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Abstract

In Collective decision-making, individuals in a swarm have to reach
consensus on an issue using local interactions without any centralized
control. The best-of-n problem is a special case where the swarm has to
choose the best option among a set of n discrete choices. This problem is
relevant for robot swarms, who need for example to agree on the location
of a site to forage from. It has been shown that, when each site can be
associated to a quality, direct modulation of positive feedback can be used,
together with a decision mechanism such as the voter mode, to achieve
consensus to the option corresponding to the highest quality. The role of
zealots, stubborn individuals that are linked to an unchangeable opinion,
has been studied abundantly by physicists and recently introduced to
swarm robotics.

In this paper, we study the interplay between differential opinion qual-
ity and differential proportion of zealots in a best-of-2 problem, and we
identify how the equilibria change with respect to these two parameters.
We systematically study this via computer simulations in an antagonistic
scenario whereby one option has a higher quality but a lower proportion
of zealots than the other option.

1 Introduction

Collective decision making is a process to select an option collectively based
only on local perception. Originally inspired by the behavior of natural swarm

1



such as ants and bees [4, 2], collective decision making is considered an impor-
tant building block to achieve more elaborated collective behaviors in swarms
of robots [22], such as deciding to which site or in which direction to move
collectively [3].

The best-of-n problem is a special case in collective decision-making [22]
whereby individuals in a swarm need to achieve consensus to one option in a
discrete set of n alternatives. In general, the n options can be assumed to be
available to the members of the swarms [23], or may need to be discovered [19].
An option in the best-of-n can be best according to different criteria. One cri-
terion can be the minimization of some cost, for example the cost to access the
option (e.g. the distance of a location from the base), while another criterion
is some intrinsic option quality [22]. In the latter case, the option quality can
be used as an input of the decision-making algorithm. For example, after sam-
pling an option quality, a robot can advertise the option for a duration that is
proportional to the option’s quality, a mechanism called modulation of positive
feedback [6, 24, 25, 23]. With such a mechanism, the swarm is able to achieve
consensus to the option corresponding to the highest quality.

A recent study [17] introduced the notion of stubborn individuals, which
we here call zealots consistently with previous work done in physics (which we
review in Section 2). Zealots are individuals that never change their opinion and
always advertise only the option associated to them from the very beginning.
The authors showed that, in a dynamic environment where the option qualities
can drastically change during the experiment, a swarm is able to adapt to these
changes and to select the new option with the best quality only when a small
but equal number of zealots is introduced.

In this paper we use computer simulations to study the best-of-n problem
with differential quality and zealot quantity. We consider the n = 2 case and
we introduce zealots in a quantity that is not equal for the two options. At
the same time, the two options are associated each to a different quality. The
experimental setup is considered “antagonistic”, because the number of zealots
is higher for the option that has a lower quantity, hence it is not obvious which
option will prevail. In this setup, we ask the following two questions: Does the
swarm always achieve consensus to one of the two options, or it may sometimes
converge to an intermediate undecided state? Is the consensus state or the
intermediate state more biased towards the option represented by more zealots
or the one represented by the highest quality? Concerning the second question,
we are particularly interested in identifying the “indifference curve”, which is
the curve separating the region where the consensus is more likely to be to one
opinion to the region where consensus is more likely to be to the other opinion.

The remaining of the paper is organized as follows. In Section 2, we discuss
the related work. In Section 3, we describe the collective decision-making model
utilized in this study. In Section 4, we explain the experimental setup needed
to replicate our experiments. In Section 5 we discuss the results obtained. In
Section 6, we conclude the paper and discuss future developments.
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2 Related Works

The best-of-n problem is inspired by the biological behavior of swarms of ants
and bees [7, 12, 20].

As extensively discussed in [22], quality and cost of the options can be used
to further describe the nature of the best-of-n decision-making problem. For ex-
ample, in a foraging scenario, where food availability is the option quality and
time to reach the food patch is the option cost, the problem can be symmet-
ric/asymmetric for quality (all food patches have/have not the same amount of
food), and/or symmetric/asymmetric for cost (all food patches require/do not
require the same amount of time to be reached). When both costs and quality
are asymmetric, we can have scenarios in which the option cost and quality
are synergistic (e.g., the best option has maximum quality and minimum cost)
and scenario in which they are antagonistic (e.g., the best option has maximum
quality and highest costs).

