
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Moulinog

Yernaux, Gonzague; Vanhoof, Wim; Schumacher, Laurent

Published in:
Proceedings of the 22nd International Symposium on Principles and Practice of Declarative Programming,
PPDP 2020 - Part of BOPL 2020 - Bologna Federated Conference on Programming Languages 2020

DOI:
10.1145/3414080.3414100
10.1145/3414080.3414100

Publication date:
2020

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Yernaux, G, Vanhoof, W & Schumacher, L 2020, Moulinog: A generator of random student assignments written
in prolog. in Proceedings of the 22nd International Symposium on Principles and Practice of Declarative
Programming, PPDP 2020 - Part of BOPL 2020 - Bologna Federated Conference on Programming Languages
2020., 3414100, PervasiveHealth: Pervasive Computing Technologies for Healthcare, ACM Press, 22nd
International Symposium on Principles and Practice of Declarative Programming, PPDP 2020 - Part of 2020
Bologna Federated Conference on Programming Languages, BOPL 2020, Bologna, Online, Italy, 8/09/20.
https://doi.org/10.1145/3414080.3414100, https://doi.org/10.1145/3414080.3414100

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 05. Jul. 2025

https://doi.org/10.1145/3414080.3414100
https://doi.org/10.1145/3414080.3414100
https://researchportal.unamur.be/en/publications/a9fa458f-43ad-425d-bb78-90fe270c0d3b
https://doi.org/10.1145/3414080.3414100
https://doi.org/10.1145/3414080.3414100

Moulinog: A Generator of Random Student Assignments
Written in Prolog

Gonzague Yernaux
Wim Vanhoof

Laurent Schumacher
{gonzague.yernaux,wim.vanhoof,laurent.schumacher}@unamur.be

University of Namur
Faculty of Computer Science

Namur, Belgium

ABSTRACT
We introduce, describe and discuss the potentialities of Moulinog, a
tool created during the COVID-19 lockdown, designed to generate
individual questionnaires for the remote evaluation of large class-
rooms. Starting with a list of students and a series of predicates
constituting a pool of parametric questions along with rules for
their parametrization, Mouling generates a list of individual ques-
tionnaires, together with a shell script allowing an easy emailing of
the (password-protected) questionnaires to the students. The tool’s
use in practice is illustrated on a particular course case for which it
has proven to be both useful and time-saving.

CCS CONCEPTS
•Applied computing→Computer-assisted instruction; •The-
ory of computation → Constraint and logic programming;
Generating random combinatorial structures.

KEYWORDS
Remote education, Prolog, Pedagogic tool, Assignment generation
ACM Reference Format:
Gonzague Yernaux,WimVanhoof, and Laurent Schumacher. 2020.Moulinog:
A Generator of Random Student Assignments Written in Prolog. In 22nd
International Symposium on Principles and Practice of Declarative Program-
ming (PPDP ’20), September 8–10, 2020, Bologna, Italy. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3414080.3414100

1 INTRODUCTION
The year 2020 appears to be definitely marked by its sanitary crisis
caused by the COVID-19 worldwide spread. Although more and
more positively under control, the virus still affects many institu-
tions at the time of writing, amongst which teaching establishments.
One of the challenges encountered by many schools and univer-
sities is indeed to maximize the remote continuation of academic
duties. Often with not enough time – or desire – to design active

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPDP ’20, September 8–10, 2020, Bologna, Italy
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8821-4/20/09. . . $15.00
https://doi.org/10.1145/3414080.3414100

anti-cheating techniques, some academic structures must look into
ways to measure the students’ understanding of concepts remotely.

In this experience report, we introduce Moulinog1, a Prolog-
based tool generating individual exam papers from a corpus of
exam question templates and associated parametrization rules. The
Moulinog core, which is used to generate exam copies for several
courses at the University of Namur, allows two levels of customiza-
tion to generate course-specific questions: first, the knowledge base
representing the questions themselves along with their parameters;
second, rules over these parameters that allow to generate specific
exercise statements obeying the laws of the covered course material
– all this by taking advantage of Prolog’s operational peculiarities.

