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Abstract—Dimensionality reduction (DR) methods are useful
when analyzing high dimensional data, in particular, if one wants
to visualize them. t-distributed stochastic neighbor embedding (t-
SNE), one of the most widely used DR methods, can preserve
neighborhood information and reveal groups in embeddings.
However, it may not preserve the global structure and fail to
reveal the semantic information in the visualization. From a user
point-of-view, a DR visualization is useful if it not only reveals
hidden structures in the data but also corresponds to the user
knowledge. This paper addresses these problems by proposing
Hierarchical Constraint t-SNE (HCt-SNE), a method that allows
users to integrate hierarchical constraints directly into t-SNE
embeddings. The user constraints are encoded in an explicit tree.
We transform the hierarchical information in this tree into a
novel regularization term based on triplet constraints among the
nodes at different levels in the tree. Our method takes advantage
of semantic information provided in class labels and outperforms
the original t-SNE and two other supervised DR methods in terms
of both visual assessment and quality metrics on three classic
image datasets: MNIST, Fashion-MNIST and CIFAR10.

Index Terms—Dimensionality Reduction, Visualization, t-SNE,
Hierarchical Constraint, Triplet loss.

I. INTRODUCTION

Dimensionality reduction (DR) methods aim at transforming
data in a high dimensional (HD) space into a low dimensional
(LD) space while preserving relevant meaningful properties
of these data. t-distributed stochastic neighbor embedding (t-
SNE), one of the most widely used methods, preserves local
structures (the neighborhood information) and can reveal the
separation of groups of instances in the embedding [1].

Although t-SNE and other state-of-the-art methods pro-
vide interesting visualizations for data exploration, they have
several important issues. First, in many cases, visualizations
given by traditional DR methods are not useful because of
the overlap of different groups or the blending of clouds of
points. This prevent users to efficiently explore data as they
cannot consider each group separately. Second, t-SNE does
not preserve global structures in the data. Wattenberg et al. [2]
point out common misreadings when interpreting t-SNE plots,
in particular that “distances between well-separated clusters in
a t-SNE plot may mean nothing”. Figure 1a shows an example
of three groups, two of them being close to each other and
far from the third one. In different t-SNE visualizations, the
global structure of these groups is not represented properly.
Third, t-SNE may not represent semantic information in the
LD embedding, as it only preserves neighborhood information

(a) Example where t-SNE does not preserve the distance between
separated clusters in several visualizations, reproduced from [2].

(b) Background effect on a t-SNE embedding of CIFAR10.

Fig. 1: Two issues of t-SNE are addressed in this work:
(a) there may be a lack of global structure in embeddings
and (b) semantic information may not be taken into account.

based on a similarity measure in the HD space. For example,
the Euclidean distance between images (L2-pixel distance) can
put a too strong focus on the background. As an illustration,
let us consider the three images , and from
the CIFAR10 dataset. The airplane in the blue sky is around
three times closer to the bird in the blue background than
to the airplane on a gray background. This effect leads to
a poor neighborhood estimation (around 38% accuracy for
KNN classification in the LD space with K = 10). Figure 1b
illustrates this issue with a t-SNE embedding of the CIFAR10
dataset. Images with the same background are placed close
together regardless of the object represented in each image.

The goal of this work is to improve the preservation of
global structure in the visualization by injecting semantic
information in the form of hierarchical constraints, as shown
in Fig 2. Hierarchical constraints are used to express expert
knowledge about a dataset since groups in t-SNE embeddings
do not always match user expectations. For example, the
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(b) Hierarchical structure as en-
forced in the visualization.

Fig. 2: Example of hierarchical constraints to embed human
knowledge in a visualization of the CIFAR10 dataset.

hierarchical structure of the CIFAR10 dataset in Figure 2a
is not reflected in Figure 1b. Figure 2b shows a more aligned
visualization, where child nodes in the hierarchical tree are
represented by subgroups in the visualization. Our idea is
to construct a semantic hierarchy with the help of the user,
expressed by a tree as in Figure 2a, and transform it to a
hierarchical structure in the visualization as in Figure 2b.

