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Algorithmes co-évolutionnaires coopératifs : le défi des problèmes de grande
dimension au sein des processus d’optimisation évolutionnaire

par Julien Blanchard

Résumé : La grande dimensionnalité de certains problèmes d’optimisation a un im-
pact négatif sur la capacité des algorithmes évolutionnaires à les optimiser efficace-
ment. En effet, la complexité de ces problèmes croit exponentiellement lorsque la
dimension augmente. Les algorithmes co-évolutionnaires coopératifs dépassent cette
limitation en profitant des avantages de la stratégie « diviser pour mieux régner ». Ils
divisent les problèmes de grande dimension en plusieurs problèmes plus petits et plus
simples pouvant être optimisés avec un algorithme évolutionnaire standard. L’objectif
de ce travail est d’étudier ces algorithmes co-évolutionnaires coopératifs et de déve-
lopper de nouveaux outils permettant de résoudre des problèmes d’optimisation pos-
sédant des caractéristiques couramment rencontrées en ingénierie et en sciences. Une
attention particulière est accordée aux problèmes contraints, aux problèmes imbriqués
et aux problèmes coûteux en ressources informatiques. Les principales nouveautés des
algorithmes développés dans cette thèse concernent la décomposition des problèmes
de grande dimension et la coopération entre les différents sous-problèmes obtenus.
Des simulations numériques sont réalisées afin de mettre en avant les avantages des
outils développés.

Challenging High Dimensionality in Evolutionary Optimization using
Cooperative Co-evolutionary Algorithms

by Julien Blanchard

Abstract: In evolutionary optimization, high dimensionality has a negative impact on
the algorithms performance since the complexity of handled problems grows expo-
nentially with dimensionality. Cooperative co-evolutionary algorithms overstep this
limitation by enjoying the benefits of the divide-and-conquer strategy. They divide
large problems into some simpler and smaller subproblems that can be optimized with
a standard evolutionary algorithm. The aim of this thesis is to study these cooperative
co-evolutionary algorithms and to develop new tools to allow them to tackle optimiza-
tion problems with common features appearing in engineering and sciences. Particular
attention is paid to constrained problems, overlapping problems and computationally
expensive problems. The main innovations of the newly proposed algorithms focus
on the decomposition of the large-scale problems and the cooperation between the ob-
tained subproblems. Numerical experiments are conducted to put forward the benefits
of the developed tools.
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Introduction

Context
In everyday life, people can enjoy the benefits of mathematical optimization tools.
They are used to handle a wide range of applied problems in various areas includ-
ing artificial intelligence, economics, engineering, finance, manufacturing, medicine,
physics, supply chain, transportation, etc. In a car, most of the engine components
are designed following an optimization procedure. For example, the waste heat re-
covery can be optimized using specific tools and can be valued in the form of power
electricity (Rosset et al. (2018)). In medicine, using radiotherapy to treat cancerous
cells also requires efficient optimization tools to maximize the radiation exposure to
cancer tissue while sparring the adjacent organs at risk (Pugachev et al. (2001)). In
a wider context, numerical optimization has attracted considerable attention in the
last decades. This has contributed to the growth of various optimization branches.
In particular, the topic studied in the present work is a research area which gathers
optimization and computer science. It has been named in the literature as Evolutionary
Computing (Eiben and Smith (2015)).

Evolutionary computing, as stated by its name, is a particular kind of computing
inspired by the process of natural evolution (Darwin (1859)). The latter can be simply
presented as follows. A population of individuals in a given environment that has
limited resources strives for survival and reproduction. In this context, the fitness of an
individual measures its proper adaptation to this environment and determines its ability
to survive and reproduce. In evolutionary computing, the same principles are extended
to problem solving through trial-and-error testing. To solve a problem, we start with
a set of candidate solutions playing the role of individuals. Their quality/fitness, i.e.,
how well they solve the problem, determines the chance to be kept in the candidate
solutions set and also the chance to be used to build new candidate solutions. From
the second half of the twentieth century, various algorithms were developed in the
field of evolutionary computing. They are called Evolutionary Algorithms (EAs) and
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2 INTRODUCTION

cover different methods such as Genetic Algorithms (Goldberg (1989)), Evolutionary
Programming (Yao et al. (1999)), Evolution Strategies (Beyer and Schwefel (2002))
and Differential Evolution (Price et al. (2005)).

Such EAs are effective tools to solve many real-world optimization problems, no-
tably because they do not require the use of derivatives of the problem under scrutiny.
Such information may often be impractical to obtain or unavailable, for example in
the context of black-box optimization problems. Moreover, in recent years, stud-
ied problems in engineering and sciences become increasingly complex and involve
an increasingly large number of decision variables. This is a source of concern for
EAs since their performance declines when the dimensionality of the search space
increases. In this context, new approaches have been proposed to tackle Large-Scale
Global Optimization (LSGO) problems. They can be classified in two categories:
non-decomposition and decomposition methods (Jian et al. (2020)). EAs based on
non-decomposition methods consider all the decision variables as a whole. They
rely on new search operators, multi-population strategies, self-adapting control pa-
rameters or embedding local search strategies to enhance the exploration capabilities
when dealing with LSGO problems. EAs based on decomposition methods rely on
the "divide-and-conquer strategy". They divide the initial LSGO problem into smaller
ones which focus on smaller groups of decision variables and are therefore easier
to be solved. The first EA following this approach has been introduced by Potter and
De Jong (1994) and is called Cooperative Co-Evolutionary Algorithm (CC-EA). Since
then and to this day, the CC-EAs have been further studied and improved in various
EA paradigms. This compelling approach is the one considered in this thesis to further
challenge high dimensionality in evolutionary optimization.

Outline
The central part of the manuscript is organized as follows. Chapters 1, 2 and 5 provide
some useful background to better handle the following content. Chapters 3, 4 and 6
present our proposed CC strategies to challenge high dimensionality in evolutionary
computation.

Chapter 1. This first chapter provides the general description of a genetic algorithm.
It will be the EA optimizer used in most numerical experiments presented in
this thesis. The general scheme of such a genetic algorithm relies on a popu-
lation of candidate solutions, called individuals, that is improved in an iterative
process. During this process, there are different ways to represent, select, repro-
duce and mutate the individuals. The most common ones are described. Finally,
this chapter ends with the presentation of some approaches that allow genetic
algorithms to deal with constrained optimization problems.

Chapter 2. This chapter proposes a state of the art of cooperative co-evolutionary
algorithms. It introduces the general CC framework relying on the three follow-
ing mainstays: decomposition, optimization and combination. Then, the two
main types of CC-EAs encountered in the literature are presented. The first one



INTRODUCTION 3

relies on multiple random decompositions, the other on a unique decomposition
based on interaction detection. Such a detection deserves considerable attention
and will be considered later in the thesis.

Chapter 3. Following the state of the art, our contribution on CC-EAs is developed
in this chapter. It firstly consists in a hybrid decomposition-based CC-EA that
further splits large subcomponents of interacting variables, even if they are non-
separable. Secondly, this new CC framework is extended in order to tackle
large-scale constrained optimization problems. The performance of the newly
proposed approach is assessed on a constrained benchmark set specially de-
signed for this purpose.

Chapter 4. Standard CC strategies may encounter some difficulties in tackling with
problem instances composed of several components that interact with each other.
In order to optimize such overlapping problems efficiently, we introduce a CC
framework that performs a decomposition with overlapped variables between
subcomponents. This requires developing a new decomposition strategy and
adapting the exchange of information between subcomponents during the opti-
mization. Simulation experiments illustrate the performance of the new ap-
proach compared with a standard CC one. An extended analysis of the over-
lapped approach on Rosenbrock function is also proposed.

Chapter 5. Optimization problems flowing from numerical simulations may be time-
consuming to evaluate. In this context, it is inconceivable to solve such expen-
sive optimization problems with EAs since they often require a high number of
function evaluations. This chapter presents the baselines of surrogate-assisted
optimization. This is an effective way out to tackle such problems in a reason-
able amount of time. In this framework, an efficient computational model of
the fitness landscape is built and is used for most of the function evaluations
instead of the expensive function. This model is updated in an iterative scheme
by evaluating the expensive function at some appropriate points.

Chapter 6. The CC approach introduced in Chapter 2 has been developed to tackle
LSGO problems with EAs. Although this approach is effective, it is inappro-
priate to deal with expensive problems since it requires a relative large number
of function evaluations. Moreover, the surrogate-assisted approach presented in
Chapter 5 efficiently deals with expensive problems but suffers from the curse
of dimensionality when large-scale problems are considered. This chapter intro-
duces a new framework that combines these two approaches in order to optimize
large-scale and expensive optimization problems.

Finally, this manuscript is closed with a conclusion that summarizes the work pre-
sented in this thesis and with some interesting perspectives for future researches.
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Chapter 1
Genetic algorithms

Genetic algorithms are meta-heuristic(1) optimization algorithms inspired by Darwin’s
theory of evolution (Sivanandam and Deepa (2008)). They were born in the 1960s in
the USA. In this period, with the breakthrough of computer sciences, considerable at-
tention has been applied to implement automated problem solving techniques inspired
by natural selection and genetics. One of these implementations was carried out by
John Holland, his colleagues and students, including David Goldberg, and was called
genetic algorithm (Holland (1973)). Since then, many research efforts have been fo-
cused on genetic algorithms or, in a wider sense, on evolutionary computing. They
are very powerful tools to tackle a wide class of problems. Their features offer a good
exploration of the search space but also the exploitation of promising areas, making
them interesting, successful and popular global optimizers.

This chapter introduces the description of the problem at hand. Then, it gives the
general scheme and common features of genetic algorithms, as described in multiple
textbooks (Goldberg (1989); Coley (1999); Eiben and Smith (2015)). It also presents
different strategies to deal with constrained optimization problems (Coello (2002),
Singh et al. (2016)). Finally, the genetic algorithm used to obtain the results presented
in this thesis is briefly introduced.

1.1 Problem description
This section presents the overall description of the optimization problems considered
in this thesis. In a general way, optimization problems occurring in engineering and
design are represented with a black-box approach. It means that the analytic form
of the objective function is unknown. The only available information is its value
at given points. The goal of the optimization is to find the inputs that minimize

(1)See the box on page 6 for further discussion on the terms heuristic and meta-heuristic.
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6 CHAPTER 1. GENETIC ALGORITHMS

Heuristic or meta-heuristic ?

In the literature, genetic algorithms, and more generally nature-inspired algorithms are
sometimes referred to as heuristic algorithms, other times as meta-heuristic algorithms.
Basically, heuristic algorithms are alternatives to conventional optimization techniques.
They are developed to solve specific problems in sciences and engineering with better com-
putational performance at the expense of lower accuracy (Gavrilas (2010)).

The term ’meta-heuristic’ was introduced in Glover (1986) to describe high level
heuristics. In this context, meta-heuristic algorithms combine basic heuristic methods in
order to efficiently explore the search space without requiring any special knowledge on the
optimization problems to be solved. According to Blum and Roli (2003), this class of al-
gorithms includes, amongst others, ant colony optimization, genetic algorithms, simulated
annealing and tabu search.

However, the discussion on the classification of these algorithms (heuristic vs meta-
heuristic) is still open. Some people may consider some characteristics of an algorithm
to make it a ’high level’ heuristic, some others not. Another argument often put forward
to discern a meta-heuristic is its capacity of learning from its own experience during the
optimization (one may think to a genetic algorithm whose mutation rate is self-adapted ac-
cording to the improvement during the last iterations for example). On the contrary, a basic
heuristic always repeats the same process during the whole optimization. It is often the case
of local search methods.

To conclude, although some clarifications have been made, the limit between heuristic
and meta-heuristic remains unclear. From my personal point of view, I would prefer re-
ferred the genetic algorithm to a meta-heuristic because it may be much more sophisticated
than a basic local search and can learn from itself during the evolutionary process.

(or maximize) the objective function f (~x) under the constraint that the vector of in-
puts~x = [x1,x2, . . . ,xn] remains in a specified domain D . In other words, the problem
to be solved is given by:

min/max~x∈D f (~x). (1.1.1)

In particular, the work presented in this thesis focuses on continuous optimization
problems since we consider that each input xi takes real values. Genetic algorithms,
amongst others, can be an effective approach to solve such optimization problems
covering a wide range of problems occurring in many real-world applications.

1.2 General scheme
Although there are multiple variants of genetic algorithms, the underlying structure
behind these variants is the same. Genetic algorithms start from a population of
guesses for the solutions, called individuals. This population is then evolved following
Darwin’s theory of evolution: the individuals which are the best adapted to their envi-
ronment, i.e., the best fit, survive and reproduce, the others disappear. This is referred
to as natural selection/survival of the fittest.
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In our framework, an individual is composed by one chromosome that is a vector
of genes. Depending on the context, each variable of the problem at hand is encoded
in one or several genes. The whole chromosome represents a potential solution of
this problem (see Section 1.3 for further details). Therefore, the initial population is
a set of potential solutions that will be improved in an iterative process described in
Figure 1.1. Each individual of the population is evaluated with the fitness function F .
It is a function that describes the quality of the individuals: the higher the fitness
value, the better the quality of the individual. In most cases, the fitness function is
equal to the objective function. Therefore, good solutions have high fitness values for
maximization problems and low fitness values for minimization problems.

Figure 1.1 – General scheme of a genetic algorithm.

The first step of the iterative process is to select pairs of parents in the popula-
tion. They are randomly selected following their fitness value: the higher the fitness
value of an individual, the higher the probability to be selected as parent. Then,
reproduction and mutation operators are applied to create offspring individuals. For
this step, crossover operators act on pair of parents to create new individuals whose
genetic information is a combination of the genetic material of their parents. After
that, some individuals are mutated with a small probability. It means that their genetic
information is slightly changed. The obtained individuals constitute the offspring pop-
ulation. Finally, some of the better individuals among the previous population and the
offspring population are chosen to compose the population of the next iteration. In
the context of genetic algorithm, an iteration is called a generation. The process is
repeated until the termination criteria is met. Details about all operators described
above are given in Section 1.4.

1.3 Representation
There are different ways to choose the genetic representation of an individual. One
of the simplest and earliest representation is the binary coding (Goldberg (1989)). In
this case, each gene is represented by a bit that can take the value 0 or 1. Therefore,
a chromosome is a sequence of 0’s and 1’s that can stand for a potential solution of
the problem at hand. For example, a chromosome of size 8 can represent an integer
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between 0 and 255 as illustrated in Figure 1.2. Another commonly used representation
is the reflected binary code, also known as Gray code (Rowe et al. (2004)). Unlike the
standard binary code, it offers a representation such that consecutive integers always
have Hamming distance one. This property presents diverse advantages, notably with
regard to the mutation operator.

Figure 1.2 – A binary chromosome and its decimal representation.

When dealing with variable values that come from a continuous distribution, it
may be more appropriate to use a real-valued representation (Wright (1991)). In this
case, each gene is a real number. This kind of representation could be suitable to work
with physical quantities once one cannot discretize the search space. For example,
considering the design of an aircraft propeller, each gene could represent the length
of the propeller blades, the tilt angle of a specific component or even parameters of a
complex fluid dynamics system.

1.4 Operators
Initialization

A genetic algorithm starts from an initial population. Most of the time, its individuals
are randomly generated. For a binary coding of individuals, the generation of the
initial population simply consists in choosing the value (0 or 1) of each gene of each
individual randomly. For a real-valued representation of individuals, the i-th gene of
the individual x can be randomly set as follows:

xi = Li +α(Ui−Li), (1.4.1)

where α is a real random number uniformly chosen in the interval [0,1], Li and Ui are,
respectively, the lower and upper bounds of the domain of the i-th gene value. Some
advanced sampling techniques such as Latin Hypercube Sampling (LHS), Centroidal
Voronoi Tessellations (CVT) or Latinized Centroidal Voronoi Tessellations (LCVT)
could also be used to generate the initial population. These techniques will be further
investigated in Section 5.2.

Parent selection

The selection of individuals that will produce the offspring is a key step. On the
one hand, individuals with high fitness values(2) must have an important probabi-

(2)In this section, without the loss of generality, we set ourselves in the context of maximization problems.
Therefore, we consider that good solutions have high fitness values.
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lity to be selected in order to spread their good genetic material to the next gen-
eration. On the other hand, some individuals with low fitness values could some-
times be selected in order to avoid premature convergence (Leung et al. (1997)).
Moreover, it may happen that they offer some genetic material that could be valu-
able to reach promising areas. Traditional procedures for the selection of parents are
the Fitness Proportional Selection (FPS), the ranking selection and the tournament
selection (Eiben and Smith (2015)).

The fitness proportional selection, first introduced in Holland (1975), assigns to
the i-th individual of the population the probability P(i) to be selected according to
the following equation:

P(i) =
Fi

µ

∑
j=1

Fj

, ∀i = 1, . . . ,µ, (1.4.2)

where µ is the total number of individuals in the population. The probability P(i) is
the ratio between the fitness of the i-th individual Fi and the sum of the fitness of the µ

individuals of the population. It requires that all the fitness values must be positive.
An example of these probabilities is shown in Table 1.1 (columns 4 and 5) for a popu-
lation of 4 individuals. In this table, two different fitnesses are considered, which leads
to different probabilities. Moreover, the FPS operator is also known under the name
of roulette wheel operator. Indeed, a roulette wheel slot can be associated to each
individual whose opening angle is proportional to its fitness value. Then, to select an
individual, you just have to spin the wheel and choose the individual corresponding to
the slot where the ball will land. From an algorithmic point of view, the fitness propor-
tion of each individual can be matched to a line segment in the interval [0,1]. To select
an individual, a random number is generated between 0 and 1 and the corresponding
individual is selected.

Individual Fitness 1 Fitness 2 Prob. with FPS Prob. with FPS Prob. with Ranking
for Fitness 1 for Fitness 2 Selection s = 1.5

A 1 21 0.05 0.21 0.13
B 3 23 0.14 0.22 0.21
C 7 27 0.33 0.27 0.29
D 10 30 0.48 0.30 0.37

Table 1.1 – Example of selection probabilities computation for the fitness
proportional selection and the ranking selection.

This mechanism has been widely studied. However, it suffers from several draw-
backs. Firstly, the computed probabilities are highly dependent on the variance of the
fitness. If the variance is large, an individual can have a fitness value considerably
larger than the others. In this case, it will be too frequently selected and it will lead to
a premature convergence of the algorithm towards a local optimum. On the contrary, if
the variance is too small, the selection operator acts nearly such as a random selection.
Furthermore, if the fitness values are shifted, it changes the selection probabilities
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while the order between individuals remains the same. This behavior is illustrated in
Table 1.1 (columns 3 and 5), fitness 2 is a +20 shift of fitness 1 (columns 2 and 4).

The ranking selection can be viewed as an alternative selection scheme to avoid
inconveniences of fitness proportional fitting, i.e., discarding the absolute values for
the fitness and taking into account only the relative values (Baker (1987)). Individuals
are sorted from 0 to µ−1 according to their fitness value and the selection probabili-
ties are computed on the basis of their rank i, the worst individual being at position 0,
the best one at position µ−1. There are several ways to assign the probabilities from
the ranks. The linear ranking is commonly used and is computed as follows:

P(i) =
(2− s)

µ
+

2i(s−1)
µ(µ−1)

, (1.4.3)

where s ∈ ]1,2]. It is a parameter controlling the distribution of the probabilities.
Choosing s = 1 would be equivalent to randomly choosing an individual in the popu-
lation without any selection pressure. Moreover, setting s = 2 will prevent the worst
individual to be selected (see Table 1.1 column 6).

The tournament selection is the most widely used selection scheme. It consists in
choosing randomly k individuals in the population and selecting the best one based
on the fitness values. The tournament size k enables controlling the selection pres-
sure (Miller and Goldberg (1995)). The larger the size, the greater the probability
that individuals with high fitness values will be selected. On the contrary, if the size
is small, low fitness individuals have a quite large probability to be selected. When
the best individual of the tournament is selected for reproduction, the term determin-
istic tournament is used. Another variant, called stochastic tournament, consists in
choosing the best individuals with a probability p ∈ ] 1

2 ,1], the second best with a
probability p(1− p), the third one with a probability p(1− p)2 and so on. This new
parameter p is another tool to manage the selection pressure.

Reproduction and mutation

Reproduction and mutation operators that we can name variation operators create the
diversity within the population and facilitate novelty. The reproduction allows one
to produce from two individuals, called parents, one or two new individuals called
children. It is carried out with a crossover. It merges the genetic information of the
two parents to create the children.

For a binary coding of individuals, the most common operators are the one-point
crossover, the n-point crossover and the uniform crossover (Coley (1999)). The one-
point crossover is the simplest one. Parents chromosomes are cut at a random point
and the tails are exchanged to create two children. The n-point crossover is a generali-
zation of the previous one. Parents chromosomes are cut at n random points and the
children are created by swapping one in two pieces of the chromosomes. Finally, the
uniform crossover consists in exchanging each gene of the parents with 0.5 probability.
These binary crossovers are illustrated in Figure 1.3.
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(a) One-point crossover

(b) n-point crossover with n = 2

(c) Uniform crossover

Figure 1.3 – Binary crossovers, parents are on the left, children on the right.

For a real-valued representation of individuals, there are three kinds of crossover
operators: the discrete crossover, the (whole) arithmetic crossover and the blend
crossover (Eiben and Smith (2015)). The discrete crossover consists in applying
the above presented rules for binary representation of individuals to the real-valued
representation as shown in Figure 1.4a. However, the drawback of this very simple
methodology is that the crossover does not produce any new values in the population.
Indeed, each gene of a child is a gene of one of its two parents with equal likelihood.
For the arithmetic crossover, the i-th gene of the two children z1,i and z2,i is a linear
combination of the corresponding genes of the parents xi and yi:

z1,i = αixi +(1−αi)yi, ∀ i = 1, . . .n, (1.4.4)
z2,i = (1−αi)xi +αiyi, ∀ i = 1, . . .n, (1.4.5)

where αi is a real number between 0 and 1. There are several ways to choose the
parameters αi. The simplest one is to fix αi = α, ∀ i = 1, . . .n. In this case, α could
be randomly chosen in the interval [0,1] for each mating of parents or could be fixed
to a predetermined value. In particular, if α is set to 0.5, the two children are identical
as shown in Figure 1.4b. For this reason, with that kind of crossover, it is common
to produce only one child starting from two parents. Such a crossover operator is
represented in Figure 1.5a for two real-valued parents x and y. If αi is fixed to the
same value for the first and the second gene, the offspring lies a line segment between
the two parents. In particular, if α = 0.5, it lies in the middle of its two parents.
Another way to deal with αi parameters is to pick up a new random number between 0
and 1 for each gene as illustrated in Figure 1.4c. In this case, for two real-valued
parents, the child lies in a rectangle whose vertices are determined by the position
of the two parents as shown in Figure 1.5b. Finally, the blend crossover allows one
to produce offspring outside of the n-dimensional box determined by the two parents
(Eshelman and Schaffer (1993)). Indeed, with that kind of crossover, supposing that
for the i-th gene xi < yi, the value of zi lies in the interval [xi− γdi,yi + γdi] where di
represents the distance between xi and yi. To set the i-th gene of a child that satisfies
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the above condition, a random number u is picked up in the interval [0,1]. Then αi
and zi are computed as follows:

αi = (1−2γ)u− γ (1.4.6)
zi = (1−αi)xi +αiyi. (1.4.7)

This crossover is presented for two real-valued parents in Figure 1.5c.
In a natural world, the mutation of some genes happens very rarely. However, the

mutation is needed in the context of genetic algorithms. Indeed, although crossover
operators effectively explore the search space, they may sometimes loose some poten-
tially useful genetic material. The mutation operator protects against such a loss of
information.

For a binary coding of individuals, the mutation operator is very simple. It allows
each bit to flip from 0 to 1 or from 1 to 0 with a small probability p. An example
of such a mutation is proposed in Figure 1.6, the 3 and 8-th bits have been flipped.
Generally, the parameter p is fixed in such a way that on average, one bit per offspring
is flipped. However, the optimal value of p is problem-dependent. A higher value of p

(a) Discrete crossover (one-point)

(b) Arithmetic crossover with αi = 0.5, ∀ i = 1, . . .8

(c) Arithmetic crossover with different αi values taken from this array
[ 0.8 0.9 0.1 0.9 0.6 0.2 0.3 0.5 ]

Figure 1.4 – Crossovers for real-valued representation, parents are
on the left, children on the right.

(a) Arithmetic crossover α1 = α2 (b) Arithmetic crossover α1 6= α2 (c) Blend crossover

Figure 1.5 – Crossovers for two real-valued parents.



1.4. OPERATORS 13

Figure 1.6 – Mutation for binary representation.

could be used to incite more exploration while a smaller one is more appropriate to
boost the exploitation.

For a real-valued representation, each individual has a small probability to be mu-
tated. In particular, if the latter is mutated, the mutation operator changes the value
of each gene. Generally, the introduced perturbation is nonuniform. It is designed
to, usually but not always, produce small changes of the gene value. Furthermore, it
is also possible to perform large perturbations but with smaller probabilities. Such a
pertubation can be built using a normal distribution. Given a gene xi, its value after
mutation is obtained as follows:

x′i = xi +α(Ui−Li), (1.4.8)

where α is a real number randomly chosen following a normal distribution with mean
zero and user-specified standard deviation σ , Ui and Li are, respectively, the upper
and lower bounds of the domain of the i-th gene value. The normal distribution is
appropriate in this framework since approximately two thirds of α values will lie in
the interval [−σ ,σ ].

Survivor selection

The survivor selection, also called replacement step, carries out the composition of
the population of the next generation. It is built from the population of parents and
offspring. The two main approaches for the survivor selection are age-based selection
and fitness-based selection (Eiben and Smith (2015)). The general idea of age-based
selection is that each individual will persist in the population for a fixed number of
generations. The simplest age-based selection strategy is to set this number equal to
one. In this case, at each generation, the offspring population replaces the popula-
tion of parents. That kind of strategy is often combined with elitism. It guarantees
that the best individuals will be kept in the population for the next generation. For
fitness-based selection, a very simple strategy allowing to keep a constant population
size is presented. The populations of µ parents and λ children are merged and ranked
according to their fitness. The best µ are kept for the next generation. This is called
the (µ +λ ) selection.

Termination

In an ideal study case, if the optimal value of the fitness function is known, the stop-
ping criterion will be the discovery of this optimal value. However, genetic algo-
rithms are stochastic and there is no guarantee to reach the optimum. Furthermore,
the optimum value is most of the time unknown. Therefore, other stopping criteria
are necessary. Usually, the algorithm is stopped when one of the below conditions is
verified:
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• the maximum allowed CPU time is consumed;

• the maximum number of generations/fitness evaluations is reached;

• there is no improvement of the fitness value for the last k generations/fitness
evaluations.