Other pandemic-related educational approaches exist all over the
world, often focused on broader concerns such as risk management
and teaching continuation in general [7], or the continuation of
education in particular study domains [4, 5] or contexts [2]. In
this work, rather than teaching in general we try and focus on the
issue of having students take certificative tests in establishments
usually resorting to face-to-face evaluation, and as such in need to
adapt quickly and efficiently to administer written exams remotely.
Although many existing technologies are available for this task,
we choose to exploit the mechanisms of Prolog for several reasons
that are outlined in the paper. To our knowledge, such an approach,
aiming both to solve the current practical examination issues and to
do so with a declarative set of instructions, has not been explored
yet. Moreover, the tool presented here being generic and open-
source, we believe that it can constitute fertile ground for (adapted)
use in teaching environments as well as an interesting base for
fundamental reflections.

The present report is structured as follows: in Section 2 we
present more of Moulinog by describing its inputs and outputs
in a typical university workflow, and we further dwell into the
two levels of customization offered by Moulinog. In Section 3 we
discuss the tool’s use in practice, which we illustrate on the case
of a computer architecture course held at the University of Namur
(Belgium). Then, in Section 4 we discuss the advantages of such a
solution, and in particular the benefits of having such a tool written
in Prolog, before concluding with some final remarks and pointers
for future improvements.

1The first fully functional and open-source version of Moulinog is accessible at the
following address: https://github.com/Gounzy/Moulinog.

https://doi.org/10.1145/3414080.3414100
https://doi.org/10.1145/3414080.3414100
https://github.com/Gounzy/Moulinog

PPDP ’20, September 8–10, 2020, Bologna, Italy Yernaux, Vanhoof & Schumacher

2 TOOL OVERVIEW
2.1 Inputs and outputs
Moulinog is designed to be used for generating an arbitrary num-
ber of questionnaires. A typical use, be it in a university or a high
school, would involve (1) an automatic attribution of the questions
to the students (based e.g. on a list of students), (2) some kind of
automatic mailing processing to generate final files for the stu-
dents (in a portable format such as PDF), (3) possibly some kind
of (e.g. password-based) protection ensuring that the files are only
available for reading at a certain moment in time (e.g. when the
password is revealed), and (4) an automatic distribution of the files
to the students (e.g. through an emailing command). To fit in this
workflow Moulinog receives as input a list of students (with names
and email addresses) and outputs a .csv file processable by a mailing
processing software, in order to generate the final files that can be
sent through a shell script. These steps are represented on Figure 1.
Observe Moulinog’s central role in automatizing several steps of
the process: the questions generation, but also the shell script that
will effectively send the questionnaires to the students. Except for
the csv-to-pdf operation, which is typically better achieved by a
standard text processing software, Moulinog automatizes the key
steps of the process.

2.2 Questions and parameters
The only information needed by Moulinog in order to generate
random question sheets are the questions themselves, as well as
information about their possible variations (i.e. their parametriza-
tion). The following code constitutes an example question from a
computer architecture course, along with some of its parameters.

que s t i o n (cache , ["Let us consider a " , type , "

cache memory , using " , u p d a t e s t r a t , " update

strategy , with " , nbwords , " per memory block

and " , nbbytes , " per word. Supposing that

there are " , t o t a lwo rd s , "words in the cache

in total and that the addresses are 8-bit each

, represent the cache's structure and execute

the following sequence of read/write

instructions: " , sequence , ". Explain how the

cache 's contents evolves through the execution

."]) .
q u e s t i o n (cache , ["Explain how a direct mapped

cache works."]) .
param (cache \ type , "direct mapped") .
param (cache \ type , "fully associative") .
param (cache \ type , "2-way set associative") .
param (cache \ u p d a t e s t r a t , "write -back") .
param (cache \ u p d a t e s t r a t , "write -through") .
% . . .

In what follows, we use the usual concise notation 𝑝/𝑛 to refer
to a predicate built upon the predicate symbol 𝑝 and having arity 𝑛.

