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A B S T R A C T   

A novel strong electron-acceptor unit, 9,10-difluorodithieno[3,2-a:2′,3′-c]phenazine (DTPz), is synthesized 
and applied in the design of two donor-acceptor type emitters displaying long-lived delayed emission. Using 
either 9,9-dimethyl-9,10-dihydroacridine (DMAC) or triisopropyl-substituted benzo[1,2-b:4,5-b’]dithiophene 
(BDT-TIPS) as the donor component, push-pull type chromophores exhibiting charge-transfer emission are ob-
tained and found to afford either thermally activated delayed fluorescence (TADF) for DMAC or room temper-
ature phosphorescence (RTP) for BDT-TIPS.   

1. Introduction 

Since the advent of phosphorescent organic light-emitting diodes 
(PhOLEDs), this technology has found its way into everyday applications 
such as smartphone and television screens and solid-state lighting [1–3]. 
While strong spin-orbit coupling (SOC) associated with heavy-metal 
complexes allows efficient harvesting of electrically generated triplet 
states for emission (and corresponding high device efficiencies), PhO-
LEDs rely on rare-earth metals to achieve this and can therefore not be 
considered a sustainable technology. The use of heavy metals also 
contributes significantly to the cost of manufacture, raises health con-
cerns related to their disposal, and fundamentally limits their applica-
bility for deep-blue OLEDs due to electrochemical instability of the 
metal-ligand bonds [4]. 

In 2009, Adachi et al. [5] applied the known mechanism of E-type 
delayed fluorescence [6,7] or thermally activated delayed fluorescence 
(TADF) [8] to organic electroluminescent devices for the first time. By har-
vesting otherwise non-emissive triplet states, TADF materials increased 

OLED efficiencies beyond the limits of normal fluorescence based devices 
and thus paved the way for a new generation of high-efficiency metal-free 
OLEDs [9–11]. Triplet harvesting in TADF materials is achieved by 
decreasing the overlap between the highest occupied and lowest unoccupied 
molecular orbitals (HOMO and LUMO, respectively) of the emissive mate-
rial, thus reducing the energy difference between the singlet and triplet 
excited states (ΔEST). When ΔEST is small enough, spin-forbidden inter-
system crossing (ISC) and reverse ISC (rISC) become more active and inter-
conversion between the singlet and triplet states occurs [12]. Because of the 
minute presence of SOC in these systems, slow phosphorescence channels are 
usually not active at room temperature (they are outcompeted by rISC and 
singlet TADF emission) and fluorescence is the main relaxation pathway. 
Since ISC and rISC are forbidden transitions between orbitals of the same 
nature [13], two triplets states of different orbital character close in energy 
are required to allow so-called vibronic mixing [14–16]. These mixed states 
are then allowed to undergo (r)ISC with the singlet state. 

From a molecular design perspective, spatial separation of the 
HOMO and LUMO is most easily achieved by combining donor 
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(electron-rich) and acceptor (electron-poor) moieties via a bridge that is 
electronically decoupled due to highly twisted bonding, spiro-linkage, 
or homoconjugation [9,12,17,18]. In such systems, the HOMO can be 
found on the donor part, whereas the LUMO typically resides on the 
acceptor unit. This leads to accessible charge-transfer (CT) excited 
states, which together with locally excited triplet states (3LE) of similar 
energy on the donor or acceptor provide the necessary conditions for 
adequate rISC rates to emerge. Improper energy level alignment can lead 
to other properties such as triplet-triplet annihilation (TTA) or room 
temperature phosphorescence (RTP). 