1.5 Dealing with constraints
Genetic algorithms features presented in the previous sections allow one to solve a
wide range of unconstrained optimization problems. However, when dealing with
real-world applications, it is common to work with constrained optimization problems.
The latter can be formulated as follows:

min
~x∈D

f (~x) (1.5.1)

subject to gi(~x) ≤ 0, i = 1, . . . , p, (1.5.2)
h j(~x) = 0, j = 1, . . . ,q, (1.5.3)

where x is the vector of solutions ~x = [x1,x2, . . . ,xn], D is the search space domain,
f (~x) is the objective function, gi(~x) (i = 1, . . . , p) are inequality constraints and h j(~x)
( j = 1, . . . ,q) are equality constraints. In what follows, only inequality constraints
are considered since equality constraints can be transformed in inequalities with the
following equation:

|h j(~x)− ε| ≤ 0, (1.5.4)

where ε is a very small value describing the tolerance allowed. In order to solve con-
strained optimization problems with genetic algorithms, multiple constraint-handling
techniques have been studied. According to Coello (2002), they can be classified
in 5 categories: penalty functions, special representations and operators, repair algo-
rithms, separation of objectives and constraints, and hybrid methods. In this work, the
presented methodologies are restricted to several kinds of penalty functions and to the
superiority of feasible points, which is a particular case of separation of objectives and
constraints.

Penalty functions

Monitoring constraints with penalty functions is a very popular approach. It consists
in transforming a constrained problem into an unconstrained one by adding a non-
negative value to the objective function reflecting that one or several constraints are
violated. The obtained unconstrained problem can be expressed as follows:

min
~x∈D

F(~x) = f (~x)+C
p

∑
i=1

Gi(~x), (1.5.5)

where Gi(~x) = max(0,gi(~x)),∀i = 1, . . . , p. The penalty term is null when all con-
straints are respected and is positive if at least one of them is violated. The parame-
ter C is a weight factor monitoring the impact of the penalty term. Depending on how
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it is defined, it provides different strategies to deal with the constraints. The simplest
way to define this parameter is to fix it to a constant value throughout all the optimiza-
tion process. In this case, we talk about a static penalty function. Another strategy,
called dynamic penalty function, is to update the parameter C in such as way that the
penalty term increases over time, i.e., generations. It can be defined as:

C(t) = (Wt)α , (1.5.6)

where W is a constant weight factor, t is the number of the current generation and α is
a constant parameter that determines the rate at which penalty terms will increase over
time (Joines and Houck (1994)). Finally, the parameter C can also be updated with
respect to a feedback of the search process. This kind of strategy is called adaptive
penalty function. In Hadj-Alouane and Bean (1997), the parameter C is updated at
every generation as follows:

C(t +1) =



1
α1

C(t) if the best individual in the last k generations
was always feasible,

α2C(t) if the best individual in the last k generations,
was always unfeasible,

C(t) otherwise,

(1.5.7)

where α1 > α2 > 1. In other words, the penalty term is decreased if the best individual
was always feasible in previous generations; it is increased if the best individual was
always unfeasible; otherwise, it remains unchanged.

Superiority of feasible points

The main idea of the superiority of feasible points is that feasible individuals are al-
ways preferred over unfeasible ones. Such a strategy can be set up by using the fol-
lowing fitness function(3) proposed by Deb (2000):

F(~x) =


f (~x) if gi(~x)≤ 0 ∀i = 1, . . . , p

fworst +
p

∑
i=1

Gi(~x) otherwise,
(1.5.8)

where fworst is the objective function of the worst feasible individual in the population,
Gi(~x) = max(0,gi(~x)),∀i = 1, . . . , p. If all individuals in the population are unfeasi-
ble, fworst is fixed to zero. Using that fitness function to select individuals is equivalent
to perform a binary tournament with the following rules. When two individuals are
compared:

• if both are feasible, the one with the best objective value is chosen;

• if only one of them is feasible, it is preferred over the unfeasible one;
(3)As a reminder, good solutions have low fitness values for minimization problems, which is the case of

the constrained problems considered in this section.
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• if both are unfeasible, the one having smaller constraint violation is selected.

This concludes our overview of the fundamental principles of genetic algorithms.

1.6 Genetic algorithm of Minamo
The genetic algorithm used to obtain the results presented in this thesis is the one
implemented in Minamo (Sainvitu et al. (2010)), the multi-disciplinary optimization
platform developed at the applied research center Cenaero. The latter relies on EAs
whose convergence rate is strongly accelerated through an efficient coupling with sur-
rogate models. In particular, the genetic algorithm considered in this thesis is the
canonical EA of Minamo (the strategies to accelerate the convergence with surrogate
models will be investigated in Chapters 5 and 6). It follows the general steps of a
genetic algorithm with a real-valued representation of individuals. A tournament se-
lection embedded with the superiority of feasible points is used to pick up pairs of
parents on which are applied arithmetic crossovers. The individuals resulting from the
reproduction step are potentially mutated with a small probability of 1 %. For the sur-
vival selection, the population of offspring replaces the population of parents at each
generation. An elitism of two individuals is carried out.



Chapter 2
Cooperative co-evolutionary
algorithms: state of the art

In the last decades, many real-world optimization problems were tackled with Evolu-
tionary Algorithms (EAs) such as Genetic Algorithms (see Chapter 1), Evolutionary
Programming (Yao et al. (1999)), Evolution Strategies (Beyer and Schwefel (2002)),
and Differential Evolution (Price et al. (2005)), or Swarm Intelligence such as Particle
Swarm Optimization (Kennedy and Eberhart (2001)), Artificial Bee Colony (Karaboga
and Basturk (2007)) and Firefly Algorithm (Yang (2008)). However, the algorithms
performance declines when the problem dimension increases. Indeed, the search space
grows exponentially when the optimization problems tackle with a large number of de-
cision variables. This issue is known as the curse of dimensionality (Bellman (1961)).
In order to solve these Large Scale Global Optimization (LSGO) problems, Coop-
erative Co-Evolutionary Algorithms (CC-EAs) rely on a Divide-and-Conquer (DC)
strategy (Descartes (1956)). They divide large optimization problems into smaller and
simpler subproblems that can be tackled with a traditional EA, namely optimize sep-
arately smaller groups of variables. Note that the notion of large scale is not fixed. It
changes over time and it differs from problem to problem. In a general way, it may
be defined such as the dimension at which existing methods start to fail. In this thesis,
problems with several hundreds or thousands of variables will be studied.

In such a DC context, the decomposition of the large problem plays a signifi-
cant role. An inappropriate decomposition may prevent the CC-EA from reaching the
global optimum of the problem. On the contrary, a proper decomposition would al-
low one to solve the problem with lower computational resources. Another important
point is the exchanges of information between subproblems. Most of them occur for
the evaluation of the n-dimensional function to be optimized. Indeed, partial solutions
from subproblems can not be directly evaluated with the function since they cover only
a subset of s variables (s < n) of the n-dimensional vector. They must be completed

17



18 CHAPTER 2. COOPERATIVE CO-EVOLUTIONARY ALGORITHMS: STATE OF THE ART

with n− s variables from other subproblems to be evaluated. The choice of these
completion variables may also affect the performance of the CC-EA architecture.

This chapter is organized as follows. Section 2.1 introduces the main concepts of
the CC framework including the decomposition and the choice of completion variables
outlined above (Mahdavi et al. (2015); Ma et al. (2019); Jian et al. (2020)). Then, the
two main types of CC-EAs encountered in the literature are presented in Sections 2.2
and 2.3. One of them relies on multiple random decompositions, the other on an
unique decomposition based on interaction detection.

2.1 Cooperative co-evolutionary framework
The first attempt to solve LSGO problems with a CC framework was made by Potter
and De Jong (1994). They designed a Cooperative Co-evolutionary Genetic Algorithm
(CC-GA) to improve the performance of a standard genetic algorithm in solving high
dimensional problems. In the following years, many efforts were spent to apply the
CC framework proposed by Potter and De Jong (1994) to various heuristic optimizers:
Liu et al. (2001) scaled up Fast Evolutionary Programming with CC; van den Bergh
and Engelbrecht (2004) developed a CC variant of Particle Swarm Optimization and
Shi et al. (2005) implemented the proposed methodology in a Differential Evolution
paradigm. All these CC algorithms share the same structure that can be described in
three steps:

1. Decomposition: Split the n-dimensional decision vector into k disjoint subcom-
ponents of size s (k× s = n);

2. Optimization: Optimize each subcomponent with a Evolutionary/Swarm Intel-
ligence optimizer for a fixed number of iterations in a round-robin(1) strategy;

3. Combination: Merge solutions from each subcomponent to build the solution
of the n-dimensional problem.

In this framework, the decomposition is static, meaning that it remains the same dur-
ing the whole execution of the optimization algorithm. For the first implementations
of the CC framework (Potter and De Jong (1994); Liu et al. (2001)), the n-dimensional
decision vector is split into n one-dimensional components (i.e., s = 1). Later, van den
Bergh and Engelbrecht (2004) proposed to decompose the decision vector into k sub-
components of size s > 1, fixed by the user. Such a decomposition is illustrated in Fig-
ure 2.1. Shi et al. (2005) introduced two variants, one focusing on n one-dimensional
components, the other focusing on two n

2 -dimensional components. In the following
of this work, the main types of CC algorithms will be classified according to the de-
composition strategy on which they rely (see Figure 2.2). The presented algorithms

(1)The round-robin term is often used in the context of scheduling (Arpaci-Dusseau and Arpaci-Dusseau
(2015)). The round-robin scheduling consists in assigning time slices to each process of a list, in equal
portions and in circular order and in handling all of them without priority. It is also called time-slicing.
In the context of CC-EAs, the round-robin term refers to the fact that one iteration is performed in each
subcomponent before moving to the next iteration.
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Figure 2.1 – Arbitrarily determined decomposition of n variables into k groups,
each one of size s.

Figure 2.2 – A hierarchical classification of decomposition techniques.

so far belong to the class of Arbitrarily determined decomposition. The core princi-
ples of algorithms based on a Random decomposition will be described in Section 2.2
while those of algorithms relying on an Interaction detection-based decomposition
will be introduced in Section 2.3. Algorithms belonging to the class of Learning-
based decomposition are not really considered in this thesis. Only two examples of
such algorithms ("MLSoft" and "Delta Grouping") are very briefly presented in Sec-
tions 2.2 and 2.3, respectively.

Throughout the optimization step, partial solutions in each subcomponent need
to be evaluated with the n-dimensional function. For this purpose, they have to be
completed with information extracted from other subcomponents. Potter and De Jong
(1994) presented two cooperation methods to select representative individuals in the
remaining subcomponents. The first one selects current best individuals in each sub-
component to complete the individual to be evaluated(2). The resulting function eval-
uation is illustrated in Figure 2.3. The CC genetic algorithm embedded with this
cooperation method is called CC-GA-1 in Potter and De Jong (1994) original publi-
cation. It outperforms the standard genetic algorithm on several benchmark functions
but it performed much worse on some others. Problematic functions present interact-
ing variables via product terms (see Section 2.2 for further details). Potter and De Jong
(1994) felt that the source of the difficulties lies in the cooperation method. They de-

(2)This cooperation scheme is used by default in the CC frameworks presented in this thesis.
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Figure 2.3 – Function evaluation through partial solution completion with
representative individuals.

veloped a new algorithm, called CC-GA-2, relying on a new cooperation scheme. The
individual to be evaluated is completed either with best individuals from each subcom-
ponent (like in CC-GA-1) or with random individuals picked up in each subcompo-
nent. The two resulting n-dimensional individuals are evaluated and the best function
value is assigned to the individual of the considered subcomponent. This new strategy
outperforms CC-GA-1 on benchmark functions with interacting variables. However,
it is still possible to improve the CC framework to tackle that kind of problems ef-
ficiently by introducing new decomposition methodologies. This is the point of the
following sections.

2.2 Random decomposition-based CC-EA
As mentioned in the previous section, arbitrarily determined decomposition has some
limitations in solving optimization problems with interacting variables. This concept
is linked to the notion of separable function. In the early 2000s, the terms "separable"
and "nonseparable" have been introduced in evolutionary computation even though no
formal definition had been established (Suganthan et al. (2005)). Auger et al. (2007)
proposed the following definition meaning that if one can achieve the minimum of the
function by minimizing on each variable separately, then the function is separable.

Definition 1 A function f (~x) is separable if

arg min
(x1,...xn)

f (x1, . . . ,xn) =

(
arg min

x1
f (x1, . . .), . . . ,arg min

xn
f (. . . ,xn)

)
.

Yang et al. (2008a) suggested another definition reflecting the same idea. It states that
a function is separable if the influence of a variable on the function value depends only
on itself.



2.2. RANDOM DECOMPOSITION-BASED CC-EA 21

Definition 2 A function f : D ⊆ Rn→ R is separable if, ∀ k ∈ {1,n},

~x ∈D ~x = (x1, . . . ,xk, . . . ,xn)
~x′ ∈D ~x′ = (x1, . . . ,x′k, . . . ,xn)

}
⇒ f (~x)< f (~x′)

implies that

∀~y ∈D ~y = (y1, . . . ,xk, . . . ,yn)

∀ ~y′ ∈D ~y′ = (y1, . . . ,x′k, . . . ,yn)

}
⇒ f (~y)< f (~y′).

Otherwise, f (~x) is called a nonseparable function.

These two definitions are illustrated with the two following functions:

f (x,y) = x2 + y2, ∀x,y ∈ R;
g(x,y) = x2 + y2 +4xy, ∀x,y ∈ R.

One can easily see that function f satisfies both definitions and is therefore separable.
On the contrary, the function g is nonseparable. Indeed, due to the product term, one
can not minimize the function g by minimizing x and y independently. Besides, the
function g does not verify the condition of Definition 2 because

g(0,1)< g(0,2) but g(−2,1)> g(−2,2).

In this case, one can say that the variable x interacts with the variable y. Random
decomposition-based CC-EAs are devoted to efficiently solving optimization prob-
lems with such interacting variables.

Let us consider a problem for which two arbitrary variables xi and x j interact
among each other. In order to efficiently solve such a problem in a CC framework,
these two variables should ideally be optimized in the same subcomponent. However,
such a decomposition is not possible without any a priori knowledge on the problem
at hand. In this context, Yang et al. (2008a) adapted the original CC framework by
adding an iterative scheme of random grouping decompositions. This new framework,
illustrated in Figure 2.4, is described as follows:

1. Start a new cycle by randomly splitting the n-dimensional decision vector into
k disjoint subcomponents of size s;

2. Optimize each subcomponent for a fixed number of iterations in a round-robin
strategy;

3. If the maximum number of cycles is not reached, go to Step 1;

4. Merge solutions of subcomponents to build the solution of the n-dimensional
problem.

The major change concerns the decomposition scheme which dynamically changes
at each new cycle (see the classification in Figure 2.2). The random decomposi-
tion, illustrated in Figure 2.5, is performed in two stages. Firstly, the n-dimensional
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Figure 2.4 – Random decomposition-based CC framework.

Figure 2.5 – Random grouping decomposition.

decision vector is randomly permuted. Secondly, this permuted decision vector is
split into k s-dimensional vectors, the subcomponent size s being predetermined. The
newly proposed CC framework relies on the following principle. If the variables xi
and x j have to be optimized together, if a sufficiently large number of cycles is per-
formed, the probability that the two variables will be optimized together for at least
one cycle is close to one. The following theorem introduced by Yang et al. (2008a)
provides the probability to optimize two interacting variables together in the newly
proposed framework.

Theorem 2.2.1 (Yang et al. (2008a)) The probability to assign two interacting vari-
ables xi and x j into a single subcomponent for a least l cycles is

Pl =
N

∑
r=l

Cr
N

(
1
k

)r(
1− 1

k

)N−r

, (2.2.1)

where N is the total number of cycles and k is the number of subcomponents.
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Proof. In each cycle, the probability to assign xi and x j in the same subcomponent
is given by p = 1

k . The random variable X counting each time xi is grouped with x j
follows a binomial distribution B(N, p). Therefore, the probability that xi and x j
lies in the same subcomponent for exactly r cycles is given by:

P(X = r) =Cr
N

(
1
k

)r(
1− 1

k

)N−r

.

The probability to assign two interacting variables xi and x j into a single subcom-
ponent for a least l cycles is obtained by summing up probabilities for all integer
values between l and N. �

Given an optimization problem with 1 000 decision variables, suppose that the random
CC framework is applied with s = 100. Therefore, based on Equation (2.2.1), the
probabilities to assign two interacting variables in the same subcomponent for at least
one or two cycles are given by P1 = 0.9948 and P2 = 0.9662, respectively. These
high probabilities reflect the random decomposition efficiency in capturing variable
interactions.

The original random CC framework proposed by Yang et al. (2008a) was em-
bedded into a Differential Evolution optimizer. It has been enhanced with a Multi-
level Cooperative Co-evolution (MLCC) in Yang et al. (2008b) and Omidvar et al.
(2010a). The MLCC strategy chooses the adequate group size through a decomposer
pool containing different group sizes. Historical information is recorded during the
evolutionary process allowing the algorithm to self-adapt the group size. Omidvar
et al. (2014) further improved this idea by using widely-used techniques in reinforce-
ment techniques in their MLSoft algorithm. That kind of works can be classified as a
learning-based decomposition algorithm in the tree proposed in Figure 2.2. Over the
same period, Li and Yao (2009, 2012) developed the random CC framework in Particle
Swarm Optimization. Later, it has also been applied in other Swarm Intelligence such
as CC Artificial Bee Colony (Ren and Wu (2013)) and CC Firefly Algorithm (Trunfio
(2014)). More recently, Duan et al. (2019a) embedded the random grouping method
in a hierarchical fashion. In this work, the search space is gradually extended in order
to escape from Nash equilibrium (Duan et al. (2019b)).

2.3 Interaction detection decomposition-based CC-EA
The dynamic random grouping strategy introduced in the previous section tries to
catch interacting variables in a same subcomponent by repeating a large number of
random decompositions. Although no a priori information is known about the prob-
lem at hand, it is possible to perform better decompositions by trying to learn the
interaction between variables. Initial attempts first try to detect interaction during the
evolutionary process. Then, they share the variables in different subcomponents based
on the learned information and continue the CC optimization with the new structure.
Ray and Yao (2009) introduced such a CC algorithm proceeding in two steps: first,
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all the variables are evolved with a standard EA in a single component; then the cor-
relation coefficients are computed based on top 50 % solutions and the grouping is
performed based on these coefficients. Chen et al. (2010) also presented a two-stage
(learning and optimization) CC framework called CCVIL for CC Variable Interaction
Learning. The learning stage relies on pioneering studies by Weicker and Weicker
(1999). In this work, a new individual whose i-th entry has value newvali is com-
pleted for the function evaluation with different representative individuals for the re-
maining components. Two candidate solutions ~x = (x1, . . . ,xn) and ~x ′ = (x′1, . . . ,x

′
n)

are produced as follows:

x j =

{
newvali, if i = j,
bestval j, otherwise and x′j =

 newvali, if i = j,
randvalk, if k = j,
bestval j, otherwise

where bestval j is the value of the j-th entry of the best individual in the population,
randvalk is the value of the k-th entry of a random individual in the population, and k
is a randomly chosen dimension distinct from i. If f (~x ′) is better than f (~x), the vari-
able i probably interacts with the variable k. Omidvar et al. (2010b) also proposed a
dynamic learning-based decomposition strategy called Delta Grouping. In this paper,
delta values, that measure the amount of change in each of the decision variables in
every iteration, are introduced. If two interacting variables are grouped in separate
components, both their delta values will be small because the improvement interval
is shrunk. Sorting the variables according to their delta values for grouping helps to
increase the chance to group interacting variables in a same subcomponent.

More recently, wide efforts have been focused on static interaction detection-
based decompositions (see Figure 2.2). In this scheme, the interaction structure is
analyzed before starting the optimization. Then, the decomposition is performed and
is fixed for the whole CC evolutionary optimization. Sayed et al. (2012) introduced
a Dependency Identification technique based on the definition of additively separable
function.

Definition 3 A function f (~x) is additively separable if it can be written as

f (~x) =
m

∑
i=1

fi(~xi),

where ~xi (i = 1, . . . ,m) are mutually exclusive ki-dimensional decision vectors of fi
and m is the number of independent components such that k1 + · · ·+ km = n.

The proposed technique consists in finding a problem decomposition that minimizes
the square difference of f (~x) and the summation of all fi(~xi) (i = 1, . . . ,m). Later,
Mahdavi et al. (2014) published a Decomposition Method based on High Dimen-
sional Model Representation (DM-HDMR). In this strategy, the correlation relation-
ship between pairs of variables is computed on the basis of a radial basis function
approximation of the function. All these strategies have been outperformed by a strat-
egy called Differential Grouping. Initially introduced in the publication of Omidvar
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et al. (2013), this strategy has been studied by numerous researchers that proposed sev-
eral variants and upgrades in the following years. Most of the algorithms presented in
this thesis rely on this grouping strategy. The latter is presented in details in the next
sections.

2.3.1 Differential Grouping
The Differential Grouping (DG) strategy proposes an automatic decomposition that
can uncover the interaction structure of the decision variables. It monitors the changes
to the objective function in order to detect the interaction. Such a method had already
been proposed by Tezuka et al. (2004) in their LINC-R optimization algorithm, where
LINC-R stands for Linkage Identification by Nonlinearity Check for Real-coded ge-
netic algorithms. The LINC-R algorithm uses the uncovered interaction structure to
build an island model with periodic migration of individuals between islands(3). It
was tested on a limited set of low dimensional benchmark functions. Some ten years
later, Omidvar et al. (2013) reused the idea presented in LINC-R with stronger theo-
retical analysis to present the DG strategy. Furthermore, unlike in LINC-CR, Omidvar
et al. (2013) set up a CC framework that benefits from the accurate decomposition ob-
tained with DG to solve large-scale problems. The proposed DG strategy relies on the
following results.

Theorem 2.3.1 (Omidvar et al. (2013)) Let f (~x) be an additively separable function.
∀a,b1 6= b2,δ ∈ R,δ 6= 0, if the following condition holds

∆δ ,p[ f ](~x)|xp=a,xq=b1 6= ∆δ ,p[ f ](~x)|xp=a,xq=b2 ,

then xp and xq are nonseparable, where

∆δ ,p[ f ](~x) = f (. . . ,xp +δ , . . .)− f (. . . ,xp, . . .), (2.3.1)

refers to the forward difference of f with respect to variable xp with interval δ , the
other variables remain fixed to the same value for the two function evaluations.

Proof. The reasoning consists in proving the contrapositive. It states that if two
variables xp and xq are separable, then

∆δ ,p[ f ](~x)|xp=a,xq=b1 = ∆δ ,p[ f ](~x)|xp=a,xq=b2 ∀a,b1 6= b2,δ ∈ R,δ 6= 0.

Let suppose that xp and xq are separable. Since f (~x) is additively separable, we
have

∂ f (~x)
∂xp

=
∂ fi(~xi)

∂xp
, ∀xp ∈~xi.

Moreover, ∀xq /∈~xi, we have

∂ f (~x)
∂xp

∣∣∣∣
xq=b1

=
∂ f (~x)
∂xp

∣∣∣∣
xq=b2

=
∂ fi(~xi)

∂xp
, ∀b1 6= b2.

(3)In fact, this paradigm is equivalent to the CC framework introduced in this thesis. The term island cor-
responds to a subpopulation of individuals while the migration between islands corresponds to the exchange
of representative individuals for the function evaluations.
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By integrating, we obtain∫ a+δ

a

∂ f (~x)
∂xp

dxp

∣∣∣∣
xq=b1

=
∫ a+δ

a

∂ f (~x)
∂xp

dxp

∣∣∣∣
xq=b2

, ∀a,δ ∈ R,δ 6= 0,

meaning that the following equation holds

∆δ ,p[ f ](~x)|xp=a,xq=b1 = ∆δ ,p[ f ](~x)|xp=a,xq=b2 ∀a,b1 6= b2,δ ∈ R,δ 6= 0.

�

This theorem states that given an additively separable function, if two variables are
separable, then the delta values ∆1 and ∆2 resulting from Equation (2.3.1) evaluated
with any different values of xq, are equal. In other words,

separability ⇒ ∆1 = ∆2. (2.3.2)

In the DG strategy, delta values are computed and the contrapositive of Equation (2.3.2)
is used to identify nonseparable variables:

∆1 6= ∆2⇒ nonseparability.

However, strong conclusions can not be drawn when delta values are equal since the
reciprocal of Equation (2.3.2) is not verified. In this case, DG still identifies xp and xq
such as they were separable variables. Indeed, in Equation (2.3.2), if ∆1 = ∆2, we
can not claim that xp and xq are separable, but since ∆1 = ∆2, it becomes more likely.
That kind of reasoning is presented as a weak syllogism in Omidvar and Li (2017). It
can be illustrated with a simpler example. Let us consider the following proposition:
Rain ⇒ Cloud. If it is cloudy, we can not claim that it is raining but it is more likely
than if it is sunny.

In order to uncover the interaction structure, the DG strategy computes delta values
between pairs of variables and checks if the quantity λ = |∆1−∆2| is greater than
a threshold ε > 0. This procedure is illustrated in Figure 2.6 for two-dimensional
functions. Theoretically, the parameter ε could be set to zero. However, in practice,
such a setting is not suitable due to the limited precision of floating-point numbers.
Considering very small values of λ , some of them may be the result of true interactions
between variables. Some others may reflect false interaction detections as a result of
roundoff errors in the computation of λ . Finding an adequate value for the parameter ε

is a challenging task. If ε is too large, lots of interactions will be missed and many
nonseparable variables will be identified as separable ones. One the contrary, if ε

is too small, lots of false interactions will be detected meaning that many separable
variables will be identified as nonseparable ones. Note that the latter case is less
detrimental to the CC optimization performance since it is not intrinsically a bad thing
to force separable variables detected such as nonseparable ones to be optimized in the
same subcomponent. However, if too many separable variables are identified such
as nonseparable ones, very large subcomponents will be formed and the advantage
of dimension reduction of the CC framework will be lost. In the first publication of
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(a) f (x1,x2) = (1− x1)
2 +(x2− x2

1)
2

(b) f (x1,x2) = x2
1 + x2

2

Figure 2.6 – Interaction detection with DG for two-dimensional functions. For the first
function at the top, it can be seen that ∆1 6= ∆2 since ∆1 value corresponds to the gap
between three level curves while ∆2 amounts the difference between four level curves.
Therefore, x1 and x2 are identified as nonseparable variables. For the second function,
at the bottom, both delta values correspond to the gap between three level curves and
are therefore equal. The variables x1 and x2 are identified as separable ones.
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Omidvar et al. (2013) devoted to DG, the parameter ε requires to be specified by
the user. This is quite problematic since the specified value greatly determines the
performance of the CC framework based on the decomposition.

Another drawback identified in the DG strategy is its inability to detect indirect
interactions between pairs of variables. Such interactions are defined as follows.

