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& Photosensitizers

Near-Infrared BODIPY-Acridine Dyads Acting as Heavy-Atom-Free
Dual-Functioning Photosensitizers

Jasper Deckers,[a, b] Tom Cardeynaels,[a, b, c] Huguette Penxten,[a] Anitha Ethirajan,[b, d]

Marcel Ameloot,[e] Mikalai Kruk,[f] Beno%t Champagne,[c] and Wouter Maes*[a, b]

Abstract: Boron dipyrromethene (BODIPY) dyes represent a

particular class within the broad array of potential photosen-
sitizers. Their highly fluorescent nature opens the door for
theragnostic applications, combining imaging and therapy

using a single, easily synthesized chromophore. However,
near-infrared absorption is strongly desired for photodynam-

ic therapy to enhance tissue penetration. Furthermore, sin-
glet oxygen should preferentially be generated without the

incorporation of heavy atoms, as these often require addi-

tional synthetic efforts and/or afford dark cytotoxicity. Solu-

tions for both problems are known, but have never been

successfully combined in one simple BODIPY material. Here,
we present a series of compact BODIPY-acridine dyads,
active in the phototherapeutic window and showing bal-

anced brightness and phototoxic power. Although the
donor–acceptor design was envisioned to introduce a

charge transfer state to assist in intersystem crossing, quan-
tum-chemical calculations refute this. Further photophysical

investigations suggest the presence of exciplex states and

their involvement in singlet oxygen formation.

Introduction

To date, thera(g)nostics represent an auspicious concept
toward personalized cancer treatment.[1] The concept implies
the combination of diagnosis and a therapeutic approach of

the cancerous disease in order to localize the target, monitor
the therapeutic outcome as well as to improve drug dosime-

try.[2] One such a theragnostic platform is the combination of
fluorescence bioimaging and photodynamic therapy (PDT).[3]

Established already in 1903, PDT is nowadays a well-recognized
and successful method, which has been clinically approved by

the FDA more than two decades ago.[4] Herein, light of a spe-
cific wavelength is absorbed by a photosensitizer (PS) to
achieve an electronically excited singlet state (Sn) (Figure 1). In-

tersystem crossing (ISC) to a long-living triplet state (Tn) en-
ables to produce different reactive oxygen species (ROS) via

two possible pathways.[5] Whereas the type I mechanism con-
siders the interaction of the excited PS with the substrate or
solvent, thereby producing a variety of ROS, the type II mecha-
nism involves transfer of energy of the excited triplet state di-

rectly to molecular oxygen (3O2) to produce singlet oxygen
(1O2). The ratio of both mechanisms depends on the character-
istics of the PS, the substrate and the amount of available
oxygen, but 1O2 is assumed to be the main cytotoxic agent.[6] It
attacks different cellular targets, including nuclei, plasma mem-

branes, mitochondria, and lysosomes, resulting in cell death by
necrosis or apoptosis, immune responses, or vascular shut-

down.[7] PDT has several advantages, such as being noninva-

sive, repeatable, and affording low systemic toxicity and mini-
mal side effects.[8] Even more, the combination of careful illu-

mination of the cancerous cells and the high reactivity, short
lifetime, and slow diffusion rate of 1O2 in biological media

opens up the possibility for a very selective treatment.[9]

Thanks to these advantages, PDT is used for the treatment of a
wide scope of tumors.[10] In addition, the technique is frequent-

ly applied for treatment of dermatological and ophthalmic dis-
eases, inactivation of viruses, and to treat bacterial or fungal

infections.[4a, 10b, 11]

The ideal PS is stable, has a high molar extinction coefficient

(e>20 000–30 000 m@1 cm@1), a sufficiently high singlet oxygen
quantum yield (fD), a low dark cytotoxicity, and is easily syn-
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thesized.[8] The activation energy of the PS is important as well.

Before the applied light reaches the target tumor, it will be
scattered and absorbed by the surrounding tissue.[12] Shorter

wavelengths are absorbed by different tissue chromophores
and often give rise to skin photosensitivity.[6] To minimize these

effects, longer wavelengths are desirable for PS activation. In
this way, light scattering is reduced, the background signal

from autofluorescence of biomolecules is minimized, and the

penetration depth is strongly enhanced.[13] As water absorption
becomes significant above 1300 nm, the area between 600

and 1200 nm is referred to as the “optical window” of biologi-
cal tissue.[14] However, wavelengths above 800 nm lack energy

to generate 1O2, since the associated triplet state would be too
low in energy.[15] In this respect, the phototherapeutic area in

the near-infrared (NIR) region (&600–800 nm) has triggered a

lot of interest.[13] Most synthetic and naturally occurring PSs
(whether or not satisfying the aforementioned ideal character-

istics) are oligopyrrolic macrocycles, but a broad scope of
other structures are widely studied as well.[6, 16] The majority of

the (pre)clinical stage PSs are derivatives of porphyrins, such as
Photofrin, Tookad, and NPe6.[16g] Although showing several ad-
vantages, these compounds are often correlated to dark cyto-

toxicity, prolonged skin photosensitivity, and other side effects,
explaining the increased interest in non-porphyrinic PSs.[17]

Recently, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes or
boron dipyrromethenes (BODIPYs) have been added to the ar-

senal of cancer theragnostic materials.[18] Often referred to as
porphyrin’s little sister, BODIPY dyes possess many characteris-

tics to be suitable PSs. These compounds have high molar ex-
tinction coefficients, a high chemical and photochemical stabil-
ity, and are easily modified, allowing to fine-tune their photo-
physical properties.[19] Even more, due to its restricted flexibili-
ty, the BODIPY core inherently affords high fluorescent quan-

tum yields (ff) and a narrow emission profile, interesting
characteristics for the development of a dual-functioning PS.

However, there are two main shortcomings. First, unmodified

BODIPY dyes have their absorption and emission peaks around
500 nm. Luckily, a broad scope of structural modifications to

the BODIPY core are known to afford NIR activity.[20] The
second, even more important, problem is the lack of ability to

generate 1O2 from BODIPY dyes due to the very poor triplet
formation yields. The most common solution is the introduc-

tion of bromine, iodine, or transition metal complexes.[18, 21]

Thanks to spin-orbit coupling (SOC), this induces increased ISC
through the heavy-atom effect.[22] In this regard, a vast amount

of NIR photoactive aza-, styryl-, and other BODIPY PSs are
known.[18, 21] However, this approach turned out to be far from

ideal as these heavy atoms are correlated to a shortening of
the triplet state lifetimes, increased dark cytotoxicity, and addi-

tional synthetic efforts and related costs.[23] Moreover, fluores-

cence signals are quenched almost completely when a high fD

is reached, since ISC and fluorescence are competing pathways

for the excited state. Aiming at dual-functioning PSs with both
a significant 1O2 production and fluorescence quantum yield,

these problems necessitate the search for alternative methods
to achieve a balanced (molecular) brightness (BT, product of e

and ff) and phototoxic power (PP, product of e and fD).

