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Pharmacokinetic modeling and control design for drug dosing
by Pauline Thémans

Abstract: Pharmacokinetics (PK) is a field of clinical pharmacology that studies how a drug evolves in
the body after administration. Thanks to mathematical modeling, clinical pharmacology is an interesting
and promising field of application of control and system theory. We report on the population PK analysis
of three case study drugs: hydroxychloroquine in COVID-19 patients, and temocillin and meropenem in
patients with severe pneumonia. We developed data-driven models using a mixed-effects approach, mean-
ing that parameters are characterized by a fixed and a random component. We also describe the results of
internal and external validations that were performed. These systems are described by linear time-invariant
state-space representations. They turn out to be nonnegative and stable, as expected. From these models, the
aim is to provide methods for dosing rationale in patients (decision-making aid) based on relevant patient’s
characteristics (covariates) and on other practical conditions (target exposure for efficacy and pharmacody-
namic index, dosing interval, and duration of infusion). Our contributions in this field are the following.
(1) A deterministic input-output (I/O) analysis of the system leads to an open-loop control law that enables
the computation of an appropriate dosage for the average/nominal patient. This approach is then incor-
porated into the “worst-case” system based on the monotony of the state trajectories with respect to the
clearance. (2) The I/O analysis is used to heuristically design a feedback dosing strategy based on the esti-
mated state. (3) We finally describe an optimal control approach (minimum principle). This approach aims
at improving the drug dosing by optimizing a criterion under input and state constraints.

Modélisation pharmacocinétique et conception de lois de commande pour la posologie
par Pauline Thémans

Résumé : La pharmacocinétique est une discipline de la pharmacologie clinique qui étudie le devenir d’un
médicament dans l’organisme après administration. Grâce aux modèles mathématiques, la pharmacologie
clinique est un champ intéressant et prometteur d’application de la théorie des systèmes et du contrôle. Nous
présentons l’analyse pharmacocinétique de population de trois médicaments (cas d’étude) : l’hydroxychlo-
roquine chez des patients COVID-19, et la témocilline et le méropénème chez des patients atteints de
pneumonie sévère. Nous avons développé des modèles basés sur des données en utilisant une approche à
effets mixtes, ce qui signifie que les paramètres sont caractérisés par une composante fixe et une compo-
sante aléatoire. Nous décrivons également les résultats des validations internes et externes. Ces systèmes
sont décrits par des modèles d’état linéaires temps-invariants, qui s’avèrent être positifs et stables, comme
attendu. À partir de ces modèles, l’objectif est de fournir des méthodes d’ajustement posologique (aide à la
décision) en fonction des caractéristiques du patient (covariables) et d’autres conditions pratiques (concen-
tration cible et index pharmacodynamique, intervalle de dosage et durée de perfusion). Nos contributions
dans ce domaine sont les suivantes. (1) Une étude entrée/sorties du système conduit à une loi de contrôle en
boucle ouverte qui permet de calculer un dosage approprié pour le patient moyen/nominal. Cette approche
est ensuite incorporée dans le système du “pire des cas” basé sur la monotonie des trajectoires d’état par
rapport à la clairance. (2) L’analyse entrée/sorties est utilisée pour concevoir de manière heuristique une
stratégie de dosage par feedback de l’état estimé. (3) Nous décrivons également une approche de contrôle
optimal (principe du minimum). Cette approche vise à améliorer le dosage du médicament en optimisant
un critère sous des contraintes d’entrée et d’état.
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Department of Mathematics and Namur Institute for Complex Sytems (naXys)
Advisors (Promoteurs): Flora MUSUAMBA TSHINANU, Joseph WINKIN





Remerciements

À travers ces lignes, j’aimerais adresser mes plus sincères remerciements à tous ceux
sans qui ces six dernières années n’auraient pas été les mêmes, à tous ceux qui ont
contribué, de près ou de loin, à la réalisation et à la réussite de ma thèse de doctorat.

Mes premiers remerciements vont naturellement à mes promoteurs, Flora Mu-
suamba (AFMPS) et Joseph Winkin (UNamur). Merci pour votre aide considérable,
vos nombreux conseils, votre bienveillance et votre soutien. Flora, merci pour tout ce
que tu m’as appris depuis huit ans maintenant et pour la confiance que tu m’as ac-
cordée. Joseph, merci pour nos longues discussions, scientifiques et humaines, pour
ta positivité et ta passion des mathématiques. Merci à vous deux de m’avoir poussée
à dépasser mes limites, d’avoir cru en moi et de m’avoir toujours considérée comme
votre égale.

Je remercie les membres de mon comité d’accompagnement, Pierre Wallemacq
(UCLouvain) et Renaud Lambiotte (University of Oxford et UNamur), ainsi qu’Oscar
Della Pasqua (University College London) et Alexandre Mauroy (UNamur) d’avoir
accepté d’évaluer mon travail de thèse. Merci à vous pour vos questions, remarques et
suggestions de révision qui ont permis d’améliorer le manuscrit. Je remercie particu-
lièrement Alexandre d’avoir présidé le jury. Merci pour ton écoute et tes conseils.

Je tiens également à remercier tous nos coauteurs et collaborateurs qui nous ont
notamment fourni les données cliniques et pharmacocinétiques sans lesquelles cette
thèse n’aurait pas pu être possible. Merci en particulier à Clotilde Visée, à Nathalie
Layios et à Frédéric Frippiat pour nos nombreux échanges scientifiques.

Entreprendre une thèse, c’est aussi commencer une incroyable aventure humaine.
Merci à toutes les personnes rencontrées en conférences ou en summer school et à
mes acolytes du Benelux Meeting qui se reconnaîtront. Merci à tous les collègues,
académiques et scientifiques, avec qui j’ai fait un bout de chemin. Et merci à Pascale,
à Alice et à Juan de m’avoir soutenue dans les aspects administratifs et techniques,
mais surtout de faire du département un lieu de travail convivial et agréable. Merci
pour votre efficacité et votre disponibilité.

v



Réaliser une thèse en tant qu’assistante implique d’assurer des charges didactiques
en équipe. Et quelle équipe ! Merci à tous mes collègues scientifiques, anciens et ac-
tuels, et en particulier à ceux avec qui j’ai collaboré. Je remercie également les acadé-
miques avec qui j’ai directement travaillé et qui ont permis d’enrichir mon expérience
professionnelle.

Je tiens à remercier tout particulièrement Delphine et Eve-Aline de m’avoir ac-
cueillie avec enthousiasme dès mon arrivée en septembre 2015. Nos premières sorties
culturelles et festives n’auront pas tardées. Delphine, merci de m’avoir si bien ac-
compagnée et conseillée, et d’avoir fait de notre bureau un lieu de travail agréable et
efficace. Merci pour nos bavardages, au bureau et en dehors, et pour nos confidences.
Eve, merci pour notre belle complicité, pour ta bonne humeur et ton côté olé-olé, pour
tes conseils et ton soutien sans faille. Merci d’être disponible à toute heure du jour et
de la nuit. Merci à toutes les deux d’être des amies plus que des collègues.

Merci à mon grand frère scientifique, Jérémy, de jouer son rôle à merveille depuis
six ans. Merci au topo-mate qui m’a appris tellement dans mon métier d’assistante.
Merci au docteur de m’avoir fait partager son expérience, de m’avoir conseillée et
toujours soutenue. Merci surtout à l’ami pour son écoute et pour nos (trop) longues
heures de conversation.

J’adresse également un grand merci à Anthony qui a toujours répondu présent
quand j’avais besoin d’un coup de pouce ou d’une relecture. Merci pour nos dis-
cussions et pour ton aide précieuse. Merci aussi à Riccardo pour son soutien et sa
présence, particulièrement durant la dernière phase de ma rédaction.

Merci à Julien d’être mon collègue et ami depuis bientôt onze ans et d’être toujours
disponible quand j’ai besoin d’aide ou de conseils. Merci à Manon pour ses nombreux
encouragements et sa compagnie toujours agréable. Merci aussi à Mara d’avoir fait
un bout de chemin avec nous et d’avoir contribué à l’ambiance du premier étage par
sa bonne humeur. Merci à Ambi d’avoir partagé notre bureau avec enthousiasme et
optimisme. Merci à Nicolas et à Martin pour leur humour et leurs jeux de mots qui me
font tant rire, mais également pour leur aide quand j’ai besoin de compétences infor-
matiques ou statistiques. Merci à ma souriante copine d’analyse, Candy, notamment
pour nos rendez-vous hebdomadaires pendant cette année particulière.

Merci à mes colocataires pour les bons moments passés ensemble, et en particulier
à Marion de m’avoir fait partager son expérience d’infirmière sur l’administration du
méropénem. Merci à mes amis de l’unif qui se reconnaîtront pour avoir encore été à
mes côtés pendant ces six dernières années. Merci à Fanny pour notre belle amitié.
Merci pour ton soutien et tes visites à Namur qui m’ont permis de décompresser.

Enfin, merci à mes parents pour leur présence, leur générosité, leurs conseils pré-
cieux et leur patience. En particulier, merci de m’avoir supportée pendant ces derniers
mois. Merci à ma sœur et à mon beau-frère Quentin pour leur soutien. Merci Noémie
de partager tellement de choses avec moi depuis presque trente ans et d’être toujours
là pour moi.

À vous tous, merci ! Pauline

vi



Contents

List of abbreviations and notations 1

Introduction 5

I Pharmacokinetic modeling 15

1 Drug pharmacokinetics and mathematical modeling 17
1.1 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Individual pharmacokinetics . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Pharmacokinetic profile . . . . . . . . . . . . . . . . . . . . 21
1.2.2 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.3 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.4 Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Population pharmacokinetic modeling . . . . . . . . . . . . . . . . . 25
1.3.1 Structural model . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Pharmacokinetic parameters . . . . . . . . . . . . . . . . . . 30
1.3.3 System analysis . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.4 Mixed effects model and covariates . . . . . . . . . . . . . . 35
1.3.5 Residual error model . . . . . . . . . . . . . . . . . . . . . . 36
1.3.6 Bayes estimates . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.1 Parameter estimation method . . . . . . . . . . . . . . . . . . 37
1.4.2 Likelihood ratio test and covariate selection . . . . . . . . . . 39

1.5 Evaluation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.6 Physiologically based pharmacokinetic modeling . . . . . . . . . . . 45

vii



Contents

2 Population pharmacokinetic model of hydroxychloroquine in COVID-19
patients 47
2.1 Study design and data . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2 Population model building . . . . . . . . . . . . . . . . . . . . . . . 50
2.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Population pharmacokinetic model of temocillin in patients with pneumo-
nia 57
3.1 Study design and data . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Population model building . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Model internal validation . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Pharmacokinetic models of meropenem in patients with pneumonia 65
4.1 Patient data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Population model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Model building . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Physiologically based model . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 Structural model . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 System analysis . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.3 Model parameter estimation . . . . . . . . . . . . . . . . . . 80
4.3.4 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.5 Extrapolation in morbidly obese individuals . . . . . . . . . . 86

II Drug dosing 89

5 Simulations and probability of target attainment 91
5.1 Simulations: application to HCQ dosage . . . . . . . . . . . . . . . . 91
5.2 PTA-based method for AB dosing . . . . . . . . . . . . . . . . . . . 94

5.2.1 Time-dependent antibiotics . . . . . . . . . . . . . . . . . . . 94
5.2.2 PTA analysis: application to temocillin dosage . . . . . . . . 95

6 Open-loop control law 101
6.1 State-space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 Input function . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.1.2 Input-output analysis . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Dose selection for time-dependent AB . . . . . . . . . . . . . . . . . 108
6.2.1 Input-output formula . . . . . . . . . . . . . . . . . . . . . . 108
6.2.2 “Worst-case” analysis . . . . . . . . . . . . . . . . . . . . . 111
6.2.3 Drawbacks and advantages . . . . . . . . . . . . . . . . . . . 115
6.2.4 Application to meropenem dosage: a PTA-based comparison . 116

6.3 Therapeutic window . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.1 Input-output formula . . . . . . . . . . . . . . . . . . . . . . 117
6.3.2 Area under the concentration-time curve . . . . . . . . . . . . 117

viii



Contents

7 State estimation and feedback control law 121
7.1 Discrete-time state estimator . . . . . . . . . . . . . . . . . . . . . . 121
7.2 Dose adjustment: heuristic method . . . . . . . . . . . . . . . . . . . 123
7.3 Application to meropenem dosage . . . . . . . . . . . . . . . . . . . 126

8 Optimal control approach 129
8.1 Continuous-time finite-horizon setting . . . . . . . . . . . . . . . . . 129
8.2 Discrete-time setting . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2.1 Minimum principle . . . . . . . . . . . . . . . . . . . . . . . 132
8.2.2 Relaxed constraints . . . . . . . . . . . . . . . . . . . . . . . 138

8.3 Extension to the continuous-time setting . . . . . . . . . . . . . . . . 143
8.4 Further computational explorations . . . . . . . . . . . . . . . . . . . 152

Conclusion & perspectives 159

Appendices 163

A External evaluation of the models of meropenem: additional plots 165
A.1 Population model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.2 Physiologically based model . . . . . . . . . . . . . . . . . . . . . . 169

B Resolvant function of the PBPK model: symbolic computations 173

C Sensitivity analysis on the PBPK model of meropenem 177

D System response 181
D.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
D.2 Zero-state system response . . . . . . . . . . . . . . . . . . . . . . . 182
D.3 Asymptotic system response . . . . . . . . . . . . . . . . . . . . . . 185

E Sensitivity analysis on the popPK model of meropenem 187

Bibliography 191

ix



Contents

x



List of abbreviations and notations

Abbreviations
AB antibiotic
AUC area under the (concentration-time) curve
BAL bronchoalveolar lavage
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ClCR creatinine clearance
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ELF epithelial lining fluid
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IV intravenous
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MC Monte Carlo
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List of abbreviations and notations

PBPK physiologically based pharmacokinetic
PD pharmacodynamics
PI prediction interval
PK pharmacokinetics
popPK population pharmacokinetic
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resp. respectively
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Introduction

“Ce qui est simple est toujours faux. Ce qui ne l’est
pas est inutilisable.”

Paul Valéry

Pharmacokinetics (PK) is a field of clinical pharmacology that studies what hap-
pens to the drug following administration. In particular, pharmacokinetics describes
the processes of absorption, distribution, and elimination, that characterize the drug
exposure (concentrations) over time. PK modeling consists in developing mathemat-
ical models in order to quantify the interaction between dose and drug exposure. In
the framework we focus on, the systems are described by linear time-invariant (LTI)
state-space representations (see Figure I) given, for all t ≥ 0, by

ẋ(t) = Ax(t)+bu(t), y(t) =Cx(t) (I.1)

where x ∈ Rn and y ∈ Rp denote the state and output variables, respectively. The sys-
tem outputs correspond to the drug concentration in plasma and possibly at the site of
infection. The state matrix A ∈ Rn×n is a stable Metzler matrix (all its off-diagonal
elements are nonnegative), b ∈ Rn×1 is a nonnegative vector with one and only one
nonzero component, and C ∈ Rm×n is the output matrix that converts the state vector
x in concentrations. The input function u(·) is called the control variable. These mod-
els can then be used to predict concentration-time profiles, called pharmacokinetic
profiles.

Thanks to mathematical modeling, clinical pharmacology is an interesting and
promising field of application of systems and control theory. Famous examples re-
ported in the literature include automated anesthesia (Bailey and Haddad (2005)) and
the artificial pancreas designed to replace the natural blood sugar regulation in pa-
tients with diabetes (Haidar (2016), Sereno et al. (2018)). They involve closed-loop
control strategies to continuously adjust the dose of a drug. Controllers reported in
the literature include proportional-integral-derivative (PID) and adaptive model-based

5
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C
y

drug exposureẋ = Ax + bu
u

Figure I – State-space representation

controllers, see the book of Haddad et al. (2010)[Chapter 12] and references therein.
The adaptive control uses identification methods to estimate the (time-dependent) pa-
rameters specific to an individual patient. More recently, we can also identify other
control and systems approaches to pharmacology. To cite two of them, in Anelone
et al. (2020), authors report an impulsive control strategy with an integral action and
a state feedback control for oncolytic virus therapy, and, in Liparulo et al. (2020), a
model predictive control (MPC) framework is presented to design an optimal cancer
chemotherapy treatment.

In the second part of this work, we perform an input-output analysis and discuss
control methods for pharmacokinetic systems (I.1) whose input function is given by
a right-continuous piecewise constant function, in line with the administration of the
case study drugs. Indeed, in the first part, we present PK analyses of drugs given by
intermittent administration of a fixed dose at regular dosing intervals, particularly by
intravenous (IV) infusion. In the case of multiple dosing by oral or IV bolus adminis-
tration, the system input u is the null function and the control must be performed by
updating the initial condition. Results regarding the input-output relationship in that
particular case are provided in Koch (2012).

Currently, model-based antibiotic (AB) dosing is mostly guided by Monte Carlo
simulations and empirical comparison of successive dosing regimens at population
level. Comparison is performed through an analysis of the probabilities of target at-
tainment (PTA) (see, e.g., Usman et al. (2017) and Ikawa et al. (2010)). While a
population-based approach provides a one-fits-all dose, there has been an increasing
interest in the individualization of antibiotic dosing to ensure that concentrations for
clinical cure are achieved (see, e.g., Cotta et al. (2015)). Besides, in Heffernan et al.
(2018), authors advocate therapeutic drug monitoring (TDM) and AB dose individu-
alization to minimize resistance emergence.(1) Individual dosing is based, on the one
hand, on the patient characteristics that influence the pharmacokinetics of the drug of
interest and, on the other hand, on Bayes estimations using well-timed measured con-
centrations, called TDM concentrations; see, e.g. Sime et al. (2015) and Heffernan
et al. (2018). These relevant patient characteristics are called the model covariates.
Softwares for TDM-guided dosing emerged some year ago, as explained in Parker
et al. (2015).

In Dhaese et al. (2019), authors compare eight PK models of meropenem in criti-

(1)In this regard, it is crucial to quantify the link between drug exposure and resistance development (see,
e.g., Gould and MacKenzie (2002)).
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Context

cally ill patients. The predictive performances were evaluated on independent external
data collected in intensive care unit (ICU). The models, including parameter estimates
and retained covariates, differ across studies and therefore vary considerably in their
predictions. This study shows that a population pharmacokinetic (popPK) model must
be validated in the target population before using it for dose selection and dosing ad-
justment (therapeutic drug monitoring). The choice of a model should also be guided
by the safety of the drug. Indeed, for time-dependent AB without important toxicity
as meropenem, a model which under-predicts drug exposure should be favored.

This work aims to develop PK models and provide model-based methods for dos-
ing rationale (decision-making aid). These methods take into account the covariate (in
view of individualized dosing), as well as clinical or practical constraints such as the
target concentration for efficacy and the dosing interval. One important challenge is
how to take into account the random components included in PK models to describe
the interindividual variability (IIV) in parameters and drug concentrations (Figure II).

0 T

Figure II – Drug exposure over time with interindividual variability (∆, infusion du-
ration; T , length of the dosing interval)

Context
The development of PK models provides a basis to increase the understanding of drug
mechanisms and to improve dosing strategies. Hydroxychloroquine (HCQ) is an an-
timalarial drug known for its anti-inflammatory properties and showing good treat-
ment responses in autoimmune diseases, particularly systemic lupus erythematosus
(Lee et al. (2016)). This drug has been recommended in the Belgian protocol for the
COVID-19-disease at the very beginning of the sanitary crisis. A PK model is devel-
oped from observed concentrations in COVID-19 patients in Chapter 2. Apart from
this particular case study, the present thesis deals with antibiotics used in ICU to treat
critically ill patients with severe bacterial infection, including pneumonia. Pneumonia

7



Introduction

is still the main cause of infection-related mortality (Kiem and Schentag (2008)). En-
terobacteriaceae (Gram-negative bacteria) are responsible for numerous nosocomial
infections including hospital-acquired pneumonia (HAP), bloodstream infection and
urinary tract infection (Peleg and Hooper (2010)). To protect themselves from antibi-
otics, antimicrobials develop resistance mechanisms. Some Enterobacteriaceae pro-
duce extended-spectrum β -lactamases (ESBLs), that are enzymes able to inactivate
commonly used antibiotics such as penicillins. Carbapenems (class of antibiotics)
are usually chosen for treatment of severe infections due to ESBL-producing bacte-
ria. However, carbapenem-resistant Enterobacteriaceae (producing enzymes called
carbapenemases) are reported and the more this class of antibiotics is used, the more
the bacteria are susceptible to develop defense strategies, see, e.g., CDC (2019)(2) and
Rawat and Nair (2010). These infections are associated with extended hospital stays,
a high rate of mortality, and high costs.

Temocillin (penicillin) and meropenem (carbapenem) are β -lactamase-resistant
antibiotics, making them interesting drugs in the current area of increasing antimi-
crobial resistance. As all β -lactam antibiotics, they are time-dependent AB, meaning
that inhibitory activity and clinical outcome depend on the percentage of time that the
(free/unbound) drug concentration exceeds the bacteria minimal inhibitory concentra-
tion (MIC)(3) (%T>MIC) (Gonçalves-Pereira and Póvoa (2011), Chow et al. (2018)).
The latter is called the pharmacodynamics (PD) index. Increasing concentrations at
the site of infection much above the MIC should not improve the bactericidal effi-
cacy of the drug. According to Veiga and Paiva (2018), 50%T>MIC of the dosing
interval is usually needed to ensure AB efficacy, and therefore clinical outcome, but
100%T>MIC of the dosing interval should be ensured in immunosuppressed patients.
A PK/PD breakpoint is a PK/PD target associated with a high probability of success.

PK models of temocillin and meropenem developed in Chapters 3 and 4 are based
on measured systemic concentrations, but also on few concentrations sampled at the
site of infection. The site of infection is the thin layer of liquid lining the pulmonary
alveoli, called epithelial lining fluid (ELF). The pulmonary alveoli are cavities lo-
cated at the extremity of the respiratory tract where gas exchanges take place. The
antibiotics reach this site by passive diffusion through the alveolar capillary wall,
the interstitial space, and the alveolar epithelial cells (forming a wall called alveo-
lar epithelium), as illustrated in Figure III. As the pulmonary capillaries contain large
pores, diffusion of molecules from the bloodstream to the interstitial fluid is mainly
driven by the concentration gradient of the unbound drug. The extent of the diffusion
through the alveolar epithelium depends on the lipophilic and hydrophilic features of
the molecule. (Jager et al. (2019)).

When the bacterial infection occurs outside the blood, infection-site concentra-
tions are essential to improve drug dosing. In case of pulmonary infections, AB effi-
cacy depends on its concentration in ELF or in alveolar macrophages for extracellular
and intracellular pathogens, respectively. However, ELF concentrations measured by

(2)CDC stands Centers for Disease Control and Prevention, the national public health agency of the United
States.

(3)MIC is defined as “the lowest concentration of an antibiotic required to inhibit the growth of an organ-
ism.” [BSAC website].

8



Structure of the thesis

Figure III – Schematic diagram of the blood-alveolar barrier composed of two mem-
branes, the capillary wall and the alveolar wall, that are separated by a fluid-filled
interstitial space. Illustration taken from Kiem and Schentag (2008).

bronchoalveolar lavage (BAL) may produce biased data following technical errors
such as the contamination by cell lysis or the prolonged dwelling time of fluid during
BAL (Kiem and Schentag (2008), Jager et al. (2019)).

Adequate dosing is still a challenging issue in drug development, despite useful
and well-established tools. These methods are described and discussed in Musuamba
et al. (2017), following a workshop gathering modelers and pharmaceutical regulators
on dose finding. The available model-based strategies for AB dosing are empirical
techniques based on Monte Carlo simulations to identify clinical PK/PD breakpoints
for specific PD targets and modes of administration. This is illustrated in Chapter 5
(PTA analysis). While most publications mention “dosing optimization”, the meth-
ods used do not provide an optimal treatment from a mathematical point of view. In
Chapter 8, an optimal control approach is discussed, aiming at improving the drug
dosing by optimizing a well-defined criterion. This approach represents an important
clinical interest, as it could provide the minimal effective dose.

Structure of the thesis
The thesis is divided into two main parts and written to be understandable by an inter-
disciplinary audience.

The first part is devoted to pharmacokinetic modeling. After an introduction to
useful mathematical concepts and drug pharmacokinetics, Chapter 1 describes the
main features of the population models. Then, the process for model development,
from parameter estimation to internal and external validation, is detailed. Three case
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study drugs are presented in Chapters 2-4 :

hydroxychloroquine (oral administration), in COVID-19 patients;

temocillin (IV infusion), in ICU patients with nosocomial pneumonia;

meropenem (IV infusion), in ICU patients with nosocomial pneumonia.

The three cases were chronologically analyzed in the opposite order during my PhD
thesis, the meropenem was even already covered in my master’s thesis. The order of
the presentation is consistent with the following part.

The second part is about the model-based methods for dosing rationale. In Chap-
ter 5, PK simulations are illustrated with the HCQ model and the standard PTA-based
strategies is explained and exemplified on the temocillin model. Chapter 6 presents
an open-loop control, based on an input-output approach, and shows how it can be
incorporated into a worst-case analysis. This is then used in Chapter 7 to heuristi-
cally design a feedback dosing strategy. Finally, an optimal control approach for drug
dosing is discussed in Chapter 8. The theory developed in the last three chapters is
illustrated on numerical toy examples using the popPK model of meropenem.

Contributions
Thanks to fruitful collaborations (see co-authors of the publications listed below), our
contributions include the development of pharmacokinetic models from patient level
data, including observed concentrations and demographic information. A traditional
population model (“top-down”), whose structural model is a mammillary compart-
mental model, is reported for each case study drug - HCQ Chapter 2, temocillin
Chapter 3, and meropenem Chapter 4 - in a target population. A physiologically
based pharmacokinetic (PBPK) model has also been developed for meropenem. This
is a reduced PBPK “bottom-up” model in which some parameters are data-driven
(“middle-out” approach).

A comprehensive analysis of the input-output (I/O) relationship has been carried
out for a particular class of systems - including the PK systems described by a LTI
state-space representation (I.1) - and a particular form of the control function u, in line
with the drug administration (Figure IV), see Appendix D. This input-output analysis
has then been used to suggest an open-loop method for drug dosing, in the nominal
case as well as in the “worst case” to take IIV into account (Chapter 6). In particular,
we have deduced a formula, called I/O formula, which expresses the dose D needed
to achieve, at steady-state (i.e., asymptotically), 100%T>MIC assuming that, if the
model describes the infection-site concentrations, the drug of interest has no clinically
relevant time disconnect between systemic and infection-site concentrations. In this
open-loop control law, we consider only one degree of freedom (the dose). If other
aspects should be taken into account, e.g., prevention of risks of toxicity or reducing
the cost, the other input parameters, namely the infusion duration and/or the length
of the dosing interval, should also be fine-tuned. In Chapter 7, this I/O formula is
included in a feedback control, based on the estimated state.
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Figure IV – System input function (D, dose; ∆, infusion duration; T , length of the
dosing interval)

Finally, we have performed a systematic analysis to develop the minimum prin-
ciple for the optimal control (OC) problem which consists in minimizing the cost
functional

J(u) =
∫ t f

0
u2(t)dt

for the system dynamics

ẋ(t) = Ax(t)+bu(t)

under relaxed input constraints and pure state constrains. The input constraints are
said relaxed because there is no requirement for a constant infusion rate during the
administration intervals. We have first studied the discrete-time OC problem, in order
to guess the form of the continuous-time solution. This is reported in Chapter 8.

In short, we believe that the contributions of this thesis cover all the aspects of
a pharmacokinetic research question: we derived mathematical models from clinical
data and we designed personalized drug dosing strategies in line with the clinical
practice
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population model of hydroxychloroquine (DDMODEL00000322).

The NONMEM control stream of the ‘middle-out” physiologically based model of
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Any additional MATLAB and R scripts are available from the author on reasonable
request.

13

http://repository.ddmore.foundation/model/DDMODEL00000301
http://repository.ddmore.foundation/model/DDMODEL00000322


Introduction

14



Part I

Pharmacokinetic modeling

15





CHAPTER 1

Drug pharmacokinetics and mathematical modeling

This chapter intends to provide the reader with the basic concepts of pharmacokinetics
and modeling. Pharmacokinetics is a particular field of clinical pharmacology that
studies how a drug evolves after it is administrated to an organism. It aims to describe
the relationship between the dose of a drug administered to patients and the evolution
of drug exposure (concentrations) over time. Pharmacokinetic modeling consists in
quantifying the interaction between dose and drug exposure through the development
of mathematical models whose parameters are fitted to observed concentrations.

The most commonly used pharmacokinetic models are the population (“top-down”)
models and the physiologically based (“bottom-up”) models. While the “top-down”
approach is mostly informed by the data for parameter estimation (at population level),
the “bottom-up” approach is mostly informed by the mechanistic understanding (at in-
dividual level). Therefore, the parameters of a popPK model should be interpreted as
virtual volumes and rate constants, while the parameters of a PBPK model represent
real volumes and blood flows. In the framework we focus on, the systems are des-
cribed by linear time-invariant state-space representations with a limited number of
compartments, but one could increase in complexity (nonlinear absorption, nonlinear
elimination, time varying parameters...).

Before introducing the most important concepts of pharmacokinetics and model-
ing, we provide the reader with some mathematical preliminaries and notation con-
ventions.

1.1 Mathematical preliminaries
For any vector v ∈ Rl , v≥ 0 (resp. v≤ 0) means that all components of v are nonneg-
ative (resp. nonpositive), while v� 0 (resp. v� 0) means that all components of v

17



Chapter 1 Pharmacokinetics and modeling

are positive (resp. negative). The notation v > 0 (resp. v < 0) means that v≥ 0 (resp.
v≤ 0) and v 6= 0 (i.e., at least one component is nonzero). The nonnegative orthant of
Rn is the set denoted indifferently by Rn

+ or [0,∞)n and is defined by

Rn
+ := {x ∈ R |x≥ 0}.

Definition 1 A vector v (a matrix M, respectively) is said nonnegative if all its com-
ponents (elements, respectively) are nonnegative. It is denoted by v ≥ 0 (M ≥ 0,
respectively), in line with the previous notations.

In what follows, the conjugate and the real part of a complex number z are denoted
z̄ and Re(z), respectively. The conjugate transpose of a matrix M ∈ Cl×m is denoted
M∗. If M is a real matrix, M∗ = MT .

Definition 2 For a given matrix A ∈ Rn×n, the complex number λ ∈ C is an eigen-
value of A if det(λ I−A) = 0.

The set of eigenvalues of a matrix A ∈ Rn×n is denoted by σ(A). If λ ∈ σ(A), there
exists a non-zero vector v ∈Cn, called right eigenvector associated to λ , that satisfies

Av = λv.

Furthermore, since det(λ̄iI−AT ) = det(λiI−A), the conjugate λ̄ is an eigenvalue of
AT . Thus there exists a non-zero vector w ∈ Cn such that

AT w = λ̄w

w∗A = λw∗.

The vector w is called left eigenvector associated to λ .

Proposition 1.1.1 Let a matrix A ∈ Rn×n. For all λ ∈ σ(A) and t ≥ 0,

eAtv = eλ tv and eAT tw = eλ̄ tw (1.1.1)

where v and w are, respectively, the left and right eigenvectors associated to λ .

Proof. By definition, the exponential of A is given by

eAt =
∞

∑
k=0

tk

k!
Ak

such that

eAtv =
∞

∑
k=0

tk

k!
λ

kv = eλ tv

since v is a right eigenvector associated to λ . The second identity of (1.1.1) holds
since w is a right eigenvector of AT associated to λ̄ . �

18



1.1 Mathematical preliminaries

Definition 3 A matrix A ∈ Rn×n is said Metzler if all its off-diagonal elements are
nonnegative. Furthermore, A is compartmental if A is Metzler and ∑

n
i=1 ai j ≤ 0 for all

j ∈ {1, . . . ,n} (Haddad et al., 2010, Definition 2.10), where ai j denotes the element
(i, j) of A (element at the intersection of row i and column j) .

Proposition 1.1.2 Let A∈Rn×n. Then A is Metzler if and only if eAt ≥ 0 for all t ≥ 0.

Proof. see (Chellaboina et al., 2009, Proposition 2).

From now on, let consider a linear time-invariant state-space model
{

ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)

t ≥ 0 (1.1.2)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n.

Definition 4 The state-space representation (1.1.2) is a nonnegative system if, for all
nonnegative initial conditions (i.e., x(0)≥ 0) and for all nonnegative admissible input
functions u(.) (i.e., u(t)≥ 0 for all t ≥ 0), the state x(t) is nonnegative for all t ≥ 0.

Lemma 1.1.1 The state-space representation (1.1.2) is nonnegative if and only if A is
a Metzler matrix and B is nonnegative (B≥ 0).

Proof. see (Haddad et al., 2010, Proposition 4.1).

Definition 5 A zero-input state trajectory of the LTI differential system (1.1.2) is the
solution x(·) of a Cauchy problem ẋ=Ax, x(0) = x0 ∈Rn, and is given by x(t) = eAtx0,
for all t ≥ 0.

Proposition 1.1.3 If A is diagonalizable, the zero-input state trajectory associated to
the initial condition x0 ∈ Rn can be written as a linear combination of exponential
functions given by

x(t) =
n

∑
i=1

cieλitvi =
n

∑
i=1

< x0,wi > eλitvi (1.1.3)

where, for all i ∈ {1, . . . ,n}, λi ∈ σ(A), and vi and wi are the associated right and left
eigenvectors. The inner product is defined, for all x,y ∈ C, by

< x,y >= y∗x.

Proof. This proof is inspired by (Curtain and Zwart, 2020, Lemma 3.2.4). Since
A ∈ Rn×n is diagonalizable, there exists an inversible matrix V such that

A = V DV−1

where D := diag[λi] and V is the matrix formed by the right eigenvectors, i.e.,

V =
[
v1 . . . vn

]
.
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Let define

W :=
(
V−1)∗

For all i ∈ {1, . . . ,n}, the vector wi :=Wei denotes the ith column of W , i.e.,

W =
[
w1 . . . wn

]

where {ei : i ∈ n} is the canonical basis. On the one hand, for all i ∈ {1, . . . ,n}, wi is
the left eigenvector associated to λi. Indeed,

w∗i A = e∗i V−1A = e∗i V−1V DV−1 = e∗i DW ∗ = λiw∗i .

On the other hand, for any vector x ∈ Cn, V−1x is decomposed in the canonical basis
as

V−1x =
n

∑
i=1

<V−1x,ei > ei

such that

x =
n

∑
i=1

<V−1x,ei >Vei =
n

∑
i=1

< x,
(
V−1)∗ ei >Vei =

n

∑
i=1

< x,wi > vi

In particular, for all t ≥ 0,

x(t) = eAtx0 =
n

∑
i=1

< eAtx0,wi > vi =
n

∑
i=1

< x0,eAT twi > vi =
n

∑
i=1

< x0,wi > eλitvi

using Proposition 1.1.1. �

Remark 1 The sets {vi : i ∈ n} and {wi : i ∈ n} of the right and left eigenvectors,
respectively, are biorthogonal: for all i, j ∈ {1, . . . ,n},

< vi,w j >=<Vei,
(
V−1)∗ e j >=< ei,e j >= δi j.

Definition 6 The exponential functions eλi·vi, where λi ∈σ(A) and vi is the associated
eigenvector, are called the modes of the uncontrolled system ẋ = Ax.

Definition 7 The zero-input system response is the term of y(·) =Cx(·) correspond-
ing to u(.)≡ 0. In fact, the system response is given, for all t ≥ 0, by

y(t) =Cx(t) = CeAtx0︸ ︷︷ ︸
zero-input response

+
∫ t

0
CeA(t−τ)Bu(τ)dτ

︸ ︷︷ ︸
zero-state response

The system response y(·) is indifferently called the output trajectory. Each component
y j(·) of the output trajectory is a linear combination of the components of the state
trajectory.
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1.2 Individual pharmacokinetics

Definition 8 The state-space representation (1.1.2) is said internally stable if there
exist M > 0 and σ > 0 such that, for all t ≥ 0,

‖eAt‖ ≤Me−σt . (1.1.4)

Equivalently, whatever the initial condition x0, the zero-input state trajectory verifies,
for all t ≥ 0,

‖x(t)‖ ≤Me−σt‖x0‖
and thus converges towards 0 ∈ Rn when t→ 0.