The combinatorial nature of donor-acceptor (D-A) or donor-acceptor- 
donor (D-A-D) TADF materials implies that a nearly infinite number of 
combinations are possible. While high-performance TADF materials are 
now regularly reported [19–33], further performance improvements are 
still desirable, especially for deep-blue [34] and red or near-infrared [29, 
35] emission. Seeking inspiration from other fields of organic electronics 
such as organic photovoltaics [36–39], we have used the 9,10-difluor-
odithieno[3,2-a:2′,3′-c]phenazine (DTPz) scaffold as a novel strong TADF 
acceptor unit, to which 9,9-dimethyl-9,10-dihydroacridine (DMAC) was 
coupled through a Buchwald-Hartwig type reaction. Additionally, a 
recently reported triisopropylsilyl-functionalized benzo[1,2-b:4,5-b’] 
dithiophene (BDT) unit was used as an alternative donor in a Suzuki 
cross-coupling reaction with DTPz [40]. Quantum-chemical calculations 
showed a small overlap between the HOMO and LUMO for both D-A 
combinations. Experimentally, TADF or RTP behavior is observed 
dependent on the donor unit and the resultant alignment of singlet and 
triplet excited state energy levels. 

2. Results and discussion 

DTPz, DTPz-BDT-TIPS [41] and DMAC [42] were prepared using 
previously reported methods. Coupling was done via Buchwald-Hartwig 
(DMAC) or Suzuki (BDT-TIPS) cross-coupling reactions (Scheme 1). Full 
synthetic details can be found in the supporting information. 

The geometries of the DTPz acceptor and the two D-A-D chromo-
phores were optimized using density functional theory (DFT) calcula-
tions with M06/6-311G(d) [43]. Time dependent DFT (TDDFT) 
calculations were performed to calculate the singlet and triplet energies 
using a modified LC-BLYP (ω = 0.17 bohr− 1) [41,44,45] XC functional 
with 6-311G(d) as the basis set under the Tamm-Dancoff approximation 
[46,47]. The modified LC-BLYP (ω = 0.17 bohr− 1) was optimized for 
TADF emitters in previous work [41,44]. TDDFT calculations were 
performed using the polarizable continuum model (PCM) (cyclohexane) 
to simulate a non-polar environment. Gas-phase TDDFT calculations 
were performed using the same method (Table S1), revealing a minor 
influence (0.01–0.04 eV) from the PCM on the excitation energies. All 
calculations were performed using the Gaussian16 package [48]. The CT 
character of the involved states for the D-A-D compounds was calculated 
according to the work of Le Bahers et al. [49] Here, the difference be-
tween the ground and excited state densities is taken to represent indi-
vidual transitions, visualizing the regions of increased/decreased 

electron density upon promotion from the ground state to an excited 
state. These density differences allow us to identify the donor and 
acceptor parts of the molecule in a (CT) transition and enable estimation 
of the degree of charge-transfer character through dCT. However, the 
differentiation between CT and LE states can only be performed by 
comparing the values within a given set of similar molecules as dCT and 
Δμ will adopt different values as the molecular structure changes and are 
impacted by properties such as symmetry. 

The optimized geometries (Fig. 1) show large dihedral angles, 
around 85◦ for DTPz-DMAC, as often seen for DMAC-based compounds 
[50], and around 59◦ for DTPz-BDT-TIPS. The smaller dihedral angles 
for the BDT-TIPS donor were also observed in previous work and are due 
to the decrease in donor steric hindrance for the five-membered fused 
rings [40]. The triisopropyl groups, although bulky, are not expected to 
hinder the vibrational modes of the BDT group as they are facing away 
from the acceptor unit. Furthermore, the acceptor acts as a spacer be-
tween the two BDT groups, and from the optimized geometries (Fig. 1) it 
is apparent that the TIPS groups on two adjacent BDT units do not in-
fluence each other. The HOMO and LUMO orbitals are well separated 
(Fig. 1), suggesting strong CT character, which is further confirmed by 
looking at the nature of the first singlet vertical excitation energies and 
the CT distances (dCT) (Table 1). The increase in dipole moment (Δμ) 
between the ground and excited state densities further supports this 
interpretation. For DTPz-BDT-TIPS, the first triplet excited state shows 
localized character as indicated by the much smaller dCT and Δμ values 
with respect to those of the first singlet excited state. This is also visu-
alized by considering the difference between the ground and excited 
state electron densities (Figure S1), where the densities are clearly 
localized on the DTPz unit. The HOMO-1 and HOMO-2 spatial distri-
butions are given in Figure S2 as they play a role in some of the other 
transitions under consideration here. 

