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Chronic Sulfasalazine Treatment in
Mice Induces System xc

− -
Independent Adverse EffectsQ2

Q1

Lise Verbruggen1, Lindsay Sprimont2, Eduard Bentea1, Pauline Janssen1, Azzedine Gharib2,
Lauren Deneyer1, Laura De Pauw1, Olaya Lara1, Hideyo Sato3, Charles Nicaise2 and
Ann Massie1* Q3

Q4
1Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium, 2Laboratory Neurodegeneration
and Regeneration, Université de Namur, Namur, Belgium, 3Department of Medical Technology, Niigata University, Niigata, Japan Q5

Despite ample evidence for the therapeutic potential of inhibition of the cystine/glutamate
antiporter system xc

− in neurological disorders and in cancer, none of the proposed
inhibitors is selective. In this context, a lot of research has been performed using the EMA-
and FDA-approved drug sulfasalazine (SAS). Even though this molecule is already on the
market for decades as an anti-inflammatory drug, serious side effects due to its use have
been reported. Whereas for the treatment of the main indications, SAS needs to be
cleaved in the intestine into the anti-inflammatory compound mesalazine, it needs to reach
the systemic circulation in its intact form to allow inhibition of system xc

−. The higher plasma
levels of intact SAS (or its metabolites) might induce adverse effects, independent of its
action on system xc

−. Some of these effects have however been attributed to system xc
−

inhibition, calling into question the safety of targeting system xc
−. In this study we

chronically treated system xc
− - deficient mice and their wildtype littermates with two

different doses of SAS (160 mg/kg twice daily or 320 mg/kg once daily, i.p.) and studied
some of the adverse effects that were previously reported. SAS had a negative impact on
the survival rate, the body weight, the thermoregulation and/or stress reaction of mice of
both genotypes, and thus independent of its inhibitory action on system xc

−. While SAS
decreased the total distance travelled in the open-field test the first time the mice
encountered the test, it did not influence this parameter on the long-term and it did
not induce other behavioral changes such as anxiety- or depressive-like behavior. Finally,
no major histological abnormalities were observed in the spinal cord. To conclude, we
were unable to identify any undesirable system xc

−-dependent effect of chronic
administration of SAS.
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Abbreviations: EPM, elevated plus maze; i.p, intraperitoneal; KW, Kruskal-Wallis; LPS, lipopolysaccharide; MAG, myelin-
associated glycoprotein; MBP, myelin basic protein; MCT, multiple comparisons test; MS, multiple sclerosis; MSRT, matched-
pairs signed rank test; MTS, mouse tail suspension; OF, open field; SAS, sulfasalazine; SEM, standard error of the mean; TBS,
Tris-buffered saline.

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 6256991

ORIGINAL RESEARCH
published: XX 2021

doi: 10.3389/fphar.2021.625699

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.625699&domain=pdf&date_stamp=2021-05-03
https://www.frontiersin.org/articles/10.3389/fphar.2021.625699/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.625699/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.625699/full
http://creativecommons.org/licenses/by/4.0/
mailto:ann.massie@vub.be
https://doi.org/10.3389/fphar.2021.625699
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.625699


INTRODUCTIONQ8

System xc
− is a cystine/glutamate antiporter with xCT (Slc7a11)

as specific subunit and is located mainly in the central nervous
system and peripheral organs related to the immune system. xCT
expression is enhanced in conditions of increased oxidative stress
and/or inflammation, and inhibition of system xc

− has been
proposed as a treatment strategy for several neurological
disorders as well as for diverse cancer types (Lewerenz et al.,
2013; Massie et al., 2015; Koppula et al., 2018; Liu et al., 2020).
However, despite many attempts, till now none of the available
inhibitors are selectively targeting system xc

−. Preclinical research is
as such hampered by the lack of specific tools to interfere with the
function of system xc

− in vivo as it is difficult to distinguish the off-
target effects of the non-specific inhibitors from the effects that are
mediated by inhibition of system xc

−. System xc
− - deficient mice,

including transgenic mice with a deletion in exon one of the xCT
gene (xCT−/- mice, C57BL/6 J background) (Sato et al., 2005) and
mice carrying a spontaneous subtle gray mutation which extends
from intron 11 through exon 12 and results in truncated Slc7a11
mRNA (Sut mice, C3H/HeSnJ background) (Chintala et al., 2005),
have been valuable tools to identify the involvement of system xc

−

in disease progression in preclinical settings.
Using xCT−/− mice, we demonstrated that system xc

− is the
major source of extracellular glutamate in different brain regions
(De Bundel et al., 2011; Massie et al., 2011). This glutamate can
modulate the glutamatergic neurotransmission but when
extracellular glutamate concentrations rise, e.g. in case of injury
or neurological disorders (Mehta et al., 2013; Olloquequi et al.,
2018), this glutamate can lower the threshold for glutamate toxicity
(excitotoxicity) and thereby induce or further promote disease
progression. Furthermore, system xc

− has been reported to drive
neuroinflammation. Genetic xCT deletion shifts microglial cells
towards a more anti-inflammatory, neuroprotective profile in a
model for amyotrophic lateral sclerosis (Mesci et al., 2015) and
attenuates the (neuro)inflammatory response after a systemic
injection of a sublethal dose of lipopolysaccharide (LPS)
(Albertini et al., 2018). Accordingly, xCT−/− mice have been
shown to be protected in models for several neurological disorders.

In the context of cancer, it is widely accepted that inhibition of
system xc

− reduces cancer cell proliferation (Gout et al., 2001;
Guo et al., 2011; Lewerenz et al., 2013; Dai et al., 2014), tissue
invasion and metastasis (Sontheimer and Bridges, 2012;
Lewerenz et al., 2013) as well as multidrug resistance (Lo et al.,
2008; Sontheimer and Bridges, 2012; Lewerenz et al., 2013; Bhutia
et al., 2015). While all these features result from the inhibition of
cystine uptake and consequently reduced glutathione synthesis in
the cancer cells, also decreased glutamate release can be beneficial
in some cancer types. In glioblastoma, glutamate released from the
tumor by system xc

− is involved in peritumoral seizure
development and favors cancer invasion by inducing peri-
tumoral excitotoxic neuronal cell death (Sontheimer and
Bridges, 2012). Moreover, in bone cancer, inhibition of system
xc

− has been shown to reduce cancer-induced bone-pain due to
decreased glutamate release (Ungard et al., 2014).