Definition 9 A matrix A ∈ Rn×n which satisfies (1.1.4) is said asymptotically stable.

A matrix A is asymptotically stable if and only if all its eigenvalues have negative real
part, i.e., for all λ ∈ σ(A), Re(λ )< 0.

Lemma 1.1.2 Let A be a Metzler matrix. Then the two following statements are
equivalent:

1. A is asymptotically stable

2. there exists µ >> 0 such that AT µ << 0.

Proof. see (Chellaboina et al., 2009, Proposition 7).

The following result is taken from (Horn and Johnson, 1985, Theorem 8.3.1)

Proposition 1.1.4 (Perron-Frobenius) If A is a Metzler matrix, then the spectral
abscissa µ(A) := max{Re(λ ) : λ ∈ σ(A)} is an eigenvalue of A associated with a
nonnegative eigenvector, i.e., there exists x > 0 such that Ax = µ(A)x. This eigenvalue
is called Frobenius eigenvalue and is denoted by λF .

1.2 Individual pharmacokinetics
The pharmacokinetics of a drug is characterized by different phases: absorption,
distribution and elimination (including metabolism and excretion). This is gener-
ally denoted by ADME. The writing of this section is mainly based on the book of
Rowland and Tozer (2011).

1.2.1 Pharmacokinetic profile
The pharmacokinetic profile, also called concentration-time profile, is the evolution
of the drug concentration with respect to time, due to the processes of administration,
absorption, distribution, and elimination. It is known in the pharmacology literature
that, with repeated drug administration, the concentration eventually reaches a so-
called plateau, or steady state, where the concentrations at the beginning and at the
end of the dosing interval are equal (as illustrated in figures 1.1 and 1.2 for a typical
concentration-time profile).
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0 T

Figure 1.1 – Hypothetical concentration-time curve following a repeated intravenous
administration (∆, infusion duration; T , length of the dosing interval)

0 T

Figure 1.2 – Hypothetical steady-state concentration-time curve (log scale) following
a repeated intravenous administration (∆, infusion duration; T , length of the dosing
interval)
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1.2.2 Absorption
Absorption is the process by which the drug passes from the site of administration to
the site of measurement (blood or plasma). It is considered in the case of extravascular
routes of administration (e.g., oral administration). This process can be quantified by
the PK parameter of bioavailability. Bioavailability is defined as the fraction of the
administrated dose that reaches the systemic circulation.

The cardiovascular circulation has two components: the systemic circulation and
the pulmonary circulation. The pulmonary circulation carries the deoxygenated blood
(venous blood) from the heart to the lungs via the pulmonary artery. In the lungs,
carbon dioxide is released from the blood anf oxygen is absorbed. The oxygenated
blood (arterial blood) returns to the heart via the pulmonary vein. Then, the systemic
circulation carries the oxygenated blood via the aorta to the rest of the body and then
returns the oxygen-depleted blood back to the heart. Oxygen and nutriments diffuse
through the blood vessel layers and are transported to the target cells via the interstitial
fluid (Tortora and Derrikson (2007)). As illustrated in Figure 1.3, the liver is not only
supplied by the hepatic artery, but also by the so-called portal vein, which is the blood
vessel that carries the blood from the gastrointestinal tract, pancreas and spleen to the
liver. The liver receives oxygen-rich blood via the hepatic artery and deoxygenated
but nutrient-rich blood via the portal system.

Figure 1.3 – Blood circulation. Red, arterial blood; blue, venous blood. Illustration
taken from Tortora and Derrikson (2007).

After extravascular administration, a drug may suffer losses by decomposition or
metabolism before reaching the systemic circulation. With oral administration, the
main sites of loss are the gastrointestinal tract (stomach and intestines) and the liver.
The loss of drug during its first passage through these tissues is called first-pass loss.
First-pass loss is obviously not restricted to oral administration. But, as the pulmonary
first-pass loss is rare, the intra-arterial and intravenous administrations are indiffer-
ently referred to as the intravascular or intravenous route (denoted by IV infusion).
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1.2.3 Distribution
Distribution is the process by which the (free) drug is distributed to the fluids, tissues
and organs. This transfer is reversible. In the body a fraction of the drug is protein-
bound. Only the unbound drug is able to diffuse through the vessel and tissue layers.
As the free fraction is eliminated or diffused to the tissue, a part of the bound drug
becomes free. Protein binding is rapid such that the two forms are assumed to be at
equilibrium at all times.

Most drugs are transported by passive diffusion, but other transport processes exist
(see Rowland and Tozer (2011)). Passive diffusion is the process by which the drug
moves from the most concentrated site to the least concentrated one. Passive diffusion
depends on various factors including the drug permeability, the surface, and the gra-
dient of concentrations. It can also be influenced by the severity of the illness (Jager
et al. (2019)). Lipophilicity (solubility in lipids) and small size of a drug improve its
permeability, and thus facilitates its passage across a membrane.

At distribution equilibrium, there exists a constant ratio Kt between plasma and tis-
sue concentrations, called tissue-to-plasma partition coefficient, or penetration ratio:

Kt :=
ct

cp
(1.2.1)

where cp and ct stand, respectively, for plasma and tissue drug concentrations. This is
illustrated in Figure 1.4

C
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ce
nt

ra
tio

n

(a) (b)

Figure 1.4 – (a) Hypothetical PK profiles after intravenous administration. Red,
plasma concentration; blue tissue concentration. (b) Ratio of tissue to plasma concen-
trations. Continuous curves, intermittent administration; dashed curves, continuous
administration.

The volume of distribution is the PK parameter that quantifies the amount of drug
distributed in the organs and tissues, by relating the drug concentration in the site
of measurement (usually plasma) to the amount of drug in the body. The volume of
distribution V is then defined by the ratio between the total amount of drug in the body
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and the (equilibrium) plasma drug concentration:

V :=
A
cp

=
Ap +At

cp

where A, Ap, and At are the amounts of drug in the body, in the plasma and in the
tissues and organs, respectively, and cp is the plasma drug concentration. This volume
is not a physical one, but a apparent one, and corresponds thus to the virtual volume
into which the drug should be distributed to account for the total amount of drug in
the body if its concentration was everywhere equal to that measured in plasma.

1.2.4 Elimination
Elimination incorporates all the processes by which the drug is eliminated from an
organism. The main routes of elimination are the kidneys (by renal excretion) and the
liver (by hepatic metabolism and biliary excretion). The notion of clearance is used
to quantify the elimination processes. Clearance is defined as the virtual volume of
plasma cleared of drug per time unit. A distinction can be made between renal and
hepatic clearances:

CL =CLR +CLH

where CL, CLR and CLH denote the total, renal and hepatic clearances, respectively.

1.3 Population pharmacokinetic modeling
A population pharmacokinetic model aims to describe the PK of a drug of interest
at population level, accounting for different sources of variability in drug concentra-
tions. Mammillary compartmental models are the standard structural models in this
field. Here, we detail two routes of administration: the intravenous and oral admin-
istrations. For IV administration, the site of administration is the plasma. For oral
administration, we need to add a so-called depot compartment. The oral absorption
and the elimination are assumed to be first-order reactions.

1.3.1 Structural model
This section is partly inspired by the PhD thesis Koch (2012). We use a pedagogical
approach by progressively increasing the number of compartments.

1.3.1.1 One-compartment model

In a one-compartment model, the organism is assumed kinetically homogeneous: the
drug is instantaneously distributed to tissues and organs and the distribution equi-
librium is immediately reached for each tissue. This does not mean that the tissue
concentrations are equal to the plasma concentration.

Let x1 be the total amount of drug in the body. The evolution of the drug is de-
scribed by the following state-space representations:
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with IV bolus injection,

ẋ1(t) =−kex1(t), x1(0) = D

where D is the administrated dose,

with IV infusion,

ẋ1(t) =−kex1(t)+u(t), x1(0) = 0

where the input function u(·) corresponds to the rate of infusion of the drug, and

with oral administration,
{

ẋ1(t) =−kex1(t)+ kax2(t), x1(0) = 0
ẋ2(t) =−kax2(t), x2(0) = F ·D

where ka is the first-order absorption rate constant, 0 < F ≤ 1 denotes the
bioavailability, and x2 is the virtual amount of drug in the additional depot com-
partment.

In all three cases, ke is the first-order elimination rate constant. These one-compartment
models are represented in Figure 1.5.

ke

x1

CENTRAL
V

u

(a) Intravenous administration

ka

ke

x1

x2

CENTRAL

V

DEPOT
DOSE

(b) Oral administration

Figure 1.5 – Schematic representations of one-compartment pharmacokinetic models.
ka, absorption rate constant; V , volume of distribution; ke, elimination rate constant.

1.3.1.2 Two-compartment model

In a two-compartment model, the organism is divided in two compartments that are
kinetically homogeneous. The first compartment, called central compartment, is iden-
tified with the plasma, or the blood, and the well-perfused organs, such as the kidneys,
the liver, the lungs, etc. The second compartment, called peripheral compartment,
corresponds to the rest of the body, not heavily-supplied with blood. Since excretion
and metabolism occur mainly via the kidneys and in the liver, respectively, the drug
elimination takes place from the central compartment.
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1.3 Population pharmacokinetic modeling

Let x1 and x2 be the virtual amounts of drug in the central and peripheral com-
partments, respectively. The evolution of the drug is described by the following state-
space representations:

with IV bolus injection,
{

ẋ1 =−k10x1(t)− k12x1(t)+ k21x2(t), x1(0) = D
ẋ2 = k12x1(t)− k21x2(t), x2(0) = 0

(1.3.1)

where D is the administrated dose,

with IV infusion,
{

ẋ1 =−k10x1(t)− k12x1(t)+ k21x2(t)+u(t), x1(0) = 0
ẋ2 = k12x1(t)− k21x2(t), x2(0) = 0

(1.3.2)

where the input function u(·) corresponds to the rate of infusion of the drug, and

with oral administration,




ẋ1(t) =−k10x1(t)− k12x1(t)+ k21x2(t)+ kax3(t), x1(0) = 0
ẋ2(t) = k12x1(t)− k21x2(t), x2(0) = 0
ẋ3(t) =−kax3(t), x3(0) = F ·D

(1.3.3)

where ka is the first-order absorption rate constant, 0 < F ≤ 1 denotes the
bioavailability, and x3 is the virtual amount of drug in the additional depot com-
partment.

In all three cases, k12 and k21 are the distribution rate constants and k10 is the first-order
elimination rate constant. Using the matrix notation

ẋ(t) = Ax(t)+bu(t), x(0) = x0

where x =
(
x1 x2 x3

)T , the state matrix of the systems (1.3.1)-(1.3.3) is given by

A =



−k10− k12 k21 ka

k12 −k21 0
0 0 −ka


 (1.3.4)

where ka ≡ 0 with IV administration (bolus or infusion). Besides, b ≡ 0 with bolus
and oral administrations. These two-compartment models are represented in Figure
1.6.

Remark 2 The eigenvalues of A are real. Indeed, two of them coincide with the
eigenvalues of the submatrix

Ã =

(
−k10− k12 k21

k12 −k21

)
.

Since Ã is Metzler, the mostright eigenvalue of Ã is real by Proposition 1.1.4. The
second eigenvalue is therefore also real. The third eigenvalues of A is obviously ka.
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Figure 1.6 – Schematic representation of two-compartment pharmacokinetic models.
ka, absorption rate constant; V1, volume of distribution of the central compartment;
k12 and k21, distribution rate constants; V2, volume of distribution of the peripheral
compartment; k10, elimination rate constant.

Let λ1 and λ2 be the eigenvalues of Ã. In Koch (2012), the analytical solution
of the state trajectory x1(·) of a two-compartment model with bolus IV injection is
calculated using the Laplace transform and is given, for all t ≥ 0, by

x1(t) =
(x0)1(k21 +λ1)

λ1−λ2
eλ1t +

(x0)1(k21 +λ2)

λ2−λ1
eλ2t

where

λ1,λ2 =
−(k10 + k12 + k21)±

√
(k10 + k12 + k21)2−4k10k21

2
The solution of the state trajectory x1(·) following an oral administration is also pro-
vided in Koch (2012).

1.3.1.3 n-dimensional compartmental model

In this paragraph, we unify in one general n-dimensional system the models describ-
ing the evolution of the drug with the different routes of administration. Such models
consist in one central compartment and n− 1 peripheral compartments. Drug is ad-
ministrated into either the central compartment or an additional depot compartment.
Then, substance exchange takes place between the central and the peripheral compart-
ments (see Figure 1.7). The central compartment is identified with the plasma and the
tissues/organs with which drug distribution is extremely fast. The elimination organs
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1.3 Population pharmacokinetic modeling

are included in the central compartment. The peripheral compartments are identified
with the tissues into which the drug distributes more slowly. Tissues for which the
times to reach distribution equilibrium are similar are lumped together to form a vir-
tual compartment (distribution is slower in the compartment 3 than in the compartment
2, and so on). Drug elimination occurs exclusively from the central compartment.

Absorption, transfer and elimination processes are usually supposed to be first-
order reactions, meaning that the rate of reaction is proportional to the amount of drug.
They are characterized by (positive) rate constants k•. These constants represent the
fraction of drug which moves from one compartment to another or to external envi-
ronment per time unit. Relationships with the PK notions of volume of distribution
and clearance are detailed in Paragraph 1.3.2.

Peripheral
compart. 2

Peripheral
compart. 3

Peripheral
compart. n

Central
compart. 1

k10

k21

k12

k31k13
k1n kn1

Figure 1.7 – A general n-compartment mammillary model

A n-compartment pharmacokinetic model is described by the following LTI state-
space representation:

{
ẋ(t) = Ax(t)+bu(t), x(0) = x0

y(t) =Cx(t)
t ≥ 0 (1.3.5)

where

A =




−k10−
n

∑
j=2

k1 j k21 k31 · · · · · · kn1 ka

k12 −k21 0 0 · · · 0 0

k13 0 −k31 0 · · ·
...

...
...

... 0
. . . . . .

...
...

...
...

...
. . . . . . 0

...
k1n 0 0 · · · 0 −kn1 0
0 · · · · · · · · · · · · · · · −ka




(1.3.6)
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and

b =
(
1 0 · · · 0

)T
, C =

(
1/S1 0 0 · · · 0

0 1/S2 0 · · · 0

)
. (1.3.7)

The absorption rate constant ka ≡ 0 with IV administration (bolus or infusion). The
initial condition is given by

x0 =
(
D 0 · · · 0

)T or x0 =
(
0 · · · F ·D

)T

for bolus injection and oral administration, respectively, where 0 < F ≤ 1 corresponds
to the bioavailability and D is the given dose [g]. The input function u(·) is either the
null function, or a piecewise constant function that corresponds to the drug infusion
rate [g/h] into the blood.

The parameters ka and ki j [h−1] are the first-order rate constants and are positive
real numbers. Clearly, the matrix A ∈ Rn×n is compartmental (see Definition 3). The
state vector x =

(
x1 x2 x3 · · · xn

)T ∈ Rn represents the virtual amount of drug
[g] in each compartment. Without loss of generality, x1 and x2 correspond to the
plasma and the site of infection, respectively. The output vector y =

(
y1 y2

)T ∈ R2

represents the drug concentrations [mg/L] in the plasma and at the site of infection.
For all j ∈ {1,2}, S j is a scaling factor used to convert a virtual amount of drug [g] in
a concentration whose unit is consistent with the observations, e.g., [mg/L] (see Owen
and Fiedler-Kelly (2014)). Note that the concentrations at the site of infection are
not always described by the model. That depends on the available data to adequately
estimate the values of the related parameters (S2,V2...). In that case, the matrix C
becomes C =

(
1/S1 0 · · · 0

)
. When designing a feedback control law for drug

dosing, we have to keep in mind that the site of measurement is almost always the
plasma (or whole blood), while the controlled/regulated output is either y1 or y2 (see
Chapter 7).

1.3.2 Pharmacokinetic parameters
The volume of distribution (V [L]) is, by definition, the apparent volume in which the
drug is distributed to account for the plasma concentration, i.e.,

V =
x1 + x2 + · · ·+ xn

cp

where cp [g/L] is the (unscaled) plasma concentration. The volume of distribution is
therefore made of several volumes

V =V1 +V2 + · · ·+Vn, where V1 =
x1

cp
,V2 =

x2

cp
, . . . ,Vn =

xn

cp

where V1 is the virtual volume of the first/central compartment, V2 is the virtual volume
of the second compartment, and so on. They are apparent volumes into which the drug
would be distributed if the concentration in the compartment was equal to the plasma
concentration cp. Scaling factors S j are scaled volumes of distribution

S j =
Vj

usv j
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1.3 Population pharmacokinetic modeling

where usv stands for unitless scalar value. They are used to convert amounts in con-
centrations (e.g., if concentrations are in mg/L and dose in g, S1 = V1/1000 would
permit V1 to be reported in L). Observe that, at distribution equilibrium,

y2 =
x2

S2
=

x2

V2
usv2 = cp ·usv2 =

y1

usv1
usv2

such that the ration usv2/usv1 is interpreted as the constant ratio Kt between tissue and
plasma concentrations (tissue-to-plasma penetration ratio), i.e.,

Kt =
usv2

usv1
. (1.3.8)

It expresses the degree of drug distribution into the tissue (Jager et al. (2019)). An
estimated unitless scalar usv2 does not seem to be primarily used in tissue penetra-
tion studies. Instead, Monte Carlo simulations are commonly performed to estimate,
at population level, the ratio between the areas under the steady-state concentration-
time curves (AUCs),(1)see, e.g., Lodise et al. (2011), Frippiat et al. (2015), or even as
carried out in N. Layios, C. Visée, P. Thémans, et al. (2021, submitted).

The (systemic) clearance (CL [L/h]) is, by definition, the virtual volume of plasma
cleared of drug per time unit, so that

CL = k10V1.

Likewise, the intercompartmental clearance (Q1i and Qi1, i ∈ {2,3, . . . ,n}, [L/h]) is
defined as the virtual volume of distribution released of drug to the linked compart-
ment per time unit, so that

Q1i = k1iV1 and Qi1 = ki1Vi.

At distribution equilibrium, the same amount of drug goes from the central to the
peripheral compartment and from the peripheral to the central compartment, i.e.,

k1ix1 = ki1xi

or, equivalently,
Q1i = Qi1 =: Qi.

1.3.3 System analysis
As the state components of (1.3.5) represent amounts of drug, it is expected that the
state trajectories stay in the nonnegative orthant of Rn for all nonnegative initial condi-
tions and nonnegative admissible input functions. Besides, since the drug is eliminated
by the organism, the internal stability is also expected. The latter translates the fact
that the state components of the uncontrolled system converge to 0. These properties
of the system are stated in the propositions below.

(1)See Identity (6.3.2) on Page 119.
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Proposition 1.3.1 The PK system given by (1.3.5)-(1.3.7) is nonnegative.

Proof. This is a direct consequence of Lemma 1.1.1, since A is a Metzler matrix and
b is a nonnegative matrix. �

Proposition 1.3.2 The PK system given by (1.3.5)-(1.3.6) is internally (expo-
nentially) stable.

Proof. Any vector µ =
(
µ1 µ2 µ3 · · · µn µa

)T � 0 such that µ1 < µa,

µ2 = µ3 = · · ·= µn > 0,

and kµ2 < µ1 < µ2, where

k :=
k12 + k13 + · · ·k1n

k10 + k12 + k13 + · · ·k1n
∈ (0,1),

verifies AT µ � 0. The conclusion follows by Lemma 1.1.2. �

A Lyapunov function of this internally stable system is given, for all x ∈ [0,∞)n,
by

V (x) = µ
T x

where the vector µ is a positive vector as determined in the previous proof. This
function can be interpreted as the weighted total mass of the system. We directly have
that V (0) = 0 and V (x) > 0 for all x ∈ [0,∞)n\{0}. The derivative of V (x) along the
zero-input state trajectories is given by

V̇ (x) = µ
T Ax = (AT

µ)T x.

Since µ is such that AT µ � 0, V̇ (x) < 0 for all x ∈ [0,∞)n\{0} (Chellaboina et al.,
2009, Proposition 7).

Since A is asymptotically stable, all its eigenvalues λi are in the left half-plane;
thus, each mode of the system eλi·vi converges towards 0. The dominant mode is
the slowest mode, associated to the mostright eigenvalue. By Proposition 1.1.4, the
mostright eigenvalue of the state matrix (1.3.6) is real. The dominant mode is therefore
the real exponential function eλF ·vF , where vF > 0 is the right eigenvector associated
to the Frobenius eigenvalue λF . Its absolute value |λF | corresponds to the decreasing
rate of the terminal zero-input state and output trajectories subject to exponential de-
cay. The quantity τ := |1/λF | is called the (terminal) time constant or mean lifetime.
After a period of one time constant, the dominant mode is reduced to ±37% of its ini-
tial value (eλF τ = e−1 = 0.367...). A more widespread parameter used to quantify the
exponential decay is the (elimination) half-life, see, e.g., Toutain and Bousquet-Mélou
(2004) and Gidal et al. (2017). Elimination half-life is defined as the time required for
the drug concentration to reduce by half during the terminal phase and is denoted by
t1/2:

eλF t1/2 =
1
2
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1.3 Population pharmacokinetic modeling

t1/2 =
ln(2)
|λF |

= τ ln(2)

In the case of a one-compartment model,

t1/2 =
ln(2)

ke
=

V
CL

ln(2)

is also the effective half-live since x(t) = eλF tx0, for all t ≥ 0.
Figure 1.8 shows the influence of the PK parameters on the Frobenius eigenvalue.

We can observe that the Frobenius eigenvalue is mostly influenced by the clearance,
and seems not be affected by the volume of distribution.
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Figure 1.8 – Frobenius eigenvalue vs. (a) clearance and (b) central volume of dis-
tribution, using the popPK model developed for meropenem in Chapter 4. Squares
correspond to the 60 patients included in the model building dataset. Red lines are
linear regression lines.(2)

In what follows, the right eigenvectors of the state matrix (1.3.6) are assumed to
be normalized, i.e., for all i ∈ {1, . . . ,n}, ‖vi‖= 1. The right and left eigenvectors are
biorthogonal, i.e., for all i, j ∈ {1, . . . ,n}, < vi,w j >= δi j (see Remark 1).

Proposition 1.3.3 Consider the PK system given by (1.3.5)-(1.3.6) with an ini-
tial condition x0. Then, for all t ≥ t∗ where

t∗ [h] =

ln(0.01)− ln

(
n

∑
i=1
‖wi‖

)

λF
≥ 0, (1.3.9)

the zero-input state trajectory is reduced to 1% of its initial value, i.e.,

‖x(t)‖ ≤ 0.01‖x0‖.

(2)The regression has been performed using the polyfit function of MATLAB.
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Proof. From (1.1.3), we have, for all t ≥ 0,

‖x(t)‖ ≤ eλF t
n

∑
i=1
|ci|‖vi‖= eλF t

n

∑
i=1
|ci|

By the Cauchy-Schwarz inequality,

|ci|= |< wi,x0 > | ≤ ‖wi‖‖x0‖,

for all i ∈ {1, . . . ,n}. Therefore,

n

∑
i=1
|ci| ≤

n

∑
i=1
‖wi‖‖x0‖

and thus

‖x(t)‖ ≤ eλF t
n

∑
i=1
‖wi‖‖x0‖ (1.3.10)

≤ 0.01‖x0‖

for all t ≥ t∗. �

Since the observed concentrations seem to be accurate at the most to the hundredth,
we can reasonably assume that the zero-input state trajectory has fallen to zero when
it reaches 1% of its initial value. The time t∗ in (1.3.9) could be approximated by the
time t required for the dominant mode to be reduced to 1% of its initial value:

eλF t = 0.01

t =
ln(0.01)

λF
=− ln(0.01)

ln(2)
t1/2 ' 6.64 · t1/2.

This is equivalent to assuming that

n

∑
i=1
‖wi‖= 1.

Evaluating (1.3.10) at t = 0 yields

n

∑
i=1
‖wi‖ ≥ 1.

Hence, for all t ≥ 0,

eλF t ≤ eλF t
n

∑
i=1
‖wi‖;

thus, 6.64 · t1/2 is an underestimation of t∗ and the smaller the sum of the norms of
the left eigenvectors is, the better the approximation is.
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1.3 Population pharmacokinetic modeling

1.3.4 Mixed effects model and covariates
Random effects are added to the structural model parameters in order to describe
the interindividual variability observed in concentrations. The PK parameters in the
population of interest are therefore characterized by a fixed-effect component and a
random-effect component (Bauer (2019a), Nguyen et al. (2017), Owen and Fiedler-
Kelly (2014)). Interindividual variability is also called between-subject or intersub-
ject variability. The IIV can partly be explained by the patient’s characteristics (co-
variates). The remaining variability is said to be unexplained and is modeled using
random variables.

Deviation of the PK parameters from the nominal/central value is assumed to be
normally distributed with zero mean. The normal random variable is most often in-
cluded into an exponential model to ensure that the individual’s parameter value is
positive, whatever the realization of the random variable (Bauer (2019a)). If P de-
notes a PK parameter, the individual’s parameter value is given by

P = TV P · exp(ηP) (1.3.11)

where TV P is the individual typical value (fixed effect) and ηP is a normal random
variable ∼ N(0,ω2

P) (random effect). The individual parameter P is therefore log-
normally distributed, with parameters ln(TV P) =: µ and ω2

P. Indeed,

ln(P) = ln(TV P)+ηP ∼ N
(
ln(P),ω2

P
)
.

The median of this log-normal distribution is eµ = TV P, which corresponds to the
nominal value. IIV can be expressed by the coefficient of variation (CV) of the related
log-normal distribution. The CV is defined as the ratio of the standard deviation to the
mean. In the case of a log-normal distribution (Nist-Sematech (2013)), the %CV is
given by √

eω2
P −1 ·100%

which, for sufficiently small variance, is commonly approximated as
√

ω2
P ·100%

as stated in Mould and Upton (2013). A fundamental challenge in the individual drug
dosing (see Part II) is to deal with this variability and the a priori unknown realization
of the random variables.

The typical value TV P of a PK parameter P can be expressed as a function of
a patient’s characteristic, which is then called a covariate. In a population model, a
covariate is defined as a patient’s characteristic (e.g., weight, body surface area, age,
sex, creatinine clearance...) that affects the pharmacokinetic of a drug. In the case
of an exponential model for the IIV, it is convenient to use a power/allometric model
to describe the relationship between a continuous covariate and the parameter fixed
effect (Bauer (2019a)):

TV P = θP

(
COV

COVmed

)θCOV

(1.3.12)
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where θCOV is called the allometric weight coefficient, COV is the individual value of
the covariate, normalized by its median value COVmed in the model building dataset (or
an average value for a typical population); in this way, θP is interpreted as the param-
eter typical value of the typical patient, i.e., when COV =COVmed (Bauer (2019a)).

1.3.5 Residual error model
The residual error (or prediction error) is the offset between the observed concen-
trations and the model predictions, because of model approximation, intra-individual
variability and noise of the experiment (from assay errors to human recording errors).
Residual error models are proportional and/or additive:

Yi j = Fi j
(
1+ εpi j

)
+ εai j

where Yi j and Fi j stand for the jth observed and predicted concentrations in the ith indi-
vidual, respectively, and εpi j and εai j are the individual realizations of the independent
random variables εp ∼ N(0,σ2

p) and εa ∼ N(0,σ2
a ), respectively. The proportional er-

ror can be expressed in terms of coefficient of variation (%CV) given by σp ·100%;(3)

the additive error is commonly reported in term of standard deviation (σa, expressed
in the concentration unit).

Usually, proportional, additive, and combined additive and proportional models
are investigated to describe the residual variability. The residual variability model is
developed until the regression line of the weighted residuals versus the predictions is
sufficiently without trends (see Section 1.5).

1.3.6 Bayes estimates
The Bayes estimates, or individual parameter estimates, are the most likely values
for an individual’s parameter given the population model parameters and the observed
concentrations Yi j in the ith individual. They are obtained by considering the following
weighted least-squares objective function (OF):

OFi =
Ni

∑
j=1

(Yi j−Fi j)
2

Var(Yi j)
+∑

P

(Pi−TV Pi)
2

ω2
P

(1.3.13)

called Bayes objective function, see, e.g., Mould and Upton (2013) and (Owen and
Fiedler-Kelly, 2014, Chapter 7). In (1.3.13), Ni is the total number of observations in
the ith individual, Fi j are the individual model-predicted concentrations, and, for each
PK parameter P, Pi is the individual’s parameter estimate, TV Pi is the typical value
for the ith individual given its covariates, and ω2

P > 0 is the variance of the related
random variable ηP. The individual PK parameter, obtained by Bayesian estimations,
are referred to as posthoc estimates or empirical Bayes estimates (EBEs). The vector
of the realizations of the random variables ηP is denoted η̂i and its components are
often referred to as EBEs as well.

(3)We use the fact that, if X is a random variable with mean µ and variance σ2, then the random variable
Y := aX + b, where a and b are constants, has mean aµ + b and variance a2σ2. This rule is applied to
Y = Fεp +F .
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1.4 Model development
The usual process to build a popPK model consists in a step-by-step approach. The
aim is to identify the model which provides the best fit of the data. The NONMEM
software (Icon Development Solutions, Ellicott City, MD, USA) is widely used for
this purpose. It is a well-known computer program in the PK/PD modeling commu-
nity, used for more than 30 years to perform population analysis of pharmacokinetic
clinical data (Bauer (2019a), Lindbom et al. (2005)). In few words, NONMEM(4) uses
a series of statistical methods to compute the parameter estimates and their statistical
uncertainties. The assessment of the model and the estimation of its parameters is
guided by numerical and graphical model fitting performances to (internal and exter-
nal) data, see Section 1.5. The developed models are called nonlinear mixed effects
models (NLMEMs). Since the structural model is linear (see Equation 1.3.5), the
term “nonlinear” must be interpreted with respect to the random effects (Nguyen et al.
(2017)).

For a practical use of NONMEM (formating a data file, creating of a control stream
to give instructions to the software, evaluating the report file), the reader is referred
to the didactic and user-friendly textbook of working with NONMEM by Owen and
Fiedler-Kelly (2014) and to the two-part NONMEM tutorial published in a journal of
the American Society for Clinical Pharmacology and Therapeutics (ASCPT) (Bauer
(2019a) and Bauer (2019b)).

1.4.1 Parameter estimation method
The values of the model parameters are estimated by minimizing an objective function.
The default objective function is an extended least-square OF and the minimization
algorithm, which consists in a numerical search in the parameter space, is a derivative-
free quasi-Newton type iterative method (see the NONMEM user guide, part I (1989)).
The extended least-square objective function is derived from the likelihood function
of the independent normal random variables Yi1, . . . ,YiNi (i ∈ 1, . . . ,m), where Ni is the
total number of observations in the ith individual and m is the number of individuals
in the dataset. For all i ∈ {1, . . . ,m}, we define the jth observation by

Yi j = Fi j +Fi jεpi j + εai j =: f (Xi j,Θ,η∗i )+h(Xi j,Θ,η∗i ,ε
∗
i j) (1.4.1)

where h = f εp + εa, f corresponds to the model prediction, Xi j is the vector of the
values taken by te independent variables (time and covariates), Θ is the vector of the
fixed components, η∗i and ε∗i j are the vectors of the individual realizations of the ran-
dom variables (ηP, for each PK parameter P, and ε p,a) (Hooker et al. (2007)). The
variance-covariance matrix of the random variables ηP is denoted by Ω. The covari-
ances between the random variables ηP are often assumed to be zero, such that Ω is
diagonal. The INTER(ACTION) option in the estimation step ($EST) of NONMEM

(4)NONMEM stands for NONlinear Mixed Effects Modeling; computer program implemented in For-
tran90/95, originally developed by Lewis Sheiner and Stuart Beal at the University of California (Bauer
(2019a)).
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means that we take into account the interaction between IIV and residual error vari-
ability. When no interaction between η and ε is assumed, the model prediction Fi j is
evaluated at η∗i = 0 in the term multiplied to εpi j , i.e., η∗i = 0 in the term h of (1.4.1)
(Bauer (2019a)).

The likelihood function for the ith individual is the following joint density function,
considered as a function of the parameters:

L(θ•,ω2
• ,σ

2
a,p;Yi1, . . . ,YiNi) =

Ni

∏
j=1

1√
2π ·Var(Yi j)

e
− (Yi j−E(Yi j))

2

2var(Yi j) .

Finding the maximum likelihood is equivalent to minimizing the extended least-square
objective function defined as minus two times the natural logarithm of the likelihood
function L without the constant term Ni ln(2π), i.e.,

OFi :=−2ln(L) =
Ni

∑
j=1

(
ln(Var(Yi j))+

(Yi j−E(Yi j))
2

Var(Yi j)

)
. (1.4.2)

NONMEM offers different methods for approaching E(Yi j) and Var(Yi j) by lineariza-
tion of the model (1.4.1), see Hooker et al. (2007) and Nguyen et al. (2017). The
first-order conditional estimation with interaction (FOCEI) is the standard method to
estimate the model parameters (Bauer (2019a)).

The very first method (and simplest method) used for NLMEM development was
the first-order (FO) method. In this approach, the model f +h is linearized, using a
Taylor development, around the zero mean of the random variables η and σ :

Yi j w f (Xi j,Θ,η∗i = 0)+
[

∂ f (Xi j,Θ,η∗i = 0)
∂η

]T

η + f (Xi j,Θ,η∗i = 0)εp + εa

where η is the vector of the IIV random variables ηP and ∂ f/∂η is the gradient of f
with respect to η . That yields

E(Yi j)w f (Xi j,Θ,η∗i = 0) =: PREDi j (1.4.3)

and

Var(Yi j)w
∂ f (Xi j,Θ,η∗i = 0)

∂η

T

Ω
∂ f (Xi j,Θ,η∗i = 0)

∂η
+ f 2(Xi j,Θ,η∗i = 0)σ2

p +σ
2
a

(1.4.4)
where PRED stands for (typical) population PREDiction.

In the first-order conditional estimation (FOCE) method without η−ε interac-
tion, the model f +h is linearized around the individual’s Bayes estimates of the IIV
random variables η and around the zero mean of the residual error random variables
ε:

Yi j w f (Xi j,Θ,η∗i = η̂i)+

[
∂ f (Xi j,Θ,η∗i = η̂i)

∂η

]T

(η− η̂i)+ f (Xi j,Θ,η∗i = 0)εp+εa.
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1.4 Model development

That yields

E(Yi j)w f (Xi j,Θ,η∗i = η̂i)−
[

∂ f (Xi j,Θ,η∗i = η̂i)

∂η

]T

η̂i =: CPREDi j (1.4.5)

and

Var(Yi j)w
∂ f (Xi j,Θ,η∗i = η̂i)

∂η

T

Ω
∂ f (Xi j,Θ,η∗i = η̂i)

∂η
+ f 2(Xi j,Θ,η∗i = 0)σ2

p +σ
2
a

(1.4.6)
where CPRED stands for Conditional population PREDiction.

1.4.2 Likelihood ratio test and covariate selection
The OF values of two nested models can be compared using the likelihood ratio test
(LRT). Under the hypothesis that both models provide the same description of the data,
minus two times the logarithm of the ratio of their likelihood is assumed to follow a
chi-squared distribution with k degree of freedom, where k is the number of additional
parameters in the second model, i.e.,

−2ln(L1/L2) = OFV2−OFV1︸ ︷︷ ︸
∆OF

∼ χ
2
k

where OFV stands for objective function value, see Mould and Upton (2013) and
Fisher and Shafer (2007). For nested models differing by one parameter, a decrease
in OFV > 3.84 (resp. > 10.83) is considered as statistically significant (resp. highly
significant). Indeed, the corresponding p-value is < 0.05 (resp. < 0.01) based on the
χ2

1 distribution. The LRT is used as the principal model selection criterion, to choose
between two structural models or to select the model covariates.