Another important element that bears upon the decision-making dynamics
is the presence within the swarm of zealots. Their contribution to the decision-
making process can largely influence the behaviour of the entire swarm, as
discussed in various papers. The topic of zealot has been abundantly studied in
physics, but introduced within swarms only recently. In the following, we will
first review the few contributions focusing on zealots within swarms, and then
review some of the works done within phyics.

In the context of swarms, the study illustrated in [17] looks at the role of
zealots in a particular type of best-of-n scenario characterised by a dynamic
environment (i.e. the quality of options changes over time). The results of this
study shows that without zealots, a swarm of simulated agents can converge to
the best option but is not able to adapt and to change its consensus state in
case that option is no longer the best. The study shows that introducing zealots
allows the swarm to re-evaluate the options quality at all times, including when
a near-consensus state is reached and the option quality changes afterwards.

Canciani et al. [5] introduces three types of malicious agents that can af-
fect resilience of a swarm: contrarians, wishy-washy, and zealots. This study
focuses on comparing four mechanisms: voter, majority, cross inhibition, and k-
unanimity (q-voter). The study illustrates which of those types of agents makes
the swarm more resilient to attacks by different types of malicious agents above.
In [18], the authors also look at the effects of malicious adversarial zealots in a
data communication manipulation scenario. In particular, this study illustrates
an alternative probabilistic decision-making rule, and evaluates it in different
contexts varying in the number of adversarial and legitimate zealots with swarms
of simulated agents. The study shows that the probabilistic decision-making rule
can limit the disrupting effects of adversarial zealots even in conditions in which
the difference between the number of adversarial and legitimate zealots within
the swarm is just one agent.

In the context of physics, Hunter and Zaman [11] studied the best placement
of stubborn agents in order to maximize the impact on the opinion of the whole
population, in social network systems, like Instagram or Twitter. They also
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analyzed the communication over two real social networks in Twitter, concerning
issues such as the Brexit, and the demonstrations in France managed by the
Gilets Jaunes. The study shows that a small number of zealots can significantly
influence the overall opinion dynamics and induce the entire population to reach
a large consensus over disputed issues. In [15], the authors study the role of
zealots as committed minorities in a social system modeled with a different
collective decision making mechanism called naming game. Interestingly they
introduce the role of heterogeneous activities of different nodes. They show
that even a very small minority can drive the opinion of a large population,
if committed agents are more active than the others. On the other hand, this
effect can be hindered if nodes with same opinion are more connected with each
other than with nodes with different opinion, producing a polarization inside
the network.

The work of [9, 16] study the impact of zealots in a social network. But
unlike in [11], these studies introduces zealots with different degree of zealotry.
The focus of [9] is studying the effect of zealotry on the convergence time of the
system. In [16], despite a different model (which also included the majority rule
instesd than the voter model), the authors were able to find similar dynamics
to those found by [17, 13], in which the existence of equal number of zealots
on both option sides prevents the network from reaching a consensus state.
Similarly, in [27], the presence of zealots is proven to prevent the formation of
consensus, introducing instabilities and fluctuations in a binary voter model of
a small-world network. A recent study illustrated in [1] aims at studying the
influence of zealots on “politically polarized” state vs consensus state and found
that higher “influence of zealots” produces more polarization, shorter time to
polarization, and conversely less consensus and longer to impossible time to
consensus. Differently from our method, zealots are modeled as single nodes
that represent “competing news sources”. Networks are assumed either fully
connected, or 2-clique, with each clique closer to one of the two big zealots.
Voter model is “biased” because there is p (probability to pick zealot) vs (1−p)
probability to pick neighbor.

In [26], the author shows that there exists a tipping point at which a consis-
tent and zealot minority of zealots is able to swing the initial majority opinion
of a network. The study described in [14] focuses on zealots and voter model
to perform peer-to-peer opinion influence like in our work. Contrary to us,
in [14], the authors try to control opinion dynamic by introducing zealots as
nodes on a complex network. In[8], the authors studied the case of two opinions
with zealots, which they call “inflexible minorities”, promoting their respec-
tive opinions using the Majority rule. The results of the study shows that the
decision-making process is equally likely to reach a consensus for any of the two
option when the number of zealots on each side are exactly the same. A very
minimal unbalance in the number of zealots for the two options is sufficient to
drive the consensus in favour of the opinion supported by the largest numbers
of zealots.

