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Abstract. In swarm robotics, self-organised aggregation refers to a col-
lective process in which robots form a single aggregate in an arbitrarily
chosen aggregation site among those available in the environment, or just
in an arbitrarily chosen location. Instead of focusing exclusively on the
formation of a single aggregate, in this study we discuss how to design
a swarm of robots capable of generating aggregation dynamics that can
correspond to a variety of final distributions of the robots to the available
aggregation sites. We focus on an environment with two possible aggre-
gation sites, A and B. Our study is based on the working hypothesis that
robots distribute on site A and B in quantities that reflect the relative
proportion of robots in the swarm that selectively avoid A with respect to
those that selectively avoid B, with an as minimal as possible proportion
of robots in the swarm that selectively avoid one or the other site. We
illustrate the individual mechanisms designed to implement the above
mentioned working hypothesis, and we discuss the promising results of a
set of simulations that systematically consider a variety of experimental
conditions. The results with simulated robots are validate with physical
kilobot robots.

1 Introduction

Swarm robotics studied the design of collective behaviours able to tackle task in
large and unpredictable environments [1]. Swarm robotics takes inspiration from
studies in social insect and other social animals, whereby simple individuals are
able to exhibit superior collective intelligence when working in groups [2]. The
overall goal is to design systems that are robust, scalable, and flexible like their
natural counterparts [1]. To achieve this, swarm robotics relies on the applica-
tion of the following principles: i) absence of external infrastructure and reliance
on only on-board sensing and computation; ii) use of local perception and com-
munication only; that is, each robot can sense and communicate only within a
given range via on-board devices; iii) the process of self-organization, that yields
from microscopic behaviours and individual interactions to macroscopic complex
collective behaviours.
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Collective decision-making is the the ability to make a collective decisions
only via local interaction and communication [3]. This is an important collec-
tive response which has been extensively studied in swarm robotics. Collective
decision making can take several forms: it can either be studied explicitly [3, 4]
or implicitly in other collective behaviours such as collective motion (decision
on a common direction of motion), and aggregation (decision on a common lo-
cation for gathering in the environment). Two factors that can synergistically
or antagonistically influence collective decision-making process are asymmetries
in the environment, or the active modulation performed by the all or some of
the swarm members [3]. In a seminal study on collective decision making [5],
the authors studied collective motion models in presence of so called implicit
leaders or informed individuals. These have a preferred direction of motion to
guide collective motion in that direction. The rest of the swarm do not possess
a preferred direction of motion, nor is able to recognise informed individuals.
The main result of the paper is that even a minority of informed individuals is
able to guide the swarm in the desired direction, and that larger groups require
smaller proportion of informed individuals for equal levels of accuracy.

As in Couzin’s work, also in swarm robotics the framework of informed in-
dividuals has been studied mainly in the context of collective motion [6–8]. Re-
cently, this framework has been ported to another collective behaviour, namely
self-organized aggregation [9–11]. Self-organised aggregation [12–14] has roots
in the biological study of cockroaches [15, 16], where probabilistic models have
been proposed. The same models have been adapted and implemented on dis-
tributed robotic systems [17, 18, 13]. Besides being another example of collective
decision-making, aggregation is a basic building block for other cooperative be-
haviours [19, 20]. Self-organised aggregation can take place in environments that
are completely homogeneous (except for boundaries and potential obstacles)
where no perceivable special locations, called sites or shelters, are present, thus
robots are required to aggregate anywhere in this environment [21]. Alterna-
tively, as it is the case of the current paper, the sites where robots are required
to aggregate can be specific areas in the environment that can be clearly per-
ceived by all or some of the robots [22, 23].

In this paper our objective is to go one step beyond the state of the art
to further study how the framework of informed robots can be used as guiding
principle for self-organization. We build upon recent studies on self-organized ag-
gregation with informed robots [9–11], where robots need to select only one site
among n possible alternatives, driven by informed robots. Each informed robot
has knowledge on a specific aggregation site to stop on and avoids other aggrega-
tion sites. Non-informed robots do not possess this information, therefore may
potentially aggregate on any side. Additionally, informed robots are assumed
to be perceivable, through sensing, by other robots (e.g., they emit a signal),
while non-informed robots cannot be sensed at all. Differently from [9–11], in
this paper robots are required to aggregate on both sites according to different
proportions as set by the designer. To control the proportion of robots aggregat-
ing on the two sides, we design a novel aggregation method. Informed robots are
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(a) (b)