The covariate model building can be performed using a forward inclusion phase
and a backward elimination phase. In each step of the forward phase, covariate-
parameter relationships are tested one at a time. The most significant relationship,
given that it is statistically significant (∆OF > 3.84), is retained in the next step. Each
remaining covariate-parameter relationship is again added one at a time to the model
and the most significant is retained. This process is repeated until no more relationship
is significant, at which point the full model is established. The full model is subse-
quently subjected to a stepwise backward elimination of relationships. Each covariate-
parameter relationship is omitted from the model one at a time. The least significant
relationship, given that it is not statistically highly significant (∆OF > 10.83), is re-
moved from the model. This is repeated until no more relationship could be removed,
at which point the final model was established. A covariate may also be included for
clinical reasons: change of at least 20% in the parameter value at the extremes of the
covariate (Mould and Upton (2013)).
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1.5 Evaluation tools
In this section, a series of numerical and graphical tools for NLMEM evaluation are
presented. They aim to assess the fitting and predictive performances of the model
or identify model misspecification. The interested reader is referred to the suggested
references for further information of each tool.

Minimization successful
The very first criteria for accepting the NONMEM parameter estimates is the “mini-
mization successful” statement in the output report file. It indicates the convergence
of the maximum likelihood estimation (Bauer (2019a)).

(Final) gradients See, e.g., (Owen and Fiedler-Kelly, 2014, Chapter 3).

Standard error of estimates (see, e.g., Bauer (2019a), Owen and Fiedler-Kelly (2014))
Standard error (SE) of estimates provide information on the precision of the parameter
estimations. They are generally reported as a percentage (relative standard error of
estimate, %RSE). During the so-called covariance step ($COV) of NONMEM, the
standard error of estimates are computed. It is derived from the shape of the OF
surface around the final parameter estimate (FPEs) (Mould and Upton (2013)). If the
shape is broad and shallow, there are more values of the parameters that describe the
data, and, therefore, the estimations are uncertain. It is illustrated in Figure 1.9.

Figure 1.9 – Surface of the maximum likelihood extended (mle) objective function
for a model with only two parameter to estimate. Illustration taken from Mould and
Upton (2012).

The relative standard error (RSE) of estimate is defined as the SE divided by the
final parameter estimate and is generally reported as a percentage, i.e.,

%RSE =
SE

FPE
·100%.
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The 95% confidence interval(5) is given by

CI = [FPE−2 ·SE,FPE+2 ·SE]

Usually, the accepted level of precision is RSE< 30% for the fixed-effect components
Θ and RSE< 50% for the random-effect components ω2

P and σ2
p,a (Mould and Upton

(2013)).
The reliability of the SEs provided by NONMEM is widely discussed in the liter-

ature and by NONMEM users on online forums. They argue that the SEs are used
to compute confidence intervals based on the assumption that they are symmetri-
cal around the parameter estimates (normal distribution), see Holford, N (2015) and
Mould and Upton (2013). There exist alternative methods, e.g., the log likelihood pro-
file (LLP) method(6) and resamplig methods such as the bootstrap (see, e.g., Lindbom
et al. (2005) and Holford, N (2015)).

Bootstrap (see, e.g., Lindbom et al. (2005) and the online PsN documentation (GitHub-
PsN (2018)))
Bootstrap is a re-sampling method to assess the uncertainty/precision of the estima-
tions. It is an alternative tool to the standard error of estimates, since NONMEM
$COV step may failed even if the model adequately fits the data. A bootstrap consists
in generating a large number of new datasets (e.g., 1000), including the same number
of individuals as the original one, by sampling (with replacement) individuals from
the original dataset (Holford, N (2015)). For each new dataset, the population model
parameters are re-estimated by fitting the model to the data. Statistics can then be
computed based on the parameter bootstrapped distributions. The minimum required
number of samples with minimization successful (without estimates near the fixed
boundary) depends on the desired percentile confidence interval, called bootstrap con-
fidence interval. E.g., for a CI at 95% (i.e., based on the 2.5th and 97.5th percentiles of
the bootstrapped distribution), 39 successful samples are required (see (GitHub-PsN
(2018))). On contrary to the CIs based on the SEs of estimates, the bootstrap CIs
do not assume a symmetric/normal distribution of the parameters (Mould and Upton
(2013)).

Population predictions (see, e.g., Nguyen et al. (2017))
Population predicted concentrations correspond to the expectation of the model, i.e.,
E(Yi j), approximated by either PRED (see (1.4.3)) or CPRED (see (1.4.5)). The scat-
ter plot of the observations vs. the population predictions is a powerful diagnostic tool
for model evaluation. If the model adequately fits the data, the regression line should
be close to the line of identity.

Population residuals (see, e.g., Hooker et al. (2007) and Nguyen et al. (2017))
Population residuals RSE are the differences between the observations and the popu-
lation predictions, i.e.,

RESi j := Yi j−E(Yi j).

(5)A confidence interval at 95% is intended to contain the true value of the parameter 95% of the time
(Mould and Upton (2013)).

(6)The LLP method is based on the likelihood ratio test (LRT).
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These are correlated within each subject. Population weighted residuals, defined as

WRESi j :=
Yi j−E(Yi j)√

Var(Yi j)
, (1.5.1)

are decorrelated and should be normally distributed ∼ N(0,1)(7) as long as the model
adequately fits the data. That means that 95% of the data should be evenly distributed
between -2 and 2. NONMEM computes the above basic residuals using the FO ap-
proximation, i.e.,

WRESi j :=
Yi j−PREDi j√

Var(Yi j)
(1.5.2)

where Var(Yi j) is given by (1.4.4).
This diagnostic tool can be misleading when using the FOCE method for the pa-

rameter estimation (Hooker et al. (2007)). In that case, it is better to use the con-
ditional weighted residuals CWRES, that correspond to (1.5.1) calculated with the
FOCE approximation, i.e.,

CWRESi j :=
Yi j−CPREDi j√

Var(Yi j)
(1.5.3)

where Var(Yi j) is given by (1.4.6).
Note that the (conditional) weighted residuals correspond to the second term of

the OF (1.4.2). The population predictions and residuals (CPRED and CWRES) are
computed from the FOCE approximation of (1.4.1) without the η−ε interaction con-
sidered in the FOCEI objective function. But, at this stage, when using the FOCEI
method for the parameter estimation, CPRED and CWRES are the best tools to assess
the goodness-of-fit of the model (Hooker et al. (2007)).

Individual predictions and residuals (see, e.g., Nguyen et al. (2017))
Individual predicted concentrations are the model predictions given the EBEs η̂i:

IPREDi j := f (Xi j,Θ,η∗i = η̂i) (1.5.4)

The individual weighted residuals are defined as

IWRESi j =
Yi j− IPREDi j

σ
(1.5.5)

where
σ = f (Xi j,Θ,η∗i = η̂i)σp +σa

is the standard deviation of the the residual variability (Nguyen et al. (2017) and Savic
and Karlsson (2009)). The scatter plot of the observations vs. the individual predic-
tions enables to verify is the model is able to describe the individual data. It is similar
to the corresponding graph of observations vs. (C)PRED, but with less variability.

Shrinkages (see, e.g., Savic and Karlsson (2009) and Nguyen et al. (2017))
It is obvious from the Bayes OF (1.3.13) that, for an individual with Ni = 0 observed

(7)We use the fact that, if X ∼ N(µ,σ2), Y := (X−µ)/σ ∼ N(0,1)
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concentration, the individual’s posthoc estimates Pi are equal to the typical values
TV Pi. The smaller the number of available observations is, the more the individual’s
Bayes estimates are close to the typical values. The variance of the EBE distributions
shrinks therefore to 0. For a random-effect component η ∼ N(0,ω), where ω2 is the
estimated population variability, η−shrinkage shη is calculated using

shη = 1− SD(EBEη)

ω2

where SD(EBEη) is the standard deviation of the EBE distribution of η . In the case
of a high shrinkage (> 20− 30%), posthoc analyses based on the EBEs are assumed
to be uninformative.

Moreover, a phenomenon called overfitting may occur. It is observed when the
individual predicted concentrations IPRED shrink to the individual observations. This
is quantified by the so-called ε−shrinkage shε , which is calculated using

shε = 1−SD(IWRES)

where SD(IWRES) is the standard deviation of the distribution of the individual weigh-
ted residuals. In the case of a high shrinkage (> 20−30%), diagnostic plots based on
individual predicted concentrations IPRED are assumed to be uninformative.

Visual predictive check and prediction-corrected visual predictive check (see, e.g.,
(Owen and Fiedler-Kelly, 2014, Section 8.8), Nguyen et al. (2017) and Bergstrand
et al. (2011))
Visual predictive check (VPC) is a simulation-based tool for model diagnostic and
consists in a graphical comparison of simulated and observed concentrations. VPCs
rely on the principle that a model derived from a dataset should be able to simu-
late concentrations similar to the original ones. During the simulation step ($SIM),
NONMEM uses the final model to perform simulations, called Monte Carlo (MC)
simulations, in order to replicate the original dataset a high number of times (e.g.,
Nrepl=1000, where Nrepl stands for the number of replicates). For this purpose, it se-
lects realizations of the random-effect components ηP for each subject in the dataset
and realizations of the random variables εp,a (residual error) for each data to be sim-
ulated and repeats this process until the number of replicates is reached (Owen and
Fiedler-Kelly (2014)). Then, a prediction interval (PI) of the concentration-time pro-
files can be compared with the observed concentrations. It is common to display the
median PK profile and the 90% PI (i.e., the area between the 5th and 95th percentiles of
the simulated PK profiles). A good overlap between the simulated and observed drug
concentrations confirms that the model is adequately adjusted to the data.

An alternative way to present the MC simulations is to display the prediction inter-
vals (also called VPC confidence intervals) of the median and the chosen percentiles.
To do so, the median and the percentiles are computed for each replicate (simulated
dataset). The prediction intervals are derived from the distribution of the Nrepl com-
puted medians and percentiles.

A third alternative is the prediction-corrected VPC (pcVPC). This method assumes
a data bining with respect to one or more independent variable(s) (here time) and the
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data are corrected before calculating the statistics (Bergstrand et al. (2011)). The
observed and simulated concentrations are corrected by the median of the typical pop-
ulation predictions (PRED) in the specific bin of independent variable(s):

pcYi j = Yi j
PREDbin

PREDi j

where PREDi j is the typical population prediction of the jth concentration in the ith

individual and PREDbin is the median of the typical population predictions in the
specific bin.

Normalized prediction distribution errors (see, e.g., Nguyen et al. (2017))
Normalized prediction distribution errors (NPDEs) is another simulation-based tool
for model evaluation. For each observation Yi j, the predictive distribution is based
on MC simulations of the original dataset (or any validation dataset). The prediction
discrepancy (pd) is defined as the percentile corresponding to this observation in the
predictive distribution, i.e., pd = P(Ysim < Yi j). After a decorrelation step (PDE)(8),
the NPDE are computed using the inverse function of the normal cumulative density
function N(0,1). If the model adequately describes the data, the NPDEs follow a
normal N(0,1) distribution (Brendel et al. (2007), S. Critea (2019)).

There exist many other diagnostic tools in the pharmacometric literature, such as
the ones based on the EBEs, see, e.g., Nguyen et al. (2017) and Savic and Karlsson
(2009).

Internal validation
Internal evaluation consists in assessing the fitting performances of the model using
prediction-based and simulation-based tools. Standard methods for internal validation
include:

(1) Visual inspection of diagnostic scatter plots, also called goodness-of-fit (GOF)
plots. They usually include the observations (DV )(9) vs. the individual and/or
population predictions (IPRED and CPRED) and the residual (CWRES) vs. the
population predictions and/or time.

(2) Visual predictive checks (VPCs).

(3) Assessment of the estimates precision using the standard error of estimates or
by bootstrap (CI).

External validation
External validation consists in assessing the predictive performances of the final model
on external and independent data. These data can, for example, be generated from

(8)Performing the same computations but from the decorrelated observations and simulations (see (1.5.1))
will produce the prediction discrepancy errors (see Nguyen et al. (2017)).

(9)The acronym DV stands for dependent variable.
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published models. Simulated concentration-time profile are produced on the basis
of the study design used in the external dataset (dosing regimen and demographic
information (distribution of covariates)). The simulation process (using NONMEM
or a customized MATLAB script) selects realizations of the random variables ηP for
each subject and for each replicate of the external dataset. However, in contrast to the
VPC described above, the residual error is not taken into account, i.e., we consider
model predictions only. The 90% PI computed after, e.g., Nrepl = 1000 simulations, is
displayed. A good overlap between the simulations and the observed concentrations
in independent but similar patients and settings establishes that the model has good
predictive performances.

1.6 Physiologically based pharmacokinetic modeling
A (whole-body) physiologically based model is a mechanistic model, based on a
“bottom-up” approach (Jones and Rowland-Yeo (2013)), contrarily to a data-driven
popPK model, based on a “top-down” approach. Indeed, in popPK modeling, the
structural model (number of compartments), the parameter estimates and the retained
covariates are based on the data (concentrations) collected in a particular group of
patients.

In physiologically based pharmacokinetic modeling, there is a distinction between
drug- and patient-related parameters. Model structure and parameter values are based
on physiological considerations and drug’s properties. This approach is much less
dependent on the available data than the population approach. Despite the high degree
of complexity of such models (large number of parameters, need of experimental data,
etc.), PBPK modeling in drug development have risen dramatically in the last 15 years,
as well as the development of user-friendly software such as Simcyp (Sager et al.
(2015)).
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CHAPTER 2

Population pharmacokinetic model of
hydroxychloroquine in COVID-19 patients

The aim of this chapter is to characterize the pharmacokinetics of hydroxychloroquine
in COVID-19 patients, using prospectively collected pharmacokinetic data from pa-
tients either enrolled in a clinical trial or treated with hydroxychloroquine as part of
standard of care. A model-based approach is used for this purpose. The content of this
chapter is reported in Thémans et al. (2020a). In Chapter 5, simulations of different
scenarios are performed to illustrate how the model can be used for dosing rationale.

Hydroxychloroquine (Plaquenil R©, HCQ sulfate) is a drug approved and used for
decades for the treatment of malaria (Lim et al. (2009)), rheumatoid arthritis (RA)
(Carmichael et al. (2003)), and cutaneous lupus erythematosus (CLE) (Morita et al.
(2016)). During the first peak of the COVID-19 pandemic, HCQ was extensively used
off-label. Based on the results of in vitro studies showing antiviral activity of HCQ
on SARS-CoV-2 (e.g., Yao et al. (2020) and Liu et al. (2020)) and on some prelim-
inary results from small clinical studies (e.g., Gautret et al. (2020b), Gautret et al.
(2020a)), interim guidelines in several countries recommended treating hospitalized
patients suffering from moderate to severe COVID-19 with HCQ at various dosing
regimens (see, e.g., Sciensano (2020)). The doses implemented were inconsistent
across publications, national guidelines, and clinical uses.

The pharmacokinetics of HCQ was already described in inflammatory indications
but not so far in COVID-19-disease. Therefore, reference pharmacokinetic exposures
in COVID-19 patients were unknown and so were clinical target exposures for dis-
ease cure. There was an urgent need for HCQ pharmacokinetic characterization in
COVID-19-disease, as acknowledged in several publications (Martin-Blondel et al.
(2020), Morrisette et al. (2020), Thémans et al. (2020b)). Population pharmacokinetic
modeling and simulation were considered as the most appropriate approach to ob-
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tain relevant pharmacokinetic information during the pandemic crisis. Indeed, popPK
modeling is able to perform acceptable analysis from sparse blood samples, overcom-
ing the need for large sampling (needed with traditional individual pharmacokinetics),
that would have been very complicated to implement in the context of an outbreak.

A population approach was also used to describe the pharmacokinetics of HCQ in
inflammatory diseases. Two population pharmacokinetic models have been published
in patients with rheumatoid arthritis and lupus erythematosus using whole-blood HCQ
concentrations (Carmichael et al. (2003) and Morita et al. (2016)). Four additional
models describe plasma concentrations or merged blood and plasma concentrations
in healthy volunteers (Tett et al. (1989)) and patients (Lim et al. (2009), Morita et al.
(2016)), including pregnant women (Balevic et al. (2019)). These models have been
used to simulate COVID-19 patient exposures at different doses in recent publications,
under the unverified assumption that the pharmacokinetics of HCQ would be similar
in other diseases and in COVID-19 (see, e.g., Martin-Blondel et al. (2020), Thémans
et al. (2020b) and Garcia-Cremades et al. (2020)).

2.1 Study design and data
The pharmacokinetic data (blood concentrations) originated from 33 patients enrolled
in an open-label, single-arm prospective study evaluating the pharmacokinetics, safety,
and efficacy of HCQ in COVID-19 patients in Saint-Luc University Hospital, a ter-
tiary hospital in Brussels (Belgium). This study was planned to enroll 50 patients with
COVID-19 infection. The 33 patients were supplemented by concentrations collected
from 23 patients as part of standard of care at Saint-Luc Hospital and at Saint-Pierre
Hospital, another tertiary hospital in Brussels (Belgium).

HCQ therapy was administered as per the Belgian national protocol guidance: 400
mg twice daily (BID) on day 1, followed by 200 mg BID the subsequent days for a
5-day total duration of treatment. Patients received Plaquenil R© tablets by oral admi-
nistration, each tablet having 200 mg of racemic HCQ sulfate, equivalent to 155 mg of
racemic HCQ base. Pharmacokinetic assessment of HCQ required at least one sched-
uled blood sampling and one optional blood sampling. At least one blood sampling
was performed by patient. It was drawn within the first 4 hours after dose admin-
istration, after an accurate record of the drawing time. This sample was possibly
supplemented by a blood sample at the end of treatment or at the time of treatment
interruption for safety reasons.

The model building dataset was composed of data collected during the study (33
patients) supplemented by additional data from routine clinical practice (15 patients).
A total of 84 whole-blood concentrations samples were obtained and are shown in Fig-
ure 2.1. The remaining patients were used for external validation. The characteristics
of the patients included in the model building and validation datasets are summarized
in Table 2.1, together with their baseline clinical symptoms. Body weight values were
missing for 2 patients. They were replaced by the median value.
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Table 2.1 – Baseline characteristics of the patients included in the model buiding and
external validation datasets

 Model building 
dataset (N=48)  

Number 
of missing 

data 

External 
validation 

dataset (N=8) 

Number 
of missing 

data 

Total (N=56) Number 
of missing 

data 

Demographic and clinical 
data 

      

Sex (Males/females) 26/22  5/3  31/25  

Weight (kg)  
Median [min;max] 

80 [50,122] 2 86.5 [52;108]  81.5 [50;122] 2 

Age (years)  
Median [min;max] 

58.5 [21;93]  57.5 [38;75]  58.5 [21;93]  

Fever/chills  
N (y/n)a 

29/19  7/1  36/20  

Cough  
N (y/n) 

25/23  7/1  32/24  

Dyspnea  
N (y/n) 

21/27  5/3  26/30  

Conjunctivitis  
N (y/n) 

0/48  0/8  0/56  

Sore throat  
N (y/n) 

9/39  1/7  10/46  

Nasal discharge  
N (y/n) 

8/40  3/5  11/45  

Headache  
N (y/n) 

12/36  2/6  14/42  

General weakness  
N (y/n) 

23/24 1 5/3  28/27 1 

Myalgia  
N (y/n) 

16/31 1 4/4  20/35 1 

Nausea/vomiting  
N (y/n) 

4/44  4/4  8/48  

Diarrhea  
N (y/n) 

8/40  3/5  11/45  

Anosmia  
N (y/n) 

4/43 1 0/1 7 4/44 8 

Agueusia  
N (y/n) 

6/42  0/1 7 6/43 7 

Cardiovascular pathology   
N (y/n) 

20/28  4/4  24/32  

Arterial hypertension  
N (y/n) 

18/30  4/4  22/34  

CRP (mg/dL) 
Median [min;max] 

69.4 [3.2,231.4]  57.4 [22.5,190.3]  67.9 [3.2,231.4]  

White blood cells (1000/mm3) 
Median [min;max] 

5.88 
[3.14,13.62] 

2 4.73 [2.55,10.01]  5.76 [2.55,13.62] 2 

Lymphocytes (1000/mm3) 
Median [min;max] 

0.9 [0.19,2.13]  0.94 [0.31,1.57]  0.90 [0.19,2.13]  

LDH (U/L) 
Median [min;max] 

313 [162,2555] 1 333 [296,429]  316 [162,2555] 1 

AST (U/L) 
Median [min;max] 

32 [13,968] 2 34.5 [14,46]  32.5 [13,968] 2 

ALT (U/L) 
Median [min;max] 

28.5 [8,604] 2 30 [13,42]  28.5 [8,604] 2 

Creatinine (mg/dL) 
Median [min;max] 

1.02 [0.55,2.77]  1.13 [0.62,3.33]  1.04 [0.55,3.33]  

Haemoglobin (mg/dL) 
Median [min;max] 

13.2 [9.4,16.5] 2 13.1 [8.9,16.2]  13.2 [8.9,16.5] 2 

Saturation (%) 
Median [min;max] 

95 [83,98] 1 92.5 [84,100]  95 [83,100] 1 

a Number of patients (yes/no) 
CRP, C-reactive proteine; LDH, lactate deshydrogenase; AST, aspartate aminotransferase; ALT, alanine aminotransferase 
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Figure 2.1 – Observed whole-blood concentrations of HCQ in the 48 patients included
in the model building dataset. Filled circles, WT≤ 80 kg; open squares, WT > 80 kg;
crosses, missing WT.

2.2 Population model building
Data were analyzed using nonlinear mixed effects modeling of NONMEM software,
version 7.3.0. The first-order conditional estimation method with interaction was used.
Base and final model selection were based on the results of likelihood ratio tests.

Based on previously published population pharmacokinetic models in malaria,
RA, and CLE, one- and two-compartment structural models with first-order absorp-
tion and elimination were tested. The need for an absorption lag time parameter was
tested. Finally, a one-compartment model with first-order absorption and elimination
was retained to describe the observed data. The addition of a lag time component
did not improve the model fitting performance, so this parameter was not kept in the
model for the subsequent steps. The structural model is schematically represented in
Figure 2.2. Random components on the structural model were introduced to describe
the IIV in the PK parameters. They were retained provided that the estimates were
neither very small(1) nor caused instability in the model-fitting procedure.

Correlation was visually tested between the candidate covariates (see Figure 2.3).
Good correlation was found between body weight and sex. Age does not seem to be
correlated with body weight (Pearson correlation coefficient: -0.12) or sex. During
the covariate model building, an allometric model was used to describe the influence
of body weight and age on the PK parameters, and a linear model was used to describe
the influence of sex. Body weight and sex were found to significantly influence the
clearance, with a higher drop in the objective function value for the body weight ef-
fect. Besides, because of the correlation between both, only body weight was kept in

(1)A random component is considered very small if the estimated variance is less than the order of mag-
nitude 10−3.
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2.2 Population model building

ka

CL

CENTRAL

V

DEPOT
DOSE

Figure 2.2 – Schematic representation of a one-compartment population pharmacoki-
netic model with oral administration. ka, absorption rate constant; V , volume of dis-
tribution; CL, clearance.

(a) (b)

(c)

Figure 2.3 – Visual inspection of correlation between the patient characteristics.
(a) Boxplot of weight vs. sex, (b) boxplot of age vs. sex, (c) age vs. weight. In the
boxplots, the ends of the box are the 1st and the 3rd quartiles (comprise 50% of the
observations), the central line represents the median and the whiskers correspond to at
most 1.5 times the interquartile range (dots are the outliers).
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Chapter 2 Pharmacokinetic model of hydroxychloroquine

the model. The influence of age on clearance did not reach the predefined statistical
significance level to be kept in the model.

The parameter estimates of the final model are summarized in Table 2.2. The
number of significant digits in the final estimations is 3.1. That means that, between
the last two iterations of the estimation algorithm, none of the parameters differed in
the first 3 significant digits (see the NONMEM user guide, part V (2013)). Table 2.2
also includes the corresponding estimates in the previously published model in RA
(Carmichael et al. (2003)), for comparison.

This model still carries a moderate to high unexplained variability on the volume of
distribution (CV: 52 %) and clearance (CV: 39 %). This can be explained by untested
covariates, such as concomitant use of CYP2D6 modulators(2) and underlying renal
impairment. An important difference with the previously published models is the es-
timate of the absorption rate constant ka. Our high value can be explained by tablet
crunching and administration through nasogastric tubes in some of the patients who
were in intensive care unit (ICU) or unable to swallow the tablets. However, this in-
formation was not consistently collected and could therefore not be adequately tested
during the covariate analysis.

2.3 Model validation
All the parameters were adequately estimated as supported by the bootstrapped distri-
butions shown in Figure 2.4. The bootstrap medians and confidence intervals at 95%
are reported in Table 2.2 along with the parameter estimations and the shrinkages pro-
vided by NONMEM. Observe that the latter are quite high. The model adequately fits
the observed data, as shown by the basic goodness-of-fit plots (Figure 2.5(a-d)), the
NPDEs plots (Figure 2.5(e-f)), and the pcVPCs with binning on time based on 1000
simulations of the model building dataset (Figure 2.6).

The predictive performances of our model are confirmed on additional (external)
data from 8 patients, collected as part of standard of care and not used for model
building (Figure 2.7).

(2)HCQ is partly metabolized by CYP enzymes (Lee et al. (2016)) and CYP2D6 modulators are drugs
able to either stimulate or inhibit the production of CYP2D6.
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Table 2.2 – PopPK model of hydroxychloroquine: parameter estimates

Parameter Estimate bootstrap shrinkage [%] Corresponding estimated value in
[median (95% CI)]a Carmichael et al. (2003)

kkkaaa (h-1) 9.30 7.31 (1.81-9.44) 0.765
IIV on ka [ω2] ne 0.94

VVV (L) 861 869 (679-1130) 605
IIV on V [ω2] 0.272 0.257 (0.129-0.385) 27.6 0.25

CCCLLL (L/h) 15.7 15.4 (12.1-17.6) 9.89
WT effect on CL [θWT ]b 1.38 1.40 (0.563-2.52) -
IIV on CL [ω2] 0.149 0.129 (0.0384-0.215) 23.3 0.127

FFF 0.746 fixed 0.746
IIV on CL [ω2] ne 0.004

TTT lag (h) ne 0.445
IIV on Tlag [ω2] ne ne

Eprop plasma conc. [σ2
p ] 0.0286 0.0280 (0.0096-0.0455) 40.7 0.044

Eadd plasma conc. [σ2
a ] ne 0.000365

a Median of the bootstrapped distributions generated from 300 resampled datasets and confidence interval based on
the 2.5th and 97.5th percentiles
b Allometric covariate model, normalized to a WT of 80 kg
ne, not estimated; ka, absorption rate constant; V , volume of distribution; CL, clearance; F , bioavailability; Tlag, lag
time; IIV, interindividual variability; ω2, variance of the related random variable; WT, weight; Eprop, proportional
error; σ2

p,a, variances of the related random variables.
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Figure 2.4 – Bootstrapped distribution of the model parameters

54



2.3 Model validation

300

600

900

300 400 500 600 700
Conditional population predicted conc (ng/mL)

O
b

s
e

rv
e

d
 c

o
n

c
 (

n
g

/m
L

)

(a)

300

600

900

250 500 750 1000
Individual predicted conc (ng/mL)

O
b

s
e

rv
e

d
 c

o
n

c
 (

n
g

/m
L

)
(b)

−3

−2

−1

0

1

2

300 400 500 600 700
Conditional population predicted conc (ng/mL)

C
o

n
d

it
io

n
a

l 
w

e
ig

h
te

d
 r

e
s
id

u
a

ls

(c)

−3

−2

−1

0

1

2

50 100
Time (hours)

C
o

n
d

it
io

n
a

l 
w

e
ig

h
te

d
 r

e
s
id

u
a

ls

(d)

−2

−1

0

1

2

50 100
Time (hours)

N
P

D
E

(e)

0

3

6

9

−3 −2 −1 0 1 2

NPDE

c
o

u
n

t

(f)

Figure 2.5 – Basic goodness-of-fit plots and normalized prediction distribution errors
(NPDEs) plots. (a)-(b) Observations vs. population predictions and individual predic-
tions; (c)-(d) residuals vs. population predictions and time; (e) NPDEs vs. time; (f)
histogram of NPDEs. Filled circles, WT≤ 80 kg; open squares, WT > 80 kg; crosses,
missing WT; solid lines are either the line of identity (a,b) or the line x = 0 (c-e).
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Chapter 2 Pharmacokinetic model of hydroxychloroquine

Figure 2.6 – Prediction-corrected VPC, with binning on time, of whole-blood con-
centrations. Width of each bin is 24 hours. Red and blue lines are the median and
the 5th and 95th percentiles of the prediction-corrected observed concentrations in each
bin. Red and blue areas are the simulation-based 90% confidence interval of the me-
dian and 5th and 95th percentiles in each bin. Open circles are the prediction-corrected
observations.

Figure 2.7 – Model predictions of HCQ blood concentrations for eight external pa-
tients (treated as part of standard of care). The lines represent the median and the 90%
prediction interval. Points are the observations.
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CHAPTER 3

Population pharmacokinetic model of temocillin in
patients with pneumonia

This chapter aims to describe the population pharmacokinetics of temocillin adminis-
tered via continuous or intermittent infusion in critically ill patients with pneumonia.
The results presented in this chapter, along with the PTA analysis detailed in Chapter
5, are reported in N. Layios, C. Visée, P. Thémans, et al. (2021, submitted).

Temocillin (Negaban R©) is a penicillin active against most Gram-negative microor-
ganisms and Enterobacteriaceae, including extended spectrum β -lactamase-producing
bacteria and some carbapenemase-producing bacteria (Kuch et al. (2020)). In the
current era of increasing resistance to antibiotics, temocillin is an interesting alter-
native to carbapenems such as meropenem (see Chapter 4). According to the Euro-
pean Committee on Antimicrobial Susceptibility Testing (EUCAST) rationale docu-
ment (EUCAST (2019)), temocillin is currently licensed in UK, Belgium, Luxem-
bourg, France and Germany. It is mainly used for the treatment of serious infections
caused by ESBL-producing Enterobacterales such as complicated urinary tract infec-
tion (UTI), bloodstream infection, and lower respiratory tract infection (LRTI), at a
common dosage of 2g twice daily by intravenous infusion.

Previous pharmacokinetic studies of temocillin have been undertaken in healthy
volunteers (Alexandre and Fantin (2018), Hampel et al. (1985)), in critically ill pa-
tients (De Joung et al. (2008), Laterre et al. (2015)), and in haemodialysis patients
(Miranda Bastos et al. (2018) Vandecasteele et al. (2015)). . For the population anal-
ysis reported below, concentrations at the pulmonary site of infection are available.
That will provides additional insight for establishing PK/PD breakpoint in pneumo-
nia.
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Chapter 3 Pharmacokinetic model of temocillin

3.1 Study design and data
The concentrations of the model building dataset were collected as part of the single-
center, open-label, randomized prospective TIC(1) study. This study was conducted in
six intensive care units at the Centre Hospitalier Universitaire (CHU) du Sart-Tilman,
Liège (Belgium) between March 2016 and February 2017. Patients were diagnosed
with ventilator-associated pneumonia (VAP) or hospital-acquired pneumonia, and in-
fected by a pathogen showing a sensitivity to temocillin ≤ 8 mg/L.(2)

Patients received temocillin by IV infusion either by intermittent infusion (II; 2g
every 8h over 0.5h) or by continuous infusion (CI; 6g over 24h). The patient character-
istics are summarized in Table 3.1. Thirty-one percent of the patients had augmented
renal clearance (ARC), characterized by a creatinine clearance normalized to a body
surface area of 1.73 m2 (ClCR BSA) > 120 mL/min/1.73m2 (7/23 in the II versus 3/9 in
the CI group, respectively).

Concentrations were measured in plasma (serum) and at the site of infection (ep-
ithelial lining fluid) after at least 24h of infusion in the CI group and at least three doses
in the II group; they were supposed to be steady-state concentrations. ELF concentra-
tions were measured by mini-bronchoalveolar lavage (mini-BAL). One mini-BAL was
performed by patient, while between three and five plasma samples were collected per
patient.

In the following PK analysis, we aim to describe the concentration of the free
AB in plasma and the total AB in ELF. The protein level is much lower in ELF than
plasma, such that the ELF protein binding is negligible (Kiem and Schentag (2008)).
The observations are shown in Figure 3.1 (spaghetti plot for the plasma concentrations
and scatter plot for the ELF concentrations). A high IIV can be observed in the plasma
and ELF concentrations in both groups.

3.2 Population model building
A popPK model of temocillin was developed using a nonlinear mixed effects mod-
eling approach with NONMEM program, version 7.4.3. The first-order conditional
estimation method with interaction was used.

One- and two-compartment structural models were fitted to the free serum and
total ELF concentrations. The interindividual variability in the PK parameters was
estimated with the use of exponential models. Additive, proportional and mixed error
models were tested to describe the residual variability. A full model approach was
implemented for the covariate model building. Weight, body surface area (BSA), and
creatinine clearance (ClCR) were tested as covariates on the volumes of distribution or
clearance. Allometric functions were used for this purpose.

(1)TIC stands for Temocillin Intermittent versus Continuous
(2)MICs were first determined using the automated system Vitek-2 R©.
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3.2 Population model building

Table 3.1 – Demographic and clinical characteristics of the 32 patients included in
the model building dataset

 All (N=32) CI group (N=9) II group (N=23) 

Demographic and clinical data    

Age (years)  

mean±SD a 
64.9 ± 11.4 66.1 ± 7.0 64.4 ± 12.8 

Male 

N b (%) 
24 (75.0) 8 (88.9) 16 (69.6) 

Weight (kg) 

mean±SD 
74.4 ± 13.7 75.6 ± 16.7 73.9 ± 12.8 

BMI (kg/m²) 

mean±SD 
25.1 ± 4.6 25.1 ± 4.5 25.1 ± 4.7 

Hospital stay before onset of pneumonia 

(days) 

mean±SD 

15.6 ± 15.0 18.3 ± 13.9 14.5 ± 15.6 

ICU stay before onset of pneumonia 

(days) 

mean±SD 

10.3 ± 10.1 13.8 ± 12.9 9.0 ± 8.8 

Simplified CPIS  

mean±SD 
7.8 ± 1.0 8.1 ± 1.2 7.7 ± 0.93 

SAPS III 

mean±SD  
72.2 ± 12.7 74.8 ± 11.9 71.3 ± 13.2 

SOFA score  

mean±SD 
9.7 ± 3.3 10.0 ± 3.7 9.6 ± 3.2 

APACHE II  

mean±SD 
28.6 ± 8.6 28.3 ± 9.6 28.7 ± 8.4 

Septic shock  

N (%) 
12 (37.5) 5 (55.6) 7 (30.4) 

Concomitant bacteraemia with the 

targeted bacteria  

N (%) 

5 (15.6) 3 (33.3) 2 (8.7) 

MDRD c 

N (%) 
   

     > 60 mL/min 27 (84.4) 8 (88.9) 19 (82.6) 

     59-30 mL/min 5 (15.6) 1 (11.1) 4 (17.4) 

ClCR (mL/min) d 

mean±SD  
115.6 ± 51.7 119.2 ±  33.2 114.2 ± 58.0 

     >120 mL/min 14 (43.7) 6 (66.7) 8 (35.8) 

     90 – 119 mL/min 8 (25.0) 2 (22.2) 6 (26.1) 

     60 – 89 mL/min 3 (9.4) 0 (0.0) 3 (13.0) 

     30 – 59 mL/min 7 (21.9) 1 (11.1) 6 (26.1) 

CVVH 

N(%) 
0 (0.0) 0 (0.0) 0 (0.0) 

ClCR BSA (mL/min/1.73m²) e 

mean±SD 
107.1 ± 49.4 112.2 ± 40.7 105.2 ± 53.2 

In-hospital mortality 

N(%) 
13 (40.6) 4 (44.4) 9 (39.1) 

ICU mortality 

N(%) 
8 (25.0) 3 (33.3) 5 (21.7) 

a SD, standard deviation 
b N, Number of patients 
c Estimation of the creatinine clearance using the MDRD formula 
d Creatinine clearance based on 24h collection of urine 
e ClCR normalized to a body surface area of 1.73 m2 

CI, continuous infusion; II, intermittent infusion; ClCR, creatinine clearance; BMI, body mass index; 

ICU, intensive care unit; MDRD, modification of diet in renal disease; CVVH, continuous veno-venous 

haemofiltration 

CPIS, clinical pulmonary infection score; SAPS II, simplified acute physiology score; SOFA, sepsis-

related organ failure assessment; APACHE, acute physiology and chronic health evaluation 
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Figure 3.1 – Observed free and total concentration of temocillin in plasma and ELF,
respectively, in the 32 patients included in the model building dataset. II, intermittent
infusion; CI, continuous infusion. Solid lines and filled circles, ClCR ≥ 60 mL/min;
dashed lines and open squares, ClCR: 30-59 mL/min.
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3.3 Model internal validation

A two-compartment model best fitted the plasma concentrations and an additional
compartment was added to describe the ELF concentrations. The structural model
is schematically represented in Figure 3.2. Body surface area was retained as a sig-
nificant covariate on the volumes of distribution of the central and additional ELF
compartments whereas creatinine clearance (ClCR) was a significant covariate on total
clearance. The PK parameters estimates, and related covariates and IIV are summa-
rized in Table 3.2. The number of significant digits in the final estimations is 3.4, i.e.,
between the last two iterations of the estimation algorithm, none of the parameters
differed in the first 3 significant digits.