To allow translation of these findings to a clinical setting,
pharmacological inhibition of the transporter is required.

However, all candidate inhibitors that have been proposed,
have their drawbacks and off-target effects. Cyclic and non-
cyclic glutamate analogues, such as L-α-aminopimelate and
(S)-4-carboxyphenylglycine, show cross-activity with
glutamatergic receptors due to the structure similarity with
glutamate (Lewerenz et al., 2013), and inhibitors such as
sorafenib and erastin show neuronal toxicity (Dahlmanns
et al., 2017). Moreover, toxic effects related to inhibition of
tyrosine kinase by sorafenib (Granito et al., 2016) and
nephrotoxicity due to cytotoxic effects of erastin on healthy
renal cells (Fujiki et al., 2019; Yu et al., 2019) were
demonstrated. Capsazepine blocks voltage-activated calcium
channels (Docherty et al., 1997), vanilloid receptor and
nicotinic acetylcholine receptors (Liu and Simon, 1997) and
sulfasalazine (SAS) inhibits NFkB (Weber et al., 2000) and
acts as an antagonist of the N-methyl-D-aspartate (NMDA)
receptor (Ryu et al., 2003; Noh et al., 2006).

Despite its off-target effects (Weber et al., 2000; Ryu et al.,
2003; Noh et al., 2006), SAS is the most frequently used molecule
to test the potential of system xc

− as a drug target in both
preclinical (Evonuk et al., 1950; Gout et al., 2001; Ma et al.,
2015; Leclercq et al., 2019; Hu et al., 2020) and clinical studies
(Shitara et al., 2017; Takeuchi et al., 2014). It is FDA- and EMA-
approved and already on the market as an anti-inflammatory
drug for decades, allowing a fast transfer to a clinical setting.
While SAS-induced inhibition of system xc

− was effective in
rodent models of different cancer types (Gout et al., 2001;
Chung et al., 2005; Doxsee et al., 2007; Guo et al., 2011; Ma
et al., 2015; Wada et al., 2018; Hu et al., 2020) as well as in models
for epilepsy (Leclercq et al., 2019) and multiple sclerosis (MS)
(Evonuk et al., 1950), Soria et al. recently reported in vivomyelin
degeneration in the white matter of the spinal cord and in vitro
oligodendrocyte-toxicity after SAS-induced chronic inhibition of
system xc

− (Soria et al., 2016). On the contrary, blocking system
xc

− during inflammation was suggested to prevent
oligodendrocyte damage in white matter disorders (Domercq
et al., 1950). Indeed, the use of SAS in the context of MS is
debatable: some pre-clinical studies demonstrated beneficial
effects of SAS treatment -including reduced demyelination
(Evonuk et al., 1950; Prosiegel et al., 1990)- while others
showed worsening of the clinical symptoms when the treatment
was continued for a longer time (Correale et al., 1991; Noseworthy
et al., 1998). Also in the context of glioblastoma, contradictory data
have been published concerning the safety of SAS. Positive effects
of SAS were seen in rodent models, without any signs of toxicity
(Gout et al., 2001; Chung et al., 2005), yet two clinical trials with
glioblastoma patients revealed severe side effects of SAS including
neurological features as well as bone-marrow and hematological
toxicity (mostly leukopenia and neutropenia) (Robe et al., 2009;
Takeuchi et al., 2014).

For both ulcerative colitis and Crohn’s disease -the main
indications of SAS- the pharmacological activity is driven by
the anti-inflammatory metabolite mesalazine, which is formed
after cleavage in the intestine. In animal models for these
disorders, rather small doses of SAS (10–100 mg/kg) are
administered orally (Radi et al., 2011; Shin et al., 2017;
Soliman et al., 2019). However, to achieve inhibition of system
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xc
− SAS needs to reach the plasma and the target organ in its

intact form. As such, higher doses (150–320 mg/kg twice a day)
and other routes of administration (mostly intraperitoneal (i.p.)
injections) have been used (Evonuk et al., 1950; Gout et al., 2001;
Chung et al., 2005; Lo et al., 2010). While orally taken SAS is
overall well-tolerated in patients with ulcerative colitis and Crohn’s
disease (Rains et al., 1995), it is possible that the increased systemic
concentrations of intact SAS, result in toxic effects of SAS itself or
its metabolite sulphapyridine (Zheng et al., 1993).

In this study, we aimed to identify the (adverse) effects of SAS
that are mediated by inhibition of system xc

−. To do so, we
chronically i. p. administered two doses of SAS that are
commonly used to achieve inhibition of system xc

− in preclinical
studies -i.e. 160mg/kg twice a day or 320 mg/kg once a day (Evonuk
et al., 1950; Gout et al., 2001; Chung et al., 2005; Soria et al., 2016)-
to xCT−/- mice and their wildtype littermates (xCT+/+ mice), and
studied the welfare of the mice as well as different behavioral
outcomes. Given inconsistent reports on the use of SAS in
disorders characterized by deficits in the spinal cord such as MS,
we further focused on the involvement of system xc

− in possible
toxic effects of chronic SAS treatment on the spinal cord.

MATERIAL AND METHODS

Animals
Six-month-old male xCT−/- and xCT+/+ littermates were used.
These mice are high-generation descendants (more than 15 back-
crosses on a C57BL/6 J background) of the strain originally
described by Sato et al. (2005), and are bred in a heterozygous
colony and. Mice were genotyped by a PCR amplification on
DNA extracted from ear punches, using the REDExtract-N-Amp
Tissue PCR kit (Sigma-Aldrich) and the following primers: 5”-
GATGCCCTTCAGCTCGATGCGGTTCACCAG-3“(GFPR3);
5”-CAGAGCAGCCCTAAGGCACTTTCC-3“(mxCT5” flankF6);
5”-CCGATGACGCTGCCGATGA TGATGG-3”(mxCT [Dr.4]
R8). Mice were group-housed under standardized conditions
(20–24°C, 10/14 h dark/light cycle, 45–65% humidity) with free
access to water and food. Animal experiments were approved by
the Ethical Committee for Animal Experiments of the Vrije
Universiteit Brussel and carried out according to the national
guidelines on animal experimentation. All efforts were made to
minimize animal suffering.