As it is clear, zealotry has been abundantly studied in physics, whose stud-
ies typically consider fixed interaction topologies often represented as networks.
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Parameter Description Values
N swarm size {100, 1000}
ρA site A quality 1
ρB site B quality {1, 1.05, 1.10, .., 2}
σB proportion of zealots with opinion B to N {0.0125, 0.025, 0.05}

σA/σB ratio of zealots with opinion A to σB {1..10}

Table 1: Model parameters used in simulations

Figure 1: Probabilistic finite state machine. Da, Db , Ea and Eb represent the
dissemination and exploration state. Solid lines represent deterministic transi-
tions, while dotted lines stochastic transitions. The symbol VM indicates that
the voter model is used at the end of the dissemination state. Note that stochas-
tic transition may be the results of either the application of the decision rule,
or of the spontaneous opinion switching mechanism, if enabled.

The concept has been only recently introduced in the context of swarms, whereby
the topology is dynamic and determined by the instantaneous neighbors, like
in our case. Being swarm robotics an engineering context, options are also typ-
ically associated to a quality, an aspect that tends to be not treated in the
physics literature. Compared to the most recent work in swarms [17, 5, 18], to
the best of our knowledge, in this paper we study for the first time the interplay
between different option quality and different zealot quantity.

3 Method

In the best-of-n problem, a swarm of agents has to reach a collective decision
among n possible alternatives towards the choice that has the best quality. In
this paper, we restrict n to 2 options, labelled A and B, two options that have
intrinsic quality value ρA and ρB . A best-of-n problem reaches the optimal so-
lution when the collective decision of the swarm is for the option with maximum
quality. That means that a large majority M ≤ N(1−δ) of agents agrees on the
same option, where δ is a small number chosen by the experimenter. In the case
where δ = 0 there is perfect consensus. The agents are required to choose the
best option in different best-of-n experimental scenarios which vary according
to the difference in quality values between the two options and for nature of the
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Figure 2: Visualisation of the simulation arena.

Parameter Description Values
N swarm size {100, 1000}
ρA site A quality 1
ρB site B quality {1, 1.05, 1.10, .., 2}
σB proportion of zealots with opinion B to N {0.0125, 0.025, 0.05}

σA/σB ratio of zealots with opinion A to σB {1..10}

Table 2: Model parameters used in simulations

swarm. For the latter, the swarm is made of two different types of agents: the
zealots, always committed to either option A or B, and characterised by the fact
that they never change option; and normal agents, initially committed to either
option A or B, but subject to change their commitment by applying a decision
mechanism that relies on the observation of other agents in local proximity.

The behaviour of the agents is controlled by a probabilistic finite state ma-
chine controller shown in Figure 3. This controller has four possible states:
dissemination state of opinion A (DA), dissemination state of opinion B (DB),
exploration state of opinion A (EA), and exploration state of opinion B (EB).
In our simulations, agents are located in a rectangular arena whose central part
is called the nest, while the left and the right sides are the two sites, one as-
sociated to quality A and the other to quality B, respectively (see Figure 3).
As initial conditions, agents are initialized inside the nest. Half of the agents

Figure 3: Consensus results over time T = 0− 40000 for quality ratio ρB/ρA =
2.00, N = 100, σb = 5 with zealots ratio σa/σb = 1. Each scenario is repeated
100 times.

6



Figure 4: Consensus results over time T = 0− 40000 for quality ratio ρB/ρA =
2.00, N = 100, σb = 5 with zealots ratio σa/σb = 5. Each scenario is repeated
100 times.

Figure 5: Consensus results over time T = 0− 40000 for quality ratio ρB/ρA =
2.00, N = 100, σb = 5 with zealots ratio σa/σb = 10. Each scenario is repeated
100 times.

are initialized in state EA, the other in state EB , and they move toward the
site associated with their opinion to explore that option. Once they reach the
site, they explore it for an exponentially distributed amount of time (sampled
independently per agent) with parameter 1/q (thus with mean time q) that does
not depend on the option or option quality. During this time, agents measure
the quality of that site. Subsequently, they switch to the dissemination state
associated with their current opinion (DA if they were in EA, DB if they were
in EB), travel back to the nest, each at a different time due to independent
sampling, where they initiate opinion dissemination.