Qp

QE CL

x1 x3

x2

CENTRAL
Vc

PERIPHERAL
Vp

ELF
VE

DOSE

Figure 3.2 – Schematic representation of a (2+1)-compartment population pharma-
cokinetic model. CL, clearance; Vc, volume of distribution of the central compartment;
QE, inter-compartmental clearance between the central and ELF compartments; VE,
volume of distribution of the ELF compartment; Qp, inter-compartmental clearance
between the central and peripheral compartments; Vp, volume of distribution of the
peripheral compartment.

Using (1.3.8), the ELF-to-plasma penetration ratio is given by

Kt =
usv2

usv1
= 0.712

which is in line with the penetration ratio calculated on the basis of Monte Carlo
simulations and derived steady-state AUC0−24 in N. Layios, C. Visée, P. Thémans, et
al. (2021, submitted).

3.3 Model internal validation
The bootstrap confidence intervals at 95% are reported in Table 3.2 along with the
parameter estimations and the standard error of estimates provided by NONMEM.
We observe that the model seems to be overparametrized. Indeed, the covariate BSA
on the volume of distribution is not supported by the data (high RSE and bootstrap CI
that crosses 0). Nevertheless, this covariate was retained in the model for physiological
considerations, based on previous PK analyses; see, e.g., Miranda Bastos et al. (2018)
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Vandecasteele et al. (2015), where the body weight is identifed to affect the clearance.
Statistical analyses (based on the LRT) led us to include BSA, instead of WT, as a
covariate in our own population model of temocillin.

Diagnostic scatter plots, based on model predictions and residuals, are displayed
in Figure 3.3. They indicate adequate fitting performances of the model, as well as the
VPC in Figure 3.4.

Table 3.2 – PopPK model of temocillin: parameter estimates

Parameter Estimate %RSEa bootstrap 95% CIb

CCCLLL (L/h) 15.9 10.1 13.4 - 19.5
ClCR effect on CL [θClCR ](c) 1.04 24.3 0.487 - 1.57
IIV on CL [ω2

CL (%CV)] 0.290 (53.9) 21.9 0.146 - 0.395
VVV ccc (L) 24.3 14.0 8.35 - 30.4

BSA effect on Vc [θBSA](d) 1.56 49.4 -0.326 - 3.42
IIV on Vc [ω2

Vc
(%CV)] 0.289 (53.8) 34.6 0.967 - 1.20

QQQEEE (L/h) 38.5 22.8 24.4 - 124
VVV EEE (L) 21.5 24.0 13.3 - 36.3

BSA effect on VE [θBSA](d) 4.46 59.1 0.574 - 12.5
IIV on VE [ω2

VE
(%CV)] 0.423 (65.0) 47.8 0.0776 - 0.976

QQQppp (L/h) 4.75 12.2 3.29 - 10.7
VVV ppp (L) 35.3 60.5 11.2 - 56200
uuusssvvvEEE (VE/SE ) 712 12.1 649 - 913
Eprop plasma conc. [σ2

p ] 0.0309 21.4 0.0146 - 0.0407
Eadd plasma conc. [σ2

a ] 0.495 39.4 0.0424 - 1.39
Eprop ELF conc. [σ2

p ] 0.421 20.8 0.253 - 0.588
a relative standard error of estimates
b confidence interval based on the 2.5th and 97.5th percentiles of the bootstrapped
distributions generated from 1000 resampled datasets
c Allometric covariate model, normalized to a ClCR level of 117 mL/min
d Allometric covariate model, normalized to a BSA of 2 m2

CL, clearance; ClCR, creatinine clearance based on 24h collection of urine; Vc,
volume of distribution of the central compartment; BSA, body surface area; QE,
inter-compartmental clearance between the central and ELF compartments; VE,
volume of distribution of the ELF compartment; Qp, inter-compartmental clear-
ance between the central and peripheral compartments; Vp, volume of distribution
of the peripheral compartment; IIV, interindividual variability; ω2

• , variance of
the related random variable; usv; unitless scalar value; S, scaling factor; Eprop,
proportional error; Eadd, additional error, σ2

p,a, variances of the related random
variables.
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3.3 Model internal validation
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Figure 3.3 – Basic goodness-of-fit plots. Observations vs. population predictions and
individual predictions; residuals vs. population predictions and time. Open circles
correspond to intermittent infusion (2g/8h over 0.5h-infusion); filled triangles corre-
spond to continuous infusion (6g/24h). Solid lines are either the line of identity [upper
rows] or the line x = 0 [lower rows].

63



Chapter 3 Pharmacokinetic model of temocillin

CLCR > 60 mL/min CLCR 30−59 mL/min

II g
ro

u
p

C
I g

ro
u

p

0 2 4 6 8 0 2 4 6 8

1

10

100

1

10

100

Time [hours]

P
la

s
m

a
 c

o
n
c
 [
m

g
/L

]

(a) Free plasma concentrations

CLCR > 60 mL/min CLCR 30−59 mL/min

II g
ro

u
p

C
I g

ro
u

p

0 2 4 6 8 0 2 4 6 8

1

10

100

1

10

100

Time [hours]

E
L
F

 c
o
n
c
 [
m

g
/L

]

(b) Total ELF concentrations

Figure 3.4 – Visual predictive checks. Solid lines are the medians. Dotted lines corre-
spond to the 90 % prediction intervals. Filled circles are the observed concentrations.
II, intermittent infusion; CI, continuous infusion; CLCR, creatinine clearance.
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CHAPTER 4

Pharmacokinetic models of meropenem in patients
with pneumonia

This chapter intends to develop both a population model and a physiologically based
model of meropenem in patients with pneumonia. The physiologically based pharma-
cokinetic model presented in Section 4.3 was published in Thémans et al. (2019).

Meropenem (Meronem R©) is a carbapenem with a broad antibacterial spectrum.
It is a a well-tolerated antibiotic with good organ and tissue penetration (see, e.g.,
Binder et al. (2013)), and can be used in the treatment of both Gram-positive and
Gram-negative infections (EUCAST (2009)). It is used for the treatment of critical
bacterial infections such as severe nosocomial pneumonia or sepsis (see, e.g., Mattioli
et al. (2016) and Chow et al. (2018)). Meropenem is a time-dependent antibiotic
like temocillin (see Chapter 3). In critically ill patients, it can be required to reach a
100%T>MIC to ensure optimal clinical outcome (see, e.g., Goncalves-Pereira et al.
(2014), Sime et al. (2015), and Burger et al. (2018)).

The pharmacokinetics of meropenem has already been studied in different popu-
lations, including paediatric patients (Du et al. (2006), Padari et al. (2012)), healthy
volunteers (Krueger et al. (2005)), (noninfected) morbidly obese patients (Wittau et al.
(2015)), patients with various degrees of renal functions (Chimata et al. (1993)), and
patients with severe bacterial infection and/or sepsis (Li et al. (2006), Karjagin et al.
(2008), Lodise et al. (2011), Binder et al. (2013), Goncalves-Pereira et al. (2014),
Frippiat et al. (2015), Jaruratanasirikul et al. (2015), Kees et al. (2016), Mattioli et al.
(2016), Sjövall et al. (2018), and Burger et al. (2018)).

There is a lack of consensus regarding the dosing of this drug in the scientific lit-
erature. The UK Medicines and Health Products Regulatory Agency (MHRA) rec-
ommends in their Summary of Product Characteristics the infusion of 500 mg or
1 g every 8 hours (every 12 hours for patients with renal impairment) over 15-30
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Chapter 4 Pharmacokinetic models of meropenem

minutes as common dosage (MHRA (2017)). Some publications report that alterna-
tive dosing regimens have been found to be more (cost-)effective in clinical practice:
Some authors compared the PD and clinical outcomes of the traditional dosing to a
smaller dose with shorter interval (see Perrott et al. (2010) and Chow et al. (2018))),
whereas other publications state that a better PK profile (higher %T>MIC) is obtained
by extended or continuous infusion (see, e.g., Veiga and Paiva (2018) and Gonçalves-
Pereira and Póvoa (2011)).

4.1 Patient data
Data from five published models of meropenem were used for model development and
validation (Frippiat et al. (2015), Lodise et al. (2011), Karjagin et al. (2008), Li et al.
(2006) and Chimata et al. (1993)). Patient characteristics are summarized in Table
4.1. The data from the PROMESSE(1) study (Frippiat et al. (2015)) were available
at patient level and used for model building. The four other studies were used for
external validation.

Patients included in the model building dataset were diagnosed with severe noso-
comial pneumonia. They received meropenem by IV infusion either by intermittent
infusion (II; 1g every 8h over 0.5h) or by extended infusion (EI; 1g every 8h over
3h). The observed concentrations consist of plasma and (sparse) ELF samples and
are shown in Figure 4.1. They are supposed to be steady-state concentrations. The
studies by Karjagin et al. (2008) and Chimata et al. (1993) provided the relevant pa-
tients’ characteristics, namely the weight and the creatinine clearance, at patient level.
In the studies by Lodise et al. (2011) and Li et al. (2006), the demographic character-
istics were presented at a summary level. In that case, we derived a set of individual
patients using online databases from the National Health and Nutrition Examination
Survey (see NHANES (2005-2006)), taking into account the proportion of males and
females and the range of the different variables as described by the authors.

Data from an additional publication (Wittau et al. (2015)) were used to investigate
the predictive performances of the PBPK model in morbidly obese patients. Patient
characteristics are also reported, at a summary level, in Table 4.1. Given that the
patients’ characteristics were not reported at individual level in the publication, we
generated a set of virtual patients, that matched the summary-level characteristics, us-
ing the population tab of Simcyp (Certara Inc., Princeton, NJ, USA). Simcyp virtual
populations are created based on real patient populations; the actual covariance struc-
ture between patients’ characteristics in the population is therefore conserved in the
simulations. This very different population with regard to body weight distribution is
presented as an extrapolation group, compared to the other available data.

(1)PROMESSE stands for PROtocol MEropenem Steady State Evaluation.
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4.1 Patient data

Figure 4.1 – Observed plasma and ELF meropenen concentrations in the 60 patients
included in the model building dataset. Filled circles, GFR > 60 mL/min; open
squares, GFR < 60 mL/min.
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Table 4.1 – Demographic information from previously published studies

Model building dataset (External) validation datasets Extrapolation dataset
Frippiat et al. (2015) Lodise et al.

(2011)
Karjagin et al.
(2008)

Li et al. (2006) Chimata et al.
(1993)

Wittau et al.
(2015)

II group EI group (n = 39) (n = 4) (n = 79) (n = 13) (n = 5)
(n = 33) (n = 27)

Type of patients Severe nosocomial pneumonia
(HAP or VAP)

Ventilator-
associated
pneumonia
(VAP)

Severe peritoni-
tis associated
with septic
shock

Intra-abdominal
infections,
community-
acquired pneumo-
nia, or VAP

Various degrees
of renal impair-
ment

Hospitalized
morbidly obese
patients

Sex (male/female) 11/22 8/19 3/1 61/18 5/8 2/3
Age (years) 15–18 41–84 20–85 52–81 18–93 30–76 31–49
Height (cm) 144–185 147–185.4 155–190
Weight (kg) 49–128 45–108 46–140 50–70 40.6–127 34–85 116–203
BSA (m2) 2.23–3.19
GFR (mL/min) 19–401* 20–212*

Serum creatinine
(µmol/L)

47–123 35.37–610.1 44.21–618.94 64–80

Creatinine clear-
ance (mL/min)

30–135 4.3–68.0

The values are presented with the range.
BSA, body surface area.; GFR, glomerular filtration rate.
* GFR calculated according to the four-variable Modification of Diet in Renal Disease formula or by measurement of creatinine clearance based on 24h urine.



4.2 Population model

4.2 Population model

4.2.1 Model building
A nonlinear mixed effects modeling approach was used and model parameters were
estimated using the NONMEM program, version 7.3.0. The first-order conditional
estimation method with interaction was used. A two-compartment model provided an
adequate fit to the observed plasma concentrations. An additional dummy compart-
ment was added to describe the (sparse) available data in the site of infection (ELF)
(see Figure 3.2).

Based on known physiological relationships and a previously published model
(Frippiat et al. (2015)), two covariates were considered and retained in the model:
the weight on the volumes of distribution and the renal function (quantified by the
glomerular filtration rate (GFR)) on the clearance. An allometric model was used to
describe the influence of continuous variables on the PK parameters. The weight was
not a statistically relevant covariate, but has been retained in the model as a covariate
because of its clinical relevance.

The model parameter estimates are reported in Table 4.2. The number of signif-
icant digits in the final estimations is 3.6, i.e., between the last two iterations of the
estimation algorithm, none of the parameters differed in the first 3 significant digits.
The high unexplained variability on the ELF volume of distribution may be due to the
scarcity of observations and technical factors in the method of measurement (BAL,
see Kiem and Schentag (2008)).

4.2.2 Model evaluation
Internal validation
The precision of the estimations were evaluated by the bootstrapped distribution of
the model parameters. Satisfactory bootstrap CI are reported in Table 4.2 along with
the standard error of estimates computed by NONMEM. Goodness-of-fit plots and
VPCs are presented in Figures 4.2 and 4.3, respectively. The absence of inadequate
trends in the displayed GOF plots and an acceptable agreement between the predicted
and observed data over the dosing interval in the VPC, for both plasma and ELF
concentrations, indicate adequate fitting performances of the model to the data.
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Chapter 4 Pharmacokinetic models of meropenem

Table 4.2 – PopPK model of meropenem: parameter estimates

Parameter Estimate %RSEa bootstrap 95% CIb

CCCLLL (L/h) 7.94 4.95 7.34 - 8.54
GFR effect on CL [θGFR](c) 0.722 8.82 0.581 - 0.816
IIV on CL [ω2 (%CV)] 0.126 (35.5) 18.8 0.0817 - 0.157

VVV ccc (L) 13.6 6.26 11.5 - 15.4
WT effect on Vc [θWT ](d) 0.949 30.1 0.609 - 1.68
IIV on Vc [ω2 (%CV)] 0.140 (37.4) 33.6 0.0827 - 0.235

QQQEEE (L/h) 6.73 18.3 4.02 - 14.4
VVV EEE (L) 4.08 33.3 1.17 - 5.87

WT effect on VE [θWT ](d) 1.04 114 -5.39 - 3.02
IIV on VE [ω2 (%CV)] 1.76 (133) 41.1 0.909 - 4.89

QQQppp (L/h) 8.22 18.3 5.70 - 11.5
IIV on Qp [ω2 (%CV)] 0.187 (43.2) 56.1 0.0206 - 0.349

VVV ppp (L) 10.1 15.5 7.75 - 13.5
uuusssvvvEEE (VE/SE ) 249 9.68 233 - 324
Eprop plasma conc. [σ2

p (%CV)] 0.0240 (15.5) 11.8 0.0170 - 0.0292
Eadd plasma conc. [σ2

a (mg/L)] 0.208 (0.456) 32.5 0.114 - 0.379
Eprop ELF conc. [σ2

p (%CV)] 0.404 (63.6) 21.3 0.254 - 0.547
a relative standard error of estimates
b confidence interval based on the 2.5th and 97.5th percentiles of the bootstrapped
distributions generated from 1000 resampled datasets
c Allometric covariate model, normalized to a GFR level of 65 mL/min
d Allometric covariate model, normalized to a body weight of 75 kg
CL, clearance; GFR, glomerular filtration rate; Vc, volume of distribution of the
central compartment; WT, body weight; QE, inter-compartmental clearance be-
tween the central and ELF compartments; VE, volume of distribution of the ELF
compartment; Qp, inter-compartmental clearance between the central and periph-
eral compartments; Vp, volume of distribution of the peripheral compartment; IIV,
interindividual variability; ω2, variance of the related random variable; usv; unit-
less scalar value; S, scaling factor; Eprop, proportional error; Eadd, additional
error; σ2

p,a, variances of the related random variables.
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Figure 4.2 – PopPK model of meropenem: basic goodness-of-fit plots. Open cir-
cles, intermittent infusion (over 30 min); filled triangles, extended infusion (over 3
hours). Dashed red lines are the linear regression lines. Solid lines are either the line
of identity [upper rows] or the line x = 0 [lower rows]
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Figure 4.3 – PopPK model of meropenem: visual predictive checks. Grey areas are
the 90% confidence intervals of the median and the 5th and 95th percentiles. Con-
tinuous and dotted lines correspond to the median and the 5th and 95th percentiles of
the observations in plasma [(a)]; filled circles are the observations in ELF [(b)]. II,
intermittent infusion; EI, extended infusion; GFR, glomerular filtration rate.
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4.2 Population model

External validation
The results of external validation on data from independent patients with severe infec-
tions (Karjagin et al. (2008), Lodise et al. (2011), Li et al. (2006)) were also overall
acceptable and are shown in figures 4.4, 4.5, and 4.6. Either the creatinine clear-
ance values were used for the GFR model covariate or GFR was computed using the
Modification of Diet in Renal Disease formula (MDRD) formula from the serum cre-
atinine (Levey et al. (2000)). It should be noted that observed data were not reported
in the publication by Lodise et al. (2011), but the authors performed simulations of
concentration-time profiles in plasma and ELF. Figures A.1(a)-(d) of Appendix A
provide individual plots for the Karjagin et al.’s patients. Separated plots for each
dosing regimen reported in Li et al. (2006) are also provided in Figures A.2(a)-(f).

Figure 4.7 shows the predictions for the patients taken from Chimata et al. (1993)
and allocated to three groups: group 1 (four patients with CLCR ≥50 mL/min), group
2 (four patients with 30 mL/min≤ CLCR ≤50 mL/min) and group 3 (five patients
with CLCR ≤30 mL/min). Simulations display good agreement between observed and
predicted concentrations, especially in groups 2 and 3. Figures A.3(a)-(c) of Appendix
A provide the separated plots for each group.
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Figure 4.4 – PopPK model of meropenem: simulated plasma PK profiles (median
and 90% PI) for 500 replicates of four of the patients described in Karjagin et al.
(2008). Dosage of 1g every 8h over a 20min-infusion. Points are the observed plasma
concentrations in Karjagin et al. (2008). Time is time after the second dose.
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Figure 4.5 – PopPK model of meropenem: simulated (a) plasma and (b) infection-site
PK profiles (median and 90% PI) for 1000 patients from the NHANES databases and
consistent with the the study design of Lodise et al. (2011). Dosage of 2g over a 3h-
infusion. Blue lines are the digitized simulated concentration-time profiles in Lodise
et al. (2011). Time is time after the first dose.
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Figure 4.6 – PopPK model of meropenem: simulated steady-state plasma PK profiles
(median and 90% PI) for 1000 patients from the NHANES databases and consistent
with the the study design of Li et al. (2006). Simulation of 6 different dosing regimens:
0.5, 1 or 2 g every 8h over a 30min- or 3h-infusion. Points are the observed plasma
concentrations in Li et al. (2006).

0 2 4 6 8 10 12

Time [h] after the last dose

10-1

100

101

102

P
la

sm
a 

co
nc

en
tr

at
io

n 
[m

g/
L]

Figure 4.7 – PopPK model of meropenem: simulated plasma PK profiles (median
and 90% PI) for 1000 replicates of the 13 patients described in Chimata et al. (1993).
Dosage of 0.5g over a 30min-infusion. Points are (the medians of) the observed
plasma concentrations in the three groups. Time is time after the first dose.
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4.3 Physiologically based model

4.3.1 Structural model
The reduced PBPK model of meropenem consists of six compartments including three
organs (lungs/site of infection, kidneys and liver), and two blood compartments to dis-
tinguish arterial and venous blood. All the other tissues and organs (stomach, spleen,
intestine, heart, muscles, bones. . . ) are lumped together in one compartment called
“rest of the body”. The model is built on physiological considerations and includes
realistic organ blood flows and organ volumes, obtained from the literature in Jones
et al. (2006) and reported in Table 4.3. The compartments representing the different
organs and tissues are connected in parallel between those representing the arterial
and venous blood. As detailed on page 23, the systemic circulations provides arterial
blood supply to all organs and tissues, and blood from the tissues flows into the venous
pool. The lung compartment closes the circulation loop in the model and receives ve-
nous blood at a flow rate equal to that of the cardiac output (pulmonary circulation).
The architecture of the structural PBPK model is schematized in Figure 4.8.

In the model, the organs are represented as single well-mixed compartments and
the distribution of meropenem is assumed to be perfusion rate limited (in contrast
to permeability rate limited, see, e.g., Jones and Rowland-Yeo (2013) and (Rowland
and Tozer, 2011, Fig. p. 87)). In line with the known pharmacology of meropenem
(see MHRA (2017)), the elimination of meropenem is modeled as occurring in the
kidneys and the liver. Renal elimination is assumed to represent approximately 70%
of total clearance. Non-renal clearance is assumed to be entirely hepatic (metabolism
by hydrolysis). Other tissues are assumed to have no effect on the drug clearance. The
intravascular administration is assumed to be intra-arterial in the modeling approach
presented here.
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Figure 4.8 – Schematic representation of the physiologically based pharmacokinetic
model of meropenem
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Table 4.3 – Physiological parameters used in the model, taken from Jones et al. (2006)

Organ/tissue Volumea Blood flow ratea

Arterial blood 0.0257 -
Lungs 0.0076 1
Venous blood 0.0514 -
Liver 0.0257 0.25b

Kidneys 0.0044 0.19
“Rest of the body” WT −Va−VLu−Vv−VLi−VKi CO−QLi−QKi
a Volumes and blood flow rates are expressed as a fraction of total body-
weight (WT) and cardiac output (CO), respectively
b The blood flow of the liver is the sum of the blood flows of the portal
vein and the hepatic artery

The affinity of each tissue for the drug is modeled by a tissue-to-plasma partition
coefficient Kp, which is defined by the ratio of the organ concentration to the efferent
plasma concentration, i.e.,

ct = Kp · cp

where ct and cp stand for the concentrations in the tissue/organ and in the efferent
plasma. The mathematical description of this model consists in a mass balance equa-
tion for each compartment:

1. Non-eliminating organs and tissues (lungs and rest of the body)

VRB
dcRB

dt
= QRB

(
ca−

cRB

KpRB

)

and

VLu
dcLu

dt
= Qco

(
cv−

cLu

KpLu

)

where ca and cv represent the drug concentration in the arterial and venous com-
partments, respectively, cLu and cRB denote the global drug concentration in the
lungs and the “rest of the body”, respectively, VLu and VRB are the correspond-
ing volumes, Qco and QRB are the cardiac output (blood flow rate of the lungs)
and the blood flow rate of the rest of the body, and KpLu and KpRB denote the
partition coefficients between the lung and the rest of the body (resp.) and the
efferent plasma.

2. Eliminating organs (an additional term is needed to describe the elimination
process)

VLi
dcLi

dt
= QLi

(
ca−

cLi

KpLi

)
−CLH

cLi

KpLi

and

VKi
dcKi

dt
= QKi

(
ca−

cKi

KpKi

)
−CLR

cKi

KpKi
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where cLi and cKi represent the drug concentration in the liver and the kidneys,
respectively, VLi and VKi are the corresponding volumes, QLi and QKi are the
blood flow rates of the liver and the kidneys, respectively, CLR and CLH are
the renal and hepatic clearances, and KpLi and KpKi denote the partition coef-
ficients between the liver and the kidneys (resp.) and the efferent plasma. We
assume that the partition coefficients of the non-fat tissues (liver and kidneys)
are equivalent/equal, as described in Pilari and Huisinga (2010).

3. Blood compartments

Va
dca

dt
= Qco

cLu

KpLu
−Qcoca +u

and
Vv

dcv

dt
= ∑

i
Qi

ci

Kpi
−Qcocv

where u(·) represents the intravascular rate of infusion [g/h], and ci denotes
successively the drug concentration in the the liver, the kidneys and the rest of
the body (i ∈ {Li,Ki,RB}).

These equations can be written in matrix notation by
{

ẋ(t) = Ax(t)+bu(t)
y(t) =Cx(t)

t ≥ 0 (4.3.1)

where

A =




−Qco

Va

Qco

KpLuVa
0 0 0 0

0 − Qco

KpLuVLu

Qco

VLu
0 0 0

0 0 −Qco

Vv

QLi

KpLiVv

QKi

KpKiVv

QRB

KpRBVv
QLi

VLi
0 0 −QLi +CLH

KpLiVLi
0 0

QKi

VKi
0 0 0 −QKi +CLR

KpKiVKi
0

QRB

VRB
0 0 0 0 − QRB

KpRBVRB




(4.3.2)

and

b =

(
1

Va
0 0 0 0 0

)T
, C =

(
1000 0 0 0 0 0

0 1000 0 0 0 0

)
(4.3.3)

where CLH +CLR equals the total clearance (CL) and CLR = 0.7 ·CL. The state vec-
tor x =

(
ca cLu cv cLi cKi cRB

)T ∈ R6 corresponds to the drug concentration
[g/L] in each compartment and the output vector y =

(
y1 y2

)T ∈ R2 represents the
drug concentrations [mg/L] in the plasma and at the infection site.
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4.3 Physiologically based model

4.3.2 System analysis
As the state variables of (4.3.1) represent concentrations of drug, it is expected that
the state trajectories stay in the nonnegative orthant of R6 for all nonnegative initial
conditions and nonnegative admissible input functions. Since A and b are Metzler
and nonnegative matrices, respectively, it is indeed the case by Lemma 1.1.1, like the
popPK system (see Proposition 1.3.1). Besides, as the popPK system, it is expected
that the PBPK model is stable.

Proposition 4.3.1 The PBPK system given by (4.3.1)-(4.3.3) is nonnegative.

Proposition 4.3.2 The PBPK system given by (4.3.1)-(4.3.3) is internally (ex-
ponentially) stable.

Proof. Let the Lyapunov function defined, for all x ∈ [0,∞)6, by

L(x) =V T x

where V =
(
VA VLu Vv VLi VKi VRB

)T is the vector of the volumes. The Lya-
punov function corresponds therefore to the total mass/amount of drug in the system.
The conditions L(0) = 0 and L(x)> 0 for all x ∈ [0,∞)6\{0} are easily verified since
all the volumes are positive. Furthermore, the derivative along the zero-input state
trajectories reads as

L̇(x) = V T ẋ =V T Ax

= −Qcoca +
Qco

KpLu
cLu−

Qco

KpLu
cLu +Qcocv−Qcocv +

QLi

KpLi
cLi +

QKi

KpKi
cKi +

QRB

KpRB
cRB +QLica−

QLi +CLH

KpLi
cLi +

QKica−
QKi +CLR

KpKi
cKi +QRBca−

QRB

KpRB
cRB

= −CLH

KpLi
cLi−

CLR

KpKi
cKi

= −cv(CLH +CLR)

using CO = QLi +QKi +QRB and the definition of the tissue-to-plasma partition co-
efficients Kp•. For any positive initial condition x0 > 0, L̇(x) is negative along the
state trajectory. In fact, it turns out that the resolvant function (sI−A)−1 has non-zero
entries on the third row, ensuring the positivity of the corresponding entries of eAt for
all t > 0, since the nonnegativity is guarantee by the Metzler property of A (see Propo-
sition 1.1.2). Hence the matrix A is stable (by the proof of (Chellaboina et al., 2009,
Proposition 7)). The numerators of the elements (3,1) to (3,6) of the matrix (sI−A)−1

were computed using the Symbolic Math Toolbox of MATLAB and are reported in
Appendix B. �
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4.3.3 Model parameter estimation
Total clearance and tissue-to-plasma partition coefficients were estimated by a “top-
down” data-driven approach, using a mixed effects modeling to describe the interindi-
vidual variability. Moreover, the individual typical value of the total clearance TVCL
was assumed to be influenced by the renal function through an allometric relationship.
Thus,

CL = TVCL · exp(η)

= θCL

(
GFR

GFRmed

)θGFR

· exp(η)

where η ∼ N(0,ω2). The parameter estimates of the reduced PBPK model are re-
ported in Table 4.4. The number of significant digits in the final estimations is 2.6,
i.e., between the last two iterations of the estimation algorithm, none of the parame-
ters differed in the first 2 significant digits.

It should be noted that the organ volumes and organ blood flows are not consis-
tently reported in previously published PBPK models, see, e.g., Nestorov et al. (1998)
or Edginton et al. (2006). A sensitivity analysis, reported in Appendix C, was there-
fore performed and revealed that organ volumes and blood flows had little influence
on the final model predictions.

The partition coefficients estimates indicate that, when target concentrations (MIC)
are determined by in vitro evaluation, the dose should be discussed on the basis of the
concentrations to reach in the target tissue rather than in plasma only. Furthermore,
it is interesting to note that the ELF-to-plasma partition coefficient (penetration ratio)
is similar to that calculated with the popPK approach. Indeed, as stated by Equation
(1.3.8), the latter is given by

Kt :=
ct

cp
=

usv2

usv1
=

249
1000

' 0.24.

while KpLu = 0.26 in Table 4.4. That means that the concentration in the site of infec-
tion is four times lower than the plasma concentration.

4.3.4 Model evaluation
Internal validation
The bootstrap results, included in Table 4.4, give satisfactory results for the precision
of the estimations. The model was also validated by GOF plots in Figure 4.9 and
VPCs in Figure 4.10. We observe no inadequate trend and an acceptable agreement
between predicted and observed concentration over the dosing interval.

80



4.3 Physiologically based model

0

30

60

90

120

0 20 40 60

Conditional population predicted conc (mg/L)

O
b
s
e

rv
e

d
 c

o
n
c
 (

m
g
/L

)

0

30

60

90

120

0 20 40 60

Individual predicted conc (mg/L)

O
b
s
e

rv
e

d
 c

o
n
c
 (

m
g
/L

)

−2

0

2

4

0 20 40 60

Conditional population predicted conc (mg/L)

C
o
n
d
it
io

n
a
l 
w

e
ig

h
te

d
 r

e
s
id

u
a
ls

−2

0

2

4

0 2 4 6

Time (hours)

C
o
n
d
it
io

n
a
l 
w

e
ig

h
te

d
 r

e
s
id

u
a
ls

(a) plasma concentrations

0

10

20

30

0 5 10 15

Conditional population predicted conc (mg/L)

O
b
s
e
rv

e
d
 c

o
n
c
 (

m
g
/L

)

0

10

20

30

0 5 10 15

Individual predicted conc (mg/L)

O
b
s
e
rv

e
d
 c

o
n
c
 (

m
g
/L

)

−1

0

1

2

3

0 5 10 15

Conditional population predicted conc (mg/L)

C
o

n
d
it
io

n
a
l 
w

e
ig

h
te

d
 r

e
s
id

u
a
ls

−1

0

1

2

3

0 2 4 6

Time (hours)

C
o

n
d
it
io

n
a
l 
w

e
ig

h
te

d
 r

e
s
id

u
a
ls

(b) ELF concentrations

Figure 4.9 – PBPK model of meropenem: basic goodness-of-fit plots. Open circles,
intermittent infusion (over 30 min); filled triangles, extended infusion (over 3 hours).
Dashed red lines are the linear regression lines. Solid lines are either the line of iden-
tity [upper rows] or the line x = 0 [lower rows]
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Figure 4.10 – PBPK model of meropenem: visual predictive checks. Grey areas are
the 90% confidence intervals of the median and the 5th and 95th percentiles. Con-
tinuous and dotted lines correspond to the median and the 5th and 95th percentiles of
the observations in plasma [(a)]; filled circles are the observations in ELF [(b)]. II,
intermittent infusion; EI, extended infusion; GFR, glomerular filtration rate.
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4.3 Physiologically based model

Table 4.4 – PBPK model of meropenem: parameter estimates

Parameter Estimate bootstrap CIa

CLCLCL 8.2 7.7 - 8.9
Allometric exponent of GFR ef- 0.722 (fixed) -
fect on CL [θGFR]
IIV on CL [ω2 (%CV)] 0.11 (33) 0.093 - 0.16

KpLuKpLuKpLu 0.26 0.22 - 0.32
KpLi = KpKiKpLi = KpKiKpLi = KpKi 0.19 0.12 - 0.20
KpRBKpRBKpRB 0.25 0.24 - 0.29
Eprop plasma conc. [σ2

p (%)] 0.086 (29) 0.076 - 0.11
Eadd plasma conc. [σ2

a (mg/L)] 0.036 (0.19) 0.032 - 0.049
Eprop ELF conc. [σ2

p (%)] 0.48 (69) 0.42 - 0.65
a confidence interval based on the 5th and 95th percentiles of the boot-
strapped distributions generated from 500 resampled datasets
CL, (renal) clearance; GFR, glomerular filtration rate; IIV, interindivid-
ual variability; Kp•, tissue-to-plasma partition coefficient; ω2, variance
of the related random variable; Eprop, proportional error; Eadd, addi-
tional error; σ2

p,a, variances of the related random variables.

External validation
The results of external validation on data from independent patients are shown in
Figures 4.11, 4.12, and 4.13. In all cases, the prediction of external data using the final
PBPK model was acceptable. Figures A.4(a)-(d) of Appendix A provide individual
plots for Karjagin et al.’s patients. Separated plots for each dosing regimen reported
in Li et al. (2006) are also provided in Figures A.5(a)-(f).

Figure 4.14 shows the predictions for the 13 patients in Chimata et al. (1993) with
various degrees of renal function. Simulations displayed good agreement between
observed and predicted concentrations. Figures A.6(a)-(c) of Appendix A provide
separated plots for each group.
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Figure 4.11 – PBPK model of meropenem: simulated (a) plasma and (b) infection-
site PK profiles (median and 90% PI) for 1000 patients from the NHANES databases
and consistent with the the study design of Lodise et al. (2011). Dosage of 2g over
a 3h-infusion. Blue lines are the digitized simulated concentration-time profiles in
Lodise et al. (2011). Time is time after the first dose.
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Figure 4.12 – PBPK model of meropenem: simulated plasma PK profiles (median
and 90% PI) for 500 replicates of four of the patients described in Karjagin et al.
(2008). Dosage of 1g every 8h over a 20min-infusion. Points are the observed plasma
concentrations in Karjagin et al. (2008). Time is time after the second dose.
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Figure 4.13 – PBPK model of meropenem: simulated steady-state plasma PK profiles
(median and 90% PI) for 1000 patients from the NHANES databases and consistent
with the the study design of Li et al. (2006). Simulation of 6 different dosing regimens:
0.5, 1 or 2 g every 8h over a 30min- or 3h-infusion. Points are the observed plasma
concentrations in Li et al. (2006).
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Figure 4.14 – PBPK model of meropenem: simulated plasma PK profiles (median
and 90% PI) for 385 replicates of the 13 patients described in Chimata et al. (1993).
Dosage of 0.5g over a 30min-infusion. Points are (the medians of) the observed
plasma concentrations in the three groups. Time is time after the first dose.

4.3.5 Extrapolation in morbidly obese individuals
We investigated the extrapolation performances of the model by comparing model pre-
dictions to digitized concentrations from a previously published study on meropenem
in morbidly obese patients (Wittau et al. (2015) ). This study included five patients.
Individual characteristics (sex, age, weight, height, body surface area and serum crea-
tinine) were generated for 1000 virtual patients from the population tab of Simcyp and
matched the summary-level characteristics in the publication. Obese patients consti-
tute an interesting population to consider, especially because weight is an important
covariate of the model (see Table 4.3).