In order to improve visualizations, one may also rely on
higher-level features extracted from a neural network or on
a more suitable distance metric. These two approaches may
avoid the shortcomings of t-SNE by using better input, but
they do not address them directly. Also, it may not be possible
to apply them, what further motivated our work. For example,
t-SNE can be used with input pairwise (dis)similarities that are
encountered in many applications (text mining, geolocation,
string comparison, etc.). In these cases, the distance metrics
are predefined and the original features are not accessible to
benefit from a neural network for feature extraction.

In this paper, we present hierarchical constraints t-SNE
(HCt-SNE), a simple and intuitive way to transform hierar-
chical constraints in the form of a tree into a differentiable
regularization term for t-SNE. This term, based on a triplet
loss, can be efficiently estimated and jointly optimized with
the original objective function of t-SNE (Section III). We use
class labels to define the semantic in the dataset and compare
our method with other supervised DR methods (reviewed in
Section II). Embedding quality is assessed with both a visual-
ization quality metric [3] and the KNN-based score suggested
by [4]–[6]. Experiments on MNIST, FASHION-MNIST and
CIFAR10 show that HCt-SNE does not only visually improve
the embedding, but it also provides a significant gain in terms
of KNN score in comparison to the original t-SNE embedding
(Section IV). Finally, in Section V, we discuss the foundation
of the proposed tree-based loss term and its extension with
other types of contrastive constraints.

II. BACKGROUND AND RELATED WORK

t-SNE is a DR method that is efficient at preserving
local structure. From pairwise distances in the HD space,
it constructs a neighbor graph, which is then transformed
into probabilities using Gaussian kernels. Probabilities are

constructed similarly in LD with t-distributed kernels. t-SNE
adjusts the position of points in the LD space by minimizing
the Kullback-Leibler (KL) divergence between these proba-
bilities. As discussed above, it has two major issues: the fact
that the global structure is not always faithfully reproduced
and the lack of consideration of the semantic. This section
reviews four groups of methods that tackle these issues.

The first group of methods addresses the problem of global
structure in t-SNE embeddings. Den-SNE [7] is a density-
preserving approach that addresses the cluster size issue.
Uniform manifold approximation and projection (UMAP) [8]
claims to preserve global structures better than t-SNE. Its
n neighbors hyperparameter controls the trade-off between
global and local structure, while min dist controls the appear-
ance of groups in the embedding. Global t-SNE [9] combines
the original KL loss with a global cost function, focuses on
large distances in both HD and LD spaces, and shows an
improvement on small and simple datasets.

The second group of methods contains supervised DR
methods that include class labels in the DR process to address
the lack of semantic in visualizations for images. This includes
neighborhood component analysis [10], UMAP in a supervised
setting [8] and class-aware t-SNE [6], which all use class
labels to consider the semantic information in the embedding.

The third group includes methods that combine visual
analytic techniques to discover hierarchical structures in the
embedding, such as hierarchical stochastic neighbor embed-
ding (HSNE) [11]. This interactive method for real-time
analysis is used for massive datasets like cytometry data [12].
HSNE incorporates the principle of Overview-First, Details-
On-Demand by constructing the hierarchical representation of
the data based on user’s given landmarks at different scales.

The fourth group uses the triplet loss to obtain similar repre-
sentations for similar points and vice versa. The triplet loss is
widely used in deep learning for face recognition [13], image
retrieval with deep metric learning [14] or self-supervised vi-
sual representation learning [15]. For visualization, the triplet
loss can be used to directly update the embedding, such as
in t-distributed stochastic triplet embedding (t-STE) [16] and
TriMap [17]. t-STE uses a heavy-tailed Student-t kernel (that
focuses on local similarities) to measure triplet satisfaction.
TriMap uses a custom contrastive loss based on triplet con-
straints weighted by pairwise distances in the HD space.

Although the above methods enhance t-SNE, none of them
solve the lack of semantic and global structure at the same
time. Moreover, they do not allow users to express directly the
semantic they expect in the visualization, except HSNE. Yet, it
only offers an overview of the global structure and a feedback
is given on separate sub-parts of the embedding, whereas our
method provides a global solution. Our method differs from
TriMap and STE in two points. First, we focus on a small
number of informative triplets that encode the hierarchy in
the input constraints instead of sampling all possible triplets.
Second, we combine the property of preserving both global
and local structures instead of focusing only on local structure
as in t-STE or only on global structure as in TriMap. In the



next section, we present our method that uses class labels and
human knowledge to encode hierarchical constraints into a
triplet loss. Its goal is to improve global structure and inject
semantic information into t-SNE embeddings.