Fig. 1. (a) The simulated robots’ arena with the black and white aggregation site.
(b) State diagram of the robots’ controller. The dashed line indicates probabilistic
transition, the continuous lines indicate non probabilistic transition.

divided in two types, each preferring one of the two sites over the other. To con-
trol the relative group size on the two sites, the proposed method only requires
the presence of informed robots with internal sub-proportions correlating with
desired global allocation for the whole swarm. We perform our study using both
simulation and real-robot experiments. In simulation we considered a scenarios
in a circular arena where the two aggregation sites are represented by black or
white colored circles, respectively. Additionally, we also implement our method
on a swarm of real kilobots, whereby we used robot themselves as beacons to in-
dicate the two sites because of the sensing limitation of the robot platform, and
we developed and used an IR platform, that can be sensed by the kilobots, in
order to implement the boundaries of the arena and let kilobots avoid the wall.
The results of our simulations and physical robots show interesting relationships
between swarm size and sub-proportion of informed agents, both on quality and
speed of convergence on the desired aggregation site. In the following sections,
we detailed the methods of our study; we discuss the significance of our results
for the swarm robotics community, and we point to interesting future directions
of work.

2 The simulation environment

A swarm of robots is randomly placed in a circular area with the floor coloured in
grey except for two circular aggregation sites, one in which the floor is coloured in
white and one in which is black (see Figure 1a). The task of the robots is to form
aggregates on both sites according to rules that prescribe which proportion of the
swarm has to aggregate on the white site and which proportion on the black site.
Each simulated robot is controlled by a probabilistic finite state machine (PFSM,
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see also Figure 1b), similar to the one employed in [16, 14, 12, 24]. The robots’
controller is made of three states: Random Walk (RW), Stay (S), and Leave (L).
When in state RW, the movement of the robot is characterised by an isotropic
random walk, with a fixed step length (5 seconds, at 10 cm/s), and turning
angles chosen from a wrapped Cauchy probability distribution characterised by
the following PDF [25]:

fω(θ, µ, ρ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
, 0 < ρ < 1, (1)

where µ = 0 is the average value of the distribution, and ρ determines the dis-
tribution skewness. For ρ = 0 the distribution becomes uniform and provides no
correlation between consecutive movements, while for ρ = 1 a Dirac distribution
is obtained, corresponding to straight-line motion. In this study ρ = 0.5. Any
robot in state RW is continuously performing an obstacle avoidance behaviour.
To perform obstacle avoidance, first the robot stops, and then it changes its
headings of a randomly chosen angle uniformly drawn in [−π, π] until no obsta-
cles are perceived in the forward direction of motion. Negative angles refer to
clockwise rotations, while positive to anticlockwise rotations.

In our model, we consider two type of robots: informed robots and non-
informed robots. Informed robots systematically rest only on one site. Some of
them, avoid the black site and rest only on the white site (informed robots for
white); others avoid the white site and rest only on the black site (informed
robots for black). Non-informed robots can potentially rest on both types of
site. Note that, the working hypothesis of this study is that the way in which
the swarm distributes among the two aggregation sites reflects the relative pro-
portion of informed robots for black and for white. For example, if 50% of the
informed robots are for black and 50% of them are for white, the swarm should
generate two equal size aggregates one on the black and one on the white site.
This experimental work aims at verifying this working hypothesis by systemati-
cally varying the proportion of informed robots within the swarm. Moreover, for
each proportion of informed robots, we vary the relative proportion of informed
robots for black and for white.

A non-informed robot systematically transits from state RW to state S any-
time it reaches an aggregation site. Informed robots for black undergo the same
state change only when they reach the black site, thus ignoring the white site.
Informed robots for white systematically transits from state RW to state S
anytime they reach a white aggregation site, thus ignoring the black site. For
all types of robots, the transaction from the random walk to resting on a site
happens in the following: the robots moves forward within the site for a limited
number of time steps in order to avoid stopping at the border of the site thus
creating barriers preventing the entrance to other robots. Then, they transitions
from state RW to state S.
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The robots leave state S to join state L with a probability Pleave, which is
computed in the following:

Pleave =

{
e−a(k−|n−x|), if n > 0; it applies to all types of robots;

1, if n = 0; only for non-informed robot;
(2)

with a = 2.0 and k = 18. n is current number of informed robots perceived at
the site, and x is the number of informed robots perceived at the site at the time
of joining a site. Note that, for any robots n and x are local estimates based
the number of informed robots in the perceivable neighborhood which is smaller
than the entire site. Pleave is sampled every 20 time steps. When in state L,
a robot leaves the aggregation site by moving forward while avoiding collisions
with other robots until it no longer perceives the site. At this point, the robot
transitions from state L to state RW. While on an aggregation site, informed
robots count themselves in order to estimate n and x.

