance. During the transition to the primed stage, 

the LIF-STAT3 signal is lost, reducing the NNMT expression, then allowing the deposition of 

these repressive marks. Among the genes targeted by these modifications is EGLN1 (Egl nine 

homolog 1), a PHD protein involved in HIF1a degradation. The reduced expression of EGLN1 

favors HIF1 transcriptional activity, hence efficiently repressing the oxidative metabolic 

activity.  

 

3. Naïve-to-primed ESC transition 
 

As much as the molecular features of naïve and primed ESCs have been extensively 

studied, the requirements for the transition from one stage to the other have not been yet 

fully elucidated and so far, a few studies have highlighted some mechanisms. 

 

The first examples worth mentioning are focused on the metabolic switch described in 

the previous section. HIF1a, a master regulator in this metabolic rewiring, is crucial in the 

establishment of this transition and its forced expression is sufficient to induce the transition 

to the primed stage (Zhou et al., 2012). Conversely, genetic ablation of HIF1a prevents this 

transition (Sperber et al., 2015). In the same way, the RNA-binding proteins LIN28A and 

LIN28B are able to push naïve cells to the primed stage or to enhance the reprogramming of 

fibroblasts, in both cases the effect was mediated by a control of the metabolic switch (Zhang 

et al., 2016). 
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Then, as the metabolic hub of the cell, the mitochondria also has its role in the 

transition, although being seemingly inactive in terms of cellular respiration in primed ESCs. 

The team of J. Hanna showed that the mitochondrial fusion can be one of the driving forces 

leading to the conversion of pre-implantation mESC to their post-implantation counterpart. 

By invalidating MTCH2 (mitochondrial carrier homolog 2), a regulator of the mitochondrial 

fusion, they show a reduced glutamine utilization that they correlate with impaired acetylated 

histone epigenetics marks, both of these contributing to the transition from naïve to primed 

state. This phenotype was similar to the overexpression of MFN2 (mitofusin 2), forcing the 

mitochondrial elongation and promoting the naïve-to-primed transition (Bahat et al., 2018). 

Accordingly, a more recent study was able to show that an excess of fission, through the 

overexpression of the mitochondrial fission factor Mff, leads to a reduced differentiation 

capacity of pluripotent stem cells (Zhong et al., 2019). Taken together these two recent studies 

emphasize the role of mitochondrial dynamics as one of the drivers during embryonic 

development, but also differentiation. 

 

To unveil the regulators of this transition, the major strategy used is the genetic 

screening. A recent detailed review gathered the different strategies used to date, for the 

naïve-to-primed transition, but also to identify new regulators of pluripotency as well (Li, 

Rosen and Huangfu, 2020). Since the focus of this work is the naïve-to-primed transition, only 

screens focusing on this process will be detailed. 

 

In mESC, the strategy used rely on the use of cells with a Rex1-GFP construct. Rex1 
(Reduced Expression 1; also known as ZFP-42) is a gene whose expression is restricted to the 

naïve pluripotent state. Upon the initiation of transition, its expression is rapidly 

downregulated, allowing to follow the progression of the exit of the naïve state in a high-

throughput fashion (Chambers et al., 2007). Indeed, the whole genome CRISPR guide library 

allowed to identify the genes responsible for the maintenance of GFP expression thus 

preventing the exit of the naïve state (Li et al., 2018).  

 

In human, a recent paper exploited the metabolic differences between naïve and 

primed cells to perform the functional screen (Mathieu et al., 2019). Indeed, as described 

earlier, primed cells rely on SAM, comparatively to naïve cells, to regulate their epigenetic 

landscape, mainly through an increase in repressive histone marks (Sperber et al., 2015; 

Mathieu et al., 2019). As a consequence, primed cells exhibit an increased sensitivity to drugs 

such as methotrexate and acetaldehyde, both inhibiting the methionine synthase, thereby 

depleting the pool of SAM available. With a combination of these two molecules, and a 

CRISPR-Cas9 library (GecKo), only cells acquiring a mutation preventing them to transition to 

the primed stage would be spared upon selection. By comparing the enriched sgRNAs after 

selection to those before, a list of genes required for the transition, or the exit of the naïve 

state, was established (Mathieu et al., 2019). Interestingly, these two papers highlighted the 

mTOR pathway as critical, an idea reinforced by the efficient reprogramming of primed hESCs 

into naïve with transient mTOR inhibition (Hu et al., 2020). As a direct regulator of mTORC 

activity, folliculin (FLCN) was also found necessary for the transition in both mESCs and hESCs 

(Betschinger et al., 2013; Mathieu et al., 2019). The authors of the studies show that FLCN is 

able to regulates the subcellular localization of TFE3, whose regulation is a hallmark of the 

transition. 
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E. Alternative states 
 

For years, this distinction between naïve pre-implantation and primed post-

implantation epiblast cells governed the identification of ESCs. However, the segregation of 

ESCs in two distinct categories is simplistic. The same way that development proceeds, ESCs 

are actually found in more of a continuum with a progression from one stage to the other, 

with the existence of intermediate stages as first proposed by Austin Smith (Smith, 2017).  

 

1. Formative pluripotency 
 

In view of the developmental timeline between naïve and primed, the formative 

pluripotent state was proposed as a stage related to the peri-implantation epiblast (Smith, 

2017). Indeed, when epiblast cells are derived from the embryo using the conventional FGF2 

and activin A culture condition, the cultured cells always converge to a mid-gastrula-like stage 

(about E7). One of the features of these cells, is that they are refractory to give rise to 

primordial germ cells (PGCs) whereas naïve cells transitioned for one or two days into a 

transient epiblast-like stem cell (EpiLC) can (Hayashi et al., 2011; Nakaki et al., 2013). This 

capacity for PGC induction is a feature of the early post-implantation epiblast in vivo, 

suggesting that there could be a transient “formative” stage arising during the transition to 

EpiSC. Very recently, and after long efforts, a formative state was finally stabilized in-vitro for 

mouse and human ESCs (Kinoshita et al., 2020). This stage was defined in mouse as the 

population of ESCs that, when pushed to EpiSC, first loses the expression of the naïve marker 

REX1 as assessed by the extinction of the REX1-GFP signal (Smith, 2017). Along with REX1, 

these cells have also lost the expression of the other naïve markers (Tfcp2l1, Esrrb, Klfs,…), 

have acquired the expression of the early post-implantation markers Otx2 and Fgf5, but do 

not display the expression of the more definitive primed markers such as Foxa2 (Forkhead box 

protein A2) or Cer1 (Cerberus protein) (Smith, 2017). In this population, capable of PGC 

induction, the drop in oxygen consumption is already observed and the DNA methylation 

levels are intermediate to the EpiSCs (Kinoshita et al., 2020). The key for their in-vitro 

stabilization was a combination of low concentration in activin A and Wnt, together with 

retinoic acid receptor (RAR) inhibition, efficiently stabilizing a formative epiblast stem cell 

population for many passages. The intermediate phenotype observed is also emphasized by 

the ability of formative cells to contribute to chimeras when injected to pre-implantation 

blastocyst (Fig. 7). 

 

2. Poised state 
 

Closer to the naïve stage, a particular “poised” stage was also stabilized (P. Du et al., 
2018). Compared to the formative state, the population retains the expression of the naïve 

markers but fails to upregulate the primed ones. To date, this stage has never been stabilized 

with a non-transgenic approach. Indeed, to allow the poised cell stabilization, the authors 

relied on the overexpression of ISY1 (Pre-mRNA-splicing factor ISY1 homolog) a regulator of 

microRNA biogenesis necessary for the cleavage of pri-miRNA into progenitor pro-miRNAs. 

This protein is transiently increased in expression during the early stages of the naïve-to-

primed ESC transition, just before the loss of Nanog expression. The poised stage would thus 

represent an intermediate between naïve and formative cells. They further showed that this 

intermediate is required for proper transition to the primed stage as cells with ISY1 depletion 
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fail to transition. The role of ISY1 in this process was attributed to a subset of miRNAs. 

Interestingly, the capacity for these cells to form chimeras in pre-implantation blastocysts 

highlights an early post-implantation phenotype but, unlike formative ESCs, poised cells have 

yet to acquire the increase in DNA methylation (P. Du et al., 2018). 

 

3. 2C-like cells 
 

The culture and maintenance of naïve cells in either 2iL (“ground”) or in SL conditions 

is reported to present a certain level of cellular heterogeneity (Ying et al., 2008; Canham et 
al., 2010; Kumar et al., 2014). This is especially the case in SL, where some cells have been 

shown to oscillate between a state close to the epiblast while others resemble the primitive 

endoderm lineage. This concept of heterogenous population is further supported by a 

subpopulation of cells that re-acquire features of the 2-cell embryo (2C). As a reminder, the 2 

cell embryo is the stage when the genome of the zygote is activated (ZGA), through complex 

mechanisms of DNA decompaction, epigenetic remodeling and maternal transcripts 

destruction (reviewed in (Schulz and Harrison, 2019)). These decompaction events are also 

accompanied with the expression of a wide variety of retrotransposons, like endogenous 

retroviruses (ERVs; MuERV-L), long- or short-interspaced nuclear elements (LINEs and SINEs) 

(Fig. 11) (Macfarlan et al., 2012; Percharde et al., 2018; He et al., 2019). The expression of 

these transposable elements is concomitant to the expression of a subset of 2C-specific genes 

such as the Zscan4 family, Tcstv1 (2-cell-stage, variable group, member 1), Dux, Dub1 

(Ubiquitin carboxyl-terminal hydrolase) or Eif1α (Eukaryotic translation initiation factor 1A) 

(Macfarlan et al., 2012; De Iaco et al., 2017; Percharde et al., 2018). This subpopulation of 

mESCs that expresses these factors has been named 2C-like cells (2CLCs) and was shown to 

represent a very low percentage of the cell population (<1%) (Macfarlan et al., 2012; 

Figure 11 Schematic representation of the expression of retrovirus or 2C-like specific genes in relation with the embryo 
developmental stage in mouse. In the bottom panel, representation of the time course of the female and male genome 
methylation levels, decreasing over time until the blastocyst implantation. Meanwhile, at the 2-cell stage, the expression of 
specific genes as well as some transposable elements is observed. ZGA= zygote genome activation; MGA= mid pre-
implantation gene activation; muERV-L= murine endogenous retrovirus-like; Zscan4= Zinc finger and SCAN domain containing 
4; TCSTV3= Two cell stage, variable group member 3. (Schoorlemmer et al., 2014) 
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Eckersley-Maslin et al., 2019; Rodriguez-Terrones et al., 2020). Interestingly, these cells are 

able to colonize the extraembryonic tissues when implanted in chimeras, demonstrating their 

“totipotent-like” capacity (Macfarlan et al., 2012). 

 

The apparition and maintenance of this 2CLC population is under intensive research 

and currently only partly understood. First, these cells are in a state allowing the telomere 

elongation, for example with a role of the Zscan4 gene family and the expression of Tcstv1 

(Dan et al., 2017). Then, crucial to this 2CLC population, is the transcription factor DUX. This 

2C stage-specific TF is one of the earliest transcripts activated during the ZGA and its 

transcriptional activity triggers, among others, the transcription of Zscan4. Since it is a TF, 

many pathways identified for the acquisition of the 2CLC phenotype involve its activation (De 

Iaco et al., 2017; Percharde et al., 2018; Eckersley-Maslin et al., 2019). The pathways triggering 

the acquisition of 2CLCs markers include, among others, the multifunctional protein KAP1 

(also known as TRIM28), the chromatin assembly factor 1 (CAF-1) or  PIAS4 (small ubiquitin-

like modifier (Sumo) E3 ligase protein inhibitor of activated STAT 4) (Ishiuchi et al., 2015; 

Percharde et al., 2018; Yan et al., 2019). KAP-1 and CAF-1 are negative regulators of Dux 

expression so their genetic ablation leads to a Dux-mediated 2CLCs phenotype acquisition. On 

Figure 12 Proposed mechanism for the complex Nucleolin-KAP1-LINE1 in the regulation of Dux and the 2CLC population. As 
proposed by (Percharde et al., 2018), the association of the protein complex Nucleolin-KAP1 with the retrotransposon LINE1 
represses the expression of Dux, the master transcription factor of the 2CLCs. Upon dissociation of the complex, through either 
loss of any of the three components, the repression on Dux is relieved. The complex also regulates positively the expression of 
the ribosomal DNA locus, inducing a decrease in translational activity in 2CLC. (Percharde et al., 2018) 
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the other hand, Dux KO mESCs fail to acquire the 2CLC phenotype, alone or in a KAP-1 or CAF-

1 KO background (Ishiuchi et al., 2015; Percharde et al., 2018). The activity of KAP-1 also 

involves other actors such as the LINE-1 transposable element and the Nucleolin protein. 

Assembled in a trimeric complex, these actors actively repress the expression of Dux (Fig. 12) 

(Percharde et al., 2018). 

 

Altogether, this highlights the heterogeneity and the plasticity of embryonic stem cells 

in culture, with naïve cells, even in the ground state, oscillating between different levels of 

pluripotency and either their transition to EpiSCs or the EpiSCs themselves showing also 

various degrees of post-implantation epiblasts.  

 

4. Diapause 
 

In some mammals, the developmental process occurring between the pre-

implantation to the post-implantation stage can be paused in a state called diapause. This 

arrested stage can last for weeks and is reversible: the progression of development will 

resume normally leading to the implantation and embryo development. It is considered as a 

suspended stage, waiting for better conditions to restart, maximizing the chances of 

pregnancy success. Diapause is observed in the case of nutrient deprivation for example. In 
vivo, the hatched blastocyst will sit close to the uterine wall. In this state, the cellular 

metabolism is rewired, with a decrease of mitochondrial activity, increased glycolysis and 

lipolysis. These pathways are mostly controlled by a reduction in mTOR activity and activation 

of AMPK (AMP-activated protein kinase) (Bulut-Karslioglu et al., 2016; Ehnes et al., 2020; 

Hussein et al., 2020). This paused state can be induced in mice through estrogen deprivation 

or ovariectomy (Yoshinaga and Adams, 1966; MacLean Hunter and Evans, 1999) or in mESCs 

through mTOR inhibition (Bulut-Karslioglu et al., 2016; Hussein et al., 2020). 

 

III. Heme: Synthesis and function 
 

A way to understand which genes or pathways are important for proper development 

and especially for proper embryo implantation is to assess the embryonic lethality of specific 

gene-knockout embryos. By doing so, it has been shown that homozygous mutations in the 

Urod gene (Uroporphyrinogen decarboxylase) were lethal shortly after the implantation step 

(before E7.5) (Phillips et al., 2001). It is unexpected to observe this phenotype since this 

enzyme is part of the heme biosynthetic pathway, that has no obvious immediate role in the 

progression of pluripotency. So far, this pathway has mostly been investigated in 

hematopoietic lineages or in hepatic function, since those two categories of cells require high 

amounts of heme for proper functioning. However, this is to underestimate the importance 

of heme, as this molecule is crucial for a large variety of biological processes thanks to the 

intrinsic properties of heme to function both as an electron carrier and a catalyst for redox 

reactions. In the two following sections we will first summarize the heme biosynthesis 

pathway, before describing the roles of the heme molecule. 
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A. The heme biosynthetic pathway  
 

 The synthesis of the tetrapyrrolic heme molecule is a multistep process occurring 

between the mitochondria and the cytosol compartments (Fig. 13). The first enzyme, the 

aminolevulinate synthase (ALAS) catalyzes the condensation of glycine and succinyl-CoA in the 

mitochondrial matrix to form d-aminolevulinic acid (ALA). ALAS exists under two isoforms, 

ALAS1 being ubiquitously expressed while ALAS2 is erythroid-specific (Ajioka, Phillips and 

Kushner, 2006). Both isoforms contain a heme-binding motif and binding of heme to ALAS 

blocks the import of the enzyme into mitochondria (Munakata et al., 2004). This negative 

feedback of the final product on the first enzyme of the biosynthesis pathway is a prime 

example of post-translational regulation mechanism. While PGC1-α (peroxisome proliferator-

activated coactivator 1α) drives the transcription of Alas1, the promoter sequence of Alas2 is 

responsive to the erythroid-specific GATA1 transcription factor (Surinya, Cox and May, 1997).  

 

The ALA generated is then shuttled to the cytosol through the ATP-binding cassette 

protein B10 (ABCB10), although the involvement of this protein is somewhat controversial 

(Seguin et al., 2017). Once in the cytosol, two ALA molecules are condensed in monopyrrole 

Figure 13 Diagram of the heme biosynthetic pathway and its relative subcellular localization as detailed in section III.A. 
Mitochondrial enzymes are in red and cytosolic enzymes in green. OM= outer mitochondrial membrane; IMS= intermembrane 
space; IM= inner mitochondrial membrane; ALA= g-aminolevulinic acid; ALAS= ALA synthase; ALAD= ALA dehydrogenase; PBG= 
porphobilinogen; PBGD= PBG deaminase; HMB= hydroxymethylbilane; UROS= uroporphyrinogen II synthase; UROgenIII= 
uroporphyrinogen III; UROD= URO decarboxylase; CPgenIII= coproporphyrinogen III; CPOX= coproporphyrinogen III oxidase; 
PPgenIX= protoporphyrinogen IX; PPOX= protoporphyrinogen IX oxidase; PPIX= protoporphyrinogen IX; FECH= ferrochelatase; 
MFRN= mitoferrin; ABCB6= ATP-binding cassette B6; OGC= 2-oxoglutarate/malate carrier protein (Severance and Hamza, 

2009) 
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porphobilinogen (PBG), a reaction catalyzed by the ALA dehydratase ALAD (also called 

porphobilinogen synthase, PBGS). This enzyme is octameric, actually a tetramer of 

homodimers, and uses zinc ions for the catalysis. Replacement of these Zn2+ ions by Pb2+ ions, 

resulting in loss of enzymatic activity, is one of the hallmarks of lead poisoning, leading to 

anemia and neuronal toxicity due to ALA accumulation (Scinicariello et al., 2007). ALAD is also 

inhibited by succinylacetone, a metabolite formed in pathological conditions of hepatorenal 

tyrosinemia (Sassa and Kappas, 1983). Four of these PBG will be then condensed by the PBG 

deaminase (PBGD, also called uroporphyrinogen I synthase) as the third step of this pathway, 

to generate hydroxymethylbilane (HMB) prior to being taken up by the uroporphyrinogen III 

synthase (URO3S or UROS), catalyzing the closure of the porphyrinogen cycle. The formation 

of this uroporphyrinogen III marks the end of the ring formation steps of the pathway, the 

next steps serving as successive modifiers of the lateral chains.  