The first argument of 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛/2 indicates the question’s cate-
gory identifier, which allows to formulate different potential ques-
tions belonging to the same category of questions (e.g. all the ques-
tions related to a particular lesson). As for the non-string atoms
appearing as list elements in the second argument of 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛/2,

these indicate parametric positions in the question’s formulation.
Moulinog will then fill these positions with instantiated parame-
ters. The possible instantiations of a parameter with identifier 𝑖𝑑𝑝
in a question with identifier 𝑖𝑑𝑞 are indicated in those clauses of
𝑝𝑎𝑟𝑎𝑚/2 of which the first argument unifies with 𝑖𝑑𝑞\𝑖𝑑𝑝 .

In order to generate different questions or exercises (in the fol-
lowing, we use both terminologies indifferently) based on a knowl-
edge base composed of definitions for 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛/2 and 𝑝𝑎𝑟𝑎𝑚/2,
the program creates lists of different questions, the uniqueness of
each generated question being guaranteed either by the fact that
it is built upon another 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛/2 clause, or because of its unique
parametrization. The question generation itself is handled by the
following predicate, that can be considered as Moulinog’s core
operation:

qu e s t i o n s (Ca tegory Id , Ques t i on s) :−
f i n d a l l (Q , qu e s t i o n (Category Id , Q) ,

Qu e s t i o n s P l a i n) ,
z i p _que s t i on s _w i t h_pa r ams (Que s t i on sP l a i n ,

Quest ionsWithParams) ,
p a r ame t r i z e (Quest ionsWithParams , Ques t i on s) .

Note the use of 𝑓 𝑖𝑛𝑑𝑎𝑙𝑙/3 dangerously allowing the number of
Prolog computations to explode. The choice was indeed made to
keep the high-level approach generic while allowing each instructor
to customize his or her questions as he/she pleases, hence this
potentially very broad search process in Moulinog’s core. This
particular insight will further be discussed in Section 4.

Note that 𝑧𝑖𝑝_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠_𝑤𝑖𝑡ℎ_𝑝𝑎𝑟𝑎𝑚𝑠/2 is a helper predicate
that fetches the identifiers of all parameters appearing in the ques-
tions. As for the 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑧𝑒/2 operation, it also makes use of
𝑓 𝑖𝑛𝑑𝑎𝑙𝑙/3 to get all possible parametrizations of each question, for
the same reason as 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠/2 does. In the process, a randomiza-
tion operation makes sure that the students are all given different
instantiations of questions for each category, at least if such an attri-
bution is possible. If, however, all the parametrized questions have
been distributed for a category, Moulinog reassembles the whole
pool of questions in that category and resumes the random draw-
ing for the students that are next in line, after having warned the
user of this overflow possibly causing multiple students to get the
same questions for that category. In most cases the risk of having
two students that have more than two identical questions remains
relatively low, given that all the question-picking operations are
achieved based on a random draw. It is furthermore unlikely that
several category pools happen to be exhausted simultaneously. Still
it is the instructor’s choice to either ensure an entirely distributed
assignment of the questions (by writing enough exercise and/or
parameter variations) or allow (partially) duplicated questionnaires
in the classroom.

2.3 Constraints
Questions can be parametrized with simple text variations as il-
lustrated above, or thanks to the use of more complex rules called
constraints. The constraints are a way of taking advantage of Pro-
log’s deduction mechanisms to generate more elaborate questions
that fit specific rules. The following code, for instance, shows a
question for which the parameter must be filled with a combina-
tion of bits that will allow the logical function that it represents to

Moulinog: A Generator of Random Student Assignments Written in Prolog PPDP ’20, September 8–10, 2020, Bologna, Italy

Figure 1: A complete workflow for randomly attributing student assignments

be, at least to some extent, simplifiable with the well-known Kar-
naugh map method [3]. Making use of Prolog’s in/out modes this
way saves the instructor from having to imagine many (more than
one hundred in the case studied in the following section) different
configurations of binary functions.

que s t i o n (karnaugh , ["Let us consider a binary

function F(A,B,C,D) that outputs 1 if and only

if it is given the following inputs: " ,
i npu t s , ". \r\nEstablish the truth table for F

, derive its Karnaugh map and , finally , draw

its minimal logic cicuit."]) .
param (karnaugh \ inpu t s , X) :−

b i n a r y _ f u n c t i o n (Va lues) ,
p o s s i b l e _k a rnaugh (Va lues) ,
v a l u e s _ t o _ s t r i n g (Values , X) .