Experimental design
A fresh 40 mM SAS (2-hydroxy-5-[[4-(pyridin-2-ylsulfamoyl)
phenyl]diazenyl]benzoic acid; Sigma-Aldrich) solution was
prepared daily by dissolving the powder in a small volume of
NaOH 0.1 M. pH was adjusted to 7.4 and saline (0.9% NaCl, B.
Braun Vet Care) added to reach the desired concentration of SAS.
Mice were randomly assigned to the different treatment groups
(160 mg/kg of SAS twice a day, 320 mg/kg of SAS once a day or
saline twice a day). Over a period of four weeks, mice were i. p.
injected with SAS (or saline) at 10:00 a.m. (all mice) and 5:00 p.m.
(mice treated with 160 mg/kg of SAS and saline). As indicated in
Figure 1,Q9 the body weight of each animal was measured every
week to adjust the dose of SAS. Starting from the second week of

treatment, effects of SAS on locomotor function and anxiety-like
behavior were analyzed using the open field (OF) test, 2 h after the
first injection of the day (12:00 a.m.). After 4 weeks of treatment,
we evaluated the effect of SAS on body temperature (immediately
after the first injection of the day), as well as depressive-like
behavior using the mouse tail suspension test (MTS, 1 h after the
OF). Next, we included a wash-out period of one week during
which the mice did not receive SAS or saline injections and
studied the long-lasting effects of SAS on body weight, locomotor
function and anxiety-like behavior (using the OF as well as the
elevated plus maze (EPM) test). After behavioral testing, mice
were sacrificed by cervical dislocation and spinal cord was
harvested and post-fixed in 4% paraformaldehyde for 72 h. Of
note, for each behavioral test, mice were acclimatized to the
testing room at least 1 h prior to assessment and all analyses were
performed by a researcher blinded for treatment and genotype.

Open-Field Test
In the OF, mice were placed in a corner of a square box (60 × 60 ×
60 cm) with surrounding black opaque walls that prevent
observation of visual cues outside the arena (Bentea et al.,
2015). The center of the arena was defined as the central 40 ×
40 cm zone. The illuminance in the arena was 150 lux in the
center and 30 lux in the corners. Mice were allowed to explore the
arena for 5 min and the experiment was video-recorded. The total
distance travelled (parameter for spontaneous locomotion and
explorative behavior) as well as the cumulative duration spent in
the center zone (parameter for anxiety-like behavior) were
analyzed using an automated video tracking system
(Ethovision software, Noldus).

Mouse Tail Suspension Test
For the MTS, mice were suspended by the tip of their tail for
5 min to induce an inescapable situation (Bentea et al., 2015). The
mice were video-recorded and the time of immobility, which is
considered as a parameter for depressive-like behavior (Steru
et al., 1985), was measured manually. Mice that climbed their tail
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FIGURE 1 | Graphical illustration of the experimental design. Over a
period of four weeks, mice were treated with SAS (or saline), followed by a
wash-out period of one week. Every week, the body weight of the mice was
measured and starting from the second week of treatment, effects of
SAS on locomotor function and anxiety-like behavior were analyzed using the
open field test (OF). After four weeks of treatment, we evaluated the effect of
SAS on body temperature as well as depressive-like behavior using themouse
tail suspension test. At the end of the wash-out period, long-lasting effects of
SAS on body weight, locomotor function and anxiety-like behavior (using the OF
as well as the elevated plus maze test) were studied. After behavioral testing,
mice were sacrificed and the spinal cord was harvested for further analysis.

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 6256993

Verbruggen et al. Sytsem xc
−- Independent Effects of Sulfasalazine

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


were excluded from the analysis as they learned that escape is
possible, thereby invalidating immobility time as measure for
depressive-like behavior (Cryan and Mombereau, 2004).

Elevated Plus Maze Test
In the EPM, mice were placed in the corner of a closed arm of an
elevated (37 cm from the ground) cross-shaped maze consisting
of two open and two enclosed arms (32.5 cm length × 6 cm width
× 17 cm height), with a center area of 6 × 6 cm (Rodgers et al.,
1995). The illuminance in the center was 150 lux. Mice were
allowed to explore the maze for 5 min and the experiment was
video-recorded. The time spent in the open arms (parameter for
anxiety-like behavior), the total distance travelled and velocity
(parameters to evaluate locomotor functions) were analyzed
using an automated video tracking system (Ethovision software).

Body Temperature
The body temperature of the mice was recorded before as well as
10, 60 and 120 min after i. p. injection with SAS or saline, using a
rectal probe (RET-3, ADinstruments) connected to a
thermometer (Testo 935, Testo). Mice were restrained, but not
anesthetized, to perform the procedure.

Histology
The post-fixed spinal cords were embedded in paraffin, sliced into
10 µm sections using a microtome, mounted on glass slides and
dried overnight at 42°C. Slides containing sections of the cervical
region of the spinal cord were soaked in Eriochrome Cyanine
(Sigma-Aldrich) for 30 min and after rinsing with deionized
water, slides were processed in a bath of differentiator
(ammonium hydroxide). Counterstaining was performed with
Neutral Red (Thermo Scientific). Stained sections were examined
using a Leica 2450 microscope (Leica Microsystems Gmbh).

Immunohistochemistry
Neurons, astrocytes, oligodendrocytes, microglia and myelin
were labeled in paraffin sections of the cervical region of the
spinal cord, using respectively anti-NeuN, anti-GFAP, anti-p25α,
anti-Iba1, anti-myelin basic protein (MBP) and anti-myelin-
associated glycoprotein (MAG) antibodies (see Table 1).
Paraffin sections were dewaxed, rehydrated and epitope
retrieval was performed with citrate buffer (pH 6) at 100°C for
10 min. Endogenous peroxidase activity was eliminated by
incubation with 3% H2O2 for 10 min. Sections were placed in
a bath of 0.1 M glycine for 3 min, followed by a 30 min blocking
step in 5% goat or horse serum diluted in Tris-buffered saline

(TBS; see Table 1) to avoid non-specific binding of antibodies.
Sections were incubated with primary antibodies diluted 1%
normal goat or horse serum (in TBS) overnight at 4°C (see
Table 1). The next day, after rinsing, sections were incubated
for 1 h in biotinylated secondary antibodies (1:300; ABC Kit,
Vectastain) at room temperature, followed by peroxidase-bound
streptavidin (1:200, ABC Kit) for 45 min. Immunoreactivity was
revealed using 3,3 di-amino-benzidine (Dako), counterstained
using hemalum before dehydration and observed under an
Olympus BX63 microscope (Olympus lifescience). The
number of NeuN+ and p25α+ cells was assessed quantitatively
in the grey matter, using the Cell Sens software. The same
software was used to quantify the MAG immunoreactivity in
the white matter. MBP immunoreactivity was manually scored
for the presence of myelin abnormalities: normal (0),
vacuolization or myelin disorganization (Koppula et al., 2018)
or myelin loss (Massie et al., 2015). Astrogliosis was evaluated in
the gray matter by manually scoring sections stained for GFAP as
follows: normal (0), presence of slight (Koppula et al., 2018), mild
(Massie et al., 2015) or severe astrogliosis (Liu et al., 2020).
Finally, Iba-1 positive microglia in the gray matter were
classified into different activation states (type A-D) based on
morphology, as described before (Bouchat et al., 2017).