 

Indeed, next is the elimination of the four carboxylic groups of the acetate side chains, 

by the uroporphyrinogen decarboxylase (UROD). The resulting coproporphyrinogen III is 

transported back into the mitochondria, in the intermembrane space (IMS), via the ABCB6 

transporter, where the coproporphyrinogen oxidase (CPOX) decarboxylates the propionate 

groups of the pyrrole rings, generating protoporphyrinogen IX. At the outer surface of the 

inner mitochondrial membrane (IMM) lies the penultimate enzyme of the pathway, the 

protoporphyrinogen oxidase (PPOX), oxidizing the protoporphyrinogen IX into protoporphyrin 

IX, while translocating the product in the matrix. Fully functional heme (or heme b) is finally 

Figure 14 Schematic representation of the role of heme in cellular processes. There is a tight control of heme abundance 
trough a negative feedback loop between heme and ALAS1 (red arrow), thereby reducing its synthesis rate, while exerting a 
positive feedback on its degradation enzyme Heme oxygenase-1 (HO-1) (green arrow). On the left, heme serves as a prosthetic 
group for the enzymatic activity of a wide variety of enzymes involved in ROS detoxification, xenobiotics detoxification or 
signaling molecule production. On the right, heme is used as a regulating molecule, modifying the DNA affinity of transcription 
factors (BACH1), or changing the conformation of the protein for a modification in enzymatic capacities. From (Correia, Sinclair 
et De Matteis, 2010). 
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formed by addition of Fe2+ to protoporphyrin IX by the ferrochelatase on the matrix side of 

the IMM (FECH) (Ajioka, Phillips and Kushner, 2006).  

  

B. Heme as a prosthetic group  
 

 The final product of this biosynthetic pathway is a heme b, which is the most used 

heme subtype in mammalian cells (Swenson et al., 2020). Thanks to its properties of electron 

carrier and catalyst for redox reactions in a wide variety of proteins and enzymes, summarized 

in Fig. 14 and described in the next paragraphs, heme is an important cofactor for many 

enzymes. The prime examples of heme utilization are the hemoglobin proteins, used in large 

amount in red blood cells to carry molecular oxygen throughout the body, and the 

cytochromes P450 family of xenobiotic detoxifying enzymes. However, these are especially 

present and relevant in highly specialized tissues and cell types, so they will not be detailed 

here. However, heme also contributes to various ubiquitous cellular functions. The electron 

carrier capacities are of great use in the ETC of the mitochondria, used for energy production. 

Indeed, 3 out of the 4 ETC complexes have at least one heme prosthetic group and its absence 

causes defect in their assembly, highlighting a structural role in addition to the biochemical 

one (Kim et al., 2012). The heme groups are not all of the b-type of heme but from its 

derivatives. 

 

Starting from heme b, different enzymes catalyze the formation of a, o or c-type of 

heme molecules (Fig. 15). All the heme molecules are free but the heme c, which is the only 

one covalently bound through a thioether linkage to its hemoprotein, such as the cytochrome 

c and the cytochrome c1 subunit of the complex III. In mammals, this action is performed by 

HCCS (holocytochrome c synthase), reviewed in (Babbitt et al., 2015). Heme o, an 

intermediate in the synthesis of heme a, is generated by the action of a protoheme IX 

farnesyltransferase (Cox10), in the inner side of the IMM. In mammals the unique identified 

role for this heme metabolite is to be an intermediate in the synthesis of heme a, as opposed 

to some bacteria such as Escherichia coli using heme o in cytochrome o-containing bo3 oxidase 

(Puustinen and Wikstrom, 1991). The Cox15 enzyme, located on the IMS side of the IMM, uses 

Figure 15 Schematic representation of the formation of the derivatives of heme b. In mammalian cells, three major 
derivatives of heme b (or protoheme) are found. When covalently bound to its heme protein through thioether bounds with 
the cysteine residues to its hemoprotein, heme is of the c-type. This process is performed by the cytochrome c heme lyase 
also called the holocytochrome c synthase (HCCS). The synthesis of heme o is an intermediate to the synthesis of heme a. 
First vinyl groups are added at the C2 position of the porphyrin ring by the heme o synthase (HOS; COX10) then an aldehyde 
group is added by the heme a synthase (HAS; COX15). (Swenson et al., 2020) 
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the heme o generated by Cox10 to generate heme a. This cofactor is only used by the 

cytochrome c oxidase subunit 1 (COX1 in mouse and human) (Mogi, Saiki and Anraku, 1994). 

So far, the transport of heme o across the IMM is not understood (Swenson et al., 2020). 

 

An important role of the heme moiety is also found in the detoxification of reactive 

oxygen species (ROS), via catalase or peroxidases. Catalases and peroxidases are enzymes able 

to detoxify one of the most abundant ROS in mammalian cells, hydrogen peroxide (H2O2). This 

function is crucial to the maintenance of cell homeostasis: on one side the ROS entities have  

to be tightly balanced to avoid deleterious effects such as DNA or lipid oxidation but on the 

other side they are required for the proper activity of signaling pathways (Gough and Cotter, 

2011; Duvigneau, Esterbauer and Kozlov, 2019). The presence of heme in catalase is 

fundamental for its activity since the iron ion will serve as an electron acceptor during the 

catalysis of the reaction. Ultimately, two H2O2 molecules will be reduced to dioxygen and 2 

molecules of water. The balance between the beneficial and deleterious effects of ROS is 

decisive in stemness maintenance and in differentiation (reviewed in (Nugud, Sandeep and El-

Serafi, 2018)).  

 

Along with these ROS detoxifying enzymes, heme is also involved in the activity of the 

nitric oxide synthases (NOS), converting L-arginine to L-citrulline and nitric oxide (NO). This 

production of NO is known to play a role in the maintenance of pluripotency (Beltran-Povea 

et al., 2015). Indeed, low µM of NO have been shown to protect mESCs from death or 

differentiation following LIF withdrawal, through a blocked caspase 3 activation, an 

upregulation of anti-apoptotic genes such as Bcl-2, and a downregulation of differentiation 

genes such as Brachyury or Gata4 (GATA Binding Protein 4) (Tejedo et al., 2010). However, 

this positive role of NO on stemness maintenance is tightly balanced since an increase in its 

concentration (low mM) induces a decrease of OCT4 and NANOG abundance, a p53-

dependent effect. NO indeed increases p53 stability and induces p53 activation through post-

translational modifications (Mora-Castilla et al., 2010).  

 

NO, the smallest signaling molecule in the cell, is in turn able to regulate different 

pathways through for example the formation of cGMP (cyclic guanosine monophosphate) or 

the formation of reactive nitrogen species (RNS) (Förstermann and Sessa, 2012). The nitric 

oxide (NO) produced in the cytoplasm is also known to stabilize HIF1a, shown to be important 

for the metabolic switch happening during the naïve-to-primed transition (Zhou et al., 2012). 

This effect of NO on HIF1a is probably dose-dependent, but NO has been reported to induce 

the S-nitrosylation of the cysteine 533 of the HIF-1α protein, decreasing the action of the 

oxygen-dependent PHD proteins (Li et al., 2007).  

 

 The action of heme on cellular processes goes beyond its role of electron carrier to also 

serve as cofactor involved in the stability of heme-sensing proteins. This is nicely illustrated by 

the transcriptional regulator BACH1 (BTB and CNC homolog 1). BACH1 is a transcriptional 

regulator known to bind MARE sequences (Maf recognition element) and inhibits the 

transcription of the downstream genes. The binding of heme to the multiple heme regulatory 

motifs (HRMs) induces a decrease in the transcriptional activity of multiple fronts: first, 

binding of heme reduces the DNA-binding affinity of BACH1 (Ogawa et al., 2001) and then, it 

also triggers the translocation of the protein out of the nucleus while inducing its degradation 

by the proteasomal machinery (Suzuki et al., 2004; Zenke-Kawasaki et al., 2007). The genes 
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regulated by BACH1 comprise genes involved in heme degradation, redox regulation or even 

the cell cycle. Interestingly, in the context of the ESC transition, TFE3 was also shown to be a 

direct target of this TF (Warnatz et al., 2011). 

 

 Another crucial heme-sensing protein is the Heme-regulated inhibitor (HRI) protein 

involved in the Integrated Stress Response (ISR). This kinase was originally described in the 

context of erythropoiesis: in erythroblasts, since the production of hemoglobin increases 

dramatically and that the lack of heme in globin chains induces their toxic aggregation, HRI 

acts as a safeguard reducing protein (and thus globin) synthesis under heme-deprivation 

conditions. In a basal situation, HRI forms an inactive dimer by stabilization with two heme 

molecules (Chen, 2007). When the concentrations of heme are low, the HRI dimer is activated 

by autophosphorylation. As a kinase, HRI is then able to phosphorylate its target, the 

eukaryotic translation initiation factor 2a (EIF2a). In turn, p-EIF2a has two major 

consequences: a reduction of the CAP-dependent protein translation and a concomitant 

enhancement of the translation of mRNAs with upstream open reading frames (uORFs) in 

their 5’UTR region. The activating transcription factor 4 (ATF4) is an example of protein with 

an uORF, that will in turn activate the transcription of genes involved in the stress response 

such as antioxidants genes promoting cellular recovery from the stress or apoptosis-inducing 

genes (Pakos-Zebrucka et al., 2016).  

 

C. Heme trafficking 
 

After its production in the mitochondrial matrix, heme must be transported across the 

cell to reach a wide variety of hemoproteins. This mechanism must be tightly regulated as free 

heme is a toxic compound. As much as the biosynthesis of heme and its regulation are well 

characterized, the regulation of its transport across the cell is still relatively unknown. Only a 

few proteins have been demonstrated to act as heme chaperones among which the 

progesterone receptor membrane component 1 and 2 (PGRMC1/2) or even the 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), although the mechanisms underlying 

this transport have not been fully elucidated. PGRMC1 was shown to interact with FECH, 

directly binding the produced heme, and delivering to hemoproteins such as the P450 

cytochromes (Hughes et al., 2007), while its homolog PGRMC2 was proved to deliver heme to 

the nucleus in adipocytes (Galmozzi et al., 2019). On the other hand, a recent study showed 

that GAPDH was able to bind heme, through conserved histidine residues, and deliver it to 

cytosolic proteins such as the inducible NOS (iNOS, NOS2) (Hannibal et al., 2012; Sweeny et 
al., 2018). 

 

 The transport of heme could also be a direct mechanism, without involving molecular 

chaperones. Indeed, the mitochondria-associated membranes (MAMs) could mediate the 

direct transport of heme from the mitochondria to the endoplasmic reticulum (ER). While this 

has never been demonstrated experimentally, a few heme-associated proteins (FECH, CPOX 

or PGRMC1) have been identified in proteomic analysis of MAMs (Poston et al., 2011). The 

hydrophobic nature of heme would also support this idea.  

 

 Unlike most of the metabolites in the TCA that can contribute to other metabolic 

pathways, porphyrins fate is restricted to heme biosynthesis. Also, since the heme synthesis 

pathway is somewhat inefficient, precursors do not always become heme, with some excess 
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porphyrins and side products thus degraded or excreted in case of imbalance (Atamna, 2004). 

It is estimated that 2nmol/day are excreted in rats (Bowers et al., 1992) and this estimation is 

multiplied by 100 to 1000 times for humans (Daniell et al., 1997). This changes the 

stoichiometry in the consumption of precursors metabolites, glycine and succinyl-CoA, and 

throws the balance to higher than the 8 moles of each for 1 mole of heme. Together, this 

would mean that the heme biosynthesis is funneling down succinyl-CoA from the TCA. In the 

case of porphyria, the imbalance in heme synthesis observed was linked to a change in the 

succinyl-CoA availability (Homedan et al., 2014). 

 

IV. Succinate, succinyl-CoA and protein succinylation 
 

A. Metabolic functions 
 

As metabolite of the TCA cycle, succinate is one of the crucial metabolites of the cell. 

In this cycle, succinyl-CoA, along with CO2 and NADH, is the product of the oxoglutarate 

dehydrogenase complex (OGDC), also known as the alpha-ketoglutarate dehydrogenase 

complex (a-KGDH). Then, succinyl-CoA is taken up by the succinate-CoA ligase SUCL, 

composed of a heterodimer of an invariant α subunit (SUCLG1) and a β subunit, either SUCLA2 

or SUCLG2. Depending on the association with SUCLA2 or SUCLG2, the byproduct will be the 

substrate level phosphorylation of an ADP or a GDP along with the release of a succinate 

molecule. Finally, the uptake of succinate by the succinate dehydrogenase complex (SDH) is 

at the crossroads of the TCA and the ETC since the SDH is the complex II of the ETC. The 

reaction catalyzed by SDH will consume the succinate, forming fumarate and FADH2 (Flavin 

adenine dinucleotide). In fact, the SDH complex is composed of 4 different subunits (SDHA-D): 

Figure 16 Structure of the succinate dehydrogenase complex (PDB accession number: 1ZOY). The oxidation of succinate at 
the surface of SDHA reduces the FAD (flavin adenine dinucleotide) into FADH2. The electrons are then transferred onto the 
successive Fe-S complexes in SDHB before ultimately reaching the ubiquinone. So far, the heme b group at the interface 
between SDHC and SDHD serves for the formation and stabilization of the complex. Purple= SDHA; blue= SDHB, green= SDHC; 
orange= SDHD. (Van Vranken et al., 2015). 
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SDHA shelters the FAD prosthetic group, while SDHB harbors 3 different Fe-S clusters. Both 

SDHA and SDHB are matrix-facing while SDHC and SDHD are embedded in the IMM (Fig. 16). 

Of note, the heme b group of the complex II is located in between these two subunits and is 

thought to be involved in the stabilization of the complex, more than a role in the electron 

transfer. The oxidation of succinate proceeds on SDHA, reducing the FAD. The FADH2 then 

transfers its electrons one by one to the Fe-S centers of SDHB, ultimately handing them over 

to the ubiquinone (UbQ) (Sun et al., 2005). There is thus no net flux of proton across the IMM, 

as opposed to complexes I and III. Succinyl-CoA is also the entry point in the TCA from 

anaplerotic reactions from branched-chain amino acids or even from propionate, reinforcing 

the role of this metabolite as a key node in mitochondrial metabolism.  

 

B. Succinate as a post-translational modification 
 

Apart from its role in metabolism, succinyl-CoA can also be used for post-translational 

protein (PTM) modification. For 50 years, utilization of chemical succinylation in the food 

industry is known to affect the behavior of proteins, changing the foaming capacity, swelling 

power or the solubility of the compounds, for example (Arueya and Oyewale, 2015). 10 years 

ago, the succinylation of lysine residues has been shown to also occur naturally in vivo (Zhang 

et al., 2011). The impact of such a modification, compared for example to acetylation, is more 

drastic. Indeed, the two negative charges of the succinyl moiety switch the net charge of the 

otherwise positive lysine residue to a net negative one. Other than a charge modification, the 

succinylation of a lysine imply a relatively big structural change by adding a mass of 100 

Daltons (Zhang et al., 2011). In the same way than protein acetylation, protein succinylation 

is a direct link between the mitochondrial metabolic activity (TCA and ETC) to protein 

functions, even in remote cellular compartments.  

 

 So far, the mechanisms leading to protein succinylation are not fully understood. A 

controversial question resides in the mechanism of lysine succinylation, that could be 

enzymatic or non-enzymatic (Sreedhar, Wiese and Hitosugi, 2020). While there is no 

consensus yet, we could postulate that the two processes probably coexist. On one hand, 

succinyl-CoA has indeed been shown to in vitro succinylate bovine serum albumin in a dose-

dependent manner (Colak et al., 2013). Accordingly, since mitochondria hosts high 

concentrations of the metabolite, it has been postulated that the process of protein 

succinylation in that organelle could be mostly non-enzymatic.  

On the other hand, several enzymes have been shown to catalyze the deposition of 

this modification. This is the case for the lysine acetyltransferase 2A (KAT2A) shown to 

mediate the histone 3 succinylation of the lysine K79 (H3K79Succ) in the context of cancer cell 

proliferation. In this setting, KAT2A is partnering with a-KGDH to locally produce the succinyl-

CoA needed in the nucleus (Wang et al., 2017). At the outer surface of mitochondria, CPT-1A, 

classically mediating the mitochondrial import of long chain fatty acids, was also attributed a 

succinyltransferase activity both in vivo and in vitro (Kurmi et al., 2018). Interestingly, through 

mutation of the CPT catalytic site, they showed that the succinyltransferase activity was 

maintained, using thus a distinct catalytic domain. About 100 proteins were identified as 

targets for succinylation by CPT1A, among which the glycolytic enzyme enolase (ENO1), whose 

activity was reduced when succinylated, leading to an increase in cell proliferation under 

glutamine deprivation (Kurmi et al., 2018). Finally, very recently a third enzyme was reported 

to be involved in protein succinylation: the histone acetyltransferase 1 (HAT1). As the name 
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indicates, HAT1 was first described as an acetyltransferase enzyme for histone and non-

histone proteins (Nagarajan et al., 2013; Sadler et al., 2015). In the context of succinylation, 

HAT1 was shown to mediate histone (H3K112Succ) and non-histone succinylation 

(Phosphoglycerate mutase; PGAM). These two modifications were linked to the in vitro and in 
vivo cancer progression (Yang et al., 2021).  

 

The other side of the coin of protein succinylation is the desuccinylation. Whereas the 

process of succinylation is only recently investigated, the enzymes removing the various PTMs 

are pretty well identified and belong to the sirtuin family of enzymes. These enzymes are 

nicotinamide adenine dinucleotide (NAD)-dependent protein lysine deacylases. In particular, 

two members of the family have been identified as desuccinylases: Sirt5 and Sirt7. Sirt5 is 

mainly a mitochondrial enzyme matching with the observation of a predominance of protein 

succinylation in this organelle, although it has been recently observed in the cytosol (Du et al., 
2011; Y. Du et al., 2018). Sirt7 has also been observed to desuccinylate proteins in the nucleus 

(Tong et al., 2017). According to their roles, loss of the Sirt5 and Sirt7 induces a phenotype of 

hypersuccinylation of proteins (Rardin et al., 2013; Li et al., 2016).  

 

 The functional consequences of protein succinylation depends highly on the context. 

For histones, the succinylation of a lysine, changing the positive charge to a negative one, 

induces a decompaction of the chromatin since the DNA is negatively charged (Smestad et al., 
2018). In this study, the authors induced and hypersuccinylation by mutating the SDH 

complex, resulting in the accumulation of succinate that was able to exit mitochondria, by yet 

unidentified transporters. The succinylation of histones was thus a result of a defective TCA 

metabolism, linking once more the metabolic state of cells to their epigenetic landscape. 

Functionally, this chromatin decompaction was also linked to a defect in the DNA repair 

process, similarly observed in Sirt7 KO cells (Li et al., 2016; Smestad et al., 2018). In the context 

of metabolic signaling, the hypersuccinylation phenotype observed after Sirt5 KO leads to a 

rewiring of fatty acid metabolism from mitochondrial to peroxisomal. This confers an 

advantage for kidney proximal tubules during acute kidney injuries, reducing the 

mitochondrial ROS production in response to fatty acids, displacing the major part of b-

oxidation in the peroxisome. Most of the enzymes for the fatty acid oxidation in both 

compartments were found succinylated but the resulting activity was opposite, activation in 

the peroxisome and inhibitory in the mitochondria (Chiba et al., 2019).  