III. HIERARCHICAL CONSTRAINTS IN VISUALIZATIONS

This section presents HCt-SNE, which integrates hierarchi-
cal constraints into t-SNE to make data exploration easier.
To improve the readability and the semantic of visualizations,
instances in a group are made closer than instances in other
groups. The triplet (x, x+, x−) with an anchor x, a positive
example x+ and a negative example x− are used to indicate
that x should be closer to x+ than x−. Section III-A presents
examples for expressing group-level hierarchical constraints
using individual-level triplet constraints. Section III-B intro-
duces a new regularization term for t-SNE using triplet loss.
Section III-C presents our iterative algorithm with a level-order
tree traversal to encode the hierarchy at different tree levels.

A. Motivating Example

Let us consider a hierarchical tree as in Figure 2b, where
each node corresponds to a group of instances. The root node
is considered to have the highest level of abstraction and
contains the entire dataset.When going down the tree, the
level of abstraction decreases as groups are split until the leaf
nodes, which correspond to classes.The high-level constraints
expressed by users are represented by the relationship between
groups in the tree (parents, children, and siblings). For that rea-
son, we call them group-level constraints. Triplet constraints
are constructed for the instances in each group in such a way
that the hierarchical relationships in the tree are respected. Let
us take a car object as a running example when processing
instances in the automobile group.

root
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truck
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Fig. 3: Examples of triplet constraints to reinforce child-parent
relationships. The child and parent groups are annotated on
the tree by closed curves with color code. The corresponding
triplets are shown on the right.

First, we consider the child-parent relationships illustrated
in Figure 3. The land-vehicles group includes instances of
the automobile and truck groups. At level 1, the car object

should be closer to other car images in automobile rather
than being fused into the parent group of land-vehicles. This is
encoded by the triplet ( , automobile, land-vehicles) where
the group automobile can in practice be represented by its
centroid. We present here the general idea and discuss this
point in greater detail in the next section. At level 2, as
automobile is a child of land-vehicles, the car is now

a member of land-vehicles and should be closer to other
instances of this group rather than being fused into the parent
man-made group. By continuing to go up, we end up with the
three triplets shown in Figure 3.
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2 (         , land-vehicles, ship)
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Fig. 4: Examples of triplet constraints to distinguish different
child groups in a parent group. Pairs of sibling groups at each
level are annotated by closed curves with color code. The
corresponding triplets are shown on the right.

Second, we consider the sibling relationships illustrated in
Figure 4. At level 1, automobile and truck are two children of
land-vehicles. Yet, the car object should be closer to the
other instances of the automobile group than to instances of
the truckgroup, which leads us to the triplet ( , automobile,
truck). At level 2, the car now belongs to land-vehicles
which has two siblings: airplane and ship. This adds two
triplets at this level: ( , land-vehicles, airplane) and ( ,
land-vehicles, ship). Finally, the car is in man-made,
whose sibling is nature. We thus obtain the fourth triplet ( ,
man-made, nature) in Figure 4.

In summary, our idea is that, at each level of the tree, we
exploit the child-parent and sibling relationships of each node
to construct the individual-level triplet constraints. From this
concrete example, we will define more general rules to encode
the hierarchical constraints.

B. Encoding the Hierarchical Constraints

Hierarchical Constraints with t-SNE (HCt-SNE) assumes
that the user’s hierarchical constraints are expressed in the
form of a tree, based on class labels and on user prior
knowledge about the dataset. First, the group-level hierarchical
constraints in the tree are transformed into individual-level
triplet constraints. These triplet constraints are then repre-
sented by a differentiable regularization term in order to be
optimized alongside the objective function of t-SNE.