Statistics
Data are presented as mean ± standard error of the mean (SEM). For
all analyses, we evaluated the effect of SAS treatment in each genotype
separately. For data including a time effect, a two-way ANOVA
followed by a Sidak’s multiple comparisons test (MCT) comparing
each dose of SAS to the saline group or a Wilcoxon matched-pairs
signed rank test (Wilcoxon MSRT) was used. For data on one
timepoint, a Kruskal-Wallis (KW) test was performed followed by
a Dunn’s MCT comparing each dose of SAS to the saline group.
Categorical data was analyzed using a Fisher’s exact test and survival
curves were analyzed using a Log-rank test. All analyses were
performed in GraphPad Prism eight and the α-value was set at 0.05.

RESULTS

Chronic Sulfasalazine Treatment Induces
Mortality and Weight Loss in a
xCT-independent Manner
We started the experiment with n � 10 xCT+/+ mice and n � 11
xCT−/− mice in the saline group, n � 12 xCT+/+ mice and n � 15
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TABLE 1 | Primary antibodies used for immunostaining.

Primary antibodies [species] Dilution Supplier References Blocking solution

Anti-Iba1 [PR] 1:1000 Wako chemicals 019-9741 NGS
Anti-p25α [PR] 1:1000 Sigma-Aldrich PA036576 NGS
Anti-GFAP [MM] 1:10 000 Sigma-Aldrich GA5 clone, G3893 NHS
Anti-MAG [MM] 1:5000 Abcam ab89780 NHS
Anti-MBP [PR] 1:500 Abcam ab40390 NGS
Anti- NeuN [PR] 1:1000 Cell Signaling D3S3I NGS

PR: polyclonal rabbit; MM: mouse monoclonal; NGS: normal goat serum; NHS: normal horse serum.
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xCT−/−mice in the SAS 160 mg/kg group, and n � 14 xCT+/+ mice
and n � 13 xCT−/− mice in the SAS 320 mg/kg group. Over the
4 weeks of SAS treatment, four mice of each genotype treated with
160 mg/kg of SAS as well as four xCT+/+ and three xCT−/− mice
treated with 320 mg/kg of SAS died unexpectedly without any
clear preceding sickness behavior. None of the mice injected with
saline died during the experiment (Figures 2A,B).

While all mice lost weight starting from the 1st week of
treatment, this was more pronounced in SAS-treated mice
(Figures 2C,D; two-way ANOVA, treatment effect: xCT+/+

mice F(2,116) � 8.197, p � 0.0005; xCT−/−mice F(2,122) � 8.176,
p � 0.0005). Injections with both saline and 160 mg/kg of SAS
induced the same degree of weight loss in xCT+/+ mice,
which was stable over the four weeks of treatment
(Figure 2C; Sidak’s MCT: p � 0.9251), whereas the weight
loss was more pronounced in xCT+/+ mice treated with
320 mg/kg of SAS compared to saline-injected mice

(Figure 2C; Sidak’s MCT: p � 0.0008). In contrast, all
xCT−/− mice treated with SAS lost more weight compared
to saline-treated mice of the same genotype (Figure 2D;
Sidak’s MCT, saline vs. SAS160: p � 0.0039, saline vs. SAS320:
p � 0.0005). Moreover, weight loss increased over time in all
groups of xCT−/− mice, with the most pronounced weight
loss after 4 weeks of daily injections (Figure 2D; two-way
ANOVA, time effect: F(3,122) � 2.982, p � 0.0340; Sidak’s
MCT, w1 vs. w4: p � 0.0203).

Chronic sulfasalazine treatment decreases
the total distance travelled in the open field
arena but does not induce anxiety- or
depressive-like behavior
Starting from week two of treatment, locomotor function of the
mice was analyzed using the OF (Figures 3A,B). All xCT+/+ mice
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FIGURE 2 | The effect of chronic sulfasalazine (SAS) treatment on survival and body weight. Survival curves of xCT+/+ (n � 10–14 mice/group) (A) and xCT−/− mice
(n � 11–15 mice/group) (B)were determined using a Kaplan-Meier curve and analyzed with a Log-rank test. Body weight of xCT+/+ (n � 10–14 mice/group at the start of
the experiment, n � 8–11 mice/group after 4 weeks of treatment) (C) and xCT−/− mice (n � 11–15 mice/group at the start of the experiment, n � 10–11 mice/group after
four weeks of treatment) (D)was recorded weekly and plotted as the change compared to baseline (i.e. the weight at the start of the treatment). Data are presented
as mean ± SEM and analyzed using a two-way ANOVA followed by a Sidak’s multiple comparisons test for each dose of SAS compared to saline. ##p < 0.01, ###p <
0.001: for treatment effect over all timepoints; $p < 0.05: for treatment effect at one specific timepoint.
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covered a longer distance in the OF arena the first time they were
introduced to this test, compared to all other timepoints
(Figure 3A; two-way ANOVA, time effect: F(2,842) � 14.85, p <
0.0001; Sidak’s MCT, w2 vs. w3: p � 0.0003, w2 vs. w4: p <
0.0001). The same time-effects were seen in xCT−/− mice
(Figure 3B; two-way ANOVA: F(2,902) � 15.60, p < 0.0001;