 

 The field investigating the protein succinylation is only booming for the past 4-5 years. 

Over this period, a few studies have tackled the task of identifying the proteins targeted by 

this PTM. Overall, and depending on the context such as Sirt5-/- or SDH-/- cells, up to 2000 

lysine sites were succinylated, accounting for about 500 proteins (Park et al., 2013; Rardin et 
al., 2013; Smestad et al., 2018; Guo et al., 2020; Gut et al., 2020). Most of the identified 

proteins are metabolic enzymes, among the most identified gene ontologies (GO) are the TCA 

cycle, branched-chain amino acid degradation, pyruvate metabolism or the fatty acid b-

oxidation. However, even though these metabolic pathways are centered on the 

mitochondria, all the cellular compartments have been shown to be affected by protein 

succinylation, from mitochondria, to cytosol and nucleus (Park et al., 2013; Smestad et al., 
2018). Interestingly, these high throughput studies have also revealed that many of the 

succinylated lysines are also targets for other PTMs such as acetylation (Park et al., 2013; 
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Rardin et al., 2013). This crosstalk between the PTMs could represent another way of 

regulating their deposition.  

 

C. Succinate-mediated regulation of cellular functions 
 

The impact of succinyl-CoA or succinate on the epigenetic regulation goes beyond the 

PTMs of histones. Succinate is indeed a known inhibitor of dioxygenases such as the histone 

demethylases (HDM) and the TET (Ten eleven translocation) family of DNA demethylases 

(Laukka et al., 2016; Tretter, Patocs and Chinopoulos, 2016). For example, loss of SDH activity, 

leading to the accumulation of succinate throughout the cell, was shown to increase the 

methylation of the H3K27, due to a decrease in the activity of the HDM Jmjd3 (Jumonji 

domain-containing protein D3) (Cervera et al., 2009). The 2012 Xiao paper confirmed these 

results and further showed a reduction in the hydroxylation of the 5-methylcytosine (5mC) 

due to reduced TET activity (Xiao et al., 2012). These results were then also reported in the 

clinic as a “hypermethylator” phenotype of patient samples with SDH deficiency (Killian et al., 
2013) 

 

The inhibitory action of succinate on dioxygenases (like HDM and TET) also includes 

the inhibition of the PHD enzymes involved in the degradation of HIF1a or HIF2a. By inhibiting 

PHD, succinate thus participates in the stabilization of the HIFa subunits, with subsequent 

activation of the transcription of the target genes. This phenomenon is thus called 

pseudohypoxia (Selak, Durán and Gottlieb, 2006; Kluckova and Tennant, 2018).  

 

Finally, succinate is known to have paracrine functions on the cellular 

microenvironment, through the activation of its target orphan G-protein coupled receptor 

(GPR91). The recognition of succinate by GPR91, later renamed SUCNR1 (succinate receptor 

1) induces a wide variety of signals such as 1) a drop of cAMP concentration related to a 

decrease in the adenylate cyclase activity (Högberg et al., 2011), 2) the activation of the MAPK 

pathway leading to the phosphorylation of the ERK1/2 kinases (Gilissen et al., 2015) and 3) 

regulation of the intracellular Ca2+ concentration by activation of PLCb (phospholipase beta) 

(Sundström et al., 2013). This succinate-SUCNR1 response is involved in the detection of local 

stresses in the liver (Correa et al., 2007), in the heart (Aguiar et al., 2014) or even in the 

inflammatory response (Tannahill et al., 2013; Mills and O’Neill, 2014), stresses that manifest 

by the release of intracellular succinate. 
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Objectives  
 

 As much as the naïve and primed stages have been respectively described in details, a 

lot of information is still missing on the processes regulating the transition between the two 

stages. Among the strategies undertaken to answer this question, a few teams relied on the 

booming CRISPR-Cas9 technology to screen for required genes in the transition. This led for 

example to the identification of folliculin as crucial for the transition, regulating the Wnt and 

mTOR pathways (Mathieu et al., 2019), mTOR being also highlighted by a separate group (Li 

et al., 2018). By taking advantage of the published datasets from these high-throughput 

studies, this project aims to highlight new mechanisms regulating the progression from the 

naïve to the primed stages.  

 

 To address the question of the transition, we compared the genes found required for 

this naïve-to-primed transition in these two studies. Since they have been performed on 

mESCs and hESCs respectively, we aim for the identification of a pathway that would be 

common to both species. Intriguingly, the heme biosynthesis pathway appears in both 

screens, highlighting its importance in the process. We will follow up by deciphering the 

mechanisms involved. For this purpose, we will start by using the in vitro culture of mESCs as 

described before: grown in 2iL to represent the naïve state, and pushed to the primed stage 

by a cocktail of FGF2 and activin A. Using chemical inhibitors of the pathway will help us to 

first confirm the dependency of ESCs on this pathway to properly transition, and second to 

investigate the underlying mechanisms, among which the ISR activation, protein synthesis 

inhibition and the modulation of signaling pathways. 

 

 Together, this project aims at a better characterization of the two pluripotent states, 

modelling in vitro the implantation step during the establishment of a pregnancy in vivo, this 

implantation being one of the most critical events for the embryo development. 
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Material & Methods 
 

A. Cell culture 
 

mESCs (ES-E14TG2a) were cultured in N2B27 medium consisting in 1:1 mixture of 

DMEM/F12 (Gibco, 31330-038) and Neurobasal Medium (Gibco, 21103-049) supplemented 

with 1x N-2 Supplement (Gibco, 17502-048), 1x B-27 Supplement (Gibco, 17504-044), 1/100 

penicillin-streptomycin (Gibco, 15140-122), 1x MEM nonessential amino acids (NEAA) (Gibco, 

11140-035), 1x GlutaMAX (Gibco, 35050-038), 1x sodium-pyruvate (Gibco, 11360-039) and 0.1 

mM β-mercaptoethanol (Gibco, 31350-010). Naïve mESCs were maintained on 0.2 % gelatin 

(Sigma, G1393)-coated plates at a density of 50 000 cells/cm2 and in N2B27 medium 

complemented with 103 U/ml of mLIF (ESGRO, ESG1107), 3 μM of GSK3 inhibitor (CHIR99021) 

(Peprotech, 2520691) and 1 μM of MEK inhibitor (PD0325901) (referred to as 2iL) 

(SelleckChem, S1036). Cells were passaged every 2-3 days using accutase (Stemcell 

Technologies, #07920). Cells were then collected by centrifugation at 1200 rpm for 3 minutes 

and counted before seeding. The transition to EpiSC was obtained by transferring naïve mESCs 

on 15 μg/ml fibronectin (Gibco, 33010-018)-coated plates at a density of 30 000 cells/cm2 and 

by supplementing the N2B27 medium with 12 ng/ml of bFGF (Peprotech, 100-18B) and 20 

ng/ml of activin (Peprotech, 120-14P). Coating proteins were incubated 1h before seeding. 

mESCs were conserved at 37°C, 5 % CO2 in a humidified incubator.  

 

B. mESC treatments 
 

Heme inhibitors are used at concentration of 0.5 mM for succinylacetone (SA) (Sigma, 

D1415) and 10 μM for NMPP (Cayman Chemical, 20846). Hemin (Sigma, 51280) is used at a 

concentration of 10 μM in 0,1N NaOH. Diethyl butylmalonate (BM) (Sigma, 112038) is used at 

a concentration of 1 mM The BTdCPU (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(3,4-

dichlorophenyl)urea) (Millipore, 324892) was used at 2 μM.  

 

C. RNA extraction and RT-qPCR 
 

RNA was extracted after 2 days of culture with the ReliaPrep™ RNA Tissue Miniprep 

System (Promega, Z6111) following manufacturer’s protocol for non-fibrous tissue by adding 

RNA lysis buffer on pelleted cells. RNA concentrations were quantified with the 

Nanophotometer N60 (Implen). Reverse transcription (RT) was performed with the GoScript™ 

Reverse Transcriptase kit Random Primers (Promega, A2801) to convert 1 μg of RNA into 

cDNA. Briefly, RNA was mixed with RNAse-free water to obtain 1 μg of RNA in 12 μL and 

heated 5 minutes at 70°C. Then, 8 μL of RT mix (4 μL random primers buffer, 2 μL enzyme, 2 

μL RNAse free water) was added and the reaction was performed in a thermocycler (5 minutes 

at 25°C, 60 minutes at 20°C and 15 minutes at 70°C).  

 

The qPCR was performed on the ViiA 7 Real-Time PCR System (ThermoFisher) with 10 

ng of cDNA per reaction, SYBR Green GoTaq qPCR Master Mix (Promega, A6002) and primers 

listed in the table number 1 at a final concentration of 300 nM. Altogether, 2 μL of cDNA (5 

ng/μL), 1 μL of forward primer (6 μM), 1μL of reverse primer (6 μM), 10 μL of Master Mix and 
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6 μL of RNAse free water were added in each well. Relative expression was calculated using 

the 2-∆Ct method with GAPDH as an endogenous control.  

 

Table 1: List of primers used in qPCR 

Gene Sequences (5’ à 3’) 
DNMT3A F: CTGCTGTGGAATACCCTGTTAG 

R: CTTTCTACCTGCTGCCATACTC 

ESRRB F: GCACCTGGGCTCTAGTTGC 

R: TACAGTCCTCGTAGCTCTTGC 

FGF5  F: GGGATTGTAGGAATACGAGGAGTT 

R: CCAGAAGAATGGACGGTTGT 

GAPDH F: CATGGCCTTCCGTGTTCCT 

R: CCTGCTTCACCACCTTCTTG 

KLF2 F: CTAAAGGCGCATCTGCGTA 

R: TAGTGGCGGGTAAGCTCGT 

KLF4 F: CCAGCAAGTCAGCTTGTGAA  

R: GGGCATGTTCAAGTTGGATT  

OCT4 F: CACGAGTGGAAAGCAACTCA  

R: AGATGGTGGTCTGGCTGAAC  

OTX2 F: TATCTAAAGCAACCGCCTTACG 

R: AAGTCCATACCCGAAGTGGTC 

REX1  F: CCCTCGACAGACTGACCCTAA 

R: TCGGGGCTAATCTCACTTTCAT 

TFCP2L1 F: GCTGGAGAATCGGAAGCTAGG 

R: AAAACGACACGGATGATGCTC 

ZIC2 F: CAAGGTCCGGGTGCTTACC 

R: ATTAAAGGGAGGCCCCGAATA 

TBX3 

 

F: CTCCATTCCAGTTTGGTCAA 

R: CAACAGCAGCCTGGTTACAC  

OCT6 F: TTTCTCAAGTGTCCCAAGCC 

R: ACCACCTCCTTCTCCAGTTG 

DNMT3B F: GGCAAGGACGACGTTTTGTG 

R: GTTGGACACGTCCGTGTAGTGAG 

DUX F: AAAGGAAGAGCATGTGCCAGC  

R: GCAGTAAGCTGTCCTGGGAAC  

ZFP352 F: AAGTCCCACATCTGAAGAAACAC 

R: GGGTATGAGGATTCACCCACA 

TCSTV1 F: TGAACCCTGATGCCTGCTAAGACT 

R: AGATGGCTGCAAAGACACAACTGC 

ZSCAN4C F: CCGGAGAAAGCAGTGAGGTGGA 

R: CGAAAATGCTAACAGTTGAT 

MuERV-L F: CCCATCATGAGCTGGGTACT 

R: CGTGCAGATCCATCAGTAAA 

DUB1 F: GCAGGCCAACCTCAAACAG 

R: CGCAGGGCTCTCCTAAATCTT 

KRT18 F: GAGAAGATTTCAGTCTCAACGA 

R: CGATCTTACGGGTAGTTGTC 

HAND1 F: ACAAACTGAAACCTTCAAGAGG 

R: TTCATGTTGGAGAGGCTCC 



 47 

EOMES F: CCAAGACTCAGACCTTCAC 

R: TTAGCTGGGTGATATCCGT 

ELF5 F: TCAGACAGCCTGTGATTCC 

R: GAATTGGAGCCATTCCCAG 

ID1 F: AACTCGGAGTCTGAAGTCG 

R: GACACAAGATGCGATCGTC 

 

D. Western blot analyses 
 

Pellets of cells were lysed by adding protein lysis buffer (Tris-HCl pH 7.5 (20 mM), NaCl 

(150 mM), Glycerol 15 %, SDS 2 %, 25x protease inhibitor cocktail (PIC, cOmplete protease 

inhibitor cocktail, Roche 11697498001), 25x phosphatase inhibitor buffer (PIB, composed of 

25 mM of Na3VO3, 250 mM 4-nitrophenylphosphate, 250 mM b-glycerophosphate and 125 

mM NaF), TRITON X-100 1 %, SuperNuclease (Sino Biologicals, 25U/10µL) and by pipetting up 

and down. The protein concentration was determined by Pierce protein assay (ThermoFisher, 

22660). Samples were mixed with Laemmli buffer (SDS, β-mercaptoethanol, Bromophenol 

blue) and heated for 5 min at 95°C before loading. 10 μg of proteins were loaded on SDS-

containing 10 or 12% polyacrylamide gels. At the end of migration, proteins were transferred 

to PVDF membranes (IPFL00010) by liquid transfer. Membranes were then blocked in LI-COR 

Intercept blocking buffer PBS for 1h at RT and incubated overnight at 4°C with the primary 

antibodies. Membranes were washed 5 minutes 3 times with PBS + 0.1 % Tween-20 (PBST) 

before and after 1h-incubation with the secondary antibodies at RT. Detections were 

performed and quantified with Odyssey LI-COR scanner. Primary antibodies and secondary 

antibodies used are listed in the table 2 below. Primary and secondary antibodies were both 

diluted in Licor PBST. GAPDH was used as loading control. Primary and secondary antibodies 

for GAPDH detection were incubated 30 minutes.   

 

Table 2: List of antibodies used in Western blot (WB) and/or Immunofluorescence (IF). 

Antibody Reference Species Source Dilution 
Anti-Catalase Abcam #16731 Rabbit WB 1/1000 

Anti-GAPDH Sigma #G8795 Mouse WB 1/10 000 

Anti-H3 CellSignaling 

# 4499 

Rabbit WB 1/2000 

Anti-KLF4 R&D #AF3158 Goat IF 1/100 

Anti-Puromycin MerckMillipore 

MABE343 

Mouse WB 1/1000 

Anti-iNOS Abcam #ab15323 Rabbit WB 1/1000 

Anti-Oct3/4 Santa-Cruz 

#sc-5279 

Mouse WB 

IF 

1/1000 

1/100 

Anti-OTX2 R&D #AF1979 Goat WB 1/1000 

Anti-OXPHOS 

rodent cocktail 

Abcam #ab110413 Mouse WB 1/1000 

Anti-Pan-succinyl-

lysine  

PTM Bio #PTM-401 Mouse IF 1/300 

Anti-TFE3 Sigma 

#HPA023881 

Rabbit IF 1/300 

Anti-ZSCAN4 Millipore #AB4340 Rabbit IF 

WB 

1/300 

1/1000 
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Anti-MUERVL-

GAG 

Novus #NBP2-

66963 

Rabbit IF 1/100 

Anti-ERK1/2 CellSignaling #9102 Rabbit WB 1/1000 

Anti-pERK1/2 CellSignaling #9101 Rabbit WB 1/1000 

Anti-SMAD2/3 CellSignaling #8685 Rabbit IF 1/100 

IRDye 800CW 

Anti-Goat 

LI-COR 

Biosciences 

926-32214 

Donkey WB 1/10 000 

IRDye 800CW anti-

Mouse 

LI-COR Biosciences  

926-32210 

Goat WB 1/10 000 

IRDye 800CW anti-

Rabbit 

LI-COR Biosciences 

926-32211 

Goat WB 1/10 000 

IRDye 680RD anti-

Mouse 

LI-COR Biosciences 

926-68070 

Goat WB 1/10 000 

IRDye 680RD anti-

Rabbit 

LI-COR Biosciences 

926-68071 

Goat WB 1/10 000 

Anti-Goat  

Alexa Fluor 488 

ThermoFisher 

#A11055 

Donkey IF 1/1000 

Anti-Mouse  

Alexa Fluor 568 

ThermoFisher 

#A11004 

Goat IF 1/1000 

Anti-Rabbit  

Alexa Fluor 488 

ThermoFisher 

#A11008 

Goat IF 1/1000 

 

E. Puromycin-incorporation assay 
 

Puromycin (Sigma, P8833) was added to the culture media for 10 minutes directly after 

2 days of culture to obtain a final concentration of 10 μg/mL. The medium was discarded and 

cells washed twice with PBS. Proteins were extracted by adding protein lysis buffer directly in 

wells as described above. Puromycin-treated samples were then analyzed by western blot 

with anti-puromycin antibody (MerckMillipore, MABE343) and anti-histone 3 antibody 

(CellSignaling, #4499) as loading control.  

 

F. Immunofluorescence 
 

Cells were seeded on coated glass cover slips 2 days before fixation with 4 % 

paraformaldehyde (Sigma, 30525-89-4) for 15 minutes. Coating was performed for 1h with 15 

µg/ml of fibronectin or with 3.5 μg/cm2 Cell-Tak (VWR, 734-1081) diluted in sodium 

bicarbonate 0.1 M. Cells were permeabilized and blocked for 30 minutes incubation in 

blocking buffer (PBS, 0.1 % TRITON, 1 % BSA). Immunostaining was performed by an O/N 

incubation of cover slips at 4°C on 30 μL drops containing primary antibody diluted in blocking 

buffer. After three washes of 5 minutes in blocking buffer, the coverslips were incubated 1h 

at RT with 30 μL drops containing secondary antibody and DAPI (Sigma, 10 236 276 001) 

diluted 1:1000 in blocking buffer, in the dark. Cover slips were mounted with Mowiol after 

three new 5 minutes washes in blocking buffer. Analyses were performed with a Leica TCS SP5 

confocal microscope (Leica microsystems). 

 

G. Protein digestion and Succinyl-lysine pull-down 
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Cells were washed with PBS before protein lysis with IP buffer (1% IGPAL CA630, 150 

mM NaCl, 50 mM Tris pH 7.4, 1 mM EDTA, 50 mM Nicotinamide, 25 mM sodium butyrate, 

cOmplete minitabs (1 for 10 ml)). Lysates were gently agitated for 30 min prior to 

centrifugation 5 min at 16000 g at 4 °C.  The supernatants were incubated with 10% TCA in 

acetone for 4h at -20 °C to precipitate the proteins. Precipitates were collected by 

centrifugation at 16 000 x g for 15 min at 4 °C, washed 3 times with 80% acetone to remove 

trace of TCA and finally acetone was removed by air drying for 5 min. To ensure 

resolubilization, NaOH 0.2M was added for 2 min without disturbing the pellet before adding 

Rapigest 0.2% in NH4HCO3 50 mM. The Protein solution was agitated for 20 min at RT on a 

Thermomixer at 1400 RPM and then sonicated 3 times during 10 sec. Non-solubilized proteins 

were removed by centrifugation 5 min at 16000 g at 4 °C. The protein concentration was 

measured by Pierce.  