Some alternative methods to increase triplet populations
without relying on the heavy-atom effect have emerged, such

as radical enhanced ISC, the use of a spin converter, and
charge recombination induced ISC.[24] In this regard, halogen-

free BODIPY PSs were designed over the past few years.[21, 25]

However, radical enhanced ISC and C60 spin converters quench

the fluorescence, while the synthetic effort and related costs

increase.[26] Another example are thienopyrrole-fused BODIPYs,
but the triplet formation seems intrinsic to this system.[27] Re-

cently, photoinduced electron transfer (PET) was applied to
donor–acceptor BODIPY dyads and dimers to successfully

obtain controllable triplet states and ff.
[25] In PET, electron

transfer or charge separation after light absorption results in

the occupation of a highly polar excited state, that is, a charge
transfer (CT) or charge separated state (CSS).[28] This 1CT state
can undergo charge recombination into a triplet state, thereby

rendering heavy atoms unnecessary for 1O2 generation.[29] De-
pending on the molecular structure, two different charge re-

combination induced ISC mechanisms can be distinguished:
radical pair ISC (RP-ISC) and spin-orbit charge transfer ISC

(SOCT-ISC).[24c, 25] The former is more pronounced when there is

a large separation distance between the donor and acceptor
parts of the PS, resulting in a weak electronic coupling. This

process involves the formation of an intermediate triplet CT
state (3CT) via hyperfine interaction, followed by fast charge re-

combination into the localized triplet (3LE) state. The second
mechanism is found in dyads and dimers with a small spacer

Figure 1. Energy diagrams presenting the principle of spin-orbit intersystem crossing (SO-ISC, left) and radical pair intersystem crossing or spin-orbit exciplex
intersystem crossing (RP-ISC, SOCT-ISC, right). The different photophysical processes are indicated with red octagons: 1) localized absorption, 2) localized
emission, 3) intersystem crossing (SO-ISC: 1LE!3LE, RP-ISC: 1CT!3CT, SOCT-ISC: 1CT!3LE), 4) energy transfer to molecular oxygen, 5) charge transfer absorp-
tion, 6) charge transfer emission, 7) photoelectron transfer, and 8) internal conversion.
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or no spacer at all between both moieties. SOCT-ISC becomes
possible if the 1CT-3LE energy difference is small and the 1CT

state is converted into a 3LE state through back-electron trans-
fer and spin conversion. To visualize the difference between

traditional PDT based on SO-ISC and the heavy-atom-free RP-
ISC and SOCT-ISC mechanisms, simplified energy diagrams are

provided in Figure 1. There are some examples of compact
BODIPY dimers and dyads that successfully combine fluores-

cence and 1O2 production through this mechanism.[24] Howev-

er, to the best of our knowledge, there are no previous exam-
ples of BODIPY PSs wherein 1O2 is obtained efficiently together
with a significant ff when irradiated in the phototherapeutic
window. There is one particular example reported by Ortiz and

co-workers, who synthesized an orthogonal BODIPY dimer
whereby one of the two BODIPY units is modified with two

styryl groups at the a-positions.[30] Although having absorption

maxima at 509 and 658 nm, and a fluorescence maximum at
685 nm (ff = 0.56), 1O2 generation (fD = 0.11) was only ob-

served when the system was excited using green light. This in-
dicates that triplet formation is occurring in the non-altered

BODIPY unit, whereas this is hampered in the p-extended
BODIPY unit. It seems that enlarging the delocalized area en-

hances the radiative processes from the CT state, thereby hin-

dering the ISC for triplet formation.
In this manuscript, we present a series of novel dual-func-

tioning BODIPY PSs showing a reasonably high 1O2 production,
while maintaining satisfying fluorescent abilities, all within the

phototherapeutic window. We started from different highly
fluorescent 1,3,5,7-tetramethyl-BODIPY cores and shifted the

absorption and emission to the NIR region through a simple
Knoevenagel-type condensation of the a-methyl groups. In ac-

cordance with the idea of an SOCT-ISC mechanism, acridine
moieties were attached to provide an orthogonal donor-ac-

ceptor design. Density functional theory (DFT) was used to in-
vestigate the BODIPY dye geometries and frontier molecular

orbitals. Extensive photophysical characterization of the dyads
was performed in different solvents and the influence of the

incorporated dimethylacridine end groups was examined. Al-

though these photophysical data at first sight seemed to
match with the idea of a CT state being involved, time-depen-

dent (TD) DFT calculations starting from the ground state geo-
metries did not confirm this mechanism. Further investigations

unveiled the probable presence of “exciplexes”[31] in these sys-
tems. As their nature is similar to the highly polar CT state,

they could also play an important role in singlet oxygen forma-

tion.[32] Since exciplex singlet and triplet states are close to
each other in energy, they serve the same purpose as the CT

energy levels depicted in Figure 1, thereby assisting triplet for-
mation.

Results and Discussion

Structural design and synthesis

The design of the PSs started from the highly fluorescent

1,3,5,7-tetramethyl-BODIPYs 7 a–c, as depicted in Scheme 1.

The methyl groups are acidic enough to enable Knoevenagel-
type condensations to extend the p-conjugated system.[33] The

Scheme 1. Synthesis of the BODIPY PSs and their building blocks: i) thionyl chloride, methanol, 0 8C; 16 h at 60 8C (77 %); ii) methylmagnesium bromide, dry
THF, @78 8C; 12 h at RT (92 %); iii) H3PO4, 2 h at 35 8C (75 %); iv) 4-bromobenzaldehyde, Pd2(dba)3, Cs2CO3, dppf, dry toluene, inert atm, 16 h at 100 8C (91 %);
v) 5-bromothiophene-2-carbaldehyde, Pd(OAc)2, NatBuO, XPhos, dry toluene, inert atm, 16 h at 100 8C (61 %); vi) triethoxymethane, trifluoroacetic acid, dry
CH2Cl2, inert atm, 2 h at RT; Et3N, BF3·OEt2, dry toluene, 1 h at RT (47 %); vii) 2,4,6-trimethylbenzaldehyde, trifluoroacetic acid, dry CH2Cl2, inert atm, 3 h at 0 8C;
DDQ, 20 min at 0 8C, 1 h at RT; Et3N, BF3·OEt2, 12 h at RT (72 %); viii) 2,6-dichlorobenzaldehyde, trifluoroacetic acid, dry CH2Cl2, inert atm, 1 h at RT; DDQ,
10 min at 0 8C, 1 h at RT; Et3N, BF3·OEt2, 2 h at RT (23 %); ix) glacial acetic acid, piperidine, dry DMF, inert atm, 5 min at 150 8C, microwave irradiation (40–66 %).