b i n a r y _ f u n c t i o n ([]) .
b i n a r y _ f u n c t i o n ([f (A , B , C ,D) | Va lues]) :−

A i s random (2) , B i s random (2) , C i s random (2) ,
D i s random (2) ,

b i n a r y _ f u n c t i o n (Va lues) .
p o s s i b l e _k a rnaugh (Va lues) :−

s e l e c t (Value1 , Values , OtherVa lues) ,
member (Value2 , OtherVa lues) ,
o n e _ d i f f (Value1 , Va lue2) .

o n e _ d i f f (f (A1 , B1 , C1 , _) , f (A1 , B1 , C1 , _)) .
o n e _ d i f f (f (A1 , B1 , _ , D1) , f (A1 , B1 , _ , D1)) .
o n e _ d i f f (f (A1 , _ , C1 , D1) , f (A1 , _ , C1 , D1)) .
o n e _ d i f f (f (_ , B1 , C1 , D1) , f (_ , B1 , C1 , D1)) .
% . . .

In the above code, the parameter used in the 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛/2 clause
is defined as a binary function (being a set of 4-uples from {0, 1}4)
that is simplifiable by Karnaugh’s method (which is assessed in the
𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑘𝑎𝑟𝑛𝑎𝑢𝑔ℎ/1 predicate).

3 CASE STUDY: A COURSE OF COMPUTER
ARCHITECTURE

The code portions used as examples above are selected (and trans-
lated) parts of Moulinog’s parametrization for a course of computer
architecture given at the university of Namur (Belgium). The course
usually ends with a written exam of five exercises, each being re-
lated to a particular lesson. The course had to address the following
constraints:

• The terms of the evaluation had to be adapted so as to be
achieved remotely, while staying as close as possible to the
initially announced modalities (written exam, five questions,
four hours).

• No active anti-cheating measures could be taken (such as
e.g. webcam surveillance); but the cheating possibilities had
to be limited.

• All the 150+ students have to pass the test at the same time.
• The test cannot rely on the university servers for the whole
time of the exam. In fact, accesses to the servers have to be
kept to a minimum, to avoid connection hazards as much as
possible.

• The correction of the test should not be proportionally time
consuming with the number of different questionnaires; in
other word, correctors should not have too much additional
work than with a unique questionnaire.

The following workflow was then followed for this course:

(1) Get a list of students with their names and email addresses.
(2) Create a pool of parametric questions for each category.
(3) Add constraints over some of the parameters to ensure the

output’s fitness towards the learning outcomes (e.g. Kar-
naugh maps, consistent types of cache memory structures,
different yet consistent assembly code to analyse or produce).

(4) ExecuteMoulinog, yielding a shell script and a file containing
the individualized exercises.

PPDP ’20, September 8–10, 2020, Bologna, Italy Yernaux, Vanhoof & Schumacher

(5) Create a template document containing the exam instruc-
tions and structure.

(6) Thanks to amailing software, fill in the blanks of the template
document with the informations of the listing (name of the
student and parametrized questions), yielding one PDF per
student, saved as <STUDENT_NAME.pdf>.

(7) Execute the shell script in the folder containing all the PDF
documents, thereby enciphering each document with an
encryption algorithm and sending each PDF to its intended
recipient.

(8) At the beginning of the online test, publish the password
allowing to decipher the documents. Each student must then
produce and send (pictures of) his/her answer sheet on a
given institutional server.

The calibrating of the 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛/2 variations was done by the
instructors in such a way that two instances of a question were
sufficiently different to prevent the students from easy cheating
with each other’s help, while being equally difficult and relevant to
the course material to which it is related. Calibrating the questions
this way was a success in this use case (namely thanks to the many
examples of past exams where each time the same competences
were expected) but definitely constitutes one of the challenges of
writing questions. In fact, it is the same challenge that an instructor
usually faces when having to write different questionnaires for
different exam sessions of the same year.

Moreover, the questionnaires were designed in such a way that
there were differences between the students assessments, but also
such that the same core skills were required, so that the correc-
tors easily knew what they were looking for on the answer sheets.
Having a look at the questionnaire before correcting a student’s
answers was often enough to grasp the specificities that this partic-
ular student had to take into account in his answers. This is again
in relation with the calibration of the questions, which proved to
be central to a Moulinog use in practice.