 

1.2 mg of proteins were digested overnight at 37 °C using trypsin at an enzyme-to-

protein ratio of 1:50 (w/w). Afterward, proteins were reduced by incubation with 1,4-

Dithiothreitol (DTT) 10 mM 45 min at 37 °C, followed by alkylation with iodoacetamide (IAA) 

40 mM for 45 min at 37°C in the dark. Samples were digested a second time using trypsin at 

37 °C for 4hr at a ratio of 1:100 (w/w). After a 10 min at 16000 g at 4°C, the supernatant 

volume was almost completely dried by speed vac. Purified peptides were reconstituted in 

NETN buffer (0.5% IGPAL CA630, 100 mM NaCl, 50 mM Tris pH 7.4 and 1 mM EDTA). Agarose 

beads already coupled to anti-pan-succinyl lysine antibody (PTM-402) were washed three 

times with PBS and then added to the peptides for O/N incubation with gentle agitation. 

Unbound peptides were removed by 4 washes with NETN buffer then 2 washes with ultra-

pure water. Finally, peptides were eluted by acidification with 1 % trifluoroacetic acid (TFA) 

and cleaned up with the pierce C18 SpinTips according to the manufacture’s protocol.  

 

H. Mass spectrometry 
 

The digest was analyzed using nano-LC-ESI-MS/MS tims TOF Pro (Bruker, Billerica, MA, 

USA) coupled with an UHPLC nanoElute (Bruker). 

 

1. Mass spectrometry analyses 
 

Peptides were separated by nanoUHPLC (nanoElute, Bruker) on a 75 μm ID, 25 cm C18 

column with integrated CaptiveSpray insert (Aurora, ionopticks, Melbourne) at a flow rate of 

400 nl/min, at 50°C. LC mobile phase A was water with 0.1% formic acid (v/v) and B was ACN 

with formic acid 0.1% (v/v). Samples were loaded directly on the analytical column at a 

constant pressure of 800 bar. The digest (1 µl) was injected, and the organic content of the 

mobile phase was increased linearly from 2% B to 15 % in 60 min, from 15 % B to 25% in 30 

min, from 25% B to 37 % in 10 min and from 37% B to 95% in 5 min. Data acquisition on the 

tims TOF Pro was performed using Hystar 5.1 and tims Control 2.0. Tims TOF Pro data were 

acquired using 160 ms TIMS accumulation time, mobility (1/K0) range from 0.7 to 1.4 Vs/cm².  

Mass-spectrometric analyses were carried out using the parallel accumulation serial 

fragmentation (PASEF) (Meier et al., 2018) acquisition method. One MS spectra followed by 

six PASEF MSMS spectra per total cycle of 1.16 s. Two injections per sample were done. 
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2. Database searching 
 

Tandem mass spectra were extracted, charge state deconvoluted and deisotoped by 

Data analysis (Bruker) version 5.3. All MS/MS samples were analyzed using Mascot (Matrix 

Science, London, UK; version 2.7.0). Mascot was set up to search the Uniprot- 

MusIsoform_191212 database (December 2019 version, 97858 entries) assuming the 

digestion enzyme trypsin. Mascot was searched with a fragment ion mass tolerance of 0.050 

Da and a parent ion tolerance of 15 PPM. Carbamidomethyl of cysteine was specified in 

Mascot as fixed modifications. Oxidation of methionine, acetyl of the n-terminus and succinyl 

of lysine and the n-terminus were specified in Mascot as variable modifications.  

 

3. Criteria for protein identification 
 

Scaffold (version Scaffold_4.10.0, Proteome Software Inc., Portland, OR) was used to 

validate MS/MS based peptide and protein identifications. Peptide identifications were 

accepted if they could be established with a probability above 96.0% and an FDR below 1.0% 

by the Scaffold Local FDR algorithm. Protein identifications were accepted if they could be 

determined with a probability above 5.0%, an FDR below 1.0% and with at least 2 identified 

peptides.  Protein probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii 

et al., 2003). Proteins that contained similar peptides and could not be differentiated based 

on MS/MS analysis alone were grouped to satisfy the principles of parsimony. Proteins sharing 

significant peptide evidence were grouped into clusters. A semi-quantitative analysis was 

performed based on the spectral counting method and normalized on the total spectra. A 

pValue was calculated using a Fisher exact test. 

 

 

I. Co-Immunoprecipitation 
 

In order to confirm the interaction between Nucleolin and KAP-1, the protein complex 

was co-immunoprecipitated. Cells were washed with PBS before protein lysis with IP buffer. 

Lysates were gently agitated for 30 min prior to centrifugation for 5 min at 16000 g at 4 °C. 

Protein concentration of the supernatant was determined by a Pierce assay and 400 µg of 

proteins were incubated O/N at 4°C to anti-nucleolin pre-coated Dynabeads protein G, 

following the manufacturer’s protocol. Unbound proteins were removed by 3 washes with 

NETN, then 2 washes with ETN (100 mM NaCl, 50 mM tris pH 7,4, 1 mM EDTA) and a final 

wash with ultrapure water. Bound protein complexes were eluted by adding WB 1x loading 

buffer. Beads and proteins were loaded directly onto an acrylamide gel. 

 

J. RNA sequencing 
 

Sequence libraries were prepared with the Lexogen QuantSeq 3' mRNA-Seq library 

prep kit according to the manufacturer protocol. Samples were indexed to allow for 

multiplexing. Library quality and size range were assessed using a Bioanalyzer (Agilent 

Technologies) with the DNA 1000 kit (Agilent Technologies, California, USA). Libraries were 

subsequently sequenced on an Illumina HiSeq4000 instrument. Single-end reads of 50 bp 

length were produced with a minimum of 1M reads per sample. 
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Quality control of raw reads was performed with FastQC v0.11.7, available online at:  

http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Adapters were filtered with ea-

utils fastq-mcf v1.05 (Erik Aronesty (2011), ea-utils: “Command-line tools for processing 

biological sequencing data”; https://github.com/ExpressionAnalysis/ea-utils). Splice-aware 

alignment was performed with HiSAT2 against the mouse reference genome mm10. Reads 

mapping to multiple loci in the reference genome were discarded. Resulting BAM files were 

handled with Samtools v1.5 (Li et al., 2009). Quantification of reads per gene was performed 

with HT-seq Count v2.7.14.  Count-based differential expression analysis was done with R-

based Bioconductor package DESeq2.  Reported p-values were adjusted for multiple testing 

with the Benjamini-Hochberg procedure, which controls false discovery rate (FDR). 

 

K. Data analysis 
 

TMM normalized rLog transformed counts were used for Principal Component analysis 

using R package PCATools. Gene set enrichment analysis (GSEA) was made on gene list ranked 

on Log2FC using R package ClusterProfiler (Yu et al., 2012). For genes with FC>2 in 

MUERVL::Tomato+ list from (Macfarlan et al., 2012),  Z score was calculated from TMM-rLog 

transformed counts and plotted as heatmap using R package Heatmap.plus. Analysis was 

made using statistical programming language R.  
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Results 
I. Identification of critical pathways in the naïve-to-primed ESC 
transition in human and mouse 
 

To identify common genes involved in the exit from the naïve pluripotent state in 

mouse and human, we compared two studies using a CRISPR/Cas9 whole genome knock-out 

screen during this transition from naïve to primed.  

 

First, in human, a recent paper relied on the metabolic differences between naïve and 

primed cells to perform the functional screen (Mathieu et al., 2019). Indeed, primed cells are 

more dependent on SAM, comparatively to naïve cells, to regulate their epigenetic landscape, 

mainly through an increase in repressive histone marks (Sperber et al., 2015; Mathieu et al., 
2019). As a consequence, primed cells exhibit an increased sensitivity to drugs such as 

methotrexate and acetaldehyde, both inhibiting the methionine synthase, thereby depleting 

the pool of available SAM. With a combination of these two molecules, and a CRISPR-Cas9 

library (GecKo), only cells acquiring a mutation preventing them to transition to the primed 

stage would be spared upon selection. By comparing the enriched sgRNAs after selection to 

those before, a list of required genes for the transition or the exit of the naïve state was 

established. In that paper, the role of folliculin (FLCN) in the regulation of the nuclear 

localization of the transcription factor TFE3 and its involvement with mTORC1/2 activity was 

highlighted (Mathieu et al., 2019).  

 

In mouse, the strategy used is slightly different. Instead of using a metabolic approach 

to discriminate naïve and primed cells, the authors relied on the use of a REX1-GFP construct. 

REX1 (Reduced Expression 1; also known as ZFP-42) is a gene whose expression is restricted 

to the naïve pluripotent state. Upon the initiation of transition, its expression is rapidly 

downregulated, allowing the monitoring of the progression of the naïve state exit (Chambers 

et al., 2007). Therefore, the whole genome CRISPR guide library allowed to identify the genes 

responsible for the maintenance of GFP expression. In this setting, Li and coworkers removed 

the 2i and LIF cocktail maintaining the mESCs in the naïve state. After two days of withdrawal, 

mESCs should have lost the GFP expression. They thus analyzed which of the targeted genes 

prevented this loss (Li et al., 2018).  

 

We thus compared on one side the genes enriched after the negative selection for the 

human screen (log2FC>1) (187 hits) and the list of genes allowing the maintenance of GFP+ 

cells in the mouse screen (563 hits) to identify common genes involved in the exit of the naïve 

state of mESCs and hESCs. The significant hits were submitted to functional annotation tools 

such as DAVID. For the human screen, false positive hits for apoptosis were removed. Indeed, 

since a negative selection is applied to induce the death of primed hESCs, cells that acquired 

a resistance to cell death by mutating genes involved in apoptosis for example would be 

spared. Figure 17 displays the top gene ontologies (GO) for the biological processes. As 

highlighted in red, the heme biosynthesis pathway is shown important in both screens. Of the 

different enzymes in this pathway, 7 out of 8 enzymes (ALAD, PBGD, UROS, UROD, CPOX, PPOX 

and FECH) came out as positive hits in the CRISPR screen during the naïve-to-primed mESC 
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transition. In hESCs, only the 4 cytosolic enzymes were highlighted. Together, the results stress 

the importance of this pathway for the embryo’s implantation. To our knowledge, the 

importance of this pathway in the maintenance of non-hematopoietic stem cells has never 

been shown. 

 

II. Heme biosynthesis in the naïve-to-primed mESC transition  
 

A. Heme synthesis inhibition 
 

To study the transition between the two states of ESCs, we decided to first work on 

mESCs as their growth and maintenance in vitro is simpler than hESCs.  In order to understand 

the requirements and the roles of heme biosynthesis in this model, interference with the 

pathway was needed. To do so, we used a naturally occurring inhibitor of ALAD, the second 

enzyme of the heme synthesis pathway, succinylacetone (SA), as described in the Introduction 

in section III.A. In patients with hereditary tyrosinemia, caused by a fumarylacetoacetic 

hydrolase (FAH) deficiency, the final enzyme in the tyrosine degradation pathway, there is a 

toxic build-up of SA, leading to functional consequences resembling the ones of acute 

intermittent porphyria (AIP) 

(Lindblad, Lindstedt and Steen, 

1977; Sassa and Kappas, 1983). This 

accumulation of SA was shown to 

potently inhibit ALAD in vitro, 

replacing ALA in the binding pocket 

of the enzyme and acting as a 

suicide substrate, explaining why 

the symptoms of both diseases were 

comparable (Sassa and Kappas, 

1983).  

 

Prior its use in the 

experimental conditions, we first 

wanted to assess the activity of SA 

on the total heme content of mESCs. 

However, due to the low amounts of 

heme present in these cells, as 

Figure 17 Biological processes GO enrichment from two independent CRISPR-Cas9 screens for the exit of the naïve state exit, 
in mouse (left panel) (Li et al, 2018) and in human (right panel) (Mathieu et al, 2019). 

Figure 18 Western blot analysis of the abundance of three hemoproteins 
(iNOS, Catalase, COX5A) after 48h of SA treatment, relative to GAPDH as a 
loading control for cells in naïve conditions (2iL), in transition to the Epi stage 
(EPI Ctl) with SA 0.5mM as heme synthesis inhibitor and 10 µM hemin 
supplementation. Representative blot of N=2 biological replicates. 
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compared to erythrocytes, the assessment of this concentration with fluorescent approaches 

was not possible (Sinclair, Gorman and Jacobs, 1999). Indeed, to reach the limit of sensitivity 

of the test, a large amount of material was needed, which in return quenched the fluorescence 

readings (data not shown). To bypass this issue, we postulated that in the absence of heme 

production, the stability of hemoproteins would decrease. We thus chose to assess the 

protein abundance of three different hemoproteins: iNOS, the NO-producing enzyme; the 

catalase, detoxifying H2O2, and COX5A, a member of the complex IV of the ETC. As shown in 

figure 16, a 48h inhibition of heme biosynthesis decreased dramatically the abundance of each 

hemoprotein, an effect that was indeed caused by heme deprivation as supplementation with 

hemin rescued it (Fig. 18).  

 

In addition, since the ETC relies 

heavily on the heme groups in multiple 

proteins, we decided to verify the integrity 

of the different complexes, using a cocktail 

of OXPHOS antibodies. This cocktail allows 

to monitor one protein in each of the 

complexes (I-V), giving an overview of their 

formation. Overall, this reveals, as 

expected, a drastic decrease in the 

abundance of these 5 proteins of the ETC, 

suggesting a global disruption of the 

OXPHOS (Fig. 19). It is worth noting that 

MTCO1 (or COX1) is a hemoprotein itself. 

This global disruption was rescued by the 

addition of exogenous hemin. 

 

 

To further confirm these results, we also tested another inhibitor of the heme 

biosynthetic pathway: the N-methylprotoporphyrin (NMPP). This molecule is a known 

inhibitor of the last enzyme of the pathway, FECH (Jacobs et al., 1998). Combining the results 

obtained with both inhibitors on the biology of ESCs would solidify any conclusions made. 

However, the maximal concentration of NMPP that mESCs tolerated (10 µM) was not able to 

reduce the abundance of hemoproteins as much as SA (Fig. 20). This difference could be due 

to the fact that NMPP is an analog of protoporphyrin IX and only competes for FECH activity, 

as opposed to the suicide activity of 

SA. Indeed, reports have shown that 

NMPP inhibition on FECH still allows 

the production of 40% of maximum 

levels of hemin (Jacobs et al., 1998; 

Atamna et al., 2002). For this reason, 

we decided to focus the rest of this 

work on heme synthesis inhibition 

with 0.5 mM of SA and a rescue with 

10 µM of Hemin.  

 

Figure 19 Western blot analysis of the abundance members of the 
ETC complexes after 48h of SA treatment, relative to GAPDH as a 
loading control for cells in naïve conditions (2iL), in transition to the 
Epi stage (EPI Ctl) with SA 0.5mM as heme synthesis inhibitor and 
10 µM hemin supplementation. Representative blot of N=2 
biological replicates 

Figure 20 Western blot analysis of the abundance the hemoproteins 
(iNOS and Catalase) after 48h of SA (0.5 mM) or NMPP (10 µM) 
treatment in 2iL mESCs, relative to GAPDH as a loading control. N=1 
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B. Validation of the requirement for heme synthesis 
 

Using succinylacetone (SA) to inhibit heme synthesis and 10 µM of hemin for its rescue, 

it is possible now to investigate the role of this pathway on the naïve-to-primed transition. As 

shown in figure 21A-B, when mESCs are pushed for 48h to exit the naïve stage while blocking 

heme synthesis, the acquisition of the primed markers Fgf5, Fgf15, Otx2, Oct6, Dnmt3a and 

Zic2 is prevented. On the other hand, the loss of naïve markers (Esrrb, Tfcp2l1, Klf4, Tbx3) is 

partially prevented. This was confirmed at the protein level by a decrease in the abundance 

of OTX2 and DNMT3A by western blot analysis and the increase in abundance of KLF4 by 

immunofluorescence, when treated with SA during the transition. Furthermore, the 

subcellular localization of TFE3, mainly nuclear in naïve and only cytosolic in primed 

(Betschinger et al., 2013; Mathieu et al., 2019), remains nuclear in the presence of SA (Fig. 
21C). Hemin supplementation restores the gene expression, the protein abundance and the 

subcellular localization of TFE3 to levels similar to those without SA, highlighting the specific 

Figure 21 Heme synthesis inhibition impairs the exit of mESCs from the naïve state; effect mediated by heme. A) Relative 
expression of naïve and primed markers of mESCs assessed by RT-qPCR relative to GAPDH expression (TFCP2L1, transcription 
factor CP2-like 1; ESSRβ, estrogen-related receptor β; KLF2/4, Kruppel-like factor 2/4; TBX3, T-Box Transcription Factor 3; 
FGF5/15, fibroblast growth factor-5/15; ZIC2, zic family member 2; OTX2, homeobox protein 2). S.D **p < 0.01, ***p < 0.001. 
ANOVA-1. n=4 independent biological replicates. B) Western blot analysis of the protein abundance of OTX2 and DNMT3a 
relative to GAPDH as a loading control for cells in naïve conditions (2iL), in transition for 2 days to the Epi stage (EPI Ctl) with 
0.5 mM SA as heme synthesis inhibitor and 10 µM hemin (H) supplementation. Representative blot of n=3 biological replicates. 
C) Phase contrast micrographs of cells in naïve (2iL), primed (EPI) with treatment with heme synthesis inhibitor (SA) and hemin 
(H). Scale bar=50μm. Confocal micrographs of mESCs in naïve stage or in transition for TFE3 (Transcription Factor Binding To 
IGHM Enhancer 3) and KLF4. Scale bar =20μm. TFE3 n=3 and KLF4 n=2 biological replicates D) Principal component analysis 
(PCA) of the normalized RNAseq data transcripts. 
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effect of heme in this blockage (Fig 21A-C). Separation of the samples with a principal 

component analysis (PCA) based on the normalized gene expression from RNA sequencing 

also reveals the segregation of the cells treated with SA (EPI + SA) from either the controls 

(EPI) or the cells rescued with hemin (EPI +SA +H) (Fig. 21D). Overall, this confirmed the screen 

results by showing that inhibition of heme biosynthesis impairs the naïve-to-primed mESC 

transition.  

 

C. Investigation of the mechanisms for the transition defect 
 

1. BACH1 
 

To investigate the role of heme in this defect of transition, we first investigated the 

activation of the heme-sensing protein BACH1. This protein acts as a transcription factor 

whose action depends on the heme levels. Indeed, BACH1 possesses multiple HRE that, when 

bound to heme, reduces its affinity to DNA and also triggers its export from the nucleus as 

well as its proteasomal degradation (Ogawa et al., 2001; Suzuki et al., 2004; Warnatz et al., 
2011). Immunostaining of BACH1 during the transition doesn’t reveal a change in the 

localization of BACH1 with SA (Fig. 22). The only effect observed is a decrease in its abundance 

when the culture media is supplemented with heme, an effect that is in accordance with the 

literature (Zenke-Kawasaki et al., 2007). The effect of SA on the transition is thus unlikely to 

involve BACH1. 