Definition 4 (Sun et al. (2015)) In an objective function f (~x), the decision variables
xi and x j interact directly with each other if there exists a candidate solution~x? such
that

∂ 2 f
∂xi∂x j

∣∣∣∣
~x?
6= 0,

denoted by xi↔ x j. Decision variables xi and x j interact indirectly with each other if
for all candidate solutions,

∂ 2 f
∂xi∂x j

= 0, (2.3.3)

and there exists a set of decision variables {xk1 , . . . ,xkt} ⊂~x such that xi↔ xk1 ↔ . . .
↔ xkt ↔ x j. Decision variables are independent with each other if for all candi-
date solutions, Equation (2.3.3) holds and there exists no set of decision variables
{xk1 , . . . ,xkt} ⊂~x such that xi↔ xk1 ↔ ·· · ↔ xkt ↔ x j.

New algorithms proposed by Sun et al. (2015) (xDG, for extended DG) and Ling et al.
(2016) (gDG for graph-based DG) are devoted to catch these interactions efficiently.
In the same period of time, Omidvar et al. (2015) presented an Improved DG (IDG)
addressing the drawback relative to the setting of the parameter ε in DG and providing
a new sampling strategy that generates much less points to identify the interaction
structure. On the basis of these research works, Omidvar et al. (2017) published a
new DG strategy called DG2. This very efficient procedure to detect the interaction
structure of large-scale problems is presented in details hereafter.

The first step of DG2 strategy is to evaluate sampling points that will be used to
detect interactions by applying Theorem 2.3.1. For each couple of variables xi and x j
(i, j = 1, . . . ,n, i < j), the following quantities need to be evaluated:{

∆1 = f (. . . ,x′i, . . .)− f (x1, . . . ,xn),
∆2 = f (. . . ,x′i, . . . ,x

′
j, . . .)− f (. . . ,x′j, . . .),

(2.3.4)

where x′i = xi +δ (i = 1, . . . ,n). However, the four function evaluations in these equa-
tions do not need to be reevaluated for each couple of variables, most of them can
indeed be used multiple times. The quantity f (x1, . . . ,xn) is the same for all the com-
putations. The point (x1, . . . ,xn) is called the base point and its function value is
denoted by f . The quantities f (. . . ,x′i, . . .) (i = 1, . . . ,n) are used to check interactions
between the variable i and all other variables. They are stored in a n-dimensional vec-
tor ~f . Finally, the quantities f (. . . ,x′i, . . . ,x

′
j, . . .) must be computed for each couple

(i, j), i< j. They are stored in a n×n upper triangular matrix F . This Sampling Points
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Evaluation (SPE) scheme is presented in Algorithm 1. In this algorithm, ~lb is the vec-
tor of lower bound values of the function domain, ~ub stands for the upper bound, f unc
is the function that we want to analyze. The algorithm computes the function eval-
uations needed in Equation (2.3.4) for ~x = ~lb; the x′i values (i = 1, . . . ,n) are chosen
as the centers of the variable xi domain. In total, the algorithm requires n(n+1)

2 + 1
function evaluations.

Algorithm 1: ( f , ~f ,F)= SPE(~lb, ~ub, f unc)

1 ~m = 1
2 (
~lb+ ~ub) ;

2 ~x = ~lb ;
3 f = f unc(~x) ;
4 for i = 1, . . . ,n do
5 ~x′ =~x, x′i = mi ;
6 fi = f unc(~x′) ;
7 end

8 for i = 1, . . . ,n−1 do
9 ~x′ =~x, x′i = mi ;

10 for j = i+1, . . . ,n do
11 ~x′′ =~x′, x′′j = m j ;
12 Fi, j = f unc(~x′′) ;
13 end
14 end

On the basis of the information obtained by the SPE algorithm, the Interaction
Structure Matrix Λ (ISM), i.e., the matrix containing the quantity λ = |∆1−∆2| for all
pairs of variables, can be computed as shown in Algorithm 2. After that, the challenge
is to identify nonzero values in Λ that really represent interacting variables, in contrast
with non-zero values resulting from roundoff errors. Defining a threshold ε , the De-
sign Structure Matrix Θ (DSM) is built according to the following rule: Θi, j takes 1 if
Λi, j > ε , and 0 otherwise.

Algorithm 2: Λ = ISM( f , ~f ,F)

1 for i = 1, . . . ,n−1 do
2 for j = i+1, . . . ,n do
3 ∆1 = fi− f ;
4 ∆2 = Fi j− f j ;
5 Λi, j = |∆1−∆2| ;
6 end
7 end

As discussed earlier, the parameter ε can not be set to zero due to the roundoff er-
rors. It can neither be set to a static value such as in the original work of Omidvar et al.
(2013) since the errors depend on the magnitude of the quantities used in the calcula-
tion. As a first step, the greatest lower bound ein f and the least upper bound esup for
the roundoff errors are estimated. The bound ein f takes into account errors resulting
from the arithmetic floating-point substraction between the function values f (x) in the
calculation of Λi, j. The bound esup reflects the error in the computation of f (x) itself.
The entry Θi, j takes 1 if Λi, j > esup and 0 if Λi, j < ein f . The values lying between
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the two bounds will be later investigated. Let x be a real number, its floating-point
representation denoted by x̂ is given as follows (Corless and Fillion (2013)):

x̂ = x+δx = x(1+δ ),

where |δ | < µM according to the IEEE-754 standards (IEEE (2008)). The quantity
µM is called the unit roundoff and is equal to the half of the machine epsilon εm
(= 2−52 ≈ 2.22× 10−16 for double precision floating-point numbers). Therefore,
the greater is the real number x, the greater is the error δx. Furthermore, follow-
ing the IEEE standards, the floating-point summation of two real numbers x and y is
the floating-point representation of the summation of the two numbers, i.e.,

x⊕ y = x̂+ y.

In order to estimate the bound ein f , let us suppose that the calculation of f (x) is error
free and let us estimate the error in the calculation of λ = |∆1−∆2|:

∆̂1 = f (x)	 f (x′) = ( f (x)− f (x′))(1+δ1) = ∆1(1+δ1)

∆̂2 = f (y)	 f (y′) = ( f (y)− f (y′))(1+δ2) = ∆2(1+δ2)

λ̂ = |∆̂1	 ∆̂2|= |∆̂1− ∆̂2|(1+δ3)

= | f (x)(1+δ1)(1+δ3)− f (x′)(1+δ1)(1+δ3) (2.3.5)
− f (y)(1+δ2)(1+δ3)+ f (y′)(1+δ2)(1+δ3)|.

In this calculation, the products of the form ∏
k
i=1(1+δi) contain two factors. There-

fore, the following theorem can be applied with k = 2 to estimate ein f .

Theorem 2.3.2 (Corless and Fillion (2013)) Consider a real-floating-point system
satisfying the IEEE standards, so that |δi| < µM . Moreover, let ei = ±1 and suppose
that kµM < 1. Then

k

∏
i=1

(1+δi)
ei = 1+θk,

where
|θk| ≤

kµM

1− kµM
=: γk.

According to this result, the error in the computation of λ is bounded as follows:

|λ − λ̂ | ≤ γ2
∣∣( f (x)− f (x′))− ( f (y)− f (y′))

∣∣
≤ γ2(| f (x)|+ | f (x′)|+ | f (y)|+ | f (y′)|) := ein f .

In order to estimate the bound esup, it can no longer be assumed that the calculation
of f (x) is error free. Besides, it is assumed that the error in calculating |λ − λ̂ | is
negligible with respect to the error resulting from the calculation of f (x). Since f (x)
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is considered as a black-box function, it is not possible to determine an exact estima-
tion of the error in the calculation of f (x). However, it is common practice to assume
that the error is proportional to the square root of the number of floating-point oper-
ations Φ in the calculation (Higham (2002)), i.e., k ≈

√
Φ in Theorem 2.3.2. Once

again, as f (x) is a black-box function, Φ is unknown but it is acceptable to assume
that it grows linearly with the dimension n. In this case, the least upper bound esup can
be defined as follows:

esup := γ√n max{| f (x)|, | f (x′)|, | f (y)|, | f (y′)|}.

For values of Λi, j between ein f and esup, a threshold ε is defined as a weighted average
of the two bounds:

ε =
η0

η0 +η1
ein f +

η1

η0 +η1
esup,

where η0 and η1 are the number of entries in Λ which are smaller than ein f , respec-
tively greater than esup. Corresponding values of the matrix Θ are, respectively, set
to 0 or 1. The whole process to build the DSM matrix is synthesized in Algorithm 3.

Algorithm 3: Θ = DSM(Λ, f , ~f ,F)

1 Θ =NaNn×n, η1 = η2 = 0 ;
2 for i = 1, . . . ,n−1 do
3 for j = i+1, . . . ,n do
4 ein f =

γ2 (| f |+ | fi|+ | f j|+ |Fi j|);
5 esup =

γ√n max{| f |, | fi|, | f j|, |Fi j|};
6 if Λi, j < ein f then
7 Θi, j = 0, η0 = η0 +1 ;
8 else if Λi, j > esup then
9 Θi, j = 1, η1 = η1 +1 ;

10 end
11 end
12 end

13 ε = η0
η0+η1

ein f +
η1

η0+η1
esup ;

14 for i = 1, . . . ,n−1 do
15 for j = i+1, . . . ,n do
16 if Θi, j = NaN then
17 if Λi, j < ε then
18 Θi, j = 0 ;
19 else
20 Θi, j = 1 ;
21 end
22 end
23 end
24 end

Finally, the groups of variables are created on the basis of the matrix Θ. The
latter is employed as a node adjacency matrix of a graph, each node representing a
decision variable. Each connected component determines a group of interacting vari-
ables. The components containing exactly one variable correspond to the separable
variables. All these variables are assigned into the same group. Note that this step can
be performed efficiently since the connected components can be identified in a linear
time n (Hopcroft and Tarjan (1973)). The whole procedure to create the groups of vari-
ables is summarized in Algorithm 4, where the ConnComp function identifies the nc
connected components ci (i = 1 . . . ,nc) of the graph whose adjacency matrix is Θ.
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Algorithm 4: (k,G1, . . . ,Gk)=DG2(~lb, ~ub, f unc)

1 ( f , ~f ,F) = SPE(~lb, ~ub, f unc) ;
2 Λ = ISM( f , ~f ,F) ;
3 Θ = DSM(Λ, f , ~f ,F) ;
4 (nc,c1, . . . ,cnc) =ConnComp(Θ) ;
5 Xsep = {}, k = 0 ;
6 for i = 1, . . . ,nc do
7 if |ci|= 1 then
8 Xsep = Xsep ∪ ci ;

9 else
10 k = k+1, Gk = ci ;
11 end
12 end
13 if Xsep 6= {} then
14 k = k+1, Gk = Xsep ;
15 end

This decomposition based on DG2 is very efficient in a CC optimization frame-
work. Indeed, if the interaction structure is correctly identified, variables from dif-
ferent subcomponents are independent. Therefore, each subcomponent can easily be
optimized in a CC framework. The latter is illustrated in Figure 2.7 and is described
with the three following steps:

1. Decomposition: Split the n-dimensional decision vector into k disjoint subcom-
ponents with DG2;

2. Optimization: Optimize each subcomponent for a fixed number of iterations in
a round-robin strategy;

3. Combination: Merge solutions of subcomponents to build the solution of the
n-dimensional problem.

Note that in contrast to the Random decomposition-based CC-EA, cycling in order
to try catching interacting variables in the same subcomponent is not needed anymore.
Furthermore, thanks to the accurate grouping, the convergence rate in each subcompo-
nent is much better than for the Random decomposition-based CC-EA. The fact that
the CC framework embedded with DG clearly outperforms the CC embedded with
random decomposition was shown in numerous publications for various optimizers:
amongst others, Omidvar et al. (2013, 2017) for Differential Evolution, Blanchard
et al. (2017) for Genetic Algorithm and Sun et al. (2018) for Covariance Matrix Adap-
tation Evolution Strategy.

The following researches devoted to DG were focused on the number of function
evaluations required to create the group of variables. As shown earlier, this number
is equal to n(n+1)

2 + 1 for n-dimensional functions. When the budget is limited, if
too many function evaluations are used in the DG procedure, the number of allowed
function evaluations for the optimization itself is quite reduced. Hu et al. (2017) pro-
posed a Fast Interdependency Identification (FII) strategy proceeding in two steps: (1)
each variable is identified as separable or nonseparable (but the couples of interacting
variables remain unknown); (2) the structure identification is performed among the
nonseparable variables. This strategy allows one to save a large number of function
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Figure 2.7 – Interaction detection decomposition-based CC framework.

evaluations compared to the DG procedure presented above, especially in the case that
the majority of the variables are separable. In the same period, Sun et al. (2017b) pre-
sented a promising approach to reduce the number of function evaluations consisting
in a recursive variant of DG. This strategy is presented in details in the next section.

2.3.2 Recursive Differential Grouping
By contrast with the DG strategy that checks all pairwise interactions between the
decision variables, the Recursive Differential Grouping (RDG) as stated by its name
recursively checks interactions between two subsets of variables (Sun et al. (2017b)).
This recursive framework allows one to efficiently determine the interaction structure
while requiring less than 6n log(n) function evaluations compared with n(n+1)

2 +1 for
DG2. The newly proposed methodology relies on the following result.

Notation 1 (Sun et al. (2017b)) Let X be the set of decision variables {x1, . . . ,xn}; UX
be the set of unit vectors in the decision space Rn (i.e., such that ||u||2 = 1,∀u ∈UX ).
Let X1 be a subset of decision variables X1 ⊂ X; and UX1 be a subset of UX such that
for any unit vector~u = (u1, . . . ,un) ∈UX1 , we have

ui = 0, if xi /∈ X1.

Theorem 2.3.3 (Sun et al. (2017b)) Let f : Rn→R be an objective function; X1 ⊂ X
and X2 ⊂ X be two mutually exclusive subsets of decision variables: X1 ∩ X2 = /0. If
there exist two unit vectors ~u1 ∈UX1 and ~u2 ∈UX2 , two real numbers l1, l2 > 0, and a
candidate solution~x in the decision space, such that

f (~x+ l1~u1 + l2~u2)− f (~x+ l2~u2) 6= f (~x+ l1~u1)− f (~x),

then there is some interaction between decision variables in X1 and X2.
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On the basis of this result, the interaction identification between two subsets X1
and X2 can be achieved with the procedure presented in Algorithm 5. For the sake of
clarity, the following notation is preferred in this algorithm.

Notation 2 Let X be the set of decision variables {x1, . . . ,xn}; X1 and X2 two disjoint
subsets of X such that X1 ∪ X2 = X, a and b two real numbers, the vector xa,b ∈Rn is
such that

(xa,b)i = a, if i ∈ X1, and (xa,b)i = b, if i ∈ X2.

In what follows, the real number ’l’ stands for the lower bound, ’u’ for the upper
bound and ’m’ for the mean of the lower and upper bounds.

As a reminder, f is the function value of the base point. According to the introduced
notation, we have f = f (xl,l). Therefore, in the algorithm, ∆1 and ∆2 evaluate the
difference in the function value when the variables from the set X1 vary from the
lower bound l to the upper bound u. For ∆1, the variables from X2 are set to the lower
bound l while they are fixed to the mean of the bounds m for ∆2. The algorithm returns
the true value if some interaction is detected between X1 and X2, i.e., if |∆1−∆2|> ε .
In the RDG algorithm published in Sun et al. (2017b), the setting of ε requires the
user to specify some parameters. It has been improved in Sun et al. (2018) to become
parameter-free. This new variant is implemented in Algorithm 5. The details of this
setting is presented later in this section.

Algorithm 5: Interact(X1,X2, f , f unc)

1 f1 = f unc(~xu,l), f2 = f unc(~xl,m) ;
2 f3 = f unc(~xu,m) ;
3 ∆1 = f − f1, ∆2 = f2− f3 ;
4 ε = γ√n+2(| f |+ | f1|+ | f2|+ | f3|) ;

5 if |∆1−∆2|> ε then
6 return true ;
7 end
8 return false ;

In order to perform the recursive identification of interactions between subsets of
variables, another function called R_Inter for ’Recursive Interaction’ is introduced
in Algorithm 6. It takes two subsets X1 and X2 as entries and returns a new subset X1
which is the union of the previous X1 and all variables in X2 that directly interact
with X1. Therefore, if no interaction is detected, it simply returns the subset X1 given
as entry. If some interaction is detected, the subset X2 is divided into two nearly
equally-sized groups G1 and G2. In this case, interaction between X1 and G1, and X1
and G2 is recursively checked using the ’R_Inter’ function until all the individual
variables that interact with X1 are identified.

Finally, the whole RDG procedure is presented in Algorithm 7. At line 5, the
interaction identification between X1 and the remaining variables is computed. If no
interaction is detected (lines 6→ 13), X1 is classified as a separable variable if it con-
tains only one variable or as a nonseparable group if it contains several variables.
The process is repeated with the next variable available in X2. If some interaction is
detected (lines 14→ 17), the process will be repeated between X?

1 and remaining vari-
ables for the purpose of capturing the variables that indirectly interact with X1. Once
the set X2 is empty, the last variables in X1 still have to be classified in the separable
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Algorithm 6: R_Inter(X1,X2, f , f unc)

1 if Interact(X1,X2, f , f unc) then
2 if |X2|= 1 then
3 X1 = X1∪X2 ;
4 else
5 Divide X2 into equally-sized

groups G1, G2 ;

6 X1
1 = R_Inter(X1,G1, f , f unc);

7 X2
1 = R_Inter(X1,G2, f , f unc);

8 X1 = X1
1 ∪X2

1 ;
9 end

10 end
11 return X1 ;

Algorithm 7: Recursive Differential Grouping( f unc)

1 seps = {}, nonseps = {} ;
2 X1 = {x1}, X2 = {x2, . . . ,xn} ;
3 f = f unc(~xl,l) ;
4 while X2 6= {} do
5 X?

1 =R_Inter(X1,X2, f , f unc) ;
6 if |X?

1 |= |X1| then
7 if |X1|= 1 then
8 seps = seps ∪ X1 ;
9 else

10 nonseps = nonseps ∪{X1} ;
11 end
12 X1 = {x j} s.t. j ≤ i ∀xi ∈ X2;
13 X2 = X2 \ {x j} ;

14 else
15 X1 = X?

1 ;
16 X2 = X2 \ X1 ;
17 end
18 end
19 if |X1|= 1 then
20 seps = seps ∪ X1 ;
21 else
22 nonseps = nonseps ∪ {X1} ;
23 end
24 return seps and nonseps ;

or nonseparable sets (lines 19→ 23)(4). The algorithm returns all the separable vari-
ables in the set seps and the groups of nonseparable variables in nonseps.

Later, Sun et al. (2018) proposed an improved version of RDG called RDG2. This
new algorithm is RDG embedded with a threshold parameter estimation of ε . It picks
up the estimation developed in DG2 and improves it to define only one threshold tak-
ing into account the errors resulting from the arithmetic floating-point substraction
between the function values f (x) in the calculation of λ and the error in the compu-
tation of f (x) itself. Starting from Equation (2.3.5), considering f̂ (x) instead of f (x)
and applying Theorem 2.3.2, the estimation of the nonlinearity term is given by:

λ̂ = | f̂ (x)(1+θ2)− f̂ (x′)(1+θ2)− f̂ (y)(1+θ
′
2)+ f̂ (y′)(1+θ

′
2)|.

If it is assumed that f̂ (x) = (1+ θ
(x)√

n) f (x), (1+ θ
(x)√

n)(1+ θ2) = 1+ θ
(x)√

n+2 and one
can get:

λ̂ = | f (x)(1+θ
(x)√

n+2)− f (x′)(1+θ
(x′)√

n+2)− f (y)(1+θ
(y)√

n+2)+ f (y′)(1+θ
(y′)√

n+2)|

= | f (x)− f (x′)− f (y)+ f (y′)︸ ︷︷ ︸
u

+ f (x)θ (x)√
n+2− f (x′)θ (x′)√

n+2− f (y)θ (y)√
n+2 + f (y′)θ (y′)√

n+2︸ ︷︷ ︸
v

|.

(4)Note that in the algorithm description provided in Sun et al. (2017b), these lines are missing. The
authors probably forgot to mention them during the redaction of the article.
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Therefore, using following inequalities, |u+v| ≤ |u|+ |v|, |u+v| ≥ |u|− |v|, and The-
orem 2.3.2, one can conclude that:

|λ − λ̂ | ≤ γ√n+2(| f (x)|+ | f (x′)|+ | f (y)|+ | f (y′)|) := ε.

This RDG2 strategy will be the one used to detect the interaction structure of high
dimensional problems in the algorithm developed in Chapter 3 and in one of the two
proposed algorithms in Chapter 6.

2.3.3 Alternative variants of Recursive Differential Grouping
More recently, the promising RDG strategy has been reused and reconceived in dif-
ferent studies in order to further reduce the cost in terms of function evaluations while
preserving the same grouping accuracy. Those studies are briefly presented hereafter.

Meselhi et al. (2018) proposed the Enhanced Differential Grouping (EDG) strat-
egy that relies on both DG and RDG. The variables are first identified as separable
or nonseparable (but the couple of interacting variables remain unknown) following
principles developed in RDG. Then, direct interactions between interacting variables
are identified with DG. Finally, indirect interactions between the groups formed in the
previous step are checked with RDG. This process proceeding in three steps allows
one to save some function evaluations, especially in the case if the function contains
separable variables or a low number of nonseparable components.

Chen et al. (2018) introduced an Historical Interdependency based Differential
Grouping, called HIDG, relying on a novel criterion which can directly deduce the in-
teraction between some variables without consuming extra function evaluations. This
work has been further developed in the Fast Differential Grouping (FDG) algorithm
introduced by Ren et al. (2019a). The latter is a reformulation of the RDG strategy
in the form of a search process in a binary tree(5) that considers subsets of variables
as tree nodes. In this process, the interaction in some child nodes can be determined
reusing historical information, such as in HIDG, and therefore without consuming
extra function evaluations. The same ideas have also been studied in the Efficient
Recursive Differential Grouping (ERDG) introduced by Yang et al. (2021).

The Three-level Recursive Differential Grouping (TRDG) proposed in Xu et al.
(2020) reduces the depth of recursion of the RDG by dividing the set of variables in
three subsets in the recursive step, instead of two subsets for the original RDG. This
single change enables to reduce the cost in terms of function evaluations.

Finally, two other variants of the RDG, designed to tackle large-scale overlap-
ping problems, have been proposed by Li et al. (2019) and Sun et al. (2019). They
will be described in the Chapter 4 that studies overlapping features in cooperative
co-evolution.

(5)A binary tree is a tree data structure with at most two children for each node. Formally, it is either
empty, or it has a root node, a left binary tree, and a right binary tree (Black (2006)).



Chapter 3
Cooperative co-evolutionary
algorithms: our contributions

The CC-EAs based on random and interaction detection decompositions presented in
the previous chapter belong to the two main classes of CC-EAs encountered in the lit-
erature. Both of them have their pros and cons. On the one hand, CC-EAs embedded
with interaction detection decompositions outperform the ones relying on random de-
compositions in solving additively separable problems. The accurate decomposition
clearly facilitates the optimization of subproblems with an EA. On the other hand,
even with this accurate decomposition, it may happen that relatively large subcom-
ponents of interacting variables still must be solved with an EA. Therefore, it suffers
from the curse of dimensionality and it is preferable to further split the subcompo-
nents even if they are nonseparable. In that case, the best strategy to decompose and
optimize large subcomponents remains the seminal random grouping decomposition.

This chapter presents a hybrid decomposition-based CC-EA that performs such
a two-step decomposition. It is fully described in Section 3.1. The latter algorithm
is then used to solve large-scale constrained problems. This class of problems has
been less studied in the CC context. Section 3.2 outlines few works focusing on the
optimization of such constrained problems with a CC framework. Then, it describes
the changes made to the hybrid decomposition-based CC-EA in order to tackle with
constrained problems. The main modifications concern the decomposition which is
performed by taking into account the objective function but also all the constraints.
Finally, the design of a new benchmark set and the performance analysis of the newly
proposed algorithm are presented.

3.1 Hybrid decomposition-based CC-EA
The proposed hybrid decomposition based CC-EA, illustrated in Figure 3.1, performs
a two-step decomposition based on both differential and random groupings. It is de-
scribed as follows:

37
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1. First decomposition: Split the n-dimensional decision vector into k disjoint sub-
components (Sub1, . . . , Subk) with RDG2. The first k−1 subcomponents con-
tain the groups of interacting variables; the last one covers all the separable
variables.

2. Second decomposition: Each subcomponent of interacting variables is randomly
split into subsubcomponents (SSCs) containing at most snonsep variables. The sub-
component of separable variables is arbitrarily split into l SSCs of ssep variables.

3. Optimization: Optimize SSCs with an EA for a specified number of iterations
in a round-robin strategy.

4. Cycling: If the maximum number of cycles is not reached, go to Step 2.

5. Combination: Merge solutions of SSCs to build the n-dimensional solution.

Figure 3.1 – Hybrid decomposition-based CC framework.

In this framework, steps 2 to 4 consist in optimizing each nonseparable subcomponent
identified at step 1 with the random decomposition-based CC-EA. The separable sub-
component is evolved with an arbitrarily determined decomposition-based CC-EA.
The correct setting of the subcomponent size s for these strategies depends on the
features of the problem at hand. For nonseparable problems, a large s increases the
probabilities of grouping interacting variables in the same component while for sepa-
rable ones, a small value of s affects positively the convergence rate of the EA (Trunfio
(2015)). Therefore, two different parameters snonsep and ssep are respectively defined
for nonseparable and separable subcomponents. Note that since snonsep has to be set
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to a relatively large value, it may arise that it is greater than the number of variables
in the considered subcomponent. In that case, the corresponding class is not split into
further SSCs and the optimization of the subcomponent is performed with the stan-
dard EA (see Sub2 in Figure 3.1 for example). This figure also illustrates that the size
of SSCs for the separable subcomponent Subk is much smaller than for the nonsepara-
ble ones. The optimal setting of this parameter is still an open question (Sharawi and
El-Abd (2017)). Even for separable problems, a small value is recommended but a too
small value may be detrimental (Omidvar et al. (2014)). Furthermore, another param-
eter that influences the performance of the proposed framework (and more generally
that influences all the CC frameworks relying on random groupings), is the specified
number of iterations performed for each EA at each cycle. Once again, the optimal
setting of this parameter is problem-dependent and is still an open question. For those
reasons, the value of ssep and the number of iterations will be arbitrarily fixed for the
experimental results presented later in this chapter. Of course, we are aware that better
results could be achieved by tuning these parameters but this is beyond the scope of
our study.

The population initialization for the optimization of the SSCs at step 3 differs with
the kind of considered SSCs. For those classes resulting from the decomposition of
a large nonseparable subcomponent into smaller SSCs, the population is randomly
generated as explained in Section 1.4. On the other hand, for nonseparable subcom-
ponents that have not be further decomposed into SSCs and for arbitrarily determined
separable SSCs, the variables evolved in a SSC are the same at each cycle. In this
case, for the optimization in the first cycle, the initial population is randomly gener-
ated while for the following cycles, the final population from the previous cycle is
reused as the initial population. It allows one to improve the convergence rate, espe-
cially for large subcomponents for which it may be quite slow.