The TDDFT calculations predict singlet excitation energies of 2.20 eV 
(564 nm) for DTPz-DMAC and 2.73 eV (454 nm) for DTPz-BDT-TIPS 
(Table 2). DTPz-DMAC was found to have a theoretical ΔEST of 0.03 eV, 
whereas that of DTPz-BDT-TIPS is 0.43 eV. The acceptor DTPz was also 
included in the calculations, affording singlet and triplet excitation en-
ergies of 3.11 and 2.37 eV, respectively. From the analysis of the CT 
character of the excited states, we observed localization of the first 
excited triplet state of DTPz-BDT-TIPS on the acceptor (Figure S1). 
Therefore, we expected a similar excitation energy for this state as for 
the non-functionalized acceptor unit, which is confirmed by the calcu-
lations (Table 2). For DTPz-DMAC, the first triplet state is of CT char-
acter with electron density being transferred from the DMAC to the DTPz 
parts of the compound (Figure S1). UV-VIS absorption spectra were 
simulated (Figure S3) and are dominated by the LE bands which are 
higher in energy than the aforementioned CT states. Their profiles are in 
agreement with the experimental spectra (Fig. 2). 

From the steady-state emission spectra in zeonex film, a broad and 
unstructured emission band is visible for both compounds (Fig. 2). A 
distinct shift is observed between DTPz-DMAC and DTPz-BDT-TIPS, the 
onset of the former being red-shifted by nearly 77 nm (0.33 eV), 

Scheme 1. Synthesis pathways toward DTPz-DMAC and DTPz-BDT-TIPS (TIPS = triisopropylsilyl): (i) 9,9-dimethyl-9,10-dihydroacridine, Pd(OAc)2, XPhos, 
NaOtBu, toluene, 110 ◦C, 24 h; (ii) BDT-TIPS-pinacol, Pd(PPh3)4, K2CO3, DMF/H2O 4/1, 130 ◦C, 24 h. 
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indicating stronger CT character for the DMAC donor. Solvatochromism 
was investigated by measuring the steady-state emission in solvents of 
varying polarity, which is indicative of CT state emission for both ma-
terials (Figure S4). No significant solvent effect was observed for the UV- 
VIS absorption spectra, indicating the LE character of these absorption 
bands. 

In Fig. 3a and b the contour maps of the normalized time-resolved 
emission spectra of DTPz-DMAC in zeonex at room temperature and 
at 80 K are shown. After a fast decaying prompt emission, the intensity 
falls below the sensitivity limit of the camera. At several microseconds 
and with longer integration times, the signal reappears at exactly the 
same wavelength as the prompt emission at room temperature and 
persists until around 12 ms. In Fig. 3c, the decay of the total emission 
intensity is plotted. At 80 K, the emission drops below the sensitivity of 
the iCCD after approximately 50 ns and it is not until several hundreds of 
microseconds that a new red-shifted emission band appears (attributed 
to phosphorescence and plotted in Fig. 2). Figure S5 shows individual 
spectra taken at various delay times, showing a clear difference in onset 
between the room temperature and 80 K delayed emission. The lack of 
microsecond delayed emission at 80 K is consistent with a TADF 
mechanism being disrupted by the lack of available thermal energy at 

these temperatures, and phosphorescence emission instead dominating 
at longer times. Calculating ΔEST from the onsets of the fluorescence and 
phosphorescence emission (Table 3), a rather small gap of 0.05 eV is 
found, which is in good agreement with the quantum-chemical calcu-
lations. The long lifetime of the delayed emission at room temperature 
(422.6 μs) likely arises from slow rISC, which is confirmed by kinetic 
fitting of the room temperature decay. The low rate of rISC in this ma-
terial, despite its low ΔEST, demonstrates that energy gaps alone are not 
a proper indicator of strong TADF performance [52]. 