 

2. ISR 
 

Heme deprivation is also a signal that induces the activation of the ISR, through the 

HRI kinase (see section III.B.). Activation of HRI induces the phosphorylation of EIF2a and a 

subsequent decrease in cap-dependent protein translation. To evaluate the activation of this 

Figure 22 Heme synthesis inhibition does not modify the nuclear abundance of BACH1. Confocal images of mESCs cells in 
naïve (2iL), primed (EPI) with treatment with heme synthesis inhibitor (SA) and hemin (H) rescue with immunostaining of 
BACH1 (BTB Domain And CNC Homolog 1) (green). Scale bar = 20 µm 
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response, we thus measured the levels of global protein translation by using a puromycin-

incorporation assay followed by western blot analysis of puromycin-labelled polypeptides. As 

expected from an ISR activation, blockade of heme synthesis significantly reduces the 

translational activity of mESCs, an effect that is rescued upon addition of hemin (Fig. 21A-B). 

Since this effect on translation is potent and could play a role in the transition defects 

observed in the presence of SA, we next evaluated whether the selective activation of HRI 

could provoke a transition blockade. To this end, we used BTdCPU (1-

Figure 23 Activation of the ISR is not responsible for the transition defects under heme synthesis inhibition. A) Representative 
blot of the puromycin-incorporation assay of mESCs in naïve (2iL), in transition for 48h (EPI) with treatment with 0.5 mM heme 
synthesis inhibitor (SA) and 10 µM hemin (H), relative to H3 loading control. B) Relative quantification of the puromycin signal 
from 5 independent experiments. N.S p>0.05; ** p<0.01, ANOVA1. C) Western blot image of the puromycin-incorporation assay 
of mESCs in naïve (2iL) treated with 0.5 mM SA or increasing conditions of BTdCPU for 48h, relative to the abundance of H3 loading 
control. D) Relative expression of naïve and primed markers of mESCs assessed by RT-qPCR relative to Gapdh expression. Oct4 
serves as stemness marker control. (OCT4, octamer-binding transcription factor 4; Klf2, Kruppel-like factor 2; Fgf5/15, fibroblast 
growth factor-5/15; Dnmt3b; DNA methyltransferase 3 beta; Esrrb, estrogen related receptor beta). Results represented as means 
+/- S.D. *p<0.05, **p < 0.01, ***p < 0.001. ANOVA1. n=3 independent biological replicates. E) Confocal micrographs of TFE3 
(Transcription Factor Binding to IGHM Enhancer 3) immunostaining of mESCs in naïve stage (2iL), in transition for 48h (EPI) with 
or without 2 μM BTdCPU. Scale bar =20 µm. n=2 independent biological replicates 
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(benzo[d][1,2,3]thiadiazol-6-yl)-3-(3,4-dichlorophenyl)urea), a chemical activator of HRI (Chen 

et al., 2011), thereby activating the same branch of the ISR pathway than SA. We selected a 

working concentration of 2 µM to mimic the transition inhibition to the same extent as SA 

(Fig. 23C). However, pushing mESCs in the transition in the presence of BTdCPU wasn’t able 

to recapitulate the effect of SA on the gene expression of naïve (Klf2) or primed (Fgf5, Fgf15) 

markers or on the subcellular localization of TFE3 (Fig. 23D-E), although a trend is observed 

for some markers such as Dnmt3b or Esrrb (Fig. 23D). 

 

3. Signaling pathways 
 

To identify the mechanisms involved in the failure to properly transition, we performed 

a gene set enrichment analysis (GSEA) with the KEGG pathways (Kyoto Encyclopedia of Genes 

and Genomes) between EPI and EPI + SA RNAseq data. Interestingly, many crucial signaling 

pathways in development are shown downregulated by SA (Fig. 22A). We thus focused our 

attention on the pathways directly involved in the transition that are triggered by the 

combination of FGF2 and activin A in the growth media. Strikingly, on the one hand, the MAPK-

ERK1/2 pathway (downstream of FGF2) isn’t activated in Epi+SA cells, as shown by the absence 

Figure 24 SA prevents the activation of the MAPK and Activin A-SMAD pathways during the mESC transition. A) GSEA 
performed on RNAseq data were analyzed for gene ontology. KEGG pathways annotated down regulated in EPI+SA versus EPI 
ctl are represented as normalized enrichment scores (NES). B) Western blot analysis of the protein abundance of ERK1/2 and 
phospho-ERK1/2 (Thr202/Tyr204) relative to GAPDH as a loading control for cells in naïve conditions (2iL), in transition for 2 
days to the Epi stage (EPI) with 0.5 mM SA as heme synthesis inhibitor and 10 µM hemin (H) supplementation. Representative 
blot of n=3 biological replicates. C) Confocal analysis of the immunostaining of SMAD2/3 (green) in cells in naïve conditions 
(2iL), in transition to the Epi stage (EPI) with SA as heme synthesis inhibitor and hemin (H) supplementation, representative of 
2 independent experiments. 
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of phosphorylation of ERK1/2 (Fig. 24B). On the other hand, the activin A-SMAD pathway 

activation is also compromised as shown by the difference in nuclear localization of SMAD2/3 

compared to the EPI cells (Fig. 24B-C). We thus conclude that a failure to activate these key 

signaling pathways leads to a failure to properly transition to the primed stage, despite the 

presence of their respective ligands in the media. 

 

III. Heme synthesis inhibition in naïve mESCs 
 

A. Acquisition of a 2C-like phenotype 

 

Figure 25 Heme synthesis inhibition pushes mESCs toward a 2C-like stage. A) Principal component analysis (PCA) of the 
normalized RNAseq data transcripts of naïve mESCs (2iL) treated for 48h with 10 μM Hemin and/or 0.5 mM SA. B) Heatmap 
showing expression changes of 142 2C markers as defined in (Macfarlan et al. (2012), upon 48h heme synthesis inhibition (2iL 
+ SA) and rescue with Hemin (2iL +SA +H). C) Relative expression of 2C gene markers of mESCs assessed by RT-qPCR relative 
to Gapdh expression and to 2iL naïve control. Oct4= octamer-binding transcription factor 4, Muervl= murine endogenous 
retrovirus-like, Dux= double homeobox, Zfp352= Zinc-finger protein 352, Tcstv1= 2-cell-stage variable group member 1, Dub1= 
Ubiquitin Specific Peptidase 36, Zscan4c= Zinc Finger And SCAN Domain Containing 4, isoform c. n= D) Western blot analysis 
of ZSCAN4 protein abundance relative to GAPDH as a loading control in naïve mESCs (2iL) treated for 2 days with SA at 0.1 
mM or 0.5 mM. Representative image of 3 independent biological replicates. E) Immunostaining of ZSCAN4 (green) in naïve 
(2iL control) mESCs and treated with SA at 0,5mM. DAPI is used as a nuclear counterstain. Scale bar= 20um. F) Percentage of 
MUERVL- or ZSCAN4-positive cells in the whole population of naïve (2iL) mESCs or naïve treated with SA (2iL SA), counted from 
confocal micrographs as in (E) with 10 images per conditions for at least 1000 cells per condition. n=4 independent biological 
replicates. Results expressed as mean +/- S.D. ** p < 0.01 ; T-Tests. 
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In parallel to this defect in the exit from the naïve state, we noticed that treatment of 

naïve 2iL cells with SA also modifies the gene expression as 2iL+SA samples cluster away from 

2iL control cells in the PCA performed on RNAseq data (Fig. 25A). Our attention was drawn on 

markers reported to be expressed in the 2-cell embryo. Indeed, a small portion of the mESC 

population actually expresses a gene signature reminiscent of the 2C stage, cells thus called 

2C-like cells (Macfarlan et al., 2012). We aimed to confirm the expression of this subset of 

genes, first identified in 2012 (Macfarlan et al., 2012). Figure 25B shows a heatmap of the 

expression of 2iL, 2iL +SA and 2iL +SA +Hemin of the 142 genes identified upregulated in this 

2C-like population. A difference is clearly observed between the control samples versus the 

two other groups, showing an upregulation of this subset of genes. This was further confirmed 

by RT-qPCR for a selection of the most common markers (Fig. 25C) and by western blot 

analysis of ZSCAN4 abundance (Fig. 25D). Since the reports of this 2C-like population indicate 

a heterogeneity at the population level (Macfarlan et al., 2012; Eckersley-Maslin et al., 2016) 

we quantified the fraction of ZSCAN4+ and MUERVL-GAG+ cell population by confocal 

microscopy. As shown in Fig. 25E and F, treatment with SA increases the fraction of 2C-like 

cells from 2 to 3 folds.  

 

Since this 2C-like population is reminiscent of the totipotency state of stem cells, we 

tested whether treatment with SA would increase the ability of mESCs to differentiate into 

trophoblast stem cells. To this end, we first plated mESCs for two days in the regular 2iL media 

with or without SA. The medium was then switched to the trophoblast differentiation media 

Figure 26 Pre-treatment with SA promotes a more efficient differentiation to trophoblast stem cells. A) Experimental 
diagram of the differentiation process of mESCs to trophoblast stem cells. Cells are first plated in naïve media with or without 
SA for two days before switching to a trophoblast differentiation medium (FGF4+TGFβ1) for 6 days. B) Phase contrast 
micrographs of cells after the differentiation process, pre-incubated or not with 0.5 mM SA. C) Western blot analysis of the 
protein abundance of GATA3 (GATA Binding Protein 3) relative to GAPDH loading control, in undifferentiated mESCs (UnDiff) 
or after 6 days of trophoblast induction with or without heme synthesis inhibition (SA). Representative blot of 2independent 
experiments. D) Relative expression of trophoblast stem cell markers of mESCs differentiated for 6 days with (2iL +SA) or 
without (2iL) pre-treatment with the heme synthesis inhibitor succinylacetone, assessed by RT-qPCR relative to Gapdh 
expression. n=3 biological replicates. N.S. 
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based on a combination of FGF4 and TGF-b1, as reported in (Kubaczka et al., 2014) (Fig. 26A). 

Of note, this set up was selected as cell mortality was clearly visible for SA treatments longer 

than 2 days. After 6 days of differentiation, three features were analyzed: cellular morphology, 

gene expression and protein abundance. At the end of the trophoblast induction, we observe 

an increase in the abundance of cells with a different morphology, showing enlargement of 

the cell surface, reminiscent of the giant cells derived from the trophoblast (Fig 26B) (Tanaka 

et al., 1998; Ullah et al., 2008). This difference in phenotype is also observed by the increase 

in expression of the trophoblast lineage markers Eomes, Hand1, Id1 or Elf5 (although not 

significant) and in the abundance of GATA3 (Fig. 26C-D). Altogether this suggests that a 48h 

treatment of SA is able to expand the potential of mESCs toward the extraembryonic lineage.  

 

B. Heme-independent acquisition of the 2C features 
 

Interestingly, and as opposed to the naïve-to-primed setup, the observed phenotype 

seems independent of heme as hemin supplementation does not rescue it (Fig. 25B and 27A). 

Previous reports have shown that heme biosynthesis consumes a lot of the glycine and 

succinyl-CoA precursors in the mitochondria, acting as some sort of “sink” (Atamna, 2004). 

We thus hypothesized that heme synthesis inhibition would increase the abundance of 

succinyl-CoA in mitochondria, that could then exit the organelle and accumulate throughout 

the cell. Furthermore, another report showed that knock-down (KD) of SDHB could indeed 

increase protein succinylation throughout the cell, even impacting succinyl-histone 

modifications, demonstrating the ability of a buildup of succinate to exit mitochondria 

(Smestad et al., 2018). We thus measured the abundance of succinylated proteins in naïve 

cells treated or not with SA using a pan-succinyl lysine antibody (Fig. 27B). In basal conditions, 

the bulk of succinyl-lysine modifications is located in the mitochondria, as expected. However, 

we observe a dramatic increase of succinylated proteins in all cellular compartments when 

heme synthesis is blocked, an effect that is not (or very limitedly) rescued upon hemin 

supplementation.  

 

Since this increase in protein succinylation involves the exit of succinate through the 

mitochondrial membrane, we postulated that blocking the exit of this metabolite from 

mitochondria would prevent the acquisition of widespread succinyl-lysine post-translational 

modifications and impair the acquisition of the 2C-like cells markers, if this phenotype is 

associated with increased succinate concentration. This inhibition was achieved using diethyl 

butylmalonate (BM), an inhibitor of SLC25A10, the succinate transporter in the IMM (Mills et 
al., 2018). As hypothesized, addition of BM in addition to SA prevents the acquisition of 

protein succinylation, to a certain extent (Fig 27B). This decrease in global lysine succinylation 
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is correlated to a rescue of both the increase in 2C markers and the proportion of ZSCAN4 or 

MUERVL-positive cells in the population (Fig. 27A-C). Together, this shows that an 

accumulation of succinate in naïve mESCs induces a 2C-like phenotype, and provokes an 

increase in protein succinylation in all cell compartments. In order to identify the endogenous 

2CLC and simultaneously observe the levels of protein succinylation in the mESC population, 

we took advantage of a reporter cell line for this 2C-state, via stable insertion of a construct 

Figure 27 mESC “2C-like” reprograming by SA is due to defective protein succinylation. A) Relative expression of 2C markers 
of mESCs assessed by RT-qPCR relative to GAPDH expression and to 2iL naïve control, in mESCs treated with 0.5 mM SA (2iL 
SA), with or without 10 μM Hemin (2iL SA + Hemin), 1 μM diethyl butylmalonate (2iL SA + BM 1μM) or BM alone (BM 1μM). 
S.D * p < 0.05, **p < 0.01, ***p < 0.001. ANOVA-1. n=4 independent biological replicates. B) Immunostaining of succinylated 
lysines (green) in mESCs treated with SA, with or without 10µM Hemin (SA + Hemin), 1uM diethyl butylmalonate (SA + BM 
1μM). Representative image of n=3 independent experiments. Scale bar= 20µm. C) Percentage of MUERVL- or ZSCAN4-
positive cells in the whole population of naïve (2iL) mESCs or naïve treated with SA (2iL SA) with or without 10 μM hemin (2iL 
SA + hemin 10 μM), diethyl butylmalonate (2iL SA + BM 1 μM). N=4 independent biological replicates. Results expressed as 
mean +/- S.D. * p < 0.05; ANOVA-1. D) Immunostaining of succinyl-lysines (Red) and Oct4 (cyan) of TBG4 cells (ES-E14TG2a 
mESCs with a 2C-GFP reporter construct). Representative image of n=3 independent experiments. Scale bar= 20µm. 
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containing an EGFP-coding gene  under  control  of  the  MERVL  long  terminal  repeat 

(2C:::EGFP) previously described (Ishiuchi et al., 2015; Rodriguez-Terrones et al., 2020). This 

would allow to combine the endogenous fluorescence with the immunostaining of the 

succinyllysines. These observations showed an increase in protein succinylation specifically in 

the population of 2C-like cells (Fig 27D). 

 

 Since we showed that the increase in succinate exit from mitochondria triggers an 

increase in the reprogramming of mESCs to a 2C-like state, probably by increasing the protein 

succinylation, we decided to identify the protein differentially succinylated after SA 

treatment. To this end we immunoprecipitated the succinylated peptides in control 2iL or SA 

treated mESCs after trypsin digestion, followed by mass spectrometry analysis, as previously 

described (Guo et al., 2020).  This experiment, performed in biological duplicates, identified 

426 and 482 proteins in the first replicate and 1064 and 1099 in the second, for 2iL and 2iL+SA 

respectively. These identifications and quantifications can be found in Supplementary table 1. 

Out of the proteins identified and overrepresented in the SA-treated condition, our attention 

was drawn on the enrichment of both nucleolin and TRIM28-succinylated peptides (Fig. 28A). 

These two proteins have been shown to be associated with a LINE1 (retrotransposon long 

interspersed element 1) transposable element in the repression of the expression of Dux, a 

master regulator of the 2C-like stage (Fig. 12). We postulate that an increase in succinylation 

of these proteins could thus regulate the association of the complex, in turn relieving the 

inhibition of Dux. We thus performed a co-immunoprecipitation (Co-IP) of nucleolin and 

TRIM28. Surprisingly, treatment of mESCs with SA increases the binding of TRIM28 on 

nucleolin, as opposed to what was expected (Fig 28B).  

 

  

 

  

Figure 28 Succinylation of the Nucleolin-TRIM28 complex might be responsible for the 2C-like reprogramming. A) Volcano 
plot of succinylated proteins identified in mass spectrometry after immunoprecipitation of succinylated peptides. NCL= 
nucleolin, KAP1=TRIM28= Tripartite motif containing 28. n=2 biological replicates. B) Western blot analysis of KAP1 after co-
immunoprecipitation of Nucleolin in naïve mESCs (2iL) with or without heme synthesis inhibitor (SA) 0.5mM and butylmalonate 
(BM) 1µM. FT= flow-through fraction, IP= pull-down fraction, 10 μg were loaded on the gel. n=3. 
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Discussion and perspectives 
 

In the end, this project is made of two distinct part. We first investigated the heme 

synthesis pathway and its inhibition in the context of the naïve-to-primed ESC transition. Since 

we have not succeeded in deciphering the mechanisms in place in the context of this heme 

dependency, many leads remain to explain the phenotype. Second, the heme synthesis 

inhibition was also able to stimulate the apparition of 2CLCs in the population of naïve cells, 

an effect that was surprisingly heme-independent. Because the two processes are either 

heme-dependent in the transition or heme-independent in the 2CLCs, they will be discussed 

separately before a more global discussion at the end. 

 

A. Identification of the developmental stage 
 

While this project reports interesting finding about the maintenance of ESCs and the 

progression of development between pre- and post-implantation blastocysts, many questions 

remain unanswered. First, we demonstrated that the exit from the naïve 2iL state of mESC 

under heme synthesis inhibition is impaired, shown by gene and protein expression, 

transcription factor localization and whole cell RNA sequencing. However, while the SA-

induced transition blockade is clear, the identity of the EPI + SA cells remains unclear. We 

could compare the gene expression of the 2iL, EPI and EPI + SA cells grown in this study with 

published RNA sequencing data for in-vivo epiblast stem cells at different time points (E4.5, 

E5.5, E6.5) (Nakamura et al., 2016) or with stabilized cultures of EpiSC or formative cells 

(Kinoshita et al., 2020). Using these data sets might help to more precisely identify some sort 

of temporal localization of the SA-treated cells in the developing blastocyst and in the 

pluripotency continuum. It is also essential to consider the experimental timing used in this 

study: 2 days of transition. This short timing is usually considered to reside in an early post-

implantation stage called epiblast-like cells (EpiLCs), having left the naïve stage and on the 

path to the true EpiSC stage. Developmentally, this EpiLC stage resembles the stabilized 

formative stage. This consideration is important to identify the developmental point where 

SA actually acts as a blocking signal. Now that the formative stage has been stabilized, we 

could use their “formative-only” set of genes to measure the state of this transition. They 

report expression of genes such as Fbxo41, Pou2f2 or Slc45a1 only in the formative population 

and if the SA treatment doesn’t prevent their acquisition, we could postulate a blockade in a 

formative state. 