Chem. Eur. J. 2020, 26, 15212 – 15225 www.chemeurj.org T 2020 Wiley-VCH GmbH15214

Chemistry—A European Journal
Full Paper
doi.org/10.1002/chem.202002549

http://www.chemeurj.org


introduction of vinyl groups provides a direct and easy way to
obtain bathochromically shifted absorption and emission fea-

tures. We chose for a strongly electron donating acridine end
group, as often applied for materials displaying thermally acti-

vated delayed fluorescence (TADF).[34] Because the BODIPY core
is relatively electron deficient, the introduction of an electron

donating group via Knoevenagel condensation generates a
push-pull type structure, further increasing the bathochromic
shift. This donor–acceptor dyad design was supposed to intro-

duce the desired CT state required for efficient ISC.[24c] Al-
though the exact structural requirements for SOCT-ISC are still
not very well understood, orthogonality between the BODIPY
core and the rest of the structure is suggested to support this

process as the change in molecular orbital angular momentum
will compensate for the change in electron spin angular mo-

mentum during ISC, hence slowing down the charge recombi-

nation process to the ground state and enhancing triplet for-
mation.[29a] In our design, the C@N induced torsion between

the donor and acceptor part is hence an essential aspect.
Three different BODIPY cores with varying meso-groups—hy-

drogen (7 a), mesityl (7 b), and 2,6-dichlorophenyl (7 c)—were
synthesized according to literature procedures starting from

2,4-dimethylpyrrole (6).[35] Dimethylacridine 4 was obtained

through a three-step synthesis from N-phenylanthranilic acid
(1) with a good overall yield of 53 %. As an aldehyde function-

ality is needed for the Knoevenagel condensation, a spacer
should be introduced between the donor an acceptor moiety.

To screen two spacer types in the target PSs, dimethylacridine
4 was subjected to a Buchwald–Hartwig amination with either

4-bromobenzaldehyde or 5-bromothiophene-2-carbaldehyde.

The thienyl spacer was envisioned to provide an additional
small red-shift. First tests were performed using Pd2(dba)3 and

BINAP, but without success. When using Pd(OAc)2 and
P(tBu)3HBF4, aldehydes 5 a and 5 b were obtained in moderate

yields (33 and 43 %, respectively). Further optimization was
performed using Pd(OAc)2 in combination with XPhos, increas-

ing the yields to 54 and 61 %, respectively. Eventually, we were

able to maximize the yield of 5 a to 91 % using Pd2(dba)3 and
1,1’-bis(diphenylphosphino)ferrocene (dppf) as the catalytic
system.

The Knoevenagel condensation itself was initially optimized
for BODPY 8 b, as summarized in Table 1. The condensation of
an aldehyde with a methyl group at the BODIPY 3- and 5-posi-
tions is well-known.[20] However, refluxing in benzene overnight

in the presence of 3 a molecular sieves did not result in the
target product. A switch was made to microwave irradiation,

yielding 36 % of BODIPY 8 b in only 5 minutes. Further optimi-
zation pointed out that a higher concentration is preferred (en-

tries 3 and 5), a longer reaction time results in more degrada-

tion (entry 4), more equivalents of benzaldehyde push the re-
action to the right (entry 6), and a temperature of 150 8C is

ideal to increase the conversion (entries 6 to 8). Finally, the op-
timal reaction conditions were used to combine aldehydes 5 a
and 5 b with BODIPYs 7 a–c to obtain six different p-extended
BODIPY dyes. Three of them, BODIPYs 8 a–c, bear a phenyl
spacer between the BODIPY core and the acridine moiety,

while dyads 9 a–c are equipped with a thienyl spacer. Reac-
tions with BODIPY 7 a were performed with only three equiva-
lents of aldehydes 5 a,b as tri- and tetra-substitution was ob-
served to a larger extent, likely due to the lack of a sterically

hindering group at the meso-position. In the end, good yields
ranging from 40 to 66 % were obtained for all final products.

Dyads 8 a–c have a blue color in solution, while BODIPYs 9 a–c
give a green solution, thereby already indicating a variation in
spectroscopic properties due to the different spacer. For a de-

tailed description of the synthesis protocols, we refer to the
Supporting Information.

Structural analysis

To confirm our design objectives, DFT was used to optimize
the ground state geometries of BODIPYs 8 a–c and 9 a–c in

three different solvents with varying polarity (toluene, chloro-
form, and dimethyl sulfoxide (DMSO)) using the polarizable

continuum solvation model (PCM).[36] All vibrational frequen-
cies are real, demonstrating the optimized geometries corre-
spond to minima on the potential energy surface. From the

optimized geometries in chloroform (Figure 2 and Figure 3), a
large dihedral angle (q>808) between the donor (acridine)
and acceptor (styryl/thienylvinyl-BODIPY) units can be seen.

Table 1. Optimization of the Knoevenagel-type condensation toward BODIPY 8 b.[a,b]

Entry Equiv 7 b Equiv 5 a Temperature
[8C]

Reaction time
[min]

Solvent volume
[mL mmol@1]

Yield[c] 8 b-mono[d] Yield[c] 8 b Remnant[c] 7 b

1 1 3 80 960 200 0 % 0 % –[e]

2 1 3 150 5 240 7 % 36 % –[e]

3 1 3 150 5 120 7 % 46 % 44 %
4 1 3 150 15 120 9 % 46 % 27 %
5 1 3 150 5 60 6 % 53 % 34 %
6 1 4 150 5 60 9 % 66 % 23 %
7 1 4 175 5 60 11 % 51 % 10 %
8 1 4 125 5 60 17 % 45 % 35 %

[a] All reactions were done on a 0.1 mmol scale, except for entries 1 and 2, which were done on a 0.05 mmol scale. [b] Experimental conditions for entry 1:
0.05 mL glacial acetic acid, 0.05 mL piperidine, 3 a molecular sieves, benzene, inert atmosphere, reflux. Experimental conditions for entries 2 to 8: 0.1 mL
glacial acetic acid, 0.1 mL piperidine, dry DMF, inert atmosphere, microwave irradiation, 1 min pre-stirring. [c] All reported yields are isolated yields.
[d] Monostyryl side product of distyryl-BODIPY 8 b. [e] Not isolated.
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The phenyl and thienyl spacers are coplanar with the BODIPY
core, thus extending the conjugation. For all BODIPYs, the
highest occupied molecular orbital (HOMO) and lowest unoc-

cupied molecular orbital (LUMO) reside on the styryl/thienyl-
vinyl BODIPY system. The HOMO@1 and HOMO@2 can be
found on the acridine units, while the HOMO@3 is again found
on the styryl/thienylvinyl BODIPY core (Figures S1 and S2 in

the Supporting Information). The mesityl and 2,6-dichloro-
phenyl meso-groups in 8 b/9 b and 8 c/9 c, respectively, are

nearly perpendicular to the rest of the BODIPY core and

almost completely electronically decoupled. Therefore, these
groups are not expected to influence the experimental and

calculated energy levels to a large extent. The geometries and
frontier orbital topologies are similar in toluene and DMSO.