3.2 Application to large-scale constrained problems
Although considerable efforts have been made to solve LSGO problems with a CC
methodology, most of research projects focus on mono-objective optimization prob-
lems. This is the case of all the works presented in Chapter 2. Sayed et al. (2015)
were the first to address large-scale constrained (LSC) problems with a CC frame-
work. They extended their previous work on Dependency Identification (Sayed et al.
(2012)) to decompose such LSC problems. The optimization of the obtained subprob-
lems is performed with a differential evolution (Price et al. (2005)) algorithm embed-
ded with the superiority of feasible solution for constraint handling (see Section 1.5).
Aguilar-Justo and Mezura-Montes (2016) further improved the work of Sayed et al.
(2015) by proposing new strategies for the arrangement of the variables and by using
simulated annealing (Kirkpatrick et al. (1983)) instead of the greedy search to find the
optimal arrangement. Concomitantly, Peng and Hui (2016a) combined the CC Particle
Swarm Optimization framework of Li and Yao (2012) with the ε-constrained method
(Takahama and Sakai (2005)) to solve LSC problems. In particular, they exploited
the potential of the random decomposition with several grouping size selection updat-
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ing schemes. In Peng and Hui (2016b), they introduced two new grouping strategies
based on the DG methodology presented in Section 2.3.1. The first one focuses only
on the objective function (without considering the constraints). The second one con-
siders two grouping schemes: one relative to the objective function, the other relative
to the constraints. During the CC optimization, the first grouping is considered if the
constraints are respected in compliance with the ε-constrained method, the second
grouping is used if the constraints are violated.

Note that the CC framework introduced in this thesis aims to solve LSGO prob-
lems. The decomposition is made at the level of the search space, which is divided
into subspaces by splitting the set of decision variables into several subsets. Each
obtained subproblem is optimized in a CC framework. The latter is not specific to
that kind of decomposition. In a broader context, it refers to strategies that rely on
the accomplishment of multiple simple tasks to achieve a complex task. For example,
solving a constrained optimization problem (even a small-scale one) can be seen such
as a complex task. Some CC strategies are devoted to solve that kind of problems.
Ghasemishabankareh et al. (2016) proposed to convert a constrained problem into an
unconstrained one with the augmented Lagrangian method (Rockafellar (1973)). That
problem is optimized in a CC framework tackling two cooperating subpopulations:
one focusing on the decision variables of the original problem, the other one focusing
on the Lagrangian multipliers. Kieffer et al. (2017) developed an EA that generates
one subpopulation for each constraint and optimizes its own local fitness. The latter
consists first to try to satisfy its assigned constraints, then to verify the other con-
straints and finally to optimize the objective function. This kind of strategy will not
be discussed further since this is beyond the scope of this thesis.

In this section, the hybrid decomposition-based CC-EA developed in Section 3.1 is
applied to solve LSC problems. In particular, it is extended to deal with such problems
thanks to a new decomposition which is performed by taking into account the objective
function but also all the constraints. Then, the performance of the proposed algorithm
is evaluated and compared with a standard EA and with the Random decomposed-
based CC-EA developed in Section 2.2 on a set of benchmark problems specially
designed for this study. Note that the concepts presented hereafter were first intro-
duced in Blanchard et al. (2017). The main difference concerns the decomposition
procedure presented here that has been improved in terms of computational efficiency
with respect to the original work.

3.2.1 Extension for large-scale-constrained problems
The first task to extend the hybrid decomposition-based CC-EA in order to solve LSC
problems is to adapt the first decomposition step (see Section 3.1) relying on RDG2.
From now on, the RDG2 procedure will consider the objective function but also all the
constraints. In what follows, the term response is indistinguishably used for the objec-
tive function or each of the constraints. In this context, Theorem 2.3.3 is extended to
define the interaction between two sets of decision variables for constrained problems.
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Definition 5 Let the minimization constrained problem(1) given by

min
~x∈Rn

r0(~x)

subject to ri(~x) ≤ 0, (i = 1, . . . , p).

Let X be the set of decision variables {x1, . . . ,xn}, X1 ⊂ X and X2 ⊂ X be two mutually
exclusive subsets of decision variables. If there exist two unit vectors ~u1 ∈UX1 and
~u2 ∈ UX2

(2), two real numbers l1, l2 > 0, and a candidate solution ~x in the decision
space, such that

ri(~x+ l1~u1 + l2~u2)− ri(~x+ l2~u2) 6= ri(~x+ l1~u1)− ri(~x) (3.2.1)

for at least one response ri (i = 0,1, . . . , p), then there is some interaction between the
decision variables in X1 and X2.

Furthermore, as for the original RDG2, Equation (3.2.1) is not directly used to de-
tect interaction since the roundoff errors have to be managed. Therefore, since each
response can potentially depend on strongly diverse orders of magnitude, an indepen-
dent threshold parameter estimation of ε is computed for each of them. In summary,
to perform the decomposition step based on RDG2 for LSC problems, the procedure
presented in Section 2.3.2 can be followed considering Algorithm 8 presented here-
after instead of Algorithm 5. In this algorithm, r_eval denotes the evaluation of all

Algorithm 8: Interact(X1,X2,r,r_eval)

1 r1 = r_eval(~xu,l), r2 = r_eval(~xl,m) ;
2 r3 = r_eval(~xu,m) ;
3 for i = 0,1, . . . , p do
4 ∆1 = ri− r1,i, ∆2 = r2,i− r3,i ;
5 ε=γ√n+2(|ri|+ |r1,i|+ |r2,i|+ |r3,i|);

6 if |∆1−∆2|> ε then
7 return true ;
8 end
9 end

10 return false ;

the responses. The response values are stored in (p+ 1)-dimensional vectors. It is
common to compute them all at once since in many engineering applications, they of-
ten depend on the output of common evaluation chains. Besides, following notations
introduced in Section 2.3.2, we have r = r_eval(~xl,l). Note that the decomposition
results will be the same as the ones obtained with the methodology based on DG in-
troduced in Blanchard et al. (2017). However, the presented decomposition in this
thesis is cheaper in terms of function evaluations since it is based on RDG2 and since
it considers all the responses at once.

Considering the following steps of the hybrid decomposition-based CC-EA, only
the optimization step needs slight changes. Indeed, in the context of constrained prob-
lems, the superiority of feasible points introduced in Section 1.5 is embedded in the
EA used to optimize the SSCs.

(1)Only inequality constraints are considered since equality ones can be easily transformed to inequality
constraints, see Section 1.5.

(2)See Notation 1 page 33.
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3.2.2 Experimental settings
In order to evaluate the performance of the hybrid decomposition-based CC-EA, a
benchmark set of LSC problems is required. In the field of evolutionary computation,
it is very common to validate new algorithms on the test suites introduced for the spe-
cial sessions and competitions of the annual Congress on Evolutionary Computation
(CEC). However, amongst these test suites, some of them are devoted to constrained
real-parameter optimization (Liang et al. (2006); Mallipeddi and Suganthan (2010);
Wu et al. (2017); Kumar et al. (2020)), some others to LSGO (Tang et al. (2007,
2009); Xi et al. (2013)), but no one concerns large-scale and constrained optimization.
A test suite containing such problems that depend approximately on 500 decision
variables has been introduced in Blanchard et al. (2017). Amongst the 10 presented
problems, 8 of them are built on the basis of well-known benchmark problems encoun-
tered in the constrained optimization literature: G2, G3, G10, Hesse, Speed Reducer
and Welded Beam (see Appendix A for details). They are described in Table 3.1. Two
other problems, presented in Table 3.2, are taken from Sayed et al. (2015). For these
two problems, the objective is to minimize a function, f9 and f10, respectively, while
respecting the same constraints g1, g2 and g3.

min f1(x) = fG2 (x1 : x500)

s.t. gi,G2 (x1 : x500)≤ 0

i = 1,2 (n = 500)

min f2(x) =
10

∑
k=1

fG2
(
x50(k−1)+1 : x50k

)
s.t. gi,G2

(
x50(k−1)+1 : x50k

)
≤ 0

i = 1,2, k = 1, . . . ,10 (n = 500)

min f3(x) =
10

∑
k=1

fG3
(
x50(k−1)+1 : x50k

)
s.t. g1,G3

(
x50(k−1)+1 : x50k

)
≤ 0

k = 1, . . . ,10 (n = 500)

min f4(x) =
62

∑
k=1

fG10
(
x8(k−1)+1 : x8k

)
s.t. gi,G10

(
x8(k−1)+1 : x8k

)
≤ 0

i = 1, . . . ,6, k = 1, . . . ,62 (n = 496)

min f5(x) =
83

∑
k=1

fHesse
(
x6(k−1)+1 : x6k

)
s.t. gi,Hesse

(
x6(k−1)+1 : x6k

)
≤ 0

i = 1, . . . ,6, k = 1, . . . ,83 (n = 498)

min f6(x) =
50

∑
k1=1

fHesse
(
x6(k1−1)+1 : x6k1

)
+

4

∑
k2=1

fG2
(
x300+50(k2−1)+1 : x300+50k2

)
s.t. gi,Hesse

(
x6(k1−1)+1 : x6k1

)
≤ 0

i = 1, . . . ,6, k1 = 1, . . . ,50

gi,G2
(
x300+50(k2−1)+1 : x300+50k2

)
≤ 0

i = 1,2, k2 = 1, . . . ,4 (n = 500)

min f7(x) =
71

∑
k=1

fSpeedReducer
(
x7(k−1)+1 : x7k

)
s.t. gi,SpeedReducer

(
x7(k−1)+1 : x7k

)
≤ 0

i = 1, . . . ,11, k = 1, . . . ,71 (n = 497)

min f8(x) =
125

∑
k=1

fWeldedBeam
(
x4(k−1)+1 : x4k

)
s.t. gi,WeldedBeam

(
x4(k−1)+1 : x4k

)
≤ 0

i = 1, . . . ,6, k = 1, . . . ,125 (n = 500)

Table 3.1 – Constrained benchmark problems f1− f8 (Blanchard et al. (2017)).
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min f9(x) =
4

∑
k=0

{
5

∑
i=1

x2
100k+i +

10−1

∑
i=6

[100(x2
100k+i− x100k+i+1)

2 +(x100k+i−1)2]+
55

∑
i=11

x2
100k+i

+
60−1

∑
i=56

[100(x2
100k+i− x100k+i+1)

2 +(x100k+i−1)2]+
100

∑
i=61

x2
100k+i

}

min f10(x) =
4

∑
k=0

{
5

∑
i=1

[100(x2
100k+i− x100k+i+50)

2 +(x100k+i−1)2]+
50

∑
i=6

[x2
100k+i + x2

100k+i+50]

}

s.t. g1(x) =
4

∑
k=0

{
5

∑
i=1

x2
100k+i+25

}
≤ 0,

g2(x)=
3−1

∑
i=1

[100(x2
i+50− xi+50+1)

2+(xi+50−1)2]+
3−1

∑
i=1

[100(x2
i+450− xi+450+1)

2+(xi+450−1)2]≤ 0,

g3(x) = 100(x2
10− x490)

2 +(x10−1)2 +100(x2
16− x496)

2 +(x16−1)2 ≤ 0

xi ∈ [−100,100], i = 1, . . . ,500, for both objective and constraint functions

Table 3.2 – Constrained benchmark problems f9− f10 (Sayed et al. (2015); Blanchard
et al. (2017)). Both of them are subject to the same constraints g1, g2 and g3.

In a general framework, the proposed hybrid decomposition-based CC-EA can be
embedded with any kind of EAs to optimize SSCs. For the results presented in this
thesis, the proposed algorithms have been implemented in the Minamo software and
therefore, the EA used to optimize SSCs is the genetic algorithm of Minamo presented
in Section 1.6.

Two versions of the hybrid decomposition-based CC-EA will be considered. For
the first one, called HD-CC-EA-I, the parameter snonsep is set to 50 while for the sec-
ond one, HD-CC-EA-II, it is fixed to 10. For both of them, the parameter ssep is set
to 4 and 50 cycles are performed. They are compared with the random decomposition-
based CC-EA, RD-CC-EA, that also performs 50 cycles with subcomponents contain-
ing s = 4 decision variables. Finally, these CC-EAs are also compared with the stan-
dard EA of Minamo. In each algorithm, the population size is chosen as 10 times the
number of variables of the considered component. In particular, for the standard EA, it
is simply set to 10 times the number of variables of the problem at hand. For the four
algorithms, the stopping criterion is the total number of function evaluations which
is fixed to 10 millions. The number of generations in each EA instance is automati-
cally computed to reach this stopping criterion. All these settings are summarized in
Table 3.3. Finally, using RDG2 to study the interaction structure of such analytical
problems may sometimes cause some troubles due to the symmetry of the function
and their domain. Therefore, as proposed in Blanchard et al. (2017), alternative lower
and upper bounds are used for the detection of interactions. They are defined as:

~lb
′
= ~lb+α(~ub−~lb) and ~ub

′
= ~lb+β (~ub−~lb),

where ~lb and ~ub stand, respectively, for the original lower and upper bounds, α and β

are parameters whose values lie between 0 and 1 (α < β ). In this work, α and β are
arbitrarily fixed to 0.33 and 0.96, respectively.
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EA RD-CC-EA HD-CC-EA-I HD-CC-EA-II
population size 10×# variables
function evaluations 10 millions
number of cycles 50
number of variables
per SSC

s = 4 ssep = 4
snonsep = 50 snonsep = 10

Table 3.3 – Summary of algorithms settings.

Since EAs rely on stochastic processes, several executions of such algorithms lead
to different results. Therefore, it is common to repeat the tests several times to analyze
their performance. In this work, 51 independent runs(3) are executed for each proposed
algorithm. Tables reporting statistical features of the final solutions and convergence
graphs illustrating the convergence behavior along the optimization process will be
presented. The tables allow one to analyze the objective values of the feasible final
solutions over the 51 runs. They contain the objective value of the best and the worst
feasible solution, the mean, the median and the standard deviation. When no feasible
solutions were found over all runs, the ’×’ symbol is reported in the table. The first
kind of convergence graphs describes the evolution of the objective value with respect
to the number of Function Evaluations (FEs). More specifically, the y-axis represents,
in log-scale, the gap between the objective value of the current solution and the objec-
tive value of the optimal solution, i.e., f (x)− f (x?). Furthermore, note that since only
the objective value of feasible solutions is considered, no line are reported on the graph
until a feasible solution is found over the 51 runs. The second kind of convergence
graphs describes the evolution of the number of violated constraints with respect to the
number of FEs. For both kind of graphs, the solid line depicts the median value while
the light-colored area around the solid line represents the gap between the minimal
and the maximal values over the 51 runs.

3.2.3 Results
The performance of the four algorithms is analyzed on the set of LSC problems pre-
sented above. The obtained results are provided in Table 3.4 for median objective
values of the final solutions. The best median values among the four tested algorithms
are marked in bold face. Detailed statistical values are given in Table 3.5. Conver-
gence graphs are also proposed in Figures 3.2, 3.3, 3.4 and 3.5. As a first observation,
it is clear that the HD-CC-EAs outperform the standard EA and the RD-CC-EA. Let
us now examine in details the results on each benchmark problem.

(3)The general rule of thumb is to compute a few tens of runs. For example, in the first CC studies of Potter
and De Jong (1994); Liu et al. (2001); van den Bergh and Engelbrecht (2004); Shi et al. (2005), 50 runs
are executed. Later, most of the works studying the large scale instances of the CEC competitions (Tang
et al. (2007, 2009); Xi et al. (2013)) only perform 25 runs such as proposed in the experimental protocol
of these competitions. In our study case, about fifty runs were computed to make the results analysis more
reliable. In particular, an odd number of runs (51) is chosen in order to get a median value that corresponds
to a specific run.
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(a) f1 (b) f1

(c) f2 (d) f2

(e) f3 (f) f3

Figure 3.2 – Convergence graphs for problems f1, f2 and f3. Left side: f (x)− f (x?)
in log-scale, no line are reported on the graph until a feasible solution is found over
the 51 runs. Right side: number of violated constraints. EA (blue stars), RD-CC-EA
(orange circles), HD-CC-EA-I (green triangles), HD-CC-EA-II (red squares). The
solid line depicts the median value while the light-colored area around the solid line
represents the interval between the minimal and the maximal values over the 51 runs.
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(a) f4 (b) f4

(c) f5 (d) f5

(e) f6 (f) f6

Figure 3.3 – Convergence graphs for problems f4, f5 and f6. Left side: f (x)− f (x?)
in log-scale, no line are reported on the graph until a feasible solution is found over
the 51 runs. Right side: number of violated constraints. EA (blue stars), RD-CC-EA
(orange circles), HD-CC-EA-I (green triangles), HD-CC-EA-II (red squares). The
solid line depicts the median value while the light-colored area around the solid line
represents the interval between the minimal and the maximal values over the 51 runs.
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(a) f7 (b) f7

(c) f8 (d) f8

(e) f9 (f) f9

Figure 3.4 – Convergence graphs for problems f7, f8 and f9. Left side: f (x)− f (x?)
in log-scale, no line are reported on the graph until a feasible solution is found over
the 51 runs. Right side: number of violated constraints. EA (blue stars), RD-CC-EA
(orange circles), HD-CC-EA-I (green triangles), HD-CC-EA-II (red squares). The
solid line depicts the median value while the light-colored area around the solid line
represents the interval between the minimal and the maximal values over the 51 runs.
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EA RD-CC-EA HD-CC-EA-I HD-CC-EA-II
f1 -1.82e-01 -7.43e-01 -1.93e-01(-) -4.62e-01(-)
f2 -2.81e+00 -6.34e+00 -4.07e+00(-) -4.55e+00(-)
f3 -5.36e+00 -3.81e-09 -9.86e+00(+) -1.12e+00(+)
f4 × × 4.88e+05(+) 4.88e+05(+)
f5 -1.57e+04 -2.27e+04 -2.54e+04(+) -2.54e+04(+)
f6 -9.55e+03 -1.75e+04 -1.99e+04(+) -1.69e+04(-)
f7 2.91e+05 2.13e+05 2.13e+05(+) 2.13e+05(+)
f8 × × 2.16e+02(+) 2.16e+02(+)
f9 × × 1.02e+02(+) 1.02e+02(+)
f10 × × 1.20e+01(+) 1.20e+01(+)

Table 3.4 – Median objective value on 51 runs for benchmark problems. ’×’ means
no feasible solution has been found over all runs. Best values are marked in bold face.
(+), (-) and (=) represent the fact that HD-CC-EA-I and HD-CC-EA-II are signifi-
cantly better than, worse than, or equivalent to RD-CC-EA according to the Wilcoxon
rank-sum test with 5% significance level (Wilcoxon (1945)).

(a) f10 (b) f10

Figure 3.5 – Convergence graphs for problem f10. Left side: f (x)− f (x?) in log-
scale, no line are reported on the graph until a feasible solution is found over the 51
runs. Right side: number of violated constraints. EA (blue stars), RD-CC-EA (orange
circles), HD-CC-EA-I (green triangles), HD-CC-EA-II (red squares). The solid line
depicts the median value while the light-colored area around the solid line represents
the gap between the minimal and the maximal values over the 51 runs.
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f1
Minamo Best Worst Mean Median Std
EA -2.10e-01 -1.77e-01 -1.84e-01 -1.82e-01 6.68e-03
RD-CC-EA -7.54e-01 -7.34e-01 -7.44e-01 -7.43e-01 4.81e-03
HD-CC-EA-I -1.97e-01 -1.91e-01 -1.93e-01 -1.93e-01 1.54e-03
HD-CC-EA-II -4.68e-01 -4.58e-01 -4.62e-01 -4.62e-01 2.02e-03

f2
Minamo Best Worst Mean Median Std
EA -2.96e+00 -2.67e+00 -2.80e+00 -2.81e+00 6.64e-02
RD-CC-EA -6.46e+00 -6.27e+00 -6.35e+00 -6.34e+00 4.92e-02
HD-CC-EA-I -4.21e+00 -3.95e+00 -4.08e+00 -4.07e+00 5.00e-02
HD-CC-EA-II -4.60e+00 -4.51e+00 -4.55e+00 -4.55e+00 1.89e-02

f3
Minamo Best Worst Mean Median Std
EA -5.94e+00 -4.68e+00 -5.34e+00 -5.36e+00 2.82e-01
RD-CC-EA -2.41e-05 -6.58e-11 -5.35e-07 -3.81e-09 3.34e-06
HD-CC-EA-I -9.88e+00 -9.85e+00 -9.86e+00 -9.86e+00 6.04e-03
HD-CC-EA-II -1.47e+00 -8.87e-01 -1.14e+00 -1.12e+00 1.45e-01

f4
Minamo Best Worst Mean Median Std
EA × × × × ×
RD-CC-EA × × × × ×
HD-CC-EA-I 4.69e+05 5.10e+05 4.87e+05 4.88e+05 1.18e+04
HD-CC-EA-II 4.69e+05 5.10e+05 4.87e+05 4.88e+05 1.18e+04

f5
Minamo Best Worst Mean Median Std
EA -1.61e+04 -1.51e+04 -1.57e+04 -1.57e+04 1.78e+02
RD-CC-EA -2.31e+04 -2.25e+04 -2.27e+04 -2.27e+04 1.79e+02
HD-CC-EA-I -2.56e+04 -2.48e+04 -2.54e+04 -2.54e+04 1.68e+02
HD-CC-EA-II -2.56e+04 -2.48e+04 -2.54e+04 -2.54e+04 1.68e+02

f6
Minamo Best Worst Mean Median Std
EA -1.02e+04 -9.17e+03 -9.61e+03 -9.55e+03 2.63e+02
RD-CC-EA -1.83e+04 -1.69e+04 -1.76e+04 -1.75e+04 2.47e+02
HD-CC-EA-I -1.99e+04 -1.94e+04 -1.98e+04 -1.99e+04 1.21e+02
HD-CC-EA-II -1.73e+04 -1.64e+04 -1.69e+04 -1.69e+04 2.07e+02

f7
Minamo Best Worst Mean Median Std
EA 2.80e+05 3.02e+05 2.91e+05 2.91e+05 4.49e+03
RD-CC-EA 2.13e+05 2.13e+05 2.13e+05 2.13e+05 2.54e+01
HD-CC-EA-I 2.13e+05 2.13e+05 2.13e+05 2.13e+05 3.94e-09
HD-CC-EA-II 2.13e+05 2.13e+05 2.13e+05 2.13e+05 3.94e-09

f8
Minamo Best Worst Mean Median Std
EA × × × × ×
RD-CC-EA × × × × ×
HD-CC-EA-I 2.16e+02 2.16e+02 2.16e+02 2.16e+02 8.88e-04
HD-CC-EA-II 2.16e+02 2.16e+02 2.16e+02 2.16e+02 8.88e-04

f9
Minamo Best Worst Mean Median Std
EA × × × × ×
RD-CC-EA × × × × ×
HD-CC-EA-I 1.29e+01 6.20e+05 1.78e+04 1.02e+02 8.68e+04
HD-CC-EA-II 1.29e+01 6.20e+05 1.78e+04 1.02e+02 8.68e+04

f10
Minamo Best Worst Mean Median Std
EA × × × × ×
RD-CC-EA × × × × ×
HD-CC-EA-I 3.99e+00 2.39e+01 1.21e+01 1.20e+01 4.74e+00
HD-CC-EA-II 3.99e+00 2.39e+01 1.21e+01 1.20e+01 4.74e+00

Table 3.5 – Statistical objective value on 51 runs for benchmark problems. ’×’ means no
feasible solution has been found over all runs. Best median values are marked in bold face.
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For problem f1, each variable interacts with all other variables. It is therefore fully
nonseparable and the HD-CC-EAs create only one nonseparable component contain-
ing all the variables. Therefore, they act like the RD-CC-EA. The three algorithms
only differs in the number of variables per SSCs. The influence of this parameter
on the algorithm performance is specific to each problem. For this particular case, a
smaller value seems to be more convenient. On the contrary, for problem f3, the HD-
CC-EAs form 10 nonseparable subcomponents containing 50 variables. Results show
that in this case, a large number of variables in each SSC is more suitable since HD-
CC-EA-I performs better than HD-CC-EA-II. In particular, both HD-CC-EAs benefit
from the efficient grouping obtained by the RDG2 procedure and offer better results
than the RD-CC-EA. This is not always the case. For example, for problem f2, al-
though the 10 nonseparable components are correctly identified in the HD-CC-EAs,
they are outperformed by the RD-CC-EA that benefits from the small subcomponent
size. These first observations show that the performance of the algorithms on different
problems depends on their degree of nonseparability. For highly nonseparable prob-
lems, it is better to work with larger SSCs and vice versa. The key challenge is to
choose the suitable compromise. If the SSCs are too large, the internal EA shows
some difficulties to converge by essence, but if they are too small, it is not suitable for
nonseparable problems. Another problem that illustrates the effect of this parameter
is f6. It contains one separable subcomponent of 300 variables and 4 nonseparable
subcomponents of 50 variables. For this problem, the better results achieved with the
HD-CC-EA-I indicate that it is preferable to keep the subcomponent of 50 variables
as a whole.

The two variants of the HD-CC-EA acts similarly on problems f4, f7, f8, f9
and f10. For these problems, the nonseparable subcomponents contain less than 10
variables and therefore, they are not further split into smaller SSCs with neither of the
HD-CC-EAs. Moreover, the efficient decomposition reached with the HD-CC-EAs
clearly helps to find a feasible solution faster. For example, Figure 3.4 shows that for
problem f8, the number of violated constraints quickly drops to 0 for HD-CC-EAs
while it stabilizes around 50 for the RD-CC-EA. This behavior can also be seen for f9
and f10 for which 2 or 3 constraints remain violated during all the optimization with
RD-CC-EA while the HD-CC-EAs are rapidly able to find feasible solutions. Further-
more, for the standard EA, it is also very difficult to find feasible solutions. Indeed,
as it can be seen from the convergence graphs of f3, f7 and f8, the number of violated
constraints sometimes decreases but only after considerable efforts in terms of FEs. It
may also seem odd that the number of violated constraints increases for f4 and also
for early stages of f7 and f8. However, it is not in contradiction with the superiority
of feasible individuals. Indeed, the sum of the violated constraints is really decreasing
even if the number of violated constraints is increasing.