 

B. Signaling pathways 
 

Regardless of the developmental stage reached by the EPI + SA cells, the mechanisms 

leading to this incapacity to properly transition haven’t been exactly pinpointed yet. We 

postulate here that the inability to properly activate both the MAPK and the TGFb pathways 

in response to FGF2 and activin A (Fig. 24), respectively, might be the cause of the observed 

phenotype especially since the majority of the genes separating the PC2 in Fig. 21 are related 

to those pathways. Such effects from the blockage of these pathways have been previously 

described in the literature (Eiselleova et al., 2009; Huang et al., 2009; Lanner and Rossant, 

2010; Hamilton and Brickman, 2014; Senft et al., 2018; Lee, Park and Jung, 2019). Although 
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interesting, this hypothesis requires further testing. Technically, we could transition to the 

primed stage in the presence of inhibitors of both pathways and compare the RNAseq 

signature with the EPI+SA condition. If the hypothesis is correct, the dual MAPK-SMAD 

inhibition during the transition should present a phenotype similar to SA. For the inhibition of 

the MAPK, a MEK inhibitor such as the PD0325901, already used in the 2iL culture, could be 

added to the transition medium as well. The TGFb/activin A pathway inhibition could be 

achieved with an activin A receptor inhibitor such as SB431542 or even with a SMAD3 

phosphorylation inhibitor SIS3 (Jinnin, Ihn and Tamaki, 2006).  

 

Unexpectedly, preliminary results obtained with the MEK inhibitor alone during the 

transition suggest that MEK inhibition does not impair the transition nor mimics the Epi+SA 

phenotype. This could be due to the fact that a combination of the inhibition of both pathways 

would be necessary to achieve the transition inhibition. Interestingly, the inhibition of SMAD 

signaling through a SMAD2-/-/SMAD3-/- KO (dKO) mESC line shows that, in a setup comparable 

to the transition used in this study, ESCs cannot transition to the EpiLC state without proper 

SMAD signaling (Senft et al., 2018). Excitingly, the top genes most downregulated in the Epi 

dKO versus the Epi WT are the same than in Epi SA vs Epi from this study: Lefty1, Lefty2, Pitx2, 
all part of the Nodal signaling. This further encourages us to investigate the SMAD2/3 pathway 

in the context of heme inhibition and naïve-to-primed transition. A rigorous comparison of 

the published RNAseq data from the SMAD study (Senft et al., 2018) with our own data set 

would maybe highlight similarities between Epi dKO and Epi SA gene expression signature.  

 

1. MAPK  
 

Identifying the pathway playing the key role in this transition impairment would 

somewhat narrow down the search for the missing link between heme and the observed 

phenotype. We propose a hypothetic model of the role of heme on signaling pathways in the 

transition in figure 29. Most of the research performed to understand the role of heme in 

cellular biology focus on either the BACH1 transcriptional activity or on the HRI/ISR activation, 

both hypotheses that we mostly ruled out. To our knowledge, only a single paper highlights a 

defective MAPK activation under heme deprivation. The team of Y. Zhu and coworkers (Zhu 

et al., 2002) showed that PC12 neuronal cells treated with SA lose the ability to respond to 

nerve growth factor (NGF), leading to a defect in ERK1/2 phosphorylation. However, they did 

not demonstrate the involved mechanism. Since NGF signals activate the MAPK pathway 

through the TrkA (Tropomyosin Receptor Kinase A) receptor, we could hypothesize that the 

effect of heme deprivation on the MAPK pathway would act through a common target 

between the NGF-TrkA-ERK axis and the FGF2-FGFR2-ERK axis. Such proteins could be FRS2 

(Fibroblast Growth Factor Receptor Substrate 2), GRB2 (Growth factor receptor-bound 

protein 2), SOS (Son of Sevenless), RAF (Rapidly Accelerated Fibrosarcoma), RAS (proto-

oncogene protein p21) or even MEK. Since the activation of these proteins is signaled by a 

phosphorylation cascade, monitoring the phosphorylation levels of these intermediates in the 

pathway could inform at which level heme deprivation does play a role.  

 

Signaling pathways are extremely interconnected and these connections are also 

dependent on the cell type and growth conditions. Connected to the MAPK pathway is also 

the SRC (Proto-oncogene tyrosine-protein kinase Src (sarcoma)) pathway. Activated by 

integrins, tyrosine kinase receptors or GPCRs, SRC can phosphorylate RAS, triggering the 
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cascade leading to ERK1/2 phosphorylation (Scapoli et al., 2004; Lopez et al., 2012). 

B 

(See legend of figure 29 on the next page) 

A 
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Interestingly, SRC has been shown to bind heme, an interaction that modulates the activation 

of the kinase (Yao et al., 2010). Indeed, heme-binding CP motifs (cysteine-proline), also found 

in other heme-responsive proteins such as BACH1 or HRI, have been found on SRC. Direct 

binding of heme to these CP motifs induces phosphorylation of the Tyr530 residue, inducing 

a change in the protein conformation, inhibiting its activity (Sen and Johnson, 2011). 

Furthermore, the expression of the kinase mediating this phosphorylation, Csk (C-Src Kinase), 

is downregulated almost 4 folds in Epi+SA compared to Epi mESCs. While the phosphorylation 

of this residue should be assessed in SA-treated mESCs, we could postulate that heme 

deprivation would reduce this inhibitory phosphorylation, thereby activating SRC. 

Interestingly, the activation of SRC has been shown to trigger the endocytosis of FGF receptors 

in a clathrin-mediated mechanism (Sandilands et al., 2007; Auciello et al., 2013) leading to its 

targeting to the lysosome for degradation (Haugsten et al., 2005; Porębska et al., 2018). The 

clathrin dependent endocytosis (CDE) has been implicated in the maintenance of the 

pluripotent phenotype (Narayana et al., 2019) and in the exit from the naïve state by 

regulating the intracellular ERK activity (De Belly et al., 2021). Together, a reduction in heme 

content could activate SRC by decreasing the phosphorylation of an inhibitory residue, in turn 

able to promote FGFR internalization and to reduce the response to FGF2.  

 

With the context of the naïve and primed ESCs and their respective activated pathways 

in mind, we could also link the transition defect to the action of SRC on a sustained activation 

of the STAT3 transcription factor (Turkson et al., 1998; Garcia et al., 2001). Since in naïve cells, 

LIF activates STAT3 through the JAK kinase, the hypothetical SA-mediated activation of SRC 

could maintain STAT3 activity even in absence of LIF, thereby impairing the transition. This 

could easily be assessed by western blotting of the phosphorylated form of STAT3.  

 

2. Activin A – SMADs 
 

On the other hand, the defect of activation of the activin A/SMAD pathway is also 

intriguing. To our knowledge, heme is not reported to exert a direct action on intermediates 

of the pathway. However, by digging into the RNAseq data, the expression of one of the 

Figure 29 Proposed hypothetical mechanism of SA-mediated interference with cell signaling crucial for the naïve-to-
primed ESC transition. A) Signaling pathways activated in naïve or primed ESCs with their respective cytokines LIF and 
FGF2/Activin A. LIF signaling in naïve cells induces the phosphorylation of JAK, then of STAT3 leading to its nuclear 
translocation and transcriptional activity. In primed cells FGF2 binds to the FGFR1, inducing its phosphorylation activating 
the MAPK phosphorylation cascade: FRS2, GRB2, SOS, RAS, RAF, MEK, and ERK. Phosphorylated ERK1/2 translocates into 
the nucleus activating transcription factors such as ELK1. Activin A, binding to the activin receptor ACVR2B, activates the 
SMAD2/3 proteins by phosphorylation, inducing the recruitment of SMAD4 ad their translocation to the nucleus, 
activating the transcription of target genes. ELK1 and SMAD2/3 can activate the transcription of Egr1, a transcription 
factor mediating the expression of TGFb pathway members Acvr2b and Tgfb1 in a positive feedback loop. B) Proposed 
mechanism for the impact of SA on the different pathways. Binding of heme on SRC induces its phosphorylation on the 
530 tyrosine residue, inhibiting the protein activity by a change in conformation. In absence of heme, by SA treatment, 
SRC is thus in an active conformation with a phosphorylated 419 tyrosine residue. This activation has been shown to 
phosphorylate STAT3 and induce the clathrin-dependent FGFR1 endocytosis (CDE) reducing the MAPK activation. 
Activated SRC is also known to phosphorylate AKT on the tyrosine 473 residue, in turn inhibiting the phosphorylation of 
SMAD2/3. Dashed arrows represent modifications in SA-treated Epi cells that have been shown in this work. LIF= leukemia 
inhibitory factor, LIFR= LIF receptor, JAK= Janus kinase, STAT3= Signal transducer and activator of transcription 3, FGF2= 
fibroblast growth factor 2, FGFR1= FGF receptor 1, MAPK= mitogen activated protein kinases, FRS2= Fibroblast Growth 
Factor Receptor Substrate 2, GRB2= Growth factor receptor-bound protein 2, SOS= Son of sevenless, RAS= proto-oncogene 
protein p21, RAF= Rapidly Accelerated Fibrosarcoma, MEK= Mitogen-activated protein kinase kinase, ERK= extracellular 
signal-regulated kinases, ELK1= ETS domain-containing protein Elk-1, ACVR2B= Activin receptor type-2B, SMAD= mothers 
against decapentaplegic, AKT= protein kinase B, SRC= Proto-oncogene tyrosine-protein kinase SRC, SA= succinylacetone, 
H= heme, P= phosphorylation residue (activating in red, inhibitory in purple). 
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receptors for activin, ACVR2B, is strongly downregulated (3 folds) in SA-treated Epi cells. The 

protein abundance of this receptor would need to be monitored to explore the possibility of 

a decrease in the response to activin A due to a decrease of abundance of the receptor. 

Exploring the transcription factors driving the expression of Acvr2b shows that the promoter 

of this gene in controlled by several proteins, among which EGR-1 (Early growth response 1) 

that caught our interest. Indeed, heme has been shown to stimulate the transcription of Egr1 
notably through ERK1/2 activation  (Hasan and Schafer, 2008; Gotoh et al., 2011). This would 

explain the 4-fold decrease of Egr1 transcript level in SA-treated cells observed in RNAseq. 

Further confirming a potential role of this transcription factor in the transition defect observed 

with SA, the top genes contributing to the PC2 separation in Fig. 21 are either dependent of 

the transcriptional activity of EGR-1 (targeting Lef1, Fgf5, Pou3f1 or Wt1) or SMADs (Lefty1/2, 
Ina, Vrtn or Bcl11a). Furthermore, SMAD3 and EGR-1 have been shown to physically interact, 

regulating the expression of several target genes (Fortin and Bernard, 2010) and EGR-1 could 

also promote the activation of the TGFb pathway by the regulation of transcription of Tgfb1 

(Baron et al., 2006). This TGF-b1 is one of the critical component required for the growth of 

primed ESCs (Tesar et al., 2007; Gafni et al., 2013a). Since EGR-1 expression is also positively 

regulated by the MAPK-ERK1/2 pathway (Hasan and Schafer, 2008), the effects of heme on 

the MAPK cascade could also, in turn, reduce EGR-1 expression followed by a decrease in the 

activin A response. SRC inhibition has also been shown to induce Egr1 expression, further 

linking this kinase to the response observed in SA-treated ESCs since the potential activation 

of SRC by a reduction in heme concentration would thus reduce Egr1 expression (Jones et al., 
2009). Finally, SRC has been shown to indirectly modulate the phosphorylation of SMADs, and 

their subsequent activation and translocation, by phosphorylating the AKT kinase (Ser473), in 

turn inhibiting the phosphorylation of SMAD2/3 (Kathiriya et al., 2014). 

 

Since the literature highlights a key role of SRC on the regulation of the critical 

pathways MAPK, SMAD and STAT3 during the transition, it would be crucial to monitor its 

activation, through immunoblotting of its phosphorylated Tyr416, in Epi + SA conditions. If 

shown activated, SRC inhibition with WH-4-023 might very well rescue the phenotype induced 

by SA. 

 

Altogether these hypotheses pinpoint SRC as a heme-binding protein in the regulation 

of MAPK, through the clathrin-dependent endocytosis of the FGFR, aberrant STAT3 activation 

in the transition and/or inhibition of the activin A-SMAD pathway through the Akt kinase. 

There is also a possible link with SRC and EGR-1, both regulating SMAD2/3 activation, among 

others. EGR-1 is also shown to be controlled by both ERK1/2 and SMAD3 (Fortin and Bernard, 

2010; Gregg and Fraizer, 2011; Hartney et al., 2011). This makes the SRC kinase the next 

priority in understanding the SA-induced transition defect. So far there is no reports on the 

involvement of EGR-1 in the transition to the primed stage. This transcription factor was 

however among the top transcription factors controlling the differentially expressed genes in 

FLCN KO hESCs pushed for 7 days to the primed stage compared to the WT, a conditions shown 

to resist the conversion to the primed stage (Mathieu et al., 2019). SRC however, has been 

investigated in the naïve-to-primed transition before. It is for example the target of a small 

molecule used on primed cells to reprogram them into the naïve state, mostly for its role on 

the inhibition of the MAPK pathway (Theunissen et al., 2014).  
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3. Other pathways 
 

Although a role for heme in the regulation of these signaling pathways crucial for the 

transition is appealing, other pathways should not be ruled out. For example, despite 

numerous reports of BACH-1 regulation by heme (Ogawa et al., 2001; Suzuki et al., 2004; 

Zhang et al., 2018), we did not find any significant difference in the nuclear localization of this 

transcription factor in SA-treated cells (Fig. 22). This could either be a true effect but it could 

also be an artifact due to the antibody. Indeed, while attempting to validate by western blot 

analysis the results observed by immunofluorescence, multiple bands were detected, 

suggesting that the antibody, present in the lab for 10 years now and whose production has 

been interrupted since then, has lost sensitivity. Validating the results obtained with another 

validated antibody, both in IF and in WB would strengthen our claim.   

 

Then, we couldn’t fully implicate the heme-HRI-EIF2a axis in the effect of SA on the 

transition to the primed stage. While the activation of the pathway is clear (Fig. 23), its 

selective activation with BTdCPU is not bringing about the same response than SA, despite 

having a similar effect on protein translation. We cannot rule out that this pathway 

contributes to the transition blockade, in cooperation with another effector. To confirm that 

the activation of HRI is indeed not sufficient to recapitulate the transition defect induced by 

heme, a KO of Eif2ak1 (HRI) would be interesting. Indeed, if HRI KO mESCs are pushed in the 

transition while treated with SA, they should still be blocked in the same way as WT cells. If 

the role of HRI activation in the process is a key step, then that would alleviate the transition 

defect and allow the conversion to the primed stage. 

 

C. 2C reprogramming  
 

In the second part of this work, we have shown the heme synthesis inhibition in naïve 

2iL mESCs was increasing the number of cells cycling in the 2C-like state. As opposed to the 

defect in the naïve-to-primed transition, this effect was not rescued by the exogenous 

addition of hemin but, instead, was linked to an accumulation of succinate in the mitochondria 

and its leakage out of the organelle since pharmacological inhibition of SLC25A10, a succinate 

transporter, rescued that effect. The diethyl butylmalonate used to block this channel has 

however other roles in the cellular functions such as a decrease in gluconeogenesis or the 

inhibition of the aminoacylase I (Williamson, Anderson and Browning, 1970; Röhm, 1989). To 

bypass these potential off targets, genetic ablation of the Slc25a10 gene would allow us to 

answer with precision if the mitochondrial exit of succinate is the cause of the increase in 

2CLCs.  

 

We then showed that the increase in extra-mitochondrial succinate concentration 

increased the succinylation of proteins. Among the differentially succinylated proteins, we 

suspect nucleolin and TRIM28 to mediate the increase of 2CLCs. Indeed, a recent report 

showed that these two proteins, together with LINE1 (Fig. 12) act together to repress the 

expression of Dux, a master transcriptional regulator of the 2C transcriptional program 

(Percharde et al., 2018). We are currently pursuing the identification of the role of these two 

proteins in our model. First, we hypothesized that their succinylation would impair their 

complex assembly. Nucleolin was found succinylated on 10 residues in the control conditions 

but when the cells are treated with SA, a total of 30 residues are modified. TRIM28 was only 
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succinylated on 5 residues in basal conditions, that increased to 12 when treated with SA. 

However, since the complete structure of NCL hasn’t be fully defined yet and thus the contact 

region between NCL and TRIM28 is not known either, it is currently not possible to correctly 

map if their binding would be impaired by the addition of the succinyl groups on lysine 

residues. We thus performed a Co-IP of these two proteins to assess their interaction. 

Surprisingly, the preliminary results suggest that the binding of NCL and TRIM28 is increased 

for about 2 folds. Regardless, since we actually observed an increase in the expression of Dux 

after treatment with SA, the role of succinylation in the process could affect other aspects of 

this interaction such as the interaction with LINE1.  

 

The study reporting the role of this complex on the expression of Dux showed that the 

binding of the two proteins to the LINE1 retrotransposon was necessary to repress the 

expression of Dux. We could thus postulate that if the effect of succinylation on the complex 

is not due to the interaction between the two protein components, it might be due to the 

disruption of the NCL-LINE1 binding. This hypothesis is supported by the fact that the 

succinylated residues on NCL after SA treatment are located in the RNA binding region of the 

protein. To test this hypothesis, we could perform an RNA-immunoprecipitation to monitor 

the presence of LINE1 in the complex. In addition, because of the negative charge of the 

succinyl residue, and the negative charges of DNA, the actual binding of the complex to the 

DNA regulatory regions could also be compromised. This DNA binding activity can be 

measured with a DNA pull down assay followed by protein identification by mass 

spectrometry. We are thus planning to probe the regulatory regions of Dux identified in the 

original study (Percharde et al., 2018) to assess the DNA binding activity of NCL.  

 

The mechanism of regulation of Dux expression by the whole complex is so far 

unknown. We could postulate that, thanks to its DNA-binding domain (Dickinson and Kohwi-

Shigematsu, 1995; Samuel et al., 2008), NCL is the protein mediating the binding of the 

complex to the Dux promoter region, while TRIM28 would mediate the repressive action 

through the recruitment of the NuRD (nucleosome remodeling and deacetylase) complex or 

SETDB1 (SET Domain Bifurcated Histone Lysine Methyltransferase 1) (Iyengar and Farnham, 

2011; Cheng, 2014). These two actors are known to mediate the formation of 

heterochromatin leading to repression of gene expression (Iyengar and Farnham, 2011). The 

recruitment of the NuRD complex and SETDB1 is mediated by the SUMOylation of three lysine 

residues in the C-terminal region of the protein (K554, K779 and K804) (Ivanov et al., 2007). 