Photophysical characterization

The six heavy-atom-free potential BODIPY PSs were subjected
to a detailed photophysical characterization to examine their

intended use as theragnostic agents. Initial photophysical char-
acterization of BODIPY dyes 8 a–c and 9 a–c was performed in

chloroform solution. Absorption and emission spectra afforded
the spectral maxima (labs(max), lem(max)), Stokes shifts (D(n),

and the full-width-at-half-maximum (fwhmabs, fwhmem) of both
the emission and absorption bands. Fluorescence quantum
yields (ff) were obtained relative to a suitable reference dye

and using the corresponding excitation wavelengths. Singlet
oxygen quantum yields (fD) were collected by monitoring the

absorbance of 1,3-diphenylisobenzofuran (1,3-DPBF) as singlet
oxygen scavenger during excitation at 639 nm (Figure S4).[37] In
combination with the molar attenuation coefficient (e), the
brightness (BT) and phototoxic power (PP) have been deter-

mined. All data represented in Figure 4 and Table 2 are mean
values which originate from three independent measurements
for each compound. Only data from the wavelength region of
interest are displayed here. For the full absorption spectra, we
refer to Figure S3 and Table S2. Furthermore, all systems were

found to be photostable for more than three hours under
639 nm illumination.

For styryl-BODIPYs 8 a–c, introduction of the acridine-styryl
groups resulted in a bathochromic shift of around 140 nm for
the absorption maximum with respect to the starting BODIPY

cores 7 a–c. The fluorescence maxima change in the same
manner, retaining the small Stokes shift characteristic of

BODIPY dyes. As such, these three materials are active in the
targeted phototherapeutic window. The ff values decrease, as

Figure 2. Optimized geometries and frontier orbitals for BODIPYs 8 a–c in chloroform solution obtained using DFT calculations with M06-2X/6–311G(d) and
the PCM model. Isosurface values of 0.02 (a.u.) were used for all orbitals.
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expected for red-shifted dyes due to the energy-gap law, but
are still significant (47, 63, and 38 % for 8 a, 8 b, and 8 c, respec-
tively). Both the absorption and emission profiles resemble the

typical narrow BODIPY shape with a smaller shoulder. To our
delight, the BODIPY dyads with a phenyl spacer between the
BODIPY and acridine subunits were able to generate 1O2 when

irradiated using a 639 nm LED. Relative fD measurements were
performed, resulting in good values ranging from 23 % for the

meso-mesityl variant 8 b to 31 % for the meso-2,6-dichloro-
phenyl variant 8 c. We can exclude that the 1O2 generation ca-

pability originates from the orthogonality between the meso-

group and the BODIPY core, since meso-unsubstituted BODIPY
8 a also affords a significant fD value of 29 %. Moreover, the

high molar attenuation coefficients (above 100 000) indicate
their excellent light harvesting abilities. This results in high and

balanced BT and PP values, enabling the use of these dyes for
combined bio-imaging and photodynamic therapy.

The absorption profiles of BODIPYs 9 a–c resemble these of
their styryl counterparts, but are red-shifted to a greater
extent, as expected due to the more electron donating charac-

ter of the thienyl linkers. Bathochromic shifts up to 170 nm
with respect to BODIPYs 7 a–c are observed, bringing the ab-
sorption deeper into the NIR. An additional, small absorption
band is seen around 740 nm. Remarkably, the thienyl spacer
results in a very different fluorescence emission profile. The

first emission maxima are found between 680 and 700 nm, cor-
responding to small Stokes shifts. However, a second, more in-

tense and broad emission band with maxima ranging from
750 up to 780 nm appears. Although high molar attenuation
coefficients are obtained for these systems, ff and fD values

are found to be very low. Clearly, dyads 9 a–c behave very dif-
ferently with respect to the distyryl analogues 8 a–c, making

them unsuitable as dual PSs.

Figure 3. Optimized geometries and frontier orbitals for BODIPYs 9 a–c in chloroform solution obtained using DFT calculations with M06-2X/6–311G(d) and
the PCM model. Isosurface values of 0.02 (a.u.) were used for all orbitals.
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Elucidation of the spectral differences

To get an idea on the origin of the observed spectral differen-
ces, the nature of the second emission band observed for

molecules 9 a–c was investigated in more detail. Since the
dyads were designed to form an intramolecular CT state, this

was examined first. A possible explanation for the lack of fluo-
rescence and phototoxicity for 9 a–c could be the (non-)radia-
tive charge recombination from the CT state to the ground
state. The combination of non-radiative losses and restricted
triplet formation would result in the observed low ff and fD

values.

To verify the CT character of the lowest energy fluorescence

band in BODIPY dyads 9 a–c, and the possible involvement of
a CT band in the efficient ISC for 8 a–c, the effect of solvent
polarity on the absorption and emission profiles was investi-
gated. When increasing solvent polarity, the highly polar CT
state is stabilized, resulting in a bathochromic shift and broad-
ening of the CT band, accompanied with a decrease in ff.

[38]

However, the CT state is not always visible through its emis-

sion, as it could also undergo non-radiative charge recombina-
tion to the ground state or recombination into a triplet state,

depending on the polarity of the medium.[29] BODIPYs 8 a–c
and 9 a–c were hence subjected to the same photophysical

characterization as performed in chloroform (ET(30) = 39.1), but
now in the more nonpolar solvent toluene (ET(30) = 33.9) and

the more polar solvent DMSO (ET(30) = 45.1).[39] Normalized ab-

sorption and emission spectra are given in Figure 5. Here, the
profiles are grouped by BODIPY PS in different solvents to

more clearly visualize the influence of polarity changes. The ex-
tracted data from three independent measurements in each

solvent are summarized in Table S3. Only data from the wave-
length region of interest are displayed here. For the complete

absorption spectra in each solvent, we again refer to Figure S3

and Table S2. The monitored decrease of 1,3-DPBF absorption
during 1O2 measurements in each solvent is also illustrated in

Figure S4.
The absorption maxima and profiles of PSs 8 a–c are not in-

fluenced to a large extent by solvent polarity, indicating an un-
affected localized singlet (1LE) energy in different solvents.

Figure 4. Normalized absorption spectra of BODIPYs 8 a–c and 9 a–c (top)
and their corresponding normalized fluorescence emission spectra (bottom)
in chloroform solution.