While in the nest, to meet the well-mixed this criterion as much as pos-
sible [10], agents perform a correlated random walk while disseminating and
before applying the decision mechanism. In the dissemination state, each agent
locally broadcasts his opinion continuously, and this message is sensed by other
agents that are also in the dissemination state and situated within a limited
range from the broadcasting agent. The time spent by the agent disseminating
its opinion is randomly sampled from an exponential distribution characterized
whose mean is proportional to site quality they have last visited g ·ρi, i ∈ {a, b}.
As a consequence, it is more probable to meet neighbors with the best opinion
than those with the worst one, because the former will disseminate longer than
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Figure 6: Consensus heatmap with N = 100 (Panel a, b, c) and N = 1000 (Panel
d, e, f), σB = 0.0125 (Panel a, d), σB = 0.025 (Panel b, e),σB = 0.05 (Panel
c,f). The colour scale represents NA/N . Blue cells indicate perfect consensus
(agreement to the best opinion, B), while red cells mean that the consensus has
not been reached and most of the agents chose the worst opinion, A.

the latter. This mechanism is called modulation of positive feedback, and it is
the driving mechanism to make the group converge on the option with the best
quality. At the end of dissemination, each agent can change its opinion based
on the opinions of other agents and using the voter model (see dotted lines in
Figure 3). The result of the voter model depends on the neighbors opinion,
that is, the agents within a specified spatial radius (in our simulations set to 10
units): The agent switches its opinion to the one of a random neighbors within
the interaction radius.

We consider two kinds of agents: normal and zealots. Each agent has an
initial opinion, which consists in one of the two options A or B. Normal agents
are able to change their opinion by applying a decision mechanism that relies on
the observation of other agents in local proximity. Zealots instead never change
their opinion and keep the one they have at the very beginning, either A or
B. Differently from previous work, were here consider a differential number of
zealots, meaning they are not equal between the two options A and B. Zealots
are indicated by proportion expressed with respect to the swarm size N . The
proportion of zealots for A (resp. B) will be denoted by σA (σB), where 0 ≤
σA ≤ 1 (resp. 0 ≤ σB ≤ 1). We are interested in the antagonistic case where
there are more agents for the option that is associated with the lowers quality.
Without loss of generality, in Section 4 and Section 5 we will only consider cases
where σA ≥ σB and ρA ≤ ρB .
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Figure 7: Consensus results over time T = 0− 40000 for quality ratio ρB/ρA =
2.00, N = 100, σb = 5 with zealots ratio σa/σb = 1. Each scenario is repeated
100 times.

Figure 8: Consensus results over time T = 0− 40000 for quality ratio ρB/ρA =
2.00, N = 100, σb = 5 with zealots ratio σa/σb = 5. Each scenario is repeated
100 times.

4 Experimental Setup

The experiments were conducted using a simulation tool originally developed
by Valentini et al. [24]. The simulated arena is a rectangular, two-dimensional
space. The collision of the agents is not modeled, however, previous results show
that this type of simulation is sufficient to approximate well the result of real
robot experiments. [21]

We study two swarm sizes in order to determine if this factor plays a role,
N = 100 and N = 1000. In order to make sure any effect of the swarm size
is not due to density, we keep the density constant by setting the nest size to
100× 100 square units for N = 100 and to 316× 316 for N = 1000. The size of
the two sites is identical to the size of the nest in both cases. In this way, the
area in the second setup is 10 times the area of the first one. In each experiment,
there are σA zealots committed to A and σB zealots committed to B. In every
run, we first initialize the zealots according to σA and σB . Afterwards, we set
50% of the remaining (normal) agents to opinion A and the remaining (normal)
agents to opinion B.
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Figure 9: Consensus results over time T = 0− 40000 for quality ratio ρB/ρA =
2.00, N = 100, σb = 5 with zealots ratio σa/σb = 10. Each scenario is repeated
100 times.

To study the effect of quality versus zealot quantity on the swarm’s decision-
making, we vary the quality ratio of option A and option B, as well as the ratio
of zealots on both sides. The quality value of option A (ρA) is fixed at 1 and the
quality of option B (ρB) varies from 1 to 2 with steps of 0.05. We vary the ratio
between the proportion of zealots for A to zealots to B (σA)/(σB) from 1 to
10 with steps of 1. We further evaluate the results under various proportion of
zealots committed to B: σB = {0.0125, 0.025, 0.05}. The rest of the parameters
are fixed. The average exploration time is q = 10, average dissemination time of
opinion A and B are respectively gρA and gρB , with g = 100 for all experiment
setups. The parameters and their values used in this experiment is summarized
in Table 2. Simulation runs for the duration of T = 40000 and repeated 100
times for each parameter combination.