Problem f5 is fully separable. Both the RD-CC-EA and the HD-CC-EAs act on
SSCs containing 4 variables. For each cycle, the RD-CC-EA considers new random
groups of variables and thus new populations. The HD-CC-EAs use the same arbi-
trarily fixed groups of variables for all the cycles and therefore continue to evolve
the same populations from one cycle to the next. In this context, the HD-CC-EAs
converge faster than the RD-CC-EA.
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All the results presented in this section rely on the number of FEs as a measure
of the cost, as it is frequently the case to compare evolutionary algorithms. We close
the results analysis with a few words about another important measure of the cost:
the execution time. Although very few studies mention it, CC-EAs require far less
computational resources than the standard EAs on which they rely to complete an
optimization with a given number of FEs. Potter and De Jong (1994) already ob-
served it in their paper presenting the first attempt to solve LSGO problems with a
CC framework. The reason is quite simple: for the standard EA, each individual to be
evaluated is obtained following the process of genetic operators that act on all the deci-
sion variables, while for the CC-EA, the operators only act on a subset of the variables
and therefore require fewer computational resources. In our study case, the standard
EA of Minamo takes approximately 8 hours(4) to address each of the 10 benchmark
problems. The three CC variants, the RD-CC-EA and the two HD-CC-EAs, are much
faster. They take between 10 minutes and 2 hours, depending on the considered bench-
mark problems and the CC variants, to complete the optimization. Indeed, the cost of
the FEs themselves for problems f1, f2, f3, f9 and f10 is quite small and therefore, the
CC variants only need a few tens of minutes to run the optimization. On the contrary,
the remaining benchmark problems have quite expensive FEs (because they involve
a very large number of responses (objective and constraints)) and therefore, the CC
variants require up to 2 hours to complete the execution. Finally, among the CC vari-
ants, the execution time also depends on the size of subcomponents created during the
decomposition step: the smaller the size of the subcomponents, the faster the execu-
tion. Therefore, due to the choice of parameters defined in Table 3.3, the RD-CC-EA
is the fastest among the three CC variants. It is followed by the HD-CC-EA-II and
then, by the HD-CC-EA-I.

3.3 Conclusion
This chapter presents a hybrid decomposition-based CC-EAs that performs a two-
step decomposition based on both differential and random groupings. As a first step,
it splits the n-dimensional decision vector into disjoint subcomponents with RDG2.
As a second step, it further splits large subcomponents (difficult to manage with a
standard EA) into smaller subsubcomponents (much easier to manage with the EA).
In particular, the separable variables are arbitrarily split (for the whole optimization
process) into several SSCs while the variables of large nonseparable subcomponents
are randomly split in SSCs. The interaction between those SSCs are addressed by
repeating several cycles with random decompositions.

The proposed hybrid decomposition-based CC-EA has shown good capabilities
to tackle high dimensional problems. In particular, it has been extended to deal with
large-scale constrained problems and its performance has been assessed on a bench-
mark set of such problems specially designed for this study. It clearly outperformed
the random decomposition-based CC-EA and the standard EA, especially on dealing

(4)Experiments were conducted on Haswell Intel E5-2680v3 processors installed in the Tier-I supercom-
puter of the Fédération Wallonie-Bruxelles, see https://tier1.cenaero.be/en for further details.
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with the violated constraints. Finally, although the proposed decomposition offers two
different settings for the size of nonseparable and separable SSCs, the optimal choice
of these values is still a very open question, as for most of CC-EAs.



Chapter 4
Overlapping features in
cooperative co-evolution

One of the main features that distinguishes several kinds of cooperative co-evolutionary
algorithms is the decomposition strategy. As presented in Chapter 2, the two main
types of decomposition that emerged in CC-EAs are the random and the interaction
detection decompositions. The first one tries to catch interacting variables in a same
subcomponent by means of an iterative scheme of random grouping decompositions.
The second one starts by studying the interaction structure and performs a unique
decomposition for the whole optimization. In addition to these two strategies, a hy-
brid one, taking benefits from both of them, has also been presented in Chapter 3.
The CC-EAs embedded with an interaction detection-based decomposition, as well as
the hybrid one, provide better results than random grouping for problems that can be
efficiently decomposed, i.e., separable or partially separable problems.

However, that kind of problems is not representative of large-scale problems en-
countered in many real-world applications. Indeed, most of them are composed of
several components that potentially interact with each other. For example, in mechan-
ical engineering, the design of turbomachines such as aircraft propellers relies on a
complex optimization problem that captures aerodynamic, acoustic and mechanical
constraints, all intrinsically linked (Baert et al. (2020)). Therefore, traditional CC-
EAs encounter some difficulties to tackle such problem instances. On the one hand,
interaction detection decomposition-based CC-EAs would assign all the variables into
a single group and would therefore fail to reduce the problem dimensionality. On the
other hand, random decomposition-based CC-EAs would allow one to break the di-
mensionality but would also produce poor results. Indeed, the random grouping is not
strong enough to efficiently optimize problems with interconnect components.

These problems that share interacting variables between components, also re-
ferred as overlapping problems (see Figure 4.1), raise new questions. What would
be the best strategy to decompose and optimize them with CC-EAs ? How to per-

53
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Figure 4.1 – Interaction structure of a large-scale overlapping problem. Each node
represents a decision variable. An edge connects two nodes if the corresponding de-
cision variables interact with each other. Four components, in which the interaction
graph is fully-connected, can be identified. These components are linked through
some variables that interact with the variables of several components. They are called
overlapped variables.

form an efficient decomposition? Could we imagine performing a decomposition
with shared/overlapped variables between subcomponents? If yes, how to manage
these overlapped variables during the optimization? These questions are addressed
throughout this chapter. First, studies from the state of the art related to overlap-
ping features in cooperative co-evolution are presented in Section 4.1. Then, a new
overlapped decomposition-based CC-EA, that has also been presented in Blanchard
et al. (2021), is introduced in Section 4.2. It is fully described and its performance
is compared with a standard CC framework on large-scale overlapping unconstrained
problems. An extended analysis of the new algorithm on the Rosenbrock function is
also provided in Section 4.3. Finally, a discussion on promising tracks and limitations
of the approach closes the chapter.

4.1 Related work
This section presents the recent studies on overlapping. They can be classified in two
categories: overlapped CC strategies to tackle various LSGO problems (A, B and C)
and non-overlapped strategies to tackle LSGO overlapping problems (D and E).

A. Overlapped cooperative particle swarm optimizer with interdependence learning

The Cooperative Particle Swarm Optimizer (CPSO) proposed by Sun et al. (2012) is,
to the best of our knowledge, the first CC framework performing a decomposition that
shares variables among several subcomponents. The latter relies on a statistical vari-
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able interdependence learning very close to the interaction learning of the differential
grouping strategy presented in Section 2.3.1(1). However, although the interaction
learning is similar, the decomposition based on the uncovered structure is completely
different. In Sun et al. (2012), the decomposition of an n-dimensional problem first
consists in initializing n subsets S1 = {x1},S2 = {x2}, . . . ,Sn = {xn}, where xi is called
the core of subset Si. Then, for each subset Si, variables that interact with xi are added
to Si. The overlapped variables are managed using the following CC framework:

1. Initialize an n-dimensional context vector randomly.
2. Perform the problem decomposition.
3. Optimize each subproblem with a separate PSO. For the function evaluations, the

variables of the context vector are used for the completion of partial solutions.
4. Update the context vector by concatenating the optimized subproblem cores.
5. If the maximum of allowed FEs is reached, stop. Otherwise, go to step 3.

However, although the study provides an interesting overlapped approach, it has not
been developed to optimize overlapping problems. In this context, the choice of the
benchmark set does not bring to the fore the utility and the efficiency of the overlapped
decomposition. Furthermore, the results for 1000-d problems are presented consider-
ing 2×108 FEs. This number is very high compared to the 3×106 usually considered
in CEC special sessions on LSGO (Tang et al. (2009); Xi et al. (2013)). Therefore,
we cannot conclude if the proposed algorithm provides good results with a smaller
(and more reasonable) budget in terms of FEs. Finally, some details remain unclear
in the presented methodology (amongst others: How long should be the optimization
of step 2? Is it better to perform a long optimization with therefore few updates of
the context vector at step 4 or a shorter one that allows one to perform more frequent
updates? What would be the best compromise?).

B. Factored evolutionary algorithm

The Factored Evolutionary Algorithm (FEA) presented by Strasser et al. (2017) is
a new class of evolutionary algorithm that factors the objective function by creating
overlapping subcomponents. Each of them can be optimized with any kind of EA. It
relies on three major subfunctions: (a) solving, (b) competition, and (c) sharing.

(a) The solving function allows each factor to optimize its set of variables while
keeping remaining variables to a fixed value.

(b) The competition function creates a complete solution G = (x̄1, x̄2, . . . ...x̄n) used
by the factors to evaluate partial solutions. For every variable xi, the function
iterates over each subpopulation containing xi. For each of them, the value
of the variable xi of the best individual is substituted into G and the produced
solution is evaluated with the objective function. The fittest value of xi over all
the subpopulations containing xi is recorded in G and the function moves to the

(1)In fact, interaction learning schemes presented by Sun et al. (2012) and Omidvar et al. (2013) have
been developed over the same period and are quite close. The work proposed by Omidvar et al. (2013) has
received considerable attention and has become a reference in the "CC community" while the work by Sun
et al. (2012) has received significantly less attention.
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next variable. This procedure does not guarantee to find the best combination
of values from each subcomponent. However, the iterations over the variables
and over the subpopulations are performed in random sequence. It allows the
algorithm to explore different combinations throughout the whole optimization.

(c) The sharing function simply shares the complete solution G among each sub-
component in order to evaluate partial solutions. It also replaces the worst indi-
vidual of each subpopulation with a new one composed of the variables of the
complete solution G.

Unfortunately, although the approach provided by Strasser et al. (2017) is attractive,
the study is not devoted to overlapping problems, it is limited to 50-dimensional prob-
lems and it does not propose any automatic decomposition strategy based on the in-
teraction structure. Furthermore, it suggests good performances of the FEA but the
results are presented in a biased manner. Indeed, the FEA and the standard EA are
compared with the same number of iterations but the former requires many more FEs
than the latter at each iteration.

C. Cooperative co-evolution with overlapping of influential decision variables

The framework introduced by Song et al. (2017) does not use the overlapping to fa-
cilitate the decomposition of overlapping problems. Instead, it takes advantages of
overlapped variables in order to allocate more computational resources to the deci-
sion variables that have strong impacts on the optimization. Those influential vari-
ables are identified using a delta-disturbance strategy. The latter measures the impact
of variables by successively disturbing each dimension with a small delta value and
by measuring the impact on the objective function. The overlapped grouping is per-
formed in two steps. Firstly, mutually-exclusive groups of variables are created with
any standard grouping strategy. Secondly, the influential variables identified by the
delta-disturbance strategy are added to some subsets in order to be overlapped. In this
way, they benefit, in the CC framework, from additional computational resources in
comparison with variables appearing in only one subset. The study also introduces the
following rule to manage the overlapped variables: when the groups are successively
optimized in the CC framework, the values of overlapped variables in previous groups
are replaced with the value in the current groups.

D. Differential grouping with spectral clustering

The decomposition based on differential grouping with spectral clustering designed
by Li et al. (2019) aims to split overlapping LSGO problems into subproblems fo-
cusing on mutually-exclusive groups of variables. In this framework, the variables
are treated as nodes of an undirected graph, the adjacency matrix of this graph be-
ing the design structure matrix Θ obtained with DG2 (see Section 2.3.1). The latter
is used as the similarity matrix of spectral clustering. Based on this matrix, another
matrix, called unnormalized Laplacian matrix L, is computed. A k-means algorithm
(Jain (2010)) is used to cluster the k eigenvectors of L, corresponding to the k smallest
eigenvalues, in the eigenvectors space. In that way, the graph is divided into k sub-
graphs and the groups of variables used in the CC framework are given by the variables
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of the nodes in each subgraph. The obtained CC framework embedded with a differ-
ential evolution optimizer shows promising results on LSGO overlapping problems.
However, its major drawback is that the number of groups k needs to be artificially set.

E. Recursive differential grouping for overlapping problems

The new recursive differential grouping, called RDG3, introduced by Sun et al. (2019),
is a slightly modified version of the RDG2 presented in Section 2.3.2. This new ver-
sion aims to decompose overlapping problems into disjoint subproblems by breaking
the linkage at shared variables between components. Such a breaking is obtained by
imposing a new condition that limits the size of the components. As a reminder, in
Algorithm 7 (see page 35), the interaction detection between variables of X1 and re-
maining variables is repeated until no more variable is added to X1. In the new RDG3,
it is repeated until at least one of the two following stopping criteria is verified:

1. no more variable is added to X1 (such as for RDG2) ;
2. X?

1 contains more that εn variables, where εn needs to be artificially set.

From an algorithmic point of view, the new RDG3 can be described with Algorithm 7
(page 35) by simply replacing the "if" condition at line 6 by the following one:

”if |X?
1 |= |X1| or |X?

1 |> εn then ...”.

The CC framework based on this new decomposition and using the Covariance Matrix
Adaptation Evolution Strategy (Hansen and Ostermeier (2001)) as components opti-
mizer is very efficient and is the winner of the CEC 2019 competition on LSGO(2). Its
main current weakness concerns the choice of εn that needs to be artificially set.

4.2 Overlapped decomposition-based CC-EA
Of course it may be thought that the best way to optimize overlapping LSGO prob-
lems in a CC framework is through overlapped strategies. However, none of the stud-
ies presented in the previous section (and to the best of our knowledge, none of the
studies in the literature, except the one on which this section relies (Blanchard et al.
(2021))), provide such a framework. The new overlapped decomposition-based CC-
EA presented in this section responds to that expectation and aims to tackle LSGO
overlapping problems within an overlapped CC framework. Therefore, it has to deal
with subcomponents that share several variables. This raises two fundamental ques-
tions. The first one concerns the way in which an intelligent decomposition strategy
can efficiently detect overlapped variables and share them among several components.
A new strategy, based on recursive differential grouping, that addresses this issue is
presented in Section 4.2.1. The second question is relative to the management of over-
lapped variables during the optimization, in particular for function evaluations. It is
addressed in the overlapped cooperative co-evolutionary framework described in Sec-
tion 4.2.2. Finally, the performance of the resulting overlapped decomposition-based
CC-EA is analyzed in Section 4.2.3.

(2)See http://www.tflsgo.org/special_sessions/cec2019, last visited December 10, 2020.
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4.2.1 Overlapped Recursive Differential Grouping
The newly proposed Overlapped Recursive Differential Grouping (ORDG) is another
alternative version of the RDG2 presented in Section 2.3.2. The latter is modified for
the purpose of identifying variables that make the link between several components
and share them among these subcomponents. Therefore, the new framework deals
with overlapping problems in some way other than the RDG3 presented in Section 4.1.
The difference between the two strategies is illustrated in Figure 4.2. In the presented
interaction graph, three main components can be identified:

S1 = {x1,x2,x3,x4}, S2 = {x3,x4,x5,x6,x7} and S3 = {x7,x8,x9}.
Within those components, the interaction graph is fully-connected, meaning that vari-
ables strongly interact with each other. Moreover, variables from different components
do not directly interact with each other, i.e.,∀ i, j (i 6= j), k, l (k 6= l) such that xi ∈ Sk\Sl
and x j ∈ Sl\Sk, xi does not interact with x j. In order to split such a problem into sub-
problems focusing on mutually exclusive subsets of variables, the RDG3 breaks the
linkage at shared variables and produces the grouping illustrated in Figure 4.2a. It
may not be the best approach since x3 and x4 (resp. x7) are not optimized with x5, x6
and x7 (resp. x8 and x9) while they directly interact with each other. By means of
the allowed overlap between components, the new ORDG provides a grouping that
prevents from breaking these important linkages. It is illustrated in Figure 4.2b.

(a) RDG3 (b) ORDG

Figure 4.2 – The two obtained decompositions for an overlapping problem using
RDG3 and ORDG strategies, respectively (Blanchard et al. (2021).

The new ORDG is fully described in Algorithm 9. New features specific to the
ORDG find themselves in the "else" statement at line 11. The algorithm goes into this
statement, as well as in RDG2, if some interaction has been identified between X1 and
X2 at line 5(3). The variables in X2 that interact with X1 are known and are added to X1
to produce the set X?

1 . However, the variables in X1 responsible of the interaction are
unknown. They should be identified to perform the desired overlapped decomposi-
tion. If X1 contains a single variable, the latter is inherently the one responsible of the
interaction. The algorithm passes through the same update that for the RDG2 before
moving on the next iteration (lines 12-13). Otherwise (i.e., if X1 contains several vari-
ables), those interacting with X2 are detected with the L_Inter function (see Algo-
rithm 10) that exploits the recursive mechanism for interaction detection again. Then,
the new instructions in lines 16-18 deliver the desired overlapped decomposition.

(3)The R_Inter function is the same that the one defined for the RDG. Its pseudo-code is given in
Algorithm 6 at page 35.



4.2. OVERLAPPED DECOMPOSITION-BASED CC-EA 59

Algorithm 9: Overlapped Recursive Differential Grouping( f unc)

1 seps = {}, nonseps = {};
2 X1 = {x1}, X2 = {x2, . . . ,xn} ;
3 f = f (~xl,l) ;
4 while X2 6= {} do
5 X?

1 =R_Inter(X1,X2, f , f unc) ;
6 if |X?

1 |= |X1| then
7 if |X1|= 1 then seps = seps ∪ X1 ;
8 else nonseps = nonseps ∪ {X1} ;
9 X1 = {x j} s.t. j ≤ i ∀xi ∈ X2;

10 X2 = X2 \ {x j} ;
11 else
12 if |X1|= 1 then
13 X1 = X?

1 , X2 = X2 \ X1 ;
14 else
15 X??

1 = L_inter(X1,X2, f , f unc) ;
16 nonseps = nonseps ∪ {X1} ;
17 X1 = (X?

1 \ X1)∪X??
1 ;

18 X2 = X2 \ X?
1 ;

19 end
20 end
21 end
22 if |X1|= 1 then seps = seps ∪ X1 ;
23 else nonseps = nonseps ∪ X1 ;
24 return seps and nonseps;

Algorithm 10: L_Inter(X1,X2, f , f unc)

1 if Interact(X1,X2, f , f unc) then
2 if |X1|= 1 then
3 return X1 ;
4 else
5 Divide X1 into equally-sized

groups G1, G2 ;

6 X1
1 = L_Inter(G1,X2, f , f unc);

7 X2
1 = L_Inter(G2,X2, f , f unc);

8 X1 = X1
1 ∪X2

1 ;
9 end

10 end
11 return X1 ;
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Note that the R_Inter and L_Inter functions differ primarily in that the former
focuses on the set X2 while the latter acts on X1. Moreover, the instruction in the
base case of the recursion (line 3) also differs in the two functions. In the R_Inter
function, variables in X2 that interact with X1 are added to X1 while in the L_Inter
function, only the variables in X1 that interact with X2 are returned.

4.2.2 Overlapped cooperative co-evolutionary framework
The new overlapped cooperative co-evolutionary algorithm (OCC-EA) introduced in
this section follows the guidelines of the CC framework presented in Section 2.1,
with some adjustments to deal with the overlapped variables. The first modification
concerns the decomposition step that is performed with the ORDG.

The optimization itself remains unchanged in the sense that it still consists in op-
timizing each subcomponent with a standard EA in a round-robin strategy. However,
in this step, the cooperation between subproblems needs to be revised. As a reminder
(see page 19), in a standard CC framework, the individuals from a considered sub-
component are completed with the variables of the representative individuals of the
other subcomponents in order to be evaluated. The latter are generally chosen as cur-
rent best individuals in each subcomponent. In the CC literature, the term context
vector is often used to name the n-dimensional vector obtained by concatenating all
the representative individuals (van den Bergh and Engelbrecht (2004)). The function
evaluations are therefore performed through the completion with the variables of the
context vector. Considering disjoint subcomponents, there is only one way to build
this context vector but, if we now consider overlapped subcomponents, this arrange-
ment is no longer unique. This introduces the issue of which value of a variable xi has
to be shared in the context vector when the variable in question is involved in several
subcomponents. In this context, the new OCC-EA relies on the following principle:
for each variable xi, its value in the context vector is the one of the best individual
among the two subpopulations focusing on xi (or in the only subpopulation if xi is
not overlapped). In particular, if none of the variables are overlapped, the standard
construction of the context vector is retrieved. Both constructions, in a standard and
in an overlapped framework, are presented in Figure 4.3.

It is important to note that the choice of the best individual within two different
subpopulations does not require any extra function evaluations. Indeed, the individuals
are compared depending on their function values computed during the optimization of
the corresponding subcomponents in the round-robin fashion loop. Furthermore, the
context vector is updated each time a better solution is reached. It guarantees frequent
exchanges of information between the subcomponents.

4.2.3 Experimental settings and results
This section presents the simulation experiments used to evaluate the performance of
the new OCC-EA. Firstly, analysis will be conducted on the ORDG decomposition
itself. Secondly, the effects of the new decomposition and the related OCC frame-
work on the optimization results will be assessed. The reference algorithm used for
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(a) Standard CC (b) Overlapped CC

Figure 4.3 – Management of the context vector within a standard and an overlapped
CC framework. The illustrative example relies on the interaction structure presented
in Figure 4.2. Dashed, dotted and solid lines represent individuals from subpopula-
tions 1, 2 and 3, respectively. In each subpopulation, they are ranked according to
their fitness values, the best ones lying on the top. The context vector is built with the
variables values of the best individual in each subpopulation (Blanchard et al. (2021)).

comparison is a standard CC-EA based on the RDG3 decomposition. The benchmark
set is composed of 6 overlapping benchmark problems derived from the CEC’2013
competition on LSGO (Xi et al. (2013)). Two of them are picked directly from the
CEC’2013 suite: f5 is the 905-d shifted Schwefel’s function with conflicting overlap-
ping subcomponents, f6 is the 1000-d shifted Rosenbrock function. The four others,
f1 to f4, are built by replacing the Schwefel basis function in f5 by Ackley, Elliptic,
Rastrigin and Rosenbrock functions, respectively. Further details on the benchmark
set are provided in Appendix B.

The decomposition results of the ORDG and the RDG3 on the 6 benchmark func-
tion are presented in Table 4.1. Two different threshold values εn = 50 and εn = 0 are
used for the RDG3: the first one is the value used to study optimization results in the
paper of Sun et al. (2019), the second one aims to systematically cut the overlapping at
shared variables and therefore produce as many components as possible. For each de-

RDG3 (εn = 50) RDG3 (εn = 0) ORDG
k r FEs k r FEs k r FEs

f1 12 905 16273 20 905 16597 12 1011 16702
f2 12 905 16252 19 905 16666 17 1000 18214
f3 12 905 16249 20 905 16615 17 1000 18214
f4 12 905 16252 20 905 16666 17 1000 18214
f5 13 905 16288 21 905 16669 17 1003 18202
f6 20 1000 49891 500 1000 25435 999 1998 59848

Table 4.1 – Decomposition results of RDG3 (with εn = 50 and εn = 0) and ORDG
strategies. k is the number of components generated, r is the sum of the number of
variables in each group and FEs is the number of function evaluations computed.
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composition strategy, the number of components generated (k), the sum of the number
of variables in each group (r) as well as the number of required FEs are reported. Since
it does not perform any overlap, the r values obtained with the RDG3 are equal to the
number of variables of the benchmark functions. On the contrary, the ORDG involves
a larger number of variables. Theoretically, for functions f1 to f5, it should identify the
components corresponding to each term of the sum in the benchmark construction. It
should therefore involve 1 000 variables. This is indeed the case for f2 to f4 but some
additional variables are considered for f1 and f5. This is caused by some false inter-
action detection between independent variables arising from computational roundoff
errors. Moreover, still with regard to the benchmark construction, f1 to f5 are com-
posed of 20 components. The RDG3 with εn = 50 only forms 12 (or 13) components
since those containing less than 50 variables are merged with other ones. The RDG3
with εn = 0 nearly captures the 20 components, the small variations observed for f1
and f5 are again due to computational roundoff errors. Regarding the new ORDG, it
captures 17 of the 20 components for f2 to f5

(4). They match the ones produced in the
benchmark construction except that some of them have been merged. Indeed, if the
ORDG starts the interaction identification with a variable of a component that shares
some overlapped variables with two other components, the latter are merged into one
single component. The same situation is recurring with the two components linked
to that single component. Therefore, some components are composed of two subsets
of variables that do not directly interact. That will not affect the optimization effi-
ciency. Furthermore, even if the 20 components are not exactly identified, the ORDG
objective is achieved since the LSGO overlapping problems are split into several sub-
problems sharing some variables with other subproblems. Finally, results obtained
for function f6 (Rosenbrock) fit with the expected ones. Indeed, for this function,
each variable xi directly interacts with xi+1 (i = 1, . . . ,999). The RDG3 with εn = 50
(εn = 0) cuts the overlapping at some points to produce 20 (500) components of 50 (2
resp.) variables. The ORDG correctly identifies the overlapping structure by group-
ing each variable xi with the following one and therefore produces 999 components
of 2 variables.