Table 2. Spectroscopic data for BODIPY dyads 8 a–c and 9 a–c as obtained in chloroform solution.[a]

BODIPY labs

[nm][b]

lem

[nm][c]

Dñ

[cm@1][d]

fwhmabs

[cm@1][e]

fwhmem

[cm@1][f]

e

[m@1 cm@1][g]

ff
[h] fD

[i] BT
[m@1 cm@1][j]

PP
[m@1 cm@1][k]

8 a 643 654 270 748 883 122 300 0.47 0.29 57 600 33 100
:0.02 :0.04

8 b 633 645 294 777 917 119 900 0.63 0.23 75 200 27 800
:0.03 :0.02

8 c 648 664 379 768 1431 100 100 0.38 0.31 38 200 30 400
:0.02 :0.07

9 a 674 689 316 767 793, 107 300 0.069 0.03 7400 2600
764 1154 :0.002 :0.01

9 b 664 678 311 805 768 98 200 0.091 0.05 9000 6000
751 1190 :0.002 :0.03

9 c 681 697 344 781 743 98 400 0.052 0.06 5100 5200
782 1111 :0.002 :0.04

[a] Spectrograde chloroform was used for all measurements. All values are averages from three independent measurements. [b] Absorption maximum.
[c] Fluorescence emission maximum/maxima. [d] Stokes shift between the localized absorption and emission maxima.[e] Full-width-at-half-maximum of the
absorption band. [f] Full-width-at-half-maximum of the emission band(s). [g] Molar attenuation coefficient. [h] Fluorescence quantum yield determined vs.
Nile blue (ff = 0.27, lexc = 605 nm) (for 8 a–c) or vs. aluminum phthalocyanine chloride (ff = 0.41, lexc = 645 nm) (for 9 a–c) in spectrograde ethanol as a refer-
ence. Standard deviations are reported. [i] Singlet oxygen quantum yield determined vs. methylene blue (fD = 0.52, lexc = 639 nm) in spectroscopic grade
ethanol as a reference by monitoring the absorbance of 1,3-DPBF at 414 nm. Standard deviations are reported. [j] Fluorescence brightness. [k] Phototoxic
power.
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However, the fluorescence signals are distinctly different. When
going from chloroform to toluene, the localized emission peak,

originating from the radiative 1LE!S0 transition, is almost iden-
tical, as expected from the rigid 1LE state. The same can be
seen in the more polar solvent DMSO, but with the arise of a

second band. This red-shifted emission peak is clearly observed
for BODIPY 8 a at 728 nm. It is also present in dyads 8 b and

8 c, although partially overlapping with the localized emission
peak. The variable nature depending on solvent polarity sug-

gests a CT character for these emission bands. The difference

in the position of this band between the three BODIPY dyes
bearing a phenyl spacer is remarkable. Whereas both emission

bands are visually separated for 8 a, these bands are closer to
each other in BODIPY 8 c, whereas for 8 b it is only seen as an

additional broadening of the localized emission peak. This
would suggest a close encounter of the 1LE and 1CT energy

levels in BODIPY 8 b, in contrast to the larger energy difference
in 8 a. The change in solvent polarity also affects the ff and fD

values (Table S3). The fluorescence capability in toluene is
higher as compared to chloroform for all styryl-BODIPYs. This
occurs at the expense of the 1O2 generation capabilities. Sur-

prisingly, the opposite is not the case in DMSO. In this polar
solvent, both ff and fD are close to zero.

Different trends are observed when comparing the photo-
physical characteristics of BODIPYs 9 a–c in toluene, chloro-

form, and DMSO. Concerning photon absorption, comparable

absorption profiles and maxima are observed. As in chloro-
form, a second, although relatively weak, low-energy absorp-

tion band can also be observed in toluene and DMSO, which is
not present in the 8 a–c series. Regarding the fluorescence sig-

nals, the same influence of solvent polarity was noticed for 9 a,
9 b, and 9 c. In all solvents, localized emission from the 1LE

Figure 5. Normalized absorption spectra (solid lines) of BODIPYs 8 a–c and 9 a–c and their corresponding normalized fluorescence emission spectra (dashed
lines) in toluene, chloroform, and DMSO.

Chem. Eur. J. 2020, 26, 15212 – 15225 www.chemeurj.org T 2020 Wiley-VCH GmbH15219

Chemistry—A European Journal
Full Paper
doi.org/10.1002/chem.202002549

http://www.chemeurj.org


state is very similar. The second peaks again change in accord-
ance to the polarity of the surrounding medium, as expected

for CT emission bands. The emission maxima decrease by ap-
proximately 13 nm when going from chloroform to toluene,

while a 16 nm red-shift is obtained in DMSO. The bands also
broaden with increasing solvent polarity. In all solvents, fluo-

rescence and 1O2 production remain relatively low, which
could be due to extensive non-radiative losses by the presence
of the mobile thienyl spacer. ff values seem to increase slightly
in nonpolar media, whereas fD values increase a bit in more
polar environments.

From these results, it looks like CT states could be involved
in all systems, although its presence is not always observed

spectroscopically. To get additional confirmation, TDDFT calcu-
lations were run to verify the position and CT character of this

additional energy level. Despite known issues in accurately de-

scribing the singlet and triplet excited states for BODIPY type
compounds related to CT transitions, multireference character

states and double excitations,[40] Chibani et al. showed that
using M06-2X as the exchange correlation functional in TDDFT

calculations on BODIPY compounds can give fairly accurate
representations of the excitation energies.[41] Furthermore,

M06-2X has been found to give good estimates for the singlet
and triplet excitation energies for various small molecules and

donor-acceptor compounds when benchmarked versus MS-
CASPT2, CC2 and CC3 calculations.[42] Unfortunately, due to the
size of the systems under investigation here, such wavefunc-

tion methods are not feasible as the computational demands
are too high. Therefore, TDDFT calculations were performed at
the M06-2X/6–311G(d) level to calculate the vertical excitation
energies of the singlet and triplet states in toluene, chloroform,
and DMSO with the PCM model (Table 3, visualized in Fig-
ure S5). The singlet excitation energies for BODIPYs 8 a–c show

that 8 b has the highest first excitation energy, followed by 8 a
and 8 c. This is expected given the electron donating nature of
the mesityl group, whereas the 2,6-dichlorophenyl group is

Table 3. Calculated vertical singlet (S1 and S2) and triplet (T1 and T2) excitation energies and their corresponding oscillator strengths for BODIPYs 8 a–c and
9 a–c.