To model this scenario, we use ARGoS multi engine simulator [26]. The
simulation environment models the circular arena as detailed above, and the
kinematic and sensors readings of the Foot-bots mobile robots [27]. The robot
sensory apparatus includes the proximity sensors positioned around the robot
circular body, four ground sensors positioned two on the front and two on the
back of the robot underside, and the range and bearing sensor. The proximity
sensors are used for sensing and avoiding the walls of the arena. The readings
of each ground sensors is set to 0.5 if the sensor is on grey, to 1 if on white, and
0 if on black. A robot perceives an aggregation site when all the four ground
sensors return a value different from 0.5. The range and bearing sensor is used to
avoid collision with other robots and to estimate how many informed robots are
resting on a site within sensor range (i.e., the parameters n and x in eq. 2). With
this sensor, two robots can perceive each other up to a distance of 0.8 meter.

3 Results with simulated robots

We run two sets of experiments (hereafter, setup 1, and setup 2), in which we
varied the swarm size N , with N = 50 in setup 1, and N = 100 in setup 2. As
aggregation performance are heavily influenced by swarm density [24, 9–11] in
this paper we have decided to study scalability by keeping the swarm density
constant. Therefore, the diameter of the area, as well as the diameters of the two
sites, is varied as well (see Table 1). In both setups, the diameter of each aggrega-
tion site is large enough to accommodate all the robots of the swarm. Each setup

Table 1. Table showing the characteristics of each experimental condition in simulation

setup swarm size arena diameter
aggregation site

diameter
1 50 12.9 2.8

2 100 19.2 4.0
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(a) (b)

(c) (d)

Fig. 2. Graphs in which the intensity of grey refers to the number of trials, out of 100,
terminated with a particular proportion of robots on each site (i.e., Φb and Φw). The
x-axes refer to the proportion of informed robots for black (ρsb) or for white (ρsw).
The swarm size N and the total proportion of informed robots (ρI) in the swarm are:
(a) N = 50 and ρI = 0.1; (b) N = 50 and ρI = 0.3; (c) N = 100 and ρI = 0.1; (d)
N = 100 and ρI = 0.3. In each of these cases, the x and y-axis of the rightmost graphs
refer to ρsb and Φb, respectively; the x and y-axis of the leftmost graphs refer to ρsw
and Φw, respectively.

is made of 25 conditions which differ in the total proportion of informed robots
in the swarm (hereafter, referred to as ρI , with ρI = {0.1, 0.3, 0.5, 0.7, 0.9}), and
in the proportion of ρI that are informed for black (hereafter, referred to as ρsb,
with ρsb = {0.1, 0.2, 0.3, 0.4, 0.5}) and for white (hereafter, referred to as ρsw,
with ρsw = 1− ρsb). For each condition, we execute 100 independent simulation
trials. In each trial, the robots are randomly initialised within the arena. They
autonomously move according to actions determined by their PFSM illustrated
in Figure 1b for 300.000 time steps. One simulated second corresponds to 10
simulation time steps.

We expect that, for any value of ρI , the swarm distributes on each aggregation
site in proportions that reflect the relative proportion of ρsb with respect to ρsw.
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For example, for a given ρI , if ρsb = 0.1 and ρsw = 0.9, 10% of the swarm is
expected to aggregate on the black site and the remaining 90% of the swarm is
expected to aggregate on the white site. To evaluate the behaviour of the swarm
we recorded the proportion of robots aggregated on the black site (Φb = Nb

N )

and on the white site (Φw = Nw

N ), at the end of each simulation run (where
Nb and Nw are the number of robots aggregated on the black and white site,
respectively, and N is the swarm size). In this paper, we show only the results
of setup 1 and 2 relative to those conditions in which ρI = 0.1, 0.3 The results
of these simulations are shown in Figure 2. Each graph shows the number of
trials, out of 100, terminated with a particular proportion of robots i) on the
black site, for each value of ρsb indicated on the x-axes of the rightmost graph
in Figure 2a, 2b, 2c, and 2d; ii) on the white site, for each value of ρsw indicated
on the x-axes of the leftmost graph in Figure 2a, 2b, 2c, and 2d. The swarm size
N and the total proportion of informed robots (ρI) in the swarm are: i) N = 50
and ρI = 0.1 in Figure 2a; ii) N = 50 and ρI = 0.3 in Figure 2b; iii) N = 100
and ρI = 0.1 in Figure 2c; iv) N = 100 and ρI = 0.3 in Figure 2d.