The impact of the new ORDG decomposition on the optimization efficiency is
assessed by comparing the OCC-EA presented above with a standard CC framework
relying on the RDG3 decomposition, called RDG3-CC-EA. Both algorithms use the
genetic algorithm of Minamo, described in Section 1.6, as subcomponents optimizer.
Within each genetic algorithm, the population size is chosen as 10 times the number
of variables of the considered component. The round-robin fashion optimization loop
of the CC framework is repeated until the maximum number of FEs, fixed to 3×106

for the decomposition and the optimization, is reached. The statistical features of the
solutions obtained with both algorithms are reported in Table 4.2. Considering the
median values, the OCC-EA provides better solutions quality for 4 of the 6 functions.
The RDG3-CC-EA with εn = 0 produces the best results for the remaining two. The
convergence behavior along the optimization process is illustrated in Figure 4.4. Note
that these graphs simply depict the evolution of f (x) (instead of f (x)− f (x?) as in

(4)Once again, it should theoretically also be the case for f1 but the results for this particular function are
affected by roundoff errors.
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the previous chapter) because the optimum values of functions f1 to f5 are unknown.
For f6, the optimum value f (x?) is equal to zero. The three algorithms follow a sim-
ilar trend for f1 to f5

(5). For these functions, the two variants of the RDG3-CC-EA,
only differing by the slightly different number of subcomponents generated, present
close results. However, for f6, the variation between the number of subcomponents
is stronger. In this case, the results show that the RDG3-CC-EA with εn = 0 that
produces a very large number of small components is more appropriate to perform

(5)Note that for f2, the large-green colored area for the OCC-EA is simply caused by some runs stuck in
pseudo-optima. Except that, the three algorithms also follow the same trend.

f1
Minamo Best Worst Mean Median Std
RDG3-CC-EA (εn = 50) 6.97e+07 7.05e+07 7.02e+07 7.03e+07(+) 1.77e+05
RDG3-CC-EA (εn = 0) 7.00e+07 7.07e+07 7.04e+07 7.04e+07(+) 1.48e+05
OCC-EA 6.92e+07 7.12e+07 7.00e+07 7.01e+07 2.84e+05

f2
Minamo Best Worst Mean Median Std
RDG3-CC-EA (εn = 50) 3.05e+13 4.61e+13 3.94e+13 3.95e+13(=) 3.56e+12
RDG3-CC-EA (εn = 0) 2.32e+13 4.81e+13 3.50e+13 3.53e+13(-) 5.24e+12
OCC-EA 2.85e+13 9.35e+14 8.68e+13 3.85e+13 1.67e+14

f3
Minamo Best Worst Mean Median Std
RDG3-CC-EA (εn = 50) 4.22e+08 5.54e+08 4.86e+08 4.83e+08(+) 2.81e+07
RDG3-CC-EA (εn = 0) 3.56e+08 5.93e+08 5.15e+08 5.22e+08(+) 4.45e+07
OCC-EA 3.08e+08 6.22e+08 4.42e+08 4.17e+08 8.11e+07

f4
Minamo Best Worst Mean Median Std
RDG3-CC-EA (εn = 50) 5.79e+11 6.57e+11 6.05e+11 6.01e+11(-) 1.82e+10
RDG3-CC-EA (εn = 0) 4.02e+11 4.81e+11 4.30e+11 4.27e+11(-) 1.40e+10
OCC-EA 7.08e+11 8.48e+11 7.80e+11 7.80e+11 3.58e+10

f5
Minamo Best Worst Mean Median Std
RDG3-CC-EA (εn = 50) 6.40e+10 1.69e+11 1.10e+11 1.04e+11(+) 2.15e+10
RDG3-CC-EA (εn = 0) 6.71e+10 1.98e+11 1.13e+11 1.15e+11(+) 2.66e+10
OCC-EA 6.73e+10 1.52e+11 9.76e+10 9.64e+10 1.75e+10

f6
Minamo Best Worst Mean Median Std
RDG3-CC-EA (εn = 50) 6.38e+05 1.11e+06 8.69e+05 8.68e+05(+) 9.80e+04
RDG3-CC-EA (εn = 0) 1.31e+03 1.82e+03 1.51e+03 1.50e+03(+) 1.21e+02
OCC-EA 1.19e+03 1.64e+03 1.37e+03 1.34e+03 1.01e+02

Table 4.2 – Statistical objective value on 51 runs for overlapping benchmark problems
derived from the CEC’2013 special session on LSGO. RDG3-CC-EA and OCC-EA,
respectively, stand for the standard CC framework with the RDG3 decomposition and
the new overlapped CC framework. Best median values are marked in bold face.
(+), (-) and (=) represent the fact that OCC-EA is significantly better than, worse than,
or equivalent to the compared algorithm according to the Wilcoxon rank-sum test
with 5% significance level.
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(a) f1 (b) f2

(c) f3 (d) f4

(e) f5 (f) f6

Figure 4.4 – Convergence graphs for overlapping benchmark problems derived from
the CEC’2013 special session on LSGO. RDG3-CC-EA with εn = 50 (blue stars),
RDG3-CC-EA with εn = 0 (orange circles), OCC-EA (green triangles). The solid line
depicts the median value while the light-colored area around the solid line represents
the interval between the best and the worst solutions over the 51 runs.
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an efficient optimization. Moreover, the surprisingly similar results offered by the
RDG3-CC-EA with εn = 0 and the OCC-EA can be explained as follows. In the
OCC-EA, the overlapped variables shared among two subcomponents usually con-
verge to the same value at a similar rate in the two subcomponents. Therefore, the
overlapped decomposition performed in the OCC-EA does not significantly improve
the cooperation between subcomponents in comparison with the standard exchange
of representative individuals through the context vector in a standard CC framework.
For this reason, although results in Table 4.2 are encouraging about the potential of
the OCC-EA, it would be premature to claim that the new overlapped CC strategy is
better than the standard CC framework.

4.3 Extended analysis on the Rosenbrock function
The Rosenbrock function is a well-known benchmark problem often used in opti-
mization. Its global optimum lies in a long, narrow and parabolic shaped valley in the
2-dimensional case, see Figure 4.5a. Its analytical expression is given by

fRosenbrock(x) =
n−1

∑
i=1

[100(xi+1− x2
i )

2 +(xi−1)2],

where n is the number of decision variables, xi ∈ [−2,2], ∀i = 1, . . . ,n. Its global min-
imum lies at x?i = 1, ∀i = 1, . . . ,n and f (x?) = 0. Optimizing a large-scale instance of
this function is very tricky, especially in a CC framework. Each variable xi strongly
interacts with xi+1 (i = 1, . . . ,n− 1) and an efficient cooperation between these pairs
of variables is fundamental to achieve precise optimization results. Indeed, if one fo-
cuses on the optimization of an arbitrary variable xi, the following quantities have to
be minimized: (a) 100(xi−x2

i−1)
2, (b) (xi−1)2, and (c) 100(xi+1−x2

i )
2. If we assume

that the variable xi−1 already reached its optimum value x?i−1 = 1, choosing x?i = 1
would minimize quantities (a) and (b). Concerning the last term (c), it can be mini-
mized by choosing x?i =±

√
xi+1 if xi+1 is positive or x?i = 0 otherwise (see illustration

in Figure 4.5b). Therefore, in the optimization process, variables whose index is close
to 1 will converge to 1 from the beginning of the optimization. On the contrary, vari-
ables whose index is far away from 1 such that the variables x1 does not influence their
convergence behavior will start to converge to 0. Moreover, this trend is accentuated
by the fact that the multiplicative factor in the term 100(xi+1− x2

i )
2 gives it a larger

influence in the objective function with respect to the term (xi−1)2. The challenge to
achieve efficient optimization results is to put forward the influence of the variable x1
on other variables as quickly as possible to move them away from 0 to 1. In that way,
they will converge to their optimal values one after the other.

Let us look at the convergence behavior of the variables with both RDG3-CC-
EA (with εn = 0) and OCC-EA. For that particular study case, a budget of 4× 105

FEs is allocated to each algorithm in order to optimize the 10-dimensional Rosenbrock
function. This budget is relatively large with respect to the problem dimensionality
but allows an analysis of the convergence behavior until each variable converges to
its optimum value. Moreover, the conclusions drawn for this small-scale problem will
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(a) Rosenbrock contour plot (b) Function landscapes

Figure 4.5 – Representation of the 2-d Rosenbrock function: contour plot (panel a)
and different function landscapes with X2 fixed to 1 or −1 (panel b). In the first case,
the optimum value of X1 =±

√
X2 =±1. In the second case, the only optimum value

is X1 = 0.

be extended for LSGO problems. Figure 4.6 illustrates the convergence behavior of
the variables when they are optimized with RDG3-CC-EA and OCC-EA, respectively.
For both algorithms, the results are consistent with the expectations presented above.
The variable x1 immediately converges to 1, followed by x2, etc. The variables far
away from x1 start by converging to 0 in order to decrease the objective value and
move successively from 0 to 1 throughout the optimization process. Such a study case
helps us to learn two important aspects of both RDG3-CC-EA and OCC-EA. Firstly,
they offer a sufficiently good cooperation between subcomponents to be able to lead
all the variables up to their optimal values, in spite of the strong interaction linking
them two by two. Secondly, they show some limitations to precisely optimizing large-
scale instances of the Rosenbrock function until the objective value tends to 0. Indeed,
even in a CC context, the variables successively converge to their optimal values.
That sequential process clashes with the divide-and-conquer nature of CC algorithms
and prevents both RDG3-CC-EA and OCC-EA from finding the global optima in a
reasonable time limit.

4.4 Conclusion
The new algorithm presented in this chapter is designed to optimize overlapping
LSGO problems within a CC framework relying on an overlapped decomposition.
This new strategy is structured around two pillars. The first one is the accurate over-
lapped decomposition obtained by adapting the RDG in order to detect and share
overlapped variables among several components. The second one is the extension
of the cooperation between subcomponents in order to efficiently manage overlapped
variables during the optimization and properly share information through the context
vector. Simulation experiments indicate that the new ORDG provides a proper over-
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(a) RDG3-CC-EA (b) OCC-EA

Figure 4.6 – Evolution of the variables of the 10-d Rosenbrock function with respect to
the number of function evaluations. Left side: RDG3-CC-EA. Right side: OCC-EA.

lapped decomposition. However, although the optimization results suggest that the
management of the overlapped variables offered by the OCC-EA helps to get slightly
better solutions, there are no certainties, at this stage, that the proposed OCC-EA sig-
nificantly outperforms the standard CC framework embedded with the RDG3. Indeed,
during the present study, we discovered that the exchange of information through the
context vector in a standard CC framework is stronger than we could expect. It offers
an efficient cooperation even if some linked variables are detached in different sub-
components. Moreover, the extended analysis also shows that, whatever the CC frame-
work is overlapped or not, the exchange of information all along LSGO instances of
Rosenbrock function may be time-consuming and limits the potential of the optimizer.

In any way, the work presented in this chapter is a first attempt to use an overlapped
decomposition to deal with overlapping problems in a CC framework. The proposed
approach shows promising prospects and we think that there is scope to further im-
prove it, particularly by further exploiting the strength of the cooperation through the
context vector.
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Chapter 5
Surrogate-assisted optimization

Genetic algorithms, and in a more general way, evolutionary algorithms, are very pop-
ular to solve black-box optimization problems such as those presented in Section 1.1.
They have been widely used to solve problems arising in engineering and sciences
(Keane (1995); Wang et al. (2006); Chiesa et al. (2020)). However, in the last decades,
increasingly complex numerical models have been developed to design any kind of en-
gineering applications, especially in aerospace sciences (Forrester and Keane (2009)).
These numerical simulations can become time-consuming and therefore the experi-
ments needed for fitness evaluations are prohibitively expensive. In this context, it is
inconceivable to solve such expensive optimization problems with genetic algorithms
since they often require a high number of FEs. Surrogate-assisted optimization (SAO)
has been introduced to address that issue and therefore reduce the number of FEs
(Grefenstette and Fitzpatrick (1985); Jin (2011)). In such a framework, an efficient
computational model of the fitness landscape, called surrogate model, is built and is
used for most of the FEs instead of the expensive evaluations of the true function. A
small number of real fitness evaluations are still required to build the surrogate model
but also to update the latter during the optimization.

This chapter is organized as follows. Section 5.1 introduces the general scheme of
the surrogate-assisted optimization framework. Then, several techniques to generate
the data set of samples points, called the design of experiments, used to initialize the
surrogate model are presented in Section 5.2. Thereafter, surrogate models based on
radial basis function networks are presented in Section 5.3. Finally, some illustrations
of the surrogate-assisted optimization efficiency are given in Section 5.4.

5.1 General scheme
The SAO framework considered in this thesis relies on EAs whose convergence rate
is strongly accelerated through an efficient coupling with surrogate models. Its gen-
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eral scheme is illustrated in Figure 5.1. The first step consists in building the initial
database used to construct the initial surrogate model. For this purpose, a number
of sampling points are randomly chosen across the design space and are evaluated
with the true function. There are several techniques to choose the selected points in
order to cover the design space. They are discussed in Section 5.2. Based on the
information collected in the design of experiments, data-fitting modeling techniques
are used to build the surrogate model. The latter is very cheap to evaluate compared
with the expensive simulations. Therefore, a search process is carried on the strength
of the surrogate model to design new sampling points that will be evaluated with
the real function. There are several criteria, called infill criteria, to select those points
(Forrester and Keane (2009)). The most common practice is to check the accuracy

Figure 5.1 – Surrogate-assisted optimization framework.

of the surrogate model at its optimum (Queipo et al. (2005)). To this end, the sur-
rogate model is optimized with an EA (a genetic algorithm in our framework) and
the predicted optimum is evaluated with the expensive function. This kind of process
encourages the exploitation of the surrogate models. However, an efficient optimiza-
tion framework must rely on a right balance between exploitation and exploration
of the design search space. Some exploration criteria select additional design points
in areas where there are high uncertainties about the model accuracy. For example,
when a Kriging model (Jones et al. (1998)) is used as surrogate, one can select points
with high values of the mean squared error in order to improve the quality of the
surrogate (Booker et al. (1999)). If error estimates are not available, another tech-
nique for space-filling is to select one point that minimizes the value of the surro-
gate model (if a minimization problem is considered) and that must also be far away
from previous design points. This point strikes a right balance between exploitation
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and exploration. It can be chosen by minimizing the following merit function (Torczon
and Trosset (1998)):

Φ(x) = f̂ (x)−ρd(x), (5.1.1)

where f̂ (x) denotes the surrogate model approximation of the expensive function f (x),
ρ > 0 is a scale factor and d(x) is the distance from x to the nearest design point. Fi-
nally, the selected point(s) is (are) evaluated with the high-fidelity simulations and
is (are) added to the database. Proceeding along these lines, the surrogate model be-
comes even more accurate iteration by iteration. The whole process is repeated until
a stopping criterion is met: in most cases the maximum number of design iterations.

In particular, the SAO framework considered in this thesis is the one implemented
in Minamo (Sainvitu et al. (2010)), the multi-disciplinary optimization platform de-
veloped at the applied research center Cenaero. The latter provides very efficient
methods for simulation-based designs and includes, amongst others, a powerful SAO
framework following the guidelines of the one presented in this chapter.

5.2 Design of experiments
The design of experiments consists in sampling points in the search space. The sur-
rogate model accuracy depends on the choice of these points. The more uniformly
distributed they are, the more accurate the surrogate model will be. There exist two
classes of sampling techniques: a priori techniques that sample points in the search
space regardless the function knowledge and a posteriori ones (Jin et al. (2002))
that use the latter to better capture the function landscape. The aim of this section
is to introduce the following a priori techniques: Latinized Hypercube Sampling
(LHS), Centroidal Voronoi Tessellation sampling (CVT), and Latinized CVT sam-
pling (LCVT) (Saka et al. (2007)).

The LHS sampling can be viewed as a n-dimensional extension of Latin squared
sampling. In a two-dimensional space, the latter consists first in creating a grid of n2

s
equally-sized squares, ns being the desired number of sampling points. Then, the ns
points are distributed on the grid in such a way that each line and each column contains
exactly one point. The LHS sampling is the n-dimensional extension, considering a
n-dimensional hypercube instead of a two-dimensional square. The use of this tech-
nique allows one to obtain sampling points whose projections on coordinate axes are
uniformly distributed, see Figure 5.2a.

The CVT sampling is based on a centroidal Voronoi tessellation that is a particular
case of Voronoi tessellation. The latter is a partition of space into regions such that
all the points in a region are closer to the referring object of the region itself than to
any other objects in space. For a centroidal Voronoi tessellation, each referring object
is a centroid, i.e., the mean position of all the points in all of the coordinate direc-
tions. The CVT sampling consists in partitioning the search space into ns subspaces
according to a centroidal Voronoi tessellation and in choosing the centroids as sam-
pling points. This technique produces a better distribution of sample points over the
n-dimensional hypercube than the LHS, see Figures 5.2a and 5.2b. The latter could
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sometimes create samplings with clustered groups of points, the most extreme exam-
ple (in the two-dimensional case) being a square with all the points on the diagonal.
However, the CVT sampling has also its limits. Indeed, projecting the sample points
on coordinate axes, one can observe that they are grouped in widely spaced clusters,
see point projections in Figure 5.2b.

The LCVT sampling combines the advantages of both LHS and CVT samplings,
i.e., the appropriate distribution of projections on coordinate axes of LHS and the effi-
cient space-filling of CVT. It consists first in creating a CVT sampling. Then the latter
is latinized, i.e., the points of the sampling are moved in a relatively close neighbor-
hood in order to fulfill the LHS property. Such a sampling is illustrated in Figure 5.2c

(a) LHS (b) CVT

(c) LCVT

Figure 5.2 – Sample sets of 20 points, in the 2-dimensional space, obtained with LHS,
CVT and LCVT, respectively. The histograms represent the distributions of point
projections on coordinate axes.
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5.3 Radial basis function models
As presented earlier, the SAO framework relies on surrogate models that approxi-
mate the fitness landscape. Different kinds of surrogates such as Radial Basis Func-
tion (RBF), Kriging or Support Vector Regression models are frequently used in this
context (Forrester et al. (2008)). This section focuses on RBF models. The latter,
introduced in Broomhead and Lowe (1988), are interpolation functions relying on a
weighted sum of simple functions, called radial basis functions. They can also be
interpreted as a simple kind of neural network. Given a database composed of n sam-
pling points x(i) (i = 1, . . . ,n) and the values of the function f to be approximated at
these points y(i) = f (x(i)) (i = 1, . . . ,n), the RBF model of f , denoted by f̂ , is given
by the following equation (Forrester et al. (2008)):

f̂ (x) = ω
T

ψ =
nc

∑
i=1

ωiψ(||x− c(i)||),

where nc is the number of radial basis functions, c(i) denotes the center of the i-th basis
function (i = 1, . . . ,nc), ω is the nc-dimensional vector of weight factors and ψ is a
nc-dimensional vector containing the values of the basis functions. The latter are eval-
uated at the Euclidean distance between the basis center c(i) and the point x at which
one wants to approximate the value of f (x). Very simple radial basis functions (lin-
ear, cubic and thin plate spline) only depend on this distance r. There also exist more
sophisticated basis functions (Gaussian, multiquadric and inverse multiquadric) de-
pending on an additional parameter σ that can be tuned to get a better approximation.
All these radial basis functions are described in Table 5.1.

Whatever the choice of the basis functions, the weight factors are always deter-
mined using the same method. According to the following interpolation condition,

f̂ (x( j)) =
nc

∑
i=1

ωiψ(||x( j)− c(i)||) = y( j), j = 1, . . . ,n

they are computed as a solution of a system of linear equations. In order to get
a unique solution, the latter must be square, i.e., nc = n. This condition is veri-
fied by choosing centers of the basis functions coinciding with the sampling points,
i.e., c(i) = x(i), ∀ i = 1, . . . ,n. Therefore, the system to solve is given by

Ψω = y

where Ψ, called the Gram matrix, is defined by Ψi, j = ψ(||x(i)− x( j)||). Figure 5.3
presents an example in one dimension of a RBF model built on the basis of three sam-
pling points. In this thesis, the RBF models used in the SAO framework are the auto-
adaptive ones implemented in the Minamo software. The latter can autonomously
choose between Gaussian and multiquadric basis functions without the user having
to prescribe it. It can also automatically adjust the width parameter σ of each ba-
sis function. This powerful tuning process is performed on the basis of the efficient
Leave-One-Out procedure proposed by Rippa (1999).
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Radial basis function Expression
Linear ψ(r) = r
Cubic ψ(r) = r3

Thin plate spline ψ(r) = r2 lnr

Gaussian ψ(r,σ) = e−r2/2σ2

Multiquadric ψ(r,σ) =
√

r2 +σ2

Inverse multiquadric ψ(r,σ) = 1/
√

r2 +σ2

Table 5.1 – Different types of radial basis functions.

Figure 5.3 – A RBF model example in one dimension built on the basis of three sam-
pling points. x(1) = 3, x(2) = 5 and x(3) = 5.5. The radial basis functions are Gaussian
functions with fixed width σ = 1. The computed weights are ω1 = 46.7, ω2 = 30.1
and ω3 = −18.6. The contribution of each basis function is drawn with dotted lines
while the solid line represents the RBF model.
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5.4 Illustrations

This section illustrates the efficiency of the SAO framework, especially when a limited
budget in terms of FEs is considered because of the time-consuming nature of the eval-
uation of the studied optimization problem. Two well-known benchmark problems,
Ackley and Rosenbrock, are used to compare the performance of a genetic algorithm
embedded in the SAO framework with the performance of a genetic algorithm alone.
Ackley and Rosenbrock are both minimization problems. Their analytical expressions
are given as follows:

fAckley(x) =−20exp

(
−0.2

√
1
n

n

∑
i=1

x2
i

)
− exp

(
1
n

n

∑
i=1

cos(2πxi)

)
+20+ exp(1),

fRosenbrock(x) =
n−1

∑
i=1

[100(xi+1− x2
i )

2 +(xi−1)2],

where n is the number of decision variables, xi ∈ [−2,2], ∀i = 1, . . . ,n. Ackley is
often chosen as a highly multimodal function. Its representation in the 2-dimensional
case is provided in Figure 5.4a. Its global minimum lies at x?i = 0, ∀i = 1, . . . ,n
and f (x?) = 0. Rosenbrock is a function whose optimum lies in a long, narrow and
parabolic shaped valley in the 2-dimensional case, see Figure 5.4c. Its global min-
imum lies at x?i = 1, ∀i = 1, . . . ,n and f (x?) = 0. In particular, the 5-dimensional
Ackley and Rosenbrock functions are used for the results presented in this section.

The algorithms used for the comparison are the genetic algorithm and the SAO
algorithm of the Minamo software. The genetic algorithm evolves a population of 50
individuals for 40 generations(1) and therefore requires 2 000 FEs. The SAO algorithm
follows the general scheme presented in Section 5.1. In particular, the initial database
contains 20 sampling points obtained with the LCVT procedure; the surrogate model
is the auto-adaptive RBF model; the search process is an optimization relying on the
genetic algorithm (with a population of 50 individuals for 40 generations, such as for
the genetic algorithm only); the infill criteria is a mono-point criteria based on the
merit function described in Equation (5.1.1). The design loop is repeated 230 times.
The total number of exact FEs is therefore 250.

The comparison between both algorithms is presented with convergence graphs in
Figures 5.4b and 5.4d. They show that the genetic algorithm embedded in the SAO
framework clearly outperforms the genetic algorithm alone. Indeed, the former con-
sumes 8 times less FEs and better approaches the optimal value f (x?) = 0. Besides, in
the context of time-consuming functions, the additional cost to build and optimize the
surrogate models in the SAO framework is negligible compared with the cost required
to evaluate the true function. Based on this assumption, one can therefore compare
the two algorithms using the number of FEs instead of the CPU time.

Additional contour plots illustrating the behavior of the SAO algorithm on the
5-dimensional Rosenbrock function are provided in Figure 5.5. For the three plots,

(1)As a reminder, the description of the genetic algorithm of Minamo was presented in Section 1.6.
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(a) Ackley surface and coutour plot (b) Ackley convergence graph

(c) Rosenbrock surface and coutour plot (d) Rosenbrock convergence graph

Figure 5.4 – Representations of 2-d Ackley and 2-d Rosenbrock functions and con-
vergence graphs for the 5-d cases comparing the GA within SAO (blue stars) and the
GA only (orange circles).

the decision variables x3, x4 and x5 are fixed to 1 (i.e., to their optimal values) to
allow a visualization in the 2-dimensional plane. The first plot (Figure 5.5a) repre-
sents the landscape of the 5-dimensional Rosenbrock function. On that slice of the
function landscape, three local optima can be identified, the two on the top lying in
a valley such as in the case of the 2-dimensional function. Among these two optima,
the global one lies at (1,1). The second plot (Figure 5.5b) represents the landscape
of the auto-adaptive RBF model that approximates the function at the beginning of
the SAO procedure, i.e., the auto-adaptive RBF model built with the 20 points of the
initial database (these points are drawn with black stars on the graph). At that stage, it
provides a very rough approximation of the true function. Then, the knowledge of the
function landscape becomes even more accurate iteration after iteration, especially in
the area where are located the predicted optima of the successive surrogate models.
This is illustrated on the third contour plot (Figure 5.5c) that represents the landscape
of the auto-adaptive RBF model at the end of the SAO procedure. One can observe
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(a) Contour plot of the true function. Local
optima are drawn with yellow stars.

(b) Contour plot of the auto-adaptive RBF
at the start of the SAO algorithm

(c) Contour plot of the auto-adaptive RBF
at the end of the SAO algorithm

Figure 5.5 – Contour plots illustrating the behavior of the SAO algorithm on the 5-
dimensional Rosenbrock function, the decision variables x3, x4 and x5 are fixed to 1
(i.e., to their optimal values) to allow representations in the two-dimensional plane.
Points of the initial database are drawn with black stars, selected points at each itera-
tion are drawn with white stars.

that the selected points at each iteration drawn with white stars) have progressively
led the algorithm to the global optimum at (1,1). Moreover, the approximation of the
function around this optimum is very accurate. On the contrary, it can also be seen that
other areas of the search space that benefited from fewer attention and were thus less
explored, because they have not been predicted as promising by the successive surro-
gate models, are not necessarily perfectly modeled at the end of the SAO algorithm.
In this way, we can conclude that the latter provides an approximation of the function
landscape which is refined as the optimization progresses in order to converge to the
global optimum.
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Chapter 6
Surrogate-assisted cooperative
co-evolutionary algorithms

In recent years, many research efforts have been focused to solve large-scale optimiza-
tion problems by means of evolutionary algorithms (Jian et al. (2020)). Cooperative
co-evolutionary algorithms, introduced in Chapter 2, have been developed to solve
such problems that depend on thousands of variables. This approach has been shown
to be very effective but it still requires a relatively large number of FEs in order to get
sufficiently precise results. Therefore, it is inappropriate to deal with computationally
expensive optimization problems. The surrogate-assisted optimization framework, in-
troduced in Chapter 5, efficiently handles this issue by exploiting surrogate models
that approximate the fitness landscape. Although such a framework is well suited for
small dimensional problems, it suffers from the curse of dimensionality when dealing
with LSGO problems. In this case, not only the search process on the surrogate model
becomes costly but the surrogate model building itself is also difficult (Stork et al.
(2020)). Taking into account strengths and weaknesses of both SAO and CC frame-
works, to combine those two approaches should be a promising way to optimize High
dimensional, Expensive and Black-box problems (HEB, Shan and Wang (2010)).

Such a Surrogate-Assisted Cooperative Co-evolutionary (SACC) methodology has
been first introduced in Ong et al. (2002). It shows promising results but it is limited
to 20-dimensional nonseparable functions. Almost a decade later, Goh et al. (2011)
proposed another SACC approach to solve expensive constrained optimization prob-
lems but this study is still restricted to small dimensional cases (up to 13 decision
variables). In recent years, the research activity around this topic has increased. First
approaches that really tackle high dimensional problems (up to 1000 decision vari-
ables) were introduced in De Falco et al. (2017) (work further detailed in De Falco
et al. (2019)) and Blanchard et al. (2019a). They both rely on several random group-
ings of the variables. They are presented and compared in Section 6.1. A more recent
study which relies on random feature selection is also proposed in Fu et al. (2020).
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Although it is presented in a significantly different way, the proposed strategy is,
over the long run, more or less equivalent to decompositions based on several ran-
dom groupings of the variables. Moreover, once compared with the algorithm pre-
sented in De Falco et al. (2017), it only produces minor improvements with respect
to the reference algorithm. Other approaches are based on the interaction structure
of the variables in the objective function. Ren et al. (2019b) perform an ideal de-
composition (i.e., the decision variables are manually grouped according to the prior
knowledge of the function) while Blanchard et al. (2019b) uncover the interaction
structure with the recursive differential grouping introduced in Section 2.3.2. This
SACC algorithm is presented in Section 6.2. Finally, there also exist other algorithms
in the literature that claim to solve HEB problems in a surrogate-assisted evolutionary
framework. However, they usually do not divide the original problems into subprob-
lems and are therefore limited to medium scale problems up to one hundred variables
(Sun et al. (2017a); Tian et al. (2019); Cai et al. (2019, 2020)).