BODIPY Solvent[a] S1 S2 T1 T2

E
[eV][b]

l

[nm][b]

Osc.
Str.[c]

Nature[d] E
[eV][b]

Osc.
Str.[c]

Nature[d] E
[eV][b]

Nature[d] E
[eV][b]

Nature[d]

8 a toluene 2.17 572 1.25 H!L 2.96 0.00 H-1!L 1.05 H!L 2.51 H-3!L
(98 %) (91 %) (94 %) (49 %)

chloroform 2.18 569 1.24 H!L 3.00 0.00 H-1!L 1.06 H!L 2.51 H-3!L
(98 %) (87 %) (94 %) (48 %)

DMSO 2.19 567 1.23 H!L 3.04 0.00 H-1!L 1.07 H!L 2.51 H-3!L
(97 %) (85 %) (94 %) (48 %)

8 b toluene 2.21 560 1.16 H!L 3.03 0.00 H-2!L 1.16 H!L 2.50 H-3!L
(95 %) (69 %) (91 %) (51 %)

chloroform 2.22 558 1.15 H!L 3.05 0.00 H-1!L 1.16 H!L 2.49 H-3!L
(96 %) (88 %) (92 %) (51 %)

DMSO 2.23 557 1.14 H!L 3.08 0.00 H-2!L 1.17 H!L 2.50 H-3!L
(97 %) (88 %) (93 %) (50 %)

8 c toluene 2.16 573 1.19 H!L 2.93 0.00 H-2!L 1.06 H!L 2.49 H-3!L
(97 %) (91 %) (93 %) (52 %)

chloroform 2.17 571 1.18 H!L 2.95 0.00 H-2!L 1.06 H!L 2.49 H-3!L
(97 %) (84 %) (94 %) (52 %)

DMSO 2.18 569 1.17 H!L 2.96 0.00 H-2!L 1.07 H!L 2.489 H-3!L
(97 %) (83 %) (94 %) (51 %)

9 a toluene 2.07 598 1.08 H!L 3.02 0.00 H-1!L 0.99 H!L 2.26 H-3!L
(97 %) (76 %) (93 %) (48 %)

chloroform 2.08 596 1.06 H!L 3.05 0.00 H-1!L 1.00 H!L 2.25 H-3!L
(97 %) (88 %) (93 %) (47 %)

DMSO 2.10 591 0.90 H!L 3.06 0.01 H-1!L 1.03 H!L 2.27 H-3!L
(96 %) (82 %) (91 %) (47 %)

9 b toluene 2.12 585 1.00 H!L 3.08 0.00 H-1!L 1.10 H!L 2.25 H-3!L
(97 %) (76 %) (92 %) (49 %)

chloroform 2.13 583 0.99 H!L 3.09 0.00 H-1!L 1.10 H!L 2.25 H-3!L
(97 %) (78 %) (92 %) (49 %)

DMSO 2.13 583 0.94 H!L 3.10 0.00 H-1!L 1.10 H!L 2.24 H-3!L
(97 %) (87 %) (92 %) (48 %)

9 c toluene 2.07 599 1.06 H!L 3.11 0.01 H-2!L 1.00 H!L 2.24 H-3!L
(97 %) (88 %) (93 %) (49 %)

chloroform 2.08 597 1.05 H!L 3.12 0.01 H-2!L 1.00 H!L 2.24 H-3!L
(97 %) (88 %) (93 %) (49 %)

DMSO 2.08 596 1.03 H!L 3.13 0.01 H-1!L 1.00 H!L 2.23 H-3!L
(97 %) (88 %) (93 %) (49 %)

[a] Solvents are listed from top to bottom according to increasing polarity ET(30). [b] Vertical excitation energy. [c] Oscillator strength. [d] H = HOMO, L =

LUMO.
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slightly electron withdrawing. BODIPYs 9 a–c have lower excita-
tion energies, in correspondence to the bathochromically shift-

ed absorption and emission spectra. Furthermore, these com-
pounds follow the same trend concerning variations of the

meso-groups. In all cases, the energy differences between the
different solvents are minimal, suggesting similar absorption

maxima. These observations correspond nicely to the trends
that were also found experimentally (Figure 5, Table S3). The

oscillator strength of the S0!S1 transition is large (>0.9) for all

compounds, hinting to a large extinction coefficient for this
transition. The second singlet energy level is much higher in
energy (>0.7 eV) in all cases, with the corresponding oscillator
strength being negligible, except for dyad 9 a in DMSO and 9 c
in all three solvents, where it is very small. There are two triplet
states of interest in these BODIPY compounds. The lowest trip-

let state has an excitation energy of around 1.00 eV for all mol-

ecules. The second triplet state is around 2.49 eV for BODIPYs
8 a–c and around 2.24 eV for BODIPYs 9 a–c. According to

Kasha’s rule, energy transfer from the BODIPY triplet state to
the triplet ground state of molecular oxygen should occur

from the lowest triplet state.[43] With an energy of around
1.00 eV, there is still enough energy to overcome the excitation

barrier for 3O2, which is around 0.98 eV (1270 nm). Based on

the calculations, and keeping the possible error on the ob-
tained triplet excitation energies in mind, the lowest triplet

state in 9 a and 9 c might be too low in energy for efficient 1O2

formation, as observed experimentally (Table S3). The domi-

nant nature of the one-particle transitions for the first singlet
states is of HOMO!LUMO (localized) character. For the second

singlet excited state, the character varies between HOMO@1

! LUMO (8 a, 8 b chloroform, 9 a, 9 b, and 9 c DMSO) and
HOMO@2 ! LUMO (8 b toluene and DMSO, 8 c and 9 c tolu-

ene and chloroform) character, depending on the compound
and the solvent in which it was calculated, but the nature re-

mains the same, since both HOMO@1 and HOMO@2 are local-
ized on the acridine moiety, leading to a CT-type excitation.

For the first and second triplet excited states, the dominant

nature is of HOMO!LUMO and HOMO@3 ! LUMO character,
respectively.

The CT character of the various transitions was investigated
and the distance over which charge is transferred (denoted as
dCT) and the change in dipole moment upon excitation were
calculated (Table 4). The charge-transfer distance was calculat-

ed according to the work by Le Bahers et al.[44] From the dCT

values (<1.0 a), it is clear that the S0!S1, S0!T1, and S0!T2

transitions are of local character. On the other hand, the S0!S2

transition is of CT character (dCT @ 1.0 a). The change in dipole
moment (Dm) follows the same trend: a large increase in

dipole moment is observed for S0!S2, whereas the other tran-
sitions show a slight decrease in dipole moment upon excita-

tion. These findings are visualized from the excited state—

ground state electron density differences (Figures S6 and S7)
and are in line with the picture drawn by the molecular orbi-

tals and natures of the various transitions.
The TDDFT calculations correspond well with the observed

localized absorption and emission spectra, in which very little
solvatochromism is observed (Figure 5, Table S3). However,

from Table 4, the supposed CT emission as found in dyads 8 a
and 8 c in DMSO, and 9 a–c in all solvents, could not be con-

firmed at the theoretical level. There is indeed an energy level
with CT character, but it is much higher in energy than the first

singlet state, and not slightly lower as would be expected
from the photophysical data, thereby contradicting the ob-

served bathochromically shifted broad band as being a CT

band. Furthermore, oscillator strengths are negligible for this
transition in all cases. Therefore, another process is expected

to be involved in these BODIPY systems.
For SOCT-ISC processes, the Gibbs free-energy change (DGCS)

can be estimated using the Rehm–Weller equation to check
the feasibility of a possible charge separation to form a CT

state.[45] However, for our systems we came across several

problems when trying to determine DGCS. Although the struc-
tural prerequisites seem to be fulfilled in the BODIPY-acridine

dyads, TDDFT calculations suggest that no CT state is involved
in triplet formation. Furthermore, a definition of the true donor

and acceptor parts is troublesome in these systems as the
spacer itself also has a donating character and is coplanar with

the BODIPY acceptor. Even more, the double bonds can play

an important role in terms of the distance between donor and
acceptor. Efforts were made to calculate DGCS for BODIPYs 8 a
and 9 a (see supporting information). To this extent, distyryl-
BODIPY 8 x and thienylvinyl-BODIPY 9 x were synthesized and

denoted as the electron acceptor components,[46] whereas 9,9-
dimethyl-9,10-dihydroacridine (4) was applied as the electron

donor. The results seem to point to a possible lower-lying CT
state, but can hardly be taken as a solid proof because of the
above considerations.