Let us denote the embedding Y = {yi}Ni=1. The triplet
constraints are constructed for every instance in each group
of the tree. Instead of considering all N3 possible triplets,
we propose to use a triplet of the form (yi, G

+, G−), where
G+/G− denote the group of positive/negative examples for
the anchor yi. This triplet indicates that yi should be closer
to G+ than G−, where G+ and G− are represented by a
representative point, here the group centroid (average position
of all instances). The number of triplets in the worst case is



O (KHN) � O
(
N3
)
, where K is the number of pairs of

sibling nodes and H is the height of the tree. 1

Let us denote a group and one of its siblings as Gk and
Gk′ . The centroids of Gk and its parent group are denoted as
ck and pk. The squared Euclidean distance between yi and
yj is denoted as d(yi,yj) = ||yi−yj ||2. The following rules
are defined to encode group-level hierarchical constraints.

1) Rule 1: A point yi ∈ Gk should be closer to the centroid
ck of its group than to the centroid pk of its parent group.

This rule means that yi should be close to other points in
Gk rather than being fused in the parent group (see examples
in Figure 3). It thus prevents child groups from concentrating
on the center of parent group. This rule focuses on the intra-
distances within the parent group. The triplet loss for all points
in a group Gk according to this rule is

L
intra

=
1

|Gk|
∑

yi∈Gk

[
d(yi, ck)− d(yi,pk) +m · d(yi,pk)

]
+
,

(1)
where [x]+ = max(0, x) is the maximum operator and |Gk|
is the number of instances in Gk. The term m ·d(yi,pk) plays
the role of a margin in the triplet loss, where m ∈ [0, 1) is
called a relative margin. If the point yi violates Rule 1 (when
it is too close to pk), the gradient

∂L
intra

∂yi
= 2
[
(yi − ck)− (1−m)(yi − pk)

]
(2)

moves this point far away from pk. Figure 5 illustrates the
gradient without margin (m = 0) for the sake of simplicity.

2) Rule 2: A point yi ∈ Gk should be closer to the centroid
ck of its group than to the centroid ck′ of its sibling group
Gk′ .

This rule helps to distinguish between different child groups
in a larger parent group (see in Figure 4). It focuses on the
inter-distances between child groups and uses the loss

L
inter

=
1

|Gk|
∑

yi∈Gk

[
d(yi, ck)−d(yi, ck′ )+m ·d(yi, ck′ )

]
+
.

(3)
The gradient for a point yi that violates the constraint is

∂L
intra

∂yi
= 2
[
(yi − ck)− (1−m)(yi − ck′ )

]
. (4)

Figure 6 illustrates the gradient of the point that violates Rule
2 in the case without margin, as in Figure 5.

C. Enforcing Hierarchical Constraints

In Algorithm 1, the loss terms for the individual triplet
constraints defined in Eq. 1 and Eq. 3 are used to regularize the
original objective function of t-SNE . The proposed iterative
algorithm has two steps. In the first step, the position of
each point yi is optimized to minimize the penalty loss
(the regularization term) and the KL loss of t-SNE. In the

1In the worst case where all the leaf nodes have the same depth of H ,
the number of triplets between child nodes and parent nodes is O(HN),
the number of triplets between sibling nodes is O(KHN), where K is the
number of all pairs of sibling nodes. In total, the number of triplets in the
worst case is O(HN) + O(KHN) = O(KHN)

Algorithm 1: Level-order tree traversal algorithm to
integrate hierarchical constraints in t-SNE.

Input : High dimensional data X = {xi}Ni=1,
Original t-SNE embedding Y0 = {yi}Ni=1,
Hierarchical constraints in the form of a tree T ,
Weight for each rule ω1 = 0.5 and ω2 = 0.5,
Relative margin m, Learning rate η,
Coefficient of the regularization term α.

Output: HCt-SNE embedding Y

1 Initialize Y = Y0

2 Lintra = Linter = 0 // Two new loss terms

3
∂Lintra

∂Y
= ∂Linter

∂Y
=~0 // Gradient of each new loss

4 for iter ← 1 to n iter do
5 for level l← 1 to height(T ) do

/* Optimize Rule 1 */

6 foreach node Gk at level l do
7 ck = Gk.centroid
8 pk = Gk.parent.centroid
9 loss1 = OptimizeRule1(Gk, ck,pk,Y ,m)