Ideally, if the swarm aggregates in way to perfectly reflect the relative pro-
portion of informed robots for black and for white in the swarm, for both N = 50
and N = 100 and for all total proportion of informed robots in the swarm, the
graphs in Figure 2 would show only black rectangle aligned on the diagonal from
bottom left to top right corners of each graph. In other words, all 100 trials in
each condition of each setup would terminate with Φb = ρsb and Φw = ρsw. The
results of the simulations tend to slightly diverge from this ideal case. However,
we can clearly see that a higher concentration of trials (the darker rectangles for
each case) tend to be aligned on the above mentioned diagonal, with deviations
from the ideal case that remain nevertheless close to the expected result. This is
clearly observable even when the total proportion of informed robots is 0.1 of N
for both setup1 with N = 50 and setup 2 with N = 100 (see Figure 2a and 2c,
respectively). Note that the results in Figure 2 refer to the two most challeng-
ing scenarios, in which the total proportion of informed robots in the swarm is
relatively low (ρI = 0.1 and ρI = 0.3). For higher proportion of informed robots
in the swarm, the results of the simulations tend to get progressively closer to
the best-case scenario, in which simulation trials terminates with Φb = ρsb and
Φw = ρsw.

In summary, the PFSM described in Section2 allows to rather accurately
control the way in which the robots of a swarm distribute on two different ag-
gregation sites simply by regulating the relative proportion of informed robots
for each site, even with a small total proportion of informed robots in the swarm
(ρI = 0.1), and for different swarm sizes.

4 Experiments with physical robots

In order to test the performances illustrated in Section 3 on physical robots, we
run a further set of experiments with physical kilobot robots. A Kilobot is a
small (33 mm diameter, 34 mm height), and low-cost robot developed at Har-
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Fig. 3. The kilobots’ arena with the aggregation sites represented by two kilobot bea-
cons emitting red and blue light respectively. In the picture, the robots have their LED
on emitting the light corresponding to the site in which they are currently resting. Since
the robots do not use vision, LEDs are just for visualisation purpose. On the external
side of the arena wall, infra-red emitters signal to the robots the arena’s edges.

vard University, explicitly designed to run swarm robotics experiments [28]. The
kilobot is equipped with infrared transceivers for communication and perception
of other robots, as well as with an ambient light sensor and a coloured LED.
Our physical robots scenario is made of a circular arena (80 cm diameter). On
the external side of the arena wall, infra-red emitters, controlled by an Arduino
micro-controller, signal to the robots the arena’s edges, as illustrated in Fig-
ure 3. Each kilobot can perceive these infra-red signals from a distance of 8− 10
cm. These signals are used by the robots to avoid the arena walls during random
walk. Two kilobots, positioned at approximately 40 cm from each other, at equal
distance from the arena centre, represent the aggregation sites. These kilobots,
referred to as beacons, have their LEDs emitting different colours: one emits
blue light, and the other emits red light. In analogy with the simulation environ-
ment, the blue LED represents the black aggregation site, and the red LED the
white site. The beacons communicate their position to the other robots using
the infra-red transceivers, which have a range of 9− 10 cm. The kilobots use the
infra-red transceivers also for estimating the parameters n and x of eq. 2. Each
type of robot is controlled by the PFSM illustrated in Section 2. The only dif-
ference between simulated and physical robots is that for kilobot the parameter
a in eq. 2 is set to a = 3.6, and Pleave is sampled every 10 sec.