This process fulfilled all the constraints outlined above, by mak-
ing the invention of an exam as simple as programming a few
predicates describing its exercises. Obviously, having to come up
with more than 150 different questions is harder than imagining one
and the same exam file distributed to all of the students, as is more
usual. But the time spent on building parametric questions that are
to be fed to Moulinog is well-spent time, given that there are now
enough different questionnaires to be used in several years to come
(considering that the future exams will be physically attended).

4 DISCUSSION: ADVANTAGES AND
CHALLENGES OF A PROLOG-BASED
ACADEMIC TOOL

Moulinog is a tool tailored to be quickly and easily usable in the
current COVID-19 circumstances. Although particularly useful for
remote evaluation practices, the concept of generating individual
assignments based on a knowledge base describing not only ques-
tion templates, but also the whole rationale behind a given course’s
logic, can readily be used in other cases as well, given that it is a way
of facilitating the redaction of questions or exercises statements –
one application of which being the visualization of all the possible
questions for a given course, not only constituting a database of

archive exam questions or exercises for the course, but also actu-
ally describing in a measurable way what is concretely expected
from students that pass the course. These side insights can e.g. help
instructors better dig into their success requirements and refine
their learning outcomes or even the way they give their lessons.

The generator is designed to be used by instructors that are not
necessarily familiar with Prolog, or any programming language
for that matter. Using a declarative language for this is a challenge,
but it has some advantages and Prolog has been advocated as an
excellent programming [6] and Artificial Intelligence [1] initiation.
In this first version of Moulinog, the choice of Prolog as a program-
ming language is also due to its straightforward handling, allowing
the pedagogic teams to readily write programs with almost no
prior Prolog knowledge (the sole necessary syntactic unit being the
clause) manipulating constraints fit for a given application domain,
while taking advantage of the powerful inference mechanisms that
are crucial to Moulinog. The most basic usage of Moulinog is indeed
straightforward: a text editor and a few statements encapsulated in
𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛/2 clauses allows for a ready-to-use, almost plug-and-play
generation of automatically attributed questions.

More advanced uses (e.g. writing constraints) can be seen as a
practical demonstration of the benefits of declarative programming:
few code lines producing qualitative results; describing the objec-
tives (through constraints over the question parameters) rather
than the algorithms required for the questions generation; but also
having to write the constraints in a manner to limit their compu-
tational complexity. Indeed, the presence of calls to 𝑓 𝑖𝑛𝑑𝑎𝑙𝑙/3 in
the core predicates of Moulinog puts in the instructor’s hand all
the responsibility of circumscribing the computations to be carried
out: should all results be found, or only a subset of them? How
to ensure that there are no duplicates in the parameters outputs?
These concerns actually match declarative programmers usual wor-
ries, while the benefits of using Moulinog are also typically those
of any such declarative system. Also note that having these details
handled in the writing of the constraints ensures that the tool offers
as much flexibility as possible to its users since they are the ones
defining the desired computation limits.

5 FINAL REMARKS AND FUTUREWORK
Moulinog’s core presented in this report constitutes a minimum
viable product of what can become a powerful tool for a pedagogic
team: indeed, many potential extension features jump to mind
when considering the tool’s uses. Some of them are already under
development for future exam sessions. Here is a non-exhaustive
list of future work to be done in order to let Moulinog become a
more complete and accessible tool:

• Adding support for some typical questions customization,
e.g. multiple choice questions, true or false statements, etc.

• Adding support for more elaborate parametrization: for in-
stance, allowing constraints to rule over more than one pa-
rameter (thereby expressing the link that exists between said
parameters), or only allowing certain combinations of pa-
rameters in a question (which can for now only be done by
writing more than one version of the question). In particular,
exploring and exploiting the possibilities of more elaborate

Moulinog: A Generator of Random Student Assignments Written in Prolog PPDP ’20, September 8–10, 2020, Bologna, Italy

Prolog techniques such as tree-based approaches (e.g. rep-
resenting a question as a tree with parameters as leaves) or
other useful extensions of the language might constitute a
promising lead in order to write more complex constraint
systems.