To demonstrate the crucial influence of the acridine end
groups on the fluorescence properties and phototoxicity, we

compared the photophysical characteristics of dyads 8 a and
9 a with their constituent parts (BODIPY core 7 a and acridine

4) and the analogous dyes without dimethylacridine moieties
(BODIPYs 8 x and 9 x). The absorption and emission profiles,
and the extracted data, are given in Figure 6 and Table 5, re-

spectively. Although only two out of the six dyads are dis-
cussed here, these results can safely be extrapolated to the

other systems.

Table 4. Amount of charge-transfer character (dCT) and change in dipole
moment (Dm, excited state dipole–ground state dipole) accompanying
the S0!Sn and S0!Tn transitions in chloroform.

BODIPY S0!S1 S0!S2 S0!T1 S0!T2

dCT

[a][a]

Dm

[D][b]

dCT

[a][a]

Dm

[D][b]

dCT

[a][a]

Dm

[D][b]

dCT

[a][a]

Dm

[D][b]

8 a 0.57 @1.1 4.86 17.8 0.48 @1.2 0.47 @0.7
8 b 0.67 @1.4 5.00 18.1 0.65 @1.8 0.38 @0.6
8 c 0.79 -1.6 5.13 17.8 0.71 -2.0 0.62 @1.0
9 a 0.82 @1.7 4.53 18.1 0.52 @1.5 0.64 @1.2
9 b 0.94 @2.0 4.79 19.3 0.71 @2.1 0.62 @1.1
9 c 0.99 @2.1 4.93 20.8 0.71 @2.2 0.74 @1.4

[a] Distance over which charge is transferred between the indicated
states upon excitation. [b] Dipole moment change upon excitation.
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The bathochromic shift observed in dyads 8 a and 9 a origi-
nates from the increased delocalized system by introducing

the slightly donating styryl and thienylvinyl parts, respectively.
This can be seen in BODIPYs 8 x and 9 x, which have typical
BODIPY absorption and emission profiles, and maxima red-
shifted up to 150 nm as compared to the unmodified BODIPY
core 7 a. Introduction of the acridine end groups has only
minor effects on these values (&10 nm shift), indicating a dis-

connection between the acridine and BODIPY parts due to
their orthogonality. The additional absorption bands around

350 and 375 nm in 8 x/8 a and 9 x/9 a can be ascribed to the
styryl and vinylthienyl units, respectively. The absorption of the
dimethylacridine moiety in 8 a and 9 a is practically unaltered,

which is line with the twisted conformation. The fluorescence
intensity is expected to decrease compared to BODIPY core

7 a, but is still high in 8 x and moderate in 9 x (ff = 0.79 and
0.50, respectively). The fD values remain close to zero in both

cases. The reduced fluorescence and low fD in 9 x indicate an

increase in non-radiative losses for materials with a thienyl
linker. When acridine 4 is attached, 1O2 production becomes

viable for dyad 8 a. The thirty-fold increase in fD occurs at the
expense of the fluorescence capability, which decreases by

40 %. For 9 a, phototoxicity remains low despite the 80 % drop
in fluorescence emission. Moreover, a second emission band

appears. These data clearly indicate the substantial effects of

the acridine moieties in our design. Without it, NIR absorption
and emission is still possible, but singlet oxygen generation is

directly linked to the presence of this additional unit. The ab-
sence of the second broad emission band in both 8 x and 9 x
is remarkable, indicating it originates from the incorporation of
the dimethylacridine structure.

To complete our precursor investigation, DFT and TDDFT cal-

culations were also performed on BODIPYs 8 x and 9 x (Fig-
ure S9 and Table S4). In both cases, the first singlet and triplet,

and second triplet vertical excitation energies are not altered
to a great extent as compared to the excitation energies of 8 a
and 9 a (Table 3), which is consistent with the local nature of
these transitions. From the positioning of the energy levels, a

newly formed singlet state with CT character in 8 a and 9 a
arises between the S1 and S2 states of 8 x and 9 x when adding
the acridine moiety.

Finally, the emission of BODIPYs 8 a and 9 a was investigated
at different concentrations. A stock solution was made (ca.

1 mg in 5 mL chloroform), from which a dilution series was de-
rived and emission spectra were recorded (Figure 7). Similar re-

sults were obtained in DMSO (Figure S10). Non-normalized
fluorescence spectra can be found in Figures S11 and S12. Al-
though only two out of the six dyads are discussed here, these

results can likely be extrapolated to the other systems.
In our initial investigation of dyad 9 a, a second broad fluo-

rescence band was observed in chloroform (Figure 4). The
same profile is seen at different concentrations, although the

relative intensity of the localized emission and the red-shifted

band varies. In the most diluted solutions, the fluorescence
signal originating from the decay of the 1LE state is most pro-

nounced. Upon increasing the BODIPY concentration, the
broad low-energy band starts to increase in intensity until the

point is reached where this band surpasses the LE one. Further
increase in concentration decreases the fluorescence intensity

Figure 6. Normalized absorption spectra (top) of 4, 7 a, 8 x, 9 x, 8 a, and 9 a,
and their corresponding normalized fluorescence emission spectra (bottom)
in chloroform solution.

Table 5. Spectroscopic data for 4, 7 a, 8 x, and 9 x as obtained in chloro-
form solution.[a]

Compound labs

[nm][b]

lem

[nm][c]

Dñ

[cm@1][d]

fwhmabs

[cm@1][e]

fwhmem

[cm@1][f]

ff
[g] fD

[h]

4 285 457 13 206 5209 2036 0.01 –[i]

7 a 509 513 153 599 1134 0.96 –[i]

8 x 634,
346

644 245 1123,
1706

524 0.79 0.01

9 x 661,
371

671 225 743,
2336

600 0.50 0.02

[a] Spectrograde chloroform was used for all measurements. [b] Absorp-
tion maximum. [c] Fluorescence emission maximum/maxima. [d] Stokes
shift between the localized absorption and emission maxima. [e] Full-
width-at-half-maximum of the absorption band. [f] Full-width-at-half-max-
imum of the emission band(s). [g] Fluorescence quantum yield deter-
mined vs. 1,4-bis(5-phenyl-2-oxazolyl)benzene (lexc = 300 nm, ff = 0.97 in
cyclohexane; for 4), rhodamine 6G (lexc = 488 nm, ff = 0.94 in ethanol; for
7 a), Cresyl violet (lexc = 580 nm, ff = 0.56 in ethanol; for 8 x), or vs. Nile
blue (lexc = 605 nm, ff = 0.27 in ethanol; for 9 x) as a reference. [h] Singlet
oxygen quantum yield determined vs. methylene blue (fD = 0.52, lexc =

639 nm) in spectroscopic grade ethanol as a reference by monitoring the
absorbance of 1,3-DPBF at 414 nm. [i] Not determined.