Figure 4.15 shows that the digitized observed concentrations from the few patients
of Wittau et al. (2015) seem to be overestimated by the model predictions (although
the points are in the prediction interval). We can identify possible explanations. The
renal elimination is assumed to account fo 70% of the total clearance, which could
not be a valid assumption for obese patients. Indeed, it is shown that obesity is as-
sociated with kidney diseases, and, in that case, the nonrenal clearance become the
main route of elimination (see, e.g., Ververs et al. (2000)). Moreover, there is also
the fact that the glomerular filtration rates of the simulated patients were estimated
using the Modification of Diet in Renal Disease formula, that is misleading in obese
patients (Wuerzner et al. (2011)). Having the real creatinine clearance (measured on
24 hours) would maybe improve the results. In conclusion, the model could be accept-
able for extrapolation in other groups of patients, but may require additional external
evaluations with consideration of alternative clearance parameterizations.
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Figure 4.15 – PBPK model of meropenem: extrapolation in morbidly obese patients.
Simulated steady-state plasma PK profiles (median and 90% PI) for 1000 patients
from the Simcyp virtual populations and consistent with the study design of Wittau
et al. (2015). Dosage of 1g every 8h over a 15min-infusion. Points are the observed
plasma concentrations in Wittau et al. (2015).

87



Chapter 4 Pharmacokinetic models of meropenem

88



Part II

Drug dosing
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CHAPTER 5

Simulations and probability of target attainment

This chapter aims to present how Monte Carlo simulations are used to compare dif-
ferent scenarios and inform dose selection. In particular, we illustrate on the popPK
model of temocillin the PTA-based methodology currently used in the scientific litera-
ture for model-based AB drug dosing (see, e.g., Musuamba et al. (2017)).

5.1 Simulations: application to HCQ dosage
In Yao et al. (2020), the authors have shown by in vitro evaluations that the half-
maximal effective concentration (EC50) for treatment and prophylactic effects on
SARS-COV-2 were 0.72 and 5.85 µM, respectively, 48h post-infection. Both stud-
ies were conducted using Vero cells infected at a multiplicity of infection (MOI)(1) of
0.01. Higher antiviral EC50 values have also been reported by other research groups,
e.g., 4.51 µM (MOI: 0.01) by Liu et al. (2020).

The final popPK model developed in Chapter 2 was used to simulate different dos-
ing scenarios (see Table 5.1). Simulations were performed using virtual patients with
extreme values of body weight: 50 and 150 kg. Each scenario was simulated for 5
and 10 days. The median PK profiles are reported in Figure 5.1. For graphical com-
parative purposes, EC50 values by Yao et al. (2020) and Liu et al. (2020) were scaled
to total whole-blood concentrations(2) and included in Figure 5.1. The proportion of

(1)Multiplicity of infection is the ratio of the number of virus particles to the number of target cells in the
in vitro experiment.

(2)The scaling was performed as following. The EC50 [µM] was multiplied by the molecular weight of
HCQ (336 g/mol). Assuming 50 % protein binding in patients (McLachlan et al. (1993)), the result was
multiplied by 2 to obtain the total plasma/serum concentration, and then divided by 0.53, the serum to
whole-blood concentration ratio (Blanchet et al. (2019)).
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Chapter 5 Simulations and PTA

simulated patients that reach the EC50 at the end of treatment (probability of target
attainment (PTA%)) are provided in Table 5.1. It should be noted that, for most of the
proposed dosing regimens, the simulated concentrations are below the concentrations
expected for antiviral effects of HCQ, especially in over-weight patients who would
need higher doses due to body weight effect on clearance. This should be taken into
account for dosing recommendations for HCQ in COVID-19 patients.

It should also be noted that the immunomodulatory effects of hydroxychloroquine
could also contribute to the overall clinical effects in addition to the potential antiviral
effects. Characterizing the PK/PD and exposure-response is beyond the scope of this
thesis, but adequately conducted exposure-response analyses are essential to charac-
terize the target concentrations for drug efficacy and safety.
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(b) 50 kg - Liu et al.’s EC50

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Time [days]

0

200

400

600

800

1000

H
C

Q
 c

on
ce

nt
ra

tio
n 

[n
g/

m
L]

(c) 150 kg - Yao et al.’s EC50
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(d) 150 kg - Liu et al.’s EC50

Figure 5.1 – Median PK profiles of HCQ blood concentrations after simulations
(nsim = 1000) of alternative dosing regimens (see Table 5.1) for two representative
patients of 50 kg and 150 kg, resp. The horizontal lines represent the projected target
total whole blood concentrations based on the EC50 values from Yao et al. (2020)
(0.72 µM) and Liu et al. (2020) (4.51 µM). Solid lines, treatment for 10 days; dotted
lines, treatment for 5 days.
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Table 5.1 – Description of alternative dosing regimens and percentage of simulated subjects of 50 kg and 150kg achieving the in vitro
EC50 at the end of the treatment

Dosing regimen Loading dose (D1)a Maintenance dose Duration of treatment PTA [%] (50 kg) PTA [%] (150 kg)
(color) HCQ sulfate EC50: 0.72 µM EC50: 4.51 µM EC50: 0.72 µM EC50: 4.51 µM

Blue 400 mg BID 200 mg BID 5 days 34.4 0.0 0.0 0.0
(Belgian protocol) 10 days 55.8 0.0 0.1 0.0
Orange 800 mg followed by 400 mg BID 5 days 93.3 0.0 2.7 0.0

800 mg 6 h later, and
400 mh 6 h later

10 days 96.1 0.0 3.4 0.0
Yellow 600 mg TID 200 mg BID 5 days 43.3 0.0 0.0 0.0

10 days 57.9 0.0 0.1 0.0
Purple 200 mg TID 200 mg BID 5 days 29.2 0.0 0.0 0.0

10 days 54.3 0.0 0.1 0.0
Black red 400 mg BID 400 mg daily 5 days 28.7 0.0 0.0 0.0

10 days 48.9 0.0 0.1 0.0
Green - 200 mg BID 5 days 21.7 0.0 0.0 0.0

10 days 50.1 0.0 0.0 0.0
a Dx, day x
BID, twice a day; TID, three times a day



Chapter 5 Simulations and PTA

5.2 PTA-based method for AB dosing
A PK/PD target is defined on the basis of the minimum inhibitory concentration (MIC)
and the PD index. The latter depends on the AB category (time- or concentration-
dependent) as illustrated in Figure 5.2 (see, e.g., Abdul-Aziz et al. (2015) or Nielsen
et al. (2011)). Monte Carlo simulations are then performed to determine the prob-
ability of target attainment (PTA), estimated by the proportion of simulated patients
that reaches the target. The highest MIC value for which the PTA exceeds 90% is
defined as the PK/PD breakpoint (Musuamba et al. (2017) and Usman et al. (2017)).
The PK/PD breakpoints can then be compared between alternative dosing regimens
in order to select the most efficient one in the studied population. This investigation
of the PTAs is naturally referred to as a PTA analysis. In this work, we focus on
time-dependent AB such that the PD index is the %T>MIC (see Figure 5.2).

Figure 5.2 – Fundamental PK/PD indexes of antibiotics on a hypothetical
concentration-time curve. AUC, area under the concentration-time curve; Cmax, max-
imal drug concentration; Cmin, minimum drug concentration; MIC, minimum in-
hibitory concentration; T>MIC, time that drug concentration remains above MIC.
Illustration taken from Abdul-Aziz et al. (2015).

A model-based PTA analysis giving a renal function-based dosage is carried out
for meropenem in elderly patients in Usman et al. (2017). Below, we present a PTA
analysis of temocillin in patients with nosocomial pneumonia.

5.2.1 Time-dependent antibiotics
The β -lactam antibiotics are time-dependent antibiotics, meaning that inhibitory and
bactericidal activity depends on the time that the (free) drug concentration exceeds
the MIC during the dosing interval (PD index). Figure 5.3 represents a hypothetical
pharmacokinetic profile at steady-state, denoted by y∞

j below ( j = 1 for systemic PK
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5.2 PTA-based method for AB dosing

profile, j = 2 for PK profile at the site of infection). The exponent ∞ indicates that
this is an asymptotic PK profile. If we consider a high number of simulations denoted
by nsim, the probability of reaching 100%T>MIC is estimated by:

#{y∞
j | y∞

j (T )> MIC}
nsim

.
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Figure 5.3 – Hypothetical PK profiles

Let t1 and t2 be the time points such that t1 < t2 and y∞
j (t1) = MIC = y∞

j (t2). The
probability of reaching 50 %T>MIC should, strictly speaking, be estimated by:

#{y∞
j | t2− t1 ≥ T/2}

nsim
.

However, it turns out that the latter probability is often approximated by

#{y∞
j | y∞

j (T/2)> MIC}
nsim

.

That means that the length of [0, t1] is assumed to be zero, which this is clinically
acceptable. The longer the infusion time is, the poorer the approximation is.

5.2.2 PTA analysis: application to temocillin dosage
The following PTA analysis is reported in N. Layios, C. Visée, P. Thémans, et al.
(2021, submitted).

Using the final popPK model of temocillin built in Chapter 3, simulations can be
performed. Steady-state concentrations of temocillin were simulated in plasma and
ELF for 10,000 virtual subjects for each of the two dosing scenarios (intermittent
and continuous infusion). Individual characteristics (covariates) of the virtual patients
were generated using their distributions in the model building dataset. Subsequently,
the PTAs for different PD targets (50%T>MIC and 100%T>MIC) against a range of
MICs were computed. They are reported in Figure 5.4. As the steady-state PK profile
following continuous infusion (at constant rate) is constant, only the PD index of
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100%T>MIC is of interest. The same targets were considered after dichotomization
of creatinine clearance between ≥60mL/min and <60mL/min as shown in Figures 5.5
and 5.6. The PTA analysis has also been performed in case of ARC patients.

A visual inspection of Figures 5.4-5.6 enables to draw up Table 5.2 of PK/PD
breakpoints. The breakpoints are determined using a probability of success of 90%.
We can observe that continuous infusion (CI) offers better PK/PD indexes than inter-
mittent infusion (II). For the minimal pharmacodynamic targets of 50%T>1X MIC in
II group and 100%T>1X MIC in CI group, the PK/PD breakpoints were 2 and 4 mg/L
respectively, both in plasma and ELF. These values remain well below the British So-
ciety for Antimicrobial Chemotherapy (BSAC) breakpoints (8 mg/L) and, moreover,
below the mean MIC of 9.94 mg/L of the pathogens isolated in this cohort of patients.
At best, an MIC of 8 mg/L is achieved for the less stringent PD targets in ELF for both
II and CI in patients with moderate renal impairment (30-60 ml/min).

Measured ELF concentrations of antibiotics may be misleading (as explained, e.g.,
in Kiem and Schentag (2008)). Indeed, technical errors during the bronchoalveolar
lavage (BAL), such as a prolonged dwelling time, or contamination from lysis of cells
during the AB measurement, could artificially increase the true ELF concentrations.
However, without further clinical data, our results suggest that temocillin should not
be recommended in severe nosocomial pneumonia.

Table 5.2 – PK/PD breakpoints in plasma (free conc.) and ELF (total conc.) for
specific PD targets according to different modes of administration using a probability
of success ≥ 90%

II (2g/8h 0.5h-inf) CI (6g/24h)
plasma ELF plasma ELF

50%T > 1x MIC 2 2 na
ClCR ≥ 60 mL/min 2 1
ClCR < 60 mL/min 8 8
ClCR > 120 mL/min/1.73m2 * 0.5 0.5

50%T > 4x MIC 0.5 0.5
ClCR ≥ 60 mL/min 0.5 0.25
ClCR < 60 mL/min 2 2
ClCR > 120 mL/min/1.73m2 0.125 0.125

100%T > 1x MIC 0.5 0.5 4 4
ClCR ≥ 60 mL/min 0.5 0.5 4 4
ClCR ≥ 60 mL/min 4 4 16 8
ClCR > 120 mL/min/1.73m2 0.25 0.25 4 2

100%T > 4x MIC 0.125 0.125 1 1
ClCR ≥ 60 mL/min 0.125 0.125 1 1
ClCR ≥ 60 mL/min 1 1 4 2
ClCR > 120 mL/min/1.73m2 0.0625 0.0625 1 0.5

na: not applicable; II, intermittent infusion (inf); CI, continuous infusion
ClCR, creatinine clearance
* These patients are included in the group of patients with ClCR ≥ 60 mL/min
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(a) plasma conc. (b) ELF conc.

(c) plasma conc. (d) ELF conc.

Figure 5.4 – Probability of target attainment (obtained with Monte Carlo simula-
tions, nsim = 10,000) for free plasma concentrations (left) and total ELF concentra-
tions (right) for different dosing regimens. Continuous lines with filled circles cor-
respond to intermittent infusion (2g/8h over 0.5h-infusion); broken lines with open
triangles correspond to continuous infusion (6g/24h)
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(a) plasma conc., ClCR ≥ 60 (b) ELF conc., ClCR ≥ 60

(c) plasma conc., ClCR < 60 (d) ELF conc., ClCR < 60

Figure 5.5 – Probability of target attainment (obtained with Monte Carlo simulations)
for free plasma concentrations (left) and total ELF concentrations (right) for intermit-
tent infusion (2g/8h over 0.5h-infusion). (a)-(b) ClCR ≥ 60 mL/min (nsim ' 6000);
(c)-(d) ClCR < 60 mL/min (nsim = 4000)
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5.2 PTA-based method for AB dosing

(a) plasma conc., ClCR ≥ 60 (b) ELF conc., ClCR ≥ 60

(c) plasma conc., ClCR < 60 (d) ELF conc., ClCR < 60

Figure 5.6 – Probability of target attainment (obtained with Monte Carlo simula-
tions) for free plasma concentrations (left) and total ELF concentrations (right) for
different dosing regimens. Continuous lines with filled circles correspond to intermit-
tent infusion (2g/8h over 0.5h-infusion); broken lines with open triangles correspond
to continuous infusion (6g/24h). (a)-(b) ClCR ≥ 60 mL/min (nsim ' 6000); (c)-(d)
ClCR < 60 mL/min (nsim = 4000)
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CHAPTER 6

Open-loop control law

In contrast with the empirical methods presented in Chapter 5, we report here an
analytical strategy for the dosing of drugs (particularly antibiotics) administrated by
intravenous infusion at regular dosing intervals. This new approach is based on basic
tools from systems and control theory, and aims at improving dosing recommenda-
tions at individual level while sparing computational time due to MC simulations.
The content of this chapter is reported in Thémans et al. (2020c).

A deterministic input-output analysis of a particular class of LTI systems (in which
are included the PK models, see Appendix D) yields an open-loop control law which
enables to compute an appropriate dosage for the individual nominal patient. This
approach is then incorporated into the “worst-case” system based on the monotony of
the state trajectories with respect to the clearance. Thanks to numerical simulations,
these methods are successively illustrated on the popPK model of meropenem (time-
dependent β -lactam AB) developed in Chapter 4, Section 4.2.

6.1 State-space model
In the present and subsequent chapters, we consider pharmacokinetic systems de-
scribed by LTI state-space representation of the general form:

{
ẋ(t) = Ax(t)+bu(t)
y(t) =Cx(t)

t ≥ 0 (6.1.1)

where A ∈ Rn×n is a Metzler and (asymptotically) stable matrix, and b ∈ Rn×1 is
nonnegative. In a mixed effects modeling approach, the model parameters can include
random components. Unless otherwise stated, the PK parameters are assumed to be
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fixed to their nominal values. The state vector x =
(
x1 x2 x3 · · · xn

)T ∈ Rn

corresponds to the drug amounts [g] or the drug concentrations [g/L] in well-defined
compartments. Without lost of generality, x1 and x2 correspond to the plasma and the
site of infection, respectively. The input function u(·) represents the administration
[g/h] of the drug into the first compartment and the output vector y =

(
y1 y2

)T R2

corresponds to the drug concentrations [mg/L] in the plasma and, if described by the
model, at the site of infection. Consequently, the input matrix b ∈ Rn×1 is a column
vector filled by (n−1) zeros and one non-zero (positive) value in the first component
and the output matrix C ∈ R2×n has non-zero elements at positions (1,1) and (2,2) (as
it is the case in (1.3.7) and (4.3.3)), i.e.,

b =
(
b1 0 · · · 0

)T
, C =

(
1/S1 0 0 · · · 0

0 1/S2 0 · · · 0

)
(6.1.2)

where, for all j ∈ {1,2}, S j converts the state component x j in concentration (e.g.,
[mg/L]) both in plasma ( j = 1) and at the site of infection ( j = 2). This results in a
strictly proper transfer function Ĝ(s) :=C(sI−A)−1b=

(
ĝ1(s) ĝ2(s)

)T ∈Rp,0(s)2×1.

Remark 3 By the proof of Proposition 1.1.3, A = V DW ∗, where D = diag[λi], with,
for all i ∈ {1, . . . ,n}, λi ∈ σ(A), and V and W are the matrices of the associated right
and left eigenvectors, respectively (W ∗V = I). Therefore, W ∗(sI − A)V = sI −D.
Given that (sI−D)−1 = diag

[
1

s−λi

]
,

(sI−A)−1 = V (sI−D)−1W ∗

=
n

∑
i=1

1
s−λi

viw∗i .

Using the form of the matrices C and b above, the transfer function is given by

ĝ j(s) =
n

∑
i=1

1
s−λi

(C jvi)(w∗i b)

=
n

∑
i=1

1
s−λi

1
S j

(vi) j(w∗i )1b1

where C j denotes the jth row of the output matrix C.

6.1.1 Input function
Intravascular infusion of a fixed dose (called maintenance dose) at regular intervals is
recommended for the administration of β -lactam antibiotics in ICUs. Consequently,
the input function/infusion rate u(·) is a right-continuous piecewise constant function
that depends on three parameters: the dose [g] denoted by D, the duration of the
infusion [h] denoted by ∆, and the time between two doses (dosing interval) [h]
denoted by T . For all t ≥ 0,

u(t) [g/h] =

{
D/∆ if (t mod T )< ∆

0 if (t mod T )≥ ∆
(6.1.3)
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6.1 State-space model

If required, an initial loading dose DL (higher than the maintenance dose) is given
at the first administration. In this case, for all t ∈ [0,∆[, u(t) = DL/∆ and, for all
t ∈ [iT, iT + ∆[ (i ∈ N0), u(t) = D/∆. The duration of the infusion is necessarily
shorter than the dosing interval (∆ < T ). These functions are represented in Figure
6.1. Besides, continuous administration for treating severe infection has been studied
recently, see, e.g., Veiga and Paiva (2018) and Sjövall et al. (2018). The latter can be
seen as a limit case of the mode of administration considered here (∆ = T ).

t

u(t)

∆

T

D/∆

t

u(t)

∆

T

DL/∆

D/∆

Figure 6.1 – System input function: drug infusion rate vs. time (left: maintenance
dose, right: additional loading dose)

6.1.2 Input-output analysis
In the following, the state matrix A∈Rn×n in (6.1.1) is assumed to have n distinct and
real eigenvalues. Moreover, the system [A,b,C] corresponds to an individual patient.
Indeed, the model parameters are computed on the basis of the patient characteristics
according to the covariate-parameter models (1.3.12), and/or the real physiological
parameters (Table 4.3).

Proposition 6.1.1 (System response) Consider the PK system (6.1.1)-(6.1.2 )
with an input function of the form (6.1.3). The zero-state system response y(·)
is given as follows, where Nt := bt/Tc denotes the number of administrations
already received at time t (including the ongoing administration, if appropriate):
for all j ∈ {1,2} and for all t ≥ 0,

if (t mod T )< ∆ (during infusion)

y j(t) =
D
∆

[
Nt−2

∑
l=0

n

∑
i=1

Fji

λi
eλi(t−lT )(1− e−λi∆) +

n

∑
i=1

Fji

λi
(eλi(t−(Nt−1)T )−1)

]

if (t mod T )≥ ∆ (after infusion)

y j(t) =
D
∆

Nt−1

∑
l=0

n

∑
i=1

Fji

λi
eλi(t−lT )(1− e−λi∆).

The symbol b·c denotes the integer part of a real number. The coefficients Fji and
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Chapter 6 Open-loop control law

λi (i ∈ {1,2,3, . . .n}, j ∈ {1,2}) are directly related to the model parameters:
λi denote the eigenvalues of the matrix A and Fji are the residuals of the transfer

functions ĝ j(s) in λi, i.e., Fji = lim
s→λi

(
ĝ j(s)(s−λi)

)
=

1
S j

(vi) j(w∗i )1b1.

Proof. See Appendix D for a detailed proof. It consists in computing the inverse
Laplace transform of ŷ(s) = Ĝ(s)û(s) to derive the zero-state response in the time
domain. The jth component of the transfer function can be written in partial fraction
expansion as:

ĝ j(s) =
n

∑
i=1

Fji

s−λi
.

To compute the Laplace transform û(s), the input function should be considered as a
superposition of functions of the form

Ui(t) = K1[iT,iT+∆[(t), t ≥ 0

where i ∈ N and 1I is the characteristic function of the subset I. �

Let us denote by yN(t̃) (t̃ ∈ [0,T [) the system response on the Nth dosing interval.
So, for all t ∈ [(N−1)T,NT [, y(t) = yN(t̃) where t̃ = t mod T , i.e., t = t̃ +(N−1)T .
The new variable t̃ indicates the position in the dosing interval after N administrations.
Due to system stability, the concentration trajectory converges to an equilibrium tra-
jectory denoted by y∞, which will be called steady output (known in the pharmacology
literature as the steady-state PK profile or “plateau”), i.e.,

lim
N→∞

yN(t̃) = y∞(t̃)

as illustrated in Figure 6.2. Proposition 6.1.2 provides its analytical expression.

0 T

(a)

0 5 10 15 20

Time

10-3
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10-1

100

101
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j-y
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(b)

Figure 6.2 – (a) Hypothetical PK profiles. Continuous curve, system response y j;
dashed red curve, repeated equilibrium trajectory y∞

j . (b) Absolute error |yN
j − y∞

j |.
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6.1 State-space model

Proposition 6.1.2 (Asymptotic response) Consider the PK system (6.1.1)-(6.1.2)
with an input function of the form (6.1.3). The output trajectory converges to an
equilibrium trajectory, i.e., for all t̃ ∈ [0,T [,

yN(t̃)− y∞(t̃) N→∞−−−→ 0

where the plateau y∞ is given, for all j ∈ {1,2}, by
if t̃ ∈ [0,∆],

y∞
j (t̃) =

D
∆

[
n

∑
i=1

Fji

λi

eλi t̃(1− e−λi∆)

e−λiT −1
+

n

∑
i=1

Fji

λi
(eλi t̃ −1)

]

if t̃ ∈ [∆,T [,

y∞
j (t̃) =

D
∆

n

∑
i=1

Fji

λi

eλi(t̃−T )(1− e−λi∆)

e−λiT −1

Proof. See Appendix D.
As shown in Figure 6.2, the system response exponentially converges towards the

equilibrium trajectory. A similar exercise has been carried out in (Koch, 2012, Section
3.3) for multiple dosing by oral or IV bolus administration.

It follows from Proposition 6.1.2 that, at steady-state, the concentrations at the end
and beginning of the dosing interval are equal:

lim
t̃−→
>

T
y∞(t̃) = y∞(0).

We can therefore define
y∞(T ) := y∞(0).

The concentration y∞
1 (T ) corresponds to the minimal plasma concentration on the

dosing interval (the lowest concentration (ctrough) observed just before a new admin-
istration). However, if there is a time disconnect between systemic and infection-site
concentrations, i.e., if cmax and ctrough are reached later at the site of infection than in
the plasma (due to, e.g., delayed/slow tissue penetration), y∞

2 (T ) does not correspond
to the minimal concentration at the site of infection, as illustrated on the hypothetical
cases shown in Figure 6.3.
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Figure 6.3 – Hypothetical PK profiles (a) y∞
1 , (b) y∞

2 with slight time disconnect, (c)
y∞

2 with important time disconnect.

In control theory, we call settling time the time needed for the output trajectory to
enter and remain within a band of arbitrary width around the asymptotic trajectory. It
can be interpreted in the PK field as the time needed to reach the steady state.

Proposition 6.1.3 Consider the PK system (6.1.1)-(6.1.2 ) with an input function
of the form (6.1.3). Then, for all N ≥ N∗ where N∗ = max{N1,N2} and, for all
j ∈ {1,2},

N j = max
{⌊

ln(0.01)− ln(Σ j)

λF ·T

⌋
+2,0

}
(6.1.4)

and

Σ j(D,∆,T ) =
D
∆

n

∑
i=1

∣∣∣∣
Fji

λi

∣∣∣∣
1− e−λi∆

1− e−λiT
> 0 (6.1.5)

where λF is the Frobenius eigenvalue of A, the zero-state output trajectory yN is
within an error bound of 0.01 around the steady output.

106



6.1 State-space model

Proof. For all N ∈ N0, j ∈ {1,2}, and t̃ ∈ [0,T ],

|yN
j (t̃)− y∞

j (t̃)| =
D
∆

∣∣∣∣∣
n

∑
i=1

Fji

λi
eλi t̃ 1− e−λi∆

1− e−λiT
eλi(N−1)T

∣∣∣∣∣ (see proof of Proposition D.3.1.)

≤ D
∆

n

∑
i=1

∣∣∣∣
Fji

λi

∣∣∣∣eλi t̃ 1− e−λi∆

1− e−λiT
eλi(N−1)T

Such that the distance between yN
j and y∞

j induced by the uniform norm is upper
bounded:

e(yN
j ,y

∞
j ) := sup

t̃∈[0,T ]
|yN

j (t̃)− y∞
j (t̃)| ≤

D
∆

n

∑
i=1

∣∣∣∣
Fji

λi

∣∣∣∣
1− e−λi∆

1− e−λiT
eλi(N−1)T

≤ D
∆

n

∑
i=1

∣∣∣∣
Fji

λi

∣∣∣∣
1− e−λi∆

1− e−λiT

︸ ︷︷ ︸
=:Σ j(D,∆,T )

eλF (N−1)T (6.1.6)

Indeed, on the one hand, the real modes eλi· are decreasing exponential functions, such
that the least upper bound on [0,T ] is reached at t̃ = 0, and, on the other hand, eλF · is
the slowest mode (for all i ∈ {1, . . . ,n}, λI ≤ λF ). If

Σ j · eλF (N−1)T ≤ 0.01

N ≥ ln(0.01)− ln(Σ j)

λF T
+1

then, for all t̃ ∈ [0,T ],

|yN
j (t̃)− y∞

j (t̃)| ≤ 0.01. �

Numerical tests, using the (deterministic) popPK model of meropenem and the
covariate values observed in the patients included in the PROMESSE dataset, show
that Σ1(D,∆,T )> Σ2(D,∆,T ). That would mean that

max{N1,N2}= N1

and that the steady-state is reached more rapidly for the ELF concentrations than
plasma concentrations. At equal infusion duration and dosing interval, the higher
the dose is, the higher Σ j is, and the higher the number of administrations needed to
reach the steady state is. Besides, under the reasonable(1) assumption that Σ j ≥ 0.01,
at equal dose and infusion duration, the shorter the dosing interval is, the smaller the
number of administrations needed to reach the steady state is.

We can also determine a more conservative settling time by observing that

Σ j(D,∆,T )≤ D
∆

n

∑
i=1

∣∣∣∣
Fji

λi

∣∣∣∣=: Σ̃ j

(1)according to the values observed during the numerical tests.
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Chapter 6 Open-loop control law

since ∆≤ T . This way, we observe that, at equal dose and dosing interval, the higher
the infusion duration is, the lower Σ̃ j is, and the lower the number of administrations
needed to ensure the steady-state is.

The number of administrations N j ( j ∈ {1,2}) needed to reach the steady-state
may be approximated by

N j '
⌊

ln(0.01)
λF ·T

⌋
+2. (6.1.7)

This approximation is exact if Σ j(D,∆,T )= 1. Let observe, in (6.1.6), that Σ j(D,∆,T )
is an upper bound of the initial error e(y1

j ,y
∞
j ) between the zero-state response and the

equilibrium trajectory. Therefore, if the initial error is bigger than 1 mg/L,

Σ j(D,∆,T )> 1.

Hence (6.1.7) is an underestimation of (6.1.4). The bigger Σ j is, the worst the ap-
proximation is. Higher dose, longer dosing interval and shorter infusion duration make
this approximation still worse. On the contrary, if

Σ j(D,∆,T )< 1,

(6.1.7) is an overestimation of N j.

6.2 Dose selection for time-dependent AB
In this section, y(t) and y∞(t̃) are denoted by y(D,∆,T ; t) and y∞(D,∆,T ; t̃), respec-
tively, in order to highlight the dependence with respect to the input parameters. The
mode of administration, i.e., the infusion duration ∆ [h] and the length of the dosing
interval T [h], is assumed to be fixed. The following reasoning aims to determine the
appropriate maintenance dose D needed to meet the PK/PD target given these practi-
cal constraints. For antibiotics with a (narrow) therapeutic window, it is necessary to
either determine the maximum dose not to be exceeded, or to allow a second degree
of freedom to prevent toxicity (see Section 6.3). In the later case, we need to fine-tune
one of the two other input parameters, in addition to the dose.

6.2.1 Input-output formula
A simple and natural approach to determine the dose needed to reach a (systemic -
j = 1, or infection-site - j = 2) target concentration α at a given time t∗ ∈ [0,T ] of the
steady-state dosing interval consists in solving the following equation with respect to
D:

y∞
j (D,∆,T ; t̃ = t∗) = α (6.2.1)

The relevant time t∗ depends on the PD index. For a concentration-dependent AB,
it is the time corresponding to the maximal concentration (cmax), and for a time-
dependent AB, it is the time which corresponds to the desired %T>MIC. E.g., to
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6.2 Dose selection for time-dependent AB

ensure 100%T>MIC, t∗ should be the time of ctrough. Besides, if it is necessary to
reach the PK/PD target after the very first infusion, a loading dose can be found by
solving the following equation with respect to D:

y j(D,∆,T ; t = t∗) = α.

Note the difference with (6.2.1).
Proposition 6.2.1 and Corrolary 6.2.3 below are established for the most stringent

PD index (100%T>MIC) of a time-dependent AB without clinically relevant time dis-
connect between systemic and infection-site concentrations. Consequently, the time
t∗ corresponds to ctrough and is T whatever the compartment.

Proposition 6.2.1 (I/O formula) Consider the PK system (6.1.1)-(6.1.2 ) with
an input function of the form (6.1.3). For any target concentration level α > 0
[mg/L], the maintenance dose [g] required to maintain the steady output trajec-
tory y∞

j above the threshold α is given by

D =
α∆

n

∑
i=1

Fji

λi

1− e−λi∆

e−λiT −1

. (6.2.2)

The loading dose [g] is given by

DL =
α∆

n

∑
i=1

Fji

λi
eλiT (1− e−λi∆)

.

For all i ∈ {1,2,3, . . .n}, λi ∈ σ(A) and Fji =
1
S j

(vi) j(w∗i )1b1.

Formula 6.2.2 is called input-output (I/O) formula. It can be adapted to alternative
PD target, provided that the relevant time t∗ is well-determined. The block diagram in
Figure 6.4 represents the resulting open-loop system.
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b ∀t s.t. t mod T < ∆

ẋ(t) = Ax(t) + b
D

∆

∀t s.t. t mod T ≥ ∆

ẋ(t) = Ax(t)

x
C

yj

Drug exposure
α

Reference concentration

D =
α ·∆

n∑

i=1

Fji

λi

1− e−λi∆

e−λiT − 1

I/O formula :

Figure 6.4 – Block diagram representing the open-loop system. [A,b,C], model specific to the individual patient; α , target (minimal)
concentration; y j, system output (concentration in the plasma - j = 1, or at the site of infection - j = 2). The coefficients Fji and λi
(i ∈ {1,2,3, . . .n}) are directly related to the model parameters.



6.2 Dose selection for time-dependent AB

The parameters Fi j and λi are directly related to the PK parameters and, conse-
quently, to the realization of the random effects. However, these realizations are, a
priori, unknown. A way to overcome this difficulty is to incorporate the I/O formula
into a worst-case analysis. In the meantime, if the PK parameters including a random
component are set to their nominal/typical value, Formula (6.2.2) provides a success-
ful dosage for the nominal PK profile, as well as the median PK profile of the MC
simulations (see Figure 6.5).

0 2 4 6 8
0

2

4

6

8

10

12

Figure 6.5 – Monte Carlo simulations of the typical patient (WT, 75 kg; GFR, 65
mL/min; nsim = 1000) for a typical dose obtained by the I/O formula in the nomi-
nal case. Dashed black lines represent the 90 % prediction interval; solid black line,
median PK profile; blue line, nominal PK profile; horizontal dashed red line, target
concentration level.

6.2.2 “Worst-case” analysis
A sensitivity analysis was performed on the popPK model described in Section 4.2
(see Appendix E) and revealed that, among all the PK parameters including IIV com-
ponents, the clearance has the most important influence on the model predictions.
Given the individual characteristics/covariates, we call worst-case system, the virtual
patient [A,b,C] corresponding to the worst realization of the clearance regarding the
PK/PD target, all the other parameters set to their nominal value.

Below, the state trajectory x(t) and the steady output trajectory y∞(t̃) are denoted
by x(t;CL) and y∞(t̃;CL). We prove here the monotony of the state trajectories with
respect to the clearance.
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Chapter 6 Open-loop control law

Proposition 6.2.2 Consider the PK system (6.1.1), where A is either (1.3.6) or
(4.3.2) and b ∈ Rn×1 is any nonnegative matrix. The state trajectory x(·;CL) is
decreasing with respect to the clearance parameter, i.e., if 0 <CL1 ≤CL2 and if
x(0;CL1)≥ x(0;CL2), then, for all t ≥ 0, x(t;CL1)≥ x(t;CL2).

Remark 4 Clearance is the only model parameter with a random-effect component
in the physiologically based model built in Section 4.3.

Proof. Using the physiological parametrization, the state matrix of the popPK model
(1.3.6) reads as:

A =




−CL
V1
−

n

∑
j=2

Q j
V1

Q2
V2

Q3
V3

· · · · · · Qn
Vn

Q2
V1

−Q2
V2

0 0 · · · 0

Q3
V1

0 −Q3
V3

0 · · ·
...

...
... 0

. . . . . .
...

...
...

...
. . . . . . 0

Qn
V1

0 0 · · · 0 −Qn
Vn




Remember that the state matrix of the PBPK model (4.3.2) is given by:

A =




−Qco

Va

Qco

KpLuVa
0 0 0 0

0 − Qco

KpLuVLu

Qco

VLu
0 0 0

0 0 −Qco

Vv

QLi

KpLiVv

QKi

KpKiVv

QRB

KpRBVv
QLi

VLi
0 0 −QLi +CLH

KpLiVLi
0 0

QKi

VKi
0 0 0 −QKi +CLR

KpKiVKi
0

QRB

VRB
0 0 0 0 − QRB

KpRBVRB




where CL =CLH +CLR.
Below, A is denoted by ACL to highlight the dependence with respect to the clear-

ance parameter. The state trajectories x(t;CL1) =: x(t) and x(t;CL2) =: x̃(t) (where
CL1 ≤CL2) are the solutions of the two following Cauchy problems, respectively:

{
ẋ = ACL1x+bu, x(0) = x0
˙̃x = ACL2 x̃+bu, x̃(0) = x̃0

where 0≤ x̃0 ≤ x0. For the popPK model, the state matrix ACL2 can be written as

ACL2 = ACL1 +



−ε 0 · · ·
0 0 · · ·
...

...
. . .



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where ε = CL2−CL1
V1

≥ 0, and, for the PBPK model, the state matrix ACL2 can be written
as

ACL2 = ACL1 +




. . . 0 · · · · · · · · ·
0 −ε1 0 · · · · · ·
...

... −ε2 0 · · ·
...

... 0 0 · · ·
...

...
...