Interestingly, among these crucial residues, the K779 is specifically succinylated in SA-treated 

cells. We could thus postulate that the competition of succinylation and SUMOylation for this 

residue would impair the ability of TRIM28 to recruit the repressive complexes.  

 

The dramatic effects of SA on the global protein succinylation observed via the 

immunostaining of succinylated lysines is also intriguing. One could postulate that the 

intracellular metabolism of SA itself could lead to the production of extra-mitochondrial 

succinate or to the production of a reactive SA-derived metabolite, leading to protein 

succinylation. The intracellular fate of SA is not well described but clinical studies of patients 

with hereditary tyrosinemia, leading to SA production and heme synthesis deficiency, report 

high concentration of the metabolite in urine, suggesting excretion of this toxic intermediate 

(Christensen et al., 1981). However, in vitro studies also show a potential for SA oxidation by 

peroxynitrites, leading to the formation of either acetate or succinate depending on the 
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presence of O2 (Royer et al., 2004). However, if the production of these metabolites following 

SA degradation was actually leading to extramitochondrial protein succinylation, we shouldn’t 

have observed a rescue of the phenotype by SLC25A10 inhibition. Alternatively, one can still 

hypothesize that such degradation would occur inside the mitochondrial matrix to produce 

succinate or that SA derived-product would exit mitochondria through the same path. So far 

this cannot be excluded but could be assessed by using another inhibitor of the heme 

synthesis pathway (Shetty and Corson, 2020), or even genetic ablation of one of the enzyme 

of the synthesis pathway.  

 

Other than a role in protein modification, succinate has also other cellular effects that 

could explain the apparition of the 2CLCs. As described in the introduction, an increase in 

succinate concentration is known to inhibit the activity of dioxygenase enzymes (Laukka et al., 
2016; Tretter, Patocs and Chinopoulos, 2016). Among this family of enzymes, the TET DNA-

demethylase enzymes would be particularly interesting. Indeed, it has been shown that the 

loss of TET enzymes is able to promote the acquisition of 2CLC in the mESC population (Lu et 
al., 2014; Schüle et al., 2019). In accordance to our experimental conditions, the treatment 

with SA increases the concentration of succinate outside of mitochondria. In turn, this could 

reduce the activity of TET enzymes, leading to the observed phenotype. It would be interesting 

to investigate if this effect takes place in the presence of SA by first measuring the increase in 

succinate in the cells and follow with the measure of activity of the TET enzymes, using a 

fluorometric assay for example (Shen and Zhang, 2012). If the enzymatic activity is actually 

down, monitoring the DNA methylation levels with bisulfite sequencing would be required to 

verify the hypothesis. On the other hand, the increase in succinate concentration would also 

inhibit the PHD enzymes responsible for HIF1a degradation. This way, the increase of 

succinate observed in SA-treated cells would thus increase the stability of HIF1a and its 

transcriptional activity. However, this would be in disagreement with the work of Macfarlan 

in 2012 showing that culture of mESCs in hypoxia actually reduces drastically the number of 

2C::Tomato+ cells in the population (Macfarlan et al., 2012).  

 

To further validate that the increase of succinate concentration is responsible for the 

increase in 2CLCs, it would be interesting to raise succinate levels by an alternative way than 

heme synthesis inhibition. To this end, and as reported by the team of James Maher (Smestad 

et al., 2018), we could inhibit the SDH complex activity, in turn leading to the accumulation of 

its substrate, succinate. This could be achieved either by the generation of SDH KO mESCs, or 

by chemically inhibiting the SDH complex with Atpenin A5, for example (Miyadera et al., 2003). 

If the proposed model is correct, the loss of SDH activity should result in succinate 

accumulation and exit from the mitochondria, leading to an increase in 2CLCs. These effects 

would be rescued by butylmalonate. Since it also seems that the increase of protein 

succinylation occurs specifically in 2CLCs in culture (Fig. 27), it would be interesting to verify if 

this is also observed in vivo by immunostaining of mouse embryos from various stages (from 

2C to blastocyst). 

 

The original work on 2CLCs showed that this population of cells is highly dynamic, 

cycling in and out of this state during cell culture (Macfarlan et al., 2012). Regardless of the 

process that we implicate in the phenotype, it would be interesting to monitor at which levels 

it plays out: it could increase the number of cells transitioning to the 2C-stage without 

changing the kinetics or it could slow down the 2C-to-mESC reversion, accumulating 2CLC in 
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the population. To answer this, we could take advantage of the 2C::GFP mESCs line to follow 

in live imaging the acquisition of GFP+ cells over time.  

 

D. General considerations 
 

In the big picture, this project aims to understand what regulates the implantation of 

blastocyst in the uterus. Indeed, it is necessary to understand this process as the implantation 

is the cause for the failure to establish a successful pregnancy for about 50% of the fertilized 

eggs (Wilcox et al., 2020). While direct studies on human tissues and samples is extremely 

limited due to obvious ethical reasons, we propose here to bypass this in two ways: first, we 

replace the use of in vivo sampling and experimentation by an in vitro model consisting in the 

transition of embryonic stem cells from the naïve pre-implantation stage to the primed post-

implantation stage. While this definitely doesn’t recapitulate the whole embryo, with its 

surrounding tissues or the microenvironment, studying the modifications that are taking place 

in the ESCs, that reconstitute the whole individual, allow to catch a glimpse of the mechanisms 

that take place in vivo. Second, we decided to tackle the question of the requirements for this 

implantation step by using a mouse model. While using hESCs would have been ideal to study 

this process, we instead switched to mESCs since they share a lot of similarities like the 

metabolic switch or the reorganization of the epigenetic landscape.  

 

1. Human – Mouse differences 
 

Differences are however found in the signaling requirements for naïve stage 

maintenance and in the expression of some genes during the transition. For this reason, one 

of the first perspectives of this study, regardless of the highlighted mechanisms, will be to 

translate the mESCs results on hESCs. Despite having handled hESCs previously, setting up 

their culture in URBC happened to be more challenging than originally thought. Instead of 

wasting precious months on the resolution of these multiple challenges, we switched to the 

mESC culture that is way simpler. As described in the introduction, the stabilization of a naïve 

hESC stage was only achieved recently (Gafni et al., 2013b; Takashima et al., 2014; Theunissen 

et al., 2014; Ware et al., 2014) and so far none of the described protocols received unanimous 

support from the scientific community as “THE” naïve protocol. The most recognized protocol 

to date might be the one from R. Jaenisch group at the MIT, using the 5iLA cocktail. It would 

thus be interesting to test whether heme synthesis inhibition during the exit from the 5iLA 

state, by incubation with FGF2 or FGF2 and activin A, would also block the transition to a 

primed stage. The transition of hESCs is slower than in mESCs so we would need to study later 

time points than 48h in mESCs. Typically, 4 to 7 days are used to reach a stage primed enough 

and that would actually represent the duration of the transition performed in the CRISPR 

screen from which we based this study (Mathieu et al., 2019).  

 

Similarly to the transition in mESCs that was performed in this study, we can measure 

the transition of hESCs according to the gene expression and the concomitant protein 

abundance, but also with the TFE3 subcellular localization. In humans, however, the subset of 

genes that would be monitored slightly differs. Naïve hESCs express genes such as TFCP2L1, 
KLF4, KLF17, DNMT3L or NNMT while primed cells express IDO1, OTX2 or SOX11 (Sperber et 
al., 2015; Mathieu et al., 2019; Kinoshita et al., 2020). Some primed hESC culture have also 

displayed the expression of early differentiation markers such as FOXA2 or TBXT (T-box 
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transcription factor T; Brachyury) (Kinoshita et al., 2020). Highlighting a mechanism for the 

naïve-to-primed ESC transition is both human and mouse would definitely stress the 

importance of the pathway in the process.  

 

2. Generation of KO lines 
 

So far, we demonstrated that the inhibition of heme synthesis in mESCs impairs the 

transition, by using a chemical inhibitor of the pathway. Ideally, the generation of a mESC 

(and/or hESC) cell line KO for one of the enzymes of the pathway would strengthen the results 

obtained. To this end, we plan to generate an ALAD KO mESC cell line with the CRISPR-Cas9 

technique. Targeting the same enzyme that is the target of SA would confirm our results more 

elegantly than with an inhibitor. To date, the most efficient way of generating this KO would 

consist in a nucleofection of a CAS9-gRNA complex into the cells with the AMAXA nucleofector 

technology. We have previously shown that naïve cells are receptive to this technique (Moody 

et al., 2017; Mathieu et al., 2019). However, the risk is that a deletion of the gene would be 

lethal over a few generations seeing the drastic effects of heme synthesis inhibition on either 

protein translation or on the ETC. To bypass this, I suggest either the construction of a cell line 

expressing a GFP-tagged ALAD protein under the control of an inducible cassette, doxycycline 

(Dox) responsive. Knowing the tendency of PSC to silence exogenous DNA sequences, this 

cassette has to be inserted in the AAVS1 (Adeno-Associated Virus Integration Site 1) safe-

harbor site in human (Smith et al., 2008) or in the Rosa26 locus in mouse (Soriano, 1999). By 

then targeting the host ALAD gene with CRISPR-Cas9 while inducing the expression of the 

cassette with Dox, we would achieve an ALAD KO while maintaining the expression of the 

chimeric ALAD-GFP to maintain the production of heme. Of course, the ALAD-GFP construct 

inserted would have to be codon-optimized to be protected from the Cas9 recognition. While 

this approach offers the capacity to maintain ALAD KO cells under Dox supplementation, 

removal of Dox to stop the production of the recombinant protein might take a while to affect 

the cellular functions, depending on the protein stability. To our knowledge, the ALAD protein 

half-life is not known. The only available data shows that the half-life of the Alad mRNA in 

Chlamydomonas reinhardtii, a green algae, is about 51h, which would presumably offer a long 

stability in mammals (Matters and Beale, 1995). Since hemin supplementation was shown to 

salvage the heme synthesis inhibition, to bypass the potential bottlenecks of protein stability 

and inducible constructs and to simplify the process, we could supplement the media of ALAD 

KO cells with hemin to maintain sufficient heme intracellular levels. This way, removal of heme 

from the media would correspond to an induction of an ALAD KO. 

 

3. In vitro models 
  

While the use of this naïve-to-primed ESC transition indeed recapitulates the 

implantation step of the embryo, it dramatically simplifies it. Overall, it has been possible to 

develop embryos in vitro to recapitulate these early developmental stages, reviewed in 

(Shahbazi, Siggia and Zernicka-Goetz, 2019). Even very recently, the team of J. Hanna elegantly 

showed the development of the blastocyst even past the gastrulation stage, allowing the 

dissection of early events leading to the organogenesis (Aguilera-Castrejon et al., 2021). 

Alternatively, the generation of blastocyst-like structures by self-organisation of ESCs render 

possible the study of these early developmental stages (Deglincerti et al., 2016; Shahbazi et 
al., 2016). Using such models in the context of heme synthesis inhibition would allow a 
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resolution in term of whole embryo, to dissect the role of heme in the developmental 

processes.  
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Conclusions 
 

This research project was first supposed to interrogate the actors required for a proper 

implantation of embryos in the uterus, represented by the naïve-to-primed transition in vitro. 
This developmental step is one of the most crucial in the establishment of a successful 

pregnancy and thus understanding the molecular details governing it is fundamental. In this 

context of pluripotency, it was intriguing to highlight the heme biosynthetic pathway as crucial 

for this step. To our knowledge, it is the first report presenting a role for this pathway in 

embryonic stem cells. After pursuing the investigation for the role of this pathway on the 

cellular biology of ESCs, it seems the generation of heme serves several aspects of cell 

signaling that are crucial for the progression of the embryo development. 

 

According to the results we presented in this work, heme seems to be more of a 

passenger than a driver in this process, a passenger required for the establishment of proper 

cellular signals, such as the MAPK or the TGFb pathway. An appropriate response to signals 

activating these pathways is indeed crucial for the development of the embryo, as the cell fate 

is guided by the presence of such factors, in vivo and in vitro. This is in line with the embryonic 

lethality associated with the loss of most of the genes in the heme synthesis pathway. We 

showed the failure of activation of both MAPK and TGFb pathways upon heme synthesis 

inhibition during the naïve-to-primed transition. We hypothesize that this is due to aberrant 

activation of the SRC kinase, activating STAT3, blocking the FGFR signaling through an 

induction of its endocytosis, and blocking the SMAD activation through the AKT kinase. The 

transcription factor EGR1 could also be involved in the phenotype, since it is directly activated 

by ERK and SMADs. Further work is however required to confirm these hypotheses.  

 

Interestingly, we also showed that SA-induced heme synthesis inhibition can also have 

heme-independent effects, unrelated to eventual off targets of the molecule, but instead due 

to an accumulation of the upstream metabolite succinyl-CoA. We showed that this metabolite 

can then exit the mitochondria and directly impact the potency of stem cells, as shown by the 

increase in 2CLCs, a subpopulation of cells reminiscent of the totipotency state. We haven’t 

pinpointed the exact mechanism leading to the succinate effect in this process but elements 

in the results point toward the modulation of gene expression due to the succinylation of 

proteins such as nucleolin and TRIM28, known to regulate the expression of Dux, the master 

transcriptional regulator in 2C embryos. A putative role for succinate as a repressor of the TET 

demethylases enzymes, also known to regulate the acquisition of the 2CLC population, could 

also contribute to this phenomenon, although this hypothesis was not explored in this work. 

Together this draw attention on the tight regulation between metabolism and gene 

expression and/or epigenetic regulation.  
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Supplementary information 
 
Supplementary table 1: List of succinylated peptide identified in mESC 2iL or 2iL +  SA
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Ddetraux210115-succi 
     

Quantitativ
e Value 
(Total 
Spectra) 

Quantitativ
e Value 
(Total 
Spectra) 

Quantitativ
e Value 
(Total 
Spectra) 

Quantitativ
e Value 

       
2IL 2IL SA SA 

# Identified Proteins (1189/1198) Accession 
Number 

Alternate 
ID 

Molecula
r Weight 

Fisher's 
Exact Test 
(p-value): 
*(p < 
0,00305) 

FC 2IL 2IL-210115 SA SA-210115 

1 Stress-70 protein, mitochondrial OS=Mus musculus 
OX=10090 GN=Hspa9 PE=1 SV=3 

P38647 Hspa9 73 kDa < 0,00010 0,9 106 200 80 181 

2 60 kDa heat shock protein, mitochondrial OS=Mus 
musculus OX=10090 GN=Hspd1 PE=1 SV=1 

P63038 Hspd1 61 kDa < 0,00010 0,9 93 182 70 179 

3 Cluster of Heat shock protein HSP 90-alpha OS=Mus 
musculus OX=10090 GN=Hsp90aa1 PE=1 SV=4 (P07901) 

P07901 [3] Hsp90aa
1 

85 kDa 0,036 1,6 34 110 57 167 

4 Cluster of Heat shock protein HSP 90-beta OS=Mus 
musculus OX=10090 GN=Hsp90ab1 PE=1 SV=3 (P11499) 

P11499 [3] Hsp90ab
1 

83 kDa 0,046 1,6 35 93 55 144 

5 Cluster of ADP/ATP translocase 2 OS=Mus musculus 
OX=10090 GN=Slc25a5 PE=1 SV=3 (P51881) 

P51881 [6] Slc25a5 33 kDa 0,49 1,3 34 92 33 130 

6 Aconitate hydratase, mitochondrial OS=Mus musculus 
OX=10090 GN=Aco2 PE=1 SV=1 

Q99KI0 Aco2 85 kDa 0,0047 1 50 121 38 126 

7 ATP synthase subunit alpha, mitochondrial OS=Mus 
musculus OX=10090 GN=Atp5f1a PE=1 SV=1 

Q03265 Atp5f1a 60 kDa 0,00037 0,9 53 140 50 123 

8 Cluster of Heat shock cognate 71 kDa protein OS=Mus 
musculus OX=10090 GN=Hspa8 PE=1 SV=1 (P63017) 

P63017 [13] Hspa8 71 kDa 0,077 1,5 30 71 43 113 

9 Cluster of Elongation factor 1-alpha OS=Mus musculus 
OX=10090 GN=Eef1a1 PE=2 SV=1 (Q3UA81) 

Q3UA81 [2] Eef1a1 50 kDa 0,16 1,5 33 70 41 110 

10 Cluster of Glyceraldehyde-3-phosphate dehydrogenase 
OS=Mus musculus OX=10090 GN=GAPDH PE=2 SV=1 
(D2KHZ9) 

D2KHZ9 [4] GAPDH 36 kDa 0,1 1,5 30 68 44 105 

11 Isocitrate dehydrogenase [NADP], mitochondrial OS=Mus 
musculus OX=10090 GN=Idh2 PE=1 SV=3 

P54071 Idh2 51 kDa 0,01 1 35 100 28 101 

12 Aspartate aminotransferase, mitochondrial OS=Mus 
musculus OX=10090 GN=Got2 PE=1 SV=1 

P05202 Got2 47 kDa 0,011 1 43 87 32 92 

13 Elongation factor 2 OS=Mus musculus OX=10090 GN=Eef2 
PE=1 SV=2 

P58252 (+4) Eef2 95 kDa 0,18 1,5 14 61 22 89 

14 Cluster of Citrate synthase, mitochondrial OS=Mus 
musculus OX=10090 GN=Cs PE=1 SV=1 (Q9CZU6) 

Q9CZU6 [2] Cs 52 kDa < 0,00010 0,7 31 126 27 88 
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15 Malate dehydrogenase, mitochondrial OS=Mus musculus 
OX=10090 GN=Mdh2 PE=1 SV=3 