Sidak’s MCT, w2 vs. w3: p � 0.0008, w2 vs. w4: p < 0.0001).
In addition, SAS-treated xCT+/+ mice traveled less over the entire
period of testing compared to saline-injected mice of the same
genotype (Figure 3A; two-way ANOVA, treatment effect: F(2,84)
� 8.397, p � 0.0005). This effect was driven by the mice treated
with 160 mg/kg of SAS (Sidak’s MCT, saline vs. SAS160 over the
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FIGURE 3 | The effect of chronic sulfasalazine (SAS) treatment on locomotor function as well as anxiety- and depressive-like behavior. The total distance travelled in
the open field (OF) test was used to measure locomotor function of xCT+/+ (n � 10–14mice/group at the start of the experiment, n � 8–11mice/group after four weeks of
treatment) (A) and xCT−/− mice (n � 11–12 mice/group at the start of the experiment, n � 10–11 mice/group after four weeks of treatment) (B), starting from the second
week of treatment. The cumulative duration spent in the center of the OF arena was plotted to study anxiety-like behavior (C,D). The immobility-time in the mouse
tail suspension test (MTS) performed after 4 weeks of treatment was assessed as a parameter for depressive-like behavior (n � 7–10 xCT+/+mice/group (E); n � 10
xCT−/− mice/group (F)). Data are presented as mean ± SEM and analyzed using a two-way ANOVA followed by Sidak’s multiple comparisons for each dose of SAS
compared to saline for the OF: ##p < 0.01, ###p < 0.001: for treatment effect over all timepoints; $p < 0.05, $$$p < 0.001: for treatment effect at one specific timepoint.
MTS data were analyzed using a Kruskal-Wallis test.
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entire period of testing: p � 0.0002) and it is most pronounced in
the first test trial (Sidak’s MCT, saline vs. SAS160 at w2: p �
0.0003). Also in xCT−/−mice, SAS treatment significantly affected
the distance walked in the OF arena (Figure 3B; two-way
ANOVA, treatment effect: F(2,90) � 4.043, p � 0.0208). In
contrast to the xCT+/+ mice, this parameter was not
significantly altered between xCT−/− mice treated with saline
or 160 mg/kg of SAS, whereas there was a trend toward a
decrease in xCT−/− mice treated with 320 mg/kg of SAS
compared to the saline-treated ones (Figure 3B; Sidak’s
MCT, saline vs. SAS320 over the entire period of testing:
p � 0.0694). In line with the treatment effect of 160 mg/kg
of SAS in xCT+/+ mice, this effect is mostly seen at week two
of the treatment (Sidak’s MCT, saline vs. SAS320 at w2: p �
0.0398).

The cumulative duration in the center of the OF arena was -
in agreement with the data on the total distance travelled-the
highest after two weeks of treatment (the first time they
explore the OF arena) in all tested groups (Figures 3C,D).
The time in the center gradually decreased over the treatment
period in all groups of xCT+/+ and xCT−/− mice, resulting in a
significant difference between the performance on week two
compared to week 4 (Figure 3C; two-way ANOVA, xCT+/+

mice: time effect F(2,84) � 3.489, p � 0.0350; Sidak’s MCT, w2
vs. w4: p � 0.0307; xCT−/− mice: time effect F(2,90) � 3.401, p �
0.0377; Sidak’s MCT, w2 vs. w4: p � 0.0326). While we
were unable to show a treatment effect in xCT+/+ mice
(Figure 3C; two-way ANOVA: F(2.84) � 0.5784, p � 0.5630),
SAS treatment significantly decreased the time spent in the
center of the OF arena in xCT−/− mice (Figure 3D; two-way
ANOVA, treatment effect F(2,90) � 4.283, p � 0.0167). The
latter effect is driven by the mice treated with 320 mg/kg of SAS
(Sidak’s MCT, saline vs. SAS320 over the entire period of
testing: p � 0.0099). Finally, there were no effects of 4 weeks
of SAS treatment on the immobility time in the MTS test
-which was used to measure depressive-like behavior-
independent of the dose of SAS in both xCT+/+ (Figure 3E;
KW test: p � 0.8149) and xCT−/−mice (Figure 3F; KW test: p �
0.5502).

Chronic Sulfasalazine Treatment Influences
Body Temperature via xCT-Independent
Mechanisms
Immediately after SAS injection some of the mice did not show
their normal behavior but were lying on their abdomen and
seemed to be panting. As this behavior has been described to be
related to thermoregulation (McDonough et al., 2020), we
evaluated the effect of SAS injection on the body temperature
of the mice. As presented in Figure 4A, saline-treated xCT+/+

mice showed a normal stress-induced hyperthermic reaction after
an i. p. injection (Olivier et al., 2003), with an initial 2°C increase
of their body temperature, which normalizes after 120 min
(Wilcoxon MSRT compared to baseline, 10 min: p � 0.0020,
60 min: p � 0.0059, 120 min: p � 0.2598). However, 10 min after
injection, the body temperature of all SAS-treated xCT+/+ mice
was decreased compared to baseline (Figure 4A; WilcoxonMSRT

compared to baseline, SAS160: p � 0.0039, SAS320: p � 0.0039). As
such, the change in body temperature as a result of the i. p.
injection was significantly different between both groups of SAS-
treated xCT+/+ mice compared to saline-injected mice of the same
genotype (Figure 4C; KW test: p < 0.0001; Dunn’s MTC, saline
vs. SAS160: p � 0.0010, saline vs. SAS320: p � 0.0001). The change
in body temperature of xCT+/+ mice treated with 320 mg/kg of
SAS was still significantly different from saline-treated xCT+/+

mice 60 min after injection (Figure 4C; KW test: p � 0.0003;
Dunn’s MCT: p � 0.0001), contrary to the 160 mg/kg group
(Dunn’s MCT: p � 0.2417). The same response was seen in
xCT−/− mice, with an increased body temperature in saline-
treated xCT−/− mice 10 min after injection (Figure 4B;
Wilcoxon MSRT compared to baseline; saline: p � 0.0020),
while both doses of SAS induced hypothermia (Figure 4B;
Wilcoxon MSRT compared to baseline, SAS160: p � 0.0020,
SAS320 p � 0.0039), resulting in a significant difference in the
injection-induced change in body temperature between SAS-
and saline-treated mice (Figure 4D; KW test: p < 0.0001;
Dunn’s MTC, saline vs. SAS160: p < 0.0001, saline vs. SAS320:
p � 0.0010). For the xCT−/− mice treated with 320 mg/kg of
SAS, this effect was still present 60 min after injection
(Figure 4D; KW test p � 0.0011; Dunn’s MTC: p � 0.0004),
in contrast to the ones treated with 160 mg/kg of SAS (Dunn’s
MTC: p � 0.2065). Taken together, all SAS-induced effects on
body temperature were seen in both genotypes and only
temporary as at 120 min after injection no difference in the
change in body temperature was seen between SAS- and
saline-injected mice, independent of genotype (Figures
4C,D; KW test, xCT+/+ mice: p � 0.7696, xCT−/− mice: p �
0.4688).