• Adding a user interface to list, edit, add and delete questions,
parameters and constraints. A simple higher-level interface,
possibly coupled with the use of existing tools, can facilitate
the use of Moulinog by people not familiar with Prolog or
even programming in general while still demonstrating to
these people the plus-value of using the Prolog inference
system rather than more classical programming approaches.

• Allowing Moulinog to run by itself, independently of a shell
script or text processing software. For instance, let students
draw lots in the questions pool during a live session.

In our experience, the use of Moulinog seems to have achieved
fairness towards other students, fairness towards other years exams
and fitness of the test for remote evaluation (based on informal data
collection on these levels). This is again thanks to the calibration
of Moulinog which output well-balanced questionnaires that were
still close enough to the previous years exams examples available
to the students. However, a formal and objective satisfaction survey
should in our opinion be carried out whenMoulinog achieves larger
adoption, in order to get statistically enlightening results.

In conclusion, despite its simplicity regarding some matters,
Moulinog has successfully been used already, allowing more than
150 students to pass an exam simultaneously and remotely while
keeping similar examination conditions as usual. The tool was used
by non-regular Prolog users to generate different assignments for
each student, so that no two students received the same question.
We believe that this is one of the many answers that academic staff
can give to the coronavirus disease. Many are indeed looking to
keep their business rolling peacefully while taking advantage of
the situation, e.g. by integrating innovative techniques into their
courses usual workflows. Other courses given at the university of
Namur – including a course on computer networks and another on
functional and logic programming – are scheduled to use Moulinog
as a questionnaire generator and are currently, in that purpose,
facing some new specific challenges, which are as many leads for
the extension and further enhancement of the system.

REFERENCES
[1] Paul Brna, Alan Bundy, Tony Dodd, Marc Eisenstadt, Chee Looi, Helen Pain, David

Robertson, Barbara Smith, and Maarten Someren. 1991. Prolog programming
techniques. Instructional Science 20 (01 1991), 111–133. https://doi.org/10.1007/
BF00120879

[2] Robert Connor Chick, Guy Travis Clifton, Kaitlin M. Peace, Brandon W. Propper,
Diane F. Hale, Adnan A. Alseidi, and Timothy J. Vreeland. 2020. Using Technology
to Maintain the Education of Residents During the COVID-19 Pandemic. Journal
of Surgical Education (2020). https://doi.org/10.1016/j.jsurg.2020.03.018

[3] M. Karnaugh. 1953. The map method for synthesis of combinational logic circuits.
Transactions of the American Institute of Electrical Engineers, Part I: Communication
and Electronics 72, 5 (1953), 593–599.

[4] Li Li, Qianghong Xv, and Jing Yan. 2020. COVID-19: the need for continuous
medical education and training. The Lancet Respiratory Medicine 8 (03 2020).
https://doi.org/10.1016/S2213-2600(20)30125-9

[5] Eric Liguori and Christoph Winkler. 2020. From Offline to Online: Challenges and
Opportunities for Entrepreneurship Education Following the COVID-19 Pandemic.
Entrepreneurship Education and Pedagogy (03 2020). https://doi.org/10.1177/
2515127420916738

[6] David B. Paradice. 1988. Prolog: A Language for Teaching Computer-
Based Business Problem Solving. Journal of Education for Business

63, 4 (1988), 184–187. https://doi.org/10.1080/08832323.1988.10117306
arXiv:https://doi.org/10.1080/08832323.1988.10117306

[7] Chuanyi Wang, Zhe Cheng, Xiao-Guang Yue, and Michael McAleer. 2020. Risk
Management of COVID-19 by Universities in China. Journal of Risk and Financial
Management 13 (02 2020), 36. https://doi.org/10.3390/jrfm13020036

https://doi.org/10.1007/BF00120879
https://doi.org/10.1007/BF00120879
https://doi.org/10.1016/j.jsurg.2020.03.018
https://doi.org/10.1016/S2213-2600(20)30125-9
https://doi.org/10.1177/2515127420916738
https://doi.org/10.1177/2515127420916738
https://doi.org/10.1080/08832323.1988.10117306
https://arxiv.org/abs/https://doi.org/10.1080/08832323.1988.10117306
https://doi.org/10.3390/jrfm13020036