P08249 Mdh2 36 kDa 0,019 1 43 83 36 87 

16 Nucleolin OS=Mus musculus OX=10090 GN=Ncl PE=1 SV=2 P09405 (+1) Ncl 77 kDa < 0,00010 3,2 17 33 75 85 

17 Cluster of Fructose-bisphosphate aldolase A OS=Mus 
musculus OX=10090 GN=Aldoa PE=1 SV=2 (P05064) 

P05064 [5] Aldoa 39 kDa 0,24 1,4 24 54 30 82 

18 Glutamate dehydrogenase 1, mitochondrial OS=Mus 
musculus OX=10090 GN=Glud1 PE=1 SV=1 

P26443 Glud1 61 kDa 0,016 0,9 29 81 25 79 

19 Heat shock protein 1 (Chaperonin 10) OS=Mus musculus 
OX=10090 GN=Hspe1 PE=1 SV=1 

Q4KL76 (+1) Hspe1 11 kDa < 0,00010 0,7 42 113 30 72 

20 Isoform 2 of Serine hydroxymethyltransferase, 
mitochondrial OS=Mus musculus OX=10090 GN=Shmt2 

Q9CZN7-2 Shmt2 55 kDa 0,00055 0,8 35 88 29 72 

21 Trifunctional enzyme subunit alpha, mitochondrial 
OS=Mus musculus OX=10090 GN=Hadha PE=1 SV=1 

Q8BMS1 Hadha 83 kDa 0,00056 0,8 41 81 33 67 

22 Cluster of Alpha-enolase OS=Mus musculus OX=10090 
GN=Eno1 PE=1 SV=3 (P17182) 

P17182 [5] Eno1 47 kDa 0,15 1,5 16 46 31 64 

23 Cluster of Heat shock 70 kDa protein 4 OS=Mus musculus 
OX=10090 GN=Hspa4 PE=1 SV=1 (Q3U2G2) 

Q3U2G2 [4] Hspa4 94 kDa 0,00021 2,6 8 24 23 61 

24 ATP synthase subunit beta, mitochondrial OS=Mus 
musculus OX=10090 GN=Atp5f1b PE=1 SV=2 

P56480 Atp5f1b 56 kDa 0,008 0,9 30 66 26 59 

25 Cluster of MCG68069 OS=Mus musculus OX=10090 
GN=Npm1 PE=1 SV=1 (Q5SQB7) 

Q5SQB7 [3] Npm1 33 kDa 0,0046 2 22 25 38 58 

26 Presequence protease, mitochondrial OS=Mus musculus 
OX=10090 GN=Pitrm1 PE=1 SV=1 

Q8K411 (+2) Pitrm1 117 kDa 0,15 1,1 13 54 13 58 

27 Leucine-rich PPR motif-containing protein, mitochondrial 
OS=Mus musculus OX=10090 GN=Lrpprc PE=1 SV=2 

Q6PB66 Lrpprc 157 kDa 0,028 0,9 15 62 16 55 

28 Cluster of Peptidyl-prolyl cis-trans isomerase A OS=Mus 
musculus OX=10090 GN=Ppia PE=1 SV=2 (P17742) 

P17742 [4] Ppia 18 kDa 0,45 1,2 21 47 29 55 

29 Cluster of Pyruvate dehydrogenase E1 component subunit 
alpha, somatic form, mitochondrial OS=Mus musculus 
OX=10090 GN=Pdha1 PE=1 SV=1 (P35486) 

P35486 [4] Pdha1 43 kDa 0,027 0,9 24 55 20 53 

30 HATPase_c domain-containing protein OS=Mus musculus 
OX=10090 GN=Trap1 PE=2 SV=1 

Q3TK29 (+4) Trap1 80 kDa 0,076 1 21 47 15 52 

31 Cluster of Serine beta-lactamase-like protein LACTB, 
mitochondrial OS=Mus musculus OX=10090 GN=Lactb 
PE=1 SV=1 (A0A1L1SVF9) 

A0A1L1SVF9 
[4] 

Lactb 39 kDa 0,0064 0,8 29 51 16 51 

32 17beta-hydroxysteroid dehydrogenase type 10/short 
chain L-3-hydroxyacyl-CoA dehydrogenase OS=Mus 
musculus OX=10090 GN=Hsd17b10 PE=1 SV=1 

Q99N15 
(+1) 

Hsd17b1
0 

27 kDa 0,16 1,1 16 48 17 51 
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33 Stress-induced-phosphoprotein 1 OS=Mus musculus 
OX=10090 GN=Stip1 PE=1 SV=1 

Q60864 Stip1 63 kDa 0,36 1,2 20 40 20 51 

34 ATP synthase subunit d, mitochondrial OS=Mus musculus 
OX=10090 GN=Atp5pd PE=1 SV=3 

Q9DCX2 Atp5pd 19 kDa 0,00013 0,7 21 68 12 50 

35 Cluster of Actin, cytoplasmic 2 OS=Mus musculus 
OX=10090 GN=Actg1 PE=1 SV=1 (P63260) 

P63260 [6] Actg1 42 kDa 0,16 1,6 13 33 22 50 

36 Isoform 2 of Cytosol aminopeptidase OS=Mus musculus 
OX=10090 GN=Lap3 

Q9CPY7-2 Lap3 53 kDa 0,17 1,1 19 38 12 48 

37 Cluster of 14-3-3 protein zeta/delta OS=Mus musculus 
OX=10090 GN=Ywhaz PE=1 SV=1 (P63101) 

P63101 [11] Ywhaz 28 kDa 0,4 1,4 5 38 11 48 

38 60S ribosomal protein L29 OS=Mus musculus OX=10090 
GN=Rpl29 PE=1 SV=2 

P47915 (+1) Rpl29 18 kDa 0,00011 3,3 2 16 13 47 

39 Cluster of Tripartite motif-containing 28 OS=Mus 
musculus OX=10090 GN=Trim28 PE=2 SV=1 (Q5EBP9) 

Q5EBP9 [3] Trim28 89 kDa 0,00018 3 7 16 21 47 

40 Succinate dehydrogenase [ubiquinone] flavoprotein 
subunit, mitochondrial OS=Mus musculus OX=10090 
GN=Sdha PE=1 SV=1 

Q8K2B3 Sdha 73 kDa 0,017 0,9 16 53 13 47 

41 Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial 
OS=Mus musculus OX=10090 GN=Hadh PE=1 SV=2 

Q61425 Hadh 34 kDa 0,33 1,2 21 34 17 47 

42 60S ribosomal protein L7a OS=Mus musculus OX=10090 
GN=Rpl7a PE=1 SV=2 

P12970 (+2) Rpl7a 30 kDa < 0,00010 3,4 5 14 19 45 

43 Isoform Mt-VDAC1 of Voltage-dependent anion-selective 
channel protein 1 OS=Mus musculus OX=10090 GN=Vdac1 

Q60932-2 Vdac1 31 kDa 0,01 2,3 4 19 8 45 

44 Cluster of T-complex protein 1 subunit alpha OS=Mus 
musculus OX=10090 GN=Tcp1 PE=1 SV=3 (P11983) 

P11983 [3] Tcp1 60 kDa 0,23 1,5 6 30 10 45 

45 Dihydrolipoyl dehydrogenase, mitochondrial OS=Mus 
musculus OX=10090 GN=Dld PE=1 SV=2 

O08749 Dld 54 kDa 0,022 0,9 21 47 16 44 

46 Cluster of Histone H1.3 OS=Mus musculus OX=10090 
GN=H1-3 PE=1 SV=2 (P43277) 

P43277 [7] H1-3 22 kDa 0,4 1,2 25 30 23 43 

47 L-threonine 3-dehydrogenase, mitochondrial OS=Mus 
musculus OX=10090 GN=Tdh PE=1 SV=1 

Q8K3F7 Tdh 41 kDa 0,15 1 13 38 10 42 

48 Protein disulfide-isomerase A3 OS=Mus musculus 
OX=10090 GN=Pdia3 PE=1 SV=2 

P27773 Pdia3 57 kDa 0,0002 3,4 2 14 14 40 

49 Cluster of Uncharacterized protein OS=Mus musculus 
OX=10090 GN=Cct8 PE=2 SV=1 (Q8BVY8) 

Q8BVY8 [3] Cct8 60 kDa 0,061 1,9 5 22 11 40 

50 Cluster of 40S ribosomal protein S25 OS=Mus musculus 
OX=10090 GN=Rps25 PE=1 SV=1 (P62852) 

P62852 [3] Rps25 14 kDa 0,43 1,4 11 28 13 40 

51 Cluster of Isoform 2 of Protein SET OS=Mus musculus 
OX=10090 GN=Set (Q9EQU5-2) 

Q9EQU5-2 
[3] 

Set 32 kDa 0,0097 2,2 9 18 21 39 
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52 Cluster of Uncharacterized protein OS=Mus musculus 
OX=10090 GN=Hnrnpu PE=2 SV=1 (Q3TVV6) 

Q3TVV6 [5] Hnrnpu 88 kDa < 0,00010 25 0 2 11 38 

53 Eukaryotic translation elongation factor 1 gamma OS=Mus 
musculus OX=10090 GN=Eef1g PE=1 SV=1 

Q4FZK2 (+1) Eef1g 50 kDa 0,08 1,8 4 26 16 38 

54 Medium-chain specific acyl-CoA dehydrogenase, 
mitochondrial OS=Mus musculus OX=10090 GN=Acadm 
PE=1 SV=1 

P45952 (+1) Acadm 46 kDa 0,11 1 14 35 10 38 

55 Cluster of Ubiquitin-40S ribosomal protein S27a OS=Mus 
musculus OX=10090 GN=Rps27a PE=1 SV=2 (P62983) 

P62983 [5] Rps27a 18 kDa 0,18 1 14 34 12 38 

56 Aldehyde dehydrogenase, mitochondrial OS=Mus 
musculus OX=10090 GN=Aldh2 PE=1 SV=1 

P47738 (+5) Aldh2 57 kDa 0,53 1,3 10 28 11 38 

57 Cluster of ATP synthase subunit O, mitochondrial OS=Mus 
musculus OX=10090 GN=Atp5po PE=1 SV=1 (Q9DB20) 

Q9DB20 [3] Atp5po 23 kDa 0,00013 0,6 19 54 10 37 

58 ATP synthase subunit gamma OS=Mus musculus 
OX=10090 GN=Atp5c1 PE=1 SV=1 

Q8C2Q8 Atp5c1 30 kDa 0,041 0,9 9 44 10 37 

59 Adenylate kinase 4, mitochondrial OS=Mus musculus 
OX=10090 GN=Ak4 PE=1 SV=1 

Q3U489 
(+1) 

Ak4 25 kDa 0,00017 0,7 28 57 23 36 

60 Fumarate hydratase, mitochondrial OS=Mus musculus 
OX=10090 GN=Fh PE=1 SV=3 

P97807 (+1) Fh 54 kDa 0,02 0,8 17 41 13 36 

61 Cluster of S1 motif domain-containing protein OS=Mus 
musculus OX=10090 GN=Pnpt1 PE=2 SV=1 (Q3TST0) 

Q3TST0 [4] Pnpt1 86 kDa 0,11 1 7 36 5 36 

62 Histone H1.5 OS=Mus musculus OX=10090 GN=H1-5 PE=1 
SV=2 

P43276 (+1) H1-5 23 kDa 0,21 1,6 13 18 13 36 

63 Cluster of Cofilin-1 OS=Mus musculus OX=10090 GN=Cfl1 
PE=1 SV=3 (P18760) 

P18760 [4] Cfl1 19 kDa 0,47 1,3 9 27 12 36 

64 Histone H1.1 OS=Mus musculus OX=10090 GN=H1-1 PE=1 
SV=2 

P43275 H1-1 22 kDa 0,0019 2,9 5 11 12 35 

65 Cluster of T-complex protein 1 subunit eta OS=Mus 
musculus OX=10090 GN=Cct7 PE=1 SV=1 (P80313) 

P80313 [9] Cct7 60 kDa 0,027 2,3 3 14 4 35 

66 Cluster of Peptidylprolyl isomerase OS=Mus musculus 
OX=10090 GN=Fkbp3 PE=1 SV=1 (Q3UBU9) 

Q3UBU9 [3] Fkbp3 25 kDa < 0,00010 4,2 5 7 16 34 

67 Cluster of GTP-binding nuclear protein Ran OS=Mus 
musculus OX=10090 GN=Ran PE=1 SV=3 (P62827) 

P62827 [4] Ran 24 kDa 0,11 1,8 8 20 15 34 

68 Cluster of Keratin 5 OS=Mus musculus OX=10090 GN=Krt5 
PE=1 SV=2 (Q32P04) 

Q32P04 [21] Krt5 62 kDa 0,062 0,9 32 20 15 33 

69 40S ribosomal protein S3a OS=Mus musculus OX=10090 
GN=Rps3a PE=1 SV=3 

P97351 (+1) Rps3a 30 kDa 0,21 1,6 10 21 16 33 

70 Acetyl-CoA acetyltransferase, mitochondrial OS=Mus 
musculus OX=10090 GN=Acat1 PE=1 SV=1 

Q8QZT1 Acat1 45 kDa 0,32 1,1 14 25 11 33 
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71 Endoplasmic reticulum chaperone BiP OS=Mus musculus 
OX=10090 GN=Hspa5 PE=1 SV=3 

P20029 (+2) Hspa5 72 kDa 0,0019 3 3 12 13 32 

72 Peroxiredoxin-1 OS=Mus musculus OX=10090 GN=Prdx1 
PE=1 SV=1 

P35700 Prdx1 22 kDa 0,29 1,5 9 21 13 32 

73 Fatty acid synthase OS=Mus musculus OX=10090 GN=Fasn 
PE=1 SV=1 

A0A0U1RNJ
1 (+1) 

Fasn 272 kDa 0,11 1,9 4 16 6 31 

74 Electron transfer flavoprotein subunit alpha, 
mitochondrial OS=Mus musculus OX=10090 GN=Etfa PE=1 
SV=2 

Q99LC5 Etfa 35 kDa 0,2 1 12 26 8 31 

75 Ornithine aminotransferase, mitochondrial OS=Mus 
musculus OX=10090 GN=Oat PE=1 SV=1 

P29758 (+3) Oat 48 kDa 0,51 1,2 3 25 4 31 

76 Peptidyl-prolyl cis-trans isomerase B OS=Mus musculus 
OX=10090 GN=Ppib PE=1 SV=2 

P24369 (+1) Ppib 24 kDa 0,029 2,2 7 12 12 30 

77 Endoplasmin OS=Mus musculus OX=10090 GN=Hsp90b1 
PE=1 SV=2 

P08113 (+3) Hsp90b1 92 kDa 0,061 2,1 3 15 7 30 

78 Cluster of Uncharacterized protein (Fragment) OS=Mus 
musculus OX=10090 PE=2 SV=1 (Q8BNM0) 

Q8BNM0 [4] 21 kDa 0,19 1,6 13 19 21 30 

79 Cluster of Tubulin alpha-1A chain OS=Mus musculus 
OX=10090 GN=Tuba1a PE=1 SV=1 (P68369) 

P68369 [5] Tuba1a 50 kDa 0,42 1,4 7 25 14 30 

80 Cluster of T-complex protein 1 subunit zeta OS=Mus 
musculus OX=10090 GN=Cct6a PE=1 SV=3 (P80317) 

P80317 [6] Cct6a 58 kDa 0,43 1,4 5 21 6 30 

81 T-complex protein 1 subunit epsilon OS=Mus musculus 
OX=10090 GN=Cct5 PE=1 SV=1 

P80316 Cct5 60 kDa 0,0003 4,5 0 8 7 29 

82 Superoxide dismutase [Mn], mitochondrial OS=Mus 
musculus OX=10090 GN=Sod2 PE=1 SV=3 

P09671 (+1) Sod2 25 kDa 0,027 0,8 16 35 14 29 

83 Cluster of Succinate--CoA ligase [ADP/GDP-forming] 
subunit alpha, mitochondrial OS=Mus musculus 
OX=10090 GN=Suclg1 PE=1 SV=4 (Q9WUM5) 

Q9WUM5 
[2] 

Suclg1 36 kDa 0,2 1 14 24 10 29 

84 Cluster of Eukaryotic translation initiation factor 5A-1 
OS=Mus musculus OX=10090 GN=Eif5a PE=1 SV=2 
(P63242) 

P63242 [3] Eif5a 17 kDa 0,35 1,1 9 26 11 29 

85 Glycine--tRNA ligase OS=Mus musculus OX=10090 
GN=Gars1 PE=1 SV=1 

Q9CZD3 Gars1 82 kDa 0,49 1,2 9 24 12 29 

86 Transaldolase OS=Mus musculus OX=10090 GN=Taldo1 
PE=1 SV=1 

A0A1B0GR1
1 (+1) 

Taldo1 42 kDa 0,00027 4,9 0 7 6 28 

87 Cluster of Heterogeneous nuclear ribonucleoprotein A1 
OS=Mus musculus OX=10090 GN=Hnrnpa1 PE=1 SV=2 
(P49312) 

P49312 [6] Hnrnpa1 34 kDa 0,026 2,4 3 11 6 28 

88 Pyruvate kinase PKM OS=Mus musculus OX=10090 
GN=Pkm PE=1 SV=4 

P52480 Pkm 58 kDa 0,19 1,6 9 18 16 28 
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89 Aminomethyltransferase OS=Mus musculus OX=10090 
GN=Amt PE=1 SV=1 

A2RSW6 
(+1) 

Amt 44 kDa 0,27 1,1 8 28 11 28 

90 Isocitrate dehydrogenase [NAD] subunit, mitochondrial 
OS=Mus musculus OX=10090 GN=Idh3b PE=1 SV=1 

Q91VA7 Idh3b 42 kDa 0,34 1,1 6 21 2 28 

91 Isocitrate dehydrogenase [NAD] subunit, mitochondrial 
OS=Mus musculus OX=10090 GN=Idh3a PE=1 SV=1 

A0A1L1STE6 
(+1) 

Idh3a 42 kDa 0,0055 0,8 18 38 15 27 

92 Cluster of Ribosomal protein L4 OS=Mus musculus 
OX=10090 GN=Rpl4 PE=1 SV=1 (Q564E8) 

Q564E8 [3] Rpl4 47 kDa 0,0094 2,8 2 11 9 27 

93 Cluster of Enoyl-CoA delta isomerase 2, mitochondrial 
OS=Mus musculus OX=10090 GN=Eci2 PE=1 SV=1 
(Q3TCD4) 

Q3TCD4 [4] Eci2 42 kDa 0,14 1 14 24 10 27 

94 Cluster of Acyl-coenzyme A thioesterase 9, mitochondrial 
OS=Mus musculus OX=10090 GN=Acot9 PE=1 SV=1 
(Q9R0X4) 

Q9R0X4 [3] Acot9 51 kDa 0,4 1,2 4 22 3 27 

95 Uncharacterized protein OS=Mus musculus OX=10090 
GN=Slc25a3 PE=2 SV=1 

Q3THU8 
(+1) 

Slc25a3 40 kDa 0,42 1,2 7 25 11 27 

96 Cluster of HABP4_PAI-RBP1 domain-containing protein 
OS=Mus musculus OX=10090 GN=Serbp1 PE=2 SV=1 
(Q3UJK2) 

Q3UJK2 [5] Serbp1 43 kDa < 0,00010 3,8 6 7 24 26 

97 GrpE protein homolog 1, mitochondrial OS=Mus musculus 
OX=10090 GN=Grpel1 PE=1 SV=1 

Q99LP6 Grpel1 24 kDa 0,0029 0,7 15 37 10 26 

98 High mobility group protein B2 OS=Mus musculus 
OX=10090 GN=Hmgb2 PE=1 SV=3 

P30681 (+3) Hmgb2 24 kDa 0,08 1,8 14 12 22 26 

99 Cluster of Uncharacterized protein OS=Mus musculus 
OX=10090 GN=Rpl3 PE=2 SV=1 (Q3T9U9) 

Q3T9U9 [4] Rpl3 46 kDa 0,1 1,9 3 14 7 26 

10
0 

Prohibitin OS=Mus musculus OX=10090 GN=Phb PE=1 
SV=1 

P67778 Phb 30 kDa 0,24 1,1 8 27 11 26 

 
 
 