10 Lintra = Lintra + ω1 loss1

11
∂Lintra

∂Y
= ∂Lintra

∂Y
+ ω1

∂loss1
∂Y

12 end
/* Optimize Rule 2 */

13 foreach sibling pair (Gk, Gk
′ ) at the same level l do

14 ck = Gk.centroid
15 ck′ = Gk

′ .centroid
16 loss2 = OptimizeRule2(Gk, ck, ck′ ,Y ,m)
17 Linter = Linter + ω2 loss2

18
∂Linter

∂Y
= ∂Linter

∂Y
+ ω2

∂loss2
∂Y

19 end
20 end

/* Update new loss and gradient */

21 L = KLloss + α
(
Lintra + Linter

)
22 ∂L

∂Y
= ∂KLloss

∂Y
+ α

(
∂Lintra

∂Y
+ ∂Linter

∂Y

)
23 Y = Y − η ∂L

∂Y
// In practice, momentum is used.

24 end
25 return Y

second step, the centroid of each group is updated similarly
as in K-Means. The two functions OptimizeRule1 and
OptimizeRule2 apply Eq. 1 and Eq. 3 for every point yi in
the group Gk and accumulate the loss as well as the gradient
of the points that violate the constraints.

In practice, our algorithm can be easily integrated into
accelerated variants of t-SNE like Barnes-Hut t-SNE [18] and
FIT-t-SNE [19]. The triplet loss has a fast gradient update
since centroids remain fixed during the first step of Algorithm
1. Since the embedding of t-SNE is not normalized, the KL
loss and the regularization are not well calibrated. The relative
margin prevents us from manually tuning the margin value for
each dataset. As shown in the following experiments, a relative
margin m = 0.5 works well for all experimented datasets.

IV. EXPERIMENTS

In our experiments, three questions are addressed. (1)
How are the global structure and the hierarchical informa-
tion represented in HCt-SNE visualizations? (2) In practice,
does our proposed iterative algorithm converge? (3) How do



(a) (b) (c)

Fig. 5: Illustration of Rule 1 (child-parent relationships) at two levels: (a) a leaf node and its parent and (b) one level higher. For
the sake of simplicity and to avoid cluttering the figure, margin m is set to zero to get a simplified gradient ∂L

intra

∂yi
= 2(pk−ck).

At each level, the instance to constrain yi is compared to the centroid ck of its own group and the centroid pk of its parent
group. The adaptation is −η δ where δ = pk − ck. The sum of the gradients for yi at the two levels is shown in (c).

(a) (b) (c)

Fig. 6: Illustration of Rule 2 (sibling relationships) with the same conventions as in Figure 5, except that yi is compared
to the centroid ck of its own group and the centroid ck′ of its sibling group. Again, m = 0 simplifies the gradient to
∂L

inter

∂yi
= 2(ck′ − ck). Here, there is only one sibling group, but in more complex cases, one has to sum the contributions of

all siblings.

the HCt-SNE embeddings compare with embeddings given
by other methods? HCt-SNE is compared with the original
unsupervised t-SNE (perplexity=50) and two other supervised
DR methods with common hyperparameter values: UMAP in
the supervised setting (n neighbors=10 and min dist=0.1) and
class-aware t-SNE (cat-SNE, with its best setting with θ = 0.9
to expand the neighborhood size in the HD space to capture
at least 90% of data points with the same label).

A. Experimental Setup

Three standard image datasets MNIST [20], Fashion-
MNIST [21] and CIFAR10 [22] are used in our experiments.
Input pixels are normalized in [0, 1], and PCA is then applied
to keep 95% of the variance. Like t-SNE, HCt-SNE can
work with other kinds of data. However, our experiments
are performed on image datasets since users can create the
hierarchical constraints visually by looking at the images as
shown in Sec. III-A.

In our experiments, HCt-SNE takes a t-SNE embedding as
the initial state and therefore skips the exaggeration phase.
This setting allows us to compare directly the t-SNE visu-
alization without constraints (initial state) and the HCt-SNE
visualization with hierarchical constraints. The input hierar-

chical tree is constructed with the leaf nodes corresponding to
the classes in the dataset. The intermediate nodes are created
manually according to the desired hierarchical structure of
users. For instance, in CIFAR10, truck and automobile are
grouped into land-vehicles; this higher-level group is then
grouped with ship and airplane to get man-made, etc.