6.1 Random decomposition-based algorithm (SACC-EAM)

The algorithm presented in this section combines the SAO and CC frameworks and
is embedded in the Minamo software. The acronym SACC-EAM is used to name
this Surrogate-Assisted Cooperative Co-Evolutionary Algorithm of Minamo. It relies
on the random decomposition strategy. The motivation behind this choice is twofold.
On the one hand, when first SACC approaches to solve HEB problems emerged, the
most successful decomposition strategy was the one based on differential grouping
(DG2). The latter requires a relatively high number of FEs

(
n(n+1)

2 +1
)

to uncover

the interaction structure and was therefore not suitable to tackle HEB problems(1).
In this context, the random strategy that does not uncover interaction structure but
performs several random decompositions in order to increase the chance to group
interacting variables together was preferred. On the other hand, in the case of fully
nonseparable problems, the random strategy is still nowadays the best way to divide
the large problems into subproblems. The proposed SACC-EAM structure is given
as follows:

1. Start a new cycle by randomly splitting the n-dimensional decision vector into
k disjoint subcomponents of size s. Generate a design of experiments for each
subcomponent.

2. Optimize each subcomponent with a SAO algorithm for a fixed number of itera-
tions in a round-robin strategy. At each iteration, combine appropriate proposed
points, called candidate individuals, from each subcomponent to build a global
candidate and evaluate it.

3. If the maximum number of cycles is not reached, go to Step 1.

(1)The much less expensive recursive approaches introduced in Section 2.3.2 (RDG and RDG2) only
emerged some time later. The RDG2 strategy will be used in the interaction detection decomposition-based
algorithm (SACC-EAM-II) presented in Section 6.2.
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This framework is further detailed in the pseudo-code provided in Algorithm 11.
The fittest global candidate encountered during the whole optimization process is the
global individual (globa_indi in the pseudo-code). It is used to complete partial solu-
tions to be evaluated with the expensive function in each subproblem (lines 13 and 29).
It is cyclically updated at each cycle (line 47) and remains unchanged during the exe-
cution of a given cycle. Unlike the standard CC framework introduced in Section 2.1,
the global individual, used for completion, must not be modified during the optimiza-
tion procedure performed at each cycle. Such an update would definitely pull down
the consistency of the databases, and therefore of the surrogate models, specific to
each subcomponent. Furthermore, since a new random decomposition is computed at
each cycle (line 8), new designs of experiments need to be generated for consistency
sake (line 12). Although this may results in an extra cost in terms of evaluations of
the expensive function, it remains reasonable. Indeed, the small size of the subcom-
ponents allows one to use designs of experiments containing an acceptable number of
sampling points.

The SAO procedure performed at each cycle consists in optimizing each subcom-
ponents with a SAO algorithm such as the one presented in Figure 5.1. In particular,
this procedure starts with the loop at lines 11 to 16. It creates new designs of experi-
ments, evaluates them with the expensive function and identifies the best individuals
in each database as the candidate individuals. Note that at this step, the global indi-
vidual is included in each database. Therefore, it does not need to be re-evaluated.
The recorded FEs at line 14 concern the other points from the databases evaluated
while being completed with the variables of the global individual. Thereafter, the
global candidate is built by concatenating the candidate individuals from each sub-
component. It is also evaluated with the exact function. Then, the loop from lines 24
to 46 constitutes the iterative design process. During this process, surrogate models
are built and optimized with the genetic algorithm. They are updated by adding the
proposed points, i.e., the points that verify the infill criteria, in the database after their
evaluations with the exact function. Furthermore, these points become new candidate
individuals if they have better function values than the previous ones. Finally, at the
end of each iteration, a new global candidate is built and evaluated. The best one
encountered during the whole execution of the algorithm provides the solution of the
optimization problem.

Concerning the evaluations of the expensive function computed in the iterative de-
sign process (lines 24 to 46), they are performed at two different levels. Firstly, at
each iteration, the points identified by the mono-point infill criteria of each SAO are
evaluated through their completions with the decision variables of the global individ-
ual (line 29). Secondly, if a new global candidate is produced, i.e., if an improvement
is observed in at least one subcomponent, it is also evaluated. Therefore, during the
iterative design process, s or s+1 FEs are computed at each iteration: s for infill points
of each subcomponent, plus an additional one if a new global candidate is evaluated.

Efficient management of the FEs is very important in the SACC-EAM since it is
devoted to tackle HEB problems. It can be achieved by exploiting parallel computing.
The FEs required to generate the designs of experiments at step (1) can be easily
computed in parallel since they are independent. At this stage, one does not profit



82 CHAPTER 6. SURROGATE-ASSISTED CC ALGORITHMS

Algorithm 11: SACC-EAM algorithm

1 FEs← 0 ;
2 global_indi← new_random_individual() ;
3 new_global_indi← global_indi ;
4 evaluate(global_indi, f ) ;
5 FEs← FEs+1 ;
6 f _min = f (global_indi) ;
7 for cyc = 1 to max_cycles do
8 all_groups← random_split(s) ;
9 data_bases = [ ] ;

10 candidate_indis = [ ] ;
11 for i = 1 to size(all_groups) do
12 data_bases[i]← new_doe(all_groups[i]) ;
13 evaluate(data_bases[i], f ,global_indi) ;
14 FEs← FEs+ size(data_bases[i])−1 ;
15 candidate_indis[i]← f ind_best(data_bases[i]) ;
16 end
17 global_candidate← concatenate(candidate_indis) ;
18 evaluate(global_candidate, f ) ;
19 FEs = FEs+1 ;
20 if f (global_candidate)< f _min then
21 f _min = f (global_candidate) ;
22 new_global_indi← global_candidate ;
23 end
24 for ite = 1 to max_iterations do
25 update_ f lag← false ;
26 for i = 1 to size(all_groups) do
27 f̃ ← build_surrogate(data_bases[i]) ;
28 proposed_point← optimize_with_GA( f̃ ) ;
29 evaluate(proposed_point, f ,global_indi) ;
30 FEs← FEs+1 ;
31 add(proposed_point,data_bases[i]) ;
32 if f (proposed_point)< f (candidate_indis[i]) then
33 candidate_indis[i]← proposed_point ;
34 update_ f lag← true ;
35 end
36 end
37 if update_ f lag then
38 global_candidate← concatenate(candidate_indis) ;
39 evaluate(global_candidate, f ) ;
40 FEs = FEs+1 ;
41 end
42 if f (global_candidate)< f _min then
43 f _min = f (global_candidate) ;
44 new_global_indi← global_candidate ;
45 end
46 end
47 global_indi← new_global_indi;
48 end
49 return f _min
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from the CC approach since the FEs of the designs of experiments are always in-
dependent, even for a standard SAO framework. However, the benefit from the CC
approach can be fully exploited for the FEs computed during the iterative design pro-
cess at step (2). Indeed, at each iteration, the infill points from each subcomponent
can be simultaneously evaluated with the expensive function. Furthermore, the global
candidates can also be evaluated at the same time as some infill points. Indeed, for
a fixed iteration ite, the function value of the global candidate does not need to be
known to start the following design iteration for each subcomponent. Therefore, the
global candidate built at the end of iteration ite can be evaluated simultaneously with
the k infill points from iteration ite+ 1. In this context, the parallel computation can
be extended until k+1 threads, k being the number of subcomponents. It represents a
considerable gain in terms of execution time.

6.1.1 Comparison with SA-EAM
This section compares the performance of the proposed SACC-EAM based on the
random decomposition strategy and the standard Surrogate-Assisted Evolutionary Al-
gorithm of Minamo, named SA-EAM, presented in Chapter 5. The benchmark set
used for the comparison, introduced for the CEC’2008 special session on LSGO (Tang
et al. (2007)), contains seven scalable problems with a wide variety of properties. The
scalability of the functions also allows one to assess the performance of the SACC-
EAM in comparison with the SA-EAM on 100-dimensional problems. For this study,
the global optimum x? of functions f1 to f6 is shifted with the data vector provided in
Tang et al. (2007) while the optimum value f (x?) is not shifted. The latter is equal to
0 for functions f1 to f6 and is unknown for f7.

Both algorithms are executed 50 times, as done in Blanchard et al. (2019a). In or-
der to underline the importance of the parallel computations of FEs (as a reminder, we
assume that these FEs are computationally expensive), the results are recorded assum-
ing that they are computed using 1, 5 or 10 parallel threads. Instead of a comparison
based on the number of FEs (as done in the previous chapters), a comparison based on
the number of parallel function evaluations (pFEs) is proposed. The counting of such
pFEs is performed according to the number of threads that can be used to compute
the FEs. For example, if 5 independent points have to be evaluated with the expensive
function and if 5 threads are available, they can be computed simultaneously. In this
case, only one pFE is recorded. For the standard SA-EAM, only the FEs computed
for the design of experiments can be parallelized. On the contrary, for the proposed
SACC-EAM, most of FEs can be computed in a parallel way as far as the number
of threads is less or equal to k+1, where k is the number of subcomponents, as men-
tioned in the previous section. In particular, the budget in terms of pFEs is fixed to 500
for both algorithms. It meets the pressure imposed by the expense of the FEs consid-
ered in the studied context. Assuming that FEs are very costly and therefore consume
most of the computational resources, such a comparison is equivalent to compare the
algorithms with respect to the elapsed real time (also called wall-clock time).

For the SA-EAM, the design of experiments contains 200 points and the surrogate
model is refined during at most 480 iterations depending on the number of threads
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considered. The SA-EAM only runs 300 iterations if a single thread is considered (200
pFEs for the design of experiments, plus one per iteration = 500); it stops after 460 if
5 threads are used (200/5 = 40 pFEs for the design of experiments, plus 460 for the
iterative process) and finally, it can run 480 iterations when 10 threads are available.
At each iteration, the genetic algorithm used to optimize the surrogate model evolves
a population of 1 000 individuals during 500 generations. For the SACC-EAM, the
initial 100-dimensional decision vector is split into 25 subcomponents of size 4. The
number of computed cycles depends on the number of threads considered. In each
subcomponent, the SAO starts with 5 sampling points and performs 35 iterations. The
internal genetic algorithm deploys a population of 40 individuals for 100 generations.
In order to stay in the allocated budget in terms of pFEs, 5 cycles are performed when
the algorithms runs on 10 threads, only two and a halve cycles (two complete cycles
of 35 iterations plus a third cycle interrupted when all the allocated FEs are consumed)
are computed when it runs on 5 threads and finally, a halve cycle is performed when a
single thread is used (the budget is so much reduced that the algorithm is interrupted
during the execution of the first cycle). All these settings are summarized in Table 6.1.

The median objective values of the final solutions for both algorithms, depending
on the number of threads used for the computations, are provided in Table 6.2. Conver-
gence graphs that illustrate the convergence behavior of the median solution along the
optimization process are presented in Figure 6.1. Note that for functions f1 to f6, as
in the case of the convergence graphs presented in previous chapters, the y-axis repre-
sents, in log-scale, the gap between the objective value of the current solution and the
objective value of the optimal solution, i.e., f (x)− f (x?). For function f7, since f (x?)
is unknown and f (x) takes negative values, the y-axis simply represents the evolution
of f (x). Moreover, unlike in previous chapters, the interval between best and worst
solutions over the 50 runs is not depicted for ease of reading. The results show that
exploiting the parallelization potential of the SACC-EAM allows it to outperform the
standard SA-EAM. Indeed, when 10 threads are considered, median final solutions
are better for the SACC-EAM for all the functions except f2 which will be further
discussed below. On the contrary, on a single thread, the SA-EAM performs better.
Indeed, the 300 iterations are already sufficient to allow the SA-EAM to get significant
improvements while the half cycle performed by the SACC-EAM can only provide
very limited improvements in a such short period. Between these two extremes, the
results on 5 threads represent a tipping point. In this case, the SACC-EAM provides
better solutions for functions f3, f4, f6 and f7 but does not for remaining ones.

Furthermore, for the SACC-EAM, the graphs illustrate an oscillating behavior with
varying convergence rate linked to the start of new cycles. For most functions, some
"slow-down" occurs at the end and at the beginning of each cycle. Indeed, for a fixed
cycle (and therefore for a fixed decomposition), after a few iterations needed to get suf-
ficiently accurate surrogate models, the function value can be easily improved during
the following stages of the SAO procedure. Then, as time goes by, it requires harder ef-
forts to get further improvements. Finally, the SACC-EAM provides very poor results
on f2. For this particular function, modeling a surrogate in each subcomponent is haz-
ardous. Since the analytical expression of f2 is given by f (x) = maxi{|xi|,1≤ i≤ n},
when the design of experiments is evaluated for a fixed subcomponent, if the maxi-
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Number of ... SA-EAM SACC-EAM
... sampling points 200 5
... design iterations 300/460/480 35
... cycles − 0.5/2.5/5
... subcomponents − 25
... generations in the genetic algorithm 500 100
... individuals in the populuation 1 000 40

Table 6.1 – Summary of SA-EAM and SACC-EAM settings depending on the number
of threads, 1, 5 or 10, that can be used to compute the expensive function evaluations.

1 thread 5 threads 10 threads
SA-EAM SACC-EAM SA-EAM SACC-EAM SA-EAM SACC-EAM

f1 6.98e-02 9.79e+02 1.58e-02 4.39e+01 1.47e-02 1.84e-03
f2 9.79e+01 1.69e+02 9.72e+01 1.52e+02 9.71e+01 1.45e+02
f3 7.65e+07 1.30e+09 1.52e+07 3.43e+06 1.40e+07 1.25e+04
f4 3.59e+02 5.62e+02 2.91e+02 2.80e+02 2.69e+02 2.17e+02
f5 9.53e-01 1.14e+01 8.38e-01 1.12e+00 8.38e-01 2.87e-01
f6 1.96e+01 2.04e+01 1.92e+01 1.63e+01 1.92e+01 6.81e+00
f7 -9.46e+02 -8.33e+02 -9.91e+02 -1.11e+03 -9.94e+02 -1.28e+03

Table 6.2 – Median objective values on 50 runs for benchmark problems from the
CEC’2008 special session on LSGO. Results are presented depending on the number
of threads used for the computations. For each number of threads, the best median
values among SA-EAM and SACC-EAM are marked in bold face.



86 CHAPTER 6. SURROGATE-ASSISTED CC ALGORITHMS

(a) f1 (b) f2

(c) f3 (d) f4

(e) f5 (f) f6

(g) f7

Figure 6.1 – Convergence graphs of the median solution over 50 runs for 100-dimensional
problems from the CEC’2008 special session on LSGO. For f1 to f6, the evolution of
f (x)− f (x?) (in log-scale) is depicted while only f (x) is depicted for f7. Blue dashed lines
stand for the SA-EAM while orange lines stand for the SACC-EAM. Results are presented ac-
cording to the number of threads: 1 thread (stars), 5 threads (circles) and 10 threads (triangles).
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mum |xi| comes from another subcomponent, the function values may be the samefor
many points in the database. It leads to quite poor surrogate models unable to pre-
dict promising points. In particular, little improvements observed on the convergence
graphs are not due to the optimization itself. They are achieved through the random
points generated in the databases at the start of new cycles.

6.1.2 Comparison with SACC-JADE
This section compares the SACC-EAM with another algorithm from the literature
called SACC-JADE (De Falco et al. (2017, 2019)). To the best of our knowledge, it is
the only SACC approach, except the SACC-EAM presented in this thesis and in Blan-
chard et al. (2019a), that effectively tackles HEB problems within a random decompo-
sition framework. In this algorithm, the optimizer chosen to optimize subcomponents
is JADE, an adaptive version of differential evolution. As in SACC-EAM, the surro-
gate models built in each subcomponent are RBF models. However, they are used in
a slightly different context. In each subcomponent, the surrogate is used to evaluate
most of the offspring produced by JADE. Indeed, once the random decomposition is
performed, each subcomponent is directly optimized by JADE in a CC context. Dur-
ing the first iterations, the evaluation of individuals is computed with the expensive
exact function. Each of them are recorded in a database and once it contains enough
information, a surrogate model is built. The latter is used instead of the expensive
function to evaluate the offspring of the following iterations. During each of them,
some exact FEs are still computed in order to ensure that the exact function value of
the best individual in the offspring is known. The obtained information is added to the
database and allows one to build more accurate models iteration by iteration.

The two SACC algorithms are compared on the 100-dimensional functions of the
CEC’2008 special session on LSGO presented in the previous section and their 500
and 1 000-dimensional extensions. This benchmark set is the one used for the re-
sults presented in De Falco et al. (2017). Moreover, although the budget in terms of
FEs is fixed to 500×n in De Falco et al. (2017), the budget in this study is restricted
to 100× n FEs in order to be consistent with the HEB considered problems. This
reduced budget may still seem excessive when dealing with very expensive simula-
tions. For that reason, particular attention will be paid to the convergence rate in the
results analysis, especially at the early stages of the optimization. Concerning the ex-
perimental settings, 50 runs are performed for both algorithms, as done in Blanchard
et al. (2019a). Parameters for the SACC-EAM are quite similar that those chosen for
the comparison with the SA-EAM while parameters for the SACC-JADE are fixed
according to the original publication (De Falco et al. (2017)). They are summarized
in Table 6.3.

The median objective values of final solutions for both algorithms, depending on
the dimension of benchmark functions, are provided in Table 6.4. Convergence graphs
of the median objective values of both algorithms on 100-dimensional problems are
presented in Figure 6.2. The results for 500 and 1 000-dimensional instances follow
the same trend and are proposed in Figures 6.3 and 6.4. For functions f1, f3, f5 and f7,
the SACC-EAM provides a significantly better convergence rate at the start of the
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Number of ... SACC-EAM SACC-JADE
... sampling points 5 -
... design iterations 35,36,36 -
... cycles 5 until FEs available
... subcomponents 25,125,250 25,125,250
... generations in the GA / JADE 100 10
... individuals in the population 40 25

Table 6.3 – Summary of SACC-EAM and SACC-JADE settings
for 100, 500 and 1 000-dimensional problems, respectively.

100-d 500-d 1 000-d
SACC-EAM SACC-JADE SACC-EAM SACC-JADE SACC-EAM SACC-JADE

f1 9.08e-06 2.29e+01 3.96e-05 6.43e+01 1.45e-04 7.73e+01
f2 1.25e+02 1.35e+02 1.65e+02 1.48e+02 1.75e+02 1.47e+02
f3 1.44e+03 1.97e+05 5.71e+03 1.33e+06 9.87e+03 3.86e+06
f4 1.66e+02 1.77e+02 7.89e+02 1.07e+03 1.58e+03 1.98e+03
f5 1.16e-01 1.12e+00 2.54e-02 1.36e+00 1.65e-01 1.92e+00
f6 2.18e+00 4.80e-01 2.09e+00 8.25e-01 2.20e+00 1.09e+00
f7 -1.35e+03 -9.38e+02 -6.44e+03 -4.53e+03 -1.27e+04 -8.75e+03

Table 6.4 – Median objective values on 50 runs for benchmark problems from the
CEC’2008 special session on LSGO. Results are presented depending on the dimen-
sion of benchmark functions. For each dimension, the best median values among
SACC-EAM and SACC-JADE are marked in bold face.
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(a) f1 (b) f2

(c) f3 (d) f4

(e) f5 (f) f6

(g) f7

Figure 6.2 – Convergence graphs of the median solution over 50 runs for 100-dimensional
problems from the CEC’2008 special session on LSGO. For f1 to f6, the evolution of
f (x)− f (x?) (in log-scale) is depicted while only f (x) is depicted for f7. The green dashed
line stands for the SACC-JADE while the orange line stands for the SACC-EAM.
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(a) f1 (b) f2

(c) f3 (d) f4

(e) f5 (f) f6

(g) f7

Figure 6.3 – Convergence graphs of the median solution over 50 runs for 500-dimensional
problems from the CEC’2008 special session on LSGO. For f1 to f6, the evolution of
f (x)− f (x?) (in log-scale) is depicted while only f (x) is depicted for f7. The green dashed
line stands for the SACC-JADE while the orange line stands for the SACC-EAM.
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(a) f1 (b) f2

(c) f3 (d) f4

(e) f5 (f) f6

(g) f7

Figure 6.4 – Convergence graphs of the median solution over 50 runs for 1 000-dimensional
problems from the CEC’2008 special session on LSGO. For f1 to f6, the evolution of
f (x)− f (x?) (in log-scale) is depicted while only f (x) is depicted for f7. The green dashed
line stands for the SACC-JADE while the orange line stands for the SACC-EAM.
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optimization. Although slowing down at a later stage, it still provides better results
than the SACC-JADE. For some other functions ( f4, f6), the results are quite close.
Finally, function f2 being hard to model in a CC context, both algorithms show very
poor capacities to improve the objective values.

6.2 Interaction detection decomposition-based algorithm
(SACC-EAM-II)

The algorithm presented in this section takes benefit from the computationally ef-
fective identification of separable and nonseparable components provided by RDG2
(see Section 2.3.2). That is, in some way, an improved version of the SACC-EAM
obtained by replacing the iterative random decomposition process by a single decom-
position taking into account the interaction structure(2). The acronym SACC-EAM-II
is therefore used to name this updated SACC-EAM. This improvement allows one
to perform only one cycle since the formed subcomponents are independent. It also
allows one to save computational resources since new databases do not need to be
created anymore at each new cycle. The proposed SACC-EAM-II is detailed in the
pseudo-code provided in Algorithm 12 (Blanchard et al. (2019b)). Its main structure
is given as follows:

1. Identify the separable and nonseparable groups of decision variables with RDG2.
Arbitrarily split the group of separable variables into subgroups containing s vari-
ables; Generate a design of experiments for each subcomponent, i.e., for each
nonseparable group and each separable subgroup.

2. Optimize each subcomponent with a SAO algorithm for a fixed number of itera-
tions in a round-robin strategy. At each iteration, combine candidate individuals
from each subcomponent to build a global candidate and evaluate it.

As mentioned before, the major improvement of the SACC-EAM-II in comparison
with the SACC-EAM is the identification of separable and nonseparable components
with RDG2. The lower number of FEs consumed with the recursive approach (in
comparison with the original DG approach) allows one to use this differential grouping
strategy even with a strictly limited budget in terms of FEs (which was not possible
when the SACC-EAM was developed since the most advanced strategy at this time
was DG2). Furthermore, despite the reduced cost obtained by RDG2, it still requires
a significant budget of FEs. However, it will be shown, in the following results, that
the SAO in each subcomponent performs so much better when the interactions are
identified (in comparison with the random grouping strategy) that it is worth paying
attention to detect them, even if the remaining budget for the optimization itself is
therefore reduced.

(2)Note that the newer RDG3 strategy presented in Chapter 4, although interesting in CC-EAs, is not
suitable, as things currently stand, in a SACC context. Indeed, in this context, if a single decomposition is
performed, the formed subcomponents must be independent since the SACC framework does not offer as
many exchanges of information between subcomponents as the standard CC-EA does. However, the aim of
the RDG3 is precisely to allow one to form subcomponents which are not fully independent.



6.2. INTERACTION DETECTION DECOMPOSITION-BASED ALGORITHM (SACC-EAM-II) 93

Algorithm 12: SACC-EAM-II algorithm

1 FEs← 0 ;
2 sep_group,nonsep_groups← RDG2( f ,FEs) ;
3 sep_groups← split(sep_group,s) ;
4 all_groups← sep_groups∪nonsep_groups ;
5 global_indi← new_random_individual() ;
6 evaluate(global_indi, f ) ;
7 FEs← FEs+1 ;
8 f _min = f (global_indi) ;
9 data_bases = [ ] ;

10 candidate_indis = [ ] ;
11 for i = 1 to size(all_groups) do
12 data_bases[i]← new_doe(all_groups[i]) ;
13 evaluate(data_bases[i], f ,global_indi) ;
14 FEs← FEs+ size(data_bases[i])−1 ;
15 candidate_indis[i]← f ind_best(data_bases[i]) ;
16 end
17 global_candidate← concatenate(candidate_indis) ;
18 evaluate(global_candidate, f ) ;
19 FEs = FEs+1 ;
20 if f (global_candidate)< f _min then
21 f _min = f (global_candidate) ;
22 end
23 for ite = 1 to max_iterations do
24 update_ f lag← false ;
25 for i = 1 to size(all_groups) do
26 f̃ ← build_surrogate(data_bases[i]) ;
27 proposed_point← optimize_with_GA( f̃ ) ;
28 evaluate(proposed_point, f ,global_indi) ;
29 FEs← FEs+1 ;
30 add(proposed_point,data_bases[i]) ;
31 if f (proposed_point)< f (candidate_indis[i]) then
32 candidate_indis[i]← proposed_point ;
33 update_ f lag← true ;
34 end
35 end
36 if update_ f lag then
37 global_candidate← concatenate(candidate_indis) ;
38 evaluate(global_candidate, f ) ;
39 FEs = FEs+1 ;
40 end
41 if f (global_candidate)< f _min then
42 f _min = f (global_candidate) ;
43 end
44 end
45 return f _min
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The performance of the newly proposed SACC-EAM-II is compared with the
SACC-EAM on benchmark functions introduced for the CEC’2010 special session
and competition on LSGO (Tang et al. (2009)). This benchmark set is preferred to
the CEC’2008 one used in the previous section because it provides 1 000-dimensional
functions with different characteristics in terms of separability (the CEC’2008 set only
contains fully separable or fully nonseparable functions). Indeed, most of them are
additively separable functions composed of several nonseparable independent compo-
nents (see Definition 3 page 24). These separable properties as well as the name of
basic functions used to build the 1 000 benchmark problems are provided in Table 6.5.

For all these functions, except for F3, F6 and F11, the decomposition obtained
with RDG2 perfectly matches with the structure of components described in the table.
For F3, F6 and F11, RDG2 fails to identify the separable component since they are
based on the Ackley function. The latter is separable but is not additively separable,
which is the fundamental assumption to apply differential grouping strategies (see
Theorem 2.3.1). For these functions, the separable component is thus identified as a
nonseparable one and is therefore considered as whole in the SAO framework of the
SACC-EAM-II. That will have a detrimental impact on the algorithm efficiency.