...
. . .




where ε1 =
CLH2−CLH1

VLiKpLi
≥ 0 and ε2 =

CLR2−CLR1
VKiKpKi

≥ 0.
Besides, we have

d
dt
(x− x̃) = ACL1(x− x̃)+(ACL1 −ACL2)x̃,

which obviously describes a nonnegative system (ACL1 is Metzler and ACL1 −ACL2 is
nonnegative). Since its initial condition x0− x̃0 ≥ 0 and its input function x̃ verifies
x̃(t)≥ 0 for all t ≥ 0,

x(t)− x̃(t)≥ 0

for all t ≥ 0 (see Chapter 1, Definition 4). Consequently, x(t;CL1)≥ x(t;CL2) for all
t ≥ 0. �

Proposition 6.2.2 holds also for the steady output trajectory. In particular, when-
ever 0<CL1≤CL2, for all t̃ ∈ [0,T ], y∞(t̃;CL1)≥ y∞(t̃;CL2). It is illustrated in Figure
6.6. Given that the PK/PD target is to maintain the steady output trajectory y∞

j (·;CL)
( j ∈ {1,2}) sufficiently high, the worst clearance corresponds to its highest value.
However, theoretically, the clearance may take any value on the real axis. Indeed,
according to Equation (1.3.11),

CL = TVCL · exp(η), η ∼ N(0,ω2)

where, given the covariates, TVCL is the individual typical value of the parameter.
We define the worst-case realization at p · 100 %, where 0 < p < 1 and p = k/q, as
its kth q-quantile. For example, the worst-case realization at 90 % (p = 0.9) of CL
corresponds to its 9th deciles associated to η∗ = 1.28 ·ω (see Figure 6.7).
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Introduction PK Modeling Drug dosing strategies Conclusion

“Worst-case” analysis

A priori, the realizations of the random variables
are unknown, and so the model specific to an
individual patient.

The clearance has the most important influence on the model predictions.

Whenever 0 < CL1 ≤ CL2, for all t̃ ∈ [0,T ], y∞(t̃; CL1) ≥ y∞(t̃; CL2).

0 T
CL2

CL1

20/27 Private thesis defense / Pauline Thémans / University of Namur (Belgium)Figure 6.6 – Hypothetical PK profiles y∞
j (·;CL). CL1 <CL2.
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90%

Figure 6.7 – Density function of the log-normally distributed clearance parameter.
TVCL, individual typical value.
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6.2 Dose selection for time-dependent AB

The following Corollary is an application of Proposition 6.2.1 to the “worst case”
system.

Corollary 6.2.3 Consider the PK system (6.1.1)-(6.1.2 ) with an input function
of the form (6.1.3). Assume that the PK parameters including a random-effect
component are set to their nominal values, except the clearance whose value is
its worst-case realization at p ·100% (“worst-case” system). Then, for any target
concentration level α > 0 [mg/L], the maintenance dose [g] computed according
to the I/O formula (6.2.2) enables to maintain the steady output trajectory y∞

j
above the threshold α in p · 100% of simulated patients, provided that all their
PK parameters, except the clearance, are fixed to their nominal value.

An application of this result is illustrated in Figure 6.8.
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Figure 6.8 – Monte Carlo simulations of the typical patient (WT, 75 kg; GFR, 65
mL/min; nsim = 1000) for a “worst-case” dose obtained by the I/O formula. For the
graph (b), all the PK parameters were set to their median value, except the clearance.
Dashed black lines, 10th percentile of the predictions; solid black line, median of the
predictions; blue line, “worst-case” PK profile; horizontal dashed red line, target con-
centration level.

6.2.3 Drawbacks and advantages
The main drawbacks are related to the open-loop nature of the method, and the deter-
ministic approach of a problem including variability. However, the I/O formula could
be used to update the dose after concentration measurements (see feedback control
law, Chapter 7). An additional weakness is the determination of the relevant time t∗ in
Equation (6.2.1), j = 2, in the case of an AB with important time disconnect between
systemic and local concentrations.

This I/O formula for dose selection has several advantages. It is an analytical
method in contrast to the empirical PTA-based method using on MC simulations at
population level. Besides, if the individual characteristics of the patient are known,
the described approach provides a dose at the individual level.
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Chapter 6 Open-loop control law

6.2.4 Application to meropenem dosage: a PTA-based compari-
son

A PTA analysis can be used to compare different dosing regimens. Two dosages were
obtained by the I/O formula ( j = 2), in the nominal case and in the “worst case” at
90 %, for a hypothetical target concentration (α , 2 mg/L)(2), given the mode of admin-
istration (T , 8 hours; ∆, 30 min) and the patient’s characteristics (typical patient: WT,
75 kg; GFR, 65 mL/min). The respective dosing regimens (1.52g/8h over 30’ and
4.34g/8 over 30’) were compared using steady-state MC simulations of the typical
patient. Figure 6.9 represents the PTA against a range of MICs for two PD indexes:
100%T>MIC and 50%T>MIC. They are compared with the common dosage recom-
mended by the provider for adult patients with pneumonia: 1g by IV infusion over
30-minutes every 8h (see MHRA (2017) and FAMHP (2020))
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0.0625 0.25  1     4     16    64    
0

20

40

60

80

100

(b) 50%T>MIC

Figure 6.9 – Probability of target attainment for ELF concentrations based on MC
simulations of the typical patient (WT, 75 kg; GFR, 65 mL/min; nsim = 1000). Con-
tinuous lines with squares correspond to the typical dose (nominal case); continuous
lines with stars correspond to the “worst-case” dose; dashed lines with circles corre-
spond to the provider recommendation.

As expected, the dose associated to the “worst-case" system provides a probability
of success of about 90% for a minimal inhibitory concentration of 2mg/L, see the red
point in Figure 6.9(a). This conservative dose (4.34g) is obviously higher than the typ-
ical one (1.52g). However, this dosing strategy enables to ensure a larger proportion
of patients meeting the PK/PD target.

(2)MICs of the drug against the antimicrobial agents are the results of in vitro analysis that are beyond the
scope of this work.
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6.3 Therapeutic window

6.3 Therapeutic window
Some patients are at risk of drug toxicity when receiving meropenem, see, e.g., Beu-
mier et al. (2015). We suggest here two strategies to decrease costs and risks of drug
accumulation and toxicity while ensuring drug efficacy. Both deserve to be deepened.
The first one consists in using an adapted form of the I/O formula in order to identify
the maximum dose not to be exceeded. The second assumes a second degree of free-
dom on the control variable, i.e., we can design the other input parameters to adress
the control problem. For this purpose, we introduce a well-known PD index: the area
under the concentration–time curve (AUC).

6.3.1 Input-output formula
Proposition 6.3.1 below is established to determine the dose achieving a given maxi-
mal concentration αmax for an AB without clinically relevant time disconnect between
systemic and infection-site concentrations. Consequently, the time t∗ in (6.2.1) should
correspond to cmax and is ∆ whatever the compartment.

Proposition 6.3.1 (I/O formula) Consider the PK system (6.1.1)-(6.1.2 ) with
an input function of the form (6.1.3). For any concentration αmax > 0 [mg/L],
the maximum maintenance dose [g] for the steady output trajectory y∞

j not to
exceeded αmax is given by

D =
αmax∆

n

∑
i=1

Fji

λi

eλi∆−1
1− eλiT

.

For all i ∈ {1,2,3, . . .n}, λi ∈ σ(A) and Fji =
1
S j

(vi) j(w∗i )1b1.

A worst-case approach is needed to deal with the unknown realization of the ran-
dom effects. In that case, the target is to prevent the output trajectory to exceed a given
threshold, such that the “worst-case” system corresponds to a low clearance, e.g., the
worst-case system at 5%.

6.3.2 Area under the concentration-time curve
A short development using the analytical expression of the steady output trajectory
y∞

j (see Proposition 6.1.2) enables to show that, for a n-compartment pharmacokinetic
model, the steady-state AUC, denoted by AUC∞

j , is given by

AUC∞
j =

∫ T

0
y∞(t̃)dt̃ =

∫
∆

0
y∞(t̃)dt̃ +

∫ T

∆

y∞(t̃)dt̃ =−D
n

∑
i=1

Fji

λi
. (6.3.1)
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Chapter 6 Open-loop control law

where, for all i ∈ {1, . . . ,n} Fji is the residuals of the transfer function ĝ j(s) in the
eigenvalue λi, i.e.,

Fji =
1
S j

(vi) j(w∗i )1b1.

Let apply this formula on the one- and two-compartment models.

One-compartment model (n = 1). The state-space representation reads, for all
t ≥ 0, as

ẋ(t) =−k10 x(t)+u(t), y(t) =
1
S

x(t)

where S =V/usv. Its transfer function Ĝ(s) ∈ Rp,0(s)1×1 is given by

ĝ1(s) =
usv/V
s+ k10

.

Thus, using (6.3.1),

AUC∞
1 = D

usv
k10V

=
D

CL
usv

since
λ1 =−k10 and F11 =

usv
V

.

Two-compartment model (n = 2). The state-space representation reads, for all
t ≥ 0, as

ẋ(t) =
(
−k10− k12 k21

k12 −k21

)
x(t)+

(
1
0

)
u(t), y(t) =

(
1/S1 0

0 1/S2

)
x(t)

Its transfer function Ĝ(s) ∈ Rp,0(s)2×1 is given by





ĝ1(s) =
usv1

V1

s+ k21

(s−λ1)(s−λ2)
=

F11

s−λ1
+

F12

s−λ2

ĝ2(s) =
usv2

V2

k12

(s−λ1)(s−λ2)
=

F21

s−λ1
+

F22

s−λ2

where

F11 =
usv1

V1

λ1 + k21

λ1−λ2
, F12 =

usv1

V1

λ2 + k21

λ2−λ1

and
F21 =

usv2

V2

k12

λ1−λ2
, F22 =

usv2

V2

k12

λ2−λ1
.

Thus,

AUC∞
1 =−D

(
F11

λ1
+

F12

λ2

)
= D

usv1

V1k10
=

D
CL

usv1
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6.3 Therapeutic window

and

AUC∞
2 = D

(
F21

λ1
+

F22

λ2

)
= D

usv2

V2

k12

k10k21
= D

usv2

V1k10
=

D
CL

usv2

using λ1λ2 = k10k21. The following relationship holds:

AUC∞
2

AUC∞
1
=

usv2

usv1
(6.3.2)

which is the penetration ratio (see (1.3.8)).
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Figure 6.10 – Hypothetical PK profiles y∞
j (D,∆,T ; t̃) for different modes of admin-

istration, but equal dose. Dotted line, intermittent infusion (∆ = ∆1); dashed line,
extended infusion (∆ = ∆2); continuous line, continuous infusion (∆ = T ).

We observe in (6.3.1) that the AUC∞ is independent of the mode of administration,
i.e., ∆ and T , contrary to the amount D. Indeed, the parameters Fji and λi depend only
on the transfer function Ĝ(s) =C(sI−A)−1b and the state matrix A, i.e., to the system
[A,b,C]. In particular, at equal dose, the average concentrations over the steady-state
dosing interval, given by

AUC∞
j

T
=

D
T

ĝ j(0),

are the same regardless of the value of ∆ (Figure 6.10). Consequently, the dose needed
for the concentration to reach a PK/PD target is expected to be higher if given by
intermittent infusion rather than by extended or continuous infusion. This is consistent
with the PK literature; e.g., it is stated in Zhou et al. (2017) that exposure may be
improved by (1) “increasing the dose while retaining the same dosage interval,” (2)
“reducing the dosage interval while retaining the same dose,” or (3) “increasing the
duration of IV infusion.”
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Chapter 6 Open-loop control law

Table 6.1 provides the doses computed by the I/O formula (in the nominal case)
for different modes of administration, but the same PK/PD target. Figure 6.11 shows
the corresponding nominal PK profiles. For a given therapeutic window, i.e., a con-
straint on the maximal concentration in addition to the MIC constraint, the appropriate
infusion duration, or length of the dosing interval (equivalent to the number of daily
doses), can be determined by numerical resolution of Equation (6.2.1) with respect to
∆, or T .

Table 6.1 – Typical maintenance doses [g] obtained with the I/O formula for different
modes of administration ( j = 2; target concentration level α , 2 mg/L; T , 8 hours; WT,
75 kg)

poor renal function typical/median patient good renal function
GFR = 30 mL/min GFR = 65 mL/min GFR = 120 mL/min

II ∆ = 0.5h 0.545 1.52 4.21
EI ∆ = 3h 0.448 1.10 2.62
CI ∆ = 8h= T 0.292 0.510 0.794
II, intermittent infusion; EI, extended infusion; CI, continuous infusion
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Figure 6.11 – Nominal PK profiles for different dosing scenarios as described in Table
6.1. Dotted line, intermittent infusion; dashed line, extended infusion; continuous
line, continuous infusion (confused with the horizontal red line y = 2 that represents
the target concentration level).
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CHAPTER 7

State estimation and feedback control law

This chapter deals with a heuristic feedback control in order to adjust the individual
dosing after Bayes estimations. The control law is based on the estimated state and
uses the I/O formula. It is also part of Thémans et al. (2020c)).

7.1 Discrete-time state estimator
In this chapter, we distinguish the observed output (y1) and the regulated output (y1 or
y2) using distinct output matrices:

Cmes =
(
1/S1 0 0 · · · 0

)
∈ R1×n

and

Creg =
(
1/S1 0 0 · · · 0

)
∈ R1×n or Creg =

(
0 1/S2 0 · · · 0

)
∈ R1×n

where, for all j ∈ {1,2}, S j converts the state component x j in concentration both in
plasma ( j = 1) and at the site of infection ( j = 2).

Since the plasma concentration is not continually measured, we need to transform
the continuous-time dynamical system (6.1.1) in a discrete-time setting. Let h be the
sample time, also called discretization step, and N := T

h ∈N0 the number of sampling
intervals of any dosing interval [iT,(i + 1)T [ (i ∈ N). Consider x[k] := x(k h) and
u[k] := u(k h). The discrete-time state-space representation (recurrence equations) is
given, for all k ∈ N, by

{
x[k+1] = Adx[k]+bdu[k], x[0] = 0
y[k] =Cmesx[k]

(7.1.1)
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Chapter 7 Estimated state feedback

The matrices Ad and bd can be derived from the integral form of the state trajectory

x(t) = eA(t−t0)x(t0)+
∫ t

t0
eA(t−τ)bu(τ)dτ, ∀t ≥ 0 (7.1.2)

where the control input u(·) is assumed constant on the sampling intervals (zero-order
hold), i.e., for all k ∈ N,

u(t) = u(kh), ∀t ∈ [kh,(k+1)h[.

With t← (k+1)h and t0← kh in (7.1.2), we obtain

x[k+1] = eAh
︸︷︷︸

Ad

x[k]+
∫ h

0
eAsdsb

︸ ︷︷ ︸
bd

u[k].

Since the continuous-time input function is a piecewise constant function, the solution
x[k] of (7.1.1) is exactly the continuous-time solution x(·) at the sampling time t = k h.
The discrete-time input function is given, for all k ∈ N, by

u[k] [g/h] =

{
Di/∆ if (k mod N)< N1 (i = bk/Nc)
0 if (k mod N)≥ N1

where N1 := ∆

h ∈N0 is the number of sampling intervals of any administration interval
[iT, iT + ∆[ (i ∈ N), and Di denotes the dose administrated on the (i + 1)th dosing
interval (see, e.g., Figure 8.1). We necessarily have

T
∆
=

N
N1

. (7.1.3)

W.l.o.g., let N1 and N be the smallest integers verifying (7.1.3). The nonnegativity and
internal stability are directly derived from the nonnegativity and internal stability of
the continuous-time system, see (Haddad et al., 2010, Chapter 2).

Let assume, in line with the clinical practice, that the plasma concentration is mea-
sured at the end of each dosing interval, just before a new administration. Therefore,
the time scale of the state estimator will be larger than the one of the dynamics. For
all i ∈ N, x̃[i] denotes the estimated state of x[iN] = x(iT ) and ui := u[iN] = Di/∆. A
state estimator is therefore described by the following system:

{
x̃[i+1] = A x̃[i]+Bui +L (ỹ[i]− y[iN]), x̃[0] = 0
ỹ[i] =Cmesx̃[i]

where

A = AN
d andB =

N1

∑
l=1

AN−l
d bd .

The matrix L is called (output) error injection matrix and has to be designed such that
A +LCmes is stable, i.e., for all λ ∈ σ(A +LCmes), |λ | < 1. Standard methods,
such as pole placement or Kalman filter,(1) can be used to determine L .

(1)This is beyond the scope of the thesis.
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7.2 Dose adjustment: heuristic method

7.2 Dose adjustment: heuristic method
In this section, we derive a feedback dosing strategy from the superposition principle
stating that the state trajectory of the system [A,b,C] is linear with respect to the input
level. Therefore, for any doses D1,D2 > 0 and for all t̃ ∈ [0,T ],

y∞(D1 +D2,∆,T ; t̃) = y∞(D1,∆,T ; t̃)+ y∞(D2,∆,T ; t̃).

The I/O formula is used to update the dose and fill the gap between the target concen-
tration and the estimated or measured concentration in the compartment of interest.
The feedback control law for individual dosing adjustment is reported below as an
algorithm.

Algorithm (Estimated state feedback)

Data: The mode of administration (T and ∆); the target level (reference α) of the
regulated output; the typical value of the parameters and the patient’s characteristics
(→ nominal or “worst-case” system [A,b,Cmes/Creg]); the dosing interval of the first
dose adjustment (e.g., m0 := N∗+1, see Remark 6 below).
The individual realizations of the random-effect component are unknown.

Base step: The first dose D0 is computed by the I/O formula (6.2.2). The output
injection matrix L and the discrete-time state estimator are determined. For all i ∈
{0, . . . ,m0−1}, Di = D0. We define by

GAP := α−Cregx̃[m0−1]

the “gap” at the beginning of the m0th dosing interval.

Intermediate step: The individual parameter estimates (EBEs) are computed (see Re-
mark 5). The output injection matrix L and the discrete-time state estimator are also
updated. Replacing α←GAP in (6.2.2) yields the following estimated state feedback
law:

D1 = D0 + D̃

Di = D1

for all i ∈ {m0, . . . ,m1−1}, where

D̃ =
GAP ·∆

n

∑
i=1

Fi

λi

1− e−λi∆

e−λiT −1

. (7.2.1)

where, for all i ∈ {1, . . . ,n}, λi is the ie eigenvalue of the (updated) state matrix A and
Fi := lim

s→λi

(
ĝ(s)(s− λi)

)
denotes the residual in λi of the transfer function ĝ corre-

sponding to the system [A,b,Creg].
The dosing intervals of the next dose adjustments are updated (see Remark 6).
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Chapter 7 Estimated state feedback

q← 1.

Recurrence step: While |GAP| ≥ 0.01: let

GAP := α−Cregx̃[mq−1].

The dose is updated following:

Dq = Dq−1 + D̃

Di = Dq

for all i ∈ {mq−1, . . . ,mq−1}, where D̃ is given by (7.2.1). q← q+1.

The block diagram in Figure 7.2 represents the resulting closed-loop system.

Remark 5 A Bayesian analysis (see Figure 7.1) can be easily implemented via the
$EST step of NONMEM with the option MAXEVAL=0 (Simon (2020)). It will pro-
vided the most likely values of the model random variables given observed concentra-
tions in a particular patient. This procedure is automated, e.g., in the website TDMx
by Wicha (2018). The updated model describes then how the drug is behaving in that
patient (Vinks (2002)).

Figure 7.1 – Overview of the parameter Bayesian estimation in a typical PK project.
IIV, interindividual variability; RV, residual variability; AUC, area under the concen-
tration versus time curve; Cmax, maximal concentration; Ctrough, minimal concentra-
tion. Illustration taken from Owen and Fiedler-Kelly (2014).
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bd
Di = Dq

∀i ∈ {mq−1, . . . ,mq − 1}

Dq = Dq−1 + D̃ ∀k ∈ {iN, . . . , iN +N1 − 1}

x[k + 1] = Adx[k] + bd
Di

∆

∀k ∈ {iN +N1, . . . , (i + 1)N − 1}

x[k + 1] = Adx[k]

x
Cmes

y
Measured concentration

(from the laboratory)

−

+

Cmes
ỹ

computed concentration

x̃
x̃[i + 1] = Ax̃[i] + B Di

∆
+ L(ỹ[i]− y[iN ])bd

+

+

L

Creg
x̃[mq − 1]α

Reference concentration
+

−

D̃ =
GAP ·∆

n∑

i=1

Fi

λi
· 1− e−λi∆

e−λiT − 1

I/O formula :

GAP

State estimator

Figure 7.2 – Block diagram representing the closed-loop system (recurrence step, q ∈ N0). [Ad ,bd ,Cmes], (discrete-time) model specific to the individual patient. The
coefficients Fi and λi (i ∈ {1,2,3, . . .n}) are directly related to the parametersof the continuous-time model specific to the individual patient [A,b,Creg]).



Chapter 7 Estimated state feedback

Remark 6 Since the I/O formula is established to reach the PK/PD target at steady
state, “gap” evaluation and dose adjustment (state feedback) should be performed
when the output trajectory is sufficiently close to the equilibrium trajectory. Com-
bining the time needed for the zero-input state trajectory to reach zero (Propositions
1.3.3) and the number of administrations for the output trajectory y j to reach the steady
output (Proposition 6.1.3), the number of dosing intervals to assume that the system
[A,b,Cmes/Creg] has reached the steady state is given by

max{N∗,bt∗/Tc+1}

where

N∗ [adm] = max
{⌊

ln(0.01)− ln(Σ)
λF ·T

⌋
+2,0

}
,

Σ(D,∆,T ) =
D
∆

n

∑
i=1

∣∣∣∣
Fi

λi

∣∣∣∣
1− e−λi∆

1− e−λiT

where D corresponds to D0 in the base step and to the successive D̃ in the recurrence
step, and

t∗ [h] =

ln(0.01)− ln

(
n

∑
i=1
‖wi‖

)

λF

where {w j : j ∈ n} are the left eigenvectors of the state matrix A, associated to nor-
malized right eigenvectors.

7.3 Application to meropenem dosage
Given a hypothetical target concentration (α , 2 mg/L), the mode of administration
(T , 8 hours; ∆, 30 min), and the patient’s characteristics (typical patient: WT, 75 kg;
GFR, 65 mL/min), Figures 7.3(a)-(b) show the evolution of the input function and
the PK profile attributable to this feedback control law. The error injection matrix L
was designed using the place function of MATLAB and an arbitrary closed-loop pole
location (p = [−1/3,0,1/3]). The number of dosing intervals needed to reach the
steady state was approximated by

N∗ '
⌊

ln(0.01)
λF ·T

⌋
+2 <

⌊
5τ

T

⌋
+2

where τ is the terminal time constant, such that
{

m0 = b5τ0/Tc+2
mq = mq−1 + b5τ/Tc+2, ∀q ∈ N0
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7.3 Application to meropenem dosage

where τ0 is the time constant before the Bayesian analysis.
The initial AB treatment was ∼1.10 g over 3 hours every 8 hours. The Bayesian

analysis to recalculate the model parameters was performed at the beginning of the 4th

dosing interval (m0). The time constant was then re-evaluated for the updated model.
The successive doses were 5.18 g, 4.60 g and 3.94 g, updated every four infusions (m).
In this illustration, the control law was based on the estimated state at the infection site,
i.e.,

Creg =
(
0 1/S2 0 · · · 0

)
,

while the measures were plasma samples, as indicated by Cmes. The terminal half-
life λ1/2 of the nominal system and the updated one were 2.86 hours and 2.75 hours,
respectively.
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Figure 7.3 – Illustration of the state feedback algorithm. (a) Rate of infusion of the
drug (Di/∆) w.r.t. time. (b) Continuous line, actual concentration-time curve; blue
stars, estimated output Cregx̃[i] at the beginning of each dosing interval, horizontal
dashed red line, target concentration level.

Remark 7 This illustration of the heuristic feedback method for dosing adjustment
was performed with customized MATLAB scripts. Three different systems were used:
the “real” system corresponding to the virtual patient, the nominal system and the
updated system after the Bayesian analysis. We assume that enough measurements
have been taken to correctly determine the EBEs, such that the updated system and
the “real” system coincide. The models were converted from continuous to discrete
time using the c2d function of MATLAB.
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CHAPTER 8

Optimal control approach

This chapter deals with an optimal control approach for dosing recommendation. This
approach aims at improving the drug dosing by optimizing a criteria under input and
state constraints. The characterization of the optimal solution is derived from the min-
imum principle in discrete-time setting and formally proved by verifying the condi-
tions of the Pontryagin’s maximum principle as it is presented in Beauthier (2011) and
Hartl et al. (1995). The numerical experimentations were performed using the nominal
popPK model of meropenem for a typical patient (WT, 75 kg; GFR, 65 mL/min).

8.1 Continuous-time finite-horizon setting
Let consider the n-compartment pharmacokinetic system with finite horizon

{
ẋ(t) = Ax(t)+bu(t)
y(t) =Cx(t)

t ∈ [0, t f ]

where t f = mT and m∈N0 corresponds to the (fixed) number of dosing intervals. The
state matrix A ∈ Rn×n is compartmental and the input matrix b ∈ Rn×1 has the form

b =
(
b1 0 · · · 0

)T (8.1.1)

where b1 > 0. Let assume the general form of the output matrix to be

C =

(
1/S1 0 0 · · · 0

0 1/S2 0 · · · 0

)
∈ R2×n

where, for all j ∈ {1,2}, S j converts the state component x j in concentration (e.g.,
[mg/L]) both in plasma ( j = 1) and at the site of infection ( j = 2). The input function
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Chapter 8 Optimal control approach

u(·) (rate of infusion) is assumed to be constant but not necessarily the same on each
dosing interval, i.e, for all t ≥ 0,

u(t) [g/h] =

{
ūi = Di/∆ if (t mod T )< ∆ (i = bt/Tc)
0 if (t mod T )≥ ∆

(8.1.2)

where Di denotes the dose administered on the (i+ 1)th dosing interval. Therefore,
the control variable can be expressed as a vector u = (u1, . . . ,um−1). The function u is
represented in Figure 8.1.

t

u(t)

∆

T

D0/∆

D1/∆

D2/∆

Figure 8.1 – System input function: drug infusion rate vs. time

Remark 8 As previously mentioned, the mode of infusion (length of the dosing inter-
val T and infusion duration ∆) is fixed. We exclude the limit case ∆ = T (continuous
infusion). Instead, the drug is administrated by intermittent infusion, i.e., ∆ < T.

The studied OC problem consists in minimizing the squared L2-norm of the input
function, i.e., the cost functional

J1(u) =
∫ t f

0
u2(t)dt (8.1.3)

or, equivalently, the quadratic functional

J2(u) =
m−1

∑
i=0

ū2
i (8.1.4)

for the system dynamics ẋ = Ax+ bu with a fixed initial condition x0 = 0, and under
the following input and state constraints:





u(t) = 0 ∀ t s.t. (t mod T )≥ ∆

u(t) = ūi ∀ t ∈ [0, t f [ s.t. (t mod T )< ∆ (i = bt/Tc)
ūi ≥ 0 ∀ i ∈ {0, . . . ,m−1}
eT

j x(t)≥ αS j ∀t ∈ [nadmT, t f ]

(8.1.5)
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where the vector e j =
(

0 · · · 0 1 0 · · · 0
)T is the jth vector of the canon-

ical basis, α > 0 is the target lower bound [mg/L] of the concentration trajectory y j,
e.g., the (systemic or infection-site) threshold for drug efficacy, and nadm ∈ {1, . . . ,m}
corresponds to the number of administrations required to reach and maintain the out-
put trajectory above this lower bound.

The natural choice of the L2-norm enables to express the OC problem as a stan-
dard linear-quadratic problem under linear equality and convex inequality constraints.
We state the conjecture that the input function that minimizes the L2-norm will also
minimize the L1-norm. The L1-norm is interpreted as the area under the curve of u,
i.e., the total amount of drug. This is relevant from a clinical point of view, since the
solution will provide the lowest effective dosing (given the dosing interval and the
infusion duration).

In Paragraph 8.2.2 and Section 8.3, the rate of infusion is assumed to be not nec-
essarily constant on the dosing intervals, i.e., the second constraint is relaxed. This
results in the following simplified constraints





u(t) = 0 ∀ t s.t. (t mod T )≥ ∆

u(t)≥ 0 ∀ t ∈ [0, t f [ s.t. (t mod T )< ∆

eT
j x(t)≥ αS j ∀t ∈ [nadmT, t f ]

(8.1.6)

Only the latter set of constraints is considered for the resolution of the continuous-
time setting. For comparison purposes, the numerical implementations (discrete-time
setting) were performed for both sets of constraints.

8.2 Discrete-time setting
Let h be the sample time. Following a reasoning similar to Section 7.1, the recurrence
equations describing the state dynamics are

x[k+1] = Adx[k]+bdu[k], ∀k ∈ {iN, . . . , iN +N1−1|i = 0, . . . ,m−1} (8.2.1)

x[k+1] = Adx[k], ∀k ∈ {iN +N1, . . . ,(i+1)N−1|i = 0, . . . ,m−1} (8.2.2)

where

Ad = eAh, bd =
∫ h

0
eAsdsb

and N := T/h and N1 := ∆/h are the number of sampling intervals of any dosing
interval and sub-interval of administration, respectively. We can observe that the first
constraint of (8.1.5) is directly expressed in the dynamics, i.e.,

u[k] = 0, ∀k ∈ {iN +N1, . . . ,(i+1)N−1|i = 0, . . . ,m−1}.

The OC problem consists in minimizing the quadratic function

J̃1(u) =
m−1

∑
i=0

iN+N1−1

∑
k=iN

u2[k] (8.2.3)
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Chapter 8 Optimal control approach

or, equivalently,

J̃2(u) =
m−1

∑
i=0

u2[iN] (8.2.4)

for the system dynamics (8.2.1)-(8.2.2) with a fixed initial condition x[0] = 0 ∈ Rn,
and under the constraints equivalent to (8.1.5):





u[k] = u[iN] ∀k ∈ {iN +1, . . . , iN +N1−1 | i = 0, . . . ,m−1}
u[iN]≥ 0 ∀ i ∈ {0, . . . ,m−1}
eT

j x[k]≥ αS j ∀k ∈ {nadmN, . . . ,mN}
(8.2.5)

The first constraint will be omitted under the relaxed constraints, and, in that case, the
objective function (8.2.3) should be used.

8.2.1 Minimum principle
The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions for (local) opti-
mality. Since the present problem is convex, they are also sufficient optimality condi-
tions (Bierlaire (2015)).

The Lagrangian function is given by

L (x,u, p,µ,ν , ν̄) =
m−1

∑
i=0

u2[iN]+ p[−1]T (x[0]−0)+

m−1

∑
i=0

iN+N1−1

∑
k=iN

p[k]T (x[k+1]−Adx[k]−bdu[k])+

m−1

∑
i=0

(i+1)N−1

∑
k=iN+N1

p[k]T (x[k+1]−Adx[k])+

m−1

∑
i=0

iN+N1−1

∑
k=iN+1

µk(u[k]−u[iN])+

m−1

∑
i=0

νi(−u[iN])+
mN

∑
k=nadmN

ν̄k(−eT
j x[k]+αS j)

where x :=
(
x[0]T · · · x[mN]T

)T and u :=
(
u[0] · · · u[mN−1]

)T are the state
and control variables. The p[k] ∈ Rn are the adjoint state variables, µk ∈ R are the
multipliers associated with the equality constraints and νi, ν̄k ∈ R are the multipliers
associated with the inequality constraints, on the input and state variables, respec-
tively.
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8.2 Discrete-time setting

The KKT conditions are given by the four following groups of conditions.
Stationarity conditions:

∂L /∂x[k] = 0, ∀k ∈ {0, . . . ,mN} (a)
∂L /∂u[k] = 0 ∀k ∈ {iN, . . . , iN +N1−1|i = 0, . . . ,m−1} (b)

i.e.,

(a)





p[k−1]−AT
d p[k] = 0 ∀k ∈ {iN, . . . ,(i+1)N−1 |i = 0, . . . ,nadm−1}

p[k−1]−AT
d p[k]− ν̄ke j = 0 ∀k ∈ {iN, . . . ,(i+1)N−1 |i = nadm, . . . ,m−1}

p[mN−1]− ν̄mNe j = 0

(b)





2u[iN]−bT
d p[iN]−

iN+N1−1

∑
k=iN+1

µk−νi = 0 ∀i ∈ {0, . . . ,m−1}

−bT
d p[k]+µk = 0 ∀k ∈ {iN +1, . . . , iN +N1−1 | i = 0, . . . ,m−1}

Primal feasibility:

- Dynamics:
x[k+1] = Adx[k]+bdu[k] ∀k ∈ {iN, . . . , iN +N1−1|i = 0, . . . ,m−1}
x[k+1] = Adx[k] ∀k ∈ {iN +N1, . . . ,(i+1)N−1|i = 0, . . . ,m−1}
x[0] = 0

- Equality constraints:

u[k] = u[iN], ∀k ∈ {iN +1, . . . , iN +N1−1 | i = 0, . . . ,m−1}
- Inequality constraints:

u[iN]≥ 0 ∀i ∈ {0, . . . ,m−1}
eT

j x[k]−αS j ≥ 0 ∀k ∈ {nadmN, . . . ,mN}

Dual feasibility (sign constraints on the multipliers):
νi ≥ 0 ∀i ∈ {0, . . . ,m−1}
ν̄k ≥ 0 ∀k ∈ {nadmN, . . . ,mN}

Complementarity conditions:
νi ·u[iN] = 0 ∀i ∈ {0, . . . ,m−1}
ν̄k · (eT

j x[k]−αS j) = 0 ∀k ∈ {nadmN, . . . ,mN}

An educated guess leads us to anticipate that the positivity constraint on the input
variables isare inactive, i.e.,

u[iN]> 0, ∀i ∈ {0, . . . ,m−1}

meaning that drug administration occurs on each dosing interval. Using the comple-
mentarity conditions, the associated multipliers are therefore zero, i.e.,

νi = 0, ∀i ∈ {0, . . . ,m−1}.
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Chapter 8 Optimal control approach

From (b), we derive a necessary form of the control, expressed as a function of the
adjoint state:

u[iN] =
1
2

bT
d

iN+N1−1

∑
k=iN

p[k], ∀i ∈ {0, . . . ,m−1}.

Proposition below includes all the (necessary and sufficient) KKT conditions, for-
matted to express the control law as a feedback of the adjoint state (minimum princi-
ple). Note that we have renamed the adjoint state variables: for all k ∈ {0, . . . ,mN},

p[k−1]←− p[k].

Proposition 8.2.1
The discrete-time OC problem (8.2.4) has a solution

(
x[0]T · · · x[mN]T u[0] · · · u[mN−1]

)T

if and only if there exist an adjoint state

(
p[0]T · · · p[mN]T

)T

and multipliers ν̄k (k ∈ {nadmN, . . . ,mN}) such that





u[iN] =
1
2

bT
d

iN+N1−1

∑
k=iN

p[k+1] ∀i ∈ {0, . . . ,m−1}

u[k] = 0 ∀k ∈ {iN +N1, . . . ,(i+1)N−1 | i = 0, . . . ,m−1}
u[k] = u[iN] ∀k ∈ {iN, . . . , iN +N1−1 | i = 0, . . . ,m−1}

where
(
x[0]T . . . x[mN]T p[0]T . . . p[mN−1]T

)T is the solution of (joint
state and adjoint state dynamics)





p[k] = AT
d p[k+1] ∀k ∈ {iN, . . . ,(i+1)N−1 |i = 0, . . . ,nadm−1}

p[k] = AT
d p[k+1]+ ν̄ke j ∀k ∈ {iN, . . . ,(i+1)N−1 |i = nadm, . . . ,m−1}

x[k+1] = Adx[k]+bdu[k] ∀k ∈ {iN, . . . , iN +N1−1|i = 0, . . . ,m−1}
x[k+1] = Adx[k] ∀k ∈ {iN +N1, . . . ,(i+1)N−1|i = 0, . . . ,m−1}

where (state initial condition and adjoint state final condition)
{

p[mN] = ν̄mNe j
x[0] = 0

and (inequality constraints and complementarity conditions)
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8.2 Discrete-time setting





u[iN]> 0 ∀i ∈ {0, . . . ,m−1}
eT

j x[k]≥ αS j ∀k ∈ {nadmN, . . . ,mN}
ν̄k ≥ 0 ∀k ∈ {nadmN, . . . ,mN}
ν̄k · (eT

j x[k]−αS j) = 0 ∀k ∈ {nadmN, . . . ,mN}

A numerical study of the discrete-time OC problem (8.2.4), with the state con-
straint imposed successively on the first ( j = 1, plasma) and the second ( j = 2, ELF)
state component, was performed for the following parameters:

- T , 8 hours; ∆, 3 hours;

- m, 3 dosing intervals;

- nadm, 1 administration; α , 2 mg/L.