UMAP and cat-SNE are used with the recommended hy-
perparameters, as our preliminary experiments have shown
that other choices provide similar qualitative results for our
datasets. HCt-SNE uses the same hyperparameter values as t-
SNE and has two additional hyperparameters. First, the relative
margin m determines the separation of the groups in the
visualization and can be set to 0.5 to make sure the groups
are not too close nor too far away. Second, α determines the
contribution of the hierarchical constraints to the new loss. α
depends on the specific hierarchical tree of each dataset and
can be easily tuned by observing the value of the regularization
term, and then by trying several values to make sure this term
decreases consistently. The reported results are calculated from
the following values of α: 7.5×10−4 for MNIST and Fashion-
MNIST, and 5×10−3 for CIFAR10. Our implementation is
based on openTSNE [23] with Barnes-Hut acceleration.



In order to quantitatively assess the visualizations, three
different scores are used. The co-ranking-based score
AUC[RNX ] [3] measures how well the neighborhood infor-
mation in the HD space is preserved in the LD space. The
KNN-gain score AUC[GNN ] [6] measures how much we
gain in terms of KNN accuracy when using the embedding
in the LD space instead of the original data in the HD space.
AUC[RNX ] and AUC[GNN ] are in the range of [−1, 1],
in which 1 is the best, -1 is the worst, and 0 means that
there is no gain (or loss) in the neighborhood preservation
or the KNN accuracy with the embedding in LD space. It
should be noted that, for these scores, a small positive value
is acceptable while a negative value is bad. These two metrics
have a complexity of O

(
N2 logN

)
, where N is the number

of instances in the dataset. Because of this complexity, we
use a subset of 10k data points for each dataset in order to
facilitate the computation of these metrics. It also helps us to
make a fair comparison with cat-SNE since cat-SNE is not
optimized for large datasets. Finally, the simple KNN score
(with K = 10) suggested by [4], [5] is used to measure how
useful the 2D embedding is for a classification task.

B. Experimental Results

Qualitative results for visual assessment are shown in Ta-
ble I, where each column corresponds to the visualization
of one dataset. The first three rows show the embeddings
of t-SNE, cat-SNE, and supervised UMAP, respectively. The
fourth row shows the embedding of HCt-SNE, built from the
hierarchical tree shown in the fifth row. The last row shows
the convergence of the proposed regularization term (in blue)
and the new overall loss function (in red).

For MNIST and Fashion-MNIST, HCt-SNE and UMAP can
clearly reveal the separation of groups in the visualization. One
can also see distinct groups in the visualizations of t-SNE and
cat-SNE. However, all competing methods (t-SNE, cat-SNE,
and UMAP) fail to reveal distinct groups for CIFAR10. In
contrast, HCt-SNE reveals separated groups, gives a global
view that helps us to get insights about the relative distances
between the instances and about the position of the groups.
The visualizations of HCt-SNE can be visually verified with
the input hierarchical tree.

Our proposed regularization term is efficient to compute
and converges after roughly 50 iterations, as shown in the
losses (red lines) of Table I. HCt-SNE is run for 100 iterations
to show that the converging state is stable. We do not draw
conclusions here from computational time, as it would be
unfair since cat-SNE is not optimized for large datasets,
whereas HCt-SNE benefits from the computational efficiency
of the implementation of openTSNE 2.

Figure 7 shows quantitative results in terms of three metrics
(see Section IV-A) for the visualizations in Table I. This figure

2All our experiments are run on colab.research.google.com. For the reader’s
information, with a dataset of 10k instances, HCtSNE with an initial t-
SNE embedding takes less than 35s, UMAP takes around 40s, t-SNE takes
1m20s, and cat-SNE takes around 1h30m. Our implementation and other
supplementary materials (visualizations with the full datasets, the effect of the
relative margin m) are available online at https://github.com/vu-minh/hc-tsne.