The experimental design with physical robots slightly differs to the tests in
simulations. This is due to the fact that the time required to execute a single
trial with physical robots is significantly longer than the single trial in simulation.
Thus, we have reduced the conditions under which the robotic system is tested.
Moreover, the parameters ρI , ρsb and ρsw has been chosen by taking into account
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(a) (b)

(c) (d)

Fig. 4. (a) Scatter plot showing the proportion of robots aggregated on each site for
ρI = 0.1, and ρsw = ρsb = 0.5. In (b), (c), and (d) the intensity of grey in each graph
refers to the number of trials, out of 10, terminated with a particular proportion of
robots on each site (i.e., Φb and Φw). The x and y-axis of the rightmost graphs refer to
ρsb and Φb, respectively; the x and y-axis of the leftmost graphs refer to ρsw and Φw,
respectively. N = 17 in all graphs.

the fact that we have at our disposal only 17 kilobots robots. Thus, we decided
to test the following scenarios:

– for ρI = 0.1, we only tested the condition with ρsw = ρsb = 0.5;
– for ρI = 0.3, we tested the condition with ρsb = 0.2 and ρsw = 0.8, and the

condition with ρsb = 0.4 and ρsw = 0.6;
– for ρI = 0.5, we tested the conditions with ρsb = {0.1, 0.2, 0.4, 0.5} and
ρsw = 1− ρsb;

– for ρI = 0.7, we tested the conditions with ρsb = {0.1, 0.2, 0.3, 0.4, 0.5} and
ρsw = 1− ρsb;

For each of the above mentioned conditions, we executed 10 trials. In each trial,
the robots are initially placed within the arena in a pseudo-random way. During
each trial, each robot is controlled by the PFSM described in Figure 1b. A
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trial is ended according to the following criteria: 1) as soon as at least 80% of
the kilobots are resting in any of the aggregation sites; or after 40 minutes if
criterium 1 is never reached.

The results of our tests with physical kilobot robots are shows in Figure 4.
The graph in Figure 4a refers to the most challenging scenario in which the
proportion of informed robots is at its minimum (i.e., ρI = 0.1). In this condition,
we explore only the case for ρsb = ρsw. Contrary to simulations, informed robots
has only a marginal influence on the aggregation dynamics. Both Φb and Φw tend
to be smaller than the expected outcomes that, for this conditions, correspond
to half of the kilobots on the black and half of them on the white site. The
differences in results between the physical and simulated robots in the same
condition (i.e., ρI = 0.1, ρb = ρw = 0.5) could be an effect of the swarm size
with physical robots, which is significantly smaller than the swarm size with
simulated robots. In all the other conditions (see Figure 4b, 4c, 4d), the physical
robots tend to generate better results. We clearly notice that there is a strong
correlation between how we vary ρsb and ρsw and the resulting Φb and Φw.
However, also for all these conditions, the relatively small swarm size seems
to have a negative effect on the possibility of informed robots to control the
aggregation dynamics. Moreover, we observed that collisions with the arena wall
from specific orientation very often resulted in deadlocks from which the robots
could not recover. This has certainly contributed to lower the proportion of
robots that manage to reach and rest on each aggregation site. In summary, we
believe that, in spite of the disruptive effects caused by the small swarm size
and by the collisions between the robots and the arena wall, the results shown
in Figure 4 validate our approach in which the relative proportion of different
types of informed robots is used to control the aggregation dynamics of a swarm
of heterogeneous robots.

5 Conclusions

In this paper, we have shown that the aggregation dynamics of a swarm of
robots can be controlled using the system heterogeneity. In this self-organised
aggregation scenario, with a swarm of robots required to operate in an arena
with two aggregation sites, the system heterogeneity is represented by informed
robots; that is, agents that selectively avoid a type of aggregation site (i.e.,
the black/white site) to systematically rest on the other type of site (i.e., the
white/black site). The results of our simulations indicate that with a small pro-
portion of informed robots a designer can effectively control the way in which
an entire swarm distribute on the two aggregation sites. This is because the size
of the robots’ aggregates at each site tends to match the relative proportion of
the two different types of informed robots characterising the swarm. The results
of the simulations have been validated by a set of experiments with physical
kilobot robots. Nevertheless, the behaviour of the physical robots has been neg-
atively affected by the frequent collisions between the robots and the arena wall
which, relatively often, represented deadlock conditions with the robots unable
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to generate the virtuous manoeuvres necessary to recover movement. We also
believe that the small size of the physical robots swarm has contributed to limit
the influential role of informed robots. However, further studies are required to
better characterise the nature of the relationship between the swarm size and
the aggregation mechanisms we have discussed in this paper.

We believe that the system heterogeneity, relatively neglected in swarm
robotics, can play an important role in the development of mechanisms to control
the self-organised collective responses of swarms of robots. Our research agenda
for the future is focused on the series of experiments based on the hypothesis that
the system heterogeneity has a measurable impact on the outcomes of certain
self-organised processes. We aim to identify these processes and to illustrate how
they can be effectively controlled by manipulating the system heterogeneity.
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