Chronic Sulfasalazine Treatment Does Not
Induce Long Term-Effects on Behavior
After a wash-out period of one week, we still detected an effect
of SAS treatment on the body weight of xCT+/+ mice
(Figure 5A; KW test: p � 0.0160). This effect was driven by
the group receiving 320 mg/kg SAS. The change in bodyweight
compared to baseline was significantly different in the xCT+/+

mice treated with 320 mg/kg of SAS compared to saline-treated
xCT+/+ mice at this timepoint (Dunn’s MTC: p � 0.0097),
while the effect of 160 mg/kg of SAS on body weight was faded
out (Dunn’s MTC: p � 0.8347). Similarly, after the wash-out
period the body weight of xCT−/− mice treated with SAS
is lower compared to the ones treated with saline, but this
effect was not statistically significant (Figure 5B; KW test: p �
0.0907).

No long-term behavioral effects of SAS treatment were
detected (Figure 5C–L). In xCT+/+ as well as xCT−/− mice, the
distance walked was unaffected by chronic SAS treatment in both
the OF (Figures 5C,D; KW test, xCT+/+: p � 0.4502, xCT−/−: p �
0.9664) and EPM (Figures 5E,F; KW test, xCT+/+: p � 0.6306,
xCT−/−: p � 0.9899). Also the velocity in the EPM paradigm was
unaffected by chronic SAS treatment in mice of both genotypes
(Figures 5G,H; KW test, xCT+/+ mice: p � 0.6306, xCT−/− mice:
p � 0.9936). Furthermore, independent of the genotype of the
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mice and regardless of the dose of SAS, no effect could be detected
on the cumulative duration in the center of the OF (Figures 5I,J;
KW test, xCT+/+ mice: p � 0.7243, xCT−/− mice: p � 0.9563),
neither on the time spent in the open arms of the EPM
(Figures 5K,L; KW test, xCT+/+ mice: p � 0.2231, xCT−/−

mice: p � 0.4807). All together, these results demonstrate that
chronic SAS treatment did not induce long-term changes in
motor function or anxiety-like behavior.

Chronic Sulfasalazine Treatment Does
Neither Induce Neuronal Loss nor Changes
in Myelin or Glial Cells in the Spinal Cord
Four weeks of treatment with either 160 mg/kg or 320 mg/kg of
SAS did not induce any histological abnormalities in the spinal
cord of xCT+/+ or xCT−/− mice (Figure 6A). Also NeuN
quantification did not show any significant effect of SAS
treatment on the number of neurons present in the gray
matter of the spinal cord (Figures 6B–D; KW test, xCT+/+:
p � 0.4600, xCT−/−: p � 0.9523).

Immunohistochemical analysis of p25α showed no difference
in the number of oligodendrocytes in the gray matter of the spinal
cord between saline and SAS-treated xCT+/+ (Figures 7A,B; KW
test: p � 0.6024) or xCT−/− mice (Figures 7A,C; KW test: p �
0.0889). All scores of the MBP staining were 0, indicating absence
of vacuolization, myelin disorganization or myelin loss,
regardless of the treatment or the genotype of the mice
(Figure 8A). Furthermore, we quantified MAG
immunoreactivity in the white matter as loss of the minor
myelin proteins has been described as an early and sensitive
biomarker for myelin degeneration in MS demyelinating
lesions (Popescu and Lucchinetti, 2012). MAG stainings
did not reveal any effect of SAS on the quality of the
myelin sheet surrounding axons of xCT+/+ mice (Figures
8B,C; KW test: p � 0.5626). However, in xCT−/− mice MAG
levels were affected by SAS treatment (Figures 8B,D; KW
test: p � 0.0446). Post-hoc analysis revealed significantly
lower levels of MAG immunoreactivity in the spinal cord
of xCT−/− mice treated with 320 mg/kg of SAS, but not
160 mg/kg of SAS, compared to saline-treated mice
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FIGURE 4 | The effect of chronic sulfasalazine (SAS) treatment on changes in body temperature after injection. After four weeks of treatment, body temperature
wasmeasured 10, 60 and 120 min after SAS injection and plotted as absolute values (A,B) or as the difference compared to the body temperature before injection (C,D)
(n � 9–10 x CT+/+ mice/group (A,C); n � 10–11 xCT−/−mice/group (B,D)). Data are presented asmean ± SEM and analyzed using aWilcoxonmatched-pairs signed rank
test for each treatment paradigm at the different timepoints compared to baseline (A–B): saline: *p < 0.05, **p < 0.01; SAS160:

#p < 0.05, ##p < 0.01; SAS320:
$$p <

0.01. A Kruskal-Wallis test (C-D; **p < 0.01, ***p < 0.001, ****p < 0.0001) followed by Dunn’s multiple comparison was used to compare each dose of SAS to saline on
each timepoint (###p < 0.001, ####p < 0.0001).
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(Dunn’s MTC, saline vs. SAS160: p � 0.2587, saline vs. SAS320:
p � 0.0339).

Finally, with the exception of one or two mice per group,
immunohistochemistry for GFAP did not reveal prominent
astrogliosis in either xCT+/+ (Figures 9A,B; Fisher’s exact
saline vs. SAS160: p > 0.9999, saline vs. SAS320: p � 0.5227) or
xCT−/− mice (Figures 9A,C; Fisher’s exact saline vs. SAS160: p >
0.9999, saline vs. SAS320: p > 0.9999), regardless of the treatment.
Iba-1 immunohistochemistry showed that microglia of saline-
treated as well as those of mice treated with 160 or 320 mg/kg of

SAS are in a resting state, independent of genotype (type A
microglia, Figure 9D).