5 Results

To obtain an initial picture on the effect of differential number of zealots on the
collective-decision making dynamics, we performed a preliminary experiment
with N = 100, fixed quality ratio ρB/ρA = 2.00, and equal number of zealots
for the two options σA = σB = 0.05, which corresponds to a ratio σA/σB = 1.
We record the evolution of the consensus dynamics over time from T = 0 to
T = 40000. The results, depicted in Figure 4, are consistent with previous
research [17], with the consensus state xA = NA/N (the number of agents with
opinion A divided by the swarm size N) converging to a low non-zero value
which represents almost-consensus to the option corresponding to the highest
quality (B) except for the effect of the zealots committed to A.

We then introduce differential latency by repeating the same process with in-
creased proportions of zealots for A and thus two biased zealot ratios: σA/σB =
5 and σA/σB = 10. The results in Figure 4 and 4 clearly show first a shift
of the consensus state xA to a neutral state (xA ≈ 0.5 in Figure 4, followed
by a shift biased towards opinion A (see Figure 4). These experiments already
answer the first question we asked in our work, that is, perfect consensus is no
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Figure 10: Consensus heatmap with N = 100 (Panel a, b, c) and N = 1000
(Panel d, e, f), σB = 0.0125 (Panel a, d), σB = 0.025 (Panel b, e),σB = 0.05
(Panel c,f). The colour scale represents NA/N . Blue cells indicate perfect
consensus (agreement to the best opinion, B), while red cells mean that the
consensus has not been reached and most of the agents chose the worst opinion,
A.

longer guaranteed in a system with the voter model with differential quality and
zealots, while a possibly infinite number of intermediate states can now become
attractors (as it will be clear shortly). This preliminary experiment also already
shows the competition between differential quality and differential zealot num-
ber: a tipping point for some values of σA/σB and ρB/ρA exists. From one side
of this tipping point, differential quality has a predominant effect, while from
the other side the differential zealot number has a predominant effect.

To obtain a broader picture of the tipping points, we decided to study the
two-dimensional space encompassing systematic combinations of ρB/ρA and σA,
σB . In this two-dimensional space, we expect the tipping points to describe
a curve: we call this curve the indifference curve. This setup, described in
Section 4, corresponded to 1260 parameter combinations in total. We run those
scenarios 100 times each and took the median consensus value at the end of
T = 40000 of that setup. The values then used to create heatmap diagrams as
shown in Figure 10.

In the figures the colour scale represents xA = NA/N . Dark blue colored
regions indicate perfect consensus (agreement to the best opinion, B), while red
cells indicate perfect consensus to opinion A, which in these experiments it is
the worst in terms of quality. Colors become paler as the consensus state gets
weaker. The white curve is the separation line between consensus to A (red)
and consensus to B (blue), the indifference curve.

The results in the heatmaps show that, when the proportion of zealots asso-
ciated to the best option B is low (σB = 0.0125), differential quality ρB/ρA has
a more relevant role compared to the differential proportions of zealots σA/σB ,
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as clear from the presence of a wider blue area, compared to the red one. In this
case, the consensus is almost always reached to the best opinion B. Only for
very few cases, where the difference in quality is very small and the number of
A zealots is very high, the system converges to the worst opinion A. This result
is however dramatically affected by one parameter, the proportion of zealots for
the best option σB , which in turns also affects by increasing the total proportion
of zealots σA + σB . Increasing the number of zealots with the best opinion (
e.g. σB = 0.0250), the tendency to agree to the worst opinion increases, as
evident from the motion towards north-west of the indifference curve and from
the increase in size of the red area, corresponding to cases with small quality
difference and high number of zealots A. This tendency is even stronger for
even higher proportions of zealots B (σB = 0.0500). Also in this case, only
a high percentage of zealots with the worst opinion A (σA/σB larger than 6,
that is σA larger than 30%) can drive the whole swarm to the consensus to A
(red area), despite the difference in qualities. Importantly, although σB appears
to be the most influencing parameters, from the plots it also emerges that the
consensus dynamics and the behaviour of the indifference curve do not depend
on the swarm size N , as it is clear when comparing the two cases with N = 100
and N = 1000 represented in the top and bottom row of Figure 10.