DTPz-BDT-TIPS shows a very different behavior in zeonex films. 
Only short-lived green prompt CT emission followed by a long-lived 
orange delayed emission is observed (Fig. 3d,e,f and Figure S6). The 
long micro-to millisecond emission can be attributed to phosphores-
cence rather than delayed fluorescence, as the spectra at room temper-
ature and 80 K show the same structured peak shape and onset (Fig. 4 
and Figure S6). Additionally, a small contribution likely arising from 
triplet-triplet annihilation (TTA) can be seen at around 535 nm in the 
room temperature delayed spectra (Figure S6). TTA is suspected as the 
emission mechanism as the onset of this delayed emission band is similar 
to that of the prompt emission. The lack of TADF emission is not sur-
prising given the much larger theoretical ΔEST for this material (0.43 

Fig. 1. HOMO and LUMO spatial distributions for DTPz-DMAC and DTPz-BDT-TIPS as obtained with LC-BLYP(ω = 0.17)/6-311G(d). Isocontour values of 0.02 (a.u.) 
were used for all orbitals. 

Table 1 
Nature of the various transitions (H = HOMO, L = LUMO), charge-transfer distance (dCT) and change in dipole moment (Δμ, excited – ground state dipole) accom-
panying the S0→Sx and S0→Tx transitions in cyclohexane.   

S1 S2 T1 T2 

Compound Nature dCT (Å) Δμ (D) Nature dCT (Å) Δμ (D) Nature dCT (Å) Δμ (D) Nature dCT (Å) Δμ (D) 

DTPz-DMAC H→L 1.53 8.37 H-1→L 1.54 8.58 H→L 1.51 8.00 H-1→L 1.54 8.56 
DTPz-BDT-TIPS H→L 2.06 10.82 H-1→L 2.01 10.67 H-2→L 0.29 0.64 H→L 1.46 5.14  

Table 2 
TDDFT results for the vertical first and second singlet excitation energies and corresponding oscillator strengths, and the vertical first and second triplet excitation 
energies.  

Compound S1 (eV)  fS1  S2 (eV)  fS2  T1 (eV)  T2 (eV)  ΔET2 − T1 (eV)  ΔES1 − T1 (eV)  

DTPz-DMAC 2.20 0.00 2.23 0.00 2.17 2.22 0.05 0.03 
DTPz-BDT-TIPS 2.73 0.05 2.83 0.02 2.30 2.55 0.25 0.43 
DTPz 3.11 0.10 3.23 0.00 2.37 2.77 0.40 0.74  
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eV). The experimental ΔEST calculated from the onset of the prompt 
fluorescence at room temperature and the phosphorescence at 80 K is 
0.40 eV (Table 3) and is in good agreement with the calculations. Similar 
observations were also made for TXO2-BDT-TIPS in previous work, 

where the lowest triplet excited state was found to be localized on BDT- 
TIPS and the donor unit itself showed RTP [40]. However, in this work, 
the difference between the ground and excited state electron densities 
reveals that the first excited triplet state is localized on the DTPz 
acceptor rather than on the BDT donor for DTPz-BDT-TIPS (Figure S1). 
Therefore, the phosphorescence likely originates from the acceptor core 
and not from the BDT-TIPS donor in this case. To help further under-
stand the emitting states in these materials, the DTPz acceptor itself 
(without bromine atoms) was also subjected to time-resolved emission 
spectroscopy and was found to exhibit phosphorescence at room tem-
perature (Fig. 4). Given the presence of sulfur atoms in the DTPz core, it 
is plausible that the resulting increased SOC is sufficient to allow radi-
ative relaxation through a T1- > S0 pathway on the acceptor. Comparing 
the phosphorescence spectra of BDT-TIPS, DTPz and DTPz-BDT-TIPS 
(Fig. 4) further supports the interpretation that the RTP of the D-A 
material comes from excitons localized on the acceptor rather than on 
the donor. It is, however, possible that an excited state localized on the 
BDT-TIPS unit still acts as the main intersystem crossing pathway (as it 
did for TXO2-BDT-TIPS in our previous study) in DTPz-BDT-TIPS, fol-
lowed by internal conversion to the localized DTPz state. This is likely as 
the second triplet state shows some delocalization on the BDT-TIPS unit 
and has an energy that is below the theoretical vertical excitation energy 
of the first singlet state. 