DISCUSSION

Although SAS is not specific in its action, it is one of the most
widely used molecules to target system xc

− in both preclinical
(Gout et al., 2001; Ma et al., 2015; Leclercq et al., 2019; Hu et al.,
2020) and clinical studies ( Shitara et al., 2017; Takeuchi et al.,
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FIGURE 5 | Long-term effects of chronic sulfasalazine (SAS) treatment. After a wash-out period of one week, body weight of xCT+/+ (A) and xCT−/− mice (B) was
evaluated and plotted as the change compared to baseline (i.e. bodyweight at the start of the treatment). Distance travelled in the open field (OF) arena (C,D) or the
elevated plus maze (EPM) (E,F), and velocity while exploring the EPM (G,H) were evaluated and represent long-term effects on locomotor function. Time spent in the
center of the OF (I, J) or in the open arms of the EPM (K,L) was used as a parameter for anxiety-like behavior. For all tests, n � 8–10 xCT+/+ mice/group and n �
10–11 xCT−/−mice/group were used. Data are presented as mean ± SEM and analyzed using a Kruskal-Wallis test (*p < 0.05) followed by Dunn’s multiple comparisons
for each dose of SAS compared to saline on each timepoint (##p < 0.01).
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FIGURE 6 | Histological examination of the spinal cord of mice after chronic sulfasalazine (SAS) treatment. Representative photomicrographs of the eriochrome
cyanine/neutral red staining (A) as well as the NeuN immunohistochemistry (B). A higher magnification picture of the boxed area in (B) is shown in (C). NeuN+ cells were
quantified using the Cell Sens software (C,D). One slice of n � 3–5 mice/group was used, data are presented as mean ± SEM and analyzed using a Kruskal-Wallis test
followed by Dunn’s multiple comparisons for each dose of SAS compared to saline on each timepoint.
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2014). It has the advantage of being an FDA- and EMA-approved
drug for treating Chron’s disease, ulcerative colitis and
rheumatoid arthritis due to its anti-inflammatory effects.
While one might expect that this would guarantee the safety
of the drug, clinical trials with glioblastoma patients show severe
toxicity due to the use of SAS in high doses that are needed to
achieve inhibition of system xc

− (Robe et al., 2009). Also our
results showed that chronic i. p. administration of SAS
-160 mg/kg twice daily and 320 mg/kg once daily negatively
affects the health status of the mice. We observed mortality in
both xCT+/+ and xCT−/− mice treated with SAS, independent of
the dose. Importantly, this effect is independent of its action on
system xc

− as SAS-induced mortality was equally present in mice
lacking this transporter. The wide range of adverse effects that are
attributed to the use of SAS such as agranulocytosis, haemolytic
anaemia, methaemoglobinaemia, hepatotoxicity, nephrotoxicity,
neurotoxicity and pulmonary toxicity, might underlie this
mortality (Das et al., 1973; Rains et al., 1995; Robe et al., 2009).

We also observed a clear effect of the injections on the body
weight of the mice. Chronic i. p. injection with both saline and

SAS induced weight loss, which is most probably the result of the
chronic stress induced by the daily injections. Repeated vehicle
injections were reported to increase the plasma corticosterone
levels in BALB/c mice (Drude et al., 2011), which has been shown
to affect body weight and food intake (Jeong et al., 2013; Harris,
2015). Also chronic stress itself negatively impacts food intake
and body weight in mice (Jeong et al., 2013; Harris, 2015) and rats
(Harris et al., 2002; Harris, 2015). Even though all mice lost
weight over time, weight loss was more pronounced in the SAS
groups, with a prolonged effect in mice treated with the highest
dose. This is in accordance to observations in healthy rats that
received 200–250 mg/kg of SAS i. p., twice a day for 7 days. While
rats normally gain weight over time, this was not the case for the
ones treated with SAS (Gout et al., 2001). The SAS-induced
decrease in body weight might result from the adverse effects
of SAS on the general wellbeing of the mice, presumably regulated
via the toxic side effects of sulphapyridine, the main metabolite of
absorbed SAS (Sjoquist et al., 1991). Nausea, dyspepsia and
abdominal pain as well as loss of appetite and anorexia are
typical side effects of SAS in patients with ulcerative colitis,
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FIGURE 7 | Effects of chronic sulfasalazine (SAS) treatment on oligodendrocytes in the spinal cord. Representative photomicrographs (A) and quantification (B,C)
of p25α immunostaining to analyze oligodendrocytes. One slice of n � 3–5 mice/group was used, data are presented as mean ± SEM and analyzed using a Kruskal-
Wallis test followed by Dunn’s multiple comparisons for each dose of SAS compared to saline on each timepoint.
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Crohn’s disease and rheumatoid arthritis, and all of these seem to
be mediated by sulphapyridine (Das et al., 1973). As
sulphapyridine has no inhibitory action on system xc

− (Gout
et al., 2001) and given the same decrease in body weight in xCT−/-

mice, we are confident that none of these effects are mediated via
chronic inhibition of this transporter.

On top of the mortality and the effect on body weight, this
study shows a clear effect of SAS on body temperature shortly
after injection. While in normal conditions a stressful event
-such as an injection-would induce hyperthermia (Olivier

et al., 2003), mice treated with SAS showed a strong but
temporary hypothermic reaction that is independent of the
presence of xCT. This could be due to the chronic inescapable
stress experienced by the daily injections (Oka, 2018).
However, saline-treated mice showed a normal stress-
induced hyperthermic reaction even though they
experienced the same level of stress, suggesting a specific
effect of SAS either on the stress reaction of the mice or on
their thermoregulation. Despite the general hypothesis that
stress-induced hyperthermia is cytokine- and PGE2-
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FIGURE 8 | Effects of chronic sulfasalazine (SAS) treatment on myelin in the spinal cord. Representative photomicrographs of myelin basic protein (MBP) (A) and
myelin-associated glycoprotein (MAG) immunostaining (B) as well as quantification of the MAG staining (C,D). One slice of n � 3–7 mice/group was used, data are
presented as mean ± SEM and analyzed using a Kruskal-Wallis test (*p < 0.05) followed by Dunn’s multiple comparisons for each dose of SAS compared to saline on
each timepoint (#p < 0.05).
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independent, some studies do show an involvement of PGE2 in
this phenomenon (Morimoto et al., 1991; Parrott & DM, 1995;
Oka, 2018). Since SAS, and more specifically the metabolite
mesalazine (Sjoquist et al., 1991), is able to decrease the PGE2
production (Karagozian & Burakoff, 2007), this might abolish
the PGE2-induced hyperthermia. As this is entirely
hypothetical and cannot fully explain the hypothermic
reaction after chronic SAS treatment, this phenomenon
requires further investigation.