(a) MNIST

(b) Fashion-MNIST

(c) CIFAR10

Fig. 7: Average scores of different metrics for three datasets.
Each methods are run 10 times with different random initial-
ization. The scores are calculated for each resulting visualiza-
tions. The mean values are reported in the bar chart and 95%
confidence intervals are shown in the black bars. It should be
noted that the scores are stable and confidence intervals are
small, which shows that differences are significant.

reports the average scores of 10 different runs with random
initialization for 4 experimented methods. In MNIST and
Fashion-MNIST, gray-scale images have the same background,
and thus there is no background effect. For both datasets,
our method performs similarly to supervised UMAP. On
the contrary, CIFAR10 contains color images for which the
background effect becomes a real problem, as presented in Fig-
ure 1b. In a neighborhood, images do not necessarily belong to
the same class, what makes the neighborhood preserving score
AUC[RNX ] and the KNN-based score AUC[GNN ] behave
oppositely. HCt-SNE preserves semantic information in the
class labels and outperforms t-SNE and cat-SNE by a large
margin in terms of AUC[GNN ]. Yet, it has poor AUC[RNX ]
since it overcomes the background effect and breaks the neigh-
borhood information in HD space. In summary, experiments
show that HCt-SNE can integrate user hierarchical constraints
to produce useful and informative visualizations.

V. DISCUSSION AND CONCLUSION

This section discusses several technical points in the design
of HCt-SNE, its limitations, and several perspectives. The
interest of HCt-SNE is three-fold. First, representing the
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Hierarchy for HCt-SNE
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0
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9
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clothing

Sandal

shoe

Sneaker

Ankle boot

Bag

shirt
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long-shape

T-shirt/top

Shirt

Pullover

Coat

Dress

Trouser
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man-made

nature

airplane

ship

land-vehicles

automobile

truck

bird

frog

pets

hoofed-mammals

dog

cat

deer

horse

Loss values of HCt-SNE

TABLE I: Visual assessment for comparing the visualizations of four methods on three datasets. From top to bottom, we show
the results of the original unsupervised t-SNE with Barnes-Hut acceleration [18], class-aware t-SNE (cat-SNE) [6], UMAP in
a supervised setting [8] and our proposed HCt-SNE. The two last rows show the input hierarchical tree for our method that
reflects user knowledge and the convergence of the new regularization term (in blue) and the new overall loss function (in
red). The quality of the visualizations is best seen in colors.



hierarchical constraints as a tree is a powerful way to express
explicitly the desired global structure. Other supervised DR
methods (cat-SNE and UMAP) cannot do this because they
only use class labels. Second, the level-order tree traversal
algorithm transforms the hierarchy (group level) into triplet
constraints (individual level). This is more efficient than
naively sampling the N3 possible triplets. The traversal order
does not matter since we update the gradient after visiting all
nodes. Third, the triplet loss can be considered as an energy
function that minimizes the compatible settings (i.e., the
anchor and the positive point) and maximizes the incompatible
settings (i.e., the anchor and the negative point) [24]. This is
the same idea as metric learning methods, which try to learn
a distance function to make similar points close together and
dissimilar points far apart [25]. We can thus extend HCt-SNE
by replacing the triplet loss with another contrastive loss like
the general function introduced in [26]. The triplet constraints
are represented by a regularization term that preserves the
global and the hierarchical structure, and thus could also be
integrated into other DR methods like UMAP.

In summary, we propose an accessible method for end-
users who want to easily explore datasets with the support
of a hierarchical representation of constraints for groups of
instances. For example, this can be useful when clusters are
not clearly separated or even overlap in the visualization
computed by t-SNE. It may happen when the distance metric
in the HD space is not satisfactory or when the user does
not have an appropriate neural network for feature extraction.
However, our approach has some limitations. When addressing
the problem of global structure in the visualization, we should
consider the shape of the groups and the relative distances
between them. HCt-SNE currently tackles the second aspect
while ignoring the first one. Revealing and preserving the
shape of groups with neighborhood embedding methods is
still an open problem. Also, in our experiments, we did not
consider how to embed new data points. Lastly, HCt-SNE, like
t-SNE, is more suitable for visualization but not for general
dimensionality reduction tasks.

Our future work will focus on the constraints expressed by
users for DR methods. While t-SNE and UMAP are widely
used, their results lack global structure preservation, and users
have no means to inject their knowledge into the visualization.
We plan to work on interactive ways to visually build the
hierarchical tree by, e.g., selecting sample images to create
nodes. This tree will be passed to HCt-SNE to create a
meaningful and useful visualization. Besides, we will also
tackle the limitations of our method to expand its usage. For
example, the constraints learned from the training set could
also help to project new points correctly into their groups.
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