The full decays as a function of normalized total emission in zeonex 
versus time are shown in Fig. 3c and f. For DTPz-DMAC, a clear dif-
ference is seen between the decays at room temperature and 80 K. The 

Fig. 2. Steady-state absorption (dashed lines) and emission (full lines) spectra 
at room temperature and time-resolved emission at a 44.7 ms delay time at 80 K 
(dotted lines) in zeonex film for DTPz-DMAC (red) and DTPz-BDT-TIPS (blue). 

Fig. 3. Normalized time-resolved emission spectra for DTPz-DMAC (left) and DTPz-BDT-TIPS (right) in zeonex at room temperature (a,d) and at 80 K (b,e). Decays 
of the total emission for DTPz-DMAC (c) and DTPz-BDT-TIPS (f) at room temperature (rt) and at 80 K in zeonex. 
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relatively high intensity, very long-lived emission is indicative of a 
thermally activated process with a slow rate of rISC. DTPz-BDT-TIPS 
shows virtually no emission in the microsecond domain in zeonex films. 
At longer times, a small emission contribution is observed, illustrative of 
RTP behavior (as outlined above). This emission is insensitive to cryo-
genic temperatures, again indicating that it does not arise from TADF. 

In addition to the thin film measurements, photoluminescence 
quantum yields were determined in toluene solution in normal and inert 
atmosphere to gauge the luminescent capabilities of the novel emitters 
(Table 3). Despite the low quantum yields, DTPz-DMAC does show an 
increase in emission when going from normal to inert atmosphere, 
suggesting the presence of a triplet upconversion mechanism under inert 
atmosphere (as oxygen is known to quench triplet states). For DTPz- 
BDT-TIPS, this is not observed, in agreement with the proposed RTP 
mechanism. 

Finally, the dependence of the delayed fluorescence intensity with 
respect to the excitation laser power was determined for both com-
pounds in zeonex film. For DTPz-DMAC, the measurement was done at a 
5 μs delay time and 750 μs integration time and shows a linear power 
law dependence with a slope of 1 (Figure S7). This result indicates that 
we are not observing TTA in this time domain. DTPz-BDT-TIPS did not 
show any early microsecond emission. Therefore, we probed the late 
microseconds to milliseconds domain with a 630 μs delay time and 10 
ms integration time to determine whether the main delayed emission 
could be attributed to RTP instead of TTA. However, from the time- 
resolved spectral measurements at room temperature and at 80 K we 
could already conclude that this emission band is most likely due to 
phosphorescence. The laser power measurement further solidified these 
observations (Figure S7). 

3. Conclusions 

We have synthesized two new D-A-D compounds based on the 9,10- 
difluorodithieno[3,2-a:2′,3′-c]phenazine (DTPz) acceptor. This acceptor 
was coupled to the strong TADF donor 9,9-dimethyl-9,10-dihydroacri-
dine (DMAC) and a weaker benzo[1,2-b:4,5-b’]dithiophene (BDT- 
TIPS) donor. Photophysical analysis showed that both compounds 
exhibit long-lived delayed emission in a zeonex film. DTPz-DMAC was 
found to exhibit TADF properties. Despite a small singlet-triplet energy 
gap (0.05 eV), the rate of reverse intersystem crossing is rather small, 
leading to long-lived delayed fluorescence. DTPz-BDT-TIPS was found 
to show RTP from the acceptor unit at room temperature in a nonpolar 
zeonex matrix. Although the materials do not display ideal TADF 
properties for OLED applications, their long-lived and red-shifted 
emission indicates that they can be used for other applications such as 
imaging, sensing or security inks [53–56]. Combined with other 
appropriate donor groups and suitable hosts, DTPz may be valuable in 
the continuing pursuit of efficient deep-red TADF materials for OLEDs. 
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