The results are shown in Figure 8.2. The quadprog MATLAB function was used for
the computations. The MATLAB algorithm is based on the interior-point method (see
the documentation in MathWorks (2021)). A numerical validation of the minimum
principle was performed by verifying that the solution and the multipliers provided by
quadprog satisfy the equations in Proposition 8.2.1 above.

When the threshold of 2 mg/L is imposed in the plasma (Fig. 8.2(a))), the succe-
sives doses are 3.75 g, 3.21 g, and 3.21 g. They correspond exactly to the loading
and maintenance doses computed by the I/O formula, see Proposition 6.2.1. Howe-
ver, when the same target concentration level is imposed at the site of infection (Fig.
8.2(b))), the first (loading) dose of 1.29 g is slightly higher than the I/O loading dose
(1.28 g). This is explained by the time disconnect between systemic and infection-site
concentrations. Indeed, while Proposition 6.2.1 neglects the time disconnect for dose
selection, the OC approach ensures the concentration to stay above the concentration
threshold whatever the importance of the time disconnect. The PK profiles following
the I/O and OC approaches are shown on Figure 8.3. Let recall that the meropenem
has no significant time disconnect.
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Figure 8.2 – Numerical resolution of the discrete-time OC problem using quadprog.m.
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Figure 8.3 – PK profiles in ELF for different dosing strategies: continuous line, I/O
approach with loading dose; blue points, OC approach in discrete-time setting using
quadprog.m ( j = 2, m = 5). The PK parameter QE was modified to amplify the time
disconnect.

137



Chapter 8 Optimal control approach

8.2.2 Relaxed constraints
Let relax the constraint stating that the rate of infusion is constant over the admin-
istration intervals. This constraint relaxation yields a simplified solution of the opti-
mization problem under constraints, and makes it easier to extend to continuous time.
The (1) OC problem, (2) KKT conditions, and (3) minimum principle are written as
follows.

(1) Discrete-time OC problem:

J̃1(u) =
m−1

∑
i=0

iN+N1−1

∑
k=iN

u2[k]−→min (8.2.6)

for the system dynamics (8.2.1)-(8.2.2) with a fixed initial condition x[0] = 0 ∈
Rn, and under the following constraints:

{
u[k]≥ 0 ∀k ∈ {iN, . . . , iN +N1−1 | i = 0, . . . ,m−1}
eT

j x[k]≥ αS j ∀k ∈ {nadmN, . . . ,mN} (8.2.7)

Figure 8.4 compares the optimal input with and without the constraint relax-
ation.
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Figure 8.4 – Numerical resolution of the discrete-time OC problem using quadprog.m.
Gray, OC problem with constraints (8.2.5); black, OC problem with relaxed con-
straints (8.2.7).

138



8.2 Discrete-time setting

(2) Lagrangian function:

L (x,u, p,µ,ν , ν̄) =
m−1

∑
i=0

iN+N1−1

∑
k=iN

u2[k]+ p[−1]T (x[0]−0)+

m−1

∑
i=0

iN+N1−1

∑
k=iN

p[k]T (x[k+1]−Adx[k]−bdu[k])+

m−1

∑
i=0

(i+1)N−1

∑
k=iN+N1

p[k]T (x[k+1]−Adx[k])+

m−1

∑
i=0

iN+N1−1

∑
k=iN

νk(−u[k])+
mN

∑
k=nadmN

ν̄k(−eT
j x[k]+αS j)

Stationarity conditions:

∂L /∂x[k] =, ∀k ∈ {0, . . . ,mN} (a)
∂L /∂u[k] = 0 ∀k ∈ {iN, . . . , iN +N1−1|i = 0, . . . ,m−1} (b)

i.e.,

(a)





p[k−1]−AT
d p[k] = 0 ∀k ∈ {iN, . . . ,(i+1)N−1 |i = 0, . . . ,nadm−1}

p[k−1]−AT
d p[k]− ν̄ke j = 0 ∀k ∈ {iN, . . . ,(i+1)N−1 |i = nadm, . . . ,m−1}

p[mN−1]− ν̄mNe j = 0

(b) 2u[k]−bT
d p[k]−νk = 0, ∀k ∈ {iN, . . . , iN +N1−1 | i = 0, . . . ,m−1}

Primal feasibility:

- Dynamics:
x[k+1] = Adx[k]+bdu[k] ∀k ∈ {iN, . . . , iN +N1−1|i = 0, . . . ,m−1}
x[k+1] = Adx[k] ∀k ∈ {iN +N1, . . . ,(i+1)N−1|i = 0, . . . ,m−1}
x[0] = 0

- Inequality constraints:
u[k]≥ 0 ∀k ∈ {iN, . . . , iN +N1−1 |i = 0, . . . ,m−1}
eT

j x[k]−αS j ≥ 0 ∀k ∈ {nadmN, . . . ,mN}

Dual feasibility (sign constraints on the multipliers):
νk ≥ 0 ∀k ∈ {iN, . . . , iN +N1−1 |i = 0, . . . ,m−1}
ν̄k ≥ 0 ∀k ∈ {nadmN, . . . ,mN}

Complementarity conditions:
νk ·u[k] = 0 ∀k ∈ {iN, . . . , iN +N1−1 |i = 0, . . . ,m−1}
ν̄k · (eT

j x[k]−αS j) = 0 ∀k ∈ {nadmN, . . . ,mN}
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(3) Minimum principle: for all k ∈ {0, . . . ,mN},
p[k−1]←− p[k].

Proposition 8.2.2
The discrete-time OC problem (8.2.6) has a solution

(
x[0]T · · · x[mN]T u[0] · · · u[mN−1]

)T

if and only if there exist an adjoint state

(
p[0]T · · · p[mN]T

)T

and multipliers ν̄k (k ∈ {0, . . . ,mN}) such that
{

u[k] =
1
2

bT
d p[k+1] ∀k ∈ {iN, . . . , iN +N1−1 |i = 0, . . . ,m−1}

u[k] = 0 ∀k ∈ {iN +N1, . . . ,(i+1)N−1 | i = 0, . . . ,m−1}

where
(
x[0]T . . . x[mN]T p[0]T . . . p[mN]T

)T is the solution of the Hamil-
tonian system, for all k ∈ {0, . . . ,mN−1},

[
x[k+1]

p[k]

]
=

[
Ad

1
2

bdbT
d χ{k :(k mod N)<N1}(k)

0 AT
d

][
x[k]

p[k+1]

]
+

[
0
e j

]
ν̄k

where ν̄k = 0 for all k ∈ {0, . . . ,nadmN− 1}, and (state initial condition and ad-
joint state final condition)
{

p[mN] = ν̄mNe j
x[0] = 0

and (inequality constraints and complementarity conditions)




u[k]> 0 ∀k ∈ {iN, . . . , iN +N1−1 |i = 0, . . . ,m−1}
eT

j x[k]≥ αS j ∀k ∈ {nadmN, . . . ,mN}
ν̄k ≥ 0 ∀k ∈ {nadmN, . . . ,mN}
ν̄k · (eT

j x[k]−αS j) = 0 ∀k ∈ {nadmN, . . . ,mN}

Figure 8.5 shows the solution of the discrete-time OC problem with constraint
relaxation (8.2.6) for the following parameters:

- T , 6 hours; ∆, 3 hours;

- m, 5 administrations;

- nadm, 2 dosing intervals; α =, 2 mg/L.

We observe that the jth component of the adjoint state trajectory has m− nadm = 3
discontinuity points.
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Figure 8.5 – Numerical resolution of the discrete-time OC problem with constraint relaxation using quad-
prog.m. The number of administrations to reach the state constraint is set to nnnadm === 222.



Chapter 8 Optimal control approach

Remark 9 As highlighted in Figure 8.6, the discontinuity points of the adjoint state
trajectory coincide with the time points at which the state constraint is active, i.e.,
times τ such that the jth component of the state trajectory reaches the boundary (x j(τ)=
αS j). We observe that the state trajectory just reaches the boundary: for a time t just
before and just after τ , x j(t)> αS j. Such a point τ is called contact time (Hartl et al.
(1995)). Due to time disconnect, when the state constraint is imposed on the second
state component x2 (i.e., at the site of infection), the contact times are not reached at
the end of the dosing intervals iT (i ∈ {nadm, . . . ,m− 1}), but slightly after. Let τi,
i ∈ {1, . . . ,m−nadm}, be the contact times on [nadmT, t f [.
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Figure 8.6 – Numerical resolution of the discrete-time OC problem with constraint
relaxation using quadprog.m ( j = 2): zoom on a contact time
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8.3 Extension to the continuous-time setting
Proposition 8.3.1 below extends the minimum principle to the continuous-time set-
ting on the basis of the necessary and sufficient conditions of optimality presented
in Proposition 8.2.2. The continuous-time solution is then formally validated in the
proof.

Numerical tests in the discrete-time setting showed that the contact times are in-
variant with respect to the sample time. We can therefore reasonably assume that they
coincide with the contact times in the continuous-time setting.

Proposition 8.3.1 The continuous-time OC problem (8.1.3) with the relaxed
constraints (8.1.6) has a solution

u(t) : [0, t f ]−→ R+

x(t) : [0, t f ]−→ Rn
+

if and only if there exist an adjoint state p : [0, t f ]−→ Rn
+ and a multiplier func-

tion ν̄ : [0, t f ]−→ R+ such that (adjoint state feedback)
{

u(t) =
1
2

bT p(t)
(8.1.1)
=

b1

2
p1(t) ∀t ∈ [0, t f [ s.t. (t mod T )< ∆

u(t) = 0 ∀t s.t. (t mod T )≥ ∆

where x(·) and p(·) are the solution of the family of Hamiltonian systems de-
fined, for all t ∈ [τi−1,τi[ (i ∈ {1, . . . ,m−nadm}) and fo all t ∈ [τm−nadm , t f ], by

[
ẋ(t)
ṗ(t)

]
=

[
A

1
2

bbT χ{t :(t mod T )<∆)}(t)

0 −AT

][
x(t)
p(t)

]
(8.3.1)

where, τ0 := 0 and, for any i ∈ {1, . . . ,m− nadm}, τi ≥ nadmT is a contact time
on [nadmT, t f [. The state initial condition and adjoint state final condition are
{

x(0) = 0
p(t f ) = ν̄(t f )e j, where ν̄(t f )> 0.

[Jump conditions] At any contact time τi ∈ [nadm, t f [, the final condition is up-
dated using

p(τ−i ) = p(τ+i )+ ν̄(τi)e j (8.3.2)

where e j is the jth vector of the canonical basis and ν̄(·) is such that
{

ν̄(t)> 0 ∀t ∈ {τi : i = 1, . . . ,m−nadm}
ν̄(t) = 0 ∀t ∈ [0, t f [\{τi : i = 1, . . . ,m−nadm}
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Chapter 8 Optimal control approach

Furthermore, the state constraint is active at the final time, i.e.,

eT
j x(t f )−αS j = 0.

The state complementarity condition

ν̄(t) · (eT
j x(t)−αS j) = 0 ∀t ∈ [0, t f ] (8.3.3)

is then necessarily verified since, by definition of contact time,

eT
j x(τi)−αS j = 0.

Besides (inequality constraints),
{

u(t)> 0 ∀t ∈ [0, t f [ s.t. (t mod T )< ∆

eT
j x(t)≥ αS j ∀t ≥ nadmT

Remark 10 Since A is Metzler, the system ṗ =−AT p is nonnegative in inverse time.
In particular, for all final condition p f ≥ 0,

p(t) = e−AT (t−t f )p f = eAT (t f−t)p f ≥ 0

for all t ∈ [0, t f ], since eAT τ ≥ 0 for all τ ≥ 0 (see Proposition 1.1.2).

Proof. Here, we prove that the form of the solution provided in Proposition 8.3.1
satisfies the necessary and sufficient optimality conditions of the Pontryagin’s maxi-
mum principle. The studied OC problem with state and relaxed input constraints is
stated below. The right-hand sides of the identies below are explicitely related to the
notations used in the formalism of Hartl et al. (1995).

J =
∫ t f

0
−u2(t)dt =:

∫ T

0
F(u(t))dt −→max

for the system dynamics

ẋ(t) = Ax(t)+bu(t) =: f (x(t),u(t))

under the constraints

0≤ u(t) =: g1(u(t))

0≤−u(t)χ{t :(t mod T )≥∆} =: g2(u(t), t)

0≤ (eT
j x(t)−αS j)χ{t : t≥nadmT} =: h(x(t), t)

The Hamiltonian H and Lagrangian L are given by:

H (x,u,λ0,λ ) := λ0F(u)+λ f (x,u) =−λ0u2 +λ
T (Ax+bu)
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8.3 Extension to the continuous-time setting

and

L (x,u,λ0,λ ,µ,ν , t) := H (x,u,λ0,λ )+µg(u, t)+νh(x, t)

= −λ0u2 +λ
T (Ax+bu)+µ1u(t)−µ2uχ{t :(t mod T )≥∆}

+ν(eT
j x−αS j)χ{t : t≥nadmT}

where λ0 ≥ 0 is a constant, λ ∈ Rn is the co-state (or adjoint state) of the system, and
µ1,µ2,ν ∈ R are the multipliers. Let’s define the control region:

Ω(t) := {u ∈ R : g(u, t)≥ 0}= {u≥ 0 ∈ R : uχ{t :(t mod T )≥∆} = 0}.

The control region is independent of x since the input constraints g1 and g2 do not
depend on the state x.

Necessary conditions.
What follows is based on (Hartl et al., 1995, Informal theorem 4.1), also reported

in (Beauthier, 2011, Appendix B).
The Pontryagin’s maximum principle states that, if the state trajectory x∗ (with

finite number of junction times)(1) and the control u∗ (right-continuous with left-hand
limits) correspond to an optimal solution, then there exists

λ0 ≥ 0

λ : [0, t f ]→ Rn piecewise absolutely continuous

µ1,µ2,µ : [0, t f ]→ R piecewise continuous

γ ∈ R

η(τi) ∈ R for each point of discontinuity of λ (·)

that satisfy almost everywhere the conditions (4.4)-(4.14) set out in Hartl et al. (1995)
and listed below:

(4.4) u∗(t) = argmax
u∈Ω(x∗(t),t)

H (x∗(t),u,λ0,λ (t))

(4.5)
∂L

∂u
(x∗(t),u∗(t),λ0,λ (t),µ(t),ν(t), t) = 0

(4.6) λ̇ (t) =−∂L

∂x
(x∗(t),u∗(t),λ0,λ (t),µ(t),ν(t), t)

(4.7) µ(t)≥ 0, µ(t)g(u∗(t), t) = 0

(4.8) ν(t)≥ 0, ν(t)h(x∗(t), t) = 0

(1)Junction times include the contact times, as well as the entry and exit times that are the extremities of the
boundary intervals. A boundary interval [τ1,τ2], with τ1 < τ2, is such that, for all t ∈ [τ1,τ2], h(x(t), t) = 0
(Hartl et al. (1995)).
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(4.9)
dH ∗

dt
(t) =

dL ∗

dt
(t) =

∂L

∂ t
(x∗(t),u∗(t),λ0,λ (t),µ(t),ν(t), t)

where H ∗ = H (x∗,u∗,λ0,λ ) and L ∗ = L (x∗,u∗,λ0,λ ,µ,ν , t).

At the terminal time T , the transversality conditions:

(4.10) λ (T−) = γ
∂h
∂x

(x∗(T ),T )

(4.11) γ ≥ 0, γh(x∗(T ),T ) = 0.

For any time τ in a boundary interval and for any contact time τ , the costate trajectory
λ may have a discontinuity given by the following jump conditions:

(4.12) λ (τ−) = λ (τ+)+η(τ)
∂h
∂x

(x∗(τ),τ)

(4.13) H ∗(τ−) = H (τ+)−η(τ)
∂h
∂ t

(x∗(τ),τ)

(4.14) η(τ)≥ 0, η(τ)h(x∗(τ),τ).

Note that the qualification constraints hold only for all t such that (t mod T )< ∆. The
optimal input u∗(t) is set to 0 for all t such that (t mod T ) ≥ ∆. The right-continuity
of u∗ in Proposition 8.3.1 is guaranteed by the integrating intervals of p that are open
on the right. By choosing the following multipliers, the conditions hold:

λ0 = 1 (normal case)

λ (·) = p(·) described in Proposition 8.3.1 above, which is piecewise C∞

µ1(·),µ2(·)≥ 0 s.t., for all t ∈ [0, t f [ s.t. (t mod T )< ∆,

µ1(t) = 0 = µ2(t)

ν(·) = ν̄(·) described in Proposition 8.3.1 above

γ = ν̄(t f ) (see the transversality conditions below)

η(τi) = ν̄(τi)

Indeed:

(4.4): For all t ∈ [0, t f [ such that (t mod T )< ∆,

u∗(t) = argmax
u∈Ω(t)

H (x∗(t),u, p(t))

since u∗(t) =
1
2

bT p(t) verifies the necessary and sufficient KKT conditions of
the optimization problem

H (x∗(t),u, p(t))−→max

under the constraint u≥ 0.
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8.3 Extension to the continuous-time setting

(4.5): For all t ∈ [0, t f [ such that (t mod T )< ∆,

∂L

∂u
(x∗(t),u∗(t)) = 0

since

∂L

∂u
=−2u+bT p+µ1−µ2χ{t :(t mod T )≥∆} =−2u+bT p

using µ1(t) = 0.

(4.6): For all t ∈ [0, t f [\{τi : i = 0, . . . ,m−nadm},

ṗ(t) =−∂L

∂x
(x∗(t),u∗(t)).

Indeed,
∂L

∂x
= AT p+ ν̄e jχ{t : t≥nadmT } = AT p

almost everywhere since ν̄(·) is the null function almost everywhere (except at
contact times), and, on each integrating interval,

ṗ =−AT p =−∂L

∂x
(x∗,u∗)

(see the Hamiltonian systems in Proposition 8.3.1).

(4.7): For all t ∈ [0, t f [ such that (t mod T )< ∆, the conditions

µ1(t)≥ 0, µ1(t)g1(u∗(t)) = 0
µ2(t)≥ 0, µ2(t)g2(u∗(t), t) = 0

are obviously verified since µ1(t) = 0 = µ2(t). Observe that, for all t such that
(t mod T ) < ∆, g2(u∗(t), t) = −u∗(t)χ{t :(t mod T )≥∆} = 0, such that µ2(t) may
be any nonnegative real number.

(4.8): For all t ∈ [0, t f [ such that (t mod T )< ∆, (except at contact times,)

ν̄(t)≥ 0, ν̄(t)h(x∗(t), t) = 0

hold by (8.3.3).

(4.9): For almost all t ∈ [0, t f [ such that (t mod T )< ∆,

dH ∗

dt
(t) =

dL ∗

dt
(t) =

∂L

∂ t
(x∗(t),u∗(t))

where H ∗ = H (x∗,u∗, p) and L ∗ = L (x∗,u∗, p,µ1,µ2, ν̄ , t). Indeed, L is,
almost everywhere, not explicitly time-dependent, such that

∂L

∂ t
= 0
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almost everywhere, and, for all t ∈ [0, t f [ such that (t mod T )< ∆,

H ∗(t) = −
(

1
2

bT p(t)
)2

+ pT (t)Ax∗(t)+
1
2

pT (t)bbT p(t).

Therefore

dH ∗

dt
(t) = ṗT (t)Ax∗(t)+ pT (t)Aẋ∗(t)+

1
2

ṗT (t)bbT p(t)

= −pT (t)AAx∗(t)+ pT (t)A(Ax∗(t)+bu∗(t))− pT (t)Abu∗(t)

= 0.

Furthermore, for all t ∈ [0, t f [ such that (t mod T )< ∆,

L ∗(t) = H ∗(t)+µ1(t)u∗(t)+ ν̄(t)(eT
j x∗(t)−αS j)χ{t : t≥nadmT}.

Hence

L ∗(t) = H ∗(t)

using µ1(t) = 0 and the state complementary condition (8.3.3).

Transversality conditions.

(4.10): At the terminal time t f ,

p(t−f ) = ν̄(t f )
∂h
∂x

(x∗(t f ), t f ).

Indeed,
∂h
∂x

= e jχ{t : t≥nadmT}

such that
∂h
∂x

(x∗(t f ), t f ) = e j.

And
p(t−f ) = ν̄(t f )e j

by the adjoint state final condition in Proposition 8.3.1.

(4.11): At the terminal time t f , the conditions

ν̄(t f )≥ 0, ν̄(t f )h(x∗(t f ), t f ) = 0

are satisfied since

ν̄(t f )> 0 and eT
j x∗(t f )−αS j = 0.
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8.3 Extension to the continuous-time setting

Jump conditions.

(4.12): For any contact time τi ∈ [nadmT, t f [, i ∈ {1, . . . ,m−nadm},

p(τ−i ) = p(τ+i )+ ν̄(τi)
∂h
∂x

(x∗(τi),τi).

Indeed, since τi ≥ nadmT ,

∂h
∂x

(x∗(τi),τi) = e j

and
p(τ−i ) = p(τ+i )+ ν̄(τi)e j

by (8.3.2). That means that the jth component of the adjoint state trajectory has a
discontinuity at the contact times and the other components of p are continuous
on [0, t f ]. Note that it is consistent with the discrete-time numerical tests, as
illustrated in Figure 8.7.

(4.13): For any contact time τi ∈ [nadmT, t f [, i∈ {1, . . . ,m−nadm}, the condition

H ∗(τ−i ) = H ∗(τ+i )− ν̄(τi)
∂h
∂ t

(x∗(τi)) (8.3.4)

holds. Indeed, since h is not explicitly time-dependent for all t ≥ nadmT ,

∂h
∂ t

= 0

and (8.3.4) becomes

H ∗(τ−i ) = H ∗(τ+i ) (8.3.5)

where
H ∗(t) =−(u∗(t))2 + pT (t)(Ax∗(t)+bu∗(t)).

If j = 2, we can reasonably assume that 0 < (τi mod T )< ∆ (see Remark
9). Since τi is in the interior of the administration interval and p1(·) is
continuous,

u∗(τ−i ) =
b1

2
p1(τ

−
i ) =

b1

2
p1(τ

+
i ) = u∗(τ+i )

and Condition (8.3.5) can be written as the following equivalent identities

pT (τ−i )Ax∗(τi)+b1 p1(τi)u∗(τi) = pT (τ+i )Ax∗(τi)+b1 p1(τi)u∗(τi)(
pT (τ+i )+ ν̄(τi

)
eT

j )Ax∗(τi) = pT (τ+i )Ax∗(τi)

ν̄(τi)eT
j (Ax∗(τi)+bu∗(τi)) = 0

eT
j ẋ∗(τi) = 0 (8.3.6)
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using (8.3.2), eT
j b = 0, and ν̄(τi) 6= 0. Condition (8.3.6) holds. Indeed,

if ẋ∗j(τi) 6= 0, x∗j(·) is monotone on an interval around τi, which is not
possible since x∗j decreases just before τi and increases just after τi (contact
time).

If j = 1, (τi mod T ) = 0. Since τi is the lower bound of the administration
interval,

u∗(τ−i ) = 0.

Using the right-continuity of u∗(·) and p1(·), Condition (8.3.5) can be
written as the following equivalent identities

pT (τ−i )Ax∗(τi) = −(u∗(τi))
2 + pT (τ+i )(Ax∗(τi)+bu∗(τi))(

pT (τ+i )+ ν̄(τi)eT
j
)

Ax∗(τi) = −(u∗(τi))
2 + pT (τ+i )(Ax∗(τi)+bu∗(τi))

ν̄(τi)eT
j Ax∗(τi) = −

(
b1

2
p1(τi)

)2

+
b2

1
2

p2
1(τi)

ν̄(τi)

(
ẋ(τi)−

b2
1

2
p1(τi)

)
=

b2
1

4
p2

1(τi)

ẋ(τi) =
1
2

b2
1 p1(τi)

(
1+

p1(τi)

2ν̄(τi)

)
(8.3.7)

using Ax∗(τi) = ẋ(τi)−bu∗(τi) = ẋ(τi)−
b1

2
p1(τi)b and eT

j b= b1. Identity
(8.3.7) corresponds to the positive right-hand limit of the derivative ẋ at the
contact time τi (see, e.g., Figure 8.9).
Remark. The first component of the adjoint state p1(·) is non-zero on
each integrating interval. Indeed, if there exists t such that p1(t) = 0, then

ṗ1(t) =−k12 p2(t)− k13 p3(t)− . . .− k1n pn(t)≥ 0.

If ṗ1(t)> 0, then, since p1 is C1, there exists an interval around t on which
p1 is increasing. This is impossible by Remark 10. If ṗ1(t) = 0, then
p(t) = 0 and, for all τ ≥ t, p(τ) = e−AT (τ−t)p(t) = 0. This is impossible
since p1 is negative at the end of the dosing interval (see final condition
and jumps defined in Proposition 8.3.1).

Note that, combined with (4.9), (8.3.5) is equivalent to say that H ∗ is constant
(autonomous case), as stated in (Hartl et al., 1995, footnote 4).

(4.14): For any contact time τi ∈ [nadmT, t f [, i ∈ {1, . . . ,m−nadm},

ν̄(τi)≥ 0, ν̄(τi)h(x∗(τi),τi) = 0

are satisfied since

ν̄(τi)> 0 and eT
j x∗(τi)−αS j = 0.
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8.3 Extension to the continuous-time setting

Sufficient conditions.
For all t ∈ [0, t f [ such that (t mod T )< ∆, the minimized Hamiltonian

H 0(x(t), p(t), t) := min
u∈Ω(t)

H (x(t),u, p(t), t)

= −
(

1
2

bT p(t)
)2

+ pT
(

Ax(t)+
1
2

bbT p(t)
)

is linear w.r.t. x. Furthermore, g(u) =
[
u −u

]T is linear w.r.t. u as well as h(x) =
(eT

j x(t)−αS j)χ{t : t≥nadmT} w.r.t. x. Based on (Hartl et al., 1995, Theorem 8.2), condi-
tions (4.4)-(4.14) are sufficient. �
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Figure 8.7 – Numerical resolution of the discrete-time OC problem with constraint
relaxation using quadprog.m ( j = 2, nadm = 2): adjoint state trajectory.
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8.4 Further computational explorations
Some additional numerical simulations have been carried out and open up interesting
perspectives in order to gain insight in the optimal solution.

Adjoint state: final condition and jumps.

A fundamental challenge is to determine the values of the multiplier function
ν̄(.) at t f and each contact time τi (i ∈ {1, . . . ,m−nadm}), that parametrize the
adjoint state trajectory. In discrete-time setting, we observe in Figure 8.9 that
the jumps p j(τ

−
i )− p j(τ

+
i ) coincide with the values of the multiplier ν̄k asso-

ciated with the state constraints. The notation ν̄(τi) is thus a natural choice in
Proposition 8.3.1 for jumps (denoted by η(τi) in the general theory reported
Hartl et al. (1995)). However, in discrete-time setting, the values of the ν̄k de-
pend on the sample time h, such that an extrapolation to the continuous-time
solution is not possible on the basis of the numerical tests. An educated guess,
based on a simple case, suggests that the integration of the Hamiltonian system
(8.3.1) with the boundary values x(0) = 0 and x(t f ) = αS je j, and contact times
informations should be enough to analytically determine the solution.

Indeed, assuming for simplicity a one-compartment model (so we necessarily
have j = 1) with b1 =

√
2 (modulo rescaling of the input function), Equation

(8.3.1) reads as
[

ẋ(t)
ṗ(t)

]
=

[
−ke χ{t :(t mod T )<∆)}(t)

0 ke

][
x(t)
p(t)

]

where ke > 0. Let consider m = 2 and nadm = 1. Let τ be the only contact time.
Since j = 1, the contact time is reached at the end of the dosing interval, i.e.,
τ = T (see Figure 8.8).

0 T= + t
f

 S
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st
at
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x 1
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t s
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 p
1

Figure 8.8 – Hypothetical state and adjoint state trajectories (nadm = 1, m = 2)

By solving the Hamiltonian system successively on [0,∆[, [∆,τ[, [τ,τ +∆[, and
[τ +∆, t f ], we obtain a system of 8 equations and 8 unknown parameters:
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- integration on [0,∆[,



x(∆) =
sinh(ke∆)

ke
p(0)

p(∆) = eke∆ p(0)

- integration on [∆,τ[,{
αS j = e−ke(τ−∆)x(∆)
p(τ−) = eke(τ−∆)p(∆)

- integration on [τ,τ +∆[,



x(τ +∆) = αS je−ke∆ +
sinh(ke∆)

ke
(p(τ−)− ν̄(τ)))

p(τ +∆) = eke∆(p(τ−)− ν̄(τ))

- integration on [τ +∆, t f ],{
αS j = e−ke(t f−τ−∆)x(τ +∆)

ν̄(t f ) = eke(t f−τ−∆)p(τ +∆)

or, equivalently,



e−ke(τ−∆) 0 0 0 0 0 0 0
−1 sinh(ke∆)

ke
0 0 0 0 0 0

0 −eke∆ 1 0 0 0 0 0
0 0 −eke(τ−∆) 1 0 0 0 0
0 0 0 0 e−ke(t f −τ−∆) 0 0 0
0 0 0 − sinh(ke∆)

ke
1 sinh(ke∆)

ke
0 0

0 0 0 −eke∆ 0 eke∆ 1 0
0 0 0 0 0 0 −eke(t f −τ−∆) 1







x(∆)
p(0)
p(∆)

p(τ−)
x(τ +∆)

ν̄(τ)
p(τ +∆)

ν̄(t f )




=




αS j
0
0
0

αS j
αS je−ke∆

0
0




which is a lower triangular linear system.

Let consider a n-compartment model, and still j = 1 (τ = T and Figure 8.8 is
still applicable). The Hamiltonian system (8.3.1) reads as

[
ẋ(t)
ṗ(t)

]
=

[
A e1eT

1 χ{t :(t mod T )<∆)}(t)
0 −AT

][
x(t)
p(t)

]

which is an upper triangular by blocks system. Based on the analytical solution
described in the scalar case, we state that the solution can be found by solving
successive Cauchy problems:

- On [∆,τ[, the block at position (1,2) is the zero matrix, such that the system
is block diagonal. Let assume that we completely know the state x∗ at
the contact time τ (and at the the final time t f ). The state x(∆) = x∆ is
determined by solving the Cauchy problem

{
ẋ = Ax, ∀t ∈ [∆,τ]

x(τ) = x∗ where x∗j = αS j.
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- Knowing the states x(0) and x(∆), the resolution of the boundary values
problem {

ẋ = Ax+ e1eT
1 p, ∀t ∈ [0,∆]

x(0) = 0, x(∆) = x∆

should provide the adjoint state initial condition p(0) = p0. We could then
compute p(∆) = p∆ and p(τ−) by solving the Cauchy problems

{
ṗ =−AT p, ∀t ∈ [0,∆]
p(0) = p0

and {
ṗ =−AT p, ∀t ∈ [∆,τ[

p(∆) = p∆.

- On [τ+∆, t f ], the block at position (1,2) is again the zero matrix. The state
x(τ +∆) = xτ+∆ should be determined by solving the Cauchy problem

{
ẋ = Ax, ∀t ∈ [τ +∆, t f ]

x(t f ) = x∗ where x∗j = αS j.

- Knowing the states x(τ) and x(τ +∆), the resolution of the boundary val-
ues problem {

ẋ = Ax+ e1eT
1 p, ∀t ∈ [τ,τ +∆]

x(τ) = x∗, x(τ +∆) = xτ+∆

should provide p(τ+), and thus ν̄(τ) = p j(τ
−)− p j(τ

+). We could then
compute p(τ + ∆) = pτ+∆ and p(t f ) = ν̄(t f )e j by solving the Cauchy
problems {

ṗ =−AT p, ∀t ∈ [τ,τ +∆]

p(τ+) = p(τ−)− ν̄(τ)e j

and {
ṗ =−AT p, ∀t ∈ [τ +∆, t f ]

p(τ +∆) = pτ+∆.

The n− 1 unkown components of x∗ can be completed by the information on
the adjoint state final condition:

- The integration of ṗ =−AT p (in inverse time) on [τ +∆, t f ] yields

p(τ +∆) = eAT (t f−τ−∆)p(t f ). (8.4.1)

- The solution of ṗ =−AT p (in inverse time) on the time interval [τ,τ +∆]
is given by

p(t) = eAT (τ+∆−t)p(τ +∆), ∀t ∈ [τ,τ +∆]

(8.4.1)
= eAT (t f−t)p(t f ), ∀t ∈ [τ,τ +∆] (8.4.2)
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8.4 Further computational explorations

- The integration of ẋ = Ax+ e1eT
1 p on [τ,τ +∆] yields

x(τ +∆) = eA∆x(τ)+
∫

τ+∆

τ

eA(τ+∆−s)e1eT
1 p(s)ds

(8.4.2)
= eA∆x(τ)+

∫
τ+∆

τ

eA(τ+∆−s)e1eT
1 eAT (t f−s)ds p(t f ) (8.4.3)

- The solution of ẋ = Ax on the time interval [τ +∆, t f ] is given by

x(t) = eA(t−τ−∆)x(τ +∆), ∀t ∈ [τ +∆, t f ]
(8.4.3)
= eA(t−τ)x(τ)+

∫
τ+∆

τ

eA(t−s)e1eT
1 eAT (t f−s)ds p(t f ), ∀t ∈ [τ +∆, t f ]

In particular for t = t f , we obtain the following equivalent identities

x(t f ) = eA(t f−τ)x(τ)+
∫

τ+∆

τ

eA(t f−s)e1eT
1 eAT (t f−s)ds p(t f )

(I− eA(t f−τ))x∗ =
∫

τ+∆

τ

eA(t f−s)e1

(
eA(t f−s)e1

)T
ds ν̄(t f )e j

which is a system of n equations and n unknown parameters, namely the
(n−1) unknown components of the state x∗ at the contact and final times,
and the nonzero component ν̄(t f ) of the adjoint state at the final time.

We could easily extend the reasoning to m > 2.

An extension to j = 2 could also be investigated. Due to time disconnect be-
tween systemic and tissue concentrations, the contact time τ verifies

T < τ < T +∆.

In that case, we have to integrate the Hamiltonian system on five time intervals
[0,∆[, [∆,T [, [T,τ[ [τ,T +∆[, and [T +∆, t f ].
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Figure 8.9 – Numerical resolution of the discrete-time OC problem with constraint relaxation using quad-
prog.m (nadm = 1): different discretization steps



8.4 Further computational explorations

Optimal total amount of drug.

We stated the conjecture that the L2-norm-based optimal control u(·), under the
constraints (8.1.5), is exactly the control that minimizes its L1-norm, i.e., the
total amount of drug. However, it is not the case under the relaxed constraints,
as illustrated in Figure 8.10. These graphs show the solution, in discrete-time
setting, of the following OC problem:

J(u) =
∫ t f

0
|u(t)|dt −→min

for the system dynamics ẋ = Ax+ bu with a fixed initial condition x0 = 0, and
under the following relaxed input and state constraints:





u(t) = 0 ∀ t s.t. (t mod T )≥ ∆

u(t)≥ 0 ∀ t ∈ [0, t f [ s.t. (t mod T < ∆)
eT

j x(t)≥ αS j ∀t ∈ [nadmT, t f ]

The optimal solution is not intuitive (discontinuity of the optimal state trajec-
tory, boundary intervals) and needs to be investigated. Without going into de-
tails, we can already suggest some lines of investigation. The discrete-time
objective function reads as

J̃1(u) =
m−1

∑
i=0

iN+N1−1

∑
k=iN

u[k]−→min

Due to the linearity of the objective function, the optimal u does not correspond
to a stationarity point of the Lagrangian function. Indeed, the following KKT
condition:

∂L /∂u[k] = 0, ∀k ∈ {iN, . . . , iN +N1−1|i = 0, . . . ,m−1} (b)

becomes

(b) −bT
d p[k]−νk = 0, ∀k ∈ {iN, . . . , iN +N1−1 | i = 0, . . . ,m−1}.

The optimal solution should therefore be determined by the (active) state con-
straints. It is expected that the state constraints are active at times of ctrough.
For simplicity, let assume that j = 1 (state constraint in the plasma). Thus, at
steady state, the minimal concentration (ctrough) is reached at the end of the dos-
ing interval, just before a new administration. Based on the numerical tests, we
assume that the optimal control u is zero everywhere, except at the end of the
administration intervals, i.e.

u[k] = 0, ∀k /∈ {iN +N1−1|i = nadm−1, . . . ,m−1}.
The solution of the dynamics (p. 139) can be expressed, for all i∈{0, . . . ,m−1}
and for all l ∈ {0, . . . ,N−1}, by

x[iN +N1 + l] =
i

∑
ĩ=0

AĩN+l
d bd u[(i− ĩ)N +N1−1].