Chem. Eur. J. 2020, 26, 15212 – 15225 www.chemeurj.org T 2020 Wiley-VCH GmbH15222

Chemistry—A European Journal
Full Paper
doi.org/10.1002/chem.202002549

http://www.chemeurj.org


of both signals, but the localized emission decreases to a
greater extent. This concentration dependency suggests the

formation of excited state complexes or exciplexes.[31] Series
9 a–c seems to be very sensitive to exciplex formation as it is
perceived in every solvent in diluted solutions. In the 1H NMR,

broad peaks for some of the aromatic protons also confirm the
idea of molecular stacking, despite having a seemingly “good”
solubility.

BODIPY 8 a exhibits a standard, sharp BODIPY-like emission

profile in chloroform (Figure 4). However, looking at different
concentrations, it appears there is a second emission band in

these systems, originating from a populated exciplex state.
Upon increasing concentration, the relative fluorescence inten-
sity of the supposed shoulder increases. At 1/8th of the stock

concentration, the red-shifted band becomes more intense
than the LE one. In the most concentrated samples, fluores-

cence is quenched, and the localized emission peak becomes
insignificant.

Now the question raises what is the influence of these exci-

plex states in our systems and, more importantly, in their
brightness and phototoxicity? Although the original design

was based on a charge recombination induced mechanism,
the involvement of a CT state was disputed. As direct ISC from

singlet to triplet is unlikely, exciplex formation could be a key
element in the ISC abilities. Exciplex states can live relatively

long as there is no ground state counterpart, and they have a
strong polar nature, as seen for CT states.[47] Hence, exciplexes

can serve the same purpose as CT states (see energy level
scheme in Figure 1), thereby assisting in triplet formation. In

the BODIPY-acridine dyads, ISC from a 1Exciplex state to a 3LE
is questionable. From the TDDFT data (Table 3, Figure S5), it

appears that the second 3LE is even higher in energy than the
first 1LE, and the first 3LE is too low to be reached directly from
the 1Exciplex state. As an alternative, a 3Exciplex state should

be present to provide ISC, immediately followed by a fast in-
ternal conversion to the lowest 3LE state. In this way, a RP-ISC
like mechanism would be obtained. This is a reconcilable state-
ment. The structural double bond results in an increased

donor-acceptor distance, thereby decreasing their electronic
coupling and reducing the energy splitting between 1Excipled

and 3Exciplex states, a feature frequently ascribed to exciplex

systems.[25] Even more, similar ISC behavior into an exciplex
triplet state from an excited state complex has already been

observed in some BODIPY dyes, although the examples are
scarce.[31, 47, 48] To fit in the series of other ISC mechanisms, we

depicted this alternative as “exciplex intersystem crossing” (EX-
ISC).

The photophysical observations from Figure 5 and Table S3

can now be rationalized using the EX-ISC idea. The broad emis-
sion observed (8 a–c in DMSO, 9 a–c in all solvents), was the

result of poorly emissive exciplex emission, which explains the
low fluorescence quantum yields. The increased back electron

transfer hinders triplet formation and thus explains the lack of
1O2 formation. In toluene and chloroform, only a localized

emission peak can be seen in dyads 8 a–c at low concentra-

tions. Due to the polar nature of these exciplex states, its
energy will increase in more nonpolar solvents due to its de-

stabilization. In toluene, the energy is too high to allow effi-
cient charge separation from the first singlet excited state, re-

sulting in higher ff values, but low fD. Eventually, in chloro-
form, it has the ideal position in between the singlet and trip-
let energy levels. In this way, charge separation can take place

in a subtle way to retain localized fluorescence. Furthermore,
the 1Exciplex and 3Exciplex state are close enough in energy to

enable ISC and prevent charge recombination to the ground
state. In DMSO, exciplex formation is enhanced as the energy

of the exciplex state is lowered, leading to increased charge re-
combination to the ground state, which is detrimental for the

fluorescence and singlet oxygen quantum yields.

Conclusion

For the first time, we have successfully designed and synthe-

sized near-infrared photoactive BODIPY photosensitizers with a
high and balanced brightness and phototoxic power for po-

tential use as thera(g)nostic[1] agents in photodynamic therapy.

A large bathochromic shift in the absorption and emission pro-
files was realized by extending the conjugated system through

a fast and simple Knoevenagel condensation strategy. Dime-
thylacridine moieties were chosen to provide an orthogonal

donor-acceptor design in the BODIPY dyads. The structural
constraints were confirmed and visualized using density func-

Figure 7. Fluorescence emission spectra, normalized to concentration, for a
dilution series of 8 a (top) and 9 a (bottom) in chloroform (lexc = 605 nm, slit
width = 2 nm for 8 a ; lexc = 645 nm, slit width = 5 nm for 9 a). The stock solu-
tion contained ca. 1 mg BODIPY dissolved in 5 mL chloroform.
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tional theory computational analysis. The acridine moiety was
proven to be essential in this design to achieve enhanced trip-

let population, necessary for singlet oxygen production with-
out the use of heavy atoms. A combination of photophysical

studies in solvents of varying polarity at different concentra-
tions and time dependent density functional theory calcula-

tions revealed the involvement of exciplex states, which play a
crucial role in so-called exciplex intersystem crossing (EX-ISC).

Despite their activity deeper into the near-infrared, the

BODIPY-acridine dyads connected through a thienyl spacer
showed poor fluorescence and singlet oxygen quantum yields.

Fortunately, when using a phenyl spacer, fluorescence quan-
tum yields ranging from 38 to 63 % were observed in combina-

tion with singlet oxygen quantum yields of 23 to 31 % (in
chloroform solution). Further detailed investigations are sched-
uled to fully understand the excited state deactivation mecha-

nisms taking place. Nevertheless, in combination with their
high molar attenuation coefficients, these BODIPY-acridine

dyads are very promising for the further development of
heavy-atom-free BODIPY photosensitizers active in the photo-
therapeutic region, combining imaging and the therapeutic
process itself for detection and eradication of cancerous cells.

Anti-tumor effects and fluorescence optical imaging of our

compounds, incorporated in suitable (tumor-targeting) nano-
particle systems, will be pursued in near future as a next step

to validate the true potential of this system for theragnostic
applications.[49]
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