6 Conclusions and Future Work

In this paper, we considered the best-of-n problem in its original formulations
by Valentini et al. [22], with the addition of zealots, individuals that are com-
mitted to one of the n options and cannot change their opinion. The novel
contribution of this research is the study of the interplay between differential
quality, that is different quality values associated to the two options, and dif-
ferential zealot quantity, that is different proportions of zealot for the different
options. In the 2-option case, we studied an antagonistic scenario in which the
option associated to the best quality has less zealots compared to the other op-
tion. Our goal here was to study the asymptotic consensus state of the system
on the differential quality and zealot quantity plane, where in one axis we vary
the ratio between zealots and in the other the ratio between the qualities. In
this plane, we looked at the behaviour of the indifference curve, which separates
the areas where the asymptotic consensus is for one option from areas where it
is for the other option. Our results show that these dynamics do not depend on
the swarm size, but they do depend from the total proportion of zealots: The
indifference curve cuts the considered plane in half only for intermediate values
of this parameter, below this value it appears instead that quality plays a more
significant role in determining the consensus equilibrium, while above this value
it is the zealot quantity that seem to play a more significant role. Importantly,
the total proportion of zealots is changed by changing the proportion of zealot
for the right option, the option associated with the highest quality. This means
that, contrarily to intuition, having individuals committed to the right option
could have the surprising effect of producing dynamics that can be more severely
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affected by zealots of the opposite faction.
This study is can be extended in future works in many ways. First of all,

a mathematical model, such as the one in [17], can be used to have a better
and wider prediction of the dynamics in our setting. Second, we are interested
in introducing the notion of dissemination cost, a parameter that adds a new
dimension to the study because, from the engineering perspective, one can ask
the question of how to design a parsimonious but effective modulation of positive
feedback mechanism for normal agents, or how to optimize the number of zealots
to inject in a system in order to bias the consensus dynamics while minimizing
at the same time the cost. Finally, we would like to consider also scenarios
where the zealotry level could be deteriorating over time.
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Franks, N. R. (2009). On optimal decision-making in brains and social insect
colonies. Journal of The Royal Society Interface, 6(40):1065–1074.

[13] Masi, G. D. and Ferrante, E. (2020). Quality-dependent adaptation in
a swarm of drones for environmental monitoring. In 2020 Advances in Sci-
ence and Engineering Technology International Conferences (ASET), number
1570619660, page to appear, Piscataway, NJ. IEEE Press.

[14] Masuda, N. (2015). Opinion control in complex networks. New Journal of
Physics, 17:1–11.

[15] Mistry, D., Zhang, Q., Perra, N., and Baronchelli, A. (2015). Committed
activists and the reshaping of status-quo social consensus. Physical Review E
- Statistical, Nonlinear, and Soft Matter Physics, 92(4):1–9.

[16] Mukhopadhyay, Mazumdar, R. (2016). Binary opinion dynamics with bi-
ased agents and agents with different degrees of stubbornness. In 28th Inter-
national Teletraffic Congress (ITC28), volume 01, pages 261–269, Piscataway,
NJ. IEEE.

[17] Prasetyo, J., De Masi, G., Ranjan, P., and Ferrante, E. (2018). The best-of-
n problem with dynamic site qualities: Achieving adaptability with stubborn
individuals. In Dorigo, M., Birattari, M., Blum, C., Christensen, A. L., Reina,
A., and Trianni, V., editors, Swarm Intelligence (ANTS 2018), volume 11172
of LNCS, pages 239–251. Springer, Berlin, Germany.

[18] Primiero, G., Tuci, E., Tagliabue, J., and Ferrante, E. (2018). Swarm
attack: A self-organized model to recover from malicious communication ma-
nipulation in a swarm of simple simulated agents. In Dorigo, M., Birattari,
M., Blum, C., Christensen, A., Reina, A., and Trianni, V., editors, Proc. of
the 11th Int. Conf. on Swarm Intelligence, pages 213–224, Berlin, Germany.
Springer.

[19] Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., and Trianni, V.
(2015). A design pattern for decentralised decision making. PLoS ONE,
10(10):e0140950.

[20] Seeley, T. D. (2010). Honeybee Democracy. Princeton University Press,
Princeton, NJ.

14



[21] Valentini, G., Brambilla, D., Hamann, H., and Dorigo, M. (2016a). Col-
lective perception of environmental features in a robot swarm. In Dorigo,
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