157



Chapter 8 Optimal control approach

By evaluating the state inequality constraint

eT
j x[k]≥ αS j

in k = iN +N1 + l, for all i ∈ {nadm−1, . . . ,m−1} and for l = 0, and assuming
that the constraint is active at these points, we will obtain a system of equations
that should provide the values of the control variable u.
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Figure 8.10 – Numerical resolution of the discrete-time L1-norm-based OC problem
with constraint relaxation, using linprog.m ( j = 1, nadm = 1)
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Conclusion and perspectives

“[. . .] dites-moi que je suis nécessaire et je vous soulève des
montagnes.”

La déesse des petites victoires (2012)
Yannick Grannec

This PhD thesis is an interdisciplinary work, between life sciences and mathemat-
ics. The American mathematician William Paul Thurston said “Mathematics is not
about numbers, equations, computations, or algorithms: it is about understanding.”
Through this work, we showed that mathematics enables to describe and understand
real data. Thanks to mathematical tools of dynamical systems and control theory, we
shed light on still challenging research questions that concern adequate dose selection
(Musuamba et al. (2017)).

Three drugs were presented and then used as case studies to exemplify the control
methods for drug dosing. Meropenem and temocillin are intravenous β -lactam antibi-
otics used for the treatment of critically ill patients with pneumonia. As all β -lactam
AB, they are time-dependent drugs, so that their PK/PD index is well-known. On the
contrary, hydroxycholoroquine is an oral drug used off-label during the first peak of
the COVID-19 epidemic. Its PK/PD target is unknown: further studies are needed
to characterize the exposure-response for both safety and efficacy (Morrisette et al.
(2020)). Based on individual data collected during prospective studies and routine
clinical practice, population pharmacokinetics analyses were conducted using a non-
linear mixed effects modeling approach. Data were available at the site of infection
for temocillin and meropenem, so that an additional compartment was added in the
popPK models to describe and then predict ELF drug exposure. The developed popu-
lation models of temocillin and meropenem are so-called mechanistic-based models,
as some covariates are included based on physiological considerations, but are not
necessarily supported by the data (overparametrization). In other words, the approach
used is not completely an empirical (data-driven) analysis. A “middle-out” (or semi-
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Conclusion

mechanistic) PBPK model was also developed for meropenem. Such a model is less
dependent on the data and could therefore be used for extrapolation in different pop-
ulations, as discussed on external data in obese patients. Models were internally vali-
dated by numerical and graphical tools and showed satisfactory fitting performances.
Some patient- and population-level data digitized in already published models were
used for external evaluation.

In the second part, we discussed current and studied methods for dosing rationale.
An input-output analysis was conducted for a right-continuous piecewise constant in-
put function, representing the intravenous administration of a fixed dose at regular
dosing intervals. It yields a so-called I/O formula (open-loop control law). The lat-
ter enables to compute the dose needed to attain the most stringent PK/PD target for
time-dependent drugs (100%T>MIC), but can be easily adapted to other PK/PD tar-
get provided that the relevant time t∗ in Equation (6.2.1) is known. This result can
be applied to the “worst-case” system, ensuring an arbitrarily high probability of suc-
cess. The I/O formula was then used to design a heuristic estimated state feedback for
dosing adjustment. Finally, an OC control approach was investigated to determine the
L2-norm-based optimal dosing under state and (relaxed) input constraints.

Therapeutic drug monitoring with feedback control is likely the best approach
for individualized dosing in order to prevent AB underdosing and improve clinical
outcome. From TDM data measured in clinical practice and Bayes estimations, a
nominal PK model could be refined to obtain the model specific to an individual pa-
tient. Such techniques should improve patients’ treatment and costs. However, it is
currently not often used in clinical routine for β -lactam antibiotics (see, e.g., Veiga
and Paiva (2018)). In Darwich et al. (2017), authors regret that model-informed pre-
cision dosing is not widespread in clinical practice, staying in local collaborations
between academia and healthcare. PK modelers “need to increase awareness and
transfer knowledge [. . .] to ensure that the application is not lost in the methodology
by aligning with healthcare professionals, patient groups, industry, and regulators.”
The modeling tools, computational and analytical methods are aimed to support clin-
icians and physicians who have to face situations using their previous experience.

Perspectives
A few perspectives were highlighted in the manuscript. We list below the outlook and
the scope for further improvement.

The overparametrization noted in the pharmacokinetic models could be con-
firmed by observability tests of the augmented systems, in which the additional
state components are the PK parameters to be estimated P (Ṗ = 0).

The popPK model of temocillin (Chapter 3) describes the free plasma concen-
trations, since only the free drug is able to diffuse through the blood-alveolar
barrier. Total observed values are also available. It could be interesting to model
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Perspectives

both total and free concentrations in order to describe the protein binding, using

ct = cu +Blin · cu +Bmax
cu

Km + cu

where ct and cu stand for total and unbound plasma concentrations, Blin · cu
represents the linear protein binding, Bmax is the maximal value of the nonlinear
and saturable protein binding term and Km is the unbound concentration at half-
maximal binding (see, e.g., Henningsson et al. (2003)). Furthermore, as the
dosing history is well-defined, we could develop the model without assuming
steady-state observed concentrations.

The PBPK model of meropenem was developed assuming that the drug was
administrated in the arterial pool and that the observations were arterial samples.
The estimation process could be performed again by considering that the drug
is administrated in the venous pool and that the plasma observations are venous
samples. Furthermore, simulations in obese patients led to identify possible
model weaknesses for extrapolation, such as the fact the the renal clearance is
assumed to account for 70% of the total elimination. An alternative clarance
parametrization could be considered.

Chapters 6-8 were developed based on numerical investigations from the pop-
ulation model of meropenem. This model has then been chosen to provide the
readers with toy examples. The different established control laws and algo-
rithms could be applied to the other models developed for IV drugs. In par-
ticular, it could be interesting to conduct an in-depth comparative analysis (I/O
maintenance and loading doses and optimal dosing) between the popPK and
PBPK models.

The analyses reported in Chapters 6-8 were conducted for the dosing of intra-
venous drugs. In the case of a bolus injection or an oral administration, the
system input u is the null function (see Section 1.3) so that the control must be
performed on the initial condition. Similar developments, from the input-output
to the optimal control approaches, could be done in this alternative framework.
The model of HCQ could be used for the numerical tests and investigations. A
result similar to Proposition 6.1.2 is presented in the PhD thesis Koch (2012).
The author gives the solution of the state trajectory x for multiple dosing.

The open-loop control law (6.2.2) is based on only one degree of freedom (dose,
D). This method could fail in the case of drugs with a (narrow) therapeutic
window. It could then be needed to either adapt the I/O formula in order to
compute the maximum dose not to be exceeded, in addition to the dose required
for efficacy, or to design two parameters, e.g., dose (D) and infusion duration
(∆). A discussion is initiated in Section 6.3 and deserves to be deepened in line
with the needs in clinical practice.

As highlighted in Section 8.4, the characterization of the optimal solution un-
der relaxed constraints, provided in Proposition 8.3.1, seems to be complete.
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Conclusion

Indeed, the jump values and the final condition of the adjoint state should be
determined by solving the Hamiltonian system describing the dynamics of the
joint state and adjoint state.

Additional perspectives for further research include the discretization of the
Pontryagin’s minimum principle (Proposition 8.3.1), to verify if it will corres-
pond to the discrete-time minimum principle derived from the KKT conditions,
as well as the study of the continuous-time solution without constraint relax-
ation.

A very interesting perspective from a clinical point of view could be the res-
olution of the OC problem developed in Chapter 8 for an alternative objective
function: the L1-norm of the control function, representing the total amount of
administrated drug. Indeed, in that case, the optimal dosing will be the minimal
effective dose. An intuition of the discrete-time solution is given in Section 8.4.
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APPENDIX A

External evaluation of the models of meropenem:
additional plots

This appendix provides additional external evaluation plots for the population and the
physiologically based model of meropenem.
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Appendix A External validation: additional plots

A.1 Population model
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(a) Patient 1: WT, 65 kg; GFR, 35 mL/min
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(b) Patient 2: WT, 50 kg; GFR, 30 mL/min

0 2 4 6 8

Time [h] after the last dose

10-1

100

101

102

P
la

sm
a 

co
nc

en
tr

at
io

n 
[m

g/
L]

(c) Patient 5: WT, 67 kg; GFR, 135 mL/min
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(d) Patient 6: WT, 70 kg; GFR, 61 mL/min

Figure A.1 – Simulated plasma PK profile (median and 90% PI) for the patients de-
scribed in Karjagin et al. (2008), after two doses of 1 g over 20 minutes infusion every
8 hours Square points, (digitized) observed plasma concentrations; GFR is approxi-
mated by ClCR.
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A.1 Population model
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(a) 0.5 g over 30 min infusion
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(b) 0.5 g over 30 h infusion
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(c) 1 g over 30 min infusion
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(d) 1 g over 3 h infusion
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(e) 2 g over 30 min infusion
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(f) 2 g over 3 h infusion

Figure A.2 – Simulated plasma PK profiles (median an 90% PI) after different dosing
regimens for 1000 patients consistent with the variable ranges described in the Li et al.
(2006). Square points, (digitized) observed plasma concentrations; GFR is computed
with the MDRD formula.
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(a) ClCR ≥ 50 mL/min (4 patients)
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(b) 30≤ClCR ≤ 50 mL/min (4 patients)
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(c) ClCR ≤ 30 mL/min (5 patients)

Figure A.3 – Simulated plasma PK profiles (median an 90% PI) for various degrees
of renal function as described in described in the Chimata et al. (1993), after one
dose of 0.5 g over 30 minutes infusion. Square points, (digitized) observed plasma
concentrations; GFR is approximated by ClCR.
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A.2 Physiologically based model

A.2 Physiologically based model
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(a) Patient 1: WT, 65 kg; GFR, 35 mL/min
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(b) Patient 2: WT, 50 kg; GFR, 30 mL/min
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(c) Patient 5: WT, 67 kg; GFR, 135 mL/min
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(d) Patient 6: WT, 70 kg; GFR, 61 mL/min

Figure A.4 – Simulated plasma PK profile (median and 90% PI) for the patients de-
scribed in Karjagin et al. (2008), after two doses of 1 g over 20 minutes infusion every
8 hours Square points, (digitized) observed plasma concentrations; GFR is approxi-
mated by ClCR.
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(a) 0.5 g over 30 min infusion
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(b) 0.5 g over 30 h infusion
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(c) 1 g over 30 min infusion
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(d) 1 g over 3 h infusion
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(e) 2 g over 30 min infusion
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(f) 2 g over 3 h infusion

Figure A.5 – Simulated plasma PK profiles (median an 90% PI) after different dosing
regimens for 1000 patients consistent with the variable ranges described in the Li et al.
(2006). Square points, (digitized) observed plasma concentrations; GFR is computed
with the MDRD formula.
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(a) ClCR ≥ 50 mL/min (4 patients)
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(b) 30≤ClCR ≤ 50 mL/min (4 patients)
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(c) ClCR ≤ 30 mL/min (5 patients)

Figure A.6 – Simulated plasma PK profiles (median an 90% PI) for various degrees
of renal function as described in described in the Chimata et al. (1993), after one
dose of 0.5 g over 30 minutes infusion. Square points, (digitized) observed plasma
concentrations; GFR is approximated by ClCR.
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APPENDIX B

Resolvant function of the PBPK model: symbolic
computations

We report here the numerators of the elements (3,1) to (3,6) of the resolvant matrix
(sI−A)−1, where A is the state matrix of the PBPK model of meropenem developed
in Section 4.3.

(3,1)
(KL*VART*VLUN*(VKID*VLIV*KP^2*QRB^2 + KRB*VLIV*VRB*KP*QKID^2 +
KRB*VKID*VRB*KP*QLIV^2))*s^3 +
(QCO*VART*(VKID*VLIV*KP^2*QRB^2 + KRB*VLIV*VRB*KP*QKID^2 +
KRB*VKID*VRB*KP*QLIV^2) + KL*VART*VLUN*(KP*QKID*QRB^2*VLIV +
KP*QLIV*QRB^2*VKID + KP*QKID^2*QRB*VLIV + KP*QLIV^2*QRB*VKID +
KRB*QKID*QLIV^2*VRB + KRB*QKID^2*QLIV*VRB + CLH*KP*QRB^2*VKID +
CLR*KP*QRB^2*VLIV + CLH*KRB*QKID^2*VRB +
CLR*KRB*QLIV^2*VRB))*s^2 +
(QCO*VART*(KP*QKID*QRB^2*VLIV + KP*QLIV*QRB^2*VKID +
KP*QKID^2*QRB*VLIV + KP*QLIV^2*QRB*VKID + KRB*QKID*QLIV^2*VRB +
KRB*QKID^2*QLIV*VRB + CLH*KP*QRB^2*VKID + CLR*KP*QRB^2*VLIV +
CLH*KRB*QKID^2*VRB + CLR*KRB*QLIV^2*VRB) +
KL*VART*VLUN*(QKID^2*QLIV*QRB + CLH*QKID^2*QRB +
QKID*QLIV^2*QRB + QKID*QLIV*QRB^2 + CLH*QKID*QRB^2 +
CLR*QLIV^2*QRB + CLR*QLIV*QRB^2 + CLH*CLR*QRB^2))*s +
QCO*VART*(QKID^2*QLIV*QRB + CLH*QKID^2*QRB + QKID*QLIV^2*QRB +
QKID*QLIV*QRB^2 + CLH*QKID*QRB^2 + CLR*QLIV^2*QRB +
CLR*QLIV*QRB^2 + CLH*CLR*QRB^2)
(3,2)
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Appendix B Resolvant function PBPK model

(QCO*VLUN*(VKID*VLIV*KP^2*QRB^2 + KRB*VLIV*VRB*KP*QKID^2 +
KRB*VKID*VRB*KP*QLIV^2))*s^2 +
(QCO*VLUN*(KP*QKID*QRB^2*VLIV + KP*QLIV*QRB^2*VKID +
KP*QKID^2*QRB*VLIV + KP*QLIV^2*QRB*VKID + KRB*QKID*QLIV^2*VRB +
KRB*QKID^2*QLIV*VRB + CLH*KP*QRB^2*VKID + CLR*KP*QRB^2*VLIV +
CLH*KRB*QKID^2*VRB + CLR*KRB*QLIV^2*VRB))*s +
QCO*VLUN*(QKID^2*QLIV*QRB + CLH*QKID^2*QRB + QKID*QLIV^2*QRB +
QKID*QLIV*QRB^2 + CLH*QKID*QRB^2 + CLR*QLIV^2*QRB +
CLR*QLIV*QRB^2 + CLH*CLR*QRB^2)
(3,3)
(KL*KP^2*KRB*VART*VKID*VLIV*VLUN*VRB*VVEN)*s^5 +
(KP*VLIV*(KP*VKID*(VART*(KRB*QCO*VRB*VVEN + KL*QRB*VLUN*VVEN) +
KL*KRB*QCO*VLUN*VRB*VVEN) + KL*KRB*VART*VLUN*VRB*VVEN*(CLR +
QKID)) + KL*KP*KRB*VART*VKID*VLUN*VRB*VVEN*(CLH + QLIV))*s^4 +
((KP*VKID*(VART*(KRB*QCO*VRB*VVEN + KL*QRB*VLUN*VVEN) +
KL*KRB*QCO*VLUN*VRB*VVEN) + KL*KRB*VART*VLUN*VRB*VVEN*(CLR +
QKID))*(CLH + QLIV) + KP*VLIV*((VART*(KRB*QCO*VRB*VVEN +
KL*QRB*VLUN*VVEN) + KL*KRB*QCO*VLUN*VRB*VVEN)*(CLR + QKID) +
KP*VKID*(QCO*(KRB*QCO*VRB*VVEN + KL*QRB*VLUN*VVEN) +
QCO*QRB*VART*VVEN)))*s^3 +
(((VART*(KRB*QCO*VRB*VVEN + KL*QRB*VLUN*VVEN) +
KL*KRB*QCO*VLUN*VRB*VVEN)*(CLR + QKID) +
KP*VKID*(QCO*(KRB*QCO*VRB*VVEN + KL*QRB*VLUN*VVEN) +
QCO*QRB*VART*VVEN))*(CLH + QLIV) +
KP*VLIV*((QCO*(KRB*QCO*VRB*VVEN + KL*QRB*VLUN*VVEN) +
QCO*QRB*VART*VVEN)*(CLR + QKID) + KP*QCO^2*QRB*VKID*VVEN))*s^2 +
(((QCO*(KRB*QCO*VRB*VVEN + KL*QRB*VLUN*VVEN) +
QCO*QRB*VART*VVEN)*(CLR + QKID) + KP*QCO^2*QRB*VKID*VVEN)*(CLH +
QLIV) + KP*QCO^2*QRB*VLIV*VVEN*(CLR + QKID))*s +
QCO^2*QRB*VVEN*(CLR + QKID)*(CLH + QLIV)
(3,4)
(KL*KP*KRB*QLIV*VART*VKID*VLIV*VLUN*VRB)*s^4 +
(KP*VKID*(VART*(KRB*QCO*QLIV*VLIV*VRB + KL*QLIV*QRB*VLIV*VLUN) +
KL*KRB*QCO*QLIV*VLIV*VLUN*VRB) +
KL*KRB*QLIV*VART*VLIV*VLUN*VRB*(CLR + QKID))*s^3 +
((VART*(KRB*QCO*QLIV*VLIV*VRB + KL*QLIV*QRB*VLIV*VLUN) +
KL*KRB*QCO*QLIV*VLIV*VLUN*VRB)*(CLR + QKID) +
KP*VKID*(QCO*(KRB*QCO*QLIV*VLIV*VRB + KL*QLIV*QRB*VLIV*VLUN) +
QCO*QLIV*QRB*VART*VLIV))*s^2 +
((QCO*(KRB*QCO*QLIV*VLIV*VRB + KL*QLIV*QRB*VLIV*VLUN) +
QCO*QLIV*QRB*VART*VLIV)*(CLR + QKID) +
KP*QCO^2*QLIV*QRB*VKID*VLIV)*s +
QCO^2*QLIV*QRB*VLIV*(CLR + QKID)
(3,5)
(KL*KP*KRB*QKID*VART*VKID*VLIV*VLUN*VRB)*s^4 +
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(KP*VLIV*(VART*(KRB*QCO*QKID*VKID*VRB + KL*QKID*QRB*VKID*VLUN) +
KL*KRB*QCO*QKID*VKID*VLUN*VRB) +
KL*KRB*QKID*VART*VKID*VLUN*VRB*(CLH + QLIV))*s^3 +
((VART*(KRB*QCO*QKID*VKID*VRB + KL*QKID*QRB*VKID*VLUN) +
KL*KRB*QCO*QKID*VKID*VLUN*VRB)*(CLH + QLIV) +
KP*VLIV*(QCO*(KRB*QCO*QKID*VKID*VRB + KL*QKID*QRB*VKID*VLUN) +
QCO*QKID*QRB*VART*VKID))*s^2 +
((QCO*(KRB*QCO*QKID*VKID*VRB + KL*QKID*QRB*VKID*VLUN) +
QCO*QKID*QRB*VART*VKID)*(CLH + QLIV) +
KP*QCO^2*QKID*QRB*VKID*VLIV)*s +
QCO^2*QKID*QRB*VKID*(CLH + QLIV)
(3,6)
(KL*KP^2*QRB*VART*VKID*VLIV*VLUN*VRB)*s^4 +
(KP*VLIV*(KP*VKID*(QCO*QRB*VART*VRB + KL*QCO*QRB*VLUN*VRB) +
KL*QRB*VART*VLUN*VRB*(CLR + QKID)) +
KL*KP*QRB*VART*VKID*VLUN*VRB*(CLH + QLIV))*s^3 +
((KP*VKID*(QCO*QRB*VART*VRB + KL*QCO*QRB*VLUN*VRB) +
KL*QRB*VART*VLUN*VRB*(CLR + QKID))*(CLH + QLIV) +
KP*VLIV*((QCO*QRB*VART*VRB + KL*QCO*QRB*VLUN*VRB)*(CLR + QKID) +
KP*QCO^2*QRB*VKID*VRB))*s^2 +
(((QCO*QRB*VART*VRB + KL*QCO*QRB*VLUN*VRB)*(CLR + QKID) +
KP*QCO^2*QRB*VKID*VRB)*(CLH + QLIV) +
KP*QCO^2*QRB*VLIV*VRB*(CLR + QKID))*s +
QCO^2*QRB*VRB*(CLR + QKID)*(CLH + QLIV)
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APPENDIX C

Sensitivity analysis on the PBPK model of
meropenem

A sensitive analysis was performed using MC simulations of the typical patient (WT,
75 kg; GFR, 65 mL/min; CO, 360 L/h). The simulations were performed using the
arbitrary dosing regimen of

1g/8h 3h-infusion.

The physiological parameters used in the PBPK model are reported in Table 4.3. Fig-
ures C.1-C.7 show the steady output trajectories y∞ (i.e., steady-state PK profiles) if a
parameter varies between -60% (P−, blue) and 60% (P+, yellow) of the value indicated
in Table 4.3, i.e.,

P− = P− 60
100 P P+ = P+ 60

100 P

We indicate the maximum relative error on the dosing interval with respect to the
nominal one:

eP− := max
t̃∈[0,T ]

|y∞
P−(t̃)− y∞

P (t̃)|
y∞

P (t̃)
, eP+ := max

t̃∈[0,T ]

|y∞
P+(t̃)− y∞

P (t̃)|
y∞

P+(t̃)

A visual inspection of these figures reveals that organ volumes and blood flows have
little influence on the model predictions.
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Appendix C Sensitive analysis PBPK model

0 2 4 6 8
100

101

102

0.771
1.9275
3.084

0 2 4 6 8

2

3

4

5

6

7

eP− = 4.69% eP− = 4.59%
eP+ = 4.54% eP+ = 4.44%

Figure C.1 – Comparison of steady-state PK profiles when the volume of the
arterial blood Va varies
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Figure C.2 – Comparison of steady-state PK profiles when the volume of the
lungs VLu varies
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Figure C.3 – Comparison of steady-state PK profiles when the volume of the
venous blood Vv varies
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Figure C.4 – Comparison of steady-state PK profiles when the volume of the
liver VLi varies
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Figure C.5 – Comparison of steady-state PK profiles when the volume of the
kidneys VKi varies
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Figure C.6 – Comparison of steady-state PK profiles when the blood flow of
the liver QLi varies
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Appendix C Sensitive analysis PBPK model
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Figure C.7 – Comparison of steady-state PK profiles when the blood flow of
the kidneys QKi varies
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APPENDIX D

System response

D.1 Context
Let consider a LTI state-space representation:

{
ẋ(t) = Ax(t)+bu(t)
y(t) =Cx(t)

t ≥ 0 (D.1.1)

where A ∈Rn×n is (asymptotically) stable, b ∈Rn×1 is filled by (n−1) zeros and one
non-zero value, and C ∈Rp×n has 1 and only 1 non-zero element on each row. This re-
sults in a strictly proper transfer function Ĝ(s) =

(
ĝ1(s) . . . ĝp(s)

)T ∈ Rp,0(s)p×1.
In the following analysis, the state matrix A∈Rn×n is assumed to have n distinct eigen-
values. The input function is a right-continuous piecewise constant function defined,
for all t ≥ 0, by

u(t) [g/h] =

{
D/∆ if (t mod T )< ∆

0 if (t mod T )≥ ∆
(D.1.2)

where ∆ ≤ T . It corresponds to the drug infusion rate when u is the input of a phar-
macokinetic system.

Definition The Laplace transform of a function f : R→ C with support on R+ is the
function f̂ defined by

f̂ (s) = L [ f (·)](s) =
∫

∞

0
e−st f (t)dt

for all s ∈C such that Re[s]> σ0, where σ0, called the absolute convergence abscissa,
defines an existence right-half plane.
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Appendix D System response

Remark 11 A delay of T units in the time domain corresponds to a multiplication by
e−sT in the Laplace domain, i.e.,

L −1[e−·T f̂ (·)](t) = f (t−T ), t ≥ T.

Definition Let us consider the system [A,b,C]. Its transfer function Ĝ(s) is defined as
the Laplace transform of the system impulse response and is given by

Ĝ(s) =C(sI−A)−1b.

The transfer function describes the relationship between inputs and outputs, i.e.,

ŷ = Ĝû.

D.2 Zero-state system response

Proposition D.2.1 Consider the PK system (D.1.1) with an input function of the
form (D.1.2). The zero-state system response y(·) is given as follows, where
Nt := bt/Tc denotes the number of administrations already received at time t
(including the ongoing administration, if appropriate): for all j ∈ {1, . . . , p} and
for all t ≥ 0,
• if (t mod T )< ∆ (during infusion)

y j(t) =
D
∆




Nt−2

∑
l=0

n

∑
i=1

Fji

λi
eλi(t−lT )(1− e−λi∆)

︸ ︷︷ ︸
previous administrations

+
n

∑
i=1

Fji

λi
(eλi(t−(Nt−1)T )−1)

︸ ︷︷ ︸
ongoing infusion




(D.2.1)
• if (t mod T )≥ ∆ (after infusion)

y j(t) =
D
∆

Nt−1

∑
l=0

n

∑
i=1

Fji

λi
eλi(t−lT )(1− e−λi∆)

︸ ︷︷ ︸
previous administrations

(D.2.2)

where, for all i ∈ {1,2,3, . . .n} and j ∈ {1, . . . , p}, λi ∈ σ(A) and

Fji := lim
s→λi

(
ĝ j(s)(s−λi)

)
.
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D.2 Zero-state system response

Proof.
Step 1: transfer function. Let L(s) denote the matrix (sI−A), whose characteristic
polynomial is given by

det(L(s)) = (s−λ1)(s−λ2)(s−λ3) · · ·(s−λn).

Each component ĝ j ( j ∈ {1, . . . , p}) of the transfer function Ĝ(s) can be written in
partial fraction expansion as

ĝ j(s) =
Fj1

s−λ1
+

Fj2

s−λ2
+

Fj3

s−λ3
+ · · ·+ Fjn

s−λn
,

where Fj1,Fj2,Fj3, . . .Fjn are the residual of ĝ j(s) in λ1,λ2,λ3, . . .λn, respectively.
Step 2: Laplace transform of the input function. The input function can be written
as a superposition of functions of the form

Ui(t) =
D
∆
·1[iT,iT+∆[(t), t ≥ 0,

where i ∈ N and 1I is the characteristic function of the subset I. Let N ∈ N0 be the
number of administrations. The input function u(t) is written as

u(t) =
N−1

∑
i=0

Ui(t), t ≥ 0.

The reference input function, corresponding to the first administration, is denoted U(t)
and given by

U(t) =U0(t) =
D
∆
·1[0,∆[(t), t ≥ 0.

The Laplace transform of the latter function is given by

Û(s) =
D
∆

(
1
s
− e−∆s

s

)
.

The other functions Ui(t) (i ∈ {1, . . . ,N− 1}) are equal to the reference input with a
delay of iT time units, i.e.,

Ui(t) =U(t− iT ), t ≥ iT.

According to Remark 11, there are expressed in the Laplace domain by

Ûi(s) = e−s iTÛ(s).

Using the linearity of the Laplace transformation, we finally obtain

û(s) =
N−1

∑
i=0

e−s iT D
∆

(
1
s
− e−∆s

s

)
.
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Appendix D System response

Step 3: Time domain response. In the Laplace domain, the zero-state system re-
sponse is

ŷ(s) = Ĝ(s)û(s).

For j ∈ {1, . . . p},

ŷ j(s) = ĝ j(s)û(s) =
D
∆
·

N−1

∑
l=0

e−s lT
︸ ︷︷ ︸
delay

Ŷj(s), (D.2.3)

where

Ŷj(s) =
n

∑
i=1

Fji

s−λi

(
1
s
− e−∆s

s

)
= ĥ j(s)− e−∆s

︸︷︷︸
delay

ĥ j(s), (D.2.4)

where ĥ j(s) =
n

∑
i=1

Fji

s−λi

1
s

(proper rational function). Its partial fraction decomposi-

tion (where λn+1 = 0) is given by

ĥ j(s) =
F̃j1

s−λ1
+

F̃j2

s−λ2
+

F̃j3

s−λ3
+ · · · F̃jn

s−λn
+

F̃j(n+1)

s−λn+1
,

where F̃j1, F̃j2, F̃j3, . . . F̃j(n+1) are the residuals of ĥ j(s) in λ1,λ2,λ3, . . .λn+1, respec-
tively. We can easily show that, for all i ∈ {1,2,3, . . .n},

F̃ji =
Fji

λi
and F̃j(n+1) =−

(
Fj1

λ1
+

Fj2

λ2
+

Fj3

λ3
+ · · · Fjn

λn

)
.

Laplace transform formulas enable us to write the inverse Laplace transform of ĥ j(s),
as follows:

h j(t) = L −1[ĥ j(·)](t) =
n+1

∑
i=1

F̃jieλit =
n

∑
i=1

Fji

λi
(eλit −1), t ≥ 0.

Using the linearity of the Laplace transformation to (D.2.4) and Remark 11, we get

Yj(t) = L −1[ĥ j(·)](t)
= h j(t)−h j(t−∆), t ≥ ∆

= h j(t)−h j(t−∆)1[∆,+∞[(t), t ≥ 0.

Similarly, we can deduce from (D.2.3) that, for t ≥ 0,

y j(t) = L −1[ŷ j(·)](t)

=
D
∆

N−1

∑
l=0

Yj(t− lT )1[lT+∞[(t)

=
D
∆

N−1

∑
l=0

[
h j(t− lT )1[lT,+∞[(t)−h j(t− lT −∆)1[lT+∆,+∞[(t)

]

where h j(t) =
n

∑
i=1

Fji

λi
(eλit −1); hence, Identities (D.2.1) and (D.2.2) hold. �
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D.3 Asymptotic system response

D.3 Asymptotic system response

Proposition D.3.1 Consider the system (D.1.1) with an input function of the
form (D.1.2). The output trajectory converges to an equilibrium trajectory, i.e.,
for all t̃ ∈ [0,T [,

yN(t̃)− y∞(t̃) N→∞−−−→ 0

where y∞ is given, for all j ∈ {1, . . . , p}, by
• if t̃ ∈ [0,∆],

y∞
j (t̃) =

D
∆

[
n

∑
i=1

Fji

λi

eλi t̃(1− e−λi∆)

e−λiT −1
+

n

∑
i=1

Fji

λi
(eλi t̃ −1)

]

• if t̃ ∈ [∆,T [,

y∞
j (t̃) =

D
∆

n

∑
i=1

Fji

λi

eλi(t̃−T )(1− e−λi∆)

e−λiT −1
.

Proof. Let j ∈ {1, . . . , p} and t ≥ 0 such that (t mod T ) ≥ ∆. Let N ∈ N0 be the
number of administrations received at time t. The zero-state system response y j(t)
(see (D.2.2)) is given by

y j(t) =
D
∆

n

∑
i=1

Fji

λi
(1− e−λi∆)eλit

N−1

∑
l=0

e−λilT

or, equivalently,

y j(t) =
D
∆

n

∑
i=1

Fji

λi
(1− e−λi∆)eλit 1− e−λiNT

1− e−λiT
.

We set t = t̃ +(N−1)T
(
i.e., t̃ = t mod T

)
, hence ∆≤ t̃ < T indicates the position on

the dosing interval [0,T [ after N administrations. Consequently, y j(t) can be written

yN
j (t̃) =

D
∆

n

∑
i=1

Fji

λi
(1− e−λi∆)

eλi(N−1)T − e−λiT

1− e−λiT
eλi t̃ .

Since, for all i ∈ {1, . . . ,n}, Re(λi) < 0 (system stability), the asymptotic response
reads

y∞
j (t̃) := lim

N→∞
yN

j (t̃) =
D
∆

n

∑
i=1

Fji

λi
(1− e−λi∆)

e−λiT

e−λiT −1
eλi t̃ .

A similar development can be applied for t ≥ 0 such that (t mod T ) < ∆ (or, equiva-
lently, 0≤ t̃ <∆). Let N ∈N0 be the number of administrations received (including the
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Appendix D System response

ongoing administration) at time t. The zero-state system response y j(t) (see (D.2.1))
is given by

y j(t) =
D
∆

[
n

∑
i=1

Fji

λi
(1− e−λi∆)eλit

N−2

∑
l=0

e−λilT +
n

∑
i=1

Fji

λi
(eλi(t−(N−1)T )−1)

]
,

i.e.,

y j(t) =
D
∆

[
n

∑
i=1

Fji

λi
(1− e−λi∆)eλit 1− e−λi(N−1)T

1− e−λiT
+

n

∑
i=1

Fji

λi
(eλi(t−(N−1)T )−1)

]
.

Thus, for t̃ ∈ [0,∆[,

yN
j (t̃) =

D
∆

[
n

∑
i=1

Fji

λi
(1− e−λi∆)

eλi(N−1)T −1
1− e−λiT

eλi t̃ +
n

∑
i=1

Fji

λi
(eλi t̃ −1)

]
.

Since, for all i ∈ {1, . . . ,n}, Re(λi) < 0 (system stability), the asymptotic response
reads

y∞
j (t̃) := lim

N→∞
yN

j (t̃) =
D
∆

[
n

∑
i=1

Fji

λi
(1− e−λi∆)

1
e−λiT −1

eλi t̃ +
n

∑
i=1

Fji

λi
(eλi t̃ −1)

]
.

�

186



APPENDIX E

Sensitivity analysis on the popPK model of
meropenem

A sensitive analysis was performed using MC simulations of the typical patient (WT,
75 kg; GFR, 65 mL/min). The simulations were performed using the arbitrary dosing
regimen of

1g/8h 3h-infusion.

The PK parameters with a random-effect component are the clearance CL, the central
volume of distribution Vc, the volume of distribution of the dummy ELF compartment
VE and the intercompartmental clearance between the central and the peripheral com-
partment Qp (see Table 4.2). For each of these parameters, IIV was described by an
exponential model:

P = TV P · exp(ηP)

where ηP is a normal random variable ∼ N(0,ω2
P) and TV P is the individual typical

value of the parameter. Figures E.1-E.4 show the steady output trajectories y∞ if a PK
parameter varies between ηP = −2ω (blue) and ηP = 2ω (yellow). That represents
95.4% of the model predictions. Indeed, if a random variable η follows a normal
distribution N(0,ω2), then z := η

ω
∼ N(0,1), such that

P(−2ω < η < 2ω) = P(−2 < z < 2)
= P(z < 2)−P(z <−2)
= 2 ·P(z < 2)−1
= 0.9544

187



Appendix E Sensitive analysis popPK model

We indicate the maximum relative error on the dosing interval with respect to the
nominal one:

eη=−2 := max
t̃∈[0,T ]

|y∞
η=−2(t̃)− y∞

η=0(t̃)|
y∞

η=0(t̃)
, eη=2 := max

t̃∈[0,T ]

|y∞
η=2(t̃)− y∞

η=0(t̃)|
y∞

η=0(t̃)

A visual inspection of these figures leads to the following conclusions:

• The drug concentation decreases when the clearance increases. It is stated and
demonstrasted in Proposition 6.2.2.

• The concentrations at time T (end of the dosing interval) seem to increase when
the volumes of distributions Vc and VE and the intercompartmental clearance Qp
increase. The intercompartmental clearance seems to have a lower impact on
the PK profiles.
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Figure E.1 – Comparison of PK profiles when the clearance CL varies, and all the
other parameters are set to their typical value. Blue curve, η = −2ω; yellow curve,
η = 2ω; dashed black curve, η = 0 (nominal PK profile).
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Figure E.2 – Comparison of PK profiles when the central volume of distribution Vc
varies, and all the other parameters are set to their typical value. Blue curve, η =−2ω;
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Appendix E Sensitive analysis popPK model

0 2 4 6 8
5

10

15

20

25

30

0 2 4 6 8
1

2

3

4

5

6

7

eη=−2 = 12.3% eη=−2 = 11.7%
eη=2 = 7.61% eη=2 = 6.73%
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