The SACC-EAM and SACC-EAM-II are compared with the same budget in terms
of FEs. The parameter s, corresponding to the subcomponents size of SACC-EAM
and to the separable subcomponents size of SACC-EAM-II is fixed to 50. The non-
separable subcomponents of SACC-EAM-II are kept as a whole. Therefore, their
sizes depend on the identification performed by RDG2. The number of points in the
designs of experiments in each subcomponent is set to the number of variables in that
subcomponent +1. The number of iterations ite in the SAO loop is set to 33 for the
SACC-EAM and to 500 for the SACC-EAM-II. Furthermore, the number of FEs con-
sumed by RDG2, noted FEdet differs from one problem to another. The number of
cycles cyc in the SACC-EAM is handled to approximately compute the same total
number of FEs, noted FEtot for both algorithms. This number is given by:

FEtot = 1+ cyc× [n+1+ ite× (k+1)] for SACC-EAM,

FEtot = FEdet +n+2+ ite× (k+1) for SACC-EAM-II,

where k is the total number of subcomponents and n is the number of decision vari-
ables(3). For functions for which the SACC-EAM-II creates only one subcomponent
(i.e., for F3, F19 and F20), the term n+2+ ite× (k+1) must be replaced by n+1+ ite
in the presented equation. Indeed, the global candidate never needs to be evaluated
since it coincides with the only candidate individual. All these parameters affecting
the number of FEs are summarized in Table 6.6. Finally, for the internal optimization
with the genetic algorithm, the population is evolved during 100 generations. Its size
is fixed to 10 times the number of variables of the considered subcomponent.

Both algorithms have been executed 50 times, as done in Blanchard et al.
(2019b). Statistical objective values across all functions are provided in Table 6.7

(3)In these formulae, we assume that, for both algorithms, a new global candidate is built and evaluated
at each iteration. In practice, for problems with many subcomponents, it is almost always the case.
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separable component nonseparable components

#variables basic function #groups basic function(#variables)
F1 1 000 Elliptic 0(0) −
F2 1 000 Rastrigin 0(0) −
F3 1 000 Ackley 0(0) −
F4 950 Elliptic 1(50) Rotated Elliptic
F5 950 Rastrigin 1(50) Rotated Rastrigin
F6 950 Ackley 1(50) Rotated Ackley
F7 950 Sphere 1(50) Schwefel 1.2
F8 950 Sphere 1(50) Rosenbrock
F9 500 Elliptic 10(50) Rotated Elliptic
F10 500 Rastrigin 10(50) Rotated Rastrigin
F11 500 Ackley 10(50) Rotated Ackley
F12 500 Sphere 10(50) Schwefel 1.2
F13 500 Sphere 10(50) Rosenbrock
F14 0 − 20(50) Rotated Elliptic
F15 0 − 20(50) Rotated Rastrigin
F16 0 − 20(50) Rotated Ackley
F17 0 − 20(50) Schwefel 1.2
F18 0 − 20(50) Rosenbrock
F19 0 − 1(1000) Schwefel 1.2
F20 0 − 1(1000) Rosenbrock

Table 6.5 – Description of the CEC’2010 benchmark set. For each function the sepa-
rable and nonseparable components are identified. Their size and the basic functions
from which they are designed are presented.

SACC-EAM SACC-EAM-II
s = 50 ite = 33 s = 50 ite = 500
cyc FEtot FEdet FEtot

F1 9 15 247 2 998 14 500
F2 9 15 247 2 998 14 500
F3 4 6 777 5 992 7 493
F4 9 15 247 4 198 15 700
F5 9 15 247 4 144 15 646
F6 7 11 859 8 905 11 407
F7 9 15 247 4 222 15 724
F8 10 16 941 5 599 17 101
F9 15 25 411 14 026 25 528
F10 15 25 411 14 008 25 510

SACC-EAM SACC-EAM-II
s = 50 ite = 33 s = 50 ite = 500
cyc FEtot FEdet FEtot

F11 12 20 329 13 684 20 686
F12 15 25 411 14 308 25 810
F13 24 40 657 29 233 40 735
F14 19 32 187 20 554 32 056
F15 19 32 187 20 512 32 014
F16 19 32 187 20 908 32 410
F17 19 32 187 20 758 32 260
F18 36 60 985 49 852 61 354
F19 31 52 515 50 992 52 493
F20 31 52 515 50 866 52 367

Table 6.6 – Parameters settings and corresponding number of FEs for SACC-EAM
and SACC-EAM-II. s is the subcomponents size in SACC-EAM and the separable
subcomponents size in SACC-EAM-II, ite the number of iterations in the SAO loop,
cyc the number of cycles, FEdet the number of FEs consumed for the interaction de-
tection by RDG2 and FEtot the total number of FEs.
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F1
Best Worst Mean Median Std

S-I 1.37e+10 1.88e+10 1.68e+10 1.69e+10(+) 9.58e+08
S-II 1.38e+09 4.01e+09 2.32e+09 2.19e+09 6.43e+08

F2
Best Worst Mean Median Std

S-I 9.25e+03 1.00e+04 9.75e+03 9.75e+03(+) 1.45e+02
S-II 4.09e+03 5.07e+03 4.52e+03 4.54e+03 2.31e+02

F3
Best Worst Mean Median Std

S-I 1.81e+01 1.90e+01 1.87e+01 1.87e+01(-) 2.30e-01
S-II 2.08e+01 2.09e+01 2.09e+01 2.09e+01 3.51e-02

F4
Best Worst Mean Median Std

S-I 1.45e+14 2.41e+15 6.19e+14 4.99e+14(+) 3.81e+14
S-II 2.46e+13 1.63e+14 6.95e+13 6.41e+13 3.66e+13

F5
Best Worst Mean Median Std

S-I 2.30e+08 5.17e+08 3.24e+08 3.20e+08(+) 5.47e+07
S-II 1.36e+08 3.74e+08 2.52e+08 2.42e+08 6.21e+07

F6
Best Worst Mean Median Std

S-I 6.79e+06 2.10e+07 1.43e+07 1.25e+07(-) 5.42e+06
S-II 1.72e+07 1.96e+07 1.89e+07 1.89e+07 4.28e+05

F7
Best Worst Mean Median Std

S-I 6.40e+10 5.29e+11 1.75e+11 1.58e+11(+) 8.69e+10
S-II 4.47e+10 1.42e+11 8.37e+10 8.06e+10 2.54e+10

F8
Best Worst Mean Median Std

S-I 9.53e+11 1.28e+13 3.42e+12 2.48e+12(-) 2.61e+12
S-II 3.48e+11 1.02e+15 7.02e+13 2.02e+13 1.64e+14

F9
Best Worst Mean Median Std

S-I 5.02e+10 3.04e+11 1.96e+11 1.97e+11(+) 6.03e+10
S-II 8.52e+08 2.81e+09 1.50e+09 1.35e+09 4.02e+08

F10
Best Worst Mean Median Std

S-I 1.30e+04 1.41e+04 1.36e+04 1.35e+04(+) 2.71e+02
S-II 3.28e+03 4.11e+03 3.73e+03 3.74e+03 2.01e+02

Table 6.7 – Statistical objective value on 50 runs for benchmark problems F1 to
F10 from the CEC’2010 special session on LSGO. S-I and S-II, respectively, stand
for SACC-EAM and SACC-EAM-II. Best median values are marked in bold face.
(+), (-) and (=) represent the fact that S-II is significantly better than, worse than, or
equivalent to S-I according to the Wilcoxon rank-sum test with 5% significance level.

and Table 6.8. Best median values, marked in bold face, indicate that the new algo-
rithm outperforms the SACC-EAM on 16 of the 20 benchmark functions. Among
the 4 problematic cases, 3 of them are logically explained by the fact that the SACC-
EAM-II is unable to deal with some large subcomponents obtained with RDG2 (one
subcomponent of size 1 000 for F3, one of size 950 for F6, both due to the inaccurate
detection for additively separable functions, and only one subcomponent containing
all the nonseparable variables for F20). The fourth case, F8, will be discussed later
in this section. Moreover, for function F11, the SACC-EAM-II produces better results
than the SACC-EAM even if it has to deal with the 500-dimensional nonseparable
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F11
Best Worst Mean Median Std

S-I 2.20e+02 2.36e+02 2.33e+02 2.34e+02(+) 3.32e+00
S-II 2.11e+02 2.15e+02 2.13e+02 2.13e+02 1.08e+00

F12
Best Worst Mean Median Std

S-I 3.90e+07 1.62e+08 1.04e+08 1.04e+08(+) 2.61e+07
S-II 7.41e+05 1.18e+06 9.45e+05 9.49e+05 8.86e+04

F13
Best Worst Mean Median Std

S-I 5.28e+09 7.28e+09 6.17e+09 6.04e+09(+) 4.95e+08
S-II 7.06e+07 9.80e+08 2.99e+08 2.29e+08 1.92e+08

F14
Best Worst Mean Median Std

S-I 1.93e+11 4.65e+11 3.67e+11 3.67e+11(+) 5.51e+10
S-II 8.52e+08 1.61e+09 1.14e+09 1.14e+09 1.65e+08

F15
Best Worst Mean Median Std

S-I 1.48e+04 1.61e+04 1.54e+04 1.54e+04(+) 3.53e+02
S-II 3.39e+03 4.64e+03 3.78e+03 3.75e+03 2.08e+02

F16
Best Worst Mean Median Std

S-I 3.98e+02 4.29e+02 4.24e+02 4.26e+02(+) 6.65e+00
S-II 3.80e+02 3.85e+02 3.82e+02 3.82e+02 1.28e+00

F17
Best Worst Mean Median Std

S-I 1.02e+08 2.53e+08 1.66e+08 1.71e+08(+) 3.20e+07
S-II 1.48e+06 2.16e+06 1.76e+06 1.75e+06 1.49e+05

F18
Best Worst Mean Median Std

S-I 3.82e+10 4.87e+10 4.32e+10 4.30e+10(+) 1.96e+09
S-II 2.45e+08 1.28e+09 5.27e+08 4.35e+08 2.52e+08

F19
Best Worst Mean Median Std

S-I 1.62e+07 1.57e+10 4.76e+09 4.01e+09(+) 4.38e+09
S-II 8.14e+07 2.10e+08 1.54e+08 1.58e+08 3.44e+07

F20
Best Worst Mean Median Std

S-I 5.77e+10 7.10e+10 6.46e+10 6.47e+10(-) 3.28e+09
S-II 5.17e+11 7.38e+11 6.08e+11 5.95e+11 5.87e+10

Table 6.8 – Statistical objective value on 50 runs for benchmark problems F11 to
F20 from the CEC’2010 special session on LSGO. S-I and S-II, respectively, stand
for SACC-EAM and SACC-EAM-II. Best median values are marked in bold face.
(+), (-) and (=) represent the fact that S-II is significantly better than, worse than, or
equivalent to S-I according to the Wilcoxon rank-sum test with 5% significance level.

component falsely detected by RDG2. The advantages offered by the correct identifi-
cation of the 10 nonseparable components of size 50 offset this negative effect.

To complete the analysis, some convergence graphs are also given in Figure 6.5.
On these graphs, one can observe that the optimization process of the SACC-EAM-II
starts well after those of the SACC-EAM. Indeed, the preliminary detection with
RDG2 is quite expensive and costs over half of the budget in terms of FEs in this study.
However, in most cases, this additional cost is rapidly recovered since the objective
value with the SACC-EAM-II plummets drastically, especially at the beginning of the
optimization. It still decreases with a significant rate later. The F8 function is the only
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(a) F2 (b) F4

(c) F6 (d) F8

(e) F10 (f) F13

(g) F17 (h) F18

Figure 6.5 – Convergence graphs for some benchmark problems from the CEC’2010
special session on LSGO. SACC-EAM (orange stars), SACC-EAM-II (purple circles).
The solid line depicts the median value while the light-colored area around the solid
line represents the interval between the best and the worst values over the 50 runs.
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case in this study where the additional cost, albeit reduced, is not totally recovered. On
the contrary, for most cases, the SACC-EAM encountered difficulties to improve the
objective values significantly. Indeed, since benchmark functions contain quite large
groups of interacting variables, the random grouping strategy has almost no chance to
put all variables of a group in the same subcomponent. To increase these probabili-
ties, a very large number of cycles should be performed but this is not possible in the
context of computationally expensive problems.

6.3 Conclusion
This chapter presents a framework which brings together CC-EAs, designed to opti-
mize high dimensional problems, and SAO, designed to address computationally ex-
pensive problems. Such a SACC framework has been shown to efficiently handle high
dimensional and expensive optimization problems with a restricted budget in terms of
function evaluations. In particular, two SACC evolutionary algorithms have been de-
veloped. The first one, called SACC-EAM, relies on multiple random decompositions
while the second one, called SACC-EAM-II relies on a single decomposition based
on interaction detection with RDG2.

The SACC-EAM has been compared with the standard SAO algorithm of Minamo
and has shown promising results when it exploits its potential parallel architecture to
compute several function evaluations of the high-fidelity and expensive optimization
problem simultaneously. Moreover, the comparison with the state of the art algorithm,
called SACC-JADE, allowed one to bring out the SACC-EAM efficiency to find a
satisfactory solutions with a very small budget in terms of FEs.

The SACC-EAM-II has been shown to produce very strong results, compared to
the SACC-EAM, on a benchmark composed of 20 high dimensional functions with
different characteristics in terms of separability. The experimental results have em-
phasized the effectiveness of the interaction detection procedure introduced in the
SACC framework. Although this step is expensive, it has a very central importance on
the optimization process of the subcomponents. However, the proposed algorithm is
not able to reduce the dimensionality of overlapping or fully nonseparable problems.
Considering overlapping in the SACC framework would be an interesting perspective.
It will be further discussed in the perspectives at the end of the thesis.
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Conclusion

Synthesis
In this thesis, the challenge of high dimensionality in evolutionary optimization is
addressed with cooperative co-evolutionary algorithms. In this context, we have de-
veloped new tools in order to allow such algorithms to tackle optimization problems
with common features appearing in engineering and sciences. In particular, the main
innovations proposed in this thesis concern the optimization of large-scale problems
with the following features: constrained problems, overlapping problems and compu-
tationally expensive problems.

As a first step, the guidelines of a genetic algorithm, the standard evolutionary
algorithm used in numerical experiments, is presented. It is directly followed by a de-
scription of the cooperative co-evolutionary framework. The latter benefits from the
divide-and-conquer strategy to better handle large-scale optimization problems with
evolutionary algorithms. In particular, the two main types of algorithms encountered
in the literature rely on different decomposition strategies: the first one consists in
multiple random decompositions, the other in a unique decomposition based on in-
teraction detection. Considerable attention was given to interaction detection through
the differential grouping strategy. It meets the authors’ willingness of proposing a
synthesis of past and ongoing work on this much studied and very useful topic.

Following that state of the art, we have introduced a new CC-EA relying on a hy-
brid decomposition between random and interaction detection-based decompositions.
It first splits the n-dimensional decision vector into disjoint subcomponents using a
differential grouping strategy. Then, it further splits large subcomponents (difficult to
manage with a standard EA) into smaller subsubcomponents (much easier to manage
with the EA). In this context, the interaction between SSCs derived from large nonsep-
arable components are handled with several random decompositions. This framework
has also been extended to deal with large-scale constrained problems thanks to a de-
composition performed by taking into account the objective function and all the con-
straints. It delivers very good results, especially to deal with the violated constraints,
since the proposed decomposition helps the CC-EA to quickly find a feasible solution.
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A further aspect of CC-EAs studied in this thesis concerns the exploitation of
overlapping features to tackle with problem instances composed of several compo-
nents that interact with each other. We have introduced a CC framework that performs
a decomposition with overlapped variables between subcomponents. For this purpose,
we have developed a new decomposition strategy based on the recursive differential
grouping and we have adapted the exchange of information between subcomponents
during the optimization. This part of the thesis constitutes, in our opinion, a valuable
work because it helps to address a lack that we have identified in the literature. We
think that the best way to optimize large-scale overlapping problems in a CC frame-
work is through overlapped strategies. However, although the notion of overlapping
has been studied several times in the CC literature, none of these studies really pro-
vide such a framework. Our new overlapped CC-EA has been assessed on a set of
large-scale overlapping problems. Unfortunately, it does not deliver as good results as
expected. It seems to offer slightly better solutions but we have no certainties that it
significantly outperforms the standard CC framework embedded with the RDG3. This
could be due to the fact that the exchange of information through the context vector in
a standard CC framework is stronger that we could expect.

Finally, the last part of this thesis focuses on computationally expensive opti-
mization problems. They can be addressed in a reasonable amount of time with
surrogate-assisted optimization techniques. For problems that are both high dimen-
sional and computationally expensive, we have proposed to combine the cooperative
co-evolutionary framework and surrogate-assisted optimization techniques. In this
context, two SACC evolutionary algorithms relying on random and interaction de-
tection decompositions have been developed. They have been shown to be able to
tackle high dimensional and expensive optimization problems with a restricted budget
in terms of function evaluations. In particular, the SACC algorithm relying on the
decomposition obtained with RDG2 produces strong results on additively separable
problems. However, it does not reduce the dimensionality when dealing with over-
lapping or fully nonseparable problems. At the time of writing, the SACC algorithm
relying on the several random decomposition remains the best alternative for such
problems, although it does not embrace the benefits of the interaction structure.

To conclude, this thesis illustrates, in some way, the benefits which could be drawn
from considering natural evolution as source of inspiration for problem solving. It is
well-known that evolutionary algorithms are inspired by Darwin’s theory whereby
evolution proceeds through natural selection, or to use the common shorthand phrase,
the "survival of the fittest". The work presented in this thesis goes even further by
considering cooperative co-evolution. It is inspired by the biological concept of mu-
tualism, wherein different species live together and each benefit by working closely
together (Bronstein (1994)). Using this concept to optimize large-scale problems con-
sists in considering several species, each focusing on a part of the problem, that co-
operate together to improve the objective value of the high dimensional problem. In
this thesis, it has been studied through the decomposition and the optimization of
large-scale problems such as constrained, overlapping and computationally expensive
problems. The obtained results confirm that the CC paradigm is an efficient way ahead
for solving high dimensional optimization problems with evolutionary algorithms.



CONCLUSION 103

Perspectives
This thesis opens up lots of attractive perspectives for future works. The main ones
are presented in the following.

Concerning the hybrid-decomposition based CC-EA (and more generally concern-
ing most CC-EAs encountered in the literature), we have focused on continuous opti-
mization problems. It would be interesting to study the potential of the CC framework
to optimize large-scale discrete optimization problems, or even mixed-variable opti-
mization problems (Pelamatti et al. (2018)).

In the purpose of optimizing large-scale constrained problems, we have presented
a CC-EA that performs only one decomposition by applying the differential group-
ing on both the objective function and all the constraints. This strategy may some-
times be problematic since real-world optimization problems often consider lots of
constraints. One perspective would be to propose a dynamic grouping that would
give more importance to the violated constraints (or to the most compromised ones
at least initially) in the grouping decision scheme and update it frequently during the
optimization process.

In Chapter 4, we have proposed an attempt to use an overlapped decomposition
to deal with overlapping problems in a CC framework. Although the desired results
were not completely achieved, the developed approach shows promising prospects.
We are confident that there is scope for further improvements. The main perspective
would be to further exploit the strength of the cooperation through the context vector.
Other paths, such as the use of a contribution-based CC algorithm to solve overlapping
problems, could also be explored. It has already been partially studied by Sun et al.
(2019) but seems to be a very challenging task requiring deepest investigations.

Finally, it would also be interesting to incorporate overlapping strategies into the
surrogate-assisted CC framework presented in the last part of the thesis. However,
the SACC approach requires to be improved/modified before being able to exploit
overlapping strategies. Indeed, as things currently stand, the global individual (i.e.,
the context vector but in the SACC context), is only updated when new databases
are built but is fixed from one iteration to the other. The exchange of information
between subcomponents are therefore quite limited and insufficient to handle overlap-
ping problems split into several subcomponents. A key objective would be to allow
more frequent updates without pulling down the consistency of databases (and there-
fore of the surrogate models specific to each subcomponents).
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Appendix A
Constrained benchmark problems

G2 (Michalewicz and Schoenauer (1996))

Minimize:
f (x) =−

∣∣∣∣∣∣∣∣
n
∑

i=1
cos4(xi)−2

n
∏
i=1

cos2(xi)√
n
∑

i=1
ix2

i

∣∣∣∣∣∣∣∣
Subject to:

g1(x) = 0.75−
n

∏
i=1

xi ≤ 0

g2(x) =
n

∑
i=1

xi−7.5n≤ 0

Domain: xi ∈]0,10] for i = 1..n

(a) x1, x2 ∈ ]0,10] (b) Zoom: x1, x2 ∈ ]0,2]

Figure A.1 – Representation of the 2-dimensional G2 problem. Contour plots repre-
sent the objective function. Unfeasible regions are hatched.

107



108 APPENDIX A. CONSTRAINED BENCHMARK PROBLEMS

G3 (Michalewicz and Schoenauer (1996))

Minimize: f (x) =−(
√

n)n
n

∏
i=1

xi

Subject to:
g1(x) =

n

∑
i=1

x2
i −1≤ 0

Domain: xi ∈ [0,1] for i = 1..n

Figure A.2 – Representation of the 2-dimensional G3 problem. Contour plots repre-
sent the objective function. Unfeasible regions are hatched.

G10 (Michalewicz and Schoenauer (1996))

Minimize:
f (x) = x1 + x2 + x3

Subject to:

g1(x) = −1+0.0025(x4 + x6)≤ 0
g2(x) = −1+0.0025(x5 + x7− x4)≤ 0
g3(x) = −1+0.01(x8− x5)≤ 0
g4(x) = −x1x6 +833.33252x4 +100x1−83333.333≤ 0
g5(x) = −x2x7 +1250x5 + x2x4−1250x4 ≤ 0
g6(x) = −x3x8 +1250000+ x3x5−2500x5 ≤ 0

Domain: x1 ∈ [100,10000], x2 and x3 ∈ [1000,10000] and xi ∈ [10,1000] ∀i = 4..8
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Hesse (Hesse (1973))

Minimize:

f (x) = −25(x1−2)2− (x2−2)2− (x3−1)2− (x4−4)2− (x5−1)2− (x6−4)2

Subject to:

g1(x) = 2− x1− x2 ≤ 0
g2(x) = x1 + x2−6≤ 0
g3(x) = −x1 + x2−2≤ 0
g4(x) = x1−3x2−2≤ 0
g5(x) = 4− (x3−3)2− x4 ≤ 0
g6(x) = 4− (x5−3)2− x6 ≤ 0

Domain: x1 ∈ [0,5], x2 ∈ [0,4], x3 ∈ [1,5], x4 ∈ [0,6], x5 ∈ [1,5] and x6 ∈ [0,10]

Speed Reducer (Golinski (1970); Rao (2009))

Minimize:
f (x) = 0.7854x1x2

2A−1.508x1B+7.477C+0.7854D

Subject to:

g1(x) = 27− x1x2x3 ≤ 0

g2(x) = 397.5− x1x2
2x2

3 ≤ 0

g3(x) = 1.93−
x2x3x4

6

x3
4
≤ 0

g4(x) = 1.93−
x2x3x4

7

x3
5
≤ 0

g5(x) =
A1

B1
−1100≤ 0

g6(x) =
A2

B2
−850≤ 0

g7(x) = x2x3−40≤ 0

g8(x) = 5− x1

x2
≤ 0

g9(x) =
x1

x2
−12≤ 0

g10(x) = 1.9+1.5x6− x4 ≤ 0
g11(x) = 1.9+1.1x7− x5 ≤ 0

Variables defined:

A = 3.3333x2
3 +14.9334x3−43.0934, B = x2

6 + x2
7,

C = x3
6 + x3

7, D = x4x2
6 + x5x2

7

A1 =

√
745x4

x2x3

2
+(16.91×106), B1 = 0.1x3

6

A2 =

√
745x5

x2x3

2
+(157.5×106), B2 = 0.1x3

7

Domain: x1 ∈ [2.6,3.6], x2 ∈ [0.7,0.8], x3 ∈ [17,28], x4 and x5 ∈ [7.3,8.3],
x6 ∈ [2.6,3.9], x7 ∈ [5,5.5]
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Welded Beam (Ragsdell and Philipps (1976); Rao (2009))

Minimize:

f (x) = 1.10471x2
1x2 +0.04811x3x4(14.0+ x2)

Subject to:

g1(x) = t− tmax ≤ 0
g2(x) = s− smax ≤ 0
g3(x) = x1− x4 ≤ 0
g4(x) = 0.10471x2

1 +0.04811x3x4(14.0+ x2)−5.0≤ 0
g5(x) = d−dmax ≤ 0
g6(x) = P−Pc ≤ 0

Variables defined:

P = 6000, L = 14, E = 30×106, G = 12×106

tmax = 13600, smax = 30000, xmax = 10, dmax = 0.25

M = P
(

L+
x2

2

)
, R =

√
0.25(x2

2 +(x1 + x3)2)

J =
√

2x1x2

(
x2

2
12

+0.25(x1 + x3)
2
)

Pc =
4.013E

6L2 x3x3
4

1−0.25x3

√
E
G

L


t1 =

P√
2x1x2

, t2 =
MR
J

, t =

√
t2
1 +

t1t2x2

R
+ t2

2

s =
6PL
x4x2

3
, d =

4PL3

Ex4x3
3

Domain: x1 ∈ [0.125,10], xi ∈ [0.1,10] for i = 2,3,4



Appendix B
Overlapping benchmark problems

The overlapping benchmark set is composed of 6 overlapping benchmark problems
derived from the CEC’2013 competition on LSGO (Xi et al. (2013)). In particular, the
problems f1 to f5 are built according to the following equation:

f (~x) =
|S|

∑
i=1

ωi fbasis(~zi) (B.0.1)

where

• ~x is the 905-dimensional decision vector.

• S is a list that describes the size of subcomponents:

S= [50,50,25,25,100,100,25,25,50,25,100,25,100,50,25,25,25,100,50,25].

• ωi is a weight factor.

• ~zi = Φ(~yi) is a modified version of the vector ~xi. This modification includes a
transformation to create local small irregularities, a transformation to break the
symmetry and a rotation of the fitness landscape.

• ~yi is a shifted and permutated version of~xi. In particular,~yi contains the decision
variables whose indices vary from P[Ci−1− (i−1)m+1] to P[Ci− (i−1)m].

• ~xi is a |Si|-dimensional subvector of~x.

• P is the vector that contains the indices permutation.

• m = 5 is the overlap size (see illustration in Figure B.1).

• Ci = ∑
i
j=1 Si and C0 = 0.
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Figure B.1 – Overlapped structure of benchmark problems f1 to f5. Each subcompo-
nent shares m= 5 overlapped variables with the previous and the next subcomponents.

The complete description of weight factors, shifts, permutations, rotations and trans-
formations are described in the benchmark definition of the CEC’2013 competition (Xi
et al. (2013)). In the benchmark set considered in this thesis, functions f1 to f5 are
built by using Ackley, Elliptic, Rastrigin, Rosenbrock and Schwefel function as basis
function in Equation (B.0.1). In particular, the f5 function of our benchmark set is
the shifted Schwefel’s function with conflicting(1) overlapping subcomponents of the
CEC’2013 benchmark set. Finally, the f6 function is the 1000-d shifted Rosenbrock
function of the CEC’2013 benchmark set.

(1)Note that the CEC’2013 suite also contains a benchmark function with conforming overlapping sub-
components, meaning that they share the same optimum value with respect to both subcomponent functions.
Such a function can easily be optimized with a standard CC-EA and therefore, it has not been included in
the benchmark set built for this study.
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