While SAS-induced chronic inhibition of system xc
− was

reported to induce myelin degeneration in the white matter of
the spinal cord (Soria et al., 2016), we could not observe spinal
cord damage after chronic SAS administration to xCT+/+ or
xCT−/− mice. Four weeks of SAS treatment did not influence
the number of neurons or the myelin protein content in the spinal
cord. However, whereas there was no decrease in MBP or MAG
immunoreactivity in our study, Soria and colleagues detected a
strong reduction in MBP and abnormalities in myelin folding in
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FIGURE 9 | Effects of chronic sulfasalazine (SAS) treatment on astrocytes and microglia in the spinal cord. Representative photomicrographs of GFAP
immunohistochemical staining (A). The extent of astrogliosis (normal (0) or presence of slight (Koppula et al., 2018), mild (Massie et al., 2015) or severe astrogliosis (Liu
et al., 2020)) was quantified in xCT+/+ (B) and xCT−/− (C) mice. Data are presented as mean ± SEM and analyzed using a Fisher’s exact test to compare normal GFAP
staining (score 0) with signs of astrogliosis (scores 1–3) for each dose of SAS compared to saline. Representative photomicrographs of Iba-1 immunohistochemical
staining after a wash-out period of one week (D). One slice of n � 4–7 mice/group (for GFAP) or n � 5–11 mice/group (for Iba-1) was used.

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 62569913

Verbruggen et al. Sytsem xc
−- Independent Effects of Sulfasalazine

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


spinal cord and sciatic nerve samples using a similar dose of SAS
(320 mg/kg) and the same treatment period (Soria et al., 2016).
This discrepancy could possibly be related to the strain of mice
that has been used in the latter study. It should be noted that we
did observe decreased MAG reactivity in xCT−/− mice treated
with SAS. Obviously, this effect cannot be mediated via chronic
inhibition of system xc

−, as these mice lack functional system xc
−.

Moreover, the absence of activated microglia and the lack of
astrogliosis in the spinal tissue of all groups studied, further
indicate that in our hands, chronic SAS treatment does not induce
any cell damage in the spinal cord. This is in line with the in vitro
observation that aminoadipic acid-induced inhibition of system
xc

− does not influence the viability of oligodendrocytes (Domercq
et al., 1950) and further supported by an in vivo report on reduced
demyelination in the EAE model for MS after SAS treatment
(Evonuk et al., 1950).

We showed that both saline- and SAS treated mice tend to
cover a decreased distance in the OF arena over the time of
testing, which is most probably due to a habituation process
(Sousa et al., 2006). The first time the mice encounter the OF
arena, SAS treatment decreased the distance that both xCT+/+

and xCT−/− mice travelled, again indicating that this effect is
not mediated by inhibition of system xc

−. This is further
supported by the fact that naive xCT−/− mice do not show
abnormalities in spontaneous behavior and walk the same
distance in the OF test compared to naive xCT+/+ mice
(Bentea et al., 2015). As described above, SAS did not
cause abnormalities in the spinal cord, making it unlikely
that the effect on the distance walked in the OF results from
toxicity on spinal motor pathways. Moreover, this effect
disappeared after a wash-out period of one week. Therefore, the
fact that mice treatedwith SAS travelled significantly less compared
to saline injected mice the first time they perform the OF test, is
most probably not reflecting a motor problem, but rather linked to
motivation to explore the maze.

I.p. injection of a low dose of SAS (8 or 16 mg/kg) induced
an anxiogenic effect in rats as evaluated using the OF and the
EPM (Lutgen et al., 2014). However, in our study, SAS
treatment did not have an effect on anxiety like-behavior
in xCT+/+ mice in the same behavioral setups. We rather
anticipated anxiolytic effects after chronic inhibition of
system xc

− using SAS, as seen in naive mice lacking
functional system xc

− (Bentea et al., 2015). Yet, in the
current study also the saline-injected xCT−/− mice did not
show a convincing anxiolytic phenotype when compared to
saline-injected xCT+/+ mice, and even a borderline-
significant anxiogenic phenotype in the EPM (Mann-
Whitney test: cumulative duration in the center of the OF:
w2: p � 0.6047, w3: p � 0.04679, w4: p � 0.2895, w5: p �
0.9725; time spent in the open arms of the EPM: p � 0.05116).
It is possible that the time of testing was too short to pick up
differences in anxiety-like behavior as the anxiolytic effect in
naive xCT−/− mice was only present when the mice were
allowed to explore the OF arena for a longer time (60 min)
(Bentea et al., 2015). Moreover, differences in this type of
behavior might be masked by the chronic stress of the daily
injections. Studies showed that saline-treated rodents

already exhibit a stressed and anxious profile (Lapin,
1995) and that the time spent in the center of the OF can
be influenced by the handling method (Gouveia and Hurst,
2019). Mice picked up by their tail, the method used to inject the
mice in our study, spent less time in the center of the OF compared
to mice being picked up in a tunnel (Gouveia and Hurst, 2019).
Unexpectedly, we showed that treatment of xCT−/− mice with
320 mg/kg of SAS induced a decreased time spent in the center of
the OF, which would indicate an anxiogenic effect of SAS in these
mice that is independent of system xc

−.
Inhibition of system xc

− not only has anxiolytic, but also
antidepressant potential, as evidenced by naive as well as in
LPS-injected xCT−/- mice showing a decreased immobility-
time in the MTS and in the forced swim test (Bentea et al.,
2015; Albertini et al., 2018). Moreover, tumor-inoculated BALB/c
mice showed reduced tumor-associated depressive-like behavior
after chronic inhibition of system xc

− using SAS (Nashed et al.,
2017). However, in the current work, saline-injected xCT−/−mice
did not display an anti-depressive profile compared to xCT+/+

mice (Mann-Whitney test: immobility time in the MTS: p �
0.1230), and we could not induce this phenotype by chronic
inhibition of system xc

− using SAS in xCT+/+ mice. In line with
the data on anxiety-like behavior, the results on depressive-like
behavior can be influenced by the chronic stress (Dunn and
Swiergiel, 2008), in accordance with our previous observation
that xCT−/− mice lose their anti-depressive like phenotype when
they are subjected to stress induced by chronic corticosterone
administration (Demuyser et al., 2019).

CONCLUSION

This work shows adverse effects of chronic SAS treatment on the
wellbeing of the mice, in the absence of spinal cord damage,
compromised motor function, anxiety-or depressive-like
behavior. All effects of chronic SAS administration detected in
this study are, however, independent of its function as an inhibitor
of system xc

− and thus originate from (toxic) off-target effects of the
molecule or its metabolites. While a lot of progress has been made
in the search for new molecules that selectively act on system
xc

−(Patel et al., 2019; Nehser et al., 2020), this study emphasizes the
need for further research in this area to allow safe targeting of
system xc

− in diverse neurological disorders and